DWARF 5 support: Handle line table and file indexes
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "dwarf2expr.h"
49 #include "dwarf2loc.h"
50 #include "cp-support.h"
51 #include "hashtab.h"
52 #include "command.h"
53 #include "gdbcmd.h"
54 #include "block.h"
55 #include "addrmap.h"
56 #include "typeprint.h"
57 #include "psympriv.h"
58 #include "c-lang.h"
59 #include "go-lang.h"
60 #include "valprint.h"
61 #include "gdbcore.h" /* for gnutarget */
62 #include "gdb/gdb-index.h"
63 #include "gdb_bfd.h"
64 #include "f-lang.h"
65 #include "source.h"
66 #include "build-id.h"
67 #include "namespace.h"
68 #include "gdbsupport/function-view.h"
69 #include "gdbsupport/gdb_optional.h"
70 #include "gdbsupport/underlying.h"
71 #include "gdbsupport/hash_enum.h"
72 #include "filename-seen-cache.h"
73 #include "producer.h"
74 #include <fcntl.h>
75 #include <algorithm>
76 #include <unordered_map>
77 #include "gdbsupport/selftest.h"
78 #include "rust-lang.h"
79 #include "gdbsupport/pathstuff.h"
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84 static unsigned int dwarf_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf_die_debug = 0;
88
89 /* When non-zero, dump line number entries as they are read in. */
90 static unsigned int dwarf_line_debug = 0;
91
92 /* When true, cross-check physname against demangler. */
93 static bool check_physname = false;
94
95 /* When true, do not reject deprecated .gdb_index sections. */
96 static bool use_deprecated_index_sections = false;
97
98 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
99
100 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102 static int dwarf2_locexpr_index;
103 static int dwarf2_loclist_index;
104 static int dwarf2_locexpr_block_index;
105 static int dwarf2_loclist_block_index;
106
107 /* An index into a (C++) symbol name component in a symbol name as
108 recorded in the mapped_index's symbol table. For each C++ symbol
109 in the symbol table, we record one entry for the start of each
110 component in the symbol in a table of name components, and then
111 sort the table, in order to be able to binary search symbol names,
112 ignoring leading namespaces, both completion and regular look up.
113 For example, for symbol "A::B::C", we'll have an entry that points
114 to "A::B::C", another that points to "B::C", and another for "C".
115 Note that function symbols in GDB index have no parameter
116 information, just the function/method names. You can convert a
117 name_component to a "const char *" using the
118 'mapped_index::symbol_name_at(offset_type)' method. */
119
120 struct name_component
121 {
122 /* Offset in the symbol name where the component starts. Stored as
123 a (32-bit) offset instead of a pointer to save memory and improve
124 locality on 64-bit architectures. */
125 offset_type name_offset;
126
127 /* The symbol's index in the symbol and constant pool tables of a
128 mapped_index. */
129 offset_type idx;
130 };
131
132 /* Base class containing bits shared by both .gdb_index and
133 .debug_name indexes. */
134
135 struct mapped_index_base
136 {
137 mapped_index_base () = default;
138 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
139
140 /* The name_component table (a sorted vector). See name_component's
141 description above. */
142 std::vector<name_component> name_components;
143
144 /* How NAME_COMPONENTS is sorted. */
145 enum case_sensitivity name_components_casing;
146
147 /* Return the number of names in the symbol table. */
148 virtual size_t symbol_name_count () const = 0;
149
150 /* Get the name of the symbol at IDX in the symbol table. */
151 virtual const char *symbol_name_at (offset_type idx) const = 0;
152
153 /* Return whether the name at IDX in the symbol table should be
154 ignored. */
155 virtual bool symbol_name_slot_invalid (offset_type idx) const
156 {
157 return false;
158 }
159
160 /* Build the symbol name component sorted vector, if we haven't
161 yet. */
162 void build_name_components ();
163
164 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
165 possible matches for LN_NO_PARAMS in the name component
166 vector. */
167 std::pair<std::vector<name_component>::const_iterator,
168 std::vector<name_component>::const_iterator>
169 find_name_components_bounds (const lookup_name_info &ln_no_params,
170 enum language lang) const;
171
172 /* Prevent deleting/destroying via a base class pointer. */
173 protected:
174 ~mapped_index_base() = default;
175 };
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index final : public mapped_index_base
180 {
181 /* A slot/bucket in the symbol table hash. */
182 struct symbol_table_slot
183 {
184 const offset_type name;
185 const offset_type vec;
186 };
187
188 /* Index data format version. */
189 int version = 0;
190
191 /* The address table data. */
192 gdb::array_view<const gdb_byte> address_table;
193
194 /* The symbol table, implemented as a hash table. */
195 gdb::array_view<symbol_table_slot> symbol_table;
196
197 /* A pointer to the constant pool. */
198 const char *constant_pool = nullptr;
199
200 bool symbol_name_slot_invalid (offset_type idx) const override
201 {
202 const auto &bucket = this->symbol_table[idx];
203 return bucket.name == 0 && bucket.vec == 0;
204 }
205
206 /* Convenience method to get at the name of the symbol at IDX in the
207 symbol table. */
208 const char *symbol_name_at (offset_type idx) const override
209 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
210
211 size_t symbol_name_count () const override
212 { return this->symbol_table.size (); }
213 };
214
215 /* A description of the mapped .debug_names.
216 Uninitialized map has CU_COUNT 0. */
217 struct mapped_debug_names final : public mapped_index_base
218 {
219 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
220 : dwarf2_per_objfile (dwarf2_per_objfile_)
221 {}
222
223 struct dwarf2_per_objfile *dwarf2_per_objfile;
224 bfd_endian dwarf5_byte_order;
225 bool dwarf5_is_dwarf64;
226 bool augmentation_is_gdb;
227 uint8_t offset_size;
228 uint32_t cu_count = 0;
229 uint32_t tu_count, bucket_count, name_count;
230 const gdb_byte *cu_table_reordered, *tu_table_reordered;
231 const uint32_t *bucket_table_reordered, *hash_table_reordered;
232 const gdb_byte *name_table_string_offs_reordered;
233 const gdb_byte *name_table_entry_offs_reordered;
234 const gdb_byte *entry_pool;
235
236 struct index_val
237 {
238 ULONGEST dwarf_tag;
239 struct attr
240 {
241 /* Attribute name DW_IDX_*. */
242 ULONGEST dw_idx;
243
244 /* Attribute form DW_FORM_*. */
245 ULONGEST form;
246
247 /* Value if FORM is DW_FORM_implicit_const. */
248 LONGEST implicit_const;
249 };
250 std::vector<attr> attr_vec;
251 };
252
253 std::unordered_map<ULONGEST, index_val> abbrev_map;
254
255 const char *namei_to_name (uint32_t namei) const;
256
257 /* Implementation of the mapped_index_base virtual interface, for
258 the name_components cache. */
259
260 const char *symbol_name_at (offset_type idx) const override
261 { return namei_to_name (idx); }
262
263 size_t symbol_name_count () const override
264 { return this->name_count; }
265 };
266
267 /* See dwarf2read.h. */
268
269 dwarf2_per_objfile *
270 get_dwarf2_per_objfile (struct objfile *objfile)
271 {
272 return dwarf2_objfile_data_key.get (objfile);
273 }
274
275 /* Default names of the debugging sections. */
276
277 /* Note that if the debugging section has been compressed, it might
278 have a name like .zdebug_info. */
279
280 static const struct dwarf2_debug_sections dwarf2_elf_names =
281 {
282 { ".debug_info", ".zdebug_info" },
283 { ".debug_abbrev", ".zdebug_abbrev" },
284 { ".debug_line", ".zdebug_line" },
285 { ".debug_loc", ".zdebug_loc" },
286 { ".debug_loclists", ".zdebug_loclists" },
287 { ".debug_macinfo", ".zdebug_macinfo" },
288 { ".debug_macro", ".zdebug_macro" },
289 { ".debug_str", ".zdebug_str" },
290 { ".debug_line_str", ".zdebug_line_str" },
291 { ".debug_ranges", ".zdebug_ranges" },
292 { ".debug_rnglists", ".zdebug_rnglists" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
298 { ".debug_names", ".zdebug_names" },
299 { ".debug_aranges", ".zdebug_aranges" },
300 23
301 };
302
303 /* List of DWO/DWP sections. */
304
305 static const struct dwop_section_names
306 {
307 struct dwarf2_section_names abbrev_dwo;
308 struct dwarf2_section_names info_dwo;
309 struct dwarf2_section_names line_dwo;
310 struct dwarf2_section_names loc_dwo;
311 struct dwarf2_section_names loclists_dwo;
312 struct dwarf2_section_names macinfo_dwo;
313 struct dwarf2_section_names macro_dwo;
314 struct dwarf2_section_names str_dwo;
315 struct dwarf2_section_names str_offsets_dwo;
316 struct dwarf2_section_names types_dwo;
317 struct dwarf2_section_names cu_index;
318 struct dwarf2_section_names tu_index;
319 }
320 dwop_section_names =
321 {
322 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
323 { ".debug_info.dwo", ".zdebug_info.dwo" },
324 { ".debug_line.dwo", ".zdebug_line.dwo" },
325 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
326 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
327 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
328 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
329 { ".debug_str.dwo", ".zdebug_str.dwo" },
330 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
331 { ".debug_types.dwo", ".zdebug_types.dwo" },
332 { ".debug_cu_index", ".zdebug_cu_index" },
333 { ".debug_tu_index", ".zdebug_tu_index" },
334 };
335
336 /* local data types */
337
338 /* The data in a compilation unit header, after target2host
339 translation, looks like this. */
340 struct comp_unit_head
341 {
342 unsigned int length;
343 short version;
344 unsigned char addr_size;
345 unsigned char signed_addr_p;
346 sect_offset abbrev_sect_off;
347
348 /* Size of file offsets; either 4 or 8. */
349 unsigned int offset_size;
350
351 /* Size of the length field; either 4 or 12. */
352 unsigned int initial_length_size;
353
354 enum dwarf_unit_type unit_type;
355
356 /* Offset to the first byte of this compilation unit header in the
357 .debug_info section, for resolving relative reference dies. */
358 sect_offset sect_off;
359
360 /* Offset to first die in this cu from the start of the cu.
361 This will be the first byte following the compilation unit header. */
362 cu_offset first_die_cu_offset;
363
364
365 /* 64-bit signature of this unit. For type units, it denotes the signature of
366 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
367 Also used in DWARF 5, to denote the dwo id when the unit type is
368 DW_UT_skeleton or DW_UT_split_compile. */
369 ULONGEST signature;
370
371 /* For types, offset in the type's DIE of the type defined by this TU. */
372 cu_offset type_cu_offset_in_tu;
373 };
374
375 /* Type used for delaying computation of method physnames.
376 See comments for compute_delayed_physnames. */
377 struct delayed_method_info
378 {
379 /* The type to which the method is attached, i.e., its parent class. */
380 struct type *type;
381
382 /* The index of the method in the type's function fieldlists. */
383 int fnfield_index;
384
385 /* The index of the method in the fieldlist. */
386 int index;
387
388 /* The name of the DIE. */
389 const char *name;
390
391 /* The DIE associated with this method. */
392 struct die_info *die;
393 };
394
395 /* Internal state when decoding a particular compilation unit. */
396 struct dwarf2_cu
397 {
398 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
399 ~dwarf2_cu ();
400
401 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
402
403 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
404 Create the set of symtabs used by this TU, or if this TU is sharing
405 symtabs with another TU and the symtabs have already been created
406 then restore those symtabs in the line header.
407 We don't need the pc/line-number mapping for type units. */
408 void setup_type_unit_groups (struct die_info *die);
409
410 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
411 buildsym_compunit constructor. */
412 struct compunit_symtab *start_symtab (const char *name,
413 const char *comp_dir,
414 CORE_ADDR low_pc);
415
416 /* Reset the builder. */
417 void reset_builder () { m_builder.reset (); }
418
419 /* The header of the compilation unit. */
420 struct comp_unit_head header {};
421
422 /* Base address of this compilation unit. */
423 CORE_ADDR base_address = 0;
424
425 /* Non-zero if base_address has been set. */
426 int base_known = 0;
427
428 /* The language we are debugging. */
429 enum language language = language_unknown;
430 const struct language_defn *language_defn = nullptr;
431
432 const char *producer = nullptr;
433
434 private:
435 /* The symtab builder for this CU. This is only non-NULL when full
436 symbols are being read. */
437 std::unique_ptr<buildsym_compunit> m_builder;
438
439 public:
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope = nullptr;
450
451 /* Hash table holding all the loaded partial DIEs
452 with partial_die->offset.SECT_OFF as hash. */
453 htab_t partial_dies = nullptr;
454
455 /* Storage for things with the same lifetime as this read-in compilation
456 unit, including partial DIEs. */
457 auto_obstack comp_unit_obstack;
458
459 /* When multiple dwarf2_cu structures are living in memory, this field
460 chains them all together, so that they can be released efficiently.
461 We will probably also want a generation counter so that most-recently-used
462 compilation units are cached... */
463 struct dwarf2_per_cu_data *read_in_chain = nullptr;
464
465 /* Backlink to our per_cu entry. */
466 struct dwarf2_per_cu_data *per_cu;
467
468 /* How many compilation units ago was this CU last referenced? */
469 int last_used = 0;
470
471 /* A hash table of DIE cu_offset for following references with
472 die_info->offset.sect_off as hash. */
473 htab_t die_hash = nullptr;
474
475 /* Full DIEs if read in. */
476 struct die_info *dies = nullptr;
477
478 /* A set of pointers to dwarf2_per_cu_data objects for compilation
479 units referenced by this one. Only set during full symbol processing;
480 partial symbol tables do not have dependencies. */
481 htab_t dependencies = nullptr;
482
483 /* Header data from the line table, during full symbol processing. */
484 struct line_header *line_header = nullptr;
485 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
486 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
487 this is the DW_TAG_compile_unit die for this CU. We'll hold on
488 to the line header as long as this DIE is being processed. See
489 process_die_scope. */
490 die_info *line_header_die_owner = nullptr;
491
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 std::vector<delayed_method_info> method_list;
495
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab = nullptr;
498
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
508 struct dwo_unit *dwo_unit = nullptr;
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 ULONGEST addr_base = 0;
514
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
517 Note this value comes from the Fission stub CU/TU's DIE.
518 Also note that the value is zero in the non-DWO case so this value can
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
525 ULONGEST ranges_base = 0;
526
527 /* When reading debug info generated by older versions of rustc, we
528 have to rewrite some union types to be struct types with a
529 variant part. This rewriting must be done after the CU is fully
530 read in, because otherwise at the point of rewriting some struct
531 type might not have been fully processed. So, we keep a list of
532 all such types here and process them after expansion. */
533 std::vector<struct type *> rust_unions;
534
535 /* Mark used when releasing cached dies. */
536 bool mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 bool has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 bool checked_producer : 1;
549 bool producer_is_gxx_lt_4_6 : 1;
550 bool producer_is_gcc_lt_4_3 : 1;
551 bool producer_is_icc : 1;
552 bool producer_is_icc_lt_14 : 1;
553 bool producer_is_codewarrior : 1;
554
555 /* When true, the file that we're processing is known to have
556 debugging info for C++ namespaces. GCC 3.3.x did not produce
557 this information, but later versions do. */
558
559 bool processing_has_namespace_info : 1;
560
561 struct partial_die_info *find_partial_die (sect_offset sect_off);
562
563 /* If this CU was inherited by another CU (via specification,
564 abstract_origin, etc), this is the ancestor CU. */
565 dwarf2_cu *ancestor;
566
567 /* Get the buildsym_compunit for this CU. */
568 buildsym_compunit *get_builder ()
569 {
570 /* If this CU has a builder associated with it, use that. */
571 if (m_builder != nullptr)
572 return m_builder.get ();
573
574 /* Otherwise, search ancestors for a valid builder. */
575 if (ancestor != nullptr)
576 return ancestor->get_builder ();
577
578 return nullptr;
579 }
580 };
581
582 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
583 This includes type_unit_group and quick_file_names. */
584
585 struct stmt_list_hash
586 {
587 /* The DWO unit this table is from or NULL if there is none. */
588 struct dwo_unit *dwo_unit;
589
590 /* Offset in .debug_line or .debug_line.dwo. */
591 sect_offset line_sect_off;
592 };
593
594 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
595 an object of this type. */
596
597 struct type_unit_group
598 {
599 /* dwarf2read.c's main "handle" on a TU symtab.
600 To simplify things we create an artificial CU that "includes" all the
601 type units using this stmt_list so that the rest of the code still has
602 a "per_cu" handle on the symtab.
603 This PER_CU is recognized by having no section. */
604 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
605 struct dwarf2_per_cu_data per_cu;
606
607 /* The TUs that share this DW_AT_stmt_list entry.
608 This is added to while parsing type units to build partial symtabs,
609 and is deleted afterwards and not used again. */
610 std::vector<signatured_type *> *tus;
611
612 /* The compunit symtab.
613 Type units in a group needn't all be defined in the same source file,
614 so we create an essentially anonymous symtab as the compunit symtab. */
615 struct compunit_symtab *compunit_symtab;
616
617 /* The data used to construct the hash key. */
618 struct stmt_list_hash hash;
619
620 /* The number of symtabs from the line header.
