gdb: remove unused includes from dwarf2read.c
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "dwarf2expr.h"
49 #include "dwarf2loc.h"
50 #include "cp-support.h"
51 #include "hashtab.h"
52 #include "command.h"
53 #include "gdbcmd.h"
54 #include "block.h"
55 #include "addrmap.h"
56 #include "typeprint.h"
57 #include "psympriv.h"
58 #include "gdbsupport/vec.h"
59 #include "c-lang.h"
60 #include "go-lang.h"
61 #include "valprint.h"
62 #include "gdbcore.h" /* for gnutarget */
63 #include "gdb/gdb-index.h"
64 #include "gdb_bfd.h"
65 #include "f-lang.h"
66 #include "source.h"
67 #include "build-id.h"
68 #include "namespace.h"
69 #include "gdbsupport/function-view.h"
70 #include "gdbsupport/gdb_optional.h"
71 #include "gdbsupport/underlying.h"
72 #include "gdbsupport/hash_enum.h"
73 #include "filename-seen-cache.h"
74 #include "producer.h"
75 #include <fcntl.h>
76 #include <algorithm>
77 #include <unordered_map>
78 #include "gdbsupport/selftest.h"
79 #include "rust-lang.h"
80 #include "gdbsupport/pathstuff.h"
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf_die_debug. */
85 static unsigned int dwarf_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf_die_debug = 0;
89
90 /* When non-zero, dump line number entries as they are read in. */
91 static unsigned int dwarf_line_debug = 0;
92
93 /* When true, cross-check physname against demangler. */
94 static bool check_physname = false;
95
96 /* When true, do not reject deprecated .gdb_index sections. */
97 static bool use_deprecated_index_sections = false;
98
99 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
100
101 /* The "aclass" indices for various kinds of computed DWARF symbols. */
102
103 static int dwarf2_locexpr_index;
104 static int dwarf2_loclist_index;
105 static int dwarf2_locexpr_block_index;
106 static int dwarf2_loclist_block_index;
107
108 /* An index into a (C++) symbol name component in a symbol name as
109 recorded in the mapped_index's symbol table. For each C++ symbol
110 in the symbol table, we record one entry for the start of each
111 component in the symbol in a table of name components, and then
112 sort the table, in order to be able to binary search symbol names,
113 ignoring leading namespaces, both completion and regular look up.
114 For example, for symbol "A::B::C", we'll have an entry that points
115 to "A::B::C", another that points to "B::C", and another for "C".
116 Note that function symbols in GDB index have no parameter
117 information, just the function/method names. You can convert a
118 name_component to a "const char *" using the
119 'mapped_index::symbol_name_at(offset_type)' method. */
120
121 struct name_component
122 {
123 /* Offset in the symbol name where the component starts. Stored as
124 a (32-bit) offset instead of a pointer to save memory and improve
125 locality on 64-bit architectures. */
126 offset_type name_offset;
127
128 /* The symbol's index in the symbol and constant pool tables of a
129 mapped_index. */
130 offset_type idx;
131 };
132
133 /* Base class containing bits shared by both .gdb_index and
134 .debug_name indexes. */
135
136 struct mapped_index_base
137 {
138 mapped_index_base () = default;
139 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
140
141 /* The name_component table (a sorted vector). See name_component's
142 description above. */
143 std::vector<name_component> name_components;
144
145 /* How NAME_COMPONENTS is sorted. */
146 enum case_sensitivity name_components_casing;
147
148 /* Return the number of names in the symbol table. */
149 virtual size_t symbol_name_count () const = 0;
150
151 /* Get the name of the symbol at IDX in the symbol table. */
152 virtual const char *symbol_name_at (offset_type idx) const = 0;
153
154 /* Return whether the name at IDX in the symbol table should be
155 ignored. */
156 virtual bool symbol_name_slot_invalid (offset_type idx) const
157 {
158 return false;
159 }
160
161 /* Build the symbol name component sorted vector, if we haven't
162 yet. */
163 void build_name_components ();
164
165 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
166 possible matches for LN_NO_PARAMS in the name component
167 vector. */
168 std::pair<std::vector<name_component>::const_iterator,
169 std::vector<name_component>::const_iterator>
170 find_name_components_bounds (const lookup_name_info &ln_no_params,
171 enum language lang) const;
172
173 /* Prevent deleting/destroying via a base class pointer. */
174 protected:
175 ~mapped_index_base() = default;
176 };
177
178 /* A description of the mapped index. The file format is described in
179 a comment by the code that writes the index. */
180 struct mapped_index final : public mapped_index_base
181 {
182 /* A slot/bucket in the symbol table hash. */
183 struct symbol_table_slot
184 {
185 const offset_type name;
186 const offset_type vec;
187 };
188
189 /* Index data format version. */
190 int version = 0;
191
192 /* The address table data. */
193 gdb::array_view<const gdb_byte> address_table;
194
195 /* The symbol table, implemented as a hash table. */
196 gdb::array_view<symbol_table_slot> symbol_table;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool = nullptr;
200
201 bool symbol_name_slot_invalid (offset_type idx) const override
202 {
203 const auto &bucket = this->symbol_table[idx];
204 return bucket.name == 0 && bucket.vec == 0;
205 }
206
207 /* Convenience method to get at the name of the symbol at IDX in the
208 symbol table. */
209 const char *symbol_name_at (offset_type idx) const override
210 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
211
212 size_t symbol_name_count () const override
213 { return this->symbol_table.size (); }
214 };
215
216 /* A description of the mapped .debug_names.
217 Uninitialized map has CU_COUNT 0. */
218 struct mapped_debug_names final : public mapped_index_base
219 {
220 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
221 : dwarf2_per_objfile (dwarf2_per_objfile_)
222 {}
223
224 struct dwarf2_per_objfile *dwarf2_per_objfile;
225 bfd_endian dwarf5_byte_order;
226 bool dwarf5_is_dwarf64;
227 bool augmentation_is_gdb;
228 uint8_t offset_size;
229 uint32_t cu_count = 0;
230 uint32_t tu_count, bucket_count, name_count;
231 const gdb_byte *cu_table_reordered, *tu_table_reordered;
232 const uint32_t *bucket_table_reordered, *hash_table_reordered;
233 const gdb_byte *name_table_string_offs_reordered;
234 const gdb_byte *name_table_entry_offs_reordered;
235 const gdb_byte *entry_pool;
236
237 struct index_val
238 {
239 ULONGEST dwarf_tag;
240 struct attr
241 {
242 /* Attribute name DW_IDX_*. */
243 ULONGEST dw_idx;
244
245 /* Attribute form DW_FORM_*. */
246 ULONGEST form;
247
248 /* Value if FORM is DW_FORM_implicit_const. */
249 LONGEST implicit_const;
250 };
251 std::vector<attr> attr_vec;
252 };
253
254 std::unordered_map<ULONGEST, index_val> abbrev_map;
255
256 const char *namei_to_name (uint32_t namei) const;
257
258 /* Implementation of the mapped_index_base virtual interface, for
259 the name_components cache. */
260
261 const char *symbol_name_at (offset_type idx) const override
262 { return namei_to_name (idx); }
263
264 size_t symbol_name_count () const override
265 { return this->name_count; }
266 };
267
268 /* See dwarf2read.h. */
269
270 dwarf2_per_objfile *
271 get_dwarf2_per_objfile (struct objfile *objfile)
272 {
273 return dwarf2_objfile_data_key.get (objfile);
274 }
275
276 /* Default names of the debugging sections. */
277
278 /* Note that if the debugging section has been compressed, it might
279 have a name like .zdebug_info. */
280
281 static const struct dwarf2_debug_sections dwarf2_elf_names =
282 {
283 { ".debug_info", ".zdebug_info" },
284 { ".debug_abbrev", ".zdebug_abbrev" },
285 { ".debug_line", ".zdebug_line" },
286 { ".debug_loc", ".zdebug_loc" },
287 { ".debug_loclists", ".zdebug_loclists" },
288 { ".debug_macinfo", ".zdebug_macinfo" },
289 { ".debug_macro", ".zdebug_macro" },
290 { ".debug_str", ".zdebug_str" },
291 { ".debug_line_str", ".zdebug_line_str" },
292 { ".debug_ranges", ".zdebug_ranges" },
293 { ".debug_rnglists", ".zdebug_rnglists" },
294 { ".debug_types", ".zdebug_types" },
295 { ".debug_addr", ".zdebug_addr" },
296 { ".debug_frame", ".zdebug_frame" },
297 { ".eh_frame", NULL },
298 { ".gdb_index", ".zgdb_index" },
299 { ".debug_names", ".zdebug_names" },
300 { ".debug_aranges", ".zdebug_aranges" },
301 23
302 };
303
304 /* List of DWO/DWP sections. */
305
306 static const struct dwop_section_names
307 {
308 struct dwarf2_section_names abbrev_dwo;
309 struct dwarf2_section_names info_dwo;
310 struct dwarf2_section_names line_dwo;
311 struct dwarf2_section_names loc_dwo;
312 struct dwarf2_section_names loclists_dwo;
313 struct dwarf2_section_names macinfo_dwo;
314 struct dwarf2_section_names macro_dwo;
315 struct dwarf2_section_names str_dwo;
316 struct dwarf2_section_names str_offsets_dwo;
317 struct dwarf2_section_names types_dwo;
318 struct dwarf2_section_names cu_index;
319 struct dwarf2_section_names tu_index;
320 }
321 dwop_section_names =
322 {
323 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
324 { ".debug_info.dwo", ".zdebug_info.dwo" },
325 { ".debug_line.dwo", ".zdebug_line.dwo" },
326 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
327 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
328 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
329 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
330 { ".debug_str.dwo", ".zdebug_str.dwo" },
331 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
332 { ".debug_types.dwo", ".zdebug_types.dwo" },
333 { ".debug_cu_index", ".zdebug_cu_index" },
334 { ".debug_tu_index", ".zdebug_tu_index" },
335 };
336
337 /* local data types */
338
339 /* The data in a compilation unit header, after target2host
340 translation, looks like this. */
341 struct comp_unit_head
342 {
343 unsigned int length;
344 short version;
345 unsigned char addr_size;
346 unsigned char signed_addr_p;
347 sect_offset abbrev_sect_off;
348
349 /* Size of file offsets; either 4 or 8. */
350 unsigned int offset_size;
351
352 /* Size of the length field; either 4 or 12. */
353 unsigned int initial_length_size;
354
355 enum dwarf_unit_type unit_type;
356
357 /* Offset to the first byte of this compilation unit header in the
358 .debug_info section, for resolving relative reference dies. */
359 sect_offset sect_off;
360
361 /* Offset to first die in this cu from the start of the cu.
362 This will be the first byte following the compilation unit header. */
363 cu_offset first_die_cu_offset;
364
365
366 /* 64-bit signature of this unit. For type units, it denotes the signature of
367 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
368 Also used in DWARF 5, to denote the dwo id when the unit type is
369 DW_UT_skeleton or DW_UT_split_compile. */
370 ULONGEST signature;
371
372 /* For types, offset in the type's DIE of the type defined by this TU. */
373 cu_offset type_cu_offset_in_tu;
374 };
375
376 /* Type used for delaying computation of method physnames.
377 See comments for compute_delayed_physnames. */
378 struct delayed_method_info
379 {
380 /* The type to which the method is attached, i.e., its parent class. */
381 struct type *type;
382
383 /* The index of the method in the type's function fieldlists. */
384 int fnfield_index;
385
386 /* The index of the method in the fieldlist. */
387 int index;
388
389 /* The name of the DIE. */
390 const char *name;
391
392 /* The DIE associated with this method. */
393 struct die_info *die;
394 };
395
396 /* Internal state when decoding a particular compilation unit. */
397 struct dwarf2_cu
398 {
399 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
400 ~dwarf2_cu ();
401
402 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
403
404 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
405 Create the set of symtabs used by this TU, or if this TU is sharing
406 symtabs with another TU and the symtabs have already been created
407 then restore those symtabs in the line header.
408 We don't need the pc/line-number mapping for type units. */
409 void setup_type_unit_groups (struct die_info *die);
410
411 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
412 buildsym_compunit constructor. */
413 struct compunit_symtab *start_symtab (const char *name,
414 const char *comp_dir,
415 CORE_ADDR low_pc);
416
417 /* Reset the builder. */
418 void reset_builder () { m_builder.reset (); }
419
420 /* The header of the compilation unit. */
421 struct comp_unit_head header {};
422
423 /* Base address of this compilation unit. */
424 CORE_ADDR base_address = 0;
425
426 /* Non-zero if base_address has been set. */
427 int base_known = 0;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base attribute if present, zero otherwise
512 (zero is a valid value though).
513 Note this value comes from the Fission stub CU/TU's DIE. */
514 ULONGEST addr_base = 0;
515
516 /* The DW_AT_ranges_base attribute if present, zero otherwise
517 (zero is a valid value though).
518 Note this value comes from the Fission stub CU/TU's DIE.
519 Also note that the value is zero in the non-DWO case so this value can
520 be used without needing to know whether DWO files are in use or not.
521 N.B. This does not apply to DW_AT_ranges appearing in
522 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
523 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
524 DW_AT_ranges_base *would* have to be applied, and we'd have to care
525 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
526 ULONGEST ranges_base = 0;
527
528 /* When reading debug info generated by older versions of rustc, we
529 have to rewrite some union types to be struct types with a
530 variant part. This rewriting must be done after the CU is fully
531 read in, because otherwise at the point of rewriting some struct
532 type might not have been fully processed. So, we keep a list of
533 all such types here and process them after expansion. */
534 std::vector<struct type *> rust_unions;
535
536 /* Mark used when releasing cached dies. */
537 bool mark : 1;
538
539 /* This CU references .debug_loc. See the symtab->locations_valid field.
540 This test is imperfect as there may exist optimized debug code not using
541 any location list and still facing inlining issues if handled as
542 unoptimized code. For a future better test see GCC PR other/32998. */
543 bool has_loclist : 1;
544
545 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
546 if all the producer_is_* fields are valid. This information is cached
547 because profiling CU expansion showed excessive time spent in
548 producer_is_gxx_lt_4_6. */
549 bool checked_producer : 1;
550 bool producer_is_gxx_lt_4_6 : 1;
551 bool producer_is_gcc_lt_4_3 : 1;
552 bool producer_is_icc : 1;
553 bool producer_is_icc_lt_14 : 1;
554 bool producer_is_codewarrior : 1;
555
556 /* When true, the file that we're processing is known to have
557 debugging info for C++ namespaces. GCC 3.3.x did not produce
558 this information, but later versions do. */
559
560 bool processing_has_namespace_info : 1;
561
562 struct partial_die_info *find_partial_die (sect_offset sect_off);
563
564 /* If this CU was inherited by another CU (via specification,
565 abstract_origin, etc), this is the ancestor CU. */
566 dwarf2_cu *ancestor;
567
568 /* Get the buildsym_compunit for this CU. */
569 buildsym_compunit *get_builder ()
570 {
571 /* If this CU has a builder associated with it, use that. */
572 if (m_builder != nullptr)
573 return m_builder.get ();
574
575 /* Otherwise, search ancestors for a valid builder. */
576 if (ancestor != nullptr)
577 return ancestor->get_builder ();
578
579 return nullptr;
580 }
581 };
582
583 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
584 This includes type_unit_group and quick_file_names. */
585
586 struct stmt_list_hash
587 {
588 /* The DWO unit this table is from or NULL if there is none. */
589 struct dwo_unit *dwo_unit;
590
591 /* Offset in .debug_line or .debug_line.dwo. */
592 sect_offset line_sect_off;
593 };
594
595 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
596 an object of this type. */
597
598 struct type_unit_group
599 {
600 /* dwarf2read.c's main "handle" on a TU symtab.
601 To simplify things we create an artificial CU that "includes" all the
602 type units using this stmt_list so that the rest of the code still has
603 a "per_cu" handle on the symtab.
604 This PER_CU is recognized by having no section. */
605 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
606 struct dwarf2_per_cu_data per_cu;
607
608 /* The TUs that share this DW_AT_stmt_list entry.
609 This is added to while parsing type units to build partial symtabs,
610 and is deleted afterwards and not used again. */
611 std::vector<signatured_type *> *tus;
612
613 /* The compunit symtab.
614 Type units in a group needn't all be defined in the same source file,
615 so we create an essentially anonymous symtab as the compunit symtab. */
616 struct compunit_symtab *compunit_symtab;
617
618 /* The data used to construct the hash key. */
619 struct stmt_list_hash hash;
620
621 /* The number of symtabs from the line header.
622 The value here must match line_header.num_file_names. */
623 unsigned int num_symtabs;
624
625 /* The symbol tables for this TU (obtained from the files listed in
626 DW_AT_stmt_list).
627 WARNING: The order of entries here must match the order of entries
628 in the line header. After the first TU using this type_unit_group, the
629 line header for the subsequent TUs is recreated from this. This is done
630 because we need to use the same symtabs for each TU using the same
631 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
632 there's no guarantee the line header doesn't have duplicate entries. */
633 struct symtab **symtabs;
634 };
635
636 /* These sections are what may appear in a (real or virtual) DWO file. */
637
638 struct dwo_sections
639 {
640 struct dwarf2_section_info abbrev;
641 struct dwarf2_section_info line;
642 struct dwarf2_section_info loc;
643 struct dwarf2_section_info loclists;
644 struct dwarf2_section_info macinfo;
645 struct dwarf2_section_info macro;
646 struct dwarf2_section_info str;
647 struct dwarf2_section_info str_offsets;
648 /* In the case of a virtual DWO file, these two are unused. */
649 struct dwarf2_section_info info;
650 std::vector<dwarf2_section_info> types;
651 };
652
653 /* CUs/TUs in DWP/DWO files. */
654
655 struct dwo_unit
656 {
657 /* Backlink to the containing struct dwo_file. */
658 struct dwo_file *dwo_file;
659
660 /* The "id" that distinguishes this CU/TU.
661 .debug_info calls this "dwo_id", .debug_types calls this "signature".
662 Since signatures came first, we stick with it for consistency. */
663 ULONGEST signature;
664
665 /* The section this CU/TU lives in, in the DWO file. */
666 struct dwarf2_section_info *section;
667
668 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
669 sect_offset sect_off;
670 unsigned int length;
671
672 /* For types, offset in the type's DIE of the type defined by this TU. */
673 cu_offset type_offset_in_tu;
674 };
675
676 /* include/dwarf2.h defines the DWP section codes.
677 It defines a max value but it doesn't define a min value, which we
678 use for error checking, so provide one. */
679
680 enum dwp_v2_section_ids
681 {
682 DW_SECT_MIN = 1
683 };
684
685 /* Data for one DWO file.
686
687 This includes virtual DWO files (a virtual DWO file is a DWO file as it
688 appears in a DWP file). DWP files don't really have DWO files per se -
689 comdat folding of types "loses" the DWO file they came from, and from
690 a high level view DWP files appear to contain a mass of random types.
691 However, to maintain consistency with the non-DWP case we pretend DWP
692 files contain virtual DWO files, and we assign each TU with one virtual
693 DWO file (generally based on the line and abbrev section offsets -
694 a heuristic that seems to work in practice). */
695
696 struct dwo_file
697 {
698 dwo_file () = default;
699 DISABLE_COPY_AND_ASSIGN (dwo_file);
700
701 /* The DW_AT_GNU_dwo_name attribute.
702 For virtual DWO files the name is constructed from the section offsets
703 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
704 from related CU+TUs. */
705 const char *dwo_name = nullptr;
706
707 /* The DW_AT_comp_dir attribute. */
708 const char *comp_dir = nullptr;
709
710 /* The bfd, when the file is open. Otherwise this is NULL.
711 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
712 gdb_bfd_ref_ptr dbfd;
713
714 /* The sections that make up this DWO file.
715 Remember that for virtual DWO files in DWP V2, these are virtual
716 sections (for lack of a better name). */
717 struct dwo_sections sections {};
718
719 /* The CUs in the file.
720 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
721 an extension to handle LLVM's Link Time Optimization output (where
722 multiple source files may be compiled into a single object/dwo pair). */
723 htab_t cus {};
724
725 /* Table of TUs in the file.
726 Each element is a struct dwo_unit. */
727 htab_t tus {};
728 };
729
730 /* These sections are what may appear in a DWP file. */
731
732 struct dwp_sections
733 {
734 /* These are used by both DWP version 1 and 2. */
735 struct dwarf2_section_info str;
736 struct dwarf2_section_info cu_index;
737 struct dwarf2_section_info tu_index;
738
739 /* These are only used by DWP version 2 files.
740 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
741 sections are referenced by section number, and are not recorded here.
742 In DWP version 2 there is at most one copy of all these sections, each
743 section being (effectively) comprised of the concatenation of all of the
744 individual sections that exist in the version 1 format.
745 To keep the code simple we treat each of these concatenated pieces as a
746 section itself (a virtual section?). */
747 struct dwarf2_section_info abbrev;
748 struct dwarf2_section_info info;
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
753 struct dwarf2_section_info str_offsets;
754 struct dwarf2_section_info types;
755 };
756
757 /* These sections are what may appear in a virtual DWO file in DWP version 1.
758 A virtual DWO file is a DWO file as it appears in a DWP file. */
759
760 struct virtual_v1_dwo_sections
761 {
762 struct dwarf2_section_info abbrev;
763 struct dwarf2_section_info line;
764 struct dwarf2_section_info loc;
765 struct dwarf2_section_info macinfo;
766 struct dwarf2_section_info macro;
767 struct dwarf2_section_info str_offsets;
768 /* Each DWP hash table entry records one CU or one TU.
769 That is recorded here, and copied to dwo_unit.section. */
770 struct dwarf2_section_info info_or_types;
771 };
772
773 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
774 In version 2, the sections of the DWO files are concatenated together
775 and stored in one section of that name. Thus each ELF section contains
776 several "virtual" sections. */
777
778 struct virtual_v2_dwo_sections
779 {
780 bfd_size_type abbrev_offset;
781 bfd_size_type abbrev_size;
782
783 bfd_size_type line_offset;
784 bfd_size_type line_size;
785
786 bfd_size_type loc_offset;
787 bfd_size_type loc_size;
788
789 bfd_size_type macinfo_offset;
790 bfd_size_type macinfo_size;
791
792 bfd_size_type macro_offset;
793 bfd_size_type macro_size;
794
795 bfd_size_type str_offsets_offset;
796 bfd_size_type str_offsets_size;
797
798 /* Each DWP hash table entry records one CU or one TU.
799 That is recorded here, and copied to dwo_unit.section. */
800 bfd_size_type info_or_types_offset;
801 bfd_size_type info_or_types_size;
802 };
803
804 /* Contents of DWP hash tables. */
805
806 struct dwp_hash_table
807 {
808 uint32_t version, nr_columns;
809 uint32_t nr_units, nr_slots;
810 const gdb_byte *hash_table, *unit_table;
811 union
812 {
813 struct
814 {
815 const gdb_byte *indices;
816 } v1;
817 struct
818 {
819 /* This is indexed by column number and gives the id of the section
820 in that column. */
821 #define MAX_NR_V2_DWO_SECTIONS \
822 (1 /* .debug_info or .debug_types */ \
823 + 1 /* .debug_abbrev */ \
824 + 1 /* .debug_line */ \
825 + 1 /* .debug_loc */ \
826 + 1 /* .debug_str_offsets */ \
827 + 1 /* .debug_macro or .debug_macinfo */)
828 int section_ids[MAX_NR_V2_DWO_SECTIONS];
829 const gdb_byte *offsets;
830 const gdb_byte *sizes;
831 } v2;
832 } section_pool;
833 };
834
835 /* Data for one DWP file. */
836
837 struct dwp_file
838 {
839 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
840 : name (name_),
841 dbfd (std::move (abfd))
842 {
843 }
844
845 /* Name of the file. */
846 const char *name;
847
848 /* File format version. */
849 int version = 0;
850
851 /* The bfd. */
852 gdb_bfd_ref_ptr dbfd;
853
854 /* Section info for this file. */
855 struct dwp_sections sections {};
856
857 /* Table of CUs in the file. */
858 const struct dwp_hash_table *cus = nullptr;
859
860 /* Table of TUs in the file. */
861 const struct dwp_hash_table *tus = nullptr;
862
863 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
864 htab_t loaded_cus {};
865 htab_t loaded_tus {};
866
867 /* Table to map ELF section numbers to their sections.
868 This is only needed for the DWP V1 file format. */
869 unsigned int num_sections = 0;
870 asection **elf_sections = nullptr;
871 };
872
873 /* Struct used to pass misc. parameters to read_die_and_children, et
874 al. which are used for both .debug_info and .debug_types dies.
875 All parameters here are unchanging for the life of the call. This
876 struct exists to abstract away the constant parameters of die reading. */
877
878 struct die_reader_specs
879 {
880 /* The bfd of die_section. */
881 bfd* abfd;
882
883 /* The CU of the DIE we are parsing. */
884 struct dwarf2_cu *cu;
885
886 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
887 struct dwo_file *dwo_file;
888
889 /* The section the die comes from.
890 This is either .debug_info or .debug_types, or the .dwo variants. */
891 struct dwarf2_section_info *die_section;
892
893 /* die_section->buffer. */
894 const gdb_byte *buffer;
895
896 /* The end of the buffer. */
897 const gdb_byte *buffer_end;
898
899 /* The value of the DW_AT_comp_dir attribute. */
900 const char *comp_dir;
901
902 /* The abbreviation table to use when reading the DIEs. */
903 struct abbrev_table *abbrev_table;
904 };
905
906 /* Type of function passed to init_cutu_and_read_dies, et.al. */
907 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
908 const gdb_byte *info_ptr,
909 struct die_info *comp_unit_die,
910 int has_children,
911 void *data);
912
913 /* A 1-based directory index. This is a strong typedef to prevent
914 accidentally using a directory index as a 0-based index into an
915 array/vector. */
916 enum class dir_index : unsigned int {};
917
918 /* Likewise, a 1-based file name index. */
919 enum class file_name_index : unsigned int {};
920
921 struct file_entry
922 {
923 file_entry () = default;
924
925 file_entry (const char *name_, dir_index d_index_,
926 unsigned int mod_time_, unsigned int length_)
927 : name (name_),
928 d_index (d_index_),
929 mod_time (mod_time_),
930 length (length_)
931 {}
932
933 /* Return the include directory at D_INDEX stored in LH. Returns
934 NULL if D_INDEX is out of bounds. */
935 const char *include_dir (const line_header *lh) const;
936
937 /* The file name. Note this is an observing pointer. The memory is
938 owned by debug_line_buffer. */
939 const char *name {};
940
941 /* The directory index (1-based). */
942 dir_index d_index {};
943
944 unsigned int mod_time {};
945
946 unsigned int length {};
947
948 /* True if referenced by the Line Number Program. */
949 bool included_p {};
950
951 /* The associated symbol table, if any. */
952 struct symtab *symtab {};
953 };
954
955 /* The line number information for a compilation unit (found in the
956 .debug_line section) begins with a "statement program header",
957 which contains the following information. */
958 struct line_header
959 {
960 line_header ()
961 : offset_in_dwz {}
962 {}
963
964 /* Add an entry to the include directory table. */
965 void add_include_dir (const char *include_dir);
966
967 /* Add an entry to the file name table. */
968 void add_file_name (const char *name, dir_index d_index,
969 unsigned int mod_time, unsigned int length);
970
971 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
972 is out of bounds. */
973 const char *include_dir_at (dir_index index) const
974 {
975 /* Convert directory index number (1-based) to vector index
976 (0-based). */
977 size_t vec_index = to_underlying (index) - 1;
978
979 if (vec_index >= include_dirs.size ())
980 return NULL;
981 return include_dirs[vec_index];
982 }
983
984 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
985 is out of bounds. */
986 file_entry *file_name_at (file_name_index index)
987 {
988 /* Convert file name index number (1-based) to vector index
989 (0-based). */
990 size_t vec_index = to_underlying (index) - 1;
991
992 if (vec_index >= file_names.size ())
993 return NULL;
994 return &file_names[vec_index];
995 }
996
997 /* Offset of line number information in .debug_line section. */
998 sect_offset sect_off {};
999
1000 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1001 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1002
1003 unsigned int total_length {};
1004 unsigned short version {};
1005 unsigned int header_length {};
1006 unsigned char minimum_instruction_length {};
1007 unsigned char maximum_ops_per_instruction {};
1008 unsigned char default_is_stmt {};
1009 int line_base {};
1010 unsigned char line_range {};
1011 unsigned char opcode_base {};
1012
1013 /* standard_opcode_lengths[i] is the number of operands for the
1014 standard opcode whose value is i. This means that
1015 standard_opcode_lengths[0] is unused, and the last meaningful
1016 element is standard_opcode_lengths[opcode_base - 1]. */
1017 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1018
1019 /* The include_directories table. Note these are observing
1020 pointers. The memory is owned by debug_line_buffer. */
1021 std::vector<const char *> include_dirs;
1022
1023 /* The file_names table. */
1024 std::vector<file_entry> file_names;
1025
1026 /* The start and end of the statement program following this
1027 header. These point into dwarf2_per_objfile->line_buffer. */
1028 const gdb_byte *statement_program_start {}, *statement_program_end {};
1029 };
1030
1031 typedef std::unique_ptr<line_header> line_header_up;
1032
1033 const char *
1034 file_entry::include_dir (const line_header *lh) const
1035 {
1036 return lh->include_dir_at (d_index);
1037 }
1038
1039 /* When we construct a partial symbol table entry we only
1040 need this much information. */
1041 struct partial_die_info : public allocate_on_obstack
1042 {
1043 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1044
1045 /* Disable assign but still keep copy ctor, which is needed
1046 load_partial_dies. */
1047 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1048
1049 /* Adjust the partial die before generating a symbol for it. This
1050 function may set the is_external flag or change the DIE's
1051 name. */
1052 void fixup (struct dwarf2_cu *cu);
1053
1054 /* Read a minimal amount of information into the minimal die
1055 structure. */
1056 const gdb_byte *read (const struct die_reader_specs *reader,
1057 const struct abbrev_info &abbrev,
1058 const gdb_byte *info_ptr);
1059
1060 /* Offset of this DIE. */
1061 const sect_offset sect_off;
1062
1063 /* DWARF-2 tag for this DIE. */
1064 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1065
1066 /* Assorted flags describing the data found in this DIE. */
1067 const unsigned int has_children : 1;
1068
1069 unsigned int is_external : 1;
1070 unsigned int is_declaration : 1;
1071 unsigned int has_type : 1;
1072 unsigned int has_specification : 1;
1073 unsigned int has_pc_info : 1;
1074 unsigned int may_be_inlined : 1;
1075
1076 /* This DIE has been marked DW_AT_main_subprogram. */
1077 unsigned int main_subprogram : 1;
1078
1079 /* Flag set if the SCOPE field of this structure has been
1080 computed. */
1081 unsigned int scope_set : 1;
1082
1083 /* Flag set if the DIE has a byte_size attribute. */
1084 unsigned int has_byte_size : 1;
1085
1086 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1087 unsigned int has_const_value : 1;
1088
1089 /* Flag set if any of the DIE's children are template arguments. */
1090 unsigned int has_template_arguments : 1;
1091
1092 /* Flag set if fixup has been called on this die. */
1093 unsigned int fixup_called : 1;
1094
1095 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1096 unsigned int is_dwz : 1;
1097
1098 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1099 unsigned int spec_is_dwz : 1;
1100
1101 /* The name of this DIE. Normally the value of DW_AT_name, but
1102 sometimes a default name for unnamed DIEs. */
1103 const char *name = nullptr;
1104
1105 /* The linkage name, if present. */
1106 const char *linkage_name = nullptr;
1107
1108 /* The scope to prepend to our children. This is generally
1109 allocated on the comp_unit_obstack, so will disappear
1110 when this compilation unit leaves the cache. */
1111 const char *scope = nullptr;
1112
1113 /* Some data associated with the partial DIE. The tag determines
1114 which field is live. */
1115 union
1116 {
1117 /* The location description associated with this DIE, if any. */
1118 struct dwarf_block *locdesc;
1119 /* The offset of an import, for DW_TAG_imported_unit. */
1120 sect_offset sect_off;
1121 } d {};
1122
1123 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1124 CORE_ADDR lowpc = 0;
1125 CORE_ADDR highpc = 0;
1126
1127 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1128 DW_AT_sibling, if any. */
1129 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1130 could return DW_AT_sibling values to its caller load_partial_dies. */
1131 const gdb_byte *sibling = nullptr;
1132
1133 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1134 DW_AT_specification (or DW_AT_abstract_origin or
1135 DW_AT_extension). */
1136 sect_offset spec_offset {};
1137
1138 /* Pointers to this DIE's parent, first child, and next sibling,
1139 if any. */
1140 struct partial_die_info *die_parent = nullptr;
1141 struct partial_die_info *die_child = nullptr;
1142 struct partial_die_info *die_sibling = nullptr;
1143
1144 friend struct partial_die_info *
1145 dwarf2_cu::find_partial_die (sect_offset sect_off);
1146
1147 private:
1148 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1149 partial_die_info (sect_offset sect_off)
1150 : partial_die_info (sect_off, DW_TAG_padding, 0)
1151 {
1152 }
1153
1154 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1155 int has_children_)
1156 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1157 {
1158 is_external = 0;
1159 is_declaration = 0;
1160 has_type = 0;
1161 has_specification = 0;
1162 has_pc_info = 0;
1163 may_be_inlined = 0;
1164 main_subprogram = 0;
1165 scope_set = 0;
1166 has_byte_size = 0;
1167 has_const_value = 0;
1168 has_template_arguments = 0;
1169 fixup_called = 0;
1170 is_dwz = 0;
1171 spec_is_dwz = 0;
1172 }
1173 };
1174
1175 /* This data structure holds the information of an abbrev. */
1176 struct abbrev_info
1177 {
1178 unsigned int number; /* number identifying abbrev */
1179 enum dwarf_tag tag; /* dwarf tag */
1180 unsigned short has_children; /* boolean */
1181 unsigned short num_attrs; /* number of attributes */
1182 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1183 struct abbrev_info *next; /* next in chain */
1184 };
1185
1186 struct attr_abbrev
1187 {
1188 ENUM_BITFIELD(dwarf_attribute) name : 16;
1189 ENUM_BITFIELD(dwarf_form) form : 16;
1190
1191 /* It is valid only if FORM is DW_FORM_implicit_const. */
1192 LONGEST implicit_const;
1193 };
1194
1195 /* Size of abbrev_table.abbrev_hash_table. */
1196 #define ABBREV_HASH_SIZE 121
1197
1198 /* Top level data structure to contain an abbreviation table. */
1199
1200 struct abbrev_table
1201 {
1202 explicit abbrev_table (sect_offset off)
1203 : sect_off (off)
1204 {
1205 m_abbrevs =
1206 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1207 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1208 }
1209
1210 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1211
1212 /* Allocate space for a struct abbrev_info object in
1213 ABBREV_TABLE. */
1214 struct abbrev_info *alloc_abbrev ();
1215
1216 /* Add an abbreviation to the table. */
1217 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1218
1219 /* Look up an abbrev in the table.
1220 Returns NULL if the abbrev is not found. */
1221
1222 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1223
1224
1225 /* Where the abbrev table came from.
1226 This is used as a sanity check when the table is used. */
1227 const sect_offset sect_off;
1228
1229 /* Storage for the abbrev table. */
1230 auto_obstack abbrev_obstack;
1231
1232 private:
1233
1234 /* Hash table of abbrevs.
1235 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1236 It could be statically allocated, but the previous code didn't so we
1237 don't either. */
1238 struct abbrev_info **m_abbrevs;
1239 };
1240
1241 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1242
1243 /* Attributes have a name and a value. */
1244 struct attribute
1245 {
1246 ENUM_BITFIELD(dwarf_attribute) name : 16;
1247 ENUM_BITFIELD(dwarf_form) form : 15;
1248
1249 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1250 field should be in u.str (existing only for DW_STRING) but it is kept
1251 here for better struct attribute alignment. */
1252 unsigned int string_is_canonical : 1;
1253
1254 union
1255 {
1256 const char *str;
1257 struct dwarf_block *blk;
1258 ULONGEST unsnd;
1259 LONGEST snd;
1260 CORE_ADDR addr;
1261 ULONGEST signature;
1262 }
1263 u;
1264 };
1265
1266 /* This data structure holds a complete die structure. */
1267 struct die_info
1268 {
1269 /* DWARF-2 tag for this DIE. */
1270 ENUM_BITFIELD(dwarf_tag) tag : 16;
1271
1272 /* Number of attributes */
1273 unsigned char num_attrs;
1274
1275 /* True if we're presently building the full type name for the
1276 type derived from this DIE. */
1277 unsigned char building_fullname : 1;
1278
1279 /* True if this die is in process. PR 16581. */
1280 unsigned char in_process : 1;
1281
1282 /* Abbrev number */
1283 unsigned int abbrev;
1284
1285 /* Offset in .debug_info or .debug_types section. */
1286 sect_offset sect_off;
1287
1288 /* The dies in a compilation unit form an n-ary tree. PARENT
1289 points to this die's parent; CHILD points to the first child of
1290 this node; and all the children of a given node are chained
1291 together via their SIBLING fields. */
1292 struct die_info *child; /* Its first child, if any. */
1293 struct die_info *sibling; /* Its next sibling, if any. */
1294 struct die_info *parent; /* Its parent, if any. */
1295
1296 /* An array of attributes, with NUM_ATTRS elements. There may be
1297 zero, but it's not common and zero-sized arrays are not
1298 sufficiently portable C. */
1299 struct attribute attrs[1];
1300 };
1301
1302 /* Get at parts of an attribute structure. */
1303
1304 #define DW_STRING(attr) ((attr)->u.str)
1305 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1306 #define DW_UNSND(attr) ((attr)->u.unsnd)
1307 #define DW_BLOCK(attr) ((attr)->u.blk)
1308 #define DW_SND(attr) ((attr)->u.snd)
1309 #define DW_ADDR(attr) ((attr)->u.addr)
1310 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1311
1312 /* Blocks are a bunch of untyped bytes. */
1313 struct dwarf_block
1314 {
1315 size_t size;
1316
1317 /* Valid only if SIZE is not zero. */
1318 const gdb_byte *data;
1319 };
1320
1321 #ifndef ATTR_ALLOC_CHUNK
1322 #define ATTR_ALLOC_CHUNK 4
1323 #endif
1324
1325 /* Allocate fields for structs, unions and enums in this size. */
1326 #ifndef DW_FIELD_ALLOC_CHUNK
1327 #define DW_FIELD_ALLOC_CHUNK 4
1328 #endif
1329
1330 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1331 but this would require a corresponding change in unpack_field_as_long
1332 and friends. */
1333 static int bits_per_byte = 8;
1334
1335 /* When reading a variant or variant part, we track a bit more
1336 information about the field, and store it in an object of this
1337 type. */
1338
1339 struct variant_field
1340 {
1341 /* If we see a DW_TAG_variant, then this will be the discriminant
1342 value. */
1343 ULONGEST discriminant_value;
1344 /* If we see a DW_TAG_variant, then this will be set if this is the
1345 default branch. */
1346 bool default_branch;
1347 /* While reading a DW_TAG_variant_part, this will be set if this
1348 field is the discriminant. */
1349 bool is_discriminant;
1350 };
1351
1352 struct nextfield
1353 {
1354 int accessibility = 0;
1355 int virtuality = 0;
1356 /* Extra information to describe a variant or variant part. */
1357 struct variant_field variant {};
1358 struct field field {};
1359 };
1360
1361 struct fnfieldlist
1362 {
1363 const char *name = nullptr;
1364 std::vector<struct fn_field> fnfields;
1365 };
1366
1367 /* The routines that read and process dies for a C struct or C++ class
1368 pass lists of data member fields and lists of member function fields
1369 in an instance of a field_info structure, as defined below. */
1370 struct field_info
1371 {
1372 /* List of data member and baseclasses fields. */
1373 std::vector<struct nextfield> fields;
1374 std::vector<struct nextfield> baseclasses;
1375
1376 /* Number of fields (including baseclasses). */
1377 int nfields = 0;
1378
1379 /* Set if the accesibility of one of the fields is not public. */
1380 int non_public_fields = 0;
1381
1382 /* Member function fieldlist array, contains name of possibly overloaded
1383 member function, number of overloaded member functions and a pointer
1384 to the head of the member function field chain. */
1385 std::vector<struct fnfieldlist> fnfieldlists;
1386
1387 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1388 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1389 std::vector<struct decl_field> typedef_field_list;
1390
1391 /* Nested types defined by this class and the number of elements in this
1392 list. */
1393 std::vector<struct decl_field> nested_types_list;
1394 };
1395
1396 /* One item on the queue of compilation units to read in full symbols
1397 for. */
1398 struct dwarf2_queue_item
1399 {
1400 struct dwarf2_per_cu_data *per_cu;
1401 enum language pretend_language;
1402 struct dwarf2_queue_item *next;
1403 };
1404
1405 /* The current queue. */
1406 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1407
1408 /* Loaded secondary compilation units are kept in memory until they
1409 have not been referenced for the processing of this many
1410 compilation units. Set this to zero to disable caching. Cache
1411 sizes of up to at least twenty will improve startup time for
1412 typical inter-CU-reference binaries, at an obvious memory cost. */
1413 static int dwarf_max_cache_age = 5;
1414 static void
1415 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1416 struct cmd_list_element *c, const char *value)
1417 {
1418 fprintf_filtered (file, _("The upper bound on the age of cached "
1419 "DWARF compilation units is %s.\n"),
1420 value);
1421 }
1422 \f
1423 /* local function prototypes */
1424
1425 static const char *get_section_name (const struct dwarf2_section_info *);
1426
1427 static const char *get_section_file_name (const struct dwarf2_section_info *);
1428
1429 static void dwarf2_find_base_address (struct die_info *die,
1430 struct dwarf2_cu *cu);
1431
1432 static struct partial_symtab *create_partial_symtab
1433 (struct dwarf2_per_cu_data *per_cu, const char *name);
1434
1435 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1436 const gdb_byte *info_ptr,
1437 struct die_info *type_unit_die,
1438 int has_children, void *data);
1439
1440 static void dwarf2_build_psymtabs_hard
1441 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1442
1443 static void scan_partial_symbols (struct partial_die_info *,
1444 CORE_ADDR *, CORE_ADDR *,
1445 int, struct dwarf2_cu *);
1446
1447 static void add_partial_symbol (struct partial_die_info *,
1448 struct dwarf2_cu *);
1449
1450 static void add_partial_namespace (struct partial_die_info *pdi,
1451 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1452 int set_addrmap, struct dwarf2_cu *cu);
1453
1454 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1455 CORE_ADDR *highpc, int set_addrmap,
1456 struct dwarf2_cu *cu);
1457
1458 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1459 struct dwarf2_cu *cu);
1460
1461 static void add_partial_subprogram (struct partial_die_info *pdi,
1462 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1463 int need_pc, struct dwarf2_cu *cu);
1464
1465 static void dwarf2_read_symtab (struct partial_symtab *,
1466 struct objfile *);
1467
1468 static void psymtab_to_symtab_1 (struct partial_symtab *);
1469
1470 static abbrev_table_up abbrev_table_read_table
1471 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1472 sect_offset);
1473
1474 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1475
1476 static struct partial_die_info *load_partial_dies
1477 (const struct die_reader_specs *, const gdb_byte *, int);
1478
1479 /* A pair of partial_die_info and compilation unit. */
1480 struct cu_partial_die_info
1481 {
1482 /* The compilation unit of the partial_die_info. */
1483 struct dwarf2_cu *cu;
1484 /* A partial_die_info. */
1485 struct partial_die_info *pdi;
1486
1487 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1488 : cu (cu),
1489 pdi (pdi)
1490 { /* Nothhing. */ }
1491
1492 private:
1493 cu_partial_die_info () = delete;
1494 };
1495
1496 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1497 struct dwarf2_cu *);
1498
1499 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1500 struct attribute *, struct attr_abbrev *,
1501 const gdb_byte *);
1502
1503 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1504
1505 static int read_1_signed_byte (bfd *, const gdb_byte *);
1506
1507 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1508
1509 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1510 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1511
1512 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1513
1514 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1515
1516 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1517 unsigned int *);
1518
1519 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1520
1521 static LONGEST read_checked_initial_length_and_offset
1522 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1523 unsigned int *, unsigned int *);
1524
1525 static LONGEST read_offset (bfd *, const gdb_byte *,
1526 const struct comp_unit_head *,
1527 unsigned int *);
1528
1529 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1530
1531 static sect_offset read_abbrev_offset
1532 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1533 struct dwarf2_section_info *, sect_offset);
1534
1535 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1536
1537 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1538
1539 static const char *read_indirect_string
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1541 const struct comp_unit_head *, unsigned int *);
1542
1543 static const char *read_indirect_line_string
1544 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1545 const struct comp_unit_head *, unsigned int *);
1546
1547 static const char *read_indirect_string_at_offset
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1549 LONGEST str_offset);
1550
1551 static const char *read_indirect_string_from_dwz
1552 (struct objfile *objfile, struct dwz_file *, LONGEST);
1553
1554 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1555
1556 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1557 const gdb_byte *,
1558 unsigned int *);
1559
1560 static const char *read_str_index (const struct die_reader_specs *reader,
1561 ULONGEST str_index);
1562
1563 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1564
1565 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1566 struct dwarf2_cu *);
1567
1568 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1569 unsigned int);
1570
1571 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1572 struct dwarf2_cu *cu);
1573
1574 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1575
1576 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1577 struct dwarf2_cu *cu);
1578
1579 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1580
1581 static struct die_info *die_specification (struct die_info *die,
1582 struct dwarf2_cu **);
1583
1584 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1585 struct dwarf2_cu *cu);
1586
1587 static void dwarf_decode_lines (struct line_header *, const char *,
1588 struct dwarf2_cu *, struct partial_symtab *,
1589 CORE_ADDR, int decode_mapping);
1590
1591 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1592 const char *);
1593
1594 static struct symbol *new_symbol (struct die_info *, struct type *,
1595 struct dwarf2_cu *, struct symbol * = NULL);
1596
1597 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1598 struct dwarf2_cu *);
1599
1600 static void dwarf2_const_value_attr (const struct attribute *attr,
1601 struct type *type,
1602 const char *name,
1603 struct obstack *obstack,
1604 struct dwarf2_cu *cu, LONGEST *value,
1605 const gdb_byte **bytes,
1606 struct dwarf2_locexpr_baton **baton);
1607
1608 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1609
1610 static int need_gnat_info (struct dwarf2_cu *);
1611
1612 static struct type *die_descriptive_type (struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static void set_descriptive_type (struct type *, struct die_info *,
1616 struct dwarf2_cu *);
1617
1618 static struct type *die_containing_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1625
1626 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1627
1628 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1629
1630 static char *typename_concat (struct obstack *obs, const char *prefix,
1631 const char *suffix, int physname,
1632 struct dwarf2_cu *cu);
1633
1634 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1635
1636 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1637
1638 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1639
1640 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1643
1644 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1645
1646 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1647 struct dwarf2_cu *, struct partial_symtab *);
1648
1649 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1650 values. Keep the items ordered with increasing constraints compliance. */
1651 enum pc_bounds_kind
1652 {
1653 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1654 PC_BOUNDS_NOT_PRESENT,
1655
1656 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1657 were present but they do not form a valid range of PC addresses. */
1658 PC_BOUNDS_INVALID,
1659
1660 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1661 PC_BOUNDS_RANGES,
1662
1663 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1664 PC_BOUNDS_HIGH_LOW,
1665 };
1666
1667 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1668 CORE_ADDR *, CORE_ADDR *,
1669 struct dwarf2_cu *,
1670 struct partial_symtab *);
1671
1672 static void get_scope_pc_bounds (struct die_info *,
1673 CORE_ADDR *, CORE_ADDR *,
1674 struct dwarf2_cu *);
1675
1676 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1677 CORE_ADDR, struct dwarf2_cu *);
1678
1679 static void dwarf2_add_field (struct field_info *, struct die_info *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_attach_fields_to_type (struct field_info *,
1683 struct type *, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_member_fn (struct field_info *,
1686 struct die_info *, struct type *,
1687 struct dwarf2_cu *);
1688
1689 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1690 struct type *,
1691 struct dwarf2_cu *);
1692
1693 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1694
1695 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1696
1697 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1698
1699 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1700
1701 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1702
1703 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1704
1705 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct type *read_module_type (struct die_info *die,
1708 struct dwarf2_cu *cu);
1709
1710 static const char *namespace_name (struct die_info *die,
1711 int *is_anonymous, struct dwarf2_cu *);
1712
1713 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1714
1715 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1716
1717 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1718 struct dwarf2_cu *);
1719
1720 static struct die_info *read_die_and_siblings_1
1721 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1722 struct die_info *);
1723
1724 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1725 const gdb_byte *info_ptr,
1726 const gdb_byte **new_info_ptr,
1727 struct die_info *parent);
1728
1729 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1730 struct die_info **, const gdb_byte *,
1731 int *, int);
1732
1733 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1734 struct die_info **, const gdb_byte *,
1735 int *);
1736
1737 static void process_die (struct die_info *, struct dwarf2_cu *);
1738
1739 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1740 struct obstack *);
1741
1742 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1743
1744 static const char *dwarf2_full_name (const char *name,
1745 struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
1748 static const char *dwarf2_physname (const char *name, struct die_info *die,
1749 struct dwarf2_cu *cu);
1750
1751 static struct die_info *dwarf2_extension (struct die_info *die,
1752 struct dwarf2_cu **);
1753
1754 static const char *dwarf_tag_name (unsigned int);
1755
1756 static const char *dwarf_attr_name (unsigned int);
1757
1758 static const char *dwarf_unit_type_name (int unit_type);
1759
1760 static const char *dwarf_form_name (unsigned int);
1761
1762 static const char *dwarf_bool_name (unsigned int);
1763
1764 static const char *dwarf_type_encoding_name (unsigned int);
1765
1766 static struct die_info *sibling_die (struct die_info *);
1767
1768 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1769
1770 static void dump_die_for_error (struct die_info *);
1771
1772 static void dump_die_1 (struct ui_file *, int level, int max_level,
1773 struct die_info *);
1774
1775 /*static*/ void dump_die (struct die_info *, int max_level);
1776
1777 static void store_in_ref_table (struct die_info *,
1778 struct dwarf2_cu *);
1779
1780 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1781
1782 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1783
1784 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1785 const struct attribute *,
1786 struct dwarf2_cu **);
1787
1788 static struct die_info *follow_die_ref (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_sig (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1797 struct dwarf2_cu *);
1798
1799 static struct type *get_DW_AT_signature_type (struct die_info *,
1800 const struct attribute *,
1801 struct dwarf2_cu *);
1802
1803 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1804
1805 static void read_signatured_type (struct signatured_type *);
1806
1807 static int attr_to_dynamic_prop (const struct attribute *attr,
1808 struct die_info *die, struct dwarf2_cu *cu,
1809 struct dynamic_prop *prop, struct type *type);
1810
1811 /* memory allocation interface */
1812
1813 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1814
1815 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1816
1817 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1818
1819 static int attr_form_is_block (const struct attribute *);
1820
1821 static int attr_form_is_section_offset (const struct attribute *);
1822
1823 static int attr_form_is_constant (const struct attribute *);
1824
1825 static int attr_form_is_ref (const struct attribute *);
1826
1827 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1828 struct dwarf2_loclist_baton *baton,
1829 const struct attribute *attr);
1830
1831 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1832 struct symbol *sym,
1833 struct dwarf2_cu *cu,
1834 int is_block);
1835
1836 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1837 const gdb_byte *info_ptr,
1838 struct abbrev_info *abbrev);
1839
1840 static hashval_t partial_die_hash (const void *item);
1841
1842 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1843
1844 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1845 (sect_offset sect_off, unsigned int offset_in_dwz,
1846 struct dwarf2_per_objfile *dwarf2_per_objfile);
1847
1848 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1849 struct die_info *comp_unit_die,
1850 enum language pretend_language);
1851
1852 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1853
1854 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1855
1856 static struct type *set_die_type (struct die_info *, struct type *,
1857 struct dwarf2_cu *);
1858
1859 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1860
1861 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1862
1863 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1864 enum language);
1865
1866 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1867 enum language);
1868
1869 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1870 enum language);
1871
1872 static void dwarf2_add_dependence (struct dwarf2_cu *,
1873 struct dwarf2_per_cu_data *);
1874
1875 static void dwarf2_mark (struct dwarf2_cu *);
1876
1877 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1878
1879 static struct type *get_die_type_at_offset (sect_offset,
1880 struct dwarf2_per_cu_data *);
1881
1882 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1883
1884 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1885 enum language pretend_language);
1886
1887 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1888
1889 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1890 static struct type *dwarf2_per_cu_addr_sized_int_type
1891 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1892
1893 /* Class, the destructor of which frees all allocated queue entries. This
1894 will only have work to do if an error was thrown while processing the
1895 dwarf. If no error was thrown then the queue entries should have all
1896 been processed, and freed, as we went along. */
1897
1898 class dwarf2_queue_guard
1899 {
1900 public:
1901 dwarf2_queue_guard () = default;
1902
1903 /* Free any entries remaining on the queue. There should only be
1904 entries left if we hit an error while processing the dwarf. */
1905 ~dwarf2_queue_guard ()
1906 {
1907 struct dwarf2_queue_item *item, *last;
1908
1909 item = dwarf2_queue;
1910 while (item)
1911 {
1912 /* Anything still marked queued is likely to be in an
1913 inconsistent state, so discard it. */
1914 if (item->per_cu->queued)
1915 {
1916 if (item->per_cu->cu != NULL)
1917 free_one_cached_comp_unit (item->per_cu);
1918 item->per_cu->queued = 0;
1919 }
1920
1921 last = item;
1922 item = item->next;
1923 xfree (last);
1924 }
1925
1926 dwarf2_queue = dwarf2_queue_tail = NULL;
1927 }
1928 };
1929
1930 /* The return type of find_file_and_directory. Note, the enclosed
1931 string pointers are only valid while this object is valid. */
1932
1933 struct file_and_directory
1934 {
1935 /* The filename. This is never NULL. */
1936 const char *name;
1937
1938 /* The compilation directory. NULL if not known. If we needed to
1939 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1940 points directly to the DW_AT_comp_dir string attribute owned by
1941 the obstack that owns the DIE. */
1942 const char *comp_dir;
1943
1944 /* If we needed to build a new string for comp_dir, this is what
1945 owns the storage. */
1946 std::string comp_dir_storage;
1947 };
1948
1949 static file_and_directory find_file_and_directory (struct die_info *die,
1950 struct dwarf2_cu *cu);
1951
1952 static char *file_full_name (int file, struct line_header *lh,
1953 const char *comp_dir);
1954
1955 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1956 enum class rcuh_kind { COMPILE, TYPE };
1957
1958 static const gdb_byte *read_and_check_comp_unit_head
1959 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1960 struct comp_unit_head *header,
1961 struct dwarf2_section_info *section,
1962 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1963 rcuh_kind section_kind);
1964
1965 static void init_cutu_and_read_dies
1966 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1967 int use_existing_cu, int keep, bool skip_partial,
1968 die_reader_func_ftype *die_reader_func, void *data);
1969
1970 static void init_cutu_and_read_dies_simple
1971 (struct dwarf2_per_cu_data *this_cu,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1975
1976 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1977
1978 static struct dwo_unit *lookup_dwo_unit_in_dwp
1979 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1980 struct dwp_file *dwp_file, const char *comp_dir,
1981 ULONGEST signature, int is_debug_types);
1982
1983 static struct dwp_file *get_dwp_file
1984 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1985
1986 static struct dwo_unit *lookup_dwo_comp_unit
1987 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1988
1989 static struct dwo_unit *lookup_dwo_type_unit
1990 (struct signatured_type *, const char *, const char *);
1991
1992 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1993
1994 /* A unique pointer to a dwo_file. */
1995
1996 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1997
1998 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1999
2000 static void check_producer (struct dwarf2_cu *cu);
2001
2002 static void free_line_header_voidp (void *arg);
2003 \f
2004 /* Various complaints about symbol reading that don't abort the process. */
2005
2006 static void
2007 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2008 {
2009 complaint (_("statement list doesn't fit in .debug_line section"));
2010 }
2011
2012 static void
2013 dwarf2_debug_line_missing_file_complaint (void)
2014 {
2015 complaint (_(".debug_line section has line data without a file"));
2016 }
2017
2018 static void
2019 dwarf2_debug_line_missing_end_sequence_complaint (void)
2020 {
2021 complaint (_(".debug_line section has line "
2022 "program sequence without an end"));
2023 }
2024
2025 static void
2026 dwarf2_complex_location_expr_complaint (void)
2027 {
2028 complaint (_("location expression too complex"));
2029 }
2030
2031 static void
2032 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2033 int arg3)
2034 {
2035 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2036 arg1, arg2, arg3);
2037 }
2038
2039 static void
2040 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2041 {
2042 complaint (_("debug info runs off end of %s section"
2043 " [in module %s]"),
2044 get_section_name (section),
2045 get_section_file_name (section));
2046 }
2047
2048 static void
2049 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2050 {
2051 complaint (_("macro debug info contains a "
2052 "malformed macro definition:\n`%s'"),
2053 arg1);
2054 }
2055
2056 static void
2057 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2058 {
2059 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2060 arg1, arg2);
2061 }
2062
2063 /* Hash function for line_header_hash. */
2064
2065 static hashval_t
2066 line_header_hash (const struct line_header *ofs)
2067 {
2068 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2069 }
2070
2071 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2072
2073 static hashval_t
2074 line_header_hash_voidp (const void *item)
2075 {
2076 const struct line_header *ofs = (const struct line_header *) item;
2077
2078 return line_header_hash (ofs);
2079 }
2080
2081 /* Equality function for line_header_hash. */
2082
2083 static int
2084 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2085 {
2086 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2087 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2088
2089 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2090 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2091 }
2092
2093 \f
2094
2095 /* Read the given attribute value as an address, taking the attribute's
2096 form into account. */
2097
2098 static CORE_ADDR
2099 attr_value_as_address (struct attribute *attr)
2100 {
2101 CORE_ADDR addr;
2102
2103 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2104 && attr->form != DW_FORM_GNU_addr_index)
2105 {
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2119 }
2120 else
2121 addr = DW_ADDR (attr);
2122
2123 return addr;
2124 }
2125
2126 /* See declaration. */
2127
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names,
2130 bool can_copy_)
2131 : objfile (objfile_),
2132 can_copy (can_copy_)
2133 {
2134 if (names == NULL)
2135 names = &dwarf2_elf_names;
2136
2137 bfd *obfd = objfile->obfd;
2138
2139 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2140 locate_sections (obfd, sec, *names);
2141 }
2142
2143 dwarf2_per_objfile::~dwarf2_per_objfile ()
2144 {
2145 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2146 free_cached_comp_units ();
2147
2148 if (quick_file_names_table)
2149 htab_delete (quick_file_names_table);
2150
2151 if (line_header_hash)
2152 htab_delete (line_header_hash);
2153
2154 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2155 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2156
2157 for (signatured_type *sig_type : all_type_units)
2158 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2159
2160 /* Everything else should be on the objfile obstack. */
2161 }
2162
2163 /* See declaration. */
2164
2165 void
2166 dwarf2_per_objfile::free_cached_comp_units ()
2167 {
2168 dwarf2_per_cu_data *per_cu = read_in_chain;
2169 dwarf2_per_cu_data **last_chain = &read_in_chain;
2170 while (per_cu != NULL)
2171 {
2172 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2173
2174 delete per_cu->cu;
2175 *last_chain = next_cu;
2176 per_cu = next_cu;
2177 }
2178 }
2179
2180 /* A helper class that calls free_cached_comp_units on
2181 destruction. */
2182
2183 class free_cached_comp_units
2184 {
2185 public:
2186
2187 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2188 : m_per_objfile (per_objfile)
2189 {
2190 }
2191
2192 ~free_cached_comp_units ()
2193 {
2194 m_per_objfile->free_cached_comp_units ();
2195 }
2196
2197 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2198
2199 private:
2200
2201 dwarf2_per_objfile *m_per_objfile;
2202 };
2203
2204 /* Try to locate the sections we need for DWARF 2 debugging
2205 information and return true if we have enough to do something.
2206 NAMES points to the dwarf2 section names, or is NULL if the standard
2207 ELF names are used. CAN_COPY is true for formats where symbol
2208 interposition is possible and so symbol values must follow copy
2209 relocation rules. */
2210
2211 int
2212 dwarf2_has_info (struct objfile *objfile,
2213 const struct dwarf2_debug_sections *names,
2214 bool can_copy)
2215 {
2216 if (objfile->flags & OBJF_READNEVER)
2217 return 0;
2218
2219 struct dwarf2_per_objfile *dwarf2_per_objfile
2220 = get_dwarf2_per_objfile (objfile);
2221
2222 if (dwarf2_per_objfile == NULL)
2223 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2224 names,
2225 can_copy);
2226
2227 return (!dwarf2_per_objfile->info.is_virtual
2228 && dwarf2_per_objfile->info.s.section != NULL
2229 && !dwarf2_per_objfile->abbrev.is_virtual
2230 && dwarf2_per_objfile->abbrev.s.section != NULL);
2231 }
2232
2233 /* Return the containing section of virtual section SECTION. */
2234
2235 static struct dwarf2_section_info *
2236 get_containing_section (const struct dwarf2_section_info *section)
2237 {
2238 gdb_assert (section->is_virtual);
2239 return section->s.containing_section;
2240 }
2241
2242 /* Return the bfd owner of SECTION. */
2243
2244 static struct bfd *
2245 get_section_bfd_owner (const struct dwarf2_section_info *section)
2246 {
2247 if (section->is_virtual)
2248 {
2249 section = get_containing_section (section);
2250 gdb_assert (!section->is_virtual);
2251 }
2252 return section->s.section->owner;
2253 }
2254
2255 /* Return the bfd section of SECTION.
2256 Returns NULL if the section is not present. */
2257
2258 static asection *
2259 get_section_bfd_section (const struct dwarf2_section_info *section)
2260 {
2261 if (section->is_virtual)
2262 {
2263 section = get_containing_section (section);
2264 gdb_assert (!section->is_virtual);
2265 }
2266 return section->s.section;
2267 }
2268
2269 /* Return the name of SECTION. */
2270
2271 static const char *
2272 get_section_name (const struct dwarf2_section_info *section)
2273 {
2274 asection *sectp = get_section_bfd_section (section);
2275
2276 gdb_assert (sectp != NULL);
2277 return bfd_section_name (sectp);
2278 }
2279
2280 /* Return the name of the file SECTION is in. */
2281
2282 static const char *
2283 get_section_file_name (const struct dwarf2_section_info *section)
2284 {
2285 bfd *abfd = get_section_bfd_owner (section);
2286
2287 return bfd_get_filename (abfd);
2288 }
2289
2290 /* Return the id of SECTION.
2291 Returns 0 if SECTION doesn't exist. */
2292
2293 static int
2294 get_section_id (const struct dwarf2_section_info *section)
2295 {
2296 asection *sectp = get_section_bfd_section (section);
2297
2298 if (sectp == NULL)
2299 return 0;
2300 return sectp->id;
2301 }
2302
2303 /* Return the flags of SECTION.
2304 SECTION (or containing section if this is a virtual section) must exist. */
2305
2306 static int
2307 get_section_flags (const struct dwarf2_section_info *section)
2308 {
2309 asection *sectp = get_section_bfd_section (section);
2310
2311 gdb_assert (sectp != NULL);
2312 return bfd_section_flags (sectp);
2313 }
2314
2315 /* When loading sections, we look either for uncompressed section or for
2316 compressed section names. */
2317
2318 static int
2319 section_is_p (const char *section_name,
2320 const struct dwarf2_section_names *names)
2321 {
2322 if (names->normal != NULL
2323 && strcmp (section_name, names->normal) == 0)
2324 return 1;
2325 if (names->compressed != NULL
2326 && strcmp (section_name, names->compressed) == 0)
2327 return 1;
2328 return 0;
2329 }
2330
2331 /* See declaration. */
2332
2333 void
2334 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2335 const dwarf2_debug_sections &names)
2336 {
2337 flagword aflag = bfd_section_flags (sectp);
2338
2339 if ((aflag & SEC_HAS_CONTENTS) == 0)
2340 {
2341 }
2342 else if (section_is_p (sectp->name, &names.info))
2343 {
2344 this->info.s.section = sectp;
2345 this->info.size = bfd_section_size (sectp);
2346 }
2347 else if (section_is_p (sectp->name, &names.abbrev))
2348 {
2349 this->abbrev.s.section = sectp;
2350 this->abbrev.size = bfd_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.line))
2353 {
2354 this->line.s.section = sectp;
2355 this->line.size = bfd_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.loc))
2358 {
2359 this->loc.s.section = sectp;
2360 this->loc.size = bfd_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.loclists))
2363 {
2364 this->loclists.s.section = sectp;
2365 this->loclists.size = bfd_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.macinfo))
2368 {
2369 this->macinfo.s.section = sectp;
2370 this->macinfo.size = bfd_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.macro))
2373 {
2374 this->macro.s.section = sectp;
2375 this->macro.size = bfd_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.str))
2378 {
2379 this->str.s.section = sectp;
2380 this->str.size = bfd_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.line_str))
2383 {
2384 this->line_str.s.section = sectp;
2385 this->line_str.size = bfd_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.addr))
2388 {
2389 this->addr.s.section = sectp;
2390 this->addr.size = bfd_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.frame))
2393 {
2394 this->frame.s.section = sectp;
2395 this->frame.size = bfd_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.eh_frame))
2398 {
2399 this->eh_frame.s.section = sectp;
2400 this->eh_frame.size = bfd_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.ranges))
2403 {
2404 this->ranges.s.section = sectp;
2405 this->ranges.size = bfd_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.rnglists))
2408 {
2409 this->rnglists.s.section = sectp;
2410 this->rnglists.size = bfd_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.types))
2413 {
2414 struct dwarf2_section_info type_section;
2415
2416 memset (&type_section, 0, sizeof (type_section));
2417 type_section.s.section = sectp;
2418 type_section.size = bfd_section_size (sectp);
2419
2420 this->types.push_back (type_section);
2421 }
2422 else if (section_is_p (sectp->name, &names.gdb_index))
2423 {
2424 this->gdb_index.s.section = sectp;
2425 this->gdb_index.size = bfd_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.debug_names))
2428 {
2429 this->debug_names.s.section = sectp;
2430 this->debug_names.size = bfd_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.debug_aranges))
2433 {
2434 this->debug_aranges.s.section = sectp;
2435 this->debug_aranges.size = bfd_section_size (sectp);
2436 }
2437
2438 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2439 && bfd_section_vma (sectp) == 0)
2440 this->has_section_at_zero = true;
2441 }
2442
2443 /* A helper function that decides whether a section is empty,
2444 or not present. */
2445
2446 static int
2447 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2448 {
2449 if (section->is_virtual)
2450 return section->size == 0;
2451 return section->s.section == NULL || section->size == 0;
2452 }
2453
2454 /* See dwarf2read.h. */
2455
2456 void
2457 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2458 {
2459 asection *sectp;
2460 bfd *abfd;
2461 gdb_byte *buf, *retbuf;
2462
2463 if (info->readin)
2464 return;
2465 info->buffer = NULL;
2466 info->readin = true;
2467
2468 if (dwarf2_section_empty_p (info))
2469 return;
2470
2471 sectp = get_section_bfd_section (info);
2472
2473 /* If this is a virtual section we need to read in the real one first. */
2474 if (info->is_virtual)
2475 {
2476 struct dwarf2_section_info *containing_section =
2477 get_containing_section (info);
2478
2479 gdb_assert (sectp != NULL);
2480 if ((sectp->flags & SEC_RELOC) != 0)
2481 {
2482 error (_("Dwarf Error: DWP format V2 with relocations is not"
2483 " supported in section %s [in module %s]"),
2484 get_section_name (info), get_section_file_name (info));
2485 }
2486 dwarf2_read_section (objfile, containing_section);
2487 /* Other code should have already caught virtual sections that don't
2488 fit. */
2489 gdb_assert (info->virtual_offset + info->size
2490 <= containing_section->size);
2491 /* If the real section is empty or there was a problem reading the
2492 section we shouldn't get here. */
2493 gdb_assert (containing_section->buffer != NULL);
2494 info->buffer = containing_section->buffer + info->virtual_offset;
2495 return;
2496 }
2497
2498 /* If the section has relocations, we must read it ourselves.
2499 Otherwise we attach it to the BFD. */
2500 if ((sectp->flags & SEC_RELOC) == 0)
2501 {
2502 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2503 return;
2504 }
2505
2506 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2507 info->buffer = buf;
2508
2509 /* When debugging .o files, we may need to apply relocations; see
2510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2511 We never compress sections in .o files, so we only need to
2512 try this when the section is not compressed. */
2513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2514 if (retbuf != NULL)
2515 {
2516 info->buffer = retbuf;
2517 return;
2518 }
2519
2520 abfd = get_section_bfd_owner (info);
2521 gdb_assert (abfd != NULL);
2522
2523 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2524 || bfd_bread (buf, info->size, abfd) != info->size)
2525 {
2526 error (_("Dwarf Error: Can't read DWARF data"
2527 " in section %s [in module %s]"),
2528 bfd_section_name (sectp), bfd_get_filename (abfd));
2529 }
2530 }
2531
2532 /* A helper function that returns the size of a section in a safe way.
2533 If you are positive that the section has been read before using the
2534 size, then it is safe to refer to the dwarf2_section_info object's
2535 "size" field directly. In other cases, you must call this
2536 function, because for compressed sections the size field is not set
2537 correctly until the section has been read. */
2538
2539 static bfd_size_type
2540 dwarf2_section_size (struct objfile *objfile,
2541 struct dwarf2_section_info *info)
2542 {
2543 if (!info->readin)
2544 dwarf2_read_section (objfile, info);
2545 return info->size;
2546 }
2547
2548 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2549 SECTION_NAME. */
2550
2551 void
2552 dwarf2_get_section_info (struct objfile *objfile,
2553 enum dwarf2_section_enum sect,
2554 asection **sectp, const gdb_byte **bufp,
2555 bfd_size_type *sizep)
2556 {
2557 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2558 struct dwarf2_section_info *info;
2559
2560 /* We may see an objfile without any DWARF, in which case we just
2561 return nothing. */
2562 if (data == NULL)
2563 {
2564 *sectp = NULL;
2565 *bufp = NULL;
2566 *sizep = 0;
2567 return;
2568 }
2569 switch (sect)
2570 {
2571 case DWARF2_DEBUG_FRAME:
2572 info = &data->frame;
2573 break;
2574 case DWARF2_EH_FRAME:
2575 info = &data->eh_frame;
2576 break;
2577 default:
2578 gdb_assert_not_reached ("unexpected section");
2579 }
2580
2581 dwarf2_read_section (objfile, info);
2582
2583 *sectp = get_section_bfd_section (info);
2584 *bufp = info->buffer;
2585 *sizep = info->size;
2586 }
2587
2588 /* A helper function to find the sections for a .dwz file. */
2589
2590 static void
2591 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2592 {
2593 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2594
2595 /* Note that we only support the standard ELF names, because .dwz
2596 is ELF-only (at the time of writing). */
2597 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2598 {
2599 dwz_file->abbrev.s.section = sectp;
2600 dwz_file->abbrev.size = bfd_section_size (sectp);
2601 }
2602 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2603 {
2604 dwz_file->info.s.section = sectp;
2605 dwz_file->info.size = bfd_section_size (sectp);
2606 }
2607 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2608 {
2609 dwz_file->str.s.section = sectp;
2610 dwz_file->str.size = bfd_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2613 {
2614 dwz_file->line.s.section = sectp;
2615 dwz_file->line.size = bfd_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2618 {
2619 dwz_file->macro.s.section = sectp;
2620 dwz_file->macro.size = bfd_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2623 {
2624 dwz_file->gdb_index.s.section = sectp;
2625 dwz_file->gdb_index.size = bfd_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2628 {
2629 dwz_file->debug_names.s.section = sectp;
2630 dwz_file->debug_names.size = bfd_section_size (sectp);
2631 }
2632 }
2633
2634 /* See dwarf2read.h. */
2635
2636 struct dwz_file *
2637 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2638 {
2639 const char *filename;
2640 bfd_size_type buildid_len_arg;
2641 size_t buildid_len;
2642 bfd_byte *buildid;
2643
2644 if (dwarf2_per_objfile->dwz_file != NULL)
2645 return dwarf2_per_objfile->dwz_file.get ();
2646
2647 bfd_set_error (bfd_error_no_error);
2648 gdb::unique_xmalloc_ptr<char> data
2649 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2650 &buildid_len_arg, &buildid));
2651 if (data == NULL)
2652 {
2653 if (bfd_get_error () == bfd_error_no_error)
2654 return NULL;
2655 error (_("could not read '.gnu_debugaltlink' section: %s"),
2656 bfd_errmsg (bfd_get_error ()));
2657 }
2658
2659 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2660
2661 buildid_len = (size_t) buildid_len_arg;
2662
2663 filename = data.get ();
2664
2665 std::string abs_storage;
2666 if (!IS_ABSOLUTE_PATH (filename))
2667 {
2668 gdb::unique_xmalloc_ptr<char> abs
2669 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2670
2671 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2672 filename = abs_storage.c_str ();
2673 }
2674
2675 /* First try the file name given in the section. If that doesn't
2676 work, try to use the build-id instead. */
2677 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2678 if (dwz_bfd != NULL)
2679 {
2680 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2681 dwz_bfd.reset (nullptr);
2682 }
2683
2684 if (dwz_bfd == NULL)
2685 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2686
2687 if (dwz_bfd == NULL)
2688 error (_("could not find '.gnu_debugaltlink' file for %s"),
2689 objfile_name (dwarf2_per_objfile->objfile));
2690
2691 std::unique_ptr<struct dwz_file> result
2692 (new struct dwz_file (std::move (dwz_bfd)));
2693
2694 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2695 result.get ());
2696
2697 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2698 result->dwz_bfd.get ());
2699 dwarf2_per_objfile->dwz_file = std::move (result);
2700 return dwarf2_per_objfile->dwz_file.get ();
2701 }
2702 \f
2703 /* DWARF quick_symbols_functions support. */
2704
2705 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2706 unique line tables, so we maintain a separate table of all .debug_line
2707 derived entries to support the sharing.
2708 All the quick functions need is the list of file names. We discard the
2709 line_header when we're done and don't need to record it here. */
2710 struct quick_file_names
2711 {
2712 /* The data used to construct the hash key. */
2713 struct stmt_list_hash hash;
2714
2715 /* The number of entries in file_names, real_names. */
2716 unsigned int num_file_names;
2717
2718 /* The file names from the line table, after being run through
2719 file_full_name. */
2720 const char **file_names;
2721
2722 /* The file names from the line table after being run through
2723 gdb_realpath. These are computed lazily. */
2724 const char **real_names;
2725 };
2726
2727 /* When using the index (and thus not using psymtabs), each CU has an
2728 object of this type. This is used to hold information needed by
2729 the various "quick" methods. */
2730 struct dwarf2_per_cu_quick_data
2731 {
2732 /* The file table. This can be NULL if there was no file table
2733 or it's currently not read in.
2734 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2735 struct quick_file_names *file_names;
2736
2737 /* The corresponding symbol table. This is NULL if symbols for this
2738 CU have not yet been read. */
2739 struct compunit_symtab *compunit_symtab;
2740
2741 /* A temporary mark bit used when iterating over all CUs in
2742 expand_symtabs_matching. */
2743 unsigned int mark : 1;
2744
2745 /* True if we've tried to read the file table and found there isn't one.
2746 There will be no point in trying to read it again next time. */
2747 unsigned int no_file_data : 1;
2748 };
2749
2750 /* Utility hash function for a stmt_list_hash. */
2751
2752 static hashval_t
2753 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2754 {
2755 hashval_t v = 0;
2756
2757 if (stmt_list_hash->dwo_unit != NULL)
2758 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2759 v += to_underlying (stmt_list_hash->line_sect_off);
2760 return v;
2761 }
2762
2763 /* Utility equality function for a stmt_list_hash. */
2764
2765 static int
2766 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2767 const struct stmt_list_hash *rhs)
2768 {
2769 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2770 return 0;
2771 if (lhs->dwo_unit != NULL
2772 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2773 return 0;
2774
2775 return lhs->line_sect_off == rhs->line_sect_off;
2776 }
2777
2778 /* Hash function for a quick_file_names. */
2779
2780 static hashval_t
2781 hash_file_name_entry (const void *e)
2782 {
2783 const struct quick_file_names *file_data
2784 = (const struct quick_file_names *) e;
2785
2786 return hash_stmt_list_entry (&file_data->hash);
2787 }
2788
2789 /* Equality function for a quick_file_names. */
2790
2791 static int
2792 eq_file_name_entry (const void *a, const void *b)
2793 {
2794 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2795 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2796
2797 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2798 }
2799
2800 /* Delete function for a quick_file_names. */
2801
2802 static void
2803 delete_file_name_entry (void *e)
2804 {
2805 struct quick_file_names *file_data = (struct quick_file_names *) e;
2806 int i;
2807
2808 for (i = 0; i < file_data->num_file_names; ++i)
2809 {
2810 xfree ((void*) file_data->file_names[i]);
2811 if (file_data->real_names)
2812 xfree ((void*) file_data->real_names[i]);
2813 }
2814
2815 /* The space for the struct itself lives on objfile_obstack,
2816 so we don't free it here. */
2817 }
2818
2819 /* Create a quick_file_names hash table. */
2820
2821 static htab_t
2822 create_quick_file_names_table (unsigned int nr_initial_entries)
2823 {
2824 return htab_create_alloc (nr_initial_entries,
2825 hash_file_name_entry, eq_file_name_entry,
2826 delete_file_name_entry, xcalloc, xfree);
2827 }
2828
2829 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2830 have to be created afterwards. You should call age_cached_comp_units after
2831 processing PER_CU->CU. dw2_setup must have been already called. */
2832
2833 static void
2834 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2835 {
2836 if (per_cu->is_debug_types)
2837 load_full_type_unit (per_cu);
2838 else
2839 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2840
2841 if (per_cu->cu == NULL)
2842 return; /* Dummy CU. */
2843
2844 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2845 }
2846
2847 /* Read in the symbols for PER_CU. */
2848
2849 static void
2850 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2851 {
2852 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2853
2854 /* Skip type_unit_groups, reading the type units they contain
2855 is handled elsewhere. */
2856 if (IS_TYPE_UNIT_GROUP (per_cu))
2857 return;
2858
2859 /* The destructor of dwarf2_queue_guard frees any entries left on
2860 the queue. After this point we're guaranteed to leave this function
2861 with the dwarf queue empty. */
2862 dwarf2_queue_guard q_guard;
2863
2864 if (dwarf2_per_objfile->using_index
2865 ? per_cu->v.quick->compunit_symtab == NULL
2866 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2867 {
2868 queue_comp_unit (per_cu, language_minimal);
2869 load_cu (per_cu, skip_partial);
2870
2871 /* If we just loaded a CU from a DWO, and we're working with an index
2872 that may badly handle TUs, load all the TUs in that DWO as well.
2873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2874 if (!per_cu->is_debug_types
2875 && per_cu->cu != NULL
2876 && per_cu->cu->dwo_unit != NULL
2877 && dwarf2_per_objfile->index_table != NULL
2878 && dwarf2_per_objfile->index_table->version <= 7
2879 /* DWP files aren't supported yet. */
2880 && get_dwp_file (dwarf2_per_objfile) == NULL)
2881 queue_and_load_all_dwo_tus (per_cu);
2882 }
2883
2884 process_queue (dwarf2_per_objfile);
2885
2886 /* Age the cache, releasing compilation units that have not
2887 been used recently. */
2888 age_cached_comp_units (dwarf2_per_objfile);
2889 }
2890
2891 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2892 the objfile from which this CU came. Returns the resulting symbol
2893 table. */
2894
2895 static struct compunit_symtab *
2896 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2897 {
2898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2899
2900 gdb_assert (dwarf2_per_objfile->using_index);
2901 if (!per_cu->v.quick->compunit_symtab)
2902 {
2903 free_cached_comp_units freer (dwarf2_per_objfile);
2904 scoped_restore decrementer = increment_reading_symtab ();
2905 dw2_do_instantiate_symtab (per_cu, skip_partial);
2906 process_cu_includes (dwarf2_per_objfile);
2907 }
2908
2909 return per_cu->v.quick->compunit_symtab;
2910 }
2911
2912 /* See declaration. */
2913
2914 dwarf2_per_cu_data *
2915 dwarf2_per_objfile::get_cutu (int index)
2916 {
2917 if (index >= this->all_comp_units.size ())
2918 {
2919 index -= this->all_comp_units.size ();
2920 gdb_assert (index < this->all_type_units.size ());
2921 return &this->all_type_units[index]->per_cu;
2922 }
2923
2924 return this->all_comp_units[index];
2925 }
2926
2927 /* See declaration. */
2928
2929 dwarf2_per_cu_data *
2930 dwarf2_per_objfile::get_cu (int index)
2931 {
2932 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2933
2934 return this->all_comp_units[index];
2935 }
2936
2937 /* See declaration. */
2938
2939 signatured_type *
2940 dwarf2_per_objfile::get_tu (int index)
2941 {
2942 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2943
2944 return this->all_type_units[index];
2945 }
2946
2947 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2948 objfile_obstack, and constructed with the specified field
2949 values. */
2950
2951 static dwarf2_per_cu_data *
2952 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2953 struct dwarf2_section_info *section,
2954 int is_dwz,
2955 sect_offset sect_off, ULONGEST length)
2956 {
2957 struct objfile *objfile = dwarf2_per_objfile->objfile;
2958 dwarf2_per_cu_data *the_cu
2959 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_data);
2961 the_cu->sect_off = sect_off;
2962 the_cu->length = length;
2963 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2964 the_cu->section = section;
2965 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct dwarf2_per_cu_quick_data);
2967 the_cu->is_dwz = is_dwz;
2968 return the_cu;
2969 }
2970
2971 /* A helper for create_cus_from_index that handles a given list of
2972 CUs. */
2973
2974 static void
2975 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2976 const gdb_byte *cu_list, offset_type n_elements,
2977 struct dwarf2_section_info *section,
2978 int is_dwz)
2979 {
2980 for (offset_type i = 0; i < n_elements; i += 2)
2981 {
2982 gdb_static_assert (sizeof (ULONGEST) >= 8);
2983
2984 sect_offset sect_off
2985 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2986 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2987 cu_list += 2 * 8;
2988
2989 dwarf2_per_cu_data *per_cu
2990 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2991 sect_off, length);
2992 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2993 }
2994 }
2995
2996 /* Read the CU list from the mapped index, and use it to create all
2997 the CU objects for this objfile. */
2998
2999 static void
3000 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 const gdb_byte *cu_list, offset_type cu_list_elements,
3002 const gdb_byte *dwz_list, offset_type dwz_elements)
3003 {
3004 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3005 dwarf2_per_objfile->all_comp_units.reserve
3006 ((cu_list_elements + dwz_elements) / 2);
3007
3008 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3009 &dwarf2_per_objfile->info, 0);
3010
3011 if (dwz_elements == 0)
3012 return;
3013
3014 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3015 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3016 &dwz->info, 1);
3017 }
3018
3019 /* Create the signatured type hash table from the index. */
3020
3021 static void
3022 create_signatured_type_table_from_index
3023 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3024 struct dwarf2_section_info *section,
3025 const gdb_byte *bytes,
3026 offset_type elements)
3027 {
3028 struct objfile *objfile = dwarf2_per_objfile->objfile;
3029
3030 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3031 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3032
3033 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3034
3035 for (offset_type i = 0; i < elements; i += 3)
3036 {
3037 struct signatured_type *sig_type;
3038 ULONGEST signature;
3039 void **slot;
3040 cu_offset type_offset_in_tu;
3041
3042 gdb_static_assert (sizeof (ULONGEST) >= 8);
3043 sect_offset sect_off
3044 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3045 type_offset_in_tu
3046 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3047 BFD_ENDIAN_LITTLE);
3048 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3049 bytes += 3 * 8;
3050
3051 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3052 struct signatured_type);
3053 sig_type->signature = signature;
3054 sig_type->type_offset_in_tu = type_offset_in_tu;
3055 sig_type->per_cu.is_debug_types = 1;
3056 sig_type->per_cu.section = section;
3057 sig_type->per_cu.sect_off = sect_off;
3058 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3059 sig_type->per_cu.v.quick
3060 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3061 struct dwarf2_per_cu_quick_data);
3062
3063 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3064 *slot = sig_type;
3065
3066 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3067 }
3068
3069 dwarf2_per_objfile->signatured_types = sig_types_hash;
3070 }
3071
3072 /* Create the signatured type hash table from .debug_names. */
3073
3074 static void
3075 create_signatured_type_table_from_debug_names
3076 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3077 const mapped_debug_names &map,
3078 struct dwarf2_section_info *section,
3079 struct dwarf2_section_info *abbrev_section)
3080 {
3081 struct objfile *objfile = dwarf2_per_objfile->objfile;
3082
3083 dwarf2_read_section (objfile, section);
3084 dwarf2_read_section (objfile, abbrev_section);
3085
3086 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3087 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3088
3089 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3090
3091 for (uint32_t i = 0; i < map.tu_count; ++i)
3092 {
3093 struct signatured_type *sig_type;
3094 void **slot;
3095
3096 sect_offset sect_off
3097 = (sect_offset) (extract_unsigned_integer
3098 (map.tu_table_reordered + i * map.offset_size,
3099 map.offset_size,
3100 map.dwarf5_byte_order));
3101
3102 comp_unit_head cu_header;
3103 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3104 abbrev_section,
3105 section->buffer + to_underlying (sect_off),
3106 rcuh_kind::TYPE);
3107
3108 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3109 struct signatured_type);
3110 sig_type->signature = cu_header.signature;
3111 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3112 sig_type->per_cu.is_debug_types = 1;
3113 sig_type->per_cu.section = section;
3114 sig_type->per_cu.sect_off = sect_off;
3115 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3116 sig_type->per_cu.v.quick
3117 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3118 struct dwarf2_per_cu_quick_data);
3119
3120 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3121 *slot = sig_type;
3122
3123 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3124 }
3125
3126 dwarf2_per_objfile->signatured_types = sig_types_hash;
3127 }
3128
3129 /* Read the address map data from the mapped index, and use it to
3130 populate the objfile's psymtabs_addrmap. */
3131
3132 static void
3133 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3134 struct mapped_index *index)
3135 {
3136 struct objfile *objfile = dwarf2_per_objfile->objfile;
3137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3138 const gdb_byte *iter, *end;
3139 struct addrmap *mutable_map;
3140 CORE_ADDR baseaddr;
3141
3142 auto_obstack temp_obstack;
3143
3144 mutable_map = addrmap_create_mutable (&temp_obstack);
3145
3146 iter = index->address_table.data ();
3147 end = iter + index->address_table.size ();
3148
3149 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3150
3151 while (iter < end)
3152 {
3153 ULONGEST hi, lo, cu_index;
3154 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3157 iter += 8;
3158 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3159 iter += 4;
3160
3161 if (lo > hi)
3162 {
3163 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3164 hex_string (lo), hex_string (hi));
3165 continue;
3166 }
3167
3168 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3169 {
3170 complaint (_(".gdb_index address table has invalid CU number %u"),
3171 (unsigned) cu_index);
3172 continue;
3173 }
3174
3175 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3176 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3177 addrmap_set_empty (mutable_map, lo, hi - 1,
3178 dwarf2_per_objfile->get_cu (cu_index));
3179 }
3180
3181 objfile->partial_symtabs->psymtabs_addrmap
3182 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3183 }
3184
3185 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3186 populate the objfile's psymtabs_addrmap. */
3187
3188 static void
3189 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3190 struct dwarf2_section_info *section)
3191 {
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3193 bfd *abfd = objfile->obfd;
3194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3195 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3196 SECT_OFF_TEXT (objfile));
3197
3198 auto_obstack temp_obstack;
3199 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3200
3201 std::unordered_map<sect_offset,
3202 dwarf2_per_cu_data *,
3203 gdb::hash_enum<sect_offset>>
3204 debug_info_offset_to_per_cu;
3205 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3206 {
3207 const auto insertpair
3208 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3209 if (!insertpair.second)
3210 {
3211 warning (_("Section .debug_aranges in %s has duplicate "
3212 "debug_info_offset %s, ignoring .debug_aranges."),
3213 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3214 return;
3215 }
3216 }
3217
3218 dwarf2_read_section (objfile, section);
3219
3220 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3221
3222 const gdb_byte *addr = section->buffer;
3223
3224 while (addr < section->buffer + section->size)
3225 {
3226 const gdb_byte *const entry_addr = addr;
3227 unsigned int bytes_read;
3228
3229 const LONGEST entry_length = read_initial_length (abfd, addr,
3230 &bytes_read);
3231 addr += bytes_read;
3232
3233 const gdb_byte *const entry_end = addr + entry_length;
3234 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3235 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3236 if (addr + entry_length > section->buffer + section->size)
3237 {
3238 warning (_("Section .debug_aranges in %s entry at offset %s "
3239 "length %s exceeds section length %s, "
3240 "ignoring .debug_aranges."),
3241 objfile_name (objfile),
3242 plongest (entry_addr - section->buffer),
3243 plongest (bytes_read + entry_length),
3244 pulongest (section->size));
3245 return;
3246 }
3247
3248 /* The version number. */
3249 const uint16_t version = read_2_bytes (abfd, addr);
3250 addr += 2;
3251 if (version != 2)
3252 {
3253 warning (_("Section .debug_aranges in %s entry at offset %s "
3254 "has unsupported version %d, ignoring .debug_aranges."),
3255 objfile_name (objfile),
3256 plongest (entry_addr - section->buffer), version);
3257 return;
3258 }
3259
3260 const uint64_t debug_info_offset
3261 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3262 addr += offset_size;
3263 const auto per_cu_it
3264 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3265 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3266 {
3267 warning (_("Section .debug_aranges in %s entry at offset %s "
3268 "debug_info_offset %s does not exists, "
3269 "ignoring .debug_aranges."),
3270 objfile_name (objfile),
3271 plongest (entry_addr - section->buffer),
3272 pulongest (debug_info_offset));
3273 return;
3274 }
3275 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3276
3277 const uint8_t address_size = *addr++;
3278 if (address_size < 1 || address_size > 8)
3279 {
3280 warning (_("Section .debug_aranges in %s entry at offset %s "
3281 "address_size %u is invalid, ignoring .debug_aranges."),
3282 objfile_name (objfile),
3283 plongest (entry_addr - section->buffer), address_size);
3284 return;
3285 }
3286
3287 const uint8_t segment_selector_size = *addr++;
3288 if (segment_selector_size != 0)
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %s "
3291 "segment_selector_size %u is not supported, "
3292 "ignoring .debug_aranges."),
3293 objfile_name (objfile),
3294 plongest (entry_addr - section->buffer),
3295 segment_selector_size);
3296 return;
3297 }
3298
3299 /* Must pad to an alignment boundary that is twice the address
3300 size. It is undocumented by the DWARF standard but GCC does
3301 use it. */
3302 for (size_t padding = ((-(addr - section->buffer))
3303 & (2 * address_size - 1));
3304 padding > 0; padding--)
3305 if (*addr++ != 0)
3306 {
3307 warning (_("Section .debug_aranges in %s entry at offset %s "
3308 "padding is not zero, ignoring .debug_aranges."),
3309 objfile_name (objfile),
3310 plongest (entry_addr - section->buffer));
3311 return;
3312 }
3313
3314 for (;;)
3315 {
3316 if (addr + 2 * address_size > entry_end)
3317 {
3318 warning (_("Section .debug_aranges in %s entry at offset %s "
3319 "address list is not properly terminated, "
3320 "ignoring .debug_aranges."),
3321 objfile_name (objfile),
3322 plongest (entry_addr - section->buffer));
3323 return;
3324 }
3325 ULONGEST start = extract_unsigned_integer (addr, address_size,
3326 dwarf5_byte_order);
3327 addr += address_size;
3328 ULONGEST length = extract_unsigned_integer (addr, address_size,
3329 dwarf5_byte_order);
3330 addr += address_size;
3331 if (start == 0 && length == 0)
3332 break;
3333 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3334 {
3335 /* Symbol was eliminated due to a COMDAT group. */
3336 continue;
3337 }
3338 ULONGEST end = start + length;
3339 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3340 - baseaddr);
3341 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3342 - baseaddr);
3343 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3344 }
3345 }
3346
3347 objfile->partial_symtabs->psymtabs_addrmap
3348 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3349 }
3350
3351 /* Find a slot in the mapped index INDEX for the object named NAME.
3352 If NAME is found, set *VEC_OUT to point to the CU vector in the
3353 constant pool and return true. If NAME cannot be found, return
3354 false. */
3355
3356 static bool
3357 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3358 offset_type **vec_out)
3359 {
3360 offset_type hash;
3361 offset_type slot, step;
3362 int (*cmp) (const char *, const char *);
3363
3364 gdb::unique_xmalloc_ptr<char> without_params;
3365 if (current_language->la_language == language_cplus
3366 || current_language->la_language == language_fortran
3367 || current_language->la_language == language_d)
3368 {
3369 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3370 not contain any. */
3371
3372 if (strchr (name, '(') != NULL)
3373 {
3374 without_params = cp_remove_params (name);
3375
3376 if (without_params != NULL)
3377 name = without_params.get ();
3378 }
3379 }
3380
3381 /* Index version 4 did not support case insensitive searches. But the
3382 indices for case insensitive languages are built in lowercase, therefore
3383 simulate our NAME being searched is also lowercased. */
3384 hash = mapped_index_string_hash ((index->version == 4
3385 && case_sensitivity == case_sensitive_off
3386 ? 5 : index->version),
3387 name);
3388
3389 slot = hash & (index->symbol_table.size () - 1);
3390 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3391 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3392
3393 for (;;)
3394 {
3395 const char *str;
3396
3397 const auto &bucket = index->symbol_table[slot];
3398 if (bucket.name == 0 && bucket.vec == 0)
3399 return false;
3400
3401 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3402 if (!cmp (name, str))
3403 {
3404 *vec_out = (offset_type *) (index->constant_pool
3405 + MAYBE_SWAP (bucket.vec));
3406 return true;
3407 }
3408
3409 slot = (slot + step) & (index->symbol_table.size () - 1);
3410 }
3411 }
3412
3413 /* A helper function that reads the .gdb_index from BUFFER and fills
3414 in MAP. FILENAME is the name of the file containing the data;
3415 it is used for error reporting. DEPRECATED_OK is true if it is
3416 ok to use deprecated sections.
3417
3418 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3419 out parameters that are filled in with information about the CU and
3420 TU lists in the section.
3421
3422 Returns true if all went well, false otherwise. */
3423
3424 static bool
3425 read_gdb_index_from_buffer (struct objfile *objfile,
3426 const char *filename,
3427 bool deprecated_ok,
3428 gdb::array_view<const gdb_byte> buffer,
3429 struct mapped_index *map,
3430 const gdb_byte **cu_list,
3431 offset_type *cu_list_elements,
3432 const gdb_byte **types_list,
3433 offset_type *types_list_elements)
3434 {
3435 const gdb_byte *addr = &buffer[0];
3436
3437 /* Version check. */
3438 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3439 /* Versions earlier than 3 emitted every copy of a psymbol. This
3440 causes the index to behave very poorly for certain requests. Version 3
3441 contained incomplete addrmap. So, it seems better to just ignore such
3442 indices. */
3443 if (version < 4)
3444 {
3445 static int warning_printed = 0;
3446 if (!warning_printed)
3447 {
3448 warning (_("Skipping obsolete .gdb_index section in %s."),
3449 filename);
3450 warning_printed = 1;
3451 }
3452 return 0;
3453 }
3454 /* Index version 4 uses a different hash function than index version
3455 5 and later.
