Simple -Wshadow=local fixes
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 unsigned int mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 unsigned int has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 unsigned int checked_producer : 1;
552 unsigned int producer_is_gxx_lt_4_6 : 1;
553 unsigned int producer_is_gcc_lt_4_3 : 1;
554 unsigned int producer_is_icc_lt_14 : 1;
555
556 /* When set, the file that we're processing is known to have
557 debugging info for C++ namespaces. GCC 3.3.x did not produce
558 this information, but later versions do. */
559
560 unsigned int processing_has_namespace_info : 1;
561
562 struct partial_die_info *find_partial_die (sect_offset sect_off);
563 };
564
565 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
566 This includes type_unit_group and quick_file_names. */
567
568 struct stmt_list_hash
569 {
570 /* The DWO unit this table is from or NULL if there is none. */
571 struct dwo_unit *dwo_unit;
572
573 /* Offset in .debug_line or .debug_line.dwo. */
574 sect_offset line_sect_off;
575 };
576
577 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
578 an object of this type. */
579
580 struct type_unit_group
581 {
582 /* dwarf2read.c's main "handle" on a TU symtab.
583 To simplify things we create an artificial CU that "includes" all the
584 type units using this stmt_list so that the rest of the code still has
585 a "per_cu" handle on the symtab.
586 This PER_CU is recognized by having no section. */
587 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
588 struct dwarf2_per_cu_data per_cu;
589
590 /* The TUs that share this DW_AT_stmt_list entry.
591 This is added to while parsing type units to build partial symtabs,
592 and is deleted afterwards and not used again. */
593 VEC (sig_type_ptr) *tus;
594
595 /* The compunit symtab.
596 Type units in a group needn't all be defined in the same source file,
597 so we create an essentially anonymous symtab as the compunit symtab. */
598 struct compunit_symtab *compunit_symtab;
599
600 /* The data used to construct the hash key. */
601 struct stmt_list_hash hash;
602
603 /* The number of symtabs from the line header.
604 The value here must match line_header.num_file_names. */
605 unsigned int num_symtabs;
606
607 /* The symbol tables for this TU (obtained from the files listed in
608 DW_AT_stmt_list).
609 WARNING: The order of entries here must match the order of entries
610 in the line header. After the first TU using this type_unit_group, the
611 line header for the subsequent TUs is recreated from this. This is done
612 because we need to use the same symtabs for each TU using the same
613 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
614 there's no guarantee the line header doesn't have duplicate entries. */
615 struct symtab **symtabs;
616 };
617
618 /* These sections are what may appear in a (real or virtual) DWO file. */
619
620 struct dwo_sections
621 {
622 struct dwarf2_section_info abbrev;
623 struct dwarf2_section_info line;
624 struct dwarf2_section_info loc;
625 struct dwarf2_section_info loclists;
626 struct dwarf2_section_info macinfo;
627 struct dwarf2_section_info macro;
628 struct dwarf2_section_info str;
629 struct dwarf2_section_info str_offsets;
630 /* In the case of a virtual DWO file, these two are unused. */
631 struct dwarf2_section_info info;
632 VEC (dwarf2_section_info_def) *types;
633 };
634
635 /* CUs/TUs in DWP/DWO files. */
636
637 struct dwo_unit
638 {
639 /* Backlink to the containing struct dwo_file. */
640 struct dwo_file *dwo_file;
641
642 /* The "id" that distinguishes this CU/TU.
643 .debug_info calls this "dwo_id", .debug_types calls this "signature".
644 Since signatures came first, we stick with it for consistency. */
645 ULONGEST signature;
646
647 /* The section this CU/TU lives in, in the DWO file. */
648 struct dwarf2_section_info *section;
649
650 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
651 sect_offset sect_off;
652 unsigned int length;
653
654 /* For types, offset in the type's DIE of the type defined by this TU. */
655 cu_offset type_offset_in_tu;
656 };
657
658 /* include/dwarf2.h defines the DWP section codes.
659 It defines a max value but it doesn't define a min value, which we
660 use for error checking, so provide one. */
661
662 enum dwp_v2_section_ids
663 {
664 DW_SECT_MIN = 1
665 };
666
667 /* Data for one DWO file.
668
669 This includes virtual DWO files (a virtual DWO file is a DWO file as it
670 appears in a DWP file). DWP files don't really have DWO files per se -
671 comdat folding of types "loses" the DWO file they came from, and from
672 a high level view DWP files appear to contain a mass of random types.
673 However, to maintain consistency with the non-DWP case we pretend DWP
674 files contain virtual DWO files, and we assign each TU with one virtual
675 DWO file (generally based on the line and abbrev section offsets -
676 a heuristic that seems to work in practice). */
677
678 struct dwo_file
679 {
680 /* The DW_AT_GNU_dwo_name attribute.
681 For virtual DWO files the name is constructed from the section offsets
682 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
683 from related CU+TUs. */
684 const char *dwo_name;
685
686 /* The DW_AT_comp_dir attribute. */
687 const char *comp_dir;
688
689 /* The bfd, when the file is open. Otherwise this is NULL.
690 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
691 bfd *dbfd;
692
693 /* The sections that make up this DWO file.
694 Remember that for virtual DWO files in DWP V2, these are virtual
695 sections (for lack of a better name). */
696 struct dwo_sections sections;
697
698 /* The CUs in the file.
699 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
700 an extension to handle LLVM's Link Time Optimization output (where
701 multiple source files may be compiled into a single object/dwo pair). */
702 htab_t cus;
703
704 /* Table of TUs in the file.
705 Each element is a struct dwo_unit. */
706 htab_t tus;
707 };
708
709 /* These sections are what may appear in a DWP file. */
710
711 struct dwp_sections
712 {
713 /* These are used by both DWP version 1 and 2. */
714 struct dwarf2_section_info str;
715 struct dwarf2_section_info cu_index;
716 struct dwarf2_section_info tu_index;
717
718 /* These are only used by DWP version 2 files.
719 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
720 sections are referenced by section number, and are not recorded here.
721 In DWP version 2 there is at most one copy of all these sections, each
722 section being (effectively) comprised of the concatenation of all of the
723 individual sections that exist in the version 1 format.
724 To keep the code simple we treat each of these concatenated pieces as a
725 section itself (a virtual section?). */
726 struct dwarf2_section_info abbrev;
727 struct dwarf2_section_info info;
728 struct dwarf2_section_info line;
729 struct dwarf2_section_info loc;
730 struct dwarf2_section_info macinfo;
731 struct dwarf2_section_info macro;
732 struct dwarf2_section_info str_offsets;
733 struct dwarf2_section_info types;
734 };
735
736 /* These sections are what may appear in a virtual DWO file in DWP version 1.
737 A virtual DWO file is a DWO file as it appears in a DWP file. */
738
739 struct virtual_v1_dwo_sections
740 {
741 struct dwarf2_section_info abbrev;
742 struct dwarf2_section_info line;
743 struct dwarf2_section_info loc;
744 struct dwarf2_section_info macinfo;
745 struct dwarf2_section_info macro;
746 struct dwarf2_section_info str_offsets;
747 /* Each DWP hash table entry records one CU or one TU.
748 That is recorded here, and copied to dwo_unit.section. */
749 struct dwarf2_section_info info_or_types;
750 };
751
752 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
753 In version 2, the sections of the DWO files are concatenated together
754 and stored in one section of that name. Thus each ELF section contains
755 several "virtual" sections. */
756
757 struct virtual_v2_dwo_sections
758 {
759 bfd_size_type abbrev_offset;
760 bfd_size_type abbrev_size;
761
762 bfd_size_type line_offset;
763 bfd_size_type line_size;
764
765 bfd_size_type loc_offset;
766 bfd_size_type loc_size;
767
768 bfd_size_type macinfo_offset;
769 bfd_size_type macinfo_size;
770
771 bfd_size_type macro_offset;
772 bfd_size_type macro_size;
773
774 bfd_size_type str_offsets_offset;
775 bfd_size_type str_offsets_size;
776
777 /* Each DWP hash table entry records one CU or one TU.
778 That is recorded here, and copied to dwo_unit.section. */
779 bfd_size_type info_or_types_offset;
780 bfd_size_type info_or_types_size;
781 };
782
783 /* Contents of DWP hash tables. */
784
785 struct dwp_hash_table
786 {
787 uint32_t version, nr_columns;
788 uint32_t nr_units, nr_slots;
789 const gdb_byte *hash_table, *unit_table;
790 union
791 {
792 struct
793 {
794 const gdb_byte *indices;
795 } v1;
796 struct
797 {
798 /* This is indexed by column number and gives the id of the section
799 in that column. */
800 #define MAX_NR_V2_DWO_SECTIONS \
801 (1 /* .debug_info or .debug_types */ \
802 + 1 /* .debug_abbrev */ \
803 + 1 /* .debug_line */ \
804 + 1 /* .debug_loc */ \
805 + 1 /* .debug_str_offsets */ \
806 + 1 /* .debug_macro or .debug_macinfo */)
807 int section_ids[MAX_NR_V2_DWO_SECTIONS];
808 const gdb_byte *offsets;
809 const gdb_byte *sizes;
810 } v2;
811 } section_pool;
812 };
813
814 /* Data for one DWP file. */
815
816 struct dwp_file
817 {
818 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
819 : name (name_),
820 dbfd (std::move (abfd))
821 {
822 }
823
824 /* Name of the file. */
825 const char *name;
826
827 /* File format version. */
828 int version = 0;
829
830 /* The bfd. */
831 gdb_bfd_ref_ptr dbfd;
832
833 /* Section info for this file. */
834 struct dwp_sections sections {};
835
836 /* Table of CUs in the file. */
837 const struct dwp_hash_table *cus = nullptr;
838
839 /* Table of TUs in the file. */
840 const struct dwp_hash_table *tus = nullptr;
841
842 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
843 htab_t loaded_cus {};
844 htab_t loaded_tus {};
845
846 /* Table to map ELF section numbers to their sections.
847 This is only needed for the DWP V1 file format. */
848 unsigned int num_sections = 0;
849 asection **elf_sections = nullptr;
850 };
851
852 /* This represents a '.dwz' file. */
853
854 struct dwz_file
855 {
856 dwz_file (gdb_bfd_ref_ptr &&bfd)
857 : dwz_bfd (std::move (bfd))
858 {
859 }
860
861 /* A dwz file can only contain a few sections. */
862 struct dwarf2_section_info abbrev {};
863 struct dwarf2_section_info info {};
864 struct dwarf2_section_info str {};
865 struct dwarf2_section_info line {};
866 struct dwarf2_section_info macro {};
867 struct dwarf2_section_info gdb_index {};
868 struct dwarf2_section_info debug_names {};
869
870 /* The dwz's BFD. */
871 gdb_bfd_ref_ptr dwz_bfd;
872
873 /* If we loaded the index from an external file, this contains the
874 resources associated to the open file, memory mapping, etc. */
875 std::unique_ptr<index_cache_resource> index_cache_res;
876 };
877
878 /* Struct used to pass misc. parameters to read_die_and_children, et
879 al. which are used for both .debug_info and .debug_types dies.
880 All parameters here are unchanging for the life of the call. This
881 struct exists to abstract away the constant parameters of die reading. */
882
883 struct die_reader_specs
884 {
885 /* The bfd of die_section. */
886 bfd* abfd;
887
888 /* The CU of the DIE we are parsing. */
889 struct dwarf2_cu *cu;
890
891 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
892 struct dwo_file *dwo_file;
893
894 /* The section the die comes from.
895 This is either .debug_info or .debug_types, or the .dwo variants. */
896 struct dwarf2_section_info *die_section;
897
898 /* die_section->buffer. */
899 const gdb_byte *buffer;
900
901 /* The end of the buffer. */
902 const gdb_byte *buffer_end;
903
904 /* The value of the DW_AT_comp_dir attribute. */
905 const char *comp_dir;
906
907 /* The abbreviation table to use when reading the DIEs. */
908 struct abbrev_table *abbrev_table;
909 };
910
911 /* Type of function passed to init_cutu_and_read_dies, et.al. */
912 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
913 const gdb_byte *info_ptr,
914 struct die_info *comp_unit_die,
915 int has_children,
916 void *data);
917
918 /* A 1-based directory index. This is a strong typedef to prevent
919 accidentally using a directory index as a 0-based index into an
920 array/vector. */
921 enum class dir_index : unsigned int {};
922
923 /* Likewise, a 1-based file name index. */
924 enum class file_name_index : unsigned int {};
925
926 struct file_entry
927 {
928 file_entry () = default;
929
930 file_entry (const char *name_, dir_index d_index_,
931 unsigned int mod_time_, unsigned int length_)
932 : name (name_),
933 d_index (d_index_),
934 mod_time (mod_time_),
935 length (length_)
936 {}
937
938 /* Return the include directory at D_INDEX stored in LH. Returns
939 NULL if D_INDEX is out of bounds. */
940 const char *include_dir (const line_header *lh) const;
941
942 /* The file name. Note this is an observing pointer. The memory is
943 owned by debug_line_buffer. */
944 const char *name {};
945
946 /* The directory index (1-based). */
947 dir_index d_index {};
948
949 unsigned int mod_time {};
950
951 unsigned int length {};
952
953 /* True if referenced by the Line Number Program. */
954 bool included_p {};
955
956 /* The associated symbol table, if any. */
957 struct symtab *symtab {};
958 };
959
960 /* The line number information for a compilation unit (found in the
961 .debug_line section) begins with a "statement program header",
962 which contains the following information. */
963 struct line_header
964 {
965 line_header ()
966 : offset_in_dwz {}
967 {}
968
969 /* Add an entry to the include directory table. */
970 void add_include_dir (const char *include_dir);
971
972 /* Add an entry to the file name table. */
973 void add_file_name (const char *name, dir_index d_index,
974 unsigned int mod_time, unsigned int length);
975
976 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
977 is out of bounds. */
978 const char *include_dir_at (dir_index index) const
979 {
980 /* Convert directory index number (1-based) to vector index
981 (0-based). */
982 size_t vec_index = to_underlying (index) - 1;
983
984 if (vec_index >= include_dirs.size ())
985 return NULL;
986 return include_dirs[vec_index];
987 }
988
989 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
990 is out of bounds. */
991 file_entry *file_name_at (file_name_index index)
992 {
993 /* Convert file name index number (1-based) to vector index
994 (0-based). */
995 size_t vec_index = to_underlying (index) - 1;
996
997 if (vec_index >= file_names.size ())
998 return NULL;
999 return &file_names[vec_index];
1000 }
1001
1002 /* Const version of the above. */
1003 const file_entry *file_name_at (unsigned int index) const
1004 {
1005 if (index >= file_names.size ())
1006 return NULL;
1007 return &file_names[index];
1008 }
1009
1010 /* Offset of line number information in .debug_line section. */
1011 sect_offset sect_off {};
1012
1013 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1014 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1015
1016 unsigned int total_length {};
1017 unsigned short version {};
1018 unsigned int header_length {};
1019 unsigned char minimum_instruction_length {};
1020 unsigned char maximum_ops_per_instruction {};
1021 unsigned char default_is_stmt {};
1022 int line_base {};
1023 unsigned char line_range {};
1024 unsigned char opcode_base {};
1025
1026 /* standard_opcode_lengths[i] is the number of operands for the
1027 standard opcode whose value is i. This means that
1028 standard_opcode_lengths[0] is unused, and the last meaningful
1029 element is standard_opcode_lengths[opcode_base - 1]. */
1030 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1031
1032 /* The include_directories table. Note these are observing
1033 pointers. The memory is owned by debug_line_buffer. */
1034 std::vector<const char *> include_dirs;
1035
1036 /* The file_names table. */
1037 std::vector<file_entry> file_names;
1038
1039 /* The start and end of the statement program following this
1040 header. These point into dwarf2_per_objfile->line_buffer. */
1041 const gdb_byte *statement_program_start {}, *statement_program_end {};
1042 };
1043
1044 typedef std::unique_ptr<line_header> line_header_up;
1045
1046 const char *
1047 file_entry::include_dir (const line_header *lh) const
1048 {
1049 return lh->include_dir_at (d_index);
1050 }
1051
1052 /* When we construct a partial symbol table entry we only
1053 need this much information. */
1054 struct partial_die_info : public allocate_on_obstack
1055 {
1056 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1057
1058 /* Disable assign but still keep copy ctor, which is needed
1059 load_partial_dies. */
1060 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1061
1062 /* Adjust the partial die before generating a symbol for it. This
1063 function may set the is_external flag or change the DIE's
1064 name. */
1065 void fixup (struct dwarf2_cu *cu);
1066
1067 /* Read a minimal amount of information into the minimal die
1068 structure. */
1069 const gdb_byte *read (const struct die_reader_specs *reader,
1070 const struct abbrev_info &abbrev,
1071 const gdb_byte *info_ptr);
1072
1073 /* Offset of this DIE. */
1074 const sect_offset sect_off;
1075
1076 /* DWARF-2 tag for this DIE. */
1077 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
1079 /* Assorted flags describing the data found in this DIE. */
1080 const unsigned int has_children : 1;
1081
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
1087 unsigned int may_be_inlined : 1;
1088
1089 /* This DIE has been marked DW_AT_main_subprogram. */
1090 unsigned int main_subprogram : 1;
1091
1092 /* Flag set if the SCOPE field of this structure has been
1093 computed. */
1094 unsigned int scope_set : 1;
1095
1096 /* Flag set if the DIE has a byte_size attribute. */
1097 unsigned int has_byte_size : 1;
1098
1099 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1100 unsigned int has_const_value : 1;
1101
1102 /* Flag set if any of the DIE's children are template arguments. */
1103 unsigned int has_template_arguments : 1;
1104
1105 /* Flag set if fixup has been called on this die. */
1106 unsigned int fixup_called : 1;
1107
1108 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1109 unsigned int is_dwz : 1;
1110
1111 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1112 unsigned int spec_is_dwz : 1;
1113
1114 /* The name of this DIE. Normally the value of DW_AT_name, but
1115 sometimes a default name for unnamed DIEs. */
1116 const char *name = nullptr;
1117
1118 /* The linkage name, if present. */
1119 const char *linkage_name = nullptr;
1120
1121 /* The scope to prepend to our children. This is generally
1122 allocated on the comp_unit_obstack, so will disappear
1123 when this compilation unit leaves the cache. */
1124 const char *scope = nullptr;
1125
1126 /* Some data associated with the partial DIE. The tag determines
1127 which field is live. */
1128 union
1129 {
1130 /* The location description associated with this DIE, if any. */
1131 struct dwarf_block *locdesc;
1132 /* The offset of an import, for DW_TAG_imported_unit. */
1133 sect_offset sect_off;
1134 } d {};
1135
1136 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1137 CORE_ADDR lowpc = 0;
1138 CORE_ADDR highpc = 0;
1139
1140 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1141 DW_AT_sibling, if any. */
1142 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1143 could return DW_AT_sibling values to its caller load_partial_dies. */
1144 const gdb_byte *sibling = nullptr;
1145
1146 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1147 DW_AT_specification (or DW_AT_abstract_origin or
1148 DW_AT_extension). */
1149 sect_offset spec_offset {};
1150
1151 /* Pointers to this DIE's parent, first child, and next sibling,
1152 if any. */
1153 struct partial_die_info *die_parent = nullptr;
1154 struct partial_die_info *die_child = nullptr;
1155 struct partial_die_info *die_sibling = nullptr;
1156
1157 friend struct partial_die_info *
1158 dwarf2_cu::find_partial_die (sect_offset sect_off);
1159
1160 private:
1161 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1162 partial_die_info (sect_offset sect_off)
1163 : partial_die_info (sect_off, DW_TAG_padding, 0)
1164 {
1165 }
1166
1167 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1168 int has_children_)
1169 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1170 {
1171 is_external = 0;
1172 is_declaration = 0;
1173 has_type = 0;
1174 has_specification = 0;
1175 has_pc_info = 0;
1176 may_be_inlined = 0;
1177 main_subprogram = 0;
1178 scope_set = 0;
1179 has_byte_size = 0;
1180 has_const_value = 0;
1181 has_template_arguments = 0;
1182 fixup_called = 0;
1183 is_dwz = 0;
1184 spec_is_dwz = 0;
1185 }
1186 };
1187
1188 /* This data structure holds the information of an abbrev. */
1189 struct abbrev_info
1190 {
1191 unsigned int number; /* number identifying abbrev */
1192 enum dwarf_tag tag; /* dwarf tag */
1193 unsigned short has_children; /* boolean */
1194 unsigned short num_attrs; /* number of attributes */
1195 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1196 struct abbrev_info *next; /* next in chain */
1197 };
1198
1199 struct attr_abbrev
1200 {
1201 ENUM_BITFIELD(dwarf_attribute) name : 16;
1202 ENUM_BITFIELD(dwarf_form) form : 16;
1203
1204 /* It is valid only if FORM is DW_FORM_implicit_const. */
1205 LONGEST implicit_const;
1206 };
1207
1208 /* Size of abbrev_table.abbrev_hash_table. */
1209 #define ABBREV_HASH_SIZE 121
1210
1211 /* Top level data structure to contain an abbreviation table. */
1212
1213 struct abbrev_table
1214 {
1215 explicit abbrev_table (sect_offset off)
1216 : sect_off (off)
1217 {
1218 m_abbrevs =
1219 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1220 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1221 }
1222
1223 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1224
1225 /* Allocate space for a struct abbrev_info object in
1226 ABBREV_TABLE. */
1227 struct abbrev_info *alloc_abbrev ();
1228
1229 /* Add an abbreviation to the table. */
1230 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1231
1232 /* Look up an abbrev in the table.
1233 Returns NULL if the abbrev is not found. */
1234
1235 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1236
1237
1238 /* Where the abbrev table came from.
1239 This is used as a sanity check when the table is used. */
1240 const sect_offset sect_off;
1241
1242 /* Storage for the abbrev table. */
1243 auto_obstack abbrev_obstack;
1244
1245 private:
1246
1247 /* Hash table of abbrevs.
1248 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1249 It could be statically allocated, but the previous code didn't so we
1250 don't either. */
1251 struct abbrev_info **m_abbrevs;
1252 };
1253
1254 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1255
1256 /* Attributes have a name and a value. */
1257 struct attribute
1258 {
1259 ENUM_BITFIELD(dwarf_attribute) name : 16;
1260 ENUM_BITFIELD(dwarf_form) form : 15;
1261
1262 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1263 field should be in u.str (existing only for DW_STRING) but it is kept
1264 here for better struct attribute alignment. */
1265 unsigned int string_is_canonical : 1;
1266
1267 union
1268 {
1269 const char *str;
1270 struct dwarf_block *blk;
1271 ULONGEST unsnd;
1272 LONGEST snd;
1273 CORE_ADDR addr;
1274 ULONGEST signature;
1275 }
1276 u;
1277 };
1278
1279 /* This data structure holds a complete die structure. */
1280 struct die_info
1281 {
1282 /* DWARF-2 tag for this DIE. */
1283 ENUM_BITFIELD(dwarf_tag) tag : 16;
1284
1285 /* Number of attributes */
1286 unsigned char num_attrs;
1287
1288 /* True if we're presently building the full type name for the
1289 type derived from this DIE. */
1290 unsigned char building_fullname : 1;
1291
1292 /* True if this die is in process. PR 16581. */
1293 unsigned char in_process : 1;
1294
1295 /* Abbrev number */
1296 unsigned int abbrev;
1297
1298 /* Offset in .debug_info or .debug_types section. */
1299 sect_offset sect_off;
1300
1301 /* The dies in a compilation unit form an n-ary tree. PARENT
1302 points to this die's parent; CHILD points to the first child of
1303 this node; and all the children of a given node are chained
1304 together via their SIBLING fields. */
1305 struct die_info *child; /* Its first child, if any. */
1306 struct die_info *sibling; /* Its next sibling, if any. */
1307 struct die_info *parent; /* Its parent, if any. */
1308
1309 /* An array of attributes, with NUM_ATTRS elements. There may be
1310 zero, but it's not common and zero-sized arrays are not
1311 sufficiently portable C. */
1312 struct attribute attrs[1];
1313 };
1314
1315 /* Get at parts of an attribute structure. */
1316
1317 #define DW_STRING(attr) ((attr)->u.str)
1318 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1319 #define DW_UNSND(attr) ((attr)->u.unsnd)
1320 #define DW_BLOCK(attr) ((attr)->u.blk)
1321 #define DW_SND(attr) ((attr)->u.snd)
1322 #define DW_ADDR(attr) ((attr)->u.addr)
1323 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1324
1325 /* Blocks are a bunch of untyped bytes. */
1326 struct dwarf_block
1327 {
1328 size_t size;
1329
1330 /* Valid only if SIZE is not zero. */
1331 const gdb_byte *data;
1332 };
1333
1334 #ifndef ATTR_ALLOC_CHUNK
1335 #define ATTR_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* Allocate fields for structs, unions and enums in this size. */
1339 #ifndef DW_FIELD_ALLOC_CHUNK
1340 #define DW_FIELD_ALLOC_CHUNK 4
1341 #endif
1342
1343 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1344 but this would require a corresponding change in unpack_field_as_long
1345 and friends. */
1346 static int bits_per_byte = 8;
1347
1348 /* When reading a variant or variant part, we track a bit more
1349 information about the field, and store it in an object of this
1350 type. */
1351
1352 struct variant_field
1353 {
1354 /* If we see a DW_TAG_variant, then this will be the discriminant
1355 value. */
1356 ULONGEST discriminant_value;
1357 /* If we see a DW_TAG_variant, then this will be set if this is the
1358 default branch. */
1359 bool default_branch;
1360 /* While reading a DW_TAG_variant_part, this will be set if this
1361 field is the discriminant. */
1362 bool is_discriminant;
1363 };
1364
1365 struct nextfield
1366 {
1367 int accessibility = 0;
1368 int virtuality = 0;
1369 /* Extra information to describe a variant or variant part. */
1370 struct variant_field variant {};
1371 struct field field {};
1372 };
1373
1374 struct fnfieldlist
1375 {
1376 const char *name = nullptr;
1377 std::vector<struct fn_field> fnfields;
1378 };
1379
1380 /* The routines that read and process dies for a C struct or C++ class
1381 pass lists of data member fields and lists of member function fields
1382 in an instance of a field_info structure, as defined below. */
1383 struct field_info
1384 {
1385 /* List of data member and baseclasses fields. */
1386 std::vector<struct nextfield> fields;
1387 std::vector<struct nextfield> baseclasses;
1388
1389 /* Number of fields (including baseclasses). */
1390 int nfields = 0;
1391
1392 /* Set if the accesibility of one of the fields is not public. */
1393 int non_public_fields = 0;
1394
1395 /* Member function fieldlist array, contains name of possibly overloaded
1396 member function, number of overloaded member functions and a pointer
1397 to the head of the member function field chain. */
1398 std::vector<struct fnfieldlist> fnfieldlists;
1399
1400 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1401 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1402 std::vector<struct decl_field> typedef_field_list;
1403
1404 /* Nested types defined by this class and the number of elements in this
1405 list. */
1406 std::vector<struct decl_field> nested_types_list;
1407 };
1408
1409 /* One item on the queue of compilation units to read in full symbols
1410 for. */
1411 struct dwarf2_queue_item
1412 {
1413 struct dwarf2_per_cu_data *per_cu;
1414 enum language pretend_language;
1415 struct dwarf2_queue_item *next;
1416 };
1417
1418 /* The current queue. */
1419 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1420
1421 /* Loaded secondary compilation units are kept in memory until they
1422 have not been referenced for the processing of this many
1423 compilation units. Set this to zero to disable caching. Cache
1424 sizes of up to at least twenty will improve startup time for
1425 typical inter-CU-reference binaries, at an obvious memory cost. */
1426 static int dwarf_max_cache_age = 5;
1427 static void
1428 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1429 struct cmd_list_element *c, const char *value)
1430 {
1431 fprintf_filtered (file, _("The upper bound on the age of cached "
1432 "DWARF compilation units is %s.\n"),
1433 value);
1434 }
1435 \f
1436 /* local function prototypes */
1437
1438 static const char *get_section_name (const struct dwarf2_section_info *);
1439
1440 static const char *get_section_file_name (const struct dwarf2_section_info *);
1441
1442 static void dwarf2_find_base_address (struct die_info *die,
1443 struct dwarf2_cu *cu);
1444
1445 static struct partial_symtab *create_partial_symtab
1446 (struct dwarf2_per_cu_data *per_cu, const char *name);
1447
1448 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1449 const gdb_byte *info_ptr,
1450 struct die_info *type_unit_die,
1451 int has_children, void *data);
1452
1453 static void dwarf2_build_psymtabs_hard
1454 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1455
1456 static void scan_partial_symbols (struct partial_die_info *,
1457 CORE_ADDR *, CORE_ADDR *,
1458 int, struct dwarf2_cu *);
1459
1460 static void add_partial_symbol (struct partial_die_info *,
1461 struct dwarf2_cu *);
1462
1463 static void add_partial_namespace (struct partial_die_info *pdi,
1464 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1465 int set_addrmap, struct dwarf2_cu *cu);
1466
1467 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1468 CORE_ADDR *highpc, int set_addrmap,
1469 struct dwarf2_cu *cu);
1470
1471 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1472 struct dwarf2_cu *cu);
1473
1474 static void add_partial_subprogram (struct partial_die_info *pdi,
1475 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1476 int need_pc, struct dwarf2_cu *cu);
1477
1478 static void dwarf2_read_symtab (struct partial_symtab *,
1479 struct objfile *);
1480
1481 static void psymtab_to_symtab_1 (struct partial_symtab *);
1482
1483 static abbrev_table_up abbrev_table_read_table
1484 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1485 sect_offset);
1486
1487 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1488
1489 static struct partial_die_info *load_partial_dies
1490 (const struct die_reader_specs *, const gdb_byte *, int);
1491
1492 static struct partial_die_info *find_partial_die (sect_offset, int,
1493 struct dwarf2_cu *);
1494
1495 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1496 struct attribute *, struct attr_abbrev *,
1497 const gdb_byte *);
1498
1499 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1500
1501 static int read_1_signed_byte (bfd *, const gdb_byte *);
1502
1503 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1506
1507 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1508
1509 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1510 unsigned int *);
1511
1512 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1513
1514 static LONGEST read_checked_initial_length_and_offset
1515 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1516 unsigned int *, unsigned int *);
1517
1518 static LONGEST read_offset (bfd *, const gdb_byte *,
1519 const struct comp_unit_head *,
1520 unsigned int *);
1521
1522 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1523
1524 static sect_offset read_abbrev_offset
1525 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1526 struct dwarf2_section_info *, sect_offset);
1527
1528 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1529
1530 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1531
1532 static const char *read_indirect_string
1533 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1534 const struct comp_unit_head *, unsigned int *);
1535
1536 static const char *read_indirect_line_string
1537 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1538 const struct comp_unit_head *, unsigned int *);
1539
1540 static const char *read_indirect_string_at_offset
1541 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1542 LONGEST str_offset);
1543
1544 static const char *read_indirect_string_from_dwz
1545 (struct objfile *objfile, struct dwz_file *, LONGEST);
1546
1547 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1548
1549 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1550 const gdb_byte *,
1551 unsigned int *);
1552
1553 static const char *read_str_index (const struct die_reader_specs *reader,
1554 ULONGEST str_index);
1555
1556 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1557
1558 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1559 struct dwarf2_cu *);
1560
1561 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1562 unsigned int);
1563
1564 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1565 struct dwarf2_cu *cu);
1566
1567 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1568 struct dwarf2_cu *cu);
1569
1570 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1571
1572 static struct die_info *die_specification (struct die_info *die,
1573 struct dwarf2_cu **);
1574
1575 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1576 struct dwarf2_cu *cu);
1577
1578 static void dwarf_decode_lines (struct line_header *, const char *,
1579 struct dwarf2_cu *, struct partial_symtab *,
1580 CORE_ADDR, int decode_mapping);
1581
1582 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1583 const char *);
1584
1585 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1586 const char *, const char *,
1587 CORE_ADDR);
1588
1589 static struct symbol *new_symbol (struct die_info *, struct type *,
1590 struct dwarf2_cu *, struct symbol * = NULL);
1591
1592 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1593 struct dwarf2_cu *);
1594
1595 static void dwarf2_const_value_attr (const struct attribute *attr,
1596 struct type *type,
1597 const char *name,
1598 struct obstack *obstack,
1599 struct dwarf2_cu *cu, LONGEST *value,
1600 const gdb_byte **bytes,
1601 struct dwarf2_locexpr_baton **baton);
1602
1603 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1604
1605 static int need_gnat_info (struct dwarf2_cu *);
1606
1607 static struct type *die_descriptive_type (struct die_info *,
1608 struct dwarf2_cu *);
1609
1610 static void set_descriptive_type (struct type *, struct die_info *,
1611 struct dwarf2_cu *);
1612
1613 static struct type *die_containing_type (struct die_info *,
1614 struct dwarf2_cu *);
1615
1616 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1617 struct dwarf2_cu *);
1618
1619 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1620
1621 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1622
1623 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1624
1625 static char *typename_concat (struct obstack *obs, const char *prefix,
1626 const char *suffix, int physname,
1627 struct dwarf2_cu *cu);
1628
1629 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1630
1631 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1636
1637 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1638
1639 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1642 struct dwarf2_cu *, struct partial_symtab *);
1643
1644 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1645 values. Keep the items ordered with increasing constraints compliance. */
1646 enum pc_bounds_kind
1647 {
1648 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1649 PC_BOUNDS_NOT_PRESENT,
1650
1651 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1652 were present but they do not form a valid range of PC addresses. */
1653 PC_BOUNDS_INVALID,
1654
1655 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1656 PC_BOUNDS_RANGES,
1657
1658 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1659 PC_BOUNDS_HIGH_LOW,
1660 };
1661
1662 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1663 CORE_ADDR *, CORE_ADDR *,
1664 struct dwarf2_cu *,
1665 struct partial_symtab *);
1666
1667 static void get_scope_pc_bounds (struct die_info *,
1668 CORE_ADDR *, CORE_ADDR *,
1669 struct dwarf2_cu *);
1670
1671 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1672 CORE_ADDR, struct dwarf2_cu *);
1673
1674 static void dwarf2_add_field (struct field_info *, struct die_info *,
1675 struct dwarf2_cu *);
1676
1677 static void dwarf2_attach_fields_to_type (struct field_info *,
1678 struct type *, struct dwarf2_cu *);
1679
1680 static void dwarf2_add_member_fn (struct field_info *,
1681 struct die_info *, struct type *,
1682 struct dwarf2_cu *);
1683
1684 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1685 struct type *,
1686 struct dwarf2_cu *);
1687
1688 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1689
1690 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1691
1692 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1693
1694 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1695
1696 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1697
1698 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1699
1700 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1701
1702 static struct type *read_module_type (struct die_info *die,
1703 struct dwarf2_cu *cu);
1704
1705 static const char *namespace_name (struct die_info *die,
1706 int *is_anonymous, struct dwarf2_cu *);
1707
1708 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1709
1710 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1711
1712 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1713 struct dwarf2_cu *);
1714
1715 static struct die_info *read_die_and_siblings_1
1716 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1717 struct die_info *);
1718
1719 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1720 const gdb_byte *info_ptr,
1721 const gdb_byte **new_info_ptr,
1722 struct die_info *parent);
1723
1724 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1725 struct die_info **, const gdb_byte *,
1726 int *, int);
1727
1728 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1729 struct die_info **, const gdb_byte *,
1730 int *);
1731
1732 static void process_die (struct die_info *, struct dwarf2_cu *);
1733
1734 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1735 struct obstack *);
1736
1737 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1738
1739 static const char *dwarf2_full_name (const char *name,
1740 struct die_info *die,
1741 struct dwarf2_cu *cu);
1742
1743 static const char *dwarf2_physname (const char *name, struct die_info *die,
1744 struct dwarf2_cu *cu);
1745
1746 static struct die_info *dwarf2_extension (struct die_info *die,
1747 struct dwarf2_cu **);
1748
1749 static const char *dwarf_tag_name (unsigned int);
1750
1751 static const char *dwarf_attr_name (unsigned int);
1752
1753 static const char *dwarf_form_name (unsigned int);
1754
1755 static const char *dwarf_bool_name (unsigned int);
1756
1757 static const char *dwarf_type_encoding_name (unsigned int);
1758
1759 static struct die_info *sibling_die (struct die_info *);
1760
1761 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1762
1763 static void dump_die_for_error (struct die_info *);
1764
1765 static void dump_die_1 (struct ui_file *, int level, int max_level,
1766 struct die_info *);
1767
1768 /*static*/ void dump_die (struct die_info *, int max_level);
1769
1770 static void store_in_ref_table (struct die_info *,
1771 struct dwarf2_cu *);
1772
1773 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1774
1775 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1776
1777 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1778 const struct attribute *,
1779 struct dwarf2_cu **);
1780
1781 static struct die_info *follow_die_ref (struct die_info *,
1782 const struct attribute *,
1783 struct dwarf2_cu **);
1784
1785 static struct die_info *follow_die_sig (struct die_info *,
1786 const struct attribute *,
1787 struct dwarf2_cu **);
1788
1789 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1790 struct dwarf2_cu *);
1791
1792 static struct type *get_DW_AT_signature_type (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu *);
1795
1796 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1797
1798 static void read_signatured_type (struct signatured_type *);
1799
1800 static int attr_to_dynamic_prop (const struct attribute *attr,
1801 struct die_info *die, struct dwarf2_cu *cu,
1802 struct dynamic_prop *prop);
1803
1804 /* memory allocation interface */
1805
1806 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1807
1808 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1809
1810 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1811
1812 static int attr_form_is_block (const struct attribute *);
1813
1814 static int attr_form_is_section_offset (const struct attribute *);
1815
1816 static int attr_form_is_constant (const struct attribute *);
1817
1818 static int attr_form_is_ref (const struct attribute *);
1819
1820 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1821 struct dwarf2_loclist_baton *baton,
1822 const struct attribute *attr);
1823
1824 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1825 struct symbol *sym,
1826 struct dwarf2_cu *cu,
1827 int is_block);
1828
1829 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1830 const gdb_byte *info_ptr,
1831 struct abbrev_info *abbrev);
1832
1833 static hashval_t partial_die_hash (const void *item);
1834
1835 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1836
1837 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1838 (sect_offset sect_off, unsigned int offset_in_dwz,
1839 struct dwarf2_per_objfile *dwarf2_per_objfile);
1840
1841 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1842 struct die_info *comp_unit_die,
1843 enum language pretend_language);
1844
1845 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1846
1847 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1848
1849 static struct type *set_die_type (struct die_info *, struct type *,
1850 struct dwarf2_cu *);
1851
1852 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1853
1854 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1855
1856 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1857 enum language);
1858
1859 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1860 enum language);
1861
1862 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1863 enum language);
1864
1865 static void dwarf2_add_dependence (struct dwarf2_cu *,
1866 struct dwarf2_per_cu_data *);
1867
1868 static void dwarf2_mark (struct dwarf2_cu *);
1869
1870 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1871
1872 static struct type *get_die_type_at_offset (sect_offset,
1873 struct dwarf2_per_cu_data *);
1874
1875 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1876
1877 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1878 enum language pretend_language);
1879
1880 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881
1882 /* Class, the destructor of which frees all allocated queue entries. This
1883 will only have work to do if an error was thrown while processing the
1884 dwarf. If no error was thrown then the queue entries should have all
1885 been processed, and freed, as we went along. */
1886
1887 class dwarf2_queue_guard
1888 {
1889 public:
1890 dwarf2_queue_guard () = default;
1891
1892 /* Free any entries remaining on the queue. There should only be
1893 entries left if we hit an error while processing the dwarf. */
1894 ~dwarf2_queue_guard ()
1895 {
1896 struct dwarf2_queue_item *item, *last;
1897
1898 item = dwarf2_queue;
1899 while (item)
1900 {
1901 /* Anything still marked queued is likely to be in an
1902 inconsistent state, so discard it. */
1903 if (item->per_cu->queued)
1904 {
1905 if (item->per_cu->cu != NULL)
1906 free_one_cached_comp_unit (item->per_cu);
1907 item->per_cu->queued = 0;
1908 }
1909
1910 last = item;
1911 item = item->next;
1912 xfree (last);
1913 }
1914
1915 dwarf2_queue = dwarf2_queue_tail = NULL;
1916 }
1917 };
1918
1919 /* The return type of find_file_and_directory. Note, the enclosed
1920 string pointers are only valid while this object is valid. */
1921
1922 struct file_and_directory
1923 {
1924 /* The filename. This is never NULL. */
1925 const char *name;
1926
1927 /* The compilation directory. NULL if not known. If we needed to
1928 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1929 points directly to the DW_AT_comp_dir string attribute owned by
1930 the obstack that owns the DIE. */
1931 const char *comp_dir;
1932
1933 /* If we needed to build a new string for comp_dir, this is what
1934 owns the storage. */
1935 std::string comp_dir_storage;
1936 };
1937
1938 static file_and_directory find_file_and_directory (struct die_info *die,
1939 struct dwarf2_cu *cu);
1940
1941 static char *file_full_name (int file, struct line_header *lh,
1942 const char *comp_dir);
1943
1944 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1945 enum class rcuh_kind { COMPILE, TYPE };
1946
1947 static const gdb_byte *read_and_check_comp_unit_head
1948 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1949 struct comp_unit_head *header,
1950 struct dwarf2_section_info *section,
1951 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1952 rcuh_kind section_kind);
1953
1954 static void init_cutu_and_read_dies
1955 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1956 int use_existing_cu, int keep, bool skip_partial,
1957 die_reader_func_ftype *die_reader_func, void *data);
1958
1959 static void init_cutu_and_read_dies_simple
1960 (struct dwarf2_per_cu_data *this_cu,
1961 die_reader_func_ftype *die_reader_func, void *data);
1962
1963 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1964
1965 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1966
1967 static struct dwo_unit *lookup_dwo_unit_in_dwp
1968 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1969 struct dwp_file *dwp_file, const char *comp_dir,
1970 ULONGEST signature, int is_debug_types);
1971
1972 static struct dwp_file *get_dwp_file
1973 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1974
1975 static struct dwo_unit *lookup_dwo_comp_unit
1976 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1977
1978 static struct dwo_unit *lookup_dwo_type_unit
1979 (struct signatured_type *, const char *, const char *);
1980
1981 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1982
1983 static void free_dwo_file (struct dwo_file *);
1984
1985 /* A unique_ptr helper to free a dwo_file. */
1986
1987 struct dwo_file_deleter
1988 {
1989 void operator() (struct dwo_file *df) const
1990 {
1991 free_dwo_file (df);
1992 }
1993 };
1994
1995 /* A unique pointer to a dwo_file. */
1996
1997 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
1998
1999 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2000
2001 static void check_producer (struct dwarf2_cu *cu);
2002
2003 static void free_line_header_voidp (void *arg);
2004 \f
2005 /* Various complaints about symbol reading that don't abort the process. */
2006
2007 static void
2008 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2009 {
2010 complaint (_("statement list doesn't fit in .debug_line section"));
2011 }
2012
2013 static void
2014 dwarf2_debug_line_missing_file_complaint (void)
2015 {
2016 complaint (_(".debug_line section has line data without a file"));
2017 }
2018
2019 static void
2020 dwarf2_debug_line_missing_end_sequence_complaint (void)
2021 {
2022 complaint (_(".debug_line section has line "
2023 "program sequence without an end"));
2024 }
2025
2026 static void
2027 dwarf2_complex_location_expr_complaint (void)
2028 {
2029 complaint (_("location expression too complex"));
2030 }
2031
2032 static void
2033 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2034 int arg3)
2035 {
2036 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2037 arg1, arg2, arg3);
2038 }
2039
2040 static void
2041 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2042 {
2043 complaint (_("debug info runs off end of %s section"
2044 " [in module %s]"),
2045 get_section_name (section),
2046 get_section_file_name (section));
2047 }
2048
2049 static void
2050 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2051 {
2052 complaint (_("macro debug info contains a "
2053 "malformed macro definition:\n`%s'"),
2054 arg1);
2055 }
2056
2057 static void
2058 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2059 {
2060 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2061 arg1, arg2);
2062 }
2063
2064 /* Hash function for line_header_hash. */
2065
2066 static hashval_t
2067 line_header_hash (const struct line_header *ofs)
2068 {
2069 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2070 }
2071
2072 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2073
2074 static hashval_t
2075 line_header_hash_voidp (const void *item)
2076 {
2077 const struct line_header *ofs = (const struct line_header *) item;
2078
2079 return line_header_hash (ofs);
2080 }
2081
2082 /* Equality function for line_header_hash. */
2083
2084 static int
2085 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2086 {
2087 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2088 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2089
2090 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2091 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2092 }
2093
2094 \f
2095
2096 /* Read the given attribute value as an address, taking the attribute's
2097 form into account. */
2098
2099 static CORE_ADDR
2100 attr_value_as_address (struct attribute *attr)
2101 {
2102 CORE_ADDR addr;
2103
2104 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2105 {
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2119 }
2120 else
2121 addr = DW_ADDR (attr);
2122
2123 return addr;
2124 }
2125
2126 /* See declaration. */
2127
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2131 {
2132 if (names == NULL)
2133 names = &dwarf2_elf_names;
2134
2135 bfd *obfd = objfile->obfd;
2136
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2139 }
2140
2141 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2142
2143 dwarf2_per_objfile::~dwarf2_per_objfile ()
2144 {
2145 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2146 free_cached_comp_units ();
2147
2148 if (quick_file_names_table)
2149 htab_delete (quick_file_names_table);
2150
2151 if (line_header_hash)
2152 htab_delete (line_header_hash);
2153
2154 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2155 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2156
2157 for (signatured_type *sig_type : all_type_units)
2158 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2159
2160 VEC_free (dwarf2_section_info_def, types);
2161
2162 if (dwo_files != NULL)
2163 free_dwo_files (dwo_files, objfile);
2164
2165 /* Everything else should be on the objfile obstack. */
2166 }
2167
2168 /* See declaration. */
2169
2170 void
2171 dwarf2_per_objfile::free_cached_comp_units ()
2172 {
2173 dwarf2_per_cu_data *per_cu = read_in_chain;
2174 dwarf2_per_cu_data **last_chain = &read_in_chain;
2175 while (per_cu != NULL)
2176 {
2177 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2178
2179 delete per_cu->cu;
2180 *last_chain = next_cu;
2181 per_cu = next_cu;
2182 }
2183 }
2184
2185 /* A helper class that calls free_cached_comp_units on
2186 destruction. */
2187
2188 class free_cached_comp_units
2189 {
2190 public:
2191
2192 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2193 : m_per_objfile (per_objfile)
2194 {
2195 }
2196
2197 ~free_cached_comp_units ()
2198 {
2199 m_per_objfile->free_cached_comp_units ();
2200 }
2201
2202 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2203
2204 private:
2205
2206 dwarf2_per_objfile *m_per_objfile;
2207 };
2208
2209 /* Try to locate the sections we need for DWARF 2 debugging
2210 information and return true if we have enough to do something.
2211 NAMES points to the dwarf2 section names, or is NULL if the standard
2212 ELF names are used. */
2213
2214 int
2215 dwarf2_has_info (struct objfile *objfile,
2216 const struct dwarf2_debug_sections *names)
2217 {
2218 if (objfile->flags & OBJF_READNEVER)
2219 return 0;
2220
2221 struct dwarf2_per_objfile *dwarf2_per_objfile
2222 = get_dwarf2_per_objfile (objfile);
2223
2224 if (dwarf2_per_objfile == NULL)
2225 {
2226 /* Initialize per-objfile state. */
2227 dwarf2_per_objfile
2228 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2229 names);
2230 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2231 }
2232 return (!dwarf2_per_objfile->info.is_virtual
2233 && dwarf2_per_objfile->info.s.section != NULL
2234 && !dwarf2_per_objfile->abbrev.is_virtual
2235 && dwarf2_per_objfile->abbrev.s.section != NULL);
2236 }
2237
2238 /* Return the containing section of virtual section SECTION. */
2239
2240 static struct dwarf2_section_info *
2241 get_containing_section (const struct dwarf2_section_info *section)
2242 {
2243 gdb_assert (section->is_virtual);
2244 return section->s.containing_section;
2245 }
2246
2247 /* Return the bfd owner of SECTION. */
2248
2249 static struct bfd *
2250 get_section_bfd_owner (const struct dwarf2_section_info *section)
2251 {
2252 if (section->is_virtual)
2253 {
2254 section = get_containing_section (section);
2255 gdb_assert (!section->is_virtual);
2256 }
2257 return section->s.section->owner;
2258 }
2259
2260 /* Return the bfd section of SECTION.
2261 Returns NULL if the section is not present. */
2262
2263 static asection *
2264 get_section_bfd_section (const struct dwarf2_section_info *section)
2265 {
2266 if (section->is_virtual)
2267 {
2268 section = get_containing_section (section);
2269 gdb_assert (!section->is_virtual);
2270 }
2271 return section->s.section;
2272 }
2273
2274 /* Return the name of SECTION. */
2275
2276 static const char *
2277 get_section_name (const struct dwarf2_section_info *section)
2278 {
2279 asection *sectp = get_section_bfd_section (section);
2280
2281 gdb_assert (sectp != NULL);
2282 return bfd_section_name (get_section_bfd_owner (section), sectp);
2283 }
2284
2285 /* Return the name of the file SECTION is in. */
2286
2287 static const char *
2288 get_section_file_name (const struct dwarf2_section_info *section)
2289 {
2290 bfd *abfd = get_section_bfd_owner (section);
2291
2292 return bfd_get_filename (abfd);
2293 }
2294
2295 /* Return the id of SECTION.
2296 Returns 0 if SECTION doesn't exist. */
2297
2298 static int
2299 get_section_id (const struct dwarf2_section_info *section)
2300 {
2301 asection *sectp = get_section_bfd_section (section);
2302
2303 if (sectp == NULL)
2304 return 0;
2305 return sectp->id;
2306 }
2307
2308 /* Return the flags of SECTION.
2309 SECTION (or containing section if this is a virtual section) must exist. */
2310
2311 static int
2312 get_section_flags (const struct dwarf2_section_info *section)
2313 {
2314 asection *sectp = get_section_bfd_section (section);
2315
2316 gdb_assert (sectp != NULL);
2317 return bfd_get_section_flags (sectp->owner, sectp);
2318 }
2319
2320 /* When loading sections, we look either for uncompressed section or for
2321 compressed section names. */
2322
2323 static int
2324 section_is_p (const char *section_name,
2325 const struct dwarf2_section_names *names)
2326 {
2327 if (names->normal != NULL
2328 && strcmp (section_name, names->normal) == 0)
2329 return 1;
2330 if (names->compressed != NULL
2331 && strcmp (section_name, names->compressed) == 0)
2332 return 1;
2333 return 0;
2334 }
2335
2336 /* See declaration. */
2337
2338 void
2339 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2340 const dwarf2_debug_sections &names)
2341 {
2342 flagword aflag = bfd_get_section_flags (abfd, sectp);
2343
2344 if ((aflag & SEC_HAS_CONTENTS) == 0)
2345 {
2346 }
2347 else if (section_is_p (sectp->name, &names.info))
2348 {
2349 this->info.s.section = sectp;
2350 this->info.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.abbrev))
2353 {
2354 this->abbrev.s.section = sectp;
2355 this->abbrev.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.line))
2358 {
2359 this->line.s.section = sectp;
2360 this->line.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.loc))
2363 {
2364 this->loc.s.section = sectp;
2365 this->loc.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.loclists))
2368 {
2369 this->loclists.s.section = sectp;
2370 this->loclists.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.macinfo))
2373 {
2374 this->macinfo.s.section = sectp;
2375 this->macinfo.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.macro))
2378 {
2379 this->macro.s.section = sectp;
2380 this->macro.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.str))
2383 {
2384 this->str.s.section = sectp;
2385 this->str.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.line_str))
2388 {
2389 this->line_str.s.section = sectp;
2390 this->line_str.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.addr))
2393 {
2394 this->addr.s.section = sectp;
2395 this->addr.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.frame))
2398 {
2399 this->frame.s.section = sectp;
2400 this->frame.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.eh_frame))
2403 {
2404 this->eh_frame.s.section = sectp;
2405 this->eh_frame.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.ranges))
2408 {
2409 this->ranges.s.section = sectp;
2410 this->ranges.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.rnglists))
2413 {
2414 this->rnglists.s.section = sectp;
2415 this->rnglists.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.types))
2418 {
2419 struct dwarf2_section_info type_section;
2420
2421 memset (&type_section, 0, sizeof (type_section));
2422 type_section.s.section = sectp;
2423 type_section.size = bfd_get_section_size (sectp);
2424
2425 VEC_safe_push (dwarf2_section_info_def, this->types,
2426 &type_section);
2427 }
2428 else if (section_is_p (sectp->name, &names.gdb_index))
2429 {
2430 this->gdb_index.s.section = sectp;
2431 this->gdb_index.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.debug_names))
2434 {
2435 this->debug_names.s.section = sectp;
2436 this->debug_names.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.debug_aranges))
2439 {
2440 this->debug_aranges.s.section = sectp;
2441 this->debug_aranges.size = bfd_get_section_size (sectp);
2442 }
2443
2444 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2445 && bfd_section_vma (abfd, sectp) == 0)
2446 this->has_section_at_zero = true;
2447 }
2448
2449 /* A helper function that decides whether a section is empty,
2450 or not present. */
2451
2452 static int
2453 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2454 {
2455 if (section->is_virtual)
2456 return section->size == 0;
2457 return section->s.section == NULL || section->size == 0;
2458 }
2459
2460 /* See dwarf2read.h. */
2461
2462 void
2463 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2464 {
2465 asection *sectp;
2466 bfd *abfd;
2467 gdb_byte *buf, *retbuf;
2468
2469 if (info->readin)
2470 return;
2471 info->buffer = NULL;
2472 info->readin = 1;
2473
2474 if (dwarf2_section_empty_p (info))
2475 return;
2476
2477 sectp = get_section_bfd_section (info);
2478
2479 /* If this is a virtual section we need to read in the real one first. */
2480 if (info->is_virtual)
2481 {
2482 struct dwarf2_section_info *containing_section =
2483 get_containing_section (info);
2484
2485 gdb_assert (sectp != NULL);
2486 if ((sectp->flags & SEC_RELOC) != 0)
2487 {
2488 error (_("Dwarf Error: DWP format V2 with relocations is not"
2489 " supported in section %s [in module %s]"),
2490 get_section_name (info), get_section_file_name (info));
2491 }
2492 dwarf2_read_section (objfile, containing_section);
2493 /* Other code should have already caught virtual sections that don't
2494 fit. */
2495 gdb_assert (info->virtual_offset + info->size
2496 <= containing_section->size);
2497 /* If the real section is empty or there was a problem reading the
2498 section we shouldn't get here. */
2499 gdb_assert (containing_section->buffer != NULL);
2500 info->buffer = containing_section->buffer + info->virtual_offset;
2501 return;
2502 }
2503
2504 /* If the section has relocations, we must read it ourselves.
2505 Otherwise we attach it to the BFD. */
2506 if ((sectp->flags & SEC_RELOC) == 0)
2507 {
2508 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2509 return;
2510 }
2511
2512 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2513 info->buffer = buf;
2514
2515 /* When debugging .o files, we may need to apply relocations; see
2516 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2517 We never compress sections in .o files, so we only need to
2518 try this when the section is not compressed. */
2519 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2520 if (retbuf != NULL)
2521 {
2522 info->buffer = retbuf;
2523 return;
2524 }
2525
2526 abfd = get_section_bfd_owner (info);
2527 gdb_assert (abfd != NULL);
2528
2529 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2530 || bfd_bread (buf, info->size, abfd) != info->size)
2531 {
2532 error (_("Dwarf Error: Can't read DWARF data"
2533 " in section %s [in module %s]"),
2534 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2535 }
2536 }
2537
2538 /* A helper function that returns the size of a section in a safe way.
2539 If you are positive that the section has been read before using the
2540 size, then it is safe to refer to the dwarf2_section_info object's
2541 "size" field directly. In other cases, you must call this
2542 function, because for compressed sections the size field is not set
2543 correctly until the section has been read. */
2544
2545 static bfd_size_type
2546 dwarf2_section_size (struct objfile *objfile,
2547 struct dwarf2_section_info *info)
2548 {
2549 if (!info->readin)
2550 dwarf2_read_section (objfile, info);
2551 return info->size;
2552 }
2553
2554 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2555 SECTION_NAME. */
2556
2557 void
2558 dwarf2_get_section_info (struct objfile *objfile,
2559 enum dwarf2_section_enum sect,
2560 asection **sectp, const gdb_byte **bufp,
2561 bfd_size_type *sizep)
2562 {
2563 struct dwarf2_per_objfile *data
2564 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2565 dwarf2_objfile_data_key);
2566 struct dwarf2_section_info *info;
2567
2568 /* We may see an objfile without any DWARF, in which case we just
2569 return nothing. */
2570 if (data == NULL)
2571 {
2572 *sectp = NULL;
2573 *bufp = NULL;
2574 *sizep = 0;
2575 return;
2576 }
2577 switch (sect)
2578 {
2579 case DWARF2_DEBUG_FRAME:
2580 info = &data->frame;
2581 break;
2582 case DWARF2_EH_FRAME:
2583 info = &data->eh_frame;
2584 break;
2585 default:
2586 gdb_assert_not_reached ("unexpected section");
2587 }
2588
2589 dwarf2_read_section (objfile, info);
2590
2591 *sectp = get_section_bfd_section (info);
2592 *bufp = info->buffer;
2593 *sizep = info->size;
2594 }
2595
2596 /* A helper function to find the sections for a .dwz file. */
2597
2598 static void
2599 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2600 {
2601 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2602
2603 /* Note that we only support the standard ELF names, because .dwz
2604 is ELF-only (at the time of writing). */
2605 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2606 {
2607 dwz_file->abbrev.s.section = sectp;
2608 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2611 {
2612 dwz_file->info.s.section = sectp;
2613 dwz_file->info.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2616 {
2617 dwz_file->str.s.section = sectp;
2618 dwz_file->str.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2621 {
2622 dwz_file->line.s.section = sectp;
2623 dwz_file->line.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2626 {
2627 dwz_file->macro.s.section = sectp;
2628 dwz_file->macro.size = bfd_get_section_size (sectp);
2629 }
2630 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2631 {
2632 dwz_file->gdb_index.s.section = sectp;
2633 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2634 }
2635 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2636 {
2637 dwz_file->debug_names.s.section = sectp;
2638 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2639 }
2640 }
2641
2642 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2643 there is no .gnu_debugaltlink section in the file. Error if there
2644 is such a section but the file cannot be found. */
2645
2646 static struct dwz_file *
2647 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2648 {
2649 const char *filename;
2650 bfd_size_type buildid_len_arg;
2651 size_t buildid_len;
2652 bfd_byte *buildid;
2653
2654 if (dwarf2_per_objfile->dwz_file != NULL)
2655 return dwarf2_per_objfile->dwz_file.get ();
2656
2657 bfd_set_error (bfd_error_no_error);
2658 gdb::unique_xmalloc_ptr<char> data
2659 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2660 &buildid_len_arg, &buildid));
2661 if (data == NULL)
2662 {
2663 if (bfd_get_error () == bfd_error_no_error)
2664 return NULL;
2665 error (_("could not read '.gnu_debugaltlink' section: %s"),
2666 bfd_errmsg (bfd_get_error ()));
2667 }
2668
2669 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2670
2671 buildid_len = (size_t) buildid_len_arg;
2672
2673 filename = data.get ();
2674
2675 std::string abs_storage;
2676 if (!IS_ABSOLUTE_PATH (filename))
2677 {
2678 gdb::unique_xmalloc_ptr<char> abs
2679 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2680
2681 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2682 filename = abs_storage.c_str ();
2683 }
2684
2685 /* First try the file name given in the section. If that doesn't
2686 work, try to use the build-id instead. */
2687 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2688 if (dwz_bfd != NULL)
2689 {
2690 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2691 dwz_bfd.release ();
2692 }
2693
2694 if (dwz_bfd == NULL)
2695 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2696
2697 if (dwz_bfd == NULL)
2698 error (_("could not find '.gnu_debugaltlink' file for %s"),
2699 objfile_name (dwarf2_per_objfile->objfile));
2700
2701 std::unique_ptr<struct dwz_file> result
2702 (new struct dwz_file (std::move (dwz_bfd)));
2703
2704 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2705 result.get ());
2706
2707 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2708 result->dwz_bfd.get ());
2709 dwarf2_per_objfile->dwz_file = std::move (result);
2710 return dwarf2_per_objfile->dwz_file.get ();
2711 }
2712 \f
2713 /* DWARF quick_symbols_functions support. */
2714
2715 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2716 unique line tables, so we maintain a separate table of all .debug_line
2717 derived entries to support the sharing.
2718 All the quick functions need is the list of file names. We discard the
2719 line_header when we're done and don't need to record it here. */
2720 struct quick_file_names
2721 {
2722 /* The data used to construct the hash key. */
2723 struct stmt_list_hash hash;
2724
2725 /* The number of entries in file_names, real_names. */
2726 unsigned int num_file_names;
2727
2728 /* The file names from the line table, after being run through
2729 file_full_name. */
2730 const char **file_names;
2731
2732 /* The file names from the line table after being run through
2733 gdb_realpath. These are computed lazily. */
2734 const char **real_names;
2735 };
2736
2737 /* When using the index (and thus not using psymtabs), each CU has an
2738 object of this type. This is used to hold information needed by
2739 the various "quick" methods. */
2740 struct dwarf2_per_cu_quick_data
2741 {
2742 /* The file table. This can be NULL if there was no file table
2743 or it's currently not read in.
2744 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2745 struct quick_file_names *file_names;
2746
2747 /* The corresponding symbol table. This is NULL if symbols for this
2748 CU have not yet been read. */
2749 struct compunit_symtab *compunit_symtab;
2750
2751 /* A temporary mark bit used when iterating over all CUs in
2752 expand_symtabs_matching. */
2753 unsigned int mark : 1;
2754
2755 /* True if we've tried to read the file table and found there isn't one.
2756 There will be no point in trying to read it again next time. */
2757 unsigned int no_file_data : 1;
2758 };
2759
2760 /* Utility hash function for a stmt_list_hash. */
2761
2762 static hashval_t
2763 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2764 {
2765 hashval_t v = 0;
2766
2767 if (stmt_list_hash->dwo_unit != NULL)
2768 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2769 v += to_underlying (stmt_list_hash->line_sect_off);
2770 return v;
2771 }
2772
2773 /* Utility equality function for a stmt_list_hash. */
2774
2775 static int
2776 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2777 const struct stmt_list_hash *rhs)
2778 {
2779 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2780 return 0;
2781 if (lhs->dwo_unit != NULL
2782 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2783 return 0;
2784
2785 return lhs->line_sect_off == rhs->line_sect_off;
2786 }
2787
2788 /* Hash function for a quick_file_names. */
2789
2790 static hashval_t
2791 hash_file_name_entry (const void *e)
2792 {
2793 const struct quick_file_names *file_data
2794 = (const struct quick_file_names *) e;
2795
2796 return hash_stmt_list_entry (&file_data->hash);
2797 }
2798
2799 /* Equality function for a quick_file_names. */
2800
2801 static int
2802 eq_file_name_entry (const void *a, const void *b)
2803 {
2804 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2805 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2806
2807 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2808 }
2809
2810 /* Delete function for a quick_file_names. */
2811
2812 static void
2813 delete_file_name_entry (void *e)
2814 {
2815 struct quick_file_names *file_data = (struct quick_file_names *) e;
2816 int i;
2817
2818 for (i = 0; i < file_data->num_file_names; ++i)
2819 {
2820 xfree ((void*) file_data->file_names[i]);
2821 if (file_data->real_names)
2822 xfree ((void*) file_data->real_names[i]);
2823 }
2824
2825 /* The space for the struct itself lives on objfile_obstack,
2826 so we don't free it here. */
2827 }
2828
2829 /* Create a quick_file_names hash table. */
2830
2831 static htab_t
2832 create_quick_file_names_table (unsigned int nr_initial_entries)
2833 {
2834 return htab_create_alloc (nr_initial_entries,
2835 hash_file_name_entry, eq_file_name_entry,
2836 delete_file_name_entry, xcalloc, xfree);
2837 }
2838
2839 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2840 have to be created afterwards. You should call age_cached_comp_units after
2841 processing PER_CU->CU. dw2_setup must have been already called. */
2842
2843 static void
2844 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2845 {
2846 if (per_cu->is_debug_types)
2847 load_full_type_unit (per_cu);
2848 else
2849 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2850
2851 if (per_cu->cu == NULL)
2852 return; /* Dummy CU. */
2853
2854 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2855 }
2856
2857 /* Read in the symbols for PER_CU. */
2858
2859 static void
2860 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2861 {
2862 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2863
2864 /* Skip type_unit_groups, reading the type units they contain
2865 is handled elsewhere. */
2866 if (IS_TYPE_UNIT_GROUP (per_cu))
2867 return;
2868
2869 /* The destructor of dwarf2_queue_guard frees any entries left on
2870 the queue. After this point we're guaranteed to leave this function
2871 with the dwarf queue empty. */
2872 dwarf2_queue_guard q_guard;
2873
2874 if (dwarf2_per_objfile->using_index
2875 ? per_cu->v.quick->compunit_symtab == NULL
2876 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2877 {
2878 queue_comp_unit (per_cu, language_minimal);
2879 load_cu (per_cu, skip_partial);
2880
2881 /* If we just loaded a CU from a DWO, and we're working with an index
2882 that may badly handle TUs, load all the TUs in that DWO as well.
2883 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2884 if (!per_cu->is_debug_types
2885 && per_cu->cu != NULL
2886 && per_cu->cu->dwo_unit != NULL
2887 && dwarf2_per_objfile->index_table != NULL
2888 && dwarf2_per_objfile->index_table->version <= 7
2889 /* DWP files aren't supported yet. */
2890 && get_dwp_file (dwarf2_per_objfile) == NULL)
2891 queue_and_load_all_dwo_tus (per_cu);
2892 }
2893
2894 process_queue (dwarf2_per_objfile);
2895
2896 /* Age the cache, releasing compilation units that have not
2897 been used recently. */
2898 age_cached_comp_units (dwarf2_per_objfile);
2899 }
2900
2901 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2902 the objfile from which this CU came. Returns the resulting symbol
2903 table. */
2904
2905 static struct compunit_symtab *
2906 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2907 {
2908 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2909
2910 gdb_assert (dwarf2_per_objfile->using_index);
2911 if (!per_cu->v.quick->compunit_symtab)
2912 {
2913 free_cached_comp_units freer (dwarf2_per_objfile);
2914 scoped_restore decrementer = increment_reading_symtab ();
2915 dw2_do_instantiate_symtab (per_cu, skip_partial);
2916 process_cu_includes (dwarf2_per_objfile);
2917 }
2918
2919 return per_cu->v.quick->compunit_symtab;
2920 }
2921
2922 /* See declaration. */
2923
2924 dwarf2_per_cu_data *
2925 dwarf2_per_objfile::get_cutu (int index)
2926 {
2927 if (index >= this->all_comp_units.size ())
2928 {
2929 index -= this->all_comp_units.size ();
2930 gdb_assert (index < this->all_type_units.size ());
2931 return &this->all_type_units[index]->per_cu;
2932 }
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 dwarf2_per_cu_data *
2940 dwarf2_per_objfile::get_cu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2943
2944 return this->all_comp_units[index];
2945 }
2946
2947 /* See declaration. */
2948
2949 signatured_type *
2950 dwarf2_per_objfile::get_tu (int index)
2951 {
2952 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2953
2954 return this->all_type_units[index];
2955 }
2956
2957 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2958 objfile_obstack, and constructed with the specified field
2959 values. */
2960
2961 static dwarf2_per_cu_data *
2962 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2963 struct dwarf2_section_info *section,
2964 int is_dwz,
2965 sect_offset sect_off, ULONGEST length)
2966 {
2967 struct objfile *objfile = dwarf2_per_objfile->objfile;
2968 dwarf2_per_cu_data *the_cu
2969 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2970 struct dwarf2_per_cu_data);
2971 the_cu->sect_off = sect_off;
2972 the_cu->length = length;
2973 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2974 the_cu->section = section;
2975 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2976 struct dwarf2_per_cu_quick_data);
2977 the_cu->is_dwz = is_dwz;
2978 return the_cu;
2979 }
2980
2981 /* A helper for create_cus_from_index that handles a given list of
2982 CUs. */
2983
2984 static void
2985 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2986 const gdb_byte *cu_list, offset_type n_elements,
2987 struct dwarf2_section_info *section,
2988 int is_dwz)
2989 {
2990 for (offset_type i = 0; i < n_elements; i += 2)
2991 {
2992 gdb_static_assert (sizeof (ULONGEST) >= 8);
2993
2994 sect_offset sect_off
2995 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2996 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2997 cu_list += 2 * 8;
2998
2999 dwarf2_per_cu_data *per_cu
3000 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3001 sect_off, length);
3002 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3003 }
3004 }
3005
3006 /* Read the CU list from the mapped index, and use it to create all
3007 the CU objects for this objfile. */
3008
3009 static void
3010 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3011 const gdb_byte *cu_list, offset_type cu_list_elements,
3012 const gdb_byte *dwz_list, offset_type dwz_elements)
3013 {
3014 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3015 dwarf2_per_objfile->all_comp_units.reserve
3016 ((cu_list_elements + dwz_elements) / 2);
3017
3018 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3019 &dwarf2_per_objfile->info, 0);
3020
3021 if (dwz_elements == 0)
3022 return;
3023
3024 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3025 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3026 &dwz->info, 1);
3027 }
3028
3029 /* Create the signatured type hash table from the index. */
3030
3031 static void
3032 create_signatured_type_table_from_index
3033 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3034 struct dwarf2_section_info *section,
3035 const gdb_byte *bytes,
3036 offset_type elements)
3037 {
3038 struct objfile *objfile = dwarf2_per_objfile->objfile;
3039
3040 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3041 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3042
3043 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3044
3045 for (offset_type i = 0; i < elements; i += 3)
3046 {
3047 struct signatured_type *sig_type;
3048 ULONGEST signature;
3049 void **slot;
3050 cu_offset type_offset_in_tu;
3051
3052 gdb_static_assert (sizeof (ULONGEST) >= 8);
3053 sect_offset sect_off
3054 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3055 type_offset_in_tu
3056 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3057 BFD_ENDIAN_LITTLE);
3058 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3059 bytes += 3 * 8;
3060
3061 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3062 struct signatured_type);
3063 sig_type->signature = signature;
3064 sig_type->type_offset_in_tu = type_offset_in_tu;
3065 sig_type->per_cu.is_debug_types = 1;
3066 sig_type->per_cu.section = section;
3067 sig_type->per_cu.sect_off = sect_off;
3068 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3069 sig_type->per_cu.v.quick
3070 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3071 struct dwarf2_per_cu_quick_data);
3072
3073 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3074 *slot = sig_type;
3075
3076 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3077 }
3078
3079 dwarf2_per_objfile->signatured_types = sig_types_hash;
3080 }
3081
3082 /* Create the signatured type hash table from .debug_names. */
3083
3084 static void
3085 create_signatured_type_table_from_debug_names
3086 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3087 const mapped_debug_names &map,
3088 struct dwarf2_section_info *section,
3089 struct dwarf2_section_info *abbrev_section)
3090 {
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092
3093 dwarf2_read_section (objfile, section);
3094 dwarf2_read_section (objfile, abbrev_section);
3095
3096 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3097 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3098
3099 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3100
3101 for (uint32_t i = 0; i < map.tu_count; ++i)
3102 {
3103 struct signatured_type *sig_type;
3104 void **slot;
3105
3106 sect_offset sect_off
3107 = (sect_offset) (extract_unsigned_integer
3108 (map.tu_table_reordered + i * map.offset_size,
3109 map.offset_size,
3110 map.dwarf5_byte_order));
3111
3112 comp_unit_head cu_header;
3113 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3114 abbrev_section,
3115 section->buffer + to_underlying (sect_off),
3116 rcuh_kind::TYPE);
3117
3118 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3119 struct signatured_type);
3120 sig_type->signature = cu_header.signature;
3121 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3122 sig_type->per_cu.is_debug_types = 1;
3123 sig_type->per_cu.section = section;
3124 sig_type->per_cu.sect_off = sect_off;
3125 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3126 sig_type->per_cu.v.quick
3127 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3128 struct dwarf2_per_cu_quick_data);
3129
3130 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3131 *slot = sig_type;
3132
3133 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3134 }
3135
3136 dwarf2_per_objfile->signatured_types = sig_types_hash;
3137 }
3138
3139 /* Read the address map data from the mapped index, and use it to
3140 populate the objfile's psymtabs_addrmap. */
3141
3142 static void
3143 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3144 struct mapped_index *index)
3145 {
3146 struct objfile *objfile = dwarf2_per_objfile->objfile;
3147 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3148 const gdb_byte *iter, *end;
3149 struct addrmap *mutable_map;
3150 CORE_ADDR baseaddr;
3151
3152 auto_obstack temp_obstack;
3153
3154 mutable_map = addrmap_create_mutable (&temp_obstack);
3155
3156 iter = index->address_table.data ();
3157 end = iter + index->address_table.size ();
3158
3159 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3160
3161 while (iter < end)
3162 {
3163 ULONGEST hi, lo, cu_index;
3164 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3165 iter += 8;
3166 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3169 iter += 4;
3170
3171 if (lo > hi)
3172 {
3173 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3174 hex_string (lo), hex_string (hi));
3175 continue;
3176 }
3177
3178 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3179 {
3180 complaint (_(".gdb_index address table has invalid CU number %u"),
3181 (unsigned) cu_index);
3182 continue;
3183 }
3184
3185 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3186 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3187 addrmap_set_empty (mutable_map, lo, hi - 1,
3188 dwarf2_per_objfile->get_cu (cu_index));
3189 }
3190
3191 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3192 &objfile->objfile_obstack);
3193 }
3194
3195 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3196 populate the objfile's psymtabs_addrmap. */
3197
3198 static void
3199 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3200 struct dwarf2_section_info *section)
3201 {
3202 struct objfile *objfile = dwarf2_per_objfile->objfile;
3203 bfd *abfd = objfile->obfd;
3204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3205 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3206 SECT_OFF_TEXT (objfile));
3207
3208 auto_obstack temp_obstack;
3209 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3210
3211 std::unordered_map<sect_offset,
3212 dwarf2_per_cu_data *,
3213 gdb::hash_enum<sect_offset>>
3214 debug_info_offset_to_per_cu;
3215 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3216 {
3217 const auto insertpair
3218 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3219 if (!insertpair.second)
3220 {
3221 warning (_("Section .debug_aranges in %s has duplicate "
3222 "debug_info_offset %s, ignoring .debug_aranges."),
3223 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3224 return;
3225 }
3226 }
3227
3228 dwarf2_read_section (objfile, section);
3229
3230 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3231
3232 const gdb_byte *addr = section->buffer;
3233
3234 while (addr < section->buffer + section->size)
3235 {
3236 const gdb_byte *const entry_addr = addr;
3237 unsigned int bytes_read;
3238
3239 const LONGEST entry_length = read_initial_length (abfd, addr,
3240 &bytes_read);
3241 addr += bytes_read;
3242
3243 const gdb_byte *const entry_end = addr + entry_length;
3244 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3245 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3246 if (addr + entry_length > section->buffer + section->size)
3247 {
3248 warning (_("Section .debug_aranges in %s entry at offset %zu "
3249 "length %s exceeds section length %s, "
3250 "ignoring .debug_aranges."),
3251 objfile_name (objfile), entry_addr - section->buffer,
3252 plongest (bytes_read + entry_length),
3253 pulongest (section->size));
3254 return;
3255 }
3256
3257 /* The version number. */
3258 const uint16_t version = read_2_bytes (abfd, addr);
3259 addr += 2;
3260 if (version != 2)
3261 {
3262 warning (_("Section .debug_aranges in %s entry at offset %zu "
3263 "has unsupported version %d, ignoring .debug_aranges."),
3264 objfile_name (objfile), entry_addr - section->buffer,
3265 version);
3266 return;
3267 }
3268
3269 const uint64_t debug_info_offset
3270 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3271 addr += offset_size;
3272 const auto per_cu_it
3273 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3274 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3275 {
3276 warning (_("Section .debug_aranges in %s entry at offset %zu "
3277 "debug_info_offset %s does not exists, "
3278 "ignoring .debug_aranges."),
3279 objfile_name (objfile), entry_addr - section->buffer,
3280 pulongest (debug_info_offset));
3281 return;
3282 }
3283 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3284
3285 const uint8_t address_size = *addr++;
3286 if (address_size < 1 || address_size > 8)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %zu "
3289 "address_size %u is invalid, ignoring .debug_aranges."),
3290 objfile_name (objfile), entry_addr - section->buffer,
3291 address_size);
3292 return;
3293 }
3294
3295 const uint8_t segment_selector_size = *addr++;
3296 if (segment_selector_size != 0)
3297 {
3298 warning (_("Section .debug_aranges in %s entry at offset %zu "
3299 "segment_selector_size %u is not supported, "
3300 "ignoring .debug_aranges."),
3301 objfile_name (objfile), entry_addr - section->buffer,
3302 segment_selector_size);
3303 return;
3304 }
3305
3306 /* Must pad to an alignment boundary that is twice the address
3307 size. It is undocumented by the DWARF standard but GCC does
3308 use it. */
3309 for (size_t padding = ((-(addr - section->buffer))
3310 & (2 * address_size - 1));
3311 padding > 0; padding--)
3312 if (*addr++ != 0)
3313 {
3314 warning (_("Section .debug_aranges in %s entry at offset %zu "
3315 "padding is not zero, ignoring .debug_aranges."),
3316 objfile_name (objfile), entry_addr - section->buffer);
3317 return;
3318 }
3319
3320 for (;;)
3321 {
3322 if (addr + 2 * address_size > entry_end)
3323 {
3324 warning (_("Section .debug_aranges in %s entry at offset %zu "
3325 "address list is not properly terminated, "
3326 "ignoring .debug_aranges."),
3327 objfile_name (objfile), entry_addr - section->buffer);
3328 return;
3329 }
3330 ULONGEST start = extract_unsigned_integer (addr, address_size,
3331 dwarf5_byte_order);
3332 addr += address_size;
3333 ULONGEST length = extract_unsigned_integer (addr, address_size,
3334 dwarf5_byte_order);
3335 addr += address_size;
3336 if (start == 0 && length == 0)
3337 break;
3338 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3339 {
3340 /* Symbol was eliminated due to a COMDAT group. */
3341 continue;
3342 }
3343 ULONGEST end = start + length;
3344 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3345 - baseaddr);
3346 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3347 - baseaddr);
3348 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3349 }
3350 }
3351
3352 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3353 &objfile->objfile_obstack);
3354 }
3355
3356 /* Find a slot in the mapped index INDEX for the object named NAME.
3357 If NAME is found, set *VEC_OUT to point to the CU vector in the
3358 constant pool and return true. If NAME cannot be found, return
3359 false. */
3360
3361 static bool
3362 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3363 offset_type **vec_out)
3364 {
3365 offset_type hash;
3366 offset_type slot, step;
3367 int (*cmp) (const char *, const char *);
3368
3369 gdb::unique_xmalloc_ptr<char> without_params;
3370 if (current_language->la_language == language_cplus
3371 || current_language->la_language == language_fortran
3372 || current_language->la_language == language_d)
3373 {
3374 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3375 not contain any. */
3376
3377 if (strchr (name, '(') != NULL)
3378 {
3379 without_params = cp_remove_params (name);
3380
3381 if (without_params != NULL)
3382 name = without_params.get ();
3383 }
3384 }
3385
3386 /* Index version 4 did not support case insensitive searches. But the
3387 indices for case insensitive languages are built in lowercase, therefore
3388 simulate our NAME being searched is also lowercased. */
3389 hash = mapped_index_string_hash ((index->version == 4
3390 && case_sensitivity == case_sensitive_off
3391 ? 5 : index->version),
3392 name);
3393
3394 slot = hash & (index->symbol_table.size () - 1);
3395 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3396 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3397
3398 for (;;)
3399 {
3400 const char *str;
3401
3402 const auto &bucket = index->symbol_table[slot];
3403 if (bucket.name == 0 && bucket.vec == 0)
3404 return false;
3405
3406 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3407 if (!cmp (name, str))
3408 {
3409 *vec_out = (offset_type *) (index->constant_pool
3410 + MAYBE_SWAP (bucket.vec));
3411 return true;
3412 }
3413
3414 slot = (slot + step) & (index->symbol_table.size () - 1);
3415 }
3416 }
3417
3418 /* A helper function that reads the .gdb_index from BUFFER and fills
3419 in MAP. FILENAME is the name of the file containing the data;
3420 it is used for error reporting. DEPRECATED_OK is true if it is
3421 ok to use deprecated sections.
3422
3423 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3424 out parameters that are filled in with information about the CU and
3425 TU lists in the section.
3426
3427 Returns true if all went well, false otherwise. */
3428
3429 static bool
3430 read_gdb_index_from_buffer (struct objfile *objfile,
3431 const char *filename,
3432 bool deprecated_ok,
3433 gdb::array_view<const gdb_byte> buffer,
3434 struct mapped_index *map,
3435 const gdb_byte **cu_list,
3436 offset_type *cu_list_elements,
3437 const gdb_byte **types_list,
3438 offset_type *types_list_elements)
3439 {
3440 const gdb_byte *addr = &buffer[0];
3441
3442 /* Version check. */
3443 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3444 /* Versions earlier than 3 emitted every copy of a psymbol. This
3445 causes the index to behave very poorly for certain requests. Version 3
3446 contained incomplete addrmap. So, it seems better to just ignore such
3447 indices. */
3448 if (version < 4)
3449 {
3450 static int warning_printed = 0;
3451 if (!warning_printed)
3452 {
3453 warning (_("Skipping obsolete .gdb_index section in %s."),
3454 filename);
3455 warning_printed = 1;
3456 }
3457 return 0;
3458 }
3459 /* Index version 4 uses a different hash function than index version
3460 5 and later.
3461
3462 Versions earlier than 6 did not emit psymbols for inlined
3463 functions. Using these files will cause GDB not to be able to
3464 set breakpoints on inlined functions by name, so we ignore these
3465 indices unless the user has done
3466 "set use-deprecated-index-sections on". */
3467 if (version < 6 && !deprecated_ok)
3468 {
3469 static int warning_printed = 0;
3470 if (!warning_printed)
3471 {
3472 warning (_("\
3473 Skipping deprecated .gdb_index section in %s.\n\
3474 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3475 to use the section anyway."),
3476 filename);
3477 warning_printed = 1;
3478 }
3479 return 0;
3480 }
3481 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3482 of the TU (for symbols coming from TUs),
3483 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3484 Plus gold-generated indices can have duplicate entries for global symbols,
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3486 These are just performance bugs, and we can't distinguish gdb-generated
3487 indices from gold-generated ones, so issue no warning here. */
3488
3489 /* Indexes with higher version than the one supported by GDB may be no
3490 longer backward compatible. */
3491 if (version > 8)
3492 return 0;
3493
3494 map->version = version;
3495
3496 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3497
3498 int i = 0;
3499 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3500 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3501 / 8);
3502 ++i;
3503
3504 *types_list = addr + MAYBE_SWAP (metadata[i]);
3505 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3506 - MAYBE_SWAP (metadata[i]))
3507 / 8);
3508 ++i;
3509
3510 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3511 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3512 map->address_table
3513 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3514 ++i;
3515
3516 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3517 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3518 map->symbol_table
3519 = gdb::array_view<mapped_index::symbol_table_slot>
3520 ((mapped_index::symbol_table_slot *) symbol_table,
3521 (mapped_index::symbol_table_slot *) symbol_table_end);
3522
3523 ++i;
3524 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3525
3526 return 1;
3527 }
3528
3529 /* Callback types for dwarf2_read_gdb_index. */
3530
3531 typedef gdb::function_view
3532 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3533 get_gdb_index_contents_ftype;
3534 typedef gdb::function_view
3535 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3536 get_gdb_index_contents_dwz_ftype;
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_gdb_index
3543 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3544 get_gdb_index_contents_ftype get_gdb_index_contents,
3545 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3546 {
3547 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3548 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3549 struct dwz_file *dwz;
3550 struct objfile *objfile = dwarf2_per_objfile->objfile;
3551
3552 gdb::array_view<const gdb_byte> main_index_contents
3553 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3554
3555 if (main_index_contents.empty ())
3556 return 0;
3557
3558 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3559 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3560 use_deprecated_index_sections,
3561 main_index_contents, map.get (), &cu_list,
3562 &cu_list_elements, &types_list,
3563 &types_list_elements))
3564 return 0;
3565
3566 /* Don't use the index if it's empty. */
3567 if (map->symbol_table.empty ())
3568 return 0;
3569
3570 /* If there is a .dwz file, read it so we can get its CU list as
3571 well. */
3572 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3573 if (dwz != NULL)
3574 {
3575 struct mapped_index dwz_map;
3576 const gdb_byte *dwz_types_ignore;
3577 offset_type dwz_types_elements_ignore;
3578
3579 gdb::array_view<const gdb_byte> dwz_index_content
3580 = get_gdb_index_contents_dwz (objfile, dwz);
3581
3582 if (dwz_index_content.empty ())
3583 return 0;
3584
3585 if (!read_gdb_index_from_buffer (objfile,
3586 bfd_get_filename (dwz->dwz_bfd), 1,
3587 dwz_index_content, &dwz_map,
3588 &dwz_list, &dwz_list_elements,
3589 &dwz_types_ignore,
3590 &dwz_types_elements_ignore))
3591 {
3592 warning (_("could not read '.gdb_index' section from %s; skipping"),
3593 bfd_get_filename (dwz->dwz_bfd));
3594 return 0;
3595 }
3596 }
3597
3598 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3599 dwz_list, dwz_list_elements);
3600
3601 if (types_list_elements)
3602 {
3603 struct dwarf2_section_info *section;
3604
3605 /* We can only handle a single .debug_types when we have an
3606 index. */
3607 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3608 return 0;
3609
3610 section = VEC_index (dwarf2_section_info_def,
3611 dwarf2_per_objfile->types, 0);
3612
3613 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3614 types_list, types_list_elements);
3615 }
3616
3617 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3618
3619 dwarf2_per_objfile->index_table = std::move (map);
3620 dwarf2_per_objfile->using_index = 1;
3621 dwarf2_per_objfile->quick_file_names_table =
3622 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3623
3624 return 1;
3625 }
3626
3627 /* die_reader_func for dw2_get_file_names. */
3628
3629 static void
3630 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3631 const gdb_byte *info_ptr,
3632 struct die_info *comp_unit_die,
3633 int has_children,
3634 void *data)
3635 {
3636 struct dwarf2_cu *cu = reader->cu;
3637 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3638 struct dwarf2_per_objfile *dwarf2_per_objfile
3639 = cu->per_cu->dwarf2_per_objfile;
3640 struct objfile *objfile = dwarf2_per_objfile->objfile;
3641 struct dwarf2_per_cu_data *lh_cu;
3642 struct attribute *attr;
3643 int i;
3644 void **slot;
3645 struct quick_file_names *qfn;
3646
3647 gdb_assert (! this_cu->is_debug_types);
3648
3649 /* Our callers never want to match partial units -- instead they
3650 will match the enclosing full CU. */
3651 if (comp_unit_die->tag == DW_TAG_partial_unit)
3652 {
3653 this_cu->v.quick->no_file_data = 1;
3654 return;
3655 }
3656
3657 lh_cu = this_cu;
3658 slot = NULL;
3659
3660 line_header_up lh;
3661 sect_offset line_offset {};
3662
3663 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3664 if (attr)
3665 {
3666 struct quick_file_names find_entry;
3667
3668 line_offset = (sect_offset) DW_UNSND (attr);
3669
3670 /* We may have already read in this line header (TU line header sharing).
3671 If we have we're done. */
3672 find_entry.hash.dwo_unit = cu->dwo_unit;
3673 find_entry.hash.line_sect_off = line_offset;
3674 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3675 &find_entry, INSERT);
3676 if (*slot != NULL)
3677 {
3678 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3679 return;
3680 }
3681
3682 lh = dwarf_decode_line_header (line_offset, cu);
3683 }
3684 if (lh == NULL)
3685 {
3686 lh_cu->v.quick->no_file_data = 1;
3687 return;
3688 }
3689
3690 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3691 qfn->hash.dwo_unit = cu->dwo_unit;
3692 qfn->hash.line_sect_off = line_offset;
3693 gdb_assert (slot != NULL);
3694 *slot = qfn;
3695
3696 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3697
3698 qfn->num_file_names = lh->file_names.size ();
3699 qfn->file_names =
3700 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3701 for (i = 0; i < lh->file_names.size (); ++i)
3702 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3703 qfn->real_names = NULL;
3704
3705 lh_cu->v.quick->file_names = qfn;
3706 }
3707
3708 /* A helper for the "quick" functions which attempts to read the line
3709 table for THIS_CU. */
3710
3711 static struct quick_file_names *
3712 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3713 {
3714 /* This should never be called for TUs. */
3715 gdb_assert (! this_cu->is_debug_types);
3716 /* Nor type unit groups. */
3717 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3718
3719 if (this_cu->v.quick->file_names != NULL)
3720 return this_cu->v.quick->file_names;
3721 /* If we know there is no line data, no point in looking again. */
3722 if (this_cu->v.quick->no_file_data)
3723 return NULL;
3724
3725 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3726
3727 if (this_cu->v.quick->no_file_data)
3728 return NULL;
3729 return this_cu->v.quick->file_names;
3730 }
3731
3732 /* A helper for the "quick" functions which computes and caches the
3733 real path for a given file name from the line table. */
3734
3735 static const char *
3736 dw2_get_real_path (struct objfile *objfile,
3737 struct quick_file_names *qfn, int index)
3738 {
3739 if (qfn->real_names == NULL)
3740 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3741 qfn->num_file_names, const char *);
3742
3743 if (qfn->real_names[index] == NULL)
3744 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3745
3746 return qfn->real_names[index];
3747 }
3748
3749 static struct symtab *
3750 dw2_find_last_source_symtab (struct objfile *objfile)
3751 {
3752 struct dwarf2_per_objfile *dwarf2_per_objfile
3753 = get_dwarf2_per_objfile (objfile);
3754 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3755 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3756
3757 if (cust == NULL)
3758 return NULL;
3759
3760 return compunit_primary_filetab (cust);
3761 }
3762
3763 /* Traversal function for dw2_forget_cached_source_info. */
3764
3765 static int
3766 dw2_free_cached_file_names (void **slot, void *info)
3767 {
3768 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3769
3770 if (file_data->real_names)
3771 {
3772 int i;
3773
3774 for (i = 0; i < file_data->num_file_names; ++i)
3775 {
3776 xfree ((void*) file_data->real_names[i]);
3777 file_data->real_names[i] = NULL;
3778 }
3779 }
3780
3781 return 1;
3782 }
3783
3784 static void
3785 dw2_forget_cached_source_info (struct objfile *objfile)
3786 {
3787 struct dwarf2_per_objfile *dwarf2_per_objfile
3788 = get_dwarf2_per_objfile (objfile);
3789
3790 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3791 dw2_free_cached_file_names, NULL);
3792 }
3793
3794 /* Helper function for dw2_map_symtabs_matching_filename that expands
3795 the symtabs and calls the iterator. */
3796
3797 static int
3798 dw2_map_expand_apply (struct objfile *objfile,
3799 struct dwarf2_per_cu_data *per_cu,
3800 const char *name, const char *real_path,
3801 gdb::function_view<bool (symtab *)> callback)
3802 {
3803 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3804
3805 /* Don't visit already-expanded CUs. */
3806 if (per_cu->v.quick->compunit_symtab)
3807 return 0;
3808
3809 /* This may expand more than one symtab, and we want to iterate over
3810 all of them. */
3811 dw2_instantiate_symtab (per_cu, false);
3812
3813 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3814 last_made, callback);
3815 }
3816
3817 /* Implementation of the map_symtabs_matching_filename method. */
3818
3819 static bool
3820 dw2_map_symtabs_matching_filename
3821 (struct objfile *objfile, const char *name, const char *real_path,
3822 gdb::function_view<bool (symtab *)> callback)
3823 {
3824 const char *name_basename = lbasename (name);
3825 struct dwarf2_per_objfile *dwarf2_per_objfile
3826 = get_dwarf2_per_objfile (objfile);
3827
3828 /* The rule is CUs specify all the files, including those used by
3829 any TU, so there's no need to scan TUs here. */
3830
3831 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3832 {
3833 /* We only need to look at symtabs not already expanded. */
3834 if (per_cu->v.quick->compunit_symtab)
3835 continue;
3836
3837 quick_file_names *file_data = dw2_get_file_names (per_cu);
3838 if (file_data == NULL)
3839 continue;
3840
3841 for (int j = 0; j < file_data->num_file_names; ++j)
3842 {
3843 const char *this_name = file_data->file_names[j];
3844 const char *this_real_name;
3845
3846 if (compare_filenames_for_search (this_name, name))
3847 {
3848 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3849 callback))
3850 return true;
3851 continue;
3852 }
3853
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (! basenames_may_differ
3857 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3858 continue;
3859
3860 this_real_name = dw2_get_real_path (objfile, file_data, j);
3861 if (compare_filenames_for_search (this_real_name, name))
3862 {
3863 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3864 callback))
3865 return true;
3866 continue;
3867 }
3868
3869 if (real_path != NULL)
3870 {
3871 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3872 gdb_assert (IS_ABSOLUTE_PATH (name));
3873 if (this_real_name != NULL
3874 && FILENAME_CMP (real_path, this_real_name) == 0)
3875 {
3876 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3877 callback))
3878 return true;
3879 continue;
3880 }
3881 }
3882 }
3883 }
3884
3885 return false;
3886 }
3887
3888 /* Struct used to manage iterating over all CUs looking for a symbol. */
3889
3890 struct dw2_symtab_iterator
3891 {
3892 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3893 struct dwarf2_per_objfile *dwarf2_per_objfile;
3894 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3895 int want_specific_block;
3896 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3897 Unused if !WANT_SPECIFIC_BLOCK. */
3898 int block_index;
3899 /* The kind of symbol we're looking for. */
3900 domain_enum domain;
3901 /* The list of CUs from the index entry of the symbol,
3902 or NULL if not found. */
3903 offset_type *vec;
3904 /* The next element in VEC to look at. */
3905 int next;
3906 /* The number of elements in VEC, or zero if there is no match. */
3907 int length;
3908 /* Have we seen a global version of the symbol?