621 The value here must match line_header.num_file_names. */
622 unsigned int num_symtabs;
623
624 /* The symbol tables for this TU (obtained from the files listed in
625 DW_AT_stmt_list).
626 WARNING: The order of entries here must match the order of entries
627 in the line header. After the first TU using this type_unit_group, the
628 line header for the subsequent TUs is recreated from this. This is done
629 because we need to use the same symtabs for each TU using the same
630 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
631 there's no guarantee the line header doesn't have duplicate entries. */
632 struct symtab **symtabs;
633 };
634
635 /* These sections are what may appear in a (real or virtual) DWO file. */
636
637 struct dwo_sections
638 {
639 struct dwarf2_section_info abbrev;
640 struct dwarf2_section_info line;
641 struct dwarf2_section_info loc;
642 struct dwarf2_section_info loclists;
643 struct dwarf2_section_info macinfo;
644 struct dwarf2_section_info macro;
645 struct dwarf2_section_info str;
646 struct dwarf2_section_info str_offsets;
647 /* In the case of a virtual DWO file, these two are unused. */
648 struct dwarf2_section_info info;
649 std::vector<dwarf2_section_info> types;
650 };
651
652 /* CUs/TUs in DWP/DWO files. */
653
654 struct dwo_unit
655 {
656 /* Backlink to the containing struct dwo_file. */
657 struct dwo_file *dwo_file;
658
659 /* The "id" that distinguishes this CU/TU.
660 .debug_info calls this "dwo_id", .debug_types calls this "signature".
661 Since signatures came first, we stick with it for consistency. */
662 ULONGEST signature;
663
664 /* The section this CU/TU lives in, in the DWO file. */
665 struct dwarf2_section_info *section;
666
667 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
668 sect_offset sect_off;
669 unsigned int length;
670
671 /* For types, offset in the type's DIE of the type defined by this TU. */
672 cu_offset type_offset_in_tu;
673 };
674
675 /* include/dwarf2.h defines the DWP section codes.
676 It defines a max value but it doesn't define a min value, which we
677 use for error checking, so provide one. */
678
679 enum dwp_v2_section_ids
680 {
681 DW_SECT_MIN = 1
682 };
683
684 /* Data for one DWO file.
685
686 This includes virtual DWO files (a virtual DWO file is a DWO file as it
687 appears in a DWP file). DWP files don't really have DWO files per se -
688 comdat folding of types "loses" the DWO file they came from, and from
689 a high level view DWP files appear to contain a mass of random types.
690 However, to maintain consistency with the non-DWP case we pretend DWP
691 files contain virtual DWO files, and we assign each TU with one virtual
692 DWO file (generally based on the line and abbrev section offsets -
693 a heuristic that seems to work in practice). */
694
695 struct dwo_file
696 {
697 dwo_file () = default;
698 DISABLE_COPY_AND_ASSIGN (dwo_file);
699
700 /* The DW_AT_GNU_dwo_name attribute.
701 For virtual DWO files the name is constructed from the section offsets
702 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
703 from related CU+TUs. */
704 const char *dwo_name = nullptr;
705
706 /* The DW_AT_comp_dir attribute. */
707 const char *comp_dir = nullptr;
708
709 /* The bfd, when the file is open. Otherwise this is NULL.
710 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
711 gdb_bfd_ref_ptr dbfd;
712
713 /* The sections that make up this DWO file.
714 Remember that for virtual DWO files in DWP V2, these are virtual
715 sections (for lack of a better name). */
716 struct dwo_sections sections {};
717
718 /* The CUs in the file.
719 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
720 an extension to handle LLVM's Link Time Optimization output (where
721 multiple source files may be compiled into a single object/dwo pair). */
722 htab_t cus {};
723
724 /* Table of TUs in the file.
725 Each element is a struct dwo_unit. */
726 htab_t tus {};
727 };
728
729 /* These sections are what may appear in a DWP file. */
730
731 struct dwp_sections
732 {
733 /* These are used by both DWP version 1 and 2. */
734 struct dwarf2_section_info str;
735 struct dwarf2_section_info cu_index;
736 struct dwarf2_section_info tu_index;
737
738 /* These are only used by DWP version 2 files.
739 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
740 sections are referenced by section number, and are not recorded here.
741 In DWP version 2 there is at most one copy of all these sections, each
742 section being (effectively) comprised of the concatenation of all of the
743 individual sections that exist in the version 1 format.
744 To keep the code simple we treat each of these concatenated pieces as a
745 section itself (a virtual section?). */
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info info;
748 struct dwarf2_section_info line;
749 struct dwarf2_section_info loc;
750 struct dwarf2_section_info macinfo;
751 struct dwarf2_section_info macro;
752 struct dwarf2_section_info str_offsets;
753 struct dwarf2_section_info types;
754 };
755
756 /* These sections are what may appear in a virtual DWO file in DWP version 1.
757 A virtual DWO file is a DWO file as it appears in a DWP file. */
758
759 struct virtual_v1_dwo_sections
760 {
761 struct dwarf2_section_info abbrev;
762 struct dwarf2_section_info line;
763 struct dwarf2_section_info loc;
764 struct dwarf2_section_info macinfo;
765 struct dwarf2_section_info macro;
766 struct dwarf2_section_info str_offsets;
767 /* Each DWP hash table entry records one CU or one TU.
768 That is recorded here, and copied to dwo_unit.section. */
769 struct dwarf2_section_info info_or_types;
770 };
771
772 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
773 In version 2, the sections of the DWO files are concatenated together
774 and stored in one section of that name. Thus each ELF section contains
775 several "virtual" sections. */
776
777 struct virtual_v2_dwo_sections
778 {
779 bfd_size_type abbrev_offset;
780 bfd_size_type abbrev_size;
781
782 bfd_size_type line_offset;
783 bfd_size_type line_size;
784
785 bfd_size_type loc_offset;
786 bfd_size_type loc_size;
787
788 bfd_size_type macinfo_offset;
789 bfd_size_type macinfo_size;
790
791 bfd_size_type macro_offset;
792 bfd_size_type macro_size;
793
794 bfd_size_type str_offsets_offset;
795 bfd_size_type str_offsets_size;
796
797 /* Each DWP hash table entry records one CU or one TU.
798 That is recorded here, and copied to dwo_unit.section. */
799 bfd_size_type info_or_types_offset;
800 bfd_size_type info_or_types_size;
801 };
802
803 /* Contents of DWP hash tables. */
804
805 struct dwp_hash_table
806 {
807 uint32_t version, nr_columns;
808 uint32_t nr_units, nr_slots;
809 const gdb_byte *hash_table, *unit_table;
810 union
811 {
812 struct
813 {
814 const gdb_byte *indices;
815 } v1;
816 struct
817 {
818 /* This is indexed by column number and gives the id of the section
819 in that column. */
820 #define MAX_NR_V2_DWO_SECTIONS \
821 (1 /* .debug_info or .debug_types */ \
822 + 1 /* .debug_abbrev */ \
823 + 1 /* .debug_line */ \
824 + 1 /* .debug_loc */ \
825 + 1 /* .debug_str_offsets */ \
826 + 1 /* .debug_macro or .debug_macinfo */)
827 int section_ids[MAX_NR_V2_DWO_SECTIONS];
828 const gdb_byte *offsets;
829 const gdb_byte *sizes;
830 } v2;
831 } section_pool;
832 };
833
834 /* Data for one DWP file. */
835
836 struct dwp_file
837 {
838 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
839 : name (name_),
840 dbfd (std::move (abfd))
841 {
842 }
843
844 /* Name of the file. */
845 const char *name;
846
847 /* File format version. */
848 int version = 0;
849
850 /* The bfd. */
851 gdb_bfd_ref_ptr dbfd;
852
853 /* Section info for this file. */
854 struct dwp_sections sections {};
855
856 /* Table of CUs in the file. */
857 const struct dwp_hash_table *cus = nullptr;
858
859 /* Table of TUs in the file. */
860 const struct dwp_hash_table *tus = nullptr;
861
862 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
863 htab_t loaded_cus {};
864 htab_t loaded_tus {};
865
866 /* Table to map ELF section numbers to their sections.
867 This is only needed for the DWP V1 file format. */
868 unsigned int num_sections = 0;
869 asection **elf_sections = nullptr;
870 };
871
872 /* Struct used to pass misc. parameters to read_die_and_children, et
873 al. which are used for both .debug_info and .debug_types dies.
874 All parameters here are unchanging for the life of the call. This
875 struct exists to abstract away the constant parameters of die reading. */
876
877 struct die_reader_specs
878 {
879 /* The bfd of die_section. */
880 bfd* abfd;
881
882 /* The CU of the DIE we are parsing. */
883 struct dwarf2_cu *cu;
884
885 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
886 struct dwo_file *dwo_file;
887
888 /* The section the die comes from.
889 This is either .debug_info or .debug_types, or the .dwo variants. */
890 struct dwarf2_section_info *die_section;
891
892 /* die_section->buffer. */
893 const gdb_byte *buffer;
894
895 /* The end of the buffer. */
896 const gdb_byte *buffer_end;
897
898 /* The value of the DW_AT_comp_dir attribute. */
899 const char *comp_dir;
900
901 /* The abbreviation table to use when reading the DIEs. */
902 struct abbrev_table *abbrev_table;
903 };
904
905 /* Type of function passed to init_cutu_and_read_dies, et.al. */
906 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
907 const gdb_byte *info_ptr,
908 struct die_info *comp_unit_die,
909 int has_children,
910 void *data);
911
912 /* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
913 later. */
914 typedef int dir_index;
915
916 /* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
917 and later. */
918 typedef int file_name_index;
919
920 struct file_entry
921 {
922 file_entry () = default;
923
924 file_entry (const char *name_, dir_index d_index_,
925 unsigned int mod_time_, unsigned int length_)
926 : name (name_),
927 d_index (d_index_),
928 mod_time (mod_time_),
929 length (length_)
930 {}
931
932 /* Return the include directory at D_INDEX stored in LH. Returns
933 NULL if D_INDEX is out of bounds. */
934 const char *include_dir (const line_header *lh) const;
935
936 /* The file name. Note this is an observing pointer. The memory is
937 owned by debug_line_buffer. */
938 const char *name {};
939
940 /* The directory index (1-based). */
941 dir_index d_index {};
942
943 unsigned int mod_time {};
944
945 unsigned int length {};
946
947 /* True if referenced by the Line Number Program. */
948 bool included_p {};
949
950 /* The associated symbol table, if any. */
951 struct symtab *symtab {};
952 };
953
954 /* The line number information for a compilation unit (found in the
955 .debug_line section) begins with a "statement program header",
956 which contains the following information. */
957 struct line_header
958 {
959 line_header ()
960 : offset_in_dwz {}
961 {}
962
963 /* Add an entry to the include directory table. */
964 void add_include_dir (const char *include_dir);
965
966 /* Add an entry to the file name table. */
967 void add_file_name (const char *name, dir_index d_index,
968 unsigned int mod_time, unsigned int length);
969
970 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
971 Returns NULL if INDEX is out of bounds. */
972 const char *include_dir_at (dir_index index) const
973 {
974 int vec_index;
975 if (version >= 5)
976 vec_index = index;
977 else
978 vec_index = index - 1;
979 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
980 return NULL;
981 return m_include_dirs[vec_index];
982 }
983
984 bool is_valid_file_index (int file_index)
985 {
986 if (version >= 5)
987 return 0 <= file_index && file_index < file_names_size ();
988 return 1 <= file_index && file_index <= file_names_size ();
989 }
990
991 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
992 Returns NULL if INDEX is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 int vec_index;
996 if (version >= 5)
997 vec_index = index;
998 else
999 vec_index = index - 1;
1000 if (vec_index < 0 || vec_index >= m_file_names.size ())
1001 return NULL;
1002 return &m_file_names[vec_index];
1003 }
1004
1005 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1006 this method should only be used to iterate through all file entries in an
1007 index-agnostic manner. */
1008 std::vector<file_entry> &file_names ()
1009 { return m_file_names; }
1010
1011 /* Offset of line number information in .debug_line section. */
1012 sect_offset sect_off {};
1013
1014 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1015 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016
1017 unsigned int total_length {};
1018 unsigned short version {};
1019 unsigned int header_length {};
1020 unsigned char minimum_instruction_length {};
1021 unsigned char maximum_ops_per_instruction {};
1022 unsigned char default_is_stmt {};
1023 int line_base {};
1024 unsigned char line_range {};
1025 unsigned char opcode_base {};
1026
1027 /* standard_opcode_lengths[i] is the number of operands for the
1028 standard opcode whose value is i. This means that
1029 standard_opcode_lengths[0] is unused, and the last meaningful
1030 element is standard_opcode_lengths[opcode_base - 1]. */
1031 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1032
1033 int file_names_size ()
1034 { return m_file_names.size(); }
1035
1036 /* The start and end of the statement program following this
1037 header. These point into dwarf2_per_objfile->line_buffer. */
1038 const gdb_byte *statement_program_start {}, *statement_program_end {};
1039
1040 private:
1041 /* The include_directories table. Note these are observing
1042 pointers. The memory is owned by debug_line_buffer. */
1043 std::vector<const char *> m_include_dirs;
1044
1045 /* The file_names table. This is private because the meaning of indexes
1046 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1047 before, and is 0 in DWARF 5 and later). So the client should use
1048 file_name_at method for access. */
1049 std::vector<file_entry> m_file_names;
1050 };
1051
1052 typedef std::unique_ptr<line_header> line_header_up;
1053
1054 const char *
1055 file_entry::include_dir (const line_header *lh) const
1056 {
1057 return lh->include_dir_at (d_index);
1058 }
1059
1060 /* When we construct a partial symbol table entry we only
1061 need this much information. */
1062 struct partial_die_info : public allocate_on_obstack
1063 {
1064 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1065
1066 /* Disable assign but still keep copy ctor, which is needed
1067 load_partial_dies. */
1068 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1069
1070 /* Adjust the partial die before generating a symbol for it. This
1071 function may set the is_external flag or change the DIE's
1072 name. */
1073 void fixup (struct dwarf2_cu *cu);
1074
1075 /* Read a minimal amount of information into the minimal die
1076 structure. */
1077 const gdb_byte *read (const struct die_reader_specs *reader,
1078 const struct abbrev_info &abbrev,
1079 const gdb_byte *info_ptr);
1080
1081 /* Offset of this DIE. */
1082 const sect_offset sect_off;
1083
1084 /* DWARF-2 tag for this DIE. */
1085 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1086
1087 /* Assorted flags describing the data found in this DIE. */
1088 const unsigned int has_children : 1;
1089
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
1095 unsigned int may_be_inlined : 1;
1096
1097 /* This DIE has been marked DW_AT_main_subprogram. */
1098 unsigned int main_subprogram : 1;
1099
1100 /* Flag set if the SCOPE field of this structure has been
1101 computed. */
1102 unsigned int scope_set : 1;
1103
1104 /* Flag set if the DIE has a byte_size attribute. */
1105 unsigned int has_byte_size : 1;
1106
1107 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1108 unsigned int has_const_value : 1;
1109
1110 /* Flag set if any of the DIE's children are template arguments. */
1111 unsigned int has_template_arguments : 1;
1112
1113 /* Flag set if fixup has been called on this die. */
1114 unsigned int fixup_called : 1;
1115
1116 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1117 unsigned int is_dwz : 1;
1118
1119 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1120 unsigned int spec_is_dwz : 1;
1121
1122 /* The name of this DIE. Normally the value of DW_AT_name, but
1123 sometimes a default name for unnamed DIEs. */
1124 const char *name = nullptr;
1125
1126 /* The linkage name, if present. */
1127 const char *linkage_name = nullptr;
1128
1129 /* The scope to prepend to our children. This is generally
1130 allocated on the comp_unit_obstack, so will disappear
1131 when this compilation unit leaves the cache. */
1132 const char *scope = nullptr;
1133
1134 /* Some data associated with the partial DIE. The tag determines
1135 which field is live. */
1136 union
1137 {
1138 /* The location description associated with this DIE, if any. */
1139 struct dwarf_block *locdesc;
1140 /* The offset of an import, for DW_TAG_imported_unit. */
1141 sect_offset sect_off;
1142 } d {};
1143
1144 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1145 CORE_ADDR lowpc = 0;
1146 CORE_ADDR highpc = 0;
1147
1148 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1149 DW_AT_sibling, if any. */
1150 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1151 could return DW_AT_sibling values to its caller load_partial_dies. */
1152 const gdb_byte *sibling = nullptr;
1153
1154 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1155 DW_AT_specification (or DW_AT_abstract_origin or
1156 DW_AT_extension). */
1157 sect_offset spec_offset {};
1158
1159 /* Pointers to this DIE's parent, first child, and next sibling,
1160 if any. */
1161 struct partial_die_info *die_parent = nullptr;
1162 struct partial_die_info *die_child = nullptr;
1163 struct partial_die_info *die_sibling = nullptr;
1164
1165 friend struct partial_die_info *
1166 dwarf2_cu::find_partial_die (sect_offset sect_off);
1167
1168 private:
1169 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1170 partial_die_info (sect_offset sect_off)
1171 : partial_die_info (sect_off, DW_TAG_padding, 0)
1172 {
1173 }
1174
1175 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1176 int has_children_)
1177 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1178 {
1179 is_external = 0;
1180 is_declaration = 0;
1181 has_type = 0;
1182 has_specification = 0;
1183 has_pc_info = 0;
1184 may_be_inlined = 0;
1185 main_subprogram = 0;
1186 scope_set = 0;
1187 has_byte_size = 0;
1188 has_const_value = 0;
1189 has_template_arguments = 0;
1190 fixup_called = 0;
1191 is_dwz = 0;
1192 spec_is_dwz = 0;
1193 }
1194 };
1195
1196 /* This data structure holds the information of an abbrev. */
1197 struct abbrev_info
1198 {
1199 unsigned int number; /* number identifying abbrev */
1200 enum dwarf_tag tag; /* dwarf tag */
1201 unsigned short has_children; /* boolean */
1202 unsigned short num_attrs; /* number of attributes */
1203 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1204 struct abbrev_info *next; /* next in chain */
1205 };
1206
1207 struct attr_abbrev
1208 {
1209 ENUM_BITFIELD(dwarf_attribute) name : 16;
1210 ENUM_BITFIELD(dwarf_form) form : 16;
1211
1212 /* It is valid only if FORM is DW_FORM_implicit_const. */
1213 LONGEST implicit_const;
1214 };
1215
1216 /* Size of abbrev_table.abbrev_hash_table. */
1217 #define ABBREV_HASH_SIZE 121
1218
1219 /* Top level data structure to contain an abbreviation table. */
1220
1221 struct abbrev_table
1222 {
1223 explicit abbrev_table (sect_offset off)
1224 : sect_off (off)
1225 {
1226 m_abbrevs =
1227 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1228 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1229 }
1230
1231 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1232
1233 /* Allocate space for a struct abbrev_info object in
1234 ABBREV_TABLE. */
1235 struct abbrev_info *alloc_abbrev ();
1236
1237 /* Add an abbreviation to the table. */
1238 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1239
1240 /* Look up an abbrev in the table.