3456
3457 Versions earlier than 6 did not emit psymbols for inlined
3458 functions. Using these files will cause GDB not to be able to
3459 set breakpoints on inlined functions by name, so we ignore these
3460 indices unless the user has done
3461 "set use-deprecated-index-sections on". */
3462 if (version < 6 && !deprecated_ok)
3463 {
3464 static int warning_printed = 0;
3465 if (!warning_printed)
3466 {
3467 warning (_("\
3468 Skipping deprecated .gdb_index section in %s.\n\
3469 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3470 to use the section anyway."),
3471 filename);
3472 warning_printed = 1;
3473 }
3474 return 0;
3475 }
3476 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3477 of the TU (for symbols coming from TUs),
3478 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3479 Plus gold-generated indices can have duplicate entries for global symbols,
3480 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3481 These are just performance bugs, and we can't distinguish gdb-generated
3482 indices from gold-generated ones, so issue no warning here. */
3483
3484 /* Indexes with higher version than the one supported by GDB may be no
3485 longer backward compatible. */
3486 if (version > 8)
3487 return 0;
3488
3489 map->version = version;
3490
3491 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3492
3493 int i = 0;
3494 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3495 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3496 / 8);
3497 ++i;
3498
3499 *types_list = addr + MAYBE_SWAP (metadata[i]);
3500 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3501 - MAYBE_SWAP (metadata[i]))
3502 / 8);
3503 ++i;
3504
3505 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3506 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3507 map->address_table
3508 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3509 ++i;
3510
3511 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3512 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3513 map->symbol_table
3514 = gdb::array_view<mapped_index::symbol_table_slot>
3515 ((mapped_index::symbol_table_slot *) symbol_table,
3516 (mapped_index::symbol_table_slot *) symbol_table_end);
3517
3518 ++i;
3519 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3520
3521 return 1;
3522 }
3523
3524 /* Callback types for dwarf2_read_gdb_index. */
3525
3526 typedef gdb::function_view
3527 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3528 get_gdb_index_contents_ftype;
3529 typedef gdb::function_view
3530 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3531 get_gdb_index_contents_dwz_ftype;
3532
3533 /* Read .gdb_index. If everything went ok, initialize the "quick"
3534 elements of all the CUs and return 1. Otherwise, return 0. */
3535
3536 static int
3537 dwarf2_read_gdb_index
3538 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3539 get_gdb_index_contents_ftype get_gdb_index_contents,
3540 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3541 {
3542 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3543 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3544 struct dwz_file *dwz;
3545 struct objfile *objfile = dwarf2_per_objfile->objfile;
3546
3547 gdb::array_view<const gdb_byte> main_index_contents
3548 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3549
3550 if (main_index_contents.empty ())
3551 return 0;
3552
3553 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3554 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3555 use_deprecated_index_sections,
3556 main_index_contents, map.get (), &cu_list,
3557 &cu_list_elements, &types_list,
3558 &types_list_elements))
3559 return 0;
3560
3561 /* Don't use the index if it's empty. */
3562 if (map->symbol_table.empty ())
3563 return 0;
3564
3565 /* If there is a .dwz file, read it so we can get its CU list as
3566 well. */
3567 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3568 if (dwz != NULL)
3569 {
3570 struct mapped_index dwz_map;
3571 const gdb_byte *dwz_types_ignore;
3572 offset_type dwz_types_elements_ignore;
3573
3574 gdb::array_view<const gdb_byte> dwz_index_content
3575 = get_gdb_index_contents_dwz (objfile, dwz);
3576
3577 if (dwz_index_content.empty ())
3578 return 0;
3579
3580 if (!read_gdb_index_from_buffer (objfile,
3581 bfd_get_filename (dwz->dwz_bfd.get ()),
3582 1, dwz_index_content, &dwz_map,
3583 &dwz_list, &dwz_list_elements,
3584 &dwz_types_ignore,
3585 &dwz_types_elements_ignore))
3586 {
3587 warning (_("could not read '.gdb_index' section from %s; skipping"),
3588 bfd_get_filename (dwz->dwz_bfd.get ()));
3589 return 0;
3590 }
3591 }
3592
3593 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3594 dwz_list, dwz_list_elements);
3595
3596 if (types_list_elements)
3597 {
3598 /* We can only handle a single .debug_types when we have an
3599 index. */
3600 if (dwarf2_per_objfile->types.size () != 1)
3601 return 0;
3602
3603 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3604
3605 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3606 types_list, types_list_elements);
3607 }
3608
3609 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3610
3611 dwarf2_per_objfile->index_table = std::move (map);
3612 dwarf2_per_objfile->using_index = 1;
3613 dwarf2_per_objfile->quick_file_names_table =
3614 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3615
3616 return 1;
3617 }
3618
3619 /* die_reader_func for dw2_get_file_names. */
3620
3621 static void
3622 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3623 const gdb_byte *info_ptr,
3624 struct die_info *comp_unit_die,
3625 int has_children,
3626 void *data)
3627 {
3628 struct dwarf2_cu *cu = reader->cu;
3629 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3630 struct dwarf2_per_objfile *dwarf2_per_objfile
3631 = cu->per_cu->dwarf2_per_objfile;
3632 struct objfile *objfile = dwarf2_per_objfile->objfile;
3633 struct dwarf2_per_cu_data *lh_cu;
3634 struct attribute *attr;
3635 int i;
3636 void **slot;
3637 struct quick_file_names *qfn;
3638
3639 gdb_assert (! this_cu->is_debug_types);
3640
3641 /* Our callers never want to match partial units -- instead they
3642 will match the enclosing full CU. */
3643 if (comp_unit_die->tag == DW_TAG_partial_unit)
3644 {
3645 this_cu->v.quick->no_file_data = 1;
3646 return;
3647 }
3648
3649 lh_cu = this_cu;
3650 slot = NULL;
3651
3652 line_header_up lh;
3653 sect_offset line_offset {};
3654
3655 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3656 if (attr)
3657 {
3658 struct quick_file_names find_entry;
3659
3660 line_offset = (sect_offset) DW_UNSND (attr);
3661
3662 /* We may have already read in this line header (TU line header sharing).
3663 If we have we're done. */
3664 find_entry.hash.dwo_unit = cu->dwo_unit;
3665 find_entry.hash.line_sect_off = line_offset;
3666 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3667 &find_entry, INSERT);
3668 if (*slot != NULL)
3669 {
3670 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3671 return;
3672 }
3673
3674 lh = dwarf_decode_line_header (line_offset, cu);
3675 }
3676 if (lh == NULL)
3677 {
3678 lh_cu->v.quick->no_file_data = 1;
3679 return;
3680 }
3681
3682 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3683 qfn->hash.dwo_unit = cu->dwo_unit;
3684 qfn->hash.line_sect_off = line_offset;
3685 gdb_assert (slot != NULL);
3686 *slot = qfn;
3687
3688 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3689
3690 int offset = 0;
3691 if (strcmp (fnd.name, "<unknown>") != 0)
3692 ++offset;
3693
3694 qfn->num_file_names = offset + lh->file_names.size ();
3695 qfn->file_names =
3696 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3697 if (offset != 0)
3698 qfn->file_names[0] = xstrdup (fnd.name);
3699 for (i = 0; i < lh->file_names.size (); ++i)
3700 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3701 qfn->real_names = NULL;
3702
3703 lh_cu->v.quick->file_names = qfn;
3704 }
3705
3706 /* A helper for the "quick" functions which attempts to read the line
3707 table for THIS_CU. */
3708
3709 static struct quick_file_names *
3710 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3711 {
3712 /* This should never be called for TUs. */
3713 gdb_assert (! this_cu->is_debug_types);
3714 /* Nor type unit groups. */
3715 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3716
3717 if (this_cu->v.quick->file_names != NULL)
3718 return this_cu->v.quick->file_names;
3719 /* If we know there is no line data, no point in looking again. */
3720 if (this_cu->v.quick->no_file_data)
3721 return NULL;
3722
3723 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3724
3725 if (this_cu->v.quick->no_file_data)
3726 return NULL;
3727 return this_cu->v.quick->file_names;
3728 }
3729
3730 /* A helper for the "quick" functions which computes and caches the
3731 real path for a given file name from the line table. */
3732
3733 static const char *
3734 dw2_get_real_path (struct objfile *objfile,
3735 struct quick_file_names *qfn, int index)
3736 {
3737 if (qfn->real_names == NULL)
3738 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3739 qfn->num_file_names, const char *);
3740
3741 if (qfn->real_names[index] == NULL)
3742 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3743
3744 return qfn->real_names[index];
3745 }
3746
3747 static struct symtab *
3748 dw2_find_last_source_symtab (struct objfile *objfile)
3749 {
3750 struct dwarf2_per_objfile *dwarf2_per_objfile
3751 = get_dwarf2_per_objfile (objfile);
3752 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3753 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3754
3755 if (cust == NULL)
3756 return NULL;
3757
3758 return compunit_primary_filetab (cust);
3759 }
3760
3761 /* Traversal function for dw2_forget_cached_source_info. */
3762
3763 static int
3764 dw2_free_cached_file_names (void **slot, void *info)
3765 {
3766 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3767
3768 if (file_data->real_names)
3769 {
3770 int i;
3771
3772 for (i = 0; i < file_data->num_file_names; ++i)
3773 {
3774 xfree ((void*) file_data->real_names[i]);
3775 file_data->real_names[i] = NULL;
3776 }
3777 }
3778
3779 return 1;
3780 }
3781
3782 static void
3783 dw2_forget_cached_source_info (struct objfile *objfile)
3784 {
3785 struct dwarf2_per_objfile *dwarf2_per_objfile
3786 = get_dwarf2_per_objfile (objfile);
3787
3788 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3789 dw2_free_cached_file_names, NULL);
3790 }
3791
3792 /* Helper function for dw2_map_symtabs_matching_filename that expands
3793 the symtabs and calls the iterator. */
3794
3795 static int
3796 dw2_map_expand_apply (struct objfile *objfile,
3797 struct dwarf2_per_cu_data *per_cu,
3798 const char *name, const char *real_path,
3799 gdb::function_view<bool (symtab *)> callback)
3800 {
3801 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3802
3803 /* Don't visit already-expanded CUs. */
3804 if (per_cu->v.quick->compunit_symtab)
3805 return 0;
3806
3807 /* This may expand more than one symtab, and we want to iterate over
3808 all of them. */
3809 dw2_instantiate_symtab (per_cu, false);
3810
3811 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3812 last_made, callback);
3813 }
3814
3815 /* Implementation of the map_symtabs_matching_filename method. */
3816
3817 static bool
3818 dw2_map_symtabs_matching_filename
3819 (struct objfile *objfile, const char *name, const char *real_path,
3820 gdb::function_view<bool (symtab *)> callback)
3821 {
3822 const char *name_basename = lbasename (name);
3823 struct dwarf2_per_objfile *dwarf2_per_objfile
3824 = get_dwarf2_per_objfile (objfile);
3825
3826 /* The rule is CUs specify all the files, including those used by
3827 any TU, so there's no need to scan TUs here. */
3828
3829 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3830 {
3831 /* We only need to look at symtabs not already expanded. */
3832 if (per_cu->v.quick->compunit_symtab)
3833 continue;
3834
3835 quick_file_names *file_data = dw2_get_file_names (per_cu);
3836 if (file_data == NULL)
3837 continue;
3838
3839 for (int j = 0; j < file_data->num_file_names; ++j)
3840 {
3841 const char *this_name = file_data->file_names[j];
3842 const char *this_real_name;
3843
3844 if (compare_filenames_for_search (this_name, name))
3845 {
3846 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3847 callback))
3848 return true;
3849 continue;
3850 }
3851
3852 /* Before we invoke realpath, which can get expensive when many
3853 files are involved, do a quick comparison of the basenames. */
3854 if (! basenames_may_differ
3855 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3856 continue;
3857
3858 this_real_name = dw2_get_real_path (objfile, file_data, j);
3859 if (compare_filenames_for_search (this_real_name, name))
3860 {
3861 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3862 callback))
3863 return true;
3864 continue;
3865 }
3866
3867 if (real_path != NULL)
3868 {
3869 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3870 gdb_assert (IS_ABSOLUTE_PATH (name));
3871 if (this_real_name != NULL
3872 && FILENAME_CMP (real_path, this_real_name) == 0)
3873 {
3874 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3875 callback))
3876 return true;
3877 continue;
3878 }
3879 }
3880 }
3881 }
3882
3883 return false;
3884 }
3885
3886 /* Struct used to manage iterating over all CUs looking for a symbol. */
3887
3888 struct dw2_symtab_iterator
3889 {
3890 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3891 struct dwarf2_per_objfile *dwarf2_per_objfile;
3892 /* If set, only look for symbols that match that block. Valid values are
3893 GLOBAL_BLOCK and STATIC_BLOCK. */
3894 gdb::optional<block_enum> block_index;
3895 /* The kind of symbol we're looking for. */
3896 domain_enum domain;
3897 /* The list of CUs from the index entry of the symbol,
3898 or NULL if not found. */
3899 offset_type *vec;
3900 /* The next element in VEC to look at. */
3901 int next;
3902 /* The number of elements in VEC, or zero if there is no match. */
3903 int length;
3904 /* Have we seen a global version of the symbol?
3905 If so we can ignore all further global instances.
3906 This is to work around gold/15646, inefficient gold-generated
3907 indices. */
3908 int global_seen;
3909 };
3910
3911 /* Initialize the index symtab iterator ITER. */
3912
3913 static void
3914 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3915 struct dwarf2_per_objfile *dwarf2_per_objfile,
3916 gdb::optional<block_enum> block_index,
3917 domain_enum domain,
3918 const char *name)
3919 {
3920 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3921 iter->block_index = block_index;
3922 iter->domain = domain;
3923 iter->next = 0;
3924 iter->global_seen = 0;
3925
3926 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3927
3928 /* index is NULL if OBJF_READNOW. */
3929 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3930 iter->length = MAYBE_SWAP (*iter->vec);
3931 else
3932 {
3933 iter->vec = NULL;
3934 iter->length = 0;
3935 }
3936 }
3937
3938 /* Return the next matching CU or NULL if there are no more. */
3939
3940 static struct dwarf2_per_cu_data *
3941 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3942 {
3943 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3944
3945 for ( ; iter->next < iter->length; ++iter->next)
3946 {
3947 offset_type cu_index_and_attrs =
3948 MAYBE_SWAP (iter->vec[iter->next + 1]);
3949 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3950 gdb_index_symbol_kind symbol_kind =
3951 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3952 /* Only check the symbol attributes if they're present.
3953 Indices prior to version 7 don't record them,
3954 and indices >= 7 may elide them for certain symbols
3955 (gold does this). */
3956 int attrs_valid =
3957 (dwarf2_per_objfile->index_table->version >= 7
3958 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3959
3960 /* Don't crash on bad data. */
3961 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3962 + dwarf2_per_objfile->all_type_units.size ()))
3963 {
3964 complaint (_(".gdb_index entry has bad CU index"
3965 " [in module %s]"),
3966 objfile_name (dwarf2_per_objfile->objfile));
3967 continue;
3968 }
3969
3970 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3971
3972 /* Skip if already read in. */
3973 if (per_cu->v.quick->compunit_symtab)
3974 continue;
3975
3976 /* Check static vs global. */
3977 if (attrs_valid)
3978 {
3979 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3980
3981 if (iter->block_index.has_value ())
3982 {
3983 bool want_static = *iter->block_index == STATIC_BLOCK;
3984
3985 if (is_static != want_static)
3986 continue;
3987 }
3988
3989 /* Work around gold/15646. */
3990 if (!is_static && iter->global_seen)
3991 continue;
3992 if (!is_static)
3993 iter->global_seen = 1;
3994 }
3995
3996 /* Only check the symbol's kind if it has one. */
3997 if (attrs_valid)
3998 {
3999 switch (iter->domain)
4000 {
4001 case VAR_DOMAIN:
4002 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4004 /* Some types are also in VAR_DOMAIN. */
4005 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4006 continue;
4007 break;
4008 case STRUCT_DOMAIN:
4009 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4010 continue;
4011 break;
4012 case LABEL_DOMAIN:
4013 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4014 continue;
4015 break;
4016 default:
4017 break;
4018 }
4019 }
4020
4021 ++iter->next;
4022 return per_cu;
4023 }
4024
4025 return NULL;
4026 }
4027
4028 static struct compunit_symtab *
4029 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
4030 const char *name, domain_enum domain)
4031 {
4032 struct compunit_symtab *stab_best = NULL;
4033 struct dwarf2_per_objfile *dwarf2_per_objfile
4034 = get_dwarf2_per_objfile (objfile);
4035
4036 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4037
4038 struct dw2_symtab_iterator iter;
4039 struct dwarf2_per_cu_data *per_cu;
4040
4041 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4042
4043 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4044 {
4045 struct symbol *sym, *with_opaque = NULL;
4046 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4047 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4048 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4049
4050 sym = block_find_symbol (block, name, domain,
4051 block_find_non_opaque_type_preferred,
4052 &with_opaque);
4053
4054 /* Some caution must be observed with overloaded functions
4055 and methods, since the index will not contain any overload
4056 information (but NAME might contain it). */
4057
4058 if (sym != NULL
4059 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4060 return stab;
4061 if (with_opaque != NULL
4062 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4063 stab_best = stab;
4064
4065 /* Keep looking through other CUs. */
4066 }
4067
4068 return stab_best;
4069 }
4070
4071 static void
4072 dw2_print_stats (struct objfile *objfile)
4073 {
4074 struct dwarf2_per_objfile *dwarf2_per_objfile
4075 = get_dwarf2_per_objfile (objfile);
4076 int total = (dwarf2_per_objfile->all_comp_units.size ()
4077 + dwarf2_per_objfile->all_type_units.size ());
4078 int count = 0;
4079
4080 for (int i = 0; i < total; ++i)
4081 {
4082 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4083
4084 if (!per_cu->v.quick->compunit_symtab)
4085 ++count;
4086 }
4087 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4088 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4089 }
4090
4091 /* This dumps minimal information about the index.
4092 It is called via "mt print objfiles".
4093 One use is to verify .gdb_index has been loaded by the
4094 gdb.dwarf2/gdb-index.exp testcase. */
4095
4096 static void
4097 dw2_dump (struct objfile *objfile)
4098 {
4099 struct dwarf2_per_objfile *dwarf2_per_objfile
4100 = get_dwarf2_per_objfile (objfile);
4101
4102 gdb_assert (dwarf2_per_objfile->using_index);
4103 printf_filtered (".gdb_index:");
4104 if (dwarf2_per_objfile->index_table != NULL)
4105 {
4106 printf_filtered (" version %d\n",
4107 dwarf2_per_objfile->index_table->version);
4108 }
4109 else
4110 printf_filtered (" faked for \"readnow\"\n");
4111 printf_filtered ("\n");
4112 }
4113
4114 static void
4115 dw2_expand_symtabs_for_function (struct objfile *objfile,
4116 const char *func_name)
4117 {
4118 struct dwarf2_per_objfile *dwarf2_per_objfile
4119 = get_dwarf2_per_objfile (objfile);
4120
4121 struct dw2_symtab_iterator iter;
4122 struct dwarf2_per_cu_data *per_cu;
4123
4124 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4125
4126 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4127 dw2_instantiate_symtab (per_cu, false);
4128
4129 }
4130
4131 static void
4132 dw2_expand_all_symtabs (struct objfile *objfile)
4133 {
4134 struct dwarf2_per_objfile *dwarf2_per_objfile
4135 = get_dwarf2_per_objfile (objfile);
4136 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4137 + dwarf2_per_objfile->all_type_units.size ());
4138
4139 for (int i = 0; i < total_units; ++i)
4140 {
4141 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4142
4143 /* We don't want to directly expand a partial CU, because if we
4144 read it with the wrong language, then assertion failures can
4145 be triggered later on. See PR symtab/23010. So, tell
4146 dw2_instantiate_symtab to skip partial CUs -- any important
4147 partial CU will be read via DW_TAG_imported_unit anyway. */
4148 dw2_instantiate_symtab (per_cu, true);
4149 }
4150 }
4151
4152 static void
4153 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4154 const char *fullname)
4155 {
4156 struct dwarf2_per_objfile *dwarf2_per_objfile
4157 = get_dwarf2_per_objfile (objfile);
4158
4159 /* We don't need to consider type units here.
4160 This is only called for examining code, e.g. expand_line_sal.
4161 There can be an order of magnitude (or more) more type units
4162 than comp units, and we avoid them if we can. */
4163
4164 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4165 {
4166 /* We only need to look at symtabs not already expanded. */
4167 if (per_cu->v.quick->compunit_symtab)
4168 continue;
4169
4170 quick_file_names *file_data = dw2_get_file_names (per_cu);
4171 if (file_data == NULL)
4172 continue;
4173
4174 for (int j = 0; j < file_data->num_file_names; ++j)
4175 {
4176 const char *this_fullname = file_data->file_names[j];
4177
4178 if (filename_cmp (this_fullname, fullname) == 0)
4179 {
4180 dw2_instantiate_symtab (per_cu, false);
4181 break;
4182 }
4183 }
4184 }
4185 }
4186
4187 static void
4188 dw2_map_matching_symbols
4189 (struct objfile *objfile,
4190 const lookup_name_info &name, domain_enum domain,
4191 int global,
4192 gdb::function_view<symbol_found_callback_ftype> callback,
4193 symbol_compare_ftype *ordered_compare)
4194 {
4195 /* Currently unimplemented; used for Ada. The function can be called if the
4196 current language is Ada for a non-Ada objfile using GNU index. As Ada
4197 does not look for non-Ada symbols this function should just return. */
4198 }
4199
4200 /* Starting from a search name, return the string that finds the upper
4201 bound of all strings that start with SEARCH_NAME in a sorted name
4202 list. Returns the empty string to indicate that the upper bound is
4203 the end of the list. */
4204
4205 static std::string
4206 make_sort_after_prefix_name (const char *search_name)
4207 {
4208 /* When looking to complete "func", we find the upper bound of all
4209 symbols that start with "func" by looking for where we'd insert
4210 the closest string that would follow "func" in lexicographical
4211 order. Usually, that's "func"-with-last-character-incremented,
4212 i.e. "fund". Mind non-ASCII characters, though. Usually those
4213 will be UTF-8 multi-byte sequences, but we can't be certain.
4214 Especially mind the 0xff character, which is a valid character in
4215 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4216 rule out compilers allowing it in identifiers. Note that
4217 conveniently, strcmp/strcasecmp are specified to compare
4218 characters interpreted as unsigned char. So what we do is treat
4219 the whole string as a base 256 number composed of a sequence of
4220 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4221 to 0, and carries 1 to the following more-significant position.
4222 If the very first character in SEARCH_NAME ends up incremented
4223 and carries/overflows, then the upper bound is the end of the
4224 list. The string after the empty string is also the empty
4225 string.
4226
4227 Some examples of this operation:
4228
4229 SEARCH_NAME => "+1" RESULT
4230
4231 "abc" => "abd"
4232 "ab\xff" => "ac"
4233 "\xff" "a" "\xff" => "\xff" "b"
4234 "\xff" => ""
4235 "\xff\xff" => ""
4236 "" => ""
4237
4238 Then, with these symbols for example:
4239
4240 func
4241 func1
4242 fund
4243
4244 completing "func" looks for symbols between "func" and
4245 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4246 which finds "func" and "func1", but not "fund".
4247
4248 And with:
4249
4250 funcÿ (Latin1 'ÿ' [0xff])
4251 funcÿ1
4252 fund
4253
4254 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4255 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4256
4257 And with:
4258
4259 ÿÿ (Latin1 'ÿ' [0xff])
4260 ÿÿ1
4261
4262 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4263 the end of the list.
4264 */
4265 std::string after = search_name;
4266 while (!after.empty () && (unsigned char) after.back () == 0xff)
4267 after.pop_back ();
4268 if (!after.empty ())
4269 after.back () = (unsigned char) after.back () + 1;
4270 return after;
4271 }
4272
4273 /* See declaration. */
4274
4275 std::pair<std::vector<name_component>::const_iterator,
4276 std::vector<name_component>::const_iterator>
4277 mapped_index_base::find_name_components_bounds
4278 (const lookup_name_info &lookup_name_without_params, language lang) const
4279 {
4280 auto *name_cmp
4281 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4282
4283 const char *lang_name
4284 = lookup_name_without_params.language_lookup_name (lang).c_str ();
4285
4286 /* Comparison function object for lower_bound that matches against a
4287 given symbol name. */
4288 auto lookup_compare_lower = [&] (const name_component &elem,
4289 const char *name)
4290 {
4291 const char *elem_qualified = this->symbol_name_at (elem.idx);
4292 const char *elem_name = elem_qualified + elem.name_offset;
4293 return name_cmp (elem_name, name) < 0;
4294 };
4295
4296 /* Comparison function object for upper_bound that matches against a
4297 given symbol name. */
4298 auto lookup_compare_upper = [&] (const char *name,
4299 const name_component &elem)
4300 {
4301 const char *elem_qualified = this->symbol_name_at (elem.idx);
4302 const char *elem_name = elem_qualified + elem.name_offset;
4303 return name_cmp (name, elem_name) < 0;
4304 };
4305
4306 auto begin = this->name_components.begin ();
4307 auto end = this->name_components.end ();
4308
4309 /* Find the lower bound. */
4310 auto lower = [&] ()
4311 {
4312 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4313 return begin;
4314 else
4315 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4316 } ();
4317
4318 /* Find the upper bound. */
4319 auto upper = [&] ()
4320 {
4321 if (lookup_name_without_params.completion_mode ())
4322 {
4323 /* In completion mode, we want UPPER to point past all
4324 symbols names that have the same prefix. I.e., with
4325 these symbols, and completing "func":
4326
4327 function << lower bound
4328 function1
4329 other_function << upper bound
4330
4331 We find the upper bound by looking for the insertion
4332 point of "func"-with-last-character-incremented,
4333 i.e. "fund". */
4334 std::string after = make_sort_after_prefix_name (lang_name);
4335 if (after.empty ())
4336 return end;
4337 return std::lower_bound (lower, end, after.c_str (),
4338 lookup_compare_lower);
4339 }
4340 else
4341 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4342 } ();
4343
4344 return {lower, upper};
4345 }
4346
4347 /* See declaration. */
4348
4349 void
4350 mapped_index_base::build_name_components ()
4351 {
4352 if (!this->name_components.empty ())
4353 return;
4354
4355 this->name_components_casing = case_sensitivity;
4356 auto *name_cmp
4357 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4358
4359 /* The code below only knows how to break apart components of C++
4360 symbol names (and other languages that use '::' as
4361 namespace/module separator) and Ada symbol names. */
4362 auto count = this->symbol_name_count ();
4363 for (offset_type idx = 0; idx < count; idx++)
4364 {
4365 if (this->symbol_name_slot_invalid (idx))
4366 continue;
4367
4368 const char *name = this->symbol_name_at (idx);
4369
4370 /* Add each name component to the name component table. */
4371 unsigned int previous_len = 0;
4372
4373 if (strstr (name, "::") != nullptr)
4374 {
4375 for (unsigned int current_len = cp_find_first_component (name);
4376 name[current_len] != '\0';
4377 current_len += cp_find_first_component (name + current_len))
4378 {
4379 gdb_assert (name[current_len] == ':');
4380 this->name_components.push_back ({previous_len, idx});
4381 /* Skip the '::'. */
4382 current_len += 2;
4383 previous_len = current_len;
4384 }
4385 }
4386 else
4387 {
4388 /* Handle the Ada encoded (aka mangled) form here. */
4389 for (const char *iter = strstr (name, "__");
4390 iter != nullptr;
4391 iter = strstr (iter, "__"))
4392 {
4393 this->name_components.push_back ({previous_len, idx});
4394 iter += 2;
4395 previous_len = iter - name;
4396 }
4397 }
4398
4399 this->name_components.push_back ({previous_len, idx});
4400 }
4401
4402 /* Sort name_components elements by name. */
4403 auto name_comp_compare = [&] (const name_component &left,
4404 const name_component &right)
4405 {
4406 const char *left_qualified = this->symbol_name_at (left.idx);
4407 const char *right_qualified = this->symbol_name_at (right.idx);
4408
4409 const char *left_name = left_qualified + left.name_offset;
4410 const char *right_name = right_qualified + right.name_offset;
4411
4412 return name_cmp (left_name, right_name) < 0;
4413 };
4414
4415 std::sort (this->name_components.begin (),
4416 this->name_components.end (),
4417 name_comp_compare);
4418 }
4419
4420 /* Helper for dw2_expand_symtabs_matching that works with a
4421 mapped_index_base instead of the containing objfile. This is split
4422 to a separate function in order to be able to unit test the
4423 name_components matching using a mock mapped_index_base. For each
4424 symbol name that matches, calls MATCH_CALLBACK, passing it the
4425 symbol's index in the mapped_index_base symbol table. */
4426
4427 static void
4428 dw2_expand_symtabs_matching_symbol
4429 (mapped_index_base &index,
4430 const lookup_name_info &lookup_name_in,
4431 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4432 enum search_domain kind,
4433 gdb::function_view<bool (offset_type)> match_callback)
4434 {
4435 lookup_name_info lookup_name_without_params
4436 = lookup_name_in.make_ignore_params ();
4437
4438 /* Build the symbol name component sorted vector, if we haven't
4439 yet. */
4440 index.build_name_components ();
4441
4442 /* The same symbol may appear more than once in the range though.
4443 E.g., if we're looking for symbols that complete "w", and we have
4444 a symbol named "w1::w2", we'll find the two name components for
4445 that same symbol in the range. To be sure we only call the
4446 callback once per symbol, we first collect the symbol name
4447 indexes that matched in a temporary vector and ignore
4448 duplicates. */
4449 std::vector<offset_type> matches;
4450
4451 struct name_and_matcher
4452 {
4453 symbol_name_matcher_ftype *matcher;
4454 const std::string &name;
4455
4456 bool operator== (const name_and_matcher &other) const
4457 {
4458 return matcher == other.matcher && name == other.name;
4459 }
4460 };
4461
4462 /* A vector holding all the different symbol name matchers, for all
4463 languages. */
4464 std::vector<name_and_matcher> matchers;
4465
4466 for (int i = 0; i < nr_languages; i++)
4467 {
4468 enum language lang_e = (enum language) i;
4469
4470 const language_defn *lang = language_def (lang_e);
4471 symbol_name_matcher_ftype *name_matcher
4472 = get_symbol_name_matcher (lang, lookup_name_without_params);
4473
4474 name_and_matcher key {
4475 name_matcher,
4476 lookup_name_without_params.language_lookup_name (lang_e)
4477 };
4478
4479 /* Don't insert the same comparison routine more than once.
4480 Note that we do this linear walk. This is not a problem in
4481 practice because the number of supported languages is
4482 low. */
4483 if (std::find (matchers.begin (), matchers.end (), key)
4484 != matchers.end ())
4485 continue;
4486 matchers.push_back (std::move (key));
4487
4488 auto bounds
4489 = index.find_name_components_bounds (lookup_name_without_params,
4490 lang_e);
4491
4492 /* Now for each symbol name in range, check to see if we have a name
4493 match, and if so, call the MATCH_CALLBACK callback. */
4494
4495 for (; bounds.first != bounds.second; ++bounds.first)
4496 {
4497 const char *qualified = index.symbol_name_at (bounds.first->idx);
4498
4499 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4500 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4501 continue;
4502
4503 matches.push_back (bounds.first->idx);
4504 }
4505 }
4506
4507 std::sort (matches.begin (), matches.end ());
4508
4509 /* Finally call the callback, once per match. */
4510 ULONGEST prev = -1;
4511 for (offset_type idx : matches)
4512 {
4513 if (prev != idx)
4514 {
4515 if (!match_callback (idx))
4516 break;
4517 prev = idx;
4518 }
4519 }
4520
4521 /* Above we use a type wider than idx's for 'prev', since 0 and
4522 (offset_type)-1 are both possible values. */
4523 static_assert (sizeof (prev) > sizeof (offset_type), "");
4524 }
4525
4526 #if GDB_SELF_TEST
4527
4528 namespace selftests { namespace dw2_expand_symtabs_matching {
4529
4530 /* A mock .gdb_index/.debug_names-like name index table, enough to
4531 exercise dw2_expand_symtabs_matching_symbol, which works with the
4532 mapped_index_base interface. Builds an index from the symbol list
4533 passed as parameter to the constructor. */
4534 class mock_mapped_index : public mapped_index_base
4535 {
4536 public:
4537 mock_mapped_index (gdb::array_view<const char *> symbols)
4538 : m_symbol_table (symbols)
4539 {}
4540
4541 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4542
4543 /* Return the number of names in the symbol table. */
4544 size_t symbol_name_count () const override
4545 {
4546 return m_symbol_table.size ();
4547 }
4548
4549 /* Get the name of the symbol at IDX in the symbol table. */
4550 const char *symbol_name_at (offset_type idx) const override
4551 {
4552 return m_symbol_table[idx];
4553 }
4554
4555 private:
4556 gdb::array_view<const char *> m_symbol_table;
4557 };
4558
4559 /* Convenience function that converts a NULL pointer to a "<null>"
4560 string, to pass to print routines. */
4561
4562 static const char *
4563 string_or_null (const char *str)
4564 {
4565 return str != NULL ? str : "<null>";
4566 }
4567
4568 /* Check if a lookup_name_info built from
4569 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4570 index. EXPECTED_LIST is the list of expected matches, in expected
4571 matching order. If no match expected, then an empty list is
4572 specified. Returns true on success. On failure prints a warning
4573 indicating the file:line that failed, and returns false. */
4574
4575 static bool
4576 check_match (const char *file, int line,
4577 mock_mapped_index &mock_index,
4578 const char *name, symbol_name_match_type match_type,
4579 bool completion_mode,
4580 std::initializer_list<const char *> expected_list)
4581 {
4582 lookup_name_info lookup_name (name, match_type, completion_mode);
4583
4584 bool matched = true;
4585
4586 auto mismatch = [&] (const char *expected_str,
4587 const char *got)
4588 {
4589 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4590 "expected=\"%s\", got=\"%s\"\n"),
4591 file, line,
4592 (match_type == symbol_name_match_type::FULL
4593 ? "FULL" : "WILD"),
4594 name, string_or_null (expected_str), string_or_null (got));
4595 matched = false;
4596 };
4597
4598 auto expected_it = expected_list.begin ();
4599 auto expected_end = expected_list.end ();
4600
4601 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4602 NULL, ALL_DOMAIN,
4603 [&] (offset_type idx)
4604 {
4605 const char *matched_name = mock_index.symbol_name_at (idx);
4606 const char *expected_str
4607 = expected_it == expected_end ? NULL : *expected_it++;
4608
4609 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4610 mismatch (expected_str, matched_name);
4611 return true;
4612 });
4613
4614 const char *expected_str
4615 = expected_it == expected_end ? NULL : *expected_it++;
4616 if (expected_str != NULL)
4617 mismatch (expected_str, NULL);
4618
4619 return matched;
4620 }
4621
4622 /* The symbols added to the mock mapped_index for testing (in
4623 canonical form). */
4624 static const char *test_symbols[] = {
4625 "function",
4626 "std::bar",
4627 "std::zfunction",
4628 "std::zfunction2",
4629 "w1::w2",
4630 "ns::foo<char*>",
4631 "ns::foo<int>",
4632 "ns::foo<long>",
4633 "ns2::tmpl<int>::foo2",
4634 "(anonymous namespace)::A::B::C",
4635
4636 /* These are used to check that the increment-last-char in the
4637 matching algorithm for completion doesn't match "t1_fund" when
4638 completing "t1_func". */
4639 "t1_func",
4640 "t1_func1",
4641 "t1_fund",
4642 "t1_fund1",
4643
4644 /* A UTF-8 name with multi-byte sequences to make sure that
4645 cp-name-parser understands this as a single identifier ("função"
4646 is "function" in PT). */
4647 u8"u8função",
4648
4649 /* \377 (0xff) is Latin1 'ÿ'. */
4650 "yfunc\377",
4651
4652 /* \377 (0xff) is Latin1 'ÿ'. */
4653 "\377",
4654 "\377\377123",
4655
4656 /* A name with all sorts of complications. Starts with "z" to make
4657 it easier for the completion tests below. */
4658 #define Z_SYM_NAME \
4659 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4660 "::tuple<(anonymous namespace)::ui*, " \
4661 "std::default_delete<(anonymous namespace)::ui>, void>"
4662
4663 Z_SYM_NAME
4664 };
4665
4666 /* Returns true if the mapped_index_base::find_name_component_bounds
4667 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4668 in completion mode. */
4669
4670 static bool
4671 check_find_bounds_finds (mapped_index_base &index,
4672 const char *search_name,
4673 gdb::array_view<const char *> expected_syms)
4674 {
4675 lookup_name_info lookup_name (search_name,
4676 symbol_name_match_type::FULL, true);
4677
4678 auto bounds = index.find_name_components_bounds (lookup_name,
4679 language_cplus);
4680
4681 size_t distance = std::distance (bounds.first, bounds.second);
4682 if (distance != expected_syms.size ())
4683 return false;
4684
4685 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4686 {
4687 auto nc_elem = bounds.first + exp_elem;
4688 const char *qualified = index.symbol_name_at (nc_elem->idx);
4689 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4690 return false;
4691 }
4692
4693 return true;
4694 }
4695
4696 /* Test the lower-level mapped_index::find_name_component_bounds
4697 method. */
4698
4699 static void
4700 test_mapped_index_find_name_component_bounds ()
4701 {
4702 mock_mapped_index mock_index (test_symbols);
4703
4704 mock_index.build_name_components ();
4705
4706 /* Test the lower-level mapped_index::find_name_component_bounds
4707 method in completion mode. */
4708 {
4709 static const char *expected_syms[] = {
4710 "t1_func",
4711 "t1_func1",
4712 };
4713
4714 SELF_CHECK (check_find_bounds_finds (mock_index,
4715 "t1_func", expected_syms));
4716 }
4717
4718 /* Check that the increment-last-char in the name matching algorithm
4719 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4720 {
4721 static const char *expected_syms1[] = {
4722 "\377",
4723 "\377\377123",
4724 };
4725 SELF_CHECK (check_find_bounds_finds (mock_index,
4726 "\377", expected_syms1));
4727
4728 static const char *expected_syms2[] = {
4729 "\377\377123",
4730 };
4731 SELF_CHECK (check_find_bounds_finds (mock_index,
4732 "\377\377", expected_syms2));
4733 }
4734 }
4735
4736 /* Test dw2_expand_symtabs_matching_symbol. */
4737
4738 static void
4739 test_dw2_expand_symtabs_matching_symbol ()
4740 {
4741 mock_mapped_index mock_index (test_symbols);
4742
4743 /* We let all tests run until the end even if some fails, for debug
4744 convenience. */
4745 bool any_mismatch = false;
4746
4747 /* Create the expected symbols list (an initializer_list). Needed
4748 because lists have commas, and we need to pass them to CHECK,
4749 which is a macro. */
4750 #define EXPECT(...) { __VA_ARGS__ }
4751
4752 /* Wrapper for check_match that passes down the current
4753 __FILE__/__LINE__. */
4754 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4755 any_mismatch |= !check_match (__FILE__, __LINE__, \
4756 mock_index, \
4757 NAME, MATCH_TYPE, COMPLETION_MODE, \
4758 EXPECTED_LIST)
4759
4760 /* Identity checks. */
4761 for (const char *sym : test_symbols)
4762 {
4763 /* Should be able to match all existing symbols. */
4764 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4765 EXPECT (sym));
4766
4767 /* Should be able to match all existing symbols with
4768 parameters. */
4769 std::string with_params = std::string (sym) + "(int)";
4770 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4771 EXPECT (sym));
4772
4773 /* Should be able to match all existing symbols with
4774 parameters and qualifiers. */
4775 with_params = std::string (sym) + " ( int ) const";
4776 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4777 EXPECT (sym));
4778
4779 /* This should really find sym, but cp-name-parser.y doesn't
4780 know about lvalue/rvalue qualifiers yet. */
4781 with_params = std::string (sym) + " ( int ) &&";
4782 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4783 {});
4784 }
4785
4786 /* Check that the name matching algorithm for completion doesn't get
4787 confused with Latin1 'ÿ' / 0xff. */
4788 {
4789 static const char str[] = "\377";
4790 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4791 EXPECT ("\377", "\377\377123"));
4792 }
4793
4794 /* Check that the increment-last-char in the matching algorithm for
4795 completion doesn't match "t1_fund" when completing "t1_func". */
4796 {
4797 static const char str[] = "t1_func";
4798 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4799 EXPECT ("t1_func", "t1_func1"));
4800 }
4801
4802 /* Check that completion mode works at each prefix of the expected
4803 symbol name. */
4804 {
4805 static const char str[] = "function(int)";
4806 size_t len = strlen (str);
4807 std::string lookup;
4808
4809 for (size_t i = 1; i < len; i++)
4810 {
4811 lookup.assign (str, i);
4812 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4813 EXPECT ("function"));
4814 }
4815 }
4816
4817 /* While "w" is a prefix of both components, the match function
4818 should still only be called once. */
4819 {
4820 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4821 EXPECT ("w1::w2"));
4822 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4823 EXPECT ("w1::w2"));
4824 }
4825
4826 /* Same, with a "complicated" symbol. */
4827 {
4828 static const char str[] = Z_SYM_NAME;
4829 size_t len = strlen (str);
4830 std::string lookup;
4831
4832 for (size_t i = 1; i < len; i++)
4833 {
4834 lookup.assign (str, i);
4835 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4836 EXPECT (Z_SYM_NAME));
4837 }
4838 }
4839
4840 /* In FULL mode, an incomplete symbol doesn't match. */
4841 {
4842 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4843 {});
4844 }
4845
4846 /* A complete symbol with parameters matches any overload, since the
4847 index has no overload info. */
4848 {
4849 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4850 EXPECT ("std::zfunction", "std::zfunction2"));
4851 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4852 EXPECT ("std::zfunction", "std::zfunction2"));
4853 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4854 EXPECT ("std::zfunction", "std::zfunction2"));
4855 }
4856
4857 /* Check that whitespace is ignored appropriately. A symbol with a
4858 template argument list. */
4859 {
4860 static const char expected[] = "ns::foo<int>";
4861 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4862 EXPECT (expected));
4863 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4864 EXPECT (expected));
4865 }
4866
4867 /* Check that whitespace is ignored appropriately. A symbol with a
4868 template argument list that includes a pointer. */
4869 {
4870 static const char expected[] = "ns::foo<char*>";
4871 /* Try both completion and non-completion modes. */
4872 static const bool completion_mode[2] = {false, true};
4873 for (size_t i = 0; i < 2; i++)
4874 {
4875 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4876 completion_mode[i], EXPECT (expected));
4877 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4878 completion_mode[i], EXPECT (expected));
4879
4880 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4881 completion_mode[i], EXPECT (expected));
4882 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4883 completion_mode[i], EXPECT (expected));
4884 }
4885 }
4886
4887 {
4888 /* Check method qualifiers are ignored. */
4889 static const char expected[] = "ns::foo<char*>";
4890 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4891 symbol_name_match_type::FULL, true, EXPECT (expected));
4892 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4893 symbol_name_match_type::FULL, true, EXPECT (expected));
4894 CHECK_MATCH ("foo < char * > ( int ) const",
4895 symbol_name_match_type::WILD, true, EXPECT (expected));
4896 CHECK_MATCH ("foo < char * > ( int ) &&",
4897 symbol_name_match_type::WILD, true, EXPECT (expected));
4898 }
4899
4900 /* Test lookup names that don't match anything. */
4901 {
4902 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4903 {});
4904
4905 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4906 {});
4907 }
4908
4909 /* Some wild matching tests, exercising "(anonymous namespace)",
4910 which should not be confused with a parameter list. */
4911 {
4912 static const char *syms[] = {
4913 "A::B::C",
4914 "B::C",
4915 "C",
4916 "A :: B :: C ( int )",
4917 "B :: C ( int )",
4918 "C ( int )",
4919 };
4920
4921 for (const char *s : syms)
4922 {
4923 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4924 EXPECT ("(anonymous namespace)::A::B::C"));
4925 }
4926 }
4927
4928 {
4929 static const char expected[] = "ns2::tmpl<int>::foo2";
4930 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4931 EXPECT (expected));
4932 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4933 EXPECT (expected));
4934 }
4935
4936 SELF_CHECK (!any_mismatch);
4937
4938 #undef EXPECT
4939 #undef CHECK_MATCH
4940 }
4941
4942 static void
4943 run_test ()
4944 {
4945 test_mapped_index_find_name_component_bounds ();
4946 test_dw2_expand_symtabs_matching_symbol ();
4947 }
4948
4949 }} // namespace selftests::dw2_expand_symtabs_matching
4950
4951 #endif /* GDB_SELF_TEST */
4952
4953 /* If FILE_MATCHER is NULL or if PER_CU has
4954 dwarf2_per_cu_quick_data::MARK set (see
4955 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4956 EXPANSION_NOTIFY on it. */
4957
4958 static void
4959 dw2_expand_symtabs_matching_one
4960 (struct dwarf2_per_cu_data *per_cu,
4961 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4962 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4963 {
4964 if (file_matcher == NULL || per_cu->v.quick->mark)
4965 {
4966 bool symtab_was_null
4967 = (per_cu->v.quick->compunit_symtab == NULL);
4968
4969 dw2_instantiate_symtab (per_cu, false);
4970
4971 if (expansion_notify != NULL
4972 && symtab_was_null
4973 && per_cu->v.quick->compunit_symtab != NULL)
4974 expansion_notify (per_cu->v.quick->compunit_symtab);
4975 }
4976 }
4977
4978 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4979 matched, to expand corresponding CUs that were marked. IDX is the
4980 index of the symbol name that matched. */
4981
4982 static void
4983 dw2_expand_marked_cus
4984 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4985 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4986 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4987 search_domain kind)
4988 {
4989 offset_type *vec, vec_len, vec_idx;
4990 bool global_seen = false;
4991 mapped_index &index = *dwarf2_per_objfile->index_table;
4992
4993 vec = (offset_type *) (index.constant_pool
4994 + MAYBE_SWAP (index.symbol_table[idx].vec));
4995 vec_len = MAYBE_SWAP (vec[0]);
4996 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4997 {
4998 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4999 /* This value is only valid for index versions >= 7. */
5000 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5001 gdb_index_symbol_kind symbol_kind =
5002 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5003 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5004 /* Only check the symbol attributes if they're present.
5005 Indices prior to version 7 don't record them,
5006 and indices >= 7 may elide them for certain symbols
5007 (gold does this). */
5008 int attrs_valid =
5009 (index.version >= 7
5010 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5011
5012 /* Work around gold/15646. */
5013 if (attrs_valid)
5014 {
5015 if (!is_static && global_seen)
5016 continue;
5017 if (!is_static)
5018 global_seen = true;
5019 }
5020
5021 /* Only check the symbol's kind if it has one. */
5022 if (attrs_valid)
5023 {
5024 switch (kind)
5025 {
5026 case VARIABLES_DOMAIN:
5027 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5028 continue;
5029 break;
5030 case FUNCTIONS_DOMAIN:
5031 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5032 continue;
5033 break;
5034 case TYPES_DOMAIN:
5035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5036 continue;
5037 break;
5038 default:
5039 break;
5040 }
5041 }
5042
5043 /* Don't crash on bad data. */
5044 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5045 + dwarf2_per_objfile->all_type_units.size ()))
5046 {
5047 complaint (_(".gdb_index entry has bad CU index"
5048 " [in module %s]"),
5049 objfile_name (dwarf2_per_objfile->objfile));
5050 continue;
5051 }
5052
5053 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5054 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5055 expansion_notify);
5056 }
5057 }
5058
5059 /* If FILE_MATCHER is non-NULL, set all the
5060 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5061 that match FILE_MATCHER. */
5062
5063 static void
5064 dw_expand_symtabs_matching_file_matcher
5065 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5066 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5067 {
5068 if (file_matcher == NULL)
5069 return;
5070
5071 objfile *const objfile = dwarf2_per_objfile->objfile;
5072
5073 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5074 htab_eq_pointer,
5075 NULL, xcalloc, xfree));
5076 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5077 htab_eq_pointer,
5078 NULL, xcalloc, xfree));
5079
5080 /* The rule is CUs specify all the files, including those used by
5081 any TU, so there's no need to scan TUs here. */
5082
5083 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5084 {
5085 QUIT;
5086
5087 per_cu->v.quick->mark = 0;
5088
5089 /* We only need to look at symtabs not already expanded. */
5090 if (per_cu->v.quick->compunit_symtab)
5091 continue;
5092
5093 quick_file_names *file_data = dw2_get_file_names (per_cu);
5094 if (file_data == NULL)
5095 continue;
5096
5097 if (htab_find (visited_not_found.get (), file_data) != NULL)
5098 continue;
5099 else if (htab_find (visited_found.get (), file_data) != NULL)
5100 {
5101 per_cu->v.quick->mark = 1;
5102 continue;
5103 }
5104
5105 for (int j = 0; j < file_data->num_file_names; ++j)
5106 {
5107 const char *this_real_name;
5108
5109 if (file_matcher (file_data->file_names[j], false))
5110 {
5111 per_cu->v.quick->mark = 1;
5112 break;
5113 }
5114
5115 /* Before we invoke realpath, which can get expensive when many
5116 files are involved, do a quick comparison of the basenames. */
5117 if (!basenames_may_differ
5118 && !file_matcher (lbasename (file_data->file_names[j]),
5119 true))
5120 continue;
5121
5122 this_real_name = dw2_get_real_path (objfile, file_data, j);
5123 if (file_matcher (this_real_name, false))
5124 {
5125 per_cu->v.quick->mark = 1;
5126 break;
5127 }
5128 }
5129
5130 void **slot = htab_find_slot (per_cu->v.quick->mark
5131 ? visited_found.get ()
5132 : visited_not_found.get (),
5133 file_data, INSERT);
5134 *slot = file_data;
5135 }
5136 }
5137
5138 static void
5139 dw2_expand_symtabs_matching
5140 (struct objfile *objfile,
5141 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5142 const lookup_name_info &lookup_name,
5143 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5144 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5145 enum search_domain kind)
5146 {
5147 struct dwarf2_per_objfile *dwarf2_per_objfile
5148 = get_dwarf2_per_objfile (objfile);
5149
5150 /* index_table is NULL if OBJF_READNOW. */
5151 if (!dwarf2_per_objfile->index_table)
5152 return;
5153
5154 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5155
5156 mapped_index &index = *dwarf2_per_objfile->index_table;
5157
5158 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5159 symbol_matcher,
5160 kind, [&] (offset_type idx)
5161 {
5162 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5163 expansion_notify, kind);
5164 return true;
5165 });
5166 }
5167
5168 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5169 symtab. */
5170
5171 static struct compunit_symtab *
5172 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5173 CORE_ADDR pc)
5174 {
5175 int i;
5176
5177 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5178 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5179 return cust;
5180
5181 if (cust->includes == NULL)
5182 return NULL;
5183
5184 for (i = 0; cust->includes[i]; ++i)
5185 {
5186 struct compunit_symtab *s = cust->includes[i];
5187
5188 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5189 if (s != NULL)
5190 return s;
5191 }
5192
5193 return NULL;
5194 }
5195
5196 static struct compunit_symtab *
5197 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5198 struct bound_minimal_symbol msymbol,
5199 CORE_ADDR pc,
5200 struct obj_section *section,
5201 int warn_if_readin)
5202 {
5203 struct dwarf2_per_cu_data *data;
5204 struct compunit_symtab *result;
5205
5206 if (!objfile->partial_symtabs->psymtabs_addrmap)
5207 return NULL;
5208
5209 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5210 SECT_OFF_TEXT (objfile));
5211 data = (struct dwarf2_per_cu_data *) addrmap_find
5212 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5213 if (!data)
5214 return NULL;
5215
5216 if (warn_if_readin && data->v.quick->compunit_symtab)
5217 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5218 paddress (get_objfile_arch (objfile), pc));
5219
5220 result
5221 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5222 false),
5223 pc);
5224 gdb_assert (result != NULL);
5225 return result;
5226 }
5227
5228 static void
5229 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5230 void *data, int need_fullname)
5231 {
5232 struct dwarf2_per_objfile *dwarf2_per_objfile
5233 = get_dwarf2_per_objfile (objfile);
5234
5235 if (!dwarf2_per_objfile->filenames_cache)
5236 {
5237 dwarf2_per_objfile->filenames_cache.emplace ();
5238
5239 htab_up visited (htab_create_alloc (10,
5240 htab_hash_pointer, htab_eq_pointer,
5241 NULL, xcalloc, xfree));
5242
5243 /* The rule is CUs specify all the files, including those used
5244 by any TU, so there's no need to scan TUs here. We can
5245 ignore file names coming from already-expanded CUs. */
5246
5247 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5248 {
5249 if (per_cu->v.quick->compunit_symtab)
5250 {
5251 void **slot = htab_find_slot (visited.get (),
5252 per_cu->v.quick->file_names,
5253 INSERT);
5254
5255 *slot = per_cu->v.quick->file_names;
5256 }
5257 }
5258
5259 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5260 {
5261 /* We only need to look at symtabs not already expanded. */
5262 if (per_cu->v.quick->compunit_symtab)
5263 continue;
5264
5265 quick_file_names *file_data = dw2_get_file_names (per_cu);
5266 if (file_data == NULL)
5267 continue;
5268
5269 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5270 if (*slot)
5271 {
5272 /* Already visited. */
5273 continue;
5274 }
5275 *slot = file_data;
5276
5277 for (int j = 0; j < file_data->num_file_names; ++j)
5278 {
5279 const char *filename = file_data->file_names[j];
5280 dwarf2_per_objfile->filenames_cache->seen (filename);
5281 }
5282 }
5283 }
5284
5285 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5286 {
5287 gdb::unique_xmalloc_ptr<char> this_real_name;
5288
5289 if (need_fullname)
5290 this_real_name = gdb_realpath (filename);
5291 (*fun) (filename, this_real_name.get (), data);
5292 });
5293 }
5294
5295 static int
5296 dw2_has_symbols (struct objfile *objfile)
5297 {
5298 return 1;
5299 }
5300
5301 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5302 {
5303 dw2_has_symbols,
5304 dw2_find_last_source_symtab,
5305 dw2_forget_cached_source_info,
5306 dw2_map_symtabs_matching_filename,
5307 dw2_lookup_symbol,
5308 dw2_print_stats,
5309 dw2_dump,
5310 dw2_expand_symtabs_for_function,
5311 dw2_expand_all_symtabs,
5312 dw2_expand_symtabs_with_fullname,
5313 dw2_map_matching_symbols,
5314 dw2_expand_symtabs_matching,
5315 dw2_find_pc_sect_compunit_symtab,
5316 NULL,
5317 dw2_map_symbol_filenames
5318 };
5319
5320 /* DWARF-5 debug_names reader. */
5321
5322 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5323 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5324
5325 /* A helper function that reads the .debug_names section in SECTION
5326 and fills in MAP. FILENAME is the name of the file containing the
5327 section; it is used for error reporting.
5328
5329 Returns true if all went well, false otherwise. */
5330
5331 static bool
5332 read_debug_names_from_section (struct objfile *objfile,
5333 const char *filename,
5334 struct dwarf2_section_info *section,
5335 mapped_debug_names &map)
5336 {
5337 if (dwarf2_section_empty_p (section))
5338 return false;
5339
5340 /* Older elfutils strip versions could keep the section in the main
5341 executable while splitting it for the separate debug info file. */
5342 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5343 return false;
5344
5345 dwarf2_read_section (objfile, section);
5346
5347 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5348
5349 const gdb_byte *addr = section->buffer;
5350
5351 bfd *const abfd = get_section_bfd_owner (section);
5352
5353 unsigned int bytes_read;
5354 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5355 addr += bytes_read;
5356
5357 map.dwarf5_is_dwarf64 = bytes_read != 4;
5358 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5359 if (bytes_read + length != section->size)
5360 {
5361 /* There may be multiple per-CU indices. */
5362 warning (_("Section .debug_names in %s length %s does not match "
5363 "section length %s, ignoring .debug_names."),
5364 filename, plongest (bytes_read + length),
5365 pulongest (section->size));
5366 return false;
5367 }
5368
5369 /* The version number. */
5370 uint16_t version = read_2_bytes (abfd, addr);
5371 addr += 2;
5372 if (version != 5)
5373 {
5374 warning (_("Section .debug_names in %s has unsupported version %d, "
5375 "ignoring .debug_names."),
5376 filename, version);
5377 return false;
5378 }
5379
5380 /* Padding. */
5381 uint16_t padding = read_2_bytes (abfd, addr);
5382 addr += 2;
5383 if (padding != 0)
5384 {
5385 warning (_("Section .debug_names in %s has unsupported padding %d, "
5386 "ignoring .debug_names."),
5387 filename, padding);
5388 return false;
5389 }
5390
5391 /* comp_unit_count - The number of CUs in the CU list. */
5392 map.cu_count = read_4_bytes (abfd, addr);
5393 addr += 4;
5394
5395 /* local_type_unit_count - The number of TUs in the local TU
5396 list. */
5397 map.tu_count = read_4_bytes (abfd, addr);
5398 addr += 4;
5399
5400 /* foreign_type_unit_count - The number of TUs in the foreign TU
5401 list. */
5402 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5403 addr += 4;
5404 if (foreign_tu_count != 0)
5405 {
5406 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5407 "ignoring .debug_names."),
5408 filename, static_cast<unsigned long> (foreign_tu_count));
5409 return false;
5410 }
5411
5412 /* bucket_count - The number of hash buckets in the hash lookup
5413 table. */
5414 map.bucket_count = read_4_bytes (abfd, addr);
5415 addr += 4;
5416
5417 /* name_count - The number of unique names in the index. */
5418 map.name_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* abbrev_table_size - The size in bytes of the abbreviations
5422 table. */
5423 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* augmentation_string_size - The size in bytes of the augmentation
5427 string. This value is rounded up to a multiple of 4. */
5428 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 map.augmentation_is_gdb = ((augmentation_string_size
5431 == sizeof (dwarf5_augmentation))
5432 && memcmp (addr, dwarf5_augmentation,
5433 sizeof (dwarf5_augmentation)) == 0);
5434 augmentation_string_size += (-augmentation_string_size) & 3;
5435 addr += augmentation_string_size;
5436
5437 /* List of CUs */
5438 map.cu_table_reordered = addr;
5439 addr += map.cu_count * map.offset_size;
5440
5441 /* List of Local TUs */
5442 map.tu_table_reordered = addr;
5443 addr += map.tu_count * map.offset_size;
5444
5445 /* Hash Lookup Table */
5446 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5447 addr += map.bucket_count * 4;
5448 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5449 addr += map.name_count * 4;
5450
5451 /* Name Table */
5452 map.name_table_string_offs_reordered = addr;
5453 addr += map.name_count * map.offset_size;
5454 map.name_table_entry_offs_reordered = addr;
5455 addr += map.name_count * map.offset_size;
5456
5457 const gdb_byte *abbrev_table_start = addr;
5458 for (;;)
5459 {
5460 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5461 addr += bytes_read;
5462 if (index_num == 0)
5463 break;
5464
5465 const auto insertpair
5466 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5467 if (!insertpair.second)
5468 {
5469 warning (_("Section .debug_names in %s has duplicate index %s, "
5470 "ignoring .debug_names."),
5471 filename, pulongest (index_num));
5472 return false;
5473 }
5474 mapped_debug_names::index_val &indexval = insertpair.first->second;
5475 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5476 addr += bytes_read;
5477
5478 for (;;)
5479 {
5480 mapped_debug_names::index_val::attr attr;
5481 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5482 addr += bytes_read;
5483 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5484 addr += bytes_read;
5485 if (attr.form == DW_FORM_implicit_const)
5486 {
5487 attr.implicit_const = read_signed_leb128 (abfd, addr,
5488 &bytes_read);
5489 addr += bytes_read;
5490 }
5491 if (attr.dw_idx == 0 && attr.form == 0)
5492 break;
5493 indexval.attr_vec.push_back (std::move (attr));
5494 }
5495 }
5496 if (addr != abbrev_table_start + abbrev_table_size)
5497 {
5498 warning (_("Section .debug_names in %s has abbreviation_table "
5499 "of size %s vs. written as %u, ignoring .debug_names."),
5500 filename, plongest (addr - abbrev_table_start),
5501 abbrev_table_size);
5502 return false;
5503 }
5504 map.entry_pool = addr;
5505
5506 return true;
5507 }
5508
5509 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5510 list. */
5511
5512 static void
5513 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5514 const mapped_debug_names &map,
5515 dwarf2_section_info &section,
5516 bool is_dwz)
5517 {
5518 sect_offset sect_off_prev;
5519 for (uint32_t i = 0; i <= map.cu_count; ++i)
5520 {
5521 sect_offset sect_off_next;
5522 if (i < map.cu_count)
5523 {
5524 sect_off_next
5525 = (sect_offset) (extract_unsigned_integer
5526 (map.cu_table_reordered + i * map.offset_size,
5527 map.offset_size,
5528 map.dwarf5_byte_order));
5529 }
5530 else
5531 sect_off_next = (sect_offset) section.size;
5532 if (i >= 1)
5533 {
5534 const ULONGEST length = sect_off_next - sect_off_prev;
5535 dwarf2_per_cu_data *per_cu
5536 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5537 sect_off_prev, length);
5538 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5539 }
5540 sect_off_prev = sect_off_next;
5541 }
5542 }
5543
5544 /* Read the CU list from the mapped index, and use it to create all
5545 the CU objects for this dwarf2_per_objfile. */
5546
5547 static void
5548 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5549 const mapped_debug_names &map,
5550 const mapped_debug_names &dwz_map)
5551 {
5552 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5553 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5554
5555 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5556 dwarf2_per_objfile->info,
5557 false /* is_dwz */);
5558
5559 if (dwz_map.cu_count == 0)
5560 return;
5561
5562 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5563 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5564 true /* is_dwz */);
5565 }
5566
5567 /* Read .debug_names. If everything went ok, initialize the "quick"
5568 elements of all the CUs and return true. Otherwise, return false. */
5569
5570 static bool
5571 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5572 {
5573 std::unique_ptr<mapped_debug_names> map
5574 (new mapped_debug_names (dwarf2_per_objfile));
5575 mapped_debug_names dwz_map (dwarf2_per_objfile);
5576 struct objfile *objfile = dwarf2_per_objfile->objfile;
5577
5578 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5579 &dwarf2_per_objfile->debug_names,
5580 *map))
5581 return false;
5582
5583 /* Don't use the index if it's empty. */
5584 if (map->name_count == 0)
5585 return false;
5586
5587 /* If there is a .dwz file, read it so we can get its CU list as
5588 well. */
5589 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5590 if (dwz != NULL)
5591 {
5592 if (!read_debug_names_from_section (objfile,
5593 bfd_get_filename (dwz->dwz_bfd.get ()),
5594 &dwz->debug_names, dwz_map))
5595 {
5596 warning (_("could not read '.debug_names' section from %s; skipping"),
5597 bfd_get_filename (dwz->dwz_bfd.get ()));
5598 return false;
5599 }
5600 }
5601
5602 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5603
5604 if (map->tu_count != 0)
5605 {
5606 /* We can only handle a single .debug_types when we have an
5607 index. */
5608 if (dwarf2_per_objfile->types.size () != 1)
5609 return false;
5610
5611 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5612
5613 create_signatured_type_table_from_debug_names
5614 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5615 }
5616
5617 create_addrmap_from_aranges (dwarf2_per_objfile,
5618 &dwarf2_per_objfile->debug_aranges);
5619
5620 dwarf2_per_objfile->debug_names_table = std::move (map);
5621 dwarf2_per_objfile->using_index = 1;
5622 dwarf2_per_objfile->quick_file_names_table =
5623 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5624
5625 return true;
5626 }
5627
5628 /* Type used to manage iterating over all CUs looking for a symbol for
5629 .debug_names. */
5630
5631 class dw2_debug_names_iterator
5632 {
5633 public:
5634 dw2_debug_names_iterator (const mapped_debug_names &map,
5635 gdb::optional<block_enum> block_index,
5636 domain_enum domain,
5637 const char *name)
5638 : m_map (map), m_block_index (block_index), m_domain (domain),
5639 m_addr (find_vec_in_debug_names (map, name))
5640 {}
5641
5642 dw2_debug_names_iterator (const mapped_debug_names &map,
5643 search_domain search, uint32_t namei)
5644 : m_map (map),
5645 m_search (search),
5646 m_addr (find_vec_in_debug_names (map, namei))
5647 {}
5648
5649 dw2_debug_names_iterator (const mapped_debug_names &map,
5650 block_enum block_index, domain_enum domain,
5651 uint32_t namei)
5652 : m_map (map), m_block_index (block_index), m_domain (domain),
5653 m_addr (find_vec_in_debug_names (map, namei))
5654 {}
5655
5656 /* Return the next matching CU or NULL if there are no more. */
5657 dwarf2_per_cu_data *next ();
5658
5659 private:
5660 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5661 const char *name);
5662 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5663 uint32_t namei);
5664
5665 /* The internalized form of .debug_names. */
5666 const mapped_debug_names &m_map;
5667
5668 /* If set, only look for symbols that match that block. Valid values are
5669 GLOBAL_BLOCK and STATIC_BLOCK. */
5670 const gdb::optional<block_enum> m_block_index;
5671
5672 /* The kind of symbol we're looking for. */
5673 const domain_enum m_domain = UNDEF_DOMAIN;
5674 const search_domain m_search = ALL_DOMAIN;
5675
5676 /* The list of CUs from the index entry of the symbol, or NULL if
5677 not found. */
5678 const gdb_byte *m_addr;
5679 };
5680
5681 const char *
5682 mapped_debug_names::namei_to_name (uint32_t namei) const
5683 {
5684 const ULONGEST namei_string_offs
5685 = extract_unsigned_integer ((name_table_string_offs_reordered
5686 + namei * offset_size),
5687 offset_size,
5688 dwarf5_byte_order);
5689 return read_indirect_string_at_offset
5690 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5691 }
5692
5693 /* Find a slot in .debug_names for the object named NAME. If NAME is
5694 found, return pointer to its pool data. If NAME cannot be found,
5695 return NULL. */
5696
5697 const gdb_byte *
5698 dw2_debug_names_iterator::find_vec_in_debug_names
5699 (const mapped_debug_names &map, const char *name)
5700 {
5701 int (*cmp) (const char *, const char *);
5702
5703 gdb::unique_xmalloc_ptr<char> without_params;
5704 if (current_language->la_language == language_cplus
5705 || current_language->la_language == language_fortran
5706 || current_language->la_language == language_d)
5707 {
5708 /* NAME is already canonical. Drop any qualifiers as
5709 .debug_names does not contain any. */
5710
5711 if (strchr (name, '(') != NULL)
5712 {
5713 without_params = cp_remove_params (name);
5714 if (without_params != NULL)
5715 name = without_params.get ();
5716 }
5717 }
5718
5719 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5720
5721 const uint32_t full_hash = dwarf5_djb_hash (name);
5722 uint32_t namei
5723 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5724 (map.bucket_table_reordered
5725 + (full_hash % map.bucket_count)), 4,
5726 map.dwarf5_byte_order);
5727 if (namei == 0)
5728 return NULL;
5729 --namei;
5730 if (namei >= map.name_count)
5731 {
5732 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5733 "[in module %s]"),
5734 namei, map.name_count,
5735 objfile_name (map.dwarf2_per_objfile->objfile));
5736 return NULL;
5737 }
5738
5739 for (;;)
5740 {
5741 const uint32_t namei_full_hash
5742 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5743 (map.hash_table_reordered + namei), 4,
5744 map.dwarf5_byte_order);
5745 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5746 return NULL;
5747
5748 if (full_hash == namei_full_hash)
5749 {
5750 const char *const namei_string = map.namei_to_name (namei);
5751
5752 #if 0 /* An expensive sanity check. */
5753 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5754 {
5755 complaint (_("Wrong .debug_names hash for string at index %u "
5756 "[in module %s]"),
5757 namei, objfile_name (dwarf2_per_objfile->objfile));
5758 return NULL;
5759 }
5760 #endif
5761
5762 if (cmp (namei_string, name) == 0)
5763 {
5764 const ULONGEST namei_entry_offs
5765 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5766 + namei * map.offset_size),
5767 map.offset_size, map.dwarf5_byte_order);
5768 return map.entry_pool + namei_entry_offs;
5769 }
5770 }
5771
5772 ++namei;
5773 if (namei >= map.name_count)
5774 return NULL;
5775 }
5776 }
5777
5778 const gdb_byte *
5779 dw2_debug_names_iterator::find_vec_in_debug_names
5780 (const mapped_debug_names &map, uint32_t namei)
5781 {
5782 if (namei >= map.name_count)
5783 {
5784 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5785 "[in module %s]"),
5786 namei, map.name_count,
5787 objfile_name (map.dwarf2_per_objfile->objfile));
5788 return NULL;
5789 }
5790
5791 const ULONGEST namei_entry_offs
5792 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5793 + namei * map.offset_size),
5794 map.offset_size, map.dwarf5_byte_order);
5795 return map.entry_pool + namei_entry_offs;
5796 }
5797
5798 /* See dw2_debug_names_iterator. */
5799
5800 dwarf2_per_cu_data *
5801 dw2_debug_names_iterator::next ()
5802 {
5803 if (m_addr == NULL)
5804 return NULL;
5805
5806 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5807 struct objfile *objfile = dwarf2_per_objfile->objfile;
5808 bfd *const abfd = objfile->obfd;
5809
5810 again:
5811
5812 unsigned int bytes_read;
5813 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5814 m_addr += bytes_read;
5815 if (abbrev == 0)
5816 return NULL;
5817
5818 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5819 if (indexval_it == m_map.abbrev_map.cend ())
5820 {
5821 complaint (_("Wrong .debug_names undefined abbrev code %s "
5822 "[in module %s]"),
5823 pulongest (abbrev), objfile_name (objfile));
5824 return NULL;
5825 }
5826 const mapped_debug_names::index_val &indexval = indexval_it->second;
5827 enum class symbol_linkage {
5828 unknown,
5829 static_,
5830 extern_,
5831 } symbol_linkage_ = symbol_linkage::unknown;
5832 dwarf2_per_cu_data *per_cu = NULL;
5833 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5834 {
5835 ULONGEST ull;
5836 switch (attr.form)
5837 {
5838 case DW_FORM_implicit_const:
5839 ull = attr.implicit_const;
5840 break;
5841 case DW_FORM_flag_present:
5842 ull = 1;
5843 break;
5844 case DW_FORM_udata:
5845 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5846 m_addr += bytes_read;
5847 break;
5848 default:
5849 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5850 dwarf_form_name (attr.form),
5851 objfile_name (objfile));
5852 return NULL;
5853 }
5854 switch (attr.dw_idx)
5855 {
5856 case DW_IDX_compile_unit:
5857 /* Don't crash on bad data. */
5858 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5859 {
5860 complaint (_(".debug_names entry has bad CU index %s"
5861 " [in module %s]"),
5862 pulongest (ull),
5863 objfile_name (dwarf2_per_objfile->objfile));
5864 continue;
5865 }
5866 per_cu = dwarf2_per_objfile->get_cutu (ull);
5867 break;
5868 case DW_IDX_type_unit:
5869 /* Don't crash on bad data. */
5870 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5871 {
5872 complaint (_(".debug_names entry has bad TU index %s"
5873 " [in module %s]"),
5874 pulongest (ull),
5875 objfile_name (dwarf2_per_objfile->objfile));
5876 continue;
5877 }
5878 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5879 break;
5880 case DW_IDX_GNU_internal:
5881 if (!m_map.augmentation_is_gdb)
5882 break;
5883 symbol_linkage_ = symbol_linkage::static_;
5884 break;
5885 case DW_IDX_GNU_external:
5886 if (!m_map.augmentation_is_gdb)
5887 break;
5888 symbol_linkage_ = symbol_linkage::extern_;
5889 break;
5890 }
5891 }
5892
5893 /* Skip if already read in. */
5894 if (per_cu->v.quick->compunit_symtab)
5895 goto again;
5896
5897 /* Check static vs global. */
5898 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5899 {
5900 const bool want_static = *m_block_index == STATIC_BLOCK;
5901 const bool symbol_is_static =
5902 symbol_linkage_ == symbol_linkage::static_;
5903 if (want_static != symbol_is_static)
5904 goto again;
5905 }
5906
5907 /* Match dw2_symtab_iter_next, symbol_kind
5908 and debug_names::psymbol_tag. */
5909 switch (m_domain)
5910 {
5911 case VAR_DOMAIN:
5912 switch (indexval.dwarf_tag)
5913 {
5914 case DW_TAG_variable:
5915 case DW_TAG_subprogram:
5916 /* Some types are also in VAR_DOMAIN. */
5917 case DW_TAG_typedef:
5918 case DW_TAG_structure_type:
5919 break;
5920 default:
5921 goto again;
5922 }
5923 break;
5924 case STRUCT_DOMAIN:
5925 switch (indexval.dwarf_tag)
5926 {
5927 case DW_TAG_typedef:
5928 case DW_TAG_structure_type:
5929 break;
5930 default:
5931 goto again;
5932 }
5933 break;
5934 case LABEL_DOMAIN:
5935 switch (indexval.dwarf_tag)
5936 {
5937 case 0:
5938 case DW_TAG_variable:
5939 break;
5940 default:
5941 goto again;
5942 }
5943 break;
5944 default:
5945 break;
5946 }
5947
5948 /* Match dw2_expand_symtabs_matching, symbol_kind and
5949 debug_names::psymbol_tag. */
5950 switch (m_search)
5951 {
5952 case VARIABLES_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case DW_TAG_variable:
5956 break;
5957 default:
5958 goto again;
5959 }
5960 break;
5961 case FUNCTIONS_DOMAIN:
5962 switch (indexval.dwarf_tag)
5963 {
5964 case DW_TAG_subprogram:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 case TYPES_DOMAIN:
5971 switch (indexval.dwarf_tag)
5972 {
5973 case DW_TAG_typedef:
5974 case DW_TAG_structure_type:
5975 break;
5976 default:
5977 goto again;
5978 }
5979 break;
5980 default:
5981 break;
5982 }
5983
5984 return per_cu;
5985 }
5986
5987 static struct compunit_symtab *
5988 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5989 const char *name, domain_enum domain)
5990 {
5991 struct dwarf2_per_objfile *dwarf2_per_objfile
5992 = get_dwarf2_per_objfile (objfile);
5993
5994 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5995 if (!mapp)
5996 {
5997 /* index is NULL if OBJF_READNOW. */
5998 return NULL;
5999 }
6000 const auto &map = *mapp;
6001
6002 dw2_debug_names_iterator iter (map, block_index, domain, name);
6003
6004 struct compunit_symtab *stab_best = NULL;
6005 struct dwarf2_per_cu_data *per_cu;
6006 while ((per_cu = iter.next ()) != NULL)
6007 {
6008 struct symbol *sym, *with_opaque = NULL;
6009 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6010 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6011 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6012
6013 sym = block_find_symbol (block, name, domain,
6014 block_find_non_opaque_type_preferred,
6015 &with_opaque);
6016
6017 /* Some caution must be observed with overloaded functions and
6018 methods, since the index will not contain any overload
6019 information (but NAME might contain it). */
6020
6021 if (sym != NULL
6022 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6023 return stab;
6024 if (with_opaque != NULL
6025 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6026 stab_best = stab;
6027
6028 /* Keep looking through other CUs. */
6029 }
6030
6031 return stab_best;
6032 }
6033
6034 /* This dumps minimal information about .debug_names. It is called
6035 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6036 uses this to verify that .debug_names has been loaded. */
6037
6038 static void
6039 dw2_debug_names_dump (struct objfile *objfile)
6040 {
6041 struct dwarf2_per_objfile *dwarf2_per_objfile
6042 = get_dwarf2_per_objfile (objfile);
6043
6044 gdb_assert (dwarf2_per_objfile->using_index);
6045 printf_filtered (".debug_names:");
6046 if (dwarf2_per_objfile->debug_names_table)
6047 printf_filtered (" exists\n");
6048 else
6049 printf_filtered (" faked for \"readnow\"\n");
6050 printf_filtered ("\n");
6051 }
6052
6053 static void
6054 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6055 const char *func_name)
6056 {
6057 struct dwarf2_per_objfile *dwarf2_per_objfile
6058 = get_dwarf2_per_objfile (objfile);
6059
6060 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6061 if (dwarf2_per_objfile->debug_names_table)
6062 {
6063 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6064
6065 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6066
6067 struct dwarf2_per_cu_data *per_cu;
6068 while ((per_cu = iter.next ()) != NULL)
6069 dw2_instantiate_symtab (per_cu, false);
6070 }
6071 }
6072
6073 static void
6074 dw2_debug_names_map_matching_symbols
6075 (struct objfile *objfile,
6076 const lookup_name_info &name, domain_enum domain,
6077 int global,
6078 gdb::function_view<symbol_found_callback_ftype> callback,
6079 symbol_compare_ftype *ordered_compare)
6080 {
6081 struct dwarf2_per_objfile *dwarf2_per_objfile
6082 = get_dwarf2_per_objfile (objfile);
6083
6084 /* debug_names_table is NULL if OBJF_READNOW. */
6085 if (!dwarf2_per_objfile->debug_names_table)
6086 return;
6087
6088 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6089 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6090
6091 const char *match_name = name.ada ().lookup_name ().c_str ();
6092 auto matcher = [&] (const char *symname)
6093 {
6094 if (ordered_compare == nullptr)
6095 return true;
6096 return ordered_compare (symname, match_name) == 0;
6097 };
6098
6099 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6100 [&] (offset_type namei)
6101 {
6102 /* The name was matched, now expand corresponding CUs that were
6103 marked. */
6104 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6105
6106 struct dwarf2_per_cu_data *per_cu;
6107 while ((per_cu = iter.next ()) != NULL)
6108 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6109 return true;
6110 });
6111
6112 /* It's a shame we couldn't do this inside the
6113 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6114 that have already been expanded. Instead, this loop matches what
6115 the psymtab code does. */
6116 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6117 {
6118 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6119 if (cust != nullptr)
6120 {
6121 const struct block *block
6122 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6123 if (!iterate_over_symbols_terminated (block, name,
6124 domain, callback))
6125 break;
6126 }
6127 }
6128 }
6129
6130 static void
6131 dw2_debug_names_expand_symtabs_matching
6132 (struct objfile *objfile,
6133 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6134 const lookup_name_info &lookup_name,
6135 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6136 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6137 enum search_domain kind)
6138 {
6139 struct dwarf2_per_objfile *dwarf2_per_objfile
6140 = get_dwarf2_per_objfile (objfile);
6141
6142 /* debug_names_table is NULL if OBJF_READNOW. */
6143 if (!dwarf2_per_objfile->debug_names_table)
6144 return;
6145
6146 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6147
6148 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6149
6150 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6151 symbol_matcher,
6152 kind, [&] (offset_type namei)
6153 {
6154 /* The name was matched, now expand corresponding CUs that were
6155 marked. */
6156 dw2_debug_names_iterator iter (map, kind, namei);
6157
6158 struct dwarf2_per_cu_data *per_cu;
6159 while ((per_cu = iter.next ()) != NULL)
6160 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6161 expansion_notify);
6162 return true;
6163 });
6164 }
6165
6166 const struct quick_symbol_functions dwarf2_debug_names_functions =
6167 {
6168 dw2_has_symbols,
6169 dw2_find_last_source_symtab,
6170 dw2_forget_cached_source_info,
6171 dw2_map_symtabs_matching_filename,
6172 dw2_debug_names_lookup_symbol,
6173 dw2_print_stats,
6174 dw2_debug_names_dump,
6175 dw2_debug_names_expand_symtabs_for_function,
6176 dw2_expand_all_symtabs,
6177 dw2_expand_symtabs_with_fullname,
6178 dw2_debug_names_map_matching_symbols,
6179 dw2_debug_names_expand_symtabs_matching,
6180 dw2_find_pc_sect_compunit_symtab,
6181 NULL,
6182 dw2_map_symbol_filenames
6183 };
6184
6185 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6186 to either a dwarf2_per_objfile or dwz_file object. */
6187
6188 template <typename T>
6189 static gdb::array_view<const gdb_byte>
6190 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6191 {
6192 dwarf2_section_info *section = &section_owner->gdb_index;
6193
6194 if (dwarf2_section_empty_p (section))
6195 return {};
6196
6197 /* Older elfutils strip versions could keep the section in the main
6198 executable while splitting it for the separate debug info file. */
6199 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6200 return {};
6201
6202 dwarf2_read_section (obj, section);
6203
6204 /* dwarf2_section_info::size is a bfd_size_type, while
6205 gdb::array_view works with size_t. On 32-bit hosts, with
6206 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6207 is 32-bit. So we need an explicit narrowing conversion here.
6208 This is fine, because it's impossible to allocate or mmap an
6209 array/buffer larger than what size_t can represent. */
6210 return gdb::make_array_view (section->buffer, section->size);
6211 }
6212
6213 /* Lookup the index cache for the contents of the index associated to
6214 DWARF2_OBJ. */
6215
6216 static gdb::array_view<const gdb_byte>
6217 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6218 {
6219 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6220 if (build_id == nullptr)
6221 return {};
6222
6223 return global_index_cache.lookup_gdb_index (build_id,
6224 &dwarf2_obj->index_cache_res);
6225 }
6226
6227 /* Same as the above, but for DWZ. */
6228
6229 static gdb::array_view<const gdb_byte>
6230 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6231 {
6232 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6233 if (build_id == nullptr)
6234 return {};
6235
6236 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6237 }
6238
6239 /* See symfile.h. */
6240
6241 bool
6242 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6243 {
6244 struct dwarf2_per_objfile *dwarf2_per_objfile
6245 = get_dwarf2_per_objfile (objfile);
6246
6247 /* If we're about to read full symbols, don't bother with the
6248 indices. In this case we also don't care if some other debug
6249 format is making psymtabs, because they are all about to be
6250 expanded anyway. */
6251 if ((objfile->flags & OBJF_READNOW))
6252 {
6253 dwarf2_per_objfile->using_index = 1;
6254 create_all_comp_units (dwarf2_per_objfile);
6255 create_all_type_units (dwarf2_per_objfile);
6256 dwarf2_per_objfile->quick_file_names_table
6257 = create_quick_file_names_table
6258 (dwarf2_per_objfile->all_comp_units.size ());
6259
6260 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6261 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6262 {
6263 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6264
6265 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6266 struct dwarf2_per_cu_quick_data);
6267 }
6268
6269 /* Return 1 so that gdb sees the "quick" functions. However,
6270 these functions will be no-ops because we will have expanded
6271 all symtabs. */
6272 *index_kind = dw_index_kind::GDB_INDEX;
6273 return true;
6274 }
6275
6276 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6277 {
6278 *index_kind = dw_index_kind::DEBUG_NAMES;
6279 return true;
6280 }
6281
6282 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6283 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6284 get_gdb_index_contents_from_section<dwz_file>))
6285 {
6286 *index_kind = dw_index_kind::GDB_INDEX;
6287 return true;
6288 }
6289
6290 /* ... otherwise, try to find the index in the index cache. */
6291 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6292 get_gdb_index_contents_from_cache,
6293 get_gdb_index_contents_from_cache_dwz))
6294 {
6295 global_index_cache.hit ();
6296 *index_kind = dw_index_kind::GDB_INDEX;
6297 return true;
6298 }
6299
6300 global_index_cache.miss ();
6301 return false;
6302 }
6303
6304 \f
6305
6306 /* Build a partial symbol table. */
6307
6308 void
6309 dwarf2_build_psymtabs (struct objfile *objfile)
6310 {
6311 struct dwarf2_per_objfile *dwarf2_per_objfile
6312 = get_dwarf2_per_objfile (objfile);
6313
6314 init_psymbol_list (objfile, 1024);
6315
6316 try
6317 {
6318 /* This isn't really ideal: all the data we allocate on the
6319 objfile's obstack is still uselessly kept around. However,
6320 freeing it seems unsafe. */
6321 psymtab_discarder psymtabs (objfile);
6322 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6323 psymtabs.keep ();
6324
6325 /* (maybe) store an index in the cache. */
6326 global_index_cache.store (dwarf2_per_objfile);
6327 }
6328 catch (const gdb_exception_error &except)
6329 {
6330 exception_print (gdb_stderr, except);
6331 }
6332 }
6333
6334 /* Return the total length of the CU described by HEADER. */
6335
6336 static unsigned int
6337 get_cu_length (const struct comp_unit_head *header)
6338 {
6339 return header->initial_length_size + header->length;
6340 }
6341
6342 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6343
6344 static inline bool
6345 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6346 {
6347 sect_offset bottom = cu_header->sect_off;
6348 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6349
6350 return sect_off >= bottom && sect_off < top;
6351 }
6352
6353 /* Find the base address of the compilation unit for range lists and
6354 location lists. It will normally be specified by DW_AT_low_pc.
6355 In DWARF-3 draft 4, the base address could be overridden by
6356 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6357 compilation units with discontinuous ranges. */
6358
6359 static void
6360 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6361 {
6362 struct attribute *attr;
6363
6364 cu->base_known = 0;
6365 cu->base_address = 0;
6366
6367 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6368 if (attr)
6369 {
6370 cu->base_address = attr_value_as_address (attr);
6371 cu->base_known = 1;
6372 }
6373 else
6374 {
6375 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6376 if (attr)
6377 {
6378 cu->base_address = attr_value_as_address (attr);
6379 cu->base_known = 1;
6380 }
6381 }
6382 }
6383
6384 /* Read in the comp unit header information from the debug_info at info_ptr.
6385 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6386 NOTE: This leaves members offset, first_die_offset to be filled in
6387 by the caller. */
6388
6389 static const gdb_byte *
6390 read_comp_unit_head (struct comp_unit_head *cu_header,
6391 const gdb_byte *info_ptr,
6392 struct dwarf2_section_info *section,
6393 rcuh_kind section_kind)
6394 {
6395 int signed_addr;
6396 unsigned int bytes_read;
6397 const char *filename = get_section_file_name (section);
6398 bfd *abfd = get_section_bfd_owner (section);
6399
6400 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6401 cu_header->initial_length_size = bytes_read;
6402 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6403 info_ptr += bytes_read;
6404 cu_header->version = read_2_bytes (abfd, info_ptr);
6405 if (cu_header->version < 2 || cu_header->version > 5)
6406 error (_("Dwarf Error: wrong version in compilation unit header "
6407 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6408 cu_header->version, filename);
6409 info_ptr += 2;
6410 if (cu_header->version < 5)
6411 switch (section_kind)
6412 {
6413 case rcuh_kind::COMPILE:
6414 cu_header->unit_type = DW_UT_compile;
6415 break;
6416 case rcuh_kind::TYPE:
6417 cu_header->unit_type = DW_UT_type;
6418 break;
6419 default:
6420 internal_error (__FILE__, __LINE__,
6421 _("read_comp_unit_head: invalid section_kind"));
6422 }
6423 else
6424 {
6425 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6426 (read_1_byte (abfd, info_ptr));
6427 info_ptr += 1;
6428 switch (cu_header->unit_type)
6429 {
6430 case DW_UT_compile:
6431 case DW_UT_partial:
6432 case DW_UT_skeleton:
6433 case DW_UT_split_compile:
6434 if (section_kind != rcuh_kind::COMPILE)
6435 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6436 "(is %s, should be %s) [in module %s]"),
6437 dwarf_unit_type_name (cu_header->unit_type),
6438 dwarf_unit_type_name (DW_UT_type), filename);
6439 break;
6440 case DW_UT_type:
6441 case DW_UT_split_type:
6442 section_kind = rcuh_kind::TYPE;
6443 break;
6444 default:
6445 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6446 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6447 "[in module %s]"), cu_header->unit_type,
6448 dwarf_unit_type_name (DW_UT_compile),
6449 dwarf_unit_type_name (DW_UT_skeleton),
6450 dwarf_unit_type_name (DW_UT_split_compile),
6451 dwarf_unit_type_name (DW_UT_type),
6452 dwarf_unit_type_name (DW_UT_split_type), filename);
6453 }
6454
6455 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6456 info_ptr += 1;
6457 }
6458 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6459 cu_header,
6460 &bytes_read);
6461 info_ptr += bytes_read;
6462 if (cu_header->version < 5)
6463 {
6464 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6465 info_ptr += 1;
6466 }
6467 signed_addr = bfd_get_sign_extend_vma (abfd);
6468 if (signed_addr < 0)
6469 internal_error (__FILE__, __LINE__,
6470 _("read_comp_unit_head: dwarf from non elf file"));
6471 cu_header->signed_addr_p = signed_addr;
6472
6473 bool header_has_signature = section_kind == rcuh_kind::TYPE
6474 || cu_header->unit_type == DW_UT_skeleton
6475 || cu_header->unit_type == DW_UT_split_compile;
6476
6477 if (header_has_signature)
6478 {
6479 cu_header->signature = read_8_bytes (abfd, info_ptr);
6480 info_ptr += 8;
6481 }
6482
6483 if (section_kind == rcuh_kind::TYPE)
6484 {
6485 LONGEST type_offset;
6486 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6487 info_ptr += bytes_read;
6488 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6489 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6490 error (_("Dwarf Error: Too big type_offset in compilation unit "
6491 "header (is %s) [in module %s]"), plongest (type_offset),
6492 filename);
6493 }
6494
6495 return info_ptr;
6496 }
6497
6498 /* Helper function that returns the proper abbrev section for
6499 THIS_CU. */
6500
6501 static struct dwarf2_section_info *
6502 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6503 {
6504 struct dwarf2_section_info *abbrev;
6505 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6506
6507 if (this_cu->is_dwz)
6508 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6509 else
6510 abbrev = &dwarf2_per_objfile->abbrev;
6511
6512 return abbrev;
6513 }
6514
6515 /* Subroutine of read_and_check_comp_unit_head and
6516 read_and_check_type_unit_head to simplify them.
6517 Perform various error checking on the header. */
6518
6519 static void
6520 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6521 struct comp_unit_head *header,
6522 struct dwarf2_section_info *section,
6523 struct dwarf2_section_info *abbrev_section)
6524 {
6525 const char *filename = get_section_file_name (section);
6526
6527 if (to_underlying (header->abbrev_sect_off)
6528 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6529 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6530 "(offset %s + 6) [in module %s]"),
6531 sect_offset_str (header->abbrev_sect_off),
6532 sect_offset_str (header->sect_off),
6533 filename);
6534
6535 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6536 avoid potential 32-bit overflow. */
6537 if (((ULONGEST) header->sect_off + get_cu_length (header))
6538 > section->size)
6539 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6540 "(offset %s + 0) [in module %s]"),
6541 header->length, sect_offset_str (header->sect_off),
6542 filename);
6543 }
6544
6545 /* Read in a CU/TU header and perform some basic error checking.
6546 The contents of the header are stored in HEADER.
6547 The result is a pointer to the start of the first DIE. */
6548
6549 static const gdb_byte *
6550 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6551 struct comp_unit_head *header,
6552 struct dwarf2_section_info *section,
6553 struct dwarf2_section_info *abbrev_section,
6554 const gdb_byte *info_ptr,
6555 rcuh_kind section_kind)
6556 {
6557 const gdb_byte *beg_of_comp_unit = info_ptr;
6558
6559 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6560
6561 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6562
6563 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6564
6565 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6566 abbrev_section);
6567
6568 return info_ptr;
6569 }
6570
6571 /* Fetch the abbreviation table offset from a comp or type unit header. */
6572
6573 static sect_offset
6574 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6575 struct dwarf2_section_info *section,
6576 sect_offset sect_off)
6577 {
6578 bfd *abfd = get_section_bfd_owner (section);
6579 const gdb_byte *info_ptr;
6580 unsigned int initial_length_size, offset_size;
6581 uint16_t version;
6582
6583 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6584 info_ptr = section->buffer + to_underlying (sect_off);
6585 read_initial_length (abfd, info_ptr, &initial_length_size);
6586 offset_size = initial_length_size == 4 ? 4 : 8;
6587 info_ptr += initial_length_size;
6588
6589 version = read_2_bytes (abfd, info_ptr);
6590 info_ptr += 2;
6591 if (version >= 5)
6592 {
6593 /* Skip unit type and address size. */
6594 info_ptr += 2;
6595 }
6596
6597 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6598 }
6599
6600 /* Allocate a new partial symtab for file named NAME and mark this new
6601 partial symtab as being an include of PST. */
6602
6603 static void
6604 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6605 struct objfile *objfile)
6606 {
6607 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6608
6609 if (!IS_ABSOLUTE_PATH (subpst->filename))
6610 {
6611 /* It shares objfile->objfile_obstack. */
6612 subpst->dirname = pst->dirname;
6613 }
6614
6615 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6616 subpst->dependencies[0] = pst;
6617 subpst->number_of_dependencies = 1;
6618
6619 subpst->read_symtab = pst->read_symtab;
6620
6621 /* No private part is necessary for include psymtabs. This property
6622 can be used to differentiate between such include psymtabs and
6623 the regular ones. */
6624 subpst->read_symtab_private = NULL;
6625 }
6626
6627 /* Read the Line Number Program data and extract the list of files
6628 included by the source file represented by PST. Build an include
6629 partial symtab for each of these included files. */
6630
6631 static void
6632 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6633 struct die_info *die,
6634 struct partial_symtab *pst)
6635 {
6636 line_header_up lh;
6637 struct attribute *attr;
6638
6639 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6640 if (attr)
6641 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6642 if (lh == NULL)
6643 return; /* No linetable, so no includes. */
6644
6645 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6646 that we pass in the raw text_low here; that is ok because we're
6647 only decoding the line table to make include partial symtabs, and
6648 so the addresses aren't really used. */
6649 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6650 pst->raw_text_low (), 1);
6651 }
6652
6653 static hashval_t
6654 hash_signatured_type (const void *item)
6655 {
6656 const struct signatured_type *sig_type
6657 = (const struct signatured_type *) item;
6658
6659 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6660 return sig_type->signature;
6661 }
6662
6663 static int
6664 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6665 {
6666 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6667 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6668
6669 return lhs->signature == rhs->signature;
6670 }
6671
6672 /* Allocate a hash table for signatured types. */
6673
6674 static htab_t
6675 allocate_signatured_type_table (struct objfile *objfile)
6676 {
6677 return htab_create_alloc_ex (41,
6678 hash_signatured_type,
6679 eq_signatured_type,
6680 NULL,
6681 &objfile->objfile_obstack,
6682 hashtab_obstack_allocate,
6683 dummy_obstack_deallocate);
6684 }
6685
6686 /* A helper function to add a signatured type CU to a table. */
6687
6688 static int
6689 add_signatured_type_cu_to_table (void **slot, void *datum)
6690 {
6691 struct signatured_type *sigt = (struct signatured_type *) *slot;
6692 std::vector<signatured_type *> *all_type_units
6693 = (std::vector<signatured_type *> *) datum;
6694
6695 all_type_units->push_back (sigt);
6696
6697 return 1;
6698 }
6699
6700 /* A helper for create_debug_types_hash_table. Read types from SECTION
6701 and fill them into TYPES_HTAB. It will process only type units,
6702 therefore DW_UT_type. */
6703
6704 static void
6705 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6706 struct dwo_file *dwo_file,
6707 dwarf2_section_info *section, htab_t &types_htab,
6708 rcuh_kind section_kind)
6709 {
6710 struct objfile *objfile = dwarf2_per_objfile->objfile;
6711 struct dwarf2_section_info *abbrev_section;
6712 bfd *abfd;
6713 const gdb_byte *info_ptr, *end_ptr;
6714
6715 abbrev_section = (dwo_file != NULL
6716 ? &dwo_file->sections.abbrev
6717 : &dwarf2_per_objfile->abbrev);
6718
6719 if (dwarf_read_debug)
6720 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6721 get_section_name (section),
6722 get_section_file_name (abbrev_section));
6723
6724 dwarf2_read_section (objfile, section);
6725 info_ptr = section->buffer;
6726
6727 if (info_ptr == NULL)
6728 return;
6729
6730 /* We can't set abfd until now because the section may be empty or
6731 not present, in which case the bfd is unknown. */
6732 abfd = get_section_bfd_owner (section);
6733
6734 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6735 because we don't need to read any dies: the signature is in the
6736 header. */
6737
6738 end_ptr = info_ptr + section->size;
6739 while (info_ptr < end_ptr)
6740 {
6741 struct signatured_type *sig_type;
6742 struct dwo_unit *dwo_tu;
6743 void **slot;
6744 const gdb_byte *ptr = info_ptr;
6745 struct comp_unit_head header;
6746 unsigned int length;
6747
6748 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6749
6750 /* Initialize it due to a false compiler warning. */
6751 header.signature = -1;
6752 header.type_cu_offset_in_tu = (cu_offset) -1;
6753
6754 /* We need to read the type's signature in order to build the hash
6755 table, but we don't need anything else just yet. */
6756
6757 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6758 abbrev_section, ptr, section_kind);
6759
6760 length = get_cu_length (&header);
6761
6762 /* Skip dummy type units. */
6763 if (ptr >= info_ptr + length
6764 || peek_abbrev_code (abfd, ptr) == 0
6765 || header.unit_type != DW_UT_type)
6766 {
6767 info_ptr += length;
6768 continue;
6769 }
6770
6771 if (types_htab == NULL)
6772 {
6773 if (dwo_file)
6774 types_htab = allocate_dwo_unit_table (objfile);
6775 else
6776 types_htab = allocate_signatured_type_table (objfile);
6777 }
6778
6779 if (dwo_file)
6780 {
6781 sig_type = NULL;
6782 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6783 struct dwo_unit);
6784 dwo_tu->dwo_file = dwo_file;
6785 dwo_tu->signature = header.signature;
6786 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6787 dwo_tu->section = section;
6788 dwo_tu->sect_off = sect_off;
6789 dwo_tu->length = length;
6790 }
6791 else
6792 {
6793 /* N.B.: type_offset is not usable if this type uses a DWO file.