3909 If so we can ignore all further global instances.
3910 This is to work around gold/15646, inefficient gold-generated
3911 indices. */
3912 int global_seen;
3913 };
3914
3915 /* Initialize the index symtab iterator ITER.
3916 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3917 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3918
3919 static void
3920 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3921 struct dwarf2_per_objfile *dwarf2_per_objfile,
3922 int want_specific_block,
3923 int block_index,
3924 domain_enum domain,
3925 const char *name)
3926 {
3927 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3928 iter->want_specific_block = want_specific_block;
3929 iter->block_index = block_index;
3930 iter->domain = domain;
3931 iter->next = 0;
3932 iter->global_seen = 0;
3933
3934 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3935
3936 /* index is NULL if OBJF_READNOW. */
3937 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3938 iter->length = MAYBE_SWAP (*iter->vec);
3939 else
3940 {
3941 iter->vec = NULL;
3942 iter->length = 0;
3943 }
3944 }
3945
3946 /* Return the next matching CU or NULL if there are no more. */
3947
3948 static struct dwarf2_per_cu_data *
3949 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3950 {
3951 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3952
3953 for ( ; iter->next < iter->length; ++iter->next)
3954 {
3955 offset_type cu_index_and_attrs =
3956 MAYBE_SWAP (iter->vec[iter->next + 1]);
3957 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3958 int want_static = iter->block_index != GLOBAL_BLOCK;
3959 /* This value is only valid for index versions >= 7. */
3960 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3961 gdb_index_symbol_kind symbol_kind =
3962 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3963 /* Only check the symbol attributes if they're present.
3964 Indices prior to version 7 don't record them,
3965 and indices >= 7 may elide them for certain symbols
3966 (gold does this). */
3967 int attrs_valid =
3968 (dwarf2_per_objfile->index_table->version >= 7
3969 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3970
3971 /* Don't crash on bad data. */
3972 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3973 + dwarf2_per_objfile->all_type_units.size ()))
3974 {
3975 complaint (_(".gdb_index entry has bad CU index"
3976 " [in module %s]"),
3977 objfile_name (dwarf2_per_objfile->objfile));
3978 continue;
3979 }
3980
3981 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3982
3983 /* Skip if already read in. */
3984 if (per_cu->v.quick->compunit_symtab)
3985 continue;
3986
3987 /* Check static vs global. */
3988 if (attrs_valid)
3989 {
3990 if (iter->want_specific_block
3991 && want_static != is_static)
3992 continue;
3993 /* Work around gold/15646. */
3994 if (!is_static && iter->global_seen)
3995 continue;
3996 if (!is_static)
3997 iter->global_seen = 1;
3998 }
3999
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
4002 {
4003 switch (iter->domain)
4004 {
4005 case VAR_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4007 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4008 /* Some types are also in VAR_DOMAIN. */
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 case STRUCT_DOMAIN:
4013 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4014 continue;
4015 break;
4016 case LABEL_DOMAIN:
4017 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4018 continue;
4019 break;
4020 default:
4021 break;
4022 }
4023 }
4024
4025 ++iter->next;
4026 return per_cu;
4027 }
4028
4029 return NULL;
4030 }
4031
4032 static struct compunit_symtab *
4033 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4034 const char *name, domain_enum domain)
4035 {
4036 struct compunit_symtab *stab_best = NULL;
4037 struct dwarf2_per_objfile *dwarf2_per_objfile
4038 = get_dwarf2_per_objfile (objfile);
4039
4040 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4041
4042 struct dw2_symtab_iterator iter;
4043 struct dwarf2_per_cu_data *per_cu;
4044
4045 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4046
4047 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4048 {
4049 struct symbol *sym, *with_opaque = NULL;
4050 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4051 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4052 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4053
4054 sym = block_find_symbol (block, name, domain,
4055 block_find_non_opaque_type_preferred,
4056 &with_opaque);
4057
4058 /* Some caution must be observed with overloaded functions
4059 and methods, since the index will not contain any overload
4060 information (but NAME might contain it). */
4061
4062 if (sym != NULL
4063 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4064 return stab;
4065 if (with_opaque != NULL
4066 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4067 stab_best = stab;
4068
4069 /* Keep looking through other CUs. */
4070 }
4071
4072 return stab_best;
4073 }
4074
4075 static void
4076 dw2_print_stats (struct objfile *objfile)
4077 {
4078 struct dwarf2_per_objfile *dwarf2_per_objfile
4079 = get_dwarf2_per_objfile (objfile);
4080 int total = (dwarf2_per_objfile->all_comp_units.size ()
4081 + dwarf2_per_objfile->all_type_units.size ());
4082 int count = 0;
4083
4084 for (int i = 0; i < total; ++i)
4085 {
4086 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4087
4088 if (!per_cu->v.quick->compunit_symtab)
4089 ++count;
4090 }
4091 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4092 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4093 }
4094
4095 /* This dumps minimal information about the index.
4096 It is called via "mt print objfiles".
4097 One use is to verify .gdb_index has been loaded by the
4098 gdb.dwarf2/gdb-index.exp testcase. */
4099
4100 static void
4101 dw2_dump (struct objfile *objfile)
4102 {
4103 struct dwarf2_per_objfile *dwarf2_per_objfile
4104 = get_dwarf2_per_objfile (objfile);
4105
4106 gdb_assert (dwarf2_per_objfile->using_index);
4107 printf_filtered (".gdb_index:");
4108 if (dwarf2_per_objfile->index_table != NULL)
4109 {
4110 printf_filtered (" version %d\n",
4111 dwarf2_per_objfile->index_table->version);
4112 }
4113 else
4114 printf_filtered (" faked for \"readnow\"\n");
4115 printf_filtered ("\n");
4116 }
4117
4118 static void
4119 dw2_expand_symtabs_for_function (struct objfile *objfile,
4120 const char *func_name)
4121 {
4122 struct dwarf2_per_objfile *dwarf2_per_objfile
4123 = get_dwarf2_per_objfile (objfile);
4124
4125 struct dw2_symtab_iterator iter;
4126 struct dwarf2_per_cu_data *per_cu;
4127
4128 /* Note: It doesn't matter what we pass for block_index here. */
4129 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4130 func_name);
4131
4132 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4133 dw2_instantiate_symtab (per_cu, false);
4134
4135 }
4136
4137 static void
4138 dw2_expand_all_symtabs (struct objfile *objfile)
4139 {
4140 struct dwarf2_per_objfile *dwarf2_per_objfile
4141 = get_dwarf2_per_objfile (objfile);
4142 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4143 + dwarf2_per_objfile->all_type_units.size ());
4144
4145 for (int i = 0; i < total_units; ++i)
4146 {
4147 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4148
4149 /* We don't want to directly expand a partial CU, because if we
4150 read it with the wrong language, then assertion failures can
4151 be triggered later on. See PR symtab/23010. So, tell
4152 dw2_instantiate_symtab to skip partial CUs -- any important
4153 partial CU will be read via DW_TAG_imported_unit anyway. */
4154 dw2_instantiate_symtab (per_cu, true);
4155 }
4156 }
4157
4158 static void
4159 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4160 const char *fullname)
4161 {
4162 struct dwarf2_per_objfile *dwarf2_per_objfile
4163 = get_dwarf2_per_objfile (objfile);
4164
4165 /* We don't need to consider type units here.
4166 This is only called for examining code, e.g. expand_line_sal.
4167 There can be an order of magnitude (or more) more type units
4168 than comp units, and we avoid them if we can. */
4169
4170 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4171 {
4172 /* We only need to look at symtabs not already expanded. */
4173 if (per_cu->v.quick->compunit_symtab)
4174 continue;
4175
4176 quick_file_names *file_data = dw2_get_file_names (per_cu);
4177 if (file_data == NULL)
4178 continue;
4179
4180 for (int j = 0; j < file_data->num_file_names; ++j)
4181 {
4182 const char *this_fullname = file_data->file_names[j];
4183
4184 if (filename_cmp (this_fullname, fullname) == 0)
4185 {
4186 dw2_instantiate_symtab (per_cu, false);
4187 break;
4188 }
4189 }
4190 }
4191 }
4192
4193 static void
4194 dw2_map_matching_symbols (struct objfile *objfile,
4195 const char * name, domain_enum domain,
4196 int global,
4197 int (*callback) (struct block *,
4198 struct symbol *, void *),
4199 void *data, symbol_name_match_type match,
4200 symbol_compare_ftype *ordered_compare)
4201 {
4202 /* Currently unimplemented; used for Ada. The function can be called if the
4203 current language is Ada for a non-Ada objfile using GNU index. As Ada
4204 does not look for non-Ada symbols this function should just return. */
4205 }
4206
4207 /* Symbol name matcher for .gdb_index names.
4208
4209 Symbol names in .gdb_index have a few particularities:
4210
4211 - There's no indication of which is the language of each symbol.
4212
4213 Since each language has its own symbol name matching algorithm,
4214 and we don't know which language is the right one, we must match
4215 each symbol against all languages. This would be a potential
4216 performance problem if it were not mitigated by the
4217 mapped_index::name_components lookup table, which significantly
4218 reduces the number of times we need to call into this matcher,
4219 making it a non-issue.
4220
4221 - Symbol names in the index have no overload (parameter)
4222 information. I.e., in C++, "foo(int)" and "foo(long)" both
4223 appear as "foo" in the index, for example.
4224
4225 This means that the lookup names passed to the symbol name
4226 matcher functions must have no parameter information either
4227 because (e.g.) symbol search name "foo" does not match
4228 lookup-name "foo(int)" [while swapping search name for lookup
4229 name would match].
4230 */
4231 class gdb_index_symbol_name_matcher
4232 {
4233 public:
4234 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4235 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4236
4237 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4238 Returns true if any matcher matches. */
4239 bool matches (const char *symbol_name);
4240
4241 private:
4242 /* A reference to the lookup name we're matching against. */
4243 const lookup_name_info &m_lookup_name;
4244
4245 /* A vector holding all the different symbol name matchers, for all
4246 languages. */
4247 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4248 };
4249
4250 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4251 (const lookup_name_info &lookup_name)
4252 : m_lookup_name (lookup_name)
4253 {
4254 /* Prepare the vector of comparison functions upfront, to avoid
4255 doing the same work for each symbol. Care is taken to avoid
4256 matching with the same matcher more than once if/when multiple
4257 languages use the same matcher function. */
4258 auto &matchers = m_symbol_name_matcher_funcs;
4259 matchers.reserve (nr_languages);
4260
4261 matchers.push_back (default_symbol_name_matcher);
4262
4263 for (int i = 0; i < nr_languages; i++)
4264 {
4265 const language_defn *lang = language_def ((enum language) i);
4266 symbol_name_matcher_ftype *name_matcher
4267 = get_symbol_name_matcher (lang, m_lookup_name);
4268
4269 /* Don't insert the same comparison routine more than once.
4270 Note that we do this linear walk instead of a seemingly
4271 cheaper sorted insert, or use a std::set or something like
4272 that, because relative order of function addresses is not
4273 stable. This is not a problem in practice because the number
4274 of supported languages is low, and the cost here is tiny
4275 compared to the number of searches we'll do afterwards using
4276 this object. */
4277 if (name_matcher != default_symbol_name_matcher
4278 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4279 == matchers.end ()))
4280 matchers.push_back (name_matcher);
4281 }
4282 }
4283
4284 bool
4285 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4286 {
4287 for (auto matches_name : m_symbol_name_matcher_funcs)
4288 if (matches_name (symbol_name, m_lookup_name, NULL))
4289 return true;
4290
4291 return false;
4292 }
4293
4294 /* Starting from a search name, return the string that finds the upper
4295 bound of all strings that start with SEARCH_NAME in a sorted name
4296 list. Returns the empty string to indicate that the upper bound is
4297 the end of the list. */
4298
4299 static std::string
4300 make_sort_after_prefix_name (const char *search_name)
4301 {
4302 /* When looking to complete "func", we find the upper bound of all
4303 symbols that start with "func" by looking for where we'd insert
4304 the closest string that would follow "func" in lexicographical
4305 order. Usually, that's "func"-with-last-character-incremented,
4306 i.e. "fund". Mind non-ASCII characters, though. Usually those
4307 will be UTF-8 multi-byte sequences, but we can't be certain.
4308 Especially mind the 0xff character, which is a valid character in
4309 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4310 rule out compilers allowing it in identifiers. Note that
4311 conveniently, strcmp/strcasecmp are specified to compare
4312 characters interpreted as unsigned char. So what we do is treat
4313 the whole string as a base 256 number composed of a sequence of
4314 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4315 to 0, and carries 1 to the following more-significant position.
4316 If the very first character in SEARCH_NAME ends up incremented
4317 and carries/overflows, then the upper bound is the end of the
4318 list. The string after the empty string is also the empty
4319 string.
4320
4321 Some examples of this operation:
4322
4323 SEARCH_NAME => "+1" RESULT
4324
4325 "abc" => "abd"
4326 "ab\xff" => "ac"
4327 "\xff" "a" "\xff" => "\xff" "b"
4328 "\xff" => ""
4329 "\xff\xff" => ""
4330 "" => ""
4331
4332 Then, with these symbols for example:
4333
4334 func
4335 func1
4336 fund
4337
4338 completing "func" looks for symbols between "func" and
4339 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4340 which finds "func" and "func1", but not "fund".
4341
4342 And with:
4343
4344 funcÿ (Latin1 'ÿ' [0xff])
4345 funcÿ1
4346 fund
4347
4348 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4349 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4350
4351 And with:
4352
4353 ÿÿ (Latin1 'ÿ' [0xff])
4354 ÿÿ1
4355
4356 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4357 the end of the list.
4358 */
4359 std::string after = search_name;
4360 while (!after.empty () && (unsigned char) after.back () == 0xff)
4361 after.pop_back ();
4362 if (!after.empty ())
4363 after.back () = (unsigned char) after.back () + 1;
4364 return after;
4365 }
4366
4367 /* See declaration. */
4368
4369 std::pair<std::vector<name_component>::const_iterator,
4370 std::vector<name_component>::const_iterator>
4371 mapped_index_base::find_name_components_bounds
4372 (const lookup_name_info &lookup_name_without_params) const
4373 {
4374 auto *name_cmp
4375 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4376
4377 const char *cplus
4378 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4379
4380 /* Comparison function object for lower_bound that matches against a
4381 given symbol name. */
4382 auto lookup_compare_lower = [&] (const name_component &elem,
4383 const char *name)
4384 {
4385 const char *elem_qualified = this->symbol_name_at (elem.idx);
4386 const char *elem_name = elem_qualified + elem.name_offset;
4387 return name_cmp (elem_name, name) < 0;
4388 };
4389
4390 /* Comparison function object for upper_bound that matches against a
4391 given symbol name. */
4392 auto lookup_compare_upper = [&] (const char *name,
4393 const name_component &elem)
4394 {
4395 const char *elem_qualified = this->symbol_name_at (elem.idx);
4396 const char *elem_name = elem_qualified + elem.name_offset;
4397 return name_cmp (name, elem_name) < 0;
4398 };
4399
4400 auto begin = this->name_components.begin ();
4401 auto end = this->name_components.end ();
4402
4403 /* Find the lower bound. */
4404 auto lower = [&] ()
4405 {
4406 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4407 return begin;
4408 else
4409 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4410 } ();
4411
4412 /* Find the upper bound. */
4413 auto upper = [&] ()
4414 {
4415 if (lookup_name_without_params.completion_mode ())
4416 {
4417 /* In completion mode, we want UPPER to point past all
4418 symbols names that have the same prefix. I.e., with
4419 these symbols, and completing "func":
4420
4421 function << lower bound
4422 function1
4423 other_function << upper bound
4424
4425 We find the upper bound by looking for the insertion
4426 point of "func"-with-last-character-incremented,
4427 i.e. "fund". */
4428 std::string after = make_sort_after_prefix_name (cplus);
4429 if (after.empty ())
4430 return end;
4431 return std::lower_bound (lower, end, after.c_str (),
4432 lookup_compare_lower);
4433 }
4434 else
4435 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4436 } ();
4437
4438 return {lower, upper};
4439 }
4440
4441 /* See declaration. */
4442
4443 void
4444 mapped_index_base::build_name_components ()
4445 {
4446 if (!this->name_components.empty ())
4447 return;
4448
4449 this->name_components_casing = case_sensitivity;
4450 auto *name_cmp
4451 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4452
4453 /* The code below only knows how to break apart components of C++
4454 symbol names (and other languages that use '::' as
4455 namespace/module separator). If we add support for wild matching
4456 to some language that uses some other operator (E.g., Ada, Go and
4457 D use '.'), then we'll need to try splitting the symbol name
4458 according to that language too. Note that Ada does support wild
4459 matching, but doesn't currently support .gdb_index. */
4460 auto count = this->symbol_name_count ();
4461 for (offset_type idx = 0; idx < count; idx++)
4462 {
4463 if (this->symbol_name_slot_invalid (idx))
4464 continue;
4465
4466 const char *name = this->symbol_name_at (idx);
4467
4468 /* Add each name component to the name component table. */
4469 unsigned int previous_len = 0;
4470 for (unsigned int current_len = cp_find_first_component (name);
4471 name[current_len] != '\0';
4472 current_len += cp_find_first_component (name + current_len))
4473 {
4474 gdb_assert (name[current_len] == ':');
4475 this->name_components.push_back ({previous_len, idx});
4476 /* Skip the '::'. */
4477 current_len += 2;
4478 previous_len = current_len;
4479 }
4480 this->name_components.push_back ({previous_len, idx});
4481 }
4482
4483 /* Sort name_components elements by name. */
4484 auto name_comp_compare = [&] (const name_component &left,
4485 const name_component &right)
4486 {
4487 const char *left_qualified = this->symbol_name_at (left.idx);
4488 const char *right_qualified = this->symbol_name_at (right.idx);
4489
4490 const char *left_name = left_qualified + left.name_offset;
4491 const char *right_name = right_qualified + right.name_offset;
4492
4493 return name_cmp (left_name, right_name) < 0;
4494 };
4495
4496 std::sort (this->name_components.begin (),
4497 this->name_components.end (),
4498 name_comp_compare);
4499 }
4500
4501 /* Helper for dw2_expand_symtabs_matching that works with a
4502 mapped_index_base instead of the containing objfile. This is split
4503 to a separate function in order to be able to unit test the
4504 name_components matching using a mock mapped_index_base. For each
4505 symbol name that matches, calls MATCH_CALLBACK, passing it the
4506 symbol's index in the mapped_index_base symbol table. */
4507
4508 static void
4509 dw2_expand_symtabs_matching_symbol
4510 (mapped_index_base &index,
4511 const lookup_name_info &lookup_name_in,
4512 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4513 enum search_domain kind,
4514 gdb::function_view<void (offset_type)> match_callback)
4515 {
4516 lookup_name_info lookup_name_without_params
4517 = lookup_name_in.make_ignore_params ();
4518 gdb_index_symbol_name_matcher lookup_name_matcher
4519 (lookup_name_without_params);
4520
4521 /* Build the symbol name component sorted vector, if we haven't
4522 yet. */
4523 index.build_name_components ();
4524
4525 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4526
4527 /* Now for each symbol name in range, check to see if we have a name
4528 match, and if so, call the MATCH_CALLBACK callback. */
4529
4530 /* The same symbol may appear more than once in the range though.
4531 E.g., if we're looking for symbols that complete "w", and we have
4532 a symbol named "w1::w2", we'll find the two name components for
4533 that same symbol in the range. To be sure we only call the
4534 callback once per symbol, we first collect the symbol name
4535 indexes that matched in a temporary vector and ignore
4536 duplicates. */
4537 std::vector<offset_type> matches;
4538 matches.reserve (std::distance (bounds.first, bounds.second));
4539
4540 for (; bounds.first != bounds.second; ++bounds.first)
4541 {
4542 const char *qualified = index.symbol_name_at (bounds.first->idx);
4543
4544 if (!lookup_name_matcher.matches (qualified)
4545 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4546 continue;
4547
4548 matches.push_back (bounds.first->idx);
4549 }
4550
4551 std::sort (matches.begin (), matches.end ());
4552
4553 /* Finally call the callback, once per match. */
4554 ULONGEST prev = -1;
4555 for (offset_type idx : matches)
4556 {
4557 if (prev != idx)
4558 {
4559 match_callback (idx);
4560 prev = idx;
4561 }
4562 }
4563
4564 /* Above we use a type wider than idx's for 'prev', since 0 and
4565 (offset_type)-1 are both possible values. */
4566 static_assert (sizeof (prev) > sizeof (offset_type), "");
4567 }
4568
4569 #if GDB_SELF_TEST
4570
4571 namespace selftests { namespace dw2_expand_symtabs_matching {
4572
4573 /* A mock .gdb_index/.debug_names-like name index table, enough to
4574 exercise dw2_expand_symtabs_matching_symbol, which works with the
4575 mapped_index_base interface. Builds an index from the symbol list
4576 passed as parameter to the constructor. */
4577 class mock_mapped_index : public mapped_index_base
4578 {
4579 public:
4580 mock_mapped_index (gdb::array_view<const char *> symbols)
4581 : m_symbol_table (symbols)
4582 {}
4583
4584 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4585
4586 /* Return the number of names in the symbol table. */
4587 size_t symbol_name_count () const override
4588 {
4589 return m_symbol_table.size ();
4590 }
4591
4592 /* Get the name of the symbol at IDX in the symbol table. */
4593 const char *symbol_name_at (offset_type idx) const override
4594 {
4595 return m_symbol_table[idx];
4596 }
4597
4598 private:
4599 gdb::array_view<const char *> m_symbol_table;
4600 };
4601
4602 /* Convenience function that converts a NULL pointer to a "<null>"
4603 string, to pass to print routines. */
4604
4605 static const char *
4606 string_or_null (const char *str)
4607 {
4608 return str != NULL ? str : "<null>";
4609 }
4610
4611 /* Check if a lookup_name_info built from
4612 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4613 index. EXPECTED_LIST is the list of expected matches, in expected
4614 matching order. If no match expected, then an empty list is
4615 specified. Returns true on success. On failure prints a warning
4616 indicating the file:line that failed, and returns false. */
4617
4618 static bool
4619 check_match (const char *file, int line,
4620 mock_mapped_index &mock_index,
4621 const char *name, symbol_name_match_type match_type,
4622 bool completion_mode,
4623 std::initializer_list<const char *> expected_list)
4624 {
4625 lookup_name_info lookup_name (name, match_type, completion_mode);
4626
4627 bool matched = true;
4628
4629 auto mismatch = [&] (const char *expected_str,
4630 const char *got)
4631 {
4632 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4633 "expected=\"%s\", got=\"%s\"\n"),
4634 file, line,
4635 (match_type == symbol_name_match_type::FULL
4636 ? "FULL" : "WILD"),
4637 name, string_or_null (expected_str), string_or_null (got));
4638 matched = false;
4639 };
4640
4641 auto expected_it = expected_list.begin ();
4642 auto expected_end = expected_list.end ();
4643
4644 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4645 NULL, ALL_DOMAIN,
4646 [&] (offset_type idx)
4647 {
4648 const char *matched_name = mock_index.symbol_name_at (idx);
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651
4652 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4653 mismatch (expected_str, matched_name);
4654 });
4655
4656 const char *expected_str
4657 = expected_it == expected_end ? NULL : *expected_it++;
4658 if (expected_str != NULL)
4659 mismatch (expected_str, NULL);
4660
4661 return matched;
4662 }
4663
4664 /* The symbols added to the mock mapped_index for testing (in
4665 canonical form). */
4666 static const char *test_symbols[] = {
4667 "function",
4668 "std::bar",
4669 "std::zfunction",
4670 "std::zfunction2",
4671 "w1::w2",
4672 "ns::foo<char*>",
4673 "ns::foo<int>",
4674 "ns::foo<long>",
4675 "ns2::tmpl<int>::foo2",
4676 "(anonymous namespace)::A::B::C",
4677
4678 /* These are used to check that the increment-last-char in the
4679 matching algorithm for completion doesn't match "t1_fund" when
4680 completing "t1_func". */
4681 "t1_func",
4682 "t1_func1",
4683 "t1_fund",
4684 "t1_fund1",
4685
4686 /* A UTF-8 name with multi-byte sequences to make sure that
4687 cp-name-parser understands this as a single identifier ("função"
4688 is "function" in PT). */
4689 u8"u8função",
4690
4691 /* \377 (0xff) is Latin1 'ÿ'. */
4692 "yfunc\377",
4693
4694 /* \377 (0xff) is Latin1 'ÿ'. */
4695 "\377",
4696 "\377\377123",
4697
4698 /* A name with all sorts of complications. Starts with "z" to make
4699 it easier for the completion tests below. */
4700 #define Z_SYM_NAME \
4701 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4702 "::tuple<(anonymous namespace)::ui*, " \
4703 "std::default_delete<(anonymous namespace)::ui>, void>"
4704
4705 Z_SYM_NAME
4706 };
4707
4708 /* Returns true if the mapped_index_base::find_name_component_bounds
4709 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4710 in completion mode. */
4711
4712 static bool
4713 check_find_bounds_finds (mapped_index_base &index,
4714 const char *search_name,
4715 gdb::array_view<const char *> expected_syms)
4716 {
4717 lookup_name_info lookup_name (search_name,
4718 symbol_name_match_type::FULL, true);
4719
4720 auto bounds = index.find_name_components_bounds (lookup_name);
4721
4722 size_t distance = std::distance (bounds.first, bounds.second);
4723 if (distance != expected_syms.size ())
4724 return false;
4725
4726 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4727 {
4728 auto nc_elem = bounds.first + exp_elem;
4729 const char *qualified = index.symbol_name_at (nc_elem->idx);
4730 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4731 return false;
4732 }
4733
4734 return true;
4735 }
4736
4737 /* Test the lower-level mapped_index::find_name_component_bounds
4738 method. */
4739
4740 static void
4741 test_mapped_index_find_name_component_bounds ()
4742 {
4743 mock_mapped_index mock_index (test_symbols);
4744
4745 mock_index.build_name_components ();
4746
4747 /* Test the lower-level mapped_index::find_name_component_bounds
4748 method in completion mode. */
4749 {
4750 static const char *expected_syms[] = {
4751 "t1_func",
4752 "t1_func1",
4753 };
4754
4755 SELF_CHECK (check_find_bounds_finds (mock_index,
4756 "t1_func", expected_syms));
4757 }
4758
4759 /* Check that the increment-last-char in the name matching algorithm
4760 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4761 {
4762 static const char *expected_syms1[] = {
4763 "\377",
4764 "\377\377123",
4765 };
4766 SELF_CHECK (check_find_bounds_finds (mock_index,
4767 "\377", expected_syms1));
4768
4769 static const char *expected_syms2[] = {
4770 "\377\377123",
4771 };
4772 SELF_CHECK (check_find_bounds_finds (mock_index,
4773 "\377\377", expected_syms2));
4774 }
4775 }
4776
4777 /* Test dw2_expand_symtabs_matching_symbol. */
4778
4779 static void
4780 test_dw2_expand_symtabs_matching_symbol ()
4781 {
4782 mock_mapped_index mock_index (test_symbols);
4783
4784 /* We let all tests run until the end even if some fails, for debug
4785 convenience. */
4786 bool any_mismatch = false;
4787
4788 /* Create the expected symbols list (an initializer_list). Needed
4789 because lists have commas, and we need to pass them to CHECK,
4790 which is a macro. */
4791 #define EXPECT(...) { __VA_ARGS__ }
4792
4793 /* Wrapper for check_match that passes down the current
4794 __FILE__/__LINE__. */
4795 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4796 any_mismatch |= !check_match (__FILE__, __LINE__, \
4797 mock_index, \
4798 NAME, MATCH_TYPE, COMPLETION_MODE, \
4799 EXPECTED_LIST)
4800
4801 /* Identity checks. */
4802 for (const char *sym : test_symbols)
4803 {
4804 /* Should be able to match all existing symbols. */
4805 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4806 EXPECT (sym));
4807
4808 /* Should be able to match all existing symbols with
4809 parameters. */
4810 std::string with_params = std::string (sym) + "(int)";
4811 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4812 EXPECT (sym));
4813
4814 /* Should be able to match all existing symbols with
4815 parameters and qualifiers. */
4816 with_params = std::string (sym) + " ( int ) const";
4817 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4818 EXPECT (sym));
4819
4820 /* This should really find sym, but cp-name-parser.y doesn't
4821 know about lvalue/rvalue qualifiers yet. */
4822 with_params = std::string (sym) + " ( int ) &&";
4823 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4824 {});
4825 }
4826
4827 /* Check that the name matching algorithm for completion doesn't get
4828 confused with Latin1 'ÿ' / 0xff. */
4829 {
4830 static const char str[] = "\377";
4831 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4832 EXPECT ("\377", "\377\377123"));
4833 }
4834
4835 /* Check that the increment-last-char in the matching algorithm for
4836 completion doesn't match "t1_fund" when completing "t1_func". */
4837 {
4838 static const char str[] = "t1_func";
4839 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4840 EXPECT ("t1_func", "t1_func1"));
4841 }
4842
4843 /* Check that completion mode works at each prefix of the expected
4844 symbol name. */
4845 {
4846 static const char str[] = "function(int)";
4847 size_t len = strlen (str);
4848 std::string lookup;
4849
4850 for (size_t i = 1; i < len; i++)
4851 {
4852 lookup.assign (str, i);
4853 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4854 EXPECT ("function"));
4855 }
4856 }
4857
4858 /* While "w" is a prefix of both components, the match function
4859 should still only be called once. */
4860 {
4861 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4862 EXPECT ("w1::w2"));
4863 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4864 EXPECT ("w1::w2"));
4865 }
4866
4867 /* Same, with a "complicated" symbol. */
4868 {
4869 static const char str[] = Z_SYM_NAME;
4870 size_t len = strlen (str);
4871 std::string lookup;
4872
4873 for (size_t i = 1; i < len; i++)
4874 {
4875 lookup.assign (str, i);
4876 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4877 EXPECT (Z_SYM_NAME));
4878 }
4879 }
4880
4881 /* In FULL mode, an incomplete symbol doesn't match. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4884 {});
4885 }
4886
4887 /* A complete symbol with parameters matches any overload, since the
4888 index has no overload info. */
4889 {
4890 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4891 EXPECT ("std::zfunction", "std::zfunction2"));
4892 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 }
4897
4898 /* Check that whitespace is ignored appropriately. A symbol with a
4899 template argument list. */
4900 {
4901 static const char expected[] = "ns::foo<int>";
4902 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4903 EXPECT (expected));
4904 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4905 EXPECT (expected));
4906 }
4907
4908 /* Check that whitespace is ignored appropriately. A symbol with a
4909 template argument list that includes a pointer. */
4910 {
4911 static const char expected[] = "ns::foo<char*>";
4912 /* Try both completion and non-completion modes. */
4913 static const bool completion_mode[2] = {false, true};
4914 for (size_t i = 0; i < 2; i++)
4915 {
4916 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4917 completion_mode[i], EXPECT (expected));
4918 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4919 completion_mode[i], EXPECT (expected));
4920
4921 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4922 completion_mode[i], EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4924 completion_mode[i], EXPECT (expected));
4925 }
4926 }
4927
4928 {
4929 /* Check method qualifiers are ignored. */
4930 static const char expected[] = "ns::foo<char*>";
4931 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4932 symbol_name_match_type::FULL, true, EXPECT (expected));
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("foo < char * > ( int ) const",
4936 symbol_name_match_type::WILD, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) &&",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 }
4940
4941 /* Test lookup names that don't match anything. */
4942 {
4943 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4944 {});
4945
4946 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4947 {});
4948 }
4949
4950 /* Some wild matching tests, exercising "(anonymous namespace)",
4951 which should not be confused with a parameter list. */
4952 {
4953 static const char *syms[] = {
4954 "A::B::C",
4955 "B::C",
4956 "C",
4957 "A :: B :: C ( int )",
4958 "B :: C ( int )",
4959 "C ( int )",
4960 };
4961
4962 for (const char *s : syms)
4963 {
4964 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4965 EXPECT ("(anonymous namespace)::A::B::C"));
4966 }
4967 }
4968
4969 {
4970 static const char expected[] = "ns2::tmpl<int>::foo2";
4971 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4972 EXPECT (expected));
4973 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 }
4976
4977 SELF_CHECK (!any_mismatch);
4978
4979 #undef EXPECT
4980 #undef CHECK_MATCH
4981 }
4982
4983 static void
4984 run_test ()
4985 {
4986 test_mapped_index_find_name_component_bounds ();
4987 test_dw2_expand_symtabs_matching_symbol ();
4988 }
4989
4990 }} // namespace selftests::dw2_expand_symtabs_matching
4991
4992 #endif /* GDB_SELF_TEST */
4993
4994 /* If FILE_MATCHER is NULL or if PER_CU has
4995 dwarf2_per_cu_quick_data::MARK set (see
4996 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4997 EXPANSION_NOTIFY on it. */
4998
4999 static void
5000 dw2_expand_symtabs_matching_one
5001 (struct dwarf2_per_cu_data *per_cu,
5002 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5003 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5004 {
5005 if (file_matcher == NULL || per_cu->v.quick->mark)
5006 {
5007 bool symtab_was_null
5008 = (per_cu->v.quick->compunit_symtab == NULL);
5009
5010 dw2_instantiate_symtab (per_cu, false);
5011
5012 if (expansion_notify != NULL
5013 && symtab_was_null
5014 && per_cu->v.quick->compunit_symtab != NULL)
5015 expansion_notify (per_cu->v.quick->compunit_symtab);
5016 }
5017 }
5018
5019 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5020 matched, to expand corresponding CUs that were marked. IDX is the
5021 index of the symbol name that matched. */
5022
5023 static void
5024 dw2_expand_marked_cus
5025 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5026 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5027 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5028 search_domain kind)
5029 {
5030 offset_type *vec, vec_len, vec_idx;
5031 bool global_seen = false;
5032 mapped_index &index = *dwarf2_per_objfile->index_table;
5033
5034 vec = (offset_type *) (index.constant_pool
5035 + MAYBE_SWAP (index.symbol_table[idx].vec));
5036 vec_len = MAYBE_SWAP (vec[0]);
5037 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5038 {
5039 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5040 /* This value is only valid for index versions >= 7. */
5041 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5042 gdb_index_symbol_kind symbol_kind =
5043 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5044 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5045 /* Only check the symbol attributes if they're present.
5046 Indices prior to version 7 don't record them,
5047 and indices >= 7 may elide them for certain symbols
5048 (gold does this). */
5049 int attrs_valid =
5050 (index.version >= 7
5051 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5052
5053 /* Work around gold/15646. */
5054 if (attrs_valid)
5055 {
5056 if (!is_static && global_seen)
5057 continue;
5058 if (!is_static)
5059 global_seen = true;
5060 }
5061
5062 /* Only check the symbol's kind if it has one. */
5063 if (attrs_valid)
5064 {
5065 switch (kind)
5066 {
5067 case VARIABLES_DOMAIN:
5068 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5069 continue;
5070 break;
5071 case FUNCTIONS_DOMAIN:
5072 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5073 continue;
5074 break;
5075 case TYPES_DOMAIN:
5076 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5077 continue;
5078 break;
5079 default:
5080 break;
5081 }
5082 }
5083
5084 /* Don't crash on bad data. */
5085 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5086 + dwarf2_per_objfile->all_type_units.size ()))
5087 {
5088 complaint (_(".gdb_index entry has bad CU index"
5089 " [in module %s]"),
5090 objfile_name (dwarf2_per_objfile->objfile));
5091 continue;
5092 }
5093
5094 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5095 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5096 expansion_notify);
5097 }
5098 }
5099
5100 /* If FILE_MATCHER is non-NULL, set all the
5101 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5102 that match FILE_MATCHER. */
5103
5104 static void
5105 dw_expand_symtabs_matching_file_matcher
5106 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5107 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5108 {
5109 if (file_matcher == NULL)
5110 return;
5111
5112 objfile *const objfile = dwarf2_per_objfile->objfile;
5113
5114 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5115 htab_eq_pointer,
5116 NULL, xcalloc, xfree));
5117 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5118 htab_eq_pointer,
5119 NULL, xcalloc, xfree));
5120
5121 /* The rule is CUs specify all the files, including those used by
5122 any TU, so there's no need to scan TUs here. */
5123
5124 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5125 {
5126 QUIT;
5127
5128 per_cu->v.quick->mark = 0;
5129
5130 /* We only need to look at symtabs not already expanded. */
5131 if (per_cu->v.quick->compunit_symtab)
5132 continue;
5133
5134 quick_file_names *file_data = dw2_get_file_names (per_cu);
5135 if (file_data == NULL)
5136 continue;
5137
5138 if (htab_find (visited_not_found.get (), file_data) != NULL)
5139 continue;
5140 else if (htab_find (visited_found.get (), file_data) != NULL)
5141 {
5142 per_cu->v.quick->mark = 1;
5143 continue;
5144 }
5145
5146 for (int j = 0; j < file_data->num_file_names; ++j)
5147 {
5148 const char *this_real_name;
5149
5150 if (file_matcher (file_data->file_names[j], false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155
5156 /* Before we invoke realpath, which can get expensive when many
5157 files are involved, do a quick comparison of the basenames. */
5158 if (!basenames_may_differ
5159 && !file_matcher (lbasename (file_data->file_names[j]),
5160 true))
5161 continue;
5162
5163 this_real_name = dw2_get_real_path (objfile, file_data, j);
5164 if (file_matcher (this_real_name, false))
5165 {
5166 per_cu->v.quick->mark = 1;
5167 break;
5168 }
5169 }
5170
5171 void **slot = htab_find_slot (per_cu->v.quick->mark
5172 ? visited_found.get ()
5173 : visited_not_found.get (),
5174 file_data, INSERT);
5175 *slot = file_data;
5176 }
5177 }
5178
5179 static void
5180 dw2_expand_symtabs_matching
5181 (struct objfile *objfile,
5182 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5183 const lookup_name_info &lookup_name,
5184 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5185 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5186 enum search_domain kind)
5187 {
5188 struct dwarf2_per_objfile *dwarf2_per_objfile
5189 = get_dwarf2_per_objfile (objfile);
5190
5191 /* index_table is NULL if OBJF_READNOW. */
5192 if (!dwarf2_per_objfile->index_table)
5193 return;
5194
5195 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5196
5197 mapped_index &index = *dwarf2_per_objfile->index_table;
5198
5199 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5200 symbol_matcher,
5201 kind, [&] (offset_type idx)
5202 {
5203 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5204 expansion_notify, kind);
5205 });
5206 }
5207
5208 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5209 symtab. */
5210
5211 static struct compunit_symtab *
5212 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5213 CORE_ADDR pc)
5214 {
5215 int i;
5216
5217 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5218 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5219 return cust;
5220
5221 if (cust->includes == NULL)
5222 return NULL;
5223
5224 for (i = 0; cust->includes[i]; ++i)
5225 {
5226 struct compunit_symtab *s = cust->includes[i];
5227
5228 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5229 if (s != NULL)
5230 return s;
5231 }
5232
5233 return NULL;
5234 }
5235
5236 static struct compunit_symtab *
5237 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5238 struct bound_minimal_symbol msymbol,
5239 CORE_ADDR pc,
5240 struct obj_section *section,
5241 int warn_if_readin)
5242 {
5243 struct dwarf2_per_cu_data *data;
5244 struct compunit_symtab *result;
5245
5246 if (!objfile->psymtabs_addrmap)
5247 return NULL;
5248
5249 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5250 SECT_OFF_TEXT (objfile));
5251 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5252 pc - baseaddr);
5253 if (!data)
5254 return NULL;
5255
5256 if (warn_if_readin && data->v.quick->compunit_symtab)
5257 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5258 paddress (get_objfile_arch (objfile), pc));
5259
5260 result
5261 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5262 false),
5263 pc);
5264 gdb_assert (result != NULL);
5265 return result;
5266 }
5267
5268 static void
5269 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5270 void *data, int need_fullname)
5271 {
5272 struct dwarf2_per_objfile *dwarf2_per_objfile
5273 = get_dwarf2_per_objfile (objfile);
5274
5275 if (!dwarf2_per_objfile->filenames_cache)
5276 {
5277 dwarf2_per_objfile->filenames_cache.emplace ();
5278
5279 htab_up visited (htab_create_alloc (10,
5280 htab_hash_pointer, htab_eq_pointer,
5281 NULL, xcalloc, xfree));
5282
5283 /* The rule is CUs specify all the files, including those used
5284 by any TU, so there's no need to scan TUs here. We can
5285 ignore file names coming from already-expanded CUs. */
5286
5287 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5288 {
5289 if (per_cu->v.quick->compunit_symtab)
5290 {
5291 void **slot = htab_find_slot (visited.get (),
5292 per_cu->v.quick->file_names,
5293 INSERT);
5294
5295 *slot = per_cu->v.quick->file_names;
5296 }
5297 }
5298
5299 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5300 {
5301 /* We only need to look at symtabs not already expanded. */
5302 if (per_cu->v.quick->compunit_symtab)
5303 continue;
5304
5305 quick_file_names *file_data = dw2_get_file_names (per_cu);
5306 if (file_data == NULL)
5307 continue;
5308
5309 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5310 if (*slot)
5311 {
5312 /* Already visited. */
5313 continue;
5314 }
5315 *slot = file_data;
5316
5317 for (int j = 0; j < file_data->num_file_names; ++j)
5318 {
5319 const char *filename = file_data->file_names[j];
5320 dwarf2_per_objfile->filenames_cache->seen (filename);
5321 }
5322 }
5323 }
5324
5325 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5326 {
5327 gdb::unique_xmalloc_ptr<char> this_real_name;
5328
5329 if (need_fullname)
5330 this_real_name = gdb_realpath (filename);
5331 (*fun) (filename, this_real_name.get (), data);
5332 });
5333 }
5334
5335 static int
5336 dw2_has_symbols (struct objfile *objfile)
5337 {
5338 return 1;
5339 }
5340
5341 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5342 {
5343 dw2_has_symbols,
5344 dw2_find_last_source_symtab,
5345 dw2_forget_cached_source_info,
5346 dw2_map_symtabs_matching_filename,
5347 dw2_lookup_symbol,
5348 dw2_print_stats,
5349 dw2_dump,
5350 dw2_expand_symtabs_for_function,
5351 dw2_expand_all_symtabs,
5352 dw2_expand_symtabs_with_fullname,
5353 dw2_map_matching_symbols,
5354 dw2_expand_symtabs_matching,
5355 dw2_find_pc_sect_compunit_symtab,
5356 NULL,
5357 dw2_map_symbol_filenames
5358 };
5359
5360 /* DWARF-5 debug_names reader. */
5361
5362 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5363 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5364
5365 /* A helper function that reads the .debug_names section in SECTION
5366 and fills in MAP. FILENAME is the name of the file containing the
5367 section; it is used for error reporting.
5368
5369 Returns true if all went well, false otherwise. */
5370
5371 static bool
5372 read_debug_names_from_section (struct objfile *objfile,
5373 const char *filename,
5374 struct dwarf2_section_info *section,
5375 mapped_debug_names &map)
5376 {
5377 if (dwarf2_section_empty_p (section))
5378 return false;
5379
5380 /* Older elfutils strip versions could keep the section in the main
5381 executable while splitting it for the separate debug info file. */
5382 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5383 return false;
5384
5385 dwarf2_read_section (objfile, section);
5386
5387 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5388
5389 const gdb_byte *addr = section->buffer;
5390
5391 bfd *const abfd = get_section_bfd_owner (section);
5392
5393 unsigned int bytes_read;
5394 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5395 addr += bytes_read;
5396
5397 map.dwarf5_is_dwarf64 = bytes_read != 4;
5398 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5399 if (bytes_read + length != section->size)
5400 {
5401 /* There may be multiple per-CU indices. */
5402 warning (_("Section .debug_names in %s length %s does not match "
5403 "section length %s, ignoring .debug_names."),
5404 filename, plongest (bytes_read + length),
5405 pulongest (section->size));
5406 return false;
5407 }
5408
5409 /* The version number. */
5410 uint16_t version = read_2_bytes (abfd, addr);
5411 addr += 2;
5412 if (version != 5)
5413 {
5414 warning (_("Section .debug_names in %s has unsupported version %d, "
5415 "ignoring .debug_names."),
5416 filename, version);
5417 return false;
5418 }
5419
5420 /* Padding. */
5421 uint16_t padding = read_2_bytes (abfd, addr);
5422 addr += 2;
5423 if (padding != 0)
5424 {
5425 warning (_("Section .debug_names in %s has unsupported padding %d, "
5426 "ignoring .debug_names."),
5427 filename, padding);
5428 return false;
5429 }
5430
5431 /* comp_unit_count - The number of CUs in the CU list. */
5432 map.cu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434
5435 /* local_type_unit_count - The number of TUs in the local TU
5436 list. */
5437 map.tu_count = read_4_bytes (abfd, addr);
5438 addr += 4;
5439
5440 /* foreign_type_unit_count - The number of TUs in the foreign TU
5441 list. */
5442 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5443 addr += 4;
5444 if (foreign_tu_count != 0)
5445 {
5446 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5447 "ignoring .debug_names."),
5448 filename, static_cast<unsigned long> (foreign_tu_count));
5449 return false;
5450 }
5451
5452 /* bucket_count - The number of hash buckets in the hash lookup
5453 table. */
5454 map.bucket_count = read_4_bytes (abfd, addr);
5455 addr += 4;
5456
5457 /* name_count - The number of unique names in the index. */
5458 map.name_count = read_4_bytes (abfd, addr);
5459 addr += 4;
5460
5461 /* abbrev_table_size - The size in bytes of the abbreviations
5462 table. */
5463 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5464 addr += 4;
5465
5466 /* augmentation_string_size - The size in bytes of the augmentation
5467 string. This value is rounded up to a multiple of 4. */
5468 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5469 addr += 4;
5470 map.augmentation_is_gdb = ((augmentation_string_size
5471 == sizeof (dwarf5_augmentation))
5472 && memcmp (addr, dwarf5_augmentation,
5473 sizeof (dwarf5_augmentation)) == 0);
5474 augmentation_string_size += (-augmentation_string_size) & 3;
5475 addr += augmentation_string_size;
5476
5477 /* List of CUs */
5478 map.cu_table_reordered = addr;
5479 addr += map.cu_count * map.offset_size;
5480
5481 /* List of Local TUs */
5482 map.tu_table_reordered = addr;
5483 addr += map.tu_count * map.offset_size;
5484
5485 /* Hash Lookup Table */
5486 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5487 addr += map.bucket_count * 4;
5488 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.name_count * 4;
5490
5491 /* Name Table */
5492 map.name_table_string_offs_reordered = addr;
5493 addr += map.name_count * map.offset_size;
5494 map.name_table_entry_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496
5497 const gdb_byte *abbrev_table_start = addr;
5498 for (;;)
5499 {
5500 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5501 addr += bytes_read;
5502 if (index_num == 0)
5503 break;
5504
5505 const auto insertpair
5506 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5507 if (!insertpair.second)
5508 {
5509 warning (_("Section .debug_names in %s has duplicate index %s, "
5510 "ignoring .debug_names."),
5511 filename, pulongest (index_num));
5512 return false;
5513 }
5514 mapped_debug_names::index_val &indexval = insertpair.first->second;
5515 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5516 addr += bytes_read;
5517
5518 for (;;)
5519 {
5520 mapped_debug_names::index_val::attr attr;
5521 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5522 addr += bytes_read;
5523 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 if (attr.form == DW_FORM_implicit_const)
5526 {
5527 attr.implicit_const = read_signed_leb128 (abfd, addr,
5528 &bytes_read);
5529 addr += bytes_read;
5530 }
5531 if (attr.dw_idx == 0 && attr.form == 0)
5532 break;
5533 indexval.attr_vec.push_back (std::move (attr));
5534 }
5535 }
5536 if (addr != abbrev_table_start + abbrev_table_size)
5537 {
5538 warning (_("Section .debug_names in %s has abbreviation_table "
5539 "of size %zu vs. written as %u, ignoring .debug_names."),
5540 filename, addr - abbrev_table_start, abbrev_table_size);
5541 return false;
5542 }
5543 map.entry_pool = addr;
5544
5545 return true;
5546 }
5547
5548 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5549 list. */
5550
5551 static void
5552 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5553 const mapped_debug_names &map,
5554 dwarf2_section_info &section,
5555 bool is_dwz)
5556 {
5557 sect_offset sect_off_prev;
5558 for (uint32_t i = 0; i <= map.cu_count; ++i)
5559 {
5560 sect_offset sect_off_next;
5561 if (i < map.cu_count)
5562 {
5563 sect_off_next
5564 = (sect_offset) (extract_unsigned_integer
5565 (map.cu_table_reordered + i * map.offset_size,
5566 map.offset_size,
5567 map.dwarf5_byte_order));
5568 }
5569 else
5570 sect_off_next = (sect_offset) section.size;
5571 if (i >= 1)
5572 {
5573 const ULONGEST length = sect_off_next - sect_off_prev;
5574 dwarf2_per_cu_data *per_cu
5575 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5576 sect_off_prev, length);
5577 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5578 }
5579 sect_off_prev = sect_off_next;
5580 }
5581 }
5582
5583 /* Read the CU list from the mapped index, and use it to create all
5584 the CU objects for this dwarf2_per_objfile. */
5585
5586 static void
5587 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5588 const mapped_debug_names &map,
5589 const mapped_debug_names &dwz_map)
5590 {
5591 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5592 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5593
5594 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5595 dwarf2_per_objfile->info,
5596 false /* is_dwz */);
5597
5598 if (dwz_map.cu_count == 0)
5599 return;
5600
5601 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5602 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5603 true /* is_dwz */);
5604 }
5605
5606 /* Read .debug_names. If everything went ok, initialize the "quick"
5607 elements of all the CUs and return true. Otherwise, return false. */
5608
5609 static bool
5610 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5611 {
5612 std::unique_ptr<mapped_debug_names> map
5613 (new mapped_debug_names (dwarf2_per_objfile));
5614 mapped_debug_names dwz_map (dwarf2_per_objfile);
5615 struct objfile *objfile = dwarf2_per_objfile->objfile;
5616
5617 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5618 &dwarf2_per_objfile->debug_names,
5619 *map))
5620 return false;
5621
5622 /* Don't use the index if it's empty. */
5623 if (map->name_count == 0)
5624 return false;
5625
5626 /* If there is a .dwz file, read it so we can get its CU list as
5627 well. */
5628 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5629 if (dwz != NULL)
5630 {
5631 if (!read_debug_names_from_section (objfile,
5632 bfd_get_filename (dwz->dwz_bfd),
5633 &dwz->debug_names, dwz_map))
5634 {
5635 warning (_("could not read '.debug_names' section from %s; skipping"),
5636 bfd_get_filename (dwz->dwz_bfd));
5637 return false;
5638 }
5639 }
5640
5641 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5642
5643 if (map->tu_count != 0)
5644 {
5645 /* We can only handle a single .debug_types when we have an
5646 index. */
5647 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5648 return false;
5649
5650 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5651 dwarf2_per_objfile->types, 0);
5652
5653 create_signatured_type_table_from_debug_names
5654 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5655 }
5656
5657 create_addrmap_from_aranges (dwarf2_per_objfile,
5658 &dwarf2_per_objfile->debug_aranges);
5659
5660 dwarf2_per_objfile->debug_names_table = std::move (map);
5661 dwarf2_per_objfile->using_index = 1;
5662 dwarf2_per_objfile->quick_file_names_table =
5663 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5664
5665 return true;
5666 }
5667
5668 /* Type used to manage iterating over all CUs looking for a symbol for
5669 .debug_names. */
5670
5671 class dw2_debug_names_iterator
5672 {
5673 public:
5674 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5675 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5676 dw2_debug_names_iterator (const mapped_debug_names &map,
5677 bool want_specific_block,
5678 block_enum block_index, domain_enum domain,
5679 const char *name)
5680 : m_map (map), m_want_specific_block (want_specific_block),
5681 m_block_index (block_index), m_domain (domain),
5682 m_addr (find_vec_in_debug_names (map, name))
5683 {}
5684
5685 dw2_debug_names_iterator (const mapped_debug_names &map,
5686 search_domain search, uint32_t namei)
5687 : m_map (map),
5688 m_search (search),
5689 m_addr (find_vec_in_debug_names (map, namei))
5690 {}
5691
5692 /* Return the next matching CU or NULL if there are no more. */
5693 dwarf2_per_cu_data *next ();
5694
5695 private:
5696 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5697 const char *name);
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 uint32_t namei);
5700
5701 /* The internalized form of .debug_names. */
5702 const mapped_debug_names &m_map;
5703
5704 /* If true, only look for symbols that match BLOCK_INDEX. */
5705 const bool m_want_specific_block = false;
5706
5707 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5708 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5709 value. */
5710 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5711
5712 /* The kind of symbol we're looking for. */
5713 const domain_enum m_domain = UNDEF_DOMAIN;
5714 const search_domain m_search = ALL_DOMAIN;
5715
5716 /* The list of CUs from the index entry of the symbol, or NULL if
5717 not found. */
5718 const gdb_byte *m_addr;
5719 };
5720
5721 const char *
5722 mapped_debug_names::namei_to_name (uint32_t namei) const
5723 {
5724 const ULONGEST namei_string_offs
5725 = extract_unsigned_integer ((name_table_string_offs_reordered
5726 + namei * offset_size),
5727 offset_size,
5728 dwarf5_byte_order);
5729 return read_indirect_string_at_offset
5730 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5731 }
5732
5733 /* Find a slot in .debug_names for the object named NAME. If NAME is
5734 found, return pointer to its pool data. If NAME cannot be found,
5735 return NULL. */
5736
5737 const gdb_byte *
5738 dw2_debug_names_iterator::find_vec_in_debug_names
5739 (const mapped_debug_names &map, const char *name)
5740 {
5741 int (*cmp) (const char *, const char *);
5742
5743 if (current_language->la_language == language_cplus
5744 || current_language->la_language == language_fortran
5745 || current_language->la_language == language_d)
5746 {
5747 /* NAME is already canonical. Drop any qualifiers as
5748 .debug_names does not contain any. */
5749
5750 if (strchr (name, '(') != NULL)
5751 {
5752 gdb::unique_xmalloc_ptr<char> without_params
5753 = cp_remove_params (name);
5754
5755 if (without_params != NULL)
5756 {
5757 name = without_params.get();
5758 }
5759 }
5760 }
5761
5762 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5763
5764 const uint32_t full_hash = dwarf5_djb_hash (name);
5765 uint32_t namei
5766 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5767 (map.bucket_table_reordered
5768 + (full_hash % map.bucket_count)), 4,
5769 map.dwarf5_byte_order);
5770 if (namei == 0)
5771 return NULL;
5772 --namei;
5773 if (namei >= map.name_count)
5774 {
5775 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5776 "[in module %s]"),
5777 namei, map.name_count,
5778 objfile_name (map.dwarf2_per_objfile->objfile));
5779 return NULL;
5780 }
5781
5782 for (;;)
5783 {
5784 const uint32_t namei_full_hash
5785 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5786 (map.hash_table_reordered + namei), 4,
5787 map.dwarf5_byte_order);
5788 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5789 return NULL;
5790
5791 if (full_hash == namei_full_hash)
5792 {
5793 const char *const namei_string = map.namei_to_name (namei);
5794
5795 #if 0 /* An expensive sanity check. */
5796 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5797 {
5798 complaint (_("Wrong .debug_names hash for string at index %u "
5799 "[in module %s]"),
5800 namei, objfile_name (dwarf2_per_objfile->objfile));
5801 return NULL;
5802 }
5803 #endif
5804
5805 if (cmp (namei_string, name) == 0)
5806 {
5807 const ULONGEST namei_entry_offs
5808 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5809 + namei * map.offset_size),
5810 map.offset_size, map.dwarf5_byte_order);
5811 return map.entry_pool + namei_entry_offs;
5812 }
5813 }
5814
5815 ++namei;
5816 if (namei >= map.name_count)
5817 return NULL;
5818 }
5819 }
5820
5821 const gdb_byte *
5822 dw2_debug_names_iterator::find_vec_in_debug_names
5823 (const mapped_debug_names &map, uint32_t namei)
5824 {
5825 if (namei >= map.name_count)
5826 {
5827 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5828 "[in module %s]"),
5829 namei, map.name_count,
5830 objfile_name (map.dwarf2_per_objfile->objfile));
5831 return NULL;
5832 }
5833
5834 const ULONGEST namei_entry_offs
5835 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5836 + namei * map.offset_size),
5837 map.offset_size, map.dwarf5_byte_order);
5838 return map.entry_pool + namei_entry_offs;
5839 }
5840
5841 /* See dw2_debug_names_iterator. */
5842
5843 dwarf2_per_cu_data *
5844 dw2_debug_names_iterator::next ()
5845 {
5846 if (m_addr == NULL)
5847 return NULL;
5848
5849 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5850 struct objfile *objfile = dwarf2_per_objfile->objfile;
5851 bfd *const abfd = objfile->obfd;
5852
5853 again:
5854
5855 unsigned int bytes_read;
5856 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5857 m_addr += bytes_read;
5858 if (abbrev == 0)
5859 return NULL;
5860
5861 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5862 if (indexval_it == m_map.abbrev_map.cend ())
5863 {
5864 complaint (_("Wrong .debug_names undefined abbrev code %s "
5865 "[in module %s]"),
5866 pulongest (abbrev), objfile_name (objfile));
5867 return NULL;
5868 }
5869 const mapped_debug_names::index_val &indexval = indexval_it->second;
5870 bool have_is_static = false;
5871 bool is_static;
5872 dwarf2_per_cu_data *per_cu = NULL;
5873 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5874 {
5875 ULONGEST ull;
5876 switch (attr.form)
5877 {
5878 case DW_FORM_implicit_const:
5879 ull = attr.implicit_const;
5880 break;
5881 case DW_FORM_flag_present:
5882 ull = 1;
5883 break;
5884 case DW_FORM_udata:
5885 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5887 break;
5888 default:
5889 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5890 dwarf_form_name (attr.form),
5891 objfile_name (objfile));
5892 return NULL;
5893 }
5894 switch (attr.dw_idx)
5895 {
5896 case DW_IDX_compile_unit:
5897 /* Don't crash on bad data. */
5898 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5899 {
5900 complaint (_(".debug_names entry has bad CU index %s"
5901 " [in module %s]"),
5902 pulongest (ull),
5903 objfile_name (dwarf2_per_objfile->objfile));
5904 continue;
5905 }
5906 per_cu = dwarf2_per_objfile->get_cutu (ull);
5907 break;
5908 case DW_IDX_type_unit:
5909 /* Don't crash on bad data. */
5910 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5911 {
5912 complaint (_(".debug_names entry has bad TU index %s"
5913 " [in module %s]"),
5914 pulongest (ull),
5915 objfile_name (dwarf2_per_objfile->objfile));
5916 continue;
5917 }
5918 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5919 break;
5920 case DW_IDX_GNU_internal:
5921 if (!m_map.augmentation_is_gdb)
5922 break;
5923 have_is_static = true;
5924 is_static = true;
5925 break;
5926 case DW_IDX_GNU_external:
5927 if (!m_map.augmentation_is_gdb)
5928 break;
5929 have_is_static = true;
5930 is_static = false;
5931 break;
5932 }
5933 }
5934
5935 /* Skip if already read in. */
5936 if (per_cu->v.quick->compunit_symtab)
5937 goto again;
5938
5939 /* Check static vs global. */
5940 if (have_is_static)
5941 {
5942 const bool want_static = m_block_index != GLOBAL_BLOCK;
5943 if (m_want_specific_block && want_static != is_static)
5944 goto again;
5945 }
5946
5947 /* Match dw2_symtab_iter_next, symbol_kind
5948 and debug_names::psymbol_tag. */
5949 switch (m_domain)
5950 {
5951 case VAR_DOMAIN:
5952 switch (indexval.dwarf_tag)
5953 {
5954 case DW_TAG_variable:
5955 case DW_TAG_subprogram:
5956 /* Some types are also in VAR_DOMAIN. */
5957 case DW_TAG_typedef:
5958 case DW_TAG_structure_type:
5959 break;
5960 default:
5961 goto again;
5962 }
5963 break;
5964 case STRUCT_DOMAIN:
5965 switch (indexval.dwarf_tag)
5966 {
5967 case DW_TAG_typedef:
5968 case DW_TAG_structure_type:
5969 break;
5970 default:
5971 goto again;
5972 }
5973 break;
5974 case LABEL_DOMAIN:
5975 switch (indexval.dwarf_tag)
5976 {
5977 case 0:
5978 case DW_TAG_variable:
5979 break;
5980 default:
5981 goto again;
5982 }
5983 break;
5984 default:
5985 break;
5986 }
5987
5988 /* Match dw2_expand_symtabs_matching, symbol_kind and
5989 debug_names::psymbol_tag. */
5990 switch (m_search)
5991 {
5992 case VARIABLES_DOMAIN:
5993 switch (indexval.dwarf_tag)
5994 {
5995 case DW_TAG_variable:
5996 break;
5997 default:
5998 goto again;
5999 }
6000 break;
6001 case FUNCTIONS_DOMAIN:
6002 switch (indexval.dwarf_tag)
6003 {
6004 case DW_TAG_subprogram:
6005 break;
6006 default:
6007 goto again;
6008 }
6009 break;
6010 case TYPES_DOMAIN:
6011 switch (indexval.dwarf_tag)
6012 {
6013 case DW_TAG_typedef:
6014 case DW_TAG_structure_type:
6015 break;
6016 default:
6017 goto again;
6018 }
6019 break;
6020 default:
6021 break;
6022 }
6023
6024 return per_cu;
6025 }
6026
6027 static struct compunit_symtab *
6028 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6029 const char *name, domain_enum domain)
6030 {
6031 const block_enum block_index = static_cast<block_enum> (block_index_int);
6032 struct dwarf2_per_objfile *dwarf2_per_objfile
6033 = get_dwarf2_per_objfile (objfile);
6034
6035 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6036 if (!mapp)
6037 {
6038 /* index is NULL if OBJF_READNOW. */
6039 return NULL;
6040 }
6041 const auto &map = *mapp;
6042
6043 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6044 block_index, domain, name);
6045
6046 struct compunit_symtab *stab_best = NULL;
6047 struct dwarf2_per_cu_data *per_cu;
6048 while ((per_cu = iter.next ()) != NULL)
6049 {
6050 struct symbol *sym, *with_opaque = NULL;
6051 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6052 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6053 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6054
6055 sym = block_find_symbol (block, name, domain,
6056 block_find_non_opaque_type_preferred,
6057 &with_opaque);
6058
6059 /* Some caution must be observed with overloaded functions and
6060 methods, since the index will not contain any overload
6061 information (but NAME might contain it). */
6062
6063 if (sym != NULL
6064 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6065 return stab;
6066 if (with_opaque != NULL
6067 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6068 stab_best = stab;
6069
6070 /* Keep looking through other CUs. */
6071 }
6072
6073 return stab_best;
6074 }
6075
6076 /* This dumps minimal information about .debug_names. It is called
6077 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6078 uses this to verify that .debug_names has been loaded. */
6079
6080 static void
6081 dw2_debug_names_dump (struct objfile *objfile)
6082 {
6083 struct dwarf2_per_objfile *dwarf2_per_objfile
6084 = get_dwarf2_per_objfile (objfile);
6085
6086 gdb_assert (dwarf2_per_objfile->using_index);
6087 printf_filtered (".debug_names:");
6088 if (dwarf2_per_objfile->debug_names_table)
6089 printf_filtered (" exists\n");
6090 else
6091 printf_filtered (" faked for \"readnow\"\n");
6092 printf_filtered ("\n");
6093 }
6094
6095 static void
6096 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6097 const char *func_name)
6098 {
6099 struct dwarf2_per_objfile *dwarf2_per_objfile
6100 = get_dwarf2_per_objfile (objfile);
6101
6102 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6103 if (dwarf2_per_objfile->debug_names_table)
6104 {
6105 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6106
6107 /* Note: It doesn't matter what we pass for block_index here. */
6108 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6109 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6110
6111 struct dwarf2_per_cu_data *per_cu;
6112 while ((per_cu = iter.next ()) != NULL)
6113 dw2_instantiate_symtab (per_cu, false);
6114 }
6115 }
6116
6117 static void
6118 dw2_debug_names_expand_symtabs_matching
6119 (struct objfile *objfile,
6120 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6121 const lookup_name_info &lookup_name,
6122 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6123 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6124 enum search_domain kind)
6125 {
6126 struct dwarf2_per_objfile *dwarf2_per_objfile
6127 = get_dwarf2_per_objfile (objfile);
6128
6129 /* debug_names_table is NULL if OBJF_READNOW. */
6130 if (!dwarf2_per_objfile->debug_names_table)
6131 return;
6132
6133 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6134
6135 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6136
6137 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6138 symbol_matcher,
6139 kind, [&] (offset_type namei)
6140 {
6141 /* The name was matched, now expand corresponding CUs that were
6142 marked. */
6143 dw2_debug_names_iterator iter (map, kind, namei);
6144
6145 struct dwarf2_per_cu_data *per_cu;
6146 while ((per_cu = iter.next ()) != NULL)
6147 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6148 expansion_notify);
6149 });
6150 }
6151
6152 const struct quick_symbol_functions dwarf2_debug_names_functions =
6153 {
6154 dw2_has_symbols,
6155 dw2_find_last_source_symtab,
6156 dw2_forget_cached_source_info,
6157 dw2_map_symtabs_matching_filename,
6158 dw2_debug_names_lookup_symbol,
6159 dw2_print_stats,
6160 dw2_debug_names_dump,
6161 dw2_debug_names_expand_symtabs_for_function,
6162 dw2_expand_all_symtabs,
6163 dw2_expand_symtabs_with_fullname,
6164 dw2_map_matching_symbols,
6165 dw2_debug_names_expand_symtabs_matching,
6166 dw2_find_pc_sect_compunit_symtab,
6167 NULL,
6168 dw2_map_symbol_filenames
6169 };
6170
6171 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6172 to either a dwarf2_per_objfile or dwz_file object. */
6173
6174 template <typename T>
6175 static gdb::array_view<const gdb_byte>
6176 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6177 {
6178 dwarf2_section_info *section = &section_owner->gdb_index;
6179
6180 if (dwarf2_section_empty_p (section))
6181 return {};
6182
6183 /* Older elfutils strip versions could keep the section in the main
6184 executable while splitting it for the separate debug info file. */
6185 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6186 return {};
6187
6188 dwarf2_read_section (obj, section);
6189
6190 return {section->buffer, section->size};
6191 }
6192
6193 /* Lookup the index cache for the contents of the index associated to
6194 DWARF2_OBJ. */
6195
6196 static gdb::array_view<const gdb_byte>
6197 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6198 {
6199 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6200 if (build_id == nullptr)
6201 return {};
6202
6203 return global_index_cache.lookup_gdb_index (build_id,
6204 &dwarf2_obj->index_cache_res);
6205 }
6206
6207 /* Same as the above, but for DWZ. */
6208
6209 static gdb::array_view<const gdb_byte>
6210 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6211 {
6212 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6213 if (build_id == nullptr)
6214 return {};
6215
6216 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6217 }
6218
6219 /* See symfile.h. */
6220
6221 bool
6222 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6223 {
6224 struct dwarf2_per_objfile *dwarf2_per_objfile
6225 = get_dwarf2_per_objfile (objfile);
6226
6227 /* If we're about to read full symbols, don't bother with the
6228 indices. In this case we also don't care if some other debug
6229 format is making psymtabs, because they are all about to be
6230 expanded anyway. */
6231 if ((objfile->flags & OBJF_READNOW))
6232 {
6233 dwarf2_per_objfile->using_index = 1;
6234 create_all_comp_units (dwarf2_per_objfile);
6235 create_all_type_units (dwarf2_per_objfile);
6236 dwarf2_per_objfile->quick_file_names_table
6237 = create_quick_file_names_table
6238 (dwarf2_per_objfile->all_comp_units.size ());
6239
6240 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6241 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6242 {
6243 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6244
6245 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6246 struct dwarf2_per_cu_quick_data);
6247 }
6248
6249 /* Return 1 so that gdb sees the "quick" functions. However,
6250 these functions will be no-ops because we will have expanded
6251 all symtabs. */
6252 *index_kind = dw_index_kind::GDB_INDEX;
6253 return true;
6254 }
6255
6256 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6257 {
6258 *index_kind = dw_index_kind::DEBUG_NAMES;
6259 return true;
6260 }
6261
6262 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6263 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6264 get_gdb_index_contents_from_section<dwz_file>))
6265 {
6266 *index_kind = dw_index_kind::GDB_INDEX;
6267 return true;
6268 }
6269
6270 /* ... otherwise, try to find the index in the index cache. */
6271 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6272 get_gdb_index_contents_from_cache,
6273 get_gdb_index_contents_from_cache_dwz))
6274 {
6275 global_index_cache.hit ();
6276 *index_kind = dw_index_kind::GDB_INDEX;
6277 return true;
6278 }
6279
6280 global_index_cache.miss ();
6281 return false;
6282 }
6283
6284 \f
6285
6286 /* Build a partial symbol table. */
6287
6288 void
6289 dwarf2_build_psymtabs (struct objfile *objfile)
6290 {
6291 struct dwarf2_per_objfile *dwarf2_per_objfile
6292 = get_dwarf2_per_objfile (objfile);
6293
6294 if (objfile->global_psymbols.capacity () == 0
6295 && objfile->static_psymbols.capacity () == 0)
6296 init_psymbol_list (objfile, 1024);
6297
6298 TRY
6299 {
6300 /* This isn't really ideal: all the data we allocate on the
6301 objfile's obstack is still uselessly kept around. However,
6302 freeing it seems unsafe. */
6303 psymtab_discarder psymtabs (objfile);
6304 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6305 psymtabs.keep ();
6306
6307 /* (maybe) store an index in the cache. */
6308 global_index_cache.store (dwarf2_per_objfile);
6309 }
6310 CATCH (except, RETURN_MASK_ERROR)
6311 {
6312 exception_print (gdb_stderr, except);
6313 }
6314 END_CATCH
6315 }
6316
6317 /* Return the total length of the CU described by HEADER. */
6318
6319 static unsigned int
6320 get_cu_length (const struct comp_unit_head *header)
6321 {
6322 return header->initial_length_size + header->length;
6323 }
6324
6325 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6326
6327 static inline bool
6328 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6329 {
6330 sect_offset bottom = cu_header->sect_off;
6331 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6332
6333 return sect_off >= bottom && sect_off < top;
6334 }
6335
6336 /* Find the base address of the compilation unit for range lists and
6337 location lists. It will normally be specified by DW_AT_low_pc.
6338 In DWARF-3 draft 4, the base address could be overridden by
6339 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6340 compilation units with discontinuous ranges. */
6341
6342 static void
6343 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6344 {
6345 struct attribute *attr;
6346
6347 cu->base_known = 0;
6348 cu->base_address = 0;
6349
6350 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6351 if (attr)
6352 {
6353 cu->base_address = attr_value_as_address (attr);
6354 cu->base_known = 1;
6355 }
6356 else
6357 {
6358 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6359 if (attr)
6360 {
6361 cu->base_address = attr_value_as_address (attr);
6362 cu->base_known = 1;
6363 }
6364 }
6365 }
6366
6367 /* Read in the comp unit header information from the debug_info at info_ptr.
6368 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6369 NOTE: This leaves members offset, first_die_offset to be filled in
6370 by the caller. */
6371
6372 static const gdb_byte *
6373 read_comp_unit_head (struct comp_unit_head *cu_header,
6374 const gdb_byte *info_ptr,
6375 struct dwarf2_section_info *section,
6376 rcuh_kind section_kind)
6377 {
6378 int signed_addr;
6379 unsigned int bytes_read;
6380 const char *filename = get_section_file_name (section);
6381 bfd *abfd = get_section_bfd_owner (section);
6382
6383 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6384 cu_header->initial_length_size = bytes_read;
6385 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6386 info_ptr += bytes_read;
6387 cu_header->version = read_2_bytes (abfd, info_ptr);
6388 if (cu_header->version < 2 || cu_header->version > 5)
6389 error (_("Dwarf Error: wrong version in compilation unit header "
6390 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6391 cu_header->version, filename);
6392 info_ptr += 2;
6393 if (cu_header->version < 5)
6394 switch (section_kind)
6395 {
6396 case rcuh_kind::COMPILE:
6397 cu_header->unit_type = DW_UT_compile;
6398 break;
6399 case rcuh_kind::TYPE:
6400 cu_header->unit_type = DW_UT_type;
6401 break;
6402 default:
6403 internal_error (__FILE__, __LINE__,
6404 _("read_comp_unit_head: invalid section_kind"));
6405 }
6406 else
6407 {
6408 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6409 (read_1_byte (abfd, info_ptr));
6410 info_ptr += 1;
6411 switch (cu_header->unit_type)
6412 {
6413 case DW_UT_compile:
6414 if (section_kind != rcuh_kind::COMPILE)
6415 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6416 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6417 filename);
6418 break;
6419 case DW_UT_type:
6420 section_kind = rcuh_kind::TYPE;
6421 break;
6422 default:
6423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6424 "(is %d, should be %d or %d) [in module %s]"),
6425 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6426 }
6427
6428 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6429 info_ptr += 1;
6430 }
6431 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6432 cu_header,
6433 &bytes_read);
6434 info_ptr += bytes_read;
6435 if (cu_header->version < 5)
6436 {
6437 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6438 info_ptr += 1;
6439 }
6440 signed_addr = bfd_get_sign_extend_vma (abfd);
6441 if (signed_addr < 0)
6442 internal_error (__FILE__, __LINE__,
6443 _("read_comp_unit_head: dwarf from non elf file"));
6444 cu_header->signed_addr_p = signed_addr;
6445
6446 if (section_kind == rcuh_kind::TYPE)
6447 {
6448 LONGEST type_offset;
6449
6450 cu_header->signature = read_8_bytes (abfd, info_ptr);
6451 info_ptr += 8;
6452
6453 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6454 info_ptr += bytes_read;
6455 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6456 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6457 error (_("Dwarf Error: Too big type_offset in compilation unit "
6458 "header (is %s) [in module %s]"), plongest (type_offset),
6459 filename);
6460 }
6461
6462 return info_ptr;
6463 }
6464
6465 /* Helper function that returns the proper abbrev section for
6466 THIS_CU. */
6467
6468 static struct dwarf2_section_info *
6469 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6470 {
6471 struct dwarf2_section_info *abbrev;
6472 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6473
6474 if (this_cu->is_dwz)
6475 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6476 else
6477 abbrev = &dwarf2_per_objfile->abbrev;
6478
6479 return abbrev;
6480 }
6481
6482 /* Subroutine of read_and_check_comp_unit_head and
6483 read_and_check_type_unit_head to simplify them.
6484 Perform various error checking on the header. */
6485
6486 static void
6487 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6488 struct comp_unit_head *header,
6489 struct dwarf2_section_info *section,
6490 struct dwarf2_section_info *abbrev_section)
6491 {
6492 const char *filename = get_section_file_name (section);
6493
6494 if (to_underlying (header->abbrev_sect_off)
6495 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6496 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6497 "(offset %s + 6) [in module %s]"),
6498 sect_offset_str (header->abbrev_sect_off),
6499 sect_offset_str (header->sect_off),
6500 filename);
6501
6502 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6503 avoid potential 32-bit overflow. */
6504 if (((ULONGEST) header->sect_off + get_cu_length (header))
6505 > section->size)
6506 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6507 "(offset %s + 0) [in module %s]"),
6508 header->length, sect_offset_str (header->sect_off),
6509 filename);
6510 }
6511
6512 /* Read in a CU/TU header and perform some basic error checking.
6513 The contents of the header are stored in HEADER.
6514 The result is a pointer to the start of the first DIE. */
6515
6516 static const gdb_byte *
6517 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6518 struct comp_unit_head *header,
6519 struct dwarf2_section_info *section,
6520 struct dwarf2_section_info *abbrev_section,
6521 const gdb_byte *info_ptr,
6522 rcuh_kind section_kind)
6523 {
6524 const gdb_byte *beg_of_comp_unit = info_ptr;
6525
6526 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6527
6528 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6529
6530 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6531
6532 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6533 abbrev_section);
6534
6535 return info_ptr;
6536 }
6537
6538 /* Fetch the abbreviation table offset from a comp or type unit header. */
6539
6540 static sect_offset
6541 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6542 struct dwarf2_section_info *section,
6543 sect_offset sect_off)
6544 {
6545 bfd *abfd = get_section_bfd_owner (section);
6546 const gdb_byte *info_ptr;
6547 unsigned int initial_length_size, offset_size;
6548 uint16_t version;
6549
6550 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6551 info_ptr = section->buffer + to_underlying (sect_off);
6552 read_initial_length (abfd, info_ptr, &initial_length_size);
6553 offset_size = initial_length_size == 4 ? 4 : 8;
6554 info_ptr += initial_length_size;
6555
6556 version = read_2_bytes (abfd, info_ptr);
6557 info_ptr += 2;
6558 if (version >= 5)
6559 {
6560 /* Skip unit type and address size. */
6561 info_ptr += 2;
6562 }
6563
6564 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6565 }
6566
6567 /* Allocate a new partial symtab for file named NAME and mark this new
6568 partial symtab as being an include of PST. */
6569
6570 static void
6571 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6572 struct objfile *objfile)
6573 {
6574 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6575
6576 if (!IS_ABSOLUTE_PATH (subpst->filename))
6577 {
6578 /* It shares objfile->objfile_obstack. */
6579 subpst->dirname = pst->dirname;
6580 }
6581
6582 subpst->dependencies
6583 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6584 subpst->dependencies[0] = pst;
6585 subpst->number_of_dependencies = 1;
6586
6587 subpst->globals_offset = 0;
6588 subpst->n_global_syms = 0;
6589 subpst->statics_offset = 0;
6590 subpst->n_static_syms = 0;
6591 subpst->compunit_symtab = NULL;
6592 subpst->read_symtab = pst->read_symtab;
6593 subpst->readin = 0;
6594
6595 /* No private part is necessary for include psymtabs. This property
6596 can be used to differentiate between such include psymtabs and
6597 the regular ones. */
6598 subpst->read_symtab_private = NULL;
6599 }
6600
6601 /* Read the Line Number Program data and extract the list of files
6602 included by the source file represented by PST. Build an include
6603 partial symtab for each of these included files. */
6604
6605 static void
6606 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6607 struct die_info *die,
6608 struct partial_symtab *pst)
6609 {
6610 line_header_up lh;
6611 struct attribute *attr;
6612
6613 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6614 if (attr)
6615 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6616 if (lh == NULL)
6617 return; /* No linetable, so no includes. */
6618
6619 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6620 that we pass in the raw text_low here; that is ok because we're
6621 only decoding the line table to make include partial symtabs, and
6622 so the addresses aren't really used. */
6623 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6624 pst->raw_text_low (), 1);
6625 }
6626
6627 static hashval_t
6628 hash_signatured_type (const void *item)
6629 {
6630 const struct signatured_type *sig_type
6631 = (const struct signatured_type *) item;
6632
6633 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6634 return sig_type->signature;
6635 }
6636
6637 static int
6638 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6639 {
6640 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6641 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6642
6643 return lhs->signature == rhs->signature;
6644 }
6645
6646 /* Allocate a hash table for signatured types. */
6647
6648 static htab_t
6649 allocate_signatured_type_table (struct objfile *objfile)
6650 {
6651 return htab_create_alloc_ex (41,
6652 hash_signatured_type,
6653 eq_signatured_type,
6654 NULL,
6655 &objfile->objfile_obstack,
6656 hashtab_obstack_allocate,
6657 dummy_obstack_deallocate);
6658 }
6659
6660 /* A helper function to add a signatured type CU to a table. */
6661
6662 static int
6663 add_signatured_type_cu_to_table (void **slot, void *datum)
6664 {
6665 struct signatured_type *sigt = (struct signatured_type *) *slot;
6666 std::vector<signatured_type *> *all_type_units
6667 = (std::vector<signatured_type *> *) datum;
6668
6669 all_type_units->push_back (sigt);
6670
6671 return 1;
6672 }
6673
6674 /* A helper for create_debug_types_hash_table. Read types from SECTION
6675 and fill them into TYPES_HTAB. It will process only type units,
6676 therefore DW_UT_type. */
6677
6678 static void
6679 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6680 struct dwo_file *dwo_file,
6681 dwarf2_section_info *section, htab_t &types_htab,
6682 rcuh_kind section_kind)
6683 {
6684 struct objfile *objfile = dwarf2_per_objfile->objfile;
6685 struct dwarf2_section_info *abbrev_section;
6686 bfd *abfd;
6687 const gdb_byte *info_ptr, *end_ptr;
6688
6689 abbrev_section = (dwo_file != NULL
6690 ? &dwo_file->sections.abbrev
6691 : &dwarf2_per_objfile->abbrev);
6692
6693 if (dwarf_read_debug)
6694 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6695 get_section_name (section),
6696 get_section_file_name (abbrev_section));
6697
6698 dwarf2_read_section (objfile, section);
6699 info_ptr = section->buffer;
6700
6701 if (info_ptr == NULL)
6702 return;
6703
6704 /* We can't set abfd until now because the section may be empty or
6705 not present, in which case the bfd is unknown. */
6706 abfd = get_section_bfd_owner (section);
6707
6708 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6709 because we don't need to read any dies: the signature is in the
6710 header. */
6711
6712 end_ptr = info_ptr + section->size;
6713 while (info_ptr < end_ptr)
6714 {
6715 struct signatured_type *sig_type;
6716 struct dwo_unit *dwo_tu;
6717 void **slot;
6718 const gdb_byte *ptr = info_ptr;
6719 struct comp_unit_head header;
6720 unsigned int length;
6721
6722 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6723
6724 /* Initialize it due to a false compiler warning. */
6725 header.signature = -1;
6726 header.type_cu_offset_in_tu = (cu_offset) -1;
6727
6728 /* We need to read the type's signature in order to build the hash
6729 table, but we don't need anything else just yet. */
6730
6731 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6732 abbrev_section, ptr, section_kind);
6733
6734 length = get_cu_length (&header);
6735
6736 /* Skip dummy type units. */
6737 if (ptr >= info_ptr + length
6738 || peek_abbrev_code (abfd, ptr) == 0
6739 || header.unit_type != DW_UT_type)
6740 {
6741 info_ptr += length;
6742 continue;
6743 }
6744
6745 if (types_htab == NULL)
6746 {
6747 if (dwo_file)
6748 types_htab = allocate_dwo_unit_table (objfile);
6749 else
6750 types_htab = allocate_signatured_type_table (objfile);
6751 }
6752
6753 if (dwo_file)
6754 {
6755 sig_type = NULL;
6756 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6757 struct dwo_unit);
6758 dwo_tu->dwo_file = dwo_file;
6759 dwo_tu->signature = header.signature;
6760 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6761 dwo_tu->section = section;
6762 dwo_tu->sect_off = sect_off;
6763 dwo_tu->length = length;
6764 }
6765 else
6766 {
6767 /* N.B.: type_offset is not usable if this type uses a DWO file.
6768 The real type_offset is in the DWO file. */
6769 dwo_tu = NULL;
6770 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6771 struct signatured_type);
6772 sig_type->signature = header.signature;
6773 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6774 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6775 sig_type->per_cu.is_debug_types = 1;
6776 sig_type->per_cu.section = section;
6777 sig_type->per_cu.sect_off = sect_off;
6778 sig_type->per_cu.length = length;
6779 }
6780
6781 slot = htab_find_slot (types_htab,
6782 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6783 INSERT);
6784 gdb_assert (slot != NULL);
6785 if (*slot != NULL)
6786 {
6787 sect_offset dup_sect_off;
6788
6789 if (dwo_file)
6790 {
6791 const struct dwo_unit *dup_tu
6792 = (const struct dwo_unit *) *slot;
6793
6794 dup_sect_off = dup_tu->sect_off;
6795 }
6796 else
6797 {
6798 const struct signatured_type *dup_tu
6799 = (const struct signatured_type *) *slot;
6800
6801 dup_sect_off = dup_tu->per_cu.sect_off;
6802 }
6803
6804 complaint (_("debug type entry at offset %s is duplicate to"
6805 " the entry at offset %s, signature %s"),
6806 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6807 hex_string (header.signature));
6808 }
6809 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6810
6811 if (dwarf_read_debug > 1)
6812 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6813 sect_offset_str (sect_off),
6814 hex_string (header.signature));
6815
6816 info_ptr += length;
6817 }
6818 }
6819
6820 /* Create the hash table of all entries in the .debug_types
6821 (or .debug_types.dwo) section(s).
6822 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6823 otherwise it is NULL.
6824
6825 The result is a pointer to the hash table or NULL if there are no types.
6826
6827 Note: This function processes DWO files only, not DWP files. */
6828
6829 static void
6830 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6831 struct dwo_file *dwo_file,
6832 VEC (dwarf2_section_info_def) *types,
6833 htab_t &types_htab)
6834 {
6835 int ix;
6836 struct dwarf2_section_info *section;
6837
6838 if (VEC_empty (dwarf2_section_info_def, types))
6839 return;
6840
6841 for (ix = 0;
6842 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6843 ++ix)
6844 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6845 types_htab, rcuh_kind::TYPE);
6846 }
6847
6848 /* Create the hash table of all entries in the .debug_types section,
6849 and initialize all_type_units.
6850 The result is zero if there is an error (e.g. missing .debug_types section),
6851 otherwise non-zero. */
6852
6853 static int
6854 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6855 {
6856 htab_t types_htab = NULL;
6857
6858 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6859 &dwarf2_per_objfile->info, types_htab,
6860 rcuh_kind::COMPILE);
6861 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6862 dwarf2_per_objfile->types, types_htab);
6863 if (types_htab == NULL)
6864 {
6865 dwarf2_per_objfile->signatured_types = NULL;
6866 return 0;
6867 }
6868
6869 dwarf2_per_objfile->signatured_types = types_htab;
6870
6871 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6872 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6873
6874 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6875 &dwarf2_per_objfile->all_type_units);
6876
6877 return 1;
6878 }
6879
6880 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6881 If SLOT is non-NULL, it is the entry to use in the hash table.
6882 Otherwise we find one. */
6883
6884 static struct signatured_type *
6885 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6886 void **slot)
6887 {
6888 struct objfile *objfile = dwarf2_per_objfile->objfile;
6889
6890 if (dwarf2_per_objfile->all_type_units.size ()
6891 == dwarf2_per_objfile->all_type_units.capacity ())
6892 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6893
6894 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6895 struct signatured_type);
6896
6897 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6898 sig_type->signature = sig;
6899 sig_type->per_cu.is_debug_types = 1;
6900 if (dwarf2_per_objfile->using_index)
6901 {
6902 sig_type->per_cu.v.quick =
6903 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6904 struct dwarf2_per_cu_quick_data);
6905 }
6906
6907 if (slot == NULL)
6908 {
6909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6910 sig_type, INSERT);
6911 }
6912 gdb_assert (*slot == NULL);
6913 *slot = sig_type;
6914 /* The rest of sig_type must be filled in by the caller. */
6915 return sig_type;
6916 }
6917
6918 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6919 Fill in SIG_ENTRY with DWO_ENTRY. */
6920
6921 static void
6922 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6923 struct signatured_type *sig_entry,
6924 struct dwo_unit *dwo_entry)
6925 {
6926 /* Make sure we're not clobbering something we don't expect to. */
6927 gdb_assert (! sig_entry->per_cu.queued);
6928 gdb_assert (sig_entry->per_cu.cu == NULL);
6929 if (dwarf2_per_objfile->using_index)
6930 {
6931 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6932 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6933 }
6934 else
6935 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6936 gdb_assert (sig_entry->signature == dwo_entry->signature);
6937 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6938 gdb_assert (sig_entry->type_unit_group == NULL);
6939 gdb_assert (sig_entry->dwo_unit == NULL);
6940
6941 sig_entry->per_cu.section = dwo_entry->section;
6942 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6943 sig_entry->per_cu.length = dwo_entry->length;
6944 sig_entry->per_cu.reading_dwo_directly = 1;
6945 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6946 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6947 sig_entry->dwo_unit = dwo_entry;
6948 }
6949
6950 /* Subroutine of lookup_signatured_type.
6951 If we haven't read the TU yet, create the signatured_type data structure
6952 for a TU to be read in directly from a DWO file, bypassing the stub.
6953 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6954 using .gdb_index, then when reading a CU we want to stay in the DWO file
6955 containing that CU. Otherwise we could end up reading several other DWO
6956 files (due to comdat folding) to process the transitive closure of all the
6957 mentioned TUs, and that can be slow. The current DWO file will have every
6958 type signature that it needs.
6959 We only do this for .gdb_index because in the psymtab case we already have
6960 to read all the DWOs to build the type unit groups. */
6961
6962 static struct signatured_type *
6963 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6964 {
6965 struct dwarf2_per_objfile *dwarf2_per_objfile
6966 = cu->per_cu->dwarf2_per_objfile;
6967 struct objfile *objfile = dwarf2_per_objfile->objfile;
6968 struct dwo_file *dwo_file;
6969 struct dwo_unit find_dwo_entry, *dwo_entry;
6970 struct signatured_type find_sig_entry, *sig_entry;
6971 void **slot;
6972
6973 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6974
6975 /* If TU skeletons have been removed then we may not have read in any
6976 TUs yet. */
6977 if (dwarf2_per_objfile->signatured_types == NULL)
6978 {
6979 dwarf2_per_objfile->signatured_types
6980 = allocate_signatured_type_table (objfile);
6981 }
6982
6983 /* We only ever need to read in one copy of a signatured type.
6984 Use the global signatured_types array to do our own comdat-folding
6985 of types. If this is the first time we're reading this TU, and
6986 the TU has an entry in .gdb_index, replace the recorded data from
6987 .gdb_index with this TU. */
6988
6989 find_sig_entry.signature = sig;
6990 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6991 &find_sig_entry, INSERT);
6992 sig_entry = (struct signatured_type *) *slot;
6993
6994 /* We can get here with the TU already read, *or* in the process of being
6995 read. Don't reassign the global entry to point to this DWO if that's
6996 the case. Also note that if the TU is already being read, it may not
6997 have come from a DWO, the program may be a mix of Fission-compiled
6998 code and non-Fission-compiled code. */
6999
7000 /* Have we already tried to read this TU?
7001 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7002 needn't exist in the global table yet). */
7003 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7004 return sig_entry;
7005
7006 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7007 dwo_unit of the TU itself. */
7008 dwo_file = cu->dwo_unit->dwo_file;
7009
7010 /* Ok, this is the first time we're reading this TU. */
7011 if (dwo_file->tus == NULL)
7012 return NULL;
7013 find_dwo_entry.signature = sig;
7014 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7015 if (dwo_entry == NULL)
7016 return NULL;
7017
7018 /* If the global table doesn't have an entry for this TU, add one. */
7019 if (sig_entry == NULL)
7020 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7021
7022 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7023 sig_entry->per_cu.tu_read = 1;
7024 return sig_entry;
7025 }
7026
7027 /* Subroutine of lookup_signatured_type.