1241 Returns NULL if the abbrev is not found. */
1242
1243 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1244
1245
1246 /* Where the abbrev table came from.
1247 This is used as a sanity check when the table is used. */
1248 const sect_offset sect_off;
1249
1250 /* Storage for the abbrev table. */
1251 auto_obstack abbrev_obstack;
1252
1253 private:
1254
1255 /* Hash table of abbrevs.
1256 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1257 It could be statically allocated, but the previous code didn't so we
1258 don't either. */
1259 struct abbrev_info **m_abbrevs;
1260 };
1261
1262 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1263
1264 /* Attributes have a name and a value. */
1265 struct attribute
1266 {
1267 ENUM_BITFIELD(dwarf_attribute) name : 16;
1268 ENUM_BITFIELD(dwarf_form) form : 15;
1269
1270 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1271 field should be in u.str (existing only for DW_STRING) but it is kept
1272 here for better struct attribute alignment. */
1273 unsigned int string_is_canonical : 1;
1274
1275 union
1276 {
1277 const char *str;
1278 struct dwarf_block *blk;
1279 ULONGEST unsnd;
1280 LONGEST snd;
1281 CORE_ADDR addr;
1282 ULONGEST signature;
1283 }
1284 u;
1285 };
1286
1287 /* This data structure holds a complete die structure. */
1288 struct die_info
1289 {
1290 /* DWARF-2 tag for this DIE. */
1291 ENUM_BITFIELD(dwarf_tag) tag : 16;
1292
1293 /* Number of attributes */
1294 unsigned char num_attrs;
1295
1296 /* True if we're presently building the full type name for the
1297 type derived from this DIE. */
1298 unsigned char building_fullname : 1;
1299
1300 /* True if this die is in process. PR 16581. */
1301 unsigned char in_process : 1;
1302
1303 /* Abbrev number */
1304 unsigned int abbrev;
1305
1306 /* Offset in .debug_info or .debug_types section. */
1307 sect_offset sect_off;
1308
1309 /* The dies in a compilation unit form an n-ary tree. PARENT
1310 points to this die's parent; CHILD points to the first child of
1311 this node; and all the children of a given node are chained
1312 together via their SIBLING fields. */
1313 struct die_info *child; /* Its first child, if any. */
1314 struct die_info *sibling; /* Its next sibling, if any. */
1315 struct die_info *parent; /* Its parent, if any. */
1316
1317 /* An array of attributes, with NUM_ATTRS elements. There may be
1318 zero, but it's not common and zero-sized arrays are not
1319 sufficiently portable C. */
1320 struct attribute attrs[1];
1321 };
1322
1323 /* Get at parts of an attribute structure. */
1324
1325 #define DW_STRING(attr) ((attr)->u.str)
1326 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1327 #define DW_UNSND(attr) ((attr)->u.unsnd)
1328 #define DW_BLOCK(attr) ((attr)->u.blk)
1329 #define DW_SND(attr) ((attr)->u.snd)
1330 #define DW_ADDR(attr) ((attr)->u.addr)
1331 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1332
1333 /* Blocks are a bunch of untyped bytes. */
1334 struct dwarf_block
1335 {
1336 size_t size;
1337
1338 /* Valid only if SIZE is not zero. */
1339 const gdb_byte *data;
1340 };
1341
1342 #ifndef ATTR_ALLOC_CHUNK
1343 #define ATTR_ALLOC_CHUNK 4
1344 #endif
1345
1346 /* Allocate fields for structs, unions and enums in this size. */
1347 #ifndef DW_FIELD_ALLOC_CHUNK
1348 #define DW_FIELD_ALLOC_CHUNK 4
1349 #endif
1350
1351 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1352 but this would require a corresponding change in unpack_field_as_long
1353 and friends. */
1354 static int bits_per_byte = 8;
1355
1356 /* When reading a variant or variant part, we track a bit more
1357 information about the field, and store it in an object of this
1358 type. */
1359
1360 struct variant_field
1361 {
1362 /* If we see a DW_TAG_variant, then this will be the discriminant
1363 value. */
1364 ULONGEST discriminant_value;
1365 /* If we see a DW_TAG_variant, then this will be set if this is the
1366 default branch. */
1367 bool default_branch;
1368 /* While reading a DW_TAG_variant_part, this will be set if this
1369 field is the discriminant. */
1370 bool is_discriminant;
1371 };
1372
1373 struct nextfield
1374 {
1375 int accessibility = 0;
1376 int virtuality = 0;
1377 /* Extra information to describe a variant or variant part. */
1378 struct variant_field variant {};
1379 struct field field {};
1380 };
1381
1382 struct fnfieldlist
1383 {
1384 const char *name = nullptr;
1385 std::vector<struct fn_field> fnfields;
1386 };
1387
1388 /* The routines that read and process dies for a C struct or C++ class
1389 pass lists of data member fields and lists of member function fields
1390 in an instance of a field_info structure, as defined below. */
1391 struct field_info
1392 {
1393 /* List of data member and baseclasses fields. */
1394 std::vector<struct nextfield> fields;
1395 std::vector<struct nextfield> baseclasses;
1396
1397 /* Number of fields (including baseclasses). */
1398 int nfields = 0;
1399
1400 /* Set if the accessibility of one of the fields is not public. */
1401 int non_public_fields = 0;
1402
1403 /* Member function fieldlist array, contains name of possibly overloaded
1404 member function, number of overloaded member functions and a pointer
1405 to the head of the member function field chain. */
1406 std::vector<struct fnfieldlist> fnfieldlists;
1407
1408 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1409 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1410 std::vector<struct decl_field> typedef_field_list;
1411
1412 /* Nested types defined by this class and the number of elements in this
1413 list. */
1414 std::vector<struct decl_field> nested_types_list;
1415 };
1416
1417 /* One item on the queue of compilation units to read in full symbols
1418 for. */
1419 struct dwarf2_queue_item
1420 {
1421 struct dwarf2_per_cu_data *per_cu;
1422 enum language pretend_language;
1423 struct dwarf2_queue_item *next;
1424 };
1425
1426 /* The current queue. */
1427 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1428
1429 /* Loaded secondary compilation units are kept in memory until they
1430 have not been referenced for the processing of this many
1431 compilation units. Set this to zero to disable caching. Cache
1432 sizes of up to at least twenty will improve startup time for
1433 typical inter-CU-reference binaries, at an obvious memory cost. */
1434 static int dwarf_max_cache_age = 5;
1435 static void
1436 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file, _("The upper bound on the age of cached "
1440 "DWARF compilation units is %s.\n"),
1441 value);
1442 }
1443 \f
1444 /* local function prototypes */
1445
1446 static const char *get_section_name (const struct dwarf2_section_info *);
1447
1448 static const char *get_section_file_name (const struct dwarf2_section_info *);
1449
1450 static void dwarf2_find_base_address (struct die_info *die,
1451 struct dwarf2_cu *cu);
1452
1453 static struct partial_symtab *create_partial_symtab
1454 (struct dwarf2_per_cu_data *per_cu, const char *name);
1455
1456 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1457 const gdb_byte *info_ptr,
1458 struct die_info *type_unit_die,
1459 int has_children, void *data);
1460
1461 static void dwarf2_build_psymtabs_hard
1462 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1463
1464 static void scan_partial_symbols (struct partial_die_info *,
1465 CORE_ADDR *, CORE_ADDR *,
1466 int, struct dwarf2_cu *);
1467
1468 static void add_partial_symbol (struct partial_die_info *,
1469 struct dwarf2_cu *);
1470
1471 static void add_partial_namespace (struct partial_die_info *pdi,
1472 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1473 int set_addrmap, struct dwarf2_cu *cu);
1474
1475 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1476 CORE_ADDR *highpc, int set_addrmap,
1477 struct dwarf2_cu *cu);
1478
1479 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1480 struct dwarf2_cu *cu);
1481
1482 static void add_partial_subprogram (struct partial_die_info *pdi,
1483 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1484 int need_pc, struct dwarf2_cu *cu);
1485
1486 static void dwarf2_read_symtab (struct partial_symtab *,
1487 struct objfile *);
1488
1489 static void psymtab_to_symtab_1 (struct partial_symtab *);
1490
1491 static abbrev_table_up abbrev_table_read_table
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1493 sect_offset);
1494
1495 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1496
1497 static struct partial_die_info *load_partial_dies
1498 (const struct die_reader_specs *, const gdb_byte *, int);
1499
1500 /* A pair of partial_die_info and compilation unit. */
1501 struct cu_partial_die_info
1502 {
1503 /* The compilation unit of the partial_die_info. */
1504 struct dwarf2_cu *cu;
1505 /* A partial_die_info. */
1506 struct partial_die_info *pdi;
1507
1508 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1509 : cu (cu),
1510 pdi (pdi)
1511 { /* Nothing. */ }
1512
1513 private:
1514 cu_partial_die_info () = delete;
1515 };
1516
1517 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1518 struct dwarf2_cu *);
1519
1520 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1521 struct attribute *, struct attr_abbrev *,
1522 const gdb_byte *);
1523
1524 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1525
1526 static int read_1_signed_byte (bfd *, const gdb_byte *);
1527
1528 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1529
1530 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1531 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1532
1533 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1534
1535 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1536
1537 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1538 unsigned int *);
1539
1540 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1541
1542 static LONGEST read_checked_initial_length_and_offset
1543 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1544 unsigned int *, unsigned int *);
1545
1546 static LONGEST read_offset (bfd *, const gdb_byte *,
1547 const struct comp_unit_head *,
1548 unsigned int *);
1549
1550 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1551
1552 static sect_offset read_abbrev_offset
1553 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1554 struct dwarf2_section_info *, sect_offset);
1555
1556 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1557
1558 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1559
1560 static const char *read_indirect_string
1561 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1562 const struct comp_unit_head *, unsigned int *);
1563
1564 static const char *read_indirect_line_string
1565 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1566 const struct comp_unit_head *, unsigned int *);
1567
1568 static const char *read_indirect_string_at_offset
1569 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1570 LONGEST str_offset);
1571
1572 static const char *read_indirect_string_from_dwz
1573 (struct objfile *objfile, struct dwz_file *, LONGEST);
1574
1575 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1576
1577 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1578 const gdb_byte *,
1579 unsigned int *);
1580
1581 static const char *read_str_index (const struct die_reader_specs *reader,
1582 ULONGEST str_index);
1583
1584 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1585
1586 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1587 struct dwarf2_cu *);
1588
1589 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1590 unsigned int);
1591
1592 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1593 struct dwarf2_cu *cu);
1594
1595 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1596
1597 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1598 struct dwarf2_cu *cu);
1599
1600 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1601
1602 static struct die_info *die_specification (struct die_info *die,
1603 struct dwarf2_cu **);
1604
1605 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1606 struct dwarf2_cu *cu);
1607
1608 static void dwarf_decode_lines (struct line_header *, const char *,
1609 struct dwarf2_cu *, struct partial_symtab *,
1610 CORE_ADDR, int decode_mapping);
1611
1612 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1613 const char *);
1614
1615 static struct symbol *new_symbol (struct die_info *, struct type *,
1616 struct dwarf2_cu *, struct symbol * = NULL);
1617
1618 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1619 struct dwarf2_cu *);
1620
1621 static void dwarf2_const_value_attr (const struct attribute *attr,
1622 struct type *type,
1623 const char *name,
1624 struct obstack *obstack,
1625 struct dwarf2_cu *cu, LONGEST *value,
1626 const gdb_byte **bytes,
1627 struct dwarf2_locexpr_baton **baton);
1628
1629 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1630
1631 static int need_gnat_info (struct dwarf2_cu *);
1632
1633 static struct type *die_descriptive_type (struct die_info *,
1634 struct dwarf2_cu *);
1635
1636 static void set_descriptive_type (struct type *, struct die_info *,
1637 struct dwarf2_cu *);
1638
1639 static struct type *die_containing_type (struct die_info *,
1640 struct dwarf2_cu *);
1641
1642 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1643 struct dwarf2_cu *);
1644
1645 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1648
1649 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1650
1651 static char *typename_concat (struct obstack *obs, const char *prefix,
1652 const char *suffix, int physname,
1653 struct dwarf2_cu *cu);
1654
1655 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1656
1657 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1658
1659 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1660
1661 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1662
1663 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1664
1665 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1666
1667 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1668 struct dwarf2_cu *, struct partial_symtab *);
1669
1670 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1671 values. Keep the items ordered with increasing constraints compliance. */
1672 enum pc_bounds_kind
1673 {
1674 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1675 PC_BOUNDS_NOT_PRESENT,
1676
1677 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1678 were present but they do not form a valid range of PC addresses. */
1679 PC_BOUNDS_INVALID,
1680
1681 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1682 PC_BOUNDS_RANGES,
1683
1684 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1685 PC_BOUNDS_HIGH_LOW,
1686 };
1687
1688 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1689 CORE_ADDR *, CORE_ADDR *,
1690 struct dwarf2_cu *,
1691 struct partial_symtab *);
1692
1693 static void get_scope_pc_bounds (struct die_info *,
1694 CORE_ADDR *, CORE_ADDR *,
1695 struct dwarf2_cu *);
1696
1697 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1698 CORE_ADDR, struct dwarf2_cu *);
1699
1700 static void dwarf2_add_field (struct field_info *, struct die_info *,
1701 struct dwarf2_cu *);
1702
1703 static void dwarf2_attach_fields_to_type (struct field_info *,
1704 struct type *, struct dwarf2_cu *);
1705
1706 static void dwarf2_add_member_fn (struct field_info *,
1707 struct die_info *, struct type *,
1708 struct dwarf2_cu *);
1709
1710 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1711 struct type *,
1712 struct dwarf2_cu *);
1713
1714 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1715
1716 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1717
1718 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1719
1720 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1721
1722 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1723
1724 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1725
1726 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1727
1728 static struct type *read_module_type (struct die_info *die,
1729 struct dwarf2_cu *cu);
1730
1731 static const char *namespace_name (struct die_info *die,
1732 int *is_anonymous, struct dwarf2_cu *);
1733
1734 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1735
1736 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1737
1738 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1739 struct dwarf2_cu *);
1740
1741 static struct die_info *read_die_and_siblings_1
1742 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1743 struct die_info *);
1744
1745 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1746 const gdb_byte *info_ptr,
1747 const gdb_byte **new_info_ptr,
1748 struct die_info *parent);
1749
1750 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1751 struct die_info **, const gdb_byte *,
1752 int *, int);
1753
1754 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1755 struct die_info **, const gdb_byte *,
1756 int *);
1757
1758 static void process_die (struct die_info *, struct dwarf2_cu *);
1759
1760 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1761 struct obstack *);
1762
1763 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1764
1765 static const char *dwarf2_full_name (const char *name,
1766 struct die_info *die,
1767 struct dwarf2_cu *cu);
1768
1769 static const char *dwarf2_physname (const char *name, struct die_info *die,
1770 struct dwarf2_cu *cu);
1771
1772 static struct die_info *dwarf2_extension (struct die_info *die,
1773 struct dwarf2_cu **);
1774
1775 static const char *dwarf_tag_name (unsigned int);
1776
1777 static const char *dwarf_attr_name (unsigned int);
1778
1779 static const char *dwarf_unit_type_name (int unit_type);
1780
1781 static const char *dwarf_form_name (unsigned int);
1782
1783 static const char *dwarf_bool_name (unsigned int);
1784
1785 static const char *dwarf_type_encoding_name (unsigned int);
1786
1787 static struct die_info *sibling_die (struct die_info *);
1788
1789 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1790
1791 static void dump_die_for_error (struct die_info *);
1792
1793 static void dump_die_1 (struct ui_file *, int level, int max_level,
1794 struct die_info *);
1795
1796 /*static*/ void dump_die (struct die_info *, int max_level);
1797
1798 static void store_in_ref_table (struct die_info *,
1799 struct dwarf2_cu *);
1800
1801 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1802
1803 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1804
1805 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1806 const struct attribute *,
1807 struct dwarf2_cu **);
1808
1809 static struct die_info *follow_die_ref (struct die_info *,
1810 const struct attribute *,
1811 struct dwarf2_cu **);
1812
1813 static struct die_info *follow_die_sig (struct die_info *,
1814 const struct attribute *,
1815 struct dwarf2_cu **);
1816
1817 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1818 struct dwarf2_cu *);
1819
1820 static struct type *get_DW_AT_signature_type (struct die_info *,
1821 const struct attribute *,
1822 struct dwarf2_cu *);
1823
1824 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1825
1826 static void read_signatured_type (struct signatured_type *);
1827
1828 static int attr_to_dynamic_prop (const struct attribute *attr,
1829 struct die_info *die, struct dwarf2_cu *cu,
1830 struct dynamic_prop *prop, struct type *type);
1831
1832 /* memory allocation interface */
1833
1834 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1835
1836 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1837
1838 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1839
1840 static int attr_form_is_block (const struct attribute *);
1841
1842 static int attr_form_is_section_offset (const struct attribute *);
1843
1844 static int attr_form_is_constant (const struct attribute *);
1845
1846 static int attr_form_is_ref (const struct attribute *);
1847
1848 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1849 struct dwarf2_loclist_baton *baton,
1850 const struct attribute *attr);
1851