6794 The real type_offset is in the DWO file. */
6795 dwo_tu = NULL;
6796 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6797 struct signatured_type);
6798 sig_type->signature = header.signature;
6799 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6800 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6801 sig_type->per_cu.is_debug_types = 1;
6802 sig_type->per_cu.section = section;
6803 sig_type->per_cu.sect_off = sect_off;
6804 sig_type->per_cu.length = length;
6805 }
6806
6807 slot = htab_find_slot (types_htab,
6808 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6809 INSERT);
6810 gdb_assert (slot != NULL);
6811 if (*slot != NULL)
6812 {
6813 sect_offset dup_sect_off;
6814
6815 if (dwo_file)
6816 {
6817 const struct dwo_unit *dup_tu
6818 = (const struct dwo_unit *) *slot;
6819
6820 dup_sect_off = dup_tu->sect_off;
6821 }
6822 else
6823 {
6824 const struct signatured_type *dup_tu
6825 = (const struct signatured_type *) *slot;
6826
6827 dup_sect_off = dup_tu->per_cu.sect_off;
6828 }
6829
6830 complaint (_("debug type entry at offset %s is duplicate to"
6831 " the entry at offset %s, signature %s"),
6832 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6833 hex_string (header.signature));
6834 }
6835 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6836
6837 if (dwarf_read_debug > 1)
6838 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6839 sect_offset_str (sect_off),
6840 hex_string (header.signature));
6841
6842 info_ptr += length;
6843 }
6844 }
6845
6846 /* Create the hash table of all entries in the .debug_types
6847 (or .debug_types.dwo) section(s).
6848 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6849 otherwise it is NULL.
6850
6851 The result is a pointer to the hash table or NULL if there are no types.
6852
6853 Note: This function processes DWO files only, not DWP files. */
6854
6855 static void
6856 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6857 struct dwo_file *dwo_file,
6858 gdb::array_view<dwarf2_section_info> type_sections,
6859 htab_t &types_htab)
6860 {
6861 for (dwarf2_section_info &section : type_sections)
6862 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6863 types_htab, rcuh_kind::TYPE);
6864 }
6865
6866 /* Create the hash table of all entries in the .debug_types section,
6867 and initialize all_type_units.
6868 The result is zero if there is an error (e.g. missing .debug_types section),
6869 otherwise non-zero. */
6870
6871 static int
6872 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6873 {
6874 htab_t types_htab = NULL;
6875
6876 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6877 &dwarf2_per_objfile->info, types_htab,
6878 rcuh_kind::COMPILE);
6879 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6880 dwarf2_per_objfile->types, types_htab);
6881 if (types_htab == NULL)
6882 {
6883 dwarf2_per_objfile->signatured_types = NULL;
6884 return 0;
6885 }
6886
6887 dwarf2_per_objfile->signatured_types = types_htab;
6888
6889 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6890 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6891
6892 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6893 &dwarf2_per_objfile->all_type_units);
6894
6895 return 1;
6896 }
6897
6898 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6899 If SLOT is non-NULL, it is the entry to use in the hash table.
6900 Otherwise we find one. */
6901
6902 static struct signatured_type *
6903 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6904 void **slot)
6905 {
6906 struct objfile *objfile = dwarf2_per_objfile->objfile;
6907
6908 if (dwarf2_per_objfile->all_type_units.size ()
6909 == dwarf2_per_objfile->all_type_units.capacity ())
6910 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6911
6912 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6913 struct signatured_type);
6914
6915 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6916 sig_type->signature = sig;
6917 sig_type->per_cu.is_debug_types = 1;
6918 if (dwarf2_per_objfile->using_index)
6919 {
6920 sig_type->per_cu.v.quick =
6921 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6922 struct dwarf2_per_cu_quick_data);
6923 }
6924
6925 if (slot == NULL)
6926 {
6927 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6928 sig_type, INSERT);
6929 }
6930 gdb_assert (*slot == NULL);
6931 *slot = sig_type;
6932 /* The rest of sig_type must be filled in by the caller. */
6933 return sig_type;
6934 }
6935
6936 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6937 Fill in SIG_ENTRY with DWO_ENTRY. */
6938
6939 static void
6940 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6941 struct signatured_type *sig_entry,
6942 struct dwo_unit *dwo_entry)
6943 {
6944 /* Make sure we're not clobbering something we don't expect to. */
6945 gdb_assert (! sig_entry->per_cu.queued);
6946 gdb_assert (sig_entry->per_cu.cu == NULL);
6947 if (dwarf2_per_objfile->using_index)
6948 {
6949 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6950 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6951 }
6952 else
6953 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6954 gdb_assert (sig_entry->signature == dwo_entry->signature);
6955 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6956 gdb_assert (sig_entry->type_unit_group == NULL);
6957 gdb_assert (sig_entry->dwo_unit == NULL);
6958
6959 sig_entry->per_cu.section = dwo_entry->section;
6960 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6961 sig_entry->per_cu.length = dwo_entry->length;
6962 sig_entry->per_cu.reading_dwo_directly = 1;
6963 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6964 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6965 sig_entry->dwo_unit = dwo_entry;
6966 }
6967
6968 /* Subroutine of lookup_signatured_type.
6969 If we haven't read the TU yet, create the signatured_type data structure
6970 for a TU to be read in directly from a DWO file, bypassing the stub.
6971 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6972 using .gdb_index, then when reading a CU we want to stay in the DWO file
6973 containing that CU. Otherwise we could end up reading several other DWO
6974 files (due to comdat folding) to process the transitive closure of all the
6975 mentioned TUs, and that can be slow. The current DWO file will have every
6976 type signature that it needs.
6977 We only do this for .gdb_index because in the psymtab case we already have
6978 to read all the DWOs to build the type unit groups. */
6979
6980 static struct signatured_type *
6981 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6982 {
6983 struct dwarf2_per_objfile *dwarf2_per_objfile
6984 = cu->per_cu->dwarf2_per_objfile;
6985 struct objfile *objfile = dwarf2_per_objfile->objfile;
6986 struct dwo_file *dwo_file;
6987 struct dwo_unit find_dwo_entry, *dwo_entry;
6988 struct signatured_type find_sig_entry, *sig_entry;
6989 void **slot;
6990
6991 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6992
6993 /* If TU skeletons have been removed then we may not have read in any
6994 TUs yet. */
6995 if (dwarf2_per_objfile->signatured_types == NULL)
6996 {
6997 dwarf2_per_objfile->signatured_types
6998 = allocate_signatured_type_table (objfile);
6999 }
7000
7001 /* We only ever need to read in one copy of a signatured type.
7002 Use the global signatured_types array to do our own comdat-folding
7003 of types. If this is the first time we're reading this TU, and
7004 the TU has an entry in .gdb_index, replace the recorded data from
7005 .gdb_index with this TU. */
7006
7007 find_sig_entry.signature = sig;
7008 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7009 &find_sig_entry, INSERT);
7010 sig_entry = (struct signatured_type *) *slot;
7011
7012 /* We can get here with the TU already read, *or* in the process of being
7013 read. Don't reassign the global entry to point to this DWO if that's
7014 the case. Also note that if the TU is already being read, it may not
7015 have come from a DWO, the program may be a mix of Fission-compiled
7016 code and non-Fission-compiled code. */
7017
7018 /* Have we already tried to read this TU?
7019 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7020 needn't exist in the global table yet). */
7021 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7022 return sig_entry;
7023
7024 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7025 dwo_unit of the TU itself. */
7026 dwo_file = cu->dwo_unit->dwo_file;
7027
7028 /* Ok, this is the first time we're reading this TU. */
7029 if (dwo_file->tus == NULL)
7030 return NULL;
7031 find_dwo_entry.signature = sig;
7032 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7033 if (dwo_entry == NULL)
7034 return NULL;
7035
7036 /* If the global table doesn't have an entry for this TU, add one. */
7037 if (sig_entry == NULL)
7038 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7039
7040 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7041 sig_entry->per_cu.tu_read = 1;
7042 return sig_entry;
7043 }
7044
7045 /* Subroutine of lookup_signatured_type.
7046 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7047 then try the DWP file. If the TU stub (skeleton) has been removed then
7048 it won't be in .gdb_index. */
7049
7050 static struct signatured_type *
7051 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7052 {
7053 struct dwarf2_per_objfile *dwarf2_per_objfile
7054 = cu->per_cu->dwarf2_per_objfile;
7055 struct objfile *objfile = dwarf2_per_objfile->objfile;
7056 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7057 struct dwo_unit *dwo_entry;
7058 struct signatured_type find_sig_entry, *sig_entry;
7059 void **slot;
7060
7061 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7062 gdb_assert (dwp_file != NULL);
7063
7064 /* If TU skeletons have been removed then we may not have read in any
7065 TUs yet. */
7066 if (dwarf2_per_objfile->signatured_types == NULL)
7067 {
7068 dwarf2_per_objfile->signatured_types
7069 = allocate_signatured_type_table (objfile);
7070 }
7071
7072 find_sig_entry.signature = sig;
7073 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7074 &find_sig_entry, INSERT);
7075 sig_entry = (struct signatured_type *) *slot;
7076
7077 /* Have we already tried to read this TU?
7078 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7079 needn't exist in the global table yet). */
7080 if (sig_entry != NULL)
7081 return sig_entry;
7082
7083 if (dwp_file->tus == NULL)
7084 return NULL;
7085 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7086 sig, 1 /* is_debug_types */);
7087 if (dwo_entry == NULL)
7088 return NULL;
7089
7090 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7091 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7092
7093 return sig_entry;
7094 }
7095
7096 /* Lookup a signature based type for DW_FORM_ref_sig8.
7097 Returns NULL if signature SIG is not present in the table.
7098 It is up to the caller to complain about this. */
7099
7100 static struct signatured_type *
7101 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7102 {
7103 struct dwarf2_per_objfile *dwarf2_per_objfile
7104 = cu->per_cu->dwarf2_per_objfile;
7105
7106 if (cu->dwo_unit
7107 && dwarf2_per_objfile->using_index)
7108 {
7109 /* We're in a DWO/DWP file, and we're using .gdb_index.
7110 These cases require special processing. */
7111 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7112 return lookup_dwo_signatured_type (cu, sig);
7113 else
7114 return lookup_dwp_signatured_type (cu, sig);
7115 }
7116 else
7117 {
7118 struct signatured_type find_entry, *entry;
7119
7120 if (dwarf2_per_objfile->signatured_types == NULL)
7121 return NULL;
7122 find_entry.signature = sig;
7123 entry = ((struct signatured_type *)
7124 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7125 return entry;
7126 }
7127 }
7128 \f
7129 /* Low level DIE reading support. */
7130
7131 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7132
7133 static void
7134 init_cu_die_reader (struct die_reader_specs *reader,
7135 struct dwarf2_cu *cu,
7136 struct dwarf2_section_info *section,
7137 struct dwo_file *dwo_file,
7138 struct abbrev_table *abbrev_table)
7139 {
7140 gdb_assert (section->readin && section->buffer != NULL);
7141 reader->abfd = get_section_bfd_owner (section);
7142 reader->cu = cu;
7143 reader->dwo_file = dwo_file;
7144 reader->die_section = section;
7145 reader->buffer = section->buffer;
7146 reader->buffer_end = section->buffer + section->size;
7147 reader->comp_dir = NULL;
7148 reader->abbrev_table = abbrev_table;
7149 }
7150
7151 /* Subroutine of init_cutu_and_read_dies to simplify it.
7152 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7153 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7154 already.
7155
7156 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7157 from it to the DIE in the DWO. If NULL we are skipping the stub.
7158 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7159 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7160 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7161 STUB_COMP_DIR may be non-NULL.
7162 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7163 are filled in with the info of the DIE from the DWO file.
7164 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7165 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7166 kept around for at least as long as *RESULT_READER.
7167
7168 The result is non-zero if a valid (non-dummy) DIE was found. */
7169
7170 static int
7171 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7172 struct dwo_unit *dwo_unit,
7173 struct die_info *stub_comp_unit_die,
7174 const char *stub_comp_dir,
7175 struct die_reader_specs *result_reader,
7176 const gdb_byte **result_info_ptr,
7177 struct die_info **result_comp_unit_die,
7178 int *result_has_children,
7179 abbrev_table_up *result_dwo_abbrev_table)
7180 {
7181 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7182 struct objfile *objfile = dwarf2_per_objfile->objfile;
7183 struct dwarf2_cu *cu = this_cu->cu;
7184 bfd *abfd;
7185 const gdb_byte *begin_info_ptr, *info_ptr;
7186 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7187 int i,num_extra_attrs;
7188 struct dwarf2_section_info *dwo_abbrev_section;
7189 struct attribute *attr;
7190 struct die_info *comp_unit_die;
7191
7192 /* At most one of these may be provided. */
7193 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7194
7195 /* These attributes aren't processed until later:
7196 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7197 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7198 referenced later. However, these attributes are found in the stub
7199 which we won't have later. In order to not impose this complication
7200 on the rest of the code, we read them here and copy them to the
7201 DWO CU/TU die. */
7202
7203 stmt_list = NULL;
7204 low_pc = NULL;
7205 high_pc = NULL;
7206 ranges = NULL;
7207 comp_dir = NULL;
7208
7209 if (stub_comp_unit_die != NULL)
7210 {
7211 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7212 DWO file. */
7213 if (! this_cu->is_debug_types)
7214 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7215 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7216 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7217 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7218 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7219
7220 /* There should be a DW_AT_addr_base attribute here (if needed).
7221 We need the value before we can process DW_FORM_GNU_addr_index
7222 or DW_FORM_addrx. */
7223 cu->addr_base = 0;
7224 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7225 if (attr)
7226 cu->addr_base = DW_UNSND (attr);
7227
7228 /* There should be a DW_AT_ranges_base attribute here (if needed).
7229 We need the value before we can process DW_AT_ranges. */
7230 cu->ranges_base = 0;
7231 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7232 if (attr)
7233 cu->ranges_base = DW_UNSND (attr);
7234 }
7235 else if (stub_comp_dir != NULL)
7236 {
7237 /* Reconstruct the comp_dir attribute to simplify the code below. */
7238 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7239 comp_dir->name = DW_AT_comp_dir;
7240 comp_dir->form = DW_FORM_string;
7241 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7242 DW_STRING (comp_dir) = stub_comp_dir;
7243 }
7244
7245 /* Set up for reading the DWO CU/TU. */
7246 cu->dwo_unit = dwo_unit;
7247 dwarf2_section_info *section = dwo_unit->section;
7248 dwarf2_read_section (objfile, section);
7249 abfd = get_section_bfd_owner (section);
7250 begin_info_ptr = info_ptr = (section->buffer
7251 + to_underlying (dwo_unit->sect_off));
7252 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7253
7254 if (this_cu->is_debug_types)
7255 {
7256 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7257
7258 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7259 &cu->header, section,
7260 dwo_abbrev_section,
7261 info_ptr, rcuh_kind::TYPE);
7262 /* This is not an assert because it can be caused by bad debug info. */
7263 if (sig_type->signature != cu->header.signature)
7264 {
7265 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7266 " TU at offset %s [in module %s]"),
7267 hex_string (sig_type->signature),
7268 hex_string (cu->header.signature),
7269 sect_offset_str (dwo_unit->sect_off),
7270 bfd_get_filename (abfd));
7271 }
7272 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7273 /* For DWOs coming from DWP files, we don't know the CU length
7274 nor the type's offset in the TU until now. */
7275 dwo_unit->length = get_cu_length (&cu->header);
7276 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7277
7278 /* Establish the type offset that can be used to lookup the type.
7279 For DWO files, we don't know it until now. */
7280 sig_type->type_offset_in_section
7281 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7282 }
7283 else
7284 {
7285 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7286 &cu->header, section,
7287 dwo_abbrev_section,
7288 info_ptr, rcuh_kind::COMPILE);
7289 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7290 /* For DWOs coming from DWP files, we don't know the CU length
7291 until now. */
7292 dwo_unit->length = get_cu_length (&cu->header);
7293 }
7294
7295 *result_dwo_abbrev_table
7296 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7297 cu->header.abbrev_sect_off);
7298 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7299 result_dwo_abbrev_table->get ());
7300
7301 /* Read in the die, but leave space to copy over the attributes
7302 from the stub. This has the benefit of simplifying the rest of
7303 the code - all the work to maintain the illusion of a single
7304 DW_TAG_{compile,type}_unit DIE is done here. */
7305 num_extra_attrs = ((stmt_list != NULL)
7306 + (low_pc != NULL)
7307 + (high_pc != NULL)
7308 + (ranges != NULL)
7309 + (comp_dir != NULL));
7310 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7311 result_has_children, num_extra_attrs);
7312
7313 /* Copy over the attributes from the stub to the DIE we just read in. */
7314 comp_unit_die = *result_comp_unit_die;
7315 i = comp_unit_die->num_attrs;
7316 if (stmt_list != NULL)
7317 comp_unit_die->attrs[i++] = *stmt_list;
7318 if (low_pc != NULL)
7319 comp_unit_die->attrs[i++] = *low_pc;
7320 if (high_pc != NULL)
7321 comp_unit_die->attrs[i++] = *high_pc;
7322 if (ranges != NULL)
7323 comp_unit_die->attrs[i++] = *ranges;
7324 if (comp_dir != NULL)
7325 comp_unit_die->attrs[i++] = *comp_dir;
7326 comp_unit_die->num_attrs += num_extra_attrs;
7327
7328 if (dwarf_die_debug)
7329 {
7330 fprintf_unfiltered (gdb_stdlog,
7331 "Read die from %s@0x%x of %s:\n",
7332 get_section_name (section),
7333 (unsigned) (begin_info_ptr - section->buffer),
7334 bfd_get_filename (abfd));
7335 dump_die (comp_unit_die, dwarf_die_debug);
7336 }
7337
7338 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7339 TUs by skipping the stub and going directly to the entry in the DWO file.
7340 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7341 to get it via circuitous means. Blech. */
7342 if (comp_dir != NULL)
7343 result_reader->comp_dir = DW_STRING (comp_dir);
7344
7345 /* Skip dummy compilation units. */
7346 if (info_ptr >= begin_info_ptr + dwo_unit->length
7347 || peek_abbrev_code (abfd, info_ptr) == 0)
7348 return 0;
7349
7350 *result_info_ptr = info_ptr;
7351 return 1;
7352 }
7353
7354 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7355 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7356 signature is part of the header. */
7357 static gdb::optional<ULONGEST>
7358 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7359 {
7360 if (cu->header.version >= 5)
7361 return cu->header.signature;
7362 struct attribute *attr;
7363 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7364 if (attr == nullptr)
7365 return gdb::optional<ULONGEST> ();
7366 return DW_UNSND (attr);
7367 }
7368
7369 /* Subroutine of init_cutu_and_read_dies to simplify it.
7370 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7371 Returns NULL if the specified DWO unit cannot be found. */
7372
7373 static struct dwo_unit *
7374 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7375 struct die_info *comp_unit_die)
7376 {
7377 struct dwarf2_cu *cu = this_cu->cu;
7378 struct dwo_unit *dwo_unit;
7379 const char *comp_dir, *dwo_name;
7380
7381 gdb_assert (cu != NULL);
7382
7383 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7384 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7385 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7386
7387 if (this_cu->is_debug_types)
7388 {
7389 struct signatured_type *sig_type;
7390
7391 /* Since this_cu is the first member of struct signatured_type,
7392 we can go from a pointer to one to a pointer to the other. */
7393 sig_type = (struct signatured_type *) this_cu;
7394 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7395 }
7396 else
7397 {
7398 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7399 if (!signature.has_value ())
7400 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7401 " [in module %s]"),
7402 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7403 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7404 *signature);
7405 }
7406
7407 return dwo_unit;
7408 }
7409
7410 /* Subroutine of init_cutu_and_read_dies to simplify it.
7411 See it for a description of the parameters.
7412 Read a TU directly from a DWO file, bypassing the stub. */
7413
7414 static void
7415 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7416 int use_existing_cu, int keep,
7417 die_reader_func_ftype *die_reader_func,
7418 void *data)
7419 {
7420 std::unique_ptr<dwarf2_cu> new_cu;
7421 struct signatured_type *sig_type;
7422 struct die_reader_specs reader;
7423 const gdb_byte *info_ptr;
7424 struct die_info *comp_unit_die;
7425 int has_children;
7426 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7427
7428 /* Verify we can do the following downcast, and that we have the
7429 data we need. */
7430 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7431 sig_type = (struct signatured_type *) this_cu;
7432 gdb_assert (sig_type->dwo_unit != NULL);
7433
7434 if (use_existing_cu && this_cu->cu != NULL)
7435 {
7436 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7437 /* There's no need to do the rereading_dwo_cu handling that
7438 init_cutu_and_read_dies does since we don't read the stub. */
7439 }
7440 else
7441 {
7442 /* If !use_existing_cu, this_cu->cu must be NULL. */
7443 gdb_assert (this_cu->cu == NULL);
7444 new_cu.reset (new dwarf2_cu (this_cu));
7445 }
7446
7447 /* A future optimization, if needed, would be to use an existing
7448 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7449 could share abbrev tables. */
7450
7451 /* The abbreviation table used by READER, this must live at least as long as
7452 READER. */
7453 abbrev_table_up dwo_abbrev_table;
7454
7455 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7456 NULL /* stub_comp_unit_die */,
7457 sig_type->dwo_unit->dwo_file->comp_dir,
7458 &reader, &info_ptr,
7459 &comp_unit_die, &has_children,
7460 &dwo_abbrev_table) == 0)
7461 {
7462 /* Dummy die. */
7463 return;
7464 }
7465
7466 /* All the "real" work is done here. */
7467 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7468
7469 /* This duplicates the code in init_cutu_and_read_dies,
7470 but the alternative is making the latter more complex.
7471 This function is only for the special case of using DWO files directly:
7472 no point in overly complicating the general case just to handle this. */
7473 if (new_cu != NULL && keep)
7474 {
7475 /* Link this CU into read_in_chain. */
7476 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7477 dwarf2_per_objfile->read_in_chain = this_cu;
7478 /* The chain owns it now. */
7479 new_cu.release ();
7480 }
7481 }
7482
7483 /* Initialize a CU (or TU) and read its DIEs.
7484 If the CU defers to a DWO file, read the DWO file as well.
7485
7486 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7487 Otherwise the table specified in the comp unit header is read in and used.
7488 This is an optimization for when we already have the abbrev table.
7489
7490 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7491 Otherwise, a new CU is allocated with xmalloc.
7492
7493 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7494 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7495
7496 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7497 linker) then DIE_READER_FUNC will not get called. */
7498
7499 static void
7500 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7501 struct abbrev_table *abbrev_table,
7502 int use_existing_cu, int keep,
7503 bool skip_partial,
7504 die_reader_func_ftype *die_reader_func,
7505 void *data)
7506 {
7507 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7508 struct objfile *objfile = dwarf2_per_objfile->objfile;
7509 struct dwarf2_section_info *section = this_cu->section;
7510 bfd *abfd = get_section_bfd_owner (section);
7511 struct dwarf2_cu *cu;
7512 const gdb_byte *begin_info_ptr, *info_ptr;
7513 struct die_reader_specs reader;
7514 struct die_info *comp_unit_die;
7515 int has_children;
7516 struct signatured_type *sig_type = NULL;
7517 struct dwarf2_section_info *abbrev_section;
7518 /* Non-zero if CU currently points to a DWO file and we need to
7519 reread it. When this happens we need to reread the skeleton die
7520 before we can reread the DWO file (this only applies to CUs, not TUs). */
7521 int rereading_dwo_cu = 0;
7522
7523 if (dwarf_die_debug)
7524 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7525 this_cu->is_debug_types ? "type" : "comp",
7526 sect_offset_str (this_cu->sect_off));
7527
7528 if (use_existing_cu)
7529 gdb_assert (keep);
7530
7531 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7532 file (instead of going through the stub), short-circuit all of this. */
7533 if (this_cu->reading_dwo_directly)
7534 {
7535 /* Narrow down the scope of possibilities to have to understand. */
7536 gdb_assert (this_cu->is_debug_types);
7537 gdb_assert (abbrev_table == NULL);
7538 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7539 die_reader_func, data);
7540 return;
7541 }
7542
7543 /* This is cheap if the section is already read in. */
7544 dwarf2_read_section (objfile, section);
7545
7546 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7547
7548 abbrev_section = get_abbrev_section_for_cu (this_cu);
7549
7550 std::unique_ptr<dwarf2_cu> new_cu;
7551 if (use_existing_cu && this_cu->cu != NULL)
7552 {
7553 cu = this_cu->cu;
7554 /* If this CU is from a DWO file we need to start over, we need to
7555 refetch the attributes from the skeleton CU.
7556 This could be optimized by retrieving those attributes from when we
7557 were here the first time: the previous comp_unit_die was stored in
7558 comp_unit_obstack. But there's no data yet that we need this
7559 optimization. */
7560 if (cu->dwo_unit != NULL)
7561 rereading_dwo_cu = 1;
7562 }
7563 else
7564 {
7565 /* If !use_existing_cu, this_cu->cu must be NULL. */
7566 gdb_assert (this_cu->cu == NULL);
7567 new_cu.reset (new dwarf2_cu (this_cu));
7568 cu = new_cu.get ();
7569 }
7570
7571 /* Get the header. */
7572 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7573 {
7574 /* We already have the header, there's no need to read it in again. */
7575 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7576 }
7577 else
7578 {
7579 if (this_cu->is_debug_types)
7580 {
7581 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7582 &cu->header, section,
7583 abbrev_section, info_ptr,
7584 rcuh_kind::TYPE);
7585
7586 /* Since per_cu is the first member of struct signatured_type,
7587 we can go from a pointer to one to a pointer to the other. */
7588 sig_type = (struct signatured_type *) this_cu;
7589 gdb_assert (sig_type->signature == cu->header.signature);
7590 gdb_assert (sig_type->type_offset_in_tu
7591 == cu->header.type_cu_offset_in_tu);
7592 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7593
7594 /* LENGTH has not been set yet for type units if we're
7595 using .gdb_index. */
7596 this_cu->length = get_cu_length (&cu->header);
7597
7598 /* Establish the type offset that can be used to lookup the type. */
7599 sig_type->type_offset_in_section =
7600 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7601
7602 this_cu->dwarf_version = cu->header.version;
7603 }
7604 else
7605 {
7606 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7607 &cu->header, section,
7608 abbrev_section,
7609 info_ptr,
7610 rcuh_kind::COMPILE);
7611
7612 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7613 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7614 this_cu->dwarf_version = cu->header.version;
7615 }
7616 }
7617
7618 /* Skip dummy compilation units. */
7619 if (info_ptr >= begin_info_ptr + this_cu->length
7620 || peek_abbrev_code (abfd, info_ptr) == 0)
7621 return;
7622
7623 /* If we don't have them yet, read the abbrevs for this compilation unit.
7624 And if we need to read them now, make sure they're freed when we're
7625 done (own the table through ABBREV_TABLE_HOLDER). */
7626 abbrev_table_up abbrev_table_holder;
7627 if (abbrev_table != NULL)
7628 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7629 else
7630 {
7631 abbrev_table_holder
7632 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7633 cu->header.abbrev_sect_off);
7634 abbrev_table = abbrev_table_holder.get ();
7635 }
7636
7637 /* Read the top level CU/TU die. */
7638 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7639 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7640
7641 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7642 return;
7643
7644 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7645 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7646 table from the DWO file and pass the ownership over to us. It will be
7647 referenced from READER, so we must make sure to free it after we're done
7648 with READER.
7649
7650 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7651 DWO CU, that this test will fail (the attribute will not be present). */
7652 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7653 abbrev_table_up dwo_abbrev_table;
7654 if (dwo_name != nullptr)
7655 {
7656 struct dwo_unit *dwo_unit;
7657 struct die_info *dwo_comp_unit_die;
7658
7659 if (has_children)
7660 {
7661 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7662 " has children (offset %s) [in module %s]"),
7663 sect_offset_str (this_cu->sect_off),
7664 bfd_get_filename (abfd));
7665 }
7666 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7667 if (dwo_unit != NULL)
7668 {
7669 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7670 comp_unit_die, NULL,
7671 &reader, &info_ptr,
7672 &dwo_comp_unit_die, &has_children,
7673 &dwo_abbrev_table) == 0)
7674 {
7675 /* Dummy die. */
7676 return;
7677 }
7678 comp_unit_die = dwo_comp_unit_die;
7679 }
7680 else
7681 {
7682 /* Yikes, we couldn't find the rest of the DIE, we only have
7683 the stub. A complaint has already been logged. There's
7684 not much more we can do except pass on the stub DIE to
7685 die_reader_func. We don't want to throw an error on bad
7686 debug info. */
7687 }
7688 }
7689
7690 /* All of the above is setup for this call. Yikes. */
7691 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7692
7693 /* Done, clean up. */
7694 if (new_cu != NULL && keep)
7695 {
7696 /* Link this CU into read_in_chain. */
7697 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7698 dwarf2_per_objfile->read_in_chain = this_cu;
7699 /* The chain owns it now. */
7700 new_cu.release ();
7701 }
7702 }
7703
7704 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7705 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7706 to have already done the lookup to find the DWO file).
7707
7708 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7709 THIS_CU->is_debug_types, but nothing else.
7710
7711 We fill in THIS_CU->length.
7712
7713 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7714 linker) then DIE_READER_FUNC will not get called.
7715
7716 THIS_CU->cu is always freed when done.
7717 This is done in order to not leave THIS_CU->cu in a state where we have
7718 to care whether it refers to the "main" CU or the DWO CU. */
7719
7720 static void
7721 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7722 struct dwo_file *dwo_file,
7723 die_reader_func_ftype *die_reader_func,
7724 void *data)
7725 {
7726 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7727 struct objfile *objfile = dwarf2_per_objfile->objfile;
7728 struct dwarf2_section_info *section = this_cu->section;
7729 bfd *abfd = get_section_bfd_owner (section);
7730 struct dwarf2_section_info *abbrev_section;
7731 const gdb_byte *begin_info_ptr, *info_ptr;
7732 struct die_reader_specs reader;
7733 struct die_info *comp_unit_die;
7734 int has_children;
7735
7736 if (dwarf_die_debug)
7737 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7738 this_cu->is_debug_types ? "type" : "comp",
7739 sect_offset_str (this_cu->sect_off));
7740
7741 gdb_assert (this_cu->cu == NULL);
7742
7743 abbrev_section = (dwo_file != NULL
7744 ? &dwo_file->sections.abbrev
7745 : get_abbrev_section_for_cu (this_cu));
7746
7747 /* This is cheap if the section is already read in. */
7748 dwarf2_read_section (objfile, section);
7749
7750 struct dwarf2_cu cu (this_cu);
7751
7752 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7753 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7754 &cu.header, section,
7755 abbrev_section, info_ptr,
7756 (this_cu->is_debug_types
7757 ? rcuh_kind::TYPE
7758 : rcuh_kind::COMPILE));
7759
7760 this_cu->length = get_cu_length (&cu.header);
7761
7762 /* Skip dummy compilation units. */
7763 if (info_ptr >= begin_info_ptr + this_cu->length
7764 || peek_abbrev_code (abfd, info_ptr) == 0)
7765 return;
7766
7767 abbrev_table_up abbrev_table
7768 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7769 cu.header.abbrev_sect_off);
7770
7771 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7772 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7773
7774 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7775 }
7776
7777 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7778 does not lookup the specified DWO file.
7779 This cannot be used to read DWO files.
7780
7781 THIS_CU->cu is always freed when done.
7782 This is done in order to not leave THIS_CU->cu in a state where we have
7783 to care whether it refers to the "main" CU or the DWO CU.
7784 We can revisit this if the data shows there's a performance issue. */
7785
7786 static void
7787 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7788 die_reader_func_ftype *die_reader_func,
7789 void *data)
7790 {
7791 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7792 }
7793 \f
7794 /* Type Unit Groups.
7795
7796 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7797 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7798 so that all types coming from the same compilation (.o file) are grouped
7799 together. A future step could be to put the types in the same symtab as
7800 the CU the types ultimately came from. */
7801
7802 static hashval_t
7803 hash_type_unit_group (const void *item)
7804 {
7805 const struct type_unit_group *tu_group
7806 = (const struct type_unit_group *) item;
7807
7808 return hash_stmt_list_entry (&tu_group->hash);
7809 }
7810
7811 static int
7812 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7813 {
7814 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7815 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7816
7817 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7818 }
7819
7820 /* Allocate a hash table for type unit groups. */
7821
7822 static htab_t
7823 allocate_type_unit_groups_table (struct objfile *objfile)
7824 {
7825 return htab_create_alloc_ex (3,
7826 hash_type_unit_group,
7827 eq_type_unit_group,
7828 NULL,
7829 &objfile->objfile_obstack,
7830 hashtab_obstack_allocate,
7831 dummy_obstack_deallocate);
7832 }
7833
7834 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7835 partial symtabs. We combine several TUs per psymtab to not let the size
7836 of any one psymtab grow too big. */
7837 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7838 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7839
7840 /* Helper routine for get_type_unit_group.
7841 Create the type_unit_group object used to hold one or more TUs. */
7842
7843 static struct type_unit_group *
7844 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7845 {
7846 struct dwarf2_per_objfile *dwarf2_per_objfile
7847 = cu->per_cu->dwarf2_per_objfile;
7848 struct objfile *objfile = dwarf2_per_objfile->objfile;
7849 struct dwarf2_per_cu_data *per_cu;
7850 struct type_unit_group *tu_group;
7851
7852 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7853 struct type_unit_group);
7854 per_cu = &tu_group->per_cu;
7855 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7856
7857 if (dwarf2_per_objfile->using_index)
7858 {
7859 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7860 struct dwarf2_per_cu_quick_data);
7861 }
7862 else
7863 {
7864 unsigned int line_offset = to_underlying (line_offset_struct);
7865 struct partial_symtab *pst;
7866 std::string name;
7867
7868 /* Give the symtab a useful name for debug purposes. */
7869 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7870 name = string_printf ("<type_units_%d>",
7871 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7872 else
7873 name = string_printf ("<type_units_at_0x%x>", line_offset);
7874
7875 pst = create_partial_symtab (per_cu, name.c_str ());
7876 pst->anonymous = 1;
7877 }
7878
7879 tu_group->hash.dwo_unit = cu->dwo_unit;
7880 tu_group->hash.line_sect_off = line_offset_struct;
7881
7882 return tu_group;
7883 }
7884
7885 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7886 STMT_LIST is a DW_AT_stmt_list attribute. */
7887
7888 static struct type_unit_group *
7889 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7890 {
7891 struct dwarf2_per_objfile *dwarf2_per_objfile
7892 = cu->per_cu->dwarf2_per_objfile;
7893 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7894 struct type_unit_group *tu_group;
7895 void **slot;
7896 unsigned int line_offset;
7897 struct type_unit_group type_unit_group_for_lookup;
7898
7899 if (dwarf2_per_objfile->type_unit_groups == NULL)
7900 {
7901 dwarf2_per_objfile->type_unit_groups =
7902 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7903 }
7904
7905 /* Do we need to create a new group, or can we use an existing one? */
7906
7907 if (stmt_list)
7908 {
7909 line_offset = DW_UNSND (stmt_list);
7910 ++tu_stats->nr_symtab_sharers;
7911 }
7912 else
7913 {
7914 /* Ugh, no stmt_list. Rare, but we have to handle it.
7915 We can do various things here like create one group per TU or
7916 spread them over multiple groups to split up the expansion work.
7917 To avoid worst case scenarios (too many groups or too large groups)
7918 we, umm, group them in bunches. */
7919 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7920 | (tu_stats->nr_stmt_less_type_units
7921 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7922 ++tu_stats->nr_stmt_less_type_units;
7923 }
7924
7925 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7926 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7927 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7928 &type_unit_group_for_lookup, INSERT);
7929 if (*slot != NULL)
7930 {
7931 tu_group = (struct type_unit_group *) *slot;
7932 gdb_assert (tu_group != NULL);
7933 }
7934 else
7935 {
7936 sect_offset line_offset_struct = (sect_offset) line_offset;
7937 tu_group = create_type_unit_group (cu, line_offset_struct);
7938 *slot = tu_group;
7939 ++tu_stats->nr_symtabs;
7940 }
7941
7942 return tu_group;
7943 }
7944 \f
7945 /* Partial symbol tables. */
7946
7947 /* Create a psymtab named NAME and assign it to PER_CU.
7948
7949 The caller must fill in the following details:
7950 dirname, textlow, texthigh. */
7951
7952 static struct partial_symtab *
7953 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7954 {
7955 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7956 struct partial_symtab *pst;
7957
7958 pst = start_psymtab_common (objfile, name, 0);
7959
7960 pst->psymtabs_addrmap_supported = 1;
7961
7962 /* This is the glue that links PST into GDB's symbol API. */
7963 pst->read_symtab_private = per_cu;
7964 pst->read_symtab = dwarf2_read_symtab;
7965 per_cu->v.psymtab = pst;
7966
7967 return pst;
7968 }
7969
7970 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7971 type. */
7972
7973 struct process_psymtab_comp_unit_data
7974 {
7975 /* True if we are reading a DW_TAG_partial_unit. */
7976
7977 int want_partial_unit;
7978
7979 /* The "pretend" language that is used if the CU doesn't declare a
7980 language. */
7981
7982 enum language pretend_language;
7983 };
7984
7985 /* die_reader_func for process_psymtab_comp_unit. */
7986
7987 static void
7988 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7989 const gdb_byte *info_ptr,
7990 struct die_info *comp_unit_die,
7991 int has_children,
7992 void *data)
7993 {
7994 struct dwarf2_cu *cu = reader->cu;
7995 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7996 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7997 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7998 CORE_ADDR baseaddr;
7999 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8000 struct partial_symtab *pst;
8001 enum pc_bounds_kind cu_bounds_kind;
8002 const char *filename;
8003 struct process_psymtab_comp_unit_data *info
8004 = (struct process_psymtab_comp_unit_data *) data;
8005
8006 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8007 return;
8008
8009 gdb_assert (! per_cu->is_debug_types);
8010
8011 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8012
8013 /* Allocate a new partial symbol table structure. */
8014 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8015 if (filename == NULL)
8016 filename = "";
8017
8018 pst = create_partial_symtab (per_cu, filename);
8019
8020 /* This must be done before calling dwarf2_build_include_psymtabs. */
8021 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8022
8023 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8024
8025 dwarf2_find_base_address (comp_unit_die, cu);
8026
8027 /* Possibly set the default values of LOWPC and HIGHPC from
8028 `DW_AT_ranges'. */
8029 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8030 &best_highpc, cu, pst);
8031 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8032 {
8033 CORE_ADDR low
8034 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8035 - baseaddr);
8036 CORE_ADDR high
8037 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8038 - baseaddr - 1);
8039 /* Store the contiguous range if it is not empty; it can be
8040 empty for CUs with no code. */
8041 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8042 low, high, pst);
8043 }
8044
8045 /* Check if comp unit has_children.
8046 If so, read the rest of the partial symbols from this comp unit.
8047 If not, there's no more debug_info for this comp unit. */
8048 if (has_children)
8049 {
8050 struct partial_die_info *first_die;
8051 CORE_ADDR lowpc, highpc;
8052
8053 lowpc = ((CORE_ADDR) -1);
8054 highpc = ((CORE_ADDR) 0);
8055
8056 first_die = load_partial_dies (reader, info_ptr, 1);
8057
8058 scan_partial_symbols (first_die, &lowpc, &highpc,
8059 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8060
8061 /* If we didn't find a lowpc, set it to highpc to avoid
8062 complaints from `maint check'. */
8063 if (lowpc == ((CORE_ADDR) -1))
8064 lowpc = highpc;
8065
8066 /* If the compilation unit didn't have an explicit address range,
8067 then use the information extracted from its child dies. */
8068 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8069 {
8070 best_lowpc = lowpc;
8071 best_highpc = highpc;
8072 }
8073 }
8074 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8075 best_lowpc + baseaddr)
8076 - baseaddr);
8077 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8078 best_highpc + baseaddr)
8079 - baseaddr);
8080
8081 end_psymtab_common (objfile, pst);
8082
8083 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8084 {
8085 int i;
8086 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8087 struct dwarf2_per_cu_data *iter;
8088
8089 /* Fill in 'dependencies' here; we fill in 'users' in a
8090 post-pass. */
8091 pst->number_of_dependencies = len;
8092 pst->dependencies
8093 = objfile->partial_symtabs->allocate_dependencies (len);
8094 for (i = 0;
8095 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8096 i, iter);
8097 ++i)
8098 pst->dependencies[i] = iter->v.psymtab;
8099
8100 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8101 }
8102
8103 /* Get the list of files included in the current compilation unit,
8104 and build a psymtab for each of them. */
8105 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8106
8107 if (dwarf_read_debug)
8108 fprintf_unfiltered (gdb_stdlog,
8109 "Psymtab for %s unit @%s: %s - %s"
8110 ", %d global, %d static syms\n",
8111 per_cu->is_debug_types ? "type" : "comp",
8112 sect_offset_str (per_cu->sect_off),
8113 paddress (gdbarch, pst->text_low (objfile)),
8114 paddress (gdbarch, pst->text_high (objfile)),
8115 pst->n_global_syms, pst->n_static_syms);
8116 }
8117
8118 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8119 Process compilation unit THIS_CU for a psymtab. */
8120
8121 static void
8122 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8123 int want_partial_unit,
8124 enum language pretend_language)
8125 {
8126 /* If this compilation unit was already read in, free the
8127 cached copy in order to read it in again. This is
8128 necessary because we skipped some symbols when we first
8129 read in the compilation unit (see load_partial_dies).
8130 This problem could be avoided, but the benefit is unclear. */
8131 if (this_cu->cu != NULL)
8132 free_one_cached_comp_unit (this_cu);
8133
8134 if (this_cu->is_debug_types)
8135 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8136 build_type_psymtabs_reader, NULL);
8137 else
8138 {
8139 process_psymtab_comp_unit_data info;
8140 info.want_partial_unit = want_partial_unit;
8141 info.pretend_language = pretend_language;
8142 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8143 process_psymtab_comp_unit_reader, &info);
8144 }
8145
8146 /* Age out any secondary CUs. */
8147 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8148 }
8149
8150 /* Reader function for build_type_psymtabs. */
8151
8152 static void
8153 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8154 const gdb_byte *info_ptr,
8155 struct die_info *type_unit_die,
8156 int has_children,
8157 void *data)
8158 {
8159 struct dwarf2_per_objfile *dwarf2_per_objfile
8160 = reader->cu->per_cu->dwarf2_per_objfile;
8161 struct objfile *objfile = dwarf2_per_objfile->objfile;
8162 struct dwarf2_cu *cu = reader->cu;
8163 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8164 struct signatured_type *sig_type;
8165 struct type_unit_group *tu_group;
8166 struct attribute *attr;
8167 struct partial_die_info *first_die;
8168 CORE_ADDR lowpc, highpc;
8169 struct partial_symtab *pst;
8170
8171 gdb_assert (data == NULL);
8172 gdb_assert (per_cu->is_debug_types);
8173 sig_type = (struct signatured_type *) per_cu;
8174
8175 if (! has_children)
8176 return;
8177
8178 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8179 tu_group = get_type_unit_group (cu, attr);
8180
8181 if (tu_group->tus == nullptr)
8182 tu_group->tus = new std::vector<signatured_type *>;
8183 tu_group->tus->push_back (sig_type);
8184
8185 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8186 pst = create_partial_symtab (per_cu, "");
8187 pst->anonymous = 1;
8188
8189 first_die = load_partial_dies (reader, info_ptr, 1);
8190
8191 lowpc = (CORE_ADDR) -1;
8192 highpc = (CORE_ADDR) 0;
8193 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8194
8195 end_psymtab_common (objfile, pst);
8196 }
8197
8198 /* Struct used to sort TUs by their abbreviation table offset. */
8199
8200 struct tu_abbrev_offset
8201 {
8202 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8203 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8204 {}
8205
8206 signatured_type *sig_type;
8207 sect_offset abbrev_offset;
8208 };
8209
8210 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8211
8212 static bool
8213 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8214 const struct tu_abbrev_offset &b)
8215 {
8216 return a.abbrev_offset < b.abbrev_offset;
8217 }
8218
8219 /* Efficiently read all the type units.
8220 This does the bulk of the work for build_type_psymtabs.
8221
8222 The efficiency is because we sort TUs by the abbrev table they use and
8223 only read each abbrev table once. In one program there are 200K TUs
8224 sharing 8K abbrev tables.
8225
8226 The main purpose of this function is to support building the
8227 dwarf2_per_objfile->type_unit_groups table.
8228 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8229 can collapse the search space by grouping them by stmt_list.
8230 The savings can be significant, in the same program from above the 200K TUs
8231 share 8K stmt_list tables.
8232
8233 FUNC is expected to call get_type_unit_group, which will create the
8234 struct type_unit_group if necessary and add it to
8235 dwarf2_per_objfile->type_unit_groups. */
8236
8237 static void
8238 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8239 {
8240 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8241 abbrev_table_up abbrev_table;
8242 sect_offset abbrev_offset;
8243
8244 /* It's up to the caller to not call us multiple times. */
8245 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8246
8247 if (dwarf2_per_objfile->all_type_units.empty ())
8248 return;
8249
8250 /* TUs typically share abbrev tables, and there can be way more TUs than
8251 abbrev tables. Sort by abbrev table to reduce the number of times we
8252 read each abbrev table in.
8253 Alternatives are to punt or to maintain a cache of abbrev tables.
8254 This is simpler and efficient enough for now.
8255
8256 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8257 symtab to use). Typically TUs with the same abbrev offset have the same
8258 stmt_list value too so in practice this should work well.
8259
8260 The basic algorithm here is:
8261
8262 sort TUs by abbrev table
8263 for each TU with same abbrev table:
8264 read abbrev table if first user
8265 read TU top level DIE
8266 [IWBN if DWO skeletons had DW_AT_stmt_list]
8267 call FUNC */
8268
8269 if (dwarf_read_debug)
8270 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8271
8272 /* Sort in a separate table to maintain the order of all_type_units
8273 for .gdb_index: TU indices directly index all_type_units. */
8274 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8275 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8276
8277 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8278 sorted_by_abbrev.emplace_back
8279 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8280 sig_type->per_cu.section,
8281 sig_type->per_cu.sect_off));
8282
8283 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8284 sort_tu_by_abbrev_offset);
8285
8286 abbrev_offset = (sect_offset) ~(unsigned) 0;
8287
8288 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8289 {
8290 /* Switch to the next abbrev table if necessary. */
8291 if (abbrev_table == NULL
8292 || tu.abbrev_offset != abbrev_offset)
8293 {
8294 abbrev_offset = tu.abbrev_offset;
8295 abbrev_table =
8296 abbrev_table_read_table (dwarf2_per_objfile,
8297 &dwarf2_per_objfile->abbrev,
8298 abbrev_offset);
8299 ++tu_stats->nr_uniq_abbrev_tables;
8300 }
8301
8302 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8303 0, 0, false, build_type_psymtabs_reader, NULL);
8304 }
8305 }
8306
8307 /* Print collected type unit statistics. */
8308
8309 static void
8310 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8311 {
8312 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8313
8314 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8315 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8316 dwarf2_per_objfile->all_type_units.size ());
8317 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8318 tu_stats->nr_uniq_abbrev_tables);
8319 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8320 tu_stats->nr_symtabs);
8321 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8322 tu_stats->nr_symtab_sharers);
8323 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8324 tu_stats->nr_stmt_less_type_units);
8325 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8326 tu_stats->nr_all_type_units_reallocs);
8327 }
8328
8329 /* Traversal function for build_type_psymtabs. */
8330
8331 static int
8332 build_type_psymtab_dependencies (void **slot, void *info)
8333 {
8334 struct dwarf2_per_objfile *dwarf2_per_objfile
8335 = (struct dwarf2_per_objfile *) info;
8336 struct objfile *objfile = dwarf2_per_objfile->objfile;
8337 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8338 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8339 struct partial_symtab *pst = per_cu->v.psymtab;
8340 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8341 int i;
8342
8343 gdb_assert (len > 0);
8344 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8345
8346 pst->number_of_dependencies = len;
8347 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8348 for (i = 0; i < len; ++i)
8349 {
8350 struct signatured_type *iter = tu_group->tus->at (i);
8351 gdb_assert (iter->per_cu.is_debug_types);
8352 pst->dependencies[i] = iter->per_cu.v.psymtab;
8353 iter->type_unit_group = tu_group;
8354 }
8355
8356 delete tu_group->tus;
8357 tu_group->tus = nullptr;
8358
8359 return 1;
8360 }
8361
8362 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8363 Build partial symbol tables for the .debug_types comp-units. */
8364
8365 static void
8366 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8367 {
8368 if (! create_all_type_units (dwarf2_per_objfile))
8369 return;
8370
8371 build_type_psymtabs_1 (dwarf2_per_objfile);
8372 }
8373
8374 /* Traversal function for process_skeletonless_type_unit.
8375 Read a TU in a DWO file and build partial symbols for it. */
8376
8377 static int
8378 process_skeletonless_type_unit (void **slot, void *info)
8379 {
8380 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8381 struct dwarf2_per_objfile *dwarf2_per_objfile
8382 = (struct dwarf2_per_objfile *) info;
8383 struct signatured_type find_entry, *entry;
8384
8385 /* If this TU doesn't exist in the global table, add it and read it in. */
8386
8387 if (dwarf2_per_objfile->signatured_types == NULL)
8388 {
8389 dwarf2_per_objfile->signatured_types
8390 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8391 }
8392
8393 find_entry.signature = dwo_unit->signature;
8394 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8395 INSERT);
8396 /* If we've already seen this type there's nothing to do. What's happening
8397 is we're doing our own version of comdat-folding here. */
8398 if (*slot != NULL)
8399 return 1;
8400
8401 /* This does the job that create_all_type_units would have done for
8402 this TU. */
8403 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8404 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8405 *slot = entry;
8406
8407 /* This does the job that build_type_psymtabs_1 would have done. */
8408 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8409 build_type_psymtabs_reader, NULL);
8410
8411 return 1;
8412 }
8413
8414 /* Traversal function for process_skeletonless_type_units. */
8415
8416 static int
8417 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8418 {
8419 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8420
8421 if (dwo_file->tus != NULL)
8422 {
8423 htab_traverse_noresize (dwo_file->tus,
8424 process_skeletonless_type_unit, info);
8425 }
8426
8427 return 1;
8428 }
8429
8430 /* Scan all TUs of DWO files, verifying we've processed them.
8431 This is needed in case a TU was emitted without its skeleton.
8432 Note: This can't be done until we know what all the DWO files are. */
8433
8434 static void
8435 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8436 {
8437 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8438 if (get_dwp_file (dwarf2_per_objfile) == NULL
8439 && dwarf2_per_objfile->dwo_files != NULL)
8440 {
8441 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8442 process_dwo_file_for_skeletonless_type_units,
8443 dwarf2_per_objfile);
8444 }
8445 }
8446
8447 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8448
8449 static void
8450 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8451 {
8452 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8453 {
8454 struct partial_symtab *pst = per_cu->v.psymtab;
8455
8456 if (pst == NULL)
8457 continue;
8458
8459 for (int j = 0; j < pst->number_of_dependencies; ++j)
8460 {
8461 /* Set the 'user' field only if it is not already set. */
8462 if (pst->dependencies[j]->user == NULL)
8463 pst->dependencies[j]->user = pst;
8464 }
8465 }
8466 }
8467
8468 /* Build the partial symbol table by doing a quick pass through the
8469 .debug_info and .debug_abbrev sections. */
8470
8471 static void
8472 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8473 {
8474 struct objfile *objfile = dwarf2_per_objfile->objfile;
8475
8476 if (dwarf_read_debug)
8477 {
8478 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8479 objfile_name (objfile));
8480 }
8481
8482 dwarf2_per_objfile->reading_partial_symbols = 1;
8483
8484 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8485
8486 /* Any cached compilation units will be linked by the per-objfile
8487 read_in_chain. Make sure to free them when we're done. */
8488 free_cached_comp_units freer (dwarf2_per_objfile);
8489
8490 build_type_psymtabs (dwarf2_per_objfile);
8491
8492 create_all_comp_units (dwarf2_per_objfile);
8493
8494 /* Create a temporary address map on a temporary obstack. We later
8495 copy this to the final obstack. */
8496 auto_obstack temp_obstack;
8497
8498 scoped_restore save_psymtabs_addrmap
8499 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8500 addrmap_create_mutable (&temp_obstack));
8501
8502 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8503 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8504
8505 /* This has to wait until we read the CUs, we need the list of DWOs. */
8506 process_skeletonless_type_units (dwarf2_per_objfile);
8507
8508 /* Now that all TUs have been processed we can fill in the dependencies. */
8509 if (dwarf2_per_objfile->type_unit_groups != NULL)
8510 {
8511 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8512 build_type_psymtab_dependencies, dwarf2_per_objfile);
8513 }
8514
8515 if (dwarf_read_debug)
8516 print_tu_stats (dwarf2_per_objfile);
8517
8518 set_partial_user (dwarf2_per_objfile);
8519
8520 objfile->partial_symtabs->psymtabs_addrmap
8521 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8522 objfile->partial_symtabs->obstack ());
8523 /* At this point we want to keep the address map. */
8524 save_psymtabs_addrmap.release ();
8525
8526 if (dwarf_read_debug)
8527 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8528 objfile_name (objfile));
8529 }
8530
8531 /* die_reader_func for load_partial_comp_unit. */
8532
8533 static void
8534 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8535 const gdb_byte *info_ptr,
8536 struct die_info *comp_unit_die,
8537 int has_children,
8538 void *data)
8539 {
8540 struct dwarf2_cu *cu = reader->cu;
8541
8542 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8543
8544 /* Check if comp unit has_children.
8545 If so, read the rest of the partial symbols from this comp unit.
8546 If not, there's no more debug_info for this comp unit. */
8547 if (has_children)
8548 load_partial_dies (reader, info_ptr, 0);
8549 }
8550
8551 /* Load the partial DIEs for a secondary CU into memory.
8552 This is also used when rereading a primary CU with load_all_dies. */
8553
8554 static void
8555 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8556 {
8557 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8558 load_partial_comp_unit_reader, NULL);
8559 }
8560
8561 static void
8562 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8563 struct dwarf2_section_info *section,
8564 struct dwarf2_section_info *abbrev_section,
8565 unsigned int is_dwz)
8566 {
8567 const gdb_byte *info_ptr;
8568 struct objfile *objfile = dwarf2_per_objfile->objfile;
8569
8570 if (dwarf_read_debug)
8571 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8572 get_section_name (section),
8573 get_section_file_name (section));
8574
8575 dwarf2_read_section (objfile, section);
8576
8577 info_ptr = section->buffer;
8578
8579 while (info_ptr < section->buffer + section->size)
8580 {
8581 struct dwarf2_per_cu_data *this_cu;
8582
8583 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8584
8585 comp_unit_head cu_header;
8586 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8587 abbrev_section, info_ptr,
8588 rcuh_kind::COMPILE);
8589
8590 /* Save the compilation unit for later lookup. */
8591 if (cu_header.unit_type != DW_UT_type)
8592 {
8593 this_cu = XOBNEW (&objfile->objfile_obstack,
8594 struct dwarf2_per_cu_data);
8595 memset (this_cu, 0, sizeof (*this_cu));
8596 }
8597 else
8598 {
8599 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8600 struct signatured_type);
8601 memset (sig_type, 0, sizeof (*sig_type));
8602 sig_type->signature = cu_header.signature;
8603 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8604 this_cu = &sig_type->per_cu;
8605 }
8606 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8607 this_cu->sect_off = sect_off;
8608 this_cu->length = cu_header.length + cu_header.initial_length_size;
8609 this_cu->is_dwz = is_dwz;
8610 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8611 this_cu->section = section;
8612
8613 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8614
8615 info_ptr = info_ptr + this_cu->length;
8616 }
8617 }
8618
8619 /* Create a list of all compilation units in OBJFILE.
8620 This is only done for -readnow and building partial symtabs. */
8621
8622 static void
8623 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8624 {
8625 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8626 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8627 &dwarf2_per_objfile->abbrev, 0);
8628
8629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8630 if (dwz != NULL)
8631 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8632 1);
8633 }
8634
8635 /* Process all loaded DIEs for compilation unit CU, starting at
8636 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8637 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8638 DW_AT_ranges). See the comments of add_partial_subprogram on how
8639 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8640
8641 static void
8642 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8643 CORE_ADDR *highpc, int set_addrmap,
8644 struct dwarf2_cu *cu)
8645 {
8646 struct partial_die_info *pdi;
8647
8648 /* Now, march along the PDI's, descending into ones which have
8649 interesting children but skipping the children of the other ones,
8650 until we reach the end of the compilation unit. */
8651
8652 pdi = first_die;
8653
8654 while (pdi != NULL)
8655 {
8656 pdi->fixup (cu);
8657
8658 /* Anonymous namespaces or modules have no name but have interesting
8659 children, so we need to look at them. Ditto for anonymous
8660 enums. */
8661
8662 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8663 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8664 || pdi->tag == DW_TAG_imported_unit
8665 || pdi->tag == DW_TAG_inlined_subroutine)
8666 {
8667 switch (pdi->tag)
8668 {
8669 case DW_TAG_subprogram:
8670 case DW_TAG_inlined_subroutine:
8671 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8672 break;
8673 case DW_TAG_constant:
8674 case DW_TAG_variable:
8675 case DW_TAG_typedef:
8676 case DW_TAG_union_type:
8677 if (!pdi->is_declaration)
8678 {
8679 add_partial_symbol (pdi, cu);
8680 }
8681 break;
8682 case DW_TAG_class_type:
8683 case DW_TAG_interface_type:
8684 case DW_TAG_structure_type:
8685 if (!pdi->is_declaration)
8686 {
8687 add_partial_symbol (pdi, cu);
8688 }
8689 if ((cu->language == language_rust
8690 || cu->language == language_cplus) && pdi->has_children)
8691 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8692 set_addrmap, cu);
8693 break;
8694 case DW_TAG_enumeration_type:
8695 if (!pdi->is_declaration)
8696 add_partial_enumeration (pdi, cu);
8697 break;
8698 case DW_TAG_base_type:
8699 case DW_TAG_subrange_type:
8700 /* File scope base type definitions are added to the partial
8701 symbol table. */
8702 add_partial_symbol (pdi, cu);
8703 break;
8704 case DW_TAG_namespace:
8705 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8706 break;
8707 case DW_TAG_module:
8708 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8709 break;
8710 case DW_TAG_imported_unit:
8711 {
8712 struct dwarf2_per_cu_data *per_cu;
8713
8714 /* For now we don't handle imported units in type units. */
8715 if (cu->per_cu->is_debug_types)
8716 {
8717 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8718 " supported in type units [in module %s]"),
8719 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8720 }
8721
8722 per_cu = dwarf2_find_containing_comp_unit
8723 (pdi->d.sect_off, pdi->is_dwz,
8724 cu->per_cu->dwarf2_per_objfile);
8725
8726 /* Go read the partial unit, if needed. */
8727 if (per_cu->v.psymtab == NULL)
8728 process_psymtab_comp_unit (per_cu, 1, cu->language);
8729
8730 VEC_safe_push (dwarf2_per_cu_ptr,
8731 cu->per_cu->imported_symtabs, per_cu);
8732 }
8733 break;
8734 case DW_TAG_imported_declaration:
8735 add_partial_symbol (pdi, cu);
8736 break;
8737 default:
8738 break;
8739 }
8740 }
8741
8742 /* If the die has a sibling, skip to the sibling. */
8743
8744 pdi = pdi->die_sibling;
8745 }
8746 }
8747
8748 /* Functions used to compute the fully scoped name of a partial DIE.
8749
8750 Normally, this is simple. For C++, the parent DIE's fully scoped
8751 name is concatenated with "::" and the partial DIE's name.
8752 Enumerators are an exception; they use the scope of their parent
8753 enumeration type, i.e. the name of the enumeration type is not
8754 prepended to the enumerator.
8755
8756 There are two complexities. One is DW_AT_specification; in this
8757 case "parent" means the parent of the target of the specification,
8758 instead of the direct parent of the DIE. The other is compilers
8759 which do not emit DW_TAG_namespace; in this case we try to guess
8760 the fully qualified name of structure types from their members'
8761 linkage names. This must be done using the DIE's children rather
8762 than the children of any DW_AT_specification target. We only need
8763 to do this for structures at the top level, i.e. if the target of
8764 any DW_AT_specification (if any; otherwise the DIE itself) does not
8765 have a parent. */
8766
8767 /* Compute the scope prefix associated with PDI's parent, in
8768 compilation unit CU. The result will be allocated on CU's
8769 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8770 field. NULL is returned if no prefix is necessary. */
8771 static const char *
8772 partial_die_parent_scope (struct partial_die_info *pdi,
8773 struct dwarf2_cu *cu)
8774 {
8775 const char *grandparent_scope;
8776 struct partial_die_info *parent, *real_pdi;
8777
8778 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8779 then this means the parent of the specification DIE. */
8780
8781 real_pdi = pdi;
8782 while (real_pdi->has_specification)
8783 {
8784 auto res = find_partial_die (real_pdi->spec_offset,
8785 real_pdi->spec_is_dwz, cu);
8786 real_pdi = res.pdi;
8787 cu = res.cu;
8788 }
8789
8790 parent = real_pdi->die_parent;
8791 if (parent == NULL)
8792 return NULL;
8793
8794 if (parent->scope_set)
8795 return parent->scope;
8796
8797 parent->fixup (cu);
8798
8799 grandparent_scope = partial_die_parent_scope (parent, cu);
8800
8801 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8802 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8803 Work around this problem here. */
8804 if (cu->language == language_cplus
8805 && parent->tag == DW_TAG_namespace
8806 && strcmp (parent->name, "::") == 0
8807 && grandparent_scope == NULL)
8808 {
8809 parent->scope = NULL;
8810 parent->scope_set = 1;
8811 return NULL;
8812 }
8813
8814 /* Nested subroutines in Fortran get a prefix. */
8815 if (pdi->tag == DW_TAG_enumerator)
8816 /* Enumerators should not get the name of the enumeration as a prefix. */
8817 parent->scope = grandparent_scope;
8818 else if (parent->tag == DW_TAG_namespace
8819 || parent->tag == DW_TAG_module
8820 || parent->tag == DW_TAG_structure_type
8821 || parent->tag == DW_TAG_class_type
8822 || parent->tag == DW_TAG_interface_type
8823 || parent->tag == DW_TAG_union_type
8824 || parent->tag == DW_TAG_enumeration_type
8825 || (cu->language == language_fortran
8826 && parent->tag == DW_TAG_subprogram
8827 && pdi->tag == DW_TAG_subprogram))
8828 {
8829 if (grandparent_scope == NULL)
8830 parent->scope = parent->name;
8831 else
8832 parent->scope = typename_concat (&cu->comp_unit_obstack,
8833 grandparent_scope,
8834 parent->name, 0, cu);
8835 }
8836 else
8837 {
8838 /* FIXME drow/2004-04-01: What should we be doing with
8839 function-local names? For partial symbols, we should probably be
8840 ignoring them. */
8841 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8842 dwarf_tag_name (parent->tag),
8843 sect_offset_str (pdi->sect_off));
8844 parent->scope = grandparent_scope;
8845 }
8846
8847 parent->scope_set = 1;
8848 return parent->scope;
8849 }
8850
8851 /* Return the fully scoped name associated with PDI, from compilation unit
8852 CU. The result will be allocated with malloc. */
8853
8854 static char *
8855 partial_die_full_name (struct partial_die_info *pdi,
8856 struct dwarf2_cu *cu)
8857 {
8858 const char *parent_scope;
8859
8860 /* If this is a template instantiation, we can not work out the
8861 template arguments from partial DIEs. So, unfortunately, we have
8862 to go through the full DIEs. At least any work we do building
8863 types here will be reused if full symbols are loaded later. */
8864 if (pdi->has_template_arguments)
8865 {
8866 pdi->fixup (cu);
8867
8868 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8869 {
8870 struct die_info *die;
8871 struct attribute attr;
8872 struct dwarf2_cu *ref_cu = cu;
8873
8874 /* DW_FORM_ref_addr is using section offset. */
8875 attr.name = (enum dwarf_attribute) 0;
8876 attr.form = DW_FORM_ref_addr;
8877 attr.u.unsnd = to_underlying (pdi->sect_off);
8878 die = follow_die_ref (NULL, &attr, &ref_cu);
8879
8880 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8881 }
8882 }
8883
8884 parent_scope = partial_die_parent_scope (pdi, cu);
8885 if (parent_scope == NULL)
8886 return NULL;
8887 else
8888 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8889 }
8890
8891 static void
8892 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8893 {
8894 struct dwarf2_per_objfile *dwarf2_per_objfile
8895 = cu->per_cu->dwarf2_per_objfile;
8896 struct objfile *objfile = dwarf2_per_objfile->objfile;
8897 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8898 CORE_ADDR addr = 0;
8899 const char *actual_name = NULL;
8900 CORE_ADDR baseaddr;
8901 char *built_actual_name;
8902
8903 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8904
8905 built_actual_name = partial_die_full_name (pdi, cu);
8906 if (built_actual_name != NULL)
8907 actual_name = built_actual_name;
8908
8909 if (actual_name == NULL)
8910 actual_name = pdi->name;
8911
8912 switch (pdi->tag)
8913 {
8914 case DW_TAG_inlined_subroutine:
8915 case DW_TAG_subprogram:
8916 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8917 - baseaddr);
8918 if (pdi->is_external
8919 || cu->language == language_ada
8920 || (cu->language == language_fortran
8921 && pdi->die_parent != NULL
8922 && pdi->die_parent->tag == DW_TAG_subprogram))
8923 {
8924 /* Normally, only "external" DIEs are part of the global scope.
8925 But in Ada and Fortran, we want to be able to access nested
8926 procedures globally. So all Ada and Fortran subprograms are
8927 stored in the global scope. */
8928 add_psymbol_to_list (actual_name, strlen (actual_name),
8929 built_actual_name != NULL,
8930 VAR_DOMAIN, LOC_BLOCK,
8931 SECT_OFF_TEXT (objfile),
8932 psymbol_placement::GLOBAL,
8933 addr,
8934 cu->language, objfile);
8935 }
8936 else
8937 {
8938 add_psymbol_to_list (actual_name, strlen (actual_name),
8939 built_actual_name != NULL,
8940 VAR_DOMAIN, LOC_BLOCK,
8941 SECT_OFF_TEXT (objfile),
8942 psymbol_placement::STATIC,
8943 addr, cu->language, objfile);
8944 }
8945
8946 if (pdi->main_subprogram && actual_name != NULL)
8947 set_objfile_main_name (objfile, actual_name, cu->language);
8948 break;
8949 case DW_TAG_constant:
8950 add_psymbol_to_list (actual_name, strlen (actual_name),
8951 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8952 -1, (pdi->is_external
8953 ? psymbol_placement::GLOBAL
8954 : psymbol_placement::STATIC),
8955 0, cu->language, objfile);
8956 break;
8957 case DW_TAG_variable:
8958 if (pdi->d.locdesc)
8959 addr = decode_locdesc (pdi->d.locdesc, cu);
8960
8961 if (pdi->d.locdesc
8962 && addr == 0
8963 && !dwarf2_per_objfile->has_section_at_zero)
8964 {
8965 /* A global or static variable may also have been stripped
8966 out by the linker if unused, in which case its address
8967 will be nullified; do not add such variables into partial
8968 symbol table then. */
8969 }
8970 else if (pdi->is_external)
8971 {
8972 /* Global Variable.
8973 Don't enter into the minimal symbol tables as there is
8974 a minimal symbol table entry from the ELF symbols already.
8975 Enter into partial symbol table if it has a location
8976 descriptor or a type.
8977 If the location descriptor is missing, new_symbol will create
8978 a LOC_UNRESOLVED symbol, the address of the variable will then
8979 be determined from the minimal symbol table whenever the variable
8980 is referenced.
8981 The address for the partial symbol table entry is not
8982 used by GDB, but it comes in handy for debugging partial symbol
8983 table building. */
8984
8985 if (pdi->d.locdesc || pdi->has_type)
8986 add_psymbol_to_list (actual_name, strlen (actual_name),
8987 built_actual_name != NULL,
8988 VAR_DOMAIN, LOC_STATIC,
8989 SECT_OFF_TEXT (objfile),
8990 psymbol_placement::GLOBAL,
8991 addr, cu->language, objfile);
8992 }
8993 else
8994 {
8995 int has_loc = pdi->d.locdesc != NULL;
8996
8997 /* Static Variable. Skip symbols whose value we cannot know (those
8998 without location descriptors or constant values). */
8999 if (!has_loc && !pdi->has_const_value)
9000 {
9001 xfree (built_actual_name);
9002 return;
9003 }
9004
9005 add_psymbol_to_list (actual_name, strlen (actual_name),
9006 built_actual_name != NULL,
9007 VAR_DOMAIN, LOC_STATIC,
9008 SECT_OFF_TEXT (objfile),
9009 psymbol_placement::STATIC,
9010 has_loc ? addr : 0,
9011 cu->language, objfile);
9012 }
9013 break;
9014 case DW_TAG_typedef:
9015 case DW_TAG_base_type:
9016 case DW_TAG_subrange_type:
9017 add_psymbol_to_list (actual_name, strlen (actual_name),
9018 built_actual_name != NULL,
9019 VAR_DOMAIN, LOC_TYPEDEF, -1,
9020 psymbol_placement::STATIC,
9021 0, cu->language, objfile);
9022 break;
9023 case DW_TAG_imported_declaration:
9024 case DW_TAG_namespace:
9025 add_psymbol_to_list (actual_name, strlen (actual_name),
9026 built_actual_name != NULL,
9027 VAR_DOMAIN, LOC_TYPEDEF, -1,
9028 psymbol_placement::GLOBAL,
9029 0, cu->language, objfile);
9030 break;
9031 case DW_TAG_module:
9032 /* With Fortran 77 there might be a "BLOCK DATA" module
9033 available without any name. If so, we skip the module as it
9034 doesn't bring any value. */
9035 if (actual_name != nullptr)
9036 add_psymbol_to_list (actual_name, strlen (actual_name),
9037 built_actual_name != NULL,
9038 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9039 psymbol_placement::GLOBAL,
9040 0, cu->language, objfile);
9041 break;
9042 case DW_TAG_class_type:
9043 case DW_TAG_interface_type:
9044 case DW_TAG_structure_type:
9045 case DW_TAG_union_type:
9046 case DW_TAG_enumeration_type:
9047 /* Skip external references. The DWARF standard says in the section
9048 about "Structure, Union, and Class Type Entries": "An incomplete
9049 structure, union or class type is represented by a structure,
9050 union or class entry that does not have a byte size attribute
9051 and that has a DW_AT_declaration attribute." */
9052 if (!pdi->has_byte_size && pdi->is_declaration)
9053 {
9054 xfree (built_actual_name);
9055 return;
9056 }
9057
9058 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9059 static vs. global. */
9060 add_psymbol_to_list (actual_name, strlen (actual_name),
9061 built_actual_name != NULL,
9062 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9063 cu->language == language_cplus
9064 ? psymbol_placement::GLOBAL
9065 : psymbol_placement::STATIC,
9066 0, cu->language, objfile);
9067
9068 break;
9069 case DW_TAG_enumerator:
9070 add_psymbol_to_list (actual_name, strlen (actual_name),
9071 built_actual_name != NULL,
9072 VAR_DOMAIN, LOC_CONST, -1,
9073 cu->language == language_cplus
9074 ? psymbol_placement::GLOBAL
9075 : psymbol_placement::STATIC,
9076 0, cu->language, objfile);
9077 break;
9078 default:
9079 break;
9080 }
9081
9082 xfree (built_actual_name);
9083 }
9084
9085 /* Read a partial die corresponding to a namespace; also, add a symbol
9086 corresponding to that namespace to the symbol table. NAMESPACE is
9087 the name of the enclosing namespace. */
9088
9089 static void
9090 add_partial_namespace (struct partial_die_info *pdi,
9091 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9092 int set_addrmap, struct dwarf2_cu *cu)
9093 {
9094 /* Add a symbol for the namespace. */
9095
9096 add_partial_symbol (pdi, cu);
9097
9098 /* Now scan partial symbols in that namespace. */
9099
9100 if (pdi->has_children)
9101 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9102 }
9103
9104 /* Read a partial die corresponding to a Fortran module. */
9105
9106 static void
9107 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9108 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9109 {
9110 /* Add a symbol for the namespace. */
9111
9112 add_partial_symbol (pdi, cu);
9113
9114 /* Now scan partial symbols in that module. */
9115
9116 if (pdi->has_children)
9117 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9118 }
9119
9120 /* Read a partial die corresponding to a subprogram or an inlined
9121 subprogram and create a partial symbol for that subprogram.
9122 When the CU language allows it, this routine also defines a partial
9123 symbol for each nested subprogram that this subprogram contains.
9124 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9125 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9126
9127 PDI may also be a lexical block, in which case we simply search
9128 recursively for subprograms defined inside that lexical block.
9129 Again, this is only performed when the CU language allows this
9130 type of definitions. */
9131
9132 static void
9133 add_partial_subprogram (struct partial_die_info *pdi,
9134 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9135 int set_addrmap, struct dwarf2_cu *cu)
9136 {
9137 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9138 {
9139 if (pdi->has_pc_info)
9140 {
9141 if (pdi->lowpc < *lowpc)
9142 *lowpc = pdi->lowpc;
9143 if (pdi->highpc > *highpc)
9144 *highpc = pdi->highpc;
9145 if (set_addrmap)
9146 {
9147 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9149 CORE_ADDR baseaddr;
9150 CORE_ADDR this_highpc;
9151 CORE_ADDR this_lowpc;
9152
9153 baseaddr = ANOFFSET (objfile->section_offsets,
9154 SECT_OFF_TEXT (objfile));
9155 this_lowpc
9156 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9157 pdi->lowpc + baseaddr)
9158 - baseaddr);
9159 this_highpc
9160 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9161 pdi->highpc + baseaddr)
9162 - baseaddr);
9163 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9164 this_lowpc, this_highpc - 1,
9165 cu->per_cu->v.psymtab);
9166 }
9167 }
9168
9169 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9170 {
9171 if (!pdi->is_declaration)
9172 /* Ignore subprogram DIEs that do not have a name, they are
9173 illegal. Do not emit a complaint at this point, we will
9174 do so when we convert this psymtab into a symtab. */
9175 if (pdi->name)
9176 add_partial_symbol (pdi, cu);
9177 }
9178 }
9179
9180 if (! pdi->has_children)
9181 return;
9182
9183 if (cu->language == language_ada || cu->language == language_fortran)
9184 {
9185 pdi = pdi->die_child;
9186 while (pdi != NULL)
9187 {
9188 pdi->fixup (cu);
9189 if (pdi->tag == DW_TAG_subprogram
9190 || pdi->tag == DW_TAG_inlined_subroutine
9191 || pdi->tag == DW_TAG_lexical_block)
9192 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9193 pdi = pdi->die_sibling;
9194 }
9195 }
9196 }
9197
9198 /* Read a partial die corresponding to an enumeration type. */
9199
9200 static void
9201 add_partial_enumeration (struct partial_die_info *enum_pdi,
9202 struct dwarf2_cu *cu)
9203 {
9204 struct partial_die_info *pdi;
9205
9206 if (enum_pdi->name != NULL)
9207 add_partial_symbol (enum_pdi, cu);
9208
9209 pdi = enum_pdi->die_child;
9210 while (pdi)
9211 {
9212 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9213 complaint (_("malformed enumerator DIE ignored"));
9214 else
9215 add_partial_symbol (pdi, cu);
9216 pdi = pdi->die_sibling;
9217 }
9218 }
9219
9220 /* Return the initial uleb128 in the die at INFO_PTR. */
9221
9222 static unsigned int
9223 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9224 {
9225 unsigned int bytes_read;
9226
9227 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9228 }
9229
9230 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9231 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9232
9233 Return the corresponding abbrev, or NULL if the number is zero (indicating
9234 an empty DIE). In either case *BYTES_READ will be set to the length of
9235 the initial number. */
9236
9237 static struct abbrev_info *
9238 peek_die_abbrev (const die_reader_specs &reader,
9239 const gdb_byte *info_ptr, unsigned int *bytes_read)
9240 {
9241 dwarf2_cu *cu = reader.cu;
9242 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9243 unsigned int abbrev_number
9244 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9245
9246 if (abbrev_number == 0)
9247 return NULL;
9248
9249 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9250 if (!abbrev)
9251 {
9252 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9253 " at offset %s [in module %s]"),
9254 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9255 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9256 }
9257
9258 return abbrev;
9259 }
9260
9261 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9262 Returns a pointer to the end of a series of DIEs, terminated by an empty
9263 DIE. Any children of the skipped DIEs will also be skipped. */
9264
9265 static const gdb_byte *
9266 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9267 {
9268 while (1)
9269 {
9270 unsigned int bytes_read;
9271 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9272
9273 if (abbrev == NULL)
9274 return info_ptr + bytes_read;
9275 else
9276 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9277 }
9278 }
9279
9280 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9281 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9282 abbrev corresponding to that skipped uleb128 should be passed in
9283 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9284 children. */
9285
9286 static const gdb_byte *
9287 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9288 struct abbrev_info *abbrev)
9289 {
9290 unsigned int bytes_read;
9291 struct attribute attr;
9292 bfd *abfd = reader->abfd;
9293 struct dwarf2_cu *cu = reader->cu;
9294 const gdb_byte *buffer = reader->buffer;
9295 const gdb_byte *buffer_end = reader->buffer_end;
9296 unsigned int form, i;
9297
9298 for (i = 0; i < abbrev->num_attrs; i++)
9299 {
9300 /* The only abbrev we care about is DW_AT_sibling. */
9301 if (abbrev->attrs[i].name == DW_AT_sibling)
9302 {
9303 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9304 if (attr.form == DW_FORM_ref_addr)
9305 complaint (_("ignoring absolute DW_AT_sibling"));
9306 else
9307 {
9308 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9309 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9310
9311 if (sibling_ptr < info_ptr)
9312 complaint (_("DW_AT_sibling points backwards"));
9313 else if (sibling_ptr > reader->buffer_end)
9314 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9315 else
9316 return sibling_ptr;
9317 }
9318 }
9319
9320 /* If it isn't DW_AT_sibling, skip this attribute. */
9321 form = abbrev->attrs[i].form;
9322 skip_attribute:
9323 switch (form)
9324 {
9325 case DW_FORM_ref_addr:
9326 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9327 and later it is offset sized. */
9328 if (cu->header.version == 2)
9329 info_ptr += cu->header.addr_size;
9330 else
9331 info_ptr += cu->header.offset_size;
9332 break;
9333 case DW_FORM_GNU_ref_alt:
9334 info_ptr += cu->header.offset_size;
9335 break;
9336 case DW_FORM_addr:
9337 info_ptr += cu->header.addr_size;
9338 break;
9339 case DW_FORM_data1:
9340 case DW_FORM_ref1:
9341 case DW_FORM_flag:
9342 case DW_FORM_strx1:
9343 info_ptr += 1;
9344 break;
9345 case DW_FORM_flag_present:
9346 case DW_FORM_implicit_const:
9347 break;
9348 case DW_FORM_data2:
9349 case DW_FORM_ref2:
9350 case DW_FORM_strx2:
9351 info_ptr += 2;
9352 break;
9353 case DW_FORM_strx3:
9354 info_ptr += 3;
9355 break;
9356 case DW_FORM_data4:
9357 case DW_FORM_ref4:
9358 case DW_FORM_strx4:
9359 info_ptr += 4;
9360 break;
9361 case DW_FORM_data8:
9362 case DW_FORM_ref8:
9363 case DW_FORM_ref_sig8:
9364 info_ptr += 8;
9365 break;
9366 case DW_FORM_data16:
9367 info_ptr += 16;
9368 break;
9369 case DW_FORM_string:
9370 read_direct_string (abfd, info_ptr, &bytes_read);
9371 info_ptr += bytes_read;
9372 break;
9373 case DW_FORM_sec_offset:
9374 case DW_FORM_strp:
9375 case DW_FORM_GNU_strp_alt:
9376 info_ptr += cu->header.offset_size;
9377 break;
9378 case DW_FORM_exprloc:
9379 case DW_FORM_block:
9380 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9381 info_ptr += bytes_read;
9382 break;
9383 case DW_FORM_block1:
9384 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9385 break;
9386 case DW_FORM_block2:
9387 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9388 break;
9389 case DW_FORM_block4:
9390 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9391 break;
9392 case DW_FORM_addrx:
9393 case DW_FORM_strx:
9394 case DW_FORM_sdata:
9395 case DW_FORM_udata:
9396 case DW_FORM_ref_udata:
9397 case DW_FORM_GNU_addr_index:
9398 case DW_FORM_GNU_str_index:
9399 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9400 break;
9401 case DW_FORM_indirect:
9402 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9403 info_ptr += bytes_read;
9404 /* We need to continue parsing from here, so just go back to
9405 the top. */
9406 goto skip_attribute;
9407
9408 default:
9409 error (_("Dwarf Error: Cannot handle %s "
9410 "in DWARF reader [in module %s]"),
9411 dwarf_form_name (form),
9412 bfd_get_filename (abfd));
9413 }
9414 }
9415
9416 if (abbrev->has_children)
9417 return skip_children (reader, info_ptr);
9418 else
9419 return info_ptr;
9420 }
9421
9422 /* Locate ORIG_PDI's sibling.
9423 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9424
9425 static const gdb_byte *
9426 locate_pdi_sibling (const struct die_reader_specs *reader,
9427 struct partial_die_info *orig_pdi,
9428 const gdb_byte *info_ptr)
9429 {
9430 /* Do we know the sibling already? */
9431
9432 if (orig_pdi->sibling)
9433 return orig_pdi->sibling;
9434
9435 /* Are there any children to deal with? */
9436
9437 if (!orig_pdi->has_children)
9438 return info_ptr;
9439
9440 /* Skip the children the long way. */
9441
9442 return skip_children (reader, info_ptr);
9443 }
9444
9445 /* Expand this partial symbol table into a full symbol table. SELF is
9446 not NULL. */
9447
9448 static void
9449 dwarf2_read_symtab (struct partial_symtab *self,
9450 struct objfile *objfile)
9451 {
9452 struct dwarf2_per_objfile *dwarf2_per_objfile
9453 = get_dwarf2_per_objfile (objfile);
9454
9455 if (self->readin)
9456 {
9457 warning (_("bug: psymtab for %s is already read in."),
9458 self->filename);
9459 }
9460 else
9461 {
9462 if (info_verbose)
9463 {
9464 printf_filtered (_("Reading in symbols for %s..."),
9465 self->filename);
9466 gdb_flush (gdb_stdout);
9467 }
9468
9469 /* If this psymtab is constructed from a debug-only objfile, the
9470 has_section_at_zero flag will not necessarily be correct. We
9471 can get the correct value for this flag by looking at the data
9472 associated with the (presumably stripped) associated objfile. */
9473 if (objfile->separate_debug_objfile_backlink)
9474 {
9475 struct dwarf2_per_objfile *dpo_backlink
9476 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9477
9478 dwarf2_per_objfile->has_section_at_zero
9479 = dpo_backlink->has_section_at_zero;
9480 }
9481
9482 dwarf2_per_objfile->reading_partial_symbols = 0;
9483
9484 psymtab_to_symtab_1 (self);
9485
9486 /* Finish up the debug error message. */
9487 if (info_verbose)
9488 printf_filtered (_("done.\n"));
9489 }
9490
9491 process_cu_includes (dwarf2_per_objfile);
9492 }
9493 \f
9494 /* Reading in full CUs. */
9495
9496 /* Add PER_CU to the queue. */
9497
9498 static void
9499 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9500 enum language pretend_language)
9501 {
9502 struct dwarf2_queue_item *item;
9503
9504 per_cu->queued = 1;
9505 item = XNEW (struct dwarf2_queue_item);
9506 item->per_cu = per_cu;
9507 item->pretend_language = pretend_language;
9508 item->next = NULL;
9509
9510 if (dwarf2_queue == NULL)
9511 dwarf2_queue = item;
9512 else
9513 dwarf2_queue_tail->next = item;
9514
9515 dwarf2_queue_tail = item;
9516 }
9517
9518 /* If PER_CU is not yet queued, add it to the queue.
9519 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9520 dependency.
9521 The result is non-zero if PER_CU was queued, otherwise the result is zero
9522 meaning either PER_CU is already queued or it is already loaded.
9523
9524 N.B. There is an invariant here that if a CU is queued then it is loaded.
9525 The caller is required to load PER_CU if we return non-zero. */
9526
9527 static int
9528 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9529 struct dwarf2_per_cu_data *per_cu,
9530 enum language pretend_language)
9531 {
9532 /* We may arrive here during partial symbol reading, if we need full
9533 DIEs to process an unusual case (e.g. template arguments). Do
9534 not queue PER_CU, just tell our caller to load its DIEs. */
9535 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9536 {
9537 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9538 return 1;
9539 return 0;
9540 }
9541
9542 /* Mark the dependence relation so that we don't flush PER_CU
9543 too early. */
9544 if (dependent_cu != NULL)
9545 dwarf2_add_dependence (dependent_cu, per_cu);
9546
9547 /* If it's already on the queue, we have nothing to do. */
9548 if (per_cu->queued)
9549 return 0;
9550
9551 /* If the compilation unit is already loaded, just mark it as
9552 used. */
9553 if (per_cu->cu != NULL)
9554 {
9555 per_cu->cu->last_used = 0;
9556 return 0;
9557 }
9558
9559 /* Add it to the queue. */
9560 queue_comp_unit (per_cu, pretend_language);
9561
9562 return 1;
9563 }
9564
9565 /* Process the queue. */
9566
9567 static void
9568 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9569 {
9570 struct dwarf2_queue_item *item, *next_item;
9571
9572 if (dwarf_read_debug)
9573 {
9574 fprintf_unfiltered (gdb_stdlog,
9575 "Expanding one or more symtabs of objfile %s ...\n",
9576 objfile_name (dwarf2_per_objfile->objfile));
9577 }
9578
9579 /* The queue starts out with one item, but following a DIE reference
9580 may load a new CU, adding it to the end of the queue. */
9581 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9582 {
9583 if ((dwarf2_per_objfile->using_index
9584 ? !item->per_cu->v.quick->compunit_symtab
9585 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9586 /* Skip dummy CUs. */
9587 && item->per_cu->cu != NULL)
9588 {
9589 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9590 unsigned int debug_print_threshold;
9591 char buf[100];
9592
9593 if (per_cu->is_debug_types)
9594 {
9595 struct signatured_type *sig_type =
9596 (struct signatured_type *) per_cu;
9597
9598 sprintf (buf, "TU %s at offset %s",
9599 hex_string (sig_type->signature),
9600 sect_offset_str (per_cu->sect_off));
9601 /* There can be 100s of TUs.
9602 Only print them in verbose mode. */
9603 debug_print_threshold = 2;
9604 }
9605 else
9606 {
9607 sprintf (buf, "CU at offset %s",
9608 sect_offset_str (per_cu->sect_off));
9609 debug_print_threshold = 1;
9610 }
9611
9612 if (dwarf_read_debug >= debug_print_threshold)
9613 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9614
9615 if (per_cu->is_debug_types)
9616 process_full_type_unit (per_cu, item->pretend_language);
9617 else
9618 process_full_comp_unit (per_cu, item->pretend_language);
9619
9620 if (dwarf_read_debug >= debug_print_threshold)
9621 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9622 }
9623
9624 item->per_cu->queued = 0;
9625 next_item = item->next;
9626 xfree (item);
9627 }
9628
9629 dwarf2_queue_tail = NULL;
9630
9631 if (dwarf_read_debug)
9632 {
9633 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9634 objfile_name (dwarf2_per_objfile->objfile));
9635 }
9636 }
9637
9638 /* Read in full symbols for PST, and anything it depends on. */
9639
9640 static void
9641 psymtab_to_symtab_1 (struct partial_symtab *pst)
9642 {
9643 struct dwarf2_per_cu_data *per_cu;
9644 int i;
9645
9646 if (pst->readin)
9647 return;
9648
9649 for (i = 0; i < pst->number_of_dependencies; i++)
9650 if (!pst->dependencies[i]->readin
9651 && pst->dependencies[i]->user == NULL)
9652 {
9653 /* Inform about additional files that need to be read in. */
9654 if (info_verbose)
9655 {
9656 /* FIXME: i18n: Need to make this a single string. */
9657 fputs_filtered (" ", gdb_stdout);
9658 wrap_here ("");
9659 fputs_filtered ("and ", gdb_stdout);
9660 wrap_here ("");
9661 printf_filtered ("%s...", pst->dependencies[i]->filename);
9662 wrap_here (""); /* Flush output. */
9663 gdb_flush (gdb_stdout);
9664 }
9665 psymtab_to_symtab_1 (pst->dependencies[i]);
9666 }
9667
9668 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9669
9670 if (per_cu == NULL)
9671 {
9672 /* It's an include file, no symbols to read for it.
9673 Everything is in the parent symtab. */
9674 pst->readin = 1;
9675 return;
9676 }
9677
9678 dw2_do_instantiate_symtab (per_cu, false);
9679 }
9680
9681 /* Trivial hash function for die_info: the hash value of a DIE
9682 is its offset in .debug_info for this objfile. */
9683
9684 static hashval_t
9685 die_hash (const void *item)
9686 {
9687 const struct die_info *die = (const struct die_info *) item;
9688
9689 return to_underlying (die->sect_off);
9690 }
9691
9692 /* Trivial comparison function for die_info structures: two DIEs
9693 are equal if they have the same offset. */
9694
9695 static int
9696 die_eq (const void *item_lhs, const void *item_rhs)
9697 {
9698 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9699 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9700
9701 return die_lhs->sect_off == die_rhs->sect_off;
9702 }
9703
9704 /* die_reader_func for load_full_comp_unit.
9705 This is identical to read_signatured_type_reader,
9706 but is kept separate for now. */
9707
9708 static void
9709 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9710 const gdb_byte *info_ptr,
9711 struct die_info *comp_unit_die,
9712 int has_children,
9713 void *data)
9714 {
9715 struct dwarf2_cu *cu = reader->cu;
9716 enum language *language_ptr = (enum language *) data;
9717
9718 gdb_assert (cu->die_hash == NULL);
9719 cu->die_hash =
9720 htab_create_alloc_ex (cu->header.length / 12,
9721 die_hash,
9722 die_eq,
9723 NULL,
9724 &cu->comp_unit_obstack,
9725 hashtab_obstack_allocate,
9726 dummy_obstack_deallocate);
9727
9728 if (has_children)
9729 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9730 &info_ptr, comp_unit_die);
9731 cu->dies = comp_unit_die;
9732 /* comp_unit_die is not stored in die_hash, no need. */
9733
9734 /* We try not to read any attributes in this function, because not
9735 all CUs needed for references have been loaded yet, and symbol
9736 table processing isn't initialized. But we have to set the CU language,
9737 or we won't be able to build types correctly.
9738 Similarly, if we do not read the producer, we can not apply
9739 producer-specific interpretation. */
9740 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9741 }
9742
9743 /* Load the DIEs associated with PER_CU into memory. */
9744
9745 static void
9746 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9747 bool skip_partial,
9748 enum language pretend_language)
9749 {
9750 gdb_assert (! this_cu->is_debug_types);
9751
9752 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9753 load_full_comp_unit_reader, &pretend_language);
9754 }
9755
9756 /* Add a DIE to the delayed physname list. */
9757
9758 static void
9759 add_to_method_list (struct type *type, int fnfield_index, int index,
9760 const char *name, struct die_info *die,
9761 struct dwarf2_cu *cu)
9762 {
9763 struct delayed_method_info mi;
9764 mi.type = type;
9765 mi.fnfield_index = fnfield_index;
9766 mi.index = index;
9767 mi.name = name;
9768 mi.die = die;
9769 cu->method_list.push_back (mi);
9770 }
9771
9772 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9773 "const" / "volatile". If so, decrements LEN by the length of the
9774 modifier and return true. Otherwise return false. */
9775
9776 template<size_t N>
9777 static bool
9778 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9779 {
9780 size_t mod_len = sizeof (mod) - 1;
9781 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9782 {
9783 len -= mod_len;
9784 return true;
9785 }
9786 return false;
9787 }
9788
9789 /* Compute the physnames of any methods on the CU's method list.
9790
9791 The computation of method physnames is delayed in order to avoid the
9792 (bad) condition that one of the method's formal parameters is of an as yet
9793 incomplete type. */
9794
9795 static void
9796 compute_delayed_physnames (struct dwarf2_cu *cu)
9797 {
9798 /* Only C++ delays computing physnames. */
9799 if (cu->method_list.empty ())
9800 return;
9801 gdb_assert (cu->language == language_cplus);
9802
9803 for (const delayed_method_info &mi : cu->method_list)
9804 {
9805 const char *physname;
9806 struct fn_fieldlist *fn_flp
9807 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9808 physname = dwarf2_physname (mi.name, mi.die, cu);
9809 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9810 = physname ? physname : "";
9811
9812 /* Since there's no tag to indicate whether a method is a
9813 const/volatile overload, extract that information out of the
9814 demangled name. */
9815 if (physname != NULL)
9816 {
9817 size_t len = strlen (physname);
9818
9819 while (1)
9820 {
9821 if (physname[len] == ')') /* shortcut */
9822 break;
9823 else if (check_modifier (physname, len, " const"))
9824 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9825 else if (check_modifier (physname, len, " volatile"))
9826 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9827 else
9828 break;
9829 }
9830 }
9831 }
9832
9833 /* The list is no longer needed. */
9834 cu->method_list.clear ();
9835 }
9836
9837 /* Go objects should be embedded in a DW_TAG_module DIE,
9838 and it's not clear if/how imported objects will appear.
9839 To keep Go support simple until that's worked out,
9840 go back through what we've read and create something usable.
9841 We could do this while processing each DIE, and feels kinda cleaner,
9842 but that way is more invasive.