7028 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7029 then try the DWP file. If the TU stub (skeleton) has been removed then
7030 it won't be in .gdb_index. */
7031
7032 static struct signatured_type *
7033 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7034 {
7035 struct dwarf2_per_objfile *dwarf2_per_objfile
7036 = cu->per_cu->dwarf2_per_objfile;
7037 struct objfile *objfile = dwarf2_per_objfile->objfile;
7038 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7039 struct dwo_unit *dwo_entry;
7040 struct signatured_type find_sig_entry, *sig_entry;
7041 void **slot;
7042
7043 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7044 gdb_assert (dwp_file != NULL);
7045
7046 /* If TU skeletons have been removed then we may not have read in any
7047 TUs yet. */
7048 if (dwarf2_per_objfile->signatured_types == NULL)
7049 {
7050 dwarf2_per_objfile->signatured_types
7051 = allocate_signatured_type_table (objfile);
7052 }
7053
7054 find_sig_entry.signature = sig;
7055 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7056 &find_sig_entry, INSERT);
7057 sig_entry = (struct signatured_type *) *slot;
7058
7059 /* Have we already tried to read this TU?
7060 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7061 needn't exist in the global table yet). */
7062 if (sig_entry != NULL)
7063 return sig_entry;
7064
7065 if (dwp_file->tus == NULL)
7066 return NULL;
7067 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7068 sig, 1 /* is_debug_types */);
7069 if (dwo_entry == NULL)
7070 return NULL;
7071
7072 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7073 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7074
7075 return sig_entry;
7076 }
7077
7078 /* Lookup a signature based type for DW_FORM_ref_sig8.
7079 Returns NULL if signature SIG is not present in the table.
7080 It is up to the caller to complain about this. */
7081
7082 static struct signatured_type *
7083 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7084 {
7085 struct dwarf2_per_objfile *dwarf2_per_objfile
7086 = cu->per_cu->dwarf2_per_objfile;
7087
7088 if (cu->dwo_unit
7089 && dwarf2_per_objfile->using_index)
7090 {
7091 /* We're in a DWO/DWP file, and we're using .gdb_index.
7092 These cases require special processing. */
7093 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7094 return lookup_dwo_signatured_type (cu, sig);
7095 else
7096 return lookup_dwp_signatured_type (cu, sig);
7097 }
7098 else
7099 {
7100 struct signatured_type find_entry, *entry;
7101
7102 if (dwarf2_per_objfile->signatured_types == NULL)
7103 return NULL;
7104 find_entry.signature = sig;
7105 entry = ((struct signatured_type *)
7106 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7107 return entry;
7108 }
7109 }
7110 \f
7111 /* Low level DIE reading support. */
7112
7113 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7114
7115 static void
7116 init_cu_die_reader (struct die_reader_specs *reader,
7117 struct dwarf2_cu *cu,
7118 struct dwarf2_section_info *section,
7119 struct dwo_file *dwo_file,
7120 struct abbrev_table *abbrev_table)
7121 {
7122 gdb_assert (section->readin && section->buffer != NULL);
7123 reader->abfd = get_section_bfd_owner (section);
7124 reader->cu = cu;
7125 reader->dwo_file = dwo_file;
7126 reader->die_section = section;
7127 reader->buffer = section->buffer;
7128 reader->buffer_end = section->buffer + section->size;
7129 reader->comp_dir = NULL;
7130 reader->abbrev_table = abbrev_table;
7131 }
7132
7133 /* Subroutine of init_cutu_and_read_dies to simplify it.
7134 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7135 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7136 already.
7137
7138 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7139 from it to the DIE in the DWO. If NULL we are skipping the stub.
7140 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7141 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7142 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7143 STUB_COMP_DIR may be non-NULL.
7144 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7145 are filled in with the info of the DIE from the DWO file.
7146 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7147 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7148 kept around for at least as long as *RESULT_READER.
7149
7150 The result is non-zero if a valid (non-dummy) DIE was found. */
7151
7152 static int
7153 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7154 struct dwo_unit *dwo_unit,
7155 struct die_info *stub_comp_unit_die,
7156 const char *stub_comp_dir,
7157 struct die_reader_specs *result_reader,
7158 const gdb_byte **result_info_ptr,
7159 struct die_info **result_comp_unit_die,
7160 int *result_has_children,
7161 abbrev_table_up *result_dwo_abbrev_table)
7162 {
7163 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7164 struct objfile *objfile = dwarf2_per_objfile->objfile;
7165 struct dwarf2_cu *cu = this_cu->cu;
7166 bfd *abfd;
7167 const gdb_byte *begin_info_ptr, *info_ptr;
7168 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7169 int i,num_extra_attrs;
7170 struct dwarf2_section_info *dwo_abbrev_section;
7171 struct attribute *attr;
7172 struct die_info *comp_unit_die;
7173
7174 /* At most one of these may be provided. */
7175 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7176
7177 /* These attributes aren't processed until later:
7178 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7179 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7180 referenced later. However, these attributes are found in the stub
7181 which we won't have later. In order to not impose this complication
7182 on the rest of the code, we read them here and copy them to the
7183 DWO CU/TU die. */
7184
7185 stmt_list = NULL;
7186 low_pc = NULL;
7187 high_pc = NULL;
7188 ranges = NULL;
7189 comp_dir = NULL;
7190
7191 if (stub_comp_unit_die != NULL)
7192 {
7193 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7194 DWO file. */
7195 if (! this_cu->is_debug_types)
7196 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7197 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7198 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7199 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7200 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7201
7202 /* There should be a DW_AT_addr_base attribute here (if needed).
7203 We need the value before we can process DW_FORM_GNU_addr_index. */
7204 cu->addr_base = 0;
7205 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7206 if (attr)
7207 cu->addr_base = DW_UNSND (attr);
7208
7209 /* There should be a DW_AT_ranges_base attribute here (if needed).
7210 We need the value before we can process DW_AT_ranges. */
7211 cu->ranges_base = 0;
7212 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7213 if (attr)
7214 cu->ranges_base = DW_UNSND (attr);
7215 }
7216 else if (stub_comp_dir != NULL)
7217 {
7218 /* Reconstruct the comp_dir attribute to simplify the code below. */
7219 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7220 comp_dir->name = DW_AT_comp_dir;
7221 comp_dir->form = DW_FORM_string;
7222 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7223 DW_STRING (comp_dir) = stub_comp_dir;
7224 }
7225
7226 /* Set up for reading the DWO CU/TU. */
7227 cu->dwo_unit = dwo_unit;
7228 dwarf2_section_info *section = dwo_unit->section;
7229 dwarf2_read_section (objfile, section);
7230 abfd = get_section_bfd_owner (section);
7231 begin_info_ptr = info_ptr = (section->buffer
7232 + to_underlying (dwo_unit->sect_off));
7233 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7234
7235 if (this_cu->is_debug_types)
7236 {
7237 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7238
7239 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7240 &cu->header, section,
7241 dwo_abbrev_section,
7242 info_ptr, rcuh_kind::TYPE);
7243 /* This is not an assert because it can be caused by bad debug info. */
7244 if (sig_type->signature != cu->header.signature)
7245 {
7246 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7247 " TU at offset %s [in module %s]"),
7248 hex_string (sig_type->signature),
7249 hex_string (cu->header.signature),
7250 sect_offset_str (dwo_unit->sect_off),
7251 bfd_get_filename (abfd));
7252 }
7253 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7254 /* For DWOs coming from DWP files, we don't know the CU length
7255 nor the type's offset in the TU until now. */
7256 dwo_unit->length = get_cu_length (&cu->header);
7257 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7258
7259 /* Establish the type offset that can be used to lookup the type.
7260 For DWO files, we don't know it until now. */
7261 sig_type->type_offset_in_section
7262 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7263 }
7264 else
7265 {
7266 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7267 &cu->header, section,
7268 dwo_abbrev_section,
7269 info_ptr, rcuh_kind::COMPILE);
7270 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7271 /* For DWOs coming from DWP files, we don't know the CU length
7272 until now. */
7273 dwo_unit->length = get_cu_length (&cu->header);
7274 }
7275
7276 *result_dwo_abbrev_table
7277 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7278 cu->header.abbrev_sect_off);
7279 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7280 result_dwo_abbrev_table->get ());
7281
7282 /* Read in the die, but leave space to copy over the attributes
7283 from the stub. This has the benefit of simplifying the rest of
7284 the code - all the work to maintain the illusion of a single
7285 DW_TAG_{compile,type}_unit DIE is done here. */
7286 num_extra_attrs = ((stmt_list != NULL)
7287 + (low_pc != NULL)
7288 + (high_pc != NULL)
7289 + (ranges != NULL)
7290 + (comp_dir != NULL));
7291 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7292 result_has_children, num_extra_attrs);
7293
7294 /* Copy over the attributes from the stub to the DIE we just read in. */
7295 comp_unit_die = *result_comp_unit_die;
7296 i = comp_unit_die->num_attrs;
7297 if (stmt_list != NULL)
7298 comp_unit_die->attrs[i++] = *stmt_list;
7299 if (low_pc != NULL)
7300 comp_unit_die->attrs[i++] = *low_pc;
7301 if (high_pc != NULL)
7302 comp_unit_die->attrs[i++] = *high_pc;
7303 if (ranges != NULL)
7304 comp_unit_die->attrs[i++] = *ranges;
7305 if (comp_dir != NULL)
7306 comp_unit_die->attrs[i++] = *comp_dir;
7307 comp_unit_die->num_attrs += num_extra_attrs;
7308
7309 if (dwarf_die_debug)
7310 {
7311 fprintf_unfiltered (gdb_stdlog,
7312 "Read die from %s@0x%x of %s:\n",
7313 get_section_name (section),
7314 (unsigned) (begin_info_ptr - section->buffer),
7315 bfd_get_filename (abfd));
7316 dump_die (comp_unit_die, dwarf_die_debug);
7317 }
7318
7319 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7320 TUs by skipping the stub and going directly to the entry in the DWO file.
7321 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7322 to get it via circuitous means. Blech. */
7323 if (comp_dir != NULL)
7324 result_reader->comp_dir = DW_STRING (comp_dir);
7325
7326 /* Skip dummy compilation units. */
7327 if (info_ptr >= begin_info_ptr + dwo_unit->length
7328 || peek_abbrev_code (abfd, info_ptr) == 0)
7329 return 0;
7330
7331 *result_info_ptr = info_ptr;
7332 return 1;
7333 }
7334
7335 /* Subroutine of init_cutu_and_read_dies to simplify it.
7336 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7337 Returns NULL if the specified DWO unit cannot be found. */
7338
7339 static struct dwo_unit *
7340 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7341 struct die_info *comp_unit_die)
7342 {
7343 struct dwarf2_cu *cu = this_cu->cu;
7344 ULONGEST signature;
7345 struct dwo_unit *dwo_unit;
7346 const char *comp_dir, *dwo_name;
7347
7348 gdb_assert (cu != NULL);
7349
7350 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7351 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7352 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7353
7354 if (this_cu->is_debug_types)
7355 {
7356 struct signatured_type *sig_type;
7357
7358 /* Since this_cu is the first member of struct signatured_type,
7359 we can go from a pointer to one to a pointer to the other. */
7360 sig_type = (struct signatured_type *) this_cu;
7361 signature = sig_type->signature;
7362 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7363 }
7364 else
7365 {
7366 struct attribute *attr;
7367
7368 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7369 if (! attr)
7370 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7371 " [in module %s]"),
7372 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7373 signature = DW_UNSND (attr);
7374 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7375 signature);
7376 }
7377
7378 return dwo_unit;
7379 }
7380
7381 /* Subroutine of init_cutu_and_read_dies to simplify it.
7382 See it for a description of the parameters.
7383 Read a TU directly from a DWO file, bypassing the stub. */
7384
7385 static void
7386 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7387 int use_existing_cu, int keep,
7388 die_reader_func_ftype *die_reader_func,
7389 void *data)
7390 {
7391 std::unique_ptr<dwarf2_cu> new_cu;
7392 struct signatured_type *sig_type;
7393 struct die_reader_specs reader;
7394 const gdb_byte *info_ptr;
7395 struct die_info *comp_unit_die;
7396 int has_children;
7397 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7398
7399 /* Verify we can do the following downcast, and that we have the
7400 data we need. */
7401 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7402 sig_type = (struct signatured_type *) this_cu;
7403 gdb_assert (sig_type->dwo_unit != NULL);
7404
7405 if (use_existing_cu && this_cu->cu != NULL)
7406 {
7407 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7408 /* There's no need to do the rereading_dwo_cu handling that
7409 init_cutu_and_read_dies does since we don't read the stub. */
7410 }
7411 else
7412 {
7413 /* If !use_existing_cu, this_cu->cu must be NULL. */
7414 gdb_assert (this_cu->cu == NULL);
7415 new_cu.reset (new dwarf2_cu (this_cu));
7416 }
7417
7418 /* A future optimization, if needed, would be to use an existing
7419 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7420 could share abbrev tables. */
7421
7422 /* The abbreviation table used by READER, this must live at least as long as
7423 READER. */
7424 abbrev_table_up dwo_abbrev_table;
7425
7426 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7427 NULL /* stub_comp_unit_die */,
7428 sig_type->dwo_unit->dwo_file->comp_dir,
7429 &reader, &info_ptr,
7430 &comp_unit_die, &has_children,
7431 &dwo_abbrev_table) == 0)
7432 {
7433 /* Dummy die. */
7434 return;
7435 }
7436
7437 /* All the "real" work is done here. */
7438 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7439
7440 /* This duplicates the code in init_cutu_and_read_dies,
7441 but the alternative is making the latter more complex.
7442 This function is only for the special case of using DWO files directly:
7443 no point in overly complicating the general case just to handle this. */
7444 if (new_cu != NULL && keep)
7445 {
7446 /* Link this CU into read_in_chain. */
7447 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7448 dwarf2_per_objfile->read_in_chain = this_cu;
7449 /* The chain owns it now. */
7450 new_cu.release ();
7451 }
7452 }
7453
7454 /* Initialize a CU (or TU) and read its DIEs.
7455 If the CU defers to a DWO file, read the DWO file as well.
7456
7457 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7458 Otherwise the table specified in the comp unit header is read in and used.
7459 This is an optimization for when we already have the abbrev table.
7460
7461 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7462 Otherwise, a new CU is allocated with xmalloc.
7463
7464 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7465 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7466
7467 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7468 linker) then DIE_READER_FUNC will not get called. */
7469
7470 static void
7471 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7472 struct abbrev_table *abbrev_table,
7473 int use_existing_cu, int keep,
7474 bool skip_partial,
7475 die_reader_func_ftype *die_reader_func,
7476 void *data)
7477 {
7478 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7479 struct objfile *objfile = dwarf2_per_objfile->objfile;
7480 struct dwarf2_section_info *section = this_cu->section;
7481 bfd *abfd = get_section_bfd_owner (section);
7482 struct dwarf2_cu *cu;
7483 const gdb_byte *begin_info_ptr, *info_ptr;
7484 struct die_reader_specs reader;
7485 struct die_info *comp_unit_die;
7486 int has_children;
7487 struct attribute *attr;
7488 struct signatured_type *sig_type = NULL;
7489 struct dwarf2_section_info *abbrev_section;
7490 /* Non-zero if CU currently points to a DWO file and we need to
7491 reread it. When this happens we need to reread the skeleton die
7492 before we can reread the DWO file (this only applies to CUs, not TUs). */
7493 int rereading_dwo_cu = 0;
7494
7495 if (dwarf_die_debug)
7496 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7497 this_cu->is_debug_types ? "type" : "comp",
7498 sect_offset_str (this_cu->sect_off));
7499
7500 if (use_existing_cu)
7501 gdb_assert (keep);
7502
7503 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7504 file (instead of going through the stub), short-circuit all of this. */
7505 if (this_cu->reading_dwo_directly)
7506 {
7507 /* Narrow down the scope of possibilities to have to understand. */
7508 gdb_assert (this_cu->is_debug_types);
7509 gdb_assert (abbrev_table == NULL);
7510 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7511 die_reader_func, data);
7512 return;
7513 }
7514
7515 /* This is cheap if the section is already read in. */
7516 dwarf2_read_section (objfile, section);
7517
7518 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7519
7520 abbrev_section = get_abbrev_section_for_cu (this_cu);
7521
7522 std::unique_ptr<dwarf2_cu> new_cu;
7523 if (use_existing_cu && this_cu->cu != NULL)
7524 {
7525 cu = this_cu->cu;
7526 /* If this CU is from a DWO file we need to start over, we need to
7527 refetch the attributes from the skeleton CU.
7528 This could be optimized by retrieving those attributes from when we
7529 were here the first time: the previous comp_unit_die was stored in
7530 comp_unit_obstack. But there's no data yet that we need this
7531 optimization. */
7532 if (cu->dwo_unit != NULL)
7533 rereading_dwo_cu = 1;
7534 }
7535 else
7536 {
7537 /* If !use_existing_cu, this_cu->cu must be NULL. */
7538 gdb_assert (this_cu->cu == NULL);
7539 new_cu.reset (new dwarf2_cu (this_cu));
7540 cu = new_cu.get ();
7541 }
7542
7543 /* Get the header. */
7544 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7545 {
7546 /* We already have the header, there's no need to read it in again. */
7547 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7548 }
7549 else
7550 {
7551 if (this_cu->is_debug_types)
7552 {
7553 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7554 &cu->header, section,
7555 abbrev_section, info_ptr,
7556 rcuh_kind::TYPE);
7557
7558 /* Since per_cu is the first member of struct signatured_type,
7559 we can go from a pointer to one to a pointer to the other. */
7560 sig_type = (struct signatured_type *) this_cu;
7561 gdb_assert (sig_type->signature == cu->header.signature);
7562 gdb_assert (sig_type->type_offset_in_tu
7563 == cu->header.type_cu_offset_in_tu);
7564 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7565
7566 /* LENGTH has not been set yet for type units if we're
7567 using .gdb_index. */
7568 this_cu->length = get_cu_length (&cu->header);
7569
7570 /* Establish the type offset that can be used to lookup the type. */
7571 sig_type->type_offset_in_section =
7572 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7573
7574 this_cu->dwarf_version = cu->header.version;
7575 }
7576 else
7577 {
7578 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7579 &cu->header, section,
7580 abbrev_section,
7581 info_ptr,
7582 rcuh_kind::COMPILE);
7583
7584 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7585 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7586 this_cu->dwarf_version = cu->header.version;
7587 }
7588 }
7589
7590 /* Skip dummy compilation units. */
7591 if (info_ptr >= begin_info_ptr + this_cu->length
7592 || peek_abbrev_code (abfd, info_ptr) == 0)
7593 return;
7594
7595 /* If we don't have them yet, read the abbrevs for this compilation unit.
7596 And if we need to read them now, make sure they're freed when we're
7597 done (own the table through ABBREV_TABLE_HOLDER). */
7598 abbrev_table_up abbrev_table_holder;
7599 if (abbrev_table != NULL)
7600 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7601 else
7602 {
7603 abbrev_table_holder
7604 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7605 cu->header.abbrev_sect_off);
7606 abbrev_table = abbrev_table_holder.get ();
7607 }
7608
7609 /* Read the top level CU/TU die. */
7610 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7611 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7612
7613 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7614 return;
7615
7616 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7617 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7618 table from the DWO file and pass the ownership over to us. It will be
7619 referenced from READER, so we must make sure to free it after we're done
7620 with READER.
7621
7622 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7623 DWO CU, that this test will fail (the attribute will not be present). */
7624 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7625 abbrev_table_up dwo_abbrev_table;
7626 if (attr)
7627 {
7628 struct dwo_unit *dwo_unit;
7629 struct die_info *dwo_comp_unit_die;
7630
7631 if (has_children)
7632 {
7633 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7634 " has children (offset %s) [in module %s]"),
7635 sect_offset_str (this_cu->sect_off),
7636 bfd_get_filename (abfd));
7637 }
7638 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7639 if (dwo_unit != NULL)
7640 {
7641 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7642 comp_unit_die, NULL,
7643 &reader, &info_ptr,
7644 &dwo_comp_unit_die, &has_children,
7645 &dwo_abbrev_table) == 0)
7646 {
7647 /* Dummy die. */
7648 return;
7649 }
7650 comp_unit_die = dwo_comp_unit_die;
7651 }
7652 else
7653 {
7654 /* Yikes, we couldn't find the rest of the DIE, we only have
7655 the stub. A complaint has already been logged. There's
7656 not much more we can do except pass on the stub DIE to
7657 die_reader_func. We don't want to throw an error on bad
7658 debug info. */
7659 }
7660 }
7661
7662 /* All of the above is setup for this call. Yikes. */
7663 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7664
7665 /* Done, clean up. */
7666 if (new_cu != NULL && keep)
7667 {
7668 /* Link this CU into read_in_chain. */
7669 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7670 dwarf2_per_objfile->read_in_chain = this_cu;
7671 /* The chain owns it now. */
7672 new_cu.release ();
7673 }
7674 }
7675
7676 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7677 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7678 to have already done the lookup to find the DWO file).
7679
7680 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7681 THIS_CU->is_debug_types, but nothing else.
7682
7683 We fill in THIS_CU->length.
7684
7685 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7686 linker) then DIE_READER_FUNC will not get called.
7687
7688 THIS_CU->cu is always freed when done.
7689 This is done in order to not leave THIS_CU->cu in a state where we have
7690 to care whether it refers to the "main" CU or the DWO CU. */
7691
7692 static void
7693 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7694 struct dwo_file *dwo_file,
7695 die_reader_func_ftype *die_reader_func,
7696 void *data)
7697 {
7698 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7699 struct objfile *objfile = dwarf2_per_objfile->objfile;
7700 struct dwarf2_section_info *section = this_cu->section;
7701 bfd *abfd = get_section_bfd_owner (section);
7702 struct dwarf2_section_info *abbrev_section;
7703 const gdb_byte *begin_info_ptr, *info_ptr;
7704 struct die_reader_specs reader;
7705 struct die_info *comp_unit_die;
7706 int has_children;
7707
7708 if (dwarf_die_debug)
7709 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7710 this_cu->is_debug_types ? "type" : "comp",
7711 sect_offset_str (this_cu->sect_off));
7712
7713 gdb_assert (this_cu->cu == NULL);
7714
7715 abbrev_section = (dwo_file != NULL
7716 ? &dwo_file->sections.abbrev
7717 : get_abbrev_section_for_cu (this_cu));
7718
7719 /* This is cheap if the section is already read in. */
7720 dwarf2_read_section (objfile, section);
7721
7722 struct dwarf2_cu cu (this_cu);
7723
7724 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7725 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7726 &cu.header, section,
7727 abbrev_section, info_ptr,
7728 (this_cu->is_debug_types
7729 ? rcuh_kind::TYPE
7730 : rcuh_kind::COMPILE));
7731
7732 this_cu->length = get_cu_length (&cu.header);
7733
7734 /* Skip dummy compilation units. */
7735 if (info_ptr >= begin_info_ptr + this_cu->length
7736 || peek_abbrev_code (abfd, info_ptr) == 0)
7737 return;
7738
7739 abbrev_table_up abbrev_table
7740 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7741 cu.header.abbrev_sect_off);
7742
7743 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7744 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7745
7746 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7747 }
7748
7749 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7750 does not lookup the specified DWO file.
7751 This cannot be used to read DWO files.
7752
7753 THIS_CU->cu is always freed when done.
7754 This is done in order to not leave THIS_CU->cu in a state where we have
7755 to care whether it refers to the "main" CU or the DWO CU.
7756 We can revisit this if the data shows there's a performance issue. */
7757
7758 static void
7759 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7760 die_reader_func_ftype *die_reader_func,
7761 void *data)
7762 {
7763 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7764 }
7765 \f
7766 /* Type Unit Groups.
7767
7768 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7769 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7770 so that all types coming from the same compilation (.o file) are grouped
7771 together. A future step could be to put the types in the same symtab as
7772 the CU the types ultimately came from. */
7773
7774 static hashval_t
7775 hash_type_unit_group (const void *item)
7776 {
7777 const struct type_unit_group *tu_group
7778 = (const struct type_unit_group *) item;
7779
7780 return hash_stmt_list_entry (&tu_group->hash);
7781 }
7782
7783 static int
7784 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7785 {
7786 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7787 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7788
7789 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7790 }
7791
7792 /* Allocate a hash table for type unit groups. */
7793
7794 static htab_t
7795 allocate_type_unit_groups_table (struct objfile *objfile)
7796 {
7797 return htab_create_alloc_ex (3,
7798 hash_type_unit_group,
7799 eq_type_unit_group,
7800 NULL,
7801 &objfile->objfile_obstack,
7802 hashtab_obstack_allocate,
7803 dummy_obstack_deallocate);
7804 }
7805
7806 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7807 partial symtabs. We combine several TUs per psymtab to not let the size
7808 of any one psymtab grow too big. */
7809 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7810 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7811
7812 /* Helper routine for get_type_unit_group.
7813 Create the type_unit_group object used to hold one or more TUs. */
7814
7815 static struct type_unit_group *
7816 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7817 {
7818 struct dwarf2_per_objfile *dwarf2_per_objfile
7819 = cu->per_cu->dwarf2_per_objfile;
7820 struct objfile *objfile = dwarf2_per_objfile->objfile;
7821 struct dwarf2_per_cu_data *per_cu;
7822 struct type_unit_group *tu_group;
7823
7824 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7825 struct type_unit_group);
7826 per_cu = &tu_group->per_cu;
7827 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7828
7829 if (dwarf2_per_objfile->using_index)
7830 {
7831 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7832 struct dwarf2_per_cu_quick_data);
7833 }
7834 else
7835 {
7836 unsigned int line_offset = to_underlying (line_offset_struct);
7837 struct partial_symtab *pst;
7838 std::string name;
7839
7840 /* Give the symtab a useful name for debug purposes. */
7841 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7842 name = string_printf ("<type_units_%d>",
7843 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7844 else
7845 name = string_printf ("<type_units_at_0x%x>", line_offset);
7846
7847 pst = create_partial_symtab (per_cu, name.c_str ());
7848 pst->anonymous = 1;
7849 }
7850
7851 tu_group->hash.dwo_unit = cu->dwo_unit;
7852 tu_group->hash.line_sect_off = line_offset_struct;
7853
7854 return tu_group;
7855 }
7856
7857 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7858 STMT_LIST is a DW_AT_stmt_list attribute. */
7859
7860 static struct type_unit_group *
7861 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7862 {
7863 struct dwarf2_per_objfile *dwarf2_per_objfile
7864 = cu->per_cu->dwarf2_per_objfile;
7865 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7866 struct type_unit_group *tu_group;
7867 void **slot;
7868 unsigned int line_offset;
7869 struct type_unit_group type_unit_group_for_lookup;
7870
7871 if (dwarf2_per_objfile->type_unit_groups == NULL)
7872 {
7873 dwarf2_per_objfile->type_unit_groups =
7874 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7875 }
7876
7877 /* Do we need to create a new group, or can we use an existing one? */
7878
7879 if (stmt_list)
7880 {
7881 line_offset = DW_UNSND (stmt_list);
7882 ++tu_stats->nr_symtab_sharers;
7883 }
7884 else
7885 {
7886 /* Ugh, no stmt_list. Rare, but we have to handle it.
7887 We can do various things here like create one group per TU or
7888 spread them over multiple groups to split up the expansion work.
7889 To avoid worst case scenarios (too many groups or too large groups)
7890 we, umm, group them in bunches. */
7891 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7892 | (tu_stats->nr_stmt_less_type_units
7893 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7894 ++tu_stats->nr_stmt_less_type_units;
7895 }
7896
7897 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7898 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7899 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7900 &type_unit_group_for_lookup, INSERT);
7901 if (*slot != NULL)
7902 {
7903 tu_group = (struct type_unit_group *) *slot;
7904 gdb_assert (tu_group != NULL);
7905 }
7906 else
7907 {
7908 sect_offset line_offset_struct = (sect_offset) line_offset;
7909 tu_group = create_type_unit_group (cu, line_offset_struct);
7910 *slot = tu_group;
7911 ++tu_stats->nr_symtabs;
7912 }
7913
7914 return tu_group;
7915 }
7916 \f
7917 /* Partial symbol tables. */
7918
7919 /* Create a psymtab named NAME and assign it to PER_CU.
7920
7921 The caller must fill in the following details:
7922 dirname, textlow, texthigh. */
7923
7924 static struct partial_symtab *
7925 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7926 {
7927 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7928 struct partial_symtab *pst;
7929
7930 pst = start_psymtab_common (objfile, name, 0,
7931 objfile->global_psymbols,
7932 objfile->static_psymbols);
7933
7934 pst->psymtabs_addrmap_supported = 1;
7935
7936 /* This is the glue that links PST into GDB's symbol API. */
7937 pst->read_symtab_private = per_cu;
7938 pst->read_symtab = dwarf2_read_symtab;
7939 per_cu->v.psymtab = pst;
7940
7941 return pst;
7942 }
7943
7944 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7945 type. */
7946
7947 struct process_psymtab_comp_unit_data
7948 {
7949 /* True if we are reading a DW_TAG_partial_unit. */
7950
7951 int want_partial_unit;
7952
7953 /* The "pretend" language that is used if the CU doesn't declare a
7954 language. */
7955
7956 enum language pretend_language;
7957 };
7958
7959 /* die_reader_func for process_psymtab_comp_unit. */
7960
7961 static void
7962 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7963 const gdb_byte *info_ptr,
7964 struct die_info *comp_unit_die,
7965 int has_children,
7966 void *data)
7967 {
7968 struct dwarf2_cu *cu = reader->cu;
7969 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7970 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7971 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7972 CORE_ADDR baseaddr;
7973 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7974 struct partial_symtab *pst;
7975 enum pc_bounds_kind cu_bounds_kind;
7976 const char *filename;
7977 struct process_psymtab_comp_unit_data *info
7978 = (struct process_psymtab_comp_unit_data *) data;
7979
7980 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7981 return;
7982
7983 gdb_assert (! per_cu->is_debug_types);
7984
7985 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7986
7987 /* Allocate a new partial symbol table structure. */
7988 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7989 if (filename == NULL)
7990 filename = "";
7991
7992 pst = create_partial_symtab (per_cu, filename);
7993
7994 /* This must be done before calling dwarf2_build_include_psymtabs. */
7995 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7996
7997 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7998
7999 dwarf2_find_base_address (comp_unit_die, cu);
8000
8001 /* Possibly set the default values of LOWPC and HIGHPC from
8002 `DW_AT_ranges'. */
8003 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8004 &best_highpc, cu, pst);
8005 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8006 {
8007 CORE_ADDR low
8008 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8009 - baseaddr);
8010 CORE_ADDR high
8011 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8012 - baseaddr - 1);
8013 /* Store the contiguous range if it is not empty; it can be
8014 empty for CUs with no code. */
8015 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8016 }
8017
8018 /* Check if comp unit has_children.
8019 If so, read the rest of the partial symbols from this comp unit.
8020 If not, there's no more debug_info for this comp unit. */
8021 if (has_children)
8022 {
8023 struct partial_die_info *first_die;
8024 CORE_ADDR lowpc, highpc;
8025
8026 lowpc = ((CORE_ADDR) -1);
8027 highpc = ((CORE_ADDR) 0);
8028
8029 first_die = load_partial_dies (reader, info_ptr, 1);
8030
8031 scan_partial_symbols (first_die, &lowpc, &highpc,
8032 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8033
8034 /* If we didn't find a lowpc, set it to highpc to avoid
8035 complaints from `maint check'. */
8036 if (lowpc == ((CORE_ADDR) -1))
8037 lowpc = highpc;
8038
8039 /* If the compilation unit didn't have an explicit address range,
8040 then use the information extracted from its child dies. */
8041 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8042 {
8043 best_lowpc = lowpc;
8044 best_highpc = highpc;
8045 }
8046 }
8047 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8048 best_lowpc + baseaddr)
8049 - baseaddr);
8050 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8051 best_highpc + baseaddr)
8052 - baseaddr);
8053
8054 end_psymtab_common (objfile, pst);
8055
8056 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8057 {
8058 int i;
8059 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8060 struct dwarf2_per_cu_data *iter;
8061
8062 /* Fill in 'dependencies' here; we fill in 'users' in a
8063 post-pass. */
8064 pst->number_of_dependencies = len;
8065 pst->dependencies =
8066 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8067 for (i = 0;
8068 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8069 i, iter);
8070 ++i)
8071 pst->dependencies[i] = iter->v.psymtab;
8072
8073 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8074 }
8075
8076 /* Get the list of files included in the current compilation unit,
8077 and build a psymtab for each of them. */
8078 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8079
8080 if (dwarf_read_debug)
8081 fprintf_unfiltered (gdb_stdlog,
8082 "Psymtab for %s unit @%s: %s - %s"
8083 ", %d global, %d static syms\n",
8084 per_cu->is_debug_types ? "type" : "comp",
8085 sect_offset_str (per_cu->sect_off),
8086 paddress (gdbarch, pst->text_low (objfile)),
8087 paddress (gdbarch, pst->text_high (objfile)),
8088 pst->n_global_syms, pst->n_static_syms);
8089 }
8090
8091 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8092 Process compilation unit THIS_CU for a psymtab. */
8093
8094 static void
8095 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8096 int want_partial_unit,
8097 enum language pretend_language)
8098 {
8099 /* If this compilation unit was already read in, free the
8100 cached copy in order to read it in again. This is
8101 necessary because we skipped some symbols when we first
8102 read in the compilation unit (see load_partial_dies).
8103 This problem could be avoided, but the benefit is unclear. */
8104 if (this_cu->cu != NULL)
8105 free_one_cached_comp_unit (this_cu);
8106
8107 if (this_cu->is_debug_types)
8108 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8109 build_type_psymtabs_reader, NULL);
8110 else
8111 {
8112 process_psymtab_comp_unit_data info;
8113 info.want_partial_unit = want_partial_unit;
8114 info.pretend_language = pretend_language;
8115 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8116 process_psymtab_comp_unit_reader, &info);
8117 }
8118
8119 /* Age out any secondary CUs. */
8120 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8121 }
8122
8123 /* Reader function for build_type_psymtabs. */
8124
8125 static void
8126 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8127 const gdb_byte *info_ptr,
8128 struct die_info *type_unit_die,
8129 int has_children,
8130 void *data)
8131 {
8132 struct dwarf2_per_objfile *dwarf2_per_objfile
8133 = reader->cu->per_cu->dwarf2_per_objfile;
8134 struct objfile *objfile = dwarf2_per_objfile->objfile;
8135 struct dwarf2_cu *cu = reader->cu;
8136 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8137 struct signatured_type *sig_type;
8138 struct type_unit_group *tu_group;
8139 struct attribute *attr;
8140 struct partial_die_info *first_die;
8141 CORE_ADDR lowpc, highpc;
8142 struct partial_symtab *pst;
8143
8144 gdb_assert (data == NULL);
8145 gdb_assert (per_cu->is_debug_types);
8146 sig_type = (struct signatured_type *) per_cu;
8147
8148 if (! has_children)
8149 return;
8150
8151 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8152 tu_group = get_type_unit_group (cu, attr);
8153
8154 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8155
8156 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8157 pst = create_partial_symtab (per_cu, "");
8158 pst->anonymous = 1;
8159
8160 first_die = load_partial_dies (reader, info_ptr, 1);
8161
8162 lowpc = (CORE_ADDR) -1;
8163 highpc = (CORE_ADDR) 0;
8164 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8165
8166 end_psymtab_common (objfile, pst);
8167 }
8168
8169 /* Struct used to sort TUs by their abbreviation table offset. */
8170
8171 struct tu_abbrev_offset
8172 {
8173 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8174 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8175 {}
8176
8177 signatured_type *sig_type;
8178 sect_offset abbrev_offset;
8179 };
8180
8181 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8182
8183 static bool
8184 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8185 const struct tu_abbrev_offset &b)
8186 {
8187 return a.abbrev_offset < b.abbrev_offset;
8188 }
8189
8190 /* Efficiently read all the type units.
8191 This does the bulk of the work for build_type_psymtabs.
8192
8193 The efficiency is because we sort TUs by the abbrev table they use and
8194 only read each abbrev table once. In one program there are 200K TUs
8195 sharing 8K abbrev tables.
8196
8197 The main purpose of this function is to support building the
8198 dwarf2_per_objfile->type_unit_groups table.
8199 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8200 can collapse the search space by grouping them by stmt_list.
8201 The savings can be significant, in the same program from above the 200K TUs
8202 share 8K stmt_list tables.
8203
8204 FUNC is expected to call get_type_unit_group, which will create the
8205 struct type_unit_group if necessary and add it to
8206 dwarf2_per_objfile->type_unit_groups. */
8207
8208 static void
8209 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8210 {
8211 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8212 abbrev_table_up abbrev_table;
8213 sect_offset abbrev_offset;
8214
8215 /* It's up to the caller to not call us multiple times. */
8216 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8217
8218 if (dwarf2_per_objfile->all_type_units.empty ())
8219 return;
8220
8221 /* TUs typically share abbrev tables, and there can be way more TUs than
8222 abbrev tables. Sort by abbrev table to reduce the number of times we
8223 read each abbrev table in.
8224 Alternatives are to punt or to maintain a cache of abbrev tables.
8225 This is simpler and efficient enough for now.
8226
8227 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8228 symtab to use). Typically TUs with the same abbrev offset have the same
8229 stmt_list value too so in practice this should work well.
8230
8231 The basic algorithm here is:
8232
8233 sort TUs by abbrev table
8234 for each TU with same abbrev table:
8235 read abbrev table if first user
8236 read TU top level DIE
8237 [IWBN if DWO skeletons had DW_AT_stmt_list]
8238 call FUNC */
8239
8240 if (dwarf_read_debug)
8241 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8242
8243 /* Sort in a separate table to maintain the order of all_type_units
8244 for .gdb_index: TU indices directly index all_type_units. */
8245 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8246 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8247
8248 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8249 sorted_by_abbrev.emplace_back
8250 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8251 sig_type->per_cu.section,
8252 sig_type->per_cu.sect_off));
8253
8254 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8255 sort_tu_by_abbrev_offset);
8256
8257 abbrev_offset = (sect_offset) ~(unsigned) 0;
8258
8259 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8260 {
8261 /* Switch to the next abbrev table if necessary. */
8262 if (abbrev_table == NULL
8263 || tu.abbrev_offset != abbrev_offset)
8264 {
8265 abbrev_offset = tu.abbrev_offset;
8266 abbrev_table =
8267 abbrev_table_read_table (dwarf2_per_objfile,
8268 &dwarf2_per_objfile->abbrev,
8269 abbrev_offset);
8270 ++tu_stats->nr_uniq_abbrev_tables;
8271 }
8272
8273 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8274 0, 0, false, build_type_psymtabs_reader, NULL);
8275 }
8276 }
8277
8278 /* Print collected type unit statistics. */
8279
8280 static void
8281 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8282 {
8283 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8284
8285 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8286 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8287 dwarf2_per_objfile->all_type_units.size ());
8288 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8289 tu_stats->nr_uniq_abbrev_tables);
8290 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8291 tu_stats->nr_symtabs);
8292 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8293 tu_stats->nr_symtab_sharers);
8294 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8295 tu_stats->nr_stmt_less_type_units);
8296 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8297 tu_stats->nr_all_type_units_reallocs);
8298 }
8299
8300 /* Traversal function for build_type_psymtabs. */
8301
8302 static int
8303 build_type_psymtab_dependencies (void **slot, void *info)
8304 {
8305 struct dwarf2_per_objfile *dwarf2_per_objfile
8306 = (struct dwarf2_per_objfile *) info;
8307 struct objfile *objfile = dwarf2_per_objfile->objfile;
8308 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8309 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8310 struct partial_symtab *pst = per_cu->v.psymtab;
8311 int len = VEC_length (sig_type_ptr, tu_group->tus);
8312 struct signatured_type *iter;
8313 int i;
8314
8315 gdb_assert (len > 0);
8316 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8317
8318 pst->number_of_dependencies = len;
8319 pst->dependencies =
8320 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8321 for (i = 0;
8322 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8323 ++i)
8324 {
8325 gdb_assert (iter->per_cu.is_debug_types);
8326 pst->dependencies[i] = iter->per_cu.v.psymtab;
8327 iter->type_unit_group = tu_group;
8328 }
8329
8330 VEC_free (sig_type_ptr, tu_group->tus);
8331
8332 return 1;
8333 }
8334
8335 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8336 Build partial symbol tables for the .debug_types comp-units. */
8337
8338 static void
8339 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8340 {
8341 if (! create_all_type_units (dwarf2_per_objfile))
8342 return;
8343
8344 build_type_psymtabs_1 (dwarf2_per_objfile);
8345 }
8346
8347 /* Traversal function for process_skeletonless_type_unit.
8348 Read a TU in a DWO file and build partial symbols for it. */
8349
8350 static int
8351 process_skeletonless_type_unit (void **slot, void *info)
8352 {
8353 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8354 struct dwarf2_per_objfile *dwarf2_per_objfile
8355 = (struct dwarf2_per_objfile *) info;
8356 struct signatured_type find_entry, *entry;
8357
8358 /* If this TU doesn't exist in the global table, add it and read it in. */
8359
8360 if (dwarf2_per_objfile->signatured_types == NULL)
8361 {
8362 dwarf2_per_objfile->signatured_types
8363 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8364 }
8365
8366 find_entry.signature = dwo_unit->signature;
8367 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8368 INSERT);
8369 /* If we've already seen this type there's nothing to do. What's happening
8370 is we're doing our own version of comdat-folding here. */
8371 if (*slot != NULL)
8372 return 1;
8373
8374 /* This does the job that create_all_type_units would have done for
8375 this TU. */
8376 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8377 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8378 *slot = entry;
8379
8380 /* This does the job that build_type_psymtabs_1 would have done. */
8381 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8382 build_type_psymtabs_reader, NULL);
8383
8384 return 1;
8385 }
8386
8387 /* Traversal function for process_skeletonless_type_units. */
8388
8389 static int
8390 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8391 {
8392 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8393
8394 if (dwo_file->tus != NULL)
8395 {
8396 htab_traverse_noresize (dwo_file->tus,
8397 process_skeletonless_type_unit, info);
8398 }
8399
8400 return 1;
8401 }
8402
8403 /* Scan all TUs of DWO files, verifying we've processed them.
8404 This is needed in case a TU was emitted without its skeleton.
8405 Note: This can't be done until we know what all the DWO files are. */
8406
8407 static void
8408 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8409 {
8410 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8411 if (get_dwp_file (dwarf2_per_objfile) == NULL
8412 && dwarf2_per_objfile->dwo_files != NULL)
8413 {
8414 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8415 process_dwo_file_for_skeletonless_type_units,
8416 dwarf2_per_objfile);
8417 }
8418 }
8419
8420 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8421
8422 static void
8423 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8424 {
8425 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8426 {
8427 struct partial_symtab *pst = per_cu->v.psymtab;
8428
8429 if (pst == NULL)
8430 continue;
8431
8432 for (int j = 0; j < pst->number_of_dependencies; ++j)
8433 {
8434 /* Set the 'user' field only if it is not already set. */
8435 if (pst->dependencies[j]->user == NULL)
8436 pst->dependencies[j]->user = pst;
8437 }
8438 }
8439 }
8440
8441 /* Build the partial symbol table by doing a quick pass through the
8442 .debug_info and .debug_abbrev sections. */
8443
8444 static void
8445 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8446 {
8447 struct objfile *objfile = dwarf2_per_objfile->objfile;
8448
8449 if (dwarf_read_debug)
8450 {
8451 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8452 objfile_name (objfile));
8453 }
8454
8455 dwarf2_per_objfile->reading_partial_symbols = 1;
8456
8457 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8458
8459 /* Any cached compilation units will be linked by the per-objfile
8460 read_in_chain. Make sure to free them when we're done. */
8461 free_cached_comp_units freer (dwarf2_per_objfile);
8462
8463 build_type_psymtabs (dwarf2_per_objfile);
8464
8465 create_all_comp_units (dwarf2_per_objfile);
8466
8467 /* Create a temporary address map on a temporary obstack. We later
8468 copy this to the final obstack. */
8469 auto_obstack temp_obstack;
8470
8471 scoped_restore save_psymtabs_addrmap
8472 = make_scoped_restore (&objfile->psymtabs_addrmap,
8473 addrmap_create_mutable (&temp_obstack));
8474
8475 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8476 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8477
8478 /* This has to wait until we read the CUs, we need the list of DWOs. */
8479 process_skeletonless_type_units (dwarf2_per_objfile);
8480
8481 /* Now that all TUs have been processed we can fill in the dependencies. */
8482 if (dwarf2_per_objfile->type_unit_groups != NULL)
8483 {
8484 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8485 build_type_psymtab_dependencies, dwarf2_per_objfile);
8486 }
8487
8488 if (dwarf_read_debug)
8489 print_tu_stats (dwarf2_per_objfile);
8490
8491 set_partial_user (dwarf2_per_objfile);
8492
8493 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8494 &objfile->objfile_obstack);
8495 /* At this point we want to keep the address map. */
8496 save_psymtabs_addrmap.release ();
8497
8498 if (dwarf_read_debug)
8499 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8500 objfile_name (objfile));
8501 }
8502
8503 /* die_reader_func for load_partial_comp_unit. */
8504
8505 static void
8506 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8507 const gdb_byte *info_ptr,
8508 struct die_info *comp_unit_die,
8509 int has_children,
8510 void *data)
8511 {
8512 struct dwarf2_cu *cu = reader->cu;
8513
8514 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8515
8516 /* Check if comp unit has_children.
8517 If so, read the rest of the partial symbols from this comp unit.
8518 If not, there's no more debug_info for this comp unit. */
8519 if (has_children)
8520 load_partial_dies (reader, info_ptr, 0);
8521 }
8522
8523 /* Load the partial DIEs for a secondary CU into memory.
8524 This is also used when rereading a primary CU with load_all_dies. */
8525
8526 static void
8527 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8528 {
8529 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8530 load_partial_comp_unit_reader, NULL);
8531 }
8532
8533 static void
8534 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8535 struct dwarf2_section_info *section,
8536 struct dwarf2_section_info *abbrev_section,
8537 unsigned int is_dwz)
8538 {
8539 const gdb_byte *info_ptr;
8540 struct objfile *objfile = dwarf2_per_objfile->objfile;
8541
8542 if (dwarf_read_debug)
8543 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8544 get_section_name (section),
8545 get_section_file_name (section));
8546
8547 dwarf2_read_section (objfile, section);
8548
8549 info_ptr = section->buffer;
8550
8551 while (info_ptr < section->buffer + section->size)
8552 {
8553 struct dwarf2_per_cu_data *this_cu;
8554
8555 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8556
8557 comp_unit_head cu_header;
8558 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8559 abbrev_section, info_ptr,
8560 rcuh_kind::COMPILE);
8561
8562 /* Save the compilation unit for later lookup. */
8563 if (cu_header.unit_type != DW_UT_type)
8564 {
8565 this_cu = XOBNEW (&objfile->objfile_obstack,
8566 struct dwarf2_per_cu_data);
8567 memset (this_cu, 0, sizeof (*this_cu));
8568 }
8569 else
8570 {
8571 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8572 struct signatured_type);
8573 memset (sig_type, 0, sizeof (*sig_type));
8574 sig_type->signature = cu_header.signature;
8575 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8576 this_cu = &sig_type->per_cu;
8577 }
8578 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8579 this_cu->sect_off = sect_off;
8580 this_cu->length = cu_header.length + cu_header.initial_length_size;
8581 this_cu->is_dwz = is_dwz;
8582 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8583 this_cu->section = section;
8584
8585 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8586
8587 info_ptr = info_ptr + this_cu->length;
8588 }
8589 }
8590
8591 /* Create a list of all compilation units in OBJFILE.
8592 This is only done for -readnow and building partial symtabs. */
8593
8594 static void
8595 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8596 {
8597 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8598 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8599 &dwarf2_per_objfile->abbrev, 0);
8600
8601 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8602 if (dwz != NULL)
8603 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8604 1);
8605 }
8606
8607 /* Process all loaded DIEs for compilation unit CU, starting at
8608 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8609 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8610 DW_AT_ranges). See the comments of add_partial_subprogram on how
8611 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8612
8613 static void
8614 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8615 CORE_ADDR *highpc, int set_addrmap,
8616 struct dwarf2_cu *cu)
8617 {
8618 struct partial_die_info *pdi;
8619
8620 /* Now, march along the PDI's, descending into ones which have
8621 interesting children but skipping the children of the other ones,
8622 until we reach the end of the compilation unit. */
8623
8624 pdi = first_die;
8625
8626 while (pdi != NULL)
8627 {
8628 pdi->fixup (cu);
8629
8630 /* Anonymous namespaces or modules have no name but have interesting
8631 children, so we need to look at them. Ditto for anonymous
8632 enums. */
8633
8634 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8635 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8636 || pdi->tag == DW_TAG_imported_unit
8637 || pdi->tag == DW_TAG_inlined_subroutine)
8638 {
8639 switch (pdi->tag)
8640 {
8641 case DW_TAG_subprogram:
8642 case DW_TAG_inlined_subroutine:
8643 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8644 break;
8645 case DW_TAG_constant:
8646 case DW_TAG_variable:
8647 case DW_TAG_typedef:
8648 case DW_TAG_union_type:
8649 if (!pdi->is_declaration)
8650 {
8651 add_partial_symbol (pdi, cu);
8652 }
8653 break;
8654 case DW_TAG_class_type:
8655 case DW_TAG_interface_type:
8656 case DW_TAG_structure_type:
8657 if (!pdi->is_declaration)
8658 {
8659 add_partial_symbol (pdi, cu);
8660 }
8661 if ((cu->language == language_rust
8662 || cu->language == language_cplus) && pdi->has_children)
8663 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8664 set_addrmap, cu);
8665 break;
8666 case DW_TAG_enumeration_type:
8667 if (!pdi->is_declaration)
8668 add_partial_enumeration (pdi, cu);
8669 break;
8670 case DW_TAG_base_type:
8671 case DW_TAG_subrange_type:
8672 /* File scope base type definitions are added to the partial
8673 symbol table. */
8674 add_partial_symbol (pdi, cu);
8675 break;
8676 case DW_TAG_namespace:
8677 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8678 break;
8679 case DW_TAG_module:
8680 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8681 break;
8682 case DW_TAG_imported_unit:
8683 {
8684 struct dwarf2_per_cu_data *per_cu;
8685
8686 /* For now we don't handle imported units in type units. */
8687 if (cu->per_cu->is_debug_types)
8688 {
8689 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8690 " supported in type units [in module %s]"),
8691 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8692 }
8693
8694 per_cu = dwarf2_find_containing_comp_unit
8695 (pdi->d.sect_off, pdi->is_dwz,
8696 cu->per_cu->dwarf2_per_objfile);
8697
8698 /* Go read the partial unit, if needed. */
8699 if (per_cu->v.psymtab == NULL)
8700 process_psymtab_comp_unit (per_cu, 1, cu->language);
8701
8702 VEC_safe_push (dwarf2_per_cu_ptr,
8703 cu->per_cu->imported_symtabs, per_cu);
8704 }
8705 break;
8706 case DW_TAG_imported_declaration:
8707 add_partial_symbol (pdi, cu);
8708 break;
8709 default:
8710 break;
8711 }
8712 }
8713
8714 /* If the die has a sibling, skip to the sibling. */
8715
8716 pdi = pdi->die_sibling;
8717 }
8718 }
8719
8720 /* Functions used to compute the fully scoped name of a partial DIE.
8721
8722 Normally, this is simple. For C++, the parent DIE's fully scoped
8723 name is concatenated with "::" and the partial DIE's name.
8724 Enumerators are an exception; they use the scope of their parent
8725 enumeration type, i.e. the name of the enumeration type is not
8726 prepended to the enumerator.
8727
8728 There are two complexities. One is DW_AT_specification; in this
8729 case "parent" means the parent of the target of the specification,
8730 instead of the direct parent of the DIE. The other is compilers
8731 which do not emit DW_TAG_namespace; in this case we try to guess
8732 the fully qualified name of structure types from their members'
8733 linkage names. This must be done using the DIE's children rather
8734 than the children of any DW_AT_specification target. We only need
8735 to do this for structures at the top level, i.e. if the target of
8736 any DW_AT_specification (if any; otherwise the DIE itself) does not
8737 have a parent. */
8738
8739 /* Compute the scope prefix associated with PDI's parent, in
8740 compilation unit CU. The result will be allocated on CU's
8741 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8742 field. NULL is returned if no prefix is necessary. */
8743 static const char *
8744 partial_die_parent_scope (struct partial_die_info *pdi,
8745 struct dwarf2_cu *cu)
8746 {
8747 const char *grandparent_scope;
8748 struct partial_die_info *parent, *real_pdi;
8749
8750 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8751 then this means the parent of the specification DIE. */
8752
8753 real_pdi = pdi;
8754 while (real_pdi->has_specification)
8755 real_pdi = find_partial_die (real_pdi->spec_offset,
8756 real_pdi->spec_is_dwz, cu);
8757
8758 parent = real_pdi->die_parent;
8759 if (parent == NULL)
8760 return NULL;
8761
8762 if (parent->scope_set)
8763 return parent->scope;
8764
8765 parent->fixup (cu);
8766
8767 grandparent_scope = partial_die_parent_scope (parent, cu);
8768
8769 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8770 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8771 Work around this problem here. */
8772 if (cu->language == language_cplus
8773 && parent->tag == DW_TAG_namespace
8774 && strcmp (parent->name, "::") == 0
8775 && grandparent_scope == NULL)
8776 {
8777 parent->scope = NULL;
8778 parent->scope_set = 1;
8779 return NULL;
8780 }
8781
8782 if (pdi->tag == DW_TAG_enumerator)
8783 /* Enumerators should not get the name of the enumeration as a prefix. */
8784 parent->scope = grandparent_scope;
8785 else if (parent->tag == DW_TAG_namespace
8786 || parent->tag == DW_TAG_module
8787 || parent->tag == DW_TAG_structure_type
8788 || parent->tag == DW_TAG_class_type
8789 || parent->tag == DW_TAG_interface_type
8790 || parent->tag == DW_TAG_union_type
8791 || parent->tag == DW_TAG_enumeration_type)
8792 {
8793 if (grandparent_scope == NULL)
8794 parent->scope = parent->name;
8795 else
8796 parent->scope = typename_concat (&cu->comp_unit_obstack,
8797 grandparent_scope,
8798 parent->name, 0, cu);
8799 }
8800 else
8801 {
8802 /* FIXME drow/2004-04-01: What should we be doing with
8803 function-local names? For partial symbols, we should probably be
8804 ignoring them. */
8805 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8806 parent->tag, sect_offset_str (pdi->sect_off));
8807 parent->scope = grandparent_scope;
8808 }
8809
8810 parent->scope_set = 1;
8811 return parent->scope;
8812 }
8813
8814 /* Return the fully scoped name associated with PDI, from compilation unit
8815 CU. The result will be allocated with malloc. */
8816
8817 static char *
8818 partial_die_full_name (struct partial_die_info *pdi,
8819 struct dwarf2_cu *cu)
8820 {
8821 const char *parent_scope;
8822
8823 /* If this is a template instantiation, we can not work out the
8824 template arguments from partial DIEs. So, unfortunately, we have
8825 to go through the full DIEs. At least any work we do building
8826 types here will be reused if full symbols are loaded later. */
8827 if (pdi->has_template_arguments)
8828 {
8829 pdi->fixup (cu);
8830
8831 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8832 {
8833 struct die_info *die;
8834 struct attribute attr;
8835 struct dwarf2_cu *ref_cu = cu;
8836
8837 /* DW_FORM_ref_addr is using section offset. */
8838 attr.name = (enum dwarf_attribute) 0;
8839 attr.form = DW_FORM_ref_addr;
8840 attr.u.unsnd = to_underlying (pdi->sect_off);
8841 die = follow_die_ref (NULL, &attr, &ref_cu);
8842
8843 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8844 }
8845 }
8846
8847 parent_scope = partial_die_parent_scope (pdi, cu);
8848 if (parent_scope == NULL)
8849 return NULL;
8850 else
8851 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8852 }
8853
8854 static void
8855 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8856 {
8857 struct dwarf2_per_objfile *dwarf2_per_objfile
8858 = cu->per_cu->dwarf2_per_objfile;
8859 struct objfile *objfile = dwarf2_per_objfile->objfile;
8860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8861 CORE_ADDR addr = 0;
8862 const char *actual_name = NULL;
8863 CORE_ADDR baseaddr;
8864 char *built_actual_name;
8865
8866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8867
8868 built_actual_name = partial_die_full_name (pdi, cu);
8869 if (built_actual_name != NULL)
8870 actual_name = built_actual_name;
8871
8872 if (actual_name == NULL)
8873 actual_name = pdi->name;
8874
8875 switch (pdi->tag)
8876 {
8877 case DW_TAG_inlined_subroutine:
8878 case DW_TAG_subprogram:
8879 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8880 - baseaddr);
8881 if (pdi->is_external || cu->language == language_ada)
8882 {
8883 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8884 of the global scope. But in Ada, we want to be able to access
8885 nested procedures globally. So all Ada subprograms are stored
8886 in the global scope. */
8887 add_psymbol_to_list (actual_name, strlen (actual_name),
8888 built_actual_name != NULL,
8889 VAR_DOMAIN, LOC_BLOCK,
8890 SECT_OFF_TEXT (objfile),
8891 &objfile->global_psymbols,
8892 addr,
8893 cu->language, objfile);
8894 }
8895 else
8896 {
8897 add_psymbol_to_list (actual_name, strlen (actual_name),
8898 built_actual_name != NULL,
8899 VAR_DOMAIN, LOC_BLOCK,
8900 SECT_OFF_TEXT (objfile),
8901 &objfile->static_psymbols,
8902 addr, cu->language, objfile);
8903 }
8904
8905 if (pdi->main_subprogram && actual_name != NULL)
8906 set_objfile_main_name (objfile, actual_name, cu->language);
8907 break;
8908 case DW_TAG_constant:
8909 {
8910 std::vector<partial_symbol *> *list;
8911
8912 if (pdi->is_external)
8913 list = &objfile->global_psymbols;
8914 else
8915 list = &objfile->static_psymbols;
8916 add_psymbol_to_list (actual_name, strlen (actual_name),
8917 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8918 -1, list, 0, cu->language, objfile);
8919 }
8920 break;
8921 case DW_TAG_variable:
8922 if (pdi->d.locdesc)
8923 addr = decode_locdesc (pdi->d.locdesc, cu);
8924
8925 if (pdi->d.locdesc
8926 && addr == 0
8927 && !dwarf2_per_objfile->has_section_at_zero)
8928 {
8929 /* A global or static variable may also have been stripped
8930 out by the linker if unused, in which case its address
8931 will be nullified; do not add such variables into partial
8932 symbol table then. */
8933 }
8934 else if (pdi->is_external)
8935 {
8936 /* Global Variable.
8937 Don't enter into the minimal symbol tables as there is
8938 a minimal symbol table entry from the ELF symbols already.
8939 Enter into partial symbol table if it has a location
8940 descriptor or a type.
8941 If the location descriptor is missing, new_symbol will create
8942 a LOC_UNRESOLVED symbol, the address of the variable will then
8943 be determined from the minimal symbol table whenever the variable
8944 is referenced.
8945 The address for the partial symbol table entry is not
8946 used by GDB, but it comes in handy for debugging partial symbol
8947 table building. */
8948
8949 if (pdi->d.locdesc || pdi->has_type)
8950 add_psymbol_to_list (actual_name, strlen (actual_name),
8951 built_actual_name != NULL,
8952 VAR_DOMAIN, LOC_STATIC,
8953 SECT_OFF_TEXT (objfile),
8954 &objfile->global_psymbols,
8955 addr, cu->language, objfile);
8956 }
8957 else
8958 {
8959 int has_loc = pdi->d.locdesc != NULL;
8960
8961 /* Static Variable. Skip symbols whose value we cannot know (those
8962 without location descriptors or constant values). */
8963 if (!has_loc && !pdi->has_const_value)
8964 {
8965 xfree (built_actual_name);
8966 return;
8967 }
8968
8969 add_psymbol_to_list (actual_name, strlen (actual_name),
8970 built_actual_name != NULL,
8971 VAR_DOMAIN, LOC_STATIC,
8972 SECT_OFF_TEXT (objfile),
8973 &objfile->static_psymbols,
8974 has_loc ? addr : 0,
8975 cu->language, objfile);
8976 }
8977 break;
8978 case DW_TAG_typedef:
8979 case DW_TAG_base_type:
8980 case DW_TAG_subrange_type:
8981 add_psymbol_to_list (actual_name, strlen (actual_name),
8982 built_actual_name != NULL,
8983 VAR_DOMAIN, LOC_TYPEDEF, -1,
8984 &objfile->static_psymbols,
8985 0, cu->language, objfile);
8986 break;
8987 case DW_TAG_imported_declaration:
8988 case DW_TAG_namespace:
8989 add_psymbol_to_list (actual_name, strlen (actual_name),
8990 built_actual_name != NULL,
8991 VAR_DOMAIN, LOC_TYPEDEF, -1,
8992 &objfile->global_psymbols,
8993 0, cu->language, objfile);
8994 break;
8995 case DW_TAG_module:
8996 add_psymbol_to_list (actual_name, strlen (actual_name),
8997 built_actual_name != NULL,
8998 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8999 &objfile->global_psymbols,
9000 0, cu->language, objfile);
9001 break;
9002 case DW_TAG_class_type:
9003 case DW_TAG_interface_type:
9004 case DW_TAG_structure_type:
9005 case DW_TAG_union_type:
9006 case DW_TAG_enumeration_type:
9007 /* Skip external references. The DWARF standard says in the section
9008 about "Structure, Union, and Class Type Entries": "An incomplete
9009 structure, union or class type is represented by a structure,
9010 union or class entry that does not have a byte size attribute
9011 and that has a DW_AT_declaration attribute." */
9012 if (!pdi->has_byte_size && pdi->is_declaration)
9013 {
9014 xfree (built_actual_name);
9015 return;
9016 }
9017
9018 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9019 static vs. global. */
9020 add_psymbol_to_list (actual_name, strlen (actual_name),
9021 built_actual_name != NULL,
9022 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9023 cu->language == language_cplus
9024 ? &objfile->global_psymbols
9025 : &objfile->static_psymbols,
9026 0, cu->language, objfile);
9027
9028 break;
9029 case DW_TAG_enumerator:
9030 add_psymbol_to_list (actual_name, strlen (actual_name),
9031 built_actual_name != NULL,
9032 VAR_DOMAIN, LOC_CONST, -1,
9033 cu->language == language_cplus
9034 ? &objfile->global_psymbols
9035 : &objfile->static_psymbols,
9036 0, cu->language, objfile);
9037 break;
9038 default:
9039 break;
9040 }
9041
9042 xfree (built_actual_name);
9043 }
9044
9045 /* Read a partial die corresponding to a namespace; also, add a symbol
9046 corresponding to that namespace to the symbol table. NAMESPACE is
9047 the name of the enclosing namespace. */
9048
9049 static void
9050 add_partial_namespace (struct partial_die_info *pdi,
9051 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9052 int set_addrmap, struct dwarf2_cu *cu)
9053 {
9054 /* Add a symbol for the namespace. */
9055
9056 add_partial_symbol (pdi, cu);
9057
9058 /* Now scan partial symbols in that namespace. */
9059
9060 if (pdi->has_children)
9061 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9062 }
9063
9064 /* Read a partial die corresponding to a Fortran module. */
9065
9066 static void
9067 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9068 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9069 {
9070 /* Add a symbol for the namespace. */
9071
9072 add_partial_symbol (pdi, cu);
9073
9074 /* Now scan partial symbols in that module. */
9075
9076 if (pdi->has_children)
9077 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9078 }
9079
9080 /* Read a partial die corresponding to a subprogram or an inlined
9081 subprogram and create a partial symbol for that subprogram.
9082 When the CU language allows it, this routine also defines a partial
9083 symbol for each nested subprogram that this subprogram contains.
9084 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9085 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9086
9087 PDI may also be a lexical block, in which case we simply search
9088 recursively for subprograms defined inside that lexical block.
9089 Again, this is only performed when the CU language allows this
9090 type of definitions. */
9091
9092 static void
9093 add_partial_subprogram (struct partial_die_info *pdi,
9094 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9095 int set_addrmap, struct dwarf2_cu *cu)
9096 {
9097 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9098 {
9099 if (pdi->has_pc_info)
9100 {
9101 if (pdi->lowpc < *lowpc)
9102 *lowpc = pdi->lowpc;
9103 if (pdi->highpc > *highpc)
9104 *highpc = pdi->highpc;
9105 if (set_addrmap)
9106 {
9107 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9108 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9109 CORE_ADDR baseaddr;
9110 CORE_ADDR this_highpc;
9111 CORE_ADDR this_lowpc;
9112
9113 baseaddr = ANOFFSET (objfile->section_offsets,
9114 SECT_OFF_TEXT (objfile));
9115 this_lowpc
9116 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9117 pdi->lowpc + baseaddr)
9118 - baseaddr);
9119 this_highpc
9120 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9121 pdi->highpc + baseaddr)
9122 - baseaddr);
9123 addrmap_set_empty (objfile->psymtabs_addrmap,
9124 this_lowpc, this_highpc - 1,
9125 cu->per_cu->v.psymtab);
9126 }
9127 }
9128
9129 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9130 {
9131 if (!pdi->is_declaration)
9132 /* Ignore subprogram DIEs that do not have a name, they are
9133 illegal. Do not emit a complaint at this point, we will
9134 do so when we convert this psymtab into a symtab. */
9135 if (pdi->name)
9136 add_partial_symbol (pdi, cu);
9137 }
9138 }
9139
9140 if (! pdi->has_children)
9141 return;
9142
9143 if (cu->language == language_ada)
9144 {
9145 pdi = pdi->die_child;
9146 while (pdi != NULL)
9147 {
9148 pdi->fixup (cu);
9149 if (pdi->tag == DW_TAG_subprogram
9150 || pdi->tag == DW_TAG_inlined_subroutine
9151 || pdi->tag == DW_TAG_lexical_block)
9152 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9153 pdi = pdi->die_sibling;
9154 }
9155 }
9156 }
9157
9158 /* Read a partial die corresponding to an enumeration type. */
9159
9160 static void
9161 add_partial_enumeration (struct partial_die_info *enum_pdi,
9162 struct dwarf2_cu *cu)
9163 {
9164 struct partial_die_info *pdi;
9165
9166 if (enum_pdi->name != NULL)
9167 add_partial_symbol (enum_pdi, cu);
9168
9169 pdi = enum_pdi->die_child;
9170 while (pdi)
9171 {
9172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9173 complaint (_("malformed enumerator DIE ignored"));
9174 else
9175 add_partial_symbol (pdi, cu);
9176 pdi = pdi->die_sibling;
9177 }
9178 }
9179
9180 /* Return the initial uleb128 in the die at INFO_PTR. */
9181
9182 static unsigned int
9183 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9184 {
9185 unsigned int bytes_read;
9186
9187 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9188 }
9189
9190 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9191 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9192
9193 Return the corresponding abbrev, or NULL if the number is zero (indicating
9194 an empty DIE). In either case *BYTES_READ will be set to the length of
9195 the initial number. */
9196
9197 static struct abbrev_info *
9198 peek_die_abbrev (const die_reader_specs &reader,
9199 const gdb_byte *info_ptr, unsigned int *bytes_read)
9200 {
9201 dwarf2_cu *cu = reader.cu;
9202 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9203 unsigned int abbrev_number
9204 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9205
9206 if (abbrev_number == 0)
9207 return NULL;
9208
9209 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9210 if (!abbrev)
9211 {
9212 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9213 " at offset %s [in module %s]"),
9214 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9215 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9216 }
9217
9218 return abbrev;
9219 }
9220
9221 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9222 Returns a pointer to the end of a series of DIEs, terminated by an empty
9223 DIE. Any children of the skipped DIEs will also be skipped. */
9224
9225 static const gdb_byte *
9226 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9227 {
9228 while (1)
9229 {
9230 unsigned int bytes_read;
9231 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9232
9233 if (abbrev == NULL)
9234 return info_ptr + bytes_read;
9235 else
9236 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9237 }
9238 }
9239
9240 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9241 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9242 abbrev corresponding to that skipped uleb128 should be passed in
9243 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9244 children. */
9245
9246 static const gdb_byte *
9247 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9248 struct abbrev_info *abbrev)
9249 {
9250 unsigned int bytes_read;
9251 struct attribute attr;
9252 bfd *abfd = reader->abfd;
9253 struct dwarf2_cu *cu = reader->cu;
9254 const gdb_byte *buffer = reader->buffer;
9255 const gdb_byte *buffer_end = reader->buffer_end;
9256 unsigned int form, i;
9257
9258 for (i = 0; i < abbrev->num_attrs; i++)
9259 {
9260 /* The only abbrev we care about is DW_AT_sibling. */
9261 if (abbrev->attrs[i].name == DW_AT_sibling)
9262 {
9263 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9264 if (attr.form == DW_FORM_ref_addr)
9265 complaint (_("ignoring absolute DW_AT_sibling"));
9266 else
9267 {
9268 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9269 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9270
9271 if (sibling_ptr < info_ptr)
9272 complaint (_("DW_AT_sibling points backwards"));
9273 else if (sibling_ptr > reader->buffer_end)
9274 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9275 else
9276 return sibling_ptr;
9277 }
9278 }
9279
9280 /* If it isn't DW_AT_sibling, skip this attribute. */
9281 form = abbrev->attrs[i].form;
9282 skip_attribute:
9283 switch (form)
9284 {
9285 case DW_FORM_ref_addr:
9286 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9287 and later it is offset sized. */
9288 if (cu->header.version == 2)
9289 info_ptr += cu->header.addr_size;
9290 else
9291 info_ptr += cu->header.offset_size;
9292 break;
9293 case DW_FORM_GNU_ref_alt:
9294 info_ptr += cu->header.offset_size;
9295 break;
9296 case DW_FORM_addr:
9297 info_ptr += cu->header.addr_size;
9298 break;
9299 case DW_FORM_data1:
9300 case DW_FORM_ref1:
9301 case DW_FORM_flag:
9302 info_ptr += 1;
9303 break;
9304 case DW_FORM_flag_present:
9305 case DW_FORM_implicit_const:
9306 break;
9307 case DW_FORM_data2:
9308 case DW_FORM_ref2:
9309 info_ptr += 2;
9310 break;
9311 case DW_FORM_data4:
9312 case DW_FORM_ref4:
9313 info_ptr += 4;
9314 break;
9315 case DW_FORM_data8:
9316 case DW_FORM_ref8:
9317 case DW_FORM_ref_sig8:
9318 info_ptr += 8;
9319 break;
9320 case DW_FORM_data16:
9321 info_ptr += 16;
9322 break;
9323 case DW_FORM_string:
9324 read_direct_string (abfd, info_ptr, &bytes_read);
9325 info_ptr += bytes_read;
9326 break;
9327 case DW_FORM_sec_offset:
9328 case DW_FORM_strp:
9329 case DW_FORM_GNU_strp_alt:
9330 info_ptr += cu->header.offset_size;
9331 break;
9332 case DW_FORM_exprloc:
9333 case DW_FORM_block:
9334 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9335 info_ptr += bytes_read;
9336 break;
9337 case DW_FORM_block1:
9338 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9339 break;
9340 case DW_FORM_block2:
9341 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9342 break;
9343 case DW_FORM_block4:
9344 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9345 break;
9346 case DW_FORM_sdata:
9347 case DW_FORM_udata:
9348 case DW_FORM_ref_udata:
9349 case DW_FORM_GNU_addr_index:
9350 case DW_FORM_GNU_str_index:
9351 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9352 break;
9353 case DW_FORM_indirect:
9354 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9355 info_ptr += bytes_read;
9356 /* We need to continue parsing from here, so just go back to
9357 the top. */
9358 goto skip_attribute;
9359
9360 default:
9361 error (_("Dwarf Error: Cannot handle %s "
9362 "in DWARF reader [in module %s]"),
9363 dwarf_form_name (form),
9364 bfd_get_filename (abfd));
9365 }
9366 }
9367
9368 if (abbrev->has_children)
9369 return skip_children (reader, info_ptr);
9370 else
9371 return info_ptr;
9372 }
9373
9374 /* Locate ORIG_PDI's sibling.
9375 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9376
9377 static const gdb_byte *
9378 locate_pdi_sibling (const struct die_reader_specs *reader,
9379 struct partial_die_info *orig_pdi,
9380 const gdb_byte *info_ptr)
9381 {
9382 /* Do we know the sibling already? */
9383
9384 if (orig_pdi->sibling)
9385 return orig_pdi->sibling;
9386
9387 /* Are there any children to deal with? */
9388
9389 if (!orig_pdi->has_children)
9390 return info_ptr;
9391
9392 /* Skip the children the long way. */
9393
9394 return skip_children (reader, info_ptr);
9395 }
9396
9397 /* Expand this partial symbol table into a full symbol table. SELF is
9398 not NULL. */
9399
9400 static void
9401 dwarf2_read_symtab (struct partial_symtab *self,
9402 struct objfile *objfile)
9403 {
9404 struct dwarf2_per_objfile *dwarf2_per_objfile
9405 = get_dwarf2_per_objfile (objfile);
9406
9407 if (self->readin)
9408 {
9409 warning (_("bug: psymtab for %s is already read in."),
9410 self->filename);
9411 }
9412 else
9413 {
9414 if (info_verbose)
9415 {
9416 printf_filtered (_("Reading in symbols for %s..."),
9417 self->filename);
9418 gdb_flush (gdb_stdout);
9419 }
9420
9421 /* If this psymtab is constructed from a debug-only objfile, the
9422 has_section_at_zero flag will not necessarily be correct. We
9423 can get the correct value for this flag by looking at the data
9424 associated with the (presumably stripped) associated objfile. */
9425 if (objfile->separate_debug_objfile_backlink)
9426 {
9427 struct dwarf2_per_objfile *dpo_backlink
9428 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9429
9430 dwarf2_per_objfile->has_section_at_zero
9431 = dpo_backlink->has_section_at_zero;
9432 }
9433
9434 dwarf2_per_objfile->reading_partial_symbols = 0;
9435
9436 psymtab_to_symtab_1 (self);
9437
9438 /* Finish up the debug error message. */
9439 if (info_verbose)
9440 printf_filtered (_("done.\n"));
9441 }
9442
9443 process_cu_includes (dwarf2_per_objfile);
9444 }
9445 \f
9446 /* Reading in full CUs. */
9447
9448 /* Add PER_CU to the queue. */
9449
9450 static void
9451 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9452 enum language pretend_language)
9453 {
9454 struct dwarf2_queue_item *item;
9455
9456 per_cu->queued = 1;
9457 item = XNEW (struct dwarf2_queue_item);
9458 item->per_cu = per_cu;
9459 item->pretend_language = pretend_language;
9460 item->next = NULL;
9461
9462 if (dwarf2_queue == NULL)
9463 dwarf2_queue = item;
9464 else
9465 dwarf2_queue_tail->next = item;
9466
9467 dwarf2_queue_tail = item;
9468 }
9469
9470 /* If PER_CU is not yet queued, add it to the queue.
9471 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9472 dependency.
9473 The result is non-zero if PER_CU was queued, otherwise the result is zero
9474 meaning either PER_CU is already queued or it is already loaded.
9475
9476 N.B. There is an invariant here that if a CU is queued then it is loaded.
9477 The caller is required to load PER_CU if we return non-zero. */
9478
9479 static int
9480 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9481 struct dwarf2_per_cu_data *per_cu,
9482 enum language pretend_language)
9483 {
9484 /* We may arrive here during partial symbol reading, if we need full
9485 DIEs to process an unusual case (e.g. template arguments). Do
9486 not queue PER_CU, just tell our caller to load its DIEs. */
9487 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9488 {
9489 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9490 return 1;
9491 return 0;
9492 }
9493
9494 /* Mark the dependence relation so that we don't flush PER_CU
9495 too early. */
9496 if (dependent_cu != NULL)
9497 dwarf2_add_dependence (dependent_cu, per_cu);
9498
9499 /* If it's already on the queue, we have nothing to do. */
9500 if (per_cu->queued)
9501 return 0;
9502
9503 /* If the compilation unit is already loaded, just mark it as
9504 used. */
9505 if (per_cu->cu != NULL)
9506 {
9507 per_cu->cu->last_used = 0;
9508 return 0;
9509 }
9510
9511 /* Add it to the queue. */
9512 queue_comp_unit (per_cu, pretend_language);
9513
9514 return 1;
9515 }
9516
9517 /* Process the queue. */
9518
9519 static void
9520 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9521 {
9522 struct dwarf2_queue_item *item, *next_item;
9523
9524 if (dwarf_read_debug)
9525 {
9526 fprintf_unfiltered (gdb_stdlog,
9527 "Expanding one or more symtabs of objfile %s ...\n",
9528 objfile_name (dwarf2_per_objfile->objfile));
9529 }
9530
9531 /* The queue starts out with one item, but following a DIE reference
9532 may load a new CU, adding it to the end of the queue. */
9533 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9534 {
9535 if ((dwarf2_per_objfile->using_index
9536 ? !item->per_cu->v.quick->compunit_symtab
9537 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9538 /* Skip dummy CUs. */
9539 && item->per_cu->cu != NULL)
9540 {
9541 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9542 unsigned int debug_print_threshold;
9543 char buf[100];
9544
9545 if (per_cu->is_debug_types)
9546 {
9547 struct signatured_type *sig_type =
9548 (struct signatured_type *) per_cu;
9549
9550 sprintf (buf, "TU %s at offset %s",
9551 hex_string (sig_type->signature),
9552 sect_offset_str (per_cu->sect_off));
9553 /* There can be 100s of TUs.
9554 Only print them in verbose mode. */
9555 debug_print_threshold = 2;
9556 }
9557 else
9558 {
9559 sprintf (buf, "CU at offset %s",
9560 sect_offset_str (per_cu->sect_off));
9561 debug_print_threshold = 1;
9562 }
9563
9564 if (dwarf_read_debug >= debug_print_threshold)
9565 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9566
9567 if (per_cu->is_debug_types)
9568 process_full_type_unit (per_cu, item->pretend_language);
9569 else
9570 process_full_comp_unit (per_cu, item->pretend_language);
9571
9572 if (dwarf_read_debug >= debug_print_threshold)
9573 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9574 }
9575
9576 item->per_cu->queued = 0;
9577 next_item = item->next;
9578 xfree (item);
9579 }
9580
9581 dwarf2_queue_tail = NULL;
9582
9583 if (dwarf_read_debug)
9584 {
9585 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9586 objfile_name (dwarf2_per_objfile->objfile));
9587 }
9588 }
9589
9590 /* Read in full symbols for PST, and anything it depends on. */
9591
9592 static void
9593 psymtab_to_symtab_1 (struct partial_symtab *pst)
9594 {
9595 struct dwarf2_per_cu_data *per_cu;
9596 int i;
9597
9598 if (pst->readin)
9599 return;
9600
9601 for (i = 0; i < pst->number_of_dependencies; i++)
9602 if (!pst->dependencies[i]->readin
9603 && pst->dependencies[i]->user == NULL)
9604 {
9605 /* Inform about additional files that need to be read in. */
9606 if (info_verbose)
9607 {
9608 /* FIXME: i18n: Need to make this a single string. */
9609 fputs_filtered (" ", gdb_stdout);
9610 wrap_here ("");
9611 fputs_filtered ("and ", gdb_stdout);
9612 wrap_here ("");
9613 printf_filtered ("%s...", pst->dependencies[i]->filename);
9614 wrap_here (""); /* Flush output. */
9615 gdb_flush (gdb_stdout);
9616 }
9617 psymtab_to_symtab_1 (pst->dependencies[i]);
9618 }
9619
9620 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9621
9622 if (per_cu == NULL)
9623 {
9624 /* It's an include file, no symbols to read for it.
9625 Everything is in the parent symtab. */
9626 pst->readin = 1;
9627 return;
9628 }
9629
9630 dw2_do_instantiate_symtab (per_cu, false);
9631 }
9632
9633 /* Trivial hash function for die_info: the hash value of a DIE
9634 is its offset in .debug_info for this objfile. */
9635
9636 static hashval_t
9637 die_hash (const void *item)
9638 {
9639 const struct die_info *die = (const struct die_info *) item;
9640
9641 return to_underlying (die->sect_off);
9642 }
9643
9644 /* Trivial comparison function for die_info structures: two DIEs
9645 are equal if they have the same offset. */
9646
9647 static int
9648 die_eq (const void *item_lhs, const void *item_rhs)
9649 {
9650 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9651 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9652
9653 return die_lhs->sect_off == die_rhs->sect_off;
9654 }
9655
9656 /* die_reader_func for load_full_comp_unit.
9657 This is identical to read_signatured_type_reader,
9658 but is kept separate for now. */
9659
9660 static void
9661 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9662 const gdb_byte *info_ptr,
9663 struct die_info *comp_unit_die,
9664 int has_children,
9665 void *data)
9666 {
9667 struct dwarf2_cu *cu = reader->cu;
9668 enum language *language_ptr = (enum language *) data;
9669
9670 gdb_assert (cu->die_hash == NULL);
9671 cu->die_hash =
9672 htab_create_alloc_ex (cu->header.length / 12,
9673 die_hash,
9674 die_eq,
9675 NULL,
9676 &cu->comp_unit_obstack,
9677 hashtab_obstack_allocate,
9678 dummy_obstack_deallocate);
9679
9680 if (has_children)
9681 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9682 &info_ptr, comp_unit_die);
9683 cu->dies = comp_unit_die;
9684 /* comp_unit_die is not stored in die_hash, no need. */
9685
9686 /* We try not to read any attributes in this function, because not
9687 all CUs needed for references have been loaded yet, and symbol
9688 table processing isn't initialized. But we have to set the CU language,
9689 or we won't be able to build types correctly.
9690 Similarly, if we do not read the producer, we can not apply
9691 producer-specific interpretation. */
9692 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9693 }
9694
9695 /* Load the DIEs associated with PER_CU into memory. */
9696
9697 static void
9698 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9699 bool skip_partial,
9700 enum language pretend_language)
9701 {
9702 gdb_assert (! this_cu->is_debug_types);
9703
9704 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9705 load_full_comp_unit_reader, &pretend_language);
9706 }
9707
9708 /* Add a DIE to the delayed physname list. */
9709
9710 static void
9711 add_to_method_list (struct type *type, int fnfield_index, int index,
9712 const char *name, struct die_info *die,
9713 struct dwarf2_cu *cu)
9714 {
9715 struct delayed_method_info mi;
9716 mi.type = type;
9717 mi.fnfield_index = fnfield_index;
9718 mi.index = index;
9719 mi.name = name;
9720 mi.die = die;
9721 cu->method_list.push_back (mi);
9722 }
9723
9724 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9725 "const" / "volatile". If so, decrements LEN by the length of the
9726 modifier and return true. Otherwise return false. */
9727
9728 template<size_t N>
9729 static bool
9730 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9731 {
9732 size_t mod_len = sizeof (mod) - 1;
9733 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9734 {
9735 len -= mod_len;
9736 return true;
9737 }
9738 return false;
9739 }
9740
9741 /* Compute the physnames of any methods on the CU's method list.
9742
9743 The computation of method physnames is delayed in order to avoid the
9744 (bad) condition that one of the method's formal parameters is of an as yet
9745 incomplete type. */
9746
9747 static void
9748 compute_delayed_physnames (struct dwarf2_cu *cu)
9749 {
9750 /* Only C++ delays computing physnames. */
9751 if (cu->method_list.empty ())
9752 return;
9753 gdb_assert (cu->language == language_cplus);
9754
9755 for (const delayed_method_info &mi : cu->method_list)
9756 {
9757 const char *physname;
9758 struct fn_fieldlist *fn_flp
9759 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9760 physname = dwarf2_physname (mi.name, mi.die, cu);
9761 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9762 = physname ? physname : "";
9763
9764 /* Since there's no tag to indicate whether a method is a
9765 const/volatile overload, extract that information out of the
9766 demangled name. */
9767 if (physname != NULL)
9768 {
9769 size_t len = strlen (physname);
9770
9771 while (1)
9772 {
9773 if (physname[len] == ')') /* shortcut */
9774 break;
9775 else if (check_modifier (physname, len, " const"))
9776 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9777 else if (check_modifier (physname, len, " volatile"))
9778 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9779 else
9780 break;
9781 }
9782 }
9783 }
9784
9785 /* The list is no longer needed. */
9786 cu->method_list.clear ();
9787 }
9788
9789 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9790 the same as all other symbols in LISTHEAD. If a new symbol is added
9791 with a different language, this function asserts. */
9792
9793 static inline void
9794 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9795 {
9796 /* Only assert if LISTHEAD already contains symbols of a different
9797 language (dict_create_hashed/insert_symbol_hashed requires that all
9798 symbols in this list are of the same language). */
9799 gdb_assert ((*listhead) == NULL
9800 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9801 == SYMBOL_LANGUAGE (symbol)));
9802
9803 add_symbol_to_list (symbol, listhead);
9804 }
9805
9806 /* Go objects should be embedded in a DW_TAG_module DIE,
9807 and it's not clear if/how imported objects will appear.
9808 To keep Go support simple until that's worked out,
9809 go back through what we've read and create something usable.
9810 We could do this while processing each DIE, and feels kinda cleaner,
9811 but that way is more invasive.
9812 This is to, for example, allow the user to type "p var" or "b main"
9813 without having to specify the package name, and allow lookups
9814 of module.object to work in contexts that use the expression
9815 parser. */
9816
9817 static void
9818 fixup_go_packaging (struct dwarf2_cu *cu)
9819 {
9820 char *package_name = NULL;
9821 struct pending *list;
9822 int i;
9823
9824 for (list = *cu->builder->get_global_symbols ();
9825 list != NULL;
9826 list = list->next)
9827 {
9828 for (i = 0; i < list->nsyms; ++i)
9829 {
9830 struct symbol *sym = list->symbol[i];
9831
9832 if (SYMBOL_LANGUAGE (sym) == language_go
9833 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9834 {
9835 char *this_package_name = go_symbol_package_name (sym);
9836
9837 if (this_package_name == NULL)
9838 continue;
9839 if (package_name == NULL)
9840 package_name = this_package_name;
9841 else
9842 {
9843 struct objfile *objfile
9844 = cu->per_cu->dwarf2_per_objfile->objfile;
9845 if (strcmp (package_name, this_package_name) != 0)
9846 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9847 (symbol_symtab (sym) != NULL
9848 ? symtab_to_filename_for_display
9849 (symbol_symtab (sym))
9850 : objfile_name (objfile)),
9851 this_package_name, package_name);
9852 xfree (this_package_name);
9853 }
9854 }
9855 }
9856 }
9857
9858 if (package_name != NULL)
9859 {
9860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9861 const char *saved_package_name
9862 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9863 package_name,
9864 strlen (package_name));
9865 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9866 saved_package_name);
9867 struct symbol *sym;
9868
9869 sym = allocate_symbol (objfile);
9870 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9871 SYMBOL_SET_NAMES (sym, saved_package_name,
9872 strlen (saved_package_name), 0, objfile);
9873 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9874 e.g., "main" finds the "main" module and not C's main(). */
9875 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9876 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9877 SYMBOL_TYPE (sym) = type;
9878
9879 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9880
9881 xfree (package_name);
9882 }
9883 }
9884
9885 /* Allocate a fully-qualified name consisting of the two parts on the
9886 obstack. */
9887
9888 static const char *
9889 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9890 {
9891 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9892 }
9893
9894 /* A helper that allocates a struct discriminant_info to attach to a
9895 union type. */
9896
9897 static struct discriminant_info *
9898 alloc_discriminant_info (struct type *type, int discriminant_index,
9899 int default_index)
9900 {
9901 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9902 gdb_assert (discriminant_index == -1
9903 || (discriminant_index >= 0
9904 && discriminant_index < TYPE_NFIELDS (type)));
9905 gdb_assert (default_index == -1
9906 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9907
9908 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9909
9910 struct discriminant_info *disc
9911 = ((struct discriminant_info *)
9912 TYPE_ZALLOC (type,
9913 offsetof (struct discriminant_info, discriminants)
9914 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9915 disc->default_index = default_index;
9916 disc->discriminant_index = discriminant_index;
9917
9918 struct dynamic_prop prop;
9919 prop.kind = PROP_UNDEFINED;
9920 prop.data.baton = disc;
9921
9922 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9923
9924 return disc;
9925 }
9926
9927 /* Some versions of rustc emitted enums in an unusual way.
9928
9929 Ordinary enums were emitted as unions. The first element of each
9930 structure in the union was named "RUST$ENUM$DISR". This element
9931 held the discriminant.
9932
9933 These versions of Rust also implemented the "non-zero"
9934 optimization. When the enum had two values, and one is empty and
9935 the other holds a pointer that cannot be zero, the pointer is used
9936 as the discriminant, with a zero value meaning the empty variant.
9937 Here, the union's first member is of the form
9938 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9939 where the fieldnos are the indices of the fields that should be
9940 traversed in order to find the field (which may be several fields deep)
9941 and the variantname is the name of the variant of the case when the
9942 field is zero.
9943
9944 This function recognizes whether TYPE is of one of these forms,
9945 and, if so, smashes it to be a variant type. */
9946
9947 static void
9948 quirk_rust_enum (struct type *type, struct objfile *objfile)
9949 {
9950 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9951
9952 /* We don't need to deal with empty enums. */
9953 if (TYPE_NFIELDS (type) == 0)
9954 return;
9955
9956 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9957 if (TYPE_NFIELDS (type) == 1
9958 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9959 {
9960 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9961
9962 /* Decode the field name to find the offset of the
9963 discriminant. */
9964 ULONGEST bit_offset = 0;
9965 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9966 while (name[0] >= '0' && name[0] <= '9')
9967 {
9968 char *tail;
9969 unsigned long index = strtoul (name, &tail, 10);
9970 name = tail;
9971 if (*name != '$'
9972 || index >= TYPE_NFIELDS (field_type)
9973 || (TYPE_FIELD_LOC_KIND (field_type, index)
9974 != FIELD_LOC_KIND_BITPOS))
9975 {
9976 complaint (_("Could not parse Rust enum encoding string \"%s\""
9977 "[in module %s]"),
9978 TYPE_FIELD_NAME (type, 0),
9979 objfile_name (objfile));
9980 return;
9981 }
9982 ++name;
9983
9984 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9985 field_type = TYPE_FIELD_TYPE (field_type, index);
9986 }
9987
9988 /* Make a union to hold the variants. */
9989 struct type *union_type = alloc_type (objfile);
9990 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9991 TYPE_NFIELDS (union_type) = 3;
9992 TYPE_FIELDS (union_type)
9993 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9994 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9995 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9996
9997 /* Put the discriminant must at index 0. */
9998 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9999 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10000 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10001 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10002
10003 /* The order of fields doesn't really matter, so put the real
10004 field at index 1 and the data-less field at index 2. */
10005 struct discriminant_info *disc
10006 = alloc_discriminant_info (union_type, 0, 1);
10007 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10008 TYPE_FIELD_NAME (union_type, 1)
10009 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10010 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10011 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10012 TYPE_FIELD_NAME (union_type, 1));
10013
10014 const char *dataless_name
10015 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10016 name);
10017 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10018 dataless_name);
10019 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10020 /* NAME points into the original discriminant name, which
10021 already has the correct lifetime. */
10022 TYPE_FIELD_NAME (union_type, 2) = name;
10023 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10024 disc->discriminants[2] = 0;
10025
10026 /* Smash this type to be a structure type. We have to do this
10027 because the type has already been recorded. */
10028 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10029 TYPE_NFIELDS (type) = 1;
10030 TYPE_FIELDS (type)
10031 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10032
10033 /* Install the variant part. */
10034 TYPE_FIELD_TYPE (type, 0) = union_type;
10035 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10036 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10037 }
10038 else if (TYPE_NFIELDS (type) == 1)
10039 {
10040 /* We assume that a union with a single field is a univariant
10041 enum. */
10042 /* Smash this type to be a structure type. We have to do this
10043 because the type has already been recorded. */
10044 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10045
10046 /* Make a union to hold the variants. */
10047 struct type *union_type = alloc_type (objfile);
10048 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10049 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10050 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10051 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10052 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10053
10054 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10055 const char *variant_name
10056 = rust_last_path_segment (TYPE_NAME (field_type));
10057 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10058 TYPE_NAME (field_type)
10059 = rust_fully_qualify (&objfile->objfile_obstack,
10060 TYPE_NAME (type), variant_name);
10061
10062 /* Install the union in the outer struct type. */
10063 TYPE_NFIELDS (type) = 1;
10064 TYPE_FIELDS (type)
10065 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10066 TYPE_FIELD_TYPE (type, 0) = union_type;
10067 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10068 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10069
10070 alloc_discriminant_info (union_type, -1, 0);
10071 }
10072 else
10073 {
10074 struct type *disr_type = nullptr;
10075 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10076 {
10077 disr_type = TYPE_FIELD_TYPE (type, i);
10078
10079 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10080 {
10081 /* All fields of a true enum will be structs. */
10082 return;
10083 }
10084 else if (TYPE_NFIELDS (disr_type) == 0)
10085 {
10086 /* Could be data-less variant, so keep going. */
10087 disr_type = nullptr;
10088 }
10089 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10090 "RUST$ENUM$DISR") != 0)
10091 {
10092 /* Not a Rust enum. */
10093 return;
10094 }
10095 else
10096 {
10097 /* Found one. */
10098 break;
10099 }
10100 }
10101
10102 /* If we got here without a discriminant, then it's probably
10103 just a union. */
10104 if (disr_type == nullptr)
10105 return;
10106
10107 /* Smash this type to be a structure type. We have to do this
10108 because the type has already been recorded. */
10109 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10110
10111 /* Make a union to hold the variants. */
10112 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10113 struct type *union_type = alloc_type (objfile);
10114 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10115 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10116 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10117 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10118 TYPE_FIELDS (union_type)
10119 = (struct field *) TYPE_ZALLOC (union_type,
10120 (TYPE_NFIELDS (union_type)
10121 * sizeof (struct field)));
10122
10123 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10124 TYPE_NFIELDS (type) * sizeof (struct field));
10125
10126 /* Install the discriminant at index 0 in the union. */
10127 TYPE_FIELD (union_type, 0) = *disr_field;
10128 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10129 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10130
10131 /* Install the union in the outer struct type. */
10132 TYPE_FIELD_TYPE (type, 0) = union_type;
10133 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10134 TYPE_NFIELDS (type) = 1;
10135
10136 /* Set the size and offset of the union type. */
10137 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10138
10139 /* We need a way to find the correct discriminant given a
10140 variant name. For convenience we build a map here. */
10141 struct type *enum_type = FIELD_TYPE (*disr_field);
10142 std::unordered_map<std::string, ULONGEST> discriminant_map;
10143 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10144 {
10145 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10146 {
10147 const char *name
10148 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10149 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10150 }
10151 }
10152
10153 int n_fields = TYPE_NFIELDS (union_type);
10154 struct discriminant_info *disc
10155 = alloc_discriminant_info (union_type, 0, -1);
10156 /* Skip the discriminant here. */
10157 for (int i = 1; i < n_fields; ++i)
10158 {
10159 /* Find the final word in the name of this variant's type.