1852 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1853 struct symbol *sym,
1854 struct dwarf2_cu *cu,
1855 int is_block);
1856
1857 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1858 const gdb_byte *info_ptr,
1859 struct abbrev_info *abbrev);
1860
1861 static hashval_t partial_die_hash (const void *item);
1862
1863 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1864
1865 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1866 (sect_offset sect_off, unsigned int offset_in_dwz,
1867 struct dwarf2_per_objfile *dwarf2_per_objfile);
1868
1869 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1870 struct die_info *comp_unit_die,
1871 enum language pretend_language);
1872
1873 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1876
1877 static struct type *set_die_type (struct die_info *, struct type *,
1878 struct dwarf2_cu *);
1879
1880 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881
1882 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1885 enum language);
1886
1887 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1888 enum language);
1889
1890 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1891 enum language);
1892
1893 static void dwarf2_add_dependence (struct dwarf2_cu *,
1894 struct dwarf2_per_cu_data *);
1895
1896 static void dwarf2_mark (struct dwarf2_cu *);
1897
1898 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1899
1900 static struct type *get_die_type_at_offset (sect_offset,
1901 struct dwarf2_per_cu_data *);
1902
1903 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1904
1905 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1906 enum language pretend_language);
1907
1908 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1909
1910 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1911 static struct type *dwarf2_per_cu_addr_sized_int_type
1912 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1913
1914 /* Class, the destructor of which frees all allocated queue entries. This
1915 will only have work to do if an error was thrown while processing the
1916 dwarf. If no error was thrown then the queue entries should have all
1917 been processed, and freed, as we went along. */
1918
1919 class dwarf2_queue_guard
1920 {
1921 public:
1922 dwarf2_queue_guard () = default;
1923
1924 /* Free any entries remaining on the queue. There should only be
1925 entries left if we hit an error while processing the dwarf. */
1926 ~dwarf2_queue_guard ()
1927 {
1928 struct dwarf2_queue_item *item, *last;
1929
1930 item = dwarf2_queue;
1931 while (item)
1932 {
1933 /* Anything still marked queued is likely to be in an
1934 inconsistent state, so discard it. */
1935 if (item->per_cu->queued)
1936 {
1937 if (item->per_cu->cu != NULL)
1938 free_one_cached_comp_unit (item->per_cu);
1939 item->per_cu->queued = 0;
1940 }
1941
1942 last = item;
1943 item = item->next;
1944 xfree (last);
1945 }
1946
1947 dwarf2_queue = dwarf2_queue_tail = NULL;
1948 }
1949 };
1950
1951 /* The return type of find_file_and_directory. Note, the enclosed
1952 string pointers are only valid while this object is valid. */
1953
1954 struct file_and_directory
1955 {
1956 /* The filename. This is never NULL. */
1957 const char *name;
1958
1959 /* The compilation directory. NULL if not known. If we needed to
1960 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1961 points directly to the DW_AT_comp_dir string attribute owned by
1962 the obstack that owns the DIE. */
1963 const char *comp_dir;
1964
1965 /* If we needed to build a new string for comp_dir, this is what
1966 owns the storage. */
1967 std::string comp_dir_storage;
1968 };
1969
1970 static file_and_directory find_file_and_directory (struct die_info *die,
1971 struct dwarf2_cu *cu);
1972
1973 static char *file_full_name (int file, struct line_header *lh,
1974 const char *comp_dir);
1975
1976 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1977 enum class rcuh_kind { COMPILE, TYPE };
1978
1979 static const gdb_byte *read_and_check_comp_unit_head
1980 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1981 struct comp_unit_head *header,
1982 struct dwarf2_section_info *section,
1983 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1984 rcuh_kind section_kind);
1985
1986 static void init_cutu_and_read_dies
1987 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1988 int use_existing_cu, int keep, bool skip_partial,
1989 die_reader_func_ftype *die_reader_func, void *data);
1990
1991 static void init_cutu_and_read_dies_simple
1992 (struct dwarf2_per_cu_data *this_cu,
1993 die_reader_func_ftype *die_reader_func, void *data);
1994
1995 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1996
1997 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1998
1999 static struct dwo_unit *lookup_dwo_unit_in_dwp
2000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2001 struct dwp_file *dwp_file, const char *comp_dir,
2002 ULONGEST signature, int is_debug_types);
2003
2004 static struct dwp_file *get_dwp_file
2005 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2006
2007 static struct dwo_unit *lookup_dwo_comp_unit
2008 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2009
2010 static struct dwo_unit *lookup_dwo_type_unit
2011 (struct signatured_type *, const char *, const char *);
2012
2013 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2014
2015 /* A unique pointer to a dwo_file. */
2016
2017 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2018
2019 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2020
2021 static void check_producer (struct dwarf2_cu *cu);
2022
2023 static void free_line_header_voidp (void *arg);
2024 \f
2025 /* Various complaints about symbol reading that don't abort the process. */
2026
2027 static void
2028 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2029 {
2030 complaint (_("statement list doesn't fit in .debug_line section"));
2031 }
2032
2033 static void
2034 dwarf2_debug_line_missing_file_complaint (void)
2035 {
2036 complaint (_(".debug_line section has line data without a file"));
2037 }
2038
2039 static void
2040 dwarf2_debug_line_missing_end_sequence_complaint (void)
2041 {
2042 complaint (_(".debug_line section has line "
2043 "program sequence without an end"));
2044 }
2045
2046 static void
2047 dwarf2_complex_location_expr_complaint (void)
2048 {
2049 complaint (_("location expression too complex"));
2050 }
2051
2052 static void
2053 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2054 int arg3)
2055 {
2056 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2057 arg1, arg2, arg3);
2058 }
2059
2060 static void
2061 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2062 {
2063 complaint (_("debug info runs off end of %s section"
2064 " [in module %s]"),
2065 get_section_name (section),
2066 get_section_file_name (section));
2067 }
2068
2069 static void
2070 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2071 {
2072 complaint (_("macro debug info contains a "
2073 "malformed macro definition:\n`%s'"),
2074 arg1);
2075 }
2076
2077 static void
2078 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2079 {
2080 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2081 arg1, arg2);
2082 }
2083
2084 /* Hash function for line_header_hash. */
2085
2086 static hashval_t
2087 line_header_hash (const struct line_header *ofs)
2088 {
2089 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2090 }
2091
2092 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2093
2094 static hashval_t
2095 line_header_hash_voidp (const void *item)
2096 {
2097 const struct line_header *ofs = (const struct line_header *) item;
2098
2099 return line_header_hash (ofs);
2100 }
2101
2102 /* Equality function for line_header_hash. */
2103
2104 static int
2105 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2106 {
2107 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2108 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2109
2110 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2111 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2112 }
2113
2114 \f
2115
2116 /* Read the given attribute value as an address, taking the attribute's
2117 form into account. */
2118
2119 static CORE_ADDR
2120 attr_value_as_address (struct attribute *attr)
2121 {
2122 CORE_ADDR addr;
2123
2124 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2125 && attr->form != DW_FORM_GNU_addr_index)
2126 {
2127 /* Aside from a few clearly defined exceptions, attributes that
2128 contain an address must always be in DW_FORM_addr form.
2129 Unfortunately, some compilers happen to be violating this
2130 requirement by encoding addresses using other forms, such
2131 as DW_FORM_data4 for example. For those broken compilers,
2132 we try to do our best, without any guarantee of success,
2133 to interpret the address correctly. It would also be nice
2134 to generate a complaint, but that would require us to maintain
2135 a list of legitimate cases where a non-address form is allowed,
2136 as well as update callers to pass in at least the CU's DWARF
2137 version. This is more overhead than what we're willing to
2138 expand for a pretty rare case. */
2139 addr = DW_UNSND (attr);
2140 }
2141 else
2142 addr = DW_ADDR (attr);
2143
2144 return addr;
2145 }
2146
2147 /* See declaration. */
2148
2149 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2150 const dwarf2_debug_sections *names,
2151 bool can_copy_)
2152 : objfile (objfile_),
2153 can_copy (can_copy_)
2154 {
2155 if (names == NULL)
2156 names = &dwarf2_elf_names;
2157
2158 bfd *obfd = objfile->obfd;
2159
2160 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2161 locate_sections (obfd, sec, *names);
2162 }
2163
2164 dwarf2_per_objfile::~dwarf2_per_objfile ()
2165 {
2166 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2167 free_cached_comp_units ();
2168
2169 if (quick_file_names_table)
2170 htab_delete (quick_file_names_table);
2171
2172 if (line_header_hash)
2173 htab_delete (line_header_hash);
2174
2175 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2176 per_cu->imported_symtabs_free ();
2177
2178 for (signatured_type *sig_type : all_type_units)
2179 sig_type->per_cu.imported_symtabs_free ();
2180
2181 /* Everything else should be on the objfile obstack. */
2182 }
2183
2184 /* See declaration. */
2185
2186 void
2187 dwarf2_per_objfile::free_cached_comp_units ()
2188 {
2189 dwarf2_per_cu_data *per_cu = read_in_chain;
2190 dwarf2_per_cu_data **last_chain = &read_in_chain;
2191 while (per_cu != NULL)
2192 {
2193 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2194
2195 delete per_cu->cu;
2196 *last_chain = next_cu;
2197 per_cu = next_cu;
2198 }
2199 }
2200
2201 /* A helper class that calls free_cached_comp_units on
2202 destruction. */
2203
2204 class free_cached_comp_units
2205 {
2206 public:
2207
2208 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2209 : m_per_objfile (per_objfile)
2210 {
2211 }
2212
2213 ~free_cached_comp_units ()
2214 {
2215 m_per_objfile->free_cached_comp_units ();
2216 }
2217
2218 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2219
2220 private:
2221
2222 dwarf2_per_objfile *m_per_objfile;
2223 };
2224
2225 /* Try to locate the sections we need for DWARF 2 debugging
2226 information and return true if we have enough to do something.
2227 NAMES points to the dwarf2 section names, or is NULL if the standard
2228 ELF names are used. CAN_COPY is true for formats where symbol
2229 interposition is possible and so symbol values must follow copy
2230 relocation rules. */
2231
2232 int
2233 dwarf2_has_info (struct objfile *objfile,
2234 const struct dwarf2_debug_sections *names,
2235 bool can_copy)
2236 {
2237 if (objfile->flags & OBJF_READNEVER)
2238 return 0;
2239
2240 struct dwarf2_per_objfile *dwarf2_per_objfile
2241 = get_dwarf2_per_objfile (objfile);
2242
2243 if (dwarf2_per_objfile == NULL)
2244 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2245 names,
2246 can_copy);
2247
2248 return (!dwarf2_per_objfile->info.is_virtual
2249 && dwarf2_per_objfile->info.s.section != NULL
2250 && !dwarf2_per_objfile->abbrev.is_virtual
2251 && dwarf2_per_objfile->abbrev.s.section != NULL);
2252 }
2253
2254 /* Return the containing section of virtual section SECTION. */
2255
2256 static struct dwarf2_section_info *
2257 get_containing_section (const struct dwarf2_section_info *section)
2258 {
2259 gdb_assert (section->is_virtual);
2260 return section->s.containing_section;
2261 }
2262
2263 /* Return the bfd owner of SECTION. */
2264
2265 static struct bfd *
2266 get_section_bfd_owner (const struct dwarf2_section_info *section)
2267 {
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
2273 return section->s.section->owner;
2274 }
2275
2276 /* Return the bfd section of SECTION.
2277 Returns NULL if the section is not present. */
2278
2279 static asection *
2280 get_section_bfd_section (const struct dwarf2_section_info *section)
2281 {
2282 if (section->is_virtual)
2283 {
2284 section = get_containing_section (section);
2285 gdb_assert (!section->is_virtual);
2286 }
2287 return section->s.section;
2288 }
2289
2290 /* Return the name of SECTION. */
2291
2292 static const char *
2293 get_section_name (const struct dwarf2_section_info *section)
2294 {
2295 asection *sectp = get_section_bfd_section (section);
2296
2297 gdb_assert (sectp != NULL);
2298 return bfd_section_name (sectp);
2299 }
2300
2301 /* Return the name of the file SECTION is in. */
2302
2303 static const char *
2304 get_section_file_name (const struct dwarf2_section_info *section)
2305 {
2306 bfd *abfd = get_section_bfd_owner (section);
2307
2308 return bfd_get_filename (abfd);
2309 }
2310
2311 /* Return the id of SECTION.
2312 Returns 0 if SECTION doesn't exist. */
2313
2314 static int
2315 get_section_id (const struct dwarf2_section_info *section)
2316 {
2317 asection *sectp = get_section_bfd_section (section);
2318
2319 if (sectp == NULL)
2320 return 0;
2321 return sectp->id;
2322 }
2323
2324 /* Return the flags of SECTION.
2325 SECTION (or containing section if this is a virtual section) must exist. */
2326
2327 static int
2328 get_section_flags (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 gdb_assert (sectp != NULL);
2333 return bfd_section_flags (sectp);
2334 }
2335
2336 /* When loading sections, we look either for uncompressed section or for
2337 compressed section names. */
2338
2339 static int
2340 section_is_p (const char *section_name,
2341 const struct dwarf2_section_names *names)
2342 {
2343 if (names->normal != NULL
2344 && strcmp (section_name, names->normal) == 0)
2345 return 1;
2346 if (names->compressed != NULL
2347 && strcmp (section_name, names->compressed) == 0)
2348 return 1;
2349 return 0;
2350 }
2351
2352 /* See declaration. */
2353
2354 void
2355 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2356 const dwarf2_debug_sections &names)
2357 {
2358 flagword aflag = bfd_section_flags (sectp);
2359
2360 if ((aflag & SEC_HAS_CONTENTS) == 0)
2361 {
2362 }
2363 else if (elf_section_data (sectp)->this_hdr.sh_size
2364 > bfd_get_file_size (abfd))
2365 {
2366 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2367 warning (_("Discarding section %s which has a section size (%s"
2368 ") larger than the file size [in module %s]"),
2369 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2370 bfd_get_filename (abfd));
2371 }
2372 else if (section_is_p (sectp->name, &names.info))
2373 {
2374 this->info.s.section = sectp;
2375 this->info.size = bfd_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.abbrev))
2378 {
2379 this->abbrev.s.section = sectp;
2380 this->abbrev.size = bfd_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.line))
2383 {
2384 this->line.s.section = sectp;
2385 this->line.size = bfd_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.loc))
2388 {
2389 this->loc.s.section = sectp;
2390 this->loc.size = bfd_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.loclists))
2393 {
2394 this->loclists.s.section = sectp;
2395 this->loclists.size = bfd_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.macinfo))
2398 {
2399 this->macinfo.s.section = sectp;
2400 this->macinfo.size = bfd_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.macro))
2403 {
2404 this->macro.s.section = sectp;
2405 this->macro.size = bfd_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.str))
2408 {
2409 this->str.s.section = sectp;
2410 this->str.size = bfd_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.line_str))
2413 {
2414 this->line_str.s.section = sectp;
2415 this->line_str.size = bfd_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.addr))
2418 {
2419 this->addr.s.section = sectp;
2420 this->addr.size = bfd_section_size (sectp);
2421 }
2422 else if (section_is_p (sectp->name, &names.frame))
2423 {
2424 this->frame.s.section = sectp;
2425 this->frame.size = bfd_section_size (sectp);
2426 }
2427 else if (section_is_p (sectp->name, &names.eh_frame))
2428 {
2429 this->eh_frame.s.section = sectp;
2430 this->eh_frame.size = bfd_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.ranges))
2433 {
2434 this->ranges.s.section = sectp;
2435 this->ranges.size = bfd_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &names.rnglists))
2438 {
2439 this->rnglists.s.section = sectp;
2440 this->rnglists.size = bfd_section_size (sectp);
2441 }
2442 else if (section_is_p (sectp->name, &names.types))
2443 {
2444 struct dwarf2_section_info type_section;
2445
2446 memset (&type_section, 0, sizeof (type_section));
2447 type_section.s.section = sectp;
2448 type_section.size = bfd_section_size (sectp);
2449
2450 this->types.push_back (type_section);
2451 }
2452 else if (section_is_p (sectp->name, &names.gdb_index))
2453 {
2454 this->gdb_index.s.section = sectp;
2455 this->gdb_index.size = bfd_section_size (sectp);
2456 }
2457 else if (section_is_p (sectp->name, &names.debug_names))
2458 {
2459 this->debug_names.s.section = sectp;
2460 this->debug_names.size = bfd_section_size (sectp);
2461 }
2462 else if (section_is_p (sectp->name, &names.debug_aranges))
2463 {
2464 this->debug_aranges.s.section = sectp;
2465 this->debug_aranges.size = bfd_section_size (sectp);
2466 }
2467
2468 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2469 && bfd_section_vma (sectp) == 0)
2470 this->has_section_at_zero = true;
2471 }
2472
2473 /* A helper function that decides whether a section is empty,
2474 or not present. */
2475
2476 static int
2477 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2478 {
2479 if (section->is_virtual)
2480 return section->size == 0;
2481 return section->s.section == NULL || section->size == 0;
2482 }
2483
2484 /* See dwarf2read.h. */
2485
2486 void
2487 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2488 {
2489 asection *sectp;
2490 bfd *abfd;
2491 gdb_byte *buf, *retbuf;
2492
2493 if (info->readin)
2494 return;
2495 info->buffer = NULL;
2496 info->readin = true;
2497
2498 if (dwarf2_section_empty_p (info))
2499 return;
2500
2501 sectp = get_section_bfd_section (info);
2502
2503 /* If this is a virtual section we need to read in the real one first. */
2504 if (info->is_virtual)
2505 {
2506 struct dwarf2_section_info *containing_section =
2507 get_containing_section (info);
2508
2509 gdb_assert (sectp != NULL);
2510 if ((sectp->flags & SEC_RELOC) != 0)
2511 {
2512 error (_("Dwarf Error: DWP format V2 with relocations is not"
2513 " supported in section %s [in module %s]"),
2514 get_section_name (info), get_section_file_name (info));
2515 }
2516 dwarf2_read_section (objfile, containing_section);
2517 /* Other code should have already caught virtual sections that don't
2518 fit. */
2519 gdb_assert (info->virtual_offset + info->size
2520 <= containing_section->size);
2521 /* If the real section is empty or there was a problem reading the
2522 section we shouldn't get here. */
2523 gdb_assert (containing_section->buffer != NULL);
2524 info->buffer = containing_section->buffer + info->virtual_offset;
2525 return;
2526 }
2527
2528 /* If the section has relocations, we must read it ourselves.