9843 This is to, for example, allow the user to type "p var" or "b main"
9844 without having to specify the package name, and allow lookups
9845 of module.object to work in contexts that use the expression
9846 parser. */
9847
9848 static void
9849 fixup_go_packaging (struct dwarf2_cu *cu)
9850 {
9851 char *package_name = NULL;
9852 struct pending *list;
9853 int i;
9854
9855 for (list = *cu->get_builder ()->get_global_symbols ();
9856 list != NULL;
9857 list = list->next)
9858 {
9859 for (i = 0; i < list->nsyms; ++i)
9860 {
9861 struct symbol *sym = list->symbol[i];
9862
9863 if (SYMBOL_LANGUAGE (sym) == language_go
9864 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9865 {
9866 char *this_package_name = go_symbol_package_name (sym);
9867
9868 if (this_package_name == NULL)
9869 continue;
9870 if (package_name == NULL)
9871 package_name = this_package_name;
9872 else
9873 {
9874 struct objfile *objfile
9875 = cu->per_cu->dwarf2_per_objfile->objfile;
9876 if (strcmp (package_name, this_package_name) != 0)
9877 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9878 (symbol_symtab (sym) != NULL
9879 ? symtab_to_filename_for_display
9880 (symbol_symtab (sym))
9881 : objfile_name (objfile)),
9882 this_package_name, package_name);
9883 xfree (this_package_name);
9884 }
9885 }
9886 }
9887 }
9888
9889 if (package_name != NULL)
9890 {
9891 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9892 const char *saved_package_name
9893 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9894 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9895 saved_package_name);
9896 struct symbol *sym;
9897
9898 sym = allocate_symbol (objfile);
9899 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9900 SYMBOL_SET_NAMES (sym, saved_package_name,
9901 strlen (saved_package_name), 0, objfile);
9902 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9903 e.g., "main" finds the "main" module and not C's main(). */
9904 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9905 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9906 SYMBOL_TYPE (sym) = type;
9907
9908 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9909
9910 xfree (package_name);
9911 }
9912 }
9913
9914 /* Allocate a fully-qualified name consisting of the two parts on the
9915 obstack. */
9916
9917 static const char *
9918 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9919 {
9920 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9921 }
9922
9923 /* A helper that allocates a struct discriminant_info to attach to a
9924 union type. */
9925
9926 static struct discriminant_info *
9927 alloc_discriminant_info (struct type *type, int discriminant_index,
9928 int default_index)
9929 {
9930 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9931 gdb_assert (discriminant_index == -1
9932 || (discriminant_index >= 0
9933 && discriminant_index < TYPE_NFIELDS (type)));
9934 gdb_assert (default_index == -1
9935 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9936
9937 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9938
9939 struct discriminant_info *disc
9940 = ((struct discriminant_info *)
9941 TYPE_ZALLOC (type,
9942 offsetof (struct discriminant_info, discriminants)
9943 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9944 disc->default_index = default_index;
9945 disc->discriminant_index = discriminant_index;
9946
9947 struct dynamic_prop prop;
9948 prop.kind = PROP_UNDEFINED;
9949 prop.data.baton = disc;
9950
9951 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9952
9953 return disc;
9954 }
9955
9956 /* Some versions of rustc emitted enums in an unusual way.
9957
9958 Ordinary enums were emitted as unions. The first element of each
9959 structure in the union was named "RUST$ENUM$DISR". This element
9960 held the discriminant.
9961
9962 These versions of Rust also implemented the "non-zero"
9963 optimization. When the enum had two values, and one is empty and
9964 the other holds a pointer that cannot be zero, the pointer is used
9965 as the discriminant, with a zero value meaning the empty variant.
9966 Here, the union's first member is of the form
9967 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9968 where the fieldnos are the indices of the fields that should be
9969 traversed in order to find the field (which may be several fields deep)
9970 and the variantname is the name of the variant of the case when the
9971 field is zero.
9972
9973 This function recognizes whether TYPE is of one of these forms,
9974 and, if so, smashes it to be a variant type. */
9975
9976 static void
9977 quirk_rust_enum (struct type *type, struct objfile *objfile)
9978 {
9979 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9980
9981 /* We don't need to deal with empty enums. */
9982 if (TYPE_NFIELDS (type) == 0)
9983 return;
9984
9985 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9986 if (TYPE_NFIELDS (type) == 1
9987 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9988 {
9989 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9990
9991 /* Decode the field name to find the offset of the
9992 discriminant. */
9993 ULONGEST bit_offset = 0;
9994 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9995 while (name[0] >= '0' && name[0] <= '9')
9996 {
9997 char *tail;
9998 unsigned long index = strtoul (name, &tail, 10);
9999 name = tail;
10000 if (*name != '$'
10001 || index >= TYPE_NFIELDS (field_type)
10002 || (TYPE_FIELD_LOC_KIND (field_type, index)
10003 != FIELD_LOC_KIND_BITPOS))
10004 {
10005 complaint (_("Could not parse Rust enum encoding string \"%s\""
10006 "[in module %s]"),
10007 TYPE_FIELD_NAME (type, 0),
10008 objfile_name (objfile));
10009 return;
10010 }
10011 ++name;
10012
10013 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10014 field_type = TYPE_FIELD_TYPE (field_type, index);
10015 }
10016
10017 /* Make a union to hold the variants. */
10018 struct type *union_type = alloc_type (objfile);
10019 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10020 TYPE_NFIELDS (union_type) = 3;
10021 TYPE_FIELDS (union_type)
10022 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10023 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10024 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10025
10026 /* Put the discriminant must at index 0. */
10027 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10028 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10029 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10030 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10031
10032 /* The order of fields doesn't really matter, so put the real
10033 field at index 1 and the data-less field at index 2. */
10034 struct discriminant_info *disc
10035 = alloc_discriminant_info (union_type, 0, 1);
10036 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10037 TYPE_FIELD_NAME (union_type, 1)
10038 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10039 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10040 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10041 TYPE_FIELD_NAME (union_type, 1));
10042
10043 const char *dataless_name
10044 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10045 name);
10046 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10047 dataless_name);
10048 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10049 /* NAME points into the original discriminant name, which
10050 already has the correct lifetime. */
10051 TYPE_FIELD_NAME (union_type, 2) = name;
10052 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10053 disc->discriminants[2] = 0;
10054
10055 /* Smash this type to be a structure type. We have to do this
10056 because the type has already been recorded. */
10057 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10058 TYPE_NFIELDS (type) = 1;
10059 TYPE_FIELDS (type)
10060 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10061
10062 /* Install the variant part. */
10063 TYPE_FIELD_TYPE (type, 0) = union_type;
10064 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10065 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10066 }
10067 /* A union with a single anonymous field is probably an old-style
10068 univariant enum. */
10069 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
10070 {
10071 /* Smash this type to be a structure type. We have to do this
10072 because the type has already been recorded. */
10073 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10074
10075 /* Make a union to hold the variants. */
10076 struct type *union_type = alloc_type (objfile);
10077 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10078 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10079 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10080 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10081 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10082
10083 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10084 const char *variant_name
10085 = rust_last_path_segment (TYPE_NAME (field_type));
10086 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10087 TYPE_NAME (field_type)
10088 = rust_fully_qualify (&objfile->objfile_obstack,
10089 TYPE_NAME (type), variant_name);
10090
10091 /* Install the union in the outer struct type. */
10092 TYPE_NFIELDS (type) = 1;
10093 TYPE_FIELDS (type)
10094 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10095 TYPE_FIELD_TYPE (type, 0) = union_type;
10096 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10097 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10098
10099 alloc_discriminant_info (union_type, -1, 0);
10100 }
10101 else
10102 {
10103 struct type *disr_type = nullptr;
10104 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10105 {
10106 disr_type = TYPE_FIELD_TYPE (type, i);
10107
10108 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10109 {
10110 /* All fields of a true enum will be structs. */
10111 return;
10112 }
10113 else if (TYPE_NFIELDS (disr_type) == 0)
10114 {
10115 /* Could be data-less variant, so keep going. */
10116 disr_type = nullptr;
10117 }
10118 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10119 "RUST$ENUM$DISR") != 0)
10120 {
10121 /* Not a Rust enum. */
10122 return;
10123 }
10124 else
10125 {
10126 /* Found one. */
10127 break;
10128 }
10129 }
10130
10131 /* If we got here without a discriminant, then it's probably
10132 just a union. */
10133 if (disr_type == nullptr)
10134 return;
10135
10136 /* Smash this type to be a structure type. We have to do this
10137 because the type has already been recorded. */
10138 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10139
10140 /* Make a union to hold the variants. */
10141 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10142 struct type *union_type = alloc_type (objfile);
10143 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10144 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10145 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10146 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10147 TYPE_FIELDS (union_type)
10148 = (struct field *) TYPE_ZALLOC (union_type,
10149 (TYPE_NFIELDS (union_type)
10150 * sizeof (struct field)));
10151
10152 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10153 TYPE_NFIELDS (type) * sizeof (struct field));
10154
10155 /* Install the discriminant at index 0 in the union. */
10156 TYPE_FIELD (union_type, 0) = *disr_field;
10157 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10158 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10159
10160 /* Install the union in the outer struct type. */
10161 TYPE_FIELD_TYPE (type, 0) = union_type;
10162 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10163 TYPE_NFIELDS (type) = 1;
10164
10165 /* Set the size and offset of the union type. */
10166 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10167
10168 /* We need a way to find the correct discriminant given a
10169 variant name. For convenience we build a map here. */
10170 struct type *enum_type = FIELD_TYPE (*disr_field);
10171 std::unordered_map<std::string, ULONGEST> discriminant_map;
10172 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10173 {
10174 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10175 {
10176 const char *name
10177 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10178 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10179 }
10180 }
10181
10182 int n_fields = TYPE_NFIELDS (union_type);
10183 struct discriminant_info *disc
10184 = alloc_discriminant_info (union_type, 0, -1);
10185 /* Skip the discriminant here. */
10186 for (int i = 1; i < n_fields; ++i)
10187 {
10188 /* Find the final word in the name of this variant's type.
10189 That name can be used to look up the correct
10190 discriminant. */
10191 const char *variant_name
10192 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10193 i)));
10194
10195 auto iter = discriminant_map.find (variant_name);
10196 if (iter != discriminant_map.end ())
10197 disc->discriminants[i] = iter->second;
10198
10199 /* Remove the discriminant field, if it exists. */
10200 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10201 if (TYPE_NFIELDS (sub_type) > 0)
10202 {
10203 --TYPE_NFIELDS (sub_type);
10204 ++TYPE_FIELDS (sub_type);
10205 }
10206 TYPE_FIELD_NAME (union_type, i) = variant_name;
10207 TYPE_NAME (sub_type)
10208 = rust_fully_qualify (&objfile->objfile_obstack,
10209 TYPE_NAME (type), variant_name);
10210 }
10211 }
10212 }
10213
10214 /* Rewrite some Rust unions to be structures with variants parts. */
10215
10216 static void
10217 rust_union_quirks (struct dwarf2_cu *cu)
10218 {
10219 gdb_assert (cu->language == language_rust);
10220 for (type *type_ : cu->rust_unions)
10221 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10222 /* We don't need this any more. */
10223 cu->rust_unions.clear ();
10224 }
10225
10226 /* Return the symtab for PER_CU. This works properly regardless of
10227 whether we're using the index or psymtabs. */
10228
10229 static struct compunit_symtab *
10230 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10231 {
10232 return (per_cu->dwarf2_per_objfile->using_index
10233 ? per_cu->v.quick->compunit_symtab
10234 : per_cu->v.psymtab->compunit_symtab);
10235 }
10236
10237 /* A helper function for computing the list of all symbol tables
10238 included by PER_CU. */
10239
10240 static void
10241 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10242 htab_t all_children, htab_t all_type_symtabs,
10243 struct dwarf2_per_cu_data *per_cu,
10244 struct compunit_symtab *immediate_parent)
10245 {
10246 void **slot;
10247 int ix;
10248 struct compunit_symtab *cust;
10249 struct dwarf2_per_cu_data *iter;
10250
10251 slot = htab_find_slot (all_children, per_cu, INSERT);
10252 if (*slot != NULL)
10253 {
10254 /* This inclusion and its children have been processed. */
10255 return;
10256 }
10257
10258 *slot = per_cu;
10259 /* Only add a CU if it has a symbol table. */
10260 cust = get_compunit_symtab (per_cu);
10261 if (cust != NULL)
10262 {
10263 /* If this is a type unit only add its symbol table if we haven't
10264 seen it yet (type unit per_cu's can share symtabs). */
10265 if (per_cu->is_debug_types)
10266 {
10267 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10268 if (*slot == NULL)
10269 {
10270 *slot = cust;
10271 result->push_back (cust);
10272 if (cust->user == NULL)
10273 cust->user = immediate_parent;
10274 }
10275 }
10276 else
10277 {
10278 result->push_back (cust);
10279 if (cust->user == NULL)
10280 cust->user = immediate_parent;
10281 }
10282 }
10283
10284 for (ix = 0;
10285 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10286 ++ix)
10287 {
10288 recursively_compute_inclusions (result, all_children,
10289 all_type_symtabs, iter, cust);
10290 }
10291 }
10292
10293 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10294 PER_CU. */
10295
10296 static void
10297 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10298 {
10299 gdb_assert (! per_cu->is_debug_types);
10300
10301 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10302 {
10303 int ix, len;
10304 struct dwarf2_per_cu_data *per_cu_iter;
10305 std::vector<compunit_symtab *> result_symtabs;
10306 htab_t all_children, all_type_symtabs;
10307 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10308
10309 /* If we don't have a symtab, we can just skip this case. */
10310 if (cust == NULL)
10311 return;
10312
10313 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10314 NULL, xcalloc, xfree);
10315 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10316 NULL, xcalloc, xfree);
10317
10318 for (ix = 0;
10319 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10320 ix, per_cu_iter);
10321 ++ix)
10322 {
10323 recursively_compute_inclusions (&result_symtabs, all_children,
10324 all_type_symtabs, per_cu_iter,
10325 cust);
10326 }
10327
10328 /* Now we have a transitive closure of all the included symtabs. */
10329 len = result_symtabs.size ();
10330 cust->includes
10331 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10332 struct compunit_symtab *, len + 1);
10333 memcpy (cust->includes, result_symtabs.data (),
10334 len * sizeof (compunit_symtab *));
10335 cust->includes[len] = NULL;
10336
10337 htab_delete (all_children);
10338 htab_delete (all_type_symtabs);
10339 }
10340 }
10341
10342 /* Compute the 'includes' field for the symtabs of all the CUs we just
10343 read. */
10344
10345 static void
10346 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10347 {
10348 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10349 {
10350 if (! iter->is_debug_types)
10351 compute_compunit_symtab_includes (iter);
10352 }
10353
10354 dwarf2_per_objfile->just_read_cus.clear ();
10355 }
10356
10357 /* Generate full symbol information for PER_CU, whose DIEs have
10358 already been loaded into memory. */
10359
10360 static void
10361 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10362 enum language pretend_language)
10363 {
10364 struct dwarf2_cu *cu = per_cu->cu;
10365 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10366 struct objfile *objfile = dwarf2_per_objfile->objfile;
10367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10368 CORE_ADDR lowpc, highpc;
10369 struct compunit_symtab *cust;
10370 CORE_ADDR baseaddr;
10371 struct block *static_block;
10372 CORE_ADDR addr;
10373
10374 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10375
10376 /* Clear the list here in case something was left over. */
10377 cu->method_list.clear ();
10378
10379 cu->language = pretend_language;
10380 cu->language_defn = language_def (cu->language);
10381
10382 /* Do line number decoding in read_file_scope () */
10383 process_die (cu->dies, cu);
10384
10385 /* For now fudge the Go package. */
10386 if (cu->language == language_go)
10387 fixup_go_packaging (cu);
10388
10389 /* Now that we have processed all the DIEs in the CU, all the types
10390 should be complete, and it should now be safe to compute all of the
10391 physnames. */
10392 compute_delayed_physnames (cu);
10393
10394 if (cu->language == language_rust)
10395 rust_union_quirks (cu);
10396
10397 /* Some compilers don't define a DW_AT_high_pc attribute for the
10398 compilation unit. If the DW_AT_high_pc is missing, synthesize
10399 it, by scanning the DIE's below the compilation unit. */
10400 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10401
10402 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10403 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10404
10405 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10406 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10407 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10408 addrmap to help ensure it has an accurate map of pc values belonging to
10409 this comp unit. */
10410 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10411
10412 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10413 SECT_OFF_TEXT (objfile),
10414 0);
10415
10416 if (cust != NULL)
10417 {
10418 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10419
10420 /* Set symtab language to language from DW_AT_language. If the
10421 compilation is from a C file generated by language preprocessors, do
10422 not set the language if it was already deduced by start_subfile. */
10423 if (!(cu->language == language_c
10424 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10425 COMPUNIT_FILETABS (cust)->language = cu->language;
10426
10427 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10428 produce DW_AT_location with location lists but it can be possibly
10429 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10430 there were bugs in prologue debug info, fixed later in GCC-4.5
10431 by "unwind info for epilogues" patch (which is not directly related).
10432
10433 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10434 needed, it would be wrong due to missing DW_AT_producer there.
10435
10436 Still one can confuse GDB by using non-standard GCC compilation
10437 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10438 */
10439 if (cu->has_loclist && gcc_4_minor >= 5)
10440 cust->locations_valid = 1;
10441
10442 if (gcc_4_minor >= 5)
10443 cust->epilogue_unwind_valid = 1;
10444
10445 cust->call_site_htab = cu->call_site_htab;
10446 }
10447
10448 if (dwarf2_per_objfile->using_index)
10449 per_cu->v.quick->compunit_symtab = cust;
10450 else
10451 {
10452 struct partial_symtab *pst = per_cu->v.psymtab;
10453 pst->compunit_symtab = cust;
10454 pst->readin = 1;
10455 }
10456
10457 /* Push it for inclusion processing later. */
10458 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10459
10460 /* Not needed any more. */
10461 cu->reset_builder ();
10462 }
10463
10464 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10465 already been loaded into memory. */
10466
10467 static void
10468 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10469 enum language pretend_language)
10470 {
10471 struct dwarf2_cu *cu = per_cu->cu;
10472 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10473 struct objfile *objfile = dwarf2_per_objfile->objfile;
10474 struct compunit_symtab *cust;
10475 struct signatured_type *sig_type;
10476
10477 gdb_assert (per_cu->is_debug_types);
10478 sig_type = (struct signatured_type *) per_cu;
10479
10480 /* Clear the list here in case something was left over. */
10481 cu->method_list.clear ();
10482
10483 cu->language = pretend_language;
10484 cu->language_defn = language_def (cu->language);
10485
10486 /* The symbol tables are set up in read_type_unit_scope. */
10487 process_die (cu->dies, cu);
10488
10489 /* For now fudge the Go package. */
10490 if (cu->language == language_go)
10491 fixup_go_packaging (cu);
10492
10493 /* Now that we have processed all the DIEs in the CU, all the types
10494 should be complete, and it should now be safe to compute all of the
10495 physnames. */
10496 compute_delayed_physnames (cu);
10497
10498 if (cu->language == language_rust)
10499 rust_union_quirks (cu);
10500
10501 /* TUs share symbol tables.
10502 If this is the first TU to use this symtab, complete the construction
10503 of it with end_expandable_symtab. Otherwise, complete the addition of
10504 this TU's symbols to the existing symtab. */
10505 if (sig_type->type_unit_group->compunit_symtab == NULL)
10506 {
10507 buildsym_compunit *builder = cu->get_builder ();
10508 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10509 sig_type->type_unit_group->compunit_symtab = cust;
10510
10511 if (cust != NULL)
10512 {
10513 /* Set symtab language to language from DW_AT_language. If the
10514 compilation is from a C file generated by language preprocessors,
10515 do not set the language if it was already deduced by
10516 start_subfile. */
10517 if (!(cu->language == language_c
10518 && COMPUNIT_FILETABS (cust)->language != language_c))
10519 COMPUNIT_FILETABS (cust)->language = cu->language;
10520 }
10521 }
10522 else
10523 {
10524 cu->get_builder ()->augment_type_symtab ();
10525 cust = sig_type->type_unit_group->compunit_symtab;
10526 }
10527
10528 if (dwarf2_per_objfile->using_index)
10529 per_cu->v.quick->compunit_symtab = cust;
10530 else
10531 {
10532 struct partial_symtab *pst = per_cu->v.psymtab;
10533 pst->compunit_symtab = cust;
10534 pst->readin = 1;
10535 }
10536
10537 /* Not needed any more. */
10538 cu->reset_builder ();
10539 }
10540
10541 /* Process an imported unit DIE. */
10542
10543 static void
10544 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10545 {
10546 struct attribute *attr;
10547
10548 /* For now we don't handle imported units in type units. */
10549 if (cu->per_cu->is_debug_types)
10550 {
10551 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10552 " supported in type units [in module %s]"),
10553 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10554 }
10555
10556 attr = dwarf2_attr (die, DW_AT_import, cu);
10557 if (attr != NULL)
10558 {
10559 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10560 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10561 dwarf2_per_cu_data *per_cu
10562 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10563 cu->per_cu->dwarf2_per_objfile);
10564
10565 /* If necessary, add it to the queue and load its DIEs. */
10566 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10567 load_full_comp_unit (per_cu, false, cu->language);
10568
10569 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10570 per_cu);
10571 }
10572 }
10573
10574 /* RAII object that represents a process_die scope: i.e.,
10575 starts/finishes processing a DIE. */
10576 class process_die_scope
10577 {
10578 public:
10579 process_die_scope (die_info *die, dwarf2_cu *cu)
10580 : m_die (die), m_cu (cu)
10581 {
10582 /* We should only be processing DIEs not already in process. */
10583 gdb_assert (!m_die->in_process);
10584 m_die->in_process = true;
10585 }
10586
10587 ~process_die_scope ()
10588 {
10589 m_die->in_process = false;
10590
10591 /* If we're done processing the DIE for the CU that owns the line
10592 header, we don't need the line header anymore. */
10593 if (m_cu->line_header_die_owner == m_die)
10594 {
10595 delete m_cu->line_header;
10596 m_cu->line_header = NULL;
10597 m_cu->line_header_die_owner = NULL;
10598 }
10599 }
10600
10601 private:
10602 die_info *m_die;
10603 dwarf2_cu *m_cu;
10604 };
10605
10606 /* Process a die and its children. */
10607
10608 static void
10609 process_die (struct die_info *die, struct dwarf2_cu *cu)
10610 {
10611 process_die_scope scope (die, cu);
10612
10613 switch (die->tag)
10614 {
10615 case DW_TAG_padding:
10616 break;
10617 case DW_TAG_compile_unit:
10618 case DW_TAG_partial_unit:
10619 read_file_scope (die, cu);
10620 break;
10621 case DW_TAG_type_unit:
10622 read_type_unit_scope (die, cu);
10623 break;
10624 case DW_TAG_subprogram:
10625 /* Nested subprograms in Fortran get a prefix. */
10626 if (cu->language == language_fortran
10627 && die->parent != NULL
10628 && die->parent->tag == DW_TAG_subprogram)
10629 cu->processing_has_namespace_info = true;
10630 /* Fall through. */
10631 case DW_TAG_inlined_subroutine:
10632 read_func_scope (die, cu);
10633 break;
10634 case DW_TAG_lexical_block:
10635 case DW_TAG_try_block:
10636 case DW_TAG_catch_block:
10637 read_lexical_block_scope (die, cu);
10638 break;
10639 case DW_TAG_call_site:
10640 case DW_TAG_GNU_call_site:
10641 read_call_site_scope (die, cu);
10642 break;
10643 case DW_TAG_class_type:
10644 case DW_TAG_interface_type:
10645 case DW_TAG_structure_type:
10646 case DW_TAG_union_type:
10647 process_structure_scope (die, cu);
10648 break;
10649 case DW_TAG_enumeration_type:
10650 process_enumeration_scope (die, cu);
10651 break;
10652
10653 /* These dies have a type, but processing them does not create
10654 a symbol or recurse to process the children. Therefore we can
10655 read them on-demand through read_type_die. */
10656 case DW_TAG_subroutine_type:
10657 case DW_TAG_set_type:
10658 case DW_TAG_array_type:
10659 case DW_TAG_pointer_type:
10660 case DW_TAG_ptr_to_member_type:
10661 case DW_TAG_reference_type:
10662 case DW_TAG_rvalue_reference_type:
10663 case DW_TAG_string_type:
10664 break;
10665
10666 case DW_TAG_base_type:
10667 case DW_TAG_subrange_type:
10668 case DW_TAG_typedef:
10669 /* Add a typedef symbol for the type definition, if it has a
10670 DW_AT_name. */
10671 new_symbol (die, read_type_die (die, cu), cu);
10672 break;
10673 case DW_TAG_common_block:
10674 read_common_block (die, cu);
10675 break;
10676 case DW_TAG_common_inclusion:
10677 break;
10678 case DW_TAG_namespace:
10679 cu->processing_has_namespace_info = true;
10680 read_namespace (die, cu);
10681 break;
10682 case DW_TAG_module:
10683 cu->processing_has_namespace_info = true;
10684 read_module (die, cu);
10685 break;
10686 case DW_TAG_imported_declaration:
10687 cu->processing_has_namespace_info = true;
10688 if (read_namespace_alias (die, cu))
10689 break;
10690 /* The declaration is not a global namespace alias. */
10691 /* Fall through. */
10692 case DW_TAG_imported_module:
10693 cu->processing_has_namespace_info = true;
10694 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10695 || cu->language != language_fortran))
10696 complaint (_("Tag '%s' has unexpected children"),
10697 dwarf_tag_name (die->tag));
10698 read_import_statement (die, cu);
10699 break;
10700
10701 case DW_TAG_imported_unit:
10702 process_imported_unit_die (die, cu);
10703 break;
10704
10705 case DW_TAG_variable:
10706 read_variable (die, cu);
10707 break;
10708
10709 default:
10710 new_symbol (die, NULL, cu);
10711 break;
10712 }
10713 }
10714 \f
10715 /* DWARF name computation. */
10716
10717 /* A helper function for dwarf2_compute_name which determines whether DIE
10718 needs to have the name of the scope prepended to the name listed in the
10719 die. */
10720
10721 static int
10722 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10723 {
10724 struct attribute *attr;
10725
10726 switch (die->tag)
10727 {
10728 case DW_TAG_namespace:
10729 case DW_TAG_typedef:
10730 case DW_TAG_class_type:
10731 case DW_TAG_interface_type:
10732 case DW_TAG_structure_type:
10733 case DW_TAG_union_type:
10734 case DW_TAG_enumeration_type:
10735 case DW_TAG_enumerator:
10736 case DW_TAG_subprogram:
10737 case DW_TAG_inlined_subroutine:
10738 case DW_TAG_member:
10739 case DW_TAG_imported_declaration:
10740 return 1;
10741
10742 case DW_TAG_variable:
10743 case DW_TAG_constant:
10744 /* We only need to prefix "globally" visible variables. These include
10745 any variable marked with DW_AT_external or any variable that
10746 lives in a namespace. [Variables in anonymous namespaces
10747 require prefixing, but they are not DW_AT_external.] */
10748
10749 if (dwarf2_attr (die, DW_AT_specification, cu))
10750 {
10751 struct dwarf2_cu *spec_cu = cu;
10752
10753 return die_needs_namespace (die_specification (die, &spec_cu),
10754 spec_cu);
10755 }
10756
10757 attr = dwarf2_attr (die, DW_AT_external, cu);
10758 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10759 && die->parent->tag != DW_TAG_module)
10760 return 0;
10761 /* A variable in a lexical block of some kind does not need a
10762 namespace, even though in C++ such variables may be external
10763 and have a mangled name. */
10764 if (die->parent->tag == DW_TAG_lexical_block
10765 || die->parent->tag == DW_TAG_try_block
10766 || die->parent->tag == DW_TAG_catch_block
10767 || die->parent->tag == DW_TAG_subprogram)
10768 return 0;
10769 return 1;
10770
10771 default:
10772 return 0;
10773 }
10774 }
10775
10776 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10777 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10778 defined for the given DIE. */
10779
10780 static struct attribute *
10781 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10782 {
10783 struct attribute *attr;
10784
10785 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10786 if (attr == NULL)
10787 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10788
10789 return attr;
10790 }
10791
10792 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10793 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10794 defined for the given DIE. */
10795
10796 static const char *
10797 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10798 {
10799 const char *linkage_name;
10800
10801 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10802 if (linkage_name == NULL)
10803 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10804
10805 return linkage_name;
10806 }
10807
10808 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10809 compute the physname for the object, which include a method's:
10810 - formal parameters (C++),
10811 - receiver type (Go),
10812
10813 The term "physname" is a bit confusing.
10814 For C++, for example, it is the demangled name.
10815 For Go, for example, it's the mangled name.
10816
10817 For Ada, return the DIE's linkage name rather than the fully qualified
10818 name. PHYSNAME is ignored..
10819
10820 The result is allocated on the objfile_obstack and canonicalized. */
10821
10822 static const char *
10823 dwarf2_compute_name (const char *name,
10824 struct die_info *die, struct dwarf2_cu *cu,
10825 int physname)
10826 {
10827 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10828
10829 if (name == NULL)
10830 name = dwarf2_name (die, cu);
10831
10832 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10833 but otherwise compute it by typename_concat inside GDB.
10834 FIXME: Actually this is not really true, or at least not always true.
10835 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10836 Fortran names because there is no mangling standard. So new_symbol
10837 will set the demangled name to the result of dwarf2_full_name, and it is
10838 the demangled name that GDB uses if it exists. */
10839 if (cu->language == language_ada
10840 || (cu->language == language_fortran && physname))
10841 {
10842 /* For Ada unit, we prefer the linkage name over the name, as
10843 the former contains the exported name, which the user expects
10844 to be able to reference. Ideally, we want the user to be able
10845 to reference this entity using either natural or linkage name,
10846 but we haven't started looking at this enhancement yet. */
10847 const char *linkage_name = dw2_linkage_name (die, cu);
10848
10849 if (linkage_name != NULL)
10850 return linkage_name;
10851 }
10852
10853 /* These are the only languages we know how to qualify names in. */
10854 if (name != NULL
10855 && (cu->language == language_cplus
10856 || cu->language == language_fortran || cu->language == language_d
10857 || cu->language == language_rust))
10858 {
10859 if (die_needs_namespace (die, cu))
10860 {
10861 const char *prefix;
10862 const char *canonical_name = NULL;
10863
10864 string_file buf;
10865
10866 prefix = determine_prefix (die, cu);
10867 if (*prefix != '\0')
10868 {
10869 char *prefixed_name = typename_concat (NULL, prefix, name,
10870 physname, cu);
10871
10872 buf.puts (prefixed_name);
10873 xfree (prefixed_name);
10874 }
10875 else
10876 buf.puts (name);
10877
10878 /* Template parameters may be specified in the DIE's DW_AT_name, or
10879 as children with DW_TAG_template_type_param or
10880 DW_TAG_value_type_param. If the latter, add them to the name
10881 here. If the name already has template parameters, then
10882 skip this step; some versions of GCC emit both, and
10883 it is more efficient to use the pre-computed name.
10884
10885 Something to keep in mind about this process: it is very
10886 unlikely, or in some cases downright impossible, to produce
10887 something that will match the mangled name of a function.
10888 If the definition of the function has the same debug info,
10889 we should be able to match up with it anyway. But fallbacks
10890 using the minimal symbol, for instance to find a method
10891 implemented in a stripped copy of libstdc++, will not work.
10892 If we do not have debug info for the definition, we will have to
10893 match them up some other way.
10894
10895 When we do name matching there is a related problem with function
10896 templates; two instantiated function templates are allowed to
10897 differ only by their return types, which we do not add here. */
10898
10899 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10900 {
10901 struct attribute *attr;
10902 struct die_info *child;
10903 int first = 1;
10904
10905 die->building_fullname = 1;
10906
10907 for (child = die->child; child != NULL; child = child->sibling)
10908 {
10909 struct type *type;
10910 LONGEST value;
10911 const gdb_byte *bytes;
10912 struct dwarf2_locexpr_baton *baton;
10913 struct value *v;
10914
10915 if (child->tag != DW_TAG_template_type_param
10916 && child->tag != DW_TAG_template_value_param)
10917 continue;
10918
10919 if (first)
10920 {
10921 buf.puts ("<");
10922 first = 0;
10923 }
10924 else
10925 buf.puts (", ");
10926
10927 attr = dwarf2_attr (child, DW_AT_type, cu);
10928 if (attr == NULL)
10929 {
10930 complaint (_("template parameter missing DW_AT_type"));
10931 buf.puts ("UNKNOWN_TYPE");
10932 continue;
10933 }
10934 type = die_type (child, cu);
10935
10936 if (child->tag == DW_TAG_template_type_param)
10937 {
10938 c_print_type (type, "", &buf, -1, 0, cu->language,
10939 &type_print_raw_options);
10940 continue;
10941 }
10942
10943 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10944 if (attr == NULL)
10945 {
10946 complaint (_("template parameter missing "
10947 "DW_AT_const_value"));
10948 buf.puts ("UNKNOWN_VALUE");
10949 continue;
10950 }
10951
10952 dwarf2_const_value_attr (attr, type, name,
10953 &cu->comp_unit_obstack, cu,
10954 &value, &bytes, &baton);
10955
10956 if (TYPE_NOSIGN (type))
10957 /* GDB prints characters as NUMBER 'CHAR'. If that's
10958 changed, this can use value_print instead. */
10959 c_printchar (value, type, &buf);
10960 else
10961 {
10962 struct value_print_options opts;
10963
10964 if (baton != NULL)
10965 v = dwarf2_evaluate_loc_desc (type, NULL,
10966 baton->data,
10967 baton->size,
10968 baton->per_cu);
10969 else if (bytes != NULL)
10970 {
10971 v = allocate_value (type);
10972 memcpy (value_contents_writeable (v), bytes,
10973 TYPE_LENGTH (type));
10974 }
10975 else
10976 v = value_from_longest (type, value);
10977
10978 /* Specify decimal so that we do not depend on
10979 the radix. */
10980 get_formatted_print_options (&opts, 'd');
10981 opts.raw = 1;
10982 value_print (v, &buf, &opts);
10983 release_value (v);
10984 }
10985 }
10986
10987 die->building_fullname = 0;
10988
10989 if (!first)
10990 {
10991 /* Close the argument list, with a space if necessary
10992 (nested templates). */
10993 if (!buf.empty () && buf.string ().back () == '>')
10994 buf.puts (" >");
10995 else
10996 buf.puts (">");
10997 }
10998 }
10999
11000 /* For C++ methods, append formal parameter type
11001 information, if PHYSNAME. */
11002
11003 if (physname && die->tag == DW_TAG_subprogram
11004 && cu->language == language_cplus)
11005 {
11006 struct type *type = read_type_die (die, cu);
11007
11008 c_type_print_args (type, &buf, 1, cu->language,
11009 &type_print_raw_options);
11010
11011 if (cu->language == language_cplus)
11012 {
11013 /* Assume that an artificial first parameter is
11014 "this", but do not crash if it is not. RealView
11015 marks unnamed (and thus unused) parameters as
11016 artificial; there is no way to differentiate
11017 the two cases. */
11018 if (TYPE_NFIELDS (type) > 0
11019 && TYPE_FIELD_ARTIFICIAL (type, 0)
11020 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11021 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11022 0))))
11023 buf.puts (" const");
11024 }
11025 }
11026
11027 const std::string &intermediate_name = buf.string ();
11028
11029 if (cu->language == language_cplus)
11030 canonical_name
11031 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11032 &objfile->per_bfd->storage_obstack);
11033
11034 /* If we only computed INTERMEDIATE_NAME, or if
11035 INTERMEDIATE_NAME is already canonical, then we need to
11036 copy it to the appropriate obstack. */
11037 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11038 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11039 intermediate_name);
11040 else
11041 name = canonical_name;
11042 }
11043 }
11044
11045 return name;
11046 }
11047
11048 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11049 If scope qualifiers are appropriate they will be added. The result
11050 will be allocated on the storage_obstack, or NULL if the DIE does
11051 not have a name. NAME may either be from a previous call to
11052 dwarf2_name or NULL.
11053
11054 The output string will be canonicalized (if C++). */
11055
11056 static const char *
11057 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11058 {
11059 return dwarf2_compute_name (name, die, cu, 0);
11060 }
11061
11062 /* Construct a physname for the given DIE in CU. NAME may either be
11063 from a previous call to dwarf2_name or NULL. The result will be
11064 allocated on the objfile_objstack or NULL if the DIE does not have a
11065 name.
11066
11067 The output string will be canonicalized (if C++). */
11068
11069 static const char *
11070 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11071 {
11072 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11073 const char *retval, *mangled = NULL, *canon = NULL;
11074 int need_copy = 1;
11075
11076 /* In this case dwarf2_compute_name is just a shortcut not building anything
11077 on its own. */
11078 if (!die_needs_namespace (die, cu))
11079 return dwarf2_compute_name (name, die, cu, 1);
11080
11081 mangled = dw2_linkage_name (die, cu);
11082
11083 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11084 See https://github.com/rust-lang/rust/issues/32925. */
11085 if (cu->language == language_rust && mangled != NULL
11086 && strchr (mangled, '{') != NULL)
11087 mangled = NULL;
11088
11089 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11090 has computed. */
11091 gdb::unique_xmalloc_ptr<char> demangled;
11092 if (mangled != NULL)
11093 {
11094
11095 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11096 {
11097 /* Do nothing (do not demangle the symbol name). */
11098 }
11099 else if (cu->language == language_go)
11100 {
11101 /* This is a lie, but we already lie to the caller new_symbol.
11102 new_symbol assumes we return the mangled name.
11103 This just undoes that lie until things are cleaned up. */
11104 }
11105 else
11106 {
11107 /* Use DMGL_RET_DROP for C++ template functions to suppress
11108 their return type. It is easier for GDB users to search
11109 for such functions as `name(params)' than `long name(params)'.
11110 In such case the minimal symbol names do not match the full
11111 symbol names but for template functions there is never a need
11112 to look up their definition from their declaration so
11113 the only disadvantage remains the minimal symbol variant
11114 `long name(params)' does not have the proper inferior type. */
11115 demangled.reset (gdb_demangle (mangled,
11116 (DMGL_PARAMS | DMGL_ANSI
11117 | DMGL_RET_DROP)));
11118 }
11119 if (demangled)
11120 canon = demangled.get ();
11121 else
11122 {
11123 canon = mangled;
11124 need_copy = 0;
11125 }
11126 }
11127
11128 if (canon == NULL || check_physname)
11129 {
11130 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11131
11132 if (canon != NULL && strcmp (physname, canon) != 0)
11133 {
11134 /* It may not mean a bug in GDB. The compiler could also
11135 compute DW_AT_linkage_name incorrectly. But in such case
11136 GDB would need to be bug-to-bug compatible. */
11137
11138 complaint (_("Computed physname <%s> does not match demangled <%s> "
11139 "(from linkage <%s>) - DIE at %s [in module %s]"),
11140 physname, canon, mangled, sect_offset_str (die->sect_off),
11141 objfile_name (objfile));
11142
11143 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11144 is available here - over computed PHYSNAME. It is safer
11145 against both buggy GDB and buggy compilers. */
11146
11147 retval = canon;
11148 }
11149 else
11150 {
11151 retval = physname;
11152 need_copy = 0;
11153 }
11154 }
11155 else
11156 retval = canon;
11157
11158 if (need_copy)
11159 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11160
11161 return retval;
11162 }
11163
11164 /* Inspect DIE in CU for a namespace alias. If one exists, record
11165 a new symbol for it.
11166
11167 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11168
11169 static int
11170 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11171 {
11172 struct attribute *attr;
11173
11174 /* If the die does not have a name, this is not a namespace
11175 alias. */
11176 attr = dwarf2_attr (die, DW_AT_name, cu);
11177 if (attr != NULL)
11178 {
11179 int num;
11180 struct die_info *d = die;
11181 struct dwarf2_cu *imported_cu = cu;
11182
11183 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11184 keep inspecting DIEs until we hit the underlying import. */
11185 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11186 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11187 {
11188 attr = dwarf2_attr (d, DW_AT_import, cu);
11189 if (attr == NULL)
11190 break;
11191
11192 d = follow_die_ref (d, attr, &imported_cu);
11193 if (d->tag != DW_TAG_imported_declaration)
11194 break;
11195 }
11196
11197 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11198 {
11199 complaint (_("DIE at %s has too many recursively imported "
11200 "declarations"), sect_offset_str (d->sect_off));
11201 return 0;
11202 }
11203
11204 if (attr != NULL)
11205 {
11206 struct type *type;
11207 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11208
11209 type = get_die_type_at_offset (sect_off, cu->per_cu);
11210 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11211 {
11212 /* This declaration is a global namespace alias. Add
11213 a symbol for it whose type is the aliased namespace. */
11214 new_symbol (die, type, cu);
11215 return 1;
11216 }
11217 }
11218 }
11219
11220 return 0;
11221 }
11222
11223 /* Return the using directives repository (global or local?) to use in the
11224 current context for CU.
11225
11226 For Ada, imported declarations can materialize renamings, which *may* be
11227 global. However it is impossible (for now?) in DWARF to distinguish
11228 "external" imported declarations and "static" ones. As all imported
11229 declarations seem to be static in all other languages, make them all CU-wide
11230 global only in Ada. */
11231
11232 static struct using_direct **
11233 using_directives (struct dwarf2_cu *cu)
11234 {
11235 if (cu->language == language_ada
11236 && cu->get_builder ()->outermost_context_p ())
11237 return cu->get_builder ()->get_global_using_directives ();
11238 else
11239 return cu->get_builder ()->get_local_using_directives ();
11240 }
11241
11242 /* Read the import statement specified by the given die and record it. */
11243
11244 static void
11245 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11246 {
11247 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11248 struct attribute *import_attr;
11249 struct die_info *imported_die, *child_die;
11250 struct dwarf2_cu *imported_cu;
11251 const char *imported_name;
11252 const char *imported_name_prefix;
11253 const char *canonical_name;
11254 const char *import_alias;
11255 const char *imported_declaration = NULL;
11256 const char *import_prefix;
11257 std::vector<const char *> excludes;
11258
11259 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11260 if (import_attr == NULL)
11261 {
11262 complaint (_("Tag '%s' has no DW_AT_import"),
11263 dwarf_tag_name (die->tag));
11264 return;
11265 }
11266
11267 imported_cu = cu;
11268 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11269 imported_name = dwarf2_name (imported_die, imported_cu);
11270 if (imported_name == NULL)
11271 {
11272 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11273
11274 The import in the following code:
11275 namespace A
11276 {
11277 typedef int B;
11278 }
11279
11280 int main ()
11281 {
11282 using A::B;
11283 B b;
11284 return b;
11285 }
11286
11287 ...
11288 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11289 <52> DW_AT_decl_file : 1
11290 <53> DW_AT_decl_line : 6
11291 <54> DW_AT_import : <0x75>
11292 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11293 <59> DW_AT_name : B
11294 <5b> DW_AT_decl_file : 1
11295 <5c> DW_AT_decl_line : 2
11296 <5d> DW_AT_type : <0x6e>
11297 ...
11298 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11299 <76> DW_AT_byte_size : 4
11300 <77> DW_AT_encoding : 5 (signed)
11301
11302 imports the wrong die ( 0x75 instead of 0x58 ).
11303 This case will be ignored until the gcc bug is fixed. */
11304 return;
11305 }
11306
11307 /* Figure out the local name after import. */
11308 import_alias = dwarf2_name (die, cu);
11309
11310 /* Figure out where the statement is being imported to. */
11311 import_prefix = determine_prefix (die, cu);
11312
11313 /* Figure out what the scope of the imported die is and prepend it
11314 to the name of the imported die. */
11315 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11316
11317 if (imported_die->tag != DW_TAG_namespace
11318 && imported_die->tag != DW_TAG_module)
11319 {
11320 imported_declaration = imported_name;
11321 canonical_name = imported_name_prefix;
11322 }
11323 else if (strlen (imported_name_prefix) > 0)
11324 canonical_name = obconcat (&objfile->objfile_obstack,
11325 imported_name_prefix,
11326 (cu->language == language_d ? "." : "::"),
11327 imported_name, (char *) NULL);
11328 else
11329 canonical_name = imported_name;
11330
11331 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11332 for (child_die = die->child; child_die && child_die->tag;
11333 child_die = sibling_die (child_die))
11334 {
11335 /* DWARF-4: A Fortran use statement with a “rename list” may be
11336 represented by an imported module entry with an import attribute
11337 referring to the module and owned entries corresponding to those
11338 entities that are renamed as part of being imported. */
11339
11340 if (child_die->tag != DW_TAG_imported_declaration)
11341 {
11342 complaint (_("child DW_TAG_imported_declaration expected "
11343 "- DIE at %s [in module %s]"),
11344 sect_offset_str (child_die->sect_off),
11345 objfile_name (objfile));
11346 continue;
11347 }
11348
11349 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11350 if (import_attr == NULL)
11351 {
11352 complaint (_("Tag '%s' has no DW_AT_import"),
11353 dwarf_tag_name (child_die->tag));
11354 continue;
11355 }
11356
11357 imported_cu = cu;
11358 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11359 &imported_cu);
11360 imported_name = dwarf2_name (imported_die, imported_cu);
11361 if (imported_name == NULL)
11362 {
11363 complaint (_("child DW_TAG_imported_declaration has unknown "
11364 "imported name - DIE at %s [in module %s]"),
11365 sect_offset_str (child_die->sect_off),
11366 objfile_name (objfile));
11367 continue;
11368 }
11369
11370 excludes.push_back (imported_name);
11371
11372 process_die (child_die, cu);
11373 }
11374
11375 add_using_directive (using_directives (cu),
11376 import_prefix,
11377 canonical_name,
11378 import_alias,
11379 imported_declaration,
11380 excludes,
11381 0,
11382 &objfile->objfile_obstack);
11383 }
11384
11385 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11386 types, but gives them a size of zero. Starting with version 14,
11387 ICC is compatible with GCC. */
11388
11389 static bool
11390 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11391 {
11392 if (!cu->checked_producer)
11393 check_producer (cu);
11394
11395 return cu->producer_is_icc_lt_14;
11396 }
11397
11398 /* ICC generates a DW_AT_type for C void functions. This was observed on
11399 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11400 which says that void functions should not have a DW_AT_type. */
11401
11402 static bool
11403 producer_is_icc (struct dwarf2_cu *cu)
11404 {
11405 if (!cu->checked_producer)
11406 check_producer (cu);
11407
11408 return cu->producer_is_icc;
11409 }
11410
11411 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11412 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11413 this, it was first present in GCC release 4.3.0. */
11414
11415 static bool
11416 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11417 {
11418 if (!cu->checked_producer)
11419 check_producer (cu);
11420
11421 return cu->producer_is_gcc_lt_4_3;
11422 }
11423
11424 static file_and_directory
11425 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11426 {
11427 file_and_directory res;
11428
11429 /* Find the filename. Do not use dwarf2_name here, since the filename
11430 is not a source language identifier. */
11431 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11432 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11433
11434 if (res.comp_dir == NULL
11435 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11436 && IS_ABSOLUTE_PATH (res.name))
11437 {
11438 res.comp_dir_storage = ldirname (res.name);
11439 if (!res.comp_dir_storage.empty ())
11440 res.comp_dir = res.comp_dir_storage.c_str ();
11441 }
11442 if (res.comp_dir != NULL)
11443 {
11444 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11445 directory, get rid of it. */
11446 const char *cp = strchr (res.comp_dir, ':');
11447
11448 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11449 res.comp_dir = cp + 1;
11450 }
11451
11452 if (res.name == NULL)
11453 res.name = "<unknown>";
11454
11455 return res;
11456 }
11457
11458 /* Handle DW_AT_stmt_list for a compilation unit.
11459 DIE is the DW_TAG_compile_unit die for CU.
11460 COMP_DIR is the compilation directory. LOWPC is passed to
11461 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11462
11463 static void
11464 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11465 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11466 {
11467 struct dwarf2_per_objfile *dwarf2_per_objfile
11468 = cu->per_cu->dwarf2_per_objfile;
11469 struct objfile *objfile = dwarf2_per_objfile->objfile;
11470 struct attribute *attr;
11471 struct line_header line_header_local;
11472 hashval_t line_header_local_hash;
11473 void **slot;
11474 int decode_mapping;
11475
11476 gdb_assert (! cu->per_cu->is_debug_types);
11477
11478 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11479 if (attr == NULL)
11480 return;
11481
11482 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11483
11484 /* The line header hash table is only created if needed (it exists to
11485 prevent redundant reading of the line table for partial_units).
11486 If we're given a partial_unit, we'll need it. If we're given a
11487 compile_unit, then use the line header hash table if it's already
11488 created, but don't create one just yet. */
11489
11490 if (dwarf2_per_objfile->line_header_hash == NULL
11491 && die->tag == DW_TAG_partial_unit)
11492 {
11493 dwarf2_per_objfile->line_header_hash
11494 = htab_create_alloc_ex (127, line_header_hash_voidp,
11495 line_header_eq_voidp,
11496 free_line_header_voidp,
11497 &objfile->objfile_obstack,
11498 hashtab_obstack_allocate,
11499 dummy_obstack_deallocate);
11500 }
11501
11502 line_header_local.sect_off = line_offset;
11503 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11504 line_header_local_hash = line_header_hash (&line_header_local);
11505 if (dwarf2_per_objfile->line_header_hash != NULL)
11506 {
11507 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11508 &line_header_local,
11509 line_header_local_hash, NO_INSERT);
11510
11511 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11512 is not present in *SLOT (since if there is something in *SLOT then
11513 it will be for a partial_unit). */
11514 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11515 {
11516 gdb_assert (*slot != NULL);
11517 cu->line_header = (struct line_header *) *slot;
11518 return;
11519 }
11520 }
11521
11522 /* dwarf_decode_line_header does not yet provide sufficient information.
11523 We always have to call also dwarf_decode_lines for it. */
11524 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11525 if (lh == NULL)
11526 return;
11527
11528 cu->line_header = lh.release ();
11529 cu->line_header_die_owner = die;
11530
11531 if (dwarf2_per_objfile->line_header_hash == NULL)
11532 slot = NULL;
11533 else
11534 {
11535 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11536 &line_header_local,
11537 line_header_local_hash, INSERT);
11538 gdb_assert (slot != NULL);
11539 }
11540 if (slot != NULL && *slot == NULL)
11541 {
11542 /* This newly decoded line number information unit will be owned
11543 by line_header_hash hash table. */
11544 *slot = cu->line_header;
11545 cu->line_header_die_owner = NULL;
11546 }
11547 else
11548 {
11549 /* We cannot free any current entry in (*slot) as that struct line_header
11550 may be already used by multiple CUs. Create only temporary decoded
11551 line_header for this CU - it may happen at most once for each line
11552 number information unit. And if we're not using line_header_hash
11553 then this is what we want as well. */
11554 gdb_assert (die->tag != DW_TAG_partial_unit);
11555 }
11556 decode_mapping = (die->tag != DW_TAG_partial_unit);
11557 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11558 decode_mapping);
11559
11560 }
11561
11562 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11563
11564 static void
11565 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11566 {
11567 struct dwarf2_per_objfile *dwarf2_per_objfile
11568 = cu->per_cu->dwarf2_per_objfile;
11569 struct objfile *objfile = dwarf2_per_objfile->objfile;
11570 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11571 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11572 CORE_ADDR highpc = ((CORE_ADDR) 0);
11573 struct attribute *attr;
11574 struct die_info *child_die;
11575 CORE_ADDR baseaddr;
11576
11577 prepare_one_comp_unit (cu, die, cu->language);
11578 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11579
11580 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11581
11582 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11583 from finish_block. */
11584 if (lowpc == ((CORE_ADDR) -1))
11585 lowpc = highpc;
11586 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11587
11588 file_and_directory fnd = find_file_and_directory (die, cu);
11589
11590 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11591 standardised yet. As a workaround for the language detection we fall
11592 back to the DW_AT_producer string. */
11593 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11594 cu->language = language_opencl;
11595
11596 /* Similar hack for Go. */
11597 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11598 set_cu_language (DW_LANG_Go, cu);
11599
11600 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11601
11602 /* Decode line number information if present. We do this before
11603 processing child DIEs, so that the line header table is available
11604 for DW_AT_decl_file. */
11605 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11606
11607 /* Process all dies in compilation unit. */
11608 if (die->child != NULL)
11609 {
11610 child_die = die->child;
11611 while (child_die && child_die->tag)
11612 {
11613 process_die (child_die, cu);
11614 child_die = sibling_die (child_die);
11615 }
11616 }
11617
11618 /* Decode macro information, if present. Dwarf 2 macro information
11619 refers to information in the line number info statement program
11620 header, so we can only read it if we've read the header
11621 successfully. */
11622 attr = dwarf2_attr (die, DW_AT_macros, cu);
11623 if (attr == NULL)
11624 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11625 if (attr && cu->line_header)
11626 {
11627 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11628 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11629
11630 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11631 }
11632 else
11633 {
11634 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11635 if (attr && cu->line_header)
11636 {
11637 unsigned int macro_offset = DW_UNSND (attr);
11638
11639 dwarf_decode_macros (cu, macro_offset, 0);
11640 }
11641 }
11642 }
11643
11644 void
11645 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11646 {
11647 struct type_unit_group *tu_group;
11648 int first_time;
11649 struct attribute *attr;
11650 unsigned int i;
11651 struct signatured_type *sig_type;
11652
11653 gdb_assert (per_cu->is_debug_types);
11654 sig_type = (struct signatured_type *) per_cu;
11655
11656 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11657
11658 /* If we're using .gdb_index (includes -readnow) then
11659 per_cu->type_unit_group may not have been set up yet. */
11660 if (sig_type->type_unit_group == NULL)
11661 sig_type->type_unit_group = get_type_unit_group (this, attr);
11662 tu_group = sig_type->type_unit_group;
11663
11664 /* If we've already processed this stmt_list there's no real need to
11665 do it again, we could fake it and just recreate the part we need
11666 (file name,index -> symtab mapping). If data shows this optimization
11667 is useful we can do it then. */
11668 first_time = tu_group->compunit_symtab == NULL;
11669
11670 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11671 debug info. */
11672 line_header_up lh;
11673 if (attr != NULL)
11674 {
11675 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11676 lh = dwarf_decode_line_header (line_offset, this);
11677 }
11678 if (lh == NULL)
11679 {
11680 if (first_time)
11681 start_symtab ("", NULL, 0);
11682 else
11683 {
11684 gdb_assert (tu_group->symtabs == NULL);
11685 gdb_assert (m_builder == nullptr);
11686 struct compunit_symtab *cust = tu_group->compunit_symtab;
11687 m_builder.reset (new struct buildsym_compunit
11688 (COMPUNIT_OBJFILE (cust), "",
11689 COMPUNIT_DIRNAME (cust),
11690 compunit_language (cust),
11691 0, cust));
11692 }
11693 return;
11694 }
11695
11696 line_header = lh.release ();
11697 line_header_die_owner = die;
11698
11699 if (first_time)
11700 {
11701 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11702
11703 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11704 still initializing it, and our caller (a few levels up)
11705 process_full_type_unit still needs to know if this is the first
11706 time. */
11707
11708 tu_group->num_symtabs = line_header->file_names.size ();
11709 tu_group->symtabs = XNEWVEC (struct symtab *,
11710 line_header->file_names.size ());
11711
11712 for (i = 0; i < line_header->file_names.size (); ++i)
11713 {
11714 file_entry &fe = line_header->file_names[i];
11715
11716 dwarf2_start_subfile (this, fe.name,
11717 fe.include_dir (line_header));
11718 buildsym_compunit *b = get_builder ();
11719 if (b->get_current_subfile ()->symtab == NULL)
11720 {
11721 /* NOTE: start_subfile will recognize when it's been
11722 passed a file it has already seen. So we can't
11723 assume there's a simple mapping from
11724 cu->line_header->file_names to subfiles, plus
11725 cu->line_header->file_names may contain dups. */
11726 b->get_current_subfile ()->symtab
11727 = allocate_symtab (cust, b->get_current_subfile ()->name);
11728 }
11729
11730 fe.symtab = b->get_current_subfile ()->symtab;
11731 tu_group->symtabs[i] = fe.symtab;
11732 }
11733 }
11734 else
11735 {
11736 gdb_assert (m_builder == nullptr);
11737 struct compunit_symtab *cust = tu_group->compunit_symtab;
11738 m_builder.reset (new struct buildsym_compunit
11739 (COMPUNIT_OBJFILE (cust), "",
11740 COMPUNIT_DIRNAME (cust),
11741 compunit_language (cust),
11742 0, cust));
11743
11744 for (i = 0; i < line_header->file_names.size (); ++i)
11745 {
11746 file_entry &fe = line_header->file_names[i];
11747
11748 fe.symtab = tu_group->symtabs[i];
11749 }
11750 }
11751
11752 /* The main symtab is allocated last. Type units don't have DW_AT_name
11753 so they don't have a "real" (so to speak) symtab anyway.
11754 There is later code that will assign the main symtab to all symbols
11755 that don't have one. We need to handle the case of a symbol with a
11756 missing symtab (DW_AT_decl_file) anyway. */
11757 }
11758
11759 /* Process DW_TAG_type_unit.
11760 For TUs we want to skip the first top level sibling if it's not the
11761 actual type being defined by this TU. In this case the first top
11762 level sibling is there to provide context only. */
11763
11764 static void
11765 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11766 {
11767 struct die_info *child_die;
11768
11769 prepare_one_comp_unit (cu, die, language_minimal);
11770
11771 /* Initialize (or reinitialize) the machinery for building symtabs.
11772 We do this before processing child DIEs, so that the line header table
11773 is available for DW_AT_decl_file. */
11774 cu->setup_type_unit_groups (die);
11775
11776 if (die->child != NULL)
11777 {
11778 child_die = die->child;
11779 while (child_die && child_die->tag)
11780 {
11781 process_die (child_die, cu);
11782 child_die = sibling_die (child_die);
11783 }
11784 }
11785 }
11786 \f
11787 /* DWO/DWP files.
11788
11789 http://gcc.gnu.org/wiki/DebugFission
11790 http://gcc.gnu.org/wiki/DebugFissionDWP
11791
11792 To simplify handling of both DWO files ("object" files with the DWARF info)
11793 and DWP files (a file with the DWOs packaged up into one file), we treat
11794 DWP files as having a collection of virtual DWO files. */
11795
11796 static hashval_t
11797 hash_dwo_file (const void *item)
11798 {
11799 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11800 hashval_t hash;
11801
11802 hash = htab_hash_string (dwo_file->dwo_name);
11803 if (dwo_file->comp_dir != NULL)
11804 hash += htab_hash_string (dwo_file->comp_dir);
11805 return hash;
11806 }
11807
11808 static int
11809 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11810 {
11811 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11812 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11813
11814 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11815 return 0;
11816 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11817 return lhs->comp_dir == rhs->comp_dir;
11818 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11819 }
11820
11821 /* Allocate a hash table for DWO files. */
11822
11823 static htab_up
11824 allocate_dwo_file_hash_table (struct objfile *objfile)
11825 {
11826 auto delete_dwo_file = [] (void *item)
11827 {
11828 struct dwo_file *dwo_file = (struct dwo_file *) item;
11829
11830 delete dwo_file;
11831 };
11832
11833 return htab_up (htab_create_alloc_ex (41,
11834 hash_dwo_file,
11835 eq_dwo_file,
11836 delete_dwo_file,
11837 &objfile->objfile_obstack,
11838 hashtab_obstack_allocate,
11839 dummy_obstack_deallocate));
11840 }
11841
11842 /* Lookup DWO file DWO_NAME. */
11843
11844 static void **
11845 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11846 const char *dwo_name,
11847 const char *comp_dir)
11848 {
11849 struct dwo_file find_entry;
11850 void **slot;
11851
11852 if (dwarf2_per_objfile->dwo_files == NULL)
11853 dwarf2_per_objfile->dwo_files
11854 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11855
11856 find_entry.dwo_name = dwo_name;
11857 find_entry.comp_dir = comp_dir;
11858 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11859 INSERT);
11860
11861 return slot;
11862 }
11863
11864 static hashval_t
11865 hash_dwo_unit (const void *item)
11866 {
11867 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11868
11869 /* This drops the top 32 bits of the id, but is ok for a hash. */
11870 return dwo_unit->signature;
11871 }
11872
11873 static int
11874 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11875 {
11876 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11877 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11878
11879 /* The signature is assumed to be unique within the DWO file.
11880 So while object file CU dwo_id's always have the value zero,
11881 that's OK, assuming each object file DWO file has only one CU,
11882 and that's the rule for now. */
11883 return lhs->signature == rhs->signature;
11884 }
11885
11886 /* Allocate a hash table for DWO CUs,TUs.
11887 There is one of these tables for each of CUs,TUs for each DWO file. */
11888
11889 static htab_t
11890 allocate_dwo_unit_table (struct objfile *objfile)
11891 {
11892 /* Start out with a pretty small number.
11893 Generally DWO files contain only one CU and maybe some TUs. */
11894 return htab_create_alloc_ex (3,
11895 hash_dwo_unit,
11896 eq_dwo_unit,
11897 NULL,
11898 &objfile->objfile_obstack,
11899 hashtab_obstack_allocate,
11900 dummy_obstack_deallocate);
11901 }
11902
11903 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11904
11905 struct create_dwo_cu_data
11906 {
11907 struct dwo_file *dwo_file;
11908 struct dwo_unit dwo_unit;
11909 };
11910
11911 /* die_reader_func for create_dwo_cu. */
11912
11913 static void
11914 create_dwo_cu_reader (const struct die_reader_specs *reader,
11915 const gdb_byte *info_ptr,
11916 struct die_info *comp_unit_die,
11917 int has_children,
11918 void *datap)
11919 {
11920 struct dwarf2_cu *cu = reader->cu;
11921 sect_offset sect_off = cu->per_cu->sect_off;
11922 struct dwarf2_section_info *section = cu->per_cu->section;
11923 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11924 struct dwo_file *dwo_file = data->dwo_file;
11925 struct dwo_unit *dwo_unit = &data->dwo_unit;
11926
11927 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11928 if (!signature.has_value ())
11929 {
11930 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11931 " its dwo_id [in module %s]"),
11932 sect_offset_str (sect_off), dwo_file->dwo_name);
11933 return;
11934 }
11935
11936 dwo_unit->dwo_file = dwo_file;
11937 dwo_unit->signature = *signature;
11938 dwo_unit->section = section;
11939 dwo_unit->sect_off = sect_off;
11940 dwo_unit->length = cu->per_cu->length;
11941
11942 if (dwarf_read_debug)
11943 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11944 sect_offset_str (sect_off),
11945 hex_string (dwo_unit->signature));
11946 }
11947
11948 /* Create the dwo_units for the CUs in a DWO_FILE.
11949 Note: This function processes DWO files only, not DWP files. */
11950
11951 static void
11952 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11953 struct dwo_file &dwo_file, dwarf2_section_info &section,
11954 htab_t &cus_htab)
11955 {
11956 struct objfile *objfile = dwarf2_per_objfile->objfile;
11957 const gdb_byte *info_ptr, *end_ptr;
11958
11959 dwarf2_read_section (objfile, &section);
11960 info_ptr = section.buffer;
11961
11962 if (info_ptr == NULL)
11963 return;
11964
11965 if (dwarf_read_debug)
11966 {
11967 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11968 get_section_name (&section),
11969 get_section_file_name (&section));
11970 }
11971
11972 end_ptr = info_ptr + section.size;
11973 while (info_ptr < end_ptr)
11974 {
11975 struct dwarf2_per_cu_data per_cu;
11976 struct create_dwo_cu_data create_dwo_cu_data;
11977 struct dwo_unit *dwo_unit;
11978 void **slot;
11979 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11980
11981 memset (&create_dwo_cu_data.dwo_unit, 0,
11982 sizeof (create_dwo_cu_data.dwo_unit));
11983 memset (&per_cu, 0, sizeof (per_cu));
11984 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11985 per_cu.is_debug_types = 0;
11986 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11987 per_cu.section = &section;
11988 create_dwo_cu_data.dwo_file = &dwo_file;
11989
11990 init_cutu_and_read_dies_no_follow (
11991 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11992 info_ptr += per_cu.length;
11993
11994 // If the unit could not be parsed, skip it.
11995 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11996 continue;
11997
11998 if (cus_htab == NULL)
11999 cus_htab = allocate_dwo_unit_table (objfile);
12000
12001 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12002 *dwo_unit = create_dwo_cu_data.dwo_unit;
12003 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12004 gdb_assert (slot != NULL);
12005 if (*slot != NULL)
12006 {
12007 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12008 sect_offset dup_sect_off = dup_cu->sect_off;
12009
12010 complaint (_("debug cu entry at offset %s is duplicate to"
12011 " the entry at offset %s, signature %s"),
12012 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12013 hex_string (dwo_unit->signature));
12014 }
12015 *slot = (void *)dwo_unit;
12016 }
12017 }
12018
12019 /* DWP file .debug_{cu,tu}_index section format:
12020 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12021
12022 DWP Version 1:
12023
12024 Both index sections have the same format, and serve to map a 64-bit
12025 signature to a set of section numbers. Each section begins with a header,
12026 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12027 indexes, and a pool of 32-bit section numbers. The index sections will be
12028 aligned at 8-byte boundaries in the file.
12029
12030 The index section header consists of:
12031
12032 V, 32 bit version number
12033 -, 32 bits unused
12034 N, 32 bit number of compilation units or type units in the index
12035 M, 32 bit number of slots in the hash table
12036
12037 Numbers are recorded using the byte order of the application binary.
12038
12039 The hash table begins at offset 16 in the section, and consists of an array
12040 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12041 order of the application binary). Unused slots in the hash table are 0.
12042 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12043
12044 The parallel table begins immediately after the hash table
12045 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12046 array of 32-bit indexes (using the byte order of the application binary),
12047 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12048 table contains a 32-bit index into the pool of section numbers. For unused
12049 hash table slots, the corresponding entry in the parallel table will be 0.
12050
12051 The pool of section numbers begins immediately following the hash table
12052 (at offset 16 + 12 * M from the beginning of the section). The pool of
12053 section numbers consists of an array of 32-bit words (using the byte order
12054 of the application binary). Each item in the array is indexed starting
12055 from 0. The hash table entry provides the index of the first section
12056 number in the set. Additional section numbers in the set follow, and the
12057 set is terminated by a 0 entry (section number 0 is not used in ELF).
12058
12059 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12060 section must be the first entry in the set, and the .debug_abbrev.dwo must
12061 be the second entry. Other members of the set may follow in any order.
12062
12063 ---
12064
12065 DWP Version 2:
12066
12067 DWP Version 2 combines all the .debug_info, etc. sections into one,
12068 and the entries in the index tables are now offsets into these sections.
12069 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12070 section.
12071
12072 Index Section Contents:
12073 Header
12074 Hash Table of Signatures dwp_hash_table.hash_table
12075 Parallel Table of Indices dwp_hash_table.unit_table
12076 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12077 Table of Section Sizes dwp_hash_table.v2.sizes
12078
12079 The index section header consists of:
12080
12081 V, 32 bit version number
12082 L, 32 bit number of columns in the table of section offsets
12083 N, 32 bit number of compilation units or type units in the index
12084 M, 32 bit number of slots in the hash table
12085
12086 Numbers are recorded using the byte order of the application binary.
12087
12088 The hash table has the same format as version 1.
12089 The parallel table of indices has the same format as version 1,
12090 except that the entries are origin-1 indices into the table of sections
12091 offsets and the table of section sizes.
12092
12093 The table of offsets begins immediately following the parallel table
12094 (at offset 16 + 12 * M from the beginning of the section). The table is
12095 a two-dimensional array of 32-bit words (using the byte order of the
12096 application binary), with L columns and N+1 rows, in row-major order.
12097 Each row in the array is indexed starting from 0. The first row provides
12098 a key to the remaining rows: each column in this row provides an identifier
12099 for a debug section, and the offsets in the same column of subsequent rows
12100 refer to that section. The section identifiers are:
12101
12102 DW_SECT_INFO 1 .debug_info.dwo
12103 DW_SECT_TYPES 2 .debug_types.dwo
12104 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12105 DW_SECT_LINE 4 .debug_line.dwo
12106 DW_SECT_LOC 5 .debug_loc.dwo
12107 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12108 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12109 DW_SECT_MACRO 8 .debug_macro.dwo
12110
12111 The offsets provided by the CU and TU index sections are the base offsets
12112 for the contributions made by each CU or TU to the corresponding section
12113 in the package file. Each CU and TU header contains an abbrev_offset
12114 field, used to find the abbreviations table for that CU or TU within the
12115 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12116 be interpreted as relative to the base offset given in the index section.
12117 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12118 should be interpreted as relative to the base offset for .debug_line.dwo,
12119 and offsets into other debug sections obtained from DWARF attributes should
12120 also be interpreted as relative to the corresponding base offset.
12121
12122 The table of sizes begins immediately following the table of offsets.
12123 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12124 with L columns and N rows, in row-major order. Each row in the array is
12125 indexed starting from 1 (row 0 is shared by the two tables).
12126
12127 ---
12128
12129 Hash table lookup is handled the same in version 1 and 2:
12130
12131 We assume that N and M will not exceed 2^32 - 1.
12132 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12133
12134 Given a 64-bit compilation unit signature or a type signature S, an entry
12135 in the hash table is located as follows:
12136
12137 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12138 the low-order k bits all set to 1.
12139
12140 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12141
12142 3) If the hash table entry at index H matches the signature, use that
12143 entry. If the hash table entry at index H is unused (all zeroes),
12144 terminate the search: the signature is not present in the table.
12145
12146 4) Let H = (H + H') modulo M. Repeat at Step 3.
12147
12148 Because M > N and H' and M are relatively prime, the search is guaranteed
12149 to stop at an unused slot or find the match. */
12150
12151 /* Create a hash table to map DWO IDs to their CU/TU entry in
12152 .debug_{info,types}.dwo in DWP_FILE.
12153 Returns NULL if there isn't one.
12154 Note: This function processes DWP files only, not DWO files. */
12155
12156 static struct dwp_hash_table *
12157 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12158 struct dwp_file *dwp_file, int is_debug_types)
12159 {
12160 struct objfile *objfile = dwarf2_per_objfile->objfile;
12161 bfd *dbfd = dwp_file->dbfd.get ();
12162 const gdb_byte *index_ptr, *index_end;
12163 struct dwarf2_section_info *index;
12164 uint32_t version, nr_columns, nr_units, nr_slots;
12165 struct dwp_hash_table *htab;
12166
12167 if (is_debug_types)
12168 index = &dwp_file->sections.tu_index;
12169 else
12170 index = &dwp_file->sections.cu_index;
12171
12172 if (dwarf2_section_empty_p (index))
12173 return NULL;
12174 dwarf2_read_section (objfile, index);
12175
12176 index_ptr = index->buffer;
12177 index_end = index_ptr + index->size;
12178
12179 version = read_4_bytes (dbfd, index_ptr);
12180 index_ptr += 4;
12181 if (version == 2)
12182 nr_columns = read_4_bytes (dbfd, index_ptr);
12183 else
12184 nr_columns = 0;
12185 index_ptr += 4;
12186 nr_units = read_4_bytes (dbfd, index_ptr);
12187 index_ptr += 4;
12188 nr_slots = read_4_bytes (dbfd, index_ptr);
12189 index_ptr += 4;
12190
12191 if (version != 1 && version != 2)
12192 {
12193 error (_("Dwarf Error: unsupported DWP file version (%s)"
12194 " [in module %s]"),
12195 pulongest (version), dwp_file->name);
12196 }
12197 if (nr_slots != (nr_slots & -nr_slots))
12198 {
12199 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12200 " is not power of 2 [in module %s]"),
12201 pulongest (nr_slots), dwp_file->name);
12202 }
12203
12204 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12205 htab->version = version;
12206 htab->nr_columns = nr_columns;
12207 htab->nr_units = nr_units;
12208 htab->nr_slots = nr_slots;
12209 htab->hash_table = index_ptr;
12210 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12211
12212 /* Exit early if the table is empty. */
12213 if (nr_slots == 0 || nr_units == 0
12214 || (version == 2 && nr_columns == 0))
12215 {
12216 /* All must be zero. */
12217 if (nr_slots != 0 || nr_units != 0
12218 || (version == 2 && nr_columns != 0))
12219 {
12220 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12221 " all zero [in modules %s]"),
12222 dwp_file->name);
12223 }
12224 return htab;
12225 }
12226
12227 if (version == 1)
12228 {
12229 htab->section_pool.v1.indices =
12230 htab->unit_table + sizeof (uint32_t) * nr_slots;
12231 /* It's harder to decide whether the section is too small in v1.
12232 V1 is deprecated anyway so we punt. */
12233 }
12234 else
12235 {
12236 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12237 int *ids = htab->section_pool.v2.section_ids;
12238 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12239 /* Reverse map for error checking. */
12240 int ids_seen[DW_SECT_MAX + 1];
12241 int i;
12242
12243 if (nr_columns < 2)
12244 {
12245 error (_("Dwarf Error: bad DWP hash table, too few columns"
12246 " in section table [in module %s]"),
12247 dwp_file->name);
12248 }
12249 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12250 {
12251 error (_("Dwarf Error: bad DWP hash table, too many columns"
12252 " in section table [in module %s]"),
12253 dwp_file->name);
12254 }
12255 memset (ids, 255, sizeof_ids);
12256 memset (ids_seen, 255, sizeof (ids_seen));
12257 for (i = 0; i < nr_columns; ++i)
12258 {
12259 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12260
12261 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12262 {
12263 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12264 " in section table [in module %s]"),
12265 id, dwp_file->name);
12266 }
12267 if (ids_seen[id] != -1)
12268 {
12269 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12270 " id %d in section table [in module %s]"),
12271 id, dwp_file->name);
12272 }
12273 ids_seen[id] = i;
12274 ids[i] = id;
12275 }
12276 /* Must have exactly one info or types section. */
12277 if (((ids_seen[DW_SECT_INFO] != -1)
12278 + (ids_seen[DW_SECT_TYPES] != -1))
12279 != 1)
12280 {
12281 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12282 " DWO info/types section [in module %s]"),
12283 dwp_file->name);
12284 }
12285 /* Must have an abbrev section. */
12286 if (ids_seen[DW_SECT_ABBREV] == -1)
12287 {
12288 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12289 " section [in module %s]"),
12290 dwp_file->name);
12291 }
12292 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12293 htab->section_pool.v2.sizes =
12294 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12295 * nr_units * nr_columns);
12296 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12297 * nr_units * nr_columns))
12298 > index_end)
12299 {
12300 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12301 " [in module %s]"),
12302 dwp_file->name);
12303 }
12304 }
12305
12306 return htab;
12307 }
12308
12309 /* Update SECTIONS with the data from SECTP.
12310
12311 This function is like the other "locate" section routines that are
12312 passed to bfd_map_over_sections, but in this context the sections to
12313 read comes from the DWP V1 hash table, not the full ELF section table.
12314
12315 The result is non-zero for success, or zero if an error was found. */
12316
12317 static int
12318 locate_v1_virtual_dwo_sections (asection *sectp,
12319 struct virtual_v1_dwo_sections *sections)
12320 {
12321 const struct dwop_section_names *names = &dwop_section_names;
12322
12323 if (section_is_p (sectp->name, &names->abbrev_dwo))
12324 {
12325 /* There can be only one. */
12326 if (sections->abbrev.s.section != NULL)
12327 return 0;
12328 sections->abbrev.s.section = sectp;
12329 sections->abbrev.size = bfd_section_size (sectp);
12330 }
12331 else if (section_is_p (sectp->name, &names->info_dwo)
12332 || section_is_p (sectp->name, &names->types_dwo))
12333 {
12334 /* There can be only one. */
12335 if (sections->info_or_types.s.section != NULL)
12336 return 0;
12337 sections->info_or_types.s.section = sectp;
12338 sections->info_or_types.size = bfd_section_size (sectp);
12339 }
12340 else if (section_is_p (sectp->name, &names->line_dwo))
12341 {
12342 /* There can be only one. */
12343 if (sections->line.s.section != NULL)
12344 return 0;
12345 sections->line.s.section = sectp;
12346 sections->line.size = bfd_section_size (sectp);
12347 }
12348 else if (section_is_p (sectp->name, &names->loc_dwo))
12349 {
12350 /* There can be only one. */
12351 if (sections->loc.s.section != NULL)
12352 return 0;
12353 sections->loc.s.section = sectp;
12354 sections->loc.size = bfd_section_size (sectp);
12355 }
12356 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12357 {
12358 /* There can be only one. */
12359 if (sections->macinfo.s.section != NULL)
12360 return 0;
12361 sections->macinfo.s.section = sectp;
12362 sections->macinfo.size = bfd_section_size (sectp);
12363 }
12364 else if (section_is_p (sectp->name, &names->macro_dwo))
12365 {
12366 /* There can be only one. */
12367 if (sections->macro.s.section != NULL)
12368 return 0;
12369 sections->macro.s.section = sectp;
12370 sections->macro.size = bfd_section_size (sectp);
12371 }
12372 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12373 {
12374 /* There can be only one. */
12375 if (sections->str_offsets.s.section != NULL)
12376 return 0;
12377 sections->str_offsets.s.section = sectp;
12378 sections->str_offsets.size = bfd_section_size (sectp);
12379 }
12380 else
12381 {
12382 /* No other kind of section is valid. */
12383 return 0;
12384 }
12385
12386 return 1;
12387 }
12388
12389 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12390 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12391 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12392 This is for DWP version 1 files. */
12393
12394 static struct dwo_unit *
12395 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12396 struct dwp_file *dwp_file,
12397 uint32_t unit_index,
12398 const char *comp_dir,
12399 ULONGEST signature, int is_debug_types)
12400 {
12401 struct objfile *objfile = dwarf2_per_objfile->objfile;
12402 const struct dwp_hash_table *dwp_htab =
12403 is_debug_types ? dwp_file->tus : dwp_file->cus;
12404 bfd *dbfd = dwp_file->dbfd.get ();
12405 const char *kind = is_debug_types ? "TU" : "CU";
12406 struct dwo_file *dwo_file;
12407 struct dwo_unit *dwo_unit;
12408 struct virtual_v1_dwo_sections sections;
12409 void **dwo_file_slot;
12410 int i;
12411
12412 gdb_assert (dwp_file->version == 1);
12413
12414 if (dwarf_read_debug)
12415 {
12416 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12417 kind,
12418 pulongest (unit_index), hex_string (signature),
12419 dwp_file->name);
12420 }
12421
12422 /* Fetch the sections of this DWO unit.
12423 Put a limit on the number of sections we look for so that bad data
12424 doesn't cause us to loop forever. */
12425
12426 #define MAX_NR_V1_DWO_SECTIONS \
12427 (1 /* .debug_info or .debug_types */ \
12428 + 1 /* .debug_abbrev */ \
12429 + 1 /* .debug_line */ \
12430 + 1 /* .debug_loc */ \
12431 + 1 /* .debug_str_offsets */ \
12432 + 1 /* .debug_macro or .debug_macinfo */ \
12433 + 1 /* trailing zero */)
12434
12435 memset (&sections, 0, sizeof (sections));
12436
12437 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12438 {
12439 asection *sectp;
12440 uint32_t section_nr =
12441 read_4_bytes (dbfd,
12442 dwp_htab->section_pool.v1.indices
12443 + (unit_index + i) * sizeof (uint32_t));
12444
12445 if (section_nr == 0)
12446 break;
12447 if (section_nr >= dwp_file->num_sections)
12448 {
12449 error (_("Dwarf Error: bad DWP hash table, section number too large"
12450 " [in module %s]"),
12451 dwp_file->name);
12452 }
12453
12454 sectp = dwp_file->elf_sections[section_nr];
12455 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12456 {
12457 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12458 " [in module %s]"),
12459 dwp_file->name);
12460 }
12461 }
12462
12463 if (i < 2
12464 || dwarf2_section_empty_p (&sections.info_or_types)
12465 || dwarf2_section_empty_p (&sections.abbrev))
12466 {
12467 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12468 " [in module %s]"),
12469 dwp_file->name);
12470 }
12471 if (i == MAX_NR_V1_DWO_SECTIONS)
12472 {
12473 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12474 " [in module %s]"),
12475 dwp_file->name);
12476 }
12477
12478 /* It's easier for the rest of the code if we fake a struct dwo_file and
12479 have dwo_unit "live" in that. At least for now.
12480
12481 The DWP file can be made up of a random collection of CUs and TUs.
12482 However, for each CU + set of TUs that came from the same original DWO
12483 file, we can combine them back into a virtual DWO file to save space
12484 (fewer struct dwo_file objects to allocate). Remember that for really
12485 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12486
12487 std::string virtual_dwo_name =
12488 string_printf ("virtual-dwo/%d-%d-%d-%d",
12489 get_section_id (&sections.abbrev),
12490 get_section_id (&sections.line),
12491 get_section_id (&sections.loc),
12492 get_section_id (&sections.str_offsets));
12493 /* Can we use an existing virtual DWO file? */
12494 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12495 virtual_dwo_name.c_str (),
12496 comp_dir);
12497 /* Create one if necessary. */
12498 if (*dwo_file_slot == NULL)
12499 {
12500 if (dwarf_read_debug)
12501 {
12502 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12503 virtual_dwo_name.c_str ());
12504 }
12505 dwo_file = new struct dwo_file;
12506 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12507 virtual_dwo_name);
12508 dwo_file->comp_dir = comp_dir;
12509 dwo_file->sections.abbrev = sections.abbrev;
12510 dwo_file->sections.line = sections.line;
12511 dwo_file->sections.loc = sections.loc;
12512 dwo_file->sections.macinfo = sections.macinfo;
12513 dwo_file->sections.macro = sections.macro;
12514 dwo_file->sections.str_offsets = sections.str_offsets;
12515 /* The "str" section is global to the entire DWP file. */
12516 dwo_file->sections.str = dwp_file->sections.str;
12517 /* The info or types section is assigned below to dwo_unit,
12518 there's no need to record it in dwo_file.
12519 Also, we can't simply record type sections in dwo_file because
12520 we record a pointer into the vector in dwo_unit. As we collect more
12521 types we'll grow the vector and eventually have to reallocate space
12522 for it, invalidating all copies of pointers into the previous
12523 contents. */
12524 *dwo_file_slot = dwo_file;
12525 }
12526 else
12527 {
12528 if (dwarf_read_debug)
12529 {
12530 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12531 virtual_dwo_name.c_str ());
12532 }
12533 dwo_file = (struct dwo_file *) *dwo_file_slot;
12534 }
12535
12536 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12537 dwo_unit->dwo_file = dwo_file;
12538 dwo_unit->signature = signature;
12539 dwo_unit->section =
12540 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12541 *dwo_unit->section = sections.info_or_types;
12542 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12543
12544 return dwo_unit;
12545 }
12546
12547 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12548 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12549 piece within that section used by a TU/CU, return a virtual section
12550 of just that piece. */
12551
12552 static struct dwarf2_section_info
12553 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12554 struct dwarf2_section_info *section,
12555 bfd_size_type offset, bfd_size_type size)
12556 {
12557 struct dwarf2_section_info result;
12558 asection *sectp;
12559
12560 gdb_assert (section != NULL);
12561 gdb_assert (!section->is_virtual);
12562
12563 memset (&result, 0, sizeof (result));
12564 result.s.containing_section = section;
12565 result.is_virtual = true;
12566
12567 if (size == 0)
12568 return result;
12569
12570 sectp = get_section_bfd_section (section);
12571
12572 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12573 bounds of the real section. This is a pretty-rare event, so just
12574 flag an error (easier) instead of a warning and trying to cope. */
12575 if (sectp == NULL
12576 || offset + size > bfd_section_size (sectp))
12577 {
12578 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12579 " in section %s [in module %s]"),
12580 sectp ? bfd_section_name (sectp) : "<unknown>",
12581 objfile_name (dwarf2_per_objfile->objfile));
12582 }
12583
12584 result.virtual_offset = offset;
12585 result.size = size;
12586 return result;
12587 }
12588
12589 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12590 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12591 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12592 This is for DWP version 2 files. */
12593
12594 static struct dwo_unit *
12595 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12596 struct dwp_file *dwp_file,
12597 uint32_t unit_index,
12598 const char *comp_dir,
12599 ULONGEST signature, int is_debug_types)
12600 {
12601 struct objfile *objfile = dwarf2_per_objfile->objfile;
12602 const struct dwp_hash_table *dwp_htab =
12603 is_debug_types ? dwp_file->tus : dwp_file->cus;
12604 bfd *dbfd = dwp_file->dbfd.get ();
12605 const char *kind = is_debug_types ? "TU" : "CU";
12606 struct dwo_file *dwo_file;
12607 struct dwo_unit *dwo_unit;
12608 struct virtual_v2_dwo_sections sections;
12609 void **dwo_file_slot;
12610 int i;
12611
12612 gdb_assert (dwp_file->version == 2);
12613
12614 if (dwarf_read_debug)
12615 {
12616 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12617 kind,
12618 pulongest (unit_index), hex_string (signature),
12619 dwp_file->name);
12620 }
12621
12622 /* Fetch the section offsets of this DWO unit. */
12623
12624 memset (&sections, 0, sizeof (sections));
12625
12626 for (i = 0; i < dwp_htab->nr_columns; ++i)
12627 {
12628 uint32_t offset = read_4_bytes (dbfd,
12629 dwp_htab->section_pool.v2.offsets
12630 + (((unit_index - 1) * dwp_htab->nr_columns
12631 + i)
12632 * sizeof (uint32_t)));
12633 uint32_t size = read_4_bytes (dbfd,
12634 dwp_htab->section_pool.v2.sizes
12635 + (((unit_index - 1) * dwp_htab->nr_columns
12636 + i)
12637 * sizeof (uint32_t)));
12638
12639 switch (dwp_htab->section_pool.v2.section_ids[i])
12640 {
12641 case DW_SECT_INFO:
12642 case DW_SECT_TYPES:
12643 sections.info_or_types_offset = offset;
12644 sections.info_or_types_size = size;
12645 break;
12646 case DW_SECT_ABBREV:
12647 sections.abbrev_offset = offset;
12648 sections.abbrev_size = size;
12649 break;
12650 case DW_SECT_LINE:
12651 sections.line_offset = offset;
12652 sections.line_size = size;
12653 break;
12654 case DW_SECT_LOC:
12655 sections.loc_offset = offset;
12656 sections.loc_size = size;
12657 break;
12658 case DW_SECT_STR_OFFSETS:
12659 sections.str_offsets_offset = offset;
12660 sections.str_offsets_size = size;
12661 break;
12662 case DW_SECT_MACINFO:
12663 sections.macinfo_offset = offset;
12664 sections.macinfo_size = size;
12665 break;
12666 case DW_SECT_MACRO:
12667 sections.macro_offset = offset;
12668 sections.macro_size = size;
12669 break;
12670 }
12671 }
12672
12673 /* It's easier for the rest of the code if we fake a struct dwo_file and
12674 have dwo_unit "live" in that. At least for now.
12675
12676 The DWP file can be made up of a random collection of CUs and TUs.
12677 However, for each CU + set of TUs that came from the same original DWO
12678 file, we can combine them back into a virtual DWO file to save space
12679 (fewer struct dwo_file objects to allocate). Remember that for really
12680 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12681
12682 std::string virtual_dwo_name =
12683 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12684 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12685 (long) (sections.line_size ? sections.line_offset : 0),
12686 (long) (sections.loc_size ? sections.loc_offset : 0),
12687 (long) (sections.str_offsets_size
12688 ? sections.str_offsets_offset : 0));
12689 /* Can we use an existing virtual DWO file? */
12690 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12691 virtual_dwo_name.c_str (),
12692 comp_dir);
12693 /* Create one if necessary. */
12694 if (*dwo_file_slot == NULL)
12695 {
12696 if (dwarf_read_debug)
12697 {
12698 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12699 virtual_dwo_name.c_str ());
12700 }
12701 dwo_file = new struct dwo_file;
12702 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12703 virtual_dwo_name);
12704 dwo_file->comp_dir = comp_dir;
12705 dwo_file->sections.abbrev =
12706 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12707 sections.abbrev_offset, sections.abbrev_size);
12708 dwo_file->sections.line =
12709 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12710 sections.line_offset, sections.line_size);
12711 dwo_file->sections.loc =
12712 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12713 sections.loc_offset, sections.loc_size);
12714 dwo_file->sections.macinfo =
12715 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12716 sections.macinfo_offset, sections.macinfo_size);
12717 dwo_file->sections.macro =
12718 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12719 sections.macro_offset, sections.macro_size);
12720 dwo_file->sections.str_offsets =
12721 create_dwp_v2_section (dwarf2_per_objfile,
12722 &dwp_file->sections.str_offsets,
12723 sections.str_offsets_offset,
12724 sections.str_offsets_size);
12725 /* The "str" section is global to the entire DWP file. */
12726 dwo_file->sections.str = dwp_file->sections.str;
12727 /* The info or types section is assigned below to dwo_unit,
12728 there's no need to record it in dwo_file.
12729 Also, we can't simply record type sections in dwo_file because
12730 we record a pointer into the vector in dwo_unit. As we collect more
12731 types we'll grow the vector and eventually have to reallocate space
12732 for it, invalidating all copies of pointers into the previous
12733 contents. */
12734 *dwo_file_slot = dwo_file;
12735 }
12736 else
12737 {
12738 if (dwarf_read_debug)
12739 {
12740 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12741 virtual_dwo_name.c_str ());
12742 }
12743 dwo_file = (struct dwo_file *) *dwo_file_slot;
12744 }
12745
12746 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12747 dwo_unit->dwo_file = dwo_file;
12748 dwo_unit->signature = signature;
12749 dwo_unit->section =
12750 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12751 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12752 is_debug_types
12753 ? &dwp_file->sections.types
12754 : &dwp_file->sections.info,
12755 sections.info_or_types_offset,
12756 sections.info_or_types_size);
12757 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12758
12759 return dwo_unit;
12760 }
12761
12762 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12763 Returns NULL if the signature isn't found. */
12764
12765 static struct dwo_unit *
12766 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12767 struct dwp_file *dwp_file, const char *comp_dir,
12768 ULONGEST signature, int is_debug_types)
12769 {
12770 const struct dwp_hash_table *dwp_htab =
12771 is_debug_types ? dwp_file->tus : dwp_file->cus;
12772 bfd *dbfd = dwp_file->dbfd.get ();
12773 uint32_t mask = dwp_htab->nr_slots - 1;
12774 uint32_t hash = signature & mask;
12775 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12776 unsigned int i;
12777 void **slot;
12778 struct dwo_unit find_dwo_cu;
12779
12780 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12781 find_dwo_cu.signature = signature;
12782 slot = htab_find_slot (is_debug_types
12783 ? dwp_file->loaded_tus
12784 : dwp_file->loaded_cus,
12785 &find_dwo_cu, INSERT);
12786
12787 if (*slot != NULL)
12788 return (struct dwo_unit *) *slot;
12789
12790 /* Use a for loop so that we don't loop forever on bad debug info. */
12791 for (i = 0; i < dwp_htab->nr_slots; ++i)
12792 {
12793 ULONGEST signature_in_table;
12794
12795 signature_in_table =
12796 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12797 if (signature_in_table == signature)
12798 {
12799 uint32_t unit_index =
12800 read_4_bytes (dbfd,
12801 dwp_htab->unit_table + hash * sizeof (uint32_t));
12802
12803 if (dwp_file->version == 1)
12804 {
12805 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12806 dwp_file, unit_index,
12807 comp_dir, signature,
12808 is_debug_types);
12809 }
12810 else
12811 {
12812 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12813 dwp_file, unit_index,
12814 comp_dir, signature,
12815 is_debug_types);
12816 }
12817 return (struct dwo_unit *) *slot;
12818 }
12819 if (signature_in_table == 0)
12820 return NULL;
12821 hash = (hash + hash2) & mask;
12822 }
12823
12824 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12825 " [in module %s]"),
12826 dwp_file->name);
12827 }
12828
12829 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12830 Open the file specified by FILE_NAME and hand it off to BFD for
12831 preliminary analysis. Return a newly initialized bfd *, which
12832 includes a canonicalized copy of FILE_NAME.
12833 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12834 SEARCH_CWD is true if the current directory is to be searched.
12835 It will be searched before debug-file-directory.
12836 If successful, the file is added to the bfd include table of the
12837 objfile's bfd (see gdb_bfd_record_inclusion).
12838 If unable to find/open the file, return NULL.
12839 NOTE: This function is derived from symfile_bfd_open. */
12840
12841 static gdb_bfd_ref_ptr
12842 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12843 const char *file_name, int is_dwp, int search_cwd)
12844 {
12845 int desc;
12846 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12847 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12848 to debug_file_directory. */
12849 const char *search_path;
12850 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12851
12852 gdb::unique_xmalloc_ptr<char> search_path_holder;
12853 if (search_cwd)
12854 {
12855 if (*debug_file_directory != '\0')
12856 {
12857 search_path_holder.reset (concat (".", dirname_separator_string,
12858 debug_file_directory,
12859 (char *) NULL));
12860 search_path = search_path_holder.get ();
12861 }
12862 else
12863 search_path = ".";
12864 }
12865 else
12866 search_path = debug_file_directory;
12867
12868 openp_flags flags = OPF_RETURN_REALPATH;
12869 if (is_dwp)
12870 flags |= OPF_SEARCH_IN_PATH;
12871
12872 gdb::unique_xmalloc_ptr<char> absolute_name;
12873 desc = openp (search_path, flags, file_name,
12874 O_RDONLY | O_BINARY, &absolute_name);
12875 if (desc < 0)
12876 return NULL;
12877
12878 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12879 gnutarget, desc));
12880 if (sym_bfd == NULL)
12881 return NULL;
12882 bfd_set_cacheable (sym_bfd.get (), 1);
12883
12884 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12885 return NULL;
12886
12887 /* Success. Record the bfd as having been included by the objfile's bfd.
12888 This is important because things like demangled_names_hash lives in the
12889 objfile's per_bfd space and may have references to things like symbol
12890 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12891 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12892
12893 return sym_bfd;
12894 }
12895
12896 /* Try to open DWO file FILE_NAME.
12897 COMP_DIR is the DW_AT_comp_dir attribute.
12898 The result is the bfd handle of the file.
12899 If there is a problem finding or opening the file, return NULL.
12900 Upon success, the canonicalized path of the file is stored in the bfd,
12901 same as symfile_bfd_open. */
12902
12903 static gdb_bfd_ref_ptr
12904 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12905 const char *file_name, const char *comp_dir)
12906 {
12907 if (IS_ABSOLUTE_PATH (file_name))
12908 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12909 0 /*is_dwp*/, 0 /*search_cwd*/);
12910
12911 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12912
12913 if (comp_dir != NULL)
12914 {
12915 char *path_to_try = concat (comp_dir, SLASH_STRING,
12916 file_name, (char *) NULL);
12917
12918 /* NOTE: If comp_dir is a relative path, this will also try the
12919 search path, which seems useful. */
12920 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12921 path_to_try,
12922 0 /*is_dwp*/,
12923 1 /*search_cwd*/));
12924 xfree (path_to_try);
12925 if (abfd != NULL)
12926 return abfd;
12927 }
12928
12929 /* That didn't work, try debug-file-directory, which, despite its name,
12930 is a list of paths. */
12931
12932 if (*debug_file_directory == '\0')
12933 return NULL;
12934
12935 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12936 0 /*is_dwp*/, 1 /*search_cwd*/);
12937 }
12938
12939 /* This function is mapped across the sections and remembers the offset and
12940 size of each of the DWO debugging sections we are interested in. */
12941
12942 static void
12943 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12944 {
12945 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12946 const struct dwop_section_names *names = &dwop_section_names;
12947
12948 if (section_is_p (sectp->name, &names->abbrev_dwo))
12949 {
12950 dwo_sections->abbrev.s.section = sectp;
12951 dwo_sections->abbrev.size = bfd_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->info_dwo))
12954 {
12955 dwo_sections->info.s.section = sectp;
12956 dwo_sections->info.size = bfd_section_size (sectp);
12957 }
12958 else if (section_is_p (sectp->name, &names->line_dwo))
12959 {
12960 dwo_sections->line.s.section = sectp;
12961 dwo_sections->line.size = bfd_section_size (sectp);
12962 }
12963 else if (section_is_p (sectp->name, &names->loc_dwo))
12964 {
12965 dwo_sections->loc.s.section = sectp;
12966 dwo_sections->loc.size = bfd_section_size (sectp);
12967 }
12968 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12969 {
12970 dwo_sections->macinfo.s.section = sectp;
12971 dwo_sections->macinfo.size = bfd_section_size (sectp);
12972 }
12973 else if (section_is_p (sectp->name, &names->macro_dwo))
12974 {
12975 dwo_sections->macro.s.section = sectp;
12976 dwo_sections->macro.size = bfd_section_size (sectp);
12977 }
12978 else if (section_is_p (sectp->name, &names->str_dwo))
12979 {
12980 dwo_sections->str.s.section = sectp;
12981 dwo_sections->str.size = bfd_section_size (sectp);
12982 }
12983 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12984 {
12985 dwo_sections->str_offsets.s.section = sectp;
12986 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12987 }
12988 else if (section_is_p (sectp->name, &names->types_dwo))
12989 {
12990 struct dwarf2_section_info type_section;
12991
12992 memset (&type_section, 0, sizeof (type_section));
12993 type_section.s.section = sectp;
12994 type_section.size = bfd_section_size (sectp);
12995 dwo_sections->types.push_back (type_section);
12996 }
12997 }
12998
12999 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13000 by PER_CU. This is for the non-DWP case.