10160 That name can be used to look up the correct
10161 discriminant. */
10162 const char *variant_name
10163 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10164 i)));
10165
10166 auto iter = discriminant_map.find (variant_name);
10167 if (iter != discriminant_map.end ())
10168 disc->discriminants[i] = iter->second;
10169
10170 /* Remove the discriminant field, if it exists. */
10171 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10172 if (TYPE_NFIELDS (sub_type) > 0)
10173 {
10174 --TYPE_NFIELDS (sub_type);
10175 ++TYPE_FIELDS (sub_type);
10176 }
10177 TYPE_FIELD_NAME (union_type, i) = variant_name;
10178 TYPE_NAME (sub_type)
10179 = rust_fully_qualify (&objfile->objfile_obstack,
10180 TYPE_NAME (type), variant_name);
10181 }
10182 }
10183 }
10184
10185 /* Rewrite some Rust unions to be structures with variants parts. */
10186
10187 static void
10188 rust_union_quirks (struct dwarf2_cu *cu)
10189 {
10190 gdb_assert (cu->language == language_rust);
10191 for (type *type_ : cu->rust_unions)
10192 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10193 /* We don't need this any more. */
10194 cu->rust_unions.clear ();
10195 }
10196
10197 /* Return the symtab for PER_CU. This works properly regardless of
10198 whether we're using the index or psymtabs. */
10199
10200 static struct compunit_symtab *
10201 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10202 {
10203 return (per_cu->dwarf2_per_objfile->using_index
10204 ? per_cu->v.quick->compunit_symtab
10205 : per_cu->v.psymtab->compunit_symtab);
10206 }
10207
10208 /* A helper function for computing the list of all symbol tables
10209 included by PER_CU. */
10210
10211 static void
10212 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10213 htab_t all_children, htab_t all_type_symtabs,
10214 struct dwarf2_per_cu_data *per_cu,
10215 struct compunit_symtab *immediate_parent)
10216 {
10217 void **slot;
10218 int ix;
10219 struct compunit_symtab *cust;
10220 struct dwarf2_per_cu_data *iter;
10221
10222 slot = htab_find_slot (all_children, per_cu, INSERT);
10223 if (*slot != NULL)
10224 {
10225 /* This inclusion and its children have been processed. */
10226 return;
10227 }
10228
10229 *slot = per_cu;
10230 /* Only add a CU if it has a symbol table. */
10231 cust = get_compunit_symtab (per_cu);
10232 if (cust != NULL)
10233 {
10234 /* If this is a type unit only add its symbol table if we haven't
10235 seen it yet (type unit per_cu's can share symtabs). */
10236 if (per_cu->is_debug_types)
10237 {
10238 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10239 if (*slot == NULL)
10240 {
10241 *slot = cust;
10242 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10243 if (cust->user == NULL)
10244 cust->user = immediate_parent;
10245 }
10246 }
10247 else
10248 {
10249 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10250 if (cust->user == NULL)
10251 cust->user = immediate_parent;
10252 }
10253 }
10254
10255 for (ix = 0;
10256 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10257 ++ix)
10258 {
10259 recursively_compute_inclusions (result, all_children,
10260 all_type_symtabs, iter, cust);
10261 }
10262 }
10263
10264 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10265 PER_CU. */
10266
10267 static void
10268 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10269 {
10270 gdb_assert (! per_cu->is_debug_types);
10271
10272 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10273 {
10274 int ix, len;
10275 struct dwarf2_per_cu_data *per_cu_iter;
10276 struct compunit_symtab *compunit_symtab_iter;
10277 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10278 htab_t all_children, all_type_symtabs;
10279 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10280
10281 /* If we don't have a symtab, we can just skip this case. */
10282 if (cust == NULL)
10283 return;
10284
10285 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10286 NULL, xcalloc, xfree);
10287 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10288 NULL, xcalloc, xfree);
10289
10290 for (ix = 0;
10291 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10292 ix, per_cu_iter);
10293 ++ix)
10294 {
10295 recursively_compute_inclusions (&result_symtabs, all_children,
10296 all_type_symtabs, per_cu_iter,
10297 cust);
10298 }
10299
10300 /* Now we have a transitive closure of all the included symtabs. */
10301 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10302 cust->includes
10303 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10304 struct compunit_symtab *, len + 1);
10305 for (ix = 0;
10306 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10307 compunit_symtab_iter);
10308 ++ix)
10309 cust->includes[ix] = compunit_symtab_iter;
10310 cust->includes[len] = NULL;
10311
10312 VEC_free (compunit_symtab_ptr, result_symtabs);
10313 htab_delete (all_children);
10314 htab_delete (all_type_symtabs);
10315 }
10316 }
10317
10318 /* Compute the 'includes' field for the symtabs of all the CUs we just
10319 read. */
10320
10321 static void
10322 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10323 {
10324 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10325 {
10326 if (! iter->is_debug_types)
10327 compute_compunit_symtab_includes (iter);
10328 }
10329
10330 dwarf2_per_objfile->just_read_cus.clear ();
10331 }
10332
10333 /* Generate full symbol information for PER_CU, whose DIEs have
10334 already been loaded into memory. */
10335
10336 static void
10337 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10338 enum language pretend_language)
10339 {
10340 struct dwarf2_cu *cu = per_cu->cu;
10341 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10342 struct objfile *objfile = dwarf2_per_objfile->objfile;
10343 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10344 CORE_ADDR lowpc, highpc;
10345 struct compunit_symtab *cust;
10346 CORE_ADDR baseaddr;
10347 struct block *static_block;
10348 CORE_ADDR addr;
10349
10350 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10351
10352 /* Clear the list here in case something was left over. */
10353 cu->method_list.clear ();
10354
10355 cu->language = pretend_language;
10356 cu->language_defn = language_def (cu->language);
10357
10358 /* Do line number decoding in read_file_scope () */
10359 process_die (cu->dies, cu);
10360
10361 /* For now fudge the Go package. */
10362 if (cu->language == language_go)
10363 fixup_go_packaging (cu);
10364
10365 /* Now that we have processed all the DIEs in the CU, all the types
10366 should be complete, and it should now be safe to compute all of the
10367 physnames. */
10368 compute_delayed_physnames (cu);
10369
10370 if (cu->language == language_rust)
10371 rust_union_quirks (cu);
10372
10373 /* Some compilers don't define a DW_AT_high_pc attribute for the
10374 compilation unit. If the DW_AT_high_pc is missing, synthesize
10375 it, by scanning the DIE's below the compilation unit. */
10376 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10377
10378 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10379 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10380
10381 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10382 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10383 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10384 addrmap to help ensure it has an accurate map of pc values belonging to
10385 this comp unit. */
10386 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10387
10388 cust = cu->builder->end_symtab_from_static_block (static_block,
10389 SECT_OFF_TEXT (objfile),
10390 0);
10391
10392 if (cust != NULL)
10393 {
10394 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10395
10396 /* Set symtab language to language from DW_AT_language. If the
10397 compilation is from a C file generated by language preprocessors, do
10398 not set the language if it was already deduced by start_subfile. */
10399 if (!(cu->language == language_c
10400 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10401 COMPUNIT_FILETABS (cust)->language = cu->language;
10402
10403 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10404 produce DW_AT_location with location lists but it can be possibly
10405 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10406 there were bugs in prologue debug info, fixed later in GCC-4.5
10407 by "unwind info for epilogues" patch (which is not directly related).
10408
10409 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10410 needed, it would be wrong due to missing DW_AT_producer there.
10411
10412 Still one can confuse GDB by using non-standard GCC compilation
10413 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10414 */
10415 if (cu->has_loclist && gcc_4_minor >= 5)
10416 cust->locations_valid = 1;
10417
10418 if (gcc_4_minor >= 5)
10419 cust->epilogue_unwind_valid = 1;
10420
10421 cust->call_site_htab = cu->call_site_htab;
10422 }
10423
10424 if (dwarf2_per_objfile->using_index)
10425 per_cu->v.quick->compunit_symtab = cust;
10426 else
10427 {
10428 struct partial_symtab *pst = per_cu->v.psymtab;
10429 pst->compunit_symtab = cust;
10430 pst->readin = 1;
10431 }
10432
10433 /* Push it for inclusion processing later. */
10434 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10435
10436 /* Not needed any more. */
10437 cu->builder.reset ();
10438 }
10439
10440 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10441 already been loaded into memory. */
10442
10443 static void
10444 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10445 enum language pretend_language)
10446 {
10447 struct dwarf2_cu *cu = per_cu->cu;
10448 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10449 struct objfile *objfile = dwarf2_per_objfile->objfile;
10450 struct compunit_symtab *cust;
10451 struct signatured_type *sig_type;
10452
10453 gdb_assert (per_cu->is_debug_types);
10454 sig_type = (struct signatured_type *) per_cu;
10455
10456 /* Clear the list here in case something was left over. */
10457 cu->method_list.clear ();
10458
10459 cu->language = pretend_language;
10460 cu->language_defn = language_def (cu->language);
10461
10462 /* The symbol tables are set up in read_type_unit_scope. */
10463 process_die (cu->dies, cu);
10464
10465 /* For now fudge the Go package. */
10466 if (cu->language == language_go)
10467 fixup_go_packaging (cu);
10468
10469 /* Now that we have processed all the DIEs in the CU, all the types
10470 should be complete, and it should now be safe to compute all of the
10471 physnames. */
10472 compute_delayed_physnames (cu);
10473
10474 if (cu->language == language_rust)
10475 rust_union_quirks (cu);
10476
10477 /* TUs share symbol tables.
10478 If this is the first TU to use this symtab, complete the construction
10479 of it with end_expandable_symtab. Otherwise, complete the addition of
10480 this TU's symbols to the existing symtab. */
10481 if (sig_type->type_unit_group->compunit_symtab == NULL)
10482 {
10483 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10484 sig_type->type_unit_group->compunit_symtab = cust;
10485
10486 if (cust != NULL)
10487 {
10488 /* Set symtab language to language from DW_AT_language. If the
10489 compilation is from a C file generated by language preprocessors,
10490 do not set the language if it was already deduced by
10491 start_subfile. */
10492 if (!(cu->language == language_c
10493 && COMPUNIT_FILETABS (cust)->language != language_c))
10494 COMPUNIT_FILETABS (cust)->language = cu->language;
10495 }
10496 }
10497 else
10498 {
10499 cu->builder->augment_type_symtab ();
10500 cust = sig_type->type_unit_group->compunit_symtab;
10501 }
10502
10503 if (dwarf2_per_objfile->using_index)
10504 per_cu->v.quick->compunit_symtab = cust;
10505 else
10506 {
10507 struct partial_symtab *pst = per_cu->v.psymtab;
10508 pst->compunit_symtab = cust;
10509 pst->readin = 1;
10510 }
10511
10512 /* Not needed any more. */
10513 cu->builder.reset ();
10514 }
10515
10516 /* Process an imported unit DIE. */
10517
10518 static void
10519 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10520 {
10521 struct attribute *attr;
10522
10523 /* For now we don't handle imported units in type units. */
10524 if (cu->per_cu->is_debug_types)
10525 {
10526 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10527 " supported in type units [in module %s]"),
10528 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10529 }
10530
10531 attr = dwarf2_attr (die, DW_AT_import, cu);
10532 if (attr != NULL)
10533 {
10534 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10535 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10536 dwarf2_per_cu_data *per_cu
10537 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10538 cu->per_cu->dwarf2_per_objfile);
10539
10540 /* If necessary, add it to the queue and load its DIEs. */
10541 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10542 load_full_comp_unit (per_cu, false, cu->language);
10543
10544 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10545 per_cu);
10546 }
10547 }
10548
10549 /* RAII object that represents a process_die scope: i.e.,
10550 starts/finishes processing a DIE. */
10551 class process_die_scope
10552 {
10553 public:
10554 process_die_scope (die_info *die, dwarf2_cu *cu)
10555 : m_die (die), m_cu (cu)
10556 {
10557 /* We should only be processing DIEs not already in process. */
10558 gdb_assert (!m_die->in_process);
10559 m_die->in_process = true;
10560 }
10561
10562 ~process_die_scope ()
10563 {
10564 m_die->in_process = false;
10565
10566 /* If we're done processing the DIE for the CU that owns the line
10567 header, we don't need the line header anymore. */
10568 if (m_cu->line_header_die_owner == m_die)
10569 {
10570 delete m_cu->line_header;
10571 m_cu->line_header = NULL;
10572 m_cu->line_header_die_owner = NULL;
10573 }
10574 }
10575
10576 private:
10577 die_info *m_die;
10578 dwarf2_cu *m_cu;
10579 };
10580
10581 /* Process a die and its children. */
10582
10583 static void
10584 process_die (struct die_info *die, struct dwarf2_cu *cu)
10585 {
10586 process_die_scope scope (die, cu);
10587
10588 switch (die->tag)
10589 {
10590 case DW_TAG_padding:
10591 break;
10592 case DW_TAG_compile_unit:
10593 case DW_TAG_partial_unit:
10594 read_file_scope (die, cu);
10595 break;
10596 case DW_TAG_type_unit:
10597 read_type_unit_scope (die, cu);
10598 break;
10599 case DW_TAG_subprogram:
10600 case DW_TAG_inlined_subroutine:
10601 read_func_scope (die, cu);
10602 break;
10603 case DW_TAG_lexical_block:
10604 case DW_TAG_try_block:
10605 case DW_TAG_catch_block:
10606 read_lexical_block_scope (die, cu);
10607 break;
10608 case DW_TAG_call_site:
10609 case DW_TAG_GNU_call_site:
10610 read_call_site_scope (die, cu);
10611 break;
10612 case DW_TAG_class_type:
10613 case DW_TAG_interface_type:
10614 case DW_TAG_structure_type:
10615 case DW_TAG_union_type:
10616 process_structure_scope (die, cu);
10617 break;
10618 case DW_TAG_enumeration_type:
10619 process_enumeration_scope (die, cu);
10620 break;
10621
10622 /* These dies have a type, but processing them does not create
10623 a symbol or recurse to process the children. Therefore we can
10624 read them on-demand through read_type_die. */
10625 case DW_TAG_subroutine_type:
10626 case DW_TAG_set_type:
10627 case DW_TAG_array_type:
10628 case DW_TAG_pointer_type:
10629 case DW_TAG_ptr_to_member_type:
10630 case DW_TAG_reference_type:
10631 case DW_TAG_rvalue_reference_type:
10632 case DW_TAG_string_type:
10633 break;
10634
10635 case DW_TAG_base_type:
10636 case DW_TAG_subrange_type:
10637 case DW_TAG_typedef:
10638 /* Add a typedef symbol for the type definition, if it has a
10639 DW_AT_name. */
10640 new_symbol (die, read_type_die (die, cu), cu);
10641 break;
10642 case DW_TAG_common_block:
10643 read_common_block (die, cu);
10644 break;
10645 case DW_TAG_common_inclusion:
10646 break;
10647 case DW_TAG_namespace:
10648 cu->processing_has_namespace_info = 1;
10649 read_namespace (die, cu);
10650 break;
10651 case DW_TAG_module:
10652 cu->processing_has_namespace_info = 1;
10653 read_module (die, cu);
10654 break;
10655 case DW_TAG_imported_declaration:
10656 cu->processing_has_namespace_info = 1;
10657 if (read_namespace_alias (die, cu))
10658 break;
10659 /* The declaration is not a global namespace alias. */
10660 /* Fall through. */
10661 case DW_TAG_imported_module:
10662 cu->processing_has_namespace_info = 1;
10663 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10664 || cu->language != language_fortran))
10665 complaint (_("Tag '%s' has unexpected children"),
10666 dwarf_tag_name (die->tag));
10667 read_import_statement (die, cu);
10668 break;
10669
10670 case DW_TAG_imported_unit:
10671 process_imported_unit_die (die, cu);
10672 break;
10673
10674 case DW_TAG_variable:
10675 read_variable (die, cu);
10676 break;
10677
10678 default:
10679 new_symbol (die, NULL, cu);
10680 break;
10681 }
10682 }
10683 \f
10684 /* DWARF name computation. */
10685
10686 /* A helper function for dwarf2_compute_name which determines whether DIE
10687 needs to have the name of the scope prepended to the name listed in the
10688 die. */
10689
10690 static int
10691 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10692 {
10693 struct attribute *attr;
10694
10695 switch (die->tag)
10696 {
10697 case DW_TAG_namespace:
10698 case DW_TAG_typedef:
10699 case DW_TAG_class_type:
10700 case DW_TAG_interface_type:
10701 case DW_TAG_structure_type:
10702 case DW_TAG_union_type:
10703 case DW_TAG_enumeration_type:
10704 case DW_TAG_enumerator:
10705 case DW_TAG_subprogram:
10706 case DW_TAG_inlined_subroutine:
10707 case DW_TAG_member:
10708 case DW_TAG_imported_declaration:
10709 return 1;
10710
10711 case DW_TAG_variable:
10712 case DW_TAG_constant:
10713 /* We only need to prefix "globally" visible variables. These include
10714 any variable marked with DW_AT_external or any variable that
10715 lives in a namespace. [Variables in anonymous namespaces
10716 require prefixing, but they are not DW_AT_external.] */
10717
10718 if (dwarf2_attr (die, DW_AT_specification, cu))
10719 {
10720 struct dwarf2_cu *spec_cu = cu;
10721
10722 return die_needs_namespace (die_specification (die, &spec_cu),
10723 spec_cu);
10724 }
10725
10726 attr = dwarf2_attr (die, DW_AT_external, cu);
10727 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10728 && die->parent->tag != DW_TAG_module)
10729 return 0;
10730 /* A variable in a lexical block of some kind does not need a
10731 namespace, even though in C++ such variables may be external
10732 and have a mangled name. */
10733 if (die->parent->tag == DW_TAG_lexical_block
10734 || die->parent->tag == DW_TAG_try_block
10735 || die->parent->tag == DW_TAG_catch_block
10736 || die->parent->tag == DW_TAG_subprogram)
10737 return 0;
10738 return 1;
10739
10740 default:
10741 return 0;
10742 }
10743 }
10744
10745 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10746 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10747 defined for the given DIE. */
10748
10749 static struct attribute *
10750 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10751 {
10752 struct attribute *attr;
10753
10754 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10755 if (attr == NULL)
10756 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10757
10758 return attr;
10759 }
10760
10761 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10762 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10763 defined for the given DIE. */
10764
10765 static const char *
10766 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10767 {
10768 const char *linkage_name;
10769
10770 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10771 if (linkage_name == NULL)
10772 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10773
10774 return linkage_name;
10775 }
10776
10777 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10778 compute the physname for the object, which include a method's:
10779 - formal parameters (C++),
10780 - receiver type (Go),
10781
10782 The term "physname" is a bit confusing.
10783 For C++, for example, it is the demangled name.
10784 For Go, for example, it's the mangled name.
10785
10786 For Ada, return the DIE's linkage name rather than the fully qualified
10787 name. PHYSNAME is ignored..
10788
10789 The result is allocated on the objfile_obstack and canonicalized. */
10790
10791 static const char *
10792 dwarf2_compute_name (const char *name,
10793 struct die_info *die, struct dwarf2_cu *cu,
10794 int physname)
10795 {
10796 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10797
10798 if (name == NULL)
10799 name = dwarf2_name (die, cu);
10800
10801 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10802 but otherwise compute it by typename_concat inside GDB.
10803 FIXME: Actually this is not really true, or at least not always true.
10804 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10805 Fortran names because there is no mangling standard. So new_symbol
10806 will set the demangled name to the result of dwarf2_full_name, and it is
10807 the demangled name that GDB uses if it exists. */
10808 if (cu->language == language_ada
10809 || (cu->language == language_fortran && physname))
10810 {
10811 /* For Ada unit, we prefer the linkage name over the name, as
10812 the former contains the exported name, which the user expects
10813 to be able to reference. Ideally, we want the user to be able
10814 to reference this entity using either natural or linkage name,
10815 but we haven't started looking at this enhancement yet. */
10816 const char *linkage_name = dw2_linkage_name (die, cu);
10817
10818 if (linkage_name != NULL)
10819 return linkage_name;
10820 }
10821
10822 /* These are the only languages we know how to qualify names in. */
10823 if (name != NULL
10824 && (cu->language == language_cplus
10825 || cu->language == language_fortran || cu->language == language_d
10826 || cu->language == language_rust))
10827 {
10828 if (die_needs_namespace (die, cu))
10829 {
10830 const char *prefix;
10831 const char *canonical_name = NULL;
10832
10833 string_file buf;
10834
10835 prefix = determine_prefix (die, cu);
10836 if (*prefix != '\0')
10837 {
10838 char *prefixed_name = typename_concat (NULL, prefix, name,
10839 physname, cu);
10840
10841 buf.puts (prefixed_name);
10842 xfree (prefixed_name);
10843 }
10844 else
10845 buf.puts (name);
10846
10847 /* Template parameters may be specified in the DIE's DW_AT_name, or
10848 as children with DW_TAG_template_type_param or
10849 DW_TAG_value_type_param. If the latter, add them to the name
10850 here. If the name already has template parameters, then
10851 skip this step; some versions of GCC emit both, and
10852 it is more efficient to use the pre-computed name.
10853
10854 Something to keep in mind about this process: it is very
10855 unlikely, or in some cases downright impossible, to produce
10856 something that will match the mangled name of a function.
10857 If the definition of the function has the same debug info,
10858 we should be able to match up with it anyway. But fallbacks
10859 using the minimal symbol, for instance to find a method
10860 implemented in a stripped copy of libstdc++, will not work.
10861 If we do not have debug info for the definition, we will have to
10862 match them up some other way.
10863
10864 When we do name matching there is a related problem with function
10865 templates; two instantiated function templates are allowed to
10866 differ only by their return types, which we do not add here. */
10867
10868 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10869 {
10870 struct attribute *attr;
10871 struct die_info *child;
10872 int first = 1;
10873
10874 die->building_fullname = 1;
10875
10876 for (child = die->child; child != NULL; child = child->sibling)
10877 {
10878 struct type *type;
10879 LONGEST value;
10880 const gdb_byte *bytes;
10881 struct dwarf2_locexpr_baton *baton;
10882 struct value *v;
10883
10884 if (child->tag != DW_TAG_template_type_param
10885 && child->tag != DW_TAG_template_value_param)
10886 continue;
10887
10888 if (first)
10889 {
10890 buf.puts ("<");
10891 first = 0;
10892 }
10893 else
10894 buf.puts (", ");
10895
10896 attr = dwarf2_attr (child, DW_AT_type, cu);
10897 if (attr == NULL)
10898 {
10899 complaint (_("template parameter missing DW_AT_type"));
10900 buf.puts ("UNKNOWN_TYPE");
10901 continue;
10902 }
10903 type = die_type (child, cu);
10904
10905 if (child->tag == DW_TAG_template_type_param)
10906 {
10907 c_print_type (type, "", &buf, -1, 0, cu->language,
10908 &type_print_raw_options);
10909 continue;
10910 }
10911
10912 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10913 if (attr == NULL)
10914 {
10915 complaint (_("template parameter missing "
10916 "DW_AT_const_value"));
10917 buf.puts ("UNKNOWN_VALUE");
10918 continue;
10919 }
10920
10921 dwarf2_const_value_attr (attr, type, name,
10922 &cu->comp_unit_obstack, cu,
10923 &value, &bytes, &baton);
10924
10925 if (TYPE_NOSIGN (type))
10926 /* GDB prints characters as NUMBER 'CHAR'. If that's
10927 changed, this can use value_print instead. */
10928 c_printchar (value, type, &buf);
10929 else
10930 {
10931 struct value_print_options opts;
10932
10933 if (baton != NULL)
10934 v = dwarf2_evaluate_loc_desc (type, NULL,
10935 baton->data,
10936 baton->size,
10937 baton->per_cu);
10938 else if (bytes != NULL)
10939 {
10940 v = allocate_value (type);
10941 memcpy (value_contents_writeable (v), bytes,
10942 TYPE_LENGTH (type));
10943 }
10944 else
10945 v = value_from_longest (type, value);
10946
10947 /* Specify decimal so that we do not depend on
10948 the radix. */
10949 get_formatted_print_options (&opts, 'd');
10950 opts.raw = 1;
10951 value_print (v, &buf, &opts);
10952 release_value (v);
10953 }
10954 }
10955
10956 die->building_fullname = 0;
10957
10958 if (!first)
10959 {
10960 /* Close the argument list, with a space if necessary
10961 (nested templates). */
10962 if (!buf.empty () && buf.string ().back () == '>')
10963 buf.puts (" >");
10964 else
10965 buf.puts (">");
10966 }
10967 }
10968
10969 /* For C++ methods, append formal parameter type
10970 information, if PHYSNAME. */
10971
10972 if (physname && die->tag == DW_TAG_subprogram
10973 && cu->language == language_cplus)
10974 {
10975 struct type *type = read_type_die (die, cu);
10976
10977 c_type_print_args (type, &buf, 1, cu->language,
10978 &type_print_raw_options);
10979
10980 if (cu->language == language_cplus)
10981 {
10982 /* Assume that an artificial first parameter is
10983 "this", but do not crash if it is not. RealView
10984 marks unnamed (and thus unused) parameters as
10985 artificial; there is no way to differentiate
10986 the two cases. */
10987 if (TYPE_NFIELDS (type) > 0
10988 && TYPE_FIELD_ARTIFICIAL (type, 0)
10989 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10990 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10991 0))))
10992 buf.puts (" const");
10993 }
10994 }
10995
10996 const std::string &intermediate_name = buf.string ();
10997
10998 if (cu->language == language_cplus)
10999 canonical_name
11000 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11001 &objfile->per_bfd->storage_obstack);
11002
11003 /* If we only computed INTERMEDIATE_NAME, or if
11004 INTERMEDIATE_NAME is already canonical, then we need to
11005 copy it to the appropriate obstack. */
11006 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11007 name = ((const char *)
11008 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11009 intermediate_name.c_str (),
11010 intermediate_name.length ()));
11011 else
11012 name = canonical_name;
11013 }
11014 }
11015
11016 return name;
11017 }
11018
11019 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11020 If scope qualifiers are appropriate they will be added. The result
11021 will be allocated on the storage_obstack, or NULL if the DIE does
11022 not have a name. NAME may either be from a previous call to
11023 dwarf2_name or NULL.
11024
11025 The output string will be canonicalized (if C++). */
11026
11027 static const char *
11028 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11029 {
11030 return dwarf2_compute_name (name, die, cu, 0);
11031 }
11032
11033 /* Construct a physname for the given DIE in CU. NAME may either be
11034 from a previous call to dwarf2_name or NULL. The result will be
11035 allocated on the objfile_objstack or NULL if the DIE does not have a
11036 name.
11037
11038 The output string will be canonicalized (if C++). */
11039
11040 static const char *
11041 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11042 {
11043 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11044 const char *retval, *mangled = NULL, *canon = NULL;
11045 int need_copy = 1;
11046
11047 /* In this case dwarf2_compute_name is just a shortcut not building anything
11048 on its own. */
11049 if (!die_needs_namespace (die, cu))
11050 return dwarf2_compute_name (name, die, cu, 1);
11051
11052 mangled = dw2_linkage_name (die, cu);
11053
11054 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11055 See https://github.com/rust-lang/rust/issues/32925. */
11056 if (cu->language == language_rust && mangled != NULL
11057 && strchr (mangled, '{') != NULL)
11058 mangled = NULL;
11059
11060 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11061 has computed. */
11062 gdb::unique_xmalloc_ptr<char> demangled;
11063 if (mangled != NULL)
11064 {
11065
11066 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11067 {
11068 /* Do nothing (do not demangle the symbol name). */
11069 }
11070 else if (cu->language == language_go)
11071 {
11072 /* This is a lie, but we already lie to the caller new_symbol.
11073 new_symbol assumes we return the mangled name.
11074 This just undoes that lie until things are cleaned up. */
11075 }
11076 else
11077 {
11078 /* Use DMGL_RET_DROP for C++ template functions to suppress
11079 their return type. It is easier for GDB users to search
11080 for such functions as `name(params)' than `long name(params)'.
11081 In such case the minimal symbol names do not match the full
11082 symbol names but for template functions there is never a need
11083 to look up their definition from their declaration so
11084 the only disadvantage remains the minimal symbol variant
11085 `long name(params)' does not have the proper inferior type. */
11086 demangled.reset (gdb_demangle (mangled,
11087 (DMGL_PARAMS | DMGL_ANSI
11088 | DMGL_RET_DROP)));
11089 }
11090 if (demangled)
11091 canon = demangled.get ();
11092 else
11093 {
11094 canon = mangled;
11095 need_copy = 0;
11096 }
11097 }
11098
11099 if (canon == NULL || check_physname)
11100 {
11101 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11102
11103 if (canon != NULL && strcmp (physname, canon) != 0)
11104 {
11105 /* It may not mean a bug in GDB. The compiler could also
11106 compute DW_AT_linkage_name incorrectly. But in such case
11107 GDB would need to be bug-to-bug compatible. */
11108
11109 complaint (_("Computed physname <%s> does not match demangled <%s> "
11110 "(from linkage <%s>) - DIE at %s [in module %s]"),
11111 physname, canon, mangled, sect_offset_str (die->sect_off),
11112 objfile_name (objfile));
11113
11114 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11115 is available here - over computed PHYSNAME. It is safer
11116 against both buggy GDB and buggy compilers. */
11117
11118 retval = canon;
11119 }
11120 else
11121 {
11122 retval = physname;
11123 need_copy = 0;
11124 }
11125 }
11126 else
11127 retval = canon;
11128
11129 if (need_copy)
11130 retval = ((const char *)
11131 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11132 retval, strlen (retval)));
11133
11134 return retval;
11135 }
11136
11137 /* Inspect DIE in CU for a namespace alias. If one exists, record
11138 a new symbol for it.
11139
11140 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11141
11142 static int
11143 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11144 {
11145 struct attribute *attr;
11146
11147 /* If the die does not have a name, this is not a namespace
11148 alias. */
11149 attr = dwarf2_attr (die, DW_AT_name, cu);
11150 if (attr != NULL)
11151 {
11152 int num;
11153 struct die_info *d = die;
11154 struct dwarf2_cu *imported_cu = cu;
11155
11156 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11157 keep inspecting DIEs until we hit the underlying import. */
11158 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11159 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11160 {
11161 attr = dwarf2_attr (d, DW_AT_import, cu);
11162 if (attr == NULL)
11163 break;
11164
11165 d = follow_die_ref (d, attr, &imported_cu);
11166 if (d->tag != DW_TAG_imported_declaration)
11167 break;
11168 }
11169
11170 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11171 {
11172 complaint (_("DIE at %s has too many recursively imported "
11173 "declarations"), sect_offset_str (d->sect_off));
11174 return 0;
11175 }
11176
11177 if (attr != NULL)
11178 {
11179 struct type *type;
11180 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11181
11182 type = get_die_type_at_offset (sect_off, cu->per_cu);
11183 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11184 {
11185 /* This declaration is a global namespace alias. Add
11186 a symbol for it whose type is the aliased namespace. */
11187 new_symbol (die, type, cu);
11188 return 1;
11189 }
11190 }
11191 }
11192
11193 return 0;
11194 }
11195
11196 /* Return the using directives repository (global or local?) to use in the
11197 current context for CU.
11198
11199 For Ada, imported declarations can materialize renamings, which *may* be
11200 global. However it is impossible (for now?) in DWARF to distinguish
11201 "external" imported declarations and "static" ones. As all imported
11202 declarations seem to be static in all other languages, make them all CU-wide
11203 global only in Ada. */
11204
11205 static struct using_direct **
11206 using_directives (struct dwarf2_cu *cu)
11207 {
11208 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11209 return cu->builder->get_global_using_directives ();
11210 else
11211 return cu->builder->get_local_using_directives ();
11212 }
11213
11214 /* Read the import statement specified by the given die and record it. */
11215
11216 static void
11217 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11218 {
11219 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11220 struct attribute *import_attr;
11221 struct die_info *imported_die, *child_die;
11222 struct dwarf2_cu *imported_cu;
11223 const char *imported_name;
11224 const char *imported_name_prefix;
11225 const char *canonical_name;
11226 const char *import_alias;
11227 const char *imported_declaration = NULL;
11228 const char *import_prefix;
11229 std::vector<const char *> excludes;
11230
11231 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11232 if (import_attr == NULL)
11233 {
11234 complaint (_("Tag '%s' has no DW_AT_import"),
11235 dwarf_tag_name (die->tag));
11236 return;
11237 }
11238
11239 imported_cu = cu;
11240 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11241 imported_name = dwarf2_name (imported_die, imported_cu);
11242 if (imported_name == NULL)
11243 {
11244 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11245
11246 The import in the following code:
11247 namespace A
11248 {
11249 typedef int B;
11250 }
11251
11252 int main ()
11253 {
11254 using A::B;
11255 B b;
11256 return b;
11257 }
11258
11259 ...
11260 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11261 <52> DW_AT_decl_file : 1
11262 <53> DW_AT_decl_line : 6
11263 <54> DW_AT_import : <0x75>
11264 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11265 <59> DW_AT_name : B
11266 <5b> DW_AT_decl_file : 1
11267 <5c> DW_AT_decl_line : 2
11268 <5d> DW_AT_type : <0x6e>
11269 ...
11270 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11271 <76> DW_AT_byte_size : 4
11272 <77> DW_AT_encoding : 5 (signed)
11273
11274 imports the wrong die ( 0x75 instead of 0x58 ).
11275 This case will be ignored until the gcc bug is fixed. */
11276 return;
11277 }
11278
11279 /* Figure out the local name after import. */
11280 import_alias = dwarf2_name (die, cu);
11281
11282 /* Figure out where the statement is being imported to. */
11283 import_prefix = determine_prefix (die, cu);
11284
11285 /* Figure out what the scope of the imported die is and prepend it
11286 to the name of the imported die. */
11287 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11288
11289 if (imported_die->tag != DW_TAG_namespace
11290 && imported_die->tag != DW_TAG_module)
11291 {
11292 imported_declaration = imported_name;
11293 canonical_name = imported_name_prefix;
11294 }
11295 else if (strlen (imported_name_prefix) > 0)
11296 canonical_name = obconcat (&objfile->objfile_obstack,
11297 imported_name_prefix,
11298 (cu->language == language_d ? "." : "::"),
11299 imported_name, (char *) NULL);
11300 else
11301 canonical_name = imported_name;
11302
11303 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11304 for (child_die = die->child; child_die && child_die->tag;
11305 child_die = sibling_die (child_die))
11306 {
11307 /* DWARF-4: A Fortran use statement with a “rename list” may be
11308 represented by an imported module entry with an import attribute
11309 referring to the module and owned entries corresponding to those
11310 entities that are renamed as part of being imported. */
11311
11312 if (child_die->tag != DW_TAG_imported_declaration)
11313 {
11314 complaint (_("child DW_TAG_imported_declaration expected "
11315 "- DIE at %s [in module %s]"),
11316 sect_offset_str (child_die->sect_off),
11317 objfile_name (objfile));
11318 continue;
11319 }
11320
11321 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11322 if (import_attr == NULL)
11323 {
11324 complaint (_("Tag '%s' has no DW_AT_import"),
11325 dwarf_tag_name (child_die->tag));
11326 continue;
11327 }
11328
11329 imported_cu = cu;
11330 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11331 &imported_cu);
11332 imported_name = dwarf2_name (imported_die, imported_cu);
11333 if (imported_name == NULL)
11334 {
11335 complaint (_("child DW_TAG_imported_declaration has unknown "
11336 "imported name - DIE at %s [in module %s]"),
11337 sect_offset_str (child_die->sect_off),
11338 objfile_name (objfile));
11339 continue;
11340 }
11341
11342 excludes.push_back (imported_name);
11343
11344 process_die (child_die, cu);
11345 }
11346
11347 add_using_directive (using_directives (cu),
11348 import_prefix,
11349 canonical_name,
11350 import_alias,
11351 imported_declaration,
11352 excludes,
11353 0,
11354 &objfile->objfile_obstack);
11355 }
11356
11357 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11358 types, but gives them a size of zero. Starting with version 14,
11359 ICC is compatible with GCC. */
11360
11361 static int
11362 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11363 {
11364 if (!cu->checked_producer)
11365 check_producer (cu);
11366
11367 return cu->producer_is_icc_lt_14;
11368 }
11369
11370 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11371 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11372 this, it was first present in GCC release 4.3.0. */
11373
11374 static int
11375 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11376 {
11377 if (!cu->checked_producer)
11378 check_producer (cu);
11379
11380 return cu->producer_is_gcc_lt_4_3;
11381 }
11382
11383 static file_and_directory
11384 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11385 {
11386 file_and_directory res;
11387
11388 /* Find the filename. Do not use dwarf2_name here, since the filename
11389 is not a source language identifier. */
11390 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11391 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11392
11393 if (res.comp_dir == NULL
11394 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11395 && IS_ABSOLUTE_PATH (res.name))
11396 {
11397 res.comp_dir_storage = ldirname (res.name);
11398 if (!res.comp_dir_storage.empty ())
11399 res.comp_dir = res.comp_dir_storage.c_str ();
11400 }
11401 if (res.comp_dir != NULL)
11402 {
11403 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11404 directory, get rid of it. */
11405 const char *cp = strchr (res.comp_dir, ':');
11406
11407 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11408 res.comp_dir = cp + 1;
11409 }
11410
11411 if (res.name == NULL)
11412 res.name = "<unknown>";
11413
11414 return res;
11415 }
11416
11417 /* Handle DW_AT_stmt_list for a compilation unit.
11418 DIE is the DW_TAG_compile_unit die for CU.
11419 COMP_DIR is the compilation directory. LOWPC is passed to
11420 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11421
11422 static void
11423 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11424 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11425 {
11426 struct dwarf2_per_objfile *dwarf2_per_objfile
11427 = cu->per_cu->dwarf2_per_objfile;
11428 struct objfile *objfile = dwarf2_per_objfile->objfile;
11429 struct attribute *attr;
11430 struct line_header line_header_local;
11431 hashval_t line_header_local_hash;
11432 void **slot;
11433 int decode_mapping;
11434
11435 gdb_assert (! cu->per_cu->is_debug_types);
11436
11437 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11438 if (attr == NULL)
11439 return;
11440
11441 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11442
11443 /* The line header hash table is only created if needed (it exists to
11444 prevent redundant reading of the line table for partial_units).
11445 If we're given a partial_unit, we'll need it. If we're given a
11446 compile_unit, then use the line header hash table if it's already
11447 created, but don't create one just yet. */
11448
11449 if (dwarf2_per_objfile->line_header_hash == NULL
11450 && die->tag == DW_TAG_partial_unit)
11451 {
11452 dwarf2_per_objfile->line_header_hash
11453 = htab_create_alloc_ex (127, line_header_hash_voidp,
11454 line_header_eq_voidp,
11455 free_line_header_voidp,
11456 &objfile->objfile_obstack,
11457 hashtab_obstack_allocate,
11458 dummy_obstack_deallocate);
11459 }
11460
11461 line_header_local.sect_off = line_offset;
11462 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11463 line_header_local_hash = line_header_hash (&line_header_local);
11464 if (dwarf2_per_objfile->line_header_hash != NULL)
11465 {
11466 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11467 &line_header_local,
11468 line_header_local_hash, NO_INSERT);
11469
11470 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11471 is not present in *SLOT (since if there is something in *SLOT then
11472 it will be for a partial_unit). */
11473 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11474 {
11475 gdb_assert (*slot != NULL);
11476 cu->line_header = (struct line_header *) *slot;
11477 return;
11478 }
11479 }
11480
11481 /* dwarf_decode_line_header does not yet provide sufficient information.
11482 We always have to call also dwarf_decode_lines for it. */
11483 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11484 if (lh == NULL)
11485 return;
11486
11487 cu->line_header = lh.release ();
11488 cu->line_header_die_owner = die;
11489
11490 if (dwarf2_per_objfile->line_header_hash == NULL)
11491 slot = NULL;
11492 else
11493 {
11494 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11495 &line_header_local,
11496 line_header_local_hash, INSERT);
11497 gdb_assert (slot != NULL);
11498 }
11499 if (slot != NULL && *slot == NULL)
11500 {
11501 /* This newly decoded line number information unit will be owned
11502 by line_header_hash hash table. */
11503 *slot = cu->line_header;
11504 cu->line_header_die_owner = NULL;
11505 }
11506 else
11507 {
11508 /* We cannot free any current entry in (*slot) as that struct line_header
11509 may be already used by multiple CUs. Create only temporary decoded
11510 line_header for this CU - it may happen at most once for each line
11511 number information unit. And if we're not using line_header_hash
11512 then this is what we want as well. */
11513 gdb_assert (die->tag != DW_TAG_partial_unit);
11514 }
11515 decode_mapping = (die->tag != DW_TAG_partial_unit);
11516 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11517 decode_mapping);
11518
11519 }
11520
11521 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11522
11523 static void
11524 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11525 {
11526 struct dwarf2_per_objfile *dwarf2_per_objfile
11527 = cu->per_cu->dwarf2_per_objfile;
11528 struct objfile *objfile = dwarf2_per_objfile->objfile;
11529 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11530 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11531 CORE_ADDR highpc = ((CORE_ADDR) 0);
11532 struct attribute *attr;
11533 struct die_info *child_die;
11534 CORE_ADDR baseaddr;
11535
11536 prepare_one_comp_unit (cu, die, cu->language);
11537 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11538
11539 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11540
11541 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11542 from finish_block. */
11543 if (lowpc == ((CORE_ADDR) -1))
11544 lowpc = highpc;
11545 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11546
11547 file_and_directory fnd = find_file_and_directory (die, cu);
11548
11549 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11550 standardised yet. As a workaround for the language detection we fall
11551 back to the DW_AT_producer string. */
11552 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11553 cu->language = language_opencl;
11554
11555 /* Similar hack for Go. */
11556 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11557 set_cu_language (DW_LANG_Go, cu);
11558
11559 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11560
11561 /* Decode line number information if present. We do this before
11562 processing child DIEs, so that the line header table is available
11563 for DW_AT_decl_file. */
11564 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11565
11566 /* Process all dies in compilation unit. */
11567 if (die->child != NULL)
11568 {
11569 child_die = die->child;
11570 while (child_die && child_die->tag)
11571 {
11572 process_die (child_die, cu);
11573 child_die = sibling_die (child_die);
11574 }
11575 }
11576
11577 /* Decode macro information, if present. Dwarf 2 macro information
11578 refers to information in the line number info statement program
11579 header, so we can only read it if we've read the header
11580 successfully. */
11581 attr = dwarf2_attr (die, DW_AT_macros, cu);
11582 if (attr == NULL)
11583 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11584 if (attr && cu->line_header)
11585 {
11586 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11587 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11588
11589 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11590 }
11591 else
11592 {
11593 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11594 if (attr && cu->line_header)
11595 {
11596 unsigned int macro_offset = DW_UNSND (attr);
11597
11598 dwarf_decode_macros (cu, macro_offset, 0);
11599 }
11600 }
11601 }
11602
11603 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11604 Create the set of symtabs used by this TU, or if this TU is sharing
11605 symtabs with another TU and the symtabs have already been created
11606 then restore those symtabs in the line header.
11607 We don't need the pc/line-number mapping for type units. */
11608
11609 static void
11610 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11611 {
11612 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11613 struct type_unit_group *tu_group;
11614 int first_time;
11615 struct attribute *attr;
11616 unsigned int i;
11617 struct signatured_type *sig_type;
11618
11619 gdb_assert (per_cu->is_debug_types);
11620 sig_type = (struct signatured_type *) per_cu;
11621
11622 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11623
11624 /* If we're using .gdb_index (includes -readnow) then
11625 per_cu->type_unit_group may not have been set up yet. */
11626 if (sig_type->type_unit_group == NULL)
11627 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11628 tu_group = sig_type->type_unit_group;
11629
11630 /* If we've already processed this stmt_list there's no real need to
11631 do it again, we could fake it and just recreate the part we need
11632 (file name,index -> symtab mapping). If data shows this optimization
11633 is useful we can do it then. */
11634 first_time = tu_group->compunit_symtab == NULL;
11635
11636 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11637 debug info. */
11638 line_header_up lh;
11639 if (attr != NULL)
11640 {
11641 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11642 lh = dwarf_decode_line_header (line_offset, cu);
11643 }
11644 if (lh == NULL)
11645 {
11646 if (first_time)
11647 dwarf2_start_symtab (cu, "", NULL, 0);
11648 else
11649 {
11650 gdb_assert (tu_group->symtabs == NULL);
11651 gdb_assert (cu->builder == nullptr);
11652 struct compunit_symtab *cust = tu_group->compunit_symtab;
11653 cu->builder.reset (new struct buildsym_compunit
11654 (COMPUNIT_OBJFILE (cust), "",
11655 COMPUNIT_DIRNAME (cust),
11656 compunit_language (cust),
11657 0, cust));
11658 }
11659 return;
11660 }
11661
11662 cu->line_header = lh.release ();
11663 cu->line_header_die_owner = die;
11664
11665 if (first_time)
11666 {
11667 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11668
11669 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11670 still initializing it, and our caller (a few levels up)
11671 process_full_type_unit still needs to know if this is the first
11672 time. */
11673
11674 tu_group->num_symtabs = cu->line_header->file_names.size ();
11675 tu_group->symtabs = XNEWVEC (struct symtab *,
11676 cu->line_header->file_names.size ());
11677
11678 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11679 {
11680 file_entry &fe = cu->line_header->file_names[i];
11681
11682 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11683
11684 if (cu->builder->get_current_subfile ()->symtab == NULL)
11685 {
11686 /* NOTE: start_subfile will recognize when it's been
11687 passed a file it has already seen. So we can't
11688 assume there's a simple mapping from
11689 cu->line_header->file_names to subfiles, plus
11690 cu->line_header->file_names may contain dups. */
11691 cu->builder->get_current_subfile ()->symtab
11692 = allocate_symtab (cust,
11693 cu->builder->get_current_subfile ()->name);
11694 }
11695
11696 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11697 tu_group->symtabs[i] = fe.symtab;
11698 }
11699 }
11700 else
11701 {
11702 gdb_assert (cu->builder == nullptr);
11703 struct compunit_symtab *cust = tu_group->compunit_symtab;
11704 cu->builder.reset (new struct buildsym_compunit
11705 (COMPUNIT_OBJFILE (cust), "",
11706 COMPUNIT_DIRNAME (cust),
11707 compunit_language (cust),
11708 0, cust));
11709
11710 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11711 {
11712 file_entry &fe = cu->line_header->file_names[i];
11713
11714 fe.symtab = tu_group->symtabs[i];
11715 }
11716 }
11717
11718 /* The main symtab is allocated last. Type units don't have DW_AT_name
11719 so they don't have a "real" (so to speak) symtab anyway.
11720 There is later code that will assign the main symtab to all symbols
11721 that don't have one. We need to handle the case of a symbol with a
11722 missing symtab (DW_AT_decl_file) anyway. */
11723 }
11724
11725 /* Process DW_TAG_type_unit.
11726 For TUs we want to skip the first top level sibling if it's not the
11727 actual type being defined by this TU. In this case the first top
11728 level sibling is there to provide context only. */
11729
11730 static void
11731 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11732 {
11733 struct die_info *child_die;
11734
11735 prepare_one_comp_unit (cu, die, language_minimal);
11736
11737 /* Initialize (or reinitialize) the machinery for building symtabs.
11738 We do this before processing child DIEs, so that the line header table
11739 is available for DW_AT_decl_file. */
11740 setup_type_unit_groups (die, cu);
11741
11742 if (die->child != NULL)
11743 {
11744 child_die = die->child;
11745 while (child_die && child_die->tag)
11746 {
11747 process_die (child_die, cu);
11748 child_die = sibling_die (child_die);
11749 }
11750 }
11751 }
11752 \f
11753 /* DWO/DWP files.
11754
11755 http://gcc.gnu.org/wiki/DebugFission
11756 http://gcc.gnu.org/wiki/DebugFissionDWP
11757
11758 To simplify handling of both DWO files ("object" files with the DWARF info)
11759 and DWP files (a file with the DWOs packaged up into one file), we treat
11760 DWP files as having a collection of virtual DWO files. */
11761
11762 static hashval_t
11763 hash_dwo_file (const void *item)
11764 {
11765 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11766 hashval_t hash;
11767
11768 hash = htab_hash_string (dwo_file->dwo_name);
11769 if (dwo_file->comp_dir != NULL)
11770 hash += htab_hash_string (dwo_file->comp_dir);
11771 return hash;
11772 }
11773
11774 static int
11775 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11776 {
11777 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11778 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11779
11780 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11781 return 0;
11782 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11783 return lhs->comp_dir == rhs->comp_dir;
11784 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11785 }
11786
11787 /* Allocate a hash table for DWO files. */
11788
11789 static htab_t
11790 allocate_dwo_file_hash_table (struct objfile *objfile)
11791 {
11792 return htab_create_alloc_ex (41,
11793 hash_dwo_file,
11794 eq_dwo_file,
11795 NULL,
11796 &objfile->objfile_obstack,
11797 hashtab_obstack_allocate,
11798 dummy_obstack_deallocate);
11799 }
11800
11801 /* Lookup DWO file DWO_NAME. */
11802
11803 static void **
11804 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11805 const char *dwo_name,
11806 const char *comp_dir)
11807 {
11808 struct dwo_file find_entry;
11809 void **slot;
11810
11811 if (dwarf2_per_objfile->dwo_files == NULL)
11812 dwarf2_per_objfile->dwo_files
11813 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11814
11815 memset (&find_entry, 0, sizeof (find_entry));
11816 find_entry.dwo_name = dwo_name;
11817 find_entry.comp_dir = comp_dir;
11818 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11819
11820 return slot;
11821 }
11822
11823 static hashval_t
11824 hash_dwo_unit (const void *item)
11825 {
11826 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11827
11828 /* This drops the top 32 bits of the id, but is ok for a hash. */
11829 return dwo_unit->signature;
11830 }
11831
11832 static int
11833 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11834 {
11835 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11836 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11837
11838 /* The signature is assumed to be unique within the DWO file.
11839 So while object file CU dwo_id's always have the value zero,
11840 that's OK, assuming each object file DWO file has only one CU,
11841 and that's the rule for now. */
11842 return lhs->signature == rhs->signature;
11843 }
11844
11845 /* Allocate a hash table for DWO CUs,TUs.
11846 There is one of these tables for each of CUs,TUs for each DWO file. */
11847
11848 static htab_t
11849 allocate_dwo_unit_table (struct objfile *objfile)
11850 {
11851 /* Start out with a pretty small number.
11852 Generally DWO files contain only one CU and maybe some TUs. */
11853 return htab_create_alloc_ex (3,
11854 hash_dwo_unit,
11855 eq_dwo_unit,
11856 NULL,
11857 &objfile->objfile_obstack,
11858 hashtab_obstack_allocate,
11859 dummy_obstack_deallocate);
11860 }
11861
11862 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11863
11864 struct create_dwo_cu_data
11865 {
11866 struct dwo_file *dwo_file;
11867 struct dwo_unit dwo_unit;
11868 };
11869
11870 /* die_reader_func for create_dwo_cu. */
11871
11872 static void
11873 create_dwo_cu_reader (const struct die_reader_specs *reader,
11874 const gdb_byte *info_ptr,
11875 struct die_info *comp_unit_die,
11876 int has_children,
11877 void *datap)
11878 {
11879 struct dwarf2_cu *cu = reader->cu;
11880 sect_offset sect_off = cu->per_cu->sect_off;
11881 struct dwarf2_section_info *section = cu->per_cu->section;
11882 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11883 struct dwo_file *dwo_file = data->dwo_file;
11884 struct dwo_unit *dwo_unit = &data->dwo_unit;
11885 struct attribute *attr;
11886
11887 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11888 if (attr == NULL)
11889 {
11890 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11891 " its dwo_id [in module %s]"),
11892 sect_offset_str (sect_off), dwo_file->dwo_name);
11893 return;
11894 }
11895
11896 dwo_unit->dwo_file = dwo_file;
11897 dwo_unit->signature = DW_UNSND (attr);
11898 dwo_unit->section = section;
11899 dwo_unit->sect_off = sect_off;
11900 dwo_unit->length = cu->per_cu->length;
11901
11902 if (dwarf_read_debug)
11903 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11904 sect_offset_str (sect_off),
11905 hex_string (dwo_unit->signature));
11906 }
11907
11908 /* Create the dwo_units for the CUs in a DWO_FILE.
11909 Note: This function processes DWO files only, not DWP files. */
11910
11911 static void
11912 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11913 struct dwo_file &dwo_file, dwarf2_section_info &section,
11914 htab_t &cus_htab)
11915 {
11916 struct objfile *objfile = dwarf2_per_objfile->objfile;
11917 const gdb_byte *info_ptr, *end_ptr;
11918
11919 dwarf2_read_section (objfile, &section);
11920 info_ptr = section.buffer;
11921
11922 if (info_ptr == NULL)
11923 return;
11924
11925 if (dwarf_read_debug)
11926 {
11927 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11928 get_section_name (&section),
11929 get_section_file_name (&section));
11930 }
11931
11932 end_ptr = info_ptr + section.size;
11933 while (info_ptr < end_ptr)
11934 {
11935 struct dwarf2_per_cu_data per_cu;
11936 struct create_dwo_cu_data create_dwo_cu_data;
11937 struct dwo_unit *dwo_unit;
11938 void **slot;
11939 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11940
11941 memset (&create_dwo_cu_data.dwo_unit, 0,
11942 sizeof (create_dwo_cu_data.dwo_unit));
11943 memset (&per_cu, 0, sizeof (per_cu));
11944 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11945 per_cu.is_debug_types = 0;
11946 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11947 per_cu.section = &section;
11948 create_dwo_cu_data.dwo_file = &dwo_file;
11949
11950 init_cutu_and_read_dies_no_follow (
11951 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11952 info_ptr += per_cu.length;
11953
11954 // If the unit could not be parsed, skip it.
11955 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11956 continue;
11957
11958 if (cus_htab == NULL)
11959 cus_htab = allocate_dwo_unit_table (objfile);
11960
11961 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11962 *dwo_unit = create_dwo_cu_data.dwo_unit;
11963 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11964 gdb_assert (slot != NULL);
11965 if (*slot != NULL)
11966 {
11967 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11968 sect_offset dup_sect_off = dup_cu->sect_off;
11969
11970 complaint (_("debug cu entry at offset %s is duplicate to"
11971 " the entry at offset %s, signature %s"),
11972 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11973 hex_string (dwo_unit->signature));
11974 }
11975 *slot = (void *)dwo_unit;
11976 }
11977 }
11978
11979 /* DWP file .debug_{cu,tu}_index section format:
11980 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11981
11982 DWP Version 1:
11983
11984 Both index sections have the same format, and serve to map a 64-bit
11985 signature to a set of section numbers. Each section begins with a header,
11986 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11987 indexes, and a pool of 32-bit section numbers. The index sections will be
11988 aligned at 8-byte boundaries in the file.
11989
11990 The index section header consists of:
11991
11992 V, 32 bit version number
11993 -, 32 bits unused
11994 N, 32 bit number of compilation units or type units in the index
11995 M, 32 bit number of slots in the hash table
11996
11997 Numbers are recorded using the byte order of the application binary.
11998
11999 The hash table begins at offset 16 in the section, and consists of an array
12000 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12001 order of the application binary). Unused slots in the hash table are 0.
12002 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12003
12004 The parallel table begins immediately after the hash table
12005 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12006 array of 32-bit indexes (using the byte order of the application binary),
12007 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12008 table contains a 32-bit index into the pool of section numbers. For unused
12009 hash table slots, the corresponding entry in the parallel table will be 0.
12010
12011 The pool of section numbers begins immediately following the hash table
12012 (at offset 16 + 12 * M from the beginning of the section). The pool of
12013 section numbers consists of an array of 32-bit words (using the byte order
12014 of the application binary). Each item in the array is indexed starting
12015 from 0. The hash table entry provides the index of the first section
12016 number in the set. Additional section numbers in the set follow, and the
12017 set is terminated by a 0 entry (section number 0 is not used in ELF).
12018
12019 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12020 section must be the first entry in the set, and the .debug_abbrev.dwo must
12021 be the second entry. Other members of the set may follow in any order.
12022
12023 ---
12024
12025 DWP Version 2:
12026
12027 DWP Version 2 combines all the .debug_info, etc. sections into one,
12028 and the entries in the index tables are now offsets into these sections.
12029 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12030 section.
12031
12032 Index Section Contents:
12033 Header
12034 Hash Table of Signatures dwp_hash_table.hash_table
12035 Parallel Table of Indices dwp_hash_table.unit_table
12036 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12037 Table of Section Sizes dwp_hash_table.v2.sizes
12038
12039 The index section header consists of:
12040
12041 V, 32 bit version number
12042 L, 32 bit number of columns in the table of section offsets
12043 N, 32 bit number of compilation units or type units in the index
12044 M, 32 bit number of slots in the hash table
12045
12046 Numbers are recorded using the byte order of the application binary.
12047
12048 The hash table has the same format as version 1.
12049 The parallel table of indices has the same format as version 1,
12050 except that the entries are origin-1 indices into the table of sections
12051 offsets and the table of section sizes.
12052
12053 The table of offsets begins immediately following the parallel table
12054 (at offset 16 + 12 * M from the beginning of the section). The table is
12055 a two-dimensional array of 32-bit words (using the byte order of the
12056 application binary), with L columns and N+1 rows, in row-major order.
12057 Each row in the array is indexed starting from 0. The first row provides
12058 a key to the remaining rows: each column in this row provides an identifier
12059 for a debug section, and the offsets in the same column of subsequent rows
12060 refer to that section. The section identifiers are:
12061
12062 DW_SECT_INFO 1 .debug_info.dwo
12063 DW_SECT_TYPES 2 .debug_types.dwo
12064 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12065 DW_SECT_LINE 4 .debug_line.dwo
12066 DW_SECT_LOC 5 .debug_loc.dwo
12067 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12068 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12069 DW_SECT_MACRO 8 .debug_macro.dwo
12070
12071 The offsets provided by the CU and TU index sections are the base offsets
12072 for the contributions made by each CU or TU to the corresponding section
12073 in the package file. Each CU and TU header contains an abbrev_offset
12074 field, used to find the abbreviations table for that CU or TU within the
12075 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12076 be interpreted as relative to the base offset given in the index section.
12077 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12078 should be interpreted as relative to the base offset for .debug_line.dwo,
12079 and offsets into other debug sections obtained from DWARF attributes should
12080 also be interpreted as relative to the corresponding base offset.
12081
12082 The table of sizes begins immediately following the table of offsets.
12083 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12084 with L columns and N rows, in row-major order. Each row in the array is
12085 indexed starting from 1 (row 0 is shared by the two tables).
12086
12087 ---
12088
12089 Hash table lookup is handled the same in version 1 and 2:
12090
12091 We assume that N and M will not exceed 2^32 - 1.
12092 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12093
12094 Given a 64-bit compilation unit signature or a type signature S, an entry
12095 in the hash table is located as follows:
12096
12097 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12098 the low-order k bits all set to 1.
12099
12100 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12101
12102 3) If the hash table entry at index H matches the signature, use that
12103 entry. If the hash table entry at index H is unused (all zeroes),
12104 terminate the search: the signature is not present in the table.
12105
12106 4) Let H = (H + H') modulo M. Repeat at Step 3.
12107
12108 Because M > N and H' and M are relatively prime, the search is guaranteed
12109 to stop at an unused slot or find the match. */
12110
12111 /* Create a hash table to map DWO IDs to their CU/TU entry in
12112 .debug_{info,types}.dwo in DWP_FILE.
12113 Returns NULL if there isn't one.
12114 Note: This function processes DWP files only, not DWO files. */
12115
12116 static struct dwp_hash_table *
12117 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12118 struct dwp_file *dwp_file, int is_debug_types)
12119 {
12120 struct objfile *objfile = dwarf2_per_objfile->objfile;
12121 bfd *dbfd = dwp_file->dbfd.get ();
12122 const gdb_byte *index_ptr, *index_end;
12123 struct dwarf2_section_info *index;
12124 uint32_t version, nr_columns, nr_units, nr_slots;
12125 struct dwp_hash_table *htab;
12126
12127 if (is_debug_types)
12128 index = &dwp_file->sections.tu_index;
12129 else
12130 index = &dwp_file->sections.cu_index;
12131
12132 if (dwarf2_section_empty_p (index))
12133 return NULL;
12134 dwarf2_read_section (objfile, index);
12135
12136 index_ptr = index->buffer;
12137 index_end = index_ptr + index->size;
12138
12139 version = read_4_bytes (dbfd, index_ptr);
12140 index_ptr += 4;
12141 if (version == 2)
12142 nr_columns = read_4_bytes (dbfd, index_ptr);
12143 else
12144 nr_columns = 0;
12145 index_ptr += 4;
12146 nr_units = read_4_bytes (dbfd, index_ptr);
12147 index_ptr += 4;
12148 nr_slots = read_4_bytes (dbfd, index_ptr);
12149 index_ptr += 4;
12150
12151 if (version != 1 && version != 2)
12152 {
12153 error (_("Dwarf Error: unsupported DWP file version (%s)"
12154 " [in module %s]"),
12155 pulongest (version), dwp_file->name);
12156 }
12157 if (nr_slots != (nr_slots & -nr_slots))
12158 {
12159 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12160 " is not power of 2 [in module %s]"),
12161 pulongest (nr_slots), dwp_file->name);
12162 }
12163
12164 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12165 htab->version = version;
12166 htab->nr_columns = nr_columns;
12167 htab->nr_units = nr_units;
12168 htab->nr_slots = nr_slots;
12169 htab->hash_table = index_ptr;
12170 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12171
12172 /* Exit early if the table is empty. */
12173 if (nr_slots == 0 || nr_units == 0
12174 || (version == 2 && nr_columns == 0))
12175 {
12176 /* All must be zero. */
12177 if (nr_slots != 0 || nr_units != 0
12178 || (version == 2 && nr_columns != 0))
12179 {
12180 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12181 " all zero [in modules %s]"),
12182 dwp_file->name);
12183 }
12184 return htab;
12185 }
12186
12187 if (version == 1)
12188 {
12189 htab->section_pool.v1.indices =
12190 htab->unit_table + sizeof (uint32_t) * nr_slots;
12191 /* It's harder to decide whether the section is too small in v1.
12192 V1 is deprecated anyway so we punt. */
12193 }
12194 else
12195 {
12196 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12197 int *ids = htab->section_pool.v2.section_ids;
12198 /* Reverse map for error checking. */
12199 int ids_seen[DW_SECT_MAX + 1];
12200 int i;
12201
12202 if (nr_columns < 2)
12203 {
12204 error (_("Dwarf Error: bad DWP hash table, too few columns"
12205 " in section table [in module %s]"),
12206 dwp_file->name);
12207 }
12208 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12209 {
12210 error (_("Dwarf Error: bad DWP hash table, too many columns"
12211 " in section table [in module %s]"),
12212 dwp_file->name);
12213 }
12214 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12215 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12216 for (i = 0; i < nr_columns; ++i)
12217 {
12218 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12219
12220 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12221 {
12222 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12223 " in section table [in module %s]"),
12224 id, dwp_file->name);
12225 }
12226 if (ids_seen[id] != -1)
12227 {
12228 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12229 " id %d in section table [in module %s]"),
12230 id, dwp_file->name);
12231 }
12232 ids_seen[id] = i;
12233 ids[i] = id;
12234 }
12235 /* Must have exactly one info or types section. */
12236 if (((ids_seen[DW_SECT_INFO] != -1)
12237 + (ids_seen[DW_SECT_TYPES] != -1))
12238 != 1)
12239 {
12240 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12241 " DWO info/types section [in module %s]"),
12242 dwp_file->name);
12243 }
12244 /* Must have an abbrev section. */
12245 if (ids_seen[DW_SECT_ABBREV] == -1)
12246 {
12247 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12248 " section [in module %s]"),
12249 dwp_file->name);
12250 }
12251 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12252 htab->section_pool.v2.sizes =
12253 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12254 * nr_units * nr_columns);
12255 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12256 * nr_units * nr_columns))
12257 > index_end)
12258 {
12259 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12260 " [in module %s]"),
12261 dwp_file->name);
12262 }
12263 }
12264
12265 return htab;
12266 }
12267
12268 /* Update SECTIONS with the data from SECTP.
12269
12270 This function is like the other "locate" section routines that are
12271 passed to bfd_map_over_sections, but in this context the sections to
12272 read comes from the DWP V1 hash table, not the full ELF section table.
12273
12274 The result is non-zero for success, or zero if an error was found. */
12275
12276 static int
12277 locate_v1_virtual_dwo_sections (asection *sectp,
12278 struct virtual_v1_dwo_sections *sections)
12279 {
12280 const struct dwop_section_names *names = &dwop_section_names;
12281
12282 if (section_is_p (sectp->name, &names->abbrev_dwo))
12283 {
12284 /* There can be only one. */
12285 if (sections->abbrev.s.section != NULL)
12286 return 0;
12287 sections->abbrev.s.section = sectp;
12288 sections->abbrev.size = bfd_get_section_size (sectp);
12289 }
12290 else if (section_is_p (sectp->name, &names->info_dwo)
12291 || section_is_p (sectp->name, &names->types_dwo))
12292 {
12293 /* There can be only one. */
12294 if (sections->info_or_types.s.section != NULL)
12295 return 0;
12296 sections->info_or_types.s.section = sectp;
12297 sections->info_or_types.size = bfd_get_section_size (sectp);
12298 }
12299 else if (section_is_p (sectp->name, &names->line_dwo))
12300 {
12301 /* There can be only one. */
12302 if (sections->line.s.section != NULL)
12303 return 0;
12304 sections->line.s.section = sectp;
12305 sections->line.size = bfd_get_section_size (sectp);
12306 }
12307 else if (section_is_p (sectp->name, &names->loc_dwo))
12308 {
12309 /* There can be only one. */
12310 if (sections->loc.s.section != NULL)
12311 return 0;
12312 sections->loc.s.section = sectp;
12313 sections->loc.size = bfd_get_section_size (sectp);
12314 }
12315 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12316 {
12317 /* There can be only one. */
12318 if (sections->macinfo.s.section != NULL)
12319 return 0;
12320 sections->macinfo.s.section = sectp;
12321 sections->macinfo.size = bfd_get_section_size (sectp);
12322 }
12323 else if (section_is_p (sectp->name, &names->macro_dwo))
12324 {
12325 /* There can be only one. */
12326 if (sections->macro.s.section != NULL)
12327 return 0;
12328 sections->macro.s.section = sectp;
12329 sections->macro.size = bfd_get_section_size (sectp);
12330 }
12331 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12332 {
12333 /* There can be only one. */
12334 if (sections->str_offsets.s.section != NULL)
12335 return 0;
12336 sections->str_offsets.s.section = sectp;
12337 sections->str_offsets.size = bfd_get_section_size (sectp);
12338 }
12339 else
12340 {
12341 /* No other kind of section is valid. */
12342 return 0;
12343 }
12344
12345 return 1;
12346 }
12347
12348 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12349 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12350 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12351 This is for DWP version 1 files. */
12352
12353 static struct dwo_unit *
12354 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12355 struct dwp_file *dwp_file,
12356 uint32_t unit_index,
12357 const char *comp_dir,
12358 ULONGEST signature, int is_debug_types)
12359 {
12360 struct objfile *objfile = dwarf2_per_objfile->objfile;
12361 const struct dwp_hash_table *dwp_htab =
12362 is_debug_types ? dwp_file->tus : dwp_file->cus;
12363 bfd *dbfd = dwp_file->dbfd.get ();
12364 const char *kind = is_debug_types ? "TU" : "CU";
12365 struct dwo_file *dwo_file;
12366 struct dwo_unit *dwo_unit;
12367 struct virtual_v1_dwo_sections sections;
12368 void **dwo_file_slot;
12369 int i;
12370
12371 gdb_assert (dwp_file->version == 1);
12372
12373 if (dwarf_read_debug)
12374 {
12375 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12376 kind,
12377 pulongest (unit_index), hex_string (signature),
12378 dwp_file->name);
12379 }
12380
12381 /* Fetch the sections of this DWO unit.
12382 Put a limit on the number of sections we look for so that bad data
12383 doesn't cause us to loop forever. */
12384
12385 #define MAX_NR_V1_DWO_SECTIONS \
12386 (1 /* .debug_info or .debug_types */ \
12387 + 1 /* .debug_abbrev */ \
12388 + 1 /* .debug_line */ \
12389 + 1 /* .debug_loc */ \
12390 + 1 /* .debug_str_offsets */ \
12391 + 1 /* .debug_macro or .debug_macinfo */ \
12392 + 1 /* trailing zero */)
12393
12394 memset (&sections, 0, sizeof (sections));
12395
12396 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12397 {
12398 asection *sectp;
12399 uint32_t section_nr =
12400 read_4_bytes (dbfd,
12401 dwp_htab->section_pool.v1.indices
12402 + (unit_index + i) * sizeof (uint32_t));
12403
12404 if (section_nr == 0)
12405 break;
12406 if (section_nr >= dwp_file->num_sections)
12407 {
12408 error (_("Dwarf Error: bad DWP hash table, section number too large"
12409 " [in module %s]"),
12410 dwp_file->name);
12411 }
12412
12413 sectp = dwp_file->elf_sections[section_nr];
12414 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12415 {
12416 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12417 " [in module %s]"),
12418 dwp_file->name);
12419 }
12420 }
12421
12422 if (i < 2
12423 || dwarf2_section_empty_p (&sections.info_or_types)
12424 || dwarf2_section_empty_p (&sections.abbrev))
12425 {
12426 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12427 " [in module %s]"),
12428 dwp_file->name);
12429 }
12430 if (i == MAX_NR_V1_DWO_SECTIONS)
12431 {
12432 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12433 " [in module %s]"),
12434 dwp_file->name);
12435 }
12436
12437 /* It's easier for the rest of the code if we fake a struct dwo_file and
12438 have dwo_unit "live" in that. At least for now.
12439
12440 The DWP file can be made up of a random collection of CUs and TUs.
12441 However, for each CU + set of TUs that came from the same original DWO
12442 file, we can combine them back into a virtual DWO file to save space
12443 (fewer struct dwo_file objects to allocate). Remember that for really
12444 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12445
12446 std::string virtual_dwo_name =
12447 string_printf ("virtual-dwo/%d-%d-%d-%d",
12448 get_section_id (&sections.abbrev),
12449 get_section_id (&sections.line),
12450 get_section_id (&sections.loc),
12451 get_section_id (&sections.str_offsets));
12452 /* Can we use an existing virtual DWO file? */
12453 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12454 virtual_dwo_name.c_str (),
12455 comp_dir);
12456 /* Create one if necessary. */
12457 if (*dwo_file_slot == NULL)
12458 {
12459 if (dwarf_read_debug)
12460 {
12461 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12462 virtual_dwo_name.c_str ());
12463 }
12464 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12465 dwo_file->dwo_name
12466 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12467 virtual_dwo_name.c_str (),
12468 virtual_dwo_name.size ());
12469 dwo_file->comp_dir = comp_dir;
12470 dwo_file->sections.abbrev = sections.abbrev;
12471 dwo_file->sections.line = sections.line;
12472 dwo_file->sections.loc = sections.loc;
12473 dwo_file->sections.macinfo = sections.macinfo;
12474 dwo_file->sections.macro = sections.macro;
12475 dwo_file->sections.str_offsets = sections.str_offsets;
12476 /* The "str" section is global to the entire DWP file. */
12477 dwo_file->sections.str = dwp_file->sections.str;
12478 /* The info or types section is assigned below to dwo_unit,
12479 there's no need to record it in dwo_file.
12480 Also, we can't simply record type sections in dwo_file because
12481 we record a pointer into the vector in dwo_unit. As we collect more
12482 types we'll grow the vector and eventually have to reallocate space
12483 for it, invalidating all copies of pointers into the previous
12484 contents. */
12485 *dwo_file_slot = dwo_file;
12486 }
12487 else
12488 {
12489 if (dwarf_read_debug)
12490 {
12491 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12492 virtual_dwo_name.c_str ());
12493 }
12494 dwo_file = (struct dwo_file *) *dwo_file_slot;
12495 }
12496
12497 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12498 dwo_unit->dwo_file = dwo_file;
12499 dwo_unit->signature = signature;
12500 dwo_unit->section =
12501 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12502 *dwo_unit->section = sections.info_or_types;
12503 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12504
12505 return dwo_unit;
12506 }
12507
12508 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12509 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12510 piece within that section used by a TU/CU, return a virtual section
12511 of just that piece. */
12512
12513 static struct dwarf2_section_info
12514 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12515 struct dwarf2_section_info *section,
12516 bfd_size_type offset, bfd_size_type size)
12517 {
12518 struct dwarf2_section_info result;
12519 asection *sectp;
12520
12521 gdb_assert (section != NULL);
12522 gdb_assert (!section->is_virtual);
12523
12524 memset (&result, 0, sizeof (result));
12525 result.s.containing_section = section;
12526 result.is_virtual = 1;
12527
12528 if (size == 0)
12529 return result;
12530
12531 sectp = get_section_bfd_section (section);
12532
12533 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12534 bounds of the real section. This is a pretty-rare event, so just
12535 flag an error (easier) instead of a warning and trying to cope. */
12536 if (sectp == NULL
12537 || offset + size > bfd_get_section_size (sectp))
12538 {
12539 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12540 " in section %s [in module %s]"),
12541 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12542 objfile_name (dwarf2_per_objfile->objfile));
12543 }
12544
12545 result.virtual_offset = offset;
12546 result.size = size;
12547 return result;
12548 }
12549
12550 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12551 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12552 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12553 This is for DWP version 2 files. */
12554
12555 static struct dwo_unit *
12556 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12557 struct dwp_file *dwp_file,
12558 uint32_t unit_index,
12559 const char *comp_dir,
12560 ULONGEST signature, int is_debug_types)
12561 {
12562 struct objfile *objfile = dwarf2_per_objfile->objfile;
12563 const struct dwp_hash_table *dwp_htab =
12564 is_debug_types ? dwp_file->tus : dwp_file->cus;
12565 bfd *dbfd = dwp_file->dbfd.get ();
12566 const char *kind = is_debug_types ? "TU" : "CU";
12567 struct dwo_file *dwo_file;
12568 struct dwo_unit *dwo_unit;
12569 struct virtual_v2_dwo_sections sections;
12570 void **dwo_file_slot;
12571 int i;
12572
12573 gdb_assert (dwp_file->version == 2);
12574
12575 if (dwarf_read_debug)
12576 {
12577 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12578 kind,
12579 pulongest (unit_index), hex_string (signature),
12580 dwp_file->name);
12581 }
12582
12583 /* Fetch the section offsets of this DWO unit. */
12584
12585 memset (&sections, 0, sizeof (sections));
12586
12587 for (i = 0; i < dwp_htab->nr_columns; ++i)
12588 {
12589 uint32_t offset = read_4_bytes (dbfd,
12590 dwp_htab->section_pool.v2.offsets
12591 + (((unit_index - 1) * dwp_htab->nr_columns
12592 + i)
12593 * sizeof (uint32_t)));
12594 uint32_t size = read_4_bytes (dbfd,
12595 dwp_htab->section_pool.v2.sizes
12596 + (((unit_index - 1) * dwp_htab->nr_columns
12597 + i)
12598 * sizeof (uint32_t)));
12599
12600 switch (dwp_htab->section_pool.v2.section_ids[i])
12601 {
12602 case DW_SECT_INFO:
12603 case DW_SECT_TYPES:
12604 sections.info_or_types_offset = offset;
12605 sections.info_or_types_size = size;
12606 break;
12607 case DW_SECT_ABBREV:
12608 sections.abbrev_offset = offset;
12609 sections.abbrev_size = size;
12610 break;
12611 case DW_SECT_LINE:
12612 sections.line_offset = offset;
12613 sections.line_size = size;
12614 break;
12615 case DW_SECT_LOC:
12616 sections.loc_offset = offset;
12617 sections.loc_size = size;
12618 break;
12619 case DW_SECT_STR_OFFSETS:
12620 sections.str_offsets_offset = offset;
12621 sections.str_offsets_size = size;
12622 break;
12623 case DW_SECT_MACINFO:
12624 sections.macinfo_offset = offset;
12625 sections.macinfo_size = size;
12626 break;
12627 case DW_SECT_MACRO:
12628 sections.macro_offset = offset;
12629 sections.macro_size = size;
12630 break;
12631 }
12632 }
12633
12634 /* It's easier for the rest of the code if we fake a struct dwo_file and
12635 have dwo_unit "live" in that. At least for now.
12636
12637 The DWP file can be made up of a random collection of CUs and TUs.
12638 However, for each CU + set of TUs that came from the same original DWO
12639 file, we can combine them back into a virtual DWO file to save space
12640 (fewer struct dwo_file objects to allocate). Remember that for really
12641 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12642
12643 std::string virtual_dwo_name =
12644 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12645 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12646 (long) (sections.line_size ? sections.line_offset : 0),
12647 (long) (sections.loc_size ? sections.loc_offset : 0),
12648 (long) (sections.str_offsets_size
12649 ? sections.str_offsets_offset : 0));
12650 /* Can we use an existing virtual DWO file? */
12651 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12652 virtual_dwo_name.c_str (),
12653 comp_dir);
12654 /* Create one if necessary. */
12655 if (*dwo_file_slot == NULL)
12656 {
12657 if (dwarf_read_debug)
12658 {
12659 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12660 virtual_dwo_name.c_str ());
12661 }
12662 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12663 dwo_file->dwo_name
12664 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12665 virtual_dwo_name.c_str (),
12666 virtual_dwo_name.size ());
12667 dwo_file->comp_dir = comp_dir;
12668 dwo_file->sections.abbrev =
12669 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12670 sections.abbrev_offset, sections.abbrev_size);
12671 dwo_file->sections.line =
12672 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12673 sections.line_offset, sections.line_size);
12674 dwo_file->sections.loc =
12675 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12676 sections.loc_offset, sections.loc_size);
12677 dwo_file->sections.macinfo =
12678 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12679 sections.macinfo_offset, sections.macinfo_size);
12680 dwo_file->sections.macro =
12681 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12682 sections.macro_offset, sections.macro_size);
12683 dwo_file->sections.str_offsets =
12684 create_dwp_v2_section (dwarf2_per_objfile,
12685 &dwp_file->sections.str_offsets,
12686 sections.str_offsets_offset,
12687 sections.str_offsets_size);
12688 /* The "str" section is global to the entire DWP file. */
12689 dwo_file->sections.str = dwp_file->sections.str;
12690 /* The info or types section is assigned below to dwo_unit,
12691 there's no need to record it in dwo_file.
12692 Also, we can't simply record type sections in dwo_file because
12693 we record a pointer into the vector in dwo_unit. As we collect more
12694 types we'll grow the vector and eventually have to reallocate space
12695 for it, invalidating all copies of pointers into the previous
12696 contents. */
12697 *dwo_file_slot = dwo_file;
12698 }
12699 else
12700 {
12701 if (dwarf_read_debug)
12702 {
12703 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12704 virtual_dwo_name.c_str ());
12705 }
12706 dwo_file = (struct dwo_file *) *dwo_file_slot;
12707 }
12708
12709 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12710 dwo_unit->dwo_file = dwo_file;
12711 dwo_unit->signature = signature;
12712 dwo_unit->section =
12713 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12714 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12715 is_debug_types
12716 ? &dwp_file->sections.types
12717 : &dwp_file->sections.info,
12718 sections.info_or_types_offset,
12719 sections.info_or_types_size);
12720 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12721
12722 return dwo_unit;
12723 }
12724
12725 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12726 Returns NULL if the signature isn't found. */
12727
12728 static struct dwo_unit *
12729 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12730 struct dwp_file *dwp_file, const char *comp_dir,
12731 ULONGEST signature, int is_debug_types)
12732 {
12733 const struct dwp_hash_table *dwp_htab =
12734 is_debug_types ? dwp_file->tus : dwp_file->cus;
12735 bfd *dbfd = dwp_file->dbfd.get ();
12736 uint32_t mask = dwp_htab->nr_slots - 1;
12737 uint32_t hash = signature & mask;
12738 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12739 unsigned int i;
12740 void **slot;
12741 struct dwo_unit find_dwo_cu;
12742
12743 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12744 find_dwo_cu.signature = signature;
12745 slot = htab_find_slot (is_debug_types
12746 ? dwp_file->loaded_tus
12747 : dwp_file->loaded_cus,
12748 &find_dwo_cu, INSERT);
12749
12750 if (*slot != NULL)
12751 return (struct dwo_unit *) *slot;
12752
12753 /* Use a for loop so that we don't loop forever on bad debug info. */
12754 for (i = 0; i < dwp_htab->nr_slots; ++i)
12755 {
12756 ULONGEST signature_in_table;
12757
12758 signature_in_table =
12759 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12760 if (signature_in_table == signature)
12761 {
12762 uint32_t unit_index =
12763 read_4_bytes (dbfd,
12764 dwp_htab->unit_table + hash * sizeof (uint32_t));
12765
12766 if (dwp_file->version == 1)
12767 {
12768 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12769 dwp_file, unit_index,
12770 comp_dir, signature,
12771 is_debug_types);
12772 }
12773 else
12774 {
12775 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12776 dwp_file, unit_index,
12777 comp_dir, signature,
12778 is_debug_types);
12779 }
12780 return (struct dwo_unit *) *slot;
12781 }
12782 if (signature_in_table == 0)
12783 return NULL;
12784 hash = (hash + hash2) & mask;
12785 }
12786
12787 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12788 " [in module %s]"),
12789 dwp_file->name);
12790 }
12791
12792 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12793 Open the file specified by FILE_NAME and hand it off to BFD for
12794 preliminary analysis. Return a newly initialized bfd *, which
12795 includes a canonicalized copy of FILE_NAME.
12796 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12797 SEARCH_CWD is true if the current directory is to be searched.
12798 It will be searched before debug-file-directory.
12799 If successful, the file is added to the bfd include table of the
12800 objfile's bfd (see gdb_bfd_record_inclusion).
12801 If unable to find/open the file, return NULL.
12802 NOTE: This function is derived from symfile_bfd_open. */
12803
12804 static gdb_bfd_ref_ptr
12805 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12806 const char *file_name, int is_dwp, int search_cwd)
12807 {
12808 int desc;
12809 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12810 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12811 to debug_file_directory. */
12812 const char *search_path;
12813 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12814
12815 gdb::unique_xmalloc_ptr<char> search_path_holder;
12816 if (search_cwd)
12817 {
12818 if (*debug_file_directory != '\0')
12819 {
12820 search_path_holder.reset (concat (".", dirname_separator_string,
12821 debug_file_directory,
12822 (char *) NULL));
12823 search_path = search_path_holder.get ();
12824 }
12825 else
12826 search_path = ".";
12827 }
12828 else
12829 search_path = debug_file_directory;
12830
12831 openp_flags flags = OPF_RETURN_REALPATH;
12832 if (is_dwp)
12833 flags |= OPF_SEARCH_IN_PATH;
12834
12835 gdb::unique_xmalloc_ptr<char> absolute_name;
12836 desc = openp (search_path, flags, file_name,
12837 O_RDONLY | O_BINARY, &absolute_name);
12838 if (desc < 0)
12839 return NULL;
12840
12841 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12842 gnutarget, desc));
12843 if (sym_bfd == NULL)
12844 return NULL;
12845 bfd_set_cacheable (sym_bfd.get (), 1);
12846
12847 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12848 return NULL;
12849
12850 /* Success. Record the bfd as having been included by the objfile's bfd.
12851 This is important because things like demangled_names_hash lives in the
12852 objfile's per_bfd space and may have references to things like symbol
12853 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12854 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12855
12856 return sym_bfd;
12857 }
12858
12859 /* Try to open DWO file FILE_NAME.
12860 COMP_DIR is the DW_AT_comp_dir attribute.
12861 The result is the bfd handle of the file.
12862 If there is a problem finding or opening the file, return NULL.
12863 Upon success, the canonicalized path of the file is stored in the bfd,
12864 same as symfile_bfd_open. */
12865
12866 static gdb_bfd_ref_ptr
12867 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12868 const char *file_name, const char *comp_dir)
12869 {
12870 if (IS_ABSOLUTE_PATH (file_name))
12871 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12872 0 /*is_dwp*/, 0 /*search_cwd*/);
12873
12874 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12875
12876 if (comp_dir != NULL)
12877 {
12878 char *path_to_try = concat (comp_dir, SLASH_STRING,
12879 file_name, (char *) NULL);
12880
12881 /* NOTE: If comp_dir is a relative path, this will also try the
12882 search path, which seems useful. */
12883 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12884 path_to_try,
12885 0 /*is_dwp*/,
12886 1 /*search_cwd*/));
12887 xfree (path_to_try);
12888 if (abfd != NULL)
12889 return abfd;
12890 }
12891
12892 /* That didn't work, try debug-file-directory, which, despite its name,
12893 is a list of paths. */
12894
12895 if (*debug_file_directory == '\0')
12896 return NULL;
12897
12898 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12899 0 /*is_dwp*/, 1 /*search_cwd*/);
12900 }
12901
12902 /* This function is mapped across the sections and remembers the offset and
12903 size of each of the DWO debugging sections we are interested in. */
12904
12905 static void
12906 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12907 {
12908 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12909 const struct dwop_section_names *names = &dwop_section_names;
12910
12911 if (section_is_p (sectp->name, &names->abbrev_dwo))
12912 {
12913 dwo_sections->abbrev.s.section = sectp;
12914 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12915 }
12916 else if (section_is_p (sectp->name, &names->info_dwo))
12917 {
12918 dwo_sections->info.s.section = sectp;
12919 dwo_sections->info.size = bfd_get_section_size (sectp);
12920 }
12921 else if (section_is_p (sectp->name, &names->line_dwo))
12922 {
12923 dwo_sections->line.s.section = sectp;
12924 dwo_sections->line.size = bfd_get_section_size (sectp);
12925 }
12926 else if (section_is_p (sectp->name, &names->loc_dwo))
12927 {
12928 dwo_sections->loc.s.section = sectp;
12929 dwo_sections->loc.size = bfd_get_section_size (sectp);
12930 }
12931 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12932 {
12933 dwo_sections->macinfo.s.section = sectp;
12934 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12935 }
12936 else if (section_is_p (sectp->name, &names->macro_dwo))
12937 {
12938 dwo_sections->macro.s.section = sectp;
12939 dwo_sections->macro.size = bfd_get_section_size (sectp);
12940 }
12941 else if (section_is_p (sectp->name, &names->str_dwo))
12942 {
12943 dwo_sections->str.s.section = sectp;
12944 dwo_sections->str.size = bfd_get_section_size (sectp);
12945 }
12946 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12947 {
12948 dwo_sections->str_offsets.s.section = sectp;
12949 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12950 }
12951 else if (section_is_p (sectp->name, &names->types_dwo))
12952 {
12953 struct dwarf2_section_info type_section;
12954
12955 memset (&type_section, 0, sizeof (type_section));
12956 type_section.s.section = sectp;
12957 type_section.size = bfd_get_section_size (sectp);
12958 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12959 &type_section);
12960 }
12961 }
12962
12963 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12964 by PER_CU. This is for the non-DWP case.
12965 The result is NULL if DWO_NAME can't be found. */
12966
12967 static struct dwo_file *
12968 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12969 const char *dwo_name, const char *comp_dir)
12970 {
12971 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12972 struct objfile *objfile = dwarf2_per_objfile->objfile;
12973
12974 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12975 if (dbfd == NULL)
12976 {
12977 if (dwarf_read_debug)
12978 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12979 return NULL;
12980 }
12981
12982 /* We use a unique pointer here, despite the obstack allocation,
12983 because a dwo_file needs some cleanup if it is abandoned. */
12984 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12985 struct dwo_file));
12986 dwo_file->dwo_name = dwo_name;
12987 dwo_file->comp_dir = comp_dir;
12988 dwo_file->dbfd = dbfd.release ();
12989
12990 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
12991 &dwo_file->sections);
12992
12993 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12994 dwo_file->cus);
12995
12996 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12997 dwo_file->sections.types, dwo_file->tus);
12998
12999 if (dwarf_read_debug)
13000 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13001
13002 return dwo_file.release ();
13003 }
13004
13005 /* This function is mapped across the sections and remembers the offset and
13006 size of each of the DWP debugging sections common to version 1 and 2 that
13007 we are interested in. */
13008
13009 static void
13010 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13011 void *dwp_file_ptr)
13012 {
13013 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13014 const struct dwop_section_names *names = &dwop_section_names;
13015 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13016
13017 /* Record the ELF section number for later lookup: this is what the
13018 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13019 gdb_assert (elf_section_nr < dwp_file->num_sections);
13020 dwp_file->elf_sections[elf_section_nr] = sectp;
13021
13022 /* Look for specific sections that we need. */
13023 if (section_is_p (sectp->name, &names->str_dwo))
13024 {
13025 dwp_file->sections.str.s.section = sectp;
13026 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13027 }
13028 else if (section_is_p (sectp->name, &names->cu_index))
13029 {
13030 dwp_file->sections.cu_index.s.section = sectp;
13031 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13032 }
13033 else if (section_is_p (sectp->name, &names->tu_index))
13034 {
13035 dwp_file->sections.tu_index.s.section = sectp;
13036 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13037 }
13038 }
13039
13040 /* This function is mapped across the sections and remembers the offset and
13041 size of each of the DWP version 2 debugging sections that we are interested
13042 in. This is split into a separate function because we don't know if we
13043 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13044
13045 static void
13046 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13047 {
13048 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13049 const struct dwop_section_names *names = &dwop_section_names;
13050 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13051
13052 /* Record the ELF section number for later lookup: this is what the
13053 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13054 gdb_assert (elf_section_nr < dwp_file->num_sections);
13055 dwp_file->elf_sections[elf_section_nr] = sectp;
13056
13057 /* Look for specific sections that we need. */
13058 if (section_is_p (sectp->name, &names->abbrev_dwo))
13059 {
13060 dwp_file->sections.abbrev.s.section = sectp;
13061 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13062 }
13063 else if (section_is_p (sectp->name, &names->info_dwo))
13064 {
13065 dwp_file->sections.info.s.section = sectp;
13066 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13067 }
13068 else if (section_is_p (sectp->name, &names->line_dwo))
13069 {
13070 dwp_file->sections.line.s.section = sectp;
13071 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13072 }
13073 else if (section_is_p (sectp->name, &names->loc_dwo))
13074 {
13075 dwp_file->sections.loc.s.section = sectp;
13076 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13077 }
13078 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13079 {
13080 dwp_file->sections.macinfo.s.section = sectp;
13081 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13082 }
13083 else if (section_is_p (sectp->name, &names->macro_dwo))
13084 {
13085 dwp_file->sections.macro.s.section = sectp;
13086 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13087 }
13088 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13089 {
13090 dwp_file->sections.str_offsets.s.section = sectp;
13091 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13092 }
13093 else if (section_is_p (sectp->name, &names->types_dwo))
13094 {
13095 dwp_file->sections.types.s.section = sectp;
13096 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13097 }
13098 }
13099
13100 /* Hash function for dwp_file loaded CUs/TUs. */
13101
13102 static hashval_t
13103 hash_dwp_loaded_cutus (const void *item)
13104 {
13105 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13106
13107 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13108 return dwo_unit->signature;
13109 }
13110
13111 /* Equality function for dwp_file loaded CUs/TUs. */
13112
13113 static int
13114 eq_dwp_loaded_cutus (const void *a, const void *b)
13115 {
13116 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13117 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13118
13119 return dua->signature == dub->signature;
13120 }
13121
13122 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13123
13124 static htab_t
13125 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13126 {
13127 return htab_create_alloc_ex (3,
13128 hash_dwp_loaded_cutus,
13129 eq_dwp_loaded_cutus,
13130 NULL,
13131 &objfile->objfile_obstack,
13132 hashtab_obstack_allocate,
13133 dummy_obstack_deallocate);
13134 }
13135
13136 /* Try to open DWP file FILE_NAME.