2529 Otherwise we attach it to the BFD. */
2530 if ((sectp->flags & SEC_RELOC) == 0)
2531 {
2532 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2533 return;
2534 }
2535
2536 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2537 info->buffer = buf;
2538
2539 /* When debugging .o files, we may need to apply relocations; see
2540 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2541 We never compress sections in .o files, so we only need to
2542 try this when the section is not compressed. */
2543 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2544 if (retbuf != NULL)
2545 {
2546 info->buffer = retbuf;
2547 return;
2548 }
2549
2550 abfd = get_section_bfd_owner (info);
2551 gdb_assert (abfd != NULL);
2552
2553 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2554 || bfd_bread (buf, info->size, abfd) != info->size)
2555 {
2556 error (_("Dwarf Error: Can't read DWARF data"
2557 " in section %s [in module %s]"),
2558 bfd_section_name (sectp), bfd_get_filename (abfd));
2559 }
2560 }
2561
2562 /* A helper function that returns the size of a section in a safe way.
2563 If you are positive that the section has been read before using the
2564 size, then it is safe to refer to the dwarf2_section_info object's
2565 "size" field directly. In other cases, you must call this
2566 function, because for compressed sections the size field is not set
2567 correctly until the section has been read. */
2568
2569 static bfd_size_type
2570 dwarf2_section_size (struct objfile *objfile,
2571 struct dwarf2_section_info *info)
2572 {
2573 if (!info->readin)
2574 dwarf2_read_section (objfile, info);
2575 return info->size;
2576 }
2577
2578 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2579 SECTION_NAME. */
2580
2581 void
2582 dwarf2_get_section_info (struct objfile *objfile,
2583 enum dwarf2_section_enum sect,
2584 asection **sectp, const gdb_byte **bufp,
2585 bfd_size_type *sizep)
2586 {
2587 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2588 struct dwarf2_section_info *info;
2589
2590 /* We may see an objfile without any DWARF, in which case we just
2591 return nothing. */
2592 if (data == NULL)
2593 {
2594 *sectp = NULL;
2595 *bufp = NULL;
2596 *sizep = 0;
2597 return;
2598 }
2599 switch (sect)
2600 {
2601 case DWARF2_DEBUG_FRAME:
2602 info = &data->frame;
2603 break;
2604 case DWARF2_EH_FRAME:
2605 info = &data->eh_frame;
2606 break;
2607 default:
2608 gdb_assert_not_reached ("unexpected section");
2609 }
2610
2611 dwarf2_read_section (objfile, info);
2612
2613 *sectp = get_section_bfd_section (info);
2614 *bufp = info->buffer;
2615 *sizep = info->size;
2616 }
2617
2618 /* A helper function to find the sections for a .dwz file. */
2619
2620 static void
2621 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2622 {
2623 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2624
2625 /* Note that we only support the standard ELF names, because .dwz
2626 is ELF-only (at the time of writing). */
2627 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2628 {
2629 dwz_file->abbrev.s.section = sectp;
2630 dwz_file->abbrev.size = bfd_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2633 {
2634 dwz_file->info.s.section = sectp;
2635 dwz_file->info.size = bfd_section_size (sectp);
2636 }
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2638 {
2639 dwz_file->str.s.section = sectp;
2640 dwz_file->str.size = bfd_section_size (sectp);
2641 }
2642 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2643 {
2644 dwz_file->line.s.section = sectp;
2645 dwz_file->line.size = bfd_section_size (sectp);
2646 }
2647 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2648 {
2649 dwz_file->macro.s.section = sectp;
2650 dwz_file->macro.size = bfd_section_size (sectp);
2651 }
2652 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2653 {
2654 dwz_file->gdb_index.s.section = sectp;
2655 dwz_file->gdb_index.size = bfd_section_size (sectp);
2656 }
2657 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2658 {
2659 dwz_file->debug_names.s.section = sectp;
2660 dwz_file->debug_names.size = bfd_section_size (sectp);
2661 }
2662 }
2663
2664 /* See dwarf2read.h. */
2665
2666 struct dwz_file *
2667 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2668 {
2669 const char *filename;
2670 bfd_size_type buildid_len_arg;
2671 size_t buildid_len;
2672 bfd_byte *buildid;
2673
2674 if (dwarf2_per_objfile->dwz_file != NULL)
2675 return dwarf2_per_objfile->dwz_file.get ();
2676
2677 bfd_set_error (bfd_error_no_error);
2678 gdb::unique_xmalloc_ptr<char> data
2679 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2680 &buildid_len_arg, &buildid));
2681 if (data == NULL)
2682 {
2683 if (bfd_get_error () == bfd_error_no_error)
2684 return NULL;
2685 error (_("could not read '.gnu_debugaltlink' section: %s"),
2686 bfd_errmsg (bfd_get_error ()));
2687 }
2688
2689 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2690
2691 buildid_len = (size_t) buildid_len_arg;
2692
2693 filename = data.get ();
2694
2695 std::string abs_storage;
2696 if (!IS_ABSOLUTE_PATH (filename))
2697 {
2698 gdb::unique_xmalloc_ptr<char> abs
2699 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2700
2701 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2702 filename = abs_storage.c_str ();
2703 }
2704
2705 /* First try the file name given in the section. If that doesn't
2706 work, try to use the build-id instead. */
2707 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2708 if (dwz_bfd != NULL)
2709 {
2710 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2711 dwz_bfd.reset (nullptr);
2712 }
2713
2714 if (dwz_bfd == NULL)
2715 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2716
2717 if (dwz_bfd == NULL)
2718 error (_("could not find '.gnu_debugaltlink' file for %s"),
2719 objfile_name (dwarf2_per_objfile->objfile));
2720
2721 std::unique_ptr<struct dwz_file> result
2722 (new struct dwz_file (std::move (dwz_bfd)));
2723
2724 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2725 result.get ());
2726
2727 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2728 result->dwz_bfd.get ());
2729 dwarf2_per_objfile->dwz_file = std::move (result);
2730 return dwarf2_per_objfile->dwz_file.get ();
2731 }
2732 \f
2733 /* DWARF quick_symbols_functions support. */
2734
2735 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2736 unique line tables, so we maintain a separate table of all .debug_line
2737 derived entries to support the sharing.
2738 All the quick functions need is the list of file names. We discard the
2739 line_header when we're done and don't need to record it here. */
2740 struct quick_file_names
2741 {
2742 /* The data used to construct the hash key. */
2743 struct stmt_list_hash hash;
2744
2745 /* The number of entries in file_names, real_names. */
2746 unsigned int num_file_names;
2747
2748 /* The file names from the line table, after being run through
2749 file_full_name. */
2750 const char **file_names;
2751
2752 /* The file names from the line table after being run through
2753 gdb_realpath. These are computed lazily. */
2754 const char **real_names;
2755 };
2756
2757 /* When using the index (and thus not using psymtabs), each CU has an
2758 object of this type. This is used to hold information needed by
2759 the various "quick" methods. */
2760 struct dwarf2_per_cu_quick_data
2761 {
2762 /* The file table. This can be NULL if there was no file table
2763 or it's currently not read in.
2764 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2765 struct quick_file_names *file_names;
2766
2767 /* The corresponding symbol table. This is NULL if symbols for this
2768 CU have not yet been read. */
2769 struct compunit_symtab *compunit_symtab;
2770
2771 /* A temporary mark bit used when iterating over all CUs in
2772 expand_symtabs_matching. */
2773 unsigned int mark : 1;
2774
2775 /* True if we've tried to read the file table and found there isn't one.
2776 There will be no point in trying to read it again next time. */
2777 unsigned int no_file_data : 1;
2778 };
2779
2780 /* Utility hash function for a stmt_list_hash. */
2781
2782 static hashval_t
2783 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2784 {
2785 hashval_t v = 0;
2786
2787 if (stmt_list_hash->dwo_unit != NULL)
2788 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2789 v += to_underlying (stmt_list_hash->line_sect_off);
2790 return v;
2791 }
2792
2793 /* Utility equality function for a stmt_list_hash. */
2794
2795 static int
2796 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2797 const struct stmt_list_hash *rhs)
2798 {
2799 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2800 return 0;
2801 if (lhs->dwo_unit != NULL
2802 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2803 return 0;
2804
2805 return lhs->line_sect_off == rhs->line_sect_off;
2806 }
2807
2808 /* Hash function for a quick_file_names. */
2809
2810 static hashval_t
2811 hash_file_name_entry (const void *e)
2812 {
2813 const struct quick_file_names *file_data
2814 = (const struct quick_file_names *) e;
2815
2816 return hash_stmt_list_entry (&file_data->hash);
2817 }
2818
2819 /* Equality function for a quick_file_names. */
2820
2821 static int
2822 eq_file_name_entry (const void *a, const void *b)
2823 {
2824 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2825 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2826
2827 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2828 }
2829
2830 /* Delete function for a quick_file_names. */
2831
2832 static void
2833 delete_file_name_entry (void *e)
2834 {
2835 struct quick_file_names *file_data = (struct quick_file_names *) e;
2836 int i;
2837
2838 for (i = 0; i < file_data->num_file_names; ++i)
2839 {
2840 xfree ((void*) file_data->file_names[i]);
2841 if (file_data->real_names)
2842 xfree ((void*) file_data->real_names[i]);
2843 }
2844
2845 /* The space for the struct itself lives on objfile_obstack,
2846 so we don't free it here. */
2847 }
2848
2849 /* Create a quick_file_names hash table. */
2850
2851 static htab_t
2852 create_quick_file_names_table (unsigned int nr_initial_entries)
2853 {
2854 return htab_create_alloc (nr_initial_entries,
2855 hash_file_name_entry, eq_file_name_entry,
2856 delete_file_name_entry, xcalloc, xfree);
2857 }
2858
2859 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2860 have to be created afterwards. You should call age_cached_comp_units after
2861 processing PER_CU->CU. dw2_setup must have been already called. */
2862
2863 static void
2864 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2865 {
2866 if (per_cu->is_debug_types)
2867 load_full_type_unit (per_cu);
2868 else
2869 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2870
2871 if (per_cu->cu == NULL)
2872 return; /* Dummy CU. */
2873
2874 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2875 }
2876
2877 /* Read in the symbols for PER_CU. */
2878
2879 static void
2880 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2881 {
2882 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2883
2884 /* Skip type_unit_groups, reading the type units they contain
2885 is handled elsewhere. */
2886 if (IS_TYPE_UNIT_GROUP (per_cu))
2887 return;
2888
2889 /* The destructor of dwarf2_queue_guard frees any entries left on
2890 the queue. After this point we're guaranteed to leave this function
2891 with the dwarf queue empty. */
2892 dwarf2_queue_guard q_guard;
2893
2894 if (dwarf2_per_objfile->using_index
2895 ? per_cu->v.quick->compunit_symtab == NULL
2896 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2897 {
2898 queue_comp_unit (per_cu, language_minimal);
2899 load_cu (per_cu, skip_partial);
2900
2901 /* If we just loaded a CU from a DWO, and we're working with an index
2902 that may badly handle TUs, load all the TUs in that DWO as well.
2903 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2904 if (!per_cu->is_debug_types
2905 && per_cu->cu != NULL
2906 && per_cu->cu->dwo_unit != NULL
2907 && dwarf2_per_objfile->index_table != NULL
2908 && dwarf2_per_objfile->index_table->version <= 7
2909 /* DWP files aren't supported yet. */
2910 && get_dwp_file (dwarf2_per_objfile) == NULL)
2911 queue_and_load_all_dwo_tus (per_cu);
2912 }
2913
2914 process_queue (dwarf2_per_objfile);
2915
2916 /* Age the cache, releasing compilation units that have not
2917 been used recently. */
2918 age_cached_comp_units (dwarf2_per_objfile);
2919 }
2920
2921 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2922 the objfile from which this CU came. Returns the resulting symbol
2923 table. */
2924
2925 static struct compunit_symtab *
2926 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2927 {
2928 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2929
2930 gdb_assert (dwarf2_per_objfile->using_index);
2931 if (!per_cu->v.quick->compunit_symtab)
2932 {
2933 free_cached_comp_units freer (dwarf2_per_objfile);
2934 scoped_restore decrementer = increment_reading_symtab ();
2935 dw2_do_instantiate_symtab (per_cu, skip_partial);
2936 process_cu_includes (dwarf2_per_objfile);
2937 }
2938
2939 return per_cu->v.quick->compunit_symtab;
2940 }
2941
2942 /* See declaration. */
2943
2944 dwarf2_per_cu_data *
2945 dwarf2_per_objfile::get_cutu (int index)
2946 {
2947 if (index >= this->all_comp_units.size ())
2948 {
2949 index -= this->all_comp_units.size ();
2950 gdb_assert (index < this->all_type_units.size ());
2951 return &this->all_type_units[index]->per_cu;
2952 }
2953
2954 return this->all_comp_units[index];
2955 }
2956
2957 /* See declaration. */
2958
2959 dwarf2_per_cu_data *
2960 dwarf2_per_objfile::get_cu (int index)
2961 {
2962 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2963
2964 return this->all_comp_units[index];
2965 }
2966
2967 /* See declaration. */
2968
2969 signatured_type *
2970 dwarf2_per_objfile::get_tu (int index)
2971 {
2972 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2973
2974 return this->all_type_units[index];
2975 }
2976
2977 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2978 objfile_obstack, and constructed with the specified field
2979 values. */
2980
2981 static dwarf2_per_cu_data *
2982 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2983 struct dwarf2_section_info *section,
2984 int is_dwz,
2985 sect_offset sect_off, ULONGEST length)
2986 {
2987 struct objfile *objfile = dwarf2_per_objfile->objfile;
2988 dwarf2_per_cu_data *the_cu
2989 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2990 struct dwarf2_per_cu_data);
2991 the_cu->sect_off = sect_off;
2992 the_cu->length = length;
2993 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2994 the_cu->section = section;
2995 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2996 struct dwarf2_per_cu_quick_data);
2997 the_cu->is_dwz = is_dwz;
2998 return the_cu;
2999 }
3000
3001 /* A helper for create_cus_from_index that handles a given list of
3002 CUs. */
3003
3004 static void
3005 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3006 const gdb_byte *cu_list, offset_type n_elements,
3007 struct dwarf2_section_info *section,
3008 int is_dwz)
3009 {
3010 for (offset_type i = 0; i < n_elements; i += 2)
3011 {
3012 gdb_static_assert (sizeof (ULONGEST) >= 8);
3013
3014 sect_offset sect_off
3015 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3016 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3017 cu_list += 2 * 8;
3018
3019 dwarf2_per_cu_data *per_cu
3020 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3021 sect_off, length);
3022 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3023 }
3024 }
3025
3026 /* Read the CU list from the mapped index, and use it to create all
3027 the CU objects for this objfile. */
3028
3029 static void
3030 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3031 const gdb_byte *cu_list, offset_type cu_list_elements,
3032 const gdb_byte *dwz_list, offset_type dwz_elements)
3033 {
3034 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3035 dwarf2_per_objfile->all_comp_units.reserve
3036 ((cu_list_elements + dwz_elements) / 2);
3037
3038 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3039 &dwarf2_per_objfile->info, 0);
3040
3041 if (dwz_elements == 0)
3042 return;
3043
3044 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3045 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3046 &dwz->info, 1);
3047 }
3048
3049 /* Create the signatured type hash table from the index. */
3050
3051 static void
3052 create_signatured_type_table_from_index
3053 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3054 struct dwarf2_section_info *section,
3055 const gdb_byte *bytes,
3056 offset_type elements)
3057 {
3058 struct objfile *objfile = dwarf2_per_objfile->objfile;
3059
3060 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3061 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3062
3063 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3064
3065 for (offset_type i = 0; i < elements; i += 3)
3066 {
3067 struct signatured_type *sig_type;
3068 ULONGEST signature;
3069 void **slot;
3070 cu_offset type_offset_in_tu;
3071
3072 gdb_static_assert (sizeof (ULONGEST) >= 8);
3073 sect_offset sect_off
3074 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3075 type_offset_in_tu
3076 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3077 BFD_ENDIAN_LITTLE);
3078 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3079 bytes += 3 * 8;
3080
3081 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3082 struct signatured_type);
3083 sig_type->signature = signature;
3084 sig_type->type_offset_in_tu = type_offset_in_tu;
3085 sig_type->per_cu.is_debug_types = 1;
3086 sig_type->per_cu.section = section;
3087 sig_type->per_cu.sect_off = sect_off;
3088 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3089 sig_type->per_cu.v.quick
3090 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct dwarf2_per_cu_quick_data);
3092
3093 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3094 *slot = sig_type;
3095
3096 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3097 }
3098
3099 dwarf2_per_objfile->signatured_types = sig_types_hash;
3100 }
3101
3102 /* Create the signatured type hash table from .debug_names. */
3103
3104 static void
3105 create_signatured_type_table_from_debug_names
3106 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3107 const mapped_debug_names &map,
3108 struct dwarf2_section_info *section,
3109 struct dwarf2_section_info *abbrev_section)
3110 {
3111 struct objfile *objfile = dwarf2_per_objfile->objfile;
3112
3113 dwarf2_read_section (objfile, section);
3114 dwarf2_read_section (objfile, abbrev_section);
3115