13001 The result is NULL if DWO_NAME can't be found. */
13002
13003 static struct dwo_file *
13004 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13005 const char *dwo_name, const char *comp_dir)
13006 {
13007 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13008
13009 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
13010 if (dbfd == NULL)
13011 {
13012 if (dwarf_read_debug)
13013 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13014 return NULL;
13015 }
13016
13017 dwo_file_up dwo_file (new struct dwo_file);
13018 dwo_file->dwo_name = dwo_name;
13019 dwo_file->comp_dir = comp_dir;
13020 dwo_file->dbfd = std::move (dbfd);
13021
13022 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
13023 &dwo_file->sections);
13024
13025 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13026 dwo_file->cus);
13027
13028 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13029 dwo_file->sections.types, dwo_file->tus);
13030
13031 if (dwarf_read_debug)
13032 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13033
13034 return dwo_file.release ();
13035 }
13036
13037 /* This function is mapped across the sections and remembers the offset and
13038 size of each of the DWP debugging sections common to version 1 and 2 that
13039 we are interested in. */
13040
13041 static void
13042 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13043 void *dwp_file_ptr)
13044 {
13045 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13046 const struct dwop_section_names *names = &dwop_section_names;
13047 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13048
13049 /* Record the ELF section number for later lookup: this is what the
13050 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13051 gdb_assert (elf_section_nr < dwp_file->num_sections);
13052 dwp_file->elf_sections[elf_section_nr] = sectp;
13053
13054 /* Look for specific sections that we need. */
13055 if (section_is_p (sectp->name, &names->str_dwo))
13056 {
13057 dwp_file->sections.str.s.section = sectp;
13058 dwp_file->sections.str.size = bfd_section_size (sectp);
13059 }
13060 else if (section_is_p (sectp->name, &names->cu_index))
13061 {
13062 dwp_file->sections.cu_index.s.section = sectp;
13063 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
13064 }
13065 else if (section_is_p (sectp->name, &names->tu_index))
13066 {
13067 dwp_file->sections.tu_index.s.section = sectp;
13068 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
13069 }
13070 }
13071
13072 /* This function is mapped across the sections and remembers the offset and
13073 size of each of the DWP version 2 debugging sections that we are interested
13074 in. This is split into a separate function because we don't know if we
13075 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13076
13077 static void
13078 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13079 {
13080 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13081 const struct dwop_section_names *names = &dwop_section_names;
13082 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13083
13084 /* Record the ELF section number for later lookup: this is what the
13085 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13086 gdb_assert (elf_section_nr < dwp_file->num_sections);
13087 dwp_file->elf_sections[elf_section_nr] = sectp;
13088
13089 /* Look for specific sections that we need. */
13090 if (section_is_p (sectp->name, &names->abbrev_dwo))
13091 {
13092 dwp_file->sections.abbrev.s.section = sectp;
13093 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->info_dwo))
13096 {
13097 dwp_file->sections.info.s.section = sectp;
13098 dwp_file->sections.info.size = bfd_section_size (sectp);
13099 }
13100 else if (section_is_p (sectp->name, &names->line_dwo))
13101 {
13102 dwp_file->sections.line.s.section = sectp;
13103 dwp_file->sections.line.size = bfd_section_size (sectp);
13104 }
13105 else if (section_is_p (sectp->name, &names->loc_dwo))
13106 {
13107 dwp_file->sections.loc.s.section = sectp;
13108 dwp_file->sections.loc.size = bfd_section_size (sectp);
13109 }
13110 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13111 {
13112 dwp_file->sections.macinfo.s.section = sectp;
13113 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
13114 }
13115 else if (section_is_p (sectp->name, &names->macro_dwo))
13116 {
13117 dwp_file->sections.macro.s.section = sectp;
13118 dwp_file->sections.macro.size = bfd_section_size (sectp);
13119 }
13120 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13121 {
13122 dwp_file->sections.str_offsets.s.section = sectp;
13123 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
13124 }
13125 else if (section_is_p (sectp->name, &names->types_dwo))
13126 {
13127 dwp_file->sections.types.s.section = sectp;
13128 dwp_file->sections.types.size = bfd_section_size (sectp);
13129 }
13130 }
13131
13132 /* Hash function for dwp_file loaded CUs/TUs. */
13133
13134 static hashval_t
13135 hash_dwp_loaded_cutus (const void *item)
13136 {
13137 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13138
13139 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13140 return dwo_unit->signature;
13141 }
13142
13143 /* Equality function for dwp_file loaded CUs/TUs. */
13144
13145 static int
13146 eq_dwp_loaded_cutus (const void *a, const void *b)
13147 {
13148 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13149 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13150
13151 return dua->signature == dub->signature;
13152 }
13153
13154 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13155
13156 static htab_t
13157 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13158 {
13159 return htab_create_alloc_ex (3,
13160 hash_dwp_loaded_cutus,
13161 eq_dwp_loaded_cutus,
13162 NULL,
13163 &objfile->objfile_obstack,
13164 hashtab_obstack_allocate,
13165 dummy_obstack_deallocate);
13166 }
13167
13168 /* Try to open DWP file FILE_NAME.
13169 The result is the bfd handle of the file.
13170 If there is a problem finding or opening the file, return NULL.
13171 Upon success, the canonicalized path of the file is stored in the bfd,
13172 same as symfile_bfd_open. */
13173
13174 static gdb_bfd_ref_ptr
13175 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13176 const char *file_name)
13177 {
13178 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13179 1 /*is_dwp*/,
13180 1 /*search_cwd*/));
13181 if (abfd != NULL)
13182 return abfd;
13183
13184 /* Work around upstream bug 15652.
13185 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13186 [Whether that's a "bug" is debatable, but it is getting in our way.]
13187 We have no real idea where the dwp file is, because gdb's realpath-ing
13188 of the executable's path may have discarded the needed info.
13189 [IWBN if the dwp file name was recorded in the executable, akin to
13190 .gnu_debuglink, but that doesn't exist yet.]
13191 Strip the directory from FILE_NAME and search again. */
13192 if (*debug_file_directory != '\0')
13193 {
13194 /* Don't implicitly search the current directory here.
13195 If the user wants to search "." to handle this case,
13196 it must be added to debug-file-directory. */
13197 return try_open_dwop_file (dwarf2_per_objfile,
13198 lbasename (file_name), 1 /*is_dwp*/,
13199 0 /*search_cwd*/);
13200 }
13201
13202 return NULL;
13203 }
13204
13205 /* Initialize the use of the DWP file for the current objfile.
13206 By convention the name of the DWP file is ${objfile}.dwp.
13207 The result is NULL if it can't be found. */
13208
13209 static std::unique_ptr<struct dwp_file>
13210 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13211 {
13212 struct objfile *objfile = dwarf2_per_objfile->objfile;
13213
13214 /* Try to find first .dwp for the binary file before any symbolic links
13215 resolving. */
13216
13217 /* If the objfile is a debug file, find the name of the real binary
13218 file and get the name of dwp file from there. */
13219 std::string dwp_name;
13220 if (objfile->separate_debug_objfile_backlink != NULL)
13221 {
13222 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13223 const char *backlink_basename = lbasename (backlink->original_name);
13224
13225 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13226 }
13227 else
13228 dwp_name = objfile->original_name;
13229
13230 dwp_name += ".dwp";
13231
13232 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13233 if (dbfd == NULL
13234 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13235 {
13236 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13237 dwp_name = objfile_name (objfile);
13238 dwp_name += ".dwp";
13239 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13240 }
13241
13242 if (dbfd == NULL)
13243 {
13244 if (dwarf_read_debug)
13245 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13246 return std::unique_ptr<dwp_file> ();
13247 }
13248
13249 const char *name = bfd_get_filename (dbfd.get ());
13250 std::unique_ptr<struct dwp_file> dwp_file
13251 (new struct dwp_file (name, std::move (dbfd)));
13252
13253 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13254 dwp_file->elf_sections =
13255 OBSTACK_CALLOC (&objfile->objfile_obstack,
13256 dwp_file->num_sections, asection *);
13257
13258 bfd_map_over_sections (dwp_file->dbfd.get (),
13259 dwarf2_locate_common_dwp_sections,
13260 dwp_file.get ());
13261
13262 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13263 0);
13264
13265 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13266 1);
13267
13268 /* The DWP file version is stored in the hash table. Oh well. */
13269 if (dwp_file->cus && dwp_file->tus
13270 && dwp_file->cus->version != dwp_file->tus->version)
13271 {
13272 /* Technically speaking, we should try to limp along, but this is
13273 pretty bizarre. We use pulongest here because that's the established
13274 portability solution (e.g, we cannot use %u for uint32_t). */
13275 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13276 " TU version %s [in DWP file %s]"),
13277 pulongest (dwp_file->cus->version),
13278 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13279 }
13280
13281 if (dwp_file->cus)
13282 dwp_file->version = dwp_file->cus->version;
13283 else if (dwp_file->tus)
13284 dwp_file->version = dwp_file->tus->version;
13285 else
13286 dwp_file->version = 2;
13287
13288 if (dwp_file->version == 2)
13289 bfd_map_over_sections (dwp_file->dbfd.get (),
13290 dwarf2_locate_v2_dwp_sections,
13291 dwp_file.get ());
13292
13293 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13294 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13295
13296 if (dwarf_read_debug)
13297 {
13298 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13299 fprintf_unfiltered (gdb_stdlog,
13300 " %s CUs, %s TUs\n",
13301 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13302 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13303 }
13304
13305 return dwp_file;
13306 }
13307
13308 /* Wrapper around open_and_init_dwp_file, only open it once. */
13309
13310 static struct dwp_file *
13311 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13312 {
13313 if (! dwarf2_per_objfile->dwp_checked)
13314 {
13315 dwarf2_per_objfile->dwp_file
13316 = open_and_init_dwp_file (dwarf2_per_objfile);
13317 dwarf2_per_objfile->dwp_checked = 1;
13318 }
13319 return dwarf2_per_objfile->dwp_file.get ();
13320 }
13321
13322 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13323 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13324 or in the DWP file for the objfile, referenced by THIS_UNIT.
13325 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13326 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13327
13328 This is called, for example, when wanting to read a variable with a
13329 complex location. Therefore we don't want to do file i/o for every call.
13330 Therefore we don't want to look for a DWO file on every call.
13331 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13332 then we check if we've already seen DWO_NAME, and only THEN do we check
13333 for a DWO file.
13334
13335 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13336 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13337
13338 static struct dwo_unit *
13339 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13340 const char *dwo_name, const char *comp_dir,
13341 ULONGEST signature, int is_debug_types)
13342 {
13343 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13344 struct objfile *objfile = dwarf2_per_objfile->objfile;
13345 const char *kind = is_debug_types ? "TU" : "CU";
13346 void **dwo_file_slot;
13347 struct dwo_file *dwo_file;
13348 struct dwp_file *dwp_file;
13349
13350 /* First see if there's a DWP file.
13351 If we have a DWP file but didn't find the DWO inside it, don't
13352 look for the original DWO file. It makes gdb behave differently
13353 depending on whether one is debugging in the build tree. */
13354
13355 dwp_file = get_dwp_file (dwarf2_per_objfile);
13356 if (dwp_file != NULL)
13357 {
13358 const struct dwp_hash_table *dwp_htab =
13359 is_debug_types ? dwp_file->tus : dwp_file->cus;
13360
13361 if (dwp_htab != NULL)
13362 {
13363 struct dwo_unit *dwo_cutu =
13364 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13365 signature, is_debug_types);
13366
13367 if (dwo_cutu != NULL)
13368 {
13369 if (dwarf_read_debug)
13370 {
13371 fprintf_unfiltered (gdb_stdlog,
13372 "Virtual DWO %s %s found: @%s\n",
13373 kind, hex_string (signature),
13374 host_address_to_string (dwo_cutu));
13375 }
13376 return dwo_cutu;
13377 }
13378 }
13379 }
13380 else
13381 {
13382 /* No DWP file, look for the DWO file. */
13383
13384 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13385 dwo_name, comp_dir);
13386 if (*dwo_file_slot == NULL)
13387 {
13388 /* Read in the file and build a table of the CUs/TUs it contains. */
13389 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13390 }
13391 /* NOTE: This will be NULL if unable to open the file. */
13392 dwo_file = (struct dwo_file *) *dwo_file_slot;
13393
13394 if (dwo_file != NULL)
13395 {
13396 struct dwo_unit *dwo_cutu = NULL;
13397
13398 if (is_debug_types && dwo_file->tus)
13399 {
13400 struct dwo_unit find_dwo_cutu;
13401
13402 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13403 find_dwo_cutu.signature = signature;
13404 dwo_cutu
13405 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13406 }
13407 else if (!is_debug_types && dwo_file->cus)
13408 {
13409 struct dwo_unit find_dwo_cutu;
13410
13411 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13412 find_dwo_cutu.signature = signature;
13413 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13414 &find_dwo_cutu);
13415 }
13416
13417 if (dwo_cutu != NULL)
13418 {
13419 if (dwarf_read_debug)
13420 {
13421 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13422 kind, dwo_name, hex_string (signature),
13423 host_address_to_string (dwo_cutu));
13424 }
13425 return dwo_cutu;
13426 }
13427 }
13428 }
13429
13430 /* We didn't find it. This could mean a dwo_id mismatch, or
13431 someone deleted the DWO/DWP file, or the search path isn't set up
13432 correctly to find the file. */
13433
13434 if (dwarf_read_debug)
13435 {
13436 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13437 kind, dwo_name, hex_string (signature));
13438 }
13439
13440 /* This is a warning and not a complaint because it can be caused by
13441 pilot error (e.g., user accidentally deleting the DWO). */
13442 {
13443 /* Print the name of the DWP file if we looked there, helps the user
13444 better diagnose the problem. */
13445 std::string dwp_text;
13446
13447 if (dwp_file != NULL)
13448 dwp_text = string_printf (" [in DWP file %s]",
13449 lbasename (dwp_file->name));
13450
13451 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13452 " [in module %s]"),
13453 kind, dwo_name, hex_string (signature),
13454 dwp_text.c_str (),
13455 this_unit->is_debug_types ? "TU" : "CU",
13456 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13457 }
13458 return NULL;
13459 }
13460
13461 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13462 See lookup_dwo_cutu_unit for details. */
13463
13464 static struct dwo_unit *
13465 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13466 const char *dwo_name, const char *comp_dir,
13467 ULONGEST signature)
13468 {
13469 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13470 }
13471
13472 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13473 See lookup_dwo_cutu_unit for details. */
13474
13475 static struct dwo_unit *
13476 lookup_dwo_type_unit (struct signatured_type *this_tu,
13477 const char *dwo_name, const char *comp_dir)
13478 {
13479 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13480 }
13481
13482 /* Traversal function for queue_and_load_all_dwo_tus. */
13483
13484 static int
13485 queue_and_load_dwo_tu (void **slot, void *info)
13486 {
13487 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13488 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13489 ULONGEST signature = dwo_unit->signature;
13490 struct signatured_type *sig_type =
13491 lookup_dwo_signatured_type (per_cu->cu, signature);
13492
13493 if (sig_type != NULL)
13494 {
13495 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13496
13497 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13498 a real dependency of PER_CU on SIG_TYPE. That is detected later
13499 while processing PER_CU. */
13500 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13501 load_full_type_unit (sig_cu);
13502 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13503 }
13504
13505 return 1;
13506 }
13507
13508 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13509 The DWO may have the only definition of the type, though it may not be
13510 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13511 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13512
13513 static void
13514 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13515 {
13516 struct dwo_unit *dwo_unit;
13517 struct dwo_file *dwo_file;
13518
13519 gdb_assert (!per_cu->is_debug_types);
13520 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13521 gdb_assert (per_cu->cu != NULL);
13522
13523 dwo_unit = per_cu->cu->dwo_unit;
13524 gdb_assert (dwo_unit != NULL);
13525
13526 dwo_file = dwo_unit->dwo_file;
13527 if (dwo_file->tus != NULL)
13528 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13529 }
13530
13531 /* Read in various DIEs. */
13532
13533 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13534 Inherit only the children of the DW_AT_abstract_origin DIE not being
13535 already referenced by DW_AT_abstract_origin from the children of the
13536 current DIE. */
13537
13538 static void
13539 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13540 {
13541 struct die_info *child_die;
13542 sect_offset *offsetp;
13543 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13544 struct die_info *origin_die;
13545 /* Iterator of the ORIGIN_DIE children. */
13546 struct die_info *origin_child_die;
13547 struct attribute *attr;
13548 struct dwarf2_cu *origin_cu;
13549 struct pending **origin_previous_list_in_scope;
13550
13551 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13552 if (!attr)
13553 return;
13554
13555 /* Note that following die references may follow to a die in a
13556 different cu. */
13557
13558 origin_cu = cu;
13559 origin_die = follow_die_ref (die, attr, &origin_cu);
13560
13561 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13562 symbols in. */
13563 origin_previous_list_in_scope = origin_cu->list_in_scope;
13564 origin_cu->list_in_scope = cu->list_in_scope;
13565
13566 if (die->tag != origin_die->tag
13567 && !(die->tag == DW_TAG_inlined_subroutine
13568 && origin_die->tag == DW_TAG_subprogram))
13569 complaint (_("DIE %s and its abstract origin %s have different tags"),
13570 sect_offset_str (die->sect_off),
13571 sect_offset_str (origin_die->sect_off));
13572
13573 std::vector<sect_offset> offsets;
13574
13575 for (child_die = die->child;
13576 child_die && child_die->tag;
13577 child_die = sibling_die (child_die))
13578 {
13579 struct die_info *child_origin_die;
13580 struct dwarf2_cu *child_origin_cu;
13581
13582 /* We are trying to process concrete instance entries:
13583 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13584 it's not relevant to our analysis here. i.e. detecting DIEs that are
13585 present in the abstract instance but not referenced in the concrete
13586 one. */
13587 if (child_die->tag == DW_TAG_call_site
13588 || child_die->tag == DW_TAG_GNU_call_site)
13589 continue;
13590
13591 /* For each CHILD_DIE, find the corresponding child of
13592 ORIGIN_DIE. If there is more than one layer of
13593 DW_AT_abstract_origin, follow them all; there shouldn't be,
13594 but GCC versions at least through 4.4 generate this (GCC PR
13595 40573). */
13596 child_origin_die = child_die;
13597 child_origin_cu = cu;
13598 while (1)
13599 {
13600 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13601 child_origin_cu);
13602 if (attr == NULL)
13603 break;
13604 child_origin_die = follow_die_ref (child_origin_die, attr,
13605 &child_origin_cu);
13606 }
13607
13608 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13609 counterpart may exist. */
13610 if (child_origin_die != child_die)
13611 {
13612 if (child_die->tag != child_origin_die->tag
13613 && !(child_die->tag == DW_TAG_inlined_subroutine
13614 && child_origin_die->tag == DW_TAG_subprogram))
13615 complaint (_("Child DIE %s and its abstract origin %s have "
13616 "different tags"),
13617 sect_offset_str (child_die->sect_off),
13618 sect_offset_str (child_origin_die->sect_off));
13619 if (child_origin_die->parent != origin_die)
13620 complaint (_("Child DIE %s and its abstract origin %s have "
13621 "different parents"),
13622 sect_offset_str (child_die->sect_off),
13623 sect_offset_str (child_origin_die->sect_off));
13624 else
13625 offsets.push_back (child_origin_die->sect_off);
13626 }
13627 }
13628 std::sort (offsets.begin (), offsets.end ());
13629 sect_offset *offsets_end = offsets.data () + offsets.size ();
13630 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13631 if (offsetp[-1] == *offsetp)
13632 complaint (_("Multiple children of DIE %s refer "
13633 "to DIE %s as their abstract origin"),
13634 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13635
13636 offsetp = offsets.data ();
13637 origin_child_die = origin_die->child;
13638 while (origin_child_die && origin_child_die->tag)
13639 {
13640 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13641 while (offsetp < offsets_end
13642 && *offsetp < origin_child_die->sect_off)
13643 offsetp++;
13644 if (offsetp >= offsets_end
13645 || *offsetp > origin_child_die->sect_off)
13646 {
13647 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13648 Check whether we're already processing ORIGIN_CHILD_DIE.
13649 This can happen with mutually referenced abstract_origins.
13650 PR 16581. */
13651 if (!origin_child_die->in_process)
13652 process_die (origin_child_die, origin_cu);
13653 }
13654 origin_child_die = sibling_die (origin_child_die);
13655 }
13656 origin_cu->list_in_scope = origin_previous_list_in_scope;
13657 }
13658
13659 static void
13660 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13661 {
13662 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13663 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13664 struct context_stack *newobj;
13665 CORE_ADDR lowpc;
13666 CORE_ADDR highpc;
13667 struct die_info *child_die;
13668 struct attribute *attr, *call_line, *call_file;
13669 const char *name;
13670 CORE_ADDR baseaddr;
13671 struct block *block;
13672 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13673 std::vector<struct symbol *> template_args;
13674 struct template_symbol *templ_func = NULL;
13675
13676 if (inlined_func)
13677 {
13678 /* If we do not have call site information, we can't show the
13679 caller of this inlined function. That's too confusing, so
13680 only use the scope for local variables. */
13681 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13682 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13683 if (call_line == NULL || call_file == NULL)
13684 {
13685 read_lexical_block_scope (die, cu);
13686 return;
13687 }
13688 }
13689
13690 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13691
13692 name = dwarf2_name (die, cu);
13693
13694 /* Ignore functions with missing or empty names. These are actually
13695 illegal according to the DWARF standard. */
13696 if (name == NULL)
13697 {
13698 complaint (_("missing name for subprogram DIE at %s"),
13699 sect_offset_str (die->sect_off));
13700 return;
13701 }
13702
13703 /* Ignore functions with missing or invalid low and high pc attributes. */
13704 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13705 <= PC_BOUNDS_INVALID)
13706 {
13707 attr = dwarf2_attr (die, DW_AT_external, cu);
13708 if (!attr || !DW_UNSND (attr))
13709 complaint (_("cannot get low and high bounds "
13710 "for subprogram DIE at %s"),
13711 sect_offset_str (die->sect_off));
13712 return;
13713 }
13714
13715 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13716 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13717
13718 /* If we have any template arguments, then we must allocate a
13719 different sort of symbol. */
13720 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13721 {
13722 if (child_die->tag == DW_TAG_template_type_param
13723 || child_die->tag == DW_TAG_template_value_param)
13724 {
13725 templ_func = allocate_template_symbol (objfile);
13726 templ_func->subclass = SYMBOL_TEMPLATE;
13727 break;
13728 }
13729 }
13730
13731 newobj = cu->get_builder ()->push_context (0, lowpc);
13732 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13733 (struct symbol *) templ_func);
13734
13735 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13736 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13737 cu->language);
13738
13739 /* If there is a location expression for DW_AT_frame_base, record
13740 it. */
13741 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13742 if (attr)
13743 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13744
13745 /* If there is a location for the static link, record it. */
13746 newobj->static_link = NULL;
13747 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13748 if (attr)
13749 {
13750 newobj->static_link
13751 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13752 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13753 dwarf2_per_cu_addr_type (cu->per_cu));
13754 }
13755
13756 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13757
13758 if (die->child != NULL)
13759 {
13760 child_die = die->child;
13761 while (child_die && child_die->tag)
13762 {
13763 if (child_die->tag == DW_TAG_template_type_param
13764 || child_die->tag == DW_TAG_template_value_param)
13765 {
13766 struct symbol *arg = new_symbol (child_die, NULL, cu);
13767
13768 if (arg != NULL)
13769 template_args.push_back (arg);
13770 }
13771 else
13772 process_die (child_die, cu);
13773 child_die = sibling_die (child_die);
13774 }
13775 }
13776
13777 inherit_abstract_dies (die, cu);
13778
13779 /* If we have a DW_AT_specification, we might need to import using
13780 directives from the context of the specification DIE. See the
13781 comment in determine_prefix. */
13782 if (cu->language == language_cplus
13783 && dwarf2_attr (die, DW_AT_specification, cu))
13784 {
13785 struct dwarf2_cu *spec_cu = cu;
13786 struct die_info *spec_die = die_specification (die, &spec_cu);
13787
13788 while (spec_die)
13789 {
13790 child_die = spec_die->child;
13791 while (child_die && child_die->tag)
13792 {
13793 if (child_die->tag == DW_TAG_imported_module)
13794 process_die (child_die, spec_cu);
13795 child_die = sibling_die (child_die);
13796 }
13797
13798 /* In some cases, GCC generates specification DIEs that
13799 themselves contain DW_AT_specification attributes. */
13800 spec_die = die_specification (spec_die, &spec_cu);
13801 }
13802 }
13803
13804 struct context_stack cstk = cu->get_builder ()->pop_context ();
13805 /* Make a block for the local symbols within. */
13806 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13807 cstk.static_link, lowpc, highpc);
13808
13809 /* For C++, set the block's scope. */
13810 if ((cu->language == language_cplus
13811 || cu->language == language_fortran
13812 || cu->language == language_d
13813 || cu->language == language_rust)
13814 && cu->processing_has_namespace_info)
13815 block_set_scope (block, determine_prefix (die, cu),
13816 &objfile->objfile_obstack);
13817
13818 /* If we have address ranges, record them. */
13819 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13820
13821 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13822
13823 /* Attach template arguments to function. */
13824 if (!template_args.empty ())
13825 {
13826 gdb_assert (templ_func != NULL);
13827
13828 templ_func->n_template_arguments = template_args.size ();
13829 templ_func->template_arguments
13830 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13831 templ_func->n_template_arguments);
13832 memcpy (templ_func->template_arguments,
13833 template_args.data (),
13834 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13835
13836 /* Make sure that the symtab is set on the new symbols. Even
13837 though they don't appear in this symtab directly, other parts
13838 of gdb assume that symbols do, and this is reasonably
13839 true. */
13840 for (symbol *sym : template_args)
13841 symbol_set_symtab (sym, symbol_symtab (templ_func));
13842 }
13843
13844 /* In C++, we can have functions nested inside functions (e.g., when
13845 a function declares a class that has methods). This means that
13846 when we finish processing a function scope, we may need to go
13847 back to building a containing block's symbol lists. */
13848 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13849 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13850
13851 /* If we've finished processing a top-level function, subsequent
13852 symbols go in the file symbol list. */
13853 if (cu->get_builder ()->outermost_context_p ())
13854 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13855 }
13856
13857 /* Process all the DIES contained within a lexical block scope. Start
13858 a new scope, process the dies, and then close the scope. */
13859
13860 static void
13861 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13862 {
13863 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13864 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13865 CORE_ADDR lowpc, highpc;
13866 struct die_info *child_die;
13867 CORE_ADDR baseaddr;
13868
13869 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13870
13871 /* Ignore blocks with missing or invalid low and high pc attributes. */
13872 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13873 as multiple lexical blocks? Handling children in a sane way would
13874 be nasty. Might be easier to properly extend generic blocks to
13875 describe ranges. */
13876 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13877 {
13878 case PC_BOUNDS_NOT_PRESENT:
13879 /* DW_TAG_lexical_block has no attributes, process its children as if
13880 there was no wrapping by that DW_TAG_lexical_block.
13881 GCC does no longer produces such DWARF since GCC r224161. */
13882 for (child_die = die->child;
13883 child_die != NULL && child_die->tag;
13884 child_die = sibling_die (child_die))
13885 process_die (child_die, cu);
13886 return;
13887 case PC_BOUNDS_INVALID:
13888 return;
13889 }
13890 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13891 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13892
13893 cu->get_builder ()->push_context (0, lowpc);
13894 if (die->child != NULL)
13895 {
13896 child_die = die->child;
13897 while (child_die && child_die->tag)
13898 {
13899 process_die (child_die, cu);
13900 child_die = sibling_die (child_die);
13901 }
13902 }
13903 inherit_abstract_dies (die, cu);
13904 struct context_stack cstk = cu->get_builder ()->pop_context ();
13905
13906 if (*cu->get_builder ()->get_local_symbols () != NULL
13907 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13908 {
13909 struct block *block
13910 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13911 cstk.start_addr, highpc);
13912
13913 /* Note that recording ranges after traversing children, as we
13914 do here, means that recording a parent's ranges entails
13915 walking across all its children's ranges as they appear in
13916 the address map, which is quadratic behavior.
13917
13918 It would be nicer to record the parent's ranges before
13919 traversing its children, simply overriding whatever you find
13920 there. But since we don't even decide whether to create a
13921 block until after we've traversed its children, that's hard
13922 to do. */
13923 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13924 }
13925 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13926 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13927 }
13928
13929 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13930
13931 static void
13932 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13933 {
13934 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13935 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13936 CORE_ADDR pc, baseaddr;
13937 struct attribute *attr;
13938 struct call_site *call_site, call_site_local;
13939 void **slot;
13940 int nparams;
13941 struct die_info *child_die;
13942
13943 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13944
13945 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13946 if (attr == NULL)
13947 {
13948 /* This was a pre-DWARF-5 GNU extension alias
13949 for DW_AT_call_return_pc. */
13950 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13951 }
13952 if (!attr)
13953 {
13954 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13955 "DIE %s [in module %s]"),
13956 sect_offset_str (die->sect_off), objfile_name (objfile));
13957 return;
13958 }
13959 pc = attr_value_as_address (attr) + baseaddr;
13960 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13961
13962 if (cu->call_site_htab == NULL)
13963 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13964 NULL, &objfile->objfile_obstack,
13965 hashtab_obstack_allocate, NULL);
13966 call_site_local.pc = pc;
13967 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13968 if (*slot != NULL)
13969 {
13970 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13971 "DIE %s [in module %s]"),
13972 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13973 objfile_name (objfile));
13974 return;
13975 }
13976
13977 /* Count parameters at the caller. */
13978
13979 nparams = 0;
13980 for (child_die = die->child; child_die && child_die->tag;
13981 child_die = sibling_die (child_die))
13982 {
13983 if (child_die->tag != DW_TAG_call_site_parameter
13984 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13985 {
13986 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13987 "DW_TAG_call_site child DIE %s [in module %s]"),
13988 child_die->tag, sect_offset_str (child_die->sect_off),
13989 objfile_name (objfile));
13990 continue;
13991 }
13992
13993 nparams++;
13994 }
13995
13996 call_site
13997 = ((struct call_site *)
13998 obstack_alloc (&objfile->objfile_obstack,
13999 sizeof (*call_site)
14000 + (sizeof (*call_site->parameter) * (nparams - 1))));
14001 *slot = call_site;
14002 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14003 call_site->pc = pc;
14004
14005 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14006 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14007 {
14008 struct die_info *func_die;
14009
14010 /* Skip also over DW_TAG_inlined_subroutine. */
14011 for (func_die = die->parent;
14012 func_die && func_die->tag != DW_TAG_subprogram
14013 && func_die->tag != DW_TAG_subroutine_type;
14014 func_die = func_die->parent);
14015
14016 /* DW_AT_call_all_calls is a superset
14017 of DW_AT_call_all_tail_calls. */
14018 if (func_die
14019 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14020 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14021 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14022 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14023 {
14024 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14025 not complete. But keep CALL_SITE for look ups via call_site_htab,
14026 both the initial caller containing the real return address PC and
14027 the final callee containing the current PC of a chain of tail
14028 calls do not need to have the tail call list complete. But any
14029 function candidate for a virtual tail call frame searched via
14030 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14031 determined unambiguously. */
14032 }
14033 else
14034 {
14035 struct type *func_type = NULL;
14036
14037 if (func_die)
14038 func_type = get_die_type (func_die, cu);
14039 if (func_type != NULL)
14040 {
14041 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14042
14043 /* Enlist this call site to the function. */
14044 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14045 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14046 }
14047 else
14048 complaint (_("Cannot find function owning DW_TAG_call_site "
14049 "DIE %s [in module %s]"),
14050 sect_offset_str (die->sect_off), objfile_name (objfile));
14051 }
14052 }
14053
14054 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14055 if (attr == NULL)
14056 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14057 if (attr == NULL)
14058 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14059 if (attr == NULL)
14060 {
14061 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14062 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14063 }
14064 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14065 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14066 /* Keep NULL DWARF_BLOCK. */;
14067 else if (attr_form_is_block (attr))
14068 {
14069 struct dwarf2_locexpr_baton *dlbaton;
14070
14071 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14072 dlbaton->data = DW_BLOCK (attr)->data;
14073 dlbaton->size = DW_BLOCK (attr)->size;
14074 dlbaton->per_cu = cu->per_cu;
14075
14076 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14077 }
14078 else if (attr_form_is_ref (attr))
14079 {
14080 struct dwarf2_cu *target_cu = cu;
14081 struct die_info *target_die;
14082
14083 target_die = follow_die_ref (die, attr, &target_cu);
14084 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14085 if (die_is_declaration (target_die, target_cu))
14086 {
14087 const char *target_physname;
14088
14089 /* Prefer the mangled name; otherwise compute the demangled one. */
14090 target_physname = dw2_linkage_name (target_die, target_cu);
14091 if (target_physname == NULL)
14092 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14093 if (target_physname == NULL)
14094 complaint (_("DW_AT_call_target target DIE has invalid "
14095 "physname, for referencing DIE %s [in module %s]"),
14096 sect_offset_str (die->sect_off), objfile_name (objfile));
14097 else
14098 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14099 }
14100 else
14101 {
14102 CORE_ADDR lowpc;
14103
14104 /* DW_AT_entry_pc should be preferred. */
14105 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14106 <= PC_BOUNDS_INVALID)
14107 complaint (_("DW_AT_call_target target DIE has invalid "
14108 "low pc, for referencing DIE %s [in module %s]"),
14109 sect_offset_str (die->sect_off), objfile_name (objfile));
14110 else
14111 {
14112 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14113 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14114 }
14115 }
14116 }
14117 else
14118 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14119 "block nor reference, for DIE %s [in module %s]"),
14120 sect_offset_str (die->sect_off), objfile_name (objfile));
14121
14122 call_site->per_cu = cu->per_cu;
14123
14124 for (child_die = die->child;
14125 child_die && child_die->tag;
14126 child_die = sibling_die (child_die))
14127 {
14128 struct call_site_parameter *parameter;
14129 struct attribute *loc, *origin;
14130
14131 if (child_die->tag != DW_TAG_call_site_parameter
14132 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14133 {
14134 /* Already printed the complaint above. */
14135 continue;
14136 }
14137
14138 gdb_assert (call_site->parameter_count < nparams);
14139 parameter = &call_site->parameter[call_site->parameter_count];
14140
14141 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14142 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14143 register is contained in DW_AT_call_value. */
14144
14145 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14146 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14147 if (origin == NULL)
14148 {
14149 /* This was a pre-DWARF-5 GNU extension alias
14150 for DW_AT_call_parameter. */
14151 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14152 }
14153 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14154 {
14155 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14156
14157 sect_offset sect_off
14158 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14159 if (!offset_in_cu_p (&cu->header, sect_off))
14160 {
14161 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14162 binding can be done only inside one CU. Such referenced DIE
14163 therefore cannot be even moved to DW_TAG_partial_unit. */
14164 complaint (_("DW_AT_call_parameter offset is not in CU for "
14165 "DW_TAG_call_site child DIE %s [in module %s]"),
14166 sect_offset_str (child_die->sect_off),
14167 objfile_name (objfile));
14168 continue;
14169 }
14170 parameter->u.param_cu_off
14171 = (cu_offset) (sect_off - cu->header.sect_off);
14172 }
14173 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14174 {
14175 complaint (_("No DW_FORM_block* DW_AT_location for "
14176 "DW_TAG_call_site child DIE %s [in module %s]"),
14177 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14178 continue;
14179 }
14180 else
14181 {
14182 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14183 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14184 if (parameter->u.dwarf_reg != -1)
14185 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14186 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14187 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14188 &parameter->u.fb_offset))
14189 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14190 else
14191 {
14192 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14193 "for DW_FORM_block* DW_AT_location is supported for "
14194 "DW_TAG_call_site child DIE %s "
14195 "[in module %s]"),
14196 sect_offset_str (child_die->sect_off),
14197 objfile_name (objfile));
14198 continue;
14199 }
14200 }
14201
14202 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14203 if (attr == NULL)
14204 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14205 if (!attr_form_is_block (attr))
14206 {
14207 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14208 "DW_TAG_call_site child DIE %s [in module %s]"),
14209 sect_offset_str (child_die->sect_off),
14210 objfile_name (objfile));
14211 continue;
14212 }
14213 parameter->value = DW_BLOCK (attr)->data;
14214 parameter->value_size = DW_BLOCK (attr)->size;
14215
14216 /* Parameters are not pre-cleared by memset above. */
14217 parameter->data_value = NULL;
14218 parameter->data_value_size = 0;
14219 call_site->parameter_count++;
14220
14221 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14222 if (attr == NULL)
14223 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14224 if (attr)
14225 {
14226 if (!attr_form_is_block (attr))
14227 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14228 "DW_TAG_call_site child DIE %s [in module %s]"),
14229 sect_offset_str (child_die->sect_off),
14230 objfile_name (objfile));
14231 else
14232 {
14233 parameter->data_value = DW_BLOCK (attr)->data;
14234 parameter->data_value_size = DW_BLOCK (attr)->size;
14235 }
14236 }
14237 }
14238 }
14239
14240 /* Helper function for read_variable. If DIE represents a virtual
14241 table, then return the type of the concrete object that is
14242 associated with the virtual table. Otherwise, return NULL. */
14243
14244 static struct type *
14245 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14246 {
14247 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14248 if (attr == NULL)
14249 return NULL;
14250
14251 /* Find the type DIE. */
14252 struct die_info *type_die = NULL;
14253 struct dwarf2_cu *type_cu = cu;
14254
14255 if (attr_form_is_ref (attr))
14256 type_die = follow_die_ref (die, attr, &type_cu);
14257 if (type_die == NULL)
14258 return NULL;
14259
14260 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14261 return NULL;
14262 return die_containing_type (type_die, type_cu);
14263 }
14264
14265 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14266
14267 static void
14268 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14269 {
14270 struct rust_vtable_symbol *storage = NULL;
14271
14272 if (cu->language == language_rust)
14273 {
14274 struct type *containing_type = rust_containing_type (die, cu);
14275
14276 if (containing_type != NULL)
14277 {
14278 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14279
14280 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14281 struct rust_vtable_symbol);
14282 initialize_objfile_symbol (storage);
14283 storage->concrete_type = containing_type;
14284 storage->subclass = SYMBOL_RUST_VTABLE;
14285 }
14286 }
14287
14288 struct symbol *res = new_symbol (die, NULL, cu, storage);
14289 struct attribute *abstract_origin
14290 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14291 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14292 if (res == NULL && loc && abstract_origin)
14293 {
14294 /* We have a variable without a name, but with a location and an abstract
14295 origin. This may be a concrete instance of an abstract variable
14296 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14297 later. */
14298 struct dwarf2_cu *origin_cu = cu;
14299 struct die_info *origin_die
14300 = follow_die_ref (die, abstract_origin, &origin_cu);
14301 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14302 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14303 }
14304 }
14305
14306 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14307 reading .debug_rnglists.
14308 Callback's type should be:
14309 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14310 Return true if the attributes are present and valid, otherwise,
14311 return false. */
14312
14313 template <typename Callback>
14314 static bool
14315 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14316 Callback &&callback)
14317 {
14318 struct dwarf2_per_objfile *dwarf2_per_objfile
14319 = cu->per_cu->dwarf2_per_objfile;
14320 struct objfile *objfile = dwarf2_per_objfile->objfile;
14321 bfd *obfd = objfile->obfd;
14322 /* Base address selection entry. */
14323 CORE_ADDR base;
14324 int found_base;
14325 const gdb_byte *buffer;
14326 CORE_ADDR baseaddr;
14327 bool overflow = false;
14328
14329 found_base = cu->base_known;
14330 base = cu->base_address;
14331
14332 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14333 if (offset >= dwarf2_per_objfile->rnglists.size)
14334 {
14335 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14336 offset);
14337 return false;
14338 }
14339 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14340
14341 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14342
14343 while (1)
14344 {
14345 /* Initialize it due to a false compiler warning. */
14346 CORE_ADDR range_beginning = 0, range_end = 0;
14347 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14348 + dwarf2_per_objfile->rnglists.size);
14349 unsigned int bytes_read;
14350
14351 if (buffer == buf_end)
14352 {
14353 overflow = true;
14354 break;
14355 }
14356 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14357 switch (rlet)
14358 {
14359 case DW_RLE_end_of_list:
14360 break;
14361 case DW_RLE_base_address:
14362 if (buffer + cu->header.addr_size > buf_end)
14363 {
14364 overflow = true;
14365 break;
14366 }
14367 base = read_address (obfd, buffer, cu, &bytes_read);
14368 found_base = 1;
14369 buffer += bytes_read;
14370 break;
14371 case DW_RLE_start_length:
14372 if (buffer + cu->header.addr_size > buf_end)
14373 {
14374 overflow = true;
14375 break;
14376 }
14377 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14378 buffer += bytes_read;
14379 range_end = (range_beginning
14380 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14381 buffer += bytes_read;
14382 if (buffer > buf_end)
14383 {
14384 overflow = true;
14385 break;
14386 }
14387 break;
14388 case DW_RLE_offset_pair:
14389 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14390 buffer += bytes_read;
14391 if (buffer > buf_end)
14392 {
14393 overflow = true;
14394 break;
14395 }
14396 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14397 buffer += bytes_read;
14398 if (buffer > buf_end)
14399 {
14400 overflow = true;
14401 break;
14402 }
14403 break;
14404 case DW_RLE_start_end:
14405 if (buffer + 2 * cu->header.addr_size > buf_end)
14406 {
14407 overflow = true;
14408 break;
14409 }
14410 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14411 buffer += bytes_read;
14412 range_end = read_address (obfd, buffer, cu, &bytes_read);
14413 buffer += bytes_read;
14414 break;
14415 default:
14416 complaint (_("Invalid .debug_rnglists data (no base address)"));
14417 return false;
14418 }
14419 if (rlet == DW_RLE_end_of_list || overflow)
14420 break;
14421 if (rlet == DW_RLE_base_address)
14422 continue;
14423
14424 if (!found_base)
14425 {
14426 /* We have no valid base address for the ranges
14427 data. */
14428 complaint (_("Invalid .debug_rnglists data (no base address)"));
14429 return false;
14430 }
14431
14432 if (range_beginning > range_end)
14433 {
14434 /* Inverted range entries are invalid. */
14435 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14436 return false;
14437 }
14438
14439 /* Empty range entries have no effect. */
14440 if (range_beginning == range_end)
14441 continue;
14442
14443 range_beginning += base;
14444 range_end += base;
14445
14446 /* A not-uncommon case of bad debug info.
14447 Don't pollute the addrmap with bad data. */
14448 if (range_beginning + baseaddr == 0
14449 && !dwarf2_per_objfile->has_section_at_zero)
14450 {
14451 complaint (_(".debug_rnglists entry has start address of zero"
14452 " [in module %s]"), objfile_name (objfile));
14453 continue;
14454 }
14455
14456 callback (range_beginning, range_end);
14457 }
14458
14459 if (overflow)
14460 {
14461 complaint (_("Offset %d is not terminated "
14462 "for DW_AT_ranges attribute"),
14463 offset);
14464 return false;
14465 }
14466
14467 return true;
14468 }
14469
14470 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14471 Callback's type should be:
14472 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14473 Return 1 if the attributes are present and valid, otherwise, return 0. */
14474
14475 template <typename Callback>
14476 static int
14477 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14478 Callback &&callback)
14479 {
14480 struct dwarf2_per_objfile *dwarf2_per_objfile
14481 = cu->per_cu->dwarf2_per_objfile;
14482 struct objfile *objfile = dwarf2_per_objfile->objfile;
14483 struct comp_unit_head *cu_header = &cu->header;
14484 bfd *obfd = objfile->obfd;
14485 unsigned int addr_size = cu_header->addr_size;
14486 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14487 /* Base address selection entry. */
14488 CORE_ADDR base;
14489 int found_base;
14490 unsigned int dummy;
14491 const gdb_byte *buffer;
14492 CORE_ADDR baseaddr;
14493
14494 if (cu_header->version >= 5)
14495 return dwarf2_rnglists_process (offset, cu, callback);
14496
14497 found_base = cu->base_known;
14498 base = cu->base_address;
14499
14500 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14501 if (offset >= dwarf2_per_objfile->ranges.size)
14502 {
14503 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14504 offset);
14505 return 0;
14506 }
14507 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14508
14509 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14510
14511 while (1)
14512 {
14513 CORE_ADDR range_beginning, range_end;
14514
14515 range_beginning = read_address (obfd, buffer, cu, &dummy);
14516 buffer += addr_size;
14517 range_end = read_address (obfd, buffer, cu, &dummy);
14518 buffer += addr_size;
14519 offset += 2 * addr_size;
14520
14521 /* An end of list marker is a pair of zero addresses. */
14522 if (range_beginning == 0 && range_end == 0)
14523 /* Found the end of list entry. */
14524 break;
14525
14526 /* Each base address selection entry is a pair of 2 values.
14527 The first is the largest possible address, the second is
14528 the base address. Check for a base address here. */
14529 if ((range_beginning & mask) == mask)
14530 {
14531 /* If we found the largest possible address, then we already
14532 have the base address in range_end. */
14533 base = range_end;
14534 found_base = 1;
14535 continue;
14536 }
14537
14538 if (!found_base)
14539 {
14540 /* We have no valid base address for the ranges
14541 data. */
14542 complaint (_("Invalid .debug_ranges data (no base address)"));
14543 return 0;
14544 }
14545
14546 if (range_beginning > range_end)
14547 {
14548 /* Inverted range entries are invalid. */
14549 complaint (_("Invalid .debug_ranges data (inverted range)"));
14550 return 0;
14551 }
14552
14553 /* Empty range entries have no effect. */
14554 if (range_beginning == range_end)
14555 continue;
14556
14557 range_beginning += base;
14558 range_end += base;
14559
14560 /* A not-uncommon case of bad debug info.
14561 Don't pollute the addrmap with bad data. */
14562 if (range_beginning + baseaddr == 0
14563 && !dwarf2_per_objfile->has_section_at_zero)
14564 {
14565 complaint (_(".debug_ranges entry has start address of zero"
14566 " [in module %s]"), objfile_name (objfile));
14567 continue;
14568 }
14569
14570 callback (range_beginning, range_end);
14571 }
14572
14573 return 1;
14574 }
14575
14576 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14577 Return 1 if the attributes are present and valid, otherwise, return 0.
14578 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14579
14580 static int
14581 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14582 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14583 struct partial_symtab *ranges_pst)
14584 {
14585 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14587 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14588 SECT_OFF_TEXT (objfile));
14589 int low_set = 0;
14590 CORE_ADDR low = 0;
14591 CORE_ADDR high = 0;
14592 int retval;
14593
14594 retval = dwarf2_ranges_process (offset, cu,
14595 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14596 {
14597 if (ranges_pst != NULL)
14598 {
14599 CORE_ADDR lowpc;
14600 CORE_ADDR highpc;
14601
14602 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14603 range_beginning + baseaddr)
14604 - baseaddr);
14605 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14606 range_end + baseaddr)
14607 - baseaddr);
14608 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14609 lowpc, highpc - 1, ranges_pst);
14610 }
14611
14612 /* FIXME: This is recording everything as a low-high
14613 segment of consecutive addresses. We should have a
14614 data structure for discontiguous block ranges
14615 instead. */
14616 if (! low_set)
14617 {
14618 low = range_beginning;
14619 high = range_end;
14620 low_set = 1;
14621 }
14622 else
14623 {
14624 if (range_beginning < low)
14625 low = range_beginning;
14626 if (range_end > high)
14627 high = range_end;
14628 }
14629 });
14630 if (!retval)
14631 return 0;
14632
14633 if (! low_set)
14634 /* If the first entry is an end-of-list marker, the range
14635 describes an empty scope, i.e. no instructions. */
14636 return 0;
14637
14638 if (low_return)
14639 *low_return = low;
14640 if (high_return)
14641 *high_return = high;
14642 return 1;
14643 }
14644
14645 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14646 definition for the return value. *LOWPC and *HIGHPC are set iff
14647 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14648
14649 static enum pc_bounds_kind
14650 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14651 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14652 struct partial_symtab *pst)
14653 {
14654 struct dwarf2_per_objfile *dwarf2_per_objfile
14655 = cu->per_cu->dwarf2_per_objfile;
14656 struct attribute *attr;
14657 struct attribute *attr_high;
14658 CORE_ADDR low = 0;
14659 CORE_ADDR high = 0;
14660 enum pc_bounds_kind ret;
14661
14662 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14663 if (attr_high)
14664 {
14665 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14666 if (attr)
14667 {
14668 low = attr_value_as_address (attr);
14669 high = attr_value_as_address (attr_high);
14670 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14671 high += low;
14672 }
14673 else
14674 /* Found high w/o low attribute. */
14675 return PC_BOUNDS_INVALID;
14676
14677 /* Found consecutive range of addresses. */
14678 ret = PC_BOUNDS_HIGH_LOW;
14679 }
14680 else
14681 {
14682 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14683 if (attr != NULL)
14684 {
14685 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14686 We take advantage of the fact that DW_AT_ranges does not appear
14687 in DW_TAG_compile_unit of DWO files. */
14688 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14689 unsigned int ranges_offset = (DW_UNSND (attr)
14690 + (need_ranges_base
14691 ? cu->ranges_base
14692 : 0));
14693
14694 /* Value of the DW_AT_ranges attribute is the offset in the
14695 .debug_ranges section. */
14696 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14697 return PC_BOUNDS_INVALID;
14698 /* Found discontinuous range of addresses. */
14699 ret = PC_BOUNDS_RANGES;
14700 }
14701 else
14702 return PC_BOUNDS_NOT_PRESENT;
14703 }
14704
14705 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14706 if (high <= low)
14707 return PC_BOUNDS_INVALID;
14708
14709 /* When using the GNU linker, .gnu.linkonce. sections are used to
14710 eliminate duplicate copies of functions and vtables and such.
14711 The linker will arbitrarily choose one and discard the others.
14712 The AT_*_pc values for such functions refer to local labels in
14713 these sections. If the section from that file was discarded, the
14714 labels are not in the output, so the relocs get a value of 0.
14715 If this is a discarded function, mark the pc bounds as invalid,
14716 so that GDB will ignore it. */
14717 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14718 return PC_BOUNDS_INVALID;
14719
14720 *lowpc = low;
14721 if (highpc)
14722 *highpc = high;
14723 return ret;
14724 }
14725
14726 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14727 its low and high PC addresses. Do nothing if these addresses could not
14728 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14729 and HIGHPC to the high address if greater than HIGHPC. */
14730
14731 static void
14732 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14733 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14734 struct dwarf2_cu *cu)
14735 {
14736 CORE_ADDR low, high;
14737 struct die_info *child = die->child;
14738
14739 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14740 {
14741 *lowpc = std::min (*lowpc, low);
14742 *highpc = std::max (*highpc, high);
14743 }
14744
14745 /* If the language does not allow nested subprograms (either inside
14746 subprograms or lexical blocks), we're done. */
14747 if (cu->language != language_ada)
14748 return;
14749
14750 /* Check all the children of the given DIE. If it contains nested
14751 subprograms, then check their pc bounds. Likewise, we need to
14752 check lexical blocks as well, as they may also contain subprogram
14753 definitions. */
14754 while (child && child->tag)
14755 {
14756 if (child->tag == DW_TAG_subprogram
14757 || child->tag == DW_TAG_lexical_block)
14758 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14759 child = sibling_die (child);
14760 }
14761 }
14762
14763 /* Get the low and high pc's represented by the scope DIE, and store
14764 them in *LOWPC and *HIGHPC. If the correct values can't be
14765 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14766
14767 static void
14768 get_scope_pc_bounds (struct die_info *die,
14769 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14770 struct dwarf2_cu *cu)
14771 {
14772 CORE_ADDR best_low = (CORE_ADDR) -1;
14773 CORE_ADDR best_high = (CORE_ADDR) 0;
14774 CORE_ADDR current_low, current_high;
14775
14776 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14777 >= PC_BOUNDS_RANGES)
14778 {
14779 best_low = current_low;
14780 best_high = current_high;
14781 }
14782 else
14783 {
14784 struct die_info *child = die->child;
14785
14786 while (child && child->tag)
14787 {
14788 switch (child->tag) {
14789 case DW_TAG_subprogram:
14790 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14791 break;
14792 case DW_TAG_namespace:
14793 case DW_TAG_module:
14794 /* FIXME: carlton/2004-01-16: Should we do this for
14795 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14796 that current GCC's always emit the DIEs corresponding
14797 to definitions of methods of classes as children of a
14798 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14799 the DIEs giving the declarations, which could be
14800 anywhere). But I don't see any reason why the
14801 standards says that they have to be there. */
14802 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14803
14804 if (current_low != ((CORE_ADDR) -1))
14805 {
14806 best_low = std::min (best_low, current_low);
14807 best_high = std::max (best_high, current_high);
14808 }
14809 break;
14810 default:
14811 /* Ignore. */
14812 break;
14813 }
14814
14815 child = sibling_die (child);
14816 }
14817 }
14818
14819 *lowpc = best_low;
14820 *highpc = best_high;
14821 }
14822
14823 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14824 in DIE. */
14825
14826 static void
14827 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14828 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14829 {
14830 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14831 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14832 struct attribute *attr;
14833 struct attribute *attr_high;
14834
14835 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14836 if (attr_high)
14837 {
14838 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14839 if (attr)
14840 {
14841 CORE_ADDR low = attr_value_as_address (attr);
14842 CORE_ADDR high = attr_value_as_address (attr_high);
14843
14844 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14845 high += low;
14846
14847 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14848 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14849 cu->get_builder ()->record_block_range (block, low, high - 1);
14850 }
14851 }
14852
14853 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14854 if (attr)
14855 {
14856 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14857 We take advantage of the fact that DW_AT_ranges does not appear
14858 in DW_TAG_compile_unit of DWO files. */
14859 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14860
14861 /* The value of the DW_AT_ranges attribute is the offset of the
14862 address range list in the .debug_ranges section. */
14863 unsigned long offset = (DW_UNSND (attr)
14864 + (need_ranges_base ? cu->ranges_base : 0));
14865
14866 std::vector<blockrange> blockvec;
14867 dwarf2_ranges_process (offset, cu,
14868 [&] (CORE_ADDR start, CORE_ADDR end)
14869 {
14870 start += baseaddr;
14871 end += baseaddr;
14872 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14873 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14874 cu->get_builder ()->record_block_range (block, start, end - 1);
14875 blockvec.emplace_back (start, end);
14876 });
14877
14878 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14879 }
14880 }
14881
14882 /* Check whether the producer field indicates either of GCC < 4.6, or the
14883 Intel C/C++ compiler, and cache the result in CU. */
14884
14885 static void
14886 check_producer (struct dwarf2_cu *cu)
14887 {
14888 int major, minor;
14889
14890 if (cu->producer == NULL)
14891 {
14892 /* For unknown compilers expect their behavior is DWARF version
14893 compliant.
14894
14895 GCC started to support .debug_types sections by -gdwarf-4 since
14896 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14897 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14898 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14899 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14900 }
14901 else if (producer_is_gcc (cu->producer, &major, &minor))
14902 {
14903 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14904 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14905 }
14906 else if (producer_is_icc (cu->producer, &major, &minor))
14907 {
14908 cu->producer_is_icc = true;
14909 cu->producer_is_icc_lt_14 = major < 14;
14910 }
14911 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14912 cu->producer_is_codewarrior = true;
14913 else
14914 {
14915 /* For other non-GCC compilers, expect their behavior is DWARF version
14916 compliant. */
14917 }
14918
14919 cu->checked_producer = true;
14920 }
14921
14922 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14923 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14924 during 4.6.0 experimental. */
14925
14926 static bool
14927 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14928 {
14929 if (!cu->checked_producer)
14930 check_producer (cu);
14931
14932 return cu->producer_is_gxx_lt_4_6;
14933 }
14934
14935
14936 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14937 with incorrect is_stmt attributes. */
14938
14939 static bool
14940 producer_is_codewarrior (struct dwarf2_cu *cu)
14941 {
14942 if (!cu->checked_producer)
14943 check_producer (cu);
14944
14945 return cu->producer_is_codewarrior;
14946 }
14947
14948 /* Return the default accessibility type if it is not overriden by
14949 DW_AT_accessibility. */
14950
14951 static enum dwarf_access_attribute
14952 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14953 {
14954 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14955 {
14956 /* The default DWARF 2 accessibility for members is public, the default
14957 accessibility for inheritance is private. */
14958
14959 if (die->tag != DW_TAG_inheritance)
14960 return DW_ACCESS_public;
14961 else
14962 return DW_ACCESS_private;
14963 }
14964 else
14965 {
14966 /* DWARF 3+ defines the default accessibility a different way. The same
14967 rules apply now for DW_TAG_inheritance as for the members and it only
14968 depends on the container kind. */
14969
14970 if (die->parent->tag == DW_TAG_class_type)
14971 return DW_ACCESS_private;
14972 else
14973 return DW_ACCESS_public;
14974 }
14975 }
14976
14977 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14978 offset. If the attribute was not found return 0, otherwise return
14979 1. If it was found but could not properly be handled, set *OFFSET
14980 to 0. */
14981
14982 static int
14983 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14984 LONGEST *offset)
14985 {
14986 struct attribute *attr;
14987
14988 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14989 if (attr != NULL)
14990 {
14991 *offset = 0;
14992
14993 /* Note that we do not check for a section offset first here.
14994 This is because DW_AT_data_member_location is new in DWARF 4,
14995 so if we see it, we can assume that a constant form is really
14996 a constant and not a section offset. */
14997 if (attr_form_is_constant (attr))
14998 *offset = dwarf2_get_attr_constant_value (attr, 0);
14999 else if (attr_form_is_section_offset (attr))
15000 dwarf2_complex_location_expr_complaint ();
15001 else if (attr_form_is_block (attr))
15002 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15003 else
15004 dwarf2_complex_location_expr_complaint ();
15005
15006 return 1;
15007 }
15008
15009 return 0;
15010 }
15011
15012 /* Add an aggregate field to the field list. */
15013
15014 static void
15015 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15016 struct dwarf2_cu *cu)
15017 {
15018 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15020 struct nextfield *new_field;
15021 struct attribute *attr;
15022 struct field *fp;
15023 const char *fieldname = "";
15024
15025 if (die->tag == DW_TAG_inheritance)
15026 {
15027 fip->baseclasses.emplace_back ();
15028 new_field = &fip->baseclasses.back ();
15029 }
15030 else
15031 {
15032 fip->fields.emplace_back ();
15033 new_field = &fip->fields.back ();
15034 }
15035
15036 fip->nfields++;
15037
15038 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15039 if (attr)
15040 new_field->accessibility = DW_UNSND (attr);
15041 else
15042 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15043 if (new_field->accessibility != DW_ACCESS_public)
15044 fip->non_public_fields = 1;
15045
15046 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15047 if (attr)
15048 new_field->virtuality = DW_UNSND (attr);
15049 else
15050 new_field->virtuality = DW_VIRTUALITY_none;
15051
15052 fp = &new_field->field;
15053
15054 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15055 {
15056 LONGEST offset;
15057
15058 /* Data member other than a C++ static data member. */
15059
15060 /* Get type of field. */
15061 fp->type = die_type (die, cu);
15062
15063 SET_FIELD_BITPOS (*fp, 0);
15064
15065 /* Get bit size of field (zero if none). */
15066 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15067 if (attr)
15068 {
15069 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15070 }
15071 else
15072 {
15073 FIELD_BITSIZE (*fp) = 0;
15074 }
15075
15076 /* Get bit offset of field. */
15077 if (handle_data_member_location (die, cu, &offset))
15078 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15079 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15080 if (attr)
15081 {
15082 if (gdbarch_bits_big_endian (gdbarch))
15083 {
15084 /* For big endian bits, the DW_AT_bit_offset gives the
15085 additional bit offset from the MSB of the containing
15086 anonymous object to the MSB of the field. We don't
15087 have to do anything special since we don't need to
15088 know the size of the anonymous object. */
15089 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15090 }
15091 else
15092 {
15093 /* For little endian bits, compute the bit offset to the
15094 MSB of the anonymous object, subtract off the number of
15095 bits from the MSB of the field to the MSB of the
15096 object, and then subtract off the number of bits of
15097 the field itself. The result is the bit offset of
15098 the LSB of the field. */
15099 int anonymous_size;
15100 int bit_offset = DW_UNSND (attr);
15101
15102 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15103 if (attr)
15104 {
15105 /* The size of the anonymous object containing
15106 the bit field is explicit, so use the
15107 indicated size (in bytes). */
15108 anonymous_size = DW_UNSND (attr);
15109 }
15110 else
15111 {
15112 /* The size of the anonymous object containing
15113 the bit field must be inferred from the type
15114 attribute of the data member containing the
15115 bit field. */
15116 anonymous_size = TYPE_LENGTH (fp->type);
15117 }
15118 SET_FIELD_BITPOS (*fp,
15119 (FIELD_BITPOS (*fp)
15120 + anonymous_size * bits_per_byte
15121 - bit_offset - FIELD_BITSIZE (*fp)));
15122 }
15123 }
15124 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15125 if (attr != NULL)
15126 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15127 + dwarf2_get_attr_constant_value (attr, 0)));
15128
15129 /* Get name of field. */
15130 fieldname = dwarf2_name (die, cu);
15131 if (fieldname == NULL)
15132 fieldname = "";
15133
15134 /* The name is already allocated along with this objfile, so we don't
15135 need to duplicate it for the type. */
15136 fp->name = fieldname;
15137
15138 /* Change accessibility for artificial fields (e.g. virtual table
15139 pointer or virtual base class pointer) to private. */
15140 if (dwarf2_attr (die, DW_AT_artificial, cu))
15141 {
15142 FIELD_ARTIFICIAL (*fp) = 1;
15143 new_field->accessibility = DW_ACCESS_private;
15144 fip->non_public_fields = 1;
15145 }
15146 }
15147 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15148 {
15149 /* C++ static member. */
15150
15151 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15152 is a declaration, but all versions of G++ as of this writing
15153 (so through at least 3.2.1) incorrectly generate
15154 DW_TAG_variable tags. */
15155
15156 const char *physname;
15157
15158 /* Get name of field. */
15159 fieldname = dwarf2_name (die, cu);
15160 if (fieldname == NULL)
15161 return;
15162
15163 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15164 if (attr
15165 /* Only create a symbol if this is an external value.
15166 new_symbol checks this and puts the value in the global symbol
15167 table, which we want. If it is not external, new_symbol
15168 will try to put the value in cu->list_in_scope which is wrong. */
15169 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15170 {
15171 /* A static const member, not much different than an enum as far as
15172 we're concerned, except that we can support more types. */
15173 new_symbol (die, NULL, cu);
15174 }
15175
15176 /* Get physical name. */
15177 physname = dwarf2_physname (fieldname, die, cu);
15178
15179 /* The name is already allocated along with this objfile, so we don't
15180 need to duplicate it for the type. */
15181 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15182 FIELD_TYPE (*fp) = die_type (die, cu);
15183 FIELD_NAME (*fp) = fieldname;
15184 }
15185 else if (die->tag == DW_TAG_inheritance)
15186 {
15187 LONGEST offset;
15188
15189 /* C++ base class field. */
15190 if (handle_data_member_location (die, cu, &offset))
15191 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15192 FIELD_BITSIZE (*fp) = 0;
15193 FIELD_TYPE (*fp) = die_type (die, cu);
15194 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15195 }
15196 else if (die->tag == DW_TAG_variant_part)
15197 {
15198 /* process_structure_scope will treat this DIE as a union. */
15199 process_structure_scope (die, cu);
15200
15201 /* The variant part is relative to the start of the enclosing
15202 structure. */
15203 SET_FIELD_BITPOS (*fp, 0);
15204 fp->type = get_die_type (die, cu);
15205 fp->artificial = 1;
15206 fp->name = "<<variant>>";
15207
15208 /* Normally a DW_TAG_variant_part won't have a size, but our
15209 representation requires one, so set it to the maximum of the
15210 child sizes. */
15211 if (TYPE_LENGTH (fp->type) == 0)
15212 {
15213 unsigned max = 0;
15214 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15215 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15216 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15217 TYPE_LENGTH (fp->type) = max;
15218 }
15219 }
15220 else
15221 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15222 }
15223
15224 /* Can the type given by DIE define another type? */
15225
15226 static bool
15227 type_can_define_types (const struct die_info *die)
15228 {
15229 switch (die->tag)
15230 {
15231 case DW_TAG_typedef:
15232 case DW_TAG_class_type:
15233 case DW_TAG_structure_type:
15234 case DW_TAG_union_type:
15235 case DW_TAG_enumeration_type:
15236 return true;
15237
15238 default:
15239 return false;
15240 }
15241 }
15242
15243 /* Add a type definition defined in the scope of the FIP's class. */
15244
15245 static void
15246 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15247 struct dwarf2_cu *cu)
15248 {
15249 struct decl_field fp;
15250 memset (&fp, 0, sizeof (fp));
15251
15252 gdb_assert (type_can_define_types (die));
15253
15254 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15255 fp.name = dwarf2_name (die, cu);
15256 fp.type = read_type_die (die, cu);
15257
15258 /* Save accessibility. */
15259 enum dwarf_access_attribute accessibility;
15260 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15261 if (attr != NULL)
15262 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15263 else
15264 accessibility = dwarf2_default_access_attribute (die, cu);
15265 switch (accessibility)
15266 {
15267 case DW_ACCESS_public:
15268 /* The assumed value if neither private nor protected. */
15269 break;
15270 case DW_ACCESS_private:
15271 fp.is_private = 1;
15272 break;
15273 case DW_ACCESS_protected:
15274 fp.is_protected = 1;
15275 break;
15276 default:
15277 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15278 }
15279
15280 if (die->tag == DW_TAG_typedef)
15281 fip->typedef_field_list.push_back (fp);
15282 else
15283 fip->nested_types_list.push_back (fp);
15284 }
15285
15286 /* Create the vector of fields, and attach it to the type. */
15287
15288 static void
15289 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15290 struct dwarf2_cu *cu)
15291 {
15292 int nfields = fip->nfields;
15293
15294 /* Record the field count, allocate space for the array of fields,
15295 and create blank accessibility bitfields if necessary. */
15296 TYPE_NFIELDS (type) = nfields;
15297 TYPE_FIELDS (type) = (struct field *)
15298 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15299
15300 if (fip->non_public_fields && cu->language != language_ada)
15301 {
15302 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15303
15304 TYPE_FIELD_PRIVATE_BITS (type) =
15305 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15306 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15307
15308 TYPE_FIELD_PROTECTED_BITS (type) =
15309 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15310 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15311
15312 TYPE_FIELD_IGNORE_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15315 }
15316
15317 /* If the type has baseclasses, allocate and clear a bit vector for
15318 TYPE_FIELD_VIRTUAL_BITS. */
15319 if (!fip->baseclasses.empty () && cu->language != language_ada)
15320 {
15321 int num_bytes = B_BYTES (fip->baseclasses.size ());
15322 unsigned char *pointer;
15323
15324 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15325 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15326 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15327 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15328 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15329 }
15330
15331 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15332 {
15333 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15334
15335 for (int index = 0; index < nfields; ++index)
15336 {
15337 struct nextfield &field = fip->fields[index];
15338
15339 if (field.variant.is_discriminant)
15340 di->discriminant_index = index;
15341 else if (field.variant.default_branch)
15342 di->default_index = index;
15343 else
15344 di->discriminants[index] = field.variant.discriminant_value;
15345 }
15346 }
15347
15348 /* Copy the saved-up fields into the field vector. */
15349 for (int i = 0; i < nfields; ++i)
15350 {
15351 struct nextfield &field
15352 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15353 : fip->fields[i - fip->baseclasses.size ()]);
15354
15355 TYPE_FIELD (type, i) = field.field;
15356 switch (field.accessibility)
15357 {
15358 case DW_ACCESS_private:
15359 if (cu->language != language_ada)
15360 SET_TYPE_FIELD_PRIVATE (type, i);
15361 break;
15362
15363 case DW_ACCESS_protected:
15364 if (cu->language != language_ada)
15365 SET_TYPE_FIELD_PROTECTED (type, i);
15366 break;
15367
15368 case DW_ACCESS_public:
15369 break;
15370
15371 default:
15372 /* Unknown accessibility. Complain and treat it as public. */
15373 {
15374 complaint (_("unsupported accessibility %d"),
15375 field.accessibility);
15376 }
15377 break;
15378 }
15379 if (i < fip->baseclasses.size ())
15380 {
15381 switch (field.virtuality)
15382 {
15383 case DW_VIRTUALITY_virtual:
15384 case DW_VIRTUALITY_pure_virtual:
15385 if (cu->language == language_ada)
15386 error (_("unexpected virtuality in component of Ada type"));
15387 SET_TYPE_FIELD_VIRTUAL (type, i);
15388 break;
15389 }
15390 }
15391 }
15392 }
15393
15394 /* Return true if this member function is a constructor, false
15395 otherwise. */
15396
15397 static int
15398 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15399 {
15400 const char *fieldname;
15401 const char *type_name;
15402 int len;
15403
15404 if (die->parent == NULL)
15405 return 0;
15406
15407 if (die->parent->tag != DW_TAG_structure_type
15408 && die->parent->tag != DW_TAG_union_type
15409 && die->parent->tag != DW_TAG_class_type)
15410 return 0;
15411
15412 fieldname = dwarf2_name (die, cu);
15413 type_name = dwarf2_name (die->parent, cu);
15414 if (fieldname == NULL || type_name == NULL)
15415 return 0;
15416
15417 len = strlen (fieldname);
15418 return (strncmp (fieldname, type_name, len) == 0
15419 && (type_name[len] == '\0' || type_name[len] == '<'));
15420 }
15421
15422 /* Add a member function to the proper fieldlist. */
15423
15424 static void
15425 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15426 struct type *type, struct dwarf2_cu *cu)
15427 {
15428 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15429 struct attribute *attr;
15430 int i;
15431 struct fnfieldlist *flp = nullptr;
15432 struct fn_field *fnp;
15433 const char *fieldname;
15434 struct type *this_type;
15435 enum dwarf_access_attribute accessibility;
15436
15437 if (cu->language == language_ada)
15438 error (_("unexpected member function in Ada type"));
15439
15440 /* Get name of member function. */
15441 fieldname = dwarf2_name (die, cu);
15442 if (fieldname == NULL)
15443 return;
15444
15445 /* Look up member function name in fieldlist. */
15446 for (i = 0; i < fip->fnfieldlists.size (); i++)
15447 {
15448 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15449 {
15450 flp = &fip->fnfieldlists[i];
15451 break;
15452 }
15453 }
15454
15455 /* Create a new fnfieldlist if necessary. */
15456 if (flp == nullptr)
15457 {
15458 fip->fnfieldlists.emplace_back ();
15459 flp = &fip->fnfieldlists.back ();
15460 flp->name = fieldname;
15461 i = fip->fnfieldlists.size () - 1;
15462 }
15463
15464 /* Create a new member function field and add it to the vector of
15465 fnfieldlists. */
15466 flp->fnfields.emplace_back ();
15467 fnp = &flp->fnfields.back ();
15468
15469 /* Delay processing of the physname until later. */
15470 if (cu->language == language_cplus)
15471 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15472 die, cu);
15473 else
15474 {
15475 const char *physname = dwarf2_physname (fieldname, die, cu);
15476 fnp->physname = physname ? physname : "";
15477 }
15478
15479 fnp->type = alloc_type (objfile);
15480 this_type = read_type_die (die, cu);
15481 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15482 {
15483 int nparams = TYPE_NFIELDS (this_type);
15484
15485 /* TYPE is the domain of this method, and THIS_TYPE is the type
15486 of the method itself (TYPE_CODE_METHOD). */
15487 smash_to_method_type (fnp->type, type,
15488 TYPE_TARGET_TYPE (this_type),
15489 TYPE_FIELDS (this_type),
15490 TYPE_NFIELDS (this_type),
15491 TYPE_VARARGS (this_type));
15492
15493 /* Handle static member functions.
15494 Dwarf2 has no clean way to discern C++ static and non-static
15495 member functions. G++ helps GDB by marking the first
15496 parameter for non-static member functions (which is the this
15497 pointer) as artificial. We obtain this information from
15498 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15499 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15500 fnp->voffset = VOFFSET_STATIC;
15501 }
15502 else
15503 complaint (_("member function type missing for '%s'"),
15504 dwarf2_full_name (fieldname, die, cu));
15505
15506 /* Get fcontext from DW_AT_containing_type if present. */
15507 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15508 fnp->fcontext = die_containing_type (die, cu);
15509
15510 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15511 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15512
15513 /* Get accessibility. */
15514 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15515 if (attr)
15516 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15517 else
15518 accessibility = dwarf2_default_access_attribute (die, cu);
15519 switch (accessibility)
15520 {
15521 case DW_ACCESS_private:
15522 fnp->is_private = 1;
15523 break;
15524 case DW_ACCESS_protected:
15525 fnp->is_protected = 1;
15526 break;
15527 }
15528
15529 /* Check for artificial methods. */
15530 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15531 if (attr && DW_UNSND (attr) != 0)
15532 fnp->is_artificial = 1;
15533
15534 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15535
15536 /* Get index in virtual function table if it is a virtual member
15537 function. For older versions of GCC, this is an offset in the
15538 appropriate virtual table, as specified by DW_AT_containing_type.
15539 For everyone else, it is an expression to be evaluated relative
15540 to the object address. */
15541
15542 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15543 if (attr)
15544 {
15545 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15546 {
15547 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15548 {
15549 /* Old-style GCC. */
15550 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15551 }
15552 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15553 || (DW_BLOCK (attr)->size > 1
15554 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15555 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15556 {
15557 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15558 if ((fnp->voffset % cu->header.addr_size) != 0)
15559 dwarf2_complex_location_expr_complaint ();
15560 else
15561 fnp->voffset /= cu->header.addr_size;
15562 fnp->voffset += 2;
15563 }
15564 else
15565 dwarf2_complex_location_expr_complaint ();
15566
15567 if (!fnp->fcontext)
15568 {
15569 /* If there is no `this' field and no DW_AT_containing_type,
15570 we cannot actually find a base class context for the
15571 vtable! */
15572 if (TYPE_NFIELDS (this_type) == 0
15573 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15574 {
15575 complaint (_("cannot determine context for virtual member "
15576 "function \"%s\" (offset %s)"),
15577 fieldname, sect_offset_str (die->sect_off));
15578 }
15579 else
15580 {
15581 fnp->fcontext
15582 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15583 }
15584 }
15585 }
15586 else if (attr_form_is_section_offset (attr))
15587 {
15588 dwarf2_complex_location_expr_complaint ();
15589 }
15590 else
15591 {
15592 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15593 fieldname);
15594 }
15595 }
15596 else
15597 {
15598 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15599 if (attr && DW_UNSND (attr))
15600 {
15601 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15602 complaint (_("Member function \"%s\" (offset %s) is virtual "
15603 "but the vtable offset is not specified"),
15604 fieldname, sect_offset_str (die->sect_off));
15605 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15606 TYPE_CPLUS_DYNAMIC (type) = 1;
15607 }
15608 }
15609 }
15610
15611 /* Create the vector of member function fields, and attach it to the type. */
15612
15613 static void
15614 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15615 struct dwarf2_cu *cu)
15616 {
15617 if (cu->language == language_ada)
15618 error (_("unexpected member functions in Ada type"));
15619
15620 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15621 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15622 TYPE_ALLOC (type,
15623 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15624
15625 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15626 {
15627 struct fnfieldlist &nf = fip->fnfieldlists[i];
15628 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15629
15630 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15631 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15632 fn_flp->fn_fields = (struct fn_field *)
15633 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15634
15635 for (int k = 0; k < nf.fnfields.size (); ++k)
15636 fn_flp->fn_fields[k] = nf.fnfields[k];
15637 }
15638
15639 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15640 }
15641
15642 /* Returns non-zero if NAME is the name of a vtable member in CU's
15643 language, zero otherwise. */
15644 static int
15645 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15646 {
15647 static const char vptr[] = "_vptr";
15648
15649 /* Look for the C++ form of the vtable. */
15650 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15651 return 1;
15652
15653 return 0;
15654 }
15655
15656 /* GCC outputs unnamed structures that are really pointers to member
15657 functions, with the ABI-specified layout. If TYPE describes
15658 such a structure, smash it into a member function type.
15659
15660 GCC shouldn't do this; it should just output pointer to member DIEs.
15661 This is GCC PR debug/28767. */
15662
15663 static void
15664 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15665 {
15666 struct type *pfn_type, *self_type, *new_type;
15667
15668 /* Check for a structure with no name and two children. */
15669 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15670 return;
15671
15672 /* Check for __pfn and __delta members. */
15673 if (TYPE_FIELD_NAME (type, 0) == NULL
15674 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15675 || TYPE_FIELD_NAME (type, 1) == NULL
15676 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15677 return;
15678
15679 /* Find the type of the method. */
15680 pfn_type = TYPE_FIELD_TYPE (type, 0);
15681 if (pfn_type == NULL
15682 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15683 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15684 return;
15685
15686 /* Look for the "this" argument. */
15687 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15688 if (TYPE_NFIELDS (pfn_type) == 0
15689 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15690 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15691 return;
15692
15693 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15694 new_type = alloc_type (objfile);
15695 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15696 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15697 TYPE_VARARGS (pfn_type));
15698 smash_to_methodptr_type (type, new_type);
15699 }
15700
15701 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15702 appropriate error checking and issuing complaints if there is a
15703 problem. */
15704
15705 static ULONGEST
15706 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15707 {
15708 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15709
15710 if (attr == nullptr)
15711 return 0;
15712
15713 if (!attr_form_is_constant (attr))
15714 {
15715 complaint (_("DW_AT_alignment must have constant form"
15716 " - DIE at %s [in module %s]"),
15717 sect_offset_str (die->sect_off),
15718 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15719 return 0;
15720 }
15721
15722 ULONGEST align;
15723 if (attr->form == DW_FORM_sdata)
15724 {
15725 LONGEST val = DW_SND (attr);
15726 if (val < 0)
15727 {
15728 complaint (_("DW_AT_alignment value must not be negative"
15729 " - DIE at %s [in module %s]"),
15730 sect_offset_str (die->sect_off),
15731 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15732 return 0;
15733 }
15734 align = val;
15735 }
15736 else
15737 align = DW_UNSND (attr);
15738
15739 if (align == 0)
15740 {
15741 complaint (_("DW_AT_alignment value must not be zero"
15742 " - DIE at %s [in module %s]"),
15743 sect_offset_str (die->sect_off),
15744 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15745 return 0;
15746 }
15747 if ((align & (align - 1)) != 0)
15748 {
15749 complaint (_("DW_AT_alignment value must be a power of 2"
15750 " - DIE at %s [in module %s]"),
15751 sect_offset_str (die->sect_off),
15752 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15753 return 0;
15754 }
15755
15756 return align;
15757 }
15758
15759 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15760 the alignment for TYPE. */
15761
15762 static void
15763 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15764 struct type *type)
15765 {
15766 if (!set_type_align (type, get_alignment (cu, die)))
15767 complaint (_("DW_AT_alignment value too large"
15768 " - DIE at %s [in module %s]"),
15769 sect_offset_str (die->sect_off),
15770 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15771 }
15772
15773 /* Called when we find the DIE that starts a structure or union scope
15774 (definition) to create a type for the structure or union. Fill in
15775 the type's name and general properties; the members will not be
15776 processed until process_structure_scope. A symbol table entry for
15777 the type will also not be done until process_structure_scope (assuming
15778 the type has a name).
15779
15780 NOTE: we need to call these functions regardless of whether or not the
15781 DIE has a DW_AT_name attribute, since it might be an anonymous
15782 structure or union. This gets the type entered into our set of
15783 user defined types. */
15784
15785 static struct type *
15786 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15787 {
15788 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15789 struct type *type;
15790 struct attribute *attr;
15791 const char *name;
15792
15793 /* If the definition of this type lives in .debug_types, read that type.
15794 Don't follow DW_AT_specification though, that will take us back up
15795 the chain and we want to go down. */
15796 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15797 if (attr)
15798 {
15799 type = get_DW_AT_signature_type (die, attr, cu);
15800
15801 /* The type's CU may not be the same as CU.
15802 Ensure TYPE is recorded with CU in die_type_hash. */
15803 return set_die_type (die, type, cu);
15804 }
15805
15806 type = alloc_type (objfile);
15807 INIT_CPLUS_SPECIFIC (type);
15808
15809 name = dwarf2_name (die, cu);
15810 if (name != NULL)
15811 {
15812 if (cu->language == language_cplus
15813 || cu->language == language_d
15814 || cu->language == language_rust)
15815 {
15816 const char *full_name = dwarf2_full_name (name, die, cu);
15817
15818 /* dwarf2_full_name might have already finished building the DIE's
15819 type. If so, there is no need to continue. */
15820 if (get_die_type (die, cu) != NULL)
15821 return get_die_type (die, cu);
15822
15823 TYPE_NAME (type) = full_name;
15824 }
15825 else
15826 {
15827 /* The name is already allocated along with this objfile, so
15828 we don't need to duplicate it for the type. */
15829 TYPE_NAME (type) = name;
15830 }
15831 }
15832
15833 if (die->tag == DW_TAG_structure_type)
15834 {
15835 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15836 }
15837 else if (die->tag == DW_TAG_union_type)
15838 {
15839 TYPE_CODE (type) = TYPE_CODE_UNION;
15840 }
15841 else if (die->tag == DW_TAG_variant_part)
15842 {
15843 TYPE_CODE (type) = TYPE_CODE_UNION;
15844 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15845 }
15846 else
15847 {
15848 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15849 }
15850
15851 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15852 TYPE_DECLARED_CLASS (type) = 1;
15853
15854 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15855 if (attr)
15856 {
15857 if (attr_form_is_constant (attr))
15858 TYPE_LENGTH (type) = DW_UNSND (attr);
15859 else
15860 {
15861 /* For the moment, dynamic type sizes are not supported
15862 by GDB's struct type. The actual size is determined
15863 on-demand when resolving the type of a given object,
15864 so set the type's length to zero for now. Otherwise,
15865 we record an expression as the length, and that expression
15866 could lead to a very large value, which could eventually
15867 lead to us trying to allocate that much memory when creating
15868 a value of that type. */
15869 TYPE_LENGTH (type) = 0;
15870 }
15871 }
15872 else
15873 {
15874 TYPE_LENGTH (type) = 0;
15875 }
15876
15877 maybe_set_alignment (cu, die, type);
15878
15879 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15880 {
15881 /* ICC<14 does not output the required DW_AT_declaration on
15882 incomplete types, but gives them a size of zero. */
15883 TYPE_STUB (type) = 1;
15884 }
15885 else
15886 TYPE_STUB_SUPPORTED (type) = 1;
15887
15888 if (die_is_declaration (die, cu))
15889 TYPE_STUB (type) = 1;
15890 else if (attr == NULL && die->child == NULL
15891 && producer_is_realview (cu->producer))
15892 /* RealView does not output the required DW_AT_declaration
15893 on incomplete types. */
15894 TYPE_STUB (type) = 1;
15895
15896 /* We need to add the type field to the die immediately so we don't
15897 infinitely recurse when dealing with pointers to the structure
15898 type within the structure itself. */
15899 set_die_type (die, type, cu);
15900
15901 /* set_die_type should be already done. */
15902 set_descriptive_type (type, die, cu);
15903
15904 return type;
15905 }
15906
15907 /* A helper for process_structure_scope that handles a single member
15908 DIE. */
15909
15910 static void
15911 handle_struct_member_die (struct die_info *child_die, struct type *type,
15912 struct field_info *fi,
15913 std::vector<struct symbol *> *template_args,
15914 struct dwarf2_cu *cu)
15915 {
15916 if (child_die->tag == DW_TAG_member
15917 || child_die->tag == DW_TAG_variable
15918 || child_die->tag == DW_TAG_variant_part)
15919 {
15920 /* NOTE: carlton/2002-11-05: A C++ static data member
15921 should be a DW_TAG_member that is a declaration, but
15922 all versions of G++ as of this writing (so through at
15923 least 3.2.1) incorrectly generate DW_TAG_variable
15924 tags for them instead. */
15925 dwarf2_add_field (fi, child_die, cu);
15926 }
15927 else if (child_die->tag == DW_TAG_subprogram)
15928 {
15929 /* Rust doesn't have member functions in the C++ sense.
15930 However, it does emit ordinary functions as children
15931 of a struct DIE. */
15932 if (cu->language == language_rust)
15933 read_func_scope (child_die, cu);
15934 else
15935 {
15936 /* C++ member function. */
15937 dwarf2_add_member_fn (fi, child_die, type, cu);
15938 }
15939 }
15940 else if (child_die->tag == DW_TAG_inheritance)
15941 {
15942 /* C++ base class field. */
15943 dwarf2_add_field (fi, child_die, cu);
15944 }
15945 else if (type_can_define_types (child_die))
15946 dwarf2_add_type_defn (fi, child_die, cu);
15947 else if (child_die->tag == DW_TAG_template_type_param
15948 || child_die->tag == DW_TAG_template_value_param)
15949 {
15950 struct symbol *arg = new_symbol (child_die, NULL, cu);
15951
15952 if (arg != NULL)
15953 template_args->push_back (arg);
15954 }
15955 else if (child_die->tag == DW_TAG_variant)
15956 {
15957 /* In a variant we want to get the discriminant and also add a
15958 field for our sole member child. */
15959 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15960
15961 for (die_info *variant_child = child_die->child;
15962 variant_child != NULL;
15963 variant_child = sibling_die (variant_child))
15964 {
15965 if (variant_child->tag == DW_TAG_member)
15966 {
15967 handle_struct_member_die (variant_child, type, fi,
15968 template_args, cu);
15969 /* Only handle the one. */
15970 break;
15971 }
15972 }
15973
15974 /* We don't handle this but we might as well report it if we see
15975 it. */
15976 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15977 complaint (_("DW_AT_discr_list is not supported yet"
15978 " - DIE at %s [in module %s]"),
15979 sect_offset_str (child_die->sect_off),
15980 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15981
15982 /* The first field was just added, so we can stash the
15983 discriminant there. */
15984 gdb_assert (!fi->fields.empty ());
15985 if (discr == NULL)
15986 fi->fields.back ().variant.default_branch = true;
15987 else
15988 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15989 }
15990 }
15991
15992 /* Finish creating a structure or union type, including filling in
15993 its members and creating a symbol for it. */
15994
15995 static void
15996 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15997 {
15998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15999 struct die_info *child_die;
16000 struct type *type;
16001
16002 type = get_die_type (die, cu);
16003 if (type == NULL)
16004 type = read_structure_type (die, cu);
16005
16006 /* When reading a DW_TAG_variant_part, we need to notice when we
16007 read the discriminant member, so we can record it later in the
16008 discriminant_info. */
16009 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16010 sect_offset discr_offset;
16011 bool has_template_parameters = false;
16012
16013 if (is_variant_part)
16014 {
16015 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16016 if (discr == NULL)
16017 {
16018 /* Maybe it's a univariant form, an extension we support.
16019 In this case arrange not to check the offset. */
16020 is_variant_part = false;
16021 }
16022 else if (attr_form_is_ref (discr))
16023 {
16024 struct dwarf2_cu *target_cu = cu;
16025 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16026
16027 discr_offset = target_die->sect_off;
16028 }
16029 else
16030 {
16031 complaint (_("DW_AT_discr does not have DIE reference form"
16032 " - DIE at %s [in module %s]"),
16033 sect_offset_str (die->sect_off),
16034 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16035 is_variant_part = false;
16036 }
16037 }
16038
16039 if (die->child != NULL && ! die_is_declaration (die, cu))
16040 {
16041 struct field_info fi;
16042 std::vector<struct symbol *> template_args;
16043
16044 child_die = die->child;
16045
16046 while (child_die && child_die->tag)
16047 {
16048 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16049
16050 if (is_variant_part && discr_offset == child_die->sect_off)
16051 fi.fields.back ().variant.is_discriminant = true;
16052
16053 child_die = sibling_die (child_die);
16054 }
16055
16056 /* Attach template arguments to type. */
16057 if (!template_args.empty ())
16058 {
16059 has_template_parameters = true;
16060 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16061 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16062 TYPE_TEMPLATE_ARGUMENTS (type)
16063 = XOBNEWVEC (&objfile->objfile_obstack,
16064 struct symbol *,
16065 TYPE_N_TEMPLATE_ARGUMENTS (type));
16066 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16067 template_args.data (),
16068 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16069 * sizeof (struct symbol *)));
16070 }
16071
16072 /* Attach fields and member functions to the type. */
16073 if (fi.nfields)
16074 dwarf2_attach_fields_to_type (&fi, type, cu);
16075 if (!fi.fnfieldlists.empty ())
16076 {
16077 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16078
16079 /* Get the type which refers to the base class (possibly this
16080 class itself) which contains the vtable pointer for the current
16081 class from the DW_AT_containing_type attribute. This use of
16082 DW_AT_containing_type is a GNU extension. */
16083
16084 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16085 {
16086 struct type *t = die_containing_type (die, cu);
16087
16088 set_type_vptr_basetype (type, t);
16089 if (type == t)
16090 {
16091 int i;
16092
16093 /* Our own class provides vtbl ptr. */
16094 for (i = TYPE_NFIELDS (t) - 1;
16095 i >= TYPE_N_BASECLASSES (t);
16096 --i)
16097 {
16098 const char *fieldname = TYPE_FIELD_NAME (t, i);
16099
16100 if (is_vtable_name (fieldname, cu))
16101 {
16102 set_type_vptr_fieldno (type, i);
16103 break;
16104 }
16105 }
16106
16107 /* Complain if virtual function table field not found. */
16108 if (i < TYPE_N_BASECLASSES (t))
16109 complaint (_("virtual function table pointer "
16110 "not found when defining class '%s'"),
16111 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16112 }
16113 else
16114 {
16115 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16116 }
16117 }
16118 else if (cu->producer
16119 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16120 {
16121 /* The IBM XLC compiler does not provide direct indication
16122 of the containing type, but the vtable pointer is
16123 always named __vfp. */
16124
16125 int i;
16126
16127 for (i = TYPE_NFIELDS (type) - 1;
16128 i >= TYPE_N_BASECLASSES (type);
16129 --i)
16130 {
16131 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16132 {
16133 set_type_vptr_fieldno (type, i);
16134 set_type_vptr_basetype (type, type);
16135 break;
16136 }
16137 }
16138 }
16139 }
16140
16141 /* Copy fi.typedef_field_list linked list elements content into the
16142 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16143 if (!fi.typedef_field_list.empty ())
16144 {
16145 int count = fi.typedef_field_list.size ();
16146
16147 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16148 TYPE_TYPEDEF_FIELD_ARRAY (type)
16149 = ((struct decl_field *)
16150 TYPE_ALLOC (type,
16151 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16152 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16153
16154 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16155 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16156 }
16157
16158 /* Copy fi.nested_types_list linked list elements content into the
16159 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16160 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16161 {
16162 int count = fi.nested_types_list.size ();
16163
16164 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16165 TYPE_NESTED_TYPES_ARRAY (type)
16166 = ((struct decl_field *)
16167 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16168 TYPE_NESTED_TYPES_COUNT (type) = count;
16169
16170 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16171 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16172 }
16173 }
16174
16175 quirk_gcc_member_function_pointer (type, objfile);
16176 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16177 cu->rust_unions.push_back (type);
16178
16179 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16180 snapshots) has been known to create a die giving a declaration
16181 for a class that has, as a child, a die giving a definition for a
16182 nested class. So we have to process our children even if the
16183 current die is a declaration. Normally, of course, a declaration
16184 won't have any children at all. */
16185
16186 child_die = die->child;
16187
16188 while (child_die != NULL && child_die->tag)
16189 {
16190 if (child_die->tag == DW_TAG_member
16191 || child_die->tag == DW_TAG_variable
16192 || child_die->tag == DW_TAG_inheritance
16193 || child_die->tag == DW_TAG_template_value_param
16194 || child_die->tag == DW_TAG_template_type_param)
16195 {
16196 /* Do nothing. */
16197 }
16198 else
16199 process_die (child_die, cu);
16200
16201 child_die = sibling_die (child_die);
16202 }
16203
16204 /* Do not consider external references. According to the DWARF standard,
16205 these DIEs are identified by the fact that they have no byte_size
16206 attribute, and a declaration attribute. */
16207 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16208 || !die_is_declaration (die, cu))
16209 {
16210 struct symbol *sym = new_symbol (die, type, cu);
16211
16212 if (has_template_parameters)
16213 {
16214 struct symtab *symtab;
16215 if (sym != nullptr)
16216 symtab = symbol_symtab (sym);
16217 else if (cu->line_header != nullptr)
16218 {
16219 /* Any related symtab will do. */
16220 symtab
16221 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16222 }
16223 else
16224 {
16225 symtab = nullptr;
16226 complaint (_("could not find suitable "
16227 "symtab for template parameter"
16228 " - DIE at %s [in module %s]"),
16229 sect_offset_str (die->sect_off),
16230 objfile_name (objfile));
16231 }
16232
16233 if (symtab != nullptr)
16234 {
16235 /* Make sure that the symtab is set on the new symbols.
16236 Even though they don't appear in this symtab directly,
16237 other parts of gdb assume that symbols do, and this is
16238 reasonably true. */
16239 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16240 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16241 }
16242 }
16243 }
16244 }
16245
16246 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16247 update TYPE using some information only available in DIE's children. */
16248
16249 static void
16250 update_enumeration_type_from_children (struct die_info *die,
16251 struct type *type,
16252 struct dwarf2_cu *cu)
16253 {
16254 struct die_info *child_die;
16255 int unsigned_enum = 1;
16256 int flag_enum = 1;
16257 ULONGEST mask = 0;
16258
16259 auto_obstack obstack;
16260
16261 for (child_die = die->child;
16262 child_die != NULL && child_die->tag;
16263 child_die = sibling_die (child_die))
16264 {
16265 struct attribute *attr;
16266 LONGEST value;
16267 const gdb_byte *bytes;
16268 struct dwarf2_locexpr_baton *baton;
16269 const char *name;
16270
16271 if (child_die->tag != DW_TAG_enumerator)
16272 continue;
16273
16274 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16275 if (attr == NULL)
16276 continue;
16277
16278 name = dwarf2_name (child_die, cu);
16279 if (name == NULL)
16280 name = "<anonymous enumerator>";
16281
16282 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16283 &value, &bytes, &baton);
16284 if (value < 0)
16285 {
16286 unsigned_enum = 0;
16287 flag_enum = 0;
16288 }
16289 else if ((mask & value) != 0)
16290 flag_enum = 0;
16291 else
16292 mask |= value;
16293
16294 /* If we already know that the enum type is neither unsigned, nor
16295 a flag type, no need to look at the rest of the enumerates. */
16296 if (!unsigned_enum && !flag_enum)
16297 break;
16298 }
16299
16300 if (unsigned_enum)
16301 TYPE_UNSIGNED (type) = 1;
16302 if (flag_enum)
16303 TYPE_FLAG_ENUM (type) = 1;
16304 }
16305
16306 /* Given a DW_AT_enumeration_type die, set its type. We do not
16307 complete the type's fields yet, or create any symbols. */
16308
16309 static struct type *
16310 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16311 {
16312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16313 struct type *type;
16314 struct attribute *attr;
16315 const char *name;
16316
16317 /* If the definition of this type lives in .debug_types, read that type.