13137 The result is the bfd handle of the file.
13138 If there is a problem finding or opening the file, return NULL.
13139 Upon success, the canonicalized path of the file is stored in the bfd,
13140 same as symfile_bfd_open. */
13141
13142 static gdb_bfd_ref_ptr
13143 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13144 const char *file_name)
13145 {
13146 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13147 1 /*is_dwp*/,
13148 1 /*search_cwd*/));
13149 if (abfd != NULL)
13150 return abfd;
13151
13152 /* Work around upstream bug 15652.
13153 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13154 [Whether that's a "bug" is debatable, but it is getting in our way.]
13155 We have no real idea where the dwp file is, because gdb's realpath-ing
13156 of the executable's path may have discarded the needed info.
13157 [IWBN if the dwp file name was recorded in the executable, akin to
13158 .gnu_debuglink, but that doesn't exist yet.]
13159 Strip the directory from FILE_NAME and search again. */
13160 if (*debug_file_directory != '\0')
13161 {
13162 /* Don't implicitly search the current directory here.
13163 If the user wants to search "." to handle this case,
13164 it must be added to debug-file-directory. */
13165 return try_open_dwop_file (dwarf2_per_objfile,
13166 lbasename (file_name), 1 /*is_dwp*/,
13167 0 /*search_cwd*/);
13168 }
13169
13170 return NULL;
13171 }
13172
13173 /* Initialize the use of the DWP file for the current objfile.
13174 By convention the name of the DWP file is ${objfile}.dwp.
13175 The result is NULL if it can't be found. */
13176
13177 static std::unique_ptr<struct dwp_file>
13178 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13179 {
13180 struct objfile *objfile = dwarf2_per_objfile->objfile;
13181
13182 /* Try to find first .dwp for the binary file before any symbolic links
13183 resolving. */
13184
13185 /* If the objfile is a debug file, find the name of the real binary
13186 file and get the name of dwp file from there. */
13187 std::string dwp_name;
13188 if (objfile->separate_debug_objfile_backlink != NULL)
13189 {
13190 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13191 const char *backlink_basename = lbasename (backlink->original_name);
13192
13193 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13194 }
13195 else
13196 dwp_name = objfile->original_name;
13197
13198 dwp_name += ".dwp";
13199
13200 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13201 if (dbfd == NULL
13202 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13203 {
13204 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13205 dwp_name = objfile_name (objfile);
13206 dwp_name += ".dwp";
13207 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13208 }
13209
13210 if (dbfd == NULL)
13211 {
13212 if (dwarf_read_debug)
13213 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13214 return std::unique_ptr<dwp_file> ();
13215 }
13216
13217 const char *name = bfd_get_filename (dbfd.get ());
13218 std::unique_ptr<struct dwp_file> dwp_file
13219 (new struct dwp_file (name, std::move (dbfd)));
13220
13221 /* +1: section 0 is unused */
13222 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13223 dwp_file->elf_sections =
13224 OBSTACK_CALLOC (&objfile->objfile_obstack,
13225 dwp_file->num_sections, asection *);
13226
13227 bfd_map_over_sections (dwp_file->dbfd.get (),
13228 dwarf2_locate_common_dwp_sections,
13229 dwp_file.get ());
13230
13231 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13232 0);
13233
13234 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13235 1);
13236
13237 /* The DWP file version is stored in the hash table. Oh well. */
13238 if (dwp_file->cus && dwp_file->tus
13239 && dwp_file->cus->version != dwp_file->tus->version)
13240 {
13241 /* Technically speaking, we should try to limp along, but this is
13242 pretty bizarre. We use pulongest here because that's the established
13243 portability solution (e.g, we cannot use %u for uint32_t). */
13244 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13245 " TU version %s [in DWP file %s]"),
13246 pulongest (dwp_file->cus->version),
13247 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13248 }
13249
13250 if (dwp_file->cus)
13251 dwp_file->version = dwp_file->cus->version;
13252 else if (dwp_file->tus)
13253 dwp_file->version = dwp_file->tus->version;
13254 else
13255 dwp_file->version = 2;
13256
13257 if (dwp_file->version == 2)
13258 bfd_map_over_sections (dwp_file->dbfd.get (),
13259 dwarf2_locate_v2_dwp_sections,
13260 dwp_file.get ());
13261
13262 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13263 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13264
13265 if (dwarf_read_debug)
13266 {
13267 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13268 fprintf_unfiltered (gdb_stdlog,
13269 " %s CUs, %s TUs\n",
13270 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13271 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13272 }
13273
13274 return dwp_file;
13275 }
13276
13277 /* Wrapper around open_and_init_dwp_file, only open it once. */
13278
13279 static struct dwp_file *
13280 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13281 {
13282 if (! dwarf2_per_objfile->dwp_checked)
13283 {
13284 dwarf2_per_objfile->dwp_file
13285 = open_and_init_dwp_file (dwarf2_per_objfile);
13286 dwarf2_per_objfile->dwp_checked = 1;
13287 }
13288 return dwarf2_per_objfile->dwp_file.get ();
13289 }
13290
13291 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13292 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13293 or in the DWP file for the objfile, referenced by THIS_UNIT.
13294 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13295 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13296
13297 This is called, for example, when wanting to read a variable with a
13298 complex location. Therefore we don't want to do file i/o for every call.
13299 Therefore we don't want to look for a DWO file on every call.
13300 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13301 then we check if we've already seen DWO_NAME, and only THEN do we check
13302 for a DWO file.
13303
13304 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13305 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13306
13307 static struct dwo_unit *
13308 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13309 const char *dwo_name, const char *comp_dir,
13310 ULONGEST signature, int is_debug_types)
13311 {
13312 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13313 struct objfile *objfile = dwarf2_per_objfile->objfile;
13314 const char *kind = is_debug_types ? "TU" : "CU";
13315 void **dwo_file_slot;
13316 struct dwo_file *dwo_file;
13317 struct dwp_file *dwp_file;
13318
13319 /* First see if there's a DWP file.
13320 If we have a DWP file but didn't find the DWO inside it, don't
13321 look for the original DWO file. It makes gdb behave differently
13322 depending on whether one is debugging in the build tree. */
13323
13324 dwp_file = get_dwp_file (dwarf2_per_objfile);
13325 if (dwp_file != NULL)
13326 {
13327 const struct dwp_hash_table *dwp_htab =
13328 is_debug_types ? dwp_file->tus : dwp_file->cus;
13329
13330 if (dwp_htab != NULL)
13331 {
13332 struct dwo_unit *dwo_cutu =
13333 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13334 signature, is_debug_types);
13335
13336 if (dwo_cutu != NULL)
13337 {
13338 if (dwarf_read_debug)
13339 {
13340 fprintf_unfiltered (gdb_stdlog,
13341 "Virtual DWO %s %s found: @%s\n",
13342 kind, hex_string (signature),
13343 host_address_to_string (dwo_cutu));
13344 }
13345 return dwo_cutu;
13346 }
13347 }
13348 }
13349 else
13350 {
13351 /* No DWP file, look for the DWO file. */
13352
13353 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13354 dwo_name, comp_dir);
13355 if (*dwo_file_slot == NULL)
13356 {
13357 /* Read in the file and build a table of the CUs/TUs it contains. */
13358 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13359 }
13360 /* NOTE: This will be NULL if unable to open the file. */
13361 dwo_file = (struct dwo_file *) *dwo_file_slot;
13362
13363 if (dwo_file != NULL)
13364 {
13365 struct dwo_unit *dwo_cutu = NULL;
13366
13367 if (is_debug_types && dwo_file->tus)
13368 {
13369 struct dwo_unit find_dwo_cutu;
13370
13371 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13372 find_dwo_cutu.signature = signature;
13373 dwo_cutu
13374 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13375 }
13376 else if (!is_debug_types && dwo_file->cus)
13377 {
13378 struct dwo_unit find_dwo_cutu;
13379
13380 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13381 find_dwo_cutu.signature = signature;
13382 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13383 &find_dwo_cutu);
13384 }
13385
13386 if (dwo_cutu != NULL)
13387 {
13388 if (dwarf_read_debug)
13389 {
13390 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13391 kind, dwo_name, hex_string (signature),
13392 host_address_to_string (dwo_cutu));
13393 }
13394 return dwo_cutu;
13395 }
13396 }
13397 }
13398
13399 /* We didn't find it. This could mean a dwo_id mismatch, or
13400 someone deleted the DWO/DWP file, or the search path isn't set up
13401 correctly to find the file. */
13402
13403 if (dwarf_read_debug)
13404 {
13405 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13406 kind, dwo_name, hex_string (signature));
13407 }
13408
13409 /* This is a warning and not a complaint because it can be caused by
13410 pilot error (e.g., user accidentally deleting the DWO). */
13411 {
13412 /* Print the name of the DWP file if we looked there, helps the user
13413 better diagnose the problem. */
13414 std::string dwp_text;
13415
13416 if (dwp_file != NULL)
13417 dwp_text = string_printf (" [in DWP file %s]",
13418 lbasename (dwp_file->name));
13419
13420 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13421 " [in module %s]"),
13422 kind, dwo_name, hex_string (signature),
13423 dwp_text.c_str (),
13424 this_unit->is_debug_types ? "TU" : "CU",
13425 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13426 }
13427 return NULL;
13428 }
13429
13430 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13431 See lookup_dwo_cutu_unit for details. */
13432
13433 static struct dwo_unit *
13434 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13435 const char *dwo_name, const char *comp_dir,
13436 ULONGEST signature)
13437 {
13438 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13439 }
13440
13441 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13442 See lookup_dwo_cutu_unit for details. */
13443
13444 static struct dwo_unit *
13445 lookup_dwo_type_unit (struct signatured_type *this_tu,
13446 const char *dwo_name, const char *comp_dir)
13447 {
13448 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13449 }
13450
13451 /* Traversal function for queue_and_load_all_dwo_tus. */
13452
13453 static int
13454 queue_and_load_dwo_tu (void **slot, void *info)
13455 {
13456 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13457 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13458 ULONGEST signature = dwo_unit->signature;
13459 struct signatured_type *sig_type =
13460 lookup_dwo_signatured_type (per_cu->cu, signature);
13461
13462 if (sig_type != NULL)
13463 {
13464 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13465
13466 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13467 a real dependency of PER_CU on SIG_TYPE. That is detected later
13468 while processing PER_CU. */
13469 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13470 load_full_type_unit (sig_cu);
13471 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13472 }
13473
13474 return 1;
13475 }
13476
13477 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13478 The DWO may have the only definition of the type, though it may not be
13479 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13480 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13481
13482 static void
13483 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13484 {
13485 struct dwo_unit *dwo_unit;
13486 struct dwo_file *dwo_file;
13487
13488 gdb_assert (!per_cu->is_debug_types);
13489 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13490 gdb_assert (per_cu->cu != NULL);
13491
13492 dwo_unit = per_cu->cu->dwo_unit;
13493 gdb_assert (dwo_unit != NULL);
13494
13495 dwo_file = dwo_unit->dwo_file;
13496 if (dwo_file->tus != NULL)
13497 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13498 }
13499
13500 /* Free all resources associated with DWO_FILE.
13501 Close the DWO file and munmap the sections. */
13502
13503 static void
13504 free_dwo_file (struct dwo_file *dwo_file)
13505 {
13506 /* Note: dbfd is NULL for virtual DWO files. */
13507 gdb_bfd_unref (dwo_file->dbfd);
13508
13509 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13510 }
13511
13512 /* Traversal function for free_dwo_files. */
13513
13514 static int
13515 free_dwo_file_from_slot (void **slot, void *info)
13516 {
13517 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13518
13519 free_dwo_file (dwo_file);
13520
13521 return 1;
13522 }
13523
13524 /* Free all resources associated with DWO_FILES. */
13525
13526 static void
13527 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13528 {
13529 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13530 }
13531 \f
13532 /* Read in various DIEs. */
13533
13534 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13535 Inherit only the children of the DW_AT_abstract_origin DIE not being
13536 already referenced by DW_AT_abstract_origin from the children of the
13537 current DIE. */
13538
13539 static void
13540 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13541 {
13542 struct die_info *child_die;
13543 sect_offset *offsetp;
13544 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13545 struct die_info *origin_die;
13546 /* Iterator of the ORIGIN_DIE children. */
13547 struct die_info *origin_child_die;
13548 struct attribute *attr;
13549 struct dwarf2_cu *origin_cu;
13550 struct pending **origin_previous_list_in_scope;
13551
13552 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13553 if (!attr)
13554 return;
13555
13556 /* Note that following die references may follow to a die in a
13557 different cu. */
13558
13559 origin_cu = cu;
13560 origin_die = follow_die_ref (die, attr, &origin_cu);
13561
13562 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13563 symbols in. */
13564 origin_previous_list_in_scope = origin_cu->list_in_scope;
13565 origin_cu->list_in_scope = cu->list_in_scope;
13566
13567 if (die->tag != origin_die->tag
13568 && !(die->tag == DW_TAG_inlined_subroutine
13569 && origin_die->tag == DW_TAG_subprogram))
13570 complaint (_("DIE %s and its abstract origin %s have different tags"),
13571 sect_offset_str (die->sect_off),
13572 sect_offset_str (origin_die->sect_off));
13573
13574 std::vector<sect_offset> offsets;
13575
13576 for (child_die = die->child;
13577 child_die && child_die->tag;
13578 child_die = sibling_die (child_die))
13579 {
13580 struct die_info *child_origin_die;
13581 struct dwarf2_cu *child_origin_cu;
13582
13583 /* We are trying to process concrete instance entries:
13584 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13585 it's not relevant to our analysis here. i.e. detecting DIEs that are
13586 present in the abstract instance but not referenced in the concrete
13587 one. */
13588 if (child_die->tag == DW_TAG_call_site
13589 || child_die->tag == DW_TAG_GNU_call_site)
13590 continue;
13591
13592 /* For each CHILD_DIE, find the corresponding child of
13593 ORIGIN_DIE. If there is more than one layer of
13594 DW_AT_abstract_origin, follow them all; there shouldn't be,
13595 but GCC versions at least through 4.4 generate this (GCC PR
13596 40573). */
13597 child_origin_die = child_die;
13598 child_origin_cu = cu;
13599 while (1)
13600 {
13601 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13602 child_origin_cu);
13603 if (attr == NULL)
13604 break;
13605 child_origin_die = follow_die_ref (child_origin_die, attr,
13606 &child_origin_cu);
13607 }
13608
13609 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13610 counterpart may exist. */
13611 if (child_origin_die != child_die)
13612 {
13613 if (child_die->tag != child_origin_die->tag
13614 && !(child_die->tag == DW_TAG_inlined_subroutine
13615 && child_origin_die->tag == DW_TAG_subprogram))
13616 complaint (_("Child DIE %s and its abstract origin %s have "
13617 "different tags"),
13618 sect_offset_str (child_die->sect_off),
13619 sect_offset_str (child_origin_die->sect_off));
13620 if (child_origin_die->parent != origin_die)
13621 complaint (_("Child DIE %s and its abstract origin %s have "
13622 "different parents"),
13623 sect_offset_str (child_die->sect_off),
13624 sect_offset_str (child_origin_die->sect_off));
13625 else
13626 offsets.push_back (child_origin_die->sect_off);
13627 }
13628 }
13629 std::sort (offsets.begin (), offsets.end ());
13630 sect_offset *offsets_end = offsets.data () + offsets.size ();
13631 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13632 if (offsetp[-1] == *offsetp)
13633 complaint (_("Multiple children of DIE %s refer "
13634 "to DIE %s as their abstract origin"),
13635 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13636
13637 offsetp = offsets.data ();
13638 origin_child_die = origin_die->child;
13639 while (origin_child_die && origin_child_die->tag)
13640 {
13641 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13642 while (offsetp < offsets_end
13643 && *offsetp < origin_child_die->sect_off)
13644 offsetp++;
13645 if (offsetp >= offsets_end
13646 || *offsetp > origin_child_die->sect_off)
13647 {
13648 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13649 Check whether we're already processing ORIGIN_CHILD_DIE.
13650 This can happen with mutually referenced abstract_origins.
13651 PR 16581. */
13652 if (!origin_child_die->in_process)
13653 process_die (origin_child_die, origin_cu);
13654 }
13655 origin_child_die = sibling_die (origin_child_die);
13656 }
13657 origin_cu->list_in_scope = origin_previous_list_in_scope;
13658 }
13659
13660 static void
13661 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13662 {
13663 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13664 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13665 struct context_stack *newobj;
13666 CORE_ADDR lowpc;
13667 CORE_ADDR highpc;
13668 struct die_info *child_die;
13669 struct attribute *attr, *call_line, *call_file;
13670 const char *name;
13671 CORE_ADDR baseaddr;
13672 struct block *block;
13673 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13674 std::vector<struct symbol *> template_args;
13675 struct template_symbol *templ_func = NULL;
13676
13677 if (inlined_func)
13678 {
13679 /* If we do not have call site information, we can't show the
13680 caller of this inlined function. That's too confusing, so
13681 only use the scope for local variables. */
13682 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13683 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13684 if (call_line == NULL || call_file == NULL)
13685 {
13686 read_lexical_block_scope (die, cu);
13687 return;
13688 }
13689 }
13690
13691 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13692
13693 name = dwarf2_name (die, cu);
13694
13695 /* Ignore functions with missing or empty names. These are actually
13696 illegal according to the DWARF standard. */
13697 if (name == NULL)
13698 {
13699 complaint (_("missing name for subprogram DIE at %s"),
13700 sect_offset_str (die->sect_off));
13701 return;
13702 }
13703
13704 /* Ignore functions with missing or invalid low and high pc attributes. */
13705 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13706 <= PC_BOUNDS_INVALID)
13707 {
13708 attr = dwarf2_attr (die, DW_AT_external, cu);
13709 if (!attr || !DW_UNSND (attr))
13710 complaint (_("cannot get low and high bounds "
13711 "for subprogram DIE at %s"),
13712 sect_offset_str (die->sect_off));
13713 return;
13714 }
13715
13716 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13717 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13718
13719 /* If we have any template arguments, then we must allocate a
13720 different sort of symbol. */
13721 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13722 {
13723 if (child_die->tag == DW_TAG_template_type_param
13724 || child_die->tag == DW_TAG_template_value_param)
13725 {
13726 templ_func = allocate_template_symbol (objfile);
13727 templ_func->subclass = SYMBOL_TEMPLATE;
13728 break;
13729 }
13730 }
13731
13732 newobj = cu->builder->push_context (0, lowpc);
13733 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13734 (struct symbol *) templ_func);
13735
13736 /* If there is a location expression for DW_AT_frame_base, record
13737 it. */
13738 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13739 if (attr)
13740 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13741
13742 /* If there is a location for the static link, record it. */
13743 newobj->static_link = NULL;
13744 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13745 if (attr)
13746 {
13747 newobj->static_link
13748 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13749 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13750 }
13751
13752 cu->list_in_scope = cu->builder->get_local_symbols ();
13753
13754 if (die->child != NULL)
13755 {
13756 child_die = die->child;
13757 while (child_die && child_die->tag)
13758 {
13759 if (child_die->tag == DW_TAG_template_type_param
13760 || child_die->tag == DW_TAG_template_value_param)
13761 {
13762 struct symbol *arg = new_symbol (child_die, NULL, cu);
13763
13764 if (arg != NULL)
13765 template_args.push_back (arg);
13766 }
13767 else
13768 process_die (child_die, cu);
13769 child_die = sibling_die (child_die);
13770 }
13771 }
13772
13773 inherit_abstract_dies (die, cu);
13774
13775 /* If we have a DW_AT_specification, we might need to import using
13776 directives from the context of the specification DIE. See the
13777 comment in determine_prefix. */
13778 if (cu->language == language_cplus
13779 && dwarf2_attr (die, DW_AT_specification, cu))
13780 {
13781 struct dwarf2_cu *spec_cu = cu;
13782 struct die_info *spec_die = die_specification (die, &spec_cu);
13783
13784 while (spec_die)
13785 {
13786 child_die = spec_die->child;
13787 while (child_die && child_die->tag)
13788 {
13789 if (child_die->tag == DW_TAG_imported_module)
13790 process_die (child_die, spec_cu);
13791 child_die = sibling_die (child_die);
13792 }
13793
13794 /* In some cases, GCC generates specification DIEs that
13795 themselves contain DW_AT_specification attributes. */
13796 spec_die = die_specification (spec_die, &spec_cu);
13797 }
13798 }
13799
13800 struct context_stack cstk = cu->builder->pop_context ();
13801 /* Make a block for the local symbols within. */
13802 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13803 cstk.static_link, lowpc, highpc);
13804
13805 /* For C++, set the block's scope. */
13806 if ((cu->language == language_cplus
13807 || cu->language == language_fortran
13808 || cu->language == language_d
13809 || cu->language == language_rust)
13810 && cu->processing_has_namespace_info)
13811 block_set_scope (block, determine_prefix (die, cu),
13812 &objfile->objfile_obstack);
13813
13814 /* If we have address ranges, record them. */
13815 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13816
13817 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13818
13819 /* Attach template arguments to function. */
13820 if (!template_args.empty ())
13821 {
13822 gdb_assert (templ_func != NULL);
13823
13824 templ_func->n_template_arguments = template_args.size ();
13825 templ_func->template_arguments
13826 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13827 templ_func->n_template_arguments);
13828 memcpy (templ_func->template_arguments,
13829 template_args.data (),
13830 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13831
13832 /* Make sure that the symtab is set on the new symbols. Even
13833 though they don't appear in this symtab directly, other parts
13834 of gdb assume that symbols do, and this is reasonably
13835 true. */
13836 for (symbol *sym : template_args)
13837 symbol_set_symtab (sym, symbol_symtab (templ_func));
13838 }
13839
13840 /* In C++, we can have functions nested inside functions (e.g., when
13841 a function declares a class that has methods). This means that
13842 when we finish processing a function scope, we may need to go
13843 back to building a containing block's symbol lists. */
13844 *cu->builder->get_local_symbols () = cstk.locals;
13845 cu->builder->set_local_using_directives (cstk.local_using_directives);
13846
13847 /* If we've finished processing a top-level function, subsequent
13848 symbols go in the file symbol list. */
13849 if (cu->builder->outermost_context_p ())
13850 cu->list_in_scope = cu->builder->get_file_symbols ();
13851 }
13852
13853 /* Process all the DIES contained within a lexical block scope. Start
13854 a new scope, process the dies, and then close the scope. */
13855
13856 static void
13857 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13858 {
13859 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13861 CORE_ADDR lowpc, highpc;
13862 struct die_info *child_die;
13863 CORE_ADDR baseaddr;
13864
13865 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13866
13867 /* Ignore blocks with missing or invalid low and high pc attributes. */
13868 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13869 as multiple lexical blocks? Handling children in a sane way would
13870 be nasty. Might be easier to properly extend generic blocks to
13871 describe ranges. */
13872 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13873 {
13874 case PC_BOUNDS_NOT_PRESENT:
13875 /* DW_TAG_lexical_block has no attributes, process its children as if
13876 there was no wrapping by that DW_TAG_lexical_block.
13877 GCC does no longer produces such DWARF since GCC r224161. */
13878 for (child_die = die->child;
13879 child_die != NULL && child_die->tag;
13880 child_die = sibling_die (child_die))
13881 process_die (child_die, cu);
13882 return;
13883 case PC_BOUNDS_INVALID:
13884 return;
13885 }
13886 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13887 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13888
13889 cu->builder->push_context (0, lowpc);
13890 if (die->child != NULL)
13891 {
13892 child_die = die->child;
13893 while (child_die && child_die->tag)
13894 {
13895 process_die (child_die, cu);
13896 child_die = sibling_die (child_die);
13897 }
13898 }
13899 inherit_abstract_dies (die, cu);
13900 struct context_stack cstk = cu->builder->pop_context ();
13901
13902 if (*cu->builder->get_local_symbols () != NULL
13903 || (*cu->builder->get_local_using_directives ()) != NULL)
13904 {
13905 struct block *block
13906 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13907 cstk.start_addr, highpc);
13908
13909 /* Note that recording ranges after traversing children, as we
13910 do here, means that recording a parent's ranges entails
13911 walking across all its children's ranges as they appear in
13912 the address map, which is quadratic behavior.
13913
13914 It would be nicer to record the parent's ranges before
13915 traversing its children, simply overriding whatever you find
13916 there. But since we don't even decide whether to create a
13917 block until after we've traversed its children, that's hard
13918 to do. */
13919 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13920 }
13921 *cu->builder->get_local_symbols () = cstk.locals;
13922 cu->builder->set_local_using_directives (cstk.local_using_directives);
13923 }
13924
13925 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13926
13927 static void
13928 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13929 {
13930 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13931 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13932 CORE_ADDR pc, baseaddr;
13933 struct attribute *attr;
13934 struct call_site *call_site, call_site_local;
13935 void **slot;
13936 int nparams;
13937 struct die_info *child_die;
13938
13939 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13940
13941 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13942 if (attr == NULL)
13943 {
13944 /* This was a pre-DWARF-5 GNU extension alias
13945 for DW_AT_call_return_pc. */
13946 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13947 }
13948 if (!attr)
13949 {
13950 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13951 "DIE %s [in module %s]"),
13952 sect_offset_str (die->sect_off), objfile_name (objfile));
13953 return;
13954 }
13955 pc = attr_value_as_address (attr) + baseaddr;
13956 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13957
13958 if (cu->call_site_htab == NULL)
13959 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13960 NULL, &objfile->objfile_obstack,
13961 hashtab_obstack_allocate, NULL);
13962 call_site_local.pc = pc;
13963 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13964 if (*slot != NULL)
13965 {
13966 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13967 "DIE %s [in module %s]"),
13968 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13969 objfile_name (objfile));
13970 return;
13971 }
13972
13973 /* Count parameters at the caller. */
13974
13975 nparams = 0;
13976 for (child_die = die->child; child_die && child_die->tag;
13977 child_die = sibling_die (child_die))
13978 {
13979 if (child_die->tag != DW_TAG_call_site_parameter
13980 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13981 {
13982 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13983 "DW_TAG_call_site child DIE %s [in module %s]"),
13984 child_die->tag, sect_offset_str (child_die->sect_off),
13985 objfile_name (objfile));
13986 continue;
13987 }
13988
13989 nparams++;
13990 }
13991
13992 call_site
13993 = ((struct call_site *)
13994 obstack_alloc (&objfile->objfile_obstack,
13995 sizeof (*call_site)
13996 + (sizeof (*call_site->parameter) * (nparams - 1))));
13997 *slot = call_site;
13998 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13999 call_site->pc = pc;
14000
14001 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14002 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14003 {
14004 struct die_info *func_die;
14005
14006 /* Skip also over DW_TAG_inlined_subroutine. */
14007 for (func_die = die->parent;
14008 func_die && func_die->tag != DW_TAG_subprogram
14009 && func_die->tag != DW_TAG_subroutine_type;
14010 func_die = func_die->parent);
14011
14012 /* DW_AT_call_all_calls is a superset
14013 of DW_AT_call_all_tail_calls. */
14014 if (func_die
14015 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14016 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14017 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14018 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14019 {
14020 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14021 not complete. But keep CALL_SITE for look ups via call_site_htab,
14022 both the initial caller containing the real return address PC and
14023 the final callee containing the current PC of a chain of tail
14024 calls do not need to have the tail call list complete. But any
14025 function candidate for a virtual tail call frame searched via
14026 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14027 determined unambiguously. */
14028 }
14029 else
14030 {
14031 struct type *func_type = NULL;
14032
14033 if (func_die)
14034 func_type = get_die_type (func_die, cu);
14035 if (func_type != NULL)
14036 {
14037 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14038
14039 /* Enlist this call site to the function. */
14040 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14041 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14042 }
14043 else
14044 complaint (_("Cannot find function owning DW_TAG_call_site "
14045 "DIE %s [in module %s]"),
14046 sect_offset_str (die->sect_off), objfile_name (objfile));
14047 }
14048 }
14049
14050 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14051 if (attr == NULL)
14052 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14053 if (attr == NULL)
14054 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14055 if (attr == NULL)
14056 {
14057 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14058 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14059 }
14060 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14061 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14062 /* Keep NULL DWARF_BLOCK. */;
14063 else if (attr_form_is_block (attr))
14064 {
14065 struct dwarf2_locexpr_baton *dlbaton;
14066
14067 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14068 dlbaton->data = DW_BLOCK (attr)->data;
14069 dlbaton->size = DW_BLOCK (attr)->size;
14070 dlbaton->per_cu = cu->per_cu;
14071
14072 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14073 }
14074 else if (attr_form_is_ref (attr))
14075 {
14076 struct dwarf2_cu *target_cu = cu;
14077 struct die_info *target_die;
14078
14079 target_die = follow_die_ref (die, attr, &target_cu);
14080 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14081 if (die_is_declaration (target_die, target_cu))
14082 {
14083 const char *target_physname;
14084
14085 /* Prefer the mangled name; otherwise compute the demangled one. */
14086 target_physname = dw2_linkage_name (target_die, target_cu);
14087 if (target_physname == NULL)
14088 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14089 if (target_physname == NULL)
14090 complaint (_("DW_AT_call_target target DIE has invalid "
14091 "physname, for referencing DIE %s [in module %s]"),
14092 sect_offset_str (die->sect_off), objfile_name (objfile));
14093 else
14094 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14095 }
14096 else
14097 {
14098 CORE_ADDR lowpc;
14099
14100 /* DW_AT_entry_pc should be preferred. */
14101 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14102 <= PC_BOUNDS_INVALID)
14103 complaint (_("DW_AT_call_target target DIE has invalid "
14104 "low pc, for referencing DIE %s [in module %s]"),
14105 sect_offset_str (die->sect_off), objfile_name (objfile));
14106 else
14107 {
14108 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14109 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14110 }
14111 }
14112 }
14113 else
14114 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14115 "block nor reference, for DIE %s [in module %s]"),
14116 sect_offset_str (die->sect_off), objfile_name (objfile));
14117
14118 call_site->per_cu = cu->per_cu;
14119
14120 for (child_die = die->child;
14121 child_die && child_die->tag;
14122 child_die = sibling_die (child_die))
14123 {
14124 struct call_site_parameter *parameter;
14125 struct attribute *loc, *origin;
14126
14127 if (child_die->tag != DW_TAG_call_site_parameter
14128 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14129 {
14130 /* Already printed the complaint above. */
14131 continue;
14132 }
14133
14134 gdb_assert (call_site->parameter_count < nparams);
14135 parameter = &call_site->parameter[call_site->parameter_count];
14136
14137 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14138 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14139 register is contained in DW_AT_call_value. */
14140
14141 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14142 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14143 if (origin == NULL)
14144 {
14145 /* This was a pre-DWARF-5 GNU extension alias
14146 for DW_AT_call_parameter. */
14147 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14148 }
14149 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14150 {
14151 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14152
14153 sect_offset sect_off
14154 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14155 if (!offset_in_cu_p (&cu->header, sect_off))
14156 {
14157 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14158 binding can be done only inside one CU. Such referenced DIE
14159 therefore cannot be even moved to DW_TAG_partial_unit. */
14160 complaint (_("DW_AT_call_parameter offset is not in CU for "
14161 "DW_TAG_call_site child DIE %s [in module %s]"),
14162 sect_offset_str (child_die->sect_off),
14163 objfile_name (objfile));
14164 continue;
14165 }
14166 parameter->u.param_cu_off
14167 = (cu_offset) (sect_off - cu->header.sect_off);
14168 }
14169 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14170 {
14171 complaint (_("No DW_FORM_block* DW_AT_location for "
14172 "DW_TAG_call_site child DIE %s [in module %s]"),
14173 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14174 continue;
14175 }
14176 else
14177 {
14178 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14179 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14180 if (parameter->u.dwarf_reg != -1)
14181 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14182 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14183 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14184 &parameter->u.fb_offset))
14185 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14186 else
14187 {
14188 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14189 "for DW_FORM_block* DW_AT_location is supported for "
14190 "DW_TAG_call_site child DIE %s "
14191 "[in module %s]"),
14192 sect_offset_str (child_die->sect_off),
14193 objfile_name (objfile));
14194 continue;
14195 }
14196 }
14197
14198 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14199 if (attr == NULL)
14200 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14201 if (!attr_form_is_block (attr))
14202 {
14203 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14204 "DW_TAG_call_site child DIE %s [in module %s]"),
14205 sect_offset_str (child_die->sect_off),
14206 objfile_name (objfile));
14207 continue;
14208 }
14209 parameter->value = DW_BLOCK (attr)->data;
14210 parameter->value_size = DW_BLOCK (attr)->size;
14211
14212 /* Parameters are not pre-cleared by memset above. */
14213 parameter->data_value = NULL;
14214 parameter->data_value_size = 0;
14215 call_site->parameter_count++;
14216
14217 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14218 if (attr == NULL)
14219 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14220 if (attr)
14221 {
14222 if (!attr_form_is_block (attr))
14223 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14224 "DW_TAG_call_site child DIE %s [in module %s]"),
14225 sect_offset_str (child_die->sect_off),
14226 objfile_name (objfile));
14227 else
14228 {
14229 parameter->data_value = DW_BLOCK (attr)->data;
14230 parameter->data_value_size = DW_BLOCK (attr)->size;
14231 }
14232 }
14233 }
14234 }
14235
14236 /* Helper function for read_variable. If DIE represents a virtual
14237 table, then return the type of the concrete object that is
14238 associated with the virtual table. Otherwise, return NULL. */
14239
14240 static struct type *
14241 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14242 {
14243 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14244 if (attr == NULL)
14245 return NULL;
14246
14247 /* Find the type DIE. */
14248 struct die_info *type_die = NULL;
14249 struct dwarf2_cu *type_cu = cu;
14250
14251 if (attr_form_is_ref (attr))
14252 type_die = follow_die_ref (die, attr, &type_cu);
14253 if (type_die == NULL)
14254 return NULL;
14255
14256 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14257 return NULL;
14258 return die_containing_type (type_die, type_cu);
14259 }
14260
14261 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14262
14263 static void
14264 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14265 {
14266 struct rust_vtable_symbol *storage = NULL;
14267
14268 if (cu->language == language_rust)
14269 {
14270 struct type *containing_type = rust_containing_type (die, cu);
14271
14272 if (containing_type != NULL)
14273 {
14274 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14275
14276 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14277 struct rust_vtable_symbol);
14278 initialize_objfile_symbol (storage);
14279 storage->concrete_type = containing_type;
14280 storage->subclass = SYMBOL_RUST_VTABLE;
14281 }
14282 }
14283
14284 struct symbol *res = new_symbol (die, NULL, cu, storage);
14285 struct attribute *abstract_origin
14286 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14287 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14288 if (res == NULL && loc && abstract_origin)
14289 {
14290 /* We have a variable without a name, but with a location and an abstract
14291 origin. This may be a concrete instance of an abstract variable
14292 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14293 later. */
14294 struct dwarf2_cu *origin_cu = cu;
14295 struct die_info *origin_die
14296 = follow_die_ref (die, abstract_origin, &origin_cu);
14297 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14298 dpo->abstract_to_concrete[origin_die].push_back (die);
14299 }
14300 }
14301
14302 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14303 reading .debug_rnglists.
14304 Callback's type should be:
14305 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14306 Return true if the attributes are present and valid, otherwise,
14307 return false. */
14308
14309 template <typename Callback>
14310 static bool
14311 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14312 Callback &&callback)
14313 {
14314 struct dwarf2_per_objfile *dwarf2_per_objfile
14315 = cu->per_cu->dwarf2_per_objfile;
14316 struct objfile *objfile = dwarf2_per_objfile->objfile;
14317 bfd *obfd = objfile->obfd;
14318 /* Base address selection entry. */
14319 CORE_ADDR base;
14320 int found_base;
14321 const gdb_byte *buffer;
14322 CORE_ADDR baseaddr;
14323 bool overflow = false;
14324
14325 found_base = cu->base_known;
14326 base = cu->base_address;
14327
14328 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14329 if (offset >= dwarf2_per_objfile->rnglists.size)
14330 {
14331 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14332 offset);
14333 return false;
14334 }
14335 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14336
14337 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14338
14339 while (1)
14340 {
14341 /* Initialize it due to a false compiler warning. */
14342 CORE_ADDR range_beginning = 0, range_end = 0;
14343 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14344 + dwarf2_per_objfile->rnglists.size);
14345 unsigned int bytes_read;
14346
14347 if (buffer == buf_end)
14348 {
14349 overflow = true;
14350 break;
14351 }
14352 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14353 switch (rlet)
14354 {
14355 case DW_RLE_end_of_list:
14356 break;
14357 case DW_RLE_base_address:
14358 if (buffer + cu->header.addr_size > buf_end)
14359 {
14360 overflow = true;
14361 break;
14362 }
14363 base = read_address (obfd, buffer, cu, &bytes_read);
14364 found_base = 1;
14365 buffer += bytes_read;
14366 break;
14367 case DW_RLE_start_length:
14368 if (buffer + cu->header.addr_size > buf_end)
14369 {
14370 overflow = true;
14371 break;
14372 }
14373 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14374 buffer += bytes_read;
14375 range_end = (range_beginning
14376 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14377 buffer += bytes_read;
14378 if (buffer > buf_end)
14379 {
14380 overflow = true;
14381 break;
14382 }
14383 break;
14384 case DW_RLE_offset_pair:
14385 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14386 buffer += bytes_read;
14387 if (buffer > buf_end)
14388 {
14389 overflow = true;
14390 break;
14391 }
14392 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14393 buffer += bytes_read;
14394 if (buffer > buf_end)
14395 {
14396 overflow = true;
14397 break;
14398 }
14399 break;
14400 case DW_RLE_start_end:
14401 if (buffer + 2 * cu->header.addr_size > buf_end)
14402 {
14403 overflow = true;
14404 break;
14405 }
14406 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14407 buffer += bytes_read;
14408 range_end = read_address (obfd, buffer, cu, &bytes_read);
14409 buffer += bytes_read;
14410 break;
14411 default:
14412 complaint (_("Invalid .debug_rnglists data (no base address)"));
14413 return false;
14414 }
14415 if (rlet == DW_RLE_end_of_list || overflow)
14416 break;
14417 if (rlet == DW_RLE_base_address)
14418 continue;
14419
14420 if (!found_base)
14421 {
14422 /* We have no valid base address for the ranges
14423 data. */
14424 complaint (_("Invalid .debug_rnglists data (no base address)"));
14425 return false;
14426 }
14427
14428 if (range_beginning > range_end)
14429 {
14430 /* Inverted range entries are invalid. */
14431 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14432 return false;
14433 }
14434
14435 /* Empty range entries have no effect. */
14436 if (range_beginning == range_end)
14437 continue;
14438
14439 range_beginning += base;
14440 range_end += base;
14441
14442 /* A not-uncommon case of bad debug info.
14443 Don't pollute the addrmap with bad data. */
14444 if (range_beginning + baseaddr == 0
14445 && !dwarf2_per_objfile->has_section_at_zero)
14446 {
14447 complaint (_(".debug_rnglists entry has start address of zero"
14448 " [in module %s]"), objfile_name (objfile));
14449 continue;
14450 }
14451
14452 callback (range_beginning, range_end);
14453 }
14454
14455 if (overflow)
14456 {
14457 complaint (_("Offset %d is not terminated "
14458 "for DW_AT_ranges attribute"),
14459 offset);
14460 return false;
14461 }
14462
14463 return true;
14464 }
14465
14466 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14467 Callback's type should be:
14468 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14469 Return 1 if the attributes are present and valid, otherwise, return 0. */
14470
14471 template <typename Callback>
14472 static int
14473 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14474 Callback &&callback)
14475 {
14476 struct dwarf2_per_objfile *dwarf2_per_objfile
14477 = cu->per_cu->dwarf2_per_objfile;
14478 struct objfile *objfile = dwarf2_per_objfile->objfile;
14479 struct comp_unit_head *cu_header = &cu->header;
14480 bfd *obfd = objfile->obfd;
14481 unsigned int addr_size = cu_header->addr_size;
14482 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14483 /* Base address selection entry. */
14484 CORE_ADDR base;
14485 int found_base;
14486 unsigned int dummy;
14487 const gdb_byte *buffer;
14488 CORE_ADDR baseaddr;
14489
14490 if (cu_header->version >= 5)
14491 return dwarf2_rnglists_process (offset, cu, callback);
14492
14493 found_base = cu->base_known;
14494 base = cu->base_address;
14495
14496 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14497 if (offset >= dwarf2_per_objfile->ranges.size)
14498 {
14499 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14500 offset);
14501 return 0;
14502 }
14503 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14504
14505 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14506
14507 while (1)
14508 {
14509 CORE_ADDR range_beginning, range_end;
14510
14511 range_beginning = read_address (obfd, buffer, cu, &dummy);
14512 buffer += addr_size;
14513 range_end = read_address (obfd, buffer, cu, &dummy);
14514 buffer += addr_size;
14515 offset += 2 * addr_size;
14516
14517 /* An end of list marker is a pair of zero addresses. */
14518 if (range_beginning == 0 && range_end == 0)
14519 /* Found the end of list entry. */
14520 break;
14521
14522 /* Each base address selection entry is a pair of 2 values.
14523 The first is the largest possible address, the second is
14524 the base address. Check for a base address here. */
14525 if ((range_beginning & mask) == mask)
14526 {
14527 /* If we found the largest possible address, then we already
14528 have the base address in range_end. */
14529 base = range_end;
14530 found_base = 1;
14531 continue;
14532 }
14533
14534 if (!found_base)
14535 {
14536 /* We have no valid base address for the ranges
14537 data. */
14538 complaint (_("Invalid .debug_ranges data (no base address)"));
14539 return 0;
14540 }
14541
14542 if (range_beginning > range_end)
14543 {
14544 /* Inverted range entries are invalid. */
14545 complaint (_("Invalid .debug_ranges data (inverted range)"));
14546 return 0;
14547 }
14548
14549 /* Empty range entries have no effect. */
14550 if (range_beginning == range_end)
14551 continue;
14552
14553 range_beginning += base;
14554 range_end += base;
14555
14556 /* A not-uncommon case of bad debug info.
14557 Don't pollute the addrmap with bad data. */
14558 if (range_beginning + baseaddr == 0
14559 && !dwarf2_per_objfile->has_section_at_zero)
14560 {
14561 complaint (_(".debug_ranges entry has start address of zero"
14562 " [in module %s]"), objfile_name (objfile));
14563 continue;
14564 }
14565
14566 callback (range_beginning, range_end);
14567 }
14568
14569 return 1;
14570 }
14571
14572 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14573 Return 1 if the attributes are present and valid, otherwise, return 0.
14574 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14575
14576 static int
14577 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14578 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14579 struct partial_symtab *ranges_pst)
14580 {
14581 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14582 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14583 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14584 SECT_OFF_TEXT (objfile));
14585 int low_set = 0;
14586 CORE_ADDR low = 0;
14587 CORE_ADDR high = 0;
14588 int retval;
14589
14590 retval = dwarf2_ranges_process (offset, cu,
14591 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14592 {
14593 if (ranges_pst != NULL)
14594 {
14595 CORE_ADDR lowpc;
14596 CORE_ADDR highpc;
14597
14598 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14599 range_beginning + baseaddr)
14600 - baseaddr);
14601 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14602 range_end + baseaddr)
14603 - baseaddr);
14604 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14605 ranges_pst);
14606 }
14607
14608 /* FIXME: This is recording everything as a low-high
14609 segment of consecutive addresses. We should have a
14610 data structure for discontiguous block ranges
14611 instead. */
14612 if (! low_set)
14613 {
14614 low = range_beginning;
14615 high = range_end;
14616 low_set = 1;
14617 }
14618 else
14619 {
14620 if (range_beginning < low)
14621 low = range_beginning;
14622 if (range_end > high)
14623 high = range_end;
14624 }
14625 });
14626 if (!retval)
14627 return 0;
14628
14629 if (! low_set)
14630 /* If the first entry is an end-of-list marker, the range
14631 describes an empty scope, i.e. no instructions. */
14632 return 0;
14633
14634 if (low_return)
14635 *low_return = low;
14636 if (high_return)
14637 *high_return = high;
14638 return 1;
14639 }
14640
14641 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14642 definition for the return value. *LOWPC and *HIGHPC are set iff
14643 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14644
14645 static enum pc_bounds_kind
14646 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14647 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14648 struct partial_symtab *pst)
14649 {
14650 struct dwarf2_per_objfile *dwarf2_per_objfile
14651 = cu->per_cu->dwarf2_per_objfile;
14652 struct attribute *attr;
14653 struct attribute *attr_high;
14654 CORE_ADDR low = 0;
14655 CORE_ADDR high = 0;
14656 enum pc_bounds_kind ret;
14657
14658 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14659 if (attr_high)
14660 {
14661 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14662 if (attr)
14663 {
14664 low = attr_value_as_address (attr);
14665 high = attr_value_as_address (attr_high);
14666 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14667 high += low;
14668 }
14669 else
14670 /* Found high w/o low attribute. */
14671 return PC_BOUNDS_INVALID;
14672
14673 /* Found consecutive range of addresses. */
14674 ret = PC_BOUNDS_HIGH_LOW;
14675 }
14676 else
14677 {
14678 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14679 if (attr != NULL)
14680 {
14681 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14682 We take advantage of the fact that DW_AT_ranges does not appear
14683 in DW_TAG_compile_unit of DWO files. */
14684 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14685 unsigned int ranges_offset = (DW_UNSND (attr)
14686 + (need_ranges_base
14687 ? cu->ranges_base
14688 : 0));
14689
14690 /* Value of the DW_AT_ranges attribute is the offset in the
14691 .debug_ranges section. */
14692 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14693 return PC_BOUNDS_INVALID;
14694 /* Found discontinuous range of addresses. */
14695 ret = PC_BOUNDS_RANGES;
14696 }
14697 else
14698 return PC_BOUNDS_NOT_PRESENT;
14699 }
14700
14701 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14702 if (high <= low)
14703 return PC_BOUNDS_INVALID;
14704
14705 /* When using the GNU linker, .gnu.linkonce. sections are used to
14706 eliminate duplicate copies of functions and vtables and such.
14707 The linker will arbitrarily choose one and discard the others.
14708 The AT_*_pc values for such functions refer to local labels in
14709 these sections. If the section from that file was discarded, the
14710 labels are not in the output, so the relocs get a value of 0.
14711 If this is a discarded function, mark the pc bounds as invalid,
14712 so that GDB will ignore it. */
14713 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14714 return PC_BOUNDS_INVALID;
14715
14716 *lowpc = low;
14717 if (highpc)
14718 *highpc = high;
14719 return ret;
14720 }
14721
14722 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14723 its low and high PC addresses. Do nothing if these addresses could not
14724 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14725 and HIGHPC to the high address if greater than HIGHPC. */
14726
14727 static void
14728 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14729 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14730 struct dwarf2_cu *cu)
14731 {
14732 CORE_ADDR low, high;
14733 struct die_info *child = die->child;
14734
14735 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14736 {
14737 *lowpc = std::min (*lowpc, low);
14738 *highpc = std::max (*highpc, high);
14739 }
14740
14741 /* If the language does not allow nested subprograms (either inside
14742 subprograms or lexical blocks), we're done. */
14743 if (cu->language != language_ada)
14744 return;
14745
14746 /* Check all the children of the given DIE. If it contains nested
14747 subprograms, then check their pc bounds. Likewise, we need to
14748 check lexical blocks as well, as they may also contain subprogram
14749 definitions. */
14750 while (child && child->tag)
14751 {
14752 if (child->tag == DW_TAG_subprogram
14753 || child->tag == DW_TAG_lexical_block)
14754 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14755 child = sibling_die (child);
14756 }
14757 }
14758
14759 /* Get the low and high pc's represented by the scope DIE, and store
14760 them in *LOWPC and *HIGHPC. If the correct values can't be
14761 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14762
14763 static void
14764 get_scope_pc_bounds (struct die_info *die,
14765 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14766 struct dwarf2_cu *cu)
14767 {
14768 CORE_ADDR best_low = (CORE_ADDR) -1;
14769 CORE_ADDR best_high = (CORE_ADDR) 0;
14770 CORE_ADDR current_low, current_high;
14771
14772 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14773 >= PC_BOUNDS_RANGES)
14774 {
14775 best_low = current_low;
14776 best_high = current_high;
14777 }
14778 else
14779 {
14780 struct die_info *child = die->child;
14781
14782 while (child && child->tag)
14783 {
14784 switch (child->tag) {
14785 case DW_TAG_subprogram:
14786 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14787 break;
14788 case DW_TAG_namespace:
14789 case DW_TAG_module:
14790 /* FIXME: carlton/2004-01-16: Should we do this for
14791 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14792 that current GCC's always emit the DIEs corresponding
14793 to definitions of methods of classes as children of a
14794 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14795 the DIEs giving the declarations, which could be
14796 anywhere). But I don't see any reason why the
14797 standards says that they have to be there. */
14798 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14799
14800 if (current_low != ((CORE_ADDR) -1))
14801 {
14802 best_low = std::min (best_low, current_low);
14803 best_high = std::max (best_high, current_high);
14804 }
14805 break;
14806 default:
14807 /* Ignore. */
14808 break;
14809 }
14810
14811 child = sibling_die (child);
14812 }
14813 }
14814
14815 *lowpc = best_low;
14816 *highpc = best_high;
14817 }
14818
14819 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14820 in DIE. */
14821
14822 static void
14823 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14824 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14825 {
14826 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14828 struct attribute *attr;
14829 struct attribute *attr_high;
14830
14831 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14832 if (attr_high)
14833 {
14834 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14835 if (attr)
14836 {
14837 CORE_ADDR low = attr_value_as_address (attr);
14838 CORE_ADDR high = attr_value_as_address (attr_high);
14839
14840 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14841 high += low;
14842
14843 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14844 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14845 cu->builder->record_block_range (block, low, high - 1);
14846 }
14847 }
14848
14849 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14850 if (attr)
14851 {
14852 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14853 We take advantage of the fact that DW_AT_ranges does not appear
14854 in DW_TAG_compile_unit of DWO files. */
14855 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14856
14857 /* The value of the DW_AT_ranges attribute is the offset of the
14858 address range list in the .debug_ranges section. */
14859 unsigned long offset = (DW_UNSND (attr)
14860 + (need_ranges_base ? cu->ranges_base : 0));
14861
14862 std::vector<blockrange> blockvec;
14863 dwarf2_ranges_process (offset, cu,
14864 [&] (CORE_ADDR start, CORE_ADDR end)
14865 {
14866 start += baseaddr;
14867 end += baseaddr;
14868 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14869 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14870 cu->builder->record_block_range (block, start, end - 1);
14871 blockvec.emplace_back (start, end);
14872 });
14873
14874 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14875 }
14876 }
14877
14878 /* Check whether the producer field indicates either of GCC < 4.6, or the
14879 Intel C/C++ compiler, and cache the result in CU. */
14880
14881 static void
14882 check_producer (struct dwarf2_cu *cu)
14883 {
14884 int major, minor;
14885
14886 if (cu->producer == NULL)
14887 {
14888 /* For unknown compilers expect their behavior is DWARF version
14889 compliant.
14890
14891 GCC started to support .debug_types sections by -gdwarf-4 since
14892 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14893 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14894 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14895 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14896 }
14897 else if (producer_is_gcc (cu->producer, &major, &minor))
14898 {
14899 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14900 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14901 }
14902 else if (producer_is_icc (cu->producer, &major, &minor))
14903 cu->producer_is_icc_lt_14 = major < 14;
14904 else
14905 {
14906 /* For other non-GCC compilers, expect their behavior is DWARF version
14907 compliant. */
14908 }
14909
14910 cu->checked_producer = 1;
14911 }
14912
14913 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14914 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14915 during 4.6.0 experimental. */
14916
14917 static int
14918 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14919 {
14920 if (!cu->checked_producer)
14921 check_producer (cu);
14922
14923 return cu->producer_is_gxx_lt_4_6;
14924 }
14925
14926 /* Return the default accessibility type if it is not overriden by
14927 DW_AT_accessibility. */
14928
14929 static enum dwarf_access_attribute
14930 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14931 {
14932 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14933 {
14934 /* The default DWARF 2 accessibility for members is public, the default
14935 accessibility for inheritance is private. */
14936
14937 if (die->tag != DW_TAG_inheritance)
14938 return DW_ACCESS_public;
14939 else
14940 return DW_ACCESS_private;
14941 }
14942 else
14943 {
14944 /* DWARF 3+ defines the default accessibility a different way. The same
14945 rules apply now for DW_TAG_inheritance as for the members and it only
14946 depends on the container kind. */
14947
14948 if (die->parent->tag == DW_TAG_class_type)
14949 return DW_ACCESS_private;
14950 else
14951 return DW_ACCESS_public;
14952 }
14953 }
14954
14955 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14956 offset. If the attribute was not found return 0, otherwise return
14957 1. If it was found but could not properly be handled, set *OFFSET
14958 to 0. */
14959
14960 static int
14961 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14962 LONGEST *offset)
14963 {
14964 struct attribute *attr;
14965
14966 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14967 if (attr != NULL)
14968 {
14969 *offset = 0;
14970
14971 /* Note that we do not check for a section offset first here.
14972 This is because DW_AT_data_member_location is new in DWARF 4,
14973 so if we see it, we can assume that a constant form is really
14974 a constant and not a section offset. */
14975 if (attr_form_is_constant (attr))
14976 *offset = dwarf2_get_attr_constant_value (attr, 0);
14977 else if (attr_form_is_section_offset (attr))
14978 dwarf2_complex_location_expr_complaint ();
14979 else if (attr_form_is_block (attr))
14980 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14981 else
14982 dwarf2_complex_location_expr_complaint ();
14983
14984 return 1;
14985 }
14986
14987 return 0;
14988 }
14989
14990 /* Add an aggregate field to the field list. */
14991
14992 static void
14993 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14994 struct dwarf2_cu *cu)
14995 {
14996 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14997 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14998 struct nextfield *new_field;
14999 struct attribute *attr;
15000 struct field *fp;
15001 const char *fieldname = "";
15002
15003 if (die->tag == DW_TAG_inheritance)
15004 {
15005 fip->baseclasses.emplace_back ();
15006 new_field = &fip->baseclasses.back ();
15007 }
15008 else
15009 {
15010 fip->fields.emplace_back ();
15011 new_field = &fip->fields.back ();
15012 }
15013
15014 fip->nfields++;
15015
15016 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15017 if (attr)
15018 new_field->accessibility = DW_UNSND (attr);
15019 else
15020 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15021 if (new_field->accessibility != DW_ACCESS_public)
15022 fip->non_public_fields = 1;
15023
15024 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15025 if (attr)
15026 new_field->virtuality = DW_UNSND (attr);
15027 else
15028 new_field->virtuality = DW_VIRTUALITY_none;
15029
15030 fp = &new_field->field;
15031
15032 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15033 {
15034 LONGEST offset;
15035
15036 /* Data member other than a C++ static data member. */
15037
15038 /* Get type of field. */
15039 fp->type = die_type (die, cu);
15040
15041 SET_FIELD_BITPOS (*fp, 0);
15042
15043 /* Get bit size of field (zero if none). */
15044 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15045 if (attr)
15046 {
15047 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15048 }
15049 else
15050 {
15051 FIELD_BITSIZE (*fp) = 0;
15052 }
15053
15054 /* Get bit offset of field. */
15055 if (handle_data_member_location (die, cu, &offset))
15056 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15057 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15058 if (attr)
15059 {
15060 if (gdbarch_bits_big_endian (gdbarch))
15061 {
15062 /* For big endian bits, the DW_AT_bit_offset gives the
15063 additional bit offset from the MSB of the containing
15064 anonymous object to the MSB of the field. We don't
15065 have to do anything special since we don't need to
15066 know the size of the anonymous object. */
15067 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15068 }
15069 else
15070 {
15071 /* For little endian bits, compute the bit offset to the
15072 MSB of the anonymous object, subtract off the number of
15073 bits from the MSB of the field to the MSB of the
15074 object, and then subtract off the number of bits of
15075 the field itself. The result is the bit offset of
15076 the LSB of the field. */
15077 int anonymous_size;
15078 int bit_offset = DW_UNSND (attr);
15079
15080 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15081 if (attr)
15082 {
15083 /* The size of the anonymous object containing
15084 the bit field is explicit, so use the
15085 indicated size (in bytes). */
15086 anonymous_size = DW_UNSND (attr);
15087 }
15088 else
15089 {
15090 /* The size of the anonymous object containing
15091 the bit field must be inferred from the type
15092 attribute of the data member containing the
15093 bit field. */
15094 anonymous_size = TYPE_LENGTH (fp->type);
15095 }
15096 SET_FIELD_BITPOS (*fp,
15097 (FIELD_BITPOS (*fp)
15098 + anonymous_size * bits_per_byte
15099 - bit_offset - FIELD_BITSIZE (*fp)));
15100 }
15101 }
15102 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15103 if (attr != NULL)
15104 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15105 + dwarf2_get_attr_constant_value (attr, 0)));
15106
15107 /* Get name of field. */
15108 fieldname = dwarf2_name (die, cu);
15109 if (fieldname == NULL)
15110 fieldname = "";
15111
15112 /* The name is already allocated along with this objfile, so we don't
15113 need to duplicate it for the type. */
15114 fp->name = fieldname;
15115
15116 /* Change accessibility for artificial fields (e.g. virtual table
15117 pointer or virtual base class pointer) to private. */
15118 if (dwarf2_attr (die, DW_AT_artificial, cu))
15119 {
15120 FIELD_ARTIFICIAL (*fp) = 1;
15121 new_field->accessibility = DW_ACCESS_private;
15122 fip->non_public_fields = 1;
15123 }
15124 }
15125 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15126 {
15127 /* C++ static member. */
15128
15129 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15130 is a declaration, but all versions of G++ as of this writing
15131 (so through at least 3.2.1) incorrectly generate
15132 DW_TAG_variable tags. */
15133
15134 const char *physname;
15135
15136 /* Get name of field. */
15137 fieldname = dwarf2_name (die, cu);
15138 if (fieldname == NULL)
15139 return;
15140
15141 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15142 if (attr
15143 /* Only create a symbol if this is an external value.
15144 new_symbol checks this and puts the value in the global symbol
15145 table, which we want. If it is not external, new_symbol
15146 will try to put the value in cu->list_in_scope which is wrong. */
15147 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15148 {
15149 /* A static const member, not much different than an enum as far as
15150 we're concerned, except that we can support more types. */
15151 new_symbol (die, NULL, cu);
15152 }
15153
15154 /* Get physical name. */
15155 physname = dwarf2_physname (fieldname, die, cu);
15156
15157 /* The name is already allocated along with this objfile, so we don't
15158 need to duplicate it for the type. */
15159 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15160 FIELD_TYPE (*fp) = die_type (die, cu);
15161 FIELD_NAME (*fp) = fieldname;
15162 }
15163 else if (die->tag == DW_TAG_inheritance)
15164 {
15165 LONGEST offset;
15166
15167 /* C++ base class field. */
15168 if (handle_data_member_location (die, cu, &offset))
15169 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15170 FIELD_BITSIZE (*fp) = 0;
15171 FIELD_TYPE (*fp) = die_type (die, cu);
15172 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15173 }
15174 else if (die->tag == DW_TAG_variant_part)
15175 {
15176 /* process_structure_scope will treat this DIE as a union. */
15177 process_structure_scope (die, cu);
15178
15179 /* The variant part is relative to the start of the enclosing
15180 structure. */
15181 SET_FIELD_BITPOS (*fp, 0);
15182 fp->type = get_die_type (die, cu);
15183 fp->artificial = 1;
15184 fp->name = "<<variant>>";
15185
15186 /* Normally a DW_TAG_variant_part won't have a size, but our
15187 representation requires one, so set it to the maximum of the
15188 child sizes. */
15189 if (TYPE_LENGTH (fp->type) == 0)
15190 {
15191 unsigned max = 0;
15192 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15193 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15194 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15195 TYPE_LENGTH (fp->type) = max;
15196 }
15197 }
15198 else
15199 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15200 }
15201
15202 /* Can the type given by DIE define another type? */
15203
15204 static bool
15205 type_can_define_types (const struct die_info *die)
15206 {
15207 switch (die->tag)
15208 {
15209 case DW_TAG_typedef:
15210 case DW_TAG_class_type:
15211 case DW_TAG_structure_type:
15212 case DW_TAG_union_type:
15213 case DW_TAG_enumeration_type:
15214 return true;
15215
15216 default:
15217 return false;
15218 }
15219 }
15220
15221 /* Add a type definition defined in the scope of the FIP's class. */
15222
15223 static void
15224 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15225 struct dwarf2_cu *cu)
15226 {
15227 struct decl_field fp;
15228 memset (&fp, 0, sizeof (fp));
15229
15230 gdb_assert (type_can_define_types (die));
15231
15232 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15233 fp.name = dwarf2_name (die, cu);
15234 fp.type = read_type_die (die, cu);
15235
15236 /* Save accessibility. */
15237 enum dwarf_access_attribute accessibility;
15238 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15239 if (attr != NULL)
15240 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15241 else
15242 accessibility = dwarf2_default_access_attribute (die, cu);
15243 switch (accessibility)
15244 {
15245 case DW_ACCESS_public:
15246 /* The assumed value if neither private nor protected. */
15247 break;
15248 case DW_ACCESS_private:
15249 fp.is_private = 1;
15250 break;
15251 case DW_ACCESS_protected:
15252 fp.is_protected = 1;
15253 break;
15254 default:
15255 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15256 }
15257
15258 if (die->tag == DW_TAG_typedef)
15259 fip->typedef_field_list.push_back (fp);
15260 else
15261 fip->nested_types_list.push_back (fp);
15262 }
15263
15264 /* Create the vector of fields, and attach it to the type. */
15265
15266 static void
15267 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15268 struct dwarf2_cu *cu)
15269 {
15270 int nfields = fip->nfields;
15271
15272 /* Record the field count, allocate space for the array of fields,
15273 and create blank accessibility bitfields if necessary. */
15274 TYPE_NFIELDS (type) = nfields;
15275 TYPE_FIELDS (type) = (struct field *)
15276 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15277
15278 if (fip->non_public_fields && cu->language != language_ada)
15279 {
15280 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15281
15282 TYPE_FIELD_PRIVATE_BITS (type) =
15283 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15284 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15285
15286 TYPE_FIELD_PROTECTED_BITS (type) =
15287 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15288 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15289
15290 TYPE_FIELD_IGNORE_BITS (type) =
15291 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15292 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15293 }
15294
15295 /* If the type has baseclasses, allocate and clear a bit vector for
15296 TYPE_FIELD_VIRTUAL_BITS. */
15297 if (!fip->baseclasses.empty () && cu->language != language_ada)
15298 {
15299 int num_bytes = B_BYTES (fip->baseclasses.size ());
15300 unsigned char *pointer;
15301
15302 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15303 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15304 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15305 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15306 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15307 }
15308
15309 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15310 {
15311 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15312
15313 for (int index = 0; index < nfields; ++index)
15314 {
15315 struct nextfield &field = fip->fields[index];
15316
15317 if (field.variant.is_discriminant)
15318 di->discriminant_index = index;
15319 else if (field.variant.default_branch)
15320 di->default_index = index;
15321 else
15322 di->discriminants[index] = field.variant.discriminant_value;
15323 }
15324 }
15325
15326 /* Copy the saved-up fields into the field vector. */
15327 for (int i = 0; i < nfields; ++i)
15328 {
15329 struct nextfield &field
15330 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15331 : fip->fields[i - fip->baseclasses.size ()]);
15332
15333 TYPE_FIELD (type, i) = field.field;
15334 switch (field.accessibility)
15335 {
15336 case DW_ACCESS_private:
15337 if (cu->language != language_ada)
15338 SET_TYPE_FIELD_PRIVATE (type, i);
15339 break;
15340
15341 case DW_ACCESS_protected:
15342 if (cu->language != language_ada)
15343 SET_TYPE_FIELD_PROTECTED (type, i);
15344 break;
15345
15346 case DW_ACCESS_public:
15347 break;
15348
15349 default:
15350 /* Unknown accessibility. Complain and treat it as public. */
15351 {
15352 complaint (_("unsupported accessibility %d"),
15353 field.accessibility);
15354 }
15355 break;
15356 }
15357 if (i < fip->baseclasses.size ())
15358 {
15359 switch (field.virtuality)
15360 {
15361 case DW_VIRTUALITY_virtual:
15362 case DW_VIRTUALITY_pure_virtual:
15363 if (cu->language == language_ada)
15364 error (_("unexpected virtuality in component of Ada type"));
15365 SET_TYPE_FIELD_VIRTUAL (type, i);
15366 break;
15367 }
15368 }
15369 }
15370 }
15371
15372 /* Return true if this member function is a constructor, false
15373 otherwise. */
15374
15375 static int
15376 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15377 {
15378 const char *fieldname;
15379 const char *type_name;
15380 int len;
15381
15382 if (die->parent == NULL)
15383 return 0;
15384
15385 if (die->parent->tag != DW_TAG_structure_type
15386 && die->parent->tag != DW_TAG_union_type
15387 && die->parent->tag != DW_TAG_class_type)
15388 return 0;
15389
15390 fieldname = dwarf2_name (die, cu);
15391 type_name = dwarf2_name (die->parent, cu);
15392 if (fieldname == NULL || type_name == NULL)
15393 return 0;
15394
15395 len = strlen (fieldname);
15396 return (strncmp (fieldname, type_name, len) == 0
15397 && (type_name[len] == '\0' || type_name[len] == '<'));
15398 }
15399
15400 /* Add a member function to the proper fieldlist. */
15401
15402 static void
15403 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15404 struct type *type, struct dwarf2_cu *cu)
15405 {
15406 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15407 struct attribute *attr;
15408 int i;
15409 struct fnfieldlist *flp = nullptr;
15410 struct fn_field *fnp;
15411 const char *fieldname;
15412 struct type *this_type;
15413 enum dwarf_access_attribute accessibility;
15414
15415 if (cu->language == language_ada)
15416 error (_("unexpected member function in Ada type"));
15417
15418 /* Get name of member function. */
15419 fieldname = dwarf2_name (die, cu);
15420 if (fieldname == NULL)
15421 return;
15422
15423 /* Look up member function name in fieldlist. */
15424 for (i = 0; i < fip->fnfieldlists.size (); i++)
15425 {
15426 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15427 {
15428 flp = &fip->fnfieldlists[i];
15429 break;
15430 }
15431 }
15432
15433 /* Create a new fnfieldlist if necessary. */
15434 if (flp == nullptr)
15435 {
15436 fip->fnfieldlists.emplace_back ();
15437 flp = &fip->fnfieldlists.back ();
15438 flp->name = fieldname;
15439 i = fip->fnfieldlists.size () - 1;
15440 }
15441
15442 /* Create a new member function field and add it to the vector of
15443 fnfieldlists. */
15444 flp->fnfields.emplace_back ();
15445 fnp = &flp->fnfields.back ();
15446
15447 /* Delay processing of the physname until later. */
15448 if (cu->language == language_cplus)
15449 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15450 die, cu);
15451 else
15452 {
15453 const char *physname = dwarf2_physname (fieldname, die, cu);
15454 fnp->physname = physname ? physname : "";
15455 }
15456
15457 fnp->type = alloc_type (objfile);
15458 this_type = read_type_die (die, cu);
15459 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15460 {
15461 int nparams = TYPE_NFIELDS (this_type);
15462
15463 /* TYPE is the domain of this method, and THIS_TYPE is the type
15464 of the method itself (TYPE_CODE_METHOD). */
15465 smash_to_method_type (fnp->type, type,
15466 TYPE_TARGET_TYPE (this_type),
15467 TYPE_FIELDS (this_type),
15468 TYPE_NFIELDS (this_type),
15469 TYPE_VARARGS (this_type));
15470
15471 /* Handle static member functions.
15472 Dwarf2 has no clean way to discern C++ static and non-static
15473 member functions. G++ helps GDB by marking the first
15474 parameter for non-static member functions (which is the this
15475 pointer) as artificial. We obtain this information from
15476 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15477 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15478 fnp->voffset = VOFFSET_STATIC;
15479 }
15480 else
15481 complaint (_("member function type missing for '%s'"),
15482 dwarf2_full_name (fieldname, die, cu));
15483
15484 /* Get fcontext from DW_AT_containing_type if present. */
15485 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15486 fnp->fcontext = die_containing_type (die, cu);
15487
15488 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15489 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15490
15491 /* Get accessibility. */
15492 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15493 if (attr)
15494 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15495 else
15496 accessibility = dwarf2_default_access_attribute (die, cu);
15497 switch (accessibility)
15498 {
15499 case DW_ACCESS_private:
15500 fnp->is_private = 1;
15501 break;
15502 case DW_ACCESS_protected:
15503 fnp->is_protected = 1;
15504 break;
15505 }
15506
15507 /* Check for artificial methods. */
15508 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15509 if (attr && DW_UNSND (attr) != 0)
15510 fnp->is_artificial = 1;
15511
15512 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15513
15514 /* Get index in virtual function table if it is a virtual member
15515 function. For older versions of GCC, this is an offset in the
15516 appropriate virtual table, as specified by DW_AT_containing_type.
15517 For everyone else, it is an expression to be evaluated relative
15518 to the object address. */
15519
15520 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15521 if (attr)
15522 {
15523 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15524 {
15525 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15526 {
15527 /* Old-style GCC. */
15528 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15529 }
15530 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15531 || (DW_BLOCK (attr)->size > 1
15532 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15533 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15534 {
15535 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15536 if ((fnp->voffset % cu->header.addr_size) != 0)
15537 dwarf2_complex_location_expr_complaint ();
15538 else
15539 fnp->voffset /= cu->header.addr_size;
15540 fnp->voffset += 2;
15541 }
15542 else
15543 dwarf2_complex_location_expr_complaint ();
15544
15545 if (!fnp->fcontext)
15546 {
15547 /* If there is no `this' field and no DW_AT_containing_type,
15548 we cannot actually find a base class context for the
15549 vtable! */
15550 if (TYPE_NFIELDS (this_type) == 0
15551 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15552 {
15553 complaint (_("cannot determine context for virtual member "
15554 "function \"%s\" (offset %s)"),
15555 fieldname, sect_offset_str (die->sect_off));
15556 }
15557 else
15558 {
15559 fnp->fcontext
15560 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15561 }
15562 }
15563 }
15564 else if (attr_form_is_section_offset (attr))
15565 {
15566 dwarf2_complex_location_expr_complaint ();
15567 }
15568 else
15569 {
15570 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15571 fieldname);
15572 }
15573 }
15574 else
15575 {
15576 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15577 if (attr && DW_UNSND (attr))
15578 {
15579 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15580 complaint (_("Member function \"%s\" (offset %s) is virtual "
15581 "but the vtable offset is not specified"),
15582 fieldname, sect_offset_str (die->sect_off));
15583 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15584 TYPE_CPLUS_DYNAMIC (type) = 1;
15585 }
15586 }
15587 }
15588
15589 /* Create the vector of member function fields, and attach it to the type. */
15590
15591 static void
15592 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15593 struct dwarf2_cu *cu)
15594 {
15595 if (cu->language == language_ada)
15596 error (_("unexpected member functions in Ada type"));
15597
15598 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15599 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15600 TYPE_ALLOC (type,
15601 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15602
15603 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15604 {
15605 struct fnfieldlist &nf = fip->fnfieldlists[i];
15606 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15607
15608 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15609 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15610 fn_flp->fn_fields = (struct fn_field *)
15611 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15612
15613 for (int k = 0; k < nf.fnfields.size (); ++k)
15614 fn_flp->fn_fields[k] = nf.fnfields[k];
15615 }
15616
15617 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15618 }
15619
15620 /* Returns non-zero if NAME is the name of a vtable member in CU's
15621 language, zero otherwise. */
15622 static int
15623 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15624 {
15625 static const char vptr[] = "_vptr";
15626
15627 /* Look for the C++ form of the vtable. */
15628 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15629 return 1;
15630
15631 return 0;
15632 }
15633
15634 /* GCC outputs unnamed structures that are really pointers to member
15635 functions, with the ABI-specified layout. If TYPE describes
15636 such a structure, smash it into a member function type.
15637
15638 GCC shouldn't do this; it should just output pointer to member DIEs.
15639 This is GCC PR debug/28767. */
15640
15641 static void
15642 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15643 {
15644 struct type *pfn_type, *self_type, *new_type;
15645
15646 /* Check for a structure with no name and two children. */
15647 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15648 return;
15649
15650 /* Check for __pfn and __delta members. */
15651 if (TYPE_FIELD_NAME (type, 0) == NULL
15652 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15653 || TYPE_FIELD_NAME (type, 1) == NULL
15654 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15655 return;
15656
15657 /* Find the type of the method. */
15658 pfn_type = TYPE_FIELD_TYPE (type, 0);
15659 if (pfn_type == NULL
15660 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15661 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15662 return;
15663
15664 /* Look for the "this" argument. */
15665 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15666 if (TYPE_NFIELDS (pfn_type) == 0
15667 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15668 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15669 return;
15670
15671 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15672 new_type = alloc_type (objfile);
15673 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15674 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15675 TYPE_VARARGS (pfn_type));
15676 smash_to_methodptr_type (type, new_type);
15677 }
15678
15679 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15680 appropriate error checking and issuing complaints if there is a
15681 problem. */
15682
15683 static ULONGEST
15684 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15685 {
15686 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15687
15688 if (attr == nullptr)
15689 return 0;
15690
15691 if (!attr_form_is_constant (attr))
15692 {
15693 complaint (_("DW_AT_alignment must have constant form"
15694 " - DIE at %s [in module %s]"),
15695 sect_offset_str (die->sect_off),
15696 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15697 return 0;
15698 }
15699
15700 ULONGEST align;
15701 if (attr->form == DW_FORM_sdata)
15702 {
15703 LONGEST val = DW_SND (attr);
15704 if (val < 0)
15705 {
15706 complaint (_("DW_AT_alignment value must not be negative"
15707 " - DIE at %s [in module %s]"),
15708 sect_offset_str (die->sect_off),
15709 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15710 return 0;
15711 }
15712 align = val;
15713 }
15714 else
15715 align = DW_UNSND (attr);
15716
15717 if (align == 0)
15718 {
15719 complaint (_("DW_AT_alignment value must not be zero"
15720 " - DIE at %s [in module %s]"),
15721 sect_offset_str (die->sect_off),
15722 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15723 return 0;
15724 }
15725 if ((align & (align - 1)) != 0)
15726 {
15727 complaint (_("DW_AT_alignment value must be a power of 2"
15728 " - DIE at %s [in module %s]"),
15729 sect_offset_str (die->sect_off),
15730 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15731 return 0;
15732 }
15733
15734 return align;
15735 }
15736
15737 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15738 the alignment for TYPE. */
15739
15740 static void
15741 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15742 struct type *type)
15743 {
15744 if (!set_type_align (type, get_alignment (cu, die)))
15745 complaint (_("DW_AT_alignment value too large"
15746 " - DIE at %s [in module %s]"),
15747 sect_offset_str (die->sect_off),
15748 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15749 }
15750
15751 /* Called when we find the DIE that starts a structure or union scope
15752 (definition) to create a type for the structure or union. Fill in
15753 the type's name and general properties; the members will not be
15754 processed until process_structure_scope. A symbol table entry for
15755 the type will also not be done until process_structure_scope (assuming
15756 the type has a name).
15757
15758 NOTE: we need to call these functions regardless of whether or not the
15759 DIE has a DW_AT_name attribute, since it might be an anonymous
15760 structure or union. This gets the type entered into our set of
15761 user defined types. */
15762
15763 static struct type *
15764 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15765 {
15766 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15767 struct type *type;
15768 struct attribute *attr;
15769 const char *name;
15770
15771 /* If the definition of this type lives in .debug_types, read that type.
15772 Don't follow DW_AT_specification though, that will take us back up
15773 the chain and we want to go down. */
15774 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15775 if (attr)
15776 {
15777 type = get_DW_AT_signature_type (die, attr, cu);
15778
15779 /* The type's CU may not be the same as CU.
15780 Ensure TYPE is recorded with CU in die_type_hash. */
15781 return set_die_type (die, type, cu);
15782 }
15783
15784 type = alloc_type (objfile);
15785 INIT_CPLUS_SPECIFIC (type);
15786
15787 name = dwarf2_name (die, cu);
15788 if (name != NULL)
15789 {
15790 if (cu->language == language_cplus
15791 || cu->language == language_d
15792 || cu->language == language_rust)
15793 {
15794 const char *full_name = dwarf2_full_name (name, die, cu);
15795
15796 /* dwarf2_full_name might have already finished building the DIE's
15797 type. If so, there is no need to continue. */
15798 if (get_die_type (die, cu) != NULL)
15799 return get_die_type (die, cu);
15800
15801 TYPE_NAME (type) = full_name;
15802 }
15803 else
15804 {
15805 /* The name is already allocated along with this objfile, so
15806 we don't need to duplicate it for the type. */
15807 TYPE_NAME (type) = name;
15808 }
15809 }
15810
15811 if (die->tag == DW_TAG_structure_type)
15812 {
15813 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15814 }
15815 else if (die->tag == DW_TAG_union_type)
15816 {
15817 TYPE_CODE (type) = TYPE_CODE_UNION;
15818 }
15819 else if (die->tag == DW_TAG_variant_part)
15820 {
15821 TYPE_CODE (type) = TYPE_CODE_UNION;
15822 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15823 }
15824 else
15825 {
15826 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15827 }
15828
15829 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15830 TYPE_DECLARED_CLASS (type) = 1;
15831
15832 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15833 if (attr)
15834 {
15835 if (attr_form_is_constant (attr))
15836 TYPE_LENGTH (type) = DW_UNSND (attr);
15837 else
15838 {
15839 /* For the moment, dynamic type sizes are not supported
15840 by GDB's struct type. The actual size is determined
15841 on-demand when resolving the type of a given object,
15842 so set the type's length to zero for now. Otherwise,
15843 we record an expression as the length, and that expression
15844 could lead to a very large value, which could eventually
15845 lead to us trying to allocate that much memory when creating
15846 a value of that type. */
15847 TYPE_LENGTH (type) = 0;
15848 }
15849 }
15850 else
15851 {
15852 TYPE_LENGTH (type) = 0;
15853 }
15854
15855 maybe_set_alignment (cu, die, type);
15856
15857 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15858 {
15859 /* ICC<14 does not output the required DW_AT_declaration on
15860 incomplete types, but gives them a size of zero. */
15861 TYPE_STUB (type) = 1;
15862 }
15863 else
15864 TYPE_STUB_SUPPORTED (type) = 1;
15865
15866 if (die_is_declaration (die, cu))
15867 TYPE_STUB (type) = 1;
15868 else if (attr == NULL && die->child == NULL
15869 && producer_is_realview (cu->producer))
15870 /* RealView does not output the required DW_AT_declaration
15871 on incomplete types. */
15872 TYPE_STUB (type) = 1;
15873
15874 /* We need to add the type field to the die immediately so we don't
15875 infinitely recurse when dealing with pointers to the structure
15876 type within the structure itself. */
15877 set_die_type (die, type, cu);
15878
15879 /* set_die_type should be already done. */
15880 set_descriptive_type (type, die, cu);
15881
15882 return type;
15883 }
15884
15885 /* A helper for process_structure_scope that handles a single member
15886 DIE. */
15887
15888 static void
15889 handle_struct_member_die (struct die_info *child_die, struct type *type,
15890 struct field_info *fi,
15891 std::vector<struct symbol *> *template_args,
15892 struct dwarf2_cu *cu)
15893 {
15894 if (child_die->tag == DW_TAG_member
15895 || child_die->tag == DW_TAG_variable
15896 || child_die->tag == DW_TAG_variant_part)
15897 {
15898 /* NOTE: carlton/2002-11-05: A C++ static data member
15899 should be a DW_TAG_member that is a declaration, but
15900 all versions of G++ as of this writing (so through at
15901 least 3.2.1) incorrectly generate DW_TAG_variable
15902 tags for them instead. */
15903 dwarf2_add_field (fi, child_die, cu);
15904 }
15905 else if (child_die->tag == DW_TAG_subprogram)
15906 {
15907 /* Rust doesn't have member functions in the C++ sense.
15908 However, it does emit ordinary functions as children
15909 of a struct DIE. */
15910 if (cu->language == language_rust)
15911 read_func_scope (child_die, cu);
15912 else
15913 {
15914 /* C++ member function. */
15915 dwarf2_add_member_fn (fi, child_die, type, cu);
15916 }
15917 }
15918 else if (child_die->tag == DW_TAG_inheritance)
15919 {
15920 /* C++ base class field. */
15921 dwarf2_add_field (fi, child_die, cu);
15922 }
15923 else if (type_can_define_types (child_die))
15924 dwarf2_add_type_defn (fi, child_die, cu);
15925 else if (child_die->tag == DW_TAG_template_type_param
15926 || child_die->tag == DW_TAG_template_value_param)
15927 {
15928 struct symbol *arg = new_symbol (child_die, NULL, cu);
15929
15930 if (arg != NULL)
15931 template_args->push_back (arg);
15932 }
15933 else if (child_die->tag == DW_TAG_variant)
15934 {
15935 /* In a variant we want to get the discriminant and also add a
15936 field for our sole member child. */
15937 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15938
15939 for (struct die_info *variant_child = child_die->child;
15940 variant_child != NULL;
15941 variant_child = sibling_die (variant_child))
15942 {
15943 if (variant_child->tag == DW_TAG_member)
15944 {
15945 handle_struct_member_die (variant_child, type, fi,
15946 template_args, cu);
15947 /* Only handle the one. */
15948 break;
15949 }
15950 }
15951
15952 /* We don't handle this but we might as well report it if we see
15953 it. */
15954 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15955 complaint (_("DW_AT_discr_list is not supported yet"
15956 " - DIE at %s [in module %s]"),
15957 sect_offset_str (child_die->sect_off),
15958 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15959
15960 /* The first field was just added, so we can stash the
15961 discriminant there. */
15962 gdb_assert (!fi->fields.empty ());
15963 if (discr == NULL)
15964 fi->fields.back ().variant.default_branch = true;
15965 else
15966 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15967 }
15968 }
15969
15970 /* Finish creating a structure or union type, including filling in
15971 its members and creating a symbol for it. */
15972
15973 static void
15974 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15975 {
15976 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15977 struct die_info *child_die;
15978 struct type *type;
15979
15980 type = get_die_type (die, cu);
15981 if (type == NULL)
15982 type = read_structure_type (die, cu);
15983
15984 /* When reading a DW_TAG_variant_part, we need to notice when we
15985 read the discriminant member, so we can record it later in the
15986 discriminant_info. */
15987 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15988 sect_offset discr_offset;
15989 bool has_template_parameters = false;
15990
15991 if (is_variant_part)
15992 {
15993 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15994 if (discr == NULL)
15995 {
15996 /* Maybe it's a univariant form, an extension we support.
15997 In this case arrange not to check the offset. */
15998 is_variant_part = false;
15999 }
16000 else if (attr_form_is_ref (discr))
16001 {
16002 struct dwarf2_cu *target_cu = cu;
16003 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16004
16005 discr_offset = target_die->sect_off;
16006 }
16007 else
16008 {
16009 complaint (_("DW_AT_discr does not have DIE reference form"
16010 " - DIE at %s [in module %s]"),
16011 sect_offset_str (die->sect_off),
16012 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16013 is_variant_part = false;
16014 }
16015 }
16016
16017 if (die->child != NULL && ! die_is_declaration (die, cu))
16018 {
16019 struct field_info fi;
16020 std::vector<struct symbol *> template_args;
16021
16022 child_die = die->child;
16023
16024 while (child_die && child_die->tag)
16025 {
16026 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16027
16028 if (is_variant_part && discr_offset == child_die->sect_off)
16029 fi.fields.back ().variant.is_discriminant = true;
16030
16031 child_die = sibling_die (child_die);
16032 }
16033
16034 /* Attach template arguments to type. */
16035 if (!template_args.empty ())
16036 {
16037 has_template_parameters = true;
16038 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16039 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16040 TYPE_TEMPLATE_ARGUMENTS (type)
16041 = XOBNEWVEC (&objfile->objfile_obstack,
16042 struct symbol *,
16043 TYPE_N_TEMPLATE_ARGUMENTS (type));
16044 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16045 template_args.data (),
16046 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16047 * sizeof (struct symbol *)));
16048 }
16049
16050 /* Attach fields and member functions to the type. */
16051 if (fi.nfields)
16052 dwarf2_attach_fields_to_type (&fi, type, cu);
16053 if (!fi.fnfieldlists.empty ())
16054 {
16055 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16056
16057 /* Get the type which refers to the base class (possibly this
16058 class itself) which contains the vtable pointer for the current
16059 class from the DW_AT_containing_type attribute. This use of
16060 DW_AT_containing_type is a GNU extension. */
16061
16062 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16063 {
16064 struct type *t = die_containing_type (die, cu);
16065
16066 set_type_vptr_basetype (type, t);
16067 if (type == t)
16068 {
16069 int i;
16070
16071 /* Our own class provides vtbl ptr. */
16072 for (i = TYPE_NFIELDS (t) - 1;
16073 i >= TYPE_N_BASECLASSES (t);
16074 --i)
16075 {
16076 const char *fieldname = TYPE_FIELD_NAME (t, i);
16077
16078 if (is_vtable_name (fieldname, cu))
16079 {
16080 set_type_vptr_fieldno (type, i);
16081 break;
16082 }
16083 }
16084
16085 /* Complain if virtual function table field not found. */
16086 if (i < TYPE_N_BASECLASSES (t))
16087 complaint (_("virtual function table pointer "
16088 "not found when defining class '%s'"),
16089 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16090 }
16091 else
16092 {
16093 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16094 }
16095 }
16096 else if (cu->producer
16097 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16098 {
16099 /* The IBM XLC compiler does not provide direct indication
16100 of the containing type, but the vtable pointer is
16101 always named __vfp. */
16102
16103 int i;
16104
16105 for (i = TYPE_NFIELDS (type) - 1;
16106 i >= TYPE_N_BASECLASSES (type);
16107 --i)
16108 {
16109 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16110 {
16111 set_type_vptr_fieldno (type, i);
16112 set_type_vptr_basetype (type, type);
16113 break;
16114 }
16115 }
16116 }
16117 }
16118
16119 /* Copy fi.typedef_field_list linked list elements content into the
16120 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16121 if (!fi.typedef_field_list.empty ())
16122 {
16123 int count = fi.typedef_field_list.size ();
16124
16125 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16126 TYPE_TYPEDEF_FIELD_ARRAY (type)
16127 = ((struct decl_field *)
16128 TYPE_ALLOC (type,
16129 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16130 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16131
16132 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16133 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16134 }
16135
16136 /* Copy fi.nested_types_list linked list elements content into the
16137 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16138 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16139 {
16140 int count = fi.nested_types_list.size ();
16141
16142 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16143 TYPE_NESTED_TYPES_ARRAY (type)
16144 = ((struct decl_field *)
16145 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16146 TYPE_NESTED_TYPES_COUNT (type) = count;
16147
16148 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16149 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16150 }
16151 }
16152
16153 quirk_gcc_member_function_pointer (type, objfile);
16154 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16155 cu->rust_unions.push_back (type);
16156
16157 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16158 snapshots) has been known to create a die giving a declaration
16159 for a class that has, as a child, a die giving a definition for a
16160 nested class. So we have to process our children even if the
16161 current die is a declaration. Normally, of course, a declaration
16162 won't have any children at all. */
16163
16164 child_die = die->child;
16165
16166 while (child_die != NULL && child_die->tag)
16167 {
16168 if (child_die->tag == DW_TAG_member
16169 || child_die->tag == DW_TAG_variable
16170 || child_die->tag == DW_TAG_inheritance
16171 || child_die->tag == DW_TAG_template_value_param
16172 || child_die->tag == DW_TAG_template_type_param)
16173 {
16174 /* Do nothing. */
16175 }
16176 else
16177 process_die (child_die, cu);
16178
16179 child_die = sibling_die (child_die);
16180 }
16181
16182 /* Do not consider external references. According to the DWARF standard,
16183 these DIEs are identified by the fact that they have no byte_size
16184 attribute, and a declaration attribute. */
16185 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16186 || !die_is_declaration (die, cu))
16187 {
16188 struct symbol *sym = new_symbol (die, type, cu);
16189
16190 if (has_template_parameters)
16191 {
16192 /* Make sure that the symtab is set on the new symbols.
16193 Even though they don't appear in this symtab directly,
16194 other parts of gdb assume that symbols do, and this is
16195 reasonably true. */
16196 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16197 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16198 symbol_symtab (sym));
16199 }
16200 }
16201 }
16202
16203 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16204 update TYPE using some information only available in DIE's children. */
16205
16206 static void
16207 update_enumeration_type_from_children (struct die_info *die,
16208 struct type *type,
16209 struct dwarf2_cu *cu)
16210 {
16211 struct die_info *child_die;
16212 int unsigned_enum = 1;
16213 int flag_enum = 1;
16214 ULONGEST mask = 0;
16215
16216 auto_obstack obstack;
16217
16218 for (child_die = die->child;
16219 child_die != NULL && child_die->tag;
16220 child_die = sibling_die (child_die))
16221 {
16222 struct attribute *attr;
16223 LONGEST value;
16224 const gdb_byte *bytes;
16225 struct dwarf2_locexpr_baton *baton;
16226 const char *name;
16227
16228 if (child_die->tag != DW_TAG_enumerator)
16229 continue;
16230
16231 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16232 if (attr == NULL)
16233 continue;
16234
16235 name = dwarf2_name (child_die, cu);
16236 if (name == NULL)
16237 name = "<anonymous enumerator>";
16238
16239 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16240 &value, &bytes, &baton);
16241 if (value < 0)
16242 {
16243 unsigned_enum = 0;
16244 flag_enum = 0;
16245 }
16246 else if ((mask & value) != 0)
16247 flag_enum = 0;
16248 else
16249 mask |= value;
16250
16251 /* If we already know that the enum type is neither unsigned, nor
16252 a flag type, no need to look at the rest of the enumerates. */
16253 if (!unsigned_enum && !flag_enum)
16254 break;
16255 }
16256
16257 if (unsigned_enum)
16258 TYPE_UNSIGNED (type) = 1;
16259 if (flag_enum)
16260 TYPE_FLAG_ENUM (type) = 1;
16261 }
16262
16263 /* Given a DW_AT_enumeration_type die, set its type. We do not
16264 complete the type's fields yet, or create any symbols. */
16265
16266 static struct type *
16267 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16268 {
16269 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16270 struct type *type;
16271 struct attribute *attr;
16272 const char *name;
16273
16274 /* If the definition of this type lives in .debug_types, read that type.
16275 Don't follow DW_AT_specification though, that will take us back up
16276 the chain and we want to go down. */
16277 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16278 if (attr)
16279 {
16280 type = get_DW_AT_signature_type (die, attr, cu);
16281
16282 /* The type's CU may not be the same as CU.