3116 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3117 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3118
3119 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3120
3121 for (uint32_t i = 0; i < map.tu_count; ++i)
3122 {
3123 struct signatured_type *sig_type;
3124 void **slot;
3125
3126 sect_offset sect_off
3127 = (sect_offset) (extract_unsigned_integer
3128 (map.tu_table_reordered + i * map.offset_size,
3129 map.offset_size,
3130 map.dwarf5_byte_order));
3131
3132 comp_unit_head cu_header;
3133 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3134 abbrev_section,
3135 section->buffer + to_underlying (sect_off),
3136 rcuh_kind::TYPE);
3137
3138 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3139 struct signatured_type);
3140 sig_type->signature = cu_header.signature;
3141 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3142 sig_type->per_cu.is_debug_types = 1;
3143 sig_type->per_cu.section = section;
3144 sig_type->per_cu.sect_off = sect_off;
3145 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3146 sig_type->per_cu.v.quick
3147 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct dwarf2_per_cu_quick_data);
3149
3150 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3151 *slot = sig_type;
3152
3153 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3154 }
3155
3156 dwarf2_per_objfile->signatured_types = sig_types_hash;
3157 }
3158
3159 /* Read the address map data from the mapped index, and use it to
3160 populate the objfile's psymtabs_addrmap. */
3161
3162 static void
3163 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3164 struct mapped_index *index)
3165 {
3166 struct objfile *objfile = dwarf2_per_objfile->objfile;
3167 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3168 const gdb_byte *iter, *end;
3169 struct addrmap *mutable_map;
3170 CORE_ADDR baseaddr;
3171
3172 auto_obstack temp_obstack;
3173
3174 mutable_map = addrmap_create_mutable (&temp_obstack);
3175
3176 iter = index->address_table.data ();
3177 end = iter + index->address_table.size ();
3178
3179 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3180
3181 while (iter < end)
3182 {
3183 ULONGEST hi, lo, cu_index;
3184 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3185 iter += 8;
3186 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3187 iter += 8;
3188 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3189 iter += 4;
3190
3191 if (lo > hi)
3192 {
3193 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3194 hex_string (lo), hex_string (hi));
3195 continue;
3196 }
3197
3198 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3199 {
3200 complaint (_(".gdb_index address table has invalid CU number %u"),
3201 (unsigned) cu_index);
3202 continue;
3203 }
3204
3205 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3206 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3207 addrmap_set_empty (mutable_map, lo, hi - 1,
3208 dwarf2_per_objfile->get_cu (cu_index));
3209 }
3210
3211 objfile->partial_symtabs->psymtabs_addrmap
3212 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3213 }
3214
3215 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3216 populate the objfile's psymtabs_addrmap. */
3217
3218 static void
3219 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3220 struct dwarf2_section_info *section)
3221 {
3222 struct objfile *objfile = dwarf2_per_objfile->objfile;
3223 bfd *abfd = objfile->obfd;
3224 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3225 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3226 SECT_OFF_TEXT (objfile));
3227
3228 auto_obstack temp_obstack;
3229 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3230
3231 std::unordered_map<sect_offset,
3232 dwarf2_per_cu_data *,
3233 gdb::hash_enum<sect_offset>>
3234 debug_info_offset_to_per_cu;
3235 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3236 {
3237 const auto insertpair
3238 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3239 if (!insertpair.second)
3240 {
3241 warning (_("Section .debug_aranges in %s has duplicate "
3242 "debug_info_offset %s, ignoring .debug_aranges."),
3243 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3244 return;
3245 }
3246 }
3247
3248 dwarf2_read_section (objfile, section);
3249
3250 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3251
3252 const gdb_byte *addr = section->buffer;
3253
3254 while (addr < section->buffer + section->size)
3255 {
3256 const gdb_byte *const entry_addr = addr;
3257 unsigned int bytes_read;
3258
3259 const LONGEST entry_length = read_initial_length (abfd, addr,
3260 &bytes_read);
3261 addr += bytes_read;
3262
3263 const gdb_byte *const entry_end = addr + entry_length;
3264 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3265 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3266 if (addr + entry_length > section->buffer + section->size)
3267 {
3268 warning (_("Section .debug_aranges in %s entry at offset %s "
3269 "length %s exceeds section length %s, "
3270 "ignoring .debug_aranges."),
3271 objfile_name (objfile),
3272 plongest (entry_addr - section->buffer),
3273 plongest (bytes_read + entry_length),
3274 pulongest (section->size));
3275 return;
3276 }
3277
3278 /* The version number. */
3279 const uint16_t version = read_2_bytes (abfd, addr);
3280 addr += 2;
3281 if (version != 2)
3282 {
3283 warning (_("Section .debug_aranges in %s entry at offset %s "
3284 "has unsupported version %d, ignoring .debug_aranges."),
3285 objfile_name (objfile),
3286 plongest (entry_addr - section->buffer), version);
3287 return;
3288 }
3289
3290 const uint64_t debug_info_offset
3291 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3292 addr += offset_size;
3293 const auto per_cu_it
3294 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3295 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3296 {
3297 warning (_("Section .debug_aranges in %s entry at offset %s "
3298 "debug_info_offset %s does not exists, "
3299 "ignoring .debug_aranges."),
3300 objfile_name (objfile),
3301 plongest (entry_addr - section->buffer),
3302 pulongest (debug_info_offset));
3303 return;
3304 }
3305 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3306
3307 const uint8_t address_size = *addr++;
3308 if (address_size < 1 || address_size > 8)
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %s "
3311 "address_size %u is invalid, ignoring .debug_aranges."),
3312 objfile_name (objfile),
3313 plongest (entry_addr - section->buffer), address_size);
3314 return;
3315 }
3316
3317 const uint8_t segment_selector_size = *addr++;
3318 if (segment_selector_size != 0)
3319 {
3320 warning (_("Section .debug_aranges in %s entry at offset %s "
3321 "segment_selector_size %u is not supported, "
3322 "ignoring .debug_aranges."),
3323 objfile_name (objfile),
3324 plongest (entry_addr - section->buffer),
3325 segment_selector_size);
3326 return;
3327 }
3328
3329 /* Must pad to an alignment boundary that is twice the address
3330 size. It is undocumented by the DWARF standard but GCC does
3331 use it. */
3332 for (size_t padding = ((-(addr - section->buffer))
3333 & (2 * address_size - 1));
3334 padding > 0; padding--)
3335 if (*addr++ != 0)
3336 {
3337 warning (_("Section .debug_aranges in %s entry at offset %s "
3338 "padding is not zero, ignoring .debug_aranges."),
3339 objfile_name (objfile),
3340 plongest (entry_addr - section->buffer));
3341 return;
3342 }
3343
3344 for (;;)
3345 {
3346 if (addr + 2 * address_size > entry_end)
3347 {
3348 warning (_("Section .debug_aranges in %s entry at offset %s "
3349 "address list is not properly terminated, "
3350 "ignoring .debug_aranges."),
3351 objfile_name (objfile),
3352 plongest (entry_addr - section->buffer));
3353 return;
3354 }
3355 ULONGEST start = extract_unsigned_integer (addr, address_size,
3356 dwarf5_byte_order);
3357 addr += address_size;
3358 ULONGEST length = extract_unsigned_integer (addr, address_size,
3359 dwarf5_byte_order);
3360 addr += address_size;
3361 if (start == 0 && length == 0)
3362 break;
3363 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3364 {
3365 /* Symbol was eliminated due to a COMDAT group. */
3366 continue;
3367 }
3368 ULONGEST end = start + length;
3369 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3370 - baseaddr);
3371 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3372 - baseaddr);
3373 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3374 }
3375 }
3376
3377 objfile->partial_symtabs->psymtabs_addrmap
3378 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3379 }
3380
3381 /* Find a slot in the mapped index INDEX for the object named NAME.
3382 If NAME is found, set *VEC_OUT to point to the CU vector in the
3383 constant pool and return true. If NAME cannot be found, return
3384 false. */
3385
3386 static bool
3387 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3388 offset_type **vec_out)
3389 {
3390 offset_type hash;
3391 offset_type slot, step;
3392 int (*cmp) (const char *, const char *);
3393
3394 gdb::unique_xmalloc_ptr<char> without_params;
3395 if (current_language->la_language == language_cplus
3396 || current_language->la_language == language_fortran
3397 || current_language->la_language == language_d)
3398 {
3399 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3400 not contain any. */
3401
3402 if (strchr (name, '(') != NULL)
3403 {
3404 without_params = cp_remove_params (name);
3405
3406 if (without_params != NULL)
3407 name = without_params.get ();
3408 }
3409 }
3410
3411 /* Index version 4 did not support case insensitive searches. But the
3412 indices for case insensitive languages are built in lowercase, therefore
3413 simulate our NAME being searched is also lowercased. */
3414 hash = mapped_index_string_hash ((index->version == 4
3415 && case_sensitivity == case_sensitive_off
3416 ? 5 : index->version),
3417 name);
3418
3419 slot = hash & (index->symbol_table.size () - 1);
3420 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3421 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3422
3423 for (;;)
3424 {
3425 const char *str;
3426
3427 const auto &bucket = index->symbol_table[slot];
3428 if (bucket.name == 0 && bucket.vec == 0)
3429 return false;
3430
3431 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3432 if (!cmp (name, str))
3433 {
3434 *vec_out = (offset_type *) (index->constant_pool
3435 + MAYBE_SWAP (bucket.vec));
3436 return true;
3437 }
3438
3439 slot = (slot + step) & (index->symbol_table.size () - 1);
3440 }
3441 }
3442
3443 /* A helper function that reads the .gdb_index from BUFFER and fills
3444 in MAP. FILENAME is the name of the file containing the data;
3445 it is used for error reporting. DEPRECATED_OK is true if it is
3446 ok to use deprecated sections.
3447
3448 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3449 out parameters that are filled in with information about the CU and
3450 TU lists in the section.
3451
3452 Returns true if all went well, false otherwise. */
3453
3454 static bool
3455 read_gdb_index_from_buffer (struct objfile *objfile,
3456 const char *filename,
3457 bool deprecated_ok,
3458 gdb::array_view<const gdb_byte> buffer,
3459 struct mapped_index *map,
3460 const gdb_byte **cu_list,
3461 offset_type *cu_list_elements,
3462 const gdb_byte **types_list,
3463 offset_type *types_list_elements)
3464 {
3465 const gdb_byte *addr = &buffer[0];
3466
3467 /* Version check. */
3468 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3469 /* Versions earlier than 3 emitted every copy of a psymbol. This
3470 causes the index to behave very poorly for certain requests. Version 3
3471 contained incomplete addrmap. So, it seems better to just ignore such
3472 indices. */
3473 if (version < 4)
3474 {
3475 static int warning_printed = 0;
3476 if (!warning_printed)
3477 {
3478 warning (_("Skipping obsolete .gdb_index section in %s."),
3479 filename);
3480 warning_printed = 1;
3481 }
3482 return 0;
3483 }
3484 /* Index version 4 uses a different hash function than index version
3485 5 and later.
3486
3487 Versions earlier than 6 did not emit psymbols for inlined
3488 functions. Using these files will cause GDB not to be able to
3489 set breakpoints on inlined functions by name, so we ignore these
3490 indices unless the user has done
3491 "set use-deprecated-index-sections on". */
3492 if (version < 6 && !deprecated_ok)
3493 {
3494 static int warning_printed = 0;
3495 if (!warning_printed)
3496 {
3497 warning (_("\
3498 Skipping deprecated .gdb_index section in %s.\n\
3499 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3500 to use the section anyway."),
3501 filename);
3502 warning_printed = 1;
3503 }
3504 return 0;
3505 }
3506 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3507 of the TU (for symbols coming from TUs),
3508 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3509 Plus gold-generated indices can have duplicate entries for global symbols,
3510 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3511 These are just performance bugs, and we can't distinguish gdb-generated
3512 indices from gold-generated ones, so issue no warning here. */
3513
3514 /* Indexes with higher version than the one supported by GDB may be no
3515 longer backward compatible. */
3516 if (version > 8)
3517 return 0;
3518
3519 map->version = version;
3520
3521 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3522
3523 int i = 0;
3524 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3525 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3526 / 8);
3527 ++i;
3528
3529 *types_list = addr + MAYBE_SWAP (metadata[i]);
3530 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3531 - MAYBE_SWAP (metadata[i]))
3532 / 8);
3533 ++i;
3534
3535 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3536 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3537 map->address_table
3538 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3539 ++i;
3540
3541 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3542 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3543 map->symbol_table
3544 = gdb::array_view<mapped_index::symbol_table_slot>
3545 ((mapped_index::symbol_table_slot *) symbol_table,
3546 (mapped_index::symbol_table_slot *) symbol_table_end);
3547
3548 ++i;
3549 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3550
3551 return 1;
3552 }
3553
3554 /* Callback types for dwarf2_read_gdb_index. */
3555
3556 typedef gdb::function_view
3557 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3558 get_gdb_index_contents_ftype;
3559 typedef gdb::function_view
3560 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3561 get_gdb_index_contents_dwz_ftype;
3562
3563 /* Read .gdb_index. If everything went ok, initialize the "quick"
3564 elements of all the CUs and return 1. Otherwise, return 0. */
3565
3566 static int
3567 dwarf2_read_gdb_index
3568 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3569 get_gdb_index_contents_ftype get_gdb_index_contents,
3570 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3571 {
3572 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3573 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3574 struct dwz_file *dwz;
3575 struct objfile *objfile = dwarf2_per_objfile->objfile;
3576
3577 gdb::array_view<const gdb_byte> main_index_contents
3578 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3579
3580 if (main_index_contents.empty ())
3581 return 0;
3582
3583 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3584 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3585 use_deprecated_index_sections,
3586 main_index_contents, map.get (), &cu_list,
3587 &cu_list_elements, &types_list,
3588 &types_list_elements))
3589 return 0;
3590
3591 /* Don't use the index if it's empty. */
3592 if (map->symbol_table.empty ())
3593 return 0;
3594
3595 /* If there is a .dwz file, read it so we can get its CU list as
3596 well. */
3597 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3598 if (dwz != NULL)
3599 {
3600 struct mapped_index dwz_map;
3601 const gdb_byte *dwz_types_ignore;
3602 offset_type dwz_types_elements_ignore;
3603
3604 gdb::array_view<const gdb_byte> dwz_index_content
3605 = get_gdb_index_contents_dwz (objfile, dwz);
3606
3607 if (dwz_index_content.empty ())
3608 return 0;
3609
3610 if (!read_gdb_index_from_buffer (objfile,
3611 bfd_get_filename (dwz->dwz_bfd.get ()),
3612 1, dwz_index_content, &dwz_map,
3613 &dwz_list, &dwz_list_elements,
3614 &dwz_types_ignore,
3615 &dwz_types_elements_ignore))
3616 {
3617 warning (_("could not read '.gdb_index' section from %s; skipping"),
3618 bfd_get_filename (dwz->dwz_bfd.get ()));
3619 return 0;
3620 }
3621 }
3622
3623 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3624 dwz_list, dwz_list_elements);
3625
3626 if (types_list_elements)
3627 {
3628 /* We can only handle a single .debug_types when we have an
3629 index. */
3630 if (dwarf2_per_objfile->types.size () != 1)
3631 return 0;
3632
3633 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3634
3635 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3636 types_list, types_list_elements);
3637 }
3638
3639 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3640
3641 dwarf2_per_objfile->index_table = std::move (map);
3642 dwarf2_per_objfile->using_index = 1;
3643 dwarf2_per_objfile->quick_file_names_table =
3644 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3645
3646 return 1;
3647 }
3648
3649 /* die_reader_func for dw2_get_file_names. */
3650
3651 static void
3652 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3653 const gdb_byte *info_ptr,
3654 struct die_info *comp_unit_die,
3655 int has_children,
3656 void *data)
3657 {
3658 struct dwarf2_cu *cu = reader->cu;
3659 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3660 struct dwarf2_per_objfile *dwarf2_per_objfile
3661 = cu->per_cu->dwarf2_per_objfile;
3662 struct objfile *objfile = dwarf2_per_objfile->objfile;
3663 struct dwarf2_per_cu_data *lh_cu;
3664 struct attribute *attr;
3665 void **slot;
3666 struct quick_file_names *qfn;
3667
3668 gdb_assert (! this_cu->is_debug_types);
3669
3670 /* Our callers never want to match partial units -- instead they
3671 will match the enclosing full CU. */
3672 if (comp_unit_die->tag == DW_TAG_partial_unit)
3673 {
3674 this_cu->v.quick->no_file_data = 1;
3675 return;
3676 }
3677
3678 lh_cu = this_cu;
3679 slot = NULL;
3680
3681 line_header_up lh;
3682 sect_offset line_offset {};
3683
3684 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3685 if (attr)
3686 {
3687 struct quick_file_names find_entry;
3688
3689 line_offset = (sect_offset) DW_UNSND (attr);
3690
3691 /* We may have already read in this line header (TU line header sharing).