16318 Don't follow DW_AT_specification though, that will take us back up
16319 the chain and we want to go down. */
16320 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16321 if (attr)
16322 {
16323 type = get_DW_AT_signature_type (die, attr, cu);
16324
16325 /* The type's CU may not be the same as CU.
16326 Ensure TYPE is recorded with CU in die_type_hash. */
16327 return set_die_type (die, type, cu);
16328 }
16329
16330 type = alloc_type (objfile);
16331
16332 TYPE_CODE (type) = TYPE_CODE_ENUM;
16333 name = dwarf2_full_name (NULL, die, cu);
16334 if (name != NULL)
16335 TYPE_NAME (type) = name;
16336
16337 attr = dwarf2_attr (die, DW_AT_type, cu);
16338 if (attr != NULL)
16339 {
16340 struct type *underlying_type = die_type (die, cu);
16341
16342 TYPE_TARGET_TYPE (type) = underlying_type;
16343 }
16344
16345 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16346 if (attr)
16347 {
16348 TYPE_LENGTH (type) = DW_UNSND (attr);
16349 }
16350 else
16351 {
16352 TYPE_LENGTH (type) = 0;
16353 }
16354
16355 maybe_set_alignment (cu, die, type);
16356
16357 /* The enumeration DIE can be incomplete. In Ada, any type can be
16358 declared as private in the package spec, and then defined only
16359 inside the package body. Such types are known as Taft Amendment
16360 Types. When another package uses such a type, an incomplete DIE
16361 may be generated by the compiler. */
16362 if (die_is_declaration (die, cu))
16363 TYPE_STUB (type) = 1;
16364
16365 /* Finish the creation of this type by using the enum's children.
16366 We must call this even when the underlying type has been provided
16367 so that we can determine if we're looking at a "flag" enum. */
16368 update_enumeration_type_from_children (die, type, cu);
16369
16370 /* If this type has an underlying type that is not a stub, then we
16371 may use its attributes. We always use the "unsigned" attribute
16372 in this situation, because ordinarily we guess whether the type
16373 is unsigned -- but the guess can be wrong and the underlying type
16374 can tell us the reality. However, we defer to a local size
16375 attribute if one exists, because this lets the compiler override
16376 the underlying type if needed. */
16377 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16378 {
16379 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16380 if (TYPE_LENGTH (type) == 0)
16381 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16382 if (TYPE_RAW_ALIGN (type) == 0
16383 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16384 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16385 }
16386
16387 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16388
16389 return set_die_type (die, type, cu);
16390 }
16391
16392 /* Given a pointer to a die which begins an enumeration, process all
16393 the dies that define the members of the enumeration, and create the
16394 symbol for the enumeration type.
16395
16396 NOTE: We reverse the order of the element list. */
16397
16398 static void
16399 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16400 {
16401 struct type *this_type;
16402
16403 this_type = get_die_type (die, cu);
16404 if (this_type == NULL)
16405 this_type = read_enumeration_type (die, cu);
16406
16407 if (die->child != NULL)
16408 {
16409 struct die_info *child_die;
16410 struct symbol *sym;
16411 struct field *fields = NULL;
16412 int num_fields = 0;
16413 const char *name;
16414
16415 child_die = die->child;
16416 while (child_die && child_die->tag)
16417 {
16418 if (child_die->tag != DW_TAG_enumerator)
16419 {
16420 process_die (child_die, cu);
16421 }
16422 else
16423 {
16424 name = dwarf2_name (child_die, cu);
16425 if (name)
16426 {
16427 sym = new_symbol (child_die, this_type, cu);
16428
16429 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16430 {
16431 fields = (struct field *)
16432 xrealloc (fields,
16433 (num_fields + DW_FIELD_ALLOC_CHUNK)
16434 * sizeof (struct field));
16435 }
16436
16437 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16438 FIELD_TYPE (fields[num_fields]) = NULL;
16439 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16440 FIELD_BITSIZE (fields[num_fields]) = 0;
16441
16442 num_fields++;
16443 }
16444 }
16445
16446 child_die = sibling_die (child_die);
16447 }
16448
16449 if (num_fields)
16450 {
16451 TYPE_NFIELDS (this_type) = num_fields;
16452 TYPE_FIELDS (this_type) = (struct field *)
16453 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16454 memcpy (TYPE_FIELDS (this_type), fields,
16455 sizeof (struct field) * num_fields);
16456 xfree (fields);
16457 }
16458 }
16459
16460 /* If we are reading an enum from a .debug_types unit, and the enum
16461 is a declaration, and the enum is not the signatured type in the
16462 unit, then we do not want to add a symbol for it. Adding a
16463 symbol would in some cases obscure the true definition of the
16464 enum, giving users an incomplete type when the definition is
16465 actually available. Note that we do not want to do this for all
16466 enums which are just declarations, because C++0x allows forward
16467 enum declarations. */
16468 if (cu->per_cu->is_debug_types
16469 && die_is_declaration (die, cu))
16470 {
16471 struct signatured_type *sig_type;
16472
16473 sig_type = (struct signatured_type *) cu->per_cu;
16474 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16475 if (sig_type->type_offset_in_section != die->sect_off)
16476 return;
16477 }
16478
16479 new_symbol (die, this_type, cu);
16480 }
16481
16482 /* Extract all information from a DW_TAG_array_type DIE and put it in
16483 the DIE's type field. For now, this only handles one dimensional
16484 arrays. */
16485
16486 static struct type *
16487 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16488 {
16489 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16490 struct die_info *child_die;
16491 struct type *type;
16492 struct type *element_type, *range_type, *index_type;
16493 struct attribute *attr;
16494 const char *name;
16495 struct dynamic_prop *byte_stride_prop = NULL;
16496 unsigned int bit_stride = 0;
16497
16498 element_type = die_type (die, cu);
16499
16500 /* The die_type call above may have already set the type for this DIE. */
16501 type = get_die_type (die, cu);
16502 if (type)
16503 return type;
16504
16505 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16506 if (attr != NULL)
16507 {
16508 int stride_ok;
16509 struct type *prop_type
16510 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16511
16512 byte_stride_prop
16513 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16514 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16515 prop_type);
16516 if (!stride_ok)
16517 {
16518 complaint (_("unable to read array DW_AT_byte_stride "
16519 " - DIE at %s [in module %s]"),
16520 sect_offset_str (die->sect_off),
16521 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16522 /* Ignore this attribute. We will likely not be able to print
16523 arrays of this type correctly, but there is little we can do
16524 to help if we cannot read the attribute's value. */
16525 byte_stride_prop = NULL;
16526 }
16527 }
16528
16529 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16530 if (attr != NULL)
16531 bit_stride = DW_UNSND (attr);
16532
16533 /* Irix 6.2 native cc creates array types without children for
16534 arrays with unspecified length. */
16535 if (die->child == NULL)
16536 {
16537 index_type = objfile_type (objfile)->builtin_int;
16538 range_type = create_static_range_type (NULL, index_type, 0, -1);
16539 type = create_array_type_with_stride (NULL, element_type, range_type,
16540 byte_stride_prop, bit_stride);
16541 return set_die_type (die, type, cu);
16542 }
16543
16544 std::vector<struct type *> range_types;
16545 child_die = die->child;
16546 while (child_die && child_die->tag)
16547 {
16548 if (child_die->tag == DW_TAG_subrange_type)
16549 {
16550 struct type *child_type = read_type_die (child_die, cu);
16551
16552 if (child_type != NULL)
16553 {
16554 /* The range type was succesfully read. Save it for the
16555 array type creation. */
16556 range_types.push_back (child_type);
16557 }
16558 }
16559 child_die = sibling_die (child_die);
16560 }
16561
16562 /* Dwarf2 dimensions are output from left to right, create the
16563 necessary array types in backwards order. */
16564
16565 type = element_type;
16566
16567 if (read_array_order (die, cu) == DW_ORD_col_major)
16568 {
16569 int i = 0;
16570
16571 while (i < range_types.size ())
16572 type = create_array_type_with_stride (NULL, type, range_types[i++],
16573 byte_stride_prop, bit_stride);
16574 }
16575 else
16576 {
16577 size_t ndim = range_types.size ();
16578 while (ndim-- > 0)
16579 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16580 byte_stride_prop, bit_stride);
16581 }
16582
16583 /* Understand Dwarf2 support for vector types (like they occur on
16584 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16585 array type. This is not part of the Dwarf2/3 standard yet, but a
16586 custom vendor extension. The main difference between a regular
16587 array and the vector variant is that vectors are passed by value
16588 to functions. */
16589 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16590 if (attr)
16591 make_vector_type (type);
16592
16593 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16594 implementation may choose to implement triple vectors using this
16595 attribute. */
16596 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16597 if (attr)
16598 {
16599 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16600 TYPE_LENGTH (type) = DW_UNSND (attr);
16601 else
16602 complaint (_("DW_AT_byte_size for array type smaller "
16603 "than the total size of elements"));
16604 }
16605
16606 name = dwarf2_name (die, cu);
16607 if (name)
16608 TYPE_NAME (type) = name;
16609
16610 maybe_set_alignment (cu, die, type);
16611
16612 /* Install the type in the die. */
16613 set_die_type (die, type, cu);
16614
16615 /* set_die_type should be already done. */
16616 set_descriptive_type (type, die, cu);
16617
16618 return type;
16619 }
16620
16621 static enum dwarf_array_dim_ordering
16622 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16623 {
16624 struct attribute *attr;
16625
16626 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16627
16628 if (attr)
16629 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16630
16631 /* GNU F77 is a special case, as at 08/2004 array type info is the
16632 opposite order to the dwarf2 specification, but data is still
16633 laid out as per normal fortran.
16634
16635 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16636 version checking. */
16637
16638 if (cu->language == language_fortran
16639 && cu->producer && strstr (cu->producer, "GNU F77"))
16640 {
16641 return DW_ORD_row_major;
16642 }
16643
16644 switch (cu->language_defn->la_array_ordering)
16645 {
16646 case array_column_major:
16647 return DW_ORD_col_major;
16648 case array_row_major:
16649 default:
16650 return DW_ORD_row_major;
16651 };
16652 }
16653
16654 /* Extract all information from a DW_TAG_set_type DIE and put it in
16655 the DIE's type field. */
16656
16657 static struct type *
16658 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16659 {
16660 struct type *domain_type, *set_type;
16661 struct attribute *attr;
16662
16663 domain_type = die_type (die, cu);
16664
16665 /* The die_type call above may have already set the type for this DIE. */
16666 set_type = get_die_type (die, cu);
16667 if (set_type)
16668 return set_type;
16669
16670 set_type = create_set_type (NULL, domain_type);
16671
16672 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16673 if (attr)
16674 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16675
16676 maybe_set_alignment (cu, die, set_type);
16677
16678 return set_die_type (die, set_type, cu);
16679 }
16680
16681 /* A helper for read_common_block that creates a locexpr baton.
16682 SYM is the symbol which we are marking as computed.
16683 COMMON_DIE is the DIE for the common block.
16684 COMMON_LOC is the location expression attribute for the common
16685 block itself.
16686 MEMBER_LOC is the location expression attribute for the particular
16687 member of the common block that we are processing.
16688 CU is the CU from which the above come. */
16689
16690 static void
16691 mark_common_block_symbol_computed (struct symbol *sym,
16692 struct die_info *common_die,
16693 struct attribute *common_loc,
16694 struct attribute *member_loc,
16695 struct dwarf2_cu *cu)
16696 {
16697 struct dwarf2_per_objfile *dwarf2_per_objfile
16698 = cu->per_cu->dwarf2_per_objfile;
16699 struct objfile *objfile = dwarf2_per_objfile->objfile;
16700 struct dwarf2_locexpr_baton *baton;
16701 gdb_byte *ptr;
16702 unsigned int cu_off;
16703 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16704 LONGEST offset = 0;
16705
16706 gdb_assert (common_loc && member_loc);
16707 gdb_assert (attr_form_is_block (common_loc));
16708 gdb_assert (attr_form_is_block (member_loc)
16709 || attr_form_is_constant (member_loc));
16710
16711 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16712 baton->per_cu = cu->per_cu;
16713 gdb_assert (baton->per_cu);
16714
16715 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16716
16717 if (attr_form_is_constant (member_loc))
16718 {
16719 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16720 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16721 }
16722 else
16723 baton->size += DW_BLOCK (member_loc)->size;
16724
16725 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16726 baton->data = ptr;
16727
16728 *ptr++ = DW_OP_call4;
16729 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16730 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16731 ptr += 4;
16732
16733 if (attr_form_is_constant (member_loc))
16734 {
16735 *ptr++ = DW_OP_addr;
16736 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16737 ptr += cu->header.addr_size;
16738 }
16739 else
16740 {
16741 /* We have to copy the data here, because DW_OP_call4 will only
16742 use a DW_AT_location attribute. */
16743 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16744 ptr += DW_BLOCK (member_loc)->size;
16745 }
16746
16747 *ptr++ = DW_OP_plus;
16748 gdb_assert (ptr - baton->data == baton->size);
16749
16750 SYMBOL_LOCATION_BATON (sym) = baton;
16751 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16752 }
16753
16754 /* Create appropriate locally-scoped variables for all the
16755 DW_TAG_common_block entries. Also create a struct common_block
16756 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16757 is used to sepate the common blocks name namespace from regular
16758 variable names. */
16759
16760 static void
16761 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16762 {
16763 struct attribute *attr;
16764
16765 attr = dwarf2_attr (die, DW_AT_location, cu);
16766 if (attr)
16767 {
16768 /* Support the .debug_loc offsets. */
16769 if (attr_form_is_block (attr))
16770 {
16771 /* Ok. */
16772 }
16773 else if (attr_form_is_section_offset (attr))
16774 {
16775 dwarf2_complex_location_expr_complaint ();
16776 attr = NULL;
16777 }
16778 else
16779 {
16780 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16781 "common block member");
16782 attr = NULL;
16783 }
16784 }
16785
16786 if (die->child != NULL)
16787 {
16788 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16789 struct die_info *child_die;
16790 size_t n_entries = 0, size;
16791 struct common_block *common_block;
16792 struct symbol *sym;
16793
16794 for (child_die = die->child;
16795 child_die && child_die->tag;
16796 child_die = sibling_die (child_die))
16797 ++n_entries;
16798
16799 size = (sizeof (struct common_block)
16800 + (n_entries - 1) * sizeof (struct symbol *));
16801 common_block
16802 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16803 size);
16804 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16805 common_block->n_entries = 0;
16806
16807 for (child_die = die->child;
16808 child_die && child_die->tag;
16809 child_die = sibling_die (child_die))
16810 {
16811 /* Create the symbol in the DW_TAG_common_block block in the current
16812 symbol scope. */
16813 sym = new_symbol (child_die, NULL, cu);
16814 if (sym != NULL)
16815 {
16816 struct attribute *member_loc;
16817
16818 common_block->contents[common_block->n_entries++] = sym;
16819
16820 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16821 cu);
16822 if (member_loc)
16823 {
16824 /* GDB has handled this for a long time, but it is
16825 not specified by DWARF. It seems to have been
16826 emitted by gfortran at least as recently as:
16827 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16828 complaint (_("Variable in common block has "
16829 "DW_AT_data_member_location "
16830 "- DIE at %s [in module %s]"),
16831 sect_offset_str (child_die->sect_off),
16832 objfile_name (objfile));
16833
16834 if (attr_form_is_section_offset (member_loc))
16835 dwarf2_complex_location_expr_complaint ();
16836 else if (attr_form_is_constant (member_loc)
16837 || attr_form_is_block (member_loc))
16838 {
16839 if (attr)
16840 mark_common_block_symbol_computed (sym, die, attr,
16841 member_loc, cu);
16842 }
16843 else
16844 dwarf2_complex_location_expr_complaint ();
16845 }
16846 }
16847 }
16848
16849 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16850 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16851 }
16852 }
16853
16854 /* Create a type for a C++ namespace. */
16855
16856 static struct type *
16857 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16858 {
16859 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16860 const char *previous_prefix, *name;
16861 int is_anonymous;
16862 struct type *type;
16863
16864 /* For extensions, reuse the type of the original namespace. */
16865 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16866 {
16867 struct die_info *ext_die;
16868 struct dwarf2_cu *ext_cu = cu;
16869
16870 ext_die = dwarf2_extension (die, &ext_cu);
16871 type = read_type_die (ext_die, ext_cu);
16872
16873 /* EXT_CU may not be the same as CU.
16874 Ensure TYPE is recorded with CU in die_type_hash. */
16875 return set_die_type (die, type, cu);
16876 }
16877
16878 name = namespace_name (die, &is_anonymous, cu);
16879
16880 /* Now build the name of the current namespace. */
16881
16882 previous_prefix = determine_prefix (die, cu);
16883 if (previous_prefix[0] != '\0')
16884 name = typename_concat (&objfile->objfile_obstack,
16885 previous_prefix, name, 0, cu);
16886
16887 /* Create the type. */
16888 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16889
16890 return set_die_type (die, type, cu);
16891 }
16892
16893 /* Read a namespace scope. */
16894
16895 static void
16896 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16897 {
16898 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16899 int is_anonymous;
16900
16901 /* Add a symbol associated to this if we haven't seen the namespace
16902 before. Also, add a using directive if it's an anonymous
16903 namespace. */
16904
16905 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16906 {
16907 struct type *type;
16908
16909 type = read_type_die (die, cu);
16910 new_symbol (die, type, cu);
16911
16912 namespace_name (die, &is_anonymous, cu);
16913 if (is_anonymous)
16914 {
16915 const char *previous_prefix = determine_prefix (die, cu);
16916
16917 std::vector<const char *> excludes;
16918 add_using_directive (using_directives (cu),
16919 previous_prefix, TYPE_NAME (type), NULL,
16920 NULL, excludes, 0, &objfile->objfile_obstack);
16921 }
16922 }
16923
16924 if (die->child != NULL)
16925 {
16926 struct die_info *child_die = die->child;
16927
16928 while (child_die && child_die->tag)
16929 {
16930 process_die (child_die, cu);
16931 child_die = sibling_die (child_die);
16932 }
16933 }
16934 }
16935
16936 /* Read a Fortran module as type. This DIE can be only a declaration used for
16937 imported module. Still we need that type as local Fortran "use ... only"
16938 declaration imports depend on the created type in determine_prefix. */
16939
16940 static struct type *
16941 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16942 {
16943 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16944 const char *module_name;
16945 struct type *type;
16946
16947 module_name = dwarf2_name (die, cu);
16948 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16949
16950 return set_die_type (die, type, cu);
16951 }
16952
16953 /* Read a Fortran module. */
16954
16955 static void
16956 read_module (struct die_info *die, struct dwarf2_cu *cu)
16957 {
16958 struct die_info *child_die = die->child;
16959 struct type *type;
16960
16961 type = read_type_die (die, cu);
16962 new_symbol (die, type, cu);
16963
16964 while (child_die && child_die->tag)
16965 {
16966 process_die (child_die, cu);
16967 child_die = sibling_die (child_die);
16968 }
16969 }
16970
16971 /* Return the name of the namespace represented by DIE. Set
16972 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16973 namespace. */
16974
16975 static const char *
16976 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16977 {
16978 struct die_info *current_die;
16979 const char *name = NULL;
16980
16981 /* Loop through the extensions until we find a name. */
16982
16983 for (current_die = die;
16984 current_die != NULL;
16985 current_die = dwarf2_extension (die, &cu))
16986 {
16987 /* We don't use dwarf2_name here so that we can detect the absence
16988 of a name -> anonymous namespace. */
16989 name = dwarf2_string_attr (die, DW_AT_name, cu);
16990
16991 if (name != NULL)
16992 break;
16993 }
16994
16995 /* Is it an anonymous namespace? */
16996
16997 *is_anonymous = (name == NULL);
16998 if (*is_anonymous)
16999 name = CP_ANONYMOUS_NAMESPACE_STR;
17000
17001 return name;
17002 }
17003
17004 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17005 the user defined type vector. */
17006
17007 static struct type *
17008 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17009 {
17010 struct gdbarch *gdbarch
17011 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17012 struct comp_unit_head *cu_header = &cu->header;
17013 struct type *type;
17014 struct attribute *attr_byte_size;
17015 struct attribute *attr_address_class;
17016 int byte_size, addr_class;
17017 struct type *target_type;
17018
17019 target_type = die_type (die, cu);
17020
17021 /* The die_type call above may have already set the type for this DIE. */
17022 type = get_die_type (die, cu);
17023 if (type)
17024 return type;
17025
17026 type = lookup_pointer_type (target_type);
17027
17028 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17029 if (attr_byte_size)
17030 byte_size = DW_UNSND (attr_byte_size);
17031 else
17032 byte_size = cu_header->addr_size;
17033
17034 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17035 if (attr_address_class)
17036 addr_class = DW_UNSND (attr_address_class);
17037 else
17038 addr_class = DW_ADDR_none;
17039
17040 ULONGEST alignment = get_alignment (cu, die);
17041
17042 /* If the pointer size, alignment, or address class is different
17043 than the default, create a type variant marked as such and set
17044 the length accordingly. */
17045 if (TYPE_LENGTH (type) != byte_size
17046 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17047 && alignment != TYPE_RAW_ALIGN (type))
17048 || addr_class != DW_ADDR_none)
17049 {
17050 if (gdbarch_address_class_type_flags_p (gdbarch))
17051 {
17052 int type_flags;
17053
17054 type_flags = gdbarch_address_class_type_flags
17055 (gdbarch, byte_size, addr_class);
17056 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17057 == 0);
17058 type = make_type_with_address_space (type, type_flags);
17059 }
17060 else if (TYPE_LENGTH (type) != byte_size)
17061 {
17062 complaint (_("invalid pointer size %d"), byte_size);
17063 }
17064 else if (TYPE_RAW_ALIGN (type) != alignment)
17065 {
17066 complaint (_("Invalid DW_AT_alignment"
17067 " - DIE at %s [in module %s]"),
17068 sect_offset_str (die->sect_off),
17069 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17070 }
17071 else
17072 {
17073 /* Should we also complain about unhandled address classes? */
17074 }
17075 }
17076
17077 TYPE_LENGTH (type) = byte_size;
17078 set_type_align (type, alignment);
17079 return set_die_type (die, type, cu);
17080 }
17081
17082 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17083 the user defined type vector. */
17084
17085 static struct type *
17086 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17087 {
17088 struct type *type;
17089 struct type *to_type;
17090 struct type *domain;
17091
17092 to_type = die_type (die, cu);
17093 domain = die_containing_type (die, cu);
17094
17095 /* The calls above may have already set the type for this DIE. */
17096 type = get_die_type (die, cu);
17097 if (type)
17098 return type;
17099
17100 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17101 type = lookup_methodptr_type (to_type);
17102 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17103 {
17104 struct type *new_type
17105 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17106
17107 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17108 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17109 TYPE_VARARGS (to_type));
17110 type = lookup_methodptr_type (new_type);
17111 }
17112 else
17113 type = lookup_memberptr_type (to_type, domain);
17114
17115 return set_die_type (die, type, cu);
17116 }
17117
17118 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17119 the user defined type vector. */
17120
17121 static struct type *
17122 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17123 enum type_code refcode)
17124 {
17125 struct comp_unit_head *cu_header = &cu->header;
17126 struct type *type, *target_type;
17127 struct attribute *attr;
17128
17129 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17130
17131 target_type = die_type (die, cu);
17132
17133 /* The die_type call above may have already set the type for this DIE. */
17134 type = get_die_type (die, cu);
17135 if (type)
17136 return type;
17137
17138 type = lookup_reference_type (target_type, refcode);
17139 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17140 if (attr)
17141 {
17142 TYPE_LENGTH (type) = DW_UNSND (attr);
17143 }
17144 else
17145 {
17146 TYPE_LENGTH (type) = cu_header->addr_size;
17147 }
17148 maybe_set_alignment (cu, die, type);
17149 return set_die_type (die, type, cu);
17150 }
17151
17152 /* Add the given cv-qualifiers to the element type of the array. GCC
17153 outputs DWARF type qualifiers that apply to an array, not the
17154 element type. But GDB relies on the array element type to carry
17155 the cv-qualifiers. This mimics section 6.7.3 of the C99
17156 specification. */
17157
17158 static struct type *
17159 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17160 struct type *base_type, int cnst, int voltl)
17161 {
17162 struct type *el_type, *inner_array;
17163
17164 base_type = copy_type (base_type);
17165 inner_array = base_type;
17166
17167 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17168 {
17169 TYPE_TARGET_TYPE (inner_array) =
17170 copy_type (TYPE_TARGET_TYPE (inner_array));
17171 inner_array = TYPE_TARGET_TYPE (inner_array);
17172 }
17173
17174 el_type = TYPE_TARGET_TYPE (inner_array);
17175 cnst |= TYPE_CONST (el_type);
17176 voltl |= TYPE_VOLATILE (el_type);
17177 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17178
17179 return set_die_type (die, base_type, cu);
17180 }
17181
17182 static struct type *
17183 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17184 {
17185 struct type *base_type, *cv_type;
17186
17187 base_type = die_type (die, cu);
17188
17189 /* The die_type call above may have already set the type for this DIE. */
17190 cv_type = get_die_type (die, cu);
17191 if (cv_type)
17192 return cv_type;
17193
17194 /* In case the const qualifier is applied to an array type, the element type
17195 is so qualified, not the array type (section 6.7.3 of C99). */
17196 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17197 return add_array_cv_type (die, cu, base_type, 1, 0);
17198
17199 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17200 return set_die_type (die, cv_type, cu);
17201 }
17202
17203 static struct type *
17204 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17205 {
17206 struct type *base_type, *cv_type;
17207
17208 base_type = die_type (die, cu);
17209
17210 /* The die_type call above may have already set the type for this DIE. */
17211 cv_type = get_die_type (die, cu);
17212 if (cv_type)
17213 return cv_type;
17214
17215 /* In case the volatile qualifier is applied to an array type, the
17216 element type is so qualified, not the array type (section 6.7.3
17217 of C99). */
17218 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17219 return add_array_cv_type (die, cu, base_type, 0, 1);
17220
17221 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17222 return set_die_type (die, cv_type, cu);
17223 }
17224
17225 /* Handle DW_TAG_restrict_type. */
17226
17227 static struct type *
17228 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17229 {
17230 struct type *base_type, *cv_type;
17231
17232 base_type = die_type (die, cu);
17233
17234 /* The die_type call above may have already set the type for this DIE. */
17235 cv_type = get_die_type (die, cu);
17236 if (cv_type)
17237 return cv_type;
17238
17239 cv_type = make_restrict_type (base_type);
17240 return set_die_type (die, cv_type, cu);
17241 }
17242
17243 /* Handle DW_TAG_atomic_type. */
17244
17245 static struct type *
17246 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17247 {
17248 struct type *base_type, *cv_type;
17249
17250 base_type = die_type (die, cu);
17251
17252 /* The die_type call above may have already set the type for this DIE. */
17253 cv_type = get_die_type (die, cu);
17254 if (cv_type)
17255 return cv_type;
17256
17257 cv_type = make_atomic_type (base_type);
17258 return set_die_type (die, cv_type, cu);
17259 }
17260
17261 /* Extract all information from a DW_TAG_string_type DIE and add to
17262 the user defined type vector. It isn't really a user defined type,
17263 but it behaves like one, with other DIE's using an AT_user_def_type
17264 attribute to reference it. */
17265
17266 static struct type *
17267 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17268 {
17269 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17271 struct type *type, *range_type, *index_type, *char_type;
17272 struct attribute *attr;
17273 unsigned int length;
17274
17275 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17276 if (attr)
17277 {
17278 length = DW_UNSND (attr);
17279 }
17280 else
17281 {
17282 /* Check for the DW_AT_byte_size attribute. */
17283 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17284 if (attr)
17285 {
17286 length = DW_UNSND (attr);
17287 }
17288 else
17289 {
17290 length = 1;
17291 }
17292 }
17293
17294 index_type = objfile_type (objfile)->builtin_int;
17295 range_type = create_static_range_type (NULL, index_type, 1, length);
17296 char_type = language_string_char_type (cu->language_defn, gdbarch);
17297 type = create_string_type (NULL, char_type, range_type);
17298
17299 return set_die_type (die, type, cu);
17300 }
17301
17302 /* Assuming that DIE corresponds to a function, returns nonzero
17303 if the function is prototyped. */
17304
17305 static int
17306 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17307 {
17308 struct attribute *attr;
17309
17310 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17311 if (attr && (DW_UNSND (attr) != 0))
17312 return 1;
17313
17314 /* The DWARF standard implies that the DW_AT_prototyped attribute
17315 is only meaninful for C, but the concept also extends to other
17316 languages that allow unprototyped functions (Eg: Objective C).
17317 For all other languages, assume that functions are always
17318 prototyped. */
17319 if (cu->language != language_c
17320 && cu->language != language_objc
17321 && cu->language != language_opencl)
17322 return 1;
17323
17324 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17325 prototyped and unprototyped functions; default to prototyped,
17326 since that is more common in modern code (and RealView warns
17327 about unprototyped functions). */
17328 if (producer_is_realview (cu->producer))
17329 return 1;
17330
17331 return 0;
17332 }
17333
17334 /* Handle DIES due to C code like:
17335
17336 struct foo
17337 {
17338 int (*funcp)(int a, long l);
17339 int b;
17340 };
17341
17342 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17343
17344 static struct type *
17345 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17346 {
17347 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17348 struct type *type; /* Type that this function returns. */
17349 struct type *ftype; /* Function that returns above type. */
17350 struct attribute *attr;
17351
17352 type = die_type (die, cu);
17353
17354 /* The die_type call above may have already set the type for this DIE. */
17355 ftype = get_die_type (die, cu);
17356 if (ftype)
17357 return ftype;
17358
17359 ftype = lookup_function_type (type);
17360
17361 if (prototyped_function_p (die, cu))
17362 TYPE_PROTOTYPED (ftype) = 1;
17363
17364 /* Store the calling convention in the type if it's available in
17365 the subroutine die. Otherwise set the calling convention to
17366 the default value DW_CC_normal. */
17367 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17368 if (attr)
17369 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17370 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17371 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17372 else
17373 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17374
17375 /* Record whether the function returns normally to its caller or not
17376 if the DWARF producer set that information. */
17377 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17378 if (attr && (DW_UNSND (attr) != 0))
17379 TYPE_NO_RETURN (ftype) = 1;
17380
17381 /* We need to add the subroutine type to the die immediately so
17382 we don't infinitely recurse when dealing with parameters
17383 declared as the same subroutine type. */
17384 set_die_type (die, ftype, cu);
17385
17386 if (die->child != NULL)
17387 {
17388 struct type *void_type = objfile_type (objfile)->builtin_void;
17389 struct die_info *child_die;
17390 int nparams, iparams;
17391
17392 /* Count the number of parameters.
17393 FIXME: GDB currently ignores vararg functions, but knows about
17394 vararg member functions. */
17395 nparams = 0;
17396 child_die = die->child;
17397 while (child_die && child_die->tag)
17398 {
17399 if (child_die->tag == DW_TAG_formal_parameter)
17400 nparams++;
17401 else if (child_die->tag == DW_TAG_unspecified_parameters)
17402 TYPE_VARARGS (ftype) = 1;
17403 child_die = sibling_die (child_die);
17404 }
17405
17406 /* Allocate storage for parameters and fill them in. */
17407 TYPE_NFIELDS (ftype) = nparams;
17408 TYPE_FIELDS (ftype) = (struct field *)
17409 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17410
17411 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17412 even if we error out during the parameters reading below. */
17413 for (iparams = 0; iparams < nparams; iparams++)
17414 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17415
17416 iparams = 0;
17417 child_die = die->child;
17418 while (child_die && child_die->tag)
17419 {
17420 if (child_die->tag == DW_TAG_formal_parameter)
17421 {
17422 struct type *arg_type;
17423
17424 /* DWARF version 2 has no clean way to discern C++
17425 static and non-static member functions. G++ helps
17426 GDB by marking the first parameter for non-static
17427 member functions (which is the this pointer) as
17428 artificial. We pass this information to
17429 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17430
17431 DWARF version 3 added DW_AT_object_pointer, which GCC
17432 4.5 does not yet generate. */
17433 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17434 if (attr)
17435 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17436 else
17437 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17438 arg_type = die_type (child_die, cu);
17439
17440 /* RealView does not mark THIS as const, which the testsuite
17441 expects. GCC marks THIS as const in method definitions,
17442 but not in the class specifications (GCC PR 43053). */
17443 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17444 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17445 {
17446 int is_this = 0;
17447 struct dwarf2_cu *arg_cu = cu;
17448 const char *name = dwarf2_name (child_die, cu);
17449
17450 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17451 if (attr)
17452 {
17453 /* If the compiler emits this, use it. */
17454 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17455 is_this = 1;
17456 }
17457 else if (name && strcmp (name, "this") == 0)
17458 /* Function definitions will have the argument names. */
17459 is_this = 1;
17460 else if (name == NULL && iparams == 0)
17461 /* Declarations may not have the names, so like
17462 elsewhere in GDB, assume an artificial first
17463 argument is "this". */
17464 is_this = 1;
17465
17466 if (is_this)
17467 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17468 arg_type, 0);
17469 }
17470
17471 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17472 iparams++;
17473 }
17474 child_die = sibling_die (child_die);
17475 }
17476 }
17477
17478 return ftype;
17479 }
17480
17481 static struct type *
17482 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17483 {
17484 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17485 const char *name = NULL;
17486 struct type *this_type, *target_type;
17487
17488 name = dwarf2_full_name (NULL, die, cu);
17489 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17490 TYPE_TARGET_STUB (this_type) = 1;
17491 set_die_type (die, this_type, cu);
17492 target_type = die_type (die, cu);
17493 if (target_type != this_type)
17494 TYPE_TARGET_TYPE (this_type) = target_type;
17495 else
17496 {
17497 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17498 spec and cause infinite loops in GDB. */
17499 complaint (_("Self-referential DW_TAG_typedef "
17500 "- DIE at %s [in module %s]"),
17501 sect_offset_str (die->sect_off), objfile_name (objfile));
17502 TYPE_TARGET_TYPE (this_type) = NULL;
17503 }
17504 return this_type;
17505 }
17506
17507 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17508 (which may be different from NAME) to the architecture back-end to allow
17509 it to guess the correct format if necessary. */
17510
17511 static struct type *
17512 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17513 const char *name_hint)
17514 {
17515 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17516 const struct floatformat **format;
17517 struct type *type;
17518
17519 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17520 if (format)
17521 type = init_float_type (objfile, bits, name, format);
17522 else
17523 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17524
17525 return type;
17526 }
17527
17528 /* Allocate an integer type of size BITS and name NAME. */
17529
17530 static struct type *
17531 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17532 int bits, int unsigned_p, const char *name)
17533 {
17534 struct type *type;
17535
17536 /* Versions of Intel's C Compiler generate an integer type called "void"
17537 instead of using DW_TAG_unspecified_type. This has been seen on
17538 at least versions 14, 17, and 18. */
17539 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17540 && strcmp (name, "void") == 0)
17541 type = objfile_type (objfile)->builtin_void;
17542 else
17543 type = init_integer_type (objfile, bits, unsigned_p, name);
17544
17545 return type;
17546 }
17547
17548 /* Initialise and return a floating point type of size BITS suitable for
17549 use as a component of a complex number. The NAME_HINT is passed through
17550 when initialising the floating point type and is the name of the complex
17551 type.
17552
17553 As DWARF doesn't currently provide an explicit name for the components
17554 of a complex number, but it can be helpful to have these components
17555 named, we try to select a suitable name based on the size of the
17556 component. */
17557 static struct type *
17558 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17559 struct objfile *objfile,
17560 int bits, const char *name_hint)
17561 {
17562 gdbarch *gdbarch = get_objfile_arch (objfile);
17563 struct type *tt = nullptr;
17564
17565 /* Try to find a suitable floating point builtin type of size BITS.
17566 We're going to use the name of this type as the name for the complex
17567 target type that we are about to create. */
17568 switch (cu->language)
17569 {
17570 case language_fortran:
17571 switch (bits)
17572 {
17573 case 32:
17574 tt = builtin_f_type (gdbarch)->builtin_real;
17575 break;
17576 case 64:
17577 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17578 break;
17579 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17580 case 128:
17581 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17582 break;
17583 }
17584 break;
17585 default:
17586 switch (bits)
17587 {
17588 case 32:
17589 tt = builtin_type (gdbarch)->builtin_float;
17590 break;
17591 case 64:
17592 tt = builtin_type (gdbarch)->builtin_double;
17593 break;
17594 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17595 case 128:
17596 tt = builtin_type (gdbarch)->builtin_long_double;
17597 break;
17598 }
17599 break;
17600 }
17601
17602 /* If the type we found doesn't match the size we were looking for, then
17603 pretend we didn't find a type at all, the complex target type we
17604 create will then be nameless. */
17605 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17606 tt = nullptr;
17607
17608 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17609 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17610 }
17611
17612 /* Find a representation of a given base type and install
17613 it in the TYPE field of the die. */
17614
17615 static struct type *
17616 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17617 {
17618 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17619 struct type *type;
17620 struct attribute *attr;
17621 int encoding = 0, bits = 0;
17622 const char *name;
17623
17624 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17625 if (attr)
17626 {
17627 encoding = DW_UNSND (attr);
17628 }
17629 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17630 if (attr)
17631 {
17632 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17633 }
17634 name = dwarf2_name (die, cu);
17635 if (!name)
17636 {
17637 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17638 }
17639
17640 switch (encoding)
17641 {
17642 case DW_ATE_address:
17643 /* Turn DW_ATE_address into a void * pointer. */
17644 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17645 type = init_pointer_type (objfile, bits, name, type);
17646 break;
17647 case DW_ATE_boolean:
17648 type = init_boolean_type (objfile, bits, 1, name);
17649 break;
17650 case DW_ATE_complex_float:
17651 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17652 type = init_complex_type (objfile, name, type);
17653 break;
17654 case DW_ATE_decimal_float:
17655 type = init_decfloat_type (objfile, bits, name);
17656 break;
17657 case DW_ATE_float:
17658 type = dwarf2_init_float_type (objfile, bits, name, name);
17659 break;
17660 case DW_ATE_signed:
17661 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17662 break;
17663 case DW_ATE_unsigned:
17664 if (cu->language == language_fortran
17665 && name
17666 && startswith (name, "character("))
17667 type = init_character_type (objfile, bits, 1, name);
17668 else
17669 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17670 break;
17671 case DW_ATE_signed_char:
17672 if (cu->language == language_ada || cu->language == language_m2
17673 || cu->language == language_pascal
17674 || cu->language == language_fortran)
17675 type = init_character_type (objfile, bits, 0, name);
17676 else
17677 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17678 break;
17679 case DW_ATE_unsigned_char:
17680 if (cu->language == language_ada || cu->language == language_m2
17681 || cu->language == language_pascal
17682 || cu->language == language_fortran
17683 || cu->language == language_rust)
17684 type = init_character_type (objfile, bits, 1, name);
17685 else
17686 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17687 break;
17688 case DW_ATE_UTF:
17689 {
17690 gdbarch *arch = get_objfile_arch (objfile);
17691
17692 if (bits == 16)
17693 type = builtin_type (arch)->builtin_char16;
17694 else if (bits == 32)
17695 type = builtin_type (arch)->builtin_char32;
17696 else
17697 {
17698 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17699 bits);
17700 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17701 }
17702 return set_die_type (die, type, cu);
17703 }
17704 break;
17705
17706 default:
17707 complaint (_("unsupported DW_AT_encoding: '%s'"),
17708 dwarf_type_encoding_name (encoding));
17709 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17710 break;
17711 }
17712
17713 if (name && strcmp (name, "char") == 0)
17714 TYPE_NOSIGN (type) = 1;
17715
17716 maybe_set_alignment (cu, die, type);
17717
17718 return set_die_type (die, type, cu);
17719 }
17720
17721 /* Parse dwarf attribute if it's a block, reference or constant and put the
17722 resulting value of the attribute into struct bound_prop.
17723 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17724
17725 static int
17726 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17727 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17728 struct type *default_type)
17729 {
17730 struct dwarf2_property_baton *baton;
17731 struct obstack *obstack
17732 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17733
17734 gdb_assert (default_type != NULL);
17735
17736 if (attr == NULL || prop == NULL)
17737 return 0;
17738
17739 if (attr_form_is_block (attr))
17740 {
17741 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17742 baton->property_type = default_type;
17743 baton->locexpr.per_cu = cu->per_cu;
17744 baton->locexpr.size = DW_BLOCK (attr)->size;
17745 baton->locexpr.data = DW_BLOCK (attr)->data;
17746 baton->locexpr.is_reference = false;
17747 prop->data.baton = baton;
17748 prop->kind = PROP_LOCEXPR;
17749 gdb_assert (prop->data.baton != NULL);
17750 }
17751 else if (attr_form_is_ref (attr))
17752 {
17753 struct dwarf2_cu *target_cu = cu;
17754 struct die_info *target_die;
17755 struct attribute *target_attr;
17756
17757 target_die = follow_die_ref (die, attr, &target_cu);
17758 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17759 if (target_attr == NULL)
17760 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17761 target_cu);
17762 if (target_attr == NULL)
17763 return 0;
17764
17765 switch (target_attr->name)
17766 {
17767 case DW_AT_location:
17768 if (attr_form_is_section_offset (target_attr))
17769 {
17770 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17771 baton->property_type = die_type (target_die, target_cu);
17772 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17773 prop->data.baton = baton;
17774 prop->kind = PROP_LOCLIST;
17775 gdb_assert (prop->data.baton != NULL);
17776 }
17777 else if (attr_form_is_block (target_attr))
17778 {
17779 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17780 baton->property_type = die_type (target_die, target_cu);
17781 baton->locexpr.per_cu = cu->per_cu;
17782 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17783 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17784 baton->locexpr.is_reference = true;
17785 prop->data.baton = baton;
17786 prop->kind = PROP_LOCEXPR;
17787 gdb_assert (prop->data.baton != NULL);
17788 }
17789 else
17790 {
17791 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17792 "dynamic property");
17793 return 0;
17794 }
17795 break;
17796 case DW_AT_data_member_location:
17797 {
17798 LONGEST offset;
17799
17800 if (!handle_data_member_location (target_die, target_cu,
17801 &offset))
17802 return 0;
17803
17804 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17805 baton->property_type = read_type_die (target_die->parent,
17806 target_cu);
17807 baton->offset_info.offset = offset;
17808 baton->offset_info.type = die_type (target_die, target_cu);
17809 prop->data.baton = baton;
17810 prop->kind = PROP_ADDR_OFFSET;
17811 break;
17812 }
17813 }
17814 }
17815 else if (attr_form_is_constant (attr))
17816 {
17817 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17818 prop->kind = PROP_CONST;
17819 }
17820 else
17821 {
17822 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17823 dwarf2_name (die, cu));
17824 return 0;
17825 }
17826
17827 return 1;
17828 }
17829
17830 /* Find an integer type the same size as the address size given in the
17831 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17832 is unsigned or not. */
17833
17834 static struct type *
17835 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17836 bool unsigned_p)
17837 {
17838 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17839 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17840 struct type *int_type;
17841
17842 /* Helper macro to examine the various builtin types. */
17843 #define TRY_TYPE(F) \
17844 int_type = (unsigned_p \
17845 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17846 : objfile_type (objfile)->builtin_ ## F); \
17847 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17848 return int_type
17849
17850 TRY_TYPE (char);
17851 TRY_TYPE (short);
17852 TRY_TYPE (int);
17853 TRY_TYPE (long);
17854 TRY_TYPE (long_long);
17855
17856 #undef TRY_TYPE
17857
17858 gdb_assert_not_reached ("unable to find suitable integer type");
17859 }
17860
17861 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17862 present (which is valid) then compute the default type based on the
17863 compilation units address size. */
17864
17865 static struct type *
17866 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17867 {
17868 struct type *index_type = die_type (die, cu);
17869
17870 /* Dwarf-2 specifications explicitly allows to create subrange types
17871 without specifying a base type.
17872 In that case, the base type must be set to the type of
17873 the lower bound, upper bound or count, in that order, if any of these
17874 three attributes references an object that has a type.
17875 If no base type is found, the Dwarf-2 specifications say that
17876 a signed integer type of size equal to the size of an address should
17877 be used.
17878 For the following C code: `extern char gdb_int [];'
17879 GCC produces an empty range DIE.
17880 FIXME: muller/2010-05-28: Possible references to object for low bound,
17881 high bound or count are not yet handled by this code. */
17882 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17883 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17884
17885 return index_type;
17886 }
17887
17888 /* Read the given DW_AT_subrange DIE. */
17889
17890 static struct type *
17891 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17892 {
17893 struct type *base_type, *orig_base_type;
17894 struct type *range_type;
17895 struct attribute *attr;
17896 struct dynamic_prop low, high;
17897 int low_default_is_valid;
17898 int high_bound_is_count = 0;
17899 const char *name;
17900 ULONGEST negative_mask;
17901
17902 orig_base_type = read_subrange_index_type (die, cu);
17903
17904 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17905 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17906 creating the range type, but we use the result of check_typedef
17907 when examining properties of the type. */
17908 base_type = check_typedef (orig_base_type);
17909
17910 /* The die_type call above may have already set the type for this DIE. */
17911 range_type = get_die_type (die, cu);
17912 if (range_type)
17913 return range_type;
17914
17915 low.kind = PROP_CONST;
17916 high.kind = PROP_CONST;
17917 high.data.const_val = 0;
17918
17919 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17920 omitting DW_AT_lower_bound. */
17921 switch (cu->language)
17922 {
17923 case language_c:
17924 case language_cplus:
17925 low.data.const_val = 0;
17926 low_default_is_valid = 1;
17927 break;
17928 case language_fortran:
17929 low.data.const_val = 1;
17930 low_default_is_valid = 1;
17931 break;
17932 case language_d:
17933 case language_objc:
17934 case language_rust:
17935 low.data.const_val = 0;
17936 low_default_is_valid = (cu->header.version >= 4);
17937 break;
17938 case language_ada:
17939 case language_m2:
17940 case language_pascal:
17941 low.data.const_val = 1;
17942 low_default_is_valid = (cu->header.version >= 4);
17943 break;
17944 default:
17945 low.data.const_val = 0;
17946 low_default_is_valid = 0;
17947 break;
17948 }
17949
17950 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17951 if (attr)
17952 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17953 else if (!low_default_is_valid)
17954 complaint (_("Missing DW_AT_lower_bound "
17955 "- DIE at %s [in module %s]"),
17956 sect_offset_str (die->sect_off),
17957 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17958
17959 struct attribute *attr_ub, *attr_count;
17960 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17961 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17962 {
17963 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17964 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17965 {
17966 /* If bounds are constant do the final calculation here. */
17967 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17968 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17969 else
17970 high_bound_is_count = 1;
17971 }
17972 else
17973 {
17974 if (attr_ub != NULL)
17975 complaint (_("Unresolved DW_AT_upper_bound "
17976 "- DIE at %s [in module %s]"),
17977 sect_offset_str (die->sect_off),
17978 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17979 if (attr_count != NULL)
17980 complaint (_("Unresolved DW_AT_count "
17981 "- DIE at %s [in module %s]"),
17982 sect_offset_str (die->sect_off),
17983 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17984 }
17985 }
17986
17987 LONGEST bias = 0;
17988 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17989 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
17990 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17991
17992 /* Normally, the DWARF producers are expected to use a signed
17993 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17994 But this is unfortunately not always the case, as witnessed
17995 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17996 is used instead. To work around that ambiguity, we treat
17997 the bounds as signed, and thus sign-extend their values, when
17998 the base type is signed. */
17999 negative_mask =
18000 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18001 if (low.kind == PROP_CONST
18002 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18003 low.data.const_val |= negative_mask;
18004 if (high.kind == PROP_CONST
18005 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18006 high.data.const_val |= negative_mask;
18007
18008 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18009
18010 if (high_bound_is_count)
18011 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18012
18013 /* Ada expects an empty array on no boundary attributes. */
18014 if (attr == NULL && cu->language != language_ada)
18015 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18016
18017 name = dwarf2_name (die, cu);
18018 if (name)
18019 TYPE_NAME (range_type) = name;
18020
18021 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18022 if (attr)
18023 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18024
18025 maybe_set_alignment (cu, die, range_type);
18026
18027 set_die_type (die, range_type, cu);
18028
18029 /* set_die_type should be already done. */
18030 set_descriptive_type (range_type, die, cu);
18031
18032 return range_type;
18033 }
18034
18035 static struct type *
18036 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18037 {
18038 struct type *type;
18039
18040 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18041 NULL);
18042 TYPE_NAME (type) = dwarf2_name (die, cu);
18043
18044 /* In Ada, an unspecified type is typically used when the description
18045 of the type is defered to a different unit. When encountering
18046 such a type, we treat it as a stub, and try to resolve it later on,
18047 when needed. */
18048 if (cu->language == language_ada)
18049 TYPE_STUB (type) = 1;
18050
18051 return set_die_type (die, type, cu);
18052 }
18053
18054 /* Read a single die and all its descendents. Set the die's sibling
18055 field to NULL; set other fields in the die correctly, and set all
18056 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18057 location of the info_ptr after reading all of those dies. PARENT
18058 is the parent of the die in question. */
18059
18060 static struct die_info *
18061 read_die_and_children (const struct die_reader_specs *reader,
18062 const gdb_byte *info_ptr,
18063 const gdb_byte **new_info_ptr,
18064 struct die_info *parent)
18065 {
18066 struct die_info *die;
18067 const gdb_byte *cur_ptr;
18068 int has_children;
18069
18070 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18071 if (die == NULL)
18072 {
18073 *new_info_ptr = cur_ptr;
18074 return NULL;
18075 }
18076 store_in_ref_table (die, reader->cu);
18077
18078 if (has_children)
18079 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18080 else
18081 {
18082 die->child = NULL;
18083 *new_info_ptr = cur_ptr;
18084 }
18085
18086 die->sibling = NULL;
18087 die->parent = parent;
18088 return die;
18089 }
18090
18091 /* Read a die, all of its descendents, and all of its siblings; set
18092 all of the fields of all of the dies correctly. Arguments are as
18093 in read_die_and_children. */
18094
18095 static struct die_info *
18096 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18097 const gdb_byte *info_ptr,
18098 const gdb_byte **new_info_ptr,
18099 struct die_info *parent)
18100 {
18101 struct die_info *first_die, *last_sibling;
18102 const gdb_byte *cur_ptr;
18103
18104 cur_ptr = info_ptr;
18105 first_die = last_sibling = NULL;
18106
18107 while (1)
18108 {
18109 struct die_info *die
18110 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18111
18112 if (die == NULL)
18113 {
18114 *new_info_ptr = cur_ptr;
18115 return first_die;
18116 }
18117
18118 if (!first_die)
18119 first_die = die;
18120 else
18121 last_sibling->sibling = die;
18122
18123 last_sibling = die;
18124 }
18125 }
18126
18127 /* Read a die, all of its descendents, and all of its siblings; set
18128 all of the fields of all of the dies correctly. Arguments are as
18129 in read_die_and_children.
18130 This the main entry point for reading a DIE and all its children. */
18131
18132 static struct die_info *
18133 read_die_and_siblings (const struct die_reader_specs *reader,
18134 const gdb_byte *info_ptr,
18135 const gdb_byte **new_info_ptr,
18136 struct die_info *parent)
18137 {
18138 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18139 new_info_ptr, parent);
18140
18141 if (dwarf_die_debug)
18142 {
18143 fprintf_unfiltered (gdb_stdlog,
18144 "Read die from %s@0x%x of %s:\n",
18145 get_section_name (reader->die_section),
18146 (unsigned) (info_ptr - reader->die_section->buffer),
18147 bfd_get_filename (reader->abfd));
18148 dump_die (die, dwarf_die_debug);
18149 }
18150
18151 return die;
18152 }
18153
18154 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18155 attributes.
18156 The caller is responsible for filling in the extra attributes
18157 and updating (*DIEP)->num_attrs.
18158 Set DIEP to point to a newly allocated die with its information,
18159 except for its child, sibling, and parent fields.
18160 Set HAS_CHILDREN to tell whether the die has children or not. */
18161
18162 static const gdb_byte *
18163 read_full_die_1 (const struct die_reader_specs *reader,
18164 struct die_info **diep, const gdb_byte *info_ptr,
18165 int *has_children, int num_extra_attrs)
18166 {
18167 unsigned int abbrev_number, bytes_read, i;
18168 struct abbrev_info *abbrev;
18169 struct die_info *die;
18170 struct dwarf2_cu *cu = reader->cu;
18171 bfd *abfd = reader->abfd;
18172
18173 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18174 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18175 info_ptr += bytes_read;
18176 if (!abbrev_number)
18177 {
18178 *diep = NULL;
18179 *has_children = 0;
18180 return info_ptr;
18181 }
18182
18183 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18184 if (!abbrev)
18185 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18186 abbrev_number,
18187 bfd_get_filename (abfd));
18188
18189 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18190 die->sect_off = sect_off;
18191 die->tag = abbrev->tag;
18192 die->abbrev = abbrev_number;
18193
18194 /* Make the result usable.
18195 The caller needs to update num_attrs after adding the extra
18196 attributes. */
18197 die->num_attrs = abbrev->num_attrs;
18198
18199 for (i = 0; i < abbrev->num_attrs; ++i)
18200 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18201 info_ptr);
18202
18203 *diep = die;
18204 *has_children = abbrev->has_children;
18205 return info_ptr;
18206 }
18207
18208 /* Read a die and all its attributes.
18209 Set DIEP to point to a newly allocated die with its information,
18210 except for its child, sibling, and parent fields.
18211 Set HAS_CHILDREN to tell whether the die has children or not. */
18212
18213 static const gdb_byte *
18214 read_full_die (const struct die_reader_specs *reader,
18215 struct die_info **diep, const gdb_byte *info_ptr,
18216 int *has_children)
18217 {
18218 const gdb_byte *result;
18219
18220 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18221
18222 if (dwarf_die_debug)
18223 {
18224 fprintf_unfiltered (gdb_stdlog,
18225 "Read die from %s@0x%x of %s:\n",
18226 get_section_name (reader->die_section),
18227 (unsigned) (info_ptr - reader->die_section->buffer),
18228 bfd_get_filename (reader->abfd));
18229 dump_die (*diep, dwarf_die_debug);
18230 }
18231
18232 return result;
18233 }
18234 \f
18235 /* Abbreviation tables.
18236
18237 In DWARF version 2, the description of the debugging information is
18238 stored in a separate .debug_abbrev section. Before we read any
18239 dies from a section we read in all abbreviations and install them
18240 in a hash table. */
18241
18242 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18243
18244 struct abbrev_info *
18245 abbrev_table::alloc_abbrev ()
18246 {
18247 struct abbrev_info *abbrev;
18248
18249 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18250 memset (abbrev, 0, sizeof (struct abbrev_info));
18251
18252 return abbrev;
18253 }
18254
18255 /* Add an abbreviation to the table. */
18256
18257 void
18258 abbrev_table::add_abbrev (unsigned int abbrev_number,
18259 struct abbrev_info *abbrev)
18260 {
18261 unsigned int hash_number;
18262
18263 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18264 abbrev->next = m_abbrevs[hash_number];
18265 m_abbrevs[hash_number] = abbrev;
18266 }
18267
18268 /* Look up an abbrev in the table.
18269 Returns NULL if the abbrev is not found. */
18270
18271 struct abbrev_info *
18272 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18273 {
18274 unsigned int hash_number;
18275 struct abbrev_info *abbrev;
18276
18277 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18278 abbrev = m_abbrevs[hash_number];
18279
18280 while (abbrev)
18281 {
18282 if (abbrev->number == abbrev_number)
18283 return abbrev;
18284 abbrev = abbrev->next;
18285 }
18286 return NULL;
18287 }
18288
18289 /* Read in an abbrev table. */
18290
18291 static abbrev_table_up
18292 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18293 struct dwarf2_section_info *section,
18294 sect_offset sect_off)
18295 {
18296 struct objfile *objfile = dwarf2_per_objfile->objfile;
18297 bfd *abfd = get_section_bfd_owner (section);
18298 const gdb_byte *abbrev_ptr;
18299 struct abbrev_info *cur_abbrev;
18300 unsigned int abbrev_number, bytes_read, abbrev_name;
18301 unsigned int abbrev_form;
18302 struct attr_abbrev *cur_attrs;
18303 unsigned int allocated_attrs;
18304
18305 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18306
18307 dwarf2_read_section (objfile, section);
18308 abbrev_ptr = section->buffer + to_underlying (sect_off);
18309 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18310 abbrev_ptr += bytes_read;
18311
18312 allocated_attrs = ATTR_ALLOC_CHUNK;
18313 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18314
18315 /* Loop until we reach an abbrev number of 0. */
18316 while (abbrev_number)
18317 {
18318 cur_abbrev = abbrev_table->alloc_abbrev ();
18319
18320 /* read in abbrev header */
18321 cur_abbrev->number = abbrev_number;
18322 cur_abbrev->tag
18323 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18324 abbrev_ptr += bytes_read;
18325 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18326 abbrev_ptr += 1;
18327
18328 /* now read in declarations */
18329 for (;;)
18330 {
18331 LONGEST implicit_const;
18332
18333 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18334 abbrev_ptr += bytes_read;
18335 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18336 abbrev_ptr += bytes_read;
18337 if (abbrev_form == DW_FORM_implicit_const)
18338 {
18339 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18340 &bytes_read);
18341 abbrev_ptr += bytes_read;
18342 }
18343 else
18344 {
18345 /* Initialize it due to a false compiler warning. */
18346 implicit_const = -1;
18347 }
18348
18349 if (abbrev_name == 0)
18350 break;
18351
18352 if (cur_abbrev->num_attrs == allocated_attrs)
18353 {
18354 allocated_attrs += ATTR_ALLOC_CHUNK;
18355 cur_attrs
18356 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18357 }
18358
18359 cur_attrs[cur_abbrev->num_attrs].name
18360 = (enum dwarf_attribute) abbrev_name;
18361 cur_attrs[cur_abbrev->num_attrs].form
18362 = (enum dwarf_form) abbrev_form;
18363 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18364 ++cur_abbrev->num_attrs;
18365 }
18366
18367 cur_abbrev->attrs =
18368 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18369 cur_abbrev->num_attrs);
18370 memcpy (cur_abbrev->attrs, cur_attrs,
18371 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18372
18373 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18374
18375 /* Get next abbreviation.
18376 Under Irix6 the abbreviations for a compilation unit are not
18377 always properly terminated with an abbrev number of 0.
18378 Exit loop if we encounter an abbreviation which we have
18379 already read (which means we are about to read the abbreviations
18380 for the next compile unit) or if the end of the abbreviation
18381 table is reached. */
18382 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18383 break;
18384 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18385 abbrev_ptr += bytes_read;
18386 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18387 break;
18388 }
18389
18390 xfree (cur_attrs);
18391 return abbrev_table;
18392 }
18393
18394 /* Returns nonzero if TAG represents a type that we might generate a partial
18395 symbol for. */
18396
18397 static int
18398 is_type_tag_for_partial (int tag)
18399 {
18400 switch (tag)
18401 {
18402 #if 0
18403 /* Some types that would be reasonable to generate partial symbols for,
18404 that we don't at present. */
18405 case DW_TAG_array_type:
18406 case DW_TAG_file_type:
18407 case DW_TAG_ptr_to_member_type:
18408 case DW_TAG_set_type:
18409 case DW_TAG_string_type:
18410 case DW_TAG_subroutine_type:
18411 #endif
18412 case DW_TAG_base_type:
18413 case DW_TAG_class_type:
18414 case DW_TAG_interface_type:
18415 case DW_TAG_enumeration_type:
18416 case DW_TAG_structure_type:
18417 case DW_TAG_subrange_type:
18418 case DW_TAG_typedef:
18419 case DW_TAG_union_type:
18420 return 1;
18421 default:
18422 return 0;
18423 }
18424 }
18425
18426 /* Load all DIEs that are interesting for partial symbols into memory. */
18427
18428 static struct partial_die_info *
18429 load_partial_dies (const struct die_reader_specs *reader,
18430 const gdb_byte *info_ptr, int building_psymtab)
18431 {
18432 struct dwarf2_cu *cu = reader->cu;
18433 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18434 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18435 unsigned int bytes_read;
18436 unsigned int load_all = 0;
18437 int nesting_level = 1;
18438
18439 parent_die = NULL;
18440 last_die = NULL;
18441
18442 gdb_assert (cu->per_cu != NULL);
18443 if (cu->per_cu->load_all_dies)
18444 load_all = 1;
18445
18446 cu->partial_dies
18447 = htab_create_alloc_ex (cu->header.length / 12,
18448 partial_die_hash,
18449 partial_die_eq,
18450 NULL,
18451 &cu->comp_unit_obstack,
18452 hashtab_obstack_allocate,
18453 dummy_obstack_deallocate);
18454
18455 while (1)
18456 {
18457 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18458
18459 /* A NULL abbrev means the end of a series of children. */
18460 if (abbrev == NULL)
18461 {
18462 if (--nesting_level == 0)
18463 return first_die;
18464
18465 info_ptr += bytes_read;
18466 last_die = parent_die;
18467 parent_die = parent_die->die_parent;
18468 continue;
18469 }
18470
18471 /* Check for template arguments. We never save these; if
18472 they're seen, we just mark the parent, and go on our way. */
18473 if (parent_die != NULL
18474 && cu->language == language_cplus
18475 && (abbrev->tag == DW_TAG_template_type_param
18476 || abbrev->tag == DW_TAG_template_value_param))
18477 {
18478 parent_die->has_template_arguments = 1;
18479
18480 if (!load_all)
18481 {
18482 /* We don't need a partial DIE for the template argument. */
18483 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18484 continue;
18485 }
18486 }
18487
18488 /* We only recurse into c++ subprograms looking for template arguments.
18489 Skip their other children. */
18490 if (!load_all
18491 && cu->language == language_cplus
18492 && parent_die != NULL
18493 && parent_die->tag == DW_TAG_subprogram)
18494 {
18495 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18496 continue;
18497 }
18498
18499 /* Check whether this DIE is interesting enough to save. Normally
18500 we would not be interested in members here, but there may be
18501 later variables referencing them via DW_AT_specification (for
18502 static members). */
18503 if (!load_all
18504 && !is_type_tag_for_partial (abbrev->tag)
18505 && abbrev->tag != DW_TAG_constant
18506 && abbrev->tag != DW_TAG_enumerator
18507 && abbrev->tag != DW_TAG_subprogram
18508 && abbrev->tag != DW_TAG_inlined_subroutine
18509 && abbrev->tag != DW_TAG_lexical_block
18510 && abbrev->tag != DW_TAG_variable
18511 && abbrev->tag != DW_TAG_namespace
18512 && abbrev->tag != DW_TAG_module
18513 && abbrev->tag != DW_TAG_member
18514 && abbrev->tag != DW_TAG_imported_unit
18515 && abbrev->tag != DW_TAG_imported_declaration)
18516 {
18517 /* Otherwise we skip to the next sibling, if any. */
18518 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18519 continue;
18520 }
18521
18522 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18523 abbrev);
18524
18525 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18526
18527 /* This two-pass algorithm for processing partial symbols has a
18528 high cost in cache pressure. Thus, handle some simple cases
18529 here which cover the majority of C partial symbols. DIEs
18530 which neither have specification tags in them, nor could have
18531 specification tags elsewhere pointing at them, can simply be
18532 processed and discarded.
18533
18534 This segment is also optional; scan_partial_symbols and
18535 add_partial_symbol will handle these DIEs if we chain
18536 them in normally. When compilers which do not emit large
18537 quantities of duplicate debug information are more common,
18538 this code can probably be removed. */
18539
18540 /* Any complete simple types at the top level (pretty much all
18541 of them, for a language without namespaces), can be processed
18542 directly. */
18543 if (parent_die == NULL
18544 && pdi.has_specification == 0
18545 && pdi.is_declaration == 0
18546 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18547 || pdi.tag == DW_TAG_base_type
18548 || pdi.tag == DW_TAG_subrange_type))
18549 {
18550 if (building_psymtab && pdi.name != NULL)
18551 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
18552 VAR_DOMAIN, LOC_TYPEDEF, -1,
18553 psymbol_placement::STATIC,
18554 0, cu->language, objfile);
18555 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18556 continue;
18557 }
18558
18559 /* The exception for DW_TAG_typedef with has_children above is
18560 a workaround of GCC PR debug/47510. In the case of this complaint
18561 type_name_or_error will error on such types later.
18562
18563 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18564 it could not find the child DIEs referenced later, this is checked
18565 above. In correct DWARF DW_TAG_typedef should have no children. */
18566
18567 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18568 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18569 "- DIE at %s [in module %s]"),
18570 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18571
18572 /* If we're at the second level, and we're an enumerator, and
18573 our parent has no specification (meaning possibly lives in a
18574 namespace elsewhere), then we can add the partial symbol now
18575 instead of queueing it. */
18576 if (pdi.tag == DW_TAG_enumerator
18577 && parent_die != NULL
18578 && parent_die->die_parent == NULL
18579 && parent_die->tag == DW_TAG_enumeration_type
18580 && parent_die->has_specification == 0)
18581 {
18582 if (pdi.name == NULL)
18583 complaint (_("malformed enumerator DIE ignored"));
18584 else if (building_psymtab)
18585 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
18586 VAR_DOMAIN, LOC_CONST, -1,
18587 cu->language == language_cplus
18588 ? psymbol_placement::GLOBAL
18589 : psymbol_placement::STATIC,
18590 0, cu->language, objfile);
18591
18592 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18593 continue;
18594 }
18595
18596 struct partial_die_info *part_die
18597 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18598
18599 /* We'll save this DIE so link it in. */
18600 part_die->die_parent = parent_die;
18601 part_die->die_sibling = NULL;
18602 part_die->die_child = NULL;
18603
18604 if (last_die && last_die == parent_die)
18605 last_die->die_child = part_die;
18606 else if (last_die)
18607 last_die->die_sibling = part_die;
18608
18609 last_die = part_die;
18610
18611 if (first_die == NULL)
18612 first_die = part_die;
18613
18614 /* Maybe add the DIE to the hash table. Not all DIEs that we
18615 find interesting need to be in the hash table, because we
18616 also have the parent/sibling/child chains; only those that we
18617 might refer to by offset later during partial symbol reading.
18618
18619 For now this means things that might have be the target of a
18620 DW_AT_specification, DW_AT_abstract_origin, or
18621 DW_AT_extension. DW_AT_extension will refer only to
18622 namespaces; DW_AT_abstract_origin refers to functions (and
18623 many things under the function DIE, but we do not recurse
18624 into function DIEs during partial symbol reading) and
18625 possibly variables as well; DW_AT_specification refers to
18626 declarations. Declarations ought to have the DW_AT_declaration
18627 flag. It happens that GCC forgets to put it in sometimes, but
18628 only for functions, not for types.
18629
18630 Adding more things than necessary to the hash table is harmless
18631 except for the performance cost. Adding too few will result in
18632 wasted time in find_partial_die, when we reread the compilation
18633 unit with load_all_dies set. */
18634
18635 if (load_all
18636 || abbrev->tag == DW_TAG_constant
18637 || abbrev->tag == DW_TAG_subprogram
18638 || abbrev->tag == DW_TAG_variable
18639 || abbrev->tag == DW_TAG_namespace
18640 || part_die->is_declaration)
18641 {
18642 void **slot;
18643
18644 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18645 to_underlying (part_die->sect_off),
18646 INSERT);
18647 *slot = part_die;
18648 }
18649
18650 /* For some DIEs we want to follow their children (if any). For C
18651 we have no reason to follow the children of structures; for other
18652 languages we have to, so that we can get at method physnames
18653 to infer fully qualified class names, for DW_AT_specification,
18654 and for C++ template arguments. For C++, we also look one level
18655 inside functions to find template arguments (if the name of the
18656 function does not already contain the template arguments).
18657
18658 For Ada and Fortran, we need to scan the children of subprograms
18659 and lexical blocks as well because these languages allow the
18660 definition of nested entities that could be interesting for the
18661 debugger, such as nested subprograms for instance. */
18662 if (last_die->has_children
18663 && (load_all
18664 || last_die->tag == DW_TAG_namespace
18665 || last_die->tag == DW_TAG_module
18666 || last_die->tag == DW_TAG_enumeration_type
18667 || (cu->language == language_cplus
18668 && last_die->tag == DW_TAG_subprogram
18669 && (last_die->name == NULL
18670 || strchr (last_die->name, '<') == NULL))
18671 || (cu->language != language_c
18672 && (last_die->tag == DW_TAG_class_type
18673 || last_die->tag == DW_TAG_interface_type
18674 || last_die->tag == DW_TAG_structure_type
18675 || last_die->tag == DW_TAG_union_type))
18676 || ((cu->language == language_ada
18677 || cu->language == language_fortran)
18678 && (last_die->tag == DW_TAG_subprogram
18679 || last_die->tag == DW_TAG_lexical_block))))
18680 {
18681 nesting_level++;
18682 parent_die = last_die;
18683 continue;
18684 }
18685
18686 /* Otherwise we skip to the next sibling, if any. */
18687 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18688
18689 /* Back to the top, do it again. */
18690 }
18691 }
18692
18693 partial_die_info::partial_die_info (sect_offset sect_off_,
18694 struct abbrev_info *abbrev)
18695 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18696 {
18697 }
18698
18699 /* Read a minimal amount of information into the minimal die structure.
18700 INFO_PTR should point just after the initial uleb128 of a DIE. */
18701
18702 const gdb_byte *
18703 partial_die_info::read (const struct die_reader_specs *reader,
18704 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18705 {
18706 struct dwarf2_cu *cu = reader->cu;
18707 struct dwarf2_per_objfile *dwarf2_per_objfile
18708 = cu->per_cu->dwarf2_per_objfile;
18709 unsigned int i;
18710 int has_low_pc_attr = 0;
18711 int has_high_pc_attr = 0;
18712 int high_pc_relative = 0;
18713
18714 for (i = 0; i < abbrev.num_attrs; ++i)
18715 {
18716 struct attribute attr;
18717
18718 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18719
18720 /* Store the data if it is of an attribute we want to keep in a
18721 partial symbol table. */
18722 switch (attr.name)
18723 {
18724 case DW_AT_name:
18725 switch (tag)
18726 {
18727 case DW_TAG_compile_unit:
18728 case DW_TAG_partial_unit:
18729 case DW_TAG_type_unit:
18730 /* Compilation units have a DW_AT_name that is a filename, not
18731 a source language identifier. */
18732 case DW_TAG_enumeration_type:
18733 case DW_TAG_enumerator:
18734 /* These tags always have simple identifiers already; no need
18735 to canonicalize them. */
18736 name = DW_STRING (&attr);
18737 break;
18738 default:
18739 {
18740 struct objfile *objfile = dwarf2_per_objfile->objfile;
18741
18742 name
18743 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18744 &objfile->per_bfd->storage_obstack);
18745 }
18746 break;
18747 }
18748 break;
18749 case DW_AT_linkage_name:
18750 case DW_AT_MIPS_linkage_name:
18751 /* Note that both forms of linkage name might appear. We
18752 assume they will be the same, and we only store the last
18753 one we see. */
18754 linkage_name = DW_STRING (&attr);
18755 break;
18756 case DW_AT_low_pc:
18757 has_low_pc_attr = 1;
18758 lowpc = attr_value_as_address (&attr);
18759 break;
18760 case DW_AT_high_pc:
18761 has_high_pc_attr = 1;
18762 highpc = attr_value_as_address (&attr);
18763 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18764 high_pc_relative = 1;
18765 break;
18766 case DW_AT_location:
18767 /* Support the .debug_loc offsets. */
18768 if (attr_form_is_block (&attr))
18769 {
18770 d.locdesc = DW_BLOCK (&attr);
18771 }
18772 else if (attr_form_is_section_offset (&attr))
18773 {
18774 dwarf2_complex_location_expr_complaint ();
18775 }
18776 else
18777 {
18778 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18779 "partial symbol information");
18780 }
18781 break;
18782 case DW_AT_external:
18783 is_external = DW_UNSND (&attr);
18784 break;
18785 case DW_AT_declaration:
18786 is_declaration = DW_UNSND (&attr);
18787 break;
18788 case DW_AT_type:
18789 has_type = 1;
18790 break;
18791 case DW_AT_abstract_origin:
18792 case DW_AT_specification:
18793 case DW_AT_extension:
18794 has_specification = 1;
18795 spec_offset = dwarf2_get_ref_die_offset (&attr);
18796 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18797 || cu->per_cu->is_dwz);
18798 break;
18799 case DW_AT_sibling:
18800 /* Ignore absolute siblings, they might point outside of
18801 the current compile unit. */
18802 if (attr.form == DW_FORM_ref_addr)
18803 complaint (_("ignoring absolute DW_AT_sibling"));
18804 else
18805 {
18806 const gdb_byte *buffer = reader->buffer;
18807 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18808 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18809
18810 if (sibling_ptr < info_ptr)
18811 complaint (_("DW_AT_sibling points backwards"));
18812 else if (sibling_ptr > reader->buffer_end)
18813 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18814 else
18815 sibling = sibling_ptr;
18816 }
18817 break;
18818 case DW_AT_byte_size:
18819 has_byte_size = 1;
18820 break;
18821 case DW_AT_const_value:
18822 has_const_value = 1;
18823 break;
18824 case DW_AT_calling_convention:
18825 /* DWARF doesn't provide a way to identify a program's source-level
18826 entry point. DW_AT_calling_convention attributes are only meant
18827 to describe functions' calling conventions.
18828
18829 However, because it's a necessary piece of information in
18830 Fortran, and before DWARF 4 DW_CC_program was the only
18831 piece of debugging information whose definition refers to
18832 a 'main program' at all, several compilers marked Fortran
18833 main programs with DW_CC_program --- even when those
18834 functions use the standard calling conventions.
18835
18836 Although DWARF now specifies a way to provide this
18837 information, we support this practice for backward
18838 compatibility. */
18839 if (DW_UNSND (&attr) == DW_CC_program
18840 && cu->language == language_fortran)
18841 main_subprogram = 1;
18842 break;
18843 case DW_AT_inline:
18844 if (DW_UNSND (&attr) == DW_INL_inlined
18845 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18846 may_be_inlined = 1;
18847 break;
18848
18849 case DW_AT_import:
18850 if (tag == DW_TAG_imported_unit)
18851 {
18852 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18853 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18854 || cu->per_cu->is_dwz);
18855 }
18856 break;
18857
18858 case DW_AT_main_subprogram:
18859 main_subprogram = DW_UNSND (&attr);
18860 break;
18861
18862 case DW_AT_ranges:
18863 {
18864 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18865 but that requires a full DIE, so instead we just
18866 reimplement it. */
18867 int need_ranges_base = tag != DW_TAG_compile_unit;
18868 unsigned int ranges_offset = (DW_UNSND (&attr)
18869 + (need_ranges_base
18870 ? cu->ranges_base
18871 : 0));
18872
18873 /* Value of the DW_AT_ranges attribute is the offset in the
18874 .debug_ranges section. */
18875 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18876 nullptr))
18877 has_pc_info = 1;
18878 }
18879 break;
18880
18881 default:
18882 break;
18883 }
18884 }
18885
18886 /* For Ada, if both the name and the linkage name appear, we prefer
18887 the latter. This lets "catch exception" work better, regardless
18888 of the order in which the name and linkage name were emitted.
18889 Really, though, this is just a workaround for the fact that gdb
18890 doesn't store both the name and the linkage name. */
18891 if (cu->language == language_ada && linkage_name != nullptr)
18892 name = linkage_name;
18893
18894 if (high_pc_relative)
18895 highpc += lowpc;
18896
18897 if (has_low_pc_attr && has_high_pc_attr)
18898 {
18899 /* When using the GNU linker, .gnu.linkonce. sections are used to
18900 eliminate duplicate copies of functions and vtables and such.
18901 The linker will arbitrarily choose one and discard the others.
18902 The AT_*_pc values for such functions refer to local labels in
18903 these sections. If the section from that file was discarded, the
18904 labels are not in the output, so the relocs get a value of 0.
18905 If this is a discarded function, mark the pc bounds as invalid,
18906 so that GDB will ignore it. */
18907 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18908 {
18909 struct objfile *objfile = dwarf2_per_objfile->objfile;
18910 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18911
18912 complaint (_("DW_AT_low_pc %s is zero "
18913 "for DIE at %s [in module %s]"),
18914 paddress (gdbarch, lowpc),
18915 sect_offset_str (sect_off),
18916 objfile_name (objfile));
18917 }
18918 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18919 else if (lowpc >= highpc)
18920 {
18921 struct objfile *objfile = dwarf2_per_objfile->objfile;
18922 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18923
18924 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18925 "for DIE at %s [in module %s]"),
18926 paddress (gdbarch, lowpc),
18927 paddress (gdbarch, highpc),
18928 sect_offset_str (sect_off),
18929 objfile_name (objfile));
18930 }
18931 else
18932 has_pc_info = 1;
18933 }
18934
18935 return info_ptr;
18936 }
18937
18938 /* Find a cached partial DIE at OFFSET in CU. */
18939
18940 struct partial_die_info *
18941 dwarf2_cu::find_partial_die (sect_offset sect_off)
18942 {
18943 struct partial_die_info *lookup_die = NULL;
18944 struct partial_die_info part_die (sect_off);
18945
18946 lookup_die = ((struct partial_die_info *)
18947 htab_find_with_hash (partial_dies, &part_die,
18948 to_underlying (sect_off)));
18949
18950 return lookup_die;
18951 }
18952
18953 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18954 except in the case of .debug_types DIEs which do not reference
18955 outside their CU (they do however referencing other types via
18956 DW_FORM_ref_sig8). */
18957
18958 static const struct cu_partial_die_info
18959 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18960 {
18961 struct dwarf2_per_objfile *dwarf2_per_objfile
18962 = cu->per_cu->dwarf2_per_objfile;
18963 struct objfile *objfile = dwarf2_per_objfile->objfile;
18964 struct dwarf2_per_cu_data *per_cu = NULL;
18965 struct partial_die_info *pd = NULL;
18966
18967 if (offset_in_dwz == cu->per_cu->is_dwz
18968 && offset_in_cu_p (&cu->header, sect_off))
18969 {
18970 pd = cu->find_partial_die (sect_off);
18971 if (pd != NULL)
18972 return { cu, pd };
18973 /* We missed recording what we needed.
18974 Load all dies and try again. */
18975 per_cu = cu->per_cu;
18976 }
18977 else
18978 {
18979 /* TUs don't reference other CUs/TUs (except via type signatures). */
18980 if (cu->per_cu->is_debug_types)
18981 {
18982 error (_("Dwarf Error: Type Unit at offset %s contains"
18983 " external reference to offset %s [in module %s].\n"),
18984 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18985 bfd_get_filename (objfile->obfd));
18986 }
18987 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18988 dwarf2_per_objfile);
18989
18990 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18991 load_partial_comp_unit (per_cu);
18992
18993 per_cu->cu->last_used = 0;
18994 pd = per_cu->cu->find_partial_die (sect_off);
18995 }
18996
18997 /* If we didn't find it, and not all dies have been loaded,
18998 load them all and try again. */
18999
19000 if (pd == NULL && per_cu->load_all_dies == 0)
19001 {
19002 per_cu->load_all_dies = 1;
19003
19004 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19005 THIS_CU->cu may already be in use. So we can't just free it and
19006 replace its DIEs with the ones we read in. Instead, we leave those
19007 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19008 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19009 set. */
19010 load_partial_comp_unit (per_cu);
19011
19012 pd = per_cu->cu->find_partial_die (sect_off);
19013 }
19014
19015 if (pd == NULL)
19016 internal_error (__FILE__, __LINE__,
19017 _("could not find partial DIE %s "
19018 "in cache [from module %s]\n"),
19019 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19020 return { per_cu->cu, pd };
19021 }
19022
19023 /* See if we can figure out if the class lives in a namespace. We do
19024 this by looking for a member function; its demangled name will
19025 contain namespace info, if there is any. */
19026
19027 static void
19028 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19029 struct dwarf2_cu *cu)
19030 {
19031 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19032 what template types look like, because the demangler
19033 frequently doesn't give the same name as the debug info. We
19034 could fix this by only using the demangled name to get the
19035 prefix (but see comment in read_structure_type). */
19036
19037 struct partial_die_info *real_pdi;
19038 struct partial_die_info *child_pdi;
19039
19040 /* If this DIE (this DIE's specification, if any) has a parent, then
19041 we should not do this. We'll prepend the parent's fully qualified
19042 name when we create the partial symbol. */
19043
19044 real_pdi = struct_pdi;
19045 while (real_pdi->has_specification)
19046 {
19047 auto res = find_partial_die (real_pdi->spec_offset,
19048 real_pdi->spec_is_dwz, cu);
19049 real_pdi = res.pdi;
19050 cu = res.cu;
19051 }
19052
19053 if (real_pdi->die_parent != NULL)
19054 return;
19055
19056 for (child_pdi = struct_pdi->die_child;
19057 child_pdi != NULL;
19058 child_pdi = child_pdi->die_sibling)
19059 {
19060 if (child_pdi->tag == DW_TAG_subprogram
19061 && child_pdi->linkage_name != NULL)
19062 {
19063 char *actual_class_name
19064 = language_class_name_from_physname (cu->language_defn,
19065 child_pdi->linkage_name);
19066 if (actual_class_name != NULL)
19067 {
19068 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19069 struct_pdi->name
19070 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19071 actual_class_name);
19072 xfree (actual_class_name);
19073 }
19074 break;
19075 }
19076 }
19077 }
19078
19079 void
19080 partial_die_info::fixup (struct dwarf2_cu *cu)
19081 {
19082 /* Once we've fixed up a die, there's no point in doing so again.
19083 This also avoids a memory leak if we were to call
19084 guess_partial_die_structure_name multiple times. */
19085 if (fixup_called)
19086 return;
19087
19088 /* If we found a reference attribute and the DIE has no name, try
19089 to find a name in the referred to DIE. */
19090
19091 if (name == NULL && has_specification)
19092 {
19093 struct partial_die_info *spec_die;
19094
19095 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19096 spec_die = res.pdi;
19097 cu = res.cu;
19098
19099 spec_die->fixup (cu);
19100
19101 if (spec_die->name)
19102 {
19103 name = spec_die->name;
19104
19105 /* Copy DW_AT_external attribute if it is set. */
19106 if (spec_die->is_external)
19107 is_external = spec_die->is_external;
19108 }
19109 }
19110
19111 /* Set default names for some unnamed DIEs. */
19112
19113 if (name == NULL && tag == DW_TAG_namespace)
19114 name = CP_ANONYMOUS_NAMESPACE_STR;
19115
19116 /* If there is no parent die to provide a namespace, and there are
19117 children, see if we can determine the namespace from their linkage
19118 name. */
19119 if (cu->language == language_cplus
19120 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19121 && die_parent == NULL
19122 && has_children
19123 && (tag == DW_TAG_class_type
19124 || tag == DW_TAG_structure_type
19125 || tag == DW_TAG_union_type))
19126 guess_partial_die_structure_name (this, cu);
19127
19128 /* GCC might emit a nameless struct or union that has a linkage
19129 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19130 if (name == NULL
19131 && (tag == DW_TAG_class_type
19132 || tag == DW_TAG_interface_type
19133 || tag == DW_TAG_structure_type
19134 || tag == DW_TAG_union_type)
19135 && linkage_name != NULL)
19136 {
19137 char *demangled;
19138
19139 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19140 if (demangled)
19141 {
19142 const char *base;
19143
19144 /* Strip any leading namespaces/classes, keep only the base name.
19145 DW_AT_name for named DIEs does not contain the prefixes. */
19146 base = strrchr (demangled, ':');
19147 if (base && base > demangled && base[-1] == ':')
19148 base++;
19149 else
19150 base = demangled;
19151
19152 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19153 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19154 xfree (demangled);
19155 }
19156 }
19157
19158 fixup_called = 1;
19159 }
19160
19161 /* Read an attribute value described by an attribute form. */
19162
19163 static const gdb_byte *
19164 read_attribute_value (const struct die_reader_specs *reader,
19165 struct attribute *attr, unsigned form,
19166 LONGEST implicit_const, const gdb_byte *info_ptr)
19167 {
19168 struct dwarf2_cu *cu = reader->cu;
19169 struct dwarf2_per_objfile *dwarf2_per_objfile
19170 = cu->per_cu->dwarf2_per_objfile;
19171 struct objfile *objfile = dwarf2_per_objfile->objfile;
19172 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19173 bfd *abfd = reader->abfd;
19174 struct comp_unit_head *cu_header = &cu->header;
19175 unsigned int bytes_read;
19176 struct dwarf_block *blk;
19177
19178 attr->form = (enum dwarf_form) form;
19179 switch (form)
19180 {
19181 case DW_FORM_ref_addr:
19182 if (cu->header.version == 2)
19183 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19184 else
19185 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19186 &cu->header, &bytes_read);
19187 info_ptr += bytes_read;
19188 break;
19189 case DW_FORM_GNU_ref_alt:
19190 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19191 info_ptr += bytes_read;
19192 break;
19193 case DW_FORM_addr:
19194 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19195 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19196 info_ptr += bytes_read;
19197 break;
19198 case DW_FORM_block2:
19199 blk = dwarf_alloc_block (cu);
19200 blk->size = read_2_bytes (abfd, info_ptr);
19201 info_ptr += 2;
19202 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19203 info_ptr += blk->size;
19204 DW_BLOCK (attr) = blk;
19205 break;
19206 case DW_FORM_block4:
19207 blk = dwarf_alloc_block (cu);
19208 blk->size = read_4_bytes (abfd, info_ptr);
19209 info_ptr += 4;
19210 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19211 info_ptr += blk->size;
19212 DW_BLOCK (attr) = blk;
19213 break;
19214 case DW_FORM_data2:
19215 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19216 info_ptr += 2;
19217 break;
19218 case DW_FORM_data4:
19219 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19220 info_ptr += 4;
19221 break;
19222 case DW_FORM_data8:
19223 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19224 info_ptr += 8;
19225 break;
19226 case DW_FORM_data16:
19227 blk = dwarf_alloc_block (cu);
19228 blk->size = 16;
19229 blk->data = read_n_bytes (abfd, info_ptr, 16);
19230 info_ptr += 16;
19231 DW_BLOCK (attr) = blk;
19232 break;
19233 case DW_FORM_sec_offset:
19234 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19235 info_ptr += bytes_read;
19236 break;
19237 case DW_FORM_string:
19238 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19239 DW_STRING_IS_CANONICAL (attr) = 0;
19240 info_ptr += bytes_read;
19241 break;
19242 case DW_FORM_strp:
19243 if (!cu->per_cu->is_dwz)
19244 {
19245 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19246 abfd, info_ptr, cu_header,
19247 &bytes_read);
19248 DW_STRING_IS_CANONICAL (attr) = 0;
19249 info_ptr += bytes_read;
19250 break;
19251 }
19252 /* FALLTHROUGH */
19253 case DW_FORM_line_strp:
19254 if (!cu->per_cu->is_dwz)
19255 {
19256 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19257 abfd, info_ptr,
19258 cu_header, &bytes_read);
19259 DW_STRING_IS_CANONICAL (attr) = 0;
19260 info_ptr += bytes_read;
19261 break;
19262 }
19263 /* FALLTHROUGH */
19264 case DW_FORM_GNU_strp_alt:
19265 {
19266 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19267 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19268 &bytes_read);
19269
19270 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19271 dwz, str_offset);
19272 DW_STRING_IS_CANONICAL (attr) = 0;
19273 info_ptr += bytes_read;
19274 }
19275 break;
19276 case DW_FORM_exprloc:
19277 case DW_FORM_block:
19278 blk = dwarf_alloc_block (cu);
19279 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19280 info_ptr += bytes_read;
19281 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19282 info_ptr += blk->size;
19283 DW_BLOCK (attr) = blk;
19284 break;
19285 case DW_FORM_block1:
19286 blk = dwarf_alloc_block (cu);
19287 blk->size = read_1_byte (abfd, info_ptr);
19288 info_ptr += 1;
19289 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19290 info_ptr += blk->size;
19291 DW_BLOCK (attr) = blk;
19292 break;
19293 case DW_FORM_data1:
19294 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19295 info_ptr += 1;
19296 break;
19297 case DW_FORM_flag:
19298 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19299 info_ptr += 1;
19300 break;
19301 case DW_FORM_flag_present:
19302 DW_UNSND (attr) = 1;
19303 break;
19304 case DW_FORM_sdata:
19305 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19306 info_ptr += bytes_read;
19307 break;
19308 case DW_FORM_udata:
19309 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19310 info_ptr += bytes_read;
19311 break;
19312 case DW_FORM_ref1:
19313 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19314 + read_1_byte (abfd, info_ptr));
19315 info_ptr += 1;
19316 break;
19317 case DW_FORM_ref2:
19318 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19319 + read_2_bytes (abfd, info_ptr));
19320 info_ptr += 2;
19321 break;
19322 case DW_FORM_ref4:
19323 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19324 + read_4_bytes (abfd, info_ptr));
19325 info_ptr += 4;
19326 break;
19327 case DW_FORM_ref8:
19328 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19329 + read_8_bytes (abfd, info_ptr));
19330 info_ptr += 8;
19331 break;
19332 case DW_FORM_ref_sig8:
19333 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19334 info_ptr += 8;
19335 break;
19336 case DW_FORM_ref_udata:
19337 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19338 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19339 info_ptr += bytes_read;
19340 break;
19341 case DW_FORM_indirect:
19342 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19343 info_ptr += bytes_read;
19344 if (form == DW_FORM_implicit_const)
19345 {
19346 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19347 info_ptr += bytes_read;
19348 }
19349 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19350 info_ptr);
19351 break;
19352 case DW_FORM_implicit_const:
19353 DW_SND (attr) = implicit_const;
19354 break;
19355 case DW_FORM_addrx:
19356 case DW_FORM_GNU_addr_index:
19357 if (reader->dwo_file == NULL)
19358 {
19359 /* For now flag a hard error.
19360 Later we can turn this into a complaint. */
19361 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19362 dwarf_form_name (form),
19363 bfd_get_filename (abfd));
19364 }
19365 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19366 info_ptr += bytes_read;
19367 break;
19368 case DW_FORM_strx:
19369 case DW_FORM_strx1:
19370 case DW_FORM_strx2:
19371 case DW_FORM_strx3:
19372 case DW_FORM_strx4:
19373 case DW_FORM_GNU_str_index:
19374 if (reader->dwo_file == NULL)
19375 {
19376 /* For now flag a hard error.
19377 Later we can turn this into a complaint if warranted. */
19378 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19379 dwarf_form_name (form),
19380 bfd_get_filename (abfd));
19381 }
19382 {
19383 ULONGEST str_index;
19384 if (form == DW_FORM_strx1)
19385 {
19386 str_index = read_1_byte (abfd, info_ptr);
19387 info_ptr += 1;
19388 }
19389 else if (form == DW_FORM_strx2)
19390 {
19391 str_index = read_2_bytes (abfd, info_ptr);
19392 info_ptr += 2;
19393 }
19394 else if (form == DW_FORM_strx3)
19395 {
19396 str_index = read_3_bytes (abfd, info_ptr);
19397 info_ptr += 3;
19398 }
19399 else if (form == DW_FORM_strx4)
19400 {
19401 str_index = read_4_bytes (abfd, info_ptr);
19402 info_ptr += 4;
19403 }
19404 else
19405 {
19406 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19407 info_ptr += bytes_read;
19408 }
19409 DW_STRING (attr) = read_str_index (reader, str_index);
19410 DW_STRING_IS_CANONICAL (attr) = 0;
19411 }
19412 break;
19413 default:
19414 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19415 dwarf_form_name (form),
19416 bfd_get_filename (abfd));
19417 }
19418
19419 /* Super hack. */
19420 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19421 attr->form = DW_FORM_GNU_ref_alt;
19422
19423 /* We have seen instances where the compiler tried to emit a byte
19424 size attribute of -1 which ended up being encoded as an unsigned
19425 0xffffffff. Although 0xffffffff is technically a valid size value,
19426 an object of this size seems pretty unlikely so we can relatively
19427 safely treat these cases as if the size attribute was invalid and
19428 treat them as zero by default. */
19429 if (attr->name == DW_AT_byte_size
19430 && form == DW_FORM_data4
19431 && DW_UNSND (attr) >= 0xffffffff)
19432 {
19433 complaint
19434 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19435 hex_string (DW_UNSND (attr)));
19436 DW_UNSND (attr) = 0;
19437 }
19438
19439 return info_ptr;
19440 }
19441
19442 /* Read an attribute described by an abbreviated attribute. */
19443
19444 static const gdb_byte *
19445 read_attribute (const struct die_reader_specs *reader,
19446 struct attribute *attr, struct attr_abbrev *abbrev,
19447 const gdb_byte *info_ptr)
19448 {
19449 attr->name = abbrev->name;
19450 return read_attribute_value (reader, attr, abbrev->form,
19451 abbrev->implicit_const, info_ptr);
19452 }
19453
19454 /* Read dwarf information from a buffer. */
19455
19456 static unsigned int
19457 read_1_byte (bfd *abfd, const gdb_byte *buf)
19458 {
19459 return bfd_get_8 (abfd, buf);
19460 }
19461
19462 static int
19463 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19464 {
19465 return bfd_get_signed_8 (abfd, buf);
19466 }
19467
19468 static unsigned int
19469 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19470 {
19471 return bfd_get_16 (abfd, buf);
19472 }
19473
19474 static int
19475 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19476 {
19477 return bfd_get_signed_16 (abfd, buf);
19478 }
19479
19480 static unsigned int
19481 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19482 {
19483 unsigned int result = 0;
19484 for (int i = 0; i < 3; ++i)
19485 {
19486 unsigned char byte = bfd_get_8 (abfd, buf);
19487 buf++;
19488 result |= ((unsigned int) byte << (i * 8));
19489 }
19490 return result;
19491 }
19492
19493 static unsigned int
19494 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19495 {
19496 return bfd_get_32 (abfd, buf);
19497 }
19498
19499 static int
19500 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19501 {
19502 return bfd_get_signed_32 (abfd, buf);
19503 }
19504
19505 static ULONGEST
19506 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19507 {
19508 return bfd_get_64 (abfd, buf);
19509 }
19510
19511 static CORE_ADDR
19512 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19513 unsigned int *bytes_read)
19514 {
19515 struct comp_unit_head *cu_header = &cu->header;
19516 CORE_ADDR retval = 0;
19517
19518 if (cu_header->signed_addr_p)
19519 {
19520 switch (cu_header->addr_size)
19521 {
19522 case 2:
19523 retval = bfd_get_signed_16 (abfd, buf);
19524 break;
19525 case 4:
19526 retval = bfd_get_signed_32 (abfd, buf);
19527 break;
19528 case 8:
19529 retval = bfd_get_signed_64 (abfd, buf);
19530 break;
19531 default:
19532 internal_error (__FILE__, __LINE__,
19533 _("read_address: bad switch, signed [in module %s]"),
19534 bfd_get_filename (abfd));
19535 }
19536 }
19537 else
19538 {
19539 switch (cu_header->addr_size)
19540 {
19541 case 2:
19542 retval = bfd_get_16 (abfd, buf);
19543 break;
19544 case 4:
19545 retval = bfd_get_32 (abfd, buf);
19546 break;
19547 case 8:
19548 retval = bfd_get_64 (abfd, buf);
19549 break;
19550 default:
19551 internal_error (__FILE__, __LINE__,
19552 _("read_address: bad switch, "
19553 "unsigned [in module %s]"),
19554 bfd_get_filename (abfd));
19555 }
19556 }
19557
19558 *bytes_read = cu_header->addr_size;
19559 return retval;
19560 }
19561
19562 /* Read the initial length from a section. The (draft) DWARF 3
19563 specification allows the initial length to take up either 4 bytes
19564 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19565 bytes describe the length and all offsets will be 8 bytes in length
19566 instead of 4.