16283 Ensure TYPE is recorded with CU in die_type_hash. */
16284 return set_die_type (die, type, cu);
16285 }
16286
16287 type = alloc_type (objfile);
16288
16289 TYPE_CODE (type) = TYPE_CODE_ENUM;
16290 name = dwarf2_full_name (NULL, die, cu);
16291 if (name != NULL)
16292 TYPE_NAME (type) = name;
16293
16294 attr = dwarf2_attr (die, DW_AT_type, cu);
16295 if (attr != NULL)
16296 {
16297 struct type *underlying_type = die_type (die, cu);
16298
16299 TYPE_TARGET_TYPE (type) = underlying_type;
16300 }
16301
16302 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16303 if (attr)
16304 {
16305 TYPE_LENGTH (type) = DW_UNSND (attr);
16306 }
16307 else
16308 {
16309 TYPE_LENGTH (type) = 0;
16310 }
16311
16312 maybe_set_alignment (cu, die, type);
16313
16314 /* The enumeration DIE can be incomplete. In Ada, any type can be
16315 declared as private in the package spec, and then defined only
16316 inside the package body. Such types are known as Taft Amendment
16317 Types. When another package uses such a type, an incomplete DIE
16318 may be generated by the compiler. */
16319 if (die_is_declaration (die, cu))
16320 TYPE_STUB (type) = 1;
16321
16322 /* Finish the creation of this type by using the enum's children.
16323 We must call this even when the underlying type has been provided
16324 so that we can determine if we're looking at a "flag" enum. */
16325 update_enumeration_type_from_children (die, type, cu);
16326
16327 /* If this type has an underlying type that is not a stub, then we
16328 may use its attributes. We always use the "unsigned" attribute
16329 in this situation, because ordinarily we guess whether the type
16330 is unsigned -- but the guess can be wrong and the underlying type
16331 can tell us the reality. However, we defer to a local size
16332 attribute if one exists, because this lets the compiler override
16333 the underlying type if needed. */
16334 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16335 {
16336 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16337 if (TYPE_LENGTH (type) == 0)
16338 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16339 if (TYPE_RAW_ALIGN (type) == 0
16340 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16341 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16342 }
16343
16344 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16345
16346 return set_die_type (die, type, cu);
16347 }
16348
16349 /* Given a pointer to a die which begins an enumeration, process all
16350 the dies that define the members of the enumeration, and create the
16351 symbol for the enumeration type.
16352
16353 NOTE: We reverse the order of the element list. */
16354
16355 static void
16356 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16357 {
16358 struct type *this_type;
16359
16360 this_type = get_die_type (die, cu);
16361 if (this_type == NULL)
16362 this_type = read_enumeration_type (die, cu);
16363
16364 if (die->child != NULL)
16365 {
16366 struct die_info *child_die;
16367 struct symbol *sym;
16368 struct field *fields = NULL;
16369 int num_fields = 0;
16370 const char *name;
16371
16372 child_die = die->child;
16373 while (child_die && child_die->tag)
16374 {
16375 if (child_die->tag != DW_TAG_enumerator)
16376 {
16377 process_die (child_die, cu);
16378 }
16379 else
16380 {
16381 name = dwarf2_name (child_die, cu);
16382 if (name)
16383 {
16384 sym = new_symbol (child_die, this_type, cu);
16385
16386 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16387 {
16388 fields = (struct field *)
16389 xrealloc (fields,
16390 (num_fields + DW_FIELD_ALLOC_CHUNK)
16391 * sizeof (struct field));
16392 }
16393
16394 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16395 FIELD_TYPE (fields[num_fields]) = NULL;
16396 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16397 FIELD_BITSIZE (fields[num_fields]) = 0;
16398
16399 num_fields++;
16400 }
16401 }
16402
16403 child_die = sibling_die (child_die);
16404 }
16405
16406 if (num_fields)
16407 {
16408 TYPE_NFIELDS (this_type) = num_fields;
16409 TYPE_FIELDS (this_type) = (struct field *)
16410 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16411 memcpy (TYPE_FIELDS (this_type), fields,
16412 sizeof (struct field) * num_fields);
16413 xfree (fields);
16414 }
16415 }
16416
16417 /* If we are reading an enum from a .debug_types unit, and the enum
16418 is a declaration, and the enum is not the signatured type in the
16419 unit, then we do not want to add a symbol for it. Adding a
16420 symbol would in some cases obscure the true definition of the
16421 enum, giving users an incomplete type when the definition is
16422 actually available. Note that we do not want to do this for all
16423 enums which are just declarations, because C++0x allows forward
16424 enum declarations. */
16425 if (cu->per_cu->is_debug_types
16426 && die_is_declaration (die, cu))
16427 {
16428 struct signatured_type *sig_type;
16429
16430 sig_type = (struct signatured_type *) cu->per_cu;
16431 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16432 if (sig_type->type_offset_in_section != die->sect_off)
16433 return;
16434 }
16435
16436 new_symbol (die, this_type, cu);
16437 }
16438
16439 /* Extract all information from a DW_TAG_array_type DIE and put it in
16440 the DIE's type field. For now, this only handles one dimensional
16441 arrays. */
16442
16443 static struct type *
16444 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16445 {
16446 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16447 struct die_info *child_die;
16448 struct type *type;
16449 struct type *element_type, *range_type, *index_type;
16450 struct attribute *attr;
16451 const char *name;
16452 struct dynamic_prop *byte_stride_prop = NULL;
16453 unsigned int bit_stride = 0;
16454
16455 element_type = die_type (die, cu);
16456
16457 /* The die_type call above may have already set the type for this DIE. */
16458 type = get_die_type (die, cu);
16459 if (type)
16460 return type;
16461
16462 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16463 if (attr != NULL)
16464 {
16465 int stride_ok;
16466
16467 byte_stride_prop
16468 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16469 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16470 if (!stride_ok)
16471 {
16472 complaint (_("unable to read array DW_AT_byte_stride "
16473 " - DIE at %s [in module %s]"),
16474 sect_offset_str (die->sect_off),
16475 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16476 /* Ignore this attribute. We will likely not be able to print
16477 arrays of this type correctly, but there is little we can do
16478 to help if we cannot read the attribute's value. */
16479 byte_stride_prop = NULL;
16480 }
16481 }
16482
16483 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16484 if (attr != NULL)
16485 bit_stride = DW_UNSND (attr);
16486
16487 /* Irix 6.2 native cc creates array types without children for
16488 arrays with unspecified length. */
16489 if (die->child == NULL)
16490 {
16491 index_type = objfile_type (objfile)->builtin_int;
16492 range_type = create_static_range_type (NULL, index_type, 0, -1);
16493 type = create_array_type_with_stride (NULL, element_type, range_type,
16494 byte_stride_prop, bit_stride);
16495 return set_die_type (die, type, cu);
16496 }
16497
16498 std::vector<struct type *> range_types;
16499 child_die = die->child;
16500 while (child_die && child_die->tag)
16501 {
16502 if (child_die->tag == DW_TAG_subrange_type)
16503 {
16504 struct type *child_type = read_type_die (child_die, cu);
16505
16506 if (child_type != NULL)
16507 {
16508 /* The range type was succesfully read. Save it for the
16509 array type creation. */
16510 range_types.push_back (child_type);
16511 }
16512 }
16513 child_die = sibling_die (child_die);
16514 }
16515
16516 /* Dwarf2 dimensions are output from left to right, create the
16517 necessary array types in backwards order. */
16518
16519 type = element_type;
16520
16521 if (read_array_order (die, cu) == DW_ORD_col_major)
16522 {
16523 int i = 0;
16524
16525 while (i < range_types.size ())
16526 type = create_array_type_with_stride (NULL, type, range_types[i++],
16527 byte_stride_prop, bit_stride);
16528 }
16529 else
16530 {
16531 size_t ndim = range_types.size ();
16532 while (ndim-- > 0)
16533 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16534 byte_stride_prop, bit_stride);
16535 }
16536
16537 /* Understand Dwarf2 support for vector types (like they occur on
16538 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16539 array type. This is not part of the Dwarf2/3 standard yet, but a
16540 custom vendor extension. The main difference between a regular
16541 array and the vector variant is that vectors are passed by value
16542 to functions. */
16543 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16544 if (attr)
16545 make_vector_type (type);
16546
16547 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16548 implementation may choose to implement triple vectors using this
16549 attribute. */
16550 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16551 if (attr)
16552 {
16553 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16554 TYPE_LENGTH (type) = DW_UNSND (attr);
16555 else
16556 complaint (_("DW_AT_byte_size for array type smaller "
16557 "than the total size of elements"));
16558 }
16559
16560 name = dwarf2_name (die, cu);
16561 if (name)
16562 TYPE_NAME (type) = name;
16563
16564 maybe_set_alignment (cu, die, type);
16565
16566 /* Install the type in the die. */
16567 set_die_type (die, type, cu);
16568
16569 /* set_die_type should be already done. */
16570 set_descriptive_type (type, die, cu);
16571
16572 return type;
16573 }
16574
16575 static enum dwarf_array_dim_ordering
16576 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16577 {
16578 struct attribute *attr;
16579
16580 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16581
16582 if (attr)
16583 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16584
16585 /* GNU F77 is a special case, as at 08/2004 array type info is the
16586 opposite order to the dwarf2 specification, but data is still
16587 laid out as per normal fortran.
16588
16589 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16590 version checking. */
16591
16592 if (cu->language == language_fortran
16593 && cu->producer && strstr (cu->producer, "GNU F77"))
16594 {
16595 return DW_ORD_row_major;
16596 }
16597
16598 switch (cu->language_defn->la_array_ordering)
16599 {
16600 case array_column_major:
16601 return DW_ORD_col_major;
16602 case array_row_major:
16603 default:
16604 return DW_ORD_row_major;
16605 };
16606 }
16607
16608 /* Extract all information from a DW_TAG_set_type DIE and put it in
16609 the DIE's type field. */
16610
16611 static struct type *
16612 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16613 {
16614 struct type *domain_type, *set_type;
16615 struct attribute *attr;
16616
16617 domain_type = die_type (die, cu);
16618
16619 /* The die_type call above may have already set the type for this DIE. */
16620 set_type = get_die_type (die, cu);
16621 if (set_type)
16622 return set_type;
16623
16624 set_type = create_set_type (NULL, domain_type);
16625
16626 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16627 if (attr)
16628 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16629
16630 maybe_set_alignment (cu, die, set_type);
16631
16632 return set_die_type (die, set_type, cu);
16633 }
16634
16635 /* A helper for read_common_block that creates a locexpr baton.
16636 SYM is the symbol which we are marking as computed.
16637 COMMON_DIE is the DIE for the common block.
16638 COMMON_LOC is the location expression attribute for the common
16639 block itself.
16640 MEMBER_LOC is the location expression attribute for the particular
16641 member of the common block that we are processing.
16642 CU is the CU from which the above come. */
16643
16644 static void
16645 mark_common_block_symbol_computed (struct symbol *sym,
16646 struct die_info *common_die,
16647 struct attribute *common_loc,
16648 struct attribute *member_loc,
16649 struct dwarf2_cu *cu)
16650 {
16651 struct dwarf2_per_objfile *dwarf2_per_objfile
16652 = cu->per_cu->dwarf2_per_objfile;
16653 struct objfile *objfile = dwarf2_per_objfile->objfile;
16654 struct dwarf2_locexpr_baton *baton;
16655 gdb_byte *ptr;
16656 unsigned int cu_off;
16657 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16658 LONGEST offset = 0;
16659
16660 gdb_assert (common_loc && member_loc);
16661 gdb_assert (attr_form_is_block (common_loc));
16662 gdb_assert (attr_form_is_block (member_loc)
16663 || attr_form_is_constant (member_loc));
16664
16665 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16666 baton->per_cu = cu->per_cu;
16667 gdb_assert (baton->per_cu);
16668
16669 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16670
16671 if (attr_form_is_constant (member_loc))
16672 {
16673 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16674 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16675 }
16676 else
16677 baton->size += DW_BLOCK (member_loc)->size;
16678
16679 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16680 baton->data = ptr;
16681
16682 *ptr++ = DW_OP_call4;
16683 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16684 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16685 ptr += 4;
16686
16687 if (attr_form_is_constant (member_loc))
16688 {
16689 *ptr++ = DW_OP_addr;
16690 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16691 ptr += cu->header.addr_size;
16692 }
16693 else
16694 {
16695 /* We have to copy the data here, because DW_OP_call4 will only
16696 use a DW_AT_location attribute. */
16697 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16698 ptr += DW_BLOCK (member_loc)->size;
16699 }
16700
16701 *ptr++ = DW_OP_plus;
16702 gdb_assert (ptr - baton->data == baton->size);
16703
16704 SYMBOL_LOCATION_BATON (sym) = baton;
16705 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16706 }
16707
16708 /* Create appropriate locally-scoped variables for all the
16709 DW_TAG_common_block entries. Also create a struct common_block
16710 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16711 is used to sepate the common blocks name namespace from regular
16712 variable names. */
16713
16714 static void
16715 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16716 {
16717 struct attribute *attr;
16718
16719 attr = dwarf2_attr (die, DW_AT_location, cu);
16720 if (attr)
16721 {
16722 /* Support the .debug_loc offsets. */
16723 if (attr_form_is_block (attr))
16724 {
16725 /* Ok. */
16726 }
16727 else if (attr_form_is_section_offset (attr))
16728 {
16729 dwarf2_complex_location_expr_complaint ();
16730 attr = NULL;
16731 }
16732 else
16733 {
16734 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16735 "common block member");
16736 attr = NULL;
16737 }
16738 }
16739
16740 if (die->child != NULL)
16741 {
16742 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16743 struct die_info *child_die;
16744 size_t n_entries = 0, size;
16745 struct common_block *common_block;
16746 struct symbol *sym;
16747
16748 for (child_die = die->child;
16749 child_die && child_die->tag;
16750 child_die = sibling_die (child_die))
16751 ++n_entries;
16752
16753 size = (sizeof (struct common_block)
16754 + (n_entries - 1) * sizeof (struct symbol *));
16755 common_block
16756 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16757 size);
16758 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16759 common_block->n_entries = 0;
16760
16761 for (child_die = die->child;
16762 child_die && child_die->tag;
16763 child_die = sibling_die (child_die))
16764 {
16765 /* Create the symbol in the DW_TAG_common_block block in the current
16766 symbol scope. */
16767 sym = new_symbol (child_die, NULL, cu);
16768 if (sym != NULL)
16769 {
16770 struct attribute *member_loc;
16771
16772 common_block->contents[common_block->n_entries++] = sym;
16773
16774 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16775 cu);
16776 if (member_loc)
16777 {
16778 /* GDB has handled this for a long time, but it is
16779 not specified by DWARF. It seems to have been
16780 emitted by gfortran at least as recently as:
16781 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16782 complaint (_("Variable in common block has "
16783 "DW_AT_data_member_location "
16784 "- DIE at %s [in module %s]"),
16785 sect_offset_str (child_die->sect_off),
16786 objfile_name (objfile));
16787
16788 if (attr_form_is_section_offset (member_loc))
16789 dwarf2_complex_location_expr_complaint ();
16790 else if (attr_form_is_constant (member_loc)
16791 || attr_form_is_block (member_loc))
16792 {
16793 if (attr)
16794 mark_common_block_symbol_computed (sym, die, attr,
16795 member_loc, cu);
16796 }
16797 else
16798 dwarf2_complex_location_expr_complaint ();
16799 }
16800 }
16801 }
16802
16803 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16804 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16805 }
16806 }
16807
16808 /* Create a type for a C++ namespace. */
16809
16810 static struct type *
16811 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16812 {
16813 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16814 const char *previous_prefix, *name;
16815 int is_anonymous;
16816 struct type *type;
16817
16818 /* For extensions, reuse the type of the original namespace. */
16819 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16820 {
16821 struct die_info *ext_die;
16822 struct dwarf2_cu *ext_cu = cu;
16823
16824 ext_die = dwarf2_extension (die, &ext_cu);
16825 type = read_type_die (ext_die, ext_cu);
16826
16827 /* EXT_CU may not be the same as CU.
16828 Ensure TYPE is recorded with CU in die_type_hash. */
16829 return set_die_type (die, type, cu);
16830 }
16831
16832 name = namespace_name (die, &is_anonymous, cu);
16833
16834 /* Now build the name of the current namespace. */
16835
16836 previous_prefix = determine_prefix (die, cu);
16837 if (previous_prefix[0] != '\0')
16838 name = typename_concat (&objfile->objfile_obstack,
16839 previous_prefix, name, 0, cu);
16840
16841 /* Create the type. */
16842 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16843
16844 return set_die_type (die, type, cu);
16845 }
16846
16847 /* Read a namespace scope. */
16848
16849 static void
16850 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16851 {
16852 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16853 int is_anonymous;
16854
16855 /* Add a symbol associated to this if we haven't seen the namespace
16856 before. Also, add a using directive if it's an anonymous
16857 namespace. */
16858
16859 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16860 {
16861 struct type *type;
16862
16863 type = read_type_die (die, cu);
16864 new_symbol (die, type, cu);
16865
16866 namespace_name (die, &is_anonymous, cu);
16867 if (is_anonymous)
16868 {
16869 const char *previous_prefix = determine_prefix (die, cu);
16870
16871 std::vector<const char *> excludes;
16872 add_using_directive (using_directives (cu),
16873 previous_prefix, TYPE_NAME (type), NULL,
16874 NULL, excludes, 0, &objfile->objfile_obstack);
16875 }
16876 }
16877
16878 if (die->child != NULL)
16879 {
16880 struct die_info *child_die = die->child;
16881
16882 while (child_die && child_die->tag)
16883 {
16884 process_die (child_die, cu);
16885 child_die = sibling_die (child_die);
16886 }
16887 }
16888 }
16889
16890 /* Read a Fortran module as type. This DIE can be only a declaration used for
16891 imported module. Still we need that type as local Fortran "use ... only"
16892 declaration imports depend on the created type in determine_prefix. */
16893
16894 static struct type *
16895 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16896 {
16897 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16898 const char *module_name;
16899 struct type *type;
16900
16901 module_name = dwarf2_name (die, cu);
16902 if (!module_name)
16903 complaint (_("DW_TAG_module has no name, offset %s"),
16904 sect_offset_str (die->sect_off));
16905 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16906
16907 return set_die_type (die, type, cu);
16908 }
16909
16910 /* Read a Fortran module. */
16911
16912 static void
16913 read_module (struct die_info *die, struct dwarf2_cu *cu)
16914 {
16915 struct die_info *child_die = die->child;
16916 struct type *type;
16917
16918 type = read_type_die (die, cu);
16919 new_symbol (die, type, cu);
16920
16921 while (child_die && child_die->tag)
16922 {
16923 process_die (child_die, cu);
16924 child_die = sibling_die (child_die);
16925 }
16926 }
16927
16928 /* Return the name of the namespace represented by DIE. Set
16929 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16930 namespace. */
16931
16932 static const char *
16933 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16934 {
16935 struct die_info *current_die;
16936 const char *name = NULL;
16937
16938 /* Loop through the extensions until we find a name. */
16939
16940 for (current_die = die;
16941 current_die != NULL;
16942 current_die = dwarf2_extension (die, &cu))
16943 {
16944 /* We don't use dwarf2_name here so that we can detect the absence
16945 of a name -> anonymous namespace. */
16946 name = dwarf2_string_attr (die, DW_AT_name, cu);
16947
16948 if (name != NULL)
16949 break;
16950 }
16951
16952 /* Is it an anonymous namespace? */
16953
16954 *is_anonymous = (name == NULL);
16955 if (*is_anonymous)
16956 name = CP_ANONYMOUS_NAMESPACE_STR;
16957
16958 return name;
16959 }
16960
16961 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16962 the user defined type vector. */
16963
16964 static struct type *
16965 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16966 {
16967 struct gdbarch *gdbarch
16968 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16969 struct comp_unit_head *cu_header = &cu->header;
16970 struct type *type;
16971 struct attribute *attr_byte_size;
16972 struct attribute *attr_address_class;
16973 int byte_size, addr_class;
16974 struct type *target_type;
16975
16976 target_type = die_type (die, cu);
16977
16978 /* The die_type call above may have already set the type for this DIE. */
16979 type = get_die_type (die, cu);
16980 if (type)
16981 return type;
16982
16983 type = lookup_pointer_type (target_type);
16984
16985 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16986 if (attr_byte_size)
16987 byte_size = DW_UNSND (attr_byte_size);
16988 else
16989 byte_size = cu_header->addr_size;
16990
16991 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16992 if (attr_address_class)
16993 addr_class = DW_UNSND (attr_address_class);
16994 else
16995 addr_class = DW_ADDR_none;
16996
16997 ULONGEST alignment = get_alignment (cu, die);
16998
16999 /* If the pointer size, alignment, or address class is different
17000 than the default, create a type variant marked as such and set
17001 the length accordingly. */
17002 if (TYPE_LENGTH (type) != byte_size
17003 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17004 && alignment != TYPE_RAW_ALIGN (type))
17005 || addr_class != DW_ADDR_none)
17006 {
17007 if (gdbarch_address_class_type_flags_p (gdbarch))
17008 {
17009 int type_flags;
17010
17011 type_flags = gdbarch_address_class_type_flags
17012 (gdbarch, byte_size, addr_class);
17013 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17014 == 0);
17015 type = make_type_with_address_space (type, type_flags);
17016 }
17017 else if (TYPE_LENGTH (type) != byte_size)
17018 {
17019 complaint (_("invalid pointer size %d"), byte_size);
17020 }
17021 else if (TYPE_RAW_ALIGN (type) != alignment)
17022 {
17023 complaint (_("Invalid DW_AT_alignment"
17024 " - DIE at %s [in module %s]"),
17025 sect_offset_str (die->sect_off),
17026 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17027 }
17028 else
17029 {
17030 /* Should we also complain about unhandled address classes? */
17031 }
17032 }
17033
17034 TYPE_LENGTH (type) = byte_size;
17035 set_type_align (type, alignment);
17036 return set_die_type (die, type, cu);
17037 }
17038
17039 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17040 the user defined type vector. */
17041
17042 static struct type *
17043 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17044 {
17045 struct type *type;
17046 struct type *to_type;
17047 struct type *domain;
17048
17049 to_type = die_type (die, cu);
17050 domain = die_containing_type (die, cu);
17051
17052 /* The calls above may have already set the type for this DIE. */
17053 type = get_die_type (die, cu);
17054 if (type)
17055 return type;
17056
17057 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17058 type = lookup_methodptr_type (to_type);
17059 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17060 {
17061 struct type *new_type
17062 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17063
17064 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17065 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17066 TYPE_VARARGS (to_type));
17067 type = lookup_methodptr_type (new_type);
17068 }
17069 else
17070 type = lookup_memberptr_type (to_type, domain);
17071
17072 return set_die_type (die, type, cu);
17073 }
17074
17075 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17076 the user defined type vector. */
17077
17078 static struct type *
17079 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17080 enum type_code refcode)
17081 {
17082 struct comp_unit_head *cu_header = &cu->header;
17083 struct type *type, *target_type;
17084 struct attribute *attr;
17085
17086 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17087
17088 target_type = die_type (die, cu);
17089
17090 /* The die_type call above may have already set the type for this DIE. */
17091 type = get_die_type (die, cu);
17092 if (type)
17093 return type;
17094
17095 type = lookup_reference_type (target_type, refcode);
17096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17097 if (attr)
17098 {
17099 TYPE_LENGTH (type) = DW_UNSND (attr);
17100 }
17101 else
17102 {
17103 TYPE_LENGTH (type) = cu_header->addr_size;
17104 }
17105 maybe_set_alignment (cu, die, type);
17106 return set_die_type (die, type, cu);
17107 }
17108
17109 /* Add the given cv-qualifiers to the element type of the array. GCC
17110 outputs DWARF type qualifiers that apply to an array, not the
17111 element type. But GDB relies on the array element type to carry
17112 the cv-qualifiers. This mimics section 6.7.3 of the C99
17113 specification. */
17114
17115 static struct type *
17116 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17117 struct type *base_type, int cnst, int voltl)
17118 {
17119 struct type *el_type, *inner_array;
17120
17121 base_type = copy_type (base_type);
17122 inner_array = base_type;
17123
17124 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17125 {
17126 TYPE_TARGET_TYPE (inner_array) =
17127 copy_type (TYPE_TARGET_TYPE (inner_array));
17128 inner_array = TYPE_TARGET_TYPE (inner_array);
17129 }
17130
17131 el_type = TYPE_TARGET_TYPE (inner_array);
17132 cnst |= TYPE_CONST (el_type);
17133 voltl |= TYPE_VOLATILE (el_type);
17134 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17135
17136 return set_die_type (die, base_type, cu);
17137 }
17138
17139 static struct type *
17140 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17141 {
17142 struct type *base_type, *cv_type;
17143
17144 base_type = die_type (die, cu);
17145
17146 /* The die_type call above may have already set the type for this DIE. */
17147 cv_type = get_die_type (die, cu);
17148 if (cv_type)
17149 return cv_type;
17150
17151 /* In case the const qualifier is applied to an array type, the element type
17152 is so qualified, not the array type (section 6.7.3 of C99). */
17153 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17154 return add_array_cv_type (die, cu, base_type, 1, 0);
17155
17156 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17157 return set_die_type (die, cv_type, cu);
17158 }
17159
17160 static struct type *
17161 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17162 {
17163 struct type *base_type, *cv_type;
17164
17165 base_type = die_type (die, cu);
17166
17167 /* The die_type call above may have already set the type for this DIE. */
17168 cv_type = get_die_type (die, cu);
17169 if (cv_type)
17170 return cv_type;
17171
17172 /* In case the volatile qualifier is applied to an array type, the
17173 element type is so qualified, not the array type (section 6.7.3
17174 of C99). */
17175 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17176 return add_array_cv_type (die, cu, base_type, 0, 1);
17177
17178 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17179 return set_die_type (die, cv_type, cu);
17180 }
17181
17182 /* Handle DW_TAG_restrict_type. */
17183
17184 static struct type *
17185 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17186 {
17187 struct type *base_type, *cv_type;
17188
17189 base_type = die_type (die, cu);
17190
17191 /* The die_type call above may have already set the type for this DIE. */
17192 cv_type = get_die_type (die, cu);
17193 if (cv_type)
17194 return cv_type;
17195
17196 cv_type = make_restrict_type (base_type);
17197 return set_die_type (die, cv_type, cu);
17198 }
17199
17200 /* Handle DW_TAG_atomic_type. */
17201
17202 static struct type *
17203 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17204 {
17205 struct type *base_type, *cv_type;
17206
17207 base_type = die_type (die, cu);
17208
17209 /* The die_type call above may have already set the type for this DIE. */
17210 cv_type = get_die_type (die, cu);
17211 if (cv_type)
17212 return cv_type;
17213
17214 cv_type = make_atomic_type (base_type);
17215 return set_die_type (die, cv_type, cu);
17216 }
17217
17218 /* Extract all information from a DW_TAG_string_type DIE and add to
17219 the user defined type vector. It isn't really a user defined type,
17220 but it behaves like one, with other DIE's using an AT_user_def_type
17221 attribute to reference it. */
17222
17223 static struct type *
17224 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17225 {
17226 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17227 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17228 struct type *type, *range_type, *index_type, *char_type;
17229 struct attribute *attr;
17230 unsigned int length;
17231
17232 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17233 if (attr)
17234 {
17235 length = DW_UNSND (attr);
17236 }
17237 else
17238 {
17239 /* Check for the DW_AT_byte_size attribute. */
17240 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17241 if (attr)
17242 {
17243 length = DW_UNSND (attr);
17244 }
17245 else
17246 {
17247 length = 1;
17248 }
17249 }
17250
17251 index_type = objfile_type (objfile)->builtin_int;
17252 range_type = create_static_range_type (NULL, index_type, 1, length);
17253 char_type = language_string_char_type (cu->language_defn, gdbarch);
17254 type = create_string_type (NULL, char_type, range_type);
17255
17256 return set_die_type (die, type, cu);
17257 }
17258
17259 /* Assuming that DIE corresponds to a function, returns nonzero
17260 if the function is prototyped. */
17261
17262 static int
17263 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17264 {
17265 struct attribute *attr;
17266
17267 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17268 if (attr && (DW_UNSND (attr) != 0))
17269 return 1;
17270
17271 /* The DWARF standard implies that the DW_AT_prototyped attribute
17272 is only meaninful for C, but the concept also extends to other
17273 languages that allow unprototyped functions (Eg: Objective C).
17274 For all other languages, assume that functions are always
17275 prototyped. */
17276 if (cu->language != language_c
17277 && cu->language != language_objc
17278 && cu->language != language_opencl)
17279 return 1;
17280
17281 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17282 prototyped and unprototyped functions; default to prototyped,
17283 since that is more common in modern code (and RealView warns
17284 about unprototyped functions). */
17285 if (producer_is_realview (cu->producer))
17286 return 1;
17287
17288 return 0;
17289 }
17290
17291 /* Handle DIES due to C code like:
17292
17293 struct foo
17294 {
17295 int (*funcp)(int a, long l);
17296 int b;
17297 };
17298
17299 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17300
17301 static struct type *
17302 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17303 {
17304 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17305 struct type *type; /* Type that this function returns. */
17306 struct type *ftype; /* Function that returns above type. */
17307 struct attribute *attr;
17308
17309 type = die_type (die, cu);
17310
17311 /* The die_type call above may have already set the type for this DIE. */
17312 ftype = get_die_type (die, cu);
17313 if (ftype)
17314 return ftype;
17315
17316 ftype = lookup_function_type (type);
17317
17318 if (prototyped_function_p (die, cu))
17319 TYPE_PROTOTYPED (ftype) = 1;
17320
17321 /* Store the calling convention in the type if it's available in
17322 the subroutine die. Otherwise set the calling convention to
17323 the default value DW_CC_normal. */
17324 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17325 if (attr)
17326 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17327 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17328 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17329 else
17330 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17331
17332 /* Record whether the function returns normally to its caller or not
17333 if the DWARF producer set that information. */
17334 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17335 if (attr && (DW_UNSND (attr) != 0))
17336 TYPE_NO_RETURN (ftype) = 1;
17337
17338 /* We need to add the subroutine type to the die immediately so
17339 we don't infinitely recurse when dealing with parameters
17340 declared as the same subroutine type. */
17341 set_die_type (die, ftype, cu);
17342
17343 if (die->child != NULL)
17344 {
17345 struct type *void_type = objfile_type (objfile)->builtin_void;
17346 struct die_info *child_die;
17347 int nparams, iparams;
17348
17349 /* Count the number of parameters.
17350 FIXME: GDB currently ignores vararg functions, but knows about
17351 vararg member functions. */
17352 nparams = 0;
17353 child_die = die->child;
17354 while (child_die && child_die->tag)
17355 {
17356 if (child_die->tag == DW_TAG_formal_parameter)
17357 nparams++;
17358 else if (child_die->tag == DW_TAG_unspecified_parameters)
17359 TYPE_VARARGS (ftype) = 1;
17360 child_die = sibling_die (child_die);
17361 }
17362
17363 /* Allocate storage for parameters and fill them in. */
17364 TYPE_NFIELDS (ftype) = nparams;
17365 TYPE_FIELDS (ftype) = (struct field *)
17366 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17367
17368 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17369 even if we error out during the parameters reading below. */
17370 for (iparams = 0; iparams < nparams; iparams++)
17371 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17372
17373 iparams = 0;
17374 child_die = die->child;
17375 while (child_die && child_die->tag)
17376 {
17377 if (child_die->tag == DW_TAG_formal_parameter)
17378 {
17379 struct type *arg_type;
17380
17381 /* DWARF version 2 has no clean way to discern C++
17382 static and non-static member functions. G++ helps
17383 GDB by marking the first parameter for non-static
17384 member functions (which is the this pointer) as
17385 artificial. We pass this information to
17386 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17387
17388 DWARF version 3 added DW_AT_object_pointer, which GCC
17389 4.5 does not yet generate. */
17390 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17391 if (attr)
17392 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17393 else
17394 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17395 arg_type = die_type (child_die, cu);
17396
17397 /* RealView does not mark THIS as const, which the testsuite
17398 expects. GCC marks THIS as const in method definitions,
17399 but not in the class specifications (GCC PR 43053). */
17400 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17401 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17402 {
17403 int is_this = 0;
17404 struct dwarf2_cu *arg_cu = cu;
17405 const char *name = dwarf2_name (child_die, cu);
17406
17407 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17408 if (attr)
17409 {
17410 /* If the compiler emits this, use it. */
17411 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17412 is_this = 1;
17413 }
17414 else if (name && strcmp (name, "this") == 0)
17415 /* Function definitions will have the argument names. */
17416 is_this = 1;
17417 else if (name == NULL && iparams == 0)
17418 /* Declarations may not have the names, so like
17419 elsewhere in GDB, assume an artificial first
17420 argument is "this". */
17421 is_this = 1;
17422
17423 if (is_this)
17424 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17425 arg_type, 0);
17426 }
17427
17428 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17429 iparams++;
17430 }
17431 child_die = sibling_die (child_die);
17432 }
17433 }
17434
17435 return ftype;
17436 }
17437
17438 static struct type *
17439 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17440 {
17441 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17442 const char *name = NULL;
17443 struct type *this_type, *target_type;
17444
17445 name = dwarf2_full_name (NULL, die, cu);
17446 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17447 TYPE_TARGET_STUB (this_type) = 1;
17448 set_die_type (die, this_type, cu);
17449 target_type = die_type (die, cu);
17450 if (target_type != this_type)
17451 TYPE_TARGET_TYPE (this_type) = target_type;
17452 else
17453 {
17454 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17455 spec and cause infinite loops in GDB. */
17456 complaint (_("Self-referential DW_TAG_typedef "
17457 "- DIE at %s [in module %s]"),
17458 sect_offset_str (die->sect_off), objfile_name (objfile));
17459 TYPE_TARGET_TYPE (this_type) = NULL;
17460 }
17461 return this_type;
17462 }
17463
17464 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17465 (which may be different from NAME) to the architecture back-end to allow
17466 it to guess the correct format if necessary. */
17467
17468 static struct type *
17469 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17470 const char *name_hint)
17471 {
17472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17473 const struct floatformat **format;
17474 struct type *type;
17475
17476 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17477 if (format)
17478 type = init_float_type (objfile, bits, name, format);
17479 else
17480 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17481
17482 return type;
17483 }
17484
17485 /* Find a representation of a given base type and install
17486 it in the TYPE field of the die. */
17487
17488 static struct type *
17489 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17490 {
17491 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17492 struct type *type;
17493 struct attribute *attr;
17494 int encoding = 0, bits = 0;
17495 const char *name;
17496
17497 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17498 if (attr)
17499 {
17500 encoding = DW_UNSND (attr);
17501 }
17502 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17503 if (attr)
17504 {
17505 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17506 }
17507 name = dwarf2_name (die, cu);
17508 if (!name)
17509 {
17510 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17511 }
17512
17513 switch (encoding)
17514 {
17515 case DW_ATE_address:
17516 /* Turn DW_ATE_address into a void * pointer. */
17517 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17518 type = init_pointer_type (objfile, bits, name, type);
17519 break;
17520 case DW_ATE_boolean:
17521 type = init_boolean_type (objfile, bits, 1, name);
17522 break;
17523 case DW_ATE_complex_float:
17524 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17525 type = init_complex_type (objfile, name, type);
17526 break;
17527 case DW_ATE_decimal_float:
17528 type = init_decfloat_type (objfile, bits, name);
17529 break;
17530 case DW_ATE_float:
17531 type = dwarf2_init_float_type (objfile, bits, name, name);
17532 break;
17533 case DW_ATE_signed:
17534 type = init_integer_type (objfile, bits, 0, name);
17535 break;
17536 case DW_ATE_unsigned:
17537 if (cu->language == language_fortran
17538 && name
17539 && startswith (name, "character("))
17540 type = init_character_type (objfile, bits, 1, name);
17541 else
17542 type = init_integer_type (objfile, bits, 1, name);
17543 break;
17544 case DW_ATE_signed_char:
17545 if (cu->language == language_ada || cu->language == language_m2
17546 || cu->language == language_pascal
17547 || cu->language == language_fortran)
17548 type = init_character_type (objfile, bits, 0, name);
17549 else
17550 type = init_integer_type (objfile, bits, 0, name);
17551 break;
17552 case DW_ATE_unsigned_char:
17553 if (cu->language == language_ada || cu->language == language_m2
17554 || cu->language == language_pascal
17555 || cu->language == language_fortran
17556 || cu->language == language_rust)
17557 type = init_character_type (objfile, bits, 1, name);
17558 else
17559 type = init_integer_type (objfile, bits, 1, name);
17560 break;
17561 case DW_ATE_UTF:
17562 {
17563 gdbarch *arch = get_objfile_arch (objfile);
17564
17565 if (bits == 16)
17566 type = builtin_type (arch)->builtin_char16;
17567 else if (bits == 32)
17568 type = builtin_type (arch)->builtin_char32;
17569 else
17570 {
17571 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17572 bits);
17573 type = init_integer_type (objfile, bits, 1, name);
17574 }
17575 return set_die_type (die, type, cu);
17576 }
17577 break;
17578
17579 default:
17580 complaint (_("unsupported DW_AT_encoding: '%s'"),
17581 dwarf_type_encoding_name (encoding));
17582 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17583 break;
17584 }
17585
17586 if (name && strcmp (name, "char") == 0)
17587 TYPE_NOSIGN (type) = 1;
17588
17589 maybe_set_alignment (cu, die, type);
17590
17591 return set_die_type (die, type, cu);
17592 }
17593
17594 /* Parse dwarf attribute if it's a block, reference or constant and put the
17595 resulting value of the attribute into struct bound_prop.
17596 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17597
17598 static int
17599 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17600 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17601 {
17602 struct dwarf2_property_baton *baton;
17603 struct obstack *obstack
17604 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17605
17606 if (attr == NULL || prop == NULL)
17607 return 0;
17608
17609 if (attr_form_is_block (attr))
17610 {
17611 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17612 baton->referenced_type = NULL;
17613 baton->locexpr.per_cu = cu->per_cu;
17614 baton->locexpr.size = DW_BLOCK (attr)->size;
17615 baton->locexpr.data = DW_BLOCK (attr)->data;
17616 prop->data.baton = baton;
17617 prop->kind = PROP_LOCEXPR;
17618 gdb_assert (prop->data.baton != NULL);
17619 }
17620 else if (attr_form_is_ref (attr))
17621 {
17622 struct dwarf2_cu *target_cu = cu;
17623 struct die_info *target_die;
17624 struct attribute *target_attr;
17625
17626 target_die = follow_die_ref (die, attr, &target_cu);
17627 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17628 if (target_attr == NULL)
17629 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17630 target_cu);
17631 if (target_attr == NULL)
17632 return 0;
17633
17634 switch (target_attr->name)
17635 {
17636 case DW_AT_location:
17637 if (attr_form_is_section_offset (target_attr))
17638 {
17639 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17640 baton->referenced_type = die_type (target_die, target_cu);
17641 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17642 prop->data.baton = baton;
17643 prop->kind = PROP_LOCLIST;
17644 gdb_assert (prop->data.baton != NULL);
17645 }
17646 else if (attr_form_is_block (target_attr))
17647 {
17648 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17649 baton->referenced_type = die_type (target_die, target_cu);
17650 baton->locexpr.per_cu = cu->per_cu;
17651 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17652 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17653 prop->data.baton = baton;
17654 prop->kind = PROP_LOCEXPR;
17655 gdb_assert (prop->data.baton != NULL);
17656 }
17657 else
17658 {
17659 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17660 "dynamic property");
17661 return 0;
17662 }
17663 break;
17664 case DW_AT_data_member_location:
17665 {
17666 LONGEST offset;
17667
17668 if (!handle_data_member_location (target_die, target_cu,
17669 &offset))
17670 return 0;
17671
17672 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17673 baton->referenced_type = read_type_die (target_die->parent,
17674 target_cu);
17675 baton->offset_info.offset = offset;
17676 baton->offset_info.type = die_type (target_die, target_cu);
17677 prop->data.baton = baton;
17678 prop->kind = PROP_ADDR_OFFSET;
17679 break;
17680 }
17681 }
17682 }
17683 else if (attr_form_is_constant (attr))
17684 {
17685 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17686 prop->kind = PROP_CONST;
17687 }
17688 else
17689 {
17690 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17691 dwarf2_name (die, cu));
17692 return 0;
17693 }
17694
17695 return 1;
17696 }
17697
17698 /* Read the given DW_AT_subrange DIE. */
17699
17700 static struct type *
17701 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17702 {
17703 struct type *base_type, *orig_base_type;
17704 struct type *range_type;
17705 struct attribute *attr;
17706 struct dynamic_prop low, high;
17707 int low_default_is_valid;
17708 int high_bound_is_count = 0;
17709 const char *name;
17710 ULONGEST negative_mask;
17711
17712 orig_base_type = die_type (die, cu);
17713 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17714 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17715 creating the range type, but we use the result of check_typedef
17716 when examining properties of the type. */
17717 base_type = check_typedef (orig_base_type);
17718
17719 /* The die_type call above may have already set the type for this DIE. */
17720 range_type = get_die_type (die, cu);
17721 if (range_type)
17722 return range_type;
17723
17724 low.kind = PROP_CONST;
17725 high.kind = PROP_CONST;
17726 high.data.const_val = 0;
17727
17728 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17729 omitting DW_AT_lower_bound. */
17730 switch (cu->language)
17731 {
17732 case language_c:
17733 case language_cplus:
17734 low.data.const_val = 0;
17735 low_default_is_valid = 1;
17736 break;
17737 case language_fortran:
17738 low.data.const_val = 1;
17739 low_default_is_valid = 1;
17740 break;
17741 case language_d:
17742 case language_objc:
17743 case language_rust:
17744 low.data.const_val = 0;
17745 low_default_is_valid = (cu->header.version >= 4);
17746 break;
17747 case language_ada:
17748 case language_m2:
17749 case language_pascal:
17750 low.data.const_val = 1;
17751 low_default_is_valid = (cu->header.version >= 4);
17752 break;
17753 default:
17754 low.data.const_val = 0;
17755 low_default_is_valid = 0;
17756 break;
17757 }
17758
17759 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17760 if (attr)
17761 attr_to_dynamic_prop (attr, die, cu, &low);
17762 else if (!low_default_is_valid)
17763 complaint (_("Missing DW_AT_lower_bound "
17764 "- DIE at %s [in module %s]"),
17765 sect_offset_str (die->sect_off),
17766 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17767
17768 struct attribute *attr_ub, *attr_count;
17769 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17770 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17771 {
17772 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17773 if (attr_to_dynamic_prop (attr, die, cu, &high))
17774 {
17775 /* If bounds are constant do the final calculation here. */
17776 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17777 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17778 else
17779 high_bound_is_count = 1;
17780 }
17781 else
17782 {
17783 if (attr_ub != NULL)
17784 complaint (_("Unresolved DW_AT_upper_bound "
17785 "- DIE at %s [in module %s]"),
17786 sect_offset_str (die->sect_off),
17787 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17788 if (attr_count != NULL)
17789 complaint (_("Unresolved DW_AT_count "
17790 "- DIE at %s [in module %s]"),
17791 sect_offset_str (die->sect_off),
17792 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17793 }
17794
17795 }
17796
17797 /* Dwarf-2 specifications explicitly allows to create subrange types
17798 without specifying a base type.
17799 In that case, the base type must be set to the type of
17800 the lower bound, upper bound or count, in that order, if any of these
17801 three attributes references an object that has a type.
17802 If no base type is found, the Dwarf-2 specifications say that
17803 a signed integer type of size equal to the size of an address should
17804 be used.
17805 For the following C code: `extern char gdb_int [];'
17806 GCC produces an empty range DIE.
17807 FIXME: muller/2010-05-28: Possible references to object for low bound,
17808 high bound or count are not yet handled by this code. */
17809 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17810 {
17811 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17813 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17814 struct type *int_type = objfile_type (objfile)->builtin_int;
17815
17816 /* Test "int", "long int", and "long long int" objfile types,
17817 and select the first one having a size above or equal to the
17818 architecture address size. */
17819 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17820 base_type = int_type;
17821 else
17822 {
17823 int_type = objfile_type (objfile)->builtin_long;
17824 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17825 base_type = int_type;
17826 else
17827 {
17828 int_type = objfile_type (objfile)->builtin_long_long;
17829 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17830 base_type = int_type;
17831 }
17832 }
17833 }
17834
17835 /* Normally, the DWARF producers are expected to use a signed
17836 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17837 But this is unfortunately not always the case, as witnessed
17838 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17839 is used instead. To work around that ambiguity, we treat
17840 the bounds as signed, and thus sign-extend their values, when
17841 the base type is signed. */
17842 negative_mask =
17843 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17844 if (low.kind == PROP_CONST
17845 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17846 low.data.const_val |= negative_mask;
17847 if (high.kind == PROP_CONST
17848 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17849 high.data.const_val |= negative_mask;
17850
17851 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17852
17853 if (high_bound_is_count)
17854 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17855
17856 /* Ada expects an empty array on no boundary attributes. */
17857 if (attr == NULL && cu->language != language_ada)
17858 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17859
17860 name = dwarf2_name (die, cu);
17861 if (name)
17862 TYPE_NAME (range_type) = name;
17863
17864 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17865 if (attr)
17866 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17867
17868 maybe_set_alignment (cu, die, range_type);
17869
17870 set_die_type (die, range_type, cu);
17871
17872 /* set_die_type should be already done. */
17873 set_descriptive_type (range_type, die, cu);
17874
17875 return range_type;
17876 }
17877
17878 static struct type *
17879 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17880 {
17881 struct type *type;
17882
17883 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17884 NULL);
17885 TYPE_NAME (type) = dwarf2_name (die, cu);
17886
17887 /* In Ada, an unspecified type is typically used when the description
17888 of the type is defered to a different unit. When encountering
17889 such a type, we treat it as a stub, and try to resolve it later on,
17890 when needed. */
17891 if (cu->language == language_ada)
17892 TYPE_STUB (type) = 1;
17893
17894 return set_die_type (die, type, cu);
17895 }
17896
17897 /* Read a single die and all its descendents. Set the die's sibling
17898 field to NULL; set other fields in the die correctly, and set all
17899 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17900 location of the info_ptr after reading all of those dies. PARENT
17901 is the parent of the die in question. */
17902
17903 static struct die_info *
17904 read_die_and_children (const struct die_reader_specs *reader,
17905 const gdb_byte *info_ptr,
17906 const gdb_byte **new_info_ptr,
17907 struct die_info *parent)
17908 {
17909 struct die_info *die;
17910 const gdb_byte *cur_ptr;
17911 int has_children;
17912
17913 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17914 if (die == NULL)
17915 {
17916 *new_info_ptr = cur_ptr;
17917 return NULL;
17918 }
17919 store_in_ref_table (die, reader->cu);
17920
17921 if (has_children)
17922 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17923 else
17924 {
17925 die->child = NULL;
17926 *new_info_ptr = cur_ptr;
17927 }
17928
17929 die->sibling = NULL;
17930 die->parent = parent;
17931 return die;
17932 }
17933
17934 /* Read a die, all of its descendents, and all of its siblings; set
17935 all of the fields of all of the dies correctly. Arguments are as
17936 in read_die_and_children. */
17937
17938 static struct die_info *
17939 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17940 const gdb_byte *info_ptr,
17941 const gdb_byte **new_info_ptr,
17942 struct die_info *parent)
17943 {
17944 struct die_info *first_die, *last_sibling;
17945 const gdb_byte *cur_ptr;
17946
17947 cur_ptr = info_ptr;
17948 first_die = last_sibling = NULL;
17949
17950 while (1)
17951 {
17952 struct die_info *die
17953 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17954
17955 if (die == NULL)
17956 {
17957 *new_info_ptr = cur_ptr;
17958 return first_die;
17959 }
17960
17961 if (!first_die)
17962 first_die = die;
17963 else
17964 last_sibling->sibling = die;
17965
17966 last_sibling = die;
17967 }
17968 }
17969
17970 /* Read a die, all of its descendents, and all of its siblings; set
17971 all of the fields of all of the dies correctly. Arguments are as
17972 in read_die_and_children.
17973 This the main entry point for reading a DIE and all its children. */
17974
17975 static struct die_info *
17976 read_die_and_siblings (const struct die_reader_specs *reader,
17977 const gdb_byte *info_ptr,
17978 const gdb_byte **new_info_ptr,
17979 struct die_info *parent)
17980 {
17981 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17982 new_info_ptr, parent);
17983
17984 if (dwarf_die_debug)
17985 {
17986 fprintf_unfiltered (gdb_stdlog,
17987 "Read die from %s@0x%x of %s:\n",
17988 get_section_name (reader->die_section),
17989 (unsigned) (info_ptr - reader->die_section->buffer),
17990 bfd_get_filename (reader->abfd));
17991 dump_die (die, dwarf_die_debug);
17992 }
17993
17994 return die;
17995 }
17996
17997 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17998 attributes.
17999 The caller is responsible for filling in the extra attributes
18000 and updating (*DIEP)->num_attrs.
18001 Set DIEP to point to a newly allocated die with its information,
18002 except for its child, sibling, and parent fields.
18003 Set HAS_CHILDREN to tell whether the die has children or not. */
18004
18005 static const gdb_byte *
18006 read_full_die_1 (const struct die_reader_specs *reader,
18007 struct die_info **diep, const gdb_byte *info_ptr,
18008 int *has_children, int num_extra_attrs)
18009 {
18010 unsigned int abbrev_number, bytes_read, i;
18011 struct abbrev_info *abbrev;
18012 struct die_info *die;
18013 struct dwarf2_cu *cu = reader->cu;
18014 bfd *abfd = reader->abfd;
18015
18016 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18017 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18018 info_ptr += bytes_read;
18019 if (!abbrev_number)
18020 {
18021 *diep = NULL;
18022 *has_children = 0;
18023 return info_ptr;
18024 }
18025
18026 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18027 if (!abbrev)
18028 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18029 abbrev_number,
18030 bfd_get_filename (abfd));
18031
18032 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18033 die->sect_off = sect_off;
18034 die->tag = abbrev->tag;
18035 die->abbrev = abbrev_number;
18036
18037 /* Make the result usable.
18038 The caller needs to update num_attrs after adding the extra
18039 attributes. */
18040 die->num_attrs = abbrev->num_attrs;
18041
18042 for (i = 0; i < abbrev->num_attrs; ++i)
18043 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18044 info_ptr);
18045
18046 *diep = die;
18047 *has_children = abbrev->has_children;
18048 return info_ptr;
18049 }
18050
18051 /* Read a die and all its attributes.
18052 Set DIEP to point to a newly allocated die with its information,
18053 except for its child, sibling, and parent fields.
18054 Set HAS_CHILDREN to tell whether the die has children or not. */
18055
18056 static const gdb_byte *
18057 read_full_die (const struct die_reader_specs *reader,
18058 struct die_info **diep, const gdb_byte *info_ptr,
18059 int *has_children)
18060 {
18061 const gdb_byte *result;
18062
18063 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18064
18065 if (dwarf_die_debug)
18066 {
18067 fprintf_unfiltered (gdb_stdlog,
18068 "Read die from %s@0x%x of %s:\n",
18069 get_section_name (reader->die_section),
18070 (unsigned) (info_ptr - reader->die_section->buffer),
18071 bfd_get_filename (reader->abfd));
18072 dump_die (*diep, dwarf_die_debug);
18073 }
18074
18075 return result;
18076 }
18077 \f
18078 /* Abbreviation tables.
18079
18080 In DWARF version 2, the description of the debugging information is
18081 stored in a separate .debug_abbrev section. Before we read any
18082 dies from a section we read in all abbreviations and install them
18083 in a hash table. */
18084
18085 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18086
18087 struct abbrev_info *
18088 abbrev_table::alloc_abbrev ()
18089 {
18090 struct abbrev_info *abbrev;
18091
18092 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18093 memset (abbrev, 0, sizeof (struct abbrev_info));
18094
18095 return abbrev;
18096 }
18097
18098 /* Add an abbreviation to the table. */
18099
18100 void
18101 abbrev_table::add_abbrev (unsigned int abbrev_number,
18102 struct abbrev_info *abbrev)
18103 {
18104 unsigned int hash_number;
18105
18106 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18107 abbrev->next = m_abbrevs[hash_number];
18108 m_abbrevs[hash_number] = abbrev;
18109 }
18110
18111 /* Look up an abbrev in the table.
18112 Returns NULL if the abbrev is not found. */
18113
18114 struct abbrev_info *
18115 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18116 {
18117 unsigned int hash_number;
18118 struct abbrev_info *abbrev;
18119
18120 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18121 abbrev = m_abbrevs[hash_number];
18122
18123 while (abbrev)
18124 {
18125 if (abbrev->number == abbrev_number)
18126 return abbrev;
18127 abbrev = abbrev->next;
18128 }
18129 return NULL;
18130 }
18131
18132 /* Read in an abbrev table. */
18133
18134 static abbrev_table_up
18135 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18136 struct dwarf2_section_info *section,
18137 sect_offset sect_off)
18138 {
18139 struct objfile *objfile = dwarf2_per_objfile->objfile;
18140 bfd *abfd = get_section_bfd_owner (section);
18141 const gdb_byte *abbrev_ptr;
18142 struct abbrev_info *cur_abbrev;
18143 unsigned int abbrev_number, bytes_read, abbrev_name;
18144 unsigned int abbrev_form;
18145 struct attr_abbrev *cur_attrs;
18146 unsigned int allocated_attrs;
18147
18148 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18149
18150 dwarf2_read_section (objfile, section);
18151 abbrev_ptr = section->buffer + to_underlying (sect_off);
18152 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18153 abbrev_ptr += bytes_read;
18154
18155 allocated_attrs = ATTR_ALLOC_CHUNK;
18156 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18157
18158 /* Loop until we reach an abbrev number of 0. */
18159 while (abbrev_number)
18160 {
18161 cur_abbrev = abbrev_table->alloc_abbrev ();
18162
18163 /* read in abbrev header */
18164 cur_abbrev->number = abbrev_number;
18165 cur_abbrev->tag
18166 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18167 abbrev_ptr += bytes_read;
18168 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18169 abbrev_ptr += 1;
18170
18171 /* now read in declarations */
18172 for (;;)
18173 {
18174 LONGEST implicit_const;
18175
18176 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18177 abbrev_ptr += bytes_read;
18178 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18179 abbrev_ptr += bytes_read;
18180 if (abbrev_form == DW_FORM_implicit_const)
18181 {
18182 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18183 &bytes_read);
18184 abbrev_ptr += bytes_read;
18185 }
18186 else
18187 {
18188 /* Initialize it due to a false compiler warning. */
18189 implicit_const = -1;
18190 }
18191
18192 if (abbrev_name == 0)
18193 break;
18194
18195 if (cur_abbrev->num_attrs == allocated_attrs)
18196 {
18197 allocated_attrs += ATTR_ALLOC_CHUNK;
18198 cur_attrs
18199 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18200 }
18201
18202 cur_attrs[cur_abbrev->num_attrs].name
18203 = (enum dwarf_attribute) abbrev_name;
18204 cur_attrs[cur_abbrev->num_attrs].form
18205 = (enum dwarf_form) abbrev_form;
18206 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18207 ++cur_abbrev->num_attrs;
18208 }
18209
18210 cur_abbrev->attrs =
18211 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18212 cur_abbrev->num_attrs);
18213 memcpy (cur_abbrev->attrs, cur_attrs,
18214 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18215
18216 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18217
18218 /* Get next abbreviation.
18219 Under Irix6 the abbreviations for a compilation unit are not
18220 always properly terminated with an abbrev number of 0.
18221 Exit loop if we encounter an abbreviation which we have
18222 already read (which means we are about to read the abbreviations
18223 for the next compile unit) or if the end of the abbreviation
18224 table is reached. */
18225 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18226 break;
18227 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18228 abbrev_ptr += bytes_read;
18229 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18230 break;
18231 }
18232
18233 xfree (cur_attrs);
18234 return abbrev_table;
18235 }
18236
18237 /* Returns nonzero if TAG represents a type that we might generate a partial
18238 symbol for. */
18239
18240 static int
18241 is_type_tag_for_partial (int tag)
18242 {
18243 switch (tag)
18244 {
18245 #if 0
18246 /* Some types that would be reasonable to generate partial symbols for,
18247 that we don't at present. */
18248 case DW_TAG_array_type:
18249 case DW_TAG_file_type:
18250 case DW_TAG_ptr_to_member_type:
18251 case DW_TAG_set_type:
18252 case DW_TAG_string_type:
18253 case DW_TAG_subroutine_type:
18254 #endif
18255 case DW_TAG_base_type:
18256 case DW_TAG_class_type:
18257 case DW_TAG_interface_type:
18258 case DW_TAG_enumeration_type:
18259 case DW_TAG_structure_type:
18260 case DW_TAG_subrange_type:
18261 case DW_TAG_typedef:
18262 case DW_TAG_union_type:
18263 return 1;
18264 default:
18265 return 0;
18266 }
18267 }
18268
18269 /* Load all DIEs that are interesting for partial symbols into memory. */
18270
18271 static struct partial_die_info *
18272 load_partial_dies (const struct die_reader_specs *reader,
18273 const gdb_byte *info_ptr, int building_psymtab)
18274 {
18275 struct dwarf2_cu *cu = reader->cu;
18276 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18277 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18278 unsigned int bytes_read;
18279 unsigned int load_all = 0;
18280 int nesting_level = 1;
18281
18282 parent_die = NULL;
18283 last_die = NULL;
18284
18285 gdb_assert (cu->per_cu != NULL);
18286 if (cu->per_cu->load_all_dies)
18287 load_all = 1;
18288
18289 cu->partial_dies
18290 = htab_create_alloc_ex (cu->header.length / 12,
18291 partial_die_hash,
18292 partial_die_eq,
18293 NULL,
18294 &cu->comp_unit_obstack,
18295 hashtab_obstack_allocate,
18296 dummy_obstack_deallocate);
18297
18298 while (1)
18299 {
18300 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18301
18302 /* A NULL abbrev means the end of a series of children. */
18303 if (abbrev == NULL)
18304 {
18305 if (--nesting_level == 0)
18306 return first_die;
18307
18308 info_ptr += bytes_read;
18309 last_die = parent_die;
18310 parent_die = parent_die->die_parent;
18311 continue;
18312 }
18313
18314 /* Check for template arguments. We never save these; if
18315 they're seen, we just mark the parent, and go on our way. */
18316 if (parent_die != NULL
18317 && cu->language == language_cplus
18318 && (abbrev->tag == DW_TAG_template_type_param
18319 || abbrev->tag == DW_TAG_template_value_param))
18320 {
18321 parent_die->has_template_arguments = 1;
18322
18323 if (!load_all)
18324 {
18325 /* We don't need a partial DIE for the template argument. */
18326 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18327 continue;
18328 }
18329 }
18330
18331 /* We only recurse into c++ subprograms looking for template arguments.
18332 Skip their other children. */
18333 if (!load_all
18334 && cu->language == language_cplus
18335 && parent_die != NULL
18336 && parent_die->tag == DW_TAG_subprogram)
18337 {
18338 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18339 continue;
18340 }
18341
18342 /* Check whether this DIE is interesting enough to save. Normally
18343 we would not be interested in members here, but there may be
18344 later variables referencing them via DW_AT_specification (for
18345 static members). */
18346 if (!load_all
18347 && !is_type_tag_for_partial (abbrev->tag)
18348 && abbrev->tag != DW_TAG_constant
18349 && abbrev->tag != DW_TAG_enumerator
18350 && abbrev->tag != DW_TAG_subprogram
18351 && abbrev->tag != DW_TAG_inlined_subroutine
18352 && abbrev->tag != DW_TAG_lexical_block
18353 && abbrev->tag != DW_TAG_variable
18354 && abbrev->tag != DW_TAG_namespace
18355 && abbrev->tag != DW_TAG_module
18356 && abbrev->tag != DW_TAG_member
18357 && abbrev->tag != DW_TAG_imported_unit
18358 && abbrev->tag != DW_TAG_imported_declaration)
18359 {
18360 /* Otherwise we skip to the next sibling, if any. */
18361 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18362 continue;
18363 }
18364
18365 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18366 abbrev);
18367
18368 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18369
18370 /* This two-pass algorithm for processing partial symbols has a
18371 high cost in cache pressure. Thus, handle some simple cases
18372 here which cover the majority of C partial symbols. DIEs
18373 which neither have specification tags in them, nor could have
18374 specification tags elsewhere pointing at them, can simply be
18375 processed and discarded.
18376
18377 This segment is also optional; scan_partial_symbols and
18378 add_partial_symbol will handle these DIEs if we chain
18379 them in normally. When compilers which do not emit large
18380 quantities of duplicate debug information are more common,
18381 this code can probably be removed. */
18382
18383 /* Any complete simple types at the top level (pretty much all
18384 of them, for a language without namespaces), can be processed
18385 directly. */
18386 if (parent_die == NULL
18387 && pdi.has_specification == 0
18388 && pdi.is_declaration == 0
18389 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18390 || pdi.tag == DW_TAG_base_type
18391 || pdi.tag == DW_TAG_subrange_type))
18392 {
18393 if (building_psymtab && pdi.name != NULL)
18394 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18395 VAR_DOMAIN, LOC_TYPEDEF, -1,
18396 &objfile->static_psymbols,
18397 0, cu->language, objfile);
18398 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18399 continue;
18400 }
18401
18402 /* The exception for DW_TAG_typedef with has_children above is
18403 a workaround of GCC PR debug/47510. In the case of this complaint
18404 type_name_or_error will error on such types later.
18405
18406 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18407 it could not find the child DIEs referenced later, this is checked
18408 above. In correct DWARF DW_TAG_typedef should have no children. */
18409
18410 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18411 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18412 "- DIE at %s [in module %s]"),
18413 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18414
18415 /* If we're at the second level, and we're an enumerator, and
18416 our parent has no specification (meaning possibly lives in a
18417 namespace elsewhere), then we can add the partial symbol now
18418 instead of queueing it. */
18419 if (pdi.tag == DW_TAG_enumerator
18420 && parent_die != NULL
18421 && parent_die->die_parent == NULL
18422 && parent_die->tag == DW_TAG_enumeration_type
18423 && parent_die->has_specification == 0)
18424 {
18425 if (pdi.name == NULL)
18426 complaint (_("malformed enumerator DIE ignored"));
18427 else if (building_psymtab)
18428 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18429 VAR_DOMAIN, LOC_CONST, -1,
18430 cu->language == language_cplus
18431 ? &objfile->global_psymbols
18432 : &objfile->static_psymbols,
18433 0, cu->language, objfile);
18434
18435 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18436 continue;
18437 }
18438
18439 struct partial_die_info *part_die
18440 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18441
18442 /* We'll save this DIE so link it in. */
18443 part_die->die_parent = parent_die;
18444 part_die->die_sibling = NULL;
18445 part_die->die_child = NULL;
18446
18447 if (last_die && last_die == parent_die)
18448 last_die->die_child = part_die;
18449 else if (last_die)
18450 last_die->die_sibling = part_die;
18451
18452 last_die = part_die;
18453
18454 if (first_die == NULL)
18455 first_die = part_die;
18456
18457 /* Maybe add the DIE to the hash table. Not all DIEs that we
18458 find interesting need to be in the hash table, because we
18459 also have the parent/sibling/child chains; only those that we
18460 might refer to by offset later during partial symbol reading.
18461
18462 For now this means things that might have be the target of a
18463 DW_AT_specification, DW_AT_abstract_origin, or
18464 DW_AT_extension. DW_AT_extension will refer only to
18465 namespaces; DW_AT_abstract_origin refers to functions (and
18466 many things under the function DIE, but we do not recurse
18467 into function DIEs during partial symbol reading) and
18468 possibly variables as well; DW_AT_specification refers to
18469 declarations. Declarations ought to have the DW_AT_declaration
18470 flag. It happens that GCC forgets to put it in sometimes, but
18471 only for functions, not for types.
18472
18473 Adding more things than necessary to the hash table is harmless
18474 except for the performance cost. Adding too few will result in
18475 wasted time in find_partial_die, when we reread the compilation
18476 unit with load_all_dies set. */
18477
18478 if (load_all
18479 || abbrev->tag == DW_TAG_constant
18480 || abbrev->tag == DW_TAG_subprogram
18481 || abbrev->tag == DW_TAG_variable
18482 || abbrev->tag == DW_TAG_namespace
18483 || part_die->is_declaration)
18484 {
18485 void **slot;
18486
18487 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18488 to_underlying (part_die->sect_off),
18489 INSERT);
18490 *slot = part_die;
18491 }
18492
18493 /* For some DIEs we want to follow their children (if any). For C
18494 we have no reason to follow the children of structures; for other
18495 languages we have to, so that we can get at method physnames
18496 to infer fully qualified class names, for DW_AT_specification,
18497 and for C++ template arguments. For C++, we also look one level
18498 inside functions to find template arguments (if the name of the
18499 function does not already contain the template arguments).
18500
18501 For Ada, we need to scan the children of subprograms and lexical
18502 blocks as well because Ada allows the definition of nested
18503 entities that could be interesting for the debugger, such as
18504 nested subprograms for instance. */
18505 if (last_die->has_children
18506 && (load_all
18507 || last_die->tag == DW_TAG_namespace
18508 || last_die->tag == DW_TAG_module
18509 || last_die->tag == DW_TAG_enumeration_type
18510 || (cu->language == language_cplus
18511 && last_die->tag == DW_TAG_subprogram
18512 && (last_die->name == NULL
18513 || strchr (last_die->name, '<') == NULL))
18514 || (cu->language != language_c
18515 && (last_die->tag == DW_TAG_class_type
18516 || last_die->tag == DW_TAG_interface_type
18517 || last_die->tag == DW_TAG_structure_type
18518 || last_die->tag == DW_TAG_union_type))
18519 || (cu->language == language_ada
18520 && (last_die->tag == DW_TAG_subprogram
18521 || last_die->tag == DW_TAG_lexical_block))))
18522 {
18523 nesting_level++;
18524 parent_die = last_die;
18525 continue;
18526 }
18527
18528 /* Otherwise we skip to the next sibling, if any. */
18529 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18530
18531 /* Back to the top, do it again. */
18532 }
18533 }
18534
18535 partial_die_info::partial_die_info (sect_offset sect_off_,
18536 struct abbrev_info *abbrev)
18537 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18538 {
18539 }
18540
18541 /* Read a minimal amount of information into the minimal die structure.
18542 INFO_PTR should point just after the initial uleb128 of a DIE. */
18543
18544 const gdb_byte *
18545 partial_die_info::read (const struct die_reader_specs *reader,
18546 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18547 {
18548 struct dwarf2_cu *cu = reader->cu;
18549 struct dwarf2_per_objfile *dwarf2_per_objfile
18550 = cu->per_cu->dwarf2_per_objfile;
18551 unsigned int i;
18552 int has_low_pc_attr = 0;
18553 int has_high_pc_attr = 0;
18554 int high_pc_relative = 0;
18555
18556 for (i = 0; i < abbrev.num_attrs; ++i)
18557 {
18558 struct attribute attr;
18559
18560 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18561
18562 /* Store the data if it is of an attribute we want to keep in a
18563 partial symbol table. */
18564 switch (attr.name)
18565 {
18566 case DW_AT_name:
18567 switch (tag)
18568 {
18569 case DW_TAG_compile_unit:
18570 case DW_TAG_partial_unit:
18571 case DW_TAG_type_unit:
18572 /* Compilation units have a DW_AT_name that is a filename, not
18573 a source language identifier. */
18574 case DW_TAG_enumeration_type:
18575 case DW_TAG_enumerator:
18576 /* These tags always have simple identifiers already; no need
18577 to canonicalize them. */
18578 name = DW_STRING (&attr);
18579 break;
18580 default:
18581 {
18582 struct objfile *objfile = dwarf2_per_objfile->objfile;
18583
18584 name
18585 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18586 &objfile->per_bfd->storage_obstack);
18587 }
18588 break;
18589 }
18590 break;
18591 case DW_AT_linkage_name:
18592 case DW_AT_MIPS_linkage_name:
18593 /* Note that both forms of linkage name might appear. We
18594 assume they will be the same, and we only store the last
18595 one we see. */
18596 if (cu->language == language_ada)
18597 name = DW_STRING (&attr);
18598 linkage_name = DW_STRING (&attr);
18599 break;
18600 case DW_AT_low_pc:
18601 has_low_pc_attr = 1;
18602 lowpc = attr_value_as_address (&attr);
18603 break;
18604 case DW_AT_high_pc:
18605 has_high_pc_attr = 1;
18606 highpc = attr_value_as_address (&attr);
18607 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18608 high_pc_relative = 1;
18609 break;
18610 case DW_AT_location:
18611 /* Support the .debug_loc offsets. */
18612 if (attr_form_is_block (&attr))
18613 {
18614 d.locdesc = DW_BLOCK (&attr);
18615 }
18616 else if (attr_form_is_section_offset (&attr))
18617 {
18618 dwarf2_complex_location_expr_complaint ();
18619 }
18620 else
18621 {
18622 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18623 "partial symbol information");
18624 }
18625 break;
18626 case DW_AT_external:
18627 is_external = DW_UNSND (&attr);
18628 break;
18629 case DW_AT_declaration:
18630 is_declaration = DW_UNSND (&attr);
18631 break;
18632 case DW_AT_type:
18633 has_type = 1;
18634 break;
18635 case DW_AT_abstract_origin:
18636 case DW_AT_specification:
18637 case DW_AT_extension:
18638 has_specification = 1;
18639 spec_offset = dwarf2_get_ref_die_offset (&attr);
18640 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18641 || cu->per_cu->is_dwz);
18642 break;
18643 case DW_AT_sibling:
18644 /* Ignore absolute siblings, they might point outside of
18645 the current compile unit. */
18646 if (attr.form == DW_FORM_ref_addr)
18647 complaint (_("ignoring absolute DW_AT_sibling"));
18648 else
18649 {
18650 const gdb_byte *buffer = reader->buffer;
18651 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18652 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18653
18654 if (sibling_ptr < info_ptr)
18655 complaint (_("DW_AT_sibling points backwards"));
18656 else if (sibling_ptr > reader->buffer_end)
18657 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18658 else
18659 sibling = sibling_ptr;
18660 }
18661 break;
18662 case DW_AT_byte_size:
18663 has_byte_size = 1;
18664 break;
18665 case DW_AT_const_value:
18666 has_const_value = 1;
18667 break;
18668 case DW_AT_calling_convention:
18669 /* DWARF doesn't provide a way to identify a program's source-level
18670 entry point. DW_AT_calling_convention attributes are only meant
18671 to describe functions' calling conventions.
18672
18673 However, because it's a necessary piece of information in
18674 Fortran, and before DWARF 4 DW_CC_program was the only
18675 piece of debugging information whose definition refers to
18676 a 'main program' at all, several compilers marked Fortran
18677 main programs with DW_CC_program --- even when those
18678 functions use the standard calling conventions.
18679
18680 Although DWARF now specifies a way to provide this
18681 information, we support this practice for backward
18682 compatibility. */
18683 if (DW_UNSND (&attr) == DW_CC_program
18684 && cu->language == language_fortran)
18685 main_subprogram = 1;
18686 break;
18687 case DW_AT_inline:
18688 if (DW_UNSND (&attr) == DW_INL_inlined
18689 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18690 may_be_inlined = 1;
18691 break;
18692
18693 case DW_AT_import:
18694 if (tag == DW_TAG_imported_unit)
18695 {
18696 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18697 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18698 || cu->per_cu->is_dwz);
18699 }
18700 break;
18701
18702 case DW_AT_main_subprogram:
18703 main_subprogram = DW_UNSND (&attr);
18704 break;
18705
18706 default:
18707 break;
18708 }
18709 }
18710
18711 if (high_pc_relative)
18712 highpc += lowpc;
18713
18714 if (has_low_pc_attr && has_high_pc_attr)
18715 {
18716 /* When using the GNU linker, .gnu.linkonce. sections are used to
18717 eliminate duplicate copies of functions and vtables and such.
18718 The linker will arbitrarily choose one and discard the others.
18719 The AT_*_pc values for such functions refer to local labels in
18720 these sections. If the section from that file was discarded, the
18721 labels are not in the output, so the relocs get a value of 0.
18722 If this is a discarded function, mark the pc bounds as invalid,
18723 so that GDB will ignore it. */
18724 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18725 {
18726 struct objfile *objfile = dwarf2_per_objfile->objfile;
18727 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18728
18729 complaint (_("DW_AT_low_pc %s is zero "
18730 "for DIE at %s [in module %s]"),
18731 paddress (gdbarch, lowpc),
18732 sect_offset_str (sect_off),
18733 objfile_name (objfile));
18734 }
18735 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18736 else if (lowpc >= highpc)
18737 {
18738 struct objfile *objfile = dwarf2_per_objfile->objfile;
18739 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18740
18741 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18742 "for DIE at %s [in module %s]"),
18743 paddress (gdbarch, lowpc),
18744 paddress (gdbarch, highpc),
18745 sect_offset_str (sect_off),
18746 objfile_name (objfile));
18747 }
18748 else
18749 has_pc_info = 1;
18750 }
18751
18752 return info_ptr;
18753 }
18754
18755 /* Find a cached partial DIE at OFFSET in CU. */
18756
18757 struct partial_die_info *
18758 dwarf2_cu::find_partial_die (sect_offset sect_off)
18759 {
18760 struct partial_die_info *lookup_die = NULL;
18761 struct partial_die_info part_die (sect_off);
18762
18763 lookup_die = ((struct partial_die_info *)
18764 htab_find_with_hash (partial_dies, &part_die,
18765 to_underlying (sect_off)));
18766
18767 return lookup_die;
18768 }
18769
18770 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18771 except in the case of .debug_types DIEs which do not reference
18772 outside their CU (they do however referencing other types via
18773 DW_FORM_ref_sig8). */
18774
18775 static struct partial_die_info *
18776 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18777 {
18778 struct dwarf2_per_objfile *dwarf2_per_objfile
18779 = cu->per_cu->dwarf2_per_objfile;
18780 struct objfile *objfile = dwarf2_per_objfile->objfile;
18781 struct dwarf2_per_cu_data *per_cu = NULL;
18782 struct partial_die_info *pd = NULL;
18783
18784 if (offset_in_dwz == cu->per_cu->is_dwz
18785 && offset_in_cu_p (&cu->header, sect_off))
18786 {
18787 pd = cu->find_partial_die (sect_off);
18788 if (pd != NULL)
18789 return pd;
18790 /* We missed recording what we needed.
18791 Load all dies and try again. */
18792 per_cu = cu->per_cu;
18793 }
18794 else
18795 {
18796 /* TUs don't reference other CUs/TUs (except via type signatures). */
18797 if (cu->per_cu->is_debug_types)
18798 {
18799 error (_("Dwarf Error: Type Unit at offset %s contains"
18800 " external reference to offset %s [in module %s].\n"),
18801 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18802 bfd_get_filename (objfile->obfd));
18803 }
18804 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18805 dwarf2_per_objfile);
18806
18807 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18808 load_partial_comp_unit (per_cu);
18809
18810 per_cu->cu->last_used = 0;
18811 pd = per_cu->cu->find_partial_die (sect_off);
18812 }
18813
18814 /* If we didn't find it, and not all dies have been loaded,
18815 load them all and try again. */
18816
18817 if (pd == NULL && per_cu->load_all_dies == 0)
18818 {
18819 per_cu->load_all_dies = 1;
18820
18821 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18822 THIS_CU->cu may already be in use. So we can't just free it and
18823 replace its DIEs with the ones we read in. Instead, we leave those
18824 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18825 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18826 set. */
18827 load_partial_comp_unit (per_cu);
18828
18829 pd = per_cu->cu->find_partial_die (sect_off);
18830 }
18831
18832 if (pd == NULL)
18833 internal_error (__FILE__, __LINE__,
18834 _("could not find partial DIE %s "
18835 "in cache [from module %s]\n"),
18836 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18837 return pd;
18838 }
18839
18840 /* See if we can figure out if the class lives in a namespace. We do
18841 this by looking for a member function; its demangled name will
18842 contain namespace info, if there is any. */
18843
18844 static void
18845 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18846 struct dwarf2_cu *cu)
18847 {
18848 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18849 what template types look like, because the demangler
18850 frequently doesn't give the same name as the debug info. We
18851 could fix this by only using the demangled name to get the
18852 prefix (but see comment in read_structure_type). */
18853
18854 struct partial_die_info *real_pdi;
18855 struct partial_die_info *child_pdi;
18856
18857 /* If this DIE (this DIE's specification, if any) has a parent, then
18858 we should not do this. We'll prepend the parent's fully qualified
18859 name when we create the partial symbol. */
18860
18861 real_pdi = struct_pdi;
18862 while (real_pdi->has_specification)
18863 real_pdi = find_partial_die (real_pdi->spec_offset,
18864 real_pdi->spec_is_dwz, cu);
18865
18866 if (real_pdi->die_parent != NULL)
18867 return;
18868
18869 for (child_pdi = struct_pdi->die_child;
18870 child_pdi != NULL;
18871 child_pdi = child_pdi->die_sibling)
18872 {
18873 if (child_pdi->tag == DW_TAG_subprogram
18874 && child_pdi->linkage_name != NULL)
18875 {
18876 char *actual_class_name
18877 = language_class_name_from_physname (cu->language_defn,
18878 child_pdi->linkage_name);
18879 if (actual_class_name != NULL)
18880 {
18881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18882 struct_pdi->name
18883 = ((const char *)
18884 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18885 actual_class_name,
18886 strlen (actual_class_name)));
18887 xfree (actual_class_name);
18888 }
18889 break;
18890 }
18891 }
18892 }
18893
18894 void
18895 partial_die_info::fixup (struct dwarf2_cu *cu)
18896 {
18897 /* Once we've fixed up a die, there's no point in doing so again.
18898 This also avoids a memory leak if we were to call
18899 guess_partial_die_structure_name multiple times. */
18900 if (fixup_called)
18901 return;
18902
18903 /* If we found a reference attribute and the DIE has no name, try
18904 to find a name in the referred to DIE. */
18905
18906 if (name == NULL && has_specification)
18907 {
18908 struct partial_die_info *spec_die;
18909
18910 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18911
18912 spec_die->fixup (cu);
18913
18914 if (spec_die->name)
18915 {
18916 name = spec_die->name;
18917
18918 /* Copy DW_AT_external attribute if it is set. */
18919 if (spec_die->is_external)
18920 is_external = spec_die->is_external;
18921 }
18922 }
18923
18924 /* Set default names for some unnamed DIEs. */
18925
18926 if (name == NULL && tag == DW_TAG_namespace)
18927 name = CP_ANONYMOUS_NAMESPACE_STR;
18928
18929 /* If there is no parent die to provide a namespace, and there are
18930 children, see if we can determine the namespace from their linkage
18931 name. */
18932 if (cu->language == language_cplus
18933 && !VEC_empty (dwarf2_section_info_def,
18934 cu->per_cu->dwarf2_per_objfile->types)
18935 && die_parent == NULL
18936 && has_children
18937 && (tag == DW_TAG_class_type
18938 || tag == DW_TAG_structure_type
18939 || tag == DW_TAG_union_type))
18940 guess_partial_die_structure_name (this, cu);
18941
18942 /* GCC might emit a nameless struct or union that has a linkage
18943 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18944 if (name == NULL
18945 && (tag == DW_TAG_class_type
18946 || tag == DW_TAG_interface_type
18947 || tag == DW_TAG_structure_type
18948 || tag == DW_TAG_union_type)
18949 && linkage_name != NULL)
18950 {
18951 char *demangled;
18952
18953 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
18954 if (demangled)
18955 {
18956 const char *base;
18957
18958 /* Strip any leading namespaces/classes, keep only the base name.
18959 DW_AT_name for named DIEs does not contain the prefixes. */
18960 base = strrchr (demangled, ':');
18961 if (base && base > demangled && base[-1] == ':')
18962 base++;
18963 else
18964 base = demangled;
18965
18966 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18967 name
18968 = ((const char *)
18969 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18970 base, strlen (base)));
18971 xfree (demangled);
18972 }
18973 }
18974
18975 fixup_called = 1;
18976 }
18977
18978 /* Read an attribute value described by an attribute form. */
18979
18980 static const gdb_byte *
18981 read_attribute_value (const struct die_reader_specs *reader,
18982 struct attribute *attr, unsigned form,
18983 LONGEST implicit_const, const gdb_byte *info_ptr)
18984 {
18985 struct dwarf2_cu *cu = reader->cu;
18986 struct dwarf2_per_objfile *dwarf2_per_objfile
18987 = cu->per_cu->dwarf2_per_objfile;
18988 struct objfile *objfile = dwarf2_per_objfile->objfile;
18989 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18990 bfd *abfd = reader->abfd;
18991 struct comp_unit_head *cu_header = &cu->header;
18992 unsigned int bytes_read;
18993 struct dwarf_block *blk;
18994
18995 attr->form = (enum dwarf_form) form;
18996 switch (form)
18997 {
18998 case DW_FORM_ref_addr:
18999 if (cu->header.version == 2)
19000 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19001 else
19002 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19003 &cu->header, &bytes_read);
19004 info_ptr += bytes_read;
19005 break;
19006 case DW_FORM_GNU_ref_alt:
19007 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19008 info_ptr += bytes_read;
19009 break;
19010 case DW_FORM_addr:
19011 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19012 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19013 info_ptr += bytes_read;
19014 break;
19015 case DW_FORM_block2:
19016 blk = dwarf_alloc_block (cu);
19017 blk->size = read_2_bytes (abfd, info_ptr);
19018 info_ptr += 2;
19019 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19020 info_ptr += blk->size;
19021 DW_BLOCK (attr) = blk;
19022 break;
19023 case DW_FORM_block4:
19024 blk = dwarf_alloc_block (cu);
19025 blk->size = read_4_bytes (abfd, info_ptr);
19026 info_ptr += 4;
19027 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19028 info_ptr += blk->size;
19029 DW_BLOCK (attr) = blk;
19030 break;
19031 case DW_FORM_data2:
19032 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19033 info_ptr += 2;
19034 break;
19035 case DW_FORM_data4:
19036 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19037 info_ptr += 4;
19038 break;
19039 case DW_FORM_data8:
19040 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19041 info_ptr += 8;
19042 break;
19043 case DW_FORM_data16:
19044 blk = dwarf_alloc_block (cu);
19045 blk->size = 16;
19046 blk->data = read_n_bytes (abfd, info_ptr, 16);
19047 info_ptr += 16;
19048 DW_BLOCK (attr) = blk;
19049 break;
19050 case DW_FORM_sec_offset:
19051 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19052 info_ptr += bytes_read;
19053 break;
19054 case DW_FORM_string:
19055 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19056 DW_STRING_IS_CANONICAL (attr) = 0;
19057 info_ptr += bytes_read;
19058 break;
19059 case DW_FORM_strp:
19060 if (!cu->per_cu->is_dwz)
19061 {
19062 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19063 abfd, info_ptr, cu_header,
19064 &bytes_read);
19065 DW_STRING_IS_CANONICAL (attr) = 0;
19066 info_ptr += bytes_read;
19067 break;
19068 }
19069 /* FALLTHROUGH */
19070 case DW_FORM_line_strp:
19071 if (!cu->per_cu->is_dwz)
19072 {
19073 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19074 abfd, info_ptr,
19075 cu_header, &bytes_read);
19076 DW_STRING_IS_CANONICAL (attr) = 0;
19077 info_ptr += bytes_read;
19078 break;
19079 }
19080 /* FALLTHROUGH */
19081 case DW_FORM_GNU_strp_alt:
19082 {
19083 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19084 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19085 &bytes_read);
19086
19087 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19088 dwz, str_offset);
19089 DW_STRING_IS_CANONICAL (attr) = 0;
19090 info_ptr += bytes_read;
19091 }
19092 break;
19093 case DW_FORM_exprloc:
19094 case DW_FORM_block:
19095 blk = dwarf_alloc_block (cu);
19096 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19097 info_ptr += bytes_read;
19098 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19099 info_ptr += blk->size;
19100 DW_BLOCK (attr) = blk;
19101 break;
19102 case DW_FORM_block1:
19103 blk = dwarf_alloc_block (cu);
19104 blk->size = read_1_byte (abfd, info_ptr);
19105 info_ptr += 1;
19106 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19107 info_ptr += blk->size;
19108 DW_BLOCK (attr) = blk;
19109 break;
19110 case DW_FORM_data1:
19111 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19112 info_ptr += 1;
19113 break;
19114 case DW_FORM_flag:
19115 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19116 info_ptr += 1;
19117 break;
19118 case DW_FORM_flag_present:
19119 DW_UNSND (attr) = 1;
19120 break;
19121 case DW_FORM_sdata:
19122 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19123 info_ptr += bytes_read;
19124 break;
19125 case DW_FORM_udata:
19126 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19127 info_ptr += bytes_read;
19128 break;
19129 case DW_FORM_ref1:
19130 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19131 + read_1_byte (abfd, info_ptr));
19132 info_ptr += 1;
19133 break;
19134 case DW_FORM_ref2:
19135 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19136 + read_2_bytes (abfd, info_ptr));
19137 info_ptr += 2;
19138 break;
19139 case DW_FORM_ref4:
19140 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19141 + read_4_bytes (abfd, info_ptr));
19142 info_ptr += 4;
19143 break;
19144 case DW_FORM_ref8:
19145 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19146 + read_8_bytes (abfd, info_ptr));
19147 info_ptr += 8;
19148 break;
19149 case DW_FORM_ref_sig8:
19150 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19151 info_ptr += 8;
19152 break;
19153 case DW_FORM_ref_udata:
19154 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19155 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19156 info_ptr += bytes_read;
19157 break;
19158 case DW_FORM_indirect:
19159 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19160 info_ptr += bytes_read;
19161 if (form == DW_FORM_implicit_const)
19162 {
19163 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19164 info_ptr += bytes_read;
19165 }
19166 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19167 info_ptr);
19168 break;
19169 case DW_FORM_implicit_const:
19170 DW_SND (attr) = implicit_const;
19171 break;
19172 case DW_FORM_GNU_addr_index:
19173 if (reader->dwo_file == NULL)
19174 {
19175 /* For now flag a hard error.
19176 Later we can turn this into a complaint. */
19177 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19178 dwarf_form_name (form),
19179 bfd_get_filename (abfd));
19180 }
19181 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19182 info_ptr += bytes_read;
19183 break;
19184 case DW_FORM_GNU_str_index:
19185 if (reader->dwo_file == NULL)
19186 {
19187 /* For now flag a hard error.
19188 Later we can turn this into a complaint if warranted. */
19189 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19190 dwarf_form_name (form),
19191 bfd_get_filename (abfd));
19192 }
19193 {
19194 ULONGEST str_index =
19195 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19196
19197 DW_STRING (attr) = read_str_index (reader, str_index);
19198 DW_STRING_IS_CANONICAL (attr) = 0;
19199 info_ptr += bytes_read;
19200 }
19201 break;
19202 default:
19203 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19204 dwarf_form_name (form),
19205 bfd_get_filename (abfd));
19206 }
19207
19208 /* Super hack. */
19209 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19210 attr->form = DW_FORM_GNU_ref_alt;
19211
19212 /* We have seen instances where the compiler tried to emit a byte
19213 size attribute of -1 which ended up being encoded as an unsigned
19214 0xffffffff. Although 0xffffffff is technically a valid size value,
19215 an object of this size seems pretty unlikely so we can relatively
19216 safely treat these cases as if the size attribute was invalid and
19217 treat them as zero by default. */
19218 if (attr->name == DW_AT_byte_size
19219 && form == DW_FORM_data4
19220 && DW_UNSND (attr) >= 0xffffffff)
19221 {
19222 complaint
19223 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19224 hex_string (DW_UNSND (attr)));
19225 DW_UNSND (attr) = 0;
19226 }
19227
19228 return info_ptr;
19229 }
19230
19231 /* Read an attribute described by an abbreviated attribute. */
19232
19233 static const gdb_byte *
19234 read_attribute (const struct die_reader_specs *reader,
19235 struct attribute *attr, struct attr_abbrev *abbrev,
19236 const gdb_byte *info_ptr)
19237 {
19238 attr->name = abbrev->name;
19239 return read_attribute_value (reader, attr, abbrev->form,
19240 abbrev->implicit_const, info_ptr);
19241 }
19242
19243 /* Read dwarf information from a buffer. */
19244
19245 static unsigned int
19246 read_1_byte (bfd *abfd, const gdb_byte *buf)
19247 {
19248 return bfd_get_8 (abfd, buf);
19249 }
19250
19251 static int
19252 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19253 {
19254 return bfd_get_signed_8 (abfd, buf);
19255 }
19256
19257 static unsigned int
19258 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19259 {
19260 return bfd_get_16 (abfd, buf);
19261 }
19262
19263 static int
19264 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19265 {
19266 return bfd_get_signed_16 (abfd, buf);
19267 }
19268
19269 static unsigned int
19270 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19271 {
19272 return bfd_get_32 (abfd, buf);
19273 }
19274
19275 static int
19276 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19277 {
19278 return bfd_get_signed_32 (abfd, buf);
19279 }
19280
19281 static ULONGEST
19282 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19283 {
19284 return bfd_get_64 (abfd, buf);
19285 }
19286
19287 static CORE_ADDR
19288 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19289 unsigned int *bytes_read)
19290 {
19291 struct comp_unit_head *cu_header = &cu->header;
19292 CORE_ADDR retval = 0;
19293
19294 if (cu_header->signed_addr_p)
19295 {
19296 switch (cu_header->addr_size)
19297 {
19298 case 2:
19299 retval = bfd_get_signed_16 (abfd, buf);
19300 break;
19301 case 4:
19302 retval = bfd_get_signed_32 (abfd, buf);
19303 break;
19304 case 8:
19305 retval = bfd_get_signed_64 (abfd, buf);
19306 break;
19307 default:
19308 internal_error (__FILE__, __LINE__,
19309 _("read_address: bad switch, signed [in module %s]"),
19310 bfd_get_filename (abfd));
19311 }
19312 }
19313 else
19314 {
19315 switch (cu_header->addr_size)
19316 {
19317 case 2:
19318 retval = bfd_get_16 (abfd, buf);
19319 break;
19320 case 4:
19321 retval = bfd_get_32 (abfd, buf);
19322 break;
19323 case 8:
19324 retval = bfd_get_64 (abfd, buf);
19325 break;
19326 default:
19327 internal_error (__FILE__, __LINE__,
19328 _("read_address: bad switch, "
19329 "unsigned [in module %s]"),
19330 bfd_get_filename (abfd));
19331 }
19332 }
19333
19334 *bytes_read = cu_header->addr_size;
19335 return retval;
19336 }
19337
19338 /* Read the initial length from a section. The (draft) DWARF 3
19339 specification allows the initial length to take up either 4 bytes
19340 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19341 bytes describe the length and all offsets will be 8 bytes in length
19342 instead of 4.
19343
19344 An older, non-standard 64-bit format is also handled by this
19345 function. The older format in question stores the initial length
19346 as an 8-byte quantity without an escape value. Lengths greater
19347 than 2^32 aren't very common which means that the initial 4 bytes
19348 is almost always zero. Since a length value of zero doesn't make
19349 sense for the 32-bit format, this initial zero can be considered to
19350 be an escape value which indicates the presence of the older 64-bit
19351 format. As written, the code can't detect (old format) lengths
19352 greater than 4GB. If it becomes necessary to handle lengths
19353 somewhat larger than 4GB, we could allow other small values (such
19354 as the non-sensical values of 1, 2, and 3) to also be used as
19355 escape values indicating the presence of the old format.
19356
19357 The value returned via bytes_read should be used to increment the
19358 relevant pointer after calling read_initial_length().
19359
19360 [ Note: read_initial_length() and read_offset() are based on the
19361 document entitled "DWARF Debugging Information Format", revision
19362 3, draft 8, dated November 19, 2001. This document was obtained
19363 from:
19364
19365 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19366
19367 This document is only a draft and is subject to change. (So beware.)
19368
19369 Details regarding the older, non-standard 64-bit format were
19370 determined empirically by examining 64-bit ELF files produced by
19371 the SGI toolchain on an IRIX 6.5 machine.
19372
19373 - Kevin, July 16, 2002
19374 ] */
19375
19376 static LONGEST
19377 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19378 {
19379 LONGEST length = bfd_get_32 (abfd, buf);
19380
19381 if (length == 0xffffffff)
19382 {
19383 length = bfd_get_64 (abfd, buf + 4);
19384 *bytes_read = 12;
19385 }
19386 else if (length == 0)
19387 {
19388 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19389 length = bfd_get_64 (abfd, buf);
19390 *bytes_read = 8;
19391 }
19392 else
19393 {
19394 *bytes_read = 4;
19395 }
19396
19397 return length;
19398 }
19399
19400 /* Cover function for read_initial_length.
19401 Returns the length of the object at BUF, and stores the size of the
19402 initial length in *BYTES_READ and stores the size that offsets will be in
19403 *OFFSET_SIZE.