3692 If we have we're done. */
3693 find_entry.hash.dwo_unit = cu->dwo_unit;
3694 find_entry.hash.line_sect_off = line_offset;
3695 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3696 &find_entry, INSERT);
3697 if (*slot != NULL)
3698 {
3699 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3700 return;
3701 }
3702
3703 lh = dwarf_decode_line_header (line_offset, cu);
3704 }
3705 if (lh == NULL)
3706 {
3707 lh_cu->v.quick->no_file_data = 1;
3708 return;
3709 }
3710
3711 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3712 qfn->hash.dwo_unit = cu->dwo_unit;
3713 qfn->hash.line_sect_off = line_offset;
3714 gdb_assert (slot != NULL);
3715 *slot = qfn;
3716
3717 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3718
3719 int offset = 0;
3720 if (strcmp (fnd.name, "<unknown>") != 0)
3721 ++offset;
3722
3723 qfn->num_file_names = offset + lh->file_names_size ();
3724 qfn->file_names =
3725 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3726 if (offset != 0)
3727 qfn->file_names[0] = xstrdup (fnd.name);
3728 for (int i = 0; i < lh->file_names_size (); ++i)
3729 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3730 qfn->real_names = NULL;
3731
3732 lh_cu->v.quick->file_names = qfn;
3733 }
3734
3735 /* A helper for the "quick" functions which attempts to read the line
3736 table for THIS_CU. */
3737
3738 static struct quick_file_names *
3739 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3740 {
3741 /* This should never be called for TUs. */
3742 gdb_assert (! this_cu->is_debug_types);
3743 /* Nor type unit groups. */
3744 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3745
3746 if (this_cu->v.quick->file_names != NULL)
3747 return this_cu->v.quick->file_names;
3748 /* If we know there is no line data, no point in looking again. */
3749 if (this_cu->v.quick->no_file_data)
3750 return NULL;
3751
3752 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3753
3754 if (this_cu->v.quick->no_file_data)
3755 return NULL;
3756 return this_cu->v.quick->file_names;
3757 }
3758
3759 /* A helper for the "quick" functions which computes and caches the
3760 real path for a given file name from the line table. */
3761
3762 static const char *
3763 dw2_get_real_path (struct objfile *objfile,
3764 struct quick_file_names *qfn, int index)
3765 {
3766 if (qfn->real_names == NULL)
3767 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3768 qfn->num_file_names, const char *);
3769
3770 if (qfn->real_names[index] == NULL)
3771 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3772
3773 return qfn->real_names[index];
3774 }
3775
3776 static struct symtab *
3777 dw2_find_last_source_symtab (struct objfile *objfile)
3778 {
3779 struct dwarf2_per_objfile *dwarf2_per_objfile
3780 = get_dwarf2_per_objfile (objfile);
3781 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3782 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3783
3784 if (cust == NULL)
3785 return NULL;
3786
3787 return compunit_primary_filetab (cust);
3788 }
3789
3790 /* Traversal function for dw2_forget_cached_source_info. */
3791
3792 static int
3793 dw2_free_cached_file_names (void **slot, void *info)
3794 {
3795 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3796
3797 if (file_data->real_names)
3798 {
3799 int i;
3800
3801 for (i = 0; i < file_data->num_file_names; ++i)
3802 {
3803 xfree ((void*) file_data->real_names[i]);
3804 file_data->real_names[i] = NULL;
3805 }
3806 }
3807
3808 return 1;
3809 }
3810
3811 static void
3812 dw2_forget_cached_source_info (struct objfile *objfile)
3813 {
3814 struct dwarf2_per_objfile *dwarf2_per_objfile
3815 = get_dwarf2_per_objfile (objfile);
3816
3817 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3818 dw2_free_cached_file_names, NULL);
3819 }
3820
3821 /* Helper function for dw2_map_symtabs_matching_filename that expands
3822 the symtabs and calls the iterator. */
3823
3824 static int
3825 dw2_map_expand_apply (struct objfile *objfile,
3826 struct dwarf2_per_cu_data *per_cu,
3827 const char *name, const char *real_path,
3828 gdb::function_view<bool (symtab *)> callback)
3829 {
3830 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3831
3832 /* Don't visit already-expanded CUs. */
3833 if (per_cu->v.quick->compunit_symtab)
3834 return 0;
3835
3836 /* This may expand more than one symtab, and we want to iterate over
3837 all of them. */
3838 dw2_instantiate_symtab (per_cu, false);
3839
3840 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3841 last_made, callback);
3842 }
3843
3844 /* Implementation of the map_symtabs_matching_filename method. */
3845
3846 static bool
3847 dw2_map_symtabs_matching_filename
3848 (struct objfile *objfile, const char *name, const char *real_path,
3849 gdb::function_view<bool (symtab *)> callback)
3850 {
3851 const char *name_basename = lbasename (name);
3852 struct dwarf2_per_objfile *dwarf2_per_objfile
3853 = get_dwarf2_per_objfile (objfile);
3854
3855 /* The rule is CUs specify all the files, including those used by
3856 any TU, so there's no need to scan TUs here. */
3857
3858 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3859 {
3860 /* We only need to look at symtabs not already expanded. */
3861 if (per_cu->v.quick->compunit_symtab)
3862 continue;
3863
3864 quick_file_names *file_data = dw2_get_file_names (per_cu);
3865 if (file_data == NULL)
3866 continue;
3867
3868 for (int j = 0; j < file_data->num_file_names; ++j)
3869 {
3870 const char *this_name = file_data->file_names[j];
3871 const char *this_real_name;
3872
3873 if (compare_filenames_for_search (this_name, name))
3874 {
3875 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3876 callback))
3877 return true;
3878 continue;
3879 }
3880
3881 /* Before we invoke realpath, which can get expensive when many
3882 files are involved, do a quick comparison of the basenames. */
3883 if (! basenames_may_differ
3884 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3885 continue;
3886
3887 this_real_name = dw2_get_real_path (objfile, file_data, j);
3888 if (compare_filenames_for_search (this_real_name, name))
3889 {
3890 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3891 callback))
3892 return true;
3893 continue;
3894 }
3895
3896 if (real_path != NULL)
3897 {
3898 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3899 gdb_assert (IS_ABSOLUTE_PATH (name));
3900 if (this_real_name != NULL
3901 && FILENAME_CMP (real_path, this_real_name) == 0)
3902 {
3903 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3904 callback))
3905 return true;
3906 continue;
3907 }
3908 }
3909 }
3910 }
3911
3912 return false;
3913 }
3914
3915 /* Struct used to manage iterating over all CUs looking for a symbol. */
3916
3917 struct dw2_symtab_iterator
3918 {
3919 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3920 struct dwarf2_per_objfile *dwarf2_per_objfile;
3921 /* If set, only look for symbols that match that block. Valid values are
3922 GLOBAL_BLOCK and STATIC_BLOCK. */
3923 gdb::optional<block_enum> block_index;
3924 /* The kind of symbol we're looking for. */
3925 domain_enum domain;
3926 /* The list of CUs from the index entry of the symbol,
3927 or NULL if not found. */
3928 offset_type *vec;
3929 /* The next element in VEC to look at. */
3930 int next;
3931 /* The number of elements in VEC, or zero if there is no match. */
3932 int length;
3933 /* Have we seen a global version of the symbol?
3934 If so we can ignore all further global instances.
3935 This is to work around gold/15646, inefficient gold-generated
3936 indices. */
3937 int global_seen;
3938 };
3939
3940 /* Initialize the index symtab iterator ITER. */
3941
3942 static void
3943 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3944 struct dwarf2_per_objfile *dwarf2_per_objfile,
3945 gdb::optional<block_enum> block_index,
3946 domain_enum domain,
3947 const char *name)
3948 {
3949 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3950 iter->block_index = block_index;
3951 iter->domain = domain;
3952 iter->next = 0;
3953 iter->global_seen = 0;
3954
3955 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3956
3957 /* index is NULL if OBJF_READNOW. */
3958 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3959 iter->length = MAYBE_SWAP (*iter->vec);
3960 else
3961 {
3962 iter->vec = NULL;
3963 iter->length = 0;
3964 }
3965 }
3966
3967 /* Return the next matching CU or NULL if there are no more. */
3968
3969 static struct dwarf2_per_cu_data *
3970 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3971 {
3972 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3973
3974 for ( ; iter->next < iter->length; ++iter->next)
3975 {
3976 offset_type cu_index_and_attrs =
3977 MAYBE_SWAP (iter->vec[iter->next + 1]);
3978 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3979 gdb_index_symbol_kind symbol_kind =
3980 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3981 /* Only check the symbol attributes if they're present.
3982 Indices prior to version 7 don't record them,
3983 and indices >= 7 may elide them for certain symbols
3984 (gold does this). */
3985 int attrs_valid =
3986 (dwarf2_per_objfile->index_table->version >= 7
3987 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3988
3989 /* Don't crash on bad data. */
3990 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3991 + dwarf2_per_objfile->all_type_units.size ()))
3992 {
3993 complaint (_(".gdb_index entry has bad CU index"
3994 " [in module %s]"),
3995 objfile_name (dwarf2_per_objfile->objfile));
3996 continue;
3997 }
3998
3999 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4000
4001 /* Skip if already read in. */
4002 if (per_cu->v.quick->compunit_symtab)
4003 continue;
4004
4005 /* Check static vs global. */
4006 if (attrs_valid)
4007 {
4008 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4009
4010 if (iter->block_index.has_value ())
4011 {
4012 bool want_static = *iter->block_index == STATIC_BLOCK;
4013
4014 if (is_static != want_static)
4015 continue;
4016 }
4017
4018 /* Work around gold/15646. */
4019 if (!is_static && iter->global_seen)
4020 continue;
4021 if (!is_static)
4022 iter->global_seen = 1;
4023 }
4024
4025 /* Only check the symbol's kind if it has one. */
4026 if (attrs_valid)
4027 {
4028 switch (iter->domain)
4029 {
4030 case VAR_DOMAIN:
4031 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4032 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4033 /* Some types are also in VAR_DOMAIN. */
4034 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4035 continue;
4036 break;
4037 case STRUCT_DOMAIN:
4038 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4039 continue;
4040 break;
4041 case LABEL_DOMAIN:
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4043 continue;
4044 break;
4045 default:
4046 break;
4047 }
4048 }
4049
4050 ++iter->next;
4051 return per_cu;
4052 }
4053
4054 return NULL;
4055 }
4056
4057 static struct compunit_symtab *
4058 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
4059 const char *name, domain_enum domain)
4060 {
4061 struct compunit_symtab *stab_best = NULL;
4062 struct dwarf2_per_objfile *dwarf2_per_objfile
4063 = get_dwarf2_per_objfile (objfile);
4064
4065 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4066
4067 struct dw2_symtab_iterator iter;
4068 struct dwarf2_per_cu_data *per_cu;
4069
4070 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4071
4072 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4073 {
4074 struct symbol *sym, *with_opaque = NULL;
4075 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4076 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4077 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4078
4079 sym = block_find_symbol (block, name, domain,
4080 block_find_non_opaque_type_preferred,
4081 &with_opaque);
4082
4083 /* Some caution must be observed with overloaded functions
4084 and methods, since the index will not contain any overload
4085 information (but NAME might contain it). */
4086
4087 if (sym != NULL
4088 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4089 return stab;
4090 if (with_opaque != NULL
4091 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4092 stab_best = stab;
4093
4094 /* Keep looking through other CUs. */
4095 }
4096
4097 return stab_best;
4098 }
4099
4100 static void
4101 dw2_print_stats (struct objfile *objfile)
4102 {
4103 struct dwarf2_per_objfile *dwarf2_per_objfile
4104 = get_dwarf2_per_objfile (objfile);
4105 int total = (dwarf2_per_objfile->all_comp_units.size ()
4106 + dwarf2_per_objfile->all_type_units.size ());
4107 int count = 0;
4108
4109 for (int i = 0; i < total; ++i)
4110 {
4111 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4112
4113 if (!per_cu->v.quick->compunit_symtab)
4114 ++count;
4115 }
4116 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4117 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4118 }
4119
4120 /* This dumps minimal information about the index.
4121 It is called via "mt print objfiles".
4122 One use is to verify .gdb_index has been loaded by the
4123 gdb.dwarf2/gdb-index.exp testcase. */
4124
4125 static void
4126 dw2_dump (struct objfile *objfile)
4127 {
4128 struct dwarf2_per_objfile *dwarf2_per_objfile
4129 = get_dwarf2_per_objfile (objfile);
4130
4131 gdb_assert (dwarf2_per_objfile->using_index);
4132 printf_filtered (".gdb_index:");
4133 if (dwarf2_per_objfile->index_table != NULL)
4134 {
4135 printf_filtered (" version %d\n",
4136 dwarf2_per_objfile->index_table->version);
4137 }
4138 else
4139 printf_filtered (" faked for \"readnow\"\n");
4140 printf_filtered ("\n");
4141 }
4142
4143 static void
4144 dw2_expand_symtabs_for_function (struct objfile *objfile,
4145 const char *func_name)
4146 {
4147 struct dwarf2_per_objfile *dwarf2_per_objfile
4148 = get_dwarf2_per_objfile (objfile);
4149
4150 struct dw2_symtab_iterator iter;
4151 struct dwarf2_per_cu_data *per_cu;
4152
4153 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4154
4155 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4156 dw2_instantiate_symtab (per_cu, false);
4157
4158 }
4159
4160 static void
4161 dw2_expand_all_symtabs (struct objfile *objfile)
4162 {
4163 struct dwarf2_per_objfile *dwarf2_per_objfile
4164 = get_dwarf2_per_objfile (objfile);
4165 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4166 + dwarf2_per_objfile->all_type_units.size ());
4167
4168 for (int i = 0; i < total_units; ++i)
4169 {
4170 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4171
4172 /* We don't want to directly expand a partial CU, because if we
4173 read it with the wrong language, then assertion failures can
4174 be triggered later on. See PR symtab/23010. So, tell
4175 dw2_instantiate_symtab to skip partial CUs -- any important
4176 partial CU will be read via DW_TAG_imported_unit anyway. */
4177 dw2_instantiate_symtab (per_cu, true);
4178 }
4179 }
4180
4181 static void
4182 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4183 const char *fullname)
4184 {
4185 struct dwarf2_per_objfile *dwarf2_per_objfile
4186 = get_dwarf2_per_objfile (objfile);
4187
4188 /* We don't need to consider type units here.
4189 This is only called for examining code, e.g. expand_line_sal.
4190 There can be an order of magnitude (or more) more type units
4191 than comp units, and we avoid them if we can. */
4192
4193 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4194 {
4195 /* We only need to look at symtabs not already expanded. */
4196 if (per_cu->v.quick->compunit_symtab)
4197 continue;
4198
4199 quick_file_names *file_data = dw2_get_file_names (per_cu);
4200 if (file_data == NULL)
4201 continue;
4202
4203 for (int j = 0; j < file_data->num_file_names; ++j)
4204 {
4205 const char *this_fullname = file_data->file_names[j];
4206
4207 if (filename_cmp (this_fullname, fullname) == 0)
4208 {
4209 dw2_instantiate_symtab (per_cu, false);
4210 break;
4211 }
4212 }
4213 }
4214 }
4215
4216 static void
4217 dw2_map_matching_symbols
4218 (struct objfile *objfile,
4219 const lookup_name_info &name, domain_enum domain,
4220 int global,
4221 gdb::function_view<symbol_found_callback_ftype> callback,
4222 symbol_compare_ftype *ordered_compare)
4223 {
4224 /* Currently unimplemented; used for Ada. The function can be called if the
4225 current language is Ada for a non-Ada objfile using GNU index. As Ada
4226 does not look for non-Ada symbols this function should just return. */
4227 }
4228
4229 /* Starting from a search name, return the string that finds the upper
4230 bound of all strings that start with SEARCH_NAME in a sorted name
4231 list. Returns the empty string to indicate that the upper bound is
4232 the end of the list. */
4233
4234 static std::string
4235 make_sort_after_prefix_name (const char *search_name)
4236 {
4237 /* When looking to complete "func", we find the upper bound of all
4238 symbols that start with "func" by looking for where we'd insert
4239 the closest string that would follow "func" in lexicographical
4240 order. Usually, that's "func"-with-last-character-incremented,
4241 i.e. "fund". Mind non-ASCII characters, though. Usually those
4242 will be UTF-8 multi-byte sequences, but we can't be certain.
4243 Especially mind the 0xff character, which is a valid character in
4244 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4245 rule out compilers allowing it in identifiers. Note that
4246 conveniently, strcmp/strcasecmp are specified to compare
4247 characters interpreted as unsigned char. So what we do is treat
4248 the whole string as a base 256 number composed of a sequence of
4249 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4250 to 0, and carries 1 to the following more-significant position.
4251 If the very first character in SEARCH_NAME ends up incremented
4252 and carries/overflows, then the upper bound is the end of the
4253 list. The string after the empty string is also the empty
4254 string.
4255
4256 Some examples of this operation:
4257
4258 SEARCH_NAME => "+1" RESULT
4259
4260 "abc" => "abd"
4261 "ab\xff" => "ac"
4262 "\xff" "a" "\xff" => "\xff" "b"
4263 "\xff" => ""
4264 "\xff\xff" => ""
4265 "" => ""
4266
4267 Then, with these symbols for example:
4268
4269 func
4270 func1
4271 fund
4272
4273 completing "func" looks for symbols between "func" and
4274 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4275 which finds "func" and "func1", but not "fund".
4276
4277 And with:
4278
4279 funcÿ (Latin1 'ÿ' [0xff])
4280 funcÿ1
4281 fund
4282
4283 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4284 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4285
4286 And with:
4287
4288 ÿÿ (Latin1 'ÿ' [0xff])
4289 ÿÿ1
4290
4291 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4292 the end of the list.