19567
19568 An older, non-standard 64-bit format is also handled by this
19569 function. The older format in question stores the initial length
19570 as an 8-byte quantity without an escape value. Lengths greater
19571 than 2^32 aren't very common which means that the initial 4 bytes
19572 is almost always zero. Since a length value of zero doesn't make
19573 sense for the 32-bit format, this initial zero can be considered to
19574 be an escape value which indicates the presence of the older 64-bit
19575 format. As written, the code can't detect (old format) lengths
19576 greater than 4GB. If it becomes necessary to handle lengths
19577 somewhat larger than 4GB, we could allow other small values (such
19578 as the non-sensical values of 1, 2, and 3) to also be used as
19579 escape values indicating the presence of the old format.
19580
19581 The value returned via bytes_read should be used to increment the
19582 relevant pointer after calling read_initial_length().
19583
19584 [ Note: read_initial_length() and read_offset() are based on the
19585 document entitled "DWARF Debugging Information Format", revision
19586 3, draft 8, dated November 19, 2001. This document was obtained
19587 from:
19588
19589 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19590
19591 This document is only a draft and is subject to change. (So beware.)
19592
19593 Details regarding the older, non-standard 64-bit format were
19594 determined empirically by examining 64-bit ELF files produced by
19595 the SGI toolchain on an IRIX 6.5 machine.
19596
19597 - Kevin, July 16, 2002
19598 ] */
19599
19600 static LONGEST
19601 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19602 {
19603 LONGEST length = bfd_get_32 (abfd, buf);
19604
19605 if (length == 0xffffffff)
19606 {
19607 length = bfd_get_64 (abfd, buf + 4);
19608 *bytes_read = 12;
19609 }
19610 else if (length == 0)
19611 {
19612 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19613 length = bfd_get_64 (abfd, buf);
19614 *bytes_read = 8;
19615 }
19616 else
19617 {
19618 *bytes_read = 4;
19619 }
19620
19621 return length;
19622 }
19623
19624 /* Cover function for read_initial_length.
19625 Returns the length of the object at BUF, and stores the size of the
19626 initial length in *BYTES_READ and stores the size that offsets will be in
19627 *OFFSET_SIZE.
19628 If the initial length size is not equivalent to that specified in
19629 CU_HEADER then issue a complaint.
19630 This is useful when reading non-comp-unit headers. */
19631
19632 static LONGEST
19633 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19634 const struct comp_unit_head *cu_header,
19635 unsigned int *bytes_read,
19636 unsigned int *offset_size)
19637 {
19638 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19639
19640 gdb_assert (cu_header->initial_length_size == 4
19641 || cu_header->initial_length_size == 8
19642 || cu_header->initial_length_size == 12);
19643
19644 if (cu_header->initial_length_size != *bytes_read)
19645 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19646
19647 *offset_size = (*bytes_read == 4) ? 4 : 8;
19648 return length;
19649 }
19650
19651 /* Read an offset from the data stream. The size of the offset is
19652 given by cu_header->offset_size. */
19653
19654 static LONGEST
19655 read_offset (bfd *abfd, const gdb_byte *buf,
19656 const struct comp_unit_head *cu_header,
19657 unsigned int *bytes_read)
19658 {
19659 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19660
19661 *bytes_read = cu_header->offset_size;
19662 return offset;
19663 }
19664
19665 /* Read an offset from the data stream. */
19666
19667 static LONGEST
19668 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19669 {
19670 LONGEST retval = 0;
19671
19672 switch (offset_size)
19673 {
19674 case 4:
19675 retval = bfd_get_32 (abfd, buf);
19676 break;
19677 case 8:
19678 retval = bfd_get_64 (abfd, buf);
19679 break;
19680 default:
19681 internal_error (__FILE__, __LINE__,
19682 _("read_offset_1: bad switch [in module %s]"),
19683 bfd_get_filename (abfd));
19684 }
19685
19686 return retval;
19687 }
19688
19689 static const gdb_byte *
19690 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19691 {
19692 /* If the size of a host char is 8 bits, we can return a pointer
19693 to the buffer, otherwise we have to copy the data to a buffer
19694 allocated on the temporary obstack. */
19695 gdb_assert (HOST_CHAR_BIT == 8);
19696 return buf;
19697 }
19698
19699 static const char *
19700 read_direct_string (bfd *abfd, const gdb_byte *buf,
19701 unsigned int *bytes_read_ptr)
19702 {
19703 /* If the size of a host char is 8 bits, we can return a pointer
19704 to the string, otherwise we have to copy the string to a buffer
19705 allocated on the temporary obstack. */
19706 gdb_assert (HOST_CHAR_BIT == 8);
19707 if (*buf == '\0')
19708 {
19709 *bytes_read_ptr = 1;
19710 return NULL;
19711 }
19712 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19713 return (const char *) buf;
19714 }
19715
19716 /* Return pointer to string at section SECT offset STR_OFFSET with error
19717 reporting strings FORM_NAME and SECT_NAME. */
19718
19719 static const char *
19720 read_indirect_string_at_offset_from (struct objfile *objfile,
19721 bfd *abfd, LONGEST str_offset,
19722 struct dwarf2_section_info *sect,
19723 const char *form_name,
19724 const char *sect_name)
19725 {
19726 dwarf2_read_section (objfile, sect);
19727 if (sect->buffer == NULL)
19728 error (_("%s used without %s section [in module %s]"),
19729 form_name, sect_name, bfd_get_filename (abfd));
19730 if (str_offset >= sect->size)
19731 error (_("%s pointing outside of %s section [in module %s]"),
19732 form_name, sect_name, bfd_get_filename (abfd));
19733 gdb_assert (HOST_CHAR_BIT == 8);
19734 if (sect->buffer[str_offset] == '\0')
19735 return NULL;
19736 return (const char *) (sect->buffer + str_offset);
19737 }
19738
19739 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19740
19741 static const char *
19742 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19743 bfd *abfd, LONGEST str_offset)
19744 {
19745 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19746 abfd, str_offset,
19747 &dwarf2_per_objfile->str,
19748 "DW_FORM_strp", ".debug_str");
19749 }
19750
19751 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19752
19753 static const char *
19754 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19755 bfd *abfd, LONGEST str_offset)
19756 {
19757 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19758 abfd, str_offset,
19759 &dwarf2_per_objfile->line_str,
19760 "DW_FORM_line_strp",
19761 ".debug_line_str");
19762 }
19763
19764 /* Read a string at offset STR_OFFSET in the .debug_str section from
19765 the .dwz file DWZ. Throw an error if the offset is too large. If
19766 the string consists of a single NUL byte, return NULL; otherwise
19767 return a pointer to the string. */
19768
19769 static const char *
19770 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19771 LONGEST str_offset)
19772 {
19773 dwarf2_read_section (objfile, &dwz->str);
19774
19775 if (dwz->str.buffer == NULL)
19776 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19777 "section [in module %s]"),
19778 bfd_get_filename (dwz->dwz_bfd.get ()));
19779 if (str_offset >= dwz->str.size)
19780 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19781 ".debug_str section [in module %s]"),
19782 bfd_get_filename (dwz->dwz_bfd.get ()));
19783 gdb_assert (HOST_CHAR_BIT == 8);
19784 if (dwz->str.buffer[str_offset] == '\0')
19785 return NULL;
19786 return (const char *) (dwz->str.buffer + str_offset);
19787 }
19788
19789 /* Return pointer to string at .debug_str offset as read from BUF.
19790 BUF is assumed to be in a compilation unit described by CU_HEADER.
19791 Return *BYTES_READ_PTR count of bytes read from BUF. */
19792
19793 static const char *
19794 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19795 const gdb_byte *buf,
19796 const struct comp_unit_head *cu_header,
19797 unsigned int *bytes_read_ptr)
19798 {
19799 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19800
19801 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19802 }
19803
19804 /* Return pointer to string at .debug_line_str offset as read from BUF.
19805 BUF is assumed to be in a compilation unit described by CU_HEADER.
19806 Return *BYTES_READ_PTR count of bytes read from BUF. */
19807
19808 static const char *
19809 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19810 bfd *abfd, const gdb_byte *buf,
19811 const struct comp_unit_head *cu_header,
19812 unsigned int *bytes_read_ptr)
19813 {
19814 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19815
19816 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19817 str_offset);
19818 }
19819
19820 ULONGEST
19821 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19822 unsigned int *bytes_read_ptr)
19823 {
19824 ULONGEST result;
19825 unsigned int num_read;
19826 int shift;
19827 unsigned char byte;
19828
19829 result = 0;
19830 shift = 0;
19831 num_read = 0;
19832 while (1)
19833 {
19834 byte = bfd_get_8 (abfd, buf);
19835 buf++;
19836 num_read++;
19837 result |= ((ULONGEST) (byte & 127) << shift);
19838 if ((byte & 128) == 0)
19839 {
19840 break;
19841 }
19842 shift += 7;
19843 }
19844 *bytes_read_ptr = num_read;
19845 return result;
19846 }
19847
19848 static LONGEST
19849 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19850 unsigned int *bytes_read_ptr)
19851 {
19852 ULONGEST result;
19853 int shift, num_read;
19854 unsigned char byte;
19855
19856 result = 0;
19857 shift = 0;
19858 num_read = 0;
19859 while (1)
19860 {
19861 byte = bfd_get_8 (abfd, buf);
19862 buf++;
19863 num_read++;
19864 result |= ((ULONGEST) (byte & 127) << shift);
19865 shift += 7;
19866 if ((byte & 128) == 0)
19867 {
19868 break;
19869 }
19870 }
19871 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19872 result |= -(((ULONGEST) 1) << shift);
19873 *bytes_read_ptr = num_read;
19874 return result;
19875 }
19876
19877 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19878 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19879 ADDR_SIZE is the size of addresses from the CU header. */
19880
19881 static CORE_ADDR
19882 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19883 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19884 {
19885 struct objfile *objfile = dwarf2_per_objfile->objfile;
19886 bfd *abfd = objfile->obfd;
19887 const gdb_byte *info_ptr;
19888
19889 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19890 if (dwarf2_per_objfile->addr.buffer == NULL)
19891 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19892 objfile_name (objfile));
19893 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19894 error (_("DW_FORM_addr_index pointing outside of "
19895 ".debug_addr section [in module %s]"),
19896 objfile_name (objfile));
19897 info_ptr = (dwarf2_per_objfile->addr.buffer
19898 + addr_base + addr_index * addr_size);
19899 if (addr_size == 4)
19900 return bfd_get_32 (abfd, info_ptr);
19901 else
19902 return bfd_get_64 (abfd, info_ptr);
19903 }
19904
19905 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19906
19907 static CORE_ADDR
19908 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19909 {
19910 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19911 cu->addr_base, cu->header.addr_size);
19912 }
19913
19914 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19915
19916 static CORE_ADDR
19917 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19918 unsigned int *bytes_read)
19919 {
19920 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19921 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19922
19923 return read_addr_index (cu, addr_index);
19924 }
19925
19926 /* Data structure to pass results from dwarf2_read_addr_index_reader
19927 back to dwarf2_read_addr_index. */
19928
19929 struct dwarf2_read_addr_index_data
19930 {
19931 ULONGEST addr_base;
19932 int addr_size;
19933 };
19934
19935 /* die_reader_func for dwarf2_read_addr_index. */
19936
19937 static void
19938 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19939 const gdb_byte *info_ptr,
19940 struct die_info *comp_unit_die,
19941 int has_children,
19942 void *data)
19943 {
19944 struct dwarf2_cu *cu = reader->cu;
19945 struct dwarf2_read_addr_index_data *aidata =
19946 (struct dwarf2_read_addr_index_data *) data;
19947
19948 aidata->addr_base = cu->addr_base;
19949 aidata->addr_size = cu->header.addr_size;
19950 }
19951
19952 /* Given an index in .debug_addr, fetch the value.
19953 NOTE: This can be called during dwarf expression evaluation,
19954 long after the debug information has been read, and thus per_cu->cu
19955 may no longer exist. */
19956
19957 CORE_ADDR
19958 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19959 unsigned int addr_index)
19960 {
19961 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19962 struct dwarf2_cu *cu = per_cu->cu;
19963 ULONGEST addr_base;
19964 int addr_size;
19965
19966 /* We need addr_base and addr_size.
19967 If we don't have PER_CU->cu, we have to get it.
19968 Nasty, but the alternative is storing the needed info in PER_CU,
19969 which at this point doesn't seem justified: it's not clear how frequently
19970 it would get used and it would increase the size of every PER_CU.
19971 Entry points like dwarf2_per_cu_addr_size do a similar thing
19972 so we're not in uncharted territory here.
19973 Alas we need to be a bit more complicated as addr_base is contained
19974 in the DIE.
19975
19976 We don't need to read the entire CU(/TU).
19977 We just need the header and top level die.
19978
19979 IWBN to use the aging mechanism to let us lazily later discard the CU.
19980 For now we skip this optimization. */
19981
19982 if (cu != NULL)
19983 {
19984 addr_base = cu->addr_base;
19985 addr_size = cu->header.addr_size;
19986 }
19987 else
19988 {
19989 struct dwarf2_read_addr_index_data aidata;
19990
19991 /* Note: We can't use init_cutu_and_read_dies_simple here,
19992 we need addr_base. */
19993 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19994 dwarf2_read_addr_index_reader, &aidata);
19995 addr_base = aidata.addr_base;
19996 addr_size = aidata.addr_size;
19997 }
19998
19999 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20000 addr_size);
20001 }
20002
20003 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
20004 This is only used by the Fission support. */
20005
20006 static const char *
20007 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20008 {
20009 struct dwarf2_cu *cu = reader->cu;
20010 struct dwarf2_per_objfile *dwarf2_per_objfile
20011 = cu->per_cu->dwarf2_per_objfile;
20012 struct objfile *objfile = dwarf2_per_objfile->objfile;
20013 const char *objf_name = objfile_name (objfile);
20014 bfd *abfd = objfile->obfd;
20015 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20016 struct dwarf2_section_info *str_offsets_section =
20017 &reader->dwo_file->sections.str_offsets;
20018 const gdb_byte *info_ptr;
20019 ULONGEST str_offset;
20020 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20021
20022 dwarf2_read_section (objfile, str_section);
20023 dwarf2_read_section (objfile, str_offsets_section);
20024 if (str_section->buffer == NULL)
20025 error (_("%s used without .debug_str.dwo section"
20026 " in CU at offset %s [in module %s]"),
20027 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20028 if (str_offsets_section->buffer == NULL)
20029 error (_("%s used without .debug_str_offsets.dwo section"
20030 " in CU at offset %s [in module %s]"),
20031 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20032 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20033 error (_("%s pointing outside of .debug_str_offsets.dwo"
20034 " section in CU at offset %s [in module %s]"),
20035 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20036 info_ptr = (str_offsets_section->buffer
20037 + str_index * cu->header.offset_size);
20038 if (cu->header.offset_size == 4)
20039 str_offset = bfd_get_32 (abfd, info_ptr);
20040 else
20041 str_offset = bfd_get_64 (abfd, info_ptr);
20042 if (str_offset >= str_section->size)
20043 error (_("Offset from %s pointing outside of"
20044 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20045 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20046 return (const char *) (str_section->buffer + str_offset);
20047 }
20048
20049 /* Return the length of an LEB128 number in BUF. */
20050
20051 static int
20052 leb128_size (const gdb_byte *buf)
20053 {
20054 const gdb_byte *begin = buf;
20055 gdb_byte byte;
20056
20057 while (1)
20058 {
20059 byte = *buf++;
20060 if ((byte & 128) == 0)
20061 return buf - begin;
20062 }
20063 }
20064
20065 static void
20066 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20067 {
20068 switch (lang)
20069 {
20070 case DW_LANG_C89:
20071 case DW_LANG_C99:
20072 case DW_LANG_C11:
20073 case DW_LANG_C:
20074 case DW_LANG_UPC:
20075 cu->language = language_c;
20076 break;
20077 case DW_LANG_Java:
20078 case DW_LANG_C_plus_plus:
20079 case DW_LANG_C_plus_plus_11:
20080 case DW_LANG_C_plus_plus_14:
20081 cu->language = language_cplus;
20082 break;
20083 case DW_LANG_D:
20084 cu->language = language_d;
20085 break;
20086 case DW_LANG_Fortran77:
20087 case DW_LANG_Fortran90:
20088 case DW_LANG_Fortran95:
20089 case DW_LANG_Fortran03:
20090 case DW_LANG_Fortran08:
20091 cu->language = language_fortran;
20092 break;
20093 case DW_LANG_Go:
20094 cu->language = language_go;
20095 break;
20096 case DW_LANG_Mips_Assembler:
20097 cu->language = language_asm;
20098 break;
20099 case DW_LANG_Ada83:
20100 case DW_LANG_Ada95:
20101 cu->language = language_ada;
20102 break;
20103 case DW_LANG_Modula2:
20104 cu->language = language_m2;
20105 break;
20106 case DW_LANG_Pascal83:
20107 cu->language = language_pascal;
20108 break;
20109 case DW_LANG_ObjC:
20110 cu->language = language_objc;
20111 break;
20112 case DW_LANG_Rust:
20113 case DW_LANG_Rust_old:
20114 cu->language = language_rust;
20115 break;
20116 case DW_LANG_Cobol74:
20117 case DW_LANG_Cobol85:
20118 default:
20119 cu->language = language_minimal;
20120 break;
20121 }
20122 cu->language_defn = language_def (cu->language);
20123 }
20124
20125 /* Return the named attribute or NULL if not there. */
20126
20127 static struct attribute *
20128 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20129 {
20130 for (;;)
20131 {
20132 unsigned int i;
20133 struct attribute *spec = NULL;
20134
20135 for (i = 0; i < die->num_attrs; ++i)
20136 {
20137 if (die->attrs[i].name == name)
20138 return &die->attrs[i];
20139 if (die->attrs[i].name == DW_AT_specification
20140 || die->attrs[i].name == DW_AT_abstract_origin)
20141 spec = &die->attrs[i];
20142 }
20143
20144 if (!spec)
20145 break;
20146
20147 die = follow_die_ref (die, spec, &cu);
20148 }
20149
20150 return NULL;
20151 }
20152
20153 /* Return the named attribute or NULL if not there,
20154 but do not follow DW_AT_specification, etc.
20155 This is for use in contexts where we're reading .debug_types dies.
20156 Following DW_AT_specification, DW_AT_abstract_origin will take us
20157 back up the chain, and we want to go down. */
20158
20159 static struct attribute *
20160 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20161 {
20162 unsigned int i;
20163
20164 for (i = 0; i < die->num_attrs; ++i)
20165 if (die->attrs[i].name == name)
20166 return &die->attrs[i];
20167
20168 return NULL;
20169 }
20170
20171 /* Return the string associated with a string-typed attribute, or NULL if it
20172 is either not found or is of an incorrect type. */
20173
20174 static const char *
20175 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20176 {
20177 struct attribute *attr;
20178 const char *str = NULL;
20179
20180 attr = dwarf2_attr (die, name, cu);
20181
20182 if (attr != NULL)
20183 {
20184 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20185 || attr->form == DW_FORM_string
20186 || attr->form == DW_FORM_strx
20187 || attr->form == DW_FORM_strx1
20188 || attr->form == DW_FORM_strx2
20189 || attr->form == DW_FORM_strx3
20190 || attr->form == DW_FORM_strx4
20191 || attr->form == DW_FORM_GNU_str_index
20192 || attr->form == DW_FORM_GNU_strp_alt)
20193 str = DW_STRING (attr);
20194 else
20195 complaint (_("string type expected for attribute %s for "
20196 "DIE at %s in module %s"),
20197 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20198 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20199 }
20200
20201 return str;
20202 }
20203
20204 /* Return the dwo name or NULL if not present. If present, it is in either
20205 DW_AT_GNU_dwo_name or DW_AT_dwo_name atrribute. */
20206 static const char *
20207 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20208 {
20209 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20210 if (dwo_name == nullptr)
20211 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20212 return dwo_name;
20213 }
20214
20215 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20216 and holds a non-zero value. This function should only be used for
20217 DW_FORM_flag or DW_FORM_flag_present attributes. */
20218
20219 static int
20220 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20221 {
20222 struct attribute *attr = dwarf2_attr (die, name, cu);
20223
20224 return (attr && DW_UNSND (attr));
20225 }
20226
20227 static int
20228 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20229 {
20230 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20231 which value is non-zero. However, we have to be careful with
20232 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20233 (via dwarf2_flag_true_p) follows this attribute. So we may
20234 end up accidently finding a declaration attribute that belongs
20235 to a different DIE referenced by the specification attribute,
20236 even though the given DIE does not have a declaration attribute. */
20237 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20238 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20239 }
20240
20241 /* Return the die giving the specification for DIE, if there is
20242 one. *SPEC_CU is the CU containing DIE on input, and the CU
20243 containing the return value on output. If there is no
20244 specification, but there is an abstract origin, that is
20245 returned. */
20246
20247 static struct die_info *
20248 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20249 {
20250 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20251 *spec_cu);
20252
20253 if (spec_attr == NULL)
20254 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20255
20256 if (spec_attr == NULL)
20257 return NULL;
20258 else
20259 return follow_die_ref (die, spec_attr, spec_cu);
20260 }
20261
20262 /* Stub for free_line_header to match void * callback types. */
20263
20264 static void
20265 free_line_header_voidp (void *arg)
20266 {
20267 struct line_header *lh = (struct line_header *) arg;
20268
20269 delete lh;
20270 }
20271
20272 void
20273 line_header::add_include_dir (const char *include_dir)
20274 {
20275 if (dwarf_line_debug >= 2)
20276 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20277 include_dirs.size () + 1, include_dir);
20278
20279 include_dirs.push_back (include_dir);
20280 }
20281
20282 void
20283 line_header::add_file_name (const char *name,
20284 dir_index d_index,
20285 unsigned int mod_time,
20286 unsigned int length)
20287 {
20288 if (dwarf_line_debug >= 2)
20289 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20290 (unsigned) file_names.size () + 1, name);
20291
20292 file_names.emplace_back (name, d_index, mod_time, length);
20293 }
20294
20295 /* A convenience function to find the proper .debug_line section for a CU. */
20296
20297 static struct dwarf2_section_info *
20298 get_debug_line_section (struct dwarf2_cu *cu)
20299 {
20300 struct dwarf2_section_info *section;
20301 struct dwarf2_per_objfile *dwarf2_per_objfile
20302 = cu->per_cu->dwarf2_per_objfile;
20303
20304 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20305 DWO file. */
20306 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20307 section = &cu->dwo_unit->dwo_file->sections.line;
20308 else if (cu->per_cu->is_dwz)
20309 {
20310 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20311
20312 section = &dwz->line;
20313 }
20314 else
20315 section = &dwarf2_per_objfile->line;
20316
20317 return section;
20318 }
20319
20320 /* Read directory or file name entry format, starting with byte of
20321 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20322 entries count and the entries themselves in the described entry
20323 format. */
20324
20325 static void
20326 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20327 bfd *abfd, const gdb_byte **bufp,
20328 struct line_header *lh,
20329 const struct comp_unit_head *cu_header,
20330 void (*callback) (struct line_header *lh,
20331 const char *name,
20332 dir_index d_index,
20333 unsigned int mod_time,
20334 unsigned int length))
20335 {
20336 gdb_byte format_count, formati;
20337 ULONGEST data_count, datai;
20338 const gdb_byte *buf = *bufp;
20339 const gdb_byte *format_header_data;
20340 unsigned int bytes_read;
20341
20342 format_count = read_1_byte (abfd, buf);
20343 buf += 1;
20344 format_header_data = buf;
20345 for (formati = 0; formati < format_count; formati++)
20346 {
20347 read_unsigned_leb128 (abfd, buf, &bytes_read);
20348 buf += bytes_read;
20349 read_unsigned_leb128 (abfd, buf, &bytes_read);
20350 buf += bytes_read;
20351 }
20352
20353 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20354 buf += bytes_read;
20355 for (datai = 0; datai < data_count; datai++)
20356 {
20357 const gdb_byte *format = format_header_data;
20358 struct file_entry fe;
20359
20360 for (formati = 0; formati < format_count; formati++)
20361 {
20362 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20363 format += bytes_read;
20364
20365 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20366 format += bytes_read;
20367
20368 gdb::optional<const char *> string;
20369 gdb::optional<unsigned int> uint;
20370
20371 switch (form)
20372 {
20373 case DW_FORM_string:
20374 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20375 buf += bytes_read;
20376 break;
20377
20378 case DW_FORM_line_strp:
20379 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20380 abfd, buf,
20381 cu_header,
20382 &bytes_read));
20383 buf += bytes_read;
20384 break;
20385
20386 case DW_FORM_data1:
20387 uint.emplace (read_1_byte (abfd, buf));
20388 buf += 1;
20389 break;
20390
20391 case DW_FORM_data2:
20392 uint.emplace (read_2_bytes (abfd, buf));
20393 buf += 2;
20394 break;
20395
20396 case DW_FORM_data4:
20397 uint.emplace (read_4_bytes (abfd, buf));
20398 buf += 4;
20399 break;
20400
20401 case DW_FORM_data8:
20402 uint.emplace (read_8_bytes (abfd, buf));
20403 buf += 8;
20404 break;
20405
20406 case DW_FORM_udata:
20407 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20408 buf += bytes_read;
20409 break;
20410
20411 case DW_FORM_block:
20412 /* It is valid only for DW_LNCT_timestamp which is ignored by
20413 current GDB. */
20414 break;
20415 }
20416
20417 switch (content_type)
20418 {
20419 case DW_LNCT_path:
20420 if (string.has_value ())
20421 fe.name = *string;
20422 break;
20423 case DW_LNCT_directory_index:
20424 if (uint.has_value ())
20425 fe.d_index = (dir_index) *uint;
20426 break;
20427 case DW_LNCT_timestamp:
20428 if (uint.has_value ())
20429 fe.mod_time = *uint;
20430 break;
20431 case DW_LNCT_size:
20432 if (uint.has_value ())
20433 fe.length = *uint;
20434 break;
20435 case DW_LNCT_MD5:
20436 break;
20437 default:
20438 complaint (_("Unknown format content type %s"),
20439 pulongest (content_type));
20440 }
20441 }
20442
20443 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20444 }
20445
20446 *bufp = buf;
20447 }
20448
20449 /* Read the statement program header starting at OFFSET in
20450 .debug_line, or .debug_line.dwo. Return a pointer
20451 to a struct line_header, allocated using xmalloc.
20452 Returns NULL if there is a problem reading the header, e.g., if it
20453 has a version we don't understand.
20454
20455 NOTE: the strings in the include directory and file name tables of
20456 the returned object point into the dwarf line section buffer,
20457 and must not be freed. */
20458
20459 static line_header_up
20460 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20461 {
20462 const gdb_byte *line_ptr;
20463 unsigned int bytes_read, offset_size;
20464 int i;
20465 const char *cur_dir, *cur_file;
20466 struct dwarf2_section_info *section;
20467 bfd *abfd;
20468 struct dwarf2_per_objfile *dwarf2_per_objfile
20469 = cu->per_cu->dwarf2_per_objfile;
20470
20471 section = get_debug_line_section (cu);
20472 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20473 if (section->buffer == NULL)
20474 {
20475 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20476 complaint (_("missing .debug_line.dwo section"));
20477 else
20478 complaint (_("missing .debug_line section"));
20479 return 0;
20480 }
20481
20482 /* We can't do this until we know the section is non-empty.
20483 Only then do we know we have such a section. */
20484 abfd = get_section_bfd_owner (section);
20485
20486 /* Make sure that at least there's room for the total_length field.
20487 That could be 12 bytes long, but we're just going to fudge that. */
20488 if (to_underlying (sect_off) + 4 >= section->size)
20489 {
20490 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20491 return 0;
20492 }
20493
20494 line_header_up lh (new line_header ());
20495
20496 lh->sect_off = sect_off;
20497 lh->offset_in_dwz = cu->per_cu->is_dwz;
20498
20499 line_ptr = section->buffer + to_underlying (sect_off);
20500
20501 /* Read in the header. */
20502 lh->total_length =
20503 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20504 &bytes_read, &offset_size);
20505 line_ptr += bytes_read;
20506 if (line_ptr + lh->total_length > (section->buffer + section->size))
20507 {
20508 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20509 return 0;
20510 }
20511 lh->statement_program_end = line_ptr + lh->total_length;
20512 lh->version = read_2_bytes (abfd, line_ptr);
20513 line_ptr += 2;
20514 if (lh->version > 5)
20515 {
20516 /* This is a version we don't understand. The format could have
20517 changed in ways we don't handle properly so just punt. */
20518 complaint (_("unsupported version in .debug_line section"));
20519 return NULL;
20520 }
20521 if (lh->version >= 5)
20522 {
20523 gdb_byte segment_selector_size;
20524
20525 /* Skip address size. */
20526 read_1_byte (abfd, line_ptr);
20527 line_ptr += 1;
20528
20529 segment_selector_size = read_1_byte (abfd, line_ptr);
20530 line_ptr += 1;
20531 if (segment_selector_size != 0)
20532 {
20533 complaint (_("unsupported segment selector size %u "
20534 "in .debug_line section"),
20535 segment_selector_size);
20536 return NULL;
20537 }
20538 }
20539 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20540 line_ptr += offset_size;
20541 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20542 line_ptr += 1;
20543 if (lh->version >= 4)
20544 {
20545 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20546 line_ptr += 1;
20547 }
20548 else
20549 lh->maximum_ops_per_instruction = 1;
20550
20551 if (lh->maximum_ops_per_instruction == 0)
20552 {
20553 lh->maximum_ops_per_instruction = 1;
20554 complaint (_("invalid maximum_ops_per_instruction "
20555 "in `.debug_line' section"));
20556 }
20557
20558 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20559 line_ptr += 1;
20560 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20561 line_ptr += 1;
20562 lh->line_range = read_1_byte (abfd, line_ptr);
20563 line_ptr += 1;
20564 lh->opcode_base = read_1_byte (abfd, line_ptr);
20565 line_ptr += 1;
20566 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20567
20568 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20569 for (i = 1; i < lh->opcode_base; ++i)
20570 {
20571 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20572 line_ptr += 1;
20573 }
20574
20575 if (lh->version >= 5)
20576 {
20577 /* Read directory table. */
20578 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20579 &cu->header,
20580 [] (struct line_header *header, const char *name,
20581 dir_index d_index, unsigned int mod_time,
20582 unsigned int length)
20583 {
20584 header->add_include_dir (name);
20585 });
20586
20587 /* Read file name table. */
20588 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20589 &cu->header,
20590 [] (struct line_header *header, const char *name,
20591 dir_index d_index, unsigned int mod_time,
20592 unsigned int length)
20593 {
20594 header->add_file_name (name, d_index, mod_time, length);
20595 });
20596 }
20597 else
20598 {
20599 /* Read directory table. */
20600 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20601 {
20602 line_ptr += bytes_read;
20603 lh->add_include_dir (cur_dir);
20604 }
20605 line_ptr += bytes_read;
20606
20607 /* Read file name table. */
20608 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20609 {
20610 unsigned int mod_time, length;
20611 dir_index d_index;
20612
20613 line_ptr += bytes_read;
20614 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20615 line_ptr += bytes_read;
20616 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20617 line_ptr += bytes_read;
20618 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20619 line_ptr += bytes_read;
20620
20621 lh->add_file_name (cur_file, d_index, mod_time, length);
20622 }
20623 line_ptr += bytes_read;
20624 }
20625 lh->statement_program_start = line_ptr;
20626
20627 if (line_ptr > (section->buffer + section->size))
20628 complaint (_("line number info header doesn't "
20629 "fit in `.debug_line' section"));
20630
20631 return lh;
20632 }
20633
20634 /* Subroutine of dwarf_decode_lines to simplify it.
20635 Return the file name of the psymtab for included file FILE_INDEX
20636 in line header LH of PST.
20637 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20638 If space for the result is malloc'd, *NAME_HOLDER will be set.
20639 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20640
20641 static const char *
20642 psymtab_include_file_name (const struct line_header *lh, int file_index,
20643 const struct partial_symtab *pst,
20644 const char *comp_dir,
20645 gdb::unique_xmalloc_ptr<char> *name_holder)
20646 {
20647 const file_entry &fe = lh->file_names[file_index];
20648 const char *include_name = fe.name;
20649 const char *include_name_to_compare = include_name;
20650 const char *pst_filename;
20651 int file_is_pst;
20652
20653 const char *dir_name = fe.include_dir (lh);
20654
20655 gdb::unique_xmalloc_ptr<char> hold_compare;
20656 if (!IS_ABSOLUTE_PATH (include_name)
20657 && (dir_name != NULL || comp_dir != NULL))
20658 {
20659 /* Avoid creating a duplicate psymtab for PST.
20660 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20661 Before we do the comparison, however, we need to account
20662 for DIR_NAME and COMP_DIR.
20663 First prepend dir_name (if non-NULL). If we still don't
20664 have an absolute path prepend comp_dir (if non-NULL).
20665 However, the directory we record in the include-file's
20666 psymtab does not contain COMP_DIR (to match the
20667 corresponding symtab(s)).
20668
20669 Example:
20670
20671 bash$ cd /tmp
20672 bash$ gcc -g ./hello.c
20673 include_name = "hello.c"
20674 dir_name = "."
20675 DW_AT_comp_dir = comp_dir = "/tmp"
20676 DW_AT_name = "./hello.c"
20677
20678 */
20679
20680 if (dir_name != NULL)
20681 {
20682 name_holder->reset (concat (dir_name, SLASH_STRING,
20683 include_name, (char *) NULL));
20684 include_name = name_holder->get ();
20685 include_name_to_compare = include_name;
20686 }
20687 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20688 {
20689 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20690 include_name, (char *) NULL));
20691 include_name_to_compare = hold_compare.get ();
20692 }
20693 }
20694
20695 pst_filename = pst->filename;
20696 gdb::unique_xmalloc_ptr<char> copied_name;
20697 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20698 {
20699 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20700 pst_filename, (char *) NULL));
20701 pst_filename = copied_name.get ();
20702 }
20703
20704 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20705
20706 if (file_is_pst)
20707 return NULL;
20708 return include_name;
20709 }
20710
20711 /* State machine to track the state of the line number program. */
20712
20713 class lnp_state_machine
20714 {
20715 public:
20716 /* Initialize a machine state for the start of a line number
20717 program. */
20718 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20719 bool record_lines_p);
20720
20721 file_entry *current_file ()
20722 {
20723 /* lh->file_names is 0-based, but the file name numbers in the
20724 statement program are 1-based. */
20725 return m_line_header->file_name_at (m_file);
20726 }
20727
20728 /* Record the line in the state machine. END_SEQUENCE is true if
20729 we're processing the end of a sequence. */
20730 void record_line (bool end_sequence);
20731
20732 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20733 nop-out rest of the lines in this sequence. */
20734 void check_line_address (struct dwarf2_cu *cu,
20735 const gdb_byte *line_ptr,
20736 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20737
20738 void handle_set_discriminator (unsigned int discriminator)
20739 {
20740 m_discriminator = discriminator;
20741 m_line_has_non_zero_discriminator |= discriminator != 0;
20742 }
20743
20744 /* Handle DW_LNE_set_address. */
20745 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20746 {
20747 m_op_index = 0;
20748 address += baseaddr;
20749 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20750 }
20751
20752 /* Handle DW_LNS_advance_pc. */
20753 void handle_advance_pc (CORE_ADDR adjust);
20754
20755 /* Handle a special opcode. */
20756 void handle_special_opcode (unsigned char op_code);
20757
20758 /* Handle DW_LNS_advance_line. */
20759 void handle_advance_line (int line_delta)
20760 {
20761 advance_line (line_delta);
20762 }
20763
20764 /* Handle DW_LNS_set_file. */
20765 void handle_set_file (file_name_index file);
20766
20767 /* Handle DW_LNS_negate_stmt. */
20768 void handle_negate_stmt ()
20769 {
20770 m_is_stmt = !m_is_stmt;
20771 }
20772
20773 /* Handle DW_LNS_const_add_pc. */
20774 void handle_const_add_pc ();
20775
20776 /* Handle DW_LNS_fixed_advance_pc. */
20777 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20778 {
20779 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20780 m_op_index = 0;
20781 }
20782
20783 /* Handle DW_LNS_copy. */
20784 void handle_copy ()
20785 {
20786 record_line (false);
20787 m_discriminator = 0;
20788 }
20789
20790 /* Handle DW_LNE_end_sequence. */
20791 void handle_end_sequence ()
20792 {
20793 m_currently_recording_lines = true;
20794 }
20795
20796 private:
20797 /* Advance the line by LINE_DELTA. */
20798 void advance_line (int line_delta)
20799 {
20800 m_line += line_delta;
20801
20802 if (line_delta != 0)
20803 m_line_has_non_zero_discriminator = m_discriminator != 0;
20804 }
20805
20806 struct dwarf2_cu *m_cu;
20807
20808 gdbarch *m_gdbarch;
20809
20810 /* True if we're recording lines.
20811 Otherwise we're building partial symtabs and are just interested in
20812 finding include files mentioned by the line number program. */
20813 bool m_record_lines_p;
20814
20815 /* The line number header. */
20816 line_header *m_line_header;
20817
20818 /* These are part of the standard DWARF line number state machine,
20819 and initialized according to the DWARF spec. */
20820
20821 unsigned char m_op_index = 0;
20822 /* The line table index (1-based) of the current file. */
20823 file_name_index m_file = (file_name_index) 1;
20824 unsigned int m_line = 1;
20825
20826 /* These are initialized in the constructor. */
20827
20828 CORE_ADDR m_address;
20829 bool m_is_stmt;
20830 unsigned int m_discriminator;
20831
20832 /* Additional bits of state we need to track. */
20833
20834 /* The last file that we called dwarf2_start_subfile for.
20835 This is only used for TLLs. */
20836 unsigned int m_last_file = 0;
20837 /* The last file a line number was recorded for. */
20838 struct subfile *m_last_subfile = NULL;
20839
20840 /* When true, record the lines we decode. */
20841 bool m_currently_recording_lines = false;
20842
20843 /* The last line number that was recorded, used to coalesce
20844 consecutive entries for the same line. This can happen, for
20845 example, when discriminators are present. PR 17276. */
20846 unsigned int m_last_line = 0;
20847 bool m_line_has_non_zero_discriminator = false;
20848 };
20849
20850 void
20851 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20852 {
20853 CORE_ADDR addr_adj = (((m_op_index + adjust)
20854 / m_line_header->maximum_ops_per_instruction)
20855 * m_line_header->minimum_instruction_length);
20856 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20857 m_op_index = ((m_op_index + adjust)
20858 % m_line_header->maximum_ops_per_instruction);
20859 }
20860
20861 void
20862 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20863 {
20864 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20865 CORE_ADDR addr_adj = (((m_op_index
20866 + (adj_opcode / m_line_header->line_range))
20867 / m_line_header->maximum_ops_per_instruction)
20868 * m_line_header->minimum_instruction_length);
20869 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20870 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20871 % m_line_header->maximum_ops_per_instruction);
20872
20873 int line_delta = (m_line_header->line_base
20874 + (adj_opcode % m_line_header->line_range));
20875 advance_line (line_delta);
20876 record_line (false);
20877 m_discriminator = 0;
20878 }
20879
20880 void
20881 lnp_state_machine::handle_set_file (file_name_index file)
20882 {
20883 m_file = file;
20884
20885 const file_entry *fe = current_file ();
20886 if (fe == NULL)
20887 dwarf2_debug_line_missing_file_complaint ();
20888 else if (m_record_lines_p)
20889 {
20890 const char *dir = fe->include_dir (m_line_header);
20891
20892 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20893 m_line_has_non_zero_discriminator = m_discriminator != 0;
20894 dwarf2_start_subfile (m_cu, fe->name, dir);
20895 }
20896 }
20897
20898 void
20899 lnp_state_machine::handle_const_add_pc ()
20900 {
20901 CORE_ADDR adjust
20902 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20903
20904 CORE_ADDR addr_adj
20905 = (((m_op_index + adjust)
20906 / m_line_header->maximum_ops_per_instruction)
20907 * m_line_header->minimum_instruction_length);
20908
20909 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20910 m_op_index = ((m_op_index + adjust)
20911 % m_line_header->maximum_ops_per_instruction);
20912 }
20913
20914 /* Return non-zero if we should add LINE to the line number table.
20915 LINE is the line to add, LAST_LINE is the last line that was added,
20916 LAST_SUBFILE is the subfile for LAST_LINE.
20917 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20918 had a non-zero discriminator.
20919
20920 We have to be careful in the presence of discriminators.
20921 E.g., for this line:
20922
20923 for (i = 0; i < 100000; i++);
20924
20925 clang can emit four line number entries for that one line,
20926 each with a different discriminator.
20927 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20928
20929 However, we want gdb to coalesce all four entries into one.
20930 Otherwise the user could stepi into the middle of the line and
20931 gdb would get confused about whether the pc really was in the
20932 middle of the line.
20933
20934 Things are further complicated by the fact that two consecutive
20935 line number entries for the same line is a heuristic used by gcc
20936 to denote the end of the prologue. So we can't just discard duplicate
20937 entries, we have to be selective about it. The heuristic we use is
20938 that we only collapse consecutive entries for the same line if at least
20939 one of those entries has a non-zero discriminator. PR 17276.
20940
20941 Note: Addresses in the line number state machine can never go backwards
20942 within one sequence, thus this coalescing is ok. */
20943
20944 static int
20945 dwarf_record_line_p (struct dwarf2_cu *cu,
20946 unsigned int line, unsigned int last_line,
20947 int line_has_non_zero_discriminator,
20948 struct subfile *last_subfile)
20949 {
20950 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20951 return 1;
20952 if (line != last_line)
20953 return 1;
20954 /* Same line for the same file that we've seen already.
20955 As a last check, for pr 17276, only record the line if the line
20956 has never had a non-zero discriminator. */
20957 if (!line_has_non_zero_discriminator)
20958 return 1;
20959 return 0;
20960 }
20961
20962 /* Use the CU's builder to record line number LINE beginning at
20963 address ADDRESS in the line table of subfile SUBFILE. */
20964
20965 static void
20966 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20967 unsigned int line, CORE_ADDR address,
20968 struct dwarf2_cu *cu)
20969 {
20970 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20971
20972 if (dwarf_line_debug)
20973 {
20974 fprintf_unfiltered (gdb_stdlog,
20975 "Recording line %u, file %s, address %s\n",
20976 line, lbasename (subfile->name),
20977 paddress (gdbarch, address));
20978 }
20979
20980 if (cu != nullptr)
20981 cu->get_builder ()->record_line (subfile, line, addr);
20982 }
20983
20984 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20985 Mark the end of a set of line number records.
20986 The arguments are the same as for dwarf_record_line_1.
20987 If SUBFILE is NULL the request is ignored. */
20988
20989 static void
20990 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20991 CORE_ADDR address, struct dwarf2_cu *cu)
20992 {
20993 if (subfile == NULL)
20994 return;
20995
20996 if (dwarf_line_debug)
20997 {
20998 fprintf_unfiltered (gdb_stdlog,
20999 "Finishing current line, file %s, address %s\n",
21000 lbasename (subfile->name),
21001 paddress (gdbarch, address));
21002 }
21003
21004 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
21005 }
21006
21007 void
21008 lnp_state_machine::record_line (bool end_sequence)
21009 {
21010 if (dwarf_line_debug)
21011 {
21012 fprintf_unfiltered (gdb_stdlog,
21013 "Processing actual line %u: file %u,"
21014 " address %s, is_stmt %u, discrim %u\n",
21015 m_line, to_underlying (m_file),
21016 paddress (m_gdbarch, m_address),
21017 m_is_stmt, m_discriminator);
21018 }
21019
21020 file_entry *fe = current_file ();
21021
21022 if (fe == NULL)
21023 dwarf2_debug_line_missing_file_complaint ();
21024 /* For now we ignore lines not starting on an instruction boundary.
21025 But not when processing end_sequence for compatibility with the
21026 previous version of the code. */
21027 else if (m_op_index == 0 || end_sequence)
21028 {
21029 fe->included_p = 1;
21030 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
21031 {
21032 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21033 || end_sequence)
21034 {
21035 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21036 m_currently_recording_lines ? m_cu : nullptr);
21037 }
21038
21039 if (!end_sequence)
21040 {
21041 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21042 m_line_has_non_zero_discriminator,
21043 m_last_subfile))
21044 {
21045 buildsym_compunit *builder = m_cu->get_builder ();
21046 dwarf_record_line_1 (m_gdbarch,
21047 builder->get_current_subfile (),
21048 m_line, m_address,
21049 m_currently_recording_lines ? m_cu : nullptr);
21050 }
21051 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21052 m_last_line = m_line;
21053 }
21054 }
21055 }
21056 }
21057
21058 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21059 line_header *lh, bool record_lines_p)
21060 {
21061 m_cu = cu;
21062 m_gdbarch = arch;
21063 m_record_lines_p = record_lines_p;
21064 m_line_header = lh;
21065
21066 m_currently_recording_lines = true;
21067
21068 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21069 was a line entry for it so that the backend has a chance to adjust it
21070 and also record it in case it needs it. This is currently used by MIPS
21071 code, cf. `mips_adjust_dwarf2_line'. */
21072 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21073 m_is_stmt = lh->default_is_stmt;
21074 m_discriminator = 0;
21075 }
21076
21077 void
21078 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21079 const gdb_byte *line_ptr,
21080 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21081 {
21082 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21083 the pc range of the CU. However, we restrict the test to only ADDRESS
21084 values of zero to preserve GDB's previous behaviour which is to handle
21085 the specific case of a function being GC'd by the linker. */
21086
21087 if (address == 0 && address < unrelocated_lowpc)
21088 {
21089 /* This line table is for a function which has been
21090 GCd by the linker. Ignore it. PR gdb/12528 */
21091
21092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21093 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21094
21095 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21096 line_offset, objfile_name (objfile));
21097 m_currently_recording_lines = false;
21098 /* Note: m_currently_recording_lines is left as false until we see
21099 DW_LNE_end_sequence. */
21100 }
21101 }
21102
21103 /* Subroutine of dwarf_decode_lines to simplify it.
21104 Process the line number information in LH.
21105 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21106 program in order to set included_p for every referenced header. */
21107
21108 static void
21109 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21110 const int decode_for_pst_p, CORE_ADDR lowpc)
21111 {
21112 const gdb_byte *line_ptr, *extended_end;
21113 const gdb_byte *line_end;
21114 unsigned int bytes_read, extended_len;
21115 unsigned char op_code, extended_op;
21116 CORE_ADDR baseaddr;
21117 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21118 bfd *abfd = objfile->obfd;
21119 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21120 /* True if we're recording line info (as opposed to building partial
21121 symtabs and just interested in finding include files mentioned by
21122 the line number program). */
21123 bool record_lines_p = !decode_for_pst_p;
21124
21125 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21126
21127 line_ptr = lh->statement_program_start;
21128 line_end = lh->statement_program_end;
21129
21130 /* Read the statement sequences until there's nothing left. */
21131 while (line_ptr < line_end)
21132 {
21133 /* The DWARF line number program state machine. Reset the state
21134 machine at the start of each sequence. */
21135 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21136 bool end_sequence = false;
21137
21138 if (record_lines_p)
21139 {
21140 /* Start a subfile for the current file of the state
21141 machine. */
21142 const file_entry *fe = state_machine.current_file ();
21143
21144 if (fe != NULL)
21145 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21146 }
21147
21148 /* Decode the table. */
21149 while (line_ptr < line_end && !end_sequence)
21150 {
21151 op_code = read_1_byte (abfd, line_ptr);
21152 line_ptr += 1;
21153
21154 if (op_code >= lh->opcode_base)
21155 {
21156 /* Special opcode. */
21157 state_machine.handle_special_opcode (op_code);
21158 }
21159 else switch (op_code)
21160 {
21161 case DW_LNS_extended_op:
21162 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21163 &bytes_read);
21164 line_ptr += bytes_read;
21165 extended_end = line_ptr + extended_len;
21166 extended_op = read_1_byte (abfd, line_ptr);
21167 line_ptr += 1;
21168 switch (extended_op)
21169 {
21170 case DW_LNE_end_sequence:
21171 state_machine.handle_end_sequence ();
21172 end_sequence = true;
21173 break;
21174 case DW_LNE_set_address:
21175 {
21176 CORE_ADDR address
21177 = read_address (abfd, line_ptr, cu, &bytes_read);
21178 line_ptr += bytes_read;
21179
21180 state_machine.check_line_address (cu, line_ptr,
21181 lowpc - baseaddr, address);
21182 state_machine.handle_set_address (baseaddr, address);
21183 }
21184 break;
21185 case DW_LNE_define_file:
21186 {
21187 const char *cur_file;
21188 unsigned int mod_time, length;
21189 dir_index dindex;
21190
21191 cur_file = read_direct_string (abfd, line_ptr,
21192 &bytes_read);
21193 line_ptr += bytes_read;
21194 dindex = (dir_index)
21195 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21196 line_ptr += bytes_read;
21197 mod_time =
21198 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21199 line_ptr += bytes_read;
21200 length =
21201 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21202 line_ptr += bytes_read;
21203 lh->add_file_name (cur_file, dindex, mod_time, length);
21204 }
21205 break;
21206 case DW_LNE_set_discriminator:
21207 {
21208 /* The discriminator is not interesting to the
21209 debugger; just ignore it. We still need to
21210 check its value though:
21211 if there are consecutive entries for the same
21212 (non-prologue) line we want to coalesce them.
21213 PR 17276. */
21214 unsigned int discr
21215 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21216 line_ptr += bytes_read;
21217
21218 state_machine.handle_set_discriminator (discr);
21219 }
21220 break;
21221 default:
21222 complaint (_("mangled .debug_line section"));
21223 return;
21224 }
21225 /* Make sure that we parsed the extended op correctly. If e.g.
21226 we expected a different address size than the producer used,
21227 we may have read the wrong number of bytes. */
21228 if (line_ptr != extended_end)
21229 {
21230 complaint (_("mangled .debug_line section"));
21231 return;
21232 }
21233 break;
21234 case DW_LNS_copy:
21235 state_machine.handle_copy ();
21236 break;
21237 case DW_LNS_advance_pc:
21238 {
21239 CORE_ADDR adjust
21240 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21241 line_ptr += bytes_read;
21242
21243 state_machine.handle_advance_pc (adjust);
21244 }
21245 break;
21246 case DW_LNS_advance_line:
21247 {
21248 int line_delta
21249 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21250 line_ptr += bytes_read;
21251
21252 state_machine.handle_advance_line (line_delta);
21253 }
21254 break;
21255 case DW_LNS_set_file:
21256 {
21257 file_name_index file
21258 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21259 &bytes_read);
21260 line_ptr += bytes_read;
21261
21262 state_machine.handle_set_file (file);
21263 }
21264 break;
21265 case DW_LNS_set_column:
21266 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21267 line_ptr += bytes_read;
21268 break;
21269 case DW_LNS_negate_stmt:
21270 state_machine.handle_negate_stmt ();
21271 break;
21272 case DW_LNS_set_basic_block:
21273 break;
21274 /* Add to the address register of the state machine the
21275 address increment value corresponding to special opcode
21276 255. I.e., this value is scaled by the minimum
21277 instruction length since special opcode 255 would have
21278 scaled the increment. */
21279 case DW_LNS_const_add_pc:
21280 state_machine.handle_const_add_pc ();
21281 break;
21282 case DW_LNS_fixed_advance_pc:
21283 {
21284 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21285 line_ptr += 2;
21286
21287 state_machine.handle_fixed_advance_pc (addr_adj);
21288 }
21289 break;
21290 default:
21291 {
21292 /* Unknown standard opcode, ignore it. */
21293 int i;
21294
21295 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21296 {
21297 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21298 line_ptr += bytes_read;
21299 }
21300 }
21301 }
21302 }
21303
21304 if (!end_sequence)
21305 dwarf2_debug_line_missing_end_sequence_complaint ();
21306
21307 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21308 in which case we still finish recording the last line). */
21309 state_machine.record_line (true);
21310 }
21311 }
21312
21313 /* Decode the Line Number Program (LNP) for the given line_header
21314 structure and CU. The actual information extracted and the type
21315 of structures created from the LNP depends on the value of PST.
21316
21317 1. If PST is NULL, then this procedure uses the data from the program
21318 to create all necessary symbol tables, and their linetables.
21319
21320 2. If PST is not NULL, this procedure reads the program to determine
21321 the list of files included by the unit represented by PST, and
21322 builds all the associated partial symbol tables.
21323
21324 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21325 It is used for relative paths in the line table.
21326 NOTE: When processing partial symtabs (pst != NULL),
21327 comp_dir == pst->dirname.
21328
21329 NOTE: It is important that psymtabs have the same file name (via strcmp)
21330 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21331 symtab we don't use it in the name of the psymtabs we create.
21332 E.g. expand_line_sal requires this when finding psymtabs to expand.
21333 A good testcase for this is mb-inline.exp.
21334
21335 LOWPC is the lowest address in CU (or 0 if not known).
21336
21337 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21338 for its PC<->lines mapping information. Otherwise only the filename
21339 table is read in. */
21340
21341 static void
21342 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21343 struct dwarf2_cu *cu, struct partial_symtab *pst,
21344 CORE_ADDR lowpc, int decode_mapping)
21345 {
21346 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21347 const int decode_for_pst_p = (pst != NULL);
21348
21349 if (decode_mapping)
21350 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21351
21352 if (decode_for_pst_p)
21353 {
21354 int file_index;
21355
21356 /* Now that we're done scanning the Line Header Program, we can
21357 create the psymtab of each included file. */
21358 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21359 if (lh->file_names[file_index].included_p == 1)
21360 {
21361 gdb::unique_xmalloc_ptr<char> name_holder;
21362 const char *include_name =
21363 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21364 &name_holder);
21365 if (include_name != NULL)
21366 dwarf2_create_include_psymtab (include_name, pst, objfile);
21367 }
21368 }
21369 else
21370 {
21371 /* Make sure a symtab is created for every file, even files
21372 which contain only variables (i.e. no code with associated
21373 line numbers). */
21374 buildsym_compunit *builder = cu->get_builder ();
21375 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21376 int i;
21377
21378 for (i = 0; i < lh->file_names.size (); i++)
21379 {
21380 file_entry &fe = lh->file_names[i];
21381
21382 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21383
21384 if (builder->get_current_subfile ()->symtab == NULL)
21385 {
21386 builder->get_current_subfile ()->symtab
21387 = allocate_symtab (cust,
21388 builder->get_current_subfile ()->name);
21389 }
21390 fe.symtab = builder->get_current_subfile ()->symtab;
21391 }
21392 }
21393 }
21394
21395 /* Start a subfile for DWARF. FILENAME is the name of the file and
21396 DIRNAME the name of the source directory which contains FILENAME
21397 or NULL if not known.
21398 This routine tries to keep line numbers from identical absolute and
21399 relative file names in a common subfile.
21400
21401 Using the `list' example from the GDB testsuite, which resides in
21402 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21403 of /srcdir/list0.c yields the following debugging information for list0.c:
21404
21405 DW_AT_name: /srcdir/list0.c
21406 DW_AT_comp_dir: /compdir
21407 files.files[0].name: list0.h
21408 files.files[0].dir: /srcdir
21409 files.files[1].name: list0.c
21410 files.files[1].dir: /srcdir
21411
21412 The line number information for list0.c has to end up in a single
21413 subfile, so that `break /srcdir/list0.c:1' works as expected.
21414 start_subfile will ensure that this happens provided that we pass the
21415 concatenation of files.files[1].dir and files.files[1].name as the
21416 subfile's name. */
21417
21418 static void
21419 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21420 const char *dirname)
21421 {
21422 char *copy = NULL;
21423
21424 /* In order not to lose the line information directory,
21425 we concatenate it to the filename when it makes sense.
21426 Note that the Dwarf3 standard says (speaking of filenames in line
21427 information): ``The directory index is ignored for file names
21428 that represent full path names''. Thus ignoring dirname in the
21429 `else' branch below isn't an issue. */
21430
21431 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21432 {
21433 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21434 filename = copy;
21435 }
21436
21437 cu->get_builder ()->start_subfile (filename);
21438
21439 if (copy != NULL)
21440 xfree (copy);
21441 }
21442
21443 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21444 buildsym_compunit constructor. */
21445
21446 struct compunit_symtab *
21447 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21448 CORE_ADDR low_pc)
21449 {
21450 gdb_assert (m_builder == nullptr);
21451
21452 m_builder.reset (new struct buildsym_compunit
21453 (per_cu->dwarf2_per_objfile->objfile,
21454 name, comp_dir, language, low_pc));
21455
21456 list_in_scope = get_builder ()->get_file_symbols ();
21457
21458 get_builder ()->record_debugformat ("DWARF 2");
21459 get_builder ()->record_producer (producer);
21460
21461 processing_has_namespace_info = false;
21462
21463 return get_builder ()->get_compunit_symtab ();
21464 }
21465
21466 static void
21467 var_decode_location (struct attribute *attr, struct symbol *sym,
21468 struct dwarf2_cu *cu)
21469 {
21470 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21471 struct comp_unit_head *cu_header = &cu->header;
21472
21473 /* NOTE drow/2003-01-30: There used to be a comment and some special
21474 code here to turn a symbol with DW_AT_external and a
21475 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21476 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21477 with some versions of binutils) where shared libraries could have
21478 relocations against symbols in their debug information - the
21479 minimal symbol would have the right address, but the debug info
21480 would not. It's no longer necessary, because we will explicitly
21481 apply relocations when we read in the debug information now. */
21482
21483 /* A DW_AT_location attribute with no contents indicates that a
21484 variable has been optimized away. */
21485 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21486 {
21487 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21488 return;
21489 }
21490
21491 /* Handle one degenerate form of location expression specially, to
21492 preserve GDB's previous behavior when section offsets are
21493 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21494 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21495
21496 if (attr_form_is_block (attr)
21497 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21498 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21499 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21500 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21501 && (DW_BLOCK (attr)->size
21502 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21503 {
21504 unsigned int dummy;
21505
21506 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21507 SET_SYMBOL_VALUE_ADDRESS (sym,
21508 read_address (objfile->obfd,
21509 DW_BLOCK (attr)->data + 1,
21510 cu, &dummy));
21511 else
21512 SET_SYMBOL_VALUE_ADDRESS
21513 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21514 &dummy));
21515 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21516 fixup_symbol_section (sym, objfile);
21517 SET_SYMBOL_VALUE_ADDRESS (sym,
21518 SYMBOL_VALUE_ADDRESS (sym)
21519 + ANOFFSET (objfile->section_offsets,
21520 SYMBOL_SECTION (sym)));
21521 return;
21522 }
21523
21524 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21525 expression evaluator, and use LOC_COMPUTED only when necessary
21526 (i.e. when the value of a register or memory location is
21527 referenced, or a thread-local block, etc.). Then again, it might
21528 not be worthwhile. I'm assuming that it isn't unless performance
21529 or memory numbers show me otherwise. */
21530
21531 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21532
21533 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21534 cu->has_loclist = true;
21535 }
21536
21537 /* Given a pointer to a DWARF information entry, figure out if we need
21538 to make a symbol table entry for it, and if so, create a new entry
21539 and return a pointer to it.
21540 If TYPE is NULL, determine symbol type from the die, otherwise
21541 used the passed type.
21542 If SPACE is not NULL, use it to hold the new symbol. If it is
21543 NULL, allocate a new symbol on the objfile's obstack. */
21544
21545 static struct symbol *
21546 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21547 struct symbol *space)
21548 {
21549 struct dwarf2_per_objfile *dwarf2_per_objfile
21550 = cu->per_cu->dwarf2_per_objfile;
21551 struct objfile *objfile = dwarf2_per_objfile->objfile;
21552 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21553 struct symbol *sym = NULL;
21554 const char *name;
21555 struct attribute *attr = NULL;
21556 struct attribute *attr2 = NULL;
21557 CORE_ADDR baseaddr;
21558 struct pending **list_to_add = NULL;
21559
21560 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21561
21562 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21563
21564 name = dwarf2_name (die, cu);
21565 if (name)
21566 {
21567 const char *linkagename;
21568 int suppress_add = 0;
21569
21570 if (space)
21571 sym = space;
21572 else
21573 sym = allocate_symbol (objfile);
21574 OBJSTAT (objfile, n_syms++);
21575
21576 /* Cache this symbol's name and the name's demangled form (if any). */
21577 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21578 linkagename = dwarf2_physname (name, die, cu);
21579 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21580
21581 /* Fortran does not have mangling standard and the mangling does differ
21582 between gfortran, iFort etc. */
21583 if (cu->language == language_fortran
21584 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21585 symbol_set_demangled_name (&(sym->ginfo),
21586 dwarf2_full_name (name, die, cu),
21587 NULL);
21588
21589 /* Default assumptions.
21590 Use the passed type or decode it from the die. */
21591 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21592 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21593 if (type != NULL)
21594 SYMBOL_TYPE (sym) = type;
21595 else
21596 SYMBOL_TYPE (sym) = die_type (die, cu);
21597 attr = dwarf2_attr (die,
21598 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21599 cu);
21600 if (attr)
21601 {
21602 SYMBOL_LINE (sym) = DW_UNSND (attr);
21603 }
21604
21605 attr = dwarf2_attr (die,
21606 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21607 cu);
21608 if (attr)
21609 {
21610 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21611 struct file_entry *fe;
21612
21613 if (cu->line_header != NULL)
21614 fe = cu->line_header->file_name_at (file_index);
21615 else
21616 fe = NULL;
21617
21618 if (fe == NULL)
21619 complaint (_("file index out of range"));
21620 else
21621 symbol_set_symtab (sym, fe->symtab);
21622 }
21623
21624 switch (die->tag)
21625 {
21626 case DW_TAG_label:
21627 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21628 if (attr)
21629 {
21630 CORE_ADDR addr;
21631
21632 addr = attr_value_as_address (attr);
21633 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21634 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21635 }
21636 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21637 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21638 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21639 add_symbol_to_list (sym, cu->list_in_scope);
21640 break;
21641 case DW_TAG_subprogram:
21642 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21643 finish_block. */
21644 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21645 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21646 if ((attr2 && (DW_UNSND (attr2) != 0))
21647 || cu->language == language_ada
21648 || cu->language == language_fortran)
21649 {
21650 /* Subprograms marked external are stored as a global symbol.
21651 Ada and Fortran subprograms, whether marked external or
21652 not, are always stored as a global symbol, because we want
21653 to be able to access them globally. For instance, we want
21654 to be able to break on a nested subprogram without having
21655 to specify the context. */
21656 list_to_add = cu->get_builder ()->get_global_symbols ();
21657 }
21658 else
21659 {
21660 list_to_add = cu->list_in_scope;
21661 }
21662 break;
21663 case DW_TAG_inlined_subroutine:
21664 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21665 finish_block. */
21666 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21667 SYMBOL_INLINED (sym) = 1;
21668 list_to_add = cu->list_in_scope;
21669 break;
21670 case DW_TAG_template_value_param:
21671 suppress_add = 1;
21672 /* Fall through. */
21673 case DW_TAG_constant:
21674 case DW_TAG_variable:
21675 case DW_TAG_member:
21676 /* Compilation with minimal debug info may result in
21677 variables with missing type entries. Change the
21678 misleading `void' type to something sensible. */
21679 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21680 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21681
21682 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21683 /* In the case of DW_TAG_member, we should only be called for
21684 static const members. */
21685 if (die->tag == DW_TAG_member)
21686 {
21687 /* dwarf2_add_field uses die_is_declaration,
21688 so we do the same. */
21689 gdb_assert (die_is_declaration (die, cu));
21690 gdb_assert (attr);
21691 }
21692 if (attr)
21693 {
21694 dwarf2_const_value (attr, sym, cu);
21695 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21696 if (!suppress_add)
21697 {
21698 if (attr2 && (DW_UNSND (attr2) != 0))
21699 list_to_add = cu->get_builder ()->get_global_symbols ();
21700 else
21701 list_to_add = cu->list_in_scope;
21702 }
21703 break;
21704 }
21705 attr = dwarf2_attr (die, DW_AT_location, cu);
21706 if (attr)
21707 {
21708 var_decode_location (attr, sym, cu);
21709 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21710
21711 /* Fortran explicitly imports any global symbols to the local
21712 scope by DW_TAG_common_block. */
21713 if (cu->language == language_fortran && die->parent
21714 && die->parent->tag == DW_TAG_common_block)
21715 attr2 = NULL;
21716
21717 if (SYMBOL_CLASS (sym) == LOC_STATIC
21718 && SYMBOL_VALUE_ADDRESS (sym) == 0
21719 && !dwarf2_per_objfile->has_section_at_zero)
21720 {
21721 /* When a static variable is eliminated by the linker,
21722 the corresponding debug information is not stripped
21723 out, but the variable address is set to null;
21724 do not add such variables into symbol table. */
21725 }
21726 else if (attr2 && (DW_UNSND (attr2) != 0))
21727 {
21728 if (SYMBOL_CLASS (sym) == LOC_STATIC
21729 && (objfile->flags & OBJF_MAINLINE) == 0
21730 && dwarf2_per_objfile->can_copy)
21731 {
21732 /* A global static variable might be subject to
21733 copy relocation. We first check for a local
21734 minsym, though, because maybe the symbol was
21735 marked hidden, in which case this would not
21736 apply. */
21737 bound_minimal_symbol found
21738 = (lookup_minimal_symbol_linkage
21739 (SYMBOL_LINKAGE_NAME (sym), objfile));
21740 if (found.minsym != nullptr)
21741 sym->maybe_copied = 1;
21742 }
21743
21744 /* A variable with DW_AT_external is never static,
21745 but it may be block-scoped. */
21746 list_to_add
21747 = ((cu->list_in_scope
21748 == cu->get_builder ()->get_file_symbols ())
21749 ? cu->get_builder ()->get_global_symbols ()
21750 : cu->list_in_scope);
21751 }
21752 else
21753 list_to_add = cu->list_in_scope;
21754 }
21755 else
21756 {
21757 /* We do not know the address of this symbol.
21758 If it is an external symbol and we have type information
21759 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21760 The address of the variable will then be determined from
21761 the minimal symbol table whenever the variable is
21762 referenced. */
21763 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21764
21765 /* Fortran explicitly imports any global symbols to the local
21766 scope by DW_TAG_common_block. */
21767 if (cu->language == language_fortran && die->parent
21768 && die->parent->tag == DW_TAG_common_block)
21769 {
21770 /* SYMBOL_CLASS doesn't matter here because
21771 read_common_block is going to reset it. */
21772 if (!suppress_add)
21773 list_to_add = cu->list_in_scope;
21774 }
21775 else if (attr2 && (DW_UNSND (attr2) != 0)
21776 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21777 {
21778 /* A variable with DW_AT_external is never static, but it
21779 may be block-scoped. */
21780 list_to_add
21781 = ((cu->list_in_scope
21782 == cu->get_builder ()->get_file_symbols ())
21783 ? cu->get_builder ()->get_global_symbols ()
21784 : cu->list_in_scope);
21785
21786 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21787 }
21788 else if (!die_is_declaration (die, cu))
21789 {
21790 /* Use the default LOC_OPTIMIZED_OUT class. */
21791 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21792 if (!suppress_add)
21793 list_to_add = cu->list_in_scope;
21794 }
21795 }
21796 break;
21797 case DW_TAG_formal_parameter:
21798 {
21799 /* If we are inside a function, mark this as an argument. If
21800 not, we might be looking at an argument to an inlined function
21801 when we do not have enough information to show inlined frames;
21802 pretend it's a local variable in that case so that the user can
21803 still see it. */
21804 struct context_stack *curr
21805 = cu->get_builder ()->get_current_context_stack ();
21806 if (curr != nullptr && curr->name != nullptr)
21807 SYMBOL_IS_ARGUMENT (sym) = 1;
21808 attr = dwarf2_attr (die, DW_AT_location, cu);
21809 if (attr)
21810 {
21811 var_decode_location (attr, sym, cu);
21812 }
21813 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21814 if (attr)
21815 {
21816 dwarf2_const_value (attr, sym, cu);
21817 }
21818
21819 list_to_add = cu->list_in_scope;
21820 }
21821 break;
21822 case DW_TAG_unspecified_parameters:
21823 /* From varargs functions; gdb doesn't seem to have any
21824 interest in this information, so just ignore it for now.
21825 (FIXME?) */
21826 break;
21827 case DW_TAG_template_type_param:
21828 suppress_add = 1;
21829 /* Fall through. */
21830 case DW_TAG_class_type:
21831 case DW_TAG_interface_type:
21832 case DW_TAG_structure_type:
21833 case DW_TAG_union_type:
21834 case DW_TAG_set_type:
21835 case DW_TAG_enumeration_type:
21836 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21837 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21838
21839 {
21840 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21841 really ever be static objects: otherwise, if you try
21842 to, say, break of a class's method and you're in a file
21843 which doesn't mention that class, it won't work unless
21844 the check for all static symbols in lookup_symbol_aux
21845 saves you. See the OtherFileClass tests in
21846 gdb.c++/namespace.exp. */
21847
21848 if (!suppress_add)
21849 {
21850 buildsym_compunit *builder = cu->get_builder ();
21851 list_to_add
21852 = (cu->list_in_scope == builder->get_file_symbols ()
21853 && cu->language == language_cplus
21854 ? builder->get_global_symbols ()
21855 : cu->list_in_scope);
21856
21857 /* The semantics of C++ state that "struct foo {
21858 ... }" also defines a typedef for "foo". */
21859 if (cu->language == language_cplus
21860 || cu->language == language_ada
21861 || cu->language == language_d
21862 || cu->language == language_rust)
21863 {
21864 /* The symbol's name is already allocated along
21865 with this objfile, so we don't need to
21866 duplicate it for the type. */
21867 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21868 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21869 }
21870 }
21871 }
21872 break;
21873 case DW_TAG_typedef:
21874 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21875 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21876 list_to_add = cu->list_in_scope;
21877 break;
21878 case DW_TAG_base_type:
21879 case DW_TAG_subrange_type:
21880 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21881 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21882 list_to_add = cu->list_in_scope;
21883 break;
21884 case DW_TAG_enumerator:
21885 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21886 if (attr)
21887 {
21888 dwarf2_const_value (attr, sym, cu);
21889 }
21890 {
21891 /* NOTE: carlton/2003-11-10: See comment above in the
21892 DW_TAG_class_type, etc. block. */
21893
21894 list_to_add
21895 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21896 && cu->language == language_cplus
21897 ? cu->get_builder ()->get_global_symbols ()
21898 : cu->list_in_scope);
21899 }
21900 break;
21901 case DW_TAG_imported_declaration:
21902 case DW_TAG_namespace:
21903 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21904 list_to_add = cu->get_builder ()->get_global_symbols ();
21905 break;
21906 case DW_TAG_module:
21907 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21908 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21909 list_to_add = cu->get_builder ()->get_global_symbols ();
21910 break;
21911 case DW_TAG_common_block:
21912 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21913 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21914 add_symbol_to_list (sym, cu->list_in_scope);
21915 break;
21916 default:
21917 /* Not a tag we recognize. Hopefully we aren't processing
21918 trash data, but since we must specifically ignore things
21919 we don't recognize, there is nothing else we should do at
21920 this point. */
21921 complaint (_("unsupported tag: '%s'"),
21922 dwarf_tag_name (die->tag));
21923 break;
21924 }
21925
21926 if (suppress_add)
21927 {
21928 sym->hash_next = objfile->template_symbols;
21929 objfile->template_symbols = sym;
21930 list_to_add = NULL;
21931 }
21932
21933 if (list_to_add != NULL)
21934 add_symbol_to_list (sym, list_to_add);
21935
21936 /* For the benefit of old versions of GCC, check for anonymous
21937 namespaces based on the demangled name. */
21938 if (!cu->processing_has_namespace_info
21939 && cu->language == language_cplus)
21940 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21941 }
21942 return (sym);
21943 }
21944
21945 /* Given an attr with a DW_FORM_dataN value in host byte order,
21946 zero-extend it as appropriate for the symbol's type. The DWARF
21947 standard (v4) is not entirely clear about the meaning of using
21948 DW_FORM_dataN for a constant with a signed type, where the type is
21949 wider than the data. The conclusion of a discussion on the DWARF
21950 list was that this is unspecified. We choose to always zero-extend
21951 because that is the interpretation long in use by GCC. */
21952
21953 static gdb_byte *
21954 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21955 struct dwarf2_cu *cu, LONGEST *value, int bits)
21956 {
21957 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21958 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21959 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21960 LONGEST l = DW_UNSND (attr);
21961
21962 if (bits < sizeof (*value) * 8)
21963 {
21964 l &= ((LONGEST) 1 << bits) - 1;
21965 *value = l;
21966 }
21967 else if (bits == sizeof (*value) * 8)
21968 *value = l;
21969 else
21970 {
21971 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21972 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21973 return bytes;
21974 }
21975
21976 return NULL;
21977 }
21978
21979 /* Read a constant value from an attribute. Either set *VALUE, or if
21980 the value does not fit in *VALUE, set *BYTES - either already
21981 allocated on the objfile obstack, or newly allocated on OBSTACK,
21982 or, set *BATON, if we translated the constant to a location
21983 expression. */
21984
21985 static void
21986 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21987 const char *name, struct obstack *obstack,
21988 struct dwarf2_cu *cu,
21989 LONGEST *value, const gdb_byte **bytes,
21990 struct dwarf2_locexpr_baton **baton)
21991 {
21992 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21993 struct comp_unit_head *cu_header = &cu->header;
21994 struct dwarf_block *blk;
21995 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21996 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21997
21998 *value = 0;
21999 *bytes = NULL;
22000 *baton = NULL;
22001
22002 switch (attr->form)
22003 {
22004 case DW_FORM_addr:
22005 case DW_FORM_addrx:
22006 case DW_FORM_GNU_addr_index:
22007 {
22008 gdb_byte *data;
22009
22010 if (TYPE_LENGTH (type) != cu_header->addr_size)
22011 dwarf2_const_value_length_mismatch_complaint (name,
22012 cu_header->addr_size,
22013 TYPE_LENGTH (type));
22014 /* Symbols of this form are reasonably rare, so we just
22015 piggyback on the existing location code rather than writing
22016 a new implementation of symbol_computed_ops. */
22017 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22018 (*baton)->per_cu = cu->per_cu;
22019 gdb_assert ((*baton)->per_cu);
22020
22021 (*baton)->size = 2 + cu_header->addr_size;
22022 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22023 (*baton)->data = data;
22024
22025 data[0] = DW_OP_addr;
22026 store_unsigned_integer (&data[1], cu_header->addr_size,
22027 byte_order, DW_ADDR (attr));
22028 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22029 }
22030 break;
22031 case DW_FORM_string:
22032 case DW_FORM_strp:
22033 case DW_FORM_strx:
22034 case DW_FORM_GNU_str_index:
22035 case DW_FORM_GNU_strp_alt:
22036 /* DW_STRING is already allocated on the objfile obstack, point
22037 directly to it. */
22038 *bytes = (const gdb_byte *) DW_STRING (attr);
22039 break;
22040 case DW_FORM_block1:
22041 case DW_FORM_block2:
22042 case DW_FORM_block4:
22043 case DW_FORM_block:
22044 case DW_FORM_exprloc:
22045 case DW_FORM_data16:
22046 blk = DW_BLOCK (attr);
22047 if (TYPE_LENGTH (type) != blk->size)
22048 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22049 TYPE_LENGTH (type));
22050 *bytes = blk->data;
22051 break;
22052
22053 /* The DW_AT_const_value attributes are supposed to carry the
22054 symbol's value "represented as it would be on the target
22055 architecture." By the time we get here, it's already been
22056 converted to host endianness, so we just need to sign- or
22057 zero-extend it as appropriate. */
22058 case DW_FORM_data1:
22059 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22060 break;
22061 case DW_FORM_data2:
22062 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22063 break;
22064 case DW_FORM_data4:
22065 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22066 break;
22067 case DW_FORM_data8:
22068 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22069 break;
22070
22071 case DW_FORM_sdata:
22072 case DW_FORM_implicit_const:
22073 *value = DW_SND (attr);
22074 break;
22075
22076 case DW_FORM_udata:
22077 *value = DW_UNSND (attr);
22078 break;
22079
22080 default:
22081 complaint (_("unsupported const value attribute form: '%s'"),
22082 dwarf_form_name (attr->form));
22083 *value = 0;
22084 break;
22085 }
22086 }
22087
22088
22089 /* Copy constant value from an attribute to a symbol. */
22090
22091 static void
22092 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22093 struct dwarf2_cu *cu)
22094 {
22095 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22096 LONGEST value;
22097 const gdb_byte *bytes;
22098 struct dwarf2_locexpr_baton *baton;
22099
22100 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22101 SYMBOL_PRINT_NAME (sym),
22102 &objfile->objfile_obstack, cu,
22103 &value, &bytes, &baton);
22104
22105 if (baton != NULL)
22106 {
22107 SYMBOL_LOCATION_BATON (sym) = baton;
22108 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22109 }
22110 else if (bytes != NULL)
22111 {
22112 SYMBOL_VALUE_BYTES (sym) = bytes;
22113 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22114 }
22115 else
22116 {
22117 SYMBOL_VALUE (sym) = value;
22118 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22119 }
22120 }
22121
22122 /* Return the type of the die in question using its DW_AT_type attribute. */
22123
22124 static struct type *
22125 die_type (struct die_info *die, struct dwarf2_cu *cu)
22126 {
22127 struct attribute *type_attr;
22128
22129 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22130 if (!type_attr)
22131 {
22132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22133 /* A missing DW_AT_type represents a void type. */
22134 return objfile_type (objfile)->builtin_void;
22135 }
22136
22137 return lookup_die_type (die, type_attr, cu);
22138 }
22139
22140 /* True iff CU's producer generates GNAT Ada auxiliary information
22141 that allows to find parallel types through that information instead
22142 of having to do expensive parallel lookups by type name. */
22143
22144 static int
22145 need_gnat_info (struct dwarf2_cu *cu)
22146 {
22147 /* Assume that the Ada compiler was GNAT, which always produces
22148 the auxiliary information. */
22149 return (cu->language == language_ada);
22150 }
22151
22152 /* Return the auxiliary type of the die in question using its
22153 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22154 attribute is not present. */
22155
22156 static struct type *
22157 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22158 {
22159 struct attribute *type_attr;
22160
22161 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22162 if (!type_attr)
22163 return NULL;
22164
22165 return lookup_die_type (die, type_attr, cu);
22166 }
22167
22168 /* If DIE has a descriptive_type attribute, then set the TYPE's
22169 descriptive type accordingly. */
22170
22171 static void
22172 set_descriptive_type (struct type *type, struct die_info *die,
22173 struct dwarf2_cu *cu)
22174 {
22175 struct type *descriptive_type = die_descriptive_type (die, cu);
22176
22177 if (descriptive_type)
22178 {
22179 ALLOCATE_GNAT_AUX_TYPE (type);
22180 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22181 }
22182 }
22183
22184 /* Return the containing type of the die in question using its
22185 DW_AT_containing_type attribute. */
22186
22187 static struct type *
22188 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22189 {
22190 struct attribute *type_attr;
22191 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22192
22193 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22194 if (!type_attr)
22195 error (_("Dwarf Error: Problem turning containing type into gdb type "
22196 "[in module %s]"), objfile_name (objfile));
22197
22198 return lookup_die_type (die, type_attr, cu);
22199 }
22200
22201 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22202
22203 static struct type *
22204 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22205 {
22206 struct dwarf2_per_objfile *dwarf2_per_objfile
22207 = cu->per_cu->dwarf2_per_objfile;
22208 struct objfile *objfile = dwarf2_per_objfile->objfile;
22209 char *saved;
22210
22211 std::string message
22212 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22213 objfile_name (objfile),
22214 sect_offset_str (cu->header.sect_off),
22215 sect_offset_str (die->sect_off));
22216 saved = obstack_strdup (&objfile->objfile_obstack, message);
22217
22218 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22219 }
22220
22221 /* Look up the type of DIE in CU using its type attribute ATTR.
22222 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22223 DW_AT_containing_type.
22224 If there is no type substitute an error marker. */
22225
22226 static struct type *
22227 lookup_die_type (struct die_info *die, const struct attribute *attr,
22228 struct dwarf2_cu *cu)
22229 {
22230 struct dwarf2_per_objfile *dwarf2_per_objfile
22231 = cu->per_cu->dwarf2_per_objfile;
22232 struct objfile *objfile = dwarf2_per_objfile->objfile;
22233 struct type *this_type;
22234
22235 gdb_assert (attr->name == DW_AT_type
22236 || attr->name == DW_AT_GNAT_descriptive_type
22237 || attr->name == DW_AT_containing_type);
22238
22239 /* First see if we have it cached. */
22240
22241 if (attr->form == DW_FORM_GNU_ref_alt)
22242 {
22243 struct dwarf2_per_cu_data *per_cu;
22244 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22245
22246 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22247 dwarf2_per_objfile);
22248 this_type = get_die_type_at_offset (sect_off, per_cu);
22249 }
22250 else if (attr_form_is_ref (attr))
22251 {
22252 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22253
22254 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22255 }
22256 else if (attr->form == DW_FORM_ref_sig8)
22257 {
22258 ULONGEST signature = DW_SIGNATURE (attr);
22259
22260 return get_signatured_type (die, signature, cu);
22261 }
22262 else
22263 {
22264 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22265 " at %s [in module %s]"),
22266 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22267 objfile_name (objfile));
22268 return build_error_marker_type (cu, die);
22269 }
22270
22271 /* If not cached we need to read it in. */
22272
22273 if (this_type == NULL)
22274 {
22275 struct die_info *type_die = NULL;
22276 struct dwarf2_cu *type_cu = cu;
22277
22278 if (attr_form_is_ref (attr))
22279 type_die = follow_die_ref (die, attr, &type_cu);
22280 if (type_die == NULL)
22281 return build_error_marker_type (cu, die);
22282 /* If we find the type now, it's probably because the type came
22283 from an inter-CU reference and the type's CU got expanded before
22284 ours. */
22285 this_type = read_type_die (type_die, type_cu);
22286 }
22287
22288 /* If we still don't have a type use an error marker. */
22289
22290 if (this_type == NULL)
22291 return build_error_marker_type (cu, die);
22292
22293 return this_type;
22294 }
22295
22296 /* Return the type in DIE, CU.
22297 Returns NULL for invalid types.
22298
22299 This first does a lookup in die_type_hash,
22300 and only reads the die in if necessary.
22301
22302 NOTE: This can be called when reading in partial or full symbols. */
22303
22304 static struct type *
22305 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22306 {
22307 struct type *this_type;
22308
22309 this_type = get_die_type (die, cu);
22310 if (this_type)
22311 return this_type;
22312
22313 return read_type_die_1 (die, cu);
22314 }
22315
22316 /* Read the type in DIE, CU.
22317 Returns NULL for invalid types. */
22318
22319 static struct type *
22320 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22321 {
22322 struct type *this_type = NULL;
22323
22324 switch (die->tag)
22325 {
22326 case DW_TAG_class_type:
22327 case DW_TAG_interface_type:
22328 case DW_TAG_structure_type:
22329 case DW_TAG_union_type:
22330 this_type = read_structure_type (die, cu);
22331 break;
22332 case DW_TAG_enumeration_type:
22333 this_type = read_enumeration_type (die, cu);
22334 break;
22335 case DW_TAG_subprogram:
22336 case DW_TAG_subroutine_type:
22337 case DW_TAG_inlined_subroutine:
22338 this_type = read_subroutine_type (die, cu);
22339 break;
22340 case DW_TAG_array_type:
22341 this_type = read_array_type (die, cu);
22342 break;
22343 case DW_TAG_set_type:
22344 this_type = read_set_type (die, cu);
22345 break;
22346 case DW_TAG_pointer_type:
22347 this_type = read_tag_pointer_type (die, cu);
22348 break;
22349 case DW_TAG_ptr_to_member_type:
22350 this_type = read_tag_ptr_to_member_type (die, cu);
22351 break;
22352 case DW_TAG_reference_type:
22353 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22354 break;
22355 case DW_TAG_rvalue_reference_type:
22356 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22357 break;
22358 case DW_TAG_const_type:
22359 this_type = read_tag_const_type (die, cu);
22360 break;
22361 case DW_TAG_volatile_type:
22362 this_type = read_tag_volatile_type (die, cu);
22363 break;
22364 case DW_TAG_restrict_type:
22365 this_type = read_tag_restrict_type (die, cu);
22366 break;
22367 case DW_TAG_string_type:
22368 this_type = read_tag_string_type (die, cu);
22369 break;
22370 case DW_TAG_typedef:
22371 this_type = read_typedef (die, cu);
22372 break;
22373 case DW_TAG_subrange_type:
22374 this_type = read_subrange_type (die, cu);
22375 break;
22376 case DW_TAG_base_type:
22377 this_type = read_base_type (die, cu);
22378 break;
22379 case DW_TAG_unspecified_type:
22380 this_type = read_unspecified_type (die, cu);
22381 break;
22382 case DW_TAG_namespace:
22383 this_type = read_namespace_type (die, cu);
22384 break;
22385 case DW_TAG_module:
22386 this_type = read_module_type (die, cu);
22387 break;
22388 case DW_TAG_atomic_type:
22389 this_type = read_tag_atomic_type (die, cu);
22390 break;
22391 default:
22392 complaint (_("unexpected tag in read_type_die: '%s'"),
22393 dwarf_tag_name (die->tag));
22394 break;
22395 }
22396
22397 return this_type;
22398 }
22399
22400 /* See if we can figure out if the class lives in a namespace. We do
22401 this by looking for a member function; its demangled name will
22402 contain namespace info, if there is any.
22403 Return the computed name or NULL.
22404 Space for the result is allocated on the objfile's obstack.
22405 This is the full-die version of guess_partial_die_structure_name.
22406 In this case we know DIE has no useful parent. */
22407
22408 static char *
22409 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22410 {
22411 struct die_info *spec_die;
22412 struct dwarf2_cu *spec_cu;
22413 struct die_info *child;
22414 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22415
22416 spec_cu = cu;
22417 spec_die = die_specification (die, &spec_cu);
22418 if (spec_die != NULL)
22419 {
22420 die = spec_die;
22421 cu = spec_cu;
22422 }
22423
22424 for (child = die->child;
22425 child != NULL;
22426 child = child->sibling)
22427 {
22428 if (child->tag == DW_TAG_subprogram)
22429 {
22430 const char *linkage_name = dw2_linkage_name (child, cu);
22431
22432 if (linkage_name != NULL)
22433 {
22434 char *actual_name
22435 = language_class_name_from_physname (cu->language_defn,
22436 linkage_name);
22437 char *name = NULL;
22438
22439 if (actual_name != NULL)
22440 {
22441 const char *die_name = dwarf2_name (die, cu);
22442
22443 if (die_name != NULL
22444 && strcmp (die_name, actual_name) != 0)
22445 {
22446 /* Strip off the class name from the full name.
22447 We want the prefix. */
22448 int die_name_len = strlen (die_name);
22449 int actual_name_len = strlen (actual_name);
22450
22451 /* Test for '::' as a sanity check. */
22452 if (actual_name_len > die_name_len + 2
22453 && actual_name[actual_name_len
22454 - die_name_len - 1] == ':')
22455 name = obstack_strndup (
22456 &objfile->per_bfd->storage_obstack,
22457 actual_name, actual_name_len - die_name_len - 2);
22458 }
22459 }
22460 xfree (actual_name);
22461 return name;
22462 }
22463 }
22464 }
22465
22466 return NULL;
22467 }
22468
22469 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22470 prefix part in such case. See
22471 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22472
22473 static const char *
22474 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22475 {
22476 struct attribute *attr;
22477 const char *base;
22478
22479 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22480 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22481 return NULL;
22482
22483 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22484 return NULL;
22485
22486 attr = dw2_linkage_name_attr (die, cu);
22487 if (attr == NULL || DW_STRING (attr) == NULL)
22488 return NULL;
22489
22490 /* dwarf2_name had to be already called. */
22491 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22492
22493 /* Strip the base name, keep any leading namespaces/classes. */
22494 base = strrchr (DW_STRING (attr), ':');
22495 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22496 return "";
22497
22498 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22499 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22500 DW_STRING (attr),
22501 &base[-1] - DW_STRING (attr));
22502 }
22503
22504 /* Return the name of the namespace/class that DIE is defined within,
22505 or "" if we can't tell. The caller should not xfree the result.
22506
22507 For example, if we're within the method foo() in the following
22508 code:
22509
22510 namespace N {
22511 class C {
22512 void foo () {
22513 }
22514 };
22515 }
22516
22517 then determine_prefix on foo's die will return "N::C". */
22518
22519 static const char *
22520 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22521 {
22522 struct dwarf2_per_objfile *dwarf2_per_objfile
22523 = cu->per_cu->dwarf2_per_objfile;
22524 struct die_info *parent, *spec_die;
22525 struct dwarf2_cu *spec_cu;
22526 struct type *parent_type;
22527 const char *retval;
22528
22529 if (cu->language != language_cplus
22530 && cu->language != language_fortran && cu->language != language_d
22531 && cu->language != language_rust)
22532 return "";
22533
22534 retval = anonymous_struct_prefix (die, cu);
22535 if (retval)
22536 return retval;
22537
22538 /* We have to be careful in the presence of DW_AT_specification.
22539 For example, with GCC 3.4, given the code
22540
22541 namespace N {
22542 void foo() {
22543 // Definition of N::foo.
22544 }
22545 }
22546
22547 then we'll have a tree of DIEs like this:
22548
22549 1: DW_TAG_compile_unit
22550 2: DW_TAG_namespace // N
22551 3: DW_TAG_subprogram // declaration of N::foo
22552 4: DW_TAG_subprogram // definition of N::foo
22553 DW_AT_specification // refers to die #3
22554
22555 Thus, when processing die #4, we have to pretend that we're in
22556 the context of its DW_AT_specification, namely the contex of die
22557 #3. */
22558 spec_cu = cu;
22559 spec_die = die_specification (die, &spec_cu);
22560 if (spec_die == NULL)
22561 parent = die->parent;
22562 else
22563 {
22564 parent = spec_die->parent;
22565 cu = spec_cu;
22566 }
22567
22568 if (parent == NULL)
22569 return "";
22570 else if (parent->building_fullname)
22571 {
22572 const char *name;
22573 const char *parent_name;
22574
22575 /* It has been seen on RealView 2.2 built binaries,
22576 DW_TAG_template_type_param types actually _defined_ as
22577 children of the parent class:
22578
22579 enum E {};
22580 template class <class Enum> Class{};
22581 Class<enum E> class_e;
22582
22583 1: DW_TAG_class_type (Class)
22584 2: DW_TAG_enumeration_type (E)
22585 3: DW_TAG_enumerator (enum1:0)
22586 3: DW_TAG_enumerator (enum2:1)
22587 ...
22588 2: DW_TAG_template_type_param
22589 DW_AT_type DW_FORM_ref_udata (E)
22590
22591 Besides being broken debug info, it can put GDB into an
22592 infinite loop. Consider:
22593
22594 When we're building the full name for Class<E>, we'll start
22595 at Class, and go look over its template type parameters,
22596 finding E. We'll then try to build the full name of E, and
22597 reach here. We're now trying to build the full name of E,
22598 and look over the parent DIE for containing scope. In the
22599 broken case, if we followed the parent DIE of E, we'd again
22600 find Class, and once again go look at its template type
22601 arguments, etc., etc. Simply don't consider such parent die
22602 as source-level parent of this die (it can't be, the language
22603 doesn't allow it), and break the loop here. */
22604 name = dwarf2_name (die, cu);
22605 parent_name = dwarf2_name (parent, cu);
22606 complaint (_("template param type '%s' defined within parent '%s'"),
22607 name ? name : "<unknown>",
22608 parent_name ? parent_name : "<unknown>");
22609 return "";
22610 }
22611 else
22612 switch (parent->tag)
22613 {
22614 case DW_TAG_namespace:
22615 parent_type = read_type_die (parent, cu);
22616 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22617 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22618 Work around this problem here. */
22619 if (cu->language == language_cplus
22620 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22621 return "";
22622 /* We give a name to even anonymous namespaces. */
22623 return TYPE_NAME (parent_type);
22624 case DW_TAG_class_type:
22625 case DW_TAG_interface_type:
22626 case DW_TAG_structure_type:
22627 case DW_TAG_union_type:
22628 case DW_TAG_module:
22629 parent_type = read_type_die (parent, cu);
22630 if (TYPE_NAME (parent_type) != NULL)
22631 return TYPE_NAME (parent_type);
22632 else
22633 /* An anonymous structure is only allowed non-static data
22634 members; no typedefs, no member functions, et cetera.
22635 So it does not need a prefix. */
22636 return "";
22637 case DW_TAG_compile_unit:
22638 case DW_TAG_partial_unit:
22639 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22640 if (cu->language == language_cplus
22641 && !dwarf2_per_objfile->types.empty ()
22642 && die->child != NULL
22643 && (die->tag == DW_TAG_class_type
22644 || die->tag == DW_TAG_structure_type
22645 || die->tag == DW_TAG_union_type))
22646 {
22647 char *name = guess_full_die_structure_name (die, cu);
22648 if (name != NULL)
22649 return name;
22650 }
22651 return "";
22652 case DW_TAG_subprogram:
22653 /* Nested subroutines in Fortran get a prefix with the name
22654 of the parent's subroutine. */
22655 if (cu->language == language_fortran)
22656 {
22657 if ((die->tag == DW_TAG_subprogram)
22658 && (dwarf2_name (parent, cu) != NULL))
22659 return dwarf2_name (parent, cu);
22660 }
22661 return determine_prefix (parent, cu);
22662 case DW_TAG_enumeration_type:
22663 parent_type = read_type_die (parent, cu);
22664 if (TYPE_DECLARED_CLASS (parent_type))
22665 {
22666 if (TYPE_NAME (parent_type) != NULL)
22667 return TYPE_NAME (parent_type);
22668 return "";
22669 }
22670 /* Fall through. */
22671 default:
22672 return determine_prefix (parent, cu);
22673 }
22674 }
22675
22676 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22677 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22678 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22679 an obconcat, otherwise allocate storage for the result. The CU argument is
22680 used to determine the language and hence, the appropriate separator. */
22681
22682 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22683
22684 static char *
22685 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22686 int physname, struct dwarf2_cu *cu)
22687 {
22688 const char *lead = "";
22689 const char *sep;
22690
22691 if (suffix == NULL || suffix[0] == '\0'
22692 || prefix == NULL || prefix[0] == '\0')
22693 sep = "";
22694 else if (cu->language == language_d)
22695 {
22696 /* For D, the 'main' function could be defined in any module, but it
22697 should never be prefixed. */
22698 if (strcmp (suffix, "D main") == 0)
22699 {
22700 prefix = "";
22701 sep = "";
22702 }
22703 else
22704 sep = ".";
22705 }
22706 else if (cu->language == language_fortran && physname)
22707 {
22708 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22709 DW_AT_MIPS_linkage_name is preferred and used instead. */
22710
22711 lead = "__";
22712 sep = "_MOD_";
22713 }
22714 else
22715 sep = "::";
22716
22717 if (prefix == NULL)
22718 prefix = "";
22719 if (suffix == NULL)
22720 suffix = "";
22721
22722 if (obs == NULL)
22723 {
22724 char *retval
22725 = ((char *)
22726 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22727
22728 strcpy (retval, lead);
22729 strcat (retval, prefix);
22730 strcat (retval, sep);
22731 strcat (retval, suffix);
22732 return retval;
22733 }
22734 else
22735 {
22736 /* We have an obstack. */
22737 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22738 }
22739 }
22740
22741 /* Return sibling of die, NULL if no sibling. */
22742
22743 static struct die_info *
22744 sibling_die (struct die_info *die)
22745 {
22746 return die->sibling;
22747 }
22748
22749 /* Get name of a die, return NULL if not found. */
22750
22751 static const char *
22752 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22753 struct obstack *obstack)
22754 {
22755 if (name && cu->language == language_cplus)
22756 {
22757 std::string canon_name = cp_canonicalize_string (name);
22758
22759 if (!canon_name.empty ())
22760 {
22761 if (canon_name != name)
22762 name = obstack_strdup (obstack, canon_name);
22763 }
22764 }
22765
22766 return name;
22767 }
22768
22769 /* Get name of a die, return NULL if not found.