19404 If the initial length size is not equivalent to that specified in
19405 CU_HEADER then issue a complaint.
19406 This is useful when reading non-comp-unit headers. */
19407
19408 static LONGEST
19409 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19410 const struct comp_unit_head *cu_header,
19411 unsigned int *bytes_read,
19412 unsigned int *offset_size)
19413 {
19414 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19415
19416 gdb_assert (cu_header->initial_length_size == 4
19417 || cu_header->initial_length_size == 8
19418 || cu_header->initial_length_size == 12);
19419
19420 if (cu_header->initial_length_size != *bytes_read)
19421 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19422
19423 *offset_size = (*bytes_read == 4) ? 4 : 8;
19424 return length;
19425 }
19426
19427 /* Read an offset from the data stream. The size of the offset is
19428 given by cu_header->offset_size. */
19429
19430 static LONGEST
19431 read_offset (bfd *abfd, const gdb_byte *buf,
19432 const struct comp_unit_head *cu_header,
19433 unsigned int *bytes_read)
19434 {
19435 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19436
19437 *bytes_read = cu_header->offset_size;
19438 return offset;
19439 }
19440
19441 /* Read an offset from the data stream. */
19442
19443 static LONGEST
19444 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19445 {
19446 LONGEST retval = 0;
19447
19448 switch (offset_size)
19449 {
19450 case 4:
19451 retval = bfd_get_32 (abfd, buf);
19452 break;
19453 case 8:
19454 retval = bfd_get_64 (abfd, buf);
19455 break;
19456 default:
19457 internal_error (__FILE__, __LINE__,
19458 _("read_offset_1: bad switch [in module %s]"),
19459 bfd_get_filename (abfd));
19460 }
19461
19462 return retval;
19463 }
19464
19465 static const gdb_byte *
19466 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19467 {
19468 /* If the size of a host char is 8 bits, we can return a pointer
19469 to the buffer, otherwise we have to copy the data to a buffer
19470 allocated on the temporary obstack. */
19471 gdb_assert (HOST_CHAR_BIT == 8);
19472 return buf;
19473 }
19474
19475 static const char *
19476 read_direct_string (bfd *abfd, const gdb_byte *buf,
19477 unsigned int *bytes_read_ptr)
19478 {
19479 /* If the size of a host char is 8 bits, we can return a pointer
19480 to the string, otherwise we have to copy the string to a buffer
19481 allocated on the temporary obstack. */
19482 gdb_assert (HOST_CHAR_BIT == 8);
19483 if (*buf == '\0')
19484 {
19485 *bytes_read_ptr = 1;
19486 return NULL;
19487 }
19488 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19489 return (const char *) buf;
19490 }
19491
19492 /* Return pointer to string at section SECT offset STR_OFFSET with error
19493 reporting strings FORM_NAME and SECT_NAME. */
19494
19495 static const char *
19496 read_indirect_string_at_offset_from (struct objfile *objfile,
19497 bfd *abfd, LONGEST str_offset,
19498 struct dwarf2_section_info *sect,
19499 const char *form_name,
19500 const char *sect_name)
19501 {
19502 dwarf2_read_section (objfile, sect);
19503 if (sect->buffer == NULL)
19504 error (_("%s used without %s section [in module %s]"),
19505 form_name, sect_name, bfd_get_filename (abfd));
19506 if (str_offset >= sect->size)
19507 error (_("%s pointing outside of %s section [in module %s]"),
19508 form_name, sect_name, bfd_get_filename (abfd));
19509 gdb_assert (HOST_CHAR_BIT == 8);
19510 if (sect->buffer[str_offset] == '\0')
19511 return NULL;
19512 return (const char *) (sect->buffer + str_offset);
19513 }
19514
19515 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19516
19517 static const char *
19518 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19519 bfd *abfd, LONGEST str_offset)
19520 {
19521 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19522 abfd, str_offset,
19523 &dwarf2_per_objfile->str,
19524 "DW_FORM_strp", ".debug_str");
19525 }
19526
19527 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19528
19529 static const char *
19530 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19531 bfd *abfd, LONGEST str_offset)
19532 {
19533 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19534 abfd, str_offset,
19535 &dwarf2_per_objfile->line_str,
19536 "DW_FORM_line_strp",
19537 ".debug_line_str");
19538 }
19539
19540 /* Read a string at offset STR_OFFSET in the .debug_str section from
19541 the .dwz file DWZ. Throw an error if the offset is too large. If
19542 the string consists of a single NUL byte, return NULL; otherwise
19543 return a pointer to the string. */
19544
19545 static const char *
19546 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19547 LONGEST str_offset)
19548 {
19549 dwarf2_read_section (objfile, &dwz->str);
19550
19551 if (dwz->str.buffer == NULL)
19552 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19553 "section [in module %s]"),
19554 bfd_get_filename (dwz->dwz_bfd));
19555 if (str_offset >= dwz->str.size)
19556 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19557 ".debug_str section [in module %s]"),
19558 bfd_get_filename (dwz->dwz_bfd));
19559 gdb_assert (HOST_CHAR_BIT == 8);
19560 if (dwz->str.buffer[str_offset] == '\0')
19561 return NULL;
19562 return (const char *) (dwz->str.buffer + str_offset);
19563 }
19564
19565 /* Return pointer to string at .debug_str offset as read from BUF.
19566 BUF is assumed to be in a compilation unit described by CU_HEADER.
19567 Return *BYTES_READ_PTR count of bytes read from BUF. */
19568
19569 static const char *
19570 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19571 const gdb_byte *buf,
19572 const struct comp_unit_head *cu_header,
19573 unsigned int *bytes_read_ptr)
19574 {
19575 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19576
19577 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19578 }
19579
19580 /* Return pointer to string at .debug_line_str offset as read from BUF.
19581 BUF is assumed to be in a compilation unit described by CU_HEADER.
19582 Return *BYTES_READ_PTR count of bytes read from BUF. */
19583
19584 static const char *
19585 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19586 bfd *abfd, const gdb_byte *buf,
19587 const struct comp_unit_head *cu_header,
19588 unsigned int *bytes_read_ptr)
19589 {
19590 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19591
19592 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19593 str_offset);
19594 }
19595
19596 ULONGEST
19597 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19598 unsigned int *bytes_read_ptr)
19599 {
19600 ULONGEST result;
19601 unsigned int num_read;
19602 int shift;
19603 unsigned char byte;
19604
19605 result = 0;
19606 shift = 0;
19607 num_read = 0;
19608 while (1)
19609 {
19610 byte = bfd_get_8 (abfd, buf);
19611 buf++;
19612 num_read++;
19613 result |= ((ULONGEST) (byte & 127) << shift);
19614 if ((byte & 128) == 0)
19615 {
19616 break;
19617 }
19618 shift += 7;
19619 }
19620 *bytes_read_ptr = num_read;
19621 return result;
19622 }
19623
19624 static LONGEST
19625 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19626 unsigned int *bytes_read_ptr)
19627 {
19628 ULONGEST result;
19629 int shift, num_read;
19630 unsigned char byte;
19631
19632 result = 0;
19633 shift = 0;
19634 num_read = 0;
19635 while (1)
19636 {
19637 byte = bfd_get_8 (abfd, buf);
19638 buf++;
19639 num_read++;
19640 result |= ((ULONGEST) (byte & 127) << shift);
19641 shift += 7;
19642 if ((byte & 128) == 0)
19643 {
19644 break;
19645 }
19646 }
19647 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19648 result |= -(((ULONGEST) 1) << shift);
19649 *bytes_read_ptr = num_read;
19650 return result;
19651 }
19652
19653 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19654 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19655 ADDR_SIZE is the size of addresses from the CU header. */
19656
19657 static CORE_ADDR
19658 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19659 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19660 {
19661 struct objfile *objfile = dwarf2_per_objfile->objfile;
19662 bfd *abfd = objfile->obfd;
19663 const gdb_byte *info_ptr;
19664
19665 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19666 if (dwarf2_per_objfile->addr.buffer == NULL)
19667 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19668 objfile_name (objfile));
19669 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19670 error (_("DW_FORM_addr_index pointing outside of "
19671 ".debug_addr section [in module %s]"),
19672 objfile_name (objfile));
19673 info_ptr = (dwarf2_per_objfile->addr.buffer
19674 + addr_base + addr_index * addr_size);
19675 if (addr_size == 4)
19676 return bfd_get_32 (abfd, info_ptr);
19677 else
19678 return bfd_get_64 (abfd, info_ptr);
19679 }
19680
19681 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19682
19683 static CORE_ADDR
19684 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19685 {
19686 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19687 cu->addr_base, cu->header.addr_size);
19688 }
19689
19690 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19691
19692 static CORE_ADDR
19693 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19694 unsigned int *bytes_read)
19695 {
19696 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19697 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19698
19699 return read_addr_index (cu, addr_index);
19700 }
19701
19702 /* Data structure to pass results from dwarf2_read_addr_index_reader
19703 back to dwarf2_read_addr_index. */
19704
19705 struct dwarf2_read_addr_index_data
19706 {
19707 ULONGEST addr_base;
19708 int addr_size;
19709 };
19710
19711 /* die_reader_func for dwarf2_read_addr_index. */
19712
19713 static void
19714 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19715 const gdb_byte *info_ptr,
19716 struct die_info *comp_unit_die,
19717 int has_children,
19718 void *data)
19719 {
19720 struct dwarf2_cu *cu = reader->cu;
19721 struct dwarf2_read_addr_index_data *aidata =
19722 (struct dwarf2_read_addr_index_data *) data;
19723
19724 aidata->addr_base = cu->addr_base;
19725 aidata->addr_size = cu->header.addr_size;
19726 }
19727
19728 /* Given an index in .debug_addr, fetch the value.
19729 NOTE: This can be called during dwarf expression evaluation,
19730 long after the debug information has been read, and thus per_cu->cu
19731 may no longer exist. */
19732
19733 CORE_ADDR
19734 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19735 unsigned int addr_index)
19736 {
19737 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19738 struct dwarf2_cu *cu = per_cu->cu;
19739 ULONGEST addr_base;
19740 int addr_size;
19741
19742 /* We need addr_base and addr_size.
19743 If we don't have PER_CU->cu, we have to get it.
19744 Nasty, but the alternative is storing the needed info in PER_CU,
19745 which at this point doesn't seem justified: it's not clear how frequently
19746 it would get used and it would increase the size of every PER_CU.
19747 Entry points like dwarf2_per_cu_addr_size do a similar thing
19748 so we're not in uncharted territory here.
19749 Alas we need to be a bit more complicated as addr_base is contained
19750 in the DIE.
19751
19752 We don't need to read the entire CU(/TU).
19753 We just need the header and top level die.
19754
19755 IWBN to use the aging mechanism to let us lazily later discard the CU.
19756 For now we skip this optimization. */
19757
19758 if (cu != NULL)
19759 {
19760 addr_base = cu->addr_base;
19761 addr_size = cu->header.addr_size;
19762 }
19763 else
19764 {
19765 struct dwarf2_read_addr_index_data aidata;
19766
19767 /* Note: We can't use init_cutu_and_read_dies_simple here,
19768 we need addr_base. */
19769 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19770 dwarf2_read_addr_index_reader, &aidata);
19771 addr_base = aidata.addr_base;
19772 addr_size = aidata.addr_size;
19773 }
19774
19775 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19776 addr_size);
19777 }
19778
19779 /* Given a DW_FORM_GNU_str_index, fetch the string.
19780 This is only used by the Fission support. */
19781
19782 static const char *
19783 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19784 {
19785 struct dwarf2_cu *cu = reader->cu;
19786 struct dwarf2_per_objfile *dwarf2_per_objfile
19787 = cu->per_cu->dwarf2_per_objfile;
19788 struct objfile *objfile = dwarf2_per_objfile->objfile;
19789 const char *objf_name = objfile_name (objfile);
19790 bfd *abfd = objfile->obfd;
19791 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19792 struct dwarf2_section_info *str_offsets_section =
19793 &reader->dwo_file->sections.str_offsets;
19794 const gdb_byte *info_ptr;
19795 ULONGEST str_offset;
19796 static const char form_name[] = "DW_FORM_GNU_str_index";
19797
19798 dwarf2_read_section (objfile, str_section);
19799 dwarf2_read_section (objfile, str_offsets_section);
19800 if (str_section->buffer == NULL)
19801 error (_("%s used without .debug_str.dwo section"
19802 " in CU at offset %s [in module %s]"),
19803 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19804 if (str_offsets_section->buffer == NULL)
19805 error (_("%s used without .debug_str_offsets.dwo section"
19806 " in CU at offset %s [in module %s]"),
19807 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19808 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19809 error (_("%s pointing outside of .debug_str_offsets.dwo"
19810 " section in CU at offset %s [in module %s]"),
19811 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19812 info_ptr = (str_offsets_section->buffer
19813 + str_index * cu->header.offset_size);
19814 if (cu->header.offset_size == 4)
19815 str_offset = bfd_get_32 (abfd, info_ptr);
19816 else
19817 str_offset = bfd_get_64 (abfd, info_ptr);
19818 if (str_offset >= str_section->size)
19819 error (_("Offset from %s pointing outside of"
19820 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19821 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19822 return (const char *) (str_section->buffer + str_offset);
19823 }
19824
19825 /* Return the length of an LEB128 number in BUF. */
19826
19827 static int
19828 leb128_size (const gdb_byte *buf)
19829 {
19830 const gdb_byte *begin = buf;
19831 gdb_byte byte;
19832
19833 while (1)
19834 {
19835 byte = *buf++;
19836 if ((byte & 128) == 0)
19837 return buf - begin;
19838 }
19839 }
19840
19841 static void
19842 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19843 {
19844 switch (lang)
19845 {
19846 case DW_LANG_C89:
19847 case DW_LANG_C99:
19848 case DW_LANG_C11:
19849 case DW_LANG_C:
19850 case DW_LANG_UPC:
19851 cu->language = language_c;
19852 break;
19853 case DW_LANG_Java:
19854 case DW_LANG_C_plus_plus:
19855 case DW_LANG_C_plus_plus_11:
19856 case DW_LANG_C_plus_plus_14:
19857 cu->language = language_cplus;
19858 break;
19859 case DW_LANG_D:
19860 cu->language = language_d;
19861 break;
19862 case DW_LANG_Fortran77:
19863 case DW_LANG_Fortran90:
19864 case DW_LANG_Fortran95:
19865 case DW_LANG_Fortran03:
19866 case DW_LANG_Fortran08:
19867 cu->language = language_fortran;
19868 break;
19869 case DW_LANG_Go:
19870 cu->language = language_go;
19871 break;
19872 case DW_LANG_Mips_Assembler:
19873 cu->language = language_asm;
19874 break;
19875 case DW_LANG_Ada83:
19876 case DW_LANG_Ada95:
19877 cu->language = language_ada;
19878 break;
19879 case DW_LANG_Modula2:
19880 cu->language = language_m2;
19881 break;
19882 case DW_LANG_Pascal83:
19883 cu->language = language_pascal;
19884 break;
19885 case DW_LANG_ObjC:
19886 cu->language = language_objc;
19887 break;
19888 case DW_LANG_Rust:
19889 case DW_LANG_Rust_old:
19890 cu->language = language_rust;
19891 break;
19892 case DW_LANG_Cobol74:
19893 case DW_LANG_Cobol85:
19894 default:
19895 cu->language = language_minimal;
19896 break;
19897 }
19898 cu->language_defn = language_def (cu->language);
19899 }
19900
19901 /* Return the named attribute or NULL if not there. */
19902
19903 static struct attribute *
19904 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19905 {
19906 for (;;)
19907 {
19908 unsigned int i;
19909 struct attribute *spec = NULL;
19910
19911 for (i = 0; i < die->num_attrs; ++i)
19912 {
19913 if (die->attrs[i].name == name)
19914 return &die->attrs[i];
19915 if (die->attrs[i].name == DW_AT_specification
19916 || die->attrs[i].name == DW_AT_abstract_origin)
19917 spec = &die->attrs[i];
19918 }
19919
19920 if (!spec)
19921 break;
19922
19923 die = follow_die_ref (die, spec, &cu);
19924 }
19925
19926 return NULL;
19927 }
19928
19929 /* Return the named attribute or NULL if not there,
19930 but do not follow DW_AT_specification, etc.
19931 This is for use in contexts where we're reading .debug_types dies.
19932 Following DW_AT_specification, DW_AT_abstract_origin will take us
19933 back up the chain, and we want to go down. */
19934
19935 static struct attribute *
19936 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19937 {
19938 unsigned int i;
19939
19940 for (i = 0; i < die->num_attrs; ++i)
19941 if (die->attrs[i].name == name)
19942 return &die->attrs[i];
19943
19944 return NULL;
19945 }
19946
19947 /* Return the string associated with a string-typed attribute, or NULL if it
19948 is either not found or is of an incorrect type. */
19949
19950 static const char *
19951 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19952 {
19953 struct attribute *attr;
19954 const char *str = NULL;
19955
19956 attr = dwarf2_attr (die, name, cu);
19957
19958 if (attr != NULL)
19959 {
19960 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19961 || attr->form == DW_FORM_string
19962 || attr->form == DW_FORM_GNU_str_index
19963 || attr->form == DW_FORM_GNU_strp_alt)
19964 str = DW_STRING (attr);
19965 else
19966 complaint (_("string type expected for attribute %s for "
19967 "DIE at %s in module %s"),
19968 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19969 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19970 }
19971
19972 return str;
19973 }
19974
19975 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19976 and holds a non-zero value. This function should only be used for
19977 DW_FORM_flag or DW_FORM_flag_present attributes. */
19978
19979 static int
19980 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19981 {
19982 struct attribute *attr = dwarf2_attr (die, name, cu);
19983
19984 return (attr && DW_UNSND (attr));
19985 }
19986
19987 static int
19988 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19989 {
19990 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19991 which value is non-zero. However, we have to be careful with
19992 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19993 (via dwarf2_flag_true_p) follows this attribute. So we may
19994 end up accidently finding a declaration attribute that belongs
19995 to a different DIE referenced by the specification attribute,
19996 even though the given DIE does not have a declaration attribute. */
19997 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19998 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19999 }
20000
20001 /* Return the die giving the specification for DIE, if there is
20002 one. *SPEC_CU is the CU containing DIE on input, and the CU
20003 containing the return value on output. If there is no
20004 specification, but there is an abstract origin, that is
20005 returned. */
20006
20007 static struct die_info *
20008 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20009 {
20010 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20011 *spec_cu);
20012
20013 if (spec_attr == NULL)
20014 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20015
20016 if (spec_attr == NULL)
20017 return NULL;
20018 else
20019 return follow_die_ref (die, spec_attr, spec_cu);
20020 }
20021
20022 /* Stub for free_line_header to match void * callback types. */
20023
20024 static void
20025 free_line_header_voidp (void *arg)
20026 {
20027 struct line_header *lh = (struct line_header *) arg;
20028
20029 delete lh;
20030 }
20031
20032 void
20033 line_header::add_include_dir (const char *include_dir)
20034 {
20035 if (dwarf_line_debug >= 2)
20036 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20037 include_dirs.size () + 1, include_dir);
20038
20039 include_dirs.push_back (include_dir);
20040 }
20041
20042 void
20043 line_header::add_file_name (const char *name,
20044 dir_index d_index,
20045 unsigned int mod_time,
20046 unsigned int length)
20047 {
20048 if (dwarf_line_debug >= 2)
20049 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20050 (unsigned) file_names.size () + 1, name);
20051
20052 file_names.emplace_back (name, d_index, mod_time, length);
20053 }
20054
20055 /* A convenience function to find the proper .debug_line section for a CU. */
20056
20057 static struct dwarf2_section_info *
20058 get_debug_line_section (struct dwarf2_cu *cu)
20059 {
20060 struct dwarf2_section_info *section;
20061 struct dwarf2_per_objfile *dwarf2_per_objfile
20062 = cu->per_cu->dwarf2_per_objfile;
20063
20064 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20065 DWO file. */
20066 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20067 section = &cu->dwo_unit->dwo_file->sections.line;
20068 else if (cu->per_cu->is_dwz)
20069 {
20070 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20071
20072 section = &dwz->line;
20073 }
20074 else
20075 section = &dwarf2_per_objfile->line;
20076
20077 return section;
20078 }
20079
20080 /* Read directory or file name entry format, starting with byte of
20081 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20082 entries count and the entries themselves in the described entry
20083 format. */
20084
20085 static void
20086 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20087 bfd *abfd, const gdb_byte **bufp,
20088 struct line_header *lh,
20089 const struct comp_unit_head *cu_header,
20090 void (*callback) (struct line_header *lh,
20091 const char *name,
20092 dir_index d_index,
20093 unsigned int mod_time,
20094 unsigned int length))
20095 {
20096 gdb_byte format_count, formati;
20097 ULONGEST data_count, datai;
20098 const gdb_byte *buf = *bufp;
20099 const gdb_byte *format_header_data;
20100 unsigned int bytes_read;
20101
20102 format_count = read_1_byte (abfd, buf);
20103 buf += 1;
20104 format_header_data = buf;
20105 for (formati = 0; formati < format_count; formati++)
20106 {
20107 read_unsigned_leb128 (abfd, buf, &bytes_read);
20108 buf += bytes_read;
20109 read_unsigned_leb128 (abfd, buf, &bytes_read);
20110 buf += bytes_read;
20111 }
20112
20113 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20114 buf += bytes_read;
20115 for (datai = 0; datai < data_count; datai++)
20116 {
20117 const gdb_byte *format = format_header_data;
20118 struct file_entry fe;
20119
20120 for (formati = 0; formati < format_count; formati++)
20121 {
20122 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20123 format += bytes_read;
20124
20125 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20126 format += bytes_read;
20127
20128 gdb::optional<const char *> string;
20129 gdb::optional<unsigned int> uint;
20130
20131 switch (form)
20132 {
20133 case DW_FORM_string:
20134 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20135 buf += bytes_read;
20136 break;
20137
20138 case DW_FORM_line_strp:
20139 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20140 abfd, buf,
20141 cu_header,
20142 &bytes_read));
20143 buf += bytes_read;
20144 break;
20145
20146 case DW_FORM_data1:
20147 uint.emplace (read_1_byte (abfd, buf));
20148 buf += 1;
20149 break;
20150
20151 case DW_FORM_data2:
20152 uint.emplace (read_2_bytes (abfd, buf));
20153 buf += 2;
20154 break;
20155
20156 case DW_FORM_data4:
20157 uint.emplace (read_4_bytes (abfd, buf));
20158 buf += 4;
20159 break;
20160
20161 case DW_FORM_data8:
20162 uint.emplace (read_8_bytes (abfd, buf));
20163 buf += 8;
20164 break;
20165
20166 case DW_FORM_udata:
20167 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20168 buf += bytes_read;
20169 break;
20170
20171 case DW_FORM_block:
20172 /* It is valid only for DW_LNCT_timestamp which is ignored by
20173 current GDB. */
20174 break;
20175 }
20176
20177 switch (content_type)
20178 {
20179 case DW_LNCT_path:
20180 if (string.has_value ())
20181 fe.name = *string;
20182 break;
20183 case DW_LNCT_directory_index:
20184 if (uint.has_value ())
20185 fe.d_index = (dir_index) *uint;
20186 break;
20187 case DW_LNCT_timestamp:
20188 if (uint.has_value ())
20189 fe.mod_time = *uint;
20190 break;
20191 case DW_LNCT_size:
20192 if (uint.has_value ())
20193 fe.length = *uint;
20194 break;
20195 case DW_LNCT_MD5:
20196 break;
20197 default:
20198 complaint (_("Unknown format content type %s"),
20199 pulongest (content_type));
20200 }
20201 }
20202
20203 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20204 }
20205
20206 *bufp = buf;
20207 }
20208
20209 /* Read the statement program header starting at OFFSET in
20210 .debug_line, or .debug_line.dwo. Return a pointer
20211 to a struct line_header, allocated using xmalloc.
20212 Returns NULL if there is a problem reading the header, e.g., if it
20213 has a version we don't understand.
20214
20215 NOTE: the strings in the include directory and file name tables of
20216 the returned object point into the dwarf line section buffer,
20217 and must not be freed. */
20218
20219 static line_header_up
20220 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20221 {
20222 const gdb_byte *line_ptr;
20223 unsigned int bytes_read, offset_size;
20224 int i;
20225 const char *cur_dir, *cur_file;
20226 struct dwarf2_section_info *section;
20227 bfd *abfd;
20228 struct dwarf2_per_objfile *dwarf2_per_objfile
20229 = cu->per_cu->dwarf2_per_objfile;
20230
20231 section = get_debug_line_section (cu);
20232 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20233 if (section->buffer == NULL)
20234 {
20235 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20236 complaint (_("missing .debug_line.dwo section"));
20237 else
20238 complaint (_("missing .debug_line section"));
20239 return 0;
20240 }
20241
20242 /* We can't do this until we know the section is non-empty.
20243 Only then do we know we have such a section. */
20244 abfd = get_section_bfd_owner (section);
20245
20246 /* Make sure that at least there's room for the total_length field.
20247 That could be 12 bytes long, but we're just going to fudge that. */
20248 if (to_underlying (sect_off) + 4 >= section->size)
20249 {
20250 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20251 return 0;
20252 }
20253
20254 line_header_up lh (new line_header ());
20255
20256 lh->sect_off = sect_off;
20257 lh->offset_in_dwz = cu->per_cu->is_dwz;
20258
20259 line_ptr = section->buffer + to_underlying (sect_off);
20260
20261 /* Read in the header. */
20262 lh->total_length =
20263 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20264 &bytes_read, &offset_size);
20265 line_ptr += bytes_read;
20266 if (line_ptr + lh->total_length > (section->buffer + section->size))
20267 {
20268 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20269 return 0;
20270 }
20271 lh->statement_program_end = line_ptr + lh->total_length;
20272 lh->version = read_2_bytes (abfd, line_ptr);
20273 line_ptr += 2;
20274 if (lh->version > 5)
20275 {
20276 /* This is a version we don't understand. The format could have
20277 changed in ways we don't handle properly so just punt. */
20278 complaint (_("unsupported version in .debug_line section"));
20279 return NULL;
20280 }
20281 if (lh->version >= 5)
20282 {
20283 gdb_byte segment_selector_size;
20284
20285 /* Skip address size. */
20286 read_1_byte (abfd, line_ptr);
20287 line_ptr += 1;
20288
20289 segment_selector_size = read_1_byte (abfd, line_ptr);
20290 line_ptr += 1;
20291 if (segment_selector_size != 0)
20292 {
20293 complaint (_("unsupported segment selector size %u "
20294 "in .debug_line section"),
20295 segment_selector_size);
20296 return NULL;
20297 }
20298 }
20299 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20300 line_ptr += offset_size;
20301 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20302 line_ptr += 1;
20303 if (lh->version >= 4)
20304 {
20305 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20306 line_ptr += 1;
20307 }
20308 else
20309 lh->maximum_ops_per_instruction = 1;
20310
20311 if (lh->maximum_ops_per_instruction == 0)
20312 {
20313 lh->maximum_ops_per_instruction = 1;
20314 complaint (_("invalid maximum_ops_per_instruction "
20315 "in `.debug_line' section"));
20316 }
20317
20318 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20319 line_ptr += 1;
20320 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20321 line_ptr += 1;
20322 lh->line_range = read_1_byte (abfd, line_ptr);
20323 line_ptr += 1;
20324 lh->opcode_base = read_1_byte (abfd, line_ptr);
20325 line_ptr += 1;
20326 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20327
20328 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20329 for (i = 1; i < lh->opcode_base; ++i)
20330 {
20331 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20332 line_ptr += 1;
20333 }
20334
20335 if (lh->version >= 5)
20336 {
20337 /* Read directory table. */
20338 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20339 &cu->header,
20340 [] (struct line_header *header, const char *name,
20341 dir_index d_index, unsigned int mod_time,
20342 unsigned int length)
20343 {
20344 header->add_include_dir (name);
20345 });
20346
20347 /* Read file name table. */
20348 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20349 &cu->header,
20350 [] (struct line_header *header, const char *name,
20351 dir_index d_index, unsigned int mod_time,
20352 unsigned int length)
20353 {
20354 header->add_file_name (name, d_index, mod_time, length);
20355 });
20356 }
20357 else
20358 {
20359 /* Read directory table. */
20360 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20361 {
20362 line_ptr += bytes_read;
20363 lh->add_include_dir (cur_dir);
20364 }
20365 line_ptr += bytes_read;
20366
20367 /* Read file name table. */
20368 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20369 {
20370 unsigned int mod_time, length;
20371 dir_index d_index;
20372
20373 line_ptr += bytes_read;
20374 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20375 line_ptr += bytes_read;
20376 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20377 line_ptr += bytes_read;
20378 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20379 line_ptr += bytes_read;
20380
20381 lh->add_file_name (cur_file, d_index, mod_time, length);
20382 }
20383 line_ptr += bytes_read;
20384 }
20385 lh->statement_program_start = line_ptr;
20386
20387 if (line_ptr > (section->buffer + section->size))
20388 complaint (_("line number info header doesn't "
20389 "fit in `.debug_line' section"));
20390
20391 return lh;
20392 }
20393
20394 /* Subroutine of dwarf_decode_lines to simplify it.
20395 Return the file name of the psymtab for included file FILE_INDEX
20396 in line header LH of PST.
20397 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20398 If space for the result is malloc'd, *NAME_HOLDER will be set.
20399 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20400
20401 static const char *
20402 psymtab_include_file_name (const struct line_header *lh, int file_index,
20403 const struct partial_symtab *pst,
20404 const char *comp_dir,
20405 gdb::unique_xmalloc_ptr<char> *name_holder)
20406 {
20407 const file_entry &fe = lh->file_names[file_index];
20408 const char *include_name = fe.name;
20409 const char *include_name_to_compare = include_name;
20410 const char *pst_filename;
20411 int file_is_pst;
20412
20413 const char *dir_name = fe.include_dir (lh);
20414
20415 gdb::unique_xmalloc_ptr<char> hold_compare;
20416 if (!IS_ABSOLUTE_PATH (include_name)
20417 && (dir_name != NULL || comp_dir != NULL))
20418 {
20419 /* Avoid creating a duplicate psymtab for PST.
20420 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20421 Before we do the comparison, however, we need to account
20422 for DIR_NAME and COMP_DIR.
20423 First prepend dir_name (if non-NULL). If we still don't
20424 have an absolute path prepend comp_dir (if non-NULL).
20425 However, the directory we record in the include-file's
20426 psymtab does not contain COMP_DIR (to match the
20427 corresponding symtab(s)).
20428
20429 Example:
20430
20431 bash$ cd /tmp
20432 bash$ gcc -g ./hello.c
20433 include_name = "hello.c"
20434 dir_name = "."
20435 DW_AT_comp_dir = comp_dir = "/tmp"
20436 DW_AT_name = "./hello.c"
20437
20438 */
20439
20440 if (dir_name != NULL)
20441 {
20442 name_holder->reset (concat (dir_name, SLASH_STRING,
20443 include_name, (char *) NULL));
20444 include_name = name_holder->get ();
20445 include_name_to_compare = include_name;
20446 }
20447 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20448 {
20449 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20450 include_name, (char *) NULL));
20451 include_name_to_compare = hold_compare.get ();
20452 }
20453 }
20454
20455 pst_filename = pst->filename;
20456 gdb::unique_xmalloc_ptr<char> copied_name;
20457 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20458 {
20459 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20460 pst_filename, (char *) NULL));
20461 pst_filename = copied_name.get ();
20462 }
20463
20464 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20465
20466 if (file_is_pst)
20467 return NULL;
20468 return include_name;
20469 }
20470
20471 /* State machine to track the state of the line number program. */
20472
20473 class lnp_state_machine
20474 {
20475 public:
20476 /* Initialize a machine state for the start of a line number
20477 program. */
20478 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20479 bool record_lines_p);
20480
20481 file_entry *current_file ()
20482 {
20483 /* lh->file_names is 0-based, but the file name numbers in the
20484 statement program are 1-based. */
20485 return m_line_header->file_name_at (m_file);
20486 }
20487
20488 /* Record the line in the state machine. END_SEQUENCE is true if
20489 we're processing the end of a sequence. */
20490 void record_line (bool end_sequence);
20491
20492 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20493 nop-out rest of the lines in this sequence. */
20494 void check_line_address (struct dwarf2_cu *cu,
20495 const gdb_byte *line_ptr,
20496 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20497
20498 void handle_set_discriminator (unsigned int discriminator)
20499 {
20500 m_discriminator = discriminator;
20501 m_line_has_non_zero_discriminator |= discriminator != 0;
20502 }
20503
20504 /* Handle DW_LNE_set_address. */
20505 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20506 {
20507 m_op_index = 0;
20508 address += baseaddr;
20509 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20510 }
20511
20512 /* Handle DW_LNS_advance_pc. */
20513 void handle_advance_pc (CORE_ADDR adjust);
20514
20515 /* Handle a special opcode. */
20516 void handle_special_opcode (unsigned char op_code);
20517
20518 /* Handle DW_LNS_advance_line. */
20519 void handle_advance_line (int line_delta)
20520 {
20521 advance_line (line_delta);
20522 }
20523
20524 /* Handle DW_LNS_set_file. */
20525 void handle_set_file (file_name_index file);
20526
20527 /* Handle DW_LNS_negate_stmt. */
20528 void handle_negate_stmt ()
20529 {
20530 m_is_stmt = !m_is_stmt;
20531 }
20532
20533 /* Handle DW_LNS_const_add_pc. */
20534 void handle_const_add_pc ();
20535
20536 /* Handle DW_LNS_fixed_advance_pc. */
20537 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20538 {
20539 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20540 m_op_index = 0;
20541 }
20542
20543 /* Handle DW_LNS_copy. */
20544 void handle_copy ()
20545 {
20546 record_line (false);
20547 m_discriminator = 0;
20548 }
20549
20550 /* Handle DW_LNE_end_sequence. */
20551 void handle_end_sequence ()
20552 {
20553 m_currently_recording_lines = true;
20554 }
20555
20556 private:
20557 /* Advance the line by LINE_DELTA. */
20558 void advance_line (int line_delta)
20559 {
20560 m_line += line_delta;
20561
20562 if (line_delta != 0)
20563 m_line_has_non_zero_discriminator = m_discriminator != 0;
20564 }
20565
20566 struct dwarf2_cu *m_cu;
20567
20568 gdbarch *m_gdbarch;
20569
20570 /* True if we're recording lines.
20571 Otherwise we're building partial symtabs and are just interested in
20572 finding include files mentioned by the line number program. */
20573 bool m_record_lines_p;
20574
20575 /* The line number header. */
20576 line_header *m_line_header;
20577
20578 /* These are part of the standard DWARF line number state machine,
20579 and initialized according to the DWARF spec. */
20580
20581 unsigned char m_op_index = 0;
20582 /* The line table index (1-based) of the current file. */
20583 file_name_index m_file = (file_name_index) 1;
20584 unsigned int m_line = 1;
20585
20586 /* These are initialized in the constructor. */
20587
20588 CORE_ADDR m_address;
20589 bool m_is_stmt;
20590 unsigned int m_discriminator;
20591
20592 /* Additional bits of state we need to track. */
20593
20594 /* The last file that we called dwarf2_start_subfile for.
20595 This is only used for TLLs. */
20596 unsigned int m_last_file = 0;
20597 /* The last file a line number was recorded for. */
20598 struct subfile *m_last_subfile = NULL;
20599
20600 /* When true, record the lines we decode. */
20601 bool m_currently_recording_lines = false;
20602
20603 /* The last line number that was recorded, used to coalesce
20604 consecutive entries for the same line. This can happen, for
20605 example, when discriminators are present. PR 17276. */
20606 unsigned int m_last_line = 0;
20607 bool m_line_has_non_zero_discriminator = false;
20608 };
20609
20610 void
20611 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20612 {
20613 CORE_ADDR addr_adj = (((m_op_index + adjust)
20614 / m_line_header->maximum_ops_per_instruction)
20615 * m_line_header->minimum_instruction_length);
20616 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20617 m_op_index = ((m_op_index + adjust)
20618 % m_line_header->maximum_ops_per_instruction);
20619 }
20620
20621 void
20622 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20623 {
20624 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20625 CORE_ADDR addr_adj = (((m_op_index
20626 + (adj_opcode / m_line_header->line_range))
20627 / m_line_header->maximum_ops_per_instruction)
20628 * m_line_header->minimum_instruction_length);
20629 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20630 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20631 % m_line_header->maximum_ops_per_instruction);
20632
20633 int line_delta = (m_line_header->line_base
20634 + (adj_opcode % m_line_header->line_range));
20635 advance_line (line_delta);
20636 record_line (false);
20637 m_discriminator = 0;
20638 }
20639
20640 void
20641 lnp_state_machine::handle_set_file (file_name_index file)
20642 {
20643 m_file = file;
20644
20645 const file_entry *fe = current_file ();
20646 if (fe == NULL)
20647 dwarf2_debug_line_missing_file_complaint ();
20648 else if (m_record_lines_p)
20649 {
20650 const char *dir = fe->include_dir (m_line_header);
20651
20652 m_last_subfile = m_cu->builder->get_current_subfile ();
20653 m_line_has_non_zero_discriminator = m_discriminator != 0;
20654 dwarf2_start_subfile (m_cu, fe->name, dir);
20655 }
20656 }
20657
20658 void
20659 lnp_state_machine::handle_const_add_pc ()
20660 {
20661 CORE_ADDR adjust
20662 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20663
20664 CORE_ADDR addr_adj
20665 = (((m_op_index + adjust)
20666 / m_line_header->maximum_ops_per_instruction)
20667 * m_line_header->minimum_instruction_length);
20668
20669 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20670 m_op_index = ((m_op_index + adjust)
20671 % m_line_header->maximum_ops_per_instruction);
20672 }
20673
20674 /* Return non-zero if we should add LINE to the line number table.
20675 LINE is the line to add, LAST_LINE is the last line that was added,
20676 LAST_SUBFILE is the subfile for LAST_LINE.
20677 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20678 had a non-zero discriminator.
20679
20680 We have to be careful in the presence of discriminators.
20681 E.g., for this line:
20682
20683 for (i = 0; i < 100000; i++);
20684
20685 clang can emit four line number entries for that one line,
20686 each with a different discriminator.
20687 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20688
20689 However, we want gdb to coalesce all four entries into one.
20690 Otherwise the user could stepi into the middle of the line and
20691 gdb would get confused about whether the pc really was in the
20692 middle of the line.
20693
20694 Things are further complicated by the fact that two consecutive
20695 line number entries for the same line is a heuristic used by gcc
20696 to denote the end of the prologue. So we can't just discard duplicate
20697 entries, we have to be selective about it. The heuristic we use is
20698 that we only collapse consecutive entries for the same line if at least
20699 one of those entries has a non-zero discriminator. PR 17276.
20700
20701 Note: Addresses in the line number state machine can never go backwards
20702 within one sequence, thus this coalescing is ok. */
20703
20704 static int
20705 dwarf_record_line_p (struct dwarf2_cu *cu,
20706 unsigned int line, unsigned int last_line,
20707 int line_has_non_zero_discriminator,
20708 struct subfile *last_subfile)
20709 {
20710 if (cu->builder->get_current_subfile () != last_subfile)
20711 return 1;
20712 if (line != last_line)
20713 return 1;
20714 /* Same line for the same file that we've seen already.
20715 As a last check, for pr 17276, only record the line if the line
20716 has never had a non-zero discriminator. */
20717 if (!line_has_non_zero_discriminator)
20718 return 1;
20719 return 0;
20720 }
20721
20722 /* Use the CU's builder to record line number LINE beginning at
20723 address ADDRESS in the line table of subfile SUBFILE. */
20724
20725 static void
20726 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20727 unsigned int line, CORE_ADDR address,
20728 struct dwarf2_cu *cu)
20729 {
20730 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20731
20732 if (dwarf_line_debug)
20733 {
20734 fprintf_unfiltered (gdb_stdlog,
20735 "Recording line %u, file %s, address %s\n",
20736 line, lbasename (subfile->name),
20737 paddress (gdbarch, address));
20738 }
20739
20740 if (cu != nullptr)
20741 cu->builder->record_line (subfile, line, addr);
20742 }
20743
20744 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20745 Mark the end of a set of line number records.
20746 The arguments are the same as for dwarf_record_line_1.
20747 If SUBFILE is NULL the request is ignored. */
20748
20749 static void
20750 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20751 CORE_ADDR address, struct dwarf2_cu *cu)
20752 {
20753 if (subfile == NULL)
20754 return;
20755
20756 if (dwarf_line_debug)
20757 {
20758 fprintf_unfiltered (gdb_stdlog,
20759 "Finishing current line, file %s, address %s\n",
20760 lbasename (subfile->name),
20761 paddress (gdbarch, address));
20762 }
20763
20764 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20765 }
20766
20767 void
20768 lnp_state_machine::record_line (bool end_sequence)
20769 {
20770 if (dwarf_line_debug)
20771 {
20772 fprintf_unfiltered (gdb_stdlog,
20773 "Processing actual line %u: file %u,"
20774 " address %s, is_stmt %u, discrim %u\n",
20775 m_line, to_underlying (m_file),
20776 paddress (m_gdbarch, m_address),
20777 m_is_stmt, m_discriminator);
20778 }
20779
20780 file_entry *fe = current_file ();
20781
20782 if (fe == NULL)
20783 dwarf2_debug_line_missing_file_complaint ();
20784 /* For now we ignore lines not starting on an instruction boundary.
20785 But not when processing end_sequence for compatibility with the
20786 previous version of the code. */
20787 else if (m_op_index == 0 || end_sequence)
20788 {
20789 fe->included_p = 1;
20790 if (m_record_lines_p && m_is_stmt)
20791 {
20792 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20793 || end_sequence)
20794 {
20795 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20796 m_currently_recording_lines ? m_cu : nullptr);
20797 }
20798
20799 if (!end_sequence)
20800 {
20801 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20802 m_line_has_non_zero_discriminator,
20803 m_last_subfile))
20804 {
20805 dwarf_record_line_1 (m_gdbarch,
20806 m_cu->builder->get_current_subfile (),
20807 m_line, m_address,
20808 m_currently_recording_lines ? m_cu : nullptr);
20809 }
20810 m_last_subfile = m_cu->builder->get_current_subfile ();
20811 m_last_line = m_line;
20812 }
20813 }
20814 }
20815 }
20816
20817 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20818 line_header *lh, bool record_lines_p)
20819 {
20820 m_cu = cu;
20821 m_gdbarch = arch;
20822 m_record_lines_p = record_lines_p;
20823 m_line_header = lh;
20824
20825 m_currently_recording_lines = true;
20826
20827 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20828 was a line entry for it so that the backend has a chance to adjust it
20829 and also record it in case it needs it. This is currently used by MIPS
20830 code, cf. `mips_adjust_dwarf2_line'. */
20831 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20832 m_is_stmt = lh->default_is_stmt;
20833 m_discriminator = 0;
20834 }
20835
20836 void
20837 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20838 const gdb_byte *line_ptr,
20839 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20840 {
20841 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20842 the pc range of the CU. However, we restrict the test to only ADDRESS
20843 values of zero to preserve GDB's previous behaviour which is to handle
20844 the specific case of a function being GC'd by the linker. */
20845
20846 if (address == 0 && address < unrelocated_lowpc)
20847 {
20848 /* This line table is for a function which has been
20849 GCd by the linker. Ignore it. PR gdb/12528 */
20850
20851 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20852 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20853
20854 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20855 line_offset, objfile_name (objfile));
20856 m_currently_recording_lines = false;
20857 /* Note: m_currently_recording_lines is left as false until we see
20858 DW_LNE_end_sequence. */
20859 }
20860 }
20861
20862 /* Subroutine of dwarf_decode_lines to simplify it.
20863 Process the line number information in LH.
20864 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20865 program in order to set included_p for every referenced header. */
20866
20867 static void
20868 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20869 const int decode_for_pst_p, CORE_ADDR lowpc)
20870 {
20871 const gdb_byte *line_ptr, *extended_end;
20872 const gdb_byte *line_end;
20873 unsigned int bytes_read, extended_len;
20874 unsigned char op_code, extended_op;
20875 CORE_ADDR baseaddr;
20876 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20877 bfd *abfd = objfile->obfd;
20878 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20879 /* True if we're recording line info (as opposed to building partial
20880 symtabs and just interested in finding include files mentioned by
20881 the line number program). */
20882 bool record_lines_p = !decode_for_pst_p;
20883
20884 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20885
20886 line_ptr = lh->statement_program_start;
20887 line_end = lh->statement_program_end;
20888
20889 /* Read the statement sequences until there's nothing left. */
20890 while (line_ptr < line_end)
20891 {
20892 /* The DWARF line number program state machine. Reset the state
20893 machine at the start of each sequence. */
20894 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20895 bool end_sequence = false;
20896
20897 if (record_lines_p)
20898 {
20899 /* Start a subfile for the current file of the state
20900 machine. */
20901 const file_entry *fe = state_machine.current_file ();
20902
20903 if (fe != NULL)
20904 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20905 }
20906
20907 /* Decode the table. */
20908 while (line_ptr < line_end && !end_sequence)
20909 {
20910 op_code = read_1_byte (abfd, line_ptr);
20911 line_ptr += 1;
20912
20913 if (op_code >= lh->opcode_base)
20914 {
20915 /* Special opcode. */
20916 state_machine.handle_special_opcode (op_code);
20917 }
20918 else switch (op_code)
20919 {
20920 case DW_LNS_extended_op:
20921 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20922 &bytes_read);
20923 line_ptr += bytes_read;
20924 extended_end = line_ptr + extended_len;
20925 extended_op = read_1_byte (abfd, line_ptr);
20926 line_ptr += 1;
20927 switch (extended_op)
20928 {
20929 case DW_LNE_end_sequence:
20930 state_machine.handle_end_sequence ();
20931 end_sequence = true;
20932 break;
20933 case DW_LNE_set_address:
20934 {
20935 CORE_ADDR address
20936 = read_address (abfd, line_ptr, cu, &bytes_read);
20937 line_ptr += bytes_read;
20938
20939 state_machine.check_line_address (cu, line_ptr,
20940 lowpc - baseaddr, address);
20941 state_machine.handle_set_address (baseaddr, address);
20942 }
20943 break;
20944 case DW_LNE_define_file:
20945 {
20946 const char *cur_file;
20947 unsigned int mod_time, length;
20948 dir_index dindex;
20949
20950 cur_file = read_direct_string (abfd, line_ptr,
20951 &bytes_read);
20952 line_ptr += bytes_read;
20953 dindex = (dir_index)
20954 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20955 line_ptr += bytes_read;
20956 mod_time =
20957 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20958 line_ptr += bytes_read;
20959 length =
20960 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20961 line_ptr += bytes_read;
20962 lh->add_file_name (cur_file, dindex, mod_time, length);
20963 }
20964 break;
20965 case DW_LNE_set_discriminator:
20966 {
20967 /* The discriminator is not interesting to the
20968 debugger; just ignore it. We still need to
20969 check its value though:
20970 if there are consecutive entries for the same
20971 (non-prologue) line we want to coalesce them.
20972 PR 17276. */
20973 unsigned int discr
20974 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20975 line_ptr += bytes_read;
20976
20977 state_machine.handle_set_discriminator (discr);
20978 }
20979 break;
20980 default:
20981 complaint (_("mangled .debug_line section"));
20982 return;
20983 }
20984 /* Make sure that we parsed the extended op correctly. If e.g.
20985 we expected a different address size than the producer used,
20986 we may have read the wrong number of bytes. */
20987 if (line_ptr != extended_end)
20988 {
20989 complaint (_("mangled .debug_line section"));
20990 return;
20991 }
20992 break;
20993 case DW_LNS_copy:
20994 state_machine.handle_copy ();
20995 break;
20996 case DW_LNS_advance_pc:
20997 {
20998 CORE_ADDR adjust
20999 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21000 line_ptr += bytes_read;
21001
21002 state_machine.handle_advance_pc (adjust);
21003 }
21004 break;
21005 case DW_LNS_advance_line:
21006 {
21007 int line_delta
21008 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21009 line_ptr += bytes_read;
21010
21011 state_machine.handle_advance_line (line_delta);
21012 }
21013 break;
21014 case DW_LNS_set_file:
21015 {
21016 file_name_index file
21017 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21018 &bytes_read);
21019 line_ptr += bytes_read;
21020
21021 state_machine.handle_set_file (file);
21022 }
21023 break;
21024 case DW_LNS_set_column:
21025 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21026 line_ptr += bytes_read;
21027 break;
21028 case DW_LNS_negate_stmt:
21029 state_machine.handle_negate_stmt ();
21030 break;
21031 case DW_LNS_set_basic_block:
21032 break;
21033 /* Add to the address register of the state machine the
21034 address increment value corresponding to special opcode
21035 255. I.e., this value is scaled by the minimum
21036 instruction length since special opcode 255 would have
21037 scaled the increment. */
21038 case DW_LNS_const_add_pc:
21039 state_machine.handle_const_add_pc ();
21040 break;
21041 case DW_LNS_fixed_advance_pc:
21042 {
21043 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21044 line_ptr += 2;
21045
21046 state_machine.handle_fixed_advance_pc (addr_adj);
21047 }
21048 break;
21049 default:
21050 {
21051 /* Unknown standard opcode, ignore it. */
21052 int i;
21053
21054 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21055 {
21056 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21057 line_ptr += bytes_read;
21058 }
21059 }
21060 }
21061 }
21062
21063 if (!end_sequence)
21064 dwarf2_debug_line_missing_end_sequence_complaint ();
21065
21066 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21067 in which case we still finish recording the last line). */
21068 state_machine.record_line (true);
21069 }
21070 }
21071
21072 /* Decode the Line Number Program (LNP) for the given line_header
21073 structure and CU. The actual information extracted and the type
21074 of structures created from the LNP depends on the value of PST.
21075
21076 1. If PST is NULL, then this procedure uses the data from the program
21077 to create all necessary symbol tables, and their linetables.
21078
21079 2. If PST is not NULL, this procedure reads the program to determine
21080 the list of files included by the unit represented by PST, and
21081 builds all the associated partial symbol tables.
21082
21083 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21084 It is used for relative paths in the line table.
21085 NOTE: When processing partial symtabs (pst != NULL),
21086 comp_dir == pst->dirname.
21087
21088 NOTE: It is important that psymtabs have the same file name (via strcmp)
21089 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21090 symtab we don't use it in the name of the psymtabs we create.
21091 E.g. expand_line_sal requires this when finding psymtabs to expand.
21092 A good testcase for this is mb-inline.exp.
21093
21094 LOWPC is the lowest address in CU (or 0 if not known).
21095
21096 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21097 for its PC<->lines mapping information. Otherwise only the filename
21098 table is read in. */
21099
21100 static void
21101 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21102 struct dwarf2_cu *cu, struct partial_symtab *pst,
21103 CORE_ADDR lowpc, int decode_mapping)
21104 {
21105 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21106 const int decode_for_pst_p = (pst != NULL);
21107
21108 if (decode_mapping)
21109 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21110
21111 if (decode_for_pst_p)
21112 {
21113 int file_index;
21114
21115 /* Now that we're done scanning the Line Header Program, we can
21116 create the psymtab of each included file. */
21117 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21118 if (lh->file_names[file_index].included_p == 1)
21119 {
21120 gdb::unique_xmalloc_ptr<char> name_holder;
21121 const char *include_name =
21122 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21123 &name_holder);
21124 if (include_name != NULL)
21125 dwarf2_create_include_psymtab (include_name, pst, objfile);
21126 }
21127 }
21128 else
21129 {
21130 /* Make sure a symtab is created for every file, even files
21131 which contain only variables (i.e. no code with associated
21132 line numbers). */
21133 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21134 int i;
21135
21136 for (i = 0; i < lh->file_names.size (); i++)
21137 {
21138 file_entry &fe = lh->file_names[i];
21139
21140 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21141
21142 if (cu->builder->get_current_subfile ()->symtab == NULL)
21143 {
21144 cu->builder->get_current_subfile ()->symtab
21145 = allocate_symtab (cust,
21146 cu->builder->get_current_subfile ()->name);
21147 }
21148 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21149 }
21150 }
21151 }
21152
21153 /* Start a subfile for DWARF. FILENAME is the name of the file and
21154 DIRNAME the name of the source directory which contains FILENAME
21155 or NULL if not known.
21156 This routine tries to keep line numbers from identical absolute and
21157 relative file names in a common subfile.
21158
21159 Using the `list' example from the GDB testsuite, which resides in
21160 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21161 of /srcdir/list0.c yields the following debugging information for list0.c:
21162
21163 DW_AT_name: /srcdir/list0.c
21164 DW_AT_comp_dir: /compdir
21165 files.files[0].name: list0.h
21166 files.files[0].dir: /srcdir
21167 files.files[1].name: list0.c
21168 files.files[1].dir: /srcdir
21169
21170 The line number information for list0.c has to end up in a single
21171 subfile, so that `break /srcdir/list0.c:1' works as expected.
21172 start_subfile will ensure that this happens provided that we pass the
21173 concatenation of files.files[1].dir and files.files[1].name as the
21174 subfile's name. */
21175
21176 static void
21177 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21178 const char *dirname)
21179 {
21180 char *copy = NULL;
21181
21182 /* In order not to lose the line information directory,
21183 we concatenate it to the filename when it makes sense.
21184 Note that the Dwarf3 standard says (speaking of filenames in line
21185 information): ``The directory index is ignored for file names
21186 that represent full path names''. Thus ignoring dirname in the
21187 `else' branch below isn't an issue. */
21188
21189 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21190 {
21191 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21192 filename = copy;
21193 }
21194
21195 cu->builder->start_subfile (filename);
21196
21197 if (copy != NULL)
21198 xfree (copy);
21199 }
21200
21201 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21202 buildsym_compunit constructor. */
21203
21204 static struct compunit_symtab *
21205 dwarf2_start_symtab (struct dwarf2_cu *cu,
21206 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21207 {
21208 gdb_assert (cu->builder == nullptr);
21209
21210 cu->builder.reset (new struct buildsym_compunit
21211 (cu->per_cu->dwarf2_per_objfile->objfile,
21212 name, comp_dir, cu->language, low_pc));
21213
21214 cu->list_in_scope = cu->builder->get_file_symbols ();
21215
21216 cu->builder->record_debugformat ("DWARF 2");
21217 cu->builder->record_producer (cu->producer);
21218
21219 cu->processing_has_namespace_info = 0;
21220
21221 return cu->builder->get_compunit_symtab ();
21222 }
21223
21224 static void
21225 var_decode_location (struct attribute *attr, struct symbol *sym,
21226 struct dwarf2_cu *cu)
21227 {
21228 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21229 struct comp_unit_head *cu_header = &cu->header;
21230
21231 /* NOTE drow/2003-01-30: There used to be a comment and some special
21232 code here to turn a symbol with DW_AT_external and a
21233 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21234 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21235 with some versions of binutils) where shared libraries could have
21236 relocations against symbols in their debug information - the
21237 minimal symbol would have the right address, but the debug info
21238 would not. It's no longer necessary, because we will explicitly
21239 apply relocations when we read in the debug information now. */
21240
21241 /* A DW_AT_location attribute with no contents indicates that a
21242 variable has been optimized away. */
21243 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21244 {
21245 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21246 return;
21247 }
21248
21249 /* Handle one degenerate form of location expression specially, to
21250 preserve GDB's previous behavior when section offsets are
21251 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21252 then mark this symbol as LOC_STATIC. */
21253
21254 if (attr_form_is_block (attr)
21255 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21256 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21257 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21258 && (DW_BLOCK (attr)->size
21259 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21260 {
21261 unsigned int dummy;
21262
21263 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21264 SYMBOL_VALUE_ADDRESS (sym) =
21265 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21266 else
21267 SYMBOL_VALUE_ADDRESS (sym) =
21268 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21269 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21270 fixup_symbol_section (sym, objfile);
21271 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21272 SYMBOL_SECTION (sym));
21273 return;
21274 }
21275
21276 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21277 expression evaluator, and use LOC_COMPUTED only when necessary
21278 (i.e. when the value of a register or memory location is
21279 referenced, or a thread-local block, etc.). Then again, it might
21280 not be worthwhile. I'm assuming that it isn't unless performance
21281 or memory numbers show me otherwise. */
21282
21283 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21284
21285 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21286 cu->has_loclist = 1;
21287 }
21288
21289 /* Given a pointer to a DWARF information entry, figure out if we need
21290 to make a symbol table entry for it, and if so, create a new entry
21291 and return a pointer to it.
21292 If TYPE is NULL, determine symbol type from the die, otherwise
21293 used the passed type.
21294 If SPACE is not NULL, use it to hold the new symbol. If it is
21295 NULL, allocate a new symbol on the objfile's obstack. */
21296
21297 static struct symbol *
21298 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21299 struct symbol *space)
21300 {
21301 struct dwarf2_per_objfile *dwarf2_per_objfile
21302 = cu->per_cu->dwarf2_per_objfile;
21303 struct objfile *objfile = dwarf2_per_objfile->objfile;
21304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21305 struct symbol *sym = NULL;
21306 const char *name;
21307 struct attribute *attr = NULL;
21308 struct attribute *attr2 = NULL;
21309 CORE_ADDR baseaddr;
21310 struct pending **list_to_add = NULL;
21311
21312 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21313
21314 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21315
21316 name = dwarf2_name (die, cu);
21317 if (name)
21318 {
21319 const char *linkagename;
21320 int suppress_add = 0;
21321
21322 if (space)
21323 sym = space;
21324 else
21325 sym = allocate_symbol (objfile);
21326 OBJSTAT (objfile, n_syms++);
21327
21328 /* Cache this symbol's name and the name's demangled form (if any). */
21329 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21330 linkagename = dwarf2_physname (name, die, cu);
21331 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21332
21333 /* Fortran does not have mangling standard and the mangling does differ
21334 between gfortran, iFort etc. */
21335 if (cu->language == language_fortran
21336 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21337 symbol_set_demangled_name (&(sym->ginfo),
21338 dwarf2_full_name (name, die, cu),
21339 NULL);
21340
21341 /* Default assumptions.
21342 Use the passed type or decode it from the die. */
21343 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21344 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21345 if (type != NULL)
21346 SYMBOL_TYPE (sym) = type;
21347 else
21348 SYMBOL_TYPE (sym) = die_type (die, cu);
21349 attr = dwarf2_attr (die,
21350 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21351 cu);
21352 if (attr)
21353 {
21354 SYMBOL_LINE (sym) = DW_UNSND (attr);
21355 }
21356
21357 attr = dwarf2_attr (die,
21358 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21359 cu);
21360 if (attr)
21361 {
21362 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21363 struct file_entry *fe;
21364
21365 if (cu->line_header != NULL)
21366 fe = cu->line_header->file_name_at (file_index);
21367 else
21368 fe = NULL;
21369
21370 if (fe == NULL)
21371 complaint (_("file index out of range"));
21372 else
21373 symbol_set_symtab (sym, fe->symtab);
21374 }
21375
21376 switch (die->tag)
21377 {
21378 case DW_TAG_label:
21379 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21380 if (attr)
21381 {
21382 CORE_ADDR addr;
21383
21384 addr = attr_value_as_address (attr);
21385 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21386 SYMBOL_VALUE_ADDRESS (sym) = addr;
21387 }
21388 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21389 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21390 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21391 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21392 break;
21393 case DW_TAG_subprogram:
21394 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21395 finish_block. */
21396 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21397 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21398 if ((attr2 && (DW_UNSND (attr2) != 0))
21399 || cu->language == language_ada)
21400 {
21401 /* Subprograms marked external are stored as a global symbol.
21402 Ada subprograms, whether marked external or not, are always
21403 stored as a global symbol, because we want to be able to
21404 access them globally. For instance, we want to be able
21405 to break on a nested subprogram without having to
21406 specify the context. */
21407 list_to_add = cu->builder->get_global_symbols ();
21408 }
21409 else
21410 {
21411 list_to_add = cu->list_in_scope;
21412 }
21413 break;
21414 case DW_TAG_inlined_subroutine:
21415 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21416 finish_block. */
21417 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21418 SYMBOL_INLINED (sym) = 1;
21419 list_to_add = cu->list_in_scope;
21420 break;
21421 case DW_TAG_template_value_param:
21422 suppress_add = 1;
21423 /* Fall through. */
21424 case DW_TAG_constant:
21425 case DW_TAG_variable:
21426 case DW_TAG_member:
21427 /* Compilation with minimal debug info may result in
21428 variables with missing type entries. Change the
21429 misleading `void' type to something sensible. */
21430 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21431 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21432
21433 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21434 /* In the case of DW_TAG_member, we should only be called for
21435 static const members. */
21436 if (die->tag == DW_TAG_member)
21437 {
21438 /* dwarf2_add_field uses die_is_declaration,
21439 so we do the same. */
21440 gdb_assert (die_is_declaration (die, cu));
21441 gdb_assert (attr);
21442 }
21443 if (attr)
21444 {
21445 dwarf2_const_value (attr, sym, cu);
21446 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21447 if (!suppress_add)
21448 {
21449 if (attr2 && (DW_UNSND (attr2) != 0))
21450 list_to_add = cu->builder->get_global_symbols ();
21451 else
21452 list_to_add = cu->list_in_scope;
21453 }
21454 break;
21455 }
21456 attr = dwarf2_attr (die, DW_AT_location, cu);
21457 if (attr)
21458 {
21459 var_decode_location (attr, sym, cu);
21460 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21461
21462 /* Fortran explicitly imports any global symbols to the local
21463 scope by DW_TAG_common_block. */
21464 if (cu->language == language_fortran && die->parent
21465 && die->parent->tag == DW_TAG_common_block)
21466 attr2 = NULL;
21467
21468 if (SYMBOL_CLASS (sym) == LOC_STATIC
21469 && SYMBOL_VALUE_ADDRESS (sym) == 0
21470 && !dwarf2_per_objfile->has_section_at_zero)
21471 {
21472 /* When a static variable is eliminated by the linker,
21473 the corresponding debug information is not stripped
21474 out, but the variable address is set to null;
21475 do not add such variables into symbol table. */
21476 }
21477 else if (attr2 && (DW_UNSND (attr2) != 0))
21478 {
21479 /* Workaround gfortran PR debug/40040 - it uses
21480 DW_AT_location for variables in -fPIC libraries which may
21481 get overriden by other libraries/executable and get
21482 a different address. Resolve it by the minimal symbol
21483 which may come from inferior's executable using copy
21484 relocation. Make this workaround only for gfortran as for
21485 other compilers GDB cannot guess the minimal symbol
21486 Fortran mangling kind. */
21487 if (cu->language == language_fortran && die->parent
21488 && die->parent->tag == DW_TAG_module
21489 && cu->producer
21490 && startswith (cu->producer, "GNU Fortran"))
21491 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21492
21493 /* A variable with DW_AT_external is never static,
21494 but it may be block-scoped. */
21495 list_to_add
21496 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21497 ? cu->builder->get_global_symbols ()
21498 : cu->list_in_scope);
21499 }
21500 else
21501 list_to_add = cu->list_in_scope;
21502 }
21503 else
21504 {
21505 /* We do not know the address of this symbol.
21506 If it is an external symbol and we have type information
21507 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21508 The address of the variable will then be determined from
21509 the minimal symbol table whenever the variable is
21510 referenced. */
21511 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21512
21513 /* Fortran explicitly imports any global symbols to the local
21514 scope by DW_TAG_common_block. */
21515 if (cu->language == language_fortran && die->parent
21516 && die->parent->tag == DW_TAG_common_block)
21517 {
21518 /* SYMBOL_CLASS doesn't matter here because
21519 read_common_block is going to reset it. */
21520 if (!suppress_add)
21521 list_to_add = cu->list_in_scope;
21522 }
21523 else if (attr2 && (DW_UNSND (attr2) != 0)
21524 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21525 {
21526 /* A variable with DW_AT_external is never static, but it
21527 may be block-scoped. */
21528 list_to_add
21529 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21530 ? cu->builder->get_global_symbols ()
21531 : cu->list_in_scope);
21532
21533 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21534 }
21535 else if (!die_is_declaration (die, cu))
21536 {
21537 /* Use the default LOC_OPTIMIZED_OUT class. */
21538 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21539 if (!suppress_add)
21540 list_to_add = cu->list_in_scope;
21541 }
21542 }
21543 break;
21544 case DW_TAG_formal_parameter:
21545 {
21546 /* If we are inside a function, mark this as an argument. If
21547 not, we might be looking at an argument to an inlined function
21548 when we do not have enough information to show inlined frames;
21549 pretend it's a local variable in that case so that the user can
21550 still see it. */
21551 struct context_stack *curr
21552 = cu->builder->get_current_context_stack ();
21553 if (curr != nullptr && curr->name != nullptr)
21554 SYMBOL_IS_ARGUMENT (sym) = 1;
21555 attr = dwarf2_attr (die, DW_AT_location, cu);
21556 if (attr)
21557 {
21558 var_decode_location (attr, sym, cu);
21559 }
21560 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21561 if (attr)
21562 {
21563 dwarf2_const_value (attr, sym, cu);
21564 }
21565
21566 list_to_add = cu->list_in_scope;
21567 }
21568 break;
21569 case DW_TAG_unspecified_parameters:
21570 /* From varargs functions; gdb doesn't seem to have any
21571 interest in this information, so just ignore it for now.
21572 (FIXME?) */
21573 break;
21574 case DW_TAG_template_type_param:
21575 suppress_add = 1;
21576 /* Fall through. */
21577 case DW_TAG_class_type:
21578 case DW_TAG_interface_type:
21579 case DW_TAG_structure_type:
21580 case DW_TAG_union_type:
21581 case DW_TAG_set_type:
21582 case DW_TAG_enumeration_type:
21583 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21584 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21585
21586 {
21587 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21588 really ever be static objects: otherwise, if you try
21589 to, say, break of a class's method and you're in a file
21590 which doesn't mention that class, it won't work unless
21591 the check for all static symbols in lookup_symbol_aux
21592 saves you. See the OtherFileClass tests in
21593 gdb.c++/namespace.exp. */
21594
21595 if (!suppress_add)
21596 {
21597 list_to_add
21598 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21599 && cu->language == language_cplus
21600 ? cu->builder->get_global_symbols ()
21601 : cu->list_in_scope);
21602
21603 /* The semantics of C++ state that "struct foo {
21604 ... }" also defines a typedef for "foo". */
21605 if (cu->language == language_cplus
21606 || cu->language == language_ada
21607 || cu->language == language_d
21608 || cu->language == language_rust)
21609 {
21610 /* The symbol's name is already allocated along
21611 with this objfile, so we don't need to
21612 duplicate it for the type. */
21613 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21614 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21615 }
21616 }
21617 }
21618 break;
21619 case DW_TAG_typedef:
21620 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21621 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21622 list_to_add = cu->list_in_scope;
21623 break;
21624 case DW_TAG_base_type:
21625 case DW_TAG_subrange_type:
21626 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21627 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21628 list_to_add = cu->list_in_scope;
21629 break;
21630 case DW_TAG_enumerator:
21631 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21632 if (attr)
21633 {
21634 dwarf2_const_value (attr, sym, cu);
21635 }
21636 {
21637 /* NOTE: carlton/2003-11-10: See comment above in the
21638 DW_TAG_class_type, etc. block. */
21639
21640 list_to_add
21641 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21642 && cu->language == language_cplus
21643 ? cu->builder->get_global_symbols ()
21644 : cu->list_in_scope);
21645 }
21646 break;
21647 case DW_TAG_imported_declaration:
21648 case DW_TAG_namespace:
21649 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21650 list_to_add = cu->builder->get_global_symbols ();
21651 break;
21652 case DW_TAG_module:
21653 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21654 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21655 list_to_add = cu->builder->get_global_symbols ();
21656 break;
21657 case DW_TAG_common_block:
21658 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21659 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21660 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21661 break;
21662 default:
21663 /* Not a tag we recognize. Hopefully we aren't processing
21664 trash data, but since we must specifically ignore things
21665 we don't recognize, there is nothing else we should do at
21666 this point. */
21667 complaint (_("unsupported tag: '%s'"),
21668 dwarf_tag_name (die->tag));
21669 break;
21670 }
21671
21672 if (suppress_add)
21673 {
21674 sym->hash_next = objfile->template_symbols;
21675 objfile->template_symbols = sym;
21676 list_to_add = NULL;
21677 }
21678
21679 if (list_to_add != NULL)
21680 dw2_add_symbol_to_list (sym, list_to_add);
21681
21682 /* For the benefit of old versions of GCC, check for anonymous
21683 namespaces based on the demangled name. */
21684 if (!cu->processing_has_namespace_info
21685 && cu->language == language_cplus)
21686 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21687 }
21688 return (sym);
21689 }
21690
21691 /* Given an attr with a DW_FORM_dataN value in host byte order,
21692 zero-extend it as appropriate for the symbol's type. The DWARF
21693 standard (v4) is not entirely clear about the meaning of using
21694 DW_FORM_dataN for a constant with a signed type, where the type is
21695 wider than the data. The conclusion of a discussion on the DWARF
21696 list was that this is unspecified. We choose to always zero-extend
21697 because that is the interpretation long in use by GCC. */
21698
21699 static gdb_byte *
21700 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21701 struct dwarf2_cu *cu, LONGEST *value, int bits)
21702 {
21703 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21704 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21705 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21706 LONGEST l = DW_UNSND (attr);
21707
21708 if (bits < sizeof (*value) * 8)
21709 {
21710 l &= ((LONGEST) 1 << bits) - 1;
21711 *value = l;
21712 }
21713 else if (bits == sizeof (*value) * 8)
21714 *value = l;
21715 else
21716 {
21717 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21718 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21719 return bytes;
21720 }
21721
21722 return NULL;
21723 }
21724
21725 /* Read a constant value from an attribute. Either set *VALUE, or if
21726 the value does not fit in *VALUE, set *BYTES - either already
21727 allocated on the objfile obstack, or newly allocated on OBSTACK,
21728 or, set *BATON, if we translated the constant to a location
21729 expression. */
21730
21731 static void
21732 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21733 const char *name, struct obstack *obstack,
21734 struct dwarf2_cu *cu,
21735 LONGEST *value, const gdb_byte **bytes,
21736 struct dwarf2_locexpr_baton **baton)
21737 {
21738 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21739 struct comp_unit_head *cu_header = &cu->header;
21740 struct dwarf_block *blk;
21741 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21742 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21743
21744 *value = 0;
21745 *bytes = NULL;
21746 *baton = NULL;
21747
21748 switch (attr->form)
21749 {
21750 case DW_FORM_addr:
21751 case DW_FORM_GNU_addr_index:
21752 {
21753 gdb_byte *data;
21754
21755 if (TYPE_LENGTH (type) != cu_header->addr_size)
21756 dwarf2_const_value_length_mismatch_complaint (name,
21757 cu_header->addr_size,
21758 TYPE_LENGTH (type));
21759 /* Symbols of this form are reasonably rare, so we just
21760 piggyback on the existing location code rather than writing
21761 a new implementation of symbol_computed_ops. */
21762 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21763 (*baton)->per_cu = cu->per_cu;
21764 gdb_assert ((*baton)->per_cu);
21765
21766 (*baton)->size = 2 + cu_header->addr_size;
21767 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21768 (*baton)->data = data;
21769
21770 data[0] = DW_OP_addr;
21771 store_unsigned_integer (&data[1], cu_header->addr_size,
21772 byte_order, DW_ADDR (attr));
21773 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21774 }
21775 break;
21776 case DW_FORM_string:
21777 case DW_FORM_strp:
21778 case DW_FORM_GNU_str_index:
21779 case DW_FORM_GNU_strp_alt:
21780 /* DW_STRING is already allocated on the objfile obstack, point
21781 directly to it. */
21782 *bytes = (const gdb_byte *) DW_STRING (attr);
21783 break;
21784 case DW_FORM_block1:
21785 case DW_FORM_block2:
21786 case DW_FORM_block4:
21787 case DW_FORM_block:
21788 case DW_FORM_exprloc:
21789 case DW_FORM_data16:
21790 blk = DW_BLOCK (attr);
21791 if (TYPE_LENGTH (type) != blk->size)
21792 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21793 TYPE_LENGTH (type));
21794 *bytes = blk->data;
21795 break;
21796
21797 /* The DW_AT_const_value attributes are supposed to carry the
21798 symbol's value "represented as it would be on the target
21799 architecture." By the time we get here, it's already been
21800 converted to host endianness, so we just need to sign- or
21801 zero-extend it as appropriate. */
21802 case DW_FORM_data1:
21803 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21804 break;
21805 case DW_FORM_data2:
21806 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21807 break;
21808 case DW_FORM_data4:
21809 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21810 break;
21811 case DW_FORM_data8:
21812 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21813 break;
21814
21815 case DW_FORM_sdata:
21816 case DW_FORM_implicit_const:
21817 *value = DW_SND (attr);
21818 break;
21819
21820 case DW_FORM_udata:
21821 *value = DW_UNSND (attr);
21822 break;
21823
21824 default:
21825 complaint (_("unsupported const value attribute form: '%s'"),
21826 dwarf_form_name (attr->form));
21827 *value = 0;
21828 break;
21829 }
21830 }
21831
21832
21833 /* Copy constant value from an attribute to a symbol. */
21834
21835 static void
21836 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21837 struct dwarf2_cu *cu)
21838 {
21839 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21840 LONGEST value;
21841 const gdb_byte *bytes;
21842 struct dwarf2_locexpr_baton *baton;
21843
21844 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21845 SYMBOL_PRINT_NAME (sym),
21846 &objfile->objfile_obstack, cu,
21847 &value, &bytes, &baton);
21848
21849 if (baton != NULL)
21850 {
21851 SYMBOL_LOCATION_BATON (sym) = baton;
21852 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21853 }
21854 else if (bytes != NULL)
21855 {
21856 SYMBOL_VALUE_BYTES (sym) = bytes;
21857 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21858 }
21859 else
21860 {
21861 SYMBOL_VALUE (sym) = value;
21862 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21863 }
21864 }
21865
21866 /* Return the type of the die in question using its DW_AT_type attribute. */
21867
21868 static struct type *
21869 die_type (struct die_info *die, struct dwarf2_cu *cu)
21870 {
21871 struct attribute *type_attr;
21872
21873 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21874 if (!type_attr)
21875 {
21876 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21877 /* A missing DW_AT_type represents a void type. */
21878 return objfile_type (objfile)->builtin_void;
21879 }
21880
21881 return lookup_die_type (die, type_attr, cu);
21882 }
21883
21884 /* True iff CU's producer generates GNAT Ada auxiliary information
21885 that allows to find parallel types through that information instead
21886 of having to do expensive parallel lookups by type name. */
21887
21888 static int
21889 need_gnat_info (struct dwarf2_cu *cu)
21890 {
21891 /* Assume that the Ada compiler was GNAT, which always produces
21892 the auxiliary information. */
21893 return (cu->language == language_ada);
21894 }
21895
21896 /* Return the auxiliary type of the die in question using its
21897 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21898 attribute is not present. */
21899
21900 static struct type *
21901 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21902 {
21903 struct attribute *type_attr;
21904
21905 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21906 if (!type_attr)
21907 return NULL;
21908
21909 return lookup_die_type (die, type_attr, cu);
21910 }
21911
21912 /* If DIE has a descriptive_type attribute, then set the TYPE's
21913 descriptive type accordingly. */
21914
21915 static void
21916 set_descriptive_type (struct type *type, struct die_info *die,
21917 struct dwarf2_cu *cu)
21918 {
21919 struct type *descriptive_type = die_descriptive_type (die, cu);
21920
21921 if (descriptive_type)
21922 {
21923 ALLOCATE_GNAT_AUX_TYPE (type);
21924 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21925 }
21926 }
21927
21928 /* Return the containing type of the die in question using its
21929 DW_AT_containing_type attribute. */
21930
21931 static struct type *
21932 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21933 {
21934 struct attribute *type_attr;
21935 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21936
21937 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21938 if (!type_attr)
21939 error (_("Dwarf Error: Problem turning containing type into gdb type "
21940 "[in module %s]"), objfile_name (objfile));
21941
21942 return lookup_die_type (die, type_attr, cu);
21943 }
21944
21945 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21946
21947 static struct type *
21948 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21949 {
21950 struct dwarf2_per_objfile *dwarf2_per_objfile
21951 = cu->per_cu->dwarf2_per_objfile;
21952 struct objfile *objfile = dwarf2_per_objfile->objfile;
21953 char *saved;
21954
21955 std::string message
21956 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21957 objfile_name (objfile),
21958 sect_offset_str (cu->header.sect_off),
21959 sect_offset_str (die->sect_off));
21960 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
21961 message.c_str (), message.length ());
21962
21963 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21964 }
21965
21966 /* Look up the type of DIE in CU using its type attribute ATTR.
21967 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21968 DW_AT_containing_type.
21969 If there is no type substitute an error marker. */
21970
21971 static struct type *
21972 lookup_die_type (struct die_info *die, const struct attribute *attr,
21973 struct dwarf2_cu *cu)
21974 {
21975 struct dwarf2_per_objfile *dwarf2_per_objfile
21976 = cu->per_cu->dwarf2_per_objfile;
21977 struct objfile *objfile = dwarf2_per_objfile->objfile;
21978 struct type *this_type;
21979
21980 gdb_assert (attr->name == DW_AT_type
21981 || attr->name == DW_AT_GNAT_descriptive_type
21982 || attr->name == DW_AT_containing_type);
21983
21984 /* First see if we have it cached. */
21985
21986 if (attr->form == DW_FORM_GNU_ref_alt)
21987 {
21988 struct dwarf2_per_cu_data *per_cu;
21989 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21990
21991 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21992 dwarf2_per_objfile);
21993 this_type = get_die_type_at_offset (sect_off, per_cu);
21994 }
21995 else if (attr_form_is_ref (attr))
21996 {
21997 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21998
21999 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22000 }
22001 else if (attr->form == DW_FORM_ref_sig8)
22002 {
22003 ULONGEST signature = DW_SIGNATURE (attr);
22004
22005 return get_signatured_type (die, signature, cu);
22006 }
22007 else
22008 {
22009 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22010 " at %s [in module %s]"),
22011 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22012 objfile_name (objfile));
22013 return build_error_marker_type (cu, die);
22014 }
22015
22016 /* If not cached we need to read it in. */
22017
22018 if (this_type == NULL)
22019 {
22020 struct die_info *type_die = NULL;
22021 struct dwarf2_cu *type_cu = cu;
22022
22023 if (attr_form_is_ref (attr))
22024 type_die = follow_die_ref (die, attr, &type_cu);
22025 if (type_die == NULL)
22026 return build_error_marker_type (cu, die);
22027 /* If we find the type now, it's probably because the type came
22028 from an inter-CU reference and the type's CU got expanded before
22029 ours. */
22030 this_type = read_type_die (type_die, type_cu);
22031 }
22032
22033 /* If we still don't have a type use an error marker. */
22034
22035 if (this_type == NULL)
22036 return build_error_marker_type (cu, die);
22037
22038 return this_type;
22039 }
22040
22041 /* Return the type in DIE, CU.
22042 Returns NULL for invalid types.
22043
22044 This first does a lookup in die_type_hash,
22045 and only reads the die in if necessary.
22046
22047 NOTE: This can be called when reading in partial or full symbols. */
22048
22049 static struct type *
22050 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22051 {
22052 struct type *this_type;
22053
22054 this_type = get_die_type (die, cu);
22055 if (this_type)
22056 return this_type;
22057
22058 return read_type_die_1 (die, cu);
22059 }
22060
22061 /* Read the type in DIE, CU.
22062 Returns NULL for invalid types. */
22063
22064 static struct type *
22065 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22066 {
22067 struct type *this_type = NULL;
22068
22069 switch (die->tag)
22070 {
22071 case DW_TAG_class_type:
22072 case DW_TAG_interface_type:
22073 case DW_TAG_structure_type:
22074 case DW_TAG_union_type:
22075 this_type = read_structure_type (die, cu);
22076 break;
22077 case DW_TAG_enumeration_type:
22078 this_type = read_enumeration_type (die, cu);
22079 break;
22080 case DW_TAG_subprogram:
22081 case DW_TAG_subroutine_type:
22082 case DW_TAG_inlined_subroutine:
22083 this_type = read_subroutine_type (die, cu);
22084 break;
22085 case DW_TAG_array_type:
22086 this_type = read_array_type (die, cu);
22087 break;
22088 case DW_TAG_set_type:
22089 this_type = read_set_type (die, cu);
22090 break;
22091 case DW_TAG_pointer_type:
22092 this_type = read_tag_pointer_type (die, cu);
22093 break;
22094 case DW_TAG_ptr_to_member_type:
22095 this_type = read_tag_ptr_to_member_type (die, cu);
22096 break;
22097 case DW_TAG_reference_type:
22098 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22099 break;
22100 case DW_TAG_rvalue_reference_type:
22101 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22102 break;
22103 case DW_TAG_const_type:
22104 this_type = read_tag_const_type (die, cu);
22105 break;
22106 case DW_TAG_volatile_type:
22107 this_type = read_tag_volatile_type (die, cu);
22108 break;
22109 case DW_TAG_restrict_type:
22110 this_type = read_tag_restrict_type (die, cu);
22111 break;
22112 case DW_TAG_string_type:
22113 this_type = read_tag_string_type (die, cu);
22114 break;
22115 case DW_TAG_typedef:
22116 this_type = read_typedef (die, cu);
22117 break;
22118 case DW_TAG_subrange_type:
22119 this_type = read_subrange_type (die, cu);
22120 break;
22121 case DW_TAG_base_type:
22122 this_type = read_base_type (die, cu);
22123 break;
22124 case DW_TAG_unspecified_type:
22125 this_type = read_unspecified_type (die, cu);
22126 break;
22127 case DW_TAG_namespace:
22128 this_type = read_namespace_type (die, cu);
22129 break;
22130 case DW_TAG_module:
22131 this_type = read_module_type (die, cu);
22132 break;
22133 case DW_TAG_atomic_type:
22134 this_type = read_tag_atomic_type (die, cu);
22135 break;
22136 default:
22137 complaint (_("unexpected tag in read_type_die: '%s'"),
22138 dwarf_tag_name (die->tag));
22139 break;
22140 }
22141
22142 return this_type;
22143 }
22144
22145 /* See if we can figure out if the class lives in a namespace. We do
22146 this by looking for a member function; its demangled name will
22147 contain namespace info, if there is any.
22148 Return the computed name or NULL.
22149 Space for the result is allocated on the objfile's obstack.
22150 This is the full-die version of guess_partial_die_structure_name.
22151 In this case we know DIE has no useful parent. */
22152
22153 static char *
22154 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22155 {
22156 struct die_info *spec_die;
22157 struct dwarf2_cu *spec_cu;
22158 struct die_info *child;
22159 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22160
22161 spec_cu = cu;
22162 spec_die = die_specification (die, &spec_cu);
22163 if (spec_die != NULL)
22164 {
22165 die = spec_die;
22166 cu = spec_cu;
22167 }
22168
22169 for (child = die->child;
22170 child != NULL;
22171 child = child->sibling)
22172 {
22173 if (child->tag == DW_TAG_subprogram)
22174 {
22175 const char *linkage_name = dw2_linkage_name (child, cu);
22176
22177 if (linkage_name != NULL)
22178 {
22179 char *actual_name
22180 = language_class_name_from_physname (cu->language_defn,
22181 linkage_name);
22182 char *name = NULL;
22183
22184 if (actual_name != NULL)
22185 {
22186 const char *die_name = dwarf2_name (die, cu);
22187
22188 if (die_name != NULL
22189 && strcmp (die_name, actual_name) != 0)
22190 {
22191 /* Strip off the class name from the full name.
22192 We want the prefix. */
22193 int die_name_len = strlen (die_name);
22194 int actual_name_len = strlen (actual_name);
22195
22196 /* Test for '::' as a sanity check. */
22197 if (actual_name_len > die_name_len + 2
22198 && actual_name[actual_name_len
22199 - die_name_len - 1] == ':')
22200 name = (char *) obstack_copy0 (
22201 &objfile->per_bfd->storage_obstack,
22202 actual_name, actual_name_len - die_name_len - 2);
22203 }
22204 }
22205 xfree (actual_name);
22206 return name;
22207 }
22208 }
22209 }
22210
22211 return NULL;
22212 }
22213
22214 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22215 prefix part in such case. See
22216 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22217
22218 static const char *
22219 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22220 {
22221 struct attribute *attr;
22222 const char *base;
22223
22224 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22225 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22226 return NULL;
22227
22228 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22229 return NULL;
22230
22231 attr = dw2_linkage_name_attr (die, cu);
22232 if (attr == NULL || DW_STRING (attr) == NULL)
22233 return NULL;
22234
22235 /* dwarf2_name had to be already called. */
22236 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22237
22238 /* Strip the base name, keep any leading namespaces/classes. */
22239 base = strrchr (DW_STRING (attr), ':');
22240 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22241 return "";
22242
22243 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22244 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22245 DW_STRING (attr),
22246 &base[-1] - DW_STRING (attr));
22247 }
22248
22249 /* Return the name of the namespace/class that DIE is defined within,
22250 or "" if we can't tell. The caller should not xfree the result.
22251
22252 For example, if we're within the method foo() in the following
22253 code:
22254
22255 namespace N {
22256 class C {
22257 void foo () {
22258 }
22259 };
22260 }
22261
22262 then determine_prefix on foo's die will return "N::C". */
22263
22264 static const char *
22265 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22266 {
22267 struct dwarf2_per_objfile *dwarf2_per_objfile
22268 = cu->per_cu->dwarf2_per_objfile;
22269 struct die_info *parent, *spec_die;
22270 struct dwarf2_cu *spec_cu;
22271 struct type *parent_type;
22272 const char *retval;
22273
22274 if (cu->language != language_cplus
22275 && cu->language != language_fortran && cu->language != language_d
22276 && cu->language != language_rust)
22277 return "";
22278
22279 retval = anonymous_struct_prefix (die, cu);
22280 if (retval)
22281 return retval;
22282
22283 /* We have to be careful in the presence of DW_AT_specification.
22284 For example, with GCC 3.4, given the code
22285
22286 namespace N {
22287 void foo() {
22288 // Definition of N::foo.
22289 }
22290 }
22291
22292 then we'll have a tree of DIEs like this:
22293
22294 1: DW_TAG_compile_unit
22295 2: DW_TAG_namespace // N
22296 3: DW_TAG_subprogram // declaration of N::foo
22297 4: DW_TAG_subprogram // definition of N::foo
22298 DW_AT_specification // refers to die #3
22299
22300 Thus, when processing die #4, we have to pretend that we're in
22301 the context of its DW_AT_specification, namely the contex of die
22302 #3. */
22303 spec_cu = cu;
22304 spec_die = die_specification (die, &spec_cu);
22305 if (spec_die == NULL)
22306 parent = die->parent;
22307 else
22308 {
22309 parent = spec_die->parent;
22310 cu = spec_cu;
22311 }
22312
22313 if (parent == NULL)
22314 return "";
22315 else if (parent->building_fullname)
22316 {
22317 const char *name;
22318 const char *parent_name;
22319
22320 /* It has been seen on RealView 2.2 built binaries,
22321 DW_TAG_template_type_param types actually _defined_ as
22322 children of the parent class:
22323
22324 enum E {};
22325 template class <class Enum> Class{};
22326 Class<enum E> class_e;
22327
22328 1: DW_TAG_class_type (Class)
22329 2: DW_TAG_enumeration_type (E)
22330 3: DW_TAG_enumerator (enum1:0)
22331 3: DW_TAG_enumerator (enum2:1)
22332 ...
22333 2: DW_TAG_template_type_param
22334 DW_AT_type DW_FORM_ref_udata (E)
22335
22336 Besides being broken debug info, it can put GDB into an
22337 infinite loop. Consider:
22338
22339 When we're building the full name for Class<E>, we'll start
22340 at Class, and go look over its template type parameters,
22341 finding E. We'll then try to build the full name of E, and
22342 reach here. We're now trying to build the full name of E,
22343 and look over the parent DIE for containing scope. In the
22344 broken case, if we followed the parent DIE of E, we'd again
22345 find Class, and once again go look at its template type
22346 arguments, etc., etc. Simply don't consider such parent die
22347 as source-level parent of this die (it can't be, the language
22348 doesn't allow it), and break the loop here. */
22349 name = dwarf2_name (die, cu);
22350 parent_name = dwarf2_name (parent, cu);
22351 complaint (_("template param type '%s' defined within parent '%s'"),
22352 name ? name : "<unknown>",
22353 parent_name ? parent_name : "<unknown>");
22354 return "";
22355 }
22356 else
22357 switch (parent->tag)
22358 {
22359 case DW_TAG_namespace:
22360 parent_type = read_type_die (parent, cu);
22361 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22362 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22363 Work around this problem here. */
22364 if (cu->language == language_cplus
22365 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22366 return "";
22367 /* We give a name to even anonymous namespaces. */
22368 return TYPE_NAME (parent_type);
22369 case DW_TAG_class_type:
22370 case DW_TAG_interface_type:
22371 case DW_TAG_structure_type:
22372 case DW_TAG_union_type:
22373 case DW_TAG_module:
22374 parent_type = read_type_die (parent, cu);
22375 if (TYPE_NAME (parent_type) != NULL)
22376 return TYPE_NAME (parent_type);
22377 else
22378 /* An anonymous structure is only allowed non-static data
22379 members; no typedefs, no member functions, et cetera.
22380 So it does not need a prefix. */
22381 return "";
22382 case DW_TAG_compile_unit:
22383 case DW_TAG_partial_unit:
22384 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22385 if (cu->language == language_cplus
22386 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22387 && die->child != NULL
22388 && (die->tag == DW_TAG_class_type
22389 || die->tag == DW_TAG_structure_type
22390 || die->tag == DW_TAG_union_type))
22391 {
22392 char *name = guess_full_die_structure_name (die, cu);
22393 if (name != NULL)
22394 return name;
22395 }
22396 return "";
22397 case DW_TAG_enumeration_type:
22398 parent_type = read_type_die (parent, cu);
22399 if (TYPE_DECLARED_CLASS (parent_type))
22400 {
22401 if (TYPE_NAME (parent_type) != NULL)
22402 return TYPE_NAME (parent_type);
22403 return "";
22404 }
22405 /* Fall through. */
22406 default:
22407 return determine_prefix (parent, cu);
22408 }
22409 }
22410
22411 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22412 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22413 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22414 an obconcat, otherwise allocate storage for the result. The CU argument is
22415 used to determine the language and hence, the appropriate separator. */
22416
22417 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22418
22419 static char *
22420 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22421 int physname, struct dwarf2_cu *cu)
22422 {
22423 const char *lead = "";
22424 const char *sep;
22425
22426 if (suffix == NULL || suffix[0] == '\0'
22427 || prefix == NULL || prefix[0] == '\0')
22428 sep = "";
22429 else if (cu->language == language_d)
22430 {
22431 /* For D, the 'main' function could be defined in any module, but it
22432 should never be prefixed. */
22433 if (strcmp (suffix, "D main") == 0)
22434 {
22435 prefix = "";
22436 sep = "";
22437 }
22438 else
22439 sep = ".";
22440 }
22441 else if (cu->language == language_fortran && physname)
22442 {
22443 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22444 DW_AT_MIPS_linkage_name is preferred and used instead. */
22445
22446 lead = "__";
22447 sep = "_MOD_";
22448 }
22449 else
22450 sep = "::";
22451
22452 if (prefix == NULL)
22453 prefix = "";
22454 if (suffix == NULL)
22455 suffix = "";
22456
22457 if (obs == NULL)
22458 {
22459 char *retval
22460 = ((char *)
22461 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22462
22463 strcpy (retval, lead);
22464 strcat (retval, prefix);
22465 strcat (retval, sep);
22466 strcat (retval, suffix);
22467 return retval;
22468 }
22469 else
22470 {
22471 /* We have an obstack. */
22472 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22473 }
22474 }
22475
22476 /* Return sibling of die, NULL if no sibling. */
22477
22478 static struct die_info *
22479 sibling_die (struct die_info *die)
22480 {
22481 return die->sibling;
22482 }
22483
22484 /* Get name of a die, return NULL if not found. */
22485
22486 static const char *
22487 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22488 struct obstack *obstack)
22489 {
22490 if (name && cu->language == language_cplus)
22491 {
22492 std::string canon_name = cp_canonicalize_string (name);
22493
22494 if (!canon_name.empty ())
22495 {
22496 if (canon_name != name)
22497 name = (const char *) obstack_copy0 (obstack,
22498 canon_name.c_str (),
22499 canon_name.length ());
22500 }
22501 }
22502
22503 return name;
22504 }
22505
22506 /* Get name of a die, return NULL if not found.
22507 Anonymous namespaces are converted to their magic string. */
22508
22509 static const char *
22510 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22511 {
22512 struct attribute *attr;
22513 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22514
22515 attr = dwarf2_attr (die, DW_AT_name, cu);
22516 if ((!attr || !DW_STRING (attr))
22517 && die->tag != DW_TAG_namespace
22518 && die->tag != DW_TAG_class_type
22519 && die->tag != DW_TAG_interface_type
22520 && die->tag != DW_TAG_structure_type
22521 && die->tag != DW_TAG_union_type)
22522 return NULL;
22523
22524 switch (die->tag)
22525 {
22526 case DW_TAG_compile_unit:
22527 case DW_TAG_partial_unit:
22528 /* Compilation units have a DW_AT_name that is a filename, not
22529 a source language identifier. */
22530 case DW_TAG_enumeration_type:
22531 case DW_TAG_enumerator:
22532 /* These tags always have simple identifiers already; no need
22533 to canonicalize them. */
22534 return DW_STRING (attr);
22535
22536 case DW_TAG_namespace:
22537 if (attr != NULL && DW_STRING (attr) != NULL)
22538 return DW_STRING (attr);
22539 return CP_ANONYMOUS_NAMESPACE_STR;
22540
22541 case DW_TAG_class_type:
22542 case DW_TAG_interface_type:
22543 case DW_TAG_structure_type:
22544 case DW_TAG_union_type:
22545 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22546 structures or unions. These were of the form "._%d" in GCC 4.1,
22547 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22548 and GCC 4.4. We work around this problem by ignoring these. */
22549 if (attr && DW_STRING (attr)
22550 && (startswith (DW_STRING (attr), "._")
22551 || startswith (DW_STRING (attr), "<anonymous")))
22552 return NULL;
22553
22554 /* GCC might emit a nameless typedef that has a linkage name. See
22555 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22556 if (!attr || DW_STRING (attr) == NULL)
22557 {
22558 char *demangled = NULL;
22559
22560 attr = dw2_linkage_name_attr (die, cu);
22561 if (attr == NULL || DW_STRING (attr) == NULL)
22562 return NULL;
22563
22564 /* Avoid demangling DW_STRING (attr) the second time on a second
22565 call for the same DIE. */
22566 if (!DW_STRING_IS_CANONICAL (attr))
22567 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22568
22569 if (demangled)
22570 {
22571 const char *base;
22572
22573 /* FIXME: we already did this for the partial symbol... */
22574 DW_STRING (attr)
22575 = ((const char *)
22576 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22577 demangled, strlen (demangled)));
22578 DW_STRING_IS_CANONICAL (attr) = 1;
22579 xfree (demangled);
22580
22581 /* Strip any leading namespaces/classes, keep only the base name.
22582 DW_AT_name for named DIEs does not contain the prefixes. */
22583 base = strrchr (DW_STRING (attr), ':');
22584 if (base && base > DW_STRING (attr) && base[-1] == ':')
22585 return &base[1];
22586 else
22587 return DW_STRING (attr);
22588 }
22589 }
22590 break;
22591
22592 default:
22593 break;
22594 }
22595
22596 if (!DW_STRING_IS_CANONICAL (attr))
22597 {
22598 DW_STRING (attr)
22599 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22600 &objfile->per_bfd->storage_obstack);
22601 DW_STRING_IS_CANONICAL (attr) = 1;
22602 }
22603 return DW_STRING (attr);
22604 }
22605
22606 /* Return the die that this die in an extension of, or NULL if there
22607 is none. *EXT_CU is the CU containing DIE on input, and the CU
22608 containing the return value on output. */
22609
22610 static struct die_info *
22611 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22612 {
22613 struct attribute *attr;
22614
22615 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22616 if (attr == NULL)
22617 return NULL;
22618
22619 return follow_die_ref (die, attr, ext_cu);
22620 }
22621
22622 /* Convert a DIE tag into its string name. */
22623
22624 static const char *
22625 dwarf_tag_name (unsigned tag)
22626 {
22627 const char *name = get_DW_TAG_name (tag);
22628
22629 if (name == NULL)
22630 return "DW_TAG_<unknown>";
22631
22632 return name;
22633 }
22634
22635 /* Convert a DWARF attribute code into its string name. */
22636
22637 static const char *
22638 dwarf_attr_name (unsigned attr)
22639 {
22640 const char *name;
22641
22642 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22643 if (attr == DW_AT_MIPS_fde)
22644 return "DW_AT_MIPS_fde";
22645 #else
22646 if (attr == DW_AT_HP_block_index)
22647 return "DW_AT_HP_block_index";
22648 #endif
22649
22650 name = get_DW_AT_name (attr);
22651
22652 if (name == NULL)
22653 return "DW_AT_<unknown>";
22654
22655 return name;
22656 }
22657
22658 /* Convert a DWARF value form code into its string name. */
22659
22660 static const char *
22661 dwarf_form_name (unsigned form)
22662 {
22663 const char *name = get_DW_FORM_name (form);
22664
22665 if (name == NULL)
22666 return "DW_FORM_<unknown>";
22667
22668 return name;
22669 }
22670
22671 static const char *
22672 dwarf_bool_name (unsigned mybool)
22673 {
22674 if (mybool)
22675 return "TRUE";
22676 else
22677 return "FALSE";
22678 }
22679
22680 /* Convert a DWARF type code into its string name. */
22681
22682 static const char *
22683 dwarf_type_encoding_name (unsigned enc)
22684 {
22685 const char *name = get_DW_ATE_name (enc);
22686
22687 if (name == NULL)
22688 return "DW_ATE_<unknown>";
22689
22690 return name;
22691 }
22692
22693 static void
22694 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22695 {
22696 unsigned int i;
22697
22698 print_spaces (indent, f);
22699 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22700 dwarf_tag_name (die->tag), die->abbrev,
22701 sect_offset_str (die->sect_off));
22702
22703 if (die->parent != NULL)
22704 {
22705 print_spaces (indent, f);
22706 fprintf_unfiltered (f, " parent at offset: %s\n",
22707 sect_offset_str (die->parent->sect_off));
22708 }
22709
22710 print_spaces (indent, f);
22711 fprintf_unfiltered (f, " has children: %s\n",
22712 dwarf_bool_name (die->child != NULL));
22713
22714 print_spaces (indent, f);
22715 fprintf_unfiltered (f, " attributes:\n");
22716
22717 for (i = 0; i < die->num_attrs; ++i)
22718 {
22719 print_spaces (indent, f);
22720 fprintf_unfiltered (f, " %s (%s) ",
22721 dwarf_attr_name (die->attrs[i].name),
22722 dwarf_form_name (die->attrs[i].form));
22723
22724 switch (die->attrs[i].form)
22725 {
22726 case DW_FORM_addr:
22727 case DW_FORM_GNU_addr_index:
22728 fprintf_unfiltered (f, "address: ");
22729 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22730 break;
22731 case DW_FORM_block2:
22732 case DW_FORM_block4:
22733 case DW_FORM_block:
22734 case DW_FORM_block1:
22735 fprintf_unfiltered (f, "block: size %s",
22736 pulongest (DW_BLOCK (&die->attrs[i])->size));
22737 break;
22738 case DW_FORM_exprloc:
22739 fprintf_unfiltered (f, "expression: size %s",
22740 pulongest (DW_BLOCK (&die->attrs[i])->size));
22741 break;
22742 case DW_FORM_data16:
22743 fprintf_unfiltered (f, "constant of 16 bytes");
22744 break;
22745 case DW_FORM_ref_addr:
22746 fprintf_unfiltered (f, "ref address: ");
22747 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22748 break;
22749 case DW_FORM_GNU_ref_alt:
22750 fprintf_unfiltered (f, "alt ref address: ");
22751 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22752 break;
22753 case DW_FORM_ref1:
22754 case DW_FORM_ref2:
22755 case DW_FORM_ref4:
22756 case DW_FORM_ref8:
22757 case DW_FORM_ref_udata:
22758 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22759 (long) (DW_UNSND (&die->attrs[i])));
22760 break;
22761 case DW_FORM_data1:
22762 case DW_FORM_data2:
22763 case DW_FORM_data4:
22764 case DW_FORM_data8:
22765 case DW_FORM_udata:
22766 case DW_FORM_sdata:
22767 fprintf_unfiltered (f, "constant: %s",
22768 pulongest (DW_UNSND (&die->attrs[i])));
22769 break;
22770 case DW_FORM_sec_offset:
22771 fprintf_unfiltered (f, "section offset: %s",
22772 pulongest (DW_UNSND (&die->attrs[i])));
22773 break;
22774 case DW_FORM_ref_sig8:
22775 fprintf_unfiltered (f, "signature: %s",
22776 hex_string (DW_SIGNATURE (&die->attrs[i])));
22777 break;
22778 case DW_FORM_string:
22779 case DW_FORM_strp:
22780 case DW_FORM_line_strp:
22781 case DW_FORM_GNU_str_index:
22782 case DW_FORM_GNU_strp_alt:
22783 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22784 DW_STRING (&die->attrs[i])
22785 ? DW_STRING (&die->attrs[i]) : "",
22786 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22787 break;
22788 case DW_FORM_flag:
22789 if (DW_UNSND (&die->attrs[i]))
22790 fprintf_unfiltered (f, "flag: TRUE");
22791 else
22792 fprintf_unfiltered (f, "flag: FALSE");
22793 break;
22794 case DW_FORM_flag_present:
22795 fprintf_unfiltered (f, "flag: TRUE");
22796 break;
22797 case DW_FORM_indirect:
22798 /* The reader will have reduced the indirect form to
22799 the "base form" so this form should not occur. */
22800 fprintf_unfiltered (f,
22801 "unexpected attribute form: DW_FORM_indirect");
22802 break;
22803 case DW_FORM_implicit_const:
22804 fprintf_unfiltered (f, "constant: %s",
22805 plongest (DW_SND (&die->attrs[i])));
22806 break;
22807 default:
22808 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22809 die->attrs[i].form);
22810 break;
22811 }
22812 fprintf_unfiltered (f, "\n");
22813 }
22814 }
22815
22816 static void
22817 dump_die_for_error (struct die_info *die)
22818 {
22819 dump_die_shallow (gdb_stderr, 0, die);
22820 }
22821
22822 static void
22823 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22824 {
22825 int indent = level * 4;
22826
22827 gdb_assert (die != NULL);
22828
22829 if (level >= max_level)
22830 return;
22831
22832 dump_die_shallow (f, indent, die);
22833
22834 if (die->child != NULL)
22835 {
22836 print_spaces (indent, f);
22837 fprintf_unfiltered (f, " Children:");
22838 if (level + 1 < max_level)
22839 {
22840 fprintf_unfiltered (f, "\n");
22841 dump_die_1 (f, level + 1, max_level, die->child);
22842 }
22843 else
22844 {
22845 fprintf_unfiltered (f,
22846 " [not printed, max nesting level reached]\n");
22847 }
22848 }
22849
22850 if (die->sibling != NULL && level > 0)
22851 {
22852 dump_die_1 (f, level, max_level, die->sibling);
22853 }
22854 }
22855
22856 /* This is called from the pdie macro in gdbinit.in.
22857 It's not static so gcc will keep a copy callable from gdb. */
22858
22859 void
22860 dump_die (struct die_info *die, int max_level)
22861 {
22862 dump_die_1 (gdb_stdlog, 0, max_level, die);
22863 }
22864
22865 static void
22866 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22867 {
22868 void **slot;
22869
22870 slot = htab_find_slot_with_hash (cu->die_hash, die,
22871 to_underlying (die->sect_off),
22872 INSERT);
22873
22874 *slot = die;
22875 }
22876
22877 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22878 required kind. */
22879
22880 static sect_offset
22881 dwarf2_get_ref_die_offset (const struct attribute *attr)
22882 {
22883 if (attr_form_is_ref (attr))
22884 return (sect_offset) DW_UNSND (attr);
22885
22886 complaint (_("unsupported die ref attribute form: '%s'"),
22887 dwarf_form_name (attr->form));
22888 return {};
22889 }
22890
22891 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22892 * the value held by the attribute is not constant. */
22893
22894 static LONGEST
22895 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22896 {
22897 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22898 return DW_SND (attr);
22899 else if (attr->form == DW_FORM_udata
22900 || attr->form == DW_FORM_data1
22901 || attr->form == DW_FORM_data2
22902 || attr->form == DW_FORM_data4
22903 || attr->form == DW_FORM_data8)
22904 return DW_UNSND (attr);
22905 else
22906 {
22907 /* For DW_FORM_data16 see attr_form_is_constant. */
22908 complaint (_("Attribute value is not a constant (%s)"),
22909 dwarf_form_name (attr->form));
22910 return default_value;
22911 }
22912 }
22913
22914 /* Follow reference or signature attribute ATTR of SRC_DIE.
22915 On entry *REF_CU is the CU of SRC_DIE.
22916 On exit *REF_CU is the CU of the result. */
22917
22918 static struct die_info *
22919 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22920 struct dwarf2_cu **ref_cu)
22921 {
22922 struct die_info *die;
22923
22924 if (attr_form_is_ref (attr))
22925 die = follow_die_ref (src_die, attr, ref_cu);
22926 else if (attr->form == DW_FORM_ref_sig8)
22927 die = follow_die_sig (src_die, attr, ref_cu);
22928 else
22929 {
22930 dump_die_for_error (src_die);
22931 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22932 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22933 }
22934
22935 return die;
22936 }
22937
22938 /* Follow reference OFFSET.
22939 On entry *REF_CU is the CU of the source die referencing OFFSET.
22940 On exit *REF_CU is the CU of the result.
22941 Returns NULL if OFFSET is invalid. */
22942
22943 static struct die_info *
22944 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22945 struct dwarf2_cu **ref_cu)
22946 {
22947 struct die_info temp_die;
22948 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22949 struct dwarf2_per_objfile *dwarf2_per_objfile
22950 = cu->per_cu->dwarf2_per_objfile;
22951
22952 gdb_assert (cu->per_cu != NULL);
22953
22954 target_cu = cu;
22955
22956 if (cu->per_cu->is_debug_types)
22957 {
22958 /* .debug_types CUs cannot reference anything outside their CU.
22959 If they need to, they have to reference a signatured type via
22960 DW_FORM_ref_sig8. */
22961 if (!offset_in_cu_p (&cu->header, sect_off))
22962 return NULL;
22963 }
22964 else if (offset_in_dwz != cu->per_cu->is_dwz
22965 || !offset_in_cu_p (&cu->header, sect_off))
22966 {
22967 struct dwarf2_per_cu_data *per_cu;
22968
22969 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22970 dwarf2_per_objfile);
22971
22972 /* If necessary, add it to the queue and load its DIEs. */
22973 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22974 load_full_comp_unit (per_cu, false, cu->language);
22975
22976 target_cu = per_cu->cu;
22977 }
22978 else if (cu->dies == NULL)
22979 {
22980 /* We're loading full DIEs during partial symbol reading. */
22981 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22982 load_full_comp_unit (cu->per_cu, false, language_minimal);
22983 }
22984
22985 *ref_cu = target_cu;
22986 temp_die.sect_off = sect_off;
22987 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22988 &temp_die,
22989 to_underlying (sect_off));
22990 }
22991
22992 /* Follow reference attribute ATTR of SRC_DIE.
22993 On entry *REF_CU is the CU of SRC_DIE.
22994 On exit *REF_CU is the CU of the result. */
22995
22996 static struct die_info *
22997 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22998 struct dwarf2_cu **ref_cu)
22999 {
23000 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23001 struct dwarf2_cu *cu = *ref_cu;
23002 struct die_info *die;
23003
23004 die = follow_die_offset (sect_off,
23005 (attr->form == DW_FORM_GNU_ref_alt
23006 || cu->per_cu->is_dwz),
23007 ref_cu);
23008 if (!die)
23009 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23010 "at %s [in module %s]"),
23011 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23012 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23013
23014 return die;
23015 }
23016
23017 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23018 Returned value is intended for DW_OP_call*. Returned
23019 dwarf2_locexpr_baton->data has lifetime of
23020 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23021
23022 struct dwarf2_locexpr_baton
23023 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23024 struct dwarf2_per_cu_data *per_cu,
23025 CORE_ADDR (*get_frame_pc) (void *baton),
23026 void *baton, bool resolve_abstract_p)
23027 {
23028 struct dwarf2_cu *cu;
23029 struct die_info *die;
23030 struct attribute *attr;
23031 struct dwarf2_locexpr_baton retval;
23032 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23033 struct objfile *objfile = dwarf2_per_objfile->objfile;
23034
23035 if (per_cu->cu == NULL)
23036 load_cu (per_cu, false);
23037 cu = per_cu->cu;
23038 if (cu == NULL)
23039 {
23040 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23041 Instead just throw an error, not much else we can do. */
23042 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23043 sect_offset_str (sect_off), objfile_name (objfile));
23044 }
23045
23046 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23047 if (!die)
23048 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23049 sect_offset_str (sect_off), objfile_name (objfile));
23050
23051 attr = dwarf2_attr (die, DW_AT_location, cu);
23052 if (!attr && resolve_abstract_p
23053 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23054 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23055 {
23056 CORE_ADDR pc = (*get_frame_pc) (baton);
23057
23058 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23059 {
23060 if (!cand->parent
23061 || cand->parent->tag != DW_TAG_subprogram)
23062 continue;
23063
23064 CORE_ADDR pc_low, pc_high;
23065 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23066 if (pc_low == ((CORE_ADDR) -1)
23067 || !(pc_low <= pc && pc < pc_high))
23068 continue;
23069
23070 die = cand;
23071 attr = dwarf2_attr (die, DW_AT_location, cu);
23072 break;
23073 }
23074 }
23075
23076 if (!attr)
23077 {
23078 /* DWARF: "If there is no such attribute, then there is no effect.".
23079 DATA is ignored if SIZE is 0. */
23080
23081 retval.data = NULL;
23082 retval.size = 0;
23083 }
23084 else if (attr_form_is_section_offset (attr))
23085 {
23086 struct dwarf2_loclist_baton loclist_baton;
23087 CORE_ADDR pc = (*get_frame_pc) (baton);
23088 size_t size;
23089
23090 fill_in_loclist_baton (cu, &loclist_baton, attr);
23091
23092 retval.data = dwarf2_find_location_expression (&loclist_baton,
23093 &size, pc);
23094 retval.size = size;
23095 }
23096 else
23097 {
23098 if (!attr_form_is_block (attr))
23099 error (_("Dwarf Error: DIE at %s referenced in module %s "
23100 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23101 sect_offset_str (sect_off), objfile_name (objfile));
23102
23103 retval.data = DW_BLOCK (attr)->data;
23104 retval.size = DW_BLOCK (attr)->size;
23105 }
23106 retval.per_cu = cu->per_cu;
23107
23108 age_cached_comp_units (dwarf2_per_objfile);
23109
23110 return retval;
23111 }
23112
23113 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23114 offset. */
23115
23116 struct dwarf2_locexpr_baton
23117 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23118 struct dwarf2_per_cu_data *per_cu,
23119 CORE_ADDR (*get_frame_pc) (void *baton),
23120 void *baton)
23121 {
23122 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23123
23124 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23125 }
23126
23127 /* Write a constant of a given type as target-ordered bytes into
23128 OBSTACK. */
23129
23130 static const gdb_byte *
23131 write_constant_as_bytes (struct obstack *obstack,
23132 enum bfd_endian byte_order,
23133 struct type *type,
23134 ULONGEST value,
23135 LONGEST *len)
23136 {
23137 gdb_byte *result;
23138
23139 *len = TYPE_LENGTH (type);
23140 result = (gdb_byte *) obstack_alloc (obstack, *len);
23141 store_unsigned_integer (result, *len, byte_order, value);
23142
23143 return result;
23144 }
23145
23146 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23147 pointer to the constant bytes and set LEN to the length of the
23148 data. If memory is needed, allocate it on OBSTACK. If the DIE
23149 does not have a DW_AT_const_value, return NULL. */
23150
23151 const gdb_byte *
23152 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23153 struct dwarf2_per_cu_data *per_cu,
23154 struct obstack *obstack,
23155 LONGEST *len)
23156 {
23157 struct dwarf2_cu *cu;
23158 struct die_info *die;
23159 struct attribute *attr;
23160 const gdb_byte *result = NULL;
23161 struct type *type;
23162 LONGEST value;
23163 enum bfd_endian byte_order;
23164 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23165
23166 if (per_cu->cu == NULL)
23167 load_cu (per_cu, false);
23168 cu = per_cu->cu;
23169 if (cu == NULL)
23170 {
23171 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23172 Instead just throw an error, not much else we can do. */
23173 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23174 sect_offset_str (sect_off), objfile_name (objfile));
23175 }
23176
23177 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23178 if (!die)
23179 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23180 sect_offset_str (sect_off), objfile_name (objfile));
23181
23182 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23183 if (attr == NULL)
23184 return NULL;
23185
23186 byte_order = (bfd_big_endian (objfile->obfd)
23187 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23188
23189 switch (attr->form)
23190 {
23191 case DW_FORM_addr:
23192 case DW_FORM_GNU_addr_index:
23193 {
23194 gdb_byte *tem;
23195
23196 *len = cu->header.addr_size;
23197 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23198 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23199 result = tem;
23200 }
23201 break;
23202 case DW_FORM_string:
23203 case DW_FORM_strp:
23204 case DW_FORM_GNU_str_index:
23205 case DW_FORM_GNU_strp_alt:
23206 /* DW_STRING is already allocated on the objfile obstack, point
23207 directly to it. */
23208 result = (const gdb_byte *) DW_STRING (attr);
23209 *len = strlen (DW_STRING (attr));
23210 break;
23211 case DW_FORM_block1:
23212 case DW_FORM_block2:
23213 case DW_FORM_block4:
23214 case DW_FORM_block:
23215 case DW_FORM_exprloc:
23216 case DW_FORM_data16:
23217 result = DW_BLOCK (attr)->data;
23218 *len = DW_BLOCK (attr)->size;
23219 break;
23220
23221 /* The DW_AT_const_value attributes are supposed to carry the
23222 symbol's value "represented as it would be on the target
23223 architecture." By the time we get here, it's already been
23224 converted to host endianness, so we just need to sign- or
23225 zero-extend it as appropriate. */
23226 case DW_FORM_data1:
23227 type = die_type (die, cu);
23228 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23229 if (result == NULL)
23230 result = write_constant_as_bytes (obstack, byte_order,
23231 type, value, len);
23232 break;
23233 case DW_FORM_data2:
23234 type = die_type (die, cu);
23235 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23236 if (result == NULL)
23237 result = write_constant_as_bytes (obstack, byte_order,
23238 type, value, len);
23239 break;
23240 case DW_FORM_data4:
23241 type = die_type (die, cu);
23242 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23243 if (result == NULL)
23244 result = write_constant_as_bytes (obstack, byte_order,
23245 type, value, len);
23246 break;
23247 case DW_FORM_data8:
23248 type = die_type (die, cu);
23249 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23250 if (result == NULL)
23251 result = write_constant_as_bytes (obstack, byte_order,
23252 type, value, len);
23253 break;
23254
23255 case DW_FORM_sdata:
23256 case DW_FORM_implicit_const:
23257 type = die_type (die, cu);
23258 result = write_constant_as_bytes (obstack, byte_order,
23259 type, DW_SND (attr), len);
23260 break;
23261
23262 case DW_FORM_udata:
23263 type = die_type (die, cu);
23264 result = write_constant_as_bytes (obstack, byte_order,
23265 type, DW_UNSND (attr), len);
23266 break;
23267
23268 default:
23269 complaint (_("unsupported const value attribute form: '%s'"),
23270 dwarf_form_name (attr->form));
23271 break;
23272 }
23273
23274 return result;
23275 }
23276
23277 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23278 valid type for this die is found. */
23279
23280 struct type *
23281 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23282 struct dwarf2_per_cu_data *per_cu)
23283 {
23284 struct dwarf2_cu *cu;
23285 struct die_info *die;
23286
23287 if (per_cu->cu == NULL)
23288 load_cu (per_cu, false);
23289 cu = per_cu->cu;
23290 if (!cu)
23291 return NULL;
23292
23293 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23294 if (!die)
23295 return NULL;
23296
23297 return die_type (die, cu);
23298 }
23299
23300 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23301 PER_CU. */
23302
23303 struct type *
23304 dwarf2_get_die_type (cu_offset die_offset,
23305 struct dwarf2_per_cu_data *per_cu)
23306 {
23307 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23308 return get_die_type_at_offset (die_offset_sect, per_cu);
23309 }
23310
23311 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23312 On entry *REF_CU is the CU of SRC_DIE.
23313 On exit *REF_CU is the CU of the result.
23314 Returns NULL if the referenced DIE isn't found. */
23315
23316 static struct die_info *
23317 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23318 struct dwarf2_cu **ref_cu)
23319 {
23320 struct die_info temp_die;
23321 struct dwarf2_cu *sig_cu;
23322 struct die_info *die;
23323
23324 /* While it might be nice to assert sig_type->type == NULL here,
23325 we can get here for DW_AT_imported_declaration where we need
23326 the DIE not the type. */
23327
23328 /* If necessary, add it to the queue and load its DIEs. */
23329
23330 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23331 read_signatured_type (sig_type);
23332
23333 sig_cu = sig_type->per_cu.cu;
23334 gdb_assert (sig_cu != NULL);
23335 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23336 temp_die.sect_off = sig_type->type_offset_in_section;
23337 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23338 to_underlying (temp_die.sect_off));
23339 if (die)
23340 {
23341 struct dwarf2_per_objfile *dwarf2_per_objfile
23342 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23343
23344 /* For .gdb_index version 7 keep track of included TUs.
23345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23346 if (dwarf2_per_objfile->index_table != NULL
23347 && dwarf2_per_objfile->index_table->version <= 7)
23348 {
23349 VEC_safe_push (dwarf2_per_cu_ptr,
23350 (*ref_cu)->per_cu->imported_symtabs,
23351 sig_cu->per_cu);
23352 }
23353
23354 *ref_cu = sig_cu;
23355 return die;
23356 }
23357
23358 return NULL;
23359 }
23360
23361 /* Follow signatured type referenced by ATTR in SRC_DIE.
23362 On entry *REF_CU is the CU of SRC_DIE.
23363 On exit *REF_CU is the CU of the result.
23364 The result is the DIE of the type.
23365 If the referenced type cannot be found an error is thrown. */
23366
23367 static struct die_info *
23368 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23369 struct dwarf2_cu **ref_cu)
23370 {
23371 ULONGEST signature = DW_SIGNATURE (attr);
23372 struct signatured_type *sig_type;
23373 struct die_info *die;
23374
23375 gdb_assert (attr->form == DW_FORM_ref_sig8);
23376
23377 sig_type = lookup_signatured_type (*ref_cu, signature);
23378 /* sig_type will be NULL if the signatured type is missing from
23379 the debug info. */
23380 if (sig_type == NULL)
23381 {
23382 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23383 " from DIE at %s [in module %s]"),
23384 hex_string (signature), sect_offset_str (src_die->sect_off),
23385 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23386 }
23387
23388 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23389 if (die == NULL)
23390 {
23391 dump_die_for_error (src_die);
23392 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23393 " from DIE at %s [in module %s]"),
23394 hex_string (signature), sect_offset_str (src_die->sect_off),
23395 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23396 }
23397
23398 return die;
23399 }
23400
23401 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23402 reading in and processing the type unit if necessary. */
23403
23404 static struct type *
23405 get_signatured_type (struct die_info *die, ULONGEST signature,
23406 struct dwarf2_cu *cu)
23407 {
23408 struct dwarf2_per_objfile *dwarf2_per_objfile
23409 = cu->per_cu->dwarf2_per_objfile;
23410 struct signatured_type *sig_type;
23411 struct dwarf2_cu *type_cu;
23412 struct die_info *type_die;
23413 struct type *type;
23414
23415 sig_type = lookup_signatured_type (cu, signature);
23416 /* sig_type will be NULL if the signatured type is missing from
23417 the debug info. */
23418 if (sig_type == NULL)
23419 {
23420 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23421 " from DIE at %s [in module %s]"),
23422 hex_string (signature), sect_offset_str (die->sect_off),
23423 objfile_name (dwarf2_per_objfile->objfile));
23424 return build_error_marker_type (cu, die);
23425 }
23426
23427 /* If we already know the type we're done. */
23428 if (sig_type->type != NULL)
23429 return sig_type->type;
23430
23431 type_cu = cu;
23432 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23433 if (type_die != NULL)
23434 {
23435 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23436 is created. This is important, for example, because for c++ classes
23437 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23438 type = read_type_die (type_die, type_cu);
23439 if (type == NULL)
23440 {
23441 complaint (_("Dwarf Error: Cannot build signatured type %s"
23442 " referenced from DIE at %s [in module %s]"),
23443 hex_string (signature), sect_offset_str (die->sect_off),
23444 objfile_name (dwarf2_per_objfile->objfile));
23445 type = build_error_marker_type (cu, die);
23446 }
23447 }
23448 else
23449 {
23450 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23451 " from DIE at %s [in module %s]"),
23452 hex_string (signature), sect_offset_str (die->sect_off),
23453 objfile_name (dwarf2_per_objfile->objfile));
23454 type = build_error_marker_type (cu, die);
23455 }
23456 sig_type->type = type;
23457
23458 return type;
23459 }
23460
23461 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23462 reading in and processing the type unit if necessary. */
23463
23464 static struct type *
23465 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23466 struct dwarf2_cu *cu) /* ARI: editCase function */
23467 {
23468 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23469 if (attr_form_is_ref (attr))
23470 {
23471 struct dwarf2_cu *type_cu = cu;
23472 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23473
23474 return read_type_die (type_die, type_cu);
23475 }
23476 else if (attr->form == DW_FORM_ref_sig8)
23477 {
23478 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23479 }
23480 else
23481 {
23482 struct dwarf2_per_objfile *dwarf2_per_objfile
23483 = cu->per_cu->dwarf2_per_objfile;
23484
23485 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23486 " at %s [in module %s]"),
23487 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23488 objfile_name (dwarf2_per_objfile->objfile));
23489 return build_error_marker_type (cu, die);
23490 }
23491 }
23492
23493 /* Load the DIEs associated with type unit PER_CU into memory. */
23494
23495 static void
23496 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23497 {
23498 struct signatured_type *sig_type;
23499
23500 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23501 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23502
23503 /* We have the per_cu, but we need the signatured_type.
23504 Fortunately this is an easy translation. */
23505 gdb_assert (per_cu->is_debug_types);
23506 sig_type = (struct signatured_type *) per_cu;
23507
23508 gdb_assert (per_cu->cu == NULL);
23509
23510 read_signatured_type (sig_type);
23511
23512 gdb_assert (per_cu->cu != NULL);
23513 }
23514
23515 /* die_reader_func for read_signatured_type.
23516 This is identical to load_full_comp_unit_reader,
23517 but is kept separate for now. */
23518
23519 static void
23520 read_signatured_type_reader (const struct die_reader_specs *reader,
23521 const gdb_byte *info_ptr,
23522 struct die_info *comp_unit_die,
23523 int has_children,
23524 void *data)
23525 {
23526 struct dwarf2_cu *cu = reader->cu;
23527
23528 gdb_assert (cu->die_hash == NULL);
23529 cu->die_hash =
23530 htab_create_alloc_ex (cu->header.length / 12,
23531 die_hash,
23532 die_eq,
23533 NULL,
23534 &cu->comp_unit_obstack,
23535 hashtab_obstack_allocate,
23536 dummy_obstack_deallocate);
23537
23538 if (has_children)
23539 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23540 &info_ptr, comp_unit_die);
23541 cu->dies = comp_unit_die;
23542 /* comp_unit_die is not stored in die_hash, no need. */
23543
23544 /* We try not to read any attributes in this function, because not
23545 all CUs needed for references have been loaded yet, and symbol
23546 table processing isn't initialized. But we have to set the CU language,
23547 or we won't be able to build types correctly.
23548 Similarly, if we do not read the producer, we can not apply
23549 producer-specific interpretation. */
23550 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23551 }
23552
23553 /* Read in a signatured type and build its CU and DIEs.
23554 If the type is a stub for the real type in a DWO file,
23555 read in the real type from the DWO file as well. */
23556
23557 static void
23558 read_signatured_type (struct signatured_type *sig_type)
23559 {
23560 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23561
23562 gdb_assert (per_cu->is_debug_types);
23563 gdb_assert (per_cu->cu == NULL);
23564
23565 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23566 read_signatured_type_reader, NULL);
23567 sig_type->per_cu.tu_read = 1;
23568 }
23569
23570 /* Decode simple location descriptions.
23571 Given a pointer to a dwarf block that defines a location, compute
23572 the location and return the value.
23573
23574 NOTE drow/2003-11-18: This function is called in two situations
23575 now: for the address of static or global variables (partial symbols
23576 only) and for offsets into structures which are expected to be
23577 (more or less) constant. The partial symbol case should go away,
23578 and only the constant case should remain. That will let this
23579 function complain more accurately. A few special modes are allowed
23580 without complaint for global variables (for instance, global
23581 register values and thread-local values).
23582
23583 A location description containing no operations indicates that the
23584 object is optimized out. The return value is 0 for that case.
23585 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23586 callers will only want a very basic result and this can become a
23587 complaint.
23588
23589 Note that stack[0] is unused except as a default error return. */
23590
23591 static CORE_ADDR
23592 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23593 {
23594 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23595 size_t i;
23596 size_t size = blk->size;
23597 const gdb_byte *data = blk->data;
23598 CORE_ADDR stack[64];
23599 int stacki;
23600 unsigned int bytes_read, unsnd;
23601 gdb_byte op;
23602
23603 i = 0;
23604 stacki = 0;
23605 stack[stacki] = 0;
23606 stack[++stacki] = 0;
23607
23608 while (i < size)
23609 {
23610 op = data[i++];
23611 switch (op)
23612 {
23613 case DW_OP_lit0:
23614 case DW_OP_lit1:
23615 case DW_OP_lit2:
23616 case DW_OP_lit3:
23617 case DW_OP_lit4:
23618 case DW_OP_lit5:
23619 case DW_OP_lit6:
23620 case DW_OP_lit7:
23621 case DW_OP_lit8:
23622 case DW_OP_lit9:
23623 case DW_OP_lit10:
23624 case DW_OP_lit11:
23625 case DW_OP_lit12:
23626 case DW_OP_lit13:
23627 case DW_OP_lit14:
23628 case DW_OP_lit15:
23629 case DW_OP_lit16:
23630 case DW_OP_lit17:
23631 case DW_OP_lit18:
23632 case DW_OP_lit19:
23633 case DW_OP_lit20:
23634 case DW_OP_lit21:
23635 case DW_OP_lit22:
23636 case DW_OP_lit23:
23637 case DW_OP_lit24:
23638 case DW_OP_lit25:
23639 case DW_OP_lit26:
23640 case DW_OP_lit27:
23641 case DW_OP_lit28:
23642 case DW_OP_lit29:
23643 case DW_OP_lit30:
23644 case DW_OP_lit31:
23645 stack[++stacki] = op - DW_OP_lit0;
23646 break;
23647
23648 case DW_OP_reg0:
23649 case DW_OP_reg1:
23650 case DW_OP_reg2:
23651 case DW_OP_reg3:
23652 case DW_OP_reg4:
23653 case DW_OP_reg5:
23654 case DW_OP_reg6:
23655 case DW_OP_reg7:
23656 case DW_OP_reg8:
23657 case DW_OP_reg9:
23658 case DW_OP_reg10:
23659 case DW_OP_reg11:
23660 case DW_OP_reg12:
23661 case DW_OP_reg13:
23662 case DW_OP_reg14:
23663 case DW_OP_reg15:
23664 case DW_OP_reg16:
23665 case DW_OP_reg17:
23666 case DW_OP_reg18:
23667 case DW_OP_reg19:
23668 case DW_OP_reg20:
23669 case DW_OP_reg21:
23670 case DW_OP_reg22:
23671 case DW_OP_reg23:
23672 case DW_OP_reg24:
23673 case DW_OP_reg25:
23674 case DW_OP_reg26:
23675 case DW_OP_reg27:
23676 case DW_OP_reg28:
23677 case DW_OP_reg29:
23678 case DW_OP_reg30:
23679 case DW_OP_reg31:
23680 stack[++stacki] = op - DW_OP_reg0;
23681 if (i < size)
23682 dwarf2_complex_location_expr_complaint ();
23683 break;
23684
23685 case DW_OP_regx:
23686 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23687 i += bytes_read;
23688 stack[++stacki] = unsnd;
23689 if (i < size)
23690 dwarf2_complex_location_expr_complaint ();
23691 break;
23692
23693 case DW_OP_addr:
23694 stack[++stacki] = read_address (objfile->obfd, &data[i],
23695 cu, &bytes_read);
23696 i += bytes_read;
23697 break;
23698
23699 case DW_OP_const1u:
23700 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23701 i += 1;
23702 break;
23703
23704 case DW_OP_const1s:
23705 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23706 i += 1;
23707 break;
23708
23709 case DW_OP_const2u:
23710 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23711 i += 2;
23712 break;
23713
23714 case DW_OP_const2s:
23715 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23716 i += 2;
23717 break;
23718
23719 case DW_OP_const4u:
23720 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23721 i += 4;
23722 break;
23723
23724 case DW_OP_const4s:
23725 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23726 i += 4;
23727 break;
23728
23729 case DW_OP_const8u:
23730 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23731 i += 8;
23732 break;
23733
23734 case DW_OP_constu:
23735 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23736 &bytes_read);
23737 i += bytes_read;
23738 break;
23739
23740 case DW_OP_consts:
23741 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23742 i += bytes_read;
23743 break;
23744
23745 case DW_OP_dup:
23746 stack[stacki + 1] = stack[stacki];
23747 stacki++;
23748 break;
23749
23750 case DW_OP_plus:
23751 stack[stacki - 1] += stack[stacki];
23752 stacki--;
23753 break;
23754
23755 case DW_OP_plus_uconst:
23756 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23757 &bytes_read);
23758 i += bytes_read;
23759 break;
23760
23761 case DW_OP_minus:
23762 stack[stacki - 1] -= stack[stacki];
23763 stacki--;
23764 break;
23765
23766 case DW_OP_deref:
23767 /* If we're not the last op, then we definitely can't encode
23768 this using GDB's address_class enum. This is valid for partial
23769 global symbols, although the variable's address will be bogus
23770 in the psymtab. */
23771 if (i < size)
23772 dwarf2_complex_location_expr_complaint ();
23773 break;
23774
23775 case DW_OP_GNU_push_tls_address:
23776 case DW_OP_form_tls_address:
23777 /* The top of the stack has the offset from the beginning
23778 of the thread control block at which the variable is located. */
23779 /* Nothing should follow this operator, so the top of stack would
23780 be returned. */
23781 /* This is valid for partial global symbols, but the variable's
23782 address will be bogus in the psymtab. Make it always at least
23783 non-zero to not look as a variable garbage collected by linker
23784 which have DW_OP_addr 0. */
23785 if (i < size)
23786 dwarf2_complex_location_expr_complaint ();
23787 stack[stacki]++;
23788 break;
23789
23790 case DW_OP_GNU_uninit:
23791 break;
23792
23793 case DW_OP_GNU_addr_index:
23794 case DW_OP_GNU_const_index:
23795 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23796 &bytes_read);
23797 i += bytes_read;
23798 break;
23799
23800 default:
23801 {
23802 const char *name = get_DW_OP_name (op);
23803
23804 if (name)
23805 complaint (_("unsupported stack op: '%s'"),
23806 name);
23807 else
23808 complaint (_("unsupported stack op: '%02x'"),
23809 op);
23810 }
23811
23812 return (stack[stacki]);
23813 }
23814
23815 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23816 outside of the allocated space. Also enforce minimum>0. */
23817 if (stacki >= ARRAY_SIZE (stack) - 1)
23818 {
23819 complaint (_("location description stack overflow"));
23820 return 0;
23821 }
23822
23823 if (stacki <= 0)
23824 {
23825 complaint (_("location description stack underflow"));
23826 return 0;
23827 }
23828 }
23829 return (stack[stacki]);
23830 }
23831
23832 /* memory allocation interface */
23833
23834 static struct dwarf_block *
23835 dwarf_alloc_block (struct dwarf2_cu *cu)
23836 {
23837 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23838 }
23839
23840 static struct die_info *
23841 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23842 {
23843 struct die_info *die;
23844 size_t size = sizeof (struct die_info);
23845
23846 if (num_attrs > 1)
23847 size += (num_attrs - 1) * sizeof (struct attribute);
23848
23849 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23850 memset (die, 0, sizeof (struct die_info));
23851 return (die);
23852 }
23853
23854 \f
23855 /* Macro support. */
23856
23857 /* Return file name relative to the compilation directory of file number I in
23858 *LH's file name table. The result is allocated using xmalloc; the caller is
23859 responsible for freeing it. */
23860
23861 static char *
23862 file_file_name (int file, struct line_header *lh)
23863 {
23864 /* Is the file number a valid index into the line header's file name
23865 table? Remember that file numbers start with one, not zero. */
23866 if (1 <= file && file <= lh->file_names.size ())
23867 {
23868 const file_entry &fe = lh->file_names[file - 1];
23869
23870 if (!IS_ABSOLUTE_PATH (fe.name))
23871 {
23872 const char *dir = fe.include_dir (lh);
23873 if (dir != NULL)
23874 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23875 }
23876 return xstrdup (fe.name);
23877 }
23878 else
23879 {
23880 /* The compiler produced a bogus file number. We can at least
23881 record the macro definitions made in the file, even if we
23882 won't be able to find the file by name. */
23883 char fake_name[80];
23884
23885 xsnprintf (fake_name, sizeof (fake_name),
23886 "<bad macro file number %d>", file);
23887
23888 complaint (_("bad file number in macro information (%d)"),
23889 file);
23890
23891 return xstrdup (fake_name);
23892 }
23893 }
23894
23895 /* Return the full name of file number I in *LH's file name table.
23896 Use COMP_DIR as the name of the current directory of the
23897 compilation. The result is allocated using xmalloc; the caller is
23898 responsible for freeing it. */
23899 static char *
23900 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23901 {
23902 /* Is the file number a valid index into the line header's file name
23903 table? Remember that file numbers start with one, not zero. */
23904 if (1 <= file && file <= lh->file_names.size ())
23905 {
23906 char *relative = file_file_name (file, lh);
23907
23908 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23909 return relative;
23910 return reconcat (relative, comp_dir, SLASH_STRING,
23911 relative, (char *) NULL);
23912 }
23913 else
23914 return file_file_name (file, lh);
23915 }
23916
23917
23918 static struct macro_source_file *
23919 macro_start_file (struct dwarf2_cu *cu,
23920 int file, int line,
23921 struct macro_source_file *current_file,
23922 struct line_header *lh)
23923 {
23924 /* File name relative to the compilation directory of this source file. */
23925 char *file_name = file_file_name (file, lh);
23926
23927 if (! current_file)
23928 {
23929 /* Note: We don't create a macro table for this compilation unit
23930 at all until we actually get a filename. */
23931 struct macro_table *macro_table = cu->builder->get_macro_table ();
23932
23933 /* If we have no current file, then this must be the start_file
23934 directive for the compilation unit's main source file. */
23935 current_file = macro_set_main (macro_table, file_name);
23936 macro_define_special (macro_table);
23937 }
23938 else
23939 current_file = macro_include (current_file, line, file_name);
23940
23941 xfree (file_name);
23942
23943 return current_file;
23944 }
23945
23946 static const char *
23947 consume_improper_spaces (const char *p, const char *body)
23948 {
23949 if (*p == ' ')
23950 {
23951 complaint (_("macro definition contains spaces "
23952 "in formal argument list:\n`%s'"),
23953 body);
23954
23955 while (*p == ' ')
23956 p++;
23957 }
23958
23959 return p;
23960 }
23961
23962
23963 static void
23964 parse_macro_definition (struct macro_source_file *file, int line,
23965 const char *body)
23966 {
23967 const char *p;
23968
23969 /* The body string takes one of two forms. For object-like macro
23970 definitions, it should be:
23971
23972 <macro name> " " <definition>
23973
23974 For function-like macro definitions, it should be:
23975
23976 <macro name> "() " <definition>
23977 or
23978 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23979
23980 Spaces may appear only where explicitly indicated, and in the
23981 <definition>.
23982
23983 The Dwarf 2 spec says that an object-like macro's name is always
23984 followed by a space, but versions of GCC around March 2002 omit
23985 the space when the macro's definition is the empty string.
23986
23987 The Dwarf 2 spec says that there should be no spaces between the
23988 formal arguments in a function-like macro's formal argument list,
23989 but versions of GCC around March 2002 include spaces after the
23990 commas. */
23991
23992
23993 /* Find the extent of the macro name. The macro name is terminated
23994 by either a space or null character (for an object-like macro) or
23995 an opening paren (for a function-like macro). */
23996 for (p = body; *p; p++)
23997 if (*p == ' ' || *p == '(')
23998 break;
23999
24000 if (*p == ' ' || *p == '\0')
24001 {
24002 /* It's an object-like macro. */
24003 int name_len = p - body;
24004 char *name = savestring (body, name_len);
24005 const char *replacement;
24006
24007 if (*p == ' ')
24008 replacement = body + name_len + 1;
24009 else
24010 {
24011 dwarf2_macro_malformed_definition_complaint (body);
24012 replacement = body + name_len;
24013 }
24014
24015 macro_define_object (file, line, name, replacement);
24016
24017 xfree (name);
24018 }
24019 else if (*p == '(')
24020 {
24021 /* It's a function-like macro. */
24022 char *name = savestring (body, p - body);
24023 int argc = 0;
24024 int argv_size = 1;
24025 char **argv = XNEWVEC (char *, argv_size);
24026
24027 p++;
24028
24029 p = consume_improper_spaces (p, body);
24030
24031 /* Parse the formal argument list. */
24032 while (*p && *p != ')')
24033 {
24034 /* Find the extent of the current argument name. */
24035 const char *arg_start = p;
24036
24037 while (*p && *p != ',' && *p != ')' && *p != ' ')
24038 p++;
24039
24040 if (! *p || p == arg_start)
24041 dwarf2_macro_malformed_definition_complaint (body);
24042 else
24043 {
24044 /* Make sure argv has room for the new argument. */
24045 if (argc >= argv_size)
24046 {
24047 argv_size *= 2;
24048 argv = XRESIZEVEC (char *, argv, argv_size);
24049 }
24050
24051 argv[argc++] = savestring (arg_start, p - arg_start);
24052 }
24053
24054 p = consume_improper_spaces (p, body);
24055
24056 /* Consume the comma, if present. */
24057 if (*p == ',')
24058 {
24059 p++;
24060
24061 p = consume_improper_spaces (p, body);
24062 }
24063 }
24064
24065 if (*p == ')')
24066 {
24067 p++;
24068
24069 if (*p == ' ')
24070 /* Perfectly formed definition, no complaints. */
24071 macro_define_function (file, line, name,
24072 argc, (const char **) argv,
24073 p + 1);
24074 else if (*p == '\0')
24075 {
24076 /* Complain, but do define it. */
24077 dwarf2_macro_malformed_definition_complaint (body);
24078 macro_define_function (file, line, name,
24079 argc, (const char **) argv,
24080 p);
24081 }
24082 else
24083 /* Just complain. */
24084 dwarf2_macro_malformed_definition_complaint (body);
24085 }
24086 else
24087 /* Just complain. */
24088 dwarf2_macro_malformed_definition_complaint (body);
24089
24090 xfree (name);
24091 {
24092 int i;
24093
24094 for (i = 0; i < argc; i++)
24095 xfree (argv[i]);
24096 }
24097 xfree (argv);
24098 }
24099 else
24100 dwarf2_macro_malformed_definition_complaint (body);
24101 }
24102
24103 /* Skip some bytes from BYTES according to the form given in FORM.
24104 Returns the new pointer. */
24105
24106 static const gdb_byte *
24107 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24108 enum dwarf_form form,
24109 unsigned int offset_size,
24110 struct dwarf2_section_info *section)
24111 {
24112 unsigned int bytes_read;
24113
24114 switch (form)
24115 {
24116 case DW_FORM_data1:
24117 case DW_FORM_flag:
24118 ++bytes;
24119 break;
24120
24121 case DW_FORM_data2:
24122 bytes += 2;
24123 break;
24124
24125 case DW_FORM_data4:
24126 bytes += 4;
24127 break;
24128
24129 case DW_FORM_data8:
24130 bytes += 8;
24131 break;
24132
24133 case DW_FORM_data16:
24134 bytes += 16;
24135 break;
24136
24137 case DW_FORM_string:
24138 read_direct_string (abfd, bytes, &bytes_read);
24139 bytes += bytes_read;
24140 break;
24141
24142 case DW_FORM_sec_offset:
24143 case DW_FORM_strp:
24144 case DW_FORM_GNU_strp_alt:
24145 bytes += offset_size;
24146 break;
24147
24148 case DW_FORM_block:
24149 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24150 bytes += bytes_read;
24151 break;
24152
24153 case DW_FORM_block1:
24154 bytes += 1 + read_1_byte (abfd, bytes);
24155 break;
24156 case DW_FORM_block2:
24157 bytes += 2 + read_2_bytes (abfd, bytes);
24158 break;
24159 case DW_FORM_block4:
24160 bytes += 4 + read_4_bytes (abfd, bytes);
24161 break;
24162
24163 case DW_FORM_sdata:
24164 case DW_FORM_udata:
24165 case DW_FORM_GNU_addr_index:
24166 case DW_FORM_GNU_str_index:
24167 bytes = gdb_skip_leb128 (bytes, buffer_end);
24168 if (bytes == NULL)
24169 {
24170 dwarf2_section_buffer_overflow_complaint (section);
24171 return NULL;
24172 }
24173 break;
24174
24175 case DW_FORM_implicit_const:
24176 break;
24177
24178 default:
24179 {
24180 complaint (_("invalid form 0x%x in `%s'"),
24181 form, get_section_name (section));
24182 return NULL;
24183 }
24184 }
24185
24186 return bytes;
24187 }
24188
24189 /* A helper for dwarf_decode_macros that handles skipping an unknown
24190 opcode. Returns an updated pointer to the macro data buffer; or,
24191 on error, issues a complaint and returns NULL. */
24192
24193 static const gdb_byte *
24194 skip_unknown_opcode (unsigned int opcode,
24195 const gdb_byte **opcode_definitions,
24196 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24197 bfd *abfd,
24198 unsigned int offset_size,
24199 struct dwarf2_section_info *section)
24200 {
24201 unsigned int bytes_read, i;
24202 unsigned long arg;
24203 const gdb_byte *defn;
24204
24205 if (opcode_definitions[opcode] == NULL)
24206 {
24207 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24208 opcode);
24209 return NULL;
24210 }
24211
24212 defn = opcode_definitions[opcode];
24213 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24214 defn += bytes_read;
24215
24216 for (i = 0; i < arg; ++i)
24217 {
24218 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24219 (enum dwarf_form) defn[i], offset_size,
24220 section);
24221 if (mac_ptr == NULL)
24222 {
24223 /* skip_form_bytes already issued the complaint. */
24224 return NULL;
24225 }
24226 }
24227
24228 return mac_ptr;
24229 }
24230
24231 /* A helper function which parses the header of a macro section.
24232 If the macro section is the extended (for now called "GNU") type,
24233 then this updates *OFFSET_SIZE. Returns a pointer to just after
24234 the header, or issues a complaint and returns NULL on error. */
24235
24236 static const gdb_byte *
24237 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24238 bfd *abfd,
24239 const gdb_byte *mac_ptr,
24240 unsigned int *offset_size,
24241 int section_is_gnu)
24242 {
24243 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24244
24245 if (section_is_gnu)
24246 {
24247 unsigned int version, flags;
24248
24249 version = read_2_bytes (abfd, mac_ptr);
24250 if (version != 4 && version != 5)
24251 {
24252 complaint (_("unrecognized version `%d' in .debug_macro section"),
24253 version);
24254 return NULL;
24255 }
24256 mac_ptr += 2;
24257
24258 flags = read_1_byte (abfd, mac_ptr);
24259 ++mac_ptr;
24260 *offset_size = (flags & 1) ? 8 : 4;
24261
24262 if ((flags & 2) != 0)
24263 /* We don't need the line table offset. */
24264 mac_ptr += *offset_size;
24265
24266 /* Vendor opcode descriptions. */
24267 if ((flags & 4) != 0)
24268 {
24269 unsigned int i, count;
24270
24271 count = read_1_byte (abfd, mac_ptr);
24272 ++mac_ptr;
24273 for (i = 0; i < count; ++i)
24274 {
24275 unsigned int opcode, bytes_read;
24276 unsigned long arg;
24277
24278 opcode = read_1_byte (abfd, mac_ptr);
24279 ++mac_ptr;
24280 opcode_definitions[opcode] = mac_ptr;
24281 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24282 mac_ptr += bytes_read;
24283 mac_ptr += arg;
24284 }
24285 }
24286 }
24287
24288 return mac_ptr;
24289 }
24290
24291 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24292 including DW_MACRO_import. */
24293
24294 static void
24295 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24296 bfd *abfd,
24297 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24298 struct macro_source_file *current_file,
24299 struct line_header *lh,
24300 struct dwarf2_section_info *section,
24301 int section_is_gnu, int section_is_dwz,
24302 unsigned int offset_size,
24303 htab_t include_hash)
24304 {
24305 struct dwarf2_per_objfile *dwarf2_per_objfile
24306 = cu->per_cu->dwarf2_per_objfile;
24307 struct objfile *objfile = dwarf2_per_objfile->objfile;
24308 enum dwarf_macro_record_type macinfo_type;
24309 int at_commandline;
24310 const gdb_byte *opcode_definitions[256];
24311
24312 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24313 &offset_size, section_is_gnu);
24314 if (mac_ptr == NULL)
24315 {
24316 /* We already issued a complaint. */
24317 return;
24318 }
24319
24320 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24321 GDB is still reading the definitions from command line. First
24322 DW_MACINFO_start_file will need to be ignored as it was already executed
24323 to create CURRENT_FILE for the main source holding also the command line
24324 definitions. On first met DW_MACINFO_start_file this flag is reset to
24325 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24326
24327 at_commandline = 1;
24328
24329 do
24330 {
24331 /* Do we at least have room for a macinfo type byte? */
24332 if (mac_ptr >= mac_end)
24333 {
24334 dwarf2_section_buffer_overflow_complaint (section);
24335 break;
24336 }
24337
24338 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24339 mac_ptr++;
24340
24341 /* Note that we rely on the fact that the corresponding GNU and
24342 DWARF constants are the same. */
24343 DIAGNOSTIC_PUSH
24344 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24345 switch (macinfo_type)
24346 {
24347 /* A zero macinfo type indicates the end of the macro
24348 information. */
24349 case 0:
24350 break;
24351
24352 case DW_MACRO_define:
24353 case DW_MACRO_undef:
24354 case DW_MACRO_define_strp:
24355 case DW_MACRO_undef_strp:
24356 case DW_MACRO_define_sup:
24357 case DW_MACRO_undef_sup:
24358 {
24359 unsigned int bytes_read;
24360 int line;
24361 const char *body;
24362 int is_define;
24363
24364 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24365 mac_ptr += bytes_read;
24366
24367 if (macinfo_type == DW_MACRO_define
24368 || macinfo_type == DW_MACRO_undef)
24369 {
24370 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24371 mac_ptr += bytes_read;
24372 }
24373 else
24374 {
24375 LONGEST str_offset;
24376
24377 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24378 mac_ptr += offset_size;
24379
24380 if (macinfo_type == DW_MACRO_define_sup
24381 || macinfo_type == DW_MACRO_undef_sup
24382 || section_is_dwz)
24383 {
24384 struct dwz_file *dwz
24385 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24386
24387 body = read_indirect_string_from_dwz (objfile,
24388 dwz, str_offset);
24389 }
24390 else
24391 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24392 abfd, str_offset);
24393 }
24394
24395 is_define = (macinfo_type == DW_MACRO_define
24396 || macinfo_type == DW_MACRO_define_strp
24397 || macinfo_type == DW_MACRO_define_sup);
24398 if (! current_file)
24399 {
24400 /* DWARF violation as no main source is present. */
24401 complaint (_("debug info with no main source gives macro %s "
24402 "on line %d: %s"),
24403 is_define ? _("definition") : _("undefinition"),
24404 line, body);
24405 break;
24406 }
24407 if ((line == 0 && !at_commandline)
24408 || (line != 0 && at_commandline))
24409 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24410 at_commandline ? _("command-line") : _("in-file"),
24411 is_define ? _("definition") : _("undefinition"),
24412 line == 0 ? _("zero") : _("non-zero"), line, body);
24413
24414 if (is_define)
24415 parse_macro_definition (current_file, line, body);
24416 else
24417 {
24418 gdb_assert (macinfo_type == DW_MACRO_undef
24419 || macinfo_type == DW_MACRO_undef_strp
24420 || macinfo_type == DW_MACRO_undef_sup);
24421 macro_undef (current_file, line, body);
24422 }
24423 }
24424 break;
24425
24426 case DW_MACRO_start_file:
24427 {
24428 unsigned int bytes_read;
24429 int line, file;
24430
24431 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24432 mac_ptr += bytes_read;
24433 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24434 mac_ptr += bytes_read;
24435
24436 if ((line == 0 && !at_commandline)
24437 || (line != 0 && at_commandline))
24438 complaint (_("debug info gives source %d included "
24439 "from %s at %s line %d"),
24440 file, at_commandline ? _("command-line") : _("file"),
24441 line == 0 ? _("zero") : _("non-zero"), line);
24442
24443 if (at_commandline)
24444 {
24445 /* This DW_MACRO_start_file was executed in the
24446 pass one. */
24447 at_commandline = 0;
24448 }
24449 else
24450 current_file = macro_start_file (cu, file, line, current_file,
24451 lh);
24452 }
24453 break;
24454
24455 case DW_MACRO_end_file:
24456 if (! current_file)
24457 complaint (_("macro debug info has an unmatched "
24458 "`close_file' directive"));
24459 else
24460 {
24461 current_file = current_file->included_by;
24462 if (! current_file)
24463 {
24464 enum dwarf_macro_record_type next_type;
24465
24466 /* GCC circa March 2002 doesn't produce the zero
24467 type byte marking the end of the compilation
24468 unit. Complain if it's not there, but exit no
24469 matter what. */
24470
24471 /* Do we at least have room for a macinfo type byte? */
24472 if (mac_ptr >= mac_end)
24473 {
24474 dwarf2_section_buffer_overflow_complaint (section);
24475 return;
24476 }
24477
24478 /* We don't increment mac_ptr here, so this is just
24479 a look-ahead. */
24480 next_type
24481 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24482 mac_ptr);
24483 if (next_type != 0)
24484 complaint (_("no terminating 0-type entry for "
24485 "macros in `.debug_macinfo' section"));
24486
24487 return;
24488 }
24489 }
24490 break;
24491
24492 case DW_MACRO_import:
24493 case DW_MACRO_import_sup:
24494 {
24495 LONGEST offset;
24496 void **slot;
24497 bfd *include_bfd = abfd;
24498 struct dwarf2_section_info *include_section = section;
24499 const gdb_byte *include_mac_end = mac_end;
24500 int is_dwz = section_is_dwz;
24501 const gdb_byte *new_mac_ptr;
24502
24503 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24504 mac_ptr += offset_size;
24505
24506 if (macinfo_type == DW_MACRO_import_sup)
24507 {
24508 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24509
24510 dwarf2_read_section (objfile, &dwz->macro);
24511
24512 include_section = &dwz->macro;
24513 include_bfd = get_section_bfd_owner (include_section);
24514 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24515 is_dwz = 1;
24516 }
24517
24518 new_mac_ptr = include_section->buffer + offset;
24519 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24520
24521 if (*slot != NULL)
24522 {
24523 /* This has actually happened; see
24524 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24525 complaint (_("recursive DW_MACRO_import in "
24526 ".debug_macro section"));
24527 }
24528 else
24529 {
24530 *slot = (void *) new_mac_ptr;
24531
24532 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24533 include_mac_end, current_file, lh,
24534 section, section_is_gnu, is_dwz,
24535 offset_size, include_hash);
24536
24537 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24538 }
24539 }
24540 break;
24541
24542 case DW_MACINFO_vendor_ext:
24543 if (!section_is_gnu)
24544 {
24545 unsigned int bytes_read;
24546
24547 /* This reads the constant, but since we don't recognize
24548 any vendor extensions, we ignore it. */
24549 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24550 mac_ptr += bytes_read;
24551 read_direct_string (abfd, mac_ptr, &bytes_read);
24552 mac_ptr += bytes_read;
24553
24554 /* We don't recognize any vendor extensions. */
24555 break;
24556 }
24557 /* FALLTHROUGH */
24558
24559 default:
24560 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24561 mac_ptr, mac_end, abfd, offset_size,
24562 section);
24563 if (mac_ptr == NULL)
24564 return;
24565 break;
24566 }
24567 DIAGNOSTIC_POP
24568 } while (macinfo_type != 0);
24569 }
24570
24571 static void
24572 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24573 int section_is_gnu)
24574 {
24575 struct dwarf2_per_objfile *dwarf2_per_objfile
24576 = cu->per_cu->dwarf2_per_objfile;
24577 struct objfile *objfile = dwarf2_per_objfile->objfile;
24578 struct line_header *lh = cu->line_header;
24579 bfd *abfd;
24580 const gdb_byte *mac_ptr, *mac_end;
24581 struct macro_source_file *current_file = 0;
24582 enum dwarf_macro_record_type macinfo_type;
24583 unsigned int offset_size = cu->header.offset_size;
24584 const gdb_byte *opcode_definitions[256];
24585 void **slot;
24586 struct dwarf2_section_info *section;
24587 const char *section_name;
24588
24589 if (cu->dwo_unit != NULL)
24590 {
24591 if (section_is_gnu)
24592 {
24593 section = &cu->dwo_unit->dwo_file->sections.macro;
24594 section_name = ".debug_macro.dwo";
24595 }
24596 else
24597 {
24598 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24599 section_name = ".debug_macinfo.dwo";
24600 }
24601 }
24602 else
24603 {
24604 if (section_is_gnu)
24605 {
24606 section = &dwarf2_per_objfile->macro;
24607 section_name = ".debug_macro";
24608 }
24609 else
24610 {
24611 section = &dwarf2_per_objfile->macinfo;
24612 section_name = ".debug_macinfo";
24613 }
24614 }
24615
24616 dwarf2_read_section (objfile, section);
24617 if (section->buffer == NULL)
24618 {
24619 complaint (_("missing %s section"), section_name);
24620 return;
24621 }
24622 abfd = get_section_bfd_owner (section);
24623
24624 /* First pass: Find the name of the base filename.
24625 This filename is needed in order to process all macros whose definition
24626 (or undefinition) comes from the command line. These macros are defined
24627 before the first DW_MACINFO_start_file entry, and yet still need to be
24628 associated to the base file.
24629
24630 To determine the base file name, we scan the macro definitions until we
24631 reach the first DW_MACINFO_start_file entry. We then initialize
24632 CURRENT_FILE accordingly so that any macro definition found before the
24633 first DW_MACINFO_start_file can still be associated to the base file. */
24634
24635 mac_ptr = section->buffer + offset;
24636 mac_end = section->buffer + section->size;
24637
24638 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24639 &offset_size, section_is_gnu);
24640 if (mac_ptr == NULL)
24641 {
24642 /* We already issued a complaint. */
24643 return;
24644 }
24645
24646 do
24647 {
24648 /* Do we at least have room for a macinfo type byte? */
24649 if (mac_ptr >= mac_end)
24650 {
24651 /* Complaint is printed during the second pass as GDB will probably
24652 stop the first pass earlier upon finding
24653 DW_MACINFO_start_file. */
24654 break;
24655 }
24656
24657 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24658 mac_ptr++;
24659
24660 /* Note that we rely on the fact that the corresponding GNU and
24661 DWARF constants are the same. */
24662 DIAGNOSTIC_PUSH
24663 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24664 switch (macinfo_type)
24665 {
24666 /* A zero macinfo type indicates the end of the macro
24667 information. */
24668 case 0:
24669 break;
24670
24671 case DW_MACRO_define:
24672 case DW_MACRO_undef:
24673 /* Only skip the data by MAC_PTR. */
24674 {
24675 unsigned int bytes_read;
24676
24677 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24678 mac_ptr += bytes_read;
24679 read_direct_string (abfd, mac_ptr, &bytes_read);
24680 mac_ptr += bytes_read;
24681 }
24682 break;
24683
24684 case DW_MACRO_start_file:
24685 {
24686 unsigned int bytes_read;
24687 int line, file;
24688
24689 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24690 mac_ptr += bytes_read;
24691 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24692 mac_ptr += bytes_read;
24693
24694 current_file = macro_start_file (cu, file, line, current_file, lh);
24695 }
24696 break;
24697
24698 case DW_MACRO_end_file:
24699 /* No data to skip by MAC_PTR. */
24700 break;
24701
24702 case DW_MACRO_define_strp:
24703 case DW_MACRO_undef_strp:
24704 case DW_MACRO_define_sup:
24705 case DW_MACRO_undef_sup:
24706 {
24707 unsigned int bytes_read;
24708
24709 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24710 mac_ptr += bytes_read;
24711 mac_ptr += offset_size;
24712 }
24713 break;
24714
24715 case DW_MACRO_import:
24716 case DW_MACRO_import_sup:
24717 /* Note that, according to the spec, a transparent include
24718 chain cannot call DW_MACRO_start_file. So, we can just
24719 skip this opcode. */
24720 mac_ptr += offset_size;
24721 break;
24722
24723 case DW_MACINFO_vendor_ext:
24724 /* Only skip the data by MAC_PTR. */
24725 if (!section_is_gnu)
24726 {
24727 unsigned int bytes_read;
24728
24729 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24730 mac_ptr += bytes_read;
24731 read_direct_string (abfd, mac_ptr, &bytes_read);
24732 mac_ptr += bytes_read;
24733 }
24734 /* FALLTHROUGH */
24735
24736 default:
24737 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24738 mac_ptr, mac_end, abfd, offset_size,
24739 section);
24740 if (mac_ptr == NULL)
24741 return;
24742 break;
24743 }
24744 DIAGNOSTIC_POP
24745 } while (macinfo_type != 0 && current_file == NULL);
24746
24747 /* Second pass: Process all entries.
24748
24749 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24750 command-line macro definitions/undefinitions. This flag is unset when we
24751 reach the first DW_MACINFO_start_file entry. */
24752
24753 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24754 htab_eq_pointer,
24755 NULL, xcalloc, xfree));
24756 mac_ptr = section->buffer + offset;
24757 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24758 *slot = (void *) mac_ptr;
24759 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24760 current_file, lh, section,
24761 section_is_gnu, 0, offset_size,
24762 include_hash.get ());
24763 }
24764
24765 /* Check if the attribute's form is a DW_FORM_block*
24766 if so return true else false. */
24767
24768 static int
24769 attr_form_is_block (const struct attribute *attr)
24770 {
24771 return (attr == NULL ? 0 :
24772 attr->form == DW_FORM_block1
24773 || attr->form == DW_FORM_block2
24774 || attr->form == DW_FORM_block4
24775 || attr->form == DW_FORM_block
24776 || attr->form == DW_FORM_exprloc);
24777 }
24778
24779 /* Return non-zero if ATTR's value is a section offset --- classes
24780 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24781 You may use DW_UNSND (attr) to retrieve such offsets.
24782
24783 Section 7.5.4, "Attribute Encodings", explains that no attribute
24784 may have a value that belongs to more than one of these classes; it
24785 would be ambiguous if we did, because we use the same forms for all
24786 of them. */
24787
24788 static int
24789 attr_form_is_section_offset (const struct attribute *attr)
24790 {
24791 return (attr->form == DW_FORM_data4
24792 || attr->form == DW_FORM_data8
24793 || attr->form == DW_FORM_sec_offset);
24794 }
24795
24796 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24797 zero otherwise. When this function returns true, you can apply
24798 dwarf2_get_attr_constant_value to it.
24799
24800 However, note that for some attributes you must check
24801 attr_form_is_section_offset before using this test. DW_FORM_data4
24802 and DW_FORM_data8 are members of both the constant class, and of
24803 the classes that contain offsets into other debug sections
24804 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24805 that, if an attribute's can be either a constant or one of the
24806 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24807 taken as section offsets, not constants.
24808
24809 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24810 cannot handle that. */
24811
24812 static int
24813 attr_form_is_constant (const struct attribute *attr)
24814 {
24815 switch (attr->form)
24816 {
24817 case DW_FORM_sdata:
24818 case DW_FORM_udata:
24819 case DW_FORM_data1:
24820 case DW_FORM_data2:
24821 case DW_FORM_data4:
24822 case DW_FORM_data8:
24823 case DW_FORM_implicit_const:
24824 return 1;
24825 default:
24826 return 0;
24827 }
24828 }
24829
24830
24831 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24832 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24833
24834 static int
24835 attr_form_is_ref (const struct attribute *attr)
24836 {
24837 switch (attr->form)
24838 {
24839 case DW_FORM_ref_addr:
24840 case DW_FORM_ref1:
24841 case DW_FORM_ref2:
24842 case DW_FORM_ref4:
24843 case DW_FORM_ref8:
24844 case DW_FORM_ref_udata:
24845 case DW_FORM_GNU_ref_alt:
24846 return 1;
24847 default:
24848 return 0;
24849 }
24850 }
24851
24852 /* Return the .debug_loc section to use for CU.
24853 For DWO files use .debug_loc.dwo. */
24854
24855 static struct dwarf2_section_info *
24856 cu_debug_loc_section (struct dwarf2_cu *cu)
24857 {
24858 struct dwarf2_per_objfile *dwarf2_per_objfile
24859 = cu->per_cu->dwarf2_per_objfile;
24860
24861 if (cu->dwo_unit)
24862 {
24863 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24864
24865 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24866 }
24867 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24868 : &dwarf2_per_objfile->loc);
24869 }
24870
24871 /* A helper function that fills in a dwarf2_loclist_baton. */
24872
24873 static void
24874 fill_in_loclist_baton (struct dwarf2_cu *cu,
24875 struct dwarf2_loclist_baton *baton,
24876 const struct attribute *attr)
24877 {
24878 struct dwarf2_per_objfile *dwarf2_per_objfile
24879 = cu->per_cu->dwarf2_per_objfile;
24880 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24881
24882 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24883
24884 baton->per_cu = cu->per_cu;
24885 gdb_assert (baton->per_cu);
24886 /* We don't know how long the location list is, but make sure we
24887 don't run off the edge of the section. */
24888 baton->size = section->size - DW_UNSND (attr);
24889 baton->data = section->buffer + DW_UNSND (attr);
24890 baton->base_address = cu->base_address;
24891 baton->from_dwo = cu->dwo_unit != NULL;
24892 }
24893
24894 static void
24895 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24896 struct dwarf2_cu *cu, int is_block)
24897 {
24898 struct dwarf2_per_objfile *dwarf2_per_objfile
24899 = cu->per_cu->dwarf2_per_objfile;
24900 struct objfile *objfile = dwarf2_per_objfile->objfile;
24901 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24902
24903 if (attr_form_is_section_offset (attr)
24904 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24905 the section. If so, fall through to the complaint in the
24906 other branch. */
24907 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24908 {
24909 struct dwarf2_loclist_baton *baton;
24910
24911 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24912
24913 fill_in_loclist_baton (cu, baton, attr);
24914
24915 if (cu->base_known == 0)
24916 complaint (_("Location list used without "
24917 "specifying the CU base address."));
24918
24919 SYMBOL_ACLASS_INDEX (sym) = (is_block
24920 ? dwarf2_loclist_block_index
24921 : dwarf2_loclist_index);
24922 SYMBOL_LOCATION_BATON (sym) = baton;
24923 }
24924 else
24925 {
24926 struct dwarf2_locexpr_baton *baton;
24927
24928 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24929 baton->per_cu = cu->per_cu;
24930 gdb_assert (baton->per_cu);
24931
24932 if (attr_form_is_block (attr))
24933 {
24934 /* Note that we're just copying the block's data pointer
24935 here, not the actual data. We're still pointing into the
24936 info_buffer for SYM's objfile; right now we never release
24937 that buffer, but when we do clean up properly this may
24938 need to change. */
24939 baton->size = DW_BLOCK (attr)->size;
24940 baton->data = DW_BLOCK (attr)->data;
24941 }
24942 else
24943 {
24944 dwarf2_invalid_attrib_class_complaint ("location description",
24945 SYMBOL_NATURAL_NAME (sym));
24946 baton->size = 0;
24947 }
24948
24949 SYMBOL_ACLASS_INDEX (sym) = (is_block
24950 ? dwarf2_locexpr_block_index
24951 : dwarf2_locexpr_index);
24952 SYMBOL_LOCATION_BATON (sym) = baton;
24953 }
24954 }
24955
24956 /* Return the OBJFILE associated with the compilation unit CU. If CU
24957 came from a separate debuginfo file, then the master objfile is
24958 returned. */
24959
24960 struct objfile *
24961 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24962 {
24963 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24964
24965 /* Return the master objfile, so that we can report and look up the
24966 correct file containing this variable. */
24967 if (objfile->separate_debug_objfile_backlink)
24968 objfile = objfile->separate_debug_objfile_backlink;
24969
24970 return objfile;
24971 }
24972
24973 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24974 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24975 CU_HEADERP first. */
24976
24977 static const struct comp_unit_head *
24978 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24979 struct dwarf2_per_cu_data *per_cu)
24980 {
24981 const gdb_byte *info_ptr;
24982
24983 if (per_cu->cu)
24984 return &per_cu->cu->header;
24985
24986 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24987
24988 memset (cu_headerp, 0, sizeof (*cu_headerp));
24989 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24990 rcuh_kind::COMPILE);
24991
24992 return cu_headerp;
24993 }
24994
24995 /* Return the address size given in the compilation unit header for CU. */
24996
24997 int
24998 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24999 {
25000 struct comp_unit_head cu_header_local;
25001 const struct comp_unit_head *cu_headerp;
25002
25003 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25004
25005 return cu_headerp->addr_size;
25006 }
25007
25008 /* Return the offset size given in the compilation unit header for CU. */
25009
25010 int
25011 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25012 {
25013 struct comp_unit_head cu_header_local;
25014 const struct comp_unit_head *cu_headerp;
25015
25016 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25017
25018 return cu_headerp->offset_size;
25019 }
25020
25021 /* See its dwarf2loc.h declaration. */
25022
25023 int
25024 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25025 {
25026 struct comp_unit_head cu_header_local;
25027 const struct comp_unit_head *cu_headerp;
25028
25029 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25030
25031 if (cu_headerp->version == 2)
25032 return cu_headerp->addr_size;
25033 else
25034 return cu_headerp->offset_size;
25035 }
25036
25037 /* Return the text offset of the CU. The returned offset comes from
25038 this CU's objfile. If this objfile came from a separate debuginfo
25039 file, then the offset may be different from the corresponding
25040 offset in the parent objfile. */
25041
25042 CORE_ADDR
25043 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25044 {
25045 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25046
25047 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25048 }
25049
25050 /* Return DWARF version number of PER_CU. */
25051
25052 short
25053 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25054 {
25055 return per_cu->dwarf_version;
25056 }
25057
25058 /* Locate the .debug_info compilation unit from CU's objfile which contains
25059 the DIE at OFFSET. Raises an error on failure. */
25060
25061 static struct dwarf2_per_cu_data *
25062 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25063 unsigned int offset_in_dwz,
25064 struct dwarf2_per_objfile *dwarf2_per_objfile)
25065 {
25066 struct dwarf2_per_cu_data *this_cu;
25067 int low, high;
25068 const sect_offset *cu_off;
25069
25070 low = 0;
25071 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25072 while (high > low)
25073 {
25074 struct dwarf2_per_cu_data *mid_cu;
25075 int mid = low + (high - low) / 2;
25076
25077 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25078 cu_off = &mid_cu->sect_off;
25079 if (mid_cu->is_dwz > offset_in_dwz
25080 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25081 high = mid;
25082 else
25083 low = mid + 1;
25084 }
25085 gdb_assert (low == high);
25086 this_cu = dwarf2_per_objfile->all_comp_units[low];
25087 cu_off = &this_cu->sect_off;
25088 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25089 {
25090 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25091 error (_("Dwarf Error: could not find partial DIE containing "
25092 "offset %s [in module %s]"),
25093 sect_offset_str (sect_off),
25094 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25095
25096 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25097 <= sect_off);
25098 return dwarf2_per_objfile->all_comp_units[low-1];
25099 }
25100 else
25101 {
25102 this_cu = dwarf2_per_objfile->all_comp_units[low];
25103 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25104 && sect_off >= this_cu->sect_off + this_cu->length)
25105 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25106 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25107 return this_cu;
25108 }
25109 }
25110
25111 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25112
25113 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25114 : per_cu (per_cu_),
25115 mark (0),
25116 has_loclist (0),
25117 checked_producer (0),
25118 producer_is_gxx_lt_4_6 (0),
25119 producer_is_gcc_lt_4_3 (0),
25120 producer_is_icc_lt_14 (0),
25121 processing_has_namespace_info (0)
25122 {
25123 per_cu->cu = this;
25124 }
25125
25126 /* Destroy a dwarf2_cu. */
25127
25128 dwarf2_cu::~dwarf2_cu ()
25129 {
25130 per_cu->cu = NULL;
25131 }
25132
25133 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25134
25135 static void
25136 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25137 enum language pretend_language)
25138 {
25139 struct attribute *attr;
25140
25141 /* Set the language we're debugging. */
25142 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25143 if (attr)
25144 set_cu_language (DW_UNSND (attr), cu);
25145 else
25146 {
25147 cu->language = pretend_language;
25148 cu->language_defn = language_def (cu->language);
25149 }
25150
25151 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25152 }
25153
25154 /* Increase the age counter on each cached compilation unit, and free
25155 any that are too old. */
25156
25157 static void
25158 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25159 {
25160 struct dwarf2_per_cu_data *per_cu, **last_chain;
25161
25162 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25163 per_cu = dwarf2_per_objfile->read_in_chain;
25164 while (per_cu != NULL)
25165 {
25166 per_cu->cu->last_used ++;
25167 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25168 dwarf2_mark (per_cu->cu);
25169 per_cu = per_cu->cu->read_in_chain;
25170 }
25171
25172 per_cu = dwarf2_per_objfile->read_in_chain;
25173 last_chain = &dwarf2_per_objfile->read_in_chain;
25174 while (per_cu != NULL)
25175 {
25176 struct dwarf2_per_cu_data *next_cu;
25177
25178 next_cu = per_cu->cu->read_in_chain;
25179
25180 if (!per_cu->cu->mark)
25181 {
25182 delete per_cu->cu;
25183 *last_chain = next_cu;
25184 }
25185 else
25186 last_chain = &per_cu->cu->read_in_chain;
25187
25188 per_cu = next_cu;
25189 }
25190 }
25191
25192 /* Remove a single compilation unit from the cache. */
25193
25194 static void
25195 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25196 {
25197 struct dwarf2_per_cu_data *per_cu, **last_chain;
25198 struct dwarf2_per_objfile *dwarf2_per_objfile
25199 = target_per_cu->dwarf2_per_objfile;
25200
25201 per_cu = dwarf2_per_objfile->read_in_chain;
25202 last_chain = &dwarf2_per_objfile->read_in_chain;
25203 while (per_cu != NULL)
25204 {
25205 struct dwarf2_per_cu_data *next_cu;
25206
25207 next_cu = per_cu->cu->read_in_chain;
25208
25209 if (per_cu == target_per_cu)
25210 {
25211 delete per_cu->cu;
25212 per_cu->cu = NULL;
25213 *last_chain = next_cu;
25214 break;
25215 }
25216 else
25217 last_chain = &per_cu->cu->read_in_chain;
25218
25219 per_cu = next_cu;
25220 }
25221 }
25222
25223 /* Cleanup function for the dwarf2_per_objfile data. */
25224
25225 static void
25226 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25227 {
25228 struct dwarf2_per_objfile *dwarf2_per_objfile
25229 = static_cast<struct dwarf2_per_objfile *> (datum);
25230
25231 delete dwarf2_per_objfile;
25232 }
25233
25234 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25235 We store these in a hash table separate from the DIEs, and preserve them
25236 when the DIEs are flushed out of cache.
25237
25238 The CU "per_cu" pointer is needed because offset alone is not enough to
25239 uniquely identify the type. A file may have multiple .debug_types sections,
25240 or the type may come from a DWO file. Furthermore, while it's more logical
25241 to use per_cu->section+offset, with Fission the section with the data is in
25242 the DWO file but we don't know that section at the point we need it.
25243 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25244 because we can enter the lookup routine, get_die_type_at_offset, from
25245 outside this file, and thus won't necessarily have PER_CU->cu.
25246 Fortunately, PER_CU is stable for the life of the objfile. */
25247
25248 struct dwarf2_per_cu_offset_and_type
25249 {
25250 const struct dwarf2_per_cu_data *per_cu;
25251 sect_offset sect_off;
25252 struct type *type;
25253 };
25254
25255 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25256
25257 static hashval_t
25258 per_cu_offset_and_type_hash (const void *item)
25259 {
25260 const struct dwarf2_per_cu_offset_and_type *ofs
25261 = (const struct dwarf2_per_cu_offset_and_type *) item;
25262
25263 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25264 }
25265
25266 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25267
25268 static int
25269 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25270 {
25271 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25272 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25273 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25274 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25275
25276 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25277 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25278 }
25279
25280 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25281 table if necessary. For convenience, return TYPE.
25282
25283 The DIEs reading must have careful ordering to:
25284 * Not cause infite loops trying to read in DIEs as a prerequisite for
25285 reading current DIE.
25286 * Not trying to dereference contents of still incompletely read in types
25287 while reading in other DIEs.
25288 * Enable referencing still incompletely read in types just by a pointer to
25289 the type without accessing its fields.
25290
25291 Therefore caller should follow these rules:
25292 * Try to fetch any prerequisite types we may need to build this DIE type
25293 before building the type and calling set_die_type.
25294 * After building type call set_die_type for current DIE as soon as
25295 possible before fetching more types to complete the current type.
25296 * Make the type as complete as possible before fetching more types. */
25297
25298 static struct type *
25299 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25300 {
25301 struct dwarf2_per_objfile *dwarf2_per_objfile
25302 = cu->per_cu->dwarf2_per_objfile;
25303 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25304 struct objfile *objfile = dwarf2_per_objfile->objfile;
25305 struct attribute *attr;
25306 struct dynamic_prop prop;
25307
25308 /* For Ada types, make sure that the gnat-specific data is always
25309 initialized (if not already set). There are a few types where
25310 we should not be doing so, because the type-specific area is
25311 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25312 where the type-specific area is used to store the floatformat).
25313 But this is not a problem, because the gnat-specific information
25314 is actually not needed for these types. */
25315 if (need_gnat_info (cu)
25316 && TYPE_CODE (type) != TYPE_CODE_FUNC
25317 && TYPE_CODE (type) != TYPE_CODE_FLT
25318 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25319 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25320 && TYPE_CODE (type) != TYPE_CODE_METHOD
25321 && !HAVE_GNAT_AUX_INFO (type))
25322 INIT_GNAT_SPECIFIC (type);
25323
25324 /* Read DW_AT_allocated and set in type. */
25325 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25326 if (attr_form_is_block (attr))
25327 {
25328 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25329 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25330 }
25331 else if (attr != NULL)
25332 {
25333 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25334 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25335 sect_offset_str (die->sect_off));
25336 }
25337
25338 /* Read DW_AT_associated and set in type. */
25339 attr = dwarf2_attr (die, DW_AT_associated, cu);
25340 if (attr_form_is_block (attr))
25341 {
25342 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25343 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25344 }
25345 else if (attr != NULL)
25346 {
25347 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25348 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25349 sect_offset_str (die->sect_off));
25350 }
25351
25352 /* Read DW_AT_data_location and set in type. */
25353 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25354 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25355 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25356
25357 if (dwarf2_per_objfile->die_type_hash == NULL)
25358 {
25359 dwarf2_per_objfile->die_type_hash =
25360 htab_create_alloc_ex (127,
25361 per_cu_offset_and_type_hash,
25362 per_cu_offset_and_type_eq,
25363 NULL,
25364 &objfile->objfile_obstack,
25365 hashtab_obstack_allocate,
25366 dummy_obstack_deallocate);
25367 }
25368
25369 ofs.per_cu = cu->per_cu;
25370 ofs.sect_off = die->sect_off;
25371 ofs.type = type;
25372 slot = (struct dwarf2_per_cu_offset_and_type **)
25373 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25374 if (*slot)
25375 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25376 sect_offset_str (die->sect_off));
25377 *slot = XOBNEW (&objfile->objfile_obstack,
25378 struct dwarf2_per_cu_offset_and_type);
25379 **slot = ofs;
25380 return type;
25381 }
25382
25383 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25384 or return NULL if the die does not have a saved type. */
25385
25386 static struct type *
25387 get_die_type_at_offset (sect_offset sect_off,
25388 struct dwarf2_per_cu_data *per_cu)
25389 {
25390 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25391 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25392
25393 if (dwarf2_per_objfile->die_type_hash == NULL)
25394 return NULL;
25395
25396 ofs.per_cu = per_cu;
25397 ofs.sect_off = sect_off;
25398 slot = ((struct dwarf2_per_cu_offset_and_type *)
25399 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25400 if (slot)
25401 return slot->type;
25402 else
25403 return NULL;
25404 }
25405
25406 /* Look up the type for DIE in CU in die_type_hash,
25407 or return NULL if DIE does not have a saved type. */
25408
25409 static struct type *
25410 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25411 {
25412 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25413 }
25414
25415 /* Add a dependence relationship from CU to REF_PER_CU. */
25416
25417 static void
25418 dwarf2_add_dependence (struct dwarf2_cu *cu,
25419 struct dwarf2_per_cu_data *ref_per_cu)
25420 {
25421 void **slot;
25422
25423 if (cu->dependencies == NULL)
25424 cu->dependencies
25425 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25426 NULL, &cu->comp_unit_obstack,
25427 hashtab_obstack_allocate,
25428 dummy_obstack_deallocate);
25429
25430 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25431 if (*slot == NULL)
25432 *slot = ref_per_cu;
25433 }
25434
25435 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25436 Set the mark field in every compilation unit in the
25437 cache that we must keep because we are keeping CU. */
25438
25439 static int
25440 dwarf2_mark_helper (void **slot, void *data)
25441 {
25442 struct dwarf2_per_cu_data *per_cu;
25443
25444 per_cu = (struct dwarf2_per_cu_data *) *slot;
25445
25446 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25447 reading of the chain. As such dependencies remain valid it is not much
25448 useful to track and undo them during QUIT cleanups. */
25449 if (per_cu->cu == NULL)
25450 return 1;
25451
25452 if (per_cu->cu->mark)
25453 return 1;
25454 per_cu->cu->mark = 1;
25455
25456 if (per_cu->cu->dependencies != NULL)
25457 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25458
25459 return 1;
25460 }
25461
25462 /* Set the mark field in CU and in every other compilation unit in the
25463 cache that we must keep because we are keeping CU. */
25464
25465 static void
25466 dwarf2_mark (struct dwarf2_cu *cu)
25467 {
25468 if (cu->mark)
25469 return;
25470 cu->mark = 1;
25471 if (cu->dependencies != NULL)
25472 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25473 }
25474
25475 static void
25476 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25477 {
25478 while (per_cu)
25479 {
25480 per_cu->cu->mark = 0;
25481 per_cu = per_cu->cu->read_in_chain;
25482 }
25483 }
25484
25485 /* Trivial hash function for partial_die_info: the hash value of a DIE
25486 is its offset in .debug_info for this objfile. */
25487
25488 static hashval_t
25489 partial_die_hash (const void *item)
25490 {
25491 const struct partial_die_info *part_die
25492 = (const struct partial_die_info *) item;
25493
25494 return to_underlying (part_die->sect_off);
25495 }
25496
25497 /* Trivial comparison function for partial_die_info structures: two DIEs
25498 are equal if they have the same offset. */
25499
25500 static int
25501 partial_die_eq (const void *item_lhs, const void *item_rhs)
25502 {
25503 const struct partial_die_info *part_die_lhs
25504 = (const struct partial_die_info *) item_lhs;
25505 const struct partial_die_info *part_die_rhs
25506 = (const struct partial_die_info *) item_rhs;
25507
25508 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25509 }
25510
25511 struct cmd_list_element *set_dwarf_cmdlist;
25512 struct cmd_list_element *show_dwarf_cmdlist;
25513
25514 static void
25515 set_dwarf_cmd (const char *args, int from_tty)
25516 {
25517 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25518 gdb_stdout);
25519 }
25520
25521 static void
25522 show_dwarf_cmd (const char *args, int from_tty)
25523 {
25524 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25525 }
25526
25527 int dwarf_always_disassemble;
25528
25529 static void
25530 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25531 struct cmd_list_element *c, const char *value)
25532 {
25533 fprintf_filtered (file,
25534 _("Whether to always disassemble "
25535 "DWARF expressions is %s.\n"),
25536 value);
25537 }
25538
25539 static void
25540 show_check_physname (struct ui_file *file, int from_tty,
25541 struct cmd_list_element *c, const char *value)
25542 {
25543 fprintf_filtered (file,
25544 _("Whether to check \"physname\" is %s.\n"),
25545 value);
25546 }
25547
25548 void
25549 _initialize_dwarf2_read (void)
25550 {
25551 dwarf2_objfile_data_key
25552 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25553
25554 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25555 Set DWARF specific variables.\n\
25556 Configure DWARF variables such as the cache size"),
25557 &set_dwarf_cmdlist, "maintenance set dwarf ",
25558 0/*allow-unknown*/, &maintenance_set_cmdlist);
25559
25560 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25561 Show DWARF specific variables\n\
25562 Show DWARF variables such as the cache size"),
25563 &show_dwarf_cmdlist, "maintenance show dwarf ",
25564 0/*allow-unknown*/, &maintenance_show_cmdlist);
25565
25566 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25567 &dwarf_max_cache_age, _("\
25568 Set the upper bound on the age of cached DWARF compilation units."), _("\
25569 Show the upper bound on the age of cached DWARF compilation units."), _("\
25570 A higher limit means that cached compilation units will be stored\n\
25571 in memory longer, and more total memory will be used. Zero disables\n\
25572 caching, which can slow down startup."),
25573 NULL,
25574 show_dwarf_max_cache_age,
25575 &set_dwarf_cmdlist,
25576 &show_dwarf_cmdlist);
25577
25578 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25579 &dwarf_always_disassemble, _("\
25580 Set whether `info address' always disassembles DWARF expressions."), _("\
25581 Show whether `info address' always disassembles DWARF expressions."), _("\
25582 When enabled, DWARF expressions are always printed in an assembly-like\n\
25583 syntax. When disabled, expressions will be printed in a more\n\
25584 conversational style, when possible."),
25585 NULL,
25586 show_dwarf_always_disassemble,
25587 &set_dwarf_cmdlist,
25588 &show_dwarf_cmdlist);
25589
25590 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25591 Set debugging of the DWARF reader."), _("\
25592 Show debugging of the DWARF reader."), _("\
25593 When enabled (non-zero), debugging messages are printed during DWARF\n\
25594 reading and symtab expansion. A value of 1 (one) provides basic\n\
25595 information. A value greater than 1 provides more verbose information."),
25596 NULL,
25597 NULL,
25598 &setdebuglist, &showdebuglist);
25599
25600 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25601 Set debugging of the DWARF DIE reader."), _("\
25602 Show debugging of the DWARF DIE reader."), _("\
25603 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25604 The value is the maximum depth to print."),
25605 NULL,
25606 NULL,
25607 &setdebuglist, &showdebuglist);
25608
25609 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25610 Set debugging of the dwarf line reader."), _("\
25611 Show debugging of the dwarf line reader."), _("\
25612 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25613 A value of 1 (one) provides basic information.\n\
25614 A value greater than 1 provides more verbose information."),
25615 NULL,
25616 NULL,
25617 &setdebuglist, &showdebuglist);
25618
25619 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25620 Set cross-checking of \"physname\" code against demangler."), _("\
25621 Show cross-checking of \"physname\" code against demangler."), _("\
25622 When enabled, GDB's internal \"physname\" code is checked against\n\
25623 the demangler."),
25624 NULL, show_check_physname,
25625 &setdebuglist, &showdebuglist);
25626
25627 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25628 no_class, &use_deprecated_index_sections, _("\
25629 Set whether to use deprecated gdb_index sections."), _("\
25630 Show whether to use deprecated gdb_index sections."), _("\
25631 When enabled, deprecated .gdb_index sections are used anyway.\n\
25632 Normally they are ignored either because of a missing feature or\n\
25633 performance issue.\n\
25634 Warning: This option must be enabled before gdb reads the file."),
25635 NULL,
25636 NULL,
25637 &setlist, &showlist);
25638
25639 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25640 &dwarf2_locexpr_funcs);
25641 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25642 &dwarf2_loclist_funcs);
25643
25644 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25645 &dwarf2_block_frame_base_locexpr_funcs);
25646 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25647 &dwarf2_block_frame_base_loclist_funcs);
25648
25649 #if GDB_SELF_TEST
25650 selftests::register_test ("dw2_expand_symtabs_matching",
25651 selftests::dw2_expand_symtabs_matching::run_test);
25652 #endif
25653 }
This page took 0.568359 seconds and 4 git commands to generate.