22770 Anonymous namespaces are converted to their magic string. */
22771
22772 static const char *
22773 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22774 {
22775 struct attribute *attr;
22776 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22777
22778 attr = dwarf2_attr (die, DW_AT_name, cu);
22779 if ((!attr || !DW_STRING (attr))
22780 && die->tag != DW_TAG_namespace
22781 && die->tag != DW_TAG_class_type
22782 && die->tag != DW_TAG_interface_type
22783 && die->tag != DW_TAG_structure_type
22784 && die->tag != DW_TAG_union_type)
22785 return NULL;
22786
22787 switch (die->tag)
22788 {
22789 case DW_TAG_compile_unit:
22790 case DW_TAG_partial_unit:
22791 /* Compilation units have a DW_AT_name that is a filename, not
22792 a source language identifier. */
22793 case DW_TAG_enumeration_type:
22794 case DW_TAG_enumerator:
22795 /* These tags always have simple identifiers already; no need
22796 to canonicalize them. */
22797 return DW_STRING (attr);
22798
22799 case DW_TAG_namespace:
22800 if (attr != NULL && DW_STRING (attr) != NULL)
22801 return DW_STRING (attr);
22802 return CP_ANONYMOUS_NAMESPACE_STR;
22803
22804 case DW_TAG_class_type:
22805 case DW_TAG_interface_type:
22806 case DW_TAG_structure_type:
22807 case DW_TAG_union_type:
22808 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22809 structures or unions. These were of the form "._%d" in GCC 4.1,
22810 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22811 and GCC 4.4. We work around this problem by ignoring these. */
22812 if (attr && DW_STRING (attr)
22813 && (startswith (DW_STRING (attr), "._")
22814 || startswith (DW_STRING (attr), "<anonymous")))
22815 return NULL;
22816
22817 /* GCC might emit a nameless typedef that has a linkage name. See
22818 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22819 if (!attr || DW_STRING (attr) == NULL)
22820 {
22821 char *demangled = NULL;
22822
22823 attr = dw2_linkage_name_attr (die, cu);
22824 if (attr == NULL || DW_STRING (attr) == NULL)
22825 return NULL;
22826
22827 /* Avoid demangling DW_STRING (attr) the second time on a second
22828 call for the same DIE. */
22829 if (!DW_STRING_IS_CANONICAL (attr))
22830 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22831
22832 if (demangled)
22833 {
22834 const char *base;
22835
22836 /* FIXME: we already did this for the partial symbol... */
22837 DW_STRING (attr)
22838 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22839 demangled);
22840 DW_STRING_IS_CANONICAL (attr) = 1;
22841 xfree (demangled);
22842
22843 /* Strip any leading namespaces/classes, keep only the base name.
22844 DW_AT_name for named DIEs does not contain the prefixes. */
22845 base = strrchr (DW_STRING (attr), ':');
22846 if (base && base > DW_STRING (attr) && base[-1] == ':')
22847 return &base[1];
22848 else
22849 return DW_STRING (attr);
22850 }
22851 }
22852 break;
22853
22854 default:
22855 break;
22856 }
22857
22858 if (!DW_STRING_IS_CANONICAL (attr))
22859 {
22860 DW_STRING (attr)
22861 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22862 &objfile->per_bfd->storage_obstack);
22863 DW_STRING_IS_CANONICAL (attr) = 1;
22864 }
22865 return DW_STRING (attr);
22866 }
22867
22868 /* Return the die that this die in an extension of, or NULL if there
22869 is none. *EXT_CU is the CU containing DIE on input, and the CU
22870 containing the return value on output. */
22871
22872 static struct die_info *
22873 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22874 {
22875 struct attribute *attr;
22876
22877 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22878 if (attr == NULL)
22879 return NULL;
22880
22881 return follow_die_ref (die, attr, ext_cu);
22882 }
22883
22884 /* A convenience function that returns an "unknown" DWARF name,
22885 including the value of V. STR is the name of the entity being
22886 printed, e.g., "TAG". */
22887
22888 static const char *
22889 dwarf_unknown (const char *str, unsigned v)
22890 {
22891 char *cell = get_print_cell ();
22892 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22893 return cell;
22894 }
22895
22896 /* Convert a DIE tag into its string name. */
22897
22898 static const char *
22899 dwarf_tag_name (unsigned tag)
22900 {
22901 const char *name = get_DW_TAG_name (tag);
22902
22903 if (name == NULL)
22904 return dwarf_unknown ("TAG", tag);
22905
22906 return name;
22907 }
22908
22909 /* Convert a DWARF attribute code into its string name. */
22910
22911 static const char *
22912 dwarf_attr_name (unsigned attr)
22913 {
22914 const char *name;
22915
22916 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22917 if (attr == DW_AT_MIPS_fde)
22918 return "DW_AT_MIPS_fde";
22919 #else
22920 if (attr == DW_AT_HP_block_index)
22921 return "DW_AT_HP_block_index";
22922 #endif
22923
22924 name = get_DW_AT_name (attr);
22925
22926 if (name == NULL)
22927 return dwarf_unknown ("AT", attr);
22928
22929 return name;
22930 }
22931
22932 /* Convert a unit type to corresponding DW_UT name. */
22933
22934 static const char *
22935 dwarf_unit_type_name (int unit_type) {
22936 switch (unit_type)
22937 {
22938 case 0x01:
22939 return "DW_UT_compile (0x01)";
22940 case 0x02:
22941 return "DW_UT_type (0x02)";
22942 case 0x03:
22943 return "DW_UT_partial (0x03)";
22944 case 0x04:
22945 return "DW_UT_skeleton (0x04)";
22946 case 0x05:
22947 return "DW_UT_split_compile (0x05)";
22948 case 0x06:
22949 return "DW_UT_split_type (0x06)";
22950 case 0x80:
22951 return "DW_UT_lo_user (0x80)";
22952 case 0xff:
22953 return "DW_UT_hi_user (0xff)";
22954 default:
22955 return nullptr;
22956 }
22957 }
22958
22959 /* Convert a DWARF value form code into its string name. */
22960
22961 static const char *
22962 dwarf_form_name (unsigned form)
22963 {
22964 const char *name = get_DW_FORM_name (form);
22965
22966 if (name == NULL)
22967 return dwarf_unknown ("FORM", form);
22968
22969 return name;
22970 }
22971
22972 static const char *
22973 dwarf_bool_name (unsigned mybool)
22974 {
22975 if (mybool)
22976 return "TRUE";
22977 else
22978 return "FALSE";
22979 }
22980
22981 /* Convert a DWARF type code into its string name. */
22982
22983 static const char *
22984 dwarf_type_encoding_name (unsigned enc)
22985 {
22986 const char *name = get_DW_ATE_name (enc);
22987
22988 if (name == NULL)
22989 return dwarf_unknown ("ATE", enc);
22990
22991 return name;
22992 }
22993
22994 static void
22995 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22996 {
22997 unsigned int i;
22998
22999 print_spaces (indent, f);
23000 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23001 dwarf_tag_name (die->tag), die->abbrev,
23002 sect_offset_str (die->sect_off));
23003
23004 if (die->parent != NULL)
23005 {
23006 print_spaces (indent, f);
23007 fprintf_unfiltered (f, " parent at offset: %s\n",
23008 sect_offset_str (die->parent->sect_off));
23009 }
23010
23011 print_spaces (indent, f);
23012 fprintf_unfiltered (f, " has children: %s\n",
23013 dwarf_bool_name (die->child != NULL));
23014
23015 print_spaces (indent, f);
23016 fprintf_unfiltered (f, " attributes:\n");
23017
23018 for (i = 0; i < die->num_attrs; ++i)
23019 {
23020 print_spaces (indent, f);
23021 fprintf_unfiltered (f, " %s (%s) ",
23022 dwarf_attr_name (die->attrs[i].name),
23023 dwarf_form_name (die->attrs[i].form));
23024
23025 switch (die->attrs[i].form)
23026 {
23027 case DW_FORM_addr:
23028 case DW_FORM_addrx:
23029 case DW_FORM_GNU_addr_index:
23030 fprintf_unfiltered (f, "address: ");
23031 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23032 break;
23033 case DW_FORM_block2:
23034 case DW_FORM_block4:
23035 case DW_FORM_block:
23036 case DW_FORM_block1:
23037 fprintf_unfiltered (f, "block: size %s",
23038 pulongest (DW_BLOCK (&die->attrs[i])->size));
23039 break;
23040 case DW_FORM_exprloc:
23041 fprintf_unfiltered (f, "expression: size %s",
23042 pulongest (DW_BLOCK (&die->attrs[i])->size));
23043 break;
23044 case DW_FORM_data16:
23045 fprintf_unfiltered (f, "constant of 16 bytes");
23046 break;
23047 case DW_FORM_ref_addr:
23048 fprintf_unfiltered (f, "ref address: ");
23049 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23050 break;
23051 case DW_FORM_GNU_ref_alt:
23052 fprintf_unfiltered (f, "alt ref address: ");
23053 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23054 break;
23055 case DW_FORM_ref1:
23056 case DW_FORM_ref2:
23057 case DW_FORM_ref4:
23058 case DW_FORM_ref8:
23059 case DW_FORM_ref_udata:
23060 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23061 (long) (DW_UNSND (&die->attrs[i])));
23062 break;
23063 case DW_FORM_data1:
23064 case DW_FORM_data2:
23065 case DW_FORM_data4:
23066 case DW_FORM_data8:
23067 case DW_FORM_udata:
23068 case DW_FORM_sdata:
23069 fprintf_unfiltered (f, "constant: %s",
23070 pulongest (DW_UNSND (&die->attrs[i])));
23071 break;
23072 case DW_FORM_sec_offset:
23073 fprintf_unfiltered (f, "section offset: %s",
23074 pulongest (DW_UNSND (&die->attrs[i])));
23075 break;
23076 case DW_FORM_ref_sig8:
23077 fprintf_unfiltered (f, "signature: %s",
23078 hex_string (DW_SIGNATURE (&die->attrs[i])));
23079 break;
23080 case DW_FORM_string:
23081 case DW_FORM_strp:
23082 case DW_FORM_line_strp:
23083 case DW_FORM_strx:
23084 case DW_FORM_GNU_str_index:
23085 case DW_FORM_GNU_strp_alt:
23086 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23087 DW_STRING (&die->attrs[i])
23088 ? DW_STRING (&die->attrs[i]) : "",
23089 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23090 break;
23091 case DW_FORM_flag:
23092 if (DW_UNSND (&die->attrs[i]))
23093 fprintf_unfiltered (f, "flag: TRUE");
23094 else
23095 fprintf_unfiltered (f, "flag: FALSE");
23096 break;
23097 case DW_FORM_flag_present:
23098 fprintf_unfiltered (f, "flag: TRUE");
23099 break;
23100 case DW_FORM_indirect:
23101 /* The reader will have reduced the indirect form to
23102 the "base form" so this form should not occur. */
23103 fprintf_unfiltered (f,
23104 "unexpected attribute form: DW_FORM_indirect");
23105 break;
23106 case DW_FORM_implicit_const:
23107 fprintf_unfiltered (f, "constant: %s",
23108 plongest (DW_SND (&die->attrs[i])));
23109 break;
23110 default:
23111 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23112 die->attrs[i].form);
23113 break;
23114 }
23115 fprintf_unfiltered (f, "\n");
23116 }
23117 }
23118
23119 static void
23120 dump_die_for_error (struct die_info *die)
23121 {
23122 dump_die_shallow (gdb_stderr, 0, die);
23123 }
23124
23125 static void
23126 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23127 {
23128 int indent = level * 4;
23129
23130 gdb_assert (die != NULL);
23131
23132 if (level >= max_level)
23133 return;
23134
23135 dump_die_shallow (f, indent, die);
23136
23137 if (die->child != NULL)
23138 {
23139 print_spaces (indent, f);
23140 fprintf_unfiltered (f, " Children:");
23141 if (level + 1 < max_level)
23142 {
23143 fprintf_unfiltered (f, "\n");
23144 dump_die_1 (f, level + 1, max_level, die->child);
23145 }
23146 else
23147 {
23148 fprintf_unfiltered (f,
23149 " [not printed, max nesting level reached]\n");
23150 }
23151 }
23152
23153 if (die->sibling != NULL && level > 0)
23154 {
23155 dump_die_1 (f, level, max_level, die->sibling);
23156 }
23157 }
23158
23159 /* This is called from the pdie macro in gdbinit.in.
23160 It's not static so gcc will keep a copy callable from gdb. */
23161
23162 void
23163 dump_die (struct die_info *die, int max_level)
23164 {
23165 dump_die_1 (gdb_stdlog, 0, max_level, die);
23166 }
23167
23168 static void
23169 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23170 {
23171 void **slot;
23172
23173 slot = htab_find_slot_with_hash (cu->die_hash, die,
23174 to_underlying (die->sect_off),
23175 INSERT);
23176
23177 *slot = die;
23178 }
23179
23180 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23181 required kind. */
23182
23183 static sect_offset
23184 dwarf2_get_ref_die_offset (const struct attribute *attr)
23185 {
23186 if (attr_form_is_ref (attr))
23187 return (sect_offset) DW_UNSND (attr);
23188
23189 complaint (_("unsupported die ref attribute form: '%s'"),
23190 dwarf_form_name (attr->form));
23191 return {};
23192 }
23193
23194 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23195 * the value held by the attribute is not constant. */
23196
23197 static LONGEST
23198 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23199 {
23200 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23201 return DW_SND (attr);
23202 else if (attr->form == DW_FORM_udata
23203 || attr->form == DW_FORM_data1
23204 || attr->form == DW_FORM_data2
23205 || attr->form == DW_FORM_data4
23206 || attr->form == DW_FORM_data8)
23207 return DW_UNSND (attr);
23208 else
23209 {
23210 /* For DW_FORM_data16 see attr_form_is_constant. */
23211 complaint (_("Attribute value is not a constant (%s)"),
23212 dwarf_form_name (attr->form));
23213 return default_value;
23214 }
23215 }
23216
23217 /* Follow reference or signature attribute ATTR of SRC_DIE.
23218 On entry *REF_CU is the CU of SRC_DIE.
23219 On exit *REF_CU is the CU of the result. */
23220
23221 static struct die_info *
23222 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23223 struct dwarf2_cu **ref_cu)
23224 {
23225 struct die_info *die;
23226
23227 if (attr_form_is_ref (attr))
23228 die = follow_die_ref (src_die, attr, ref_cu);
23229 else if (attr->form == DW_FORM_ref_sig8)
23230 die = follow_die_sig (src_die, attr, ref_cu);
23231 else
23232 {
23233 dump_die_for_error (src_die);
23234 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23235 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23236 }
23237
23238 return die;
23239 }
23240
23241 /* Follow reference OFFSET.
23242 On entry *REF_CU is the CU of the source die referencing OFFSET.
23243 On exit *REF_CU is the CU of the result.
23244 Returns NULL if OFFSET is invalid. */
23245
23246 static struct die_info *
23247 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23248 struct dwarf2_cu **ref_cu)
23249 {
23250 struct die_info temp_die;
23251 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23252 struct dwarf2_per_objfile *dwarf2_per_objfile
23253 = cu->per_cu->dwarf2_per_objfile;
23254
23255 gdb_assert (cu->per_cu != NULL);
23256
23257 target_cu = cu;
23258
23259 if (cu->per_cu->is_debug_types)
23260 {
23261 /* .debug_types CUs cannot reference anything outside their CU.
23262 If they need to, they have to reference a signatured type via
23263 DW_FORM_ref_sig8. */
23264 if (!offset_in_cu_p (&cu->header, sect_off))
23265 return NULL;
23266 }
23267 else if (offset_in_dwz != cu->per_cu->is_dwz
23268 || !offset_in_cu_p (&cu->header, sect_off))
23269 {
23270 struct dwarf2_per_cu_data *per_cu;
23271
23272 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23273 dwarf2_per_objfile);
23274
23275 /* If necessary, add it to the queue and load its DIEs. */
23276 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23277 load_full_comp_unit (per_cu, false, cu->language);
23278
23279 target_cu = per_cu->cu;
23280 }
23281 else if (cu->dies == NULL)
23282 {
23283 /* We're loading full DIEs during partial symbol reading. */
23284 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23285 load_full_comp_unit (cu->per_cu, false, language_minimal);
23286 }
23287
23288 *ref_cu = target_cu;
23289 temp_die.sect_off = sect_off;
23290
23291 if (target_cu != cu)
23292 target_cu->ancestor = cu;
23293
23294 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23295 &temp_die,
23296 to_underlying (sect_off));
23297 }
23298
23299 /* Follow reference attribute ATTR of SRC_DIE.
23300 On entry *REF_CU is the CU of SRC_DIE.
23301 On exit *REF_CU is the CU of the result. */
23302
23303 static struct die_info *
23304 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23305 struct dwarf2_cu **ref_cu)
23306 {
23307 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23308 struct dwarf2_cu *cu = *ref_cu;
23309 struct die_info *die;
23310
23311 die = follow_die_offset (sect_off,
23312 (attr->form == DW_FORM_GNU_ref_alt
23313 || cu->per_cu->is_dwz),
23314 ref_cu);
23315 if (!die)
23316 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23317 "at %s [in module %s]"),
23318 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23319 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23320
23321 return die;
23322 }
23323
23324 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23325 Returned value is intended for DW_OP_call*. Returned
23326 dwarf2_locexpr_baton->data has lifetime of
23327 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23328
23329 struct dwarf2_locexpr_baton
23330 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23331 struct dwarf2_per_cu_data *per_cu,
23332 CORE_ADDR (*get_frame_pc) (void *baton),
23333 void *baton, bool resolve_abstract_p)
23334 {
23335 struct dwarf2_cu *cu;
23336 struct die_info *die;
23337 struct attribute *attr;
23338 struct dwarf2_locexpr_baton retval;
23339 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23340 struct objfile *objfile = dwarf2_per_objfile->objfile;
23341
23342 if (per_cu->cu == NULL)
23343 load_cu (per_cu, false);
23344 cu = per_cu->cu;
23345 if (cu == NULL)
23346 {
23347 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23348 Instead just throw an error, not much else we can do. */
23349 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23350 sect_offset_str (sect_off), objfile_name (objfile));
23351 }
23352
23353 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23354 if (!die)
23355 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23356 sect_offset_str (sect_off), objfile_name (objfile));
23357
23358 attr = dwarf2_attr (die, DW_AT_location, cu);
23359 if (!attr && resolve_abstract_p
23360 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23361 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23362 {
23363 CORE_ADDR pc = (*get_frame_pc) (baton);
23364 CORE_ADDR baseaddr
23365 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23366 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23367
23368 for (const auto &cand_off
23369 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23370 {
23371 struct dwarf2_cu *cand_cu = cu;
23372 struct die_info *cand
23373 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23374 if (!cand
23375 || !cand->parent
23376 || cand->parent->tag != DW_TAG_subprogram)
23377 continue;
23378
23379 CORE_ADDR pc_low, pc_high;
23380 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23381 if (pc_low == ((CORE_ADDR) -1))
23382 continue;
23383 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23384 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23385 if (!(pc_low <= pc && pc < pc_high))
23386 continue;
23387
23388 die = cand;
23389 attr = dwarf2_attr (die, DW_AT_location, cu);
23390 break;
23391 }
23392 }
23393
23394 if (!attr)
23395 {
23396 /* DWARF: "If there is no such attribute, then there is no effect.".
23397 DATA is ignored if SIZE is 0. */
23398
23399 retval.data = NULL;
23400 retval.size = 0;
23401 }
23402 else if (attr_form_is_section_offset (attr))
23403 {
23404 struct dwarf2_loclist_baton loclist_baton;
23405 CORE_ADDR pc = (*get_frame_pc) (baton);
23406 size_t size;
23407
23408 fill_in_loclist_baton (cu, &loclist_baton, attr);
23409
23410 retval.data = dwarf2_find_location_expression (&loclist_baton,
23411 &size, pc);
23412 retval.size = size;
23413 }
23414 else
23415 {
23416 if (!attr_form_is_block (attr))
23417 error (_("Dwarf Error: DIE at %s referenced in module %s "
23418 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23419 sect_offset_str (sect_off), objfile_name (objfile));
23420
23421 retval.data = DW_BLOCK (attr)->data;
23422 retval.size = DW_BLOCK (attr)->size;
23423 }
23424 retval.per_cu = cu->per_cu;
23425
23426 age_cached_comp_units (dwarf2_per_objfile);
23427
23428 return retval;
23429 }
23430
23431 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23432 offset. */
23433
23434 struct dwarf2_locexpr_baton
23435 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23436 struct dwarf2_per_cu_data *per_cu,
23437 CORE_ADDR (*get_frame_pc) (void *baton),
23438 void *baton)
23439 {
23440 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23441
23442 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23443 }
23444
23445 /* Write a constant of a given type as target-ordered bytes into
23446 OBSTACK. */
23447
23448 static const gdb_byte *
23449 write_constant_as_bytes (struct obstack *obstack,
23450 enum bfd_endian byte_order,
23451 struct type *type,
23452 ULONGEST value,
23453 LONGEST *len)
23454 {
23455 gdb_byte *result;
23456
23457 *len = TYPE_LENGTH (type);
23458 result = (gdb_byte *) obstack_alloc (obstack, *len);
23459 store_unsigned_integer (result, *len, byte_order, value);
23460
23461 return result;
23462 }
23463
23464 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23465 pointer to the constant bytes and set LEN to the length of the
23466 data. If memory is needed, allocate it on OBSTACK. If the DIE
23467 does not have a DW_AT_const_value, return NULL. */
23468
23469 const gdb_byte *
23470 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23471 struct dwarf2_per_cu_data *per_cu,
23472 struct obstack *obstack,
23473 LONGEST *len)
23474 {
23475 struct dwarf2_cu *cu;
23476 struct die_info *die;
23477 struct attribute *attr;
23478 const gdb_byte *result = NULL;
23479 struct type *type;
23480 LONGEST value;
23481 enum bfd_endian byte_order;
23482 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23483
23484 if (per_cu->cu == NULL)
23485 load_cu (per_cu, false);
23486 cu = per_cu->cu;
23487 if (cu == NULL)
23488 {
23489 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23490 Instead just throw an error, not much else we can do. */
23491 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23492 sect_offset_str (sect_off), objfile_name (objfile));
23493 }
23494
23495 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23496 if (!die)
23497 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23498 sect_offset_str (sect_off), objfile_name (objfile));
23499
23500 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23501 if (attr == NULL)
23502 return NULL;
23503
23504 byte_order = (bfd_big_endian (objfile->obfd)
23505 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23506
23507 switch (attr->form)
23508 {
23509 case DW_FORM_addr:
23510 case DW_FORM_addrx:
23511 case DW_FORM_GNU_addr_index:
23512 {
23513 gdb_byte *tem;
23514
23515 *len = cu->header.addr_size;
23516 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23517 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23518 result = tem;
23519 }
23520 break;
23521 case DW_FORM_string:
23522 case DW_FORM_strp:
23523 case DW_FORM_strx:
23524 case DW_FORM_GNU_str_index:
23525 case DW_FORM_GNU_strp_alt:
23526 /* DW_STRING is already allocated on the objfile obstack, point
23527 directly to it. */
23528 result = (const gdb_byte *) DW_STRING (attr);
23529 *len = strlen (DW_STRING (attr));
23530 break;
23531 case DW_FORM_block1:
23532 case DW_FORM_block2:
23533 case DW_FORM_block4:
23534 case DW_FORM_block:
23535 case DW_FORM_exprloc:
23536 case DW_FORM_data16:
23537 result = DW_BLOCK (attr)->data;
23538 *len = DW_BLOCK (attr)->size;
23539 break;
23540
23541 /* The DW_AT_const_value attributes are supposed to carry the
23542 symbol's value "represented as it would be on the target
23543 architecture." By the time we get here, it's already been
23544 converted to host endianness, so we just need to sign- or
23545 zero-extend it as appropriate. */
23546 case DW_FORM_data1:
23547 type = die_type (die, cu);
23548 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23549 if (result == NULL)
23550 result = write_constant_as_bytes (obstack, byte_order,
23551 type, value, len);
23552 break;
23553 case DW_FORM_data2:
23554 type = die_type (die, cu);
23555 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23556 if (result == NULL)
23557 result = write_constant_as_bytes (obstack, byte_order,
23558 type, value, len);
23559 break;
23560 case DW_FORM_data4:
23561 type = die_type (die, cu);
23562 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23563 if (result == NULL)
23564 result = write_constant_as_bytes (obstack, byte_order,
23565 type, value, len);
23566 break;
23567 case DW_FORM_data8:
23568 type = die_type (die, cu);
23569 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23570 if (result == NULL)
23571 result = write_constant_as_bytes (obstack, byte_order,
23572 type, value, len);
23573 break;
23574
23575 case DW_FORM_sdata:
23576 case DW_FORM_implicit_const:
23577 type = die_type (die, cu);
23578 result = write_constant_as_bytes (obstack, byte_order,
23579 type, DW_SND (attr), len);
23580 break;
23581
23582 case DW_FORM_udata:
23583 type = die_type (die, cu);
23584 result = write_constant_as_bytes (obstack, byte_order,
23585 type, DW_UNSND (attr), len);
23586 break;
23587
23588 default:
23589 complaint (_("unsupported const value attribute form: '%s'"),
23590 dwarf_form_name (attr->form));
23591 break;
23592 }
23593
23594 return result;
23595 }
23596
23597 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23598 valid type for this die is found. */
23599
23600 struct type *
23601 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23602 struct dwarf2_per_cu_data *per_cu)
23603 {
23604 struct dwarf2_cu *cu;
23605 struct die_info *die;
23606
23607 if (per_cu->cu == NULL)
23608 load_cu (per_cu, false);
23609 cu = per_cu->cu;
23610 if (!cu)
23611 return NULL;
23612
23613 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23614 if (!die)
23615 return NULL;
23616
23617 return die_type (die, cu);
23618 }
23619
23620 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23621 PER_CU. */
23622
23623 struct type *
23624 dwarf2_get_die_type (cu_offset die_offset,
23625 struct dwarf2_per_cu_data *per_cu)
23626 {
23627 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23628 return get_die_type_at_offset (die_offset_sect, per_cu);
23629 }
23630
23631 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23632 On entry *REF_CU is the CU of SRC_DIE.
23633 On exit *REF_CU is the CU of the result.
23634 Returns NULL if the referenced DIE isn't found. */
23635
23636 static struct die_info *
23637 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23638 struct dwarf2_cu **ref_cu)
23639 {
23640 struct die_info temp_die;
23641 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23642 struct die_info *die;
23643
23644 /* While it might be nice to assert sig_type->type == NULL here,
23645 we can get here for DW_AT_imported_declaration where we need
23646 the DIE not the type. */
23647
23648 /* If necessary, add it to the queue and load its DIEs. */
23649
23650 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23651 read_signatured_type (sig_type);
23652
23653 sig_cu = sig_type->per_cu.cu;
23654 gdb_assert (sig_cu != NULL);
23655 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23656 temp_die.sect_off = sig_type->type_offset_in_section;
23657 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23658 to_underlying (temp_die.sect_off));
23659 if (die)
23660 {
23661 struct dwarf2_per_objfile *dwarf2_per_objfile
23662 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23663
23664 /* For .gdb_index version 7 keep track of included TUs.
23665 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23666 if (dwarf2_per_objfile->index_table != NULL
23667 && dwarf2_per_objfile->index_table->version <= 7)
23668 {
23669 VEC_safe_push (dwarf2_per_cu_ptr,
23670 (*ref_cu)->per_cu->imported_symtabs,
23671 sig_cu->per_cu);
23672 }
23673
23674 *ref_cu = sig_cu;
23675 if (sig_cu != cu)
23676 sig_cu->ancestor = cu;
23677
23678 return die;
23679 }
23680
23681 return NULL;
23682 }
23683
23684 /* Follow signatured type referenced by ATTR in SRC_DIE.
23685 On entry *REF_CU is the CU of SRC_DIE.
23686 On exit *REF_CU is the CU of the result.
23687 The result is the DIE of the type.
23688 If the referenced type cannot be found an error is thrown. */
23689
23690 static struct die_info *
23691 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23692 struct dwarf2_cu **ref_cu)
23693 {
23694 ULONGEST signature = DW_SIGNATURE (attr);
23695 struct signatured_type *sig_type;
23696 struct die_info *die;
23697
23698 gdb_assert (attr->form == DW_FORM_ref_sig8);
23699
23700 sig_type = lookup_signatured_type (*ref_cu, signature);
23701 /* sig_type will be NULL if the signatured type is missing from
23702 the debug info. */
23703 if (sig_type == NULL)
23704 {
23705 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23706 " from DIE at %s [in module %s]"),
23707 hex_string (signature), sect_offset_str (src_die->sect_off),
23708 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23709 }
23710
23711 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23712 if (die == NULL)
23713 {
23714 dump_die_for_error (src_die);
23715 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23716 " from DIE at %s [in module %s]"),
23717 hex_string (signature), sect_offset_str (src_die->sect_off),
23718 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23719 }
23720
23721 return die;
23722 }
23723
23724 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23725 reading in and processing the type unit if necessary. */
23726
23727 static struct type *
23728 get_signatured_type (struct die_info *die, ULONGEST signature,
23729 struct dwarf2_cu *cu)
23730 {
23731 struct dwarf2_per_objfile *dwarf2_per_objfile
23732 = cu->per_cu->dwarf2_per_objfile;
23733 struct signatured_type *sig_type;
23734 struct dwarf2_cu *type_cu;
23735 struct die_info *type_die;
23736 struct type *type;
23737
23738 sig_type = lookup_signatured_type (cu, signature);
23739 /* sig_type will be NULL if the signatured type is missing from
23740 the debug info. */
23741 if (sig_type == NULL)
23742 {
23743 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23744 " from DIE at %s [in module %s]"),
23745 hex_string (signature), sect_offset_str (die->sect_off),
23746 objfile_name (dwarf2_per_objfile->objfile));
23747 return build_error_marker_type (cu, die);
23748 }
23749
23750 /* If we already know the type we're done. */
23751 if (sig_type->type != NULL)
23752 return sig_type->type;
23753
23754 type_cu = cu;
23755 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23756 if (type_die != NULL)
23757 {
23758 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23759 is created. This is important, for example, because for c++ classes
23760 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23761 type = read_type_die (type_die, type_cu);
23762 if (type == NULL)
23763 {
23764 complaint (_("Dwarf Error: Cannot build signatured type %s"
23765 " referenced from DIE at %s [in module %s]"),
23766 hex_string (signature), sect_offset_str (die->sect_off),
23767 objfile_name (dwarf2_per_objfile->objfile));
23768 type = build_error_marker_type (cu, die);
23769 }
23770 }
23771 else
23772 {
23773 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23774 " from DIE at %s [in module %s]"),
23775 hex_string (signature), sect_offset_str (die->sect_off),
23776 objfile_name (dwarf2_per_objfile->objfile));
23777 type = build_error_marker_type (cu, die);
23778 }
23779 sig_type->type = type;
23780
23781 return type;
23782 }
23783
23784 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23785 reading in and processing the type unit if necessary. */
23786
23787 static struct type *
23788 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23789 struct dwarf2_cu *cu) /* ARI: editCase function */
23790 {
23791 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23792 if (attr_form_is_ref (attr))
23793 {
23794 struct dwarf2_cu *type_cu = cu;
23795 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23796
23797 return read_type_die (type_die, type_cu);
23798 }
23799 else if (attr->form == DW_FORM_ref_sig8)
23800 {
23801 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23802 }
23803 else
23804 {
23805 struct dwarf2_per_objfile *dwarf2_per_objfile
23806 = cu->per_cu->dwarf2_per_objfile;
23807
23808 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23809 " at %s [in module %s]"),
23810 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23811 objfile_name (dwarf2_per_objfile->objfile));
23812 return build_error_marker_type (cu, die);
23813 }
23814 }
23815
23816 /* Load the DIEs associated with type unit PER_CU into memory. */
23817
23818 static void
23819 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23820 {
23821 struct signatured_type *sig_type;
23822
23823 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23824 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23825
23826 /* We have the per_cu, but we need the signatured_type.
23827 Fortunately this is an easy translation. */
23828 gdb_assert (per_cu->is_debug_types);
23829 sig_type = (struct signatured_type *) per_cu;
23830
23831 gdb_assert (per_cu->cu == NULL);
23832
23833 read_signatured_type (sig_type);
23834
23835 gdb_assert (per_cu->cu != NULL);
23836 }
23837
23838 /* die_reader_func for read_signatured_type.
23839 This is identical to load_full_comp_unit_reader,
23840 but is kept separate for now. */
23841
23842 static void
23843 read_signatured_type_reader (const struct die_reader_specs *reader,
23844 const gdb_byte *info_ptr,
23845 struct die_info *comp_unit_die,
23846 int has_children,
23847 void *data)
23848 {
23849 struct dwarf2_cu *cu = reader->cu;
23850
23851 gdb_assert (cu->die_hash == NULL);
23852 cu->die_hash =
23853 htab_create_alloc_ex (cu->header.length / 12,
23854 die_hash,
23855 die_eq,
23856 NULL,
23857 &cu->comp_unit_obstack,
23858 hashtab_obstack_allocate,
23859 dummy_obstack_deallocate);
23860
23861 if (has_children)
23862 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23863 &info_ptr, comp_unit_die);
23864 cu->dies = comp_unit_die;
23865 /* comp_unit_die is not stored in die_hash, no need. */
23866
23867 /* We try not to read any attributes in this function, because not
23868 all CUs needed for references have been loaded yet, and symbol
23869 table processing isn't initialized. But we have to set the CU language,
23870 or we won't be able to build types correctly.
23871 Similarly, if we do not read the producer, we can not apply
23872 producer-specific interpretation. */
23873 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23874 }
23875
23876 /* Read in a signatured type and build its CU and DIEs.
23877 If the type is a stub for the real type in a DWO file,
23878 read in the real type from the DWO file as well. */
23879
23880 static void
23881 read_signatured_type (struct signatured_type *sig_type)
23882 {
23883 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23884
23885 gdb_assert (per_cu->is_debug_types);
23886 gdb_assert (per_cu->cu == NULL);
23887
23888 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23889 read_signatured_type_reader, NULL);
23890 sig_type->per_cu.tu_read = 1;
23891 }
23892
23893 /* Decode simple location descriptions.
23894 Given a pointer to a dwarf block that defines a location, compute
23895 the location and return the value.
23896
23897 NOTE drow/2003-11-18: This function is called in two situations
23898 now: for the address of static or global variables (partial symbols
23899 only) and for offsets into structures which are expected to be
23900 (more or less) constant. The partial symbol case should go away,
23901 and only the constant case should remain. That will let this
23902 function complain more accurately. A few special modes are allowed
23903 without complaint for global variables (for instance, global
23904 register values and thread-local values).
23905
23906 A location description containing no operations indicates that the
23907 object is optimized out. The return value is 0 for that case.
23908 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23909 callers will only want a very basic result and this can become a
23910 complaint.
23911
23912 Note that stack[0] is unused except as a default error return. */
23913
23914 static CORE_ADDR
23915 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23916 {
23917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23918 size_t i;
23919 size_t size = blk->size;
23920 const gdb_byte *data = blk->data;
23921 CORE_ADDR stack[64];
23922 int stacki;
23923 unsigned int bytes_read, unsnd;
23924 gdb_byte op;
23925
23926 i = 0;
23927 stacki = 0;
23928 stack[stacki] = 0;
23929 stack[++stacki] = 0;
23930
23931 while (i < size)
23932 {
23933 op = data[i++];
23934 switch (op)
23935 {
23936 case DW_OP_lit0:
23937 case DW_OP_lit1:
23938 case DW_OP_lit2:
23939 case DW_OP_lit3:
23940 case DW_OP_lit4:
23941 case DW_OP_lit5:
23942 case DW_OP_lit6:
23943 case DW_OP_lit7:
23944 case DW_OP_lit8:
23945 case DW_OP_lit9:
23946 case DW_OP_lit10:
23947 case DW_OP_lit11:
23948 case DW_OP_lit12:
23949 case DW_OP_lit13:
23950 case DW_OP_lit14:
23951 case DW_OP_lit15:
23952 case DW_OP_lit16:
23953 case DW_OP_lit17:
23954 case DW_OP_lit18:
23955 case DW_OP_lit19:
23956 case DW_OP_lit20:
23957 case DW_OP_lit21:
23958 case DW_OP_lit22:
23959 case DW_OP_lit23:
23960 case DW_OP_lit24:
23961 case DW_OP_lit25:
23962 case DW_OP_lit26:
23963 case DW_OP_lit27:
23964 case DW_OP_lit28:
23965 case DW_OP_lit29:
23966 case DW_OP_lit30:
23967 case DW_OP_lit31:
23968 stack[++stacki] = op - DW_OP_lit0;
23969 break;
23970
23971 case DW_OP_reg0:
23972 case DW_OP_reg1:
23973 case DW_OP_reg2:
23974 case DW_OP_reg3:
23975 case DW_OP_reg4:
23976 case DW_OP_reg5:
23977 case DW_OP_reg6:
23978 case DW_OP_reg7:
23979 case DW_OP_reg8:
23980 case DW_OP_reg9:
23981 case DW_OP_reg10:
23982 case DW_OP_reg11:
23983 case DW_OP_reg12:
23984 case DW_OP_reg13:
23985 case DW_OP_reg14:
23986 case DW_OP_reg15:
23987 case DW_OP_reg16:
23988 case DW_OP_reg17:
23989 case DW_OP_reg18:
23990 case DW_OP_reg19:
23991 case DW_OP_reg20:
23992 case DW_OP_reg21:
23993 case DW_OP_reg22:
23994 case DW_OP_reg23:
23995 case DW_OP_reg24:
23996 case DW_OP_reg25:
23997 case DW_OP_reg26:
23998 case DW_OP_reg27:
23999 case DW_OP_reg28:
24000 case DW_OP_reg29:
24001 case DW_OP_reg30:
24002 case DW_OP_reg31:
24003 stack[++stacki] = op - DW_OP_reg0;
24004 if (i < size)
24005 dwarf2_complex_location_expr_complaint ();
24006 break;
24007
24008 case DW_OP_regx:
24009 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
24010 i += bytes_read;
24011 stack[++stacki] = unsnd;
24012 if (i < size)
24013 dwarf2_complex_location_expr_complaint ();
24014 break;
24015
24016 case DW_OP_addr:
24017 stack[++stacki] = read_address (objfile->obfd, &data[i],
24018 cu, &bytes_read);
24019 i += bytes_read;
24020 break;
24021
24022 case DW_OP_const1u:
24023 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24024 i += 1;
24025 break;
24026
24027 case DW_OP_const1s:
24028 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24029 i += 1;
24030 break;
24031
24032 case DW_OP_const2u:
24033 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24034 i += 2;
24035 break;
24036
24037 case DW_OP_const2s:
24038 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24039 i += 2;
24040 break;
24041
24042 case DW_OP_const4u:
24043 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24044 i += 4;
24045 break;
24046
24047 case DW_OP_const4s:
24048 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24049 i += 4;
24050 break;
24051
24052 case DW_OP_const8u:
24053 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24054 i += 8;
24055 break;
24056
24057 case DW_OP_constu:
24058 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24059 &bytes_read);
24060 i += bytes_read;
24061 break;
24062
24063 case DW_OP_consts:
24064 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24065 i += bytes_read;
24066 break;
24067
24068 case DW_OP_dup:
24069 stack[stacki + 1] = stack[stacki];
24070 stacki++;
24071 break;
24072
24073 case DW_OP_plus:
24074 stack[stacki - 1] += stack[stacki];
24075 stacki--;
24076 break;
24077
24078 case DW_OP_plus_uconst:
24079 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24080 &bytes_read);
24081 i += bytes_read;
24082 break;
24083
24084 case DW_OP_minus:
24085 stack[stacki - 1] -= stack[stacki];
24086 stacki--;
24087 break;
24088
24089 case DW_OP_deref:
24090 /* If we're not the last op, then we definitely can't encode
24091 this using GDB's address_class enum. This is valid for partial
24092 global symbols, although the variable's address will be bogus
24093 in the psymtab. */
24094 if (i < size)
24095 dwarf2_complex_location_expr_complaint ();
24096 break;
24097
24098 case DW_OP_GNU_push_tls_address:
24099 case DW_OP_form_tls_address:
24100 /* The top of the stack has the offset from the beginning
24101 of the thread control block at which the variable is located. */
24102 /* Nothing should follow this operator, so the top of stack would
24103 be returned. */
24104 /* This is valid for partial global symbols, but the variable's
24105 address will be bogus in the psymtab. Make it always at least
24106 non-zero to not look as a variable garbage collected by linker
24107 which have DW_OP_addr 0. */
24108 if (i < size)
24109 dwarf2_complex_location_expr_complaint ();
24110 stack[stacki]++;
24111 break;
24112
24113 case DW_OP_GNU_uninit:
24114 break;
24115
24116 case DW_OP_addrx:
24117 case DW_OP_GNU_addr_index:
24118 case DW_OP_GNU_const_index:
24119 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24120 &bytes_read);
24121 i += bytes_read;
24122 break;
24123
24124 default:
24125 {
24126 const char *name = get_DW_OP_name (op);
24127
24128 if (name)
24129 complaint (_("unsupported stack op: '%s'"),
24130 name);
24131 else
24132 complaint (_("unsupported stack op: '%02x'"),
24133 op);
24134 }
24135
24136 return (stack[stacki]);
24137 }
24138
24139 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24140 outside of the allocated space. Also enforce minimum>0. */
24141 if (stacki >= ARRAY_SIZE (stack) - 1)
24142 {
24143 complaint (_("location description stack overflow"));
24144 return 0;
24145 }
24146
24147 if (stacki <= 0)
24148 {
24149 complaint (_("location description stack underflow"));
24150 return 0;
24151 }
24152 }
24153 return (stack[stacki]);
24154 }
24155
24156 /* memory allocation interface */
24157
24158 static struct dwarf_block *
24159 dwarf_alloc_block (struct dwarf2_cu *cu)
24160 {
24161 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24162 }
24163
24164 static struct die_info *
24165 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24166 {
24167 struct die_info *die;
24168 size_t size = sizeof (struct die_info);
24169
24170 if (num_attrs > 1)
24171 size += (num_attrs - 1) * sizeof (struct attribute);
24172
24173 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24174 memset (die, 0, sizeof (struct die_info));
24175 return (die);
24176 }
24177
24178 \f
24179 /* Macro support. */
24180
24181 /* Return file name relative to the compilation directory of file number I in
24182 *LH's file name table. The result is allocated using xmalloc; the caller is
24183 responsible for freeing it. */
24184
24185 static char *
24186 file_file_name (int file, struct line_header *lh)
24187 {
24188 /* Is the file number a valid index into the line header's file name
24189 table? Remember that file numbers start with one, not zero. */
24190 if (1 <= file && file <= lh->file_names.size ())
24191 {
24192 const file_entry &fe = lh->file_names[file - 1];
24193
24194 if (!IS_ABSOLUTE_PATH (fe.name))
24195 {
24196 const char *dir = fe.include_dir (lh);
24197 if (dir != NULL)
24198 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24199 }
24200 return xstrdup (fe.name);
24201 }
24202 else
24203 {
24204 /* The compiler produced a bogus file number. We can at least
24205 record the macro definitions made in the file, even if we
24206 won't be able to find the file by name. */
24207 char fake_name[80];
24208
24209 xsnprintf (fake_name, sizeof (fake_name),
24210 "<bad macro file number %d>", file);
24211
24212 complaint (_("bad file number in macro information (%d)"),
24213 file);
24214
24215 return xstrdup (fake_name);
24216 }
24217 }
24218
24219 /* Return the full name of file number I in *LH's file name table.
24220 Use COMP_DIR as the name of the current directory of the
24221 compilation. The result is allocated using xmalloc; the caller is
24222 responsible for freeing it. */
24223 static char *
24224 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24225 {
24226 /* Is the file number a valid index into the line header's file name
24227 table? Remember that file numbers start with one, not zero. */
24228 if (1 <= file && file <= lh->file_names.size ())
24229 {
24230 char *relative = file_file_name (file, lh);
24231
24232 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24233 return relative;
24234 return reconcat (relative, comp_dir, SLASH_STRING,
24235 relative, (char *) NULL);
24236 }
24237 else
24238 return file_file_name (file, lh);
24239 }
24240
24241
24242 static struct macro_source_file *
24243 macro_start_file (struct dwarf2_cu *cu,
24244 int file, int line,
24245 struct macro_source_file *current_file,
24246 struct line_header *lh)
24247 {
24248 /* File name relative to the compilation directory of this source file. */
24249 char *file_name = file_file_name (file, lh);
24250
24251 if (! current_file)
24252 {
24253 /* Note: We don't create a macro table for this compilation unit
24254 at all until we actually get a filename. */
24255 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24256
24257 /* If we have no current file, then this must be the start_file
24258 directive for the compilation unit's main source file. */
24259 current_file = macro_set_main (macro_table, file_name);
24260 macro_define_special (macro_table);
24261 }
24262 else
24263 current_file = macro_include (current_file, line, file_name);
24264
24265 xfree (file_name);
24266
24267 return current_file;
24268 }
24269
24270 static const char *
24271 consume_improper_spaces (const char *p, const char *body)
24272 {
24273 if (*p == ' ')
24274 {
24275 complaint (_("macro definition contains spaces "
24276 "in formal argument list:\n`%s'"),
24277 body);
24278
24279 while (*p == ' ')
24280 p++;
24281 }
24282
24283 return p;
24284 }
24285
24286
24287 static void
24288 parse_macro_definition (struct macro_source_file *file, int line,
24289 const char *body)
24290 {
24291 const char *p;
24292
24293 /* The body string takes one of two forms. For object-like macro
24294 definitions, it should be:
24295
24296 <macro name> " " <definition>
24297
24298 For function-like macro definitions, it should be:
24299
24300 <macro name> "() " <definition>
24301 or
24302 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24303
24304 Spaces may appear only where explicitly indicated, and in the
24305 <definition>.
24306
24307 The Dwarf 2 spec says that an object-like macro's name is always
24308 followed by a space, but versions of GCC around March 2002 omit
24309 the space when the macro's definition is the empty string.
24310
24311 The Dwarf 2 spec says that there should be no spaces between the
24312 formal arguments in a function-like macro's formal argument list,
24313 but versions of GCC around March 2002 include spaces after the
24314 commas. */
24315
24316
24317 /* Find the extent of the macro name. The macro name is terminated
24318 by either a space or null character (for an object-like macro) or
24319 an opening paren (for a function-like macro). */
24320 for (p = body; *p; p++)
24321 if (*p == ' ' || *p == '(')
24322 break;
24323
24324 if (*p == ' ' || *p == '\0')
24325 {
24326 /* It's an object-like macro. */
24327 int name_len = p - body;
24328 char *name = savestring (body, name_len);
24329 const char *replacement;
24330
24331 if (*p == ' ')
24332 replacement = body + name_len + 1;
24333 else
24334 {
24335 dwarf2_macro_malformed_definition_complaint (body);
24336 replacement = body + name_len;
24337 }
24338
24339 macro_define_object (file, line, name, replacement);
24340
24341 xfree (name);
24342 }
24343 else if (*p == '(')
24344 {
24345 /* It's a function-like macro. */
24346 char *name = savestring (body, p - body);
24347 int argc = 0;
24348 int argv_size = 1;
24349 char **argv = XNEWVEC (char *, argv_size);
24350
24351 p++;
24352
24353 p = consume_improper_spaces (p, body);
24354
24355 /* Parse the formal argument list. */
24356 while (*p && *p != ')')
24357 {
24358 /* Find the extent of the current argument name. */
24359 const char *arg_start = p;
24360
24361 while (*p && *p != ',' && *p != ')' && *p != ' ')
24362 p++;
24363
24364 if (! *p || p == arg_start)
24365 dwarf2_macro_malformed_definition_complaint (body);
24366 else
24367 {
24368 /* Make sure argv has room for the new argument. */
24369 if (argc >= argv_size)
24370 {
24371 argv_size *= 2;
24372 argv = XRESIZEVEC (char *, argv, argv_size);
24373 }
24374
24375 argv[argc++] = savestring (arg_start, p - arg_start);
24376 }
24377
24378 p = consume_improper_spaces (p, body);
24379
24380 /* Consume the comma, if present. */
24381 if (*p == ',')
24382 {
24383 p++;
24384
24385 p = consume_improper_spaces (p, body);
24386 }
24387 }
24388
24389 if (*p == ')')
24390 {
24391 p++;
24392
24393 if (*p == ' ')
24394 /* Perfectly formed definition, no complaints. */
24395 macro_define_function (file, line, name,
24396 argc, (const char **) argv,
24397 p + 1);
24398 else if (*p == '\0')
24399 {
24400 /* Complain, but do define it. */
24401 dwarf2_macro_malformed_definition_complaint (body);
24402 macro_define_function (file, line, name,
24403 argc, (const char **) argv,
24404 p);
24405 }
24406 else
24407 /* Just complain. */
24408 dwarf2_macro_malformed_definition_complaint (body);
24409 }
24410 else
24411 /* Just complain. */
24412 dwarf2_macro_malformed_definition_complaint (body);
24413
24414 xfree (name);
24415 {
24416 int i;
24417
24418 for (i = 0; i < argc; i++)
24419 xfree (argv[i]);
24420 }
24421 xfree (argv);
24422 }
24423 else
24424 dwarf2_macro_malformed_definition_complaint (body);
24425 }
24426
24427 /* Skip some bytes from BYTES according to the form given in FORM.
24428 Returns the new pointer. */
24429
24430 static const gdb_byte *
24431 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24432 enum dwarf_form form,
24433 unsigned int offset_size,
24434 struct dwarf2_section_info *section)
24435 {
24436 unsigned int bytes_read;
24437
24438 switch (form)
24439 {
24440 case DW_FORM_data1:
24441 case DW_FORM_flag:
24442 ++bytes;
24443 break;
24444
24445 case DW_FORM_data2:
24446 bytes += 2;
24447 break;
24448
24449 case DW_FORM_data4:
24450 bytes += 4;
24451 break;
24452
24453 case DW_FORM_data8:
24454 bytes += 8;
24455 break;
24456
24457 case DW_FORM_data16:
24458 bytes += 16;
24459 break;
24460
24461 case DW_FORM_string:
24462 read_direct_string (abfd, bytes, &bytes_read);
24463 bytes += bytes_read;
24464 break;
24465
24466 case DW_FORM_sec_offset:
24467 case DW_FORM_strp:
24468 case DW_FORM_GNU_strp_alt:
24469 bytes += offset_size;
24470 break;
24471
24472 case DW_FORM_block:
24473 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24474 bytes += bytes_read;
24475 break;
24476
24477 case DW_FORM_block1:
24478 bytes += 1 + read_1_byte (abfd, bytes);
24479 break;
24480 case DW_FORM_block2:
24481 bytes += 2 + read_2_bytes (abfd, bytes);
24482 break;
24483 case DW_FORM_block4:
24484 bytes += 4 + read_4_bytes (abfd, bytes);
24485 break;
24486
24487 case DW_FORM_addrx:
24488 case DW_FORM_sdata:
24489 case DW_FORM_strx:
24490 case DW_FORM_udata:
24491 case DW_FORM_GNU_addr_index:
24492 case DW_FORM_GNU_str_index:
24493 bytes = gdb_skip_leb128 (bytes, buffer_end);
24494 if (bytes == NULL)
24495 {
24496 dwarf2_section_buffer_overflow_complaint (section);
24497 return NULL;
24498 }
24499 break;
24500
24501 case DW_FORM_implicit_const:
24502 break;
24503
24504 default:
24505 {
24506 complaint (_("invalid form 0x%x in `%s'"),
24507 form, get_section_name (section));
24508 return NULL;
24509 }
24510 }
24511
24512 return bytes;
24513 }
24514
24515 /* A helper for dwarf_decode_macros that handles skipping an unknown
24516 opcode. Returns an updated pointer to the macro data buffer; or,
24517 on error, issues a complaint and returns NULL. */
24518
24519 static const gdb_byte *
24520 skip_unknown_opcode (unsigned int opcode,
24521 const gdb_byte **opcode_definitions,
24522 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24523 bfd *abfd,
24524 unsigned int offset_size,
24525 struct dwarf2_section_info *section)
24526 {
24527 unsigned int bytes_read, i;
24528 unsigned long arg;
24529 const gdb_byte *defn;
24530
24531 if (opcode_definitions[opcode] == NULL)
24532 {
24533 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24534 opcode);
24535 return NULL;
24536 }
24537
24538 defn = opcode_definitions[opcode];
24539 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24540 defn += bytes_read;
24541
24542 for (i = 0; i < arg; ++i)
24543 {
24544 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24545 (enum dwarf_form) defn[i], offset_size,
24546 section);
24547 if (mac_ptr == NULL)
24548 {
24549 /* skip_form_bytes already issued the complaint. */
24550 return NULL;
24551 }
24552 }
24553
24554 return mac_ptr;
24555 }
24556
24557 /* A helper function which parses the header of a macro section.
24558 If the macro section is the extended (for now called "GNU") type,
24559 then this updates *OFFSET_SIZE. Returns a pointer to just after
24560 the header, or issues a complaint and returns NULL on error. */
24561
24562 static const gdb_byte *
24563 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24564 bfd *abfd,
24565 const gdb_byte *mac_ptr,
24566 unsigned int *offset_size,
24567 int section_is_gnu)
24568 {
24569 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24570
24571 if (section_is_gnu)
24572 {
24573 unsigned int version, flags;
24574
24575 version = read_2_bytes (abfd, mac_ptr);
24576 if (version != 4 && version != 5)
24577 {
24578 complaint (_("unrecognized version `%d' in .debug_macro section"),
24579 version);
24580 return NULL;
24581 }
24582 mac_ptr += 2;
24583
24584 flags = read_1_byte (abfd, mac_ptr);
24585 ++mac_ptr;
24586 *offset_size = (flags & 1) ? 8 : 4;
24587
24588 if ((flags & 2) != 0)
24589 /* We don't need the line table offset. */
24590 mac_ptr += *offset_size;
24591
24592 /* Vendor opcode descriptions. */
24593 if ((flags & 4) != 0)
24594 {
24595 unsigned int i, count;
24596
24597 count = read_1_byte (abfd, mac_ptr);
24598 ++mac_ptr;
24599 for (i = 0; i < count; ++i)
24600 {
24601 unsigned int opcode, bytes_read;
24602 unsigned long arg;
24603
24604 opcode = read_1_byte (abfd, mac_ptr);
24605 ++mac_ptr;
24606 opcode_definitions[opcode] = mac_ptr;
24607 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24608 mac_ptr += bytes_read;
24609 mac_ptr += arg;
24610 }
24611 }
24612 }
24613
24614 return mac_ptr;
24615 }
24616
24617 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24618 including DW_MACRO_import. */
24619
24620 static void
24621 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24622 bfd *abfd,
24623 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24624 struct macro_source_file *current_file,
24625 struct line_header *lh,
24626 struct dwarf2_section_info *section,
24627 int section_is_gnu, int section_is_dwz,
24628 unsigned int offset_size,
24629 htab_t include_hash)
24630 {
24631 struct dwarf2_per_objfile *dwarf2_per_objfile
24632 = cu->per_cu->dwarf2_per_objfile;
24633 struct objfile *objfile = dwarf2_per_objfile->objfile;
24634 enum dwarf_macro_record_type macinfo_type;
24635 int at_commandline;
24636 const gdb_byte *opcode_definitions[256];
24637
24638 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24639 &offset_size, section_is_gnu);
24640 if (mac_ptr == NULL)
24641 {
24642 /* We already issued a complaint. */
24643 return;
24644 }
24645
24646 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24647 GDB is still reading the definitions from command line. First
24648 DW_MACINFO_start_file will need to be ignored as it was already executed
24649 to create CURRENT_FILE for the main source holding also the command line
24650 definitions. On first met DW_MACINFO_start_file this flag is reset to
24651 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24652
24653 at_commandline = 1;
24654
24655 do
24656 {
24657 /* Do we at least have room for a macinfo type byte? */
24658 if (mac_ptr >= mac_end)
24659 {
24660 dwarf2_section_buffer_overflow_complaint (section);
24661 break;
24662 }
24663
24664 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24665 mac_ptr++;
24666
24667 /* Note that we rely on the fact that the corresponding GNU and
24668 DWARF constants are the same. */
24669 DIAGNOSTIC_PUSH
24670 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24671 switch (macinfo_type)
24672 {
24673 /* A zero macinfo type indicates the end of the macro
24674 information. */
24675 case 0:
24676 break;
24677
24678 case DW_MACRO_define:
24679 case DW_MACRO_undef:
24680 case DW_MACRO_define_strp:
24681 case DW_MACRO_undef_strp:
24682 case DW_MACRO_define_sup:
24683 case DW_MACRO_undef_sup:
24684 {
24685 unsigned int bytes_read;
24686 int line;
24687 const char *body;
24688 int is_define;
24689
24690 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24691 mac_ptr += bytes_read;
24692
24693 if (macinfo_type == DW_MACRO_define
24694 || macinfo_type == DW_MACRO_undef)
24695 {
24696 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24697 mac_ptr += bytes_read;
24698 }
24699 else
24700 {
24701 LONGEST str_offset;
24702
24703 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24704 mac_ptr += offset_size;
24705
24706 if (macinfo_type == DW_MACRO_define_sup
24707 || macinfo_type == DW_MACRO_undef_sup
24708 || section_is_dwz)
24709 {
24710 struct dwz_file *dwz
24711 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24712
24713 body = read_indirect_string_from_dwz (objfile,
24714 dwz, str_offset);
24715 }
24716 else
24717 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24718 abfd, str_offset);
24719 }
24720
24721 is_define = (macinfo_type == DW_MACRO_define
24722 || macinfo_type == DW_MACRO_define_strp
24723 || macinfo_type == DW_MACRO_define_sup);
24724 if (! current_file)
24725 {
24726 /* DWARF violation as no main source is present. */
24727 complaint (_("debug info with no main source gives macro %s "
24728 "on line %d: %s"),
24729 is_define ? _("definition") : _("undefinition"),
24730 line, body);
24731 break;
24732 }
24733 if ((line == 0 && !at_commandline)
24734 || (line != 0 && at_commandline))
24735 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24736 at_commandline ? _("command-line") : _("in-file"),
24737 is_define ? _("definition") : _("undefinition"),
24738 line == 0 ? _("zero") : _("non-zero"), line, body);
24739
24740 if (body == NULL)
24741 {
24742 /* Fedora's rpm-build's "debugedit" binary
24743 corrupted .debug_macro sections.
24744
24745 For more info, see
24746 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24747 complaint (_("debug info gives %s invalid macro %s "
24748 "without body (corrupted?) at line %d "
24749 "on file %s"),
24750 at_commandline ? _("command-line") : _("in-file"),
24751 is_define ? _("definition") : _("undefinition"),
24752 line, current_file->filename);
24753 }
24754 else if (is_define)
24755 parse_macro_definition (current_file, line, body);
24756 else
24757 {
24758 gdb_assert (macinfo_type == DW_MACRO_undef
24759 || macinfo_type == DW_MACRO_undef_strp
24760 || macinfo_type == DW_MACRO_undef_sup);
24761 macro_undef (current_file, line, body);
24762 }
24763 }
24764 break;
24765
24766 case DW_MACRO_start_file:
24767 {
24768 unsigned int bytes_read;
24769 int line, file;
24770
24771 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24772 mac_ptr += bytes_read;
24773 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24774 mac_ptr += bytes_read;
24775
24776 if ((line == 0 && !at_commandline)
24777 || (line != 0 && at_commandline))
24778 complaint (_("debug info gives source %d included "
24779 "from %s at %s line %d"),
24780 file, at_commandline ? _("command-line") : _("file"),
24781 line == 0 ? _("zero") : _("non-zero"), line);
24782
24783 if (at_commandline)
24784 {
24785 /* This DW_MACRO_start_file was executed in the
24786 pass one. */
24787 at_commandline = 0;
24788 }
24789 else
24790 current_file = macro_start_file (cu, file, line, current_file,
24791 lh);
24792 }
24793 break;
24794
24795 case DW_MACRO_end_file:
24796 if (! current_file)
24797 complaint (_("macro debug info has an unmatched "
24798 "`close_file' directive"));
24799 else
24800 {
24801 current_file = current_file->included_by;
24802 if (! current_file)
24803 {
24804 enum dwarf_macro_record_type next_type;
24805
24806 /* GCC circa March 2002 doesn't produce the zero
24807 type byte marking the end of the compilation
24808 unit. Complain if it's not there, but exit no
24809 matter what. */
24810
24811 /* Do we at least have room for a macinfo type byte? */
24812 if (mac_ptr >= mac_end)
24813 {
24814 dwarf2_section_buffer_overflow_complaint (section);
24815 return;
24816 }
24817
24818 /* We don't increment mac_ptr here, so this is just
24819 a look-ahead. */
24820 next_type
24821 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24822 mac_ptr);
24823 if (next_type != 0)
24824 complaint (_("no terminating 0-type entry for "
24825 "macros in `.debug_macinfo' section"));
24826
24827 return;
24828 }
24829 }
24830 break;
24831
24832 case DW_MACRO_import:
24833 case DW_MACRO_import_sup:
24834 {
24835 LONGEST offset;
24836 void **slot;
24837 bfd *include_bfd = abfd;
24838 struct dwarf2_section_info *include_section = section;
24839 const gdb_byte *include_mac_end = mac_end;
24840 int is_dwz = section_is_dwz;
24841 const gdb_byte *new_mac_ptr;
24842
24843 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24844 mac_ptr += offset_size;
24845
24846 if (macinfo_type == DW_MACRO_import_sup)
24847 {
24848 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24849
24850 dwarf2_read_section (objfile, &dwz->macro);
24851
24852 include_section = &dwz->macro;
24853 include_bfd = get_section_bfd_owner (include_section);
24854 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24855 is_dwz = 1;
24856 }
24857
24858 new_mac_ptr = include_section->buffer + offset;
24859 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24860
24861 if (*slot != NULL)
24862 {
24863 /* This has actually happened; see
24864 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24865 complaint (_("recursive DW_MACRO_import in "
24866 ".debug_macro section"));
24867 }
24868 else
24869 {
24870 *slot = (void *) new_mac_ptr;
24871
24872 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24873 include_mac_end, current_file, lh,
24874 section, section_is_gnu, is_dwz,
24875 offset_size, include_hash);
24876
24877 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24878 }
24879 }
24880 break;
24881
24882 case DW_MACINFO_vendor_ext:
24883 if (!section_is_gnu)
24884 {
24885 unsigned int bytes_read;
24886
24887 /* This reads the constant, but since we don't recognize
24888 any vendor extensions, we ignore it. */
24889 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24890 mac_ptr += bytes_read;
24891 read_direct_string (abfd, mac_ptr, &bytes_read);
24892 mac_ptr += bytes_read;
24893
24894 /* We don't recognize any vendor extensions. */
24895 break;
24896 }
24897 /* FALLTHROUGH */
24898
24899 default:
24900 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24901 mac_ptr, mac_end, abfd, offset_size,
24902 section);
24903 if (mac_ptr == NULL)
24904 return;
24905 break;
24906 }
24907 DIAGNOSTIC_POP
24908 } while (macinfo_type != 0);
24909 }
24910
24911 static void
24912 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24913 int section_is_gnu)
24914 {
24915 struct dwarf2_per_objfile *dwarf2_per_objfile
24916 = cu->per_cu->dwarf2_per_objfile;
24917 struct objfile *objfile = dwarf2_per_objfile->objfile;
24918 struct line_header *lh = cu->line_header;
24919 bfd *abfd;
24920 const gdb_byte *mac_ptr, *mac_end;
24921 struct macro_source_file *current_file = 0;
24922 enum dwarf_macro_record_type macinfo_type;
24923 unsigned int offset_size = cu->header.offset_size;
24924 const gdb_byte *opcode_definitions[256];
24925 void **slot;
24926 struct dwarf2_section_info *section;
24927 const char *section_name;
24928
24929 if (cu->dwo_unit != NULL)
24930 {
24931 if (section_is_gnu)
24932 {
24933 section = &cu->dwo_unit->dwo_file->sections.macro;
24934 section_name = ".debug_macro.dwo";
24935 }
24936 else
24937 {
24938 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24939 section_name = ".debug_macinfo.dwo";
24940 }
24941 }
24942 else
24943 {
24944 if (section_is_gnu)
24945 {
24946 section = &dwarf2_per_objfile->macro;
24947 section_name = ".debug_macro";
24948 }
24949 else
24950 {
24951 section = &dwarf2_per_objfile->macinfo;
24952 section_name = ".debug_macinfo";
24953 }
24954 }
24955
24956 dwarf2_read_section (objfile, section);
24957 if (section->buffer == NULL)
24958 {
24959 complaint (_("missing %s section"), section_name);
24960 return;
24961 }
24962 abfd = get_section_bfd_owner (section);
24963
24964 /* First pass: Find the name of the base filename.
24965 This filename is needed in order to process all macros whose definition
24966 (or undefinition) comes from the command line. These macros are defined
24967 before the first DW_MACINFO_start_file entry, and yet still need to be
24968 associated to the base file.
24969
24970 To determine the base file name, we scan the macro definitions until we
24971 reach the first DW_MACINFO_start_file entry. We then initialize
24972 CURRENT_FILE accordingly so that any macro definition found before the
24973 first DW_MACINFO_start_file can still be associated to the base file. */
24974
24975 mac_ptr = section->buffer + offset;
24976 mac_end = section->buffer + section->size;
24977
24978 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24979 &offset_size, section_is_gnu);
24980 if (mac_ptr == NULL)
24981 {
24982 /* We already issued a complaint. */
24983 return;
24984 }
24985
24986 do
24987 {
24988 /* Do we at least have room for a macinfo type byte? */
24989 if (mac_ptr >= mac_end)
24990 {
24991 /* Complaint is printed during the second pass as GDB will probably
24992 stop the first pass earlier upon finding
24993 DW_MACINFO_start_file. */
24994 break;
24995 }
24996
24997 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24998 mac_ptr++;
24999
25000 /* Note that we rely on the fact that the corresponding GNU and
25001 DWARF constants are the same. */
25002 DIAGNOSTIC_PUSH
25003 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
25004 switch (macinfo_type)
25005 {
25006 /* A zero macinfo type indicates the end of the macro
25007 information. */
25008 case 0:
25009 break;
25010
25011 case DW_MACRO_define:
25012 case DW_MACRO_undef:
25013 /* Only skip the data by MAC_PTR. */
25014 {
25015 unsigned int bytes_read;
25016
25017 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25018 mac_ptr += bytes_read;
25019 read_direct_string (abfd, mac_ptr, &bytes_read);
25020 mac_ptr += bytes_read;
25021 }
25022 break;
25023
25024 case DW_MACRO_start_file:
25025 {
25026 unsigned int bytes_read;
25027 int line, file;
25028
25029 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25030 mac_ptr += bytes_read;
25031 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25032 mac_ptr += bytes_read;
25033
25034 current_file = macro_start_file (cu, file, line, current_file, lh);
25035 }
25036 break;
25037
25038 case DW_MACRO_end_file:
25039 /* No data to skip by MAC_PTR. */
25040 break;
25041
25042 case DW_MACRO_define_strp:
25043 case DW_MACRO_undef_strp:
25044 case DW_MACRO_define_sup:
25045 case DW_MACRO_undef_sup:
25046 {
25047 unsigned int bytes_read;
25048
25049 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25050 mac_ptr += bytes_read;
25051 mac_ptr += offset_size;
25052 }
25053 break;
25054
25055 case DW_MACRO_import:
25056 case DW_MACRO_import_sup:
25057 /* Note that, according to the spec, a transparent include
25058 chain cannot call DW_MACRO_start_file. So, we can just
25059 skip this opcode. */
25060 mac_ptr += offset_size;
25061 break;
25062
25063 case DW_MACINFO_vendor_ext:
25064 /* Only skip the data by MAC_PTR. */
25065 if (!section_is_gnu)
25066 {
25067 unsigned int bytes_read;
25068
25069 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25070 mac_ptr += bytes_read;
25071 read_direct_string (abfd, mac_ptr, &bytes_read);
25072 mac_ptr += bytes_read;
25073 }
25074 /* FALLTHROUGH */
25075
25076 default:
25077 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25078 mac_ptr, mac_end, abfd, offset_size,
25079 section);
25080 if (mac_ptr == NULL)
25081 return;
25082 break;
25083 }
25084 DIAGNOSTIC_POP
25085 } while (macinfo_type != 0 && current_file == NULL);
25086
25087 /* Second pass: Process all entries.
25088
25089 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25090 command-line macro definitions/undefinitions. This flag is unset when we
25091 reach the first DW_MACINFO_start_file entry. */
25092
25093 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25094 htab_eq_pointer,
25095 NULL, xcalloc, xfree));
25096 mac_ptr = section->buffer + offset;
25097 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25098 *slot = (void *) mac_ptr;
25099 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25100 current_file, lh, section,
25101 section_is_gnu, 0, offset_size,
25102 include_hash.get ());
25103 }
25104
25105 /* Check if the attribute's form is a DW_FORM_block*
25106 if so return true else false. */
25107
25108 static int
25109 attr_form_is_block (const struct attribute *attr)
25110 {
25111 return (attr == NULL ? 0 :
25112 attr->form == DW_FORM_block1
25113 || attr->form == DW_FORM_block2
25114 || attr->form == DW_FORM_block4
25115 || attr->form == DW_FORM_block
25116 || attr->form == DW_FORM_exprloc);
25117 }
25118
25119 /* Return non-zero if ATTR's value is a section offset --- classes
25120 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25121 You may use DW_UNSND (attr) to retrieve such offsets.
25122
25123 Section 7.5.4, "Attribute Encodings", explains that no attribute
25124 may have a value that belongs to more than one of these classes; it
25125 would be ambiguous if we did, because we use the same forms for all
25126 of them. */
25127
25128 static int
25129 attr_form_is_section_offset (const struct attribute *attr)
25130 {
25131 return (attr->form == DW_FORM_data4
25132 || attr->form == DW_FORM_data8
25133 || attr->form == DW_FORM_sec_offset);
25134 }
25135
25136 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25137 zero otherwise. When this function returns true, you can apply
25138 dwarf2_get_attr_constant_value to it.
25139
25140 However, note that for some attributes you must check
25141 attr_form_is_section_offset before using this test. DW_FORM_data4
25142 and DW_FORM_data8 are members of both the constant class, and of
25143 the classes that contain offsets into other debug sections
25144 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25145 that, if an attribute's can be either a constant or one of the
25146 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25147 taken as section offsets, not constants.
25148
25149 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25150 cannot handle that. */
25151
25152 static int
25153 attr_form_is_constant (const struct attribute *attr)
25154 {
25155 switch (attr->form)
25156 {
25157 case DW_FORM_sdata:
25158 case DW_FORM_udata:
25159 case DW_FORM_data1:
25160 case DW_FORM_data2:
25161 case DW_FORM_data4:
25162 case DW_FORM_data8:
25163 case DW_FORM_implicit_const:
25164 return 1;
25165 default:
25166 return 0;
25167 }
25168 }
25169
25170
25171 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25172 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25173
25174 static int
25175 attr_form_is_ref (const struct attribute *attr)
25176 {
25177 switch (attr->form)
25178 {
25179 case DW_FORM_ref_addr:
25180 case DW_FORM_ref1:
25181 case DW_FORM_ref2:
25182 case DW_FORM_ref4:
25183 case DW_FORM_ref8:
25184 case DW_FORM_ref_udata:
25185 case DW_FORM_GNU_ref_alt:
25186 return 1;
25187 default:
25188 return 0;
25189 }
25190 }
25191
25192 /* Return the .debug_loc section to use for CU.
25193 For DWO files use .debug_loc.dwo. */
25194
25195 static struct dwarf2_section_info *
25196 cu_debug_loc_section (struct dwarf2_cu *cu)
25197 {
25198 struct dwarf2_per_objfile *dwarf2_per_objfile
25199 = cu->per_cu->dwarf2_per_objfile;
25200
25201 if (cu->dwo_unit)
25202 {
25203 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25204
25205 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25206 }
25207 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25208 : &dwarf2_per_objfile->loc);
25209 }
25210
25211 /* A helper function that fills in a dwarf2_loclist_baton. */
25212
25213 static void
25214 fill_in_loclist_baton (struct dwarf2_cu *cu,
25215 struct dwarf2_loclist_baton *baton,
25216 const struct attribute *attr)
25217 {
25218 struct dwarf2_per_objfile *dwarf2_per_objfile
25219 = cu->per_cu->dwarf2_per_objfile;
25220 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25221
25222 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25223
25224 baton->per_cu = cu->per_cu;
25225 gdb_assert (baton->per_cu);
25226 /* We don't know how long the location list is, but make sure we
25227 don't run off the edge of the section. */
25228 baton->size = section->size - DW_UNSND (attr);
25229 baton->data = section->buffer + DW_UNSND (attr);
25230 baton->base_address = cu->base_address;
25231 baton->from_dwo = cu->dwo_unit != NULL;
25232 }
25233
25234 static void
25235 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25236 struct dwarf2_cu *cu, int is_block)
25237 {
25238 struct dwarf2_per_objfile *dwarf2_per_objfile
25239 = cu->per_cu->dwarf2_per_objfile;
25240 struct objfile *objfile = dwarf2_per_objfile->objfile;
25241 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25242
25243 if (attr_form_is_section_offset (attr)
25244 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25245 the section. If so, fall through to the complaint in the
25246 other branch. */
25247 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25248 {
25249 struct dwarf2_loclist_baton *baton;
25250
25251 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25252
25253 fill_in_loclist_baton (cu, baton, attr);
25254
25255 if (cu->base_known == 0)
25256 complaint (_("Location list used without "
25257 "specifying the CU base address."));
25258
25259 SYMBOL_ACLASS_INDEX (sym) = (is_block
25260 ? dwarf2_loclist_block_index
25261 : dwarf2_loclist_index);
25262 SYMBOL_LOCATION_BATON (sym) = baton;
25263 }
25264 else
25265 {
25266 struct dwarf2_locexpr_baton *baton;
25267
25268 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25269 baton->per_cu = cu->per_cu;
25270 gdb_assert (baton->per_cu);
25271
25272 if (attr_form_is_block (attr))
25273 {
25274 /* Note that we're just copying the block's data pointer
25275 here, not the actual data. We're still pointing into the
25276 info_buffer for SYM's objfile; right now we never release
25277 that buffer, but when we do clean up properly this may
25278 need to change. */
25279 baton->size = DW_BLOCK (attr)->size;
25280 baton->data = DW_BLOCK (attr)->data;
25281 }
25282 else
25283 {
25284 dwarf2_invalid_attrib_class_complaint ("location description",
25285 SYMBOL_NATURAL_NAME (sym));
25286 baton->size = 0;
25287 }
25288
25289 SYMBOL_ACLASS_INDEX (sym) = (is_block
25290 ? dwarf2_locexpr_block_index
25291 : dwarf2_locexpr_index);
25292 SYMBOL_LOCATION_BATON (sym) = baton;
25293 }
25294 }
25295
25296 /* Return the OBJFILE associated with the compilation unit CU. If CU
25297 came from a separate debuginfo file, then the master objfile is
25298 returned. */
25299
25300 struct objfile *
25301 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25302 {
25303 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25304
25305 /* Return the master objfile, so that we can report and look up the
25306 correct file containing this variable. */
25307 if (objfile->separate_debug_objfile_backlink)
25308 objfile = objfile->separate_debug_objfile_backlink;
25309
25310 return objfile;
25311 }
25312
25313 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25314 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25315 CU_HEADERP first. */
25316
25317 static const struct comp_unit_head *
25318 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25319 struct dwarf2_per_cu_data *per_cu)
25320 {
25321 const gdb_byte *info_ptr;
25322
25323 if (per_cu->cu)
25324 return &per_cu->cu->header;
25325
25326 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25327
25328 memset (cu_headerp, 0, sizeof (*cu_headerp));
25329 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25330 rcuh_kind::COMPILE);
25331
25332 return cu_headerp;
25333 }
25334
25335 /* Return the address size given in the compilation unit header for CU. */
25336
25337 int
25338 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25339 {
25340 struct comp_unit_head cu_header_local;
25341 const struct comp_unit_head *cu_headerp;
25342
25343 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25344
25345 return cu_headerp->addr_size;
25346 }
25347
25348 /* Return the offset size given in the compilation unit header for CU. */
25349
25350 int
25351 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25352 {
25353 struct comp_unit_head cu_header_local;
25354 const struct comp_unit_head *cu_headerp;
25355
25356 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25357
25358 return cu_headerp->offset_size;
25359 }
25360
25361 /* See its dwarf2loc.h declaration. */
25362
25363 int
25364 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25365 {
25366 struct comp_unit_head cu_header_local;
25367 const struct comp_unit_head *cu_headerp;
25368
25369 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25370
25371 if (cu_headerp->version == 2)
25372 return cu_headerp->addr_size;
25373 else
25374 return cu_headerp->offset_size;
25375 }
25376
25377 /* Return the text offset of the CU. The returned offset comes from
25378 this CU's objfile. If this objfile came from a separate debuginfo
25379 file, then the offset may be different from the corresponding
25380 offset in the parent objfile. */
25381
25382 CORE_ADDR
25383 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25384 {
25385 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25386
25387 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25388 }
25389
25390 /* Return a type that is a generic pointer type, the size of which matches
25391 the address size given in the compilation unit header for PER_CU. */
25392 static struct type *
25393 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25394 {
25395 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25396 struct type *void_type = objfile_type (objfile)->builtin_void;
25397 struct type *addr_type = lookup_pointer_type (void_type);
25398 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25399
25400 if (TYPE_LENGTH (addr_type) == addr_size)
25401 return addr_type;
25402
25403 addr_type
25404 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25405 return addr_type;
25406 }
25407
25408 /* Return DWARF version number of PER_CU. */
25409
25410 short
25411 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25412 {
25413 return per_cu->dwarf_version;
25414 }
25415
25416 /* Locate the .debug_info compilation unit from CU's objfile which contains
25417 the DIE at OFFSET. Raises an error on failure. */
25418
25419 static struct dwarf2_per_cu_data *
25420 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25421 unsigned int offset_in_dwz,
25422 struct dwarf2_per_objfile *dwarf2_per_objfile)
25423 {
25424 struct dwarf2_per_cu_data *this_cu;
25425 int low, high;
25426
25427 low = 0;
25428 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25429 while (high > low)
25430 {
25431 struct dwarf2_per_cu_data *mid_cu;
25432 int mid = low + (high - low) / 2;
25433
25434 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25435 if (mid_cu->is_dwz > offset_in_dwz
25436 || (mid_cu->is_dwz == offset_in_dwz
25437 && mid_cu->sect_off + mid_cu->length >= sect_off))
25438 high = mid;
25439 else
25440 low = mid + 1;
25441 }
25442 gdb_assert (low == high);
25443 this_cu = dwarf2_per_objfile->all_comp_units[low];
25444 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25445 {
25446 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25447 error (_("Dwarf Error: could not find partial DIE containing "
25448 "offset %s [in module %s]"),
25449 sect_offset_str (sect_off),
25450 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25451
25452 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25453 <= sect_off);
25454 return dwarf2_per_objfile->all_comp_units[low-1];
25455 }
25456 else
25457 {
25458 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25459 && sect_off >= this_cu->sect_off + this_cu->length)
25460 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25461 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25462 return this_cu;
25463 }
25464 }
25465
25466 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25467
25468 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25469 : per_cu (per_cu_),
25470 mark (false),
25471 has_loclist (false),
25472 checked_producer (false),
25473 producer_is_gxx_lt_4_6 (false),
25474 producer_is_gcc_lt_4_3 (false),
25475 producer_is_icc (false),
25476 producer_is_icc_lt_14 (false),
25477 producer_is_codewarrior (false),
25478 processing_has_namespace_info (false)
25479 {
25480 per_cu->cu = this;
25481 }
25482
25483 /* Destroy a dwarf2_cu. */
25484
25485 dwarf2_cu::~dwarf2_cu ()
25486 {
25487 per_cu->cu = NULL;
25488 }
25489
25490 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25491
25492 static void
25493 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25494 enum language pretend_language)
25495 {
25496 struct attribute *attr;
25497
25498 /* Set the language we're debugging. */
25499 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25500 if (attr)
25501 set_cu_language (DW_UNSND (attr), cu);
25502 else
25503 {
25504 cu->language = pretend_language;
25505 cu->language_defn = language_def (cu->language);
25506 }
25507
25508 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25509 }
25510
25511 /* Increase the age counter on each cached compilation unit, and free
25512 any that are too old. */
25513
25514 static void
25515 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25516 {
25517 struct dwarf2_per_cu_data *per_cu, **last_chain;
25518
25519 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25520 per_cu = dwarf2_per_objfile->read_in_chain;
25521 while (per_cu != NULL)
25522 {
25523 per_cu->cu->last_used ++;
25524 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25525 dwarf2_mark (per_cu->cu);
25526 per_cu = per_cu->cu->read_in_chain;
25527 }
25528
25529 per_cu = dwarf2_per_objfile->read_in_chain;
25530 last_chain = &dwarf2_per_objfile->read_in_chain;
25531 while (per_cu != NULL)
25532 {
25533 struct dwarf2_per_cu_data *next_cu;
25534
25535 next_cu = per_cu->cu->read_in_chain;
25536
25537 if (!per_cu->cu->mark)
25538 {
25539 delete per_cu->cu;
25540 *last_chain = next_cu;
25541 }
25542 else
25543 last_chain = &per_cu->cu->read_in_chain;
25544
25545 per_cu = next_cu;
25546 }
25547 }
25548
25549 /* Remove a single compilation unit from the cache. */
25550
25551 static void
25552 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25553 {
25554 struct dwarf2_per_cu_data *per_cu, **last_chain;
25555 struct dwarf2_per_objfile *dwarf2_per_objfile
25556 = target_per_cu->dwarf2_per_objfile;
25557
25558 per_cu = dwarf2_per_objfile->read_in_chain;
25559 last_chain = &dwarf2_per_objfile->read_in_chain;
25560 while (per_cu != NULL)
25561 {
25562 struct dwarf2_per_cu_data *next_cu;
25563
25564 next_cu = per_cu->cu->read_in_chain;
25565
25566 if (per_cu == target_per_cu)
25567 {
25568 delete per_cu->cu;
25569 per_cu->cu = NULL;
25570 *last_chain = next_cu;
25571 break;
25572 }
25573 else
25574 last_chain = &per_cu->cu->read_in_chain;
25575
25576 per_cu = next_cu;
25577 }
25578 }
25579
25580 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25581 We store these in a hash table separate from the DIEs, and preserve them
25582 when the DIEs are flushed out of cache.
25583
25584 The CU "per_cu" pointer is needed because offset alone is not enough to
25585 uniquely identify the type. A file may have multiple .debug_types sections,
25586 or the type may come from a DWO file. Furthermore, while it's more logical
25587 to use per_cu->section+offset, with Fission the section with the data is in
25588 the DWO file but we don't know that section at the point we need it.
25589 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25590 because we can enter the lookup routine, get_die_type_at_offset, from
25591 outside this file, and thus won't necessarily have PER_CU->cu.
25592 Fortunately, PER_CU is stable for the life of the objfile. */
25593
25594 struct dwarf2_per_cu_offset_and_type
25595 {
25596 const struct dwarf2_per_cu_data *per_cu;
25597 sect_offset sect_off;
25598 struct type *type;
25599 };
25600
25601 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25602
25603 static hashval_t
25604 per_cu_offset_and_type_hash (const void *item)
25605 {
25606 const struct dwarf2_per_cu_offset_and_type *ofs
25607 = (const struct dwarf2_per_cu_offset_and_type *) item;
25608
25609 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25610 }
25611
25612 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25613
25614 static int
25615 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25616 {
25617 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25618 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25619 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25620 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25621
25622 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25623 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25624 }
25625
25626 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25627 table if necessary. For convenience, return TYPE.
25628
25629 The DIEs reading must have careful ordering to:
25630 * Not cause infite loops trying to read in DIEs as a prerequisite for
25631 reading current DIE.
25632 * Not trying to dereference contents of still incompletely read in types
25633 while reading in other DIEs.
25634 * Enable referencing still incompletely read in types just by a pointer to
25635 the type without accessing its fields.
25636
25637 Therefore caller should follow these rules:
25638 * Try to fetch any prerequisite types we may need to build this DIE type
25639 before building the type and calling set_die_type.
25640 * After building type call set_die_type for current DIE as soon as
25641 possible before fetching more types to complete the current type.
25642 * Make the type as complete as possible before fetching more types. */
25643
25644 static struct type *
25645 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25646 {
25647 struct dwarf2_per_objfile *dwarf2_per_objfile
25648 = cu->per_cu->dwarf2_per_objfile;
25649 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25650 struct objfile *objfile = dwarf2_per_objfile->objfile;
25651 struct attribute *attr;
25652 struct dynamic_prop prop;
25653
25654 /* For Ada types, make sure that the gnat-specific data is always
25655 initialized (if not already set). There are a few types where
25656 we should not be doing so, because the type-specific area is
25657 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25658 where the type-specific area is used to store the floatformat).
25659 But this is not a problem, because the gnat-specific information
25660 is actually not needed for these types. */
25661 if (need_gnat_info (cu)
25662 && TYPE_CODE (type) != TYPE_CODE_FUNC
25663 && TYPE_CODE (type) != TYPE_CODE_FLT
25664 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25665 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25666 && TYPE_CODE (type) != TYPE_CODE_METHOD
25667 && !HAVE_GNAT_AUX_INFO (type))
25668 INIT_GNAT_SPECIFIC (type);
25669
25670 /* Read DW_AT_allocated and set in type. */
25671 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25672 if (attr_form_is_block (attr))
25673 {
25674 struct type *prop_type
25675 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25676 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25677 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25678 }
25679 else if (attr != NULL)
25680 {
25681 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25682 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25683 sect_offset_str (die->sect_off));
25684 }
25685
25686 /* Read DW_AT_associated and set in type. */
25687 attr = dwarf2_attr (die, DW_AT_associated, cu);
25688 if (attr_form_is_block (attr))
25689 {
25690 struct type *prop_type
25691 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25692 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25693 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25694 }
25695 else if (attr != NULL)
25696 {
25697 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25698 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25699 sect_offset_str (die->sect_off));
25700 }
25701
25702 /* Read DW_AT_data_location and set in type. */
25703 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25704 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25705 dwarf2_per_cu_addr_type (cu->per_cu)))
25706 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25707
25708 if (dwarf2_per_objfile->die_type_hash == NULL)
25709 {
25710 dwarf2_per_objfile->die_type_hash =
25711 htab_create_alloc_ex (127,
25712 per_cu_offset_and_type_hash,
25713 per_cu_offset_and_type_eq,
25714 NULL,
25715 &objfile->objfile_obstack,
25716 hashtab_obstack_allocate,
25717 dummy_obstack_deallocate);
25718 }
25719
25720 ofs.per_cu = cu->per_cu;
25721 ofs.sect_off = die->sect_off;
25722 ofs.type = type;
25723 slot = (struct dwarf2_per_cu_offset_and_type **)
25724 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25725 if (*slot)
25726 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25727 sect_offset_str (die->sect_off));
25728 *slot = XOBNEW (&objfile->objfile_obstack,
25729 struct dwarf2_per_cu_offset_and_type);
25730 **slot = ofs;
25731 return type;
25732 }
25733
25734 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25735 or return NULL if the die does not have a saved type. */
25736
25737 static struct type *
25738 get_die_type_at_offset (sect_offset sect_off,
25739 struct dwarf2_per_cu_data *per_cu)
25740 {
25741 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25742 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25743
25744 if (dwarf2_per_objfile->die_type_hash == NULL)
25745 return NULL;
25746
25747 ofs.per_cu = per_cu;
25748 ofs.sect_off = sect_off;
25749 slot = ((struct dwarf2_per_cu_offset_and_type *)
25750 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25751 if (slot)
25752 return slot->type;
25753 else
25754 return NULL;
25755 }
25756
25757 /* Look up the type for DIE in CU in die_type_hash,
25758 or return NULL if DIE does not have a saved type. */
25759
25760 static struct type *
25761 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25762 {
25763 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25764 }
25765
25766 /* Add a dependence relationship from CU to REF_PER_CU. */
25767
25768 static void
25769 dwarf2_add_dependence (struct dwarf2_cu *cu,
25770 struct dwarf2_per_cu_data *ref_per_cu)
25771 {
25772 void **slot;
25773
25774 if (cu->dependencies == NULL)
25775 cu->dependencies
25776 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25777 NULL, &cu->comp_unit_obstack,
25778 hashtab_obstack_allocate,
25779 dummy_obstack_deallocate);
25780
25781 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25782 if (*slot == NULL)
25783 *slot = ref_per_cu;
25784 }
25785
25786 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25787 Set the mark field in every compilation unit in the
25788 cache that we must keep because we are keeping CU. */
25789
25790 static int
25791 dwarf2_mark_helper (void **slot, void *data)
25792 {
25793 struct dwarf2_per_cu_data *per_cu;
25794
25795 per_cu = (struct dwarf2_per_cu_data *) *slot;
25796
25797 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25798 reading of the chain. As such dependencies remain valid it is not much
25799 useful to track and undo them during QUIT cleanups. */
25800 if (per_cu->cu == NULL)
25801 return 1;
25802
25803 if (per_cu->cu->mark)
25804 return 1;
25805 per_cu->cu->mark = true;
25806
25807 if (per_cu->cu->dependencies != NULL)
25808 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25809
25810 return 1;
25811 }
25812
25813 /* Set the mark field in CU and in every other compilation unit in the
25814 cache that we must keep because we are keeping CU. */
25815
25816 static void
25817 dwarf2_mark (struct dwarf2_cu *cu)
25818 {
25819 if (cu->mark)
25820 return;
25821 cu->mark = true;
25822 if (cu->dependencies != NULL)
25823 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25824 }
25825
25826 static void
25827 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25828 {
25829 while (per_cu)
25830 {
25831 per_cu->cu->mark = false;
25832 per_cu = per_cu->cu->read_in_chain;
25833 }
25834 }
25835
25836 /* Trivial hash function for partial_die_info: the hash value of a DIE
25837 is its offset in .debug_info for this objfile. */
25838
25839 static hashval_t
25840 partial_die_hash (const void *item)
25841 {
25842 const struct partial_die_info *part_die
25843 = (const struct partial_die_info *) item;
25844
25845 return to_underlying (part_die->sect_off);
25846 }
25847
25848 /* Trivial comparison function for partial_die_info structures: two DIEs
25849 are equal if they have the same offset. */
25850
25851 static int
25852 partial_die_eq (const void *item_lhs, const void *item_rhs)
25853 {
25854 const struct partial_die_info *part_die_lhs
25855 = (const struct partial_die_info *) item_lhs;
25856 const struct partial_die_info *part_die_rhs
25857 = (const struct partial_die_info *) item_rhs;
25858
25859 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25860 }
25861
25862 struct cmd_list_element *set_dwarf_cmdlist;
25863 struct cmd_list_element *show_dwarf_cmdlist;
25864
25865 static void
25866 set_dwarf_cmd (const char *args, int from_tty)
25867 {
25868 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25869 gdb_stdout);
25870 }
25871
25872 static void
25873 show_dwarf_cmd (const char *args, int from_tty)
25874 {
25875 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25876 }
25877
25878 bool dwarf_always_disassemble;
25879
25880 static void
25881 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25882 struct cmd_list_element *c, const char *value)
25883 {
25884 fprintf_filtered (file,
25885 _("Whether to always disassemble "
25886 "DWARF expressions is %s.\n"),
25887 value);
25888 }
25889
25890 static void
25891 show_check_physname (struct ui_file *file, int from_tty,
25892 struct cmd_list_element *c, const char *value)
25893 {
25894 fprintf_filtered (file,
25895 _("Whether to check \"physname\" is %s.\n"),
25896 value);
25897 }
25898
25899 void
25900 _initialize_dwarf2_read (void)
25901 {
25902 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25903 Set DWARF specific variables.\n\
25904 Configure DWARF variables such as the cache size."),
25905 &set_dwarf_cmdlist, "maintenance set dwarf ",
25906 0/*allow-unknown*/, &maintenance_set_cmdlist);
25907
25908 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25909 Show DWARF specific variables.\n\
25910 Show DWARF variables such as the cache size."),
25911 &show_dwarf_cmdlist, "maintenance show dwarf ",
25912 0/*allow-unknown*/, &maintenance_show_cmdlist);
25913
25914 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25915 &dwarf_max_cache_age, _("\
25916 Set the upper bound on the age of cached DWARF compilation units."), _("\
25917 Show the upper bound on the age of cached DWARF compilation units."), _("\
25918 A higher limit means that cached compilation units will be stored\n\
25919 in memory longer, and more total memory will be used. Zero disables\n\
25920 caching, which can slow down startup."),
25921 NULL,
25922 show_dwarf_max_cache_age,
25923 &set_dwarf_cmdlist,
25924 &show_dwarf_cmdlist);
25925
25926 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25927 &dwarf_always_disassemble, _("\
25928 Set whether `info address' always disassembles DWARF expressions."), _("\
25929 Show whether `info address' always disassembles DWARF expressions."), _("\
25930 When enabled, DWARF expressions are always printed in an assembly-like\n\
25931 syntax. When disabled, expressions will be printed in a more\n\
25932 conversational style, when possible."),
25933 NULL,
25934 show_dwarf_always_disassemble,
25935 &set_dwarf_cmdlist,
25936 &show_dwarf_cmdlist);
25937
25938 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25939 Set debugging of the DWARF reader."), _("\
25940 Show debugging of the DWARF reader."), _("\
25941 When enabled (non-zero), debugging messages are printed during DWARF\n\
25942 reading and symtab expansion. A value of 1 (one) provides basic\n\
25943 information. A value greater than 1 provides more verbose information."),
25944 NULL,
25945 NULL,
25946 &setdebuglist, &showdebuglist);
25947
25948 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25949 Set debugging of the DWARF DIE reader."), _("\
25950 Show debugging of the DWARF DIE reader."), _("\
25951 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25952 The value is the maximum depth to print."),
25953 NULL,
25954 NULL,
25955 &setdebuglist, &showdebuglist);
25956
25957 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25958 Set debugging of the dwarf line reader."), _("\
25959 Show debugging of the dwarf line reader."), _("\
25960 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25961 A value of 1 (one) provides basic information.\n\
25962 A value greater than 1 provides more verbose information."),
25963 NULL,
25964 NULL,
25965 &setdebuglist, &showdebuglist);
25966
25967 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25968 Set cross-checking of \"physname\" code against demangler."), _("\
25969 Show cross-checking of \"physname\" code against demangler."), _("\
25970 When enabled, GDB's internal \"physname\" code is checked against\n\
25971 the demangler."),
25972 NULL, show_check_physname,
25973 &setdebuglist, &showdebuglist);
25974
25975 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25976 no_class, &use_deprecated_index_sections, _("\
25977 Set whether to use deprecated gdb_index sections."), _("\
25978 Show whether to use deprecated gdb_index sections."), _("\
25979 When enabled, deprecated .gdb_index sections are used anyway.\n\
25980 Normally they are ignored either because of a missing feature or\n\
25981 performance issue.\n\
25982 Warning: This option must be enabled before gdb reads the file."),
25983 NULL,
25984 NULL,
25985 &setlist, &showlist);
25986
25987 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25988 &dwarf2_locexpr_funcs);
25989 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25990 &dwarf2_loclist_funcs);
25991
25992 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25993 &dwarf2_block_frame_base_locexpr_funcs);
25994 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25995 &dwarf2_block_frame_base_loclist_funcs);
25996
25997 #if GDB_SELF_TEST
25998 selftests::register_test ("dw2_expand_symtabs_matching",
25999 selftests::dw2_expand_symtabs_matching::run_test);
26000 #endif
26001 }
This page took 0.804811 seconds and 5 git commands to generate.