4293 */
4294 std::string after = search_name;
4295 while (!after.empty () && (unsigned char) after.back () == 0xff)
4296 after.pop_back ();
4297 if (!after.empty ())
4298 after.back () = (unsigned char) after.back () + 1;
4299 return after;
4300 }
4301
4302 /* See declaration. */
4303
4304 std::pair<std::vector<name_component>::const_iterator,
4305 std::vector<name_component>::const_iterator>
4306 mapped_index_base::find_name_components_bounds
4307 (const lookup_name_info &lookup_name_without_params, language lang) const
4308 {
4309 auto *name_cmp
4310 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4311
4312 const char *lang_name
4313 = lookup_name_without_params.language_lookup_name (lang).c_str ();
4314
4315 /* Comparison function object for lower_bound that matches against a
4316 given symbol name. */
4317 auto lookup_compare_lower = [&] (const name_component &elem,
4318 const char *name)
4319 {
4320 const char *elem_qualified = this->symbol_name_at (elem.idx);
4321 const char *elem_name = elem_qualified + elem.name_offset;
4322 return name_cmp (elem_name, name) < 0;
4323 };
4324
4325 /* Comparison function object for upper_bound that matches against a
4326 given symbol name. */
4327 auto lookup_compare_upper = [&] (const char *name,
4328 const name_component &elem)
4329 {
4330 const char *elem_qualified = this->symbol_name_at (elem.idx);
4331 const char *elem_name = elem_qualified + elem.name_offset;
4332 return name_cmp (name, elem_name) < 0;
4333 };
4334
4335 auto begin = this->name_components.begin ();
4336 auto end = this->name_components.end ();
4337
4338 /* Find the lower bound. */
4339 auto lower = [&] ()
4340 {
4341 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4342 return begin;
4343 else
4344 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4345 } ();
4346
4347 /* Find the upper bound. */
4348 auto upper = [&] ()
4349 {
4350 if (lookup_name_without_params.completion_mode ())
4351 {
4352 /* In completion mode, we want UPPER to point past all
4353 symbols names that have the same prefix. I.e., with
4354 these symbols, and completing "func":
4355
4356 function << lower bound
4357 function1
4358 other_function << upper bound
4359
4360 We find the upper bound by looking for the insertion
4361 point of "func"-with-last-character-incremented,
4362 i.e. "fund". */
4363 std::string after = make_sort_after_prefix_name (lang_name);
4364 if (after.empty ())
4365 return end;
4366 return std::lower_bound (lower, end, after.c_str (),
4367 lookup_compare_lower);
4368 }
4369 else
4370 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4371 } ();
4372
4373 return {lower, upper};
4374 }
4375
4376 /* See declaration. */
4377
4378 void
4379 mapped_index_base::build_name_components ()
4380 {
4381 if (!this->name_components.empty ())
4382 return;
4383
4384 this->name_components_casing = case_sensitivity;
4385 auto *name_cmp
4386 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4387
4388 /* The code below only knows how to break apart components of C++
4389 symbol names (and other languages that use '::' as
4390 namespace/module separator) and Ada symbol names. */
4391 auto count = this->symbol_name_count ();
4392 for (offset_type idx = 0; idx < count; idx++)
4393 {
4394 if (this->symbol_name_slot_invalid (idx))
4395 continue;
4396
4397 const char *name = this->symbol_name_at (idx);
4398
4399 /* Add each name component to the name component table. */
4400 unsigned int previous_len = 0;
4401
4402 if (strstr (name, "::") != nullptr)
4403 {
4404 for (unsigned int current_len = cp_find_first_component (name);
4405 name[current_len] != '\0';
4406 current_len += cp_find_first_component (name + current_len))
4407 {
4408 gdb_assert (name[current_len] == ':');
4409 this->name_components.push_back ({previous_len, idx});
4410 /* Skip the '::'. */
4411 current_len += 2;
4412 previous_len = current_len;
4413 }
4414 }
4415 else
4416 {
4417 /* Handle the Ada encoded (aka mangled) form here. */
4418 for (const char *iter = strstr (name, "__");
4419 iter != nullptr;
4420 iter = strstr (iter, "__"))
4421 {
4422 this->name_components.push_back ({previous_len, idx});
4423 iter += 2;
4424 previous_len = iter - name;
4425 }
4426 }
4427
4428 this->name_components.push_back ({previous_len, idx});
4429 }
4430
4431 /* Sort name_components elements by name. */
4432 auto name_comp_compare = [&] (const name_component &left,
4433 const name_component &right)
4434 {
4435 const char *left_qualified = this->symbol_name_at (left.idx);
4436 const char *right_qualified = this->symbol_name_at (right.idx);
4437
4438 const char *left_name = left_qualified + left.name_offset;
4439 const char *right_name = right_qualified + right.name_offset;
4440
4441 return name_cmp (left_name, right_name) < 0;
4442 };
4443
4444 std::sort (this->name_components.begin (),
4445 this->name_components.end (),
4446 name_comp_compare);
4447 }
4448
4449 /* Helper for dw2_expand_symtabs_matching that works with a
4450 mapped_index_base instead of the containing objfile. This is split
4451 to a separate function in order to be able to unit test the
4452 name_components matching using a mock mapped_index_base. For each
4453 symbol name that matches, calls MATCH_CALLBACK, passing it the
4454 symbol's index in the mapped_index_base symbol table. */
4455
4456 static void
4457 dw2_expand_symtabs_matching_symbol
4458 (mapped_index_base &index,
4459 const lookup_name_info &lookup_name_in,
4460 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4461 enum search_domain kind,
4462 gdb::function_view<bool (offset_type)> match_callback)
4463 {
4464 lookup_name_info lookup_name_without_params
4465 = lookup_name_in.make_ignore_params ();
4466
4467 /* Build the symbol name component sorted vector, if we haven't
4468 yet. */
4469 index.build_name_components ();
4470
4471 /* The same symbol may appear more than once in the range though.
4472 E.g., if we're looking for symbols that complete "w", and we have
4473 a symbol named "w1::w2", we'll find the two name components for
4474 that same symbol in the range. To be sure we only call the
4475 callback once per symbol, we first collect the symbol name
4476 indexes that matched in a temporary vector and ignore
4477 duplicates. */
4478 std::vector<offset_type> matches;
4479
4480 struct name_and_matcher
4481 {
4482 symbol_name_matcher_ftype *matcher;
4483 const std::string &name;
4484
4485 bool operator== (const name_and_matcher &other) const
4486 {
4487 return matcher == other.matcher && name == other.name;
4488 }
4489 };
4490
4491 /* A vector holding all the different symbol name matchers, for all
4492 languages. */
4493 std::vector<name_and_matcher> matchers;
4494
4495 for (int i = 0; i < nr_languages; i++)
4496 {
4497 enum language lang_e = (enum language) i;
4498
4499 const language_defn *lang = language_def (lang_e);
4500 symbol_name_matcher_ftype *name_matcher
4501 = get_symbol_name_matcher (lang, lookup_name_without_params);
4502
4503 name_and_matcher key {
4504 name_matcher,
4505 lookup_name_without_params.language_lookup_name (lang_e)
4506 };
4507
4508 /* Don't insert the same comparison routine more than once.
4509 Note that we do this linear walk. This is not a problem in
4510 practice because the number of supported languages is
4511 low. */
4512 if (std::find (matchers.begin (), matchers.end (), key)
4513 != matchers.end ())
4514 continue;
4515 matchers.push_back (std::move (key));
4516
4517 auto bounds
4518 = index.find_name_components_bounds (lookup_name_without_params,
4519 lang_e);
4520
4521 /* Now for each symbol name in range, check to see if we have a name
4522 match, and if so, call the MATCH_CALLBACK callback. */
4523
4524 for (; bounds.first != bounds.second; ++bounds.first)
4525 {
4526 const char *qualified = index.symbol_name_at (bounds.first->idx);
4527
4528 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4529 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4530 continue;
4531
4532 matches.push_back (bounds.first->idx);
4533 }
4534 }
4535
4536 std::sort (matches.begin (), matches.end ());
4537
4538 /* Finally call the callback, once per match. */
4539 ULONGEST prev = -1;
4540 for (offset_type idx : matches)
4541 {
4542 if (prev != idx)
4543 {
4544 if (!match_callback (idx))
4545 break;
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 return true;
4641 });
4642
4643 const char *expected_str
4644 = expected_it == expected_end ? NULL : *expected_it++;
4645 if (expected_str != NULL)
4646 mismatch (expected_str, NULL);
4647
4648 return matched;
4649 }
4650
4651 /* The symbols added to the mock mapped_index for testing (in
4652 canonical form). */
4653 static const char *test_symbols[] = {
4654 "function",
4655 "std::bar",
4656 "std::zfunction",
4657 "std::zfunction2",
4658 "w1::w2",
4659 "ns::foo<char*>",
4660 "ns::foo<int>",
4661 "ns::foo<long>",
4662 "ns2::tmpl<int>::foo2",
4663 "(anonymous namespace)::A::B::C",
4664
4665 /* These are used to check that the increment-last-char in the
4666 matching algorithm for completion doesn't match "t1_fund" when
4667 completing "t1_func". */
4668 "t1_func",
4669 "t1_func1",
4670 "t1_fund",
4671 "t1_fund1",
4672
4673 /* A UTF-8 name with multi-byte sequences to make sure that
4674 cp-name-parser understands this as a single identifier ("função"
4675 is "function" in PT). */
4676 u8"u8função",
4677
4678 /* \377 (0xff) is Latin1 'ÿ'. */
4679 "yfunc\377",
4680
4681 /* \377 (0xff) is Latin1 'ÿ'. */
4682 "\377",
4683 "\377\377123",
4684
4685 /* A name with all sorts of complications. Starts with "z" to make
4686 it easier for the completion tests below. */
4687 #define Z_SYM_NAME \
4688 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4689 "::tuple<(anonymous namespace)::ui*, " \
4690 "std::default_delete<(anonymous namespace)::ui>, void>"
4691
4692 Z_SYM_NAME
4693 };
4694
4695 /* Returns true if the mapped_index_base::find_name_component_bounds
4696 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4697 in completion mode. */
4698
4699 static bool
4700 check_find_bounds_finds (mapped_index_base &index,
4701 const char *search_name,
4702 gdb::array_view<const char *> expected_syms)
4703 {
4704 lookup_name_info lookup_name (search_name,
4705 symbol_name_match_type::FULL, true);
4706
4707 auto bounds = index.find_name_components_bounds (lookup_name,
4708 language_cplus);
4709
4710 size_t distance = std::distance (bounds.first, bounds.second);
4711 if (distance != expected_syms.size ())
4712 return false;
4713
4714 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4715 {
4716 auto nc_elem = bounds.first + exp_elem;
4717 const char *qualified = index.symbol_name_at (nc_elem->idx);
4718 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4719 return false;
4720 }
4721
4722 return true;
4723 }
4724
4725 /* Test the lower-level mapped_index::find_name_component_bounds
4726 method. */
4727
4728 static void
4729 test_mapped_index_find_name_component_bounds ()
4730 {
4731 mock_mapped_index mock_index (test_symbols);
4732
4733 mock_index.build_name_components ();
4734
4735 /* Test the lower-level mapped_index::find_name_component_bounds
4736 method in completion mode. */
4737 {
4738 static const char *expected_syms[] = {
4739 "t1_func",
4740 "t1_func1",
4741 };
4742
4743 SELF_CHECK (check_find_bounds_finds (mock_index,
4744 "t1_func", expected_syms));
4745 }
4746
4747 /* Check that the increment-last-char in the name matching algorithm
4748 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4749 {
4750 static const char *expected_syms1[] = {
4751 "\377",
4752 "\377\377123",
4753 };
4754 SELF_CHECK (check_find_bounds_finds (mock_index,
4755 "\377", expected_syms1));
4756
4757 static const char *expected_syms2[] = {
4758 "\377\377123",
4759 };
4760 SELF_CHECK (check_find_bounds_finds (mock_index,
4761 "\377\377", expected_syms2));
4762 }
4763 }
4764
4765 /* Test dw2_expand_symtabs_matching_symbol. */
4766
4767 static void
4768 test_dw2_expand_symtabs_matching_symbol ()
4769 {
4770 mock_mapped_index mock_index (test_symbols);
4771
4772 /* We let all tests run until the end even if some fails, for debug
4773 convenience. */
4774 bool any_mismatch = false;
4775
4776 /* Create the expected symbols list (an initializer_list). Needed
4777 because lists have commas, and we need to pass them to CHECK,
4778 which is a macro. */
4779 #define EXPECT(...) { __VA_ARGS__ }
4780
4781 /* Wrapper for check_match that passes down the current
4782 __FILE__/__LINE__. */
4783 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4784 any_mismatch |= !check_match (__FILE__, __LINE__, \
4785 mock_index, \
4786 NAME, MATCH_TYPE, COMPLETION_MODE, \
4787 EXPECTED_LIST)
4788
4789 /* Identity checks. */
4790 for (const char *sym : test_symbols)
4791 {
4792 /* Should be able to match all existing symbols. */
4793 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4794 EXPECT (sym));
4795
4796 /* Should be able to match all existing symbols with
4797 parameters. */
4798 std::string with_params = std::string (sym) + "(int)";
4799 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4800 EXPECT (sym));
4801
4802 /* Should be able to match all existing symbols with
4803 parameters and qualifiers. */
4804 with_params = std::string (sym) + " ( int ) const";
4805 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4806 EXPECT (sym));
4807
4808 /* This should really find sym, but cp-name-parser.y doesn't
4809 know about lvalue/rvalue qualifiers yet. */
4810 with_params = std::string (sym) + " ( int ) &&";
4811 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4812 {});
4813 }
4814
4815 /* Check that the name matching algorithm for completion doesn't get
4816 confused with Latin1 'ÿ' / 0xff. */
4817 {
4818 static const char str[] = "\377";
4819 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4820 EXPECT ("\377", "\377\377123"));
4821 }
4822
4823 /* Check that the increment-last-char in the matching algorithm for
4824 completion doesn't match "t1_fund" when completing "t1_func". */
4825 {
4826 static const char str[] = "t1_func";
4827 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4828 EXPECT ("t1_func", "t1_func1"));
4829 }
4830
4831 /* Check that completion mode works at each prefix of the expected
4832 symbol name. */
4833 {
4834 static const char str[] = "function(int)";
4835 size_t len = strlen (str);
4836 std::string lookup;
4837
4838 for (size_t i = 1; i < len; i++)
4839 {
4840 lookup.assign (str, i);
4841 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4842 EXPECT ("function"));
4843 }
4844 }
4845
4846 /* While "w" is a prefix of both components, the match function
4847 should still only be called once. */
4848 {
4849 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4850 EXPECT ("w1::w2"));
4851 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4852 EXPECT ("w1::w2"));
4853 }
4854
4855 /* Same, with a "complicated" symbol. */
4856 {
4857 static const char str[] = Z_SYM_NAME;
4858 size_t len = strlen (str);
4859 std::string lookup;
4860
4861 for (size_t i = 1; i < len; i++)
4862 {
4863 lookup.assign (str, i);
4864 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4865 EXPECT (Z_SYM_NAME));
4866 }
4867 }
4868
4869 /* In FULL mode, an incomplete symbol doesn't match. */
4870 {
4871 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4872 {});
4873 }
4874
4875 /* A complete symbol with parameters matches any overload, since the
4876 index has no overload info. */
4877 {
4878 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4883 EXPECT ("std::zfunction", "std::zfunction2"));
4884 }
4885
4886 /* Check that whitespace is ignored appropriately. A symbol with a
4887 template argument list. */
4888 {
4889 static const char expected[] = "ns::foo<int>";
4890 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4891 EXPECT (expected));
4892 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4893 EXPECT (expected));
4894 }
4895
4896 /* Check that whitespace is ignored appropriately. A symbol with a
4897 template argument list that includes a pointer. */
4898 {
4899 static const char expected[] = "ns::foo<char*>";
4900 /* Try both completion and non-completion modes. */
4901 static const bool completion_mode[2] = {false, true};
4902 for (size_t i = 0; i < 2; i++)
4903 {
4904 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4905 completion_mode[i], EXPECT (expected));
4906 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4907 completion_mode[i], EXPECT (expected));
4908
4909 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4910 completion_mode[i], EXPECT (expected));
4911 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4912 completion_mode[i], EXPECT (expected));
4913 }
4914 }
4915
4916 {
4917 /* Check method qualifiers are ignored. */
4918 static const char expected[] = "ns::foo<char*>";
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4922 symbol_name_match_type::FULL, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) const",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 CHECK_MATCH ("foo < char * > ( int ) &&",
4926 symbol_name_match_type::WILD, true, EXPECT (expected));
4927 }
4928
4929 /* Test lookup names that don't match anything. */
4930 {
4931 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4932 {});
4933
4934 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4935 {});
4936 }
4937
4938 /* Some wild matching tests, exercising "(anonymous namespace)",
4939 which should not be confused with a parameter list. */
4940 {
4941 static const char *syms[] = {
4942 "A::B::C",
4943 "B::C",
4944 "C",
4945 "A :: B :: C ( int )",
4946 "B :: C ( int )",
4947 "C ( int )",
4948 };
4949
4950 for (const char *s : syms)
4951 {
4952 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4953 EXPECT ("(anonymous namespace)::A::B::C"));
4954 }
4955 }
4956
4957 {
4958 static const char expected[] = "ns2::tmpl<int>::foo2";
4959 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4962 EXPECT (expected));
4963 }
4964
4965 SELF_CHECK (!any_mismatch);
4966
4967 #undef EXPECT
4968 #undef CHECK_MATCH
4969 }
4970
4971 static void
4972 run_test ()
4973 {
4974 test_mapped_index_find_name_component_bounds ();
4975 test_dw2_expand_symtabs_matching_symbol ();
4976 }
4977
4978 }} // namespace selftests::dw2_expand_symtabs_matching
4979
4980 #endif /* GDB_SELF_TEST */
4981
4982 /* If FILE_MATCHER is NULL or if PER_CU has
4983 dwarf2_per_cu_quick_data::MARK set (see
4984 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4985 EXPANSION_NOTIFY on it. */
4986
4987 static void
4988 dw2_expand_symtabs_matching_one
4989 (struct dwarf2_per_cu_data *per_cu,
4990 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4991 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4992 {
4993 if (file_matcher == NULL || per_cu->v.quick->mark)
4994 {
4995 bool symtab_was_null
4996 = (per_cu->v.quick->compunit_symtab == NULL);
4997
4998 dw2_instantiate_symtab (per_cu, false);
4999
5000 if (expansion_notify != NULL
5001 && symtab_was_null
5002 && per_cu->v.quick->compunit_symtab != NULL)
5003 expansion_notify (per_cu->v.quick->compunit_symtab);
5004 }
5005 }
5006
5007 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5008 matched, to expand corresponding CUs that were marked. IDX is the
5009 index of the symbol name that matched. */
5010
5011 static void
5012 dw2_expand_marked_cus
5013 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5014 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5015 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5016 search_domain kind)
5017 {
5018 offset_type *vec, vec_len, vec_idx;
5019 bool global_seen = false;
5020 mapped_index &index = *dwarf2_per_objfile->index_table;
5021
5022 vec = (offset_type *) (index.constant_pool
5023 + MAYBE_SWAP (index.symbol_table[idx].vec));
5024 vec_len = MAYBE_SWAP (vec[0]);
5025 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5026 {
5027 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5028 /* This value is only valid for index versions >= 7. */
5029 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5030 gdb_index_symbol_kind symbol_kind =
5031 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5032 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5033 /* Only check the symbol attributes if they're present.
5034 Indices prior to version 7 don't record them,
5035 and indices >= 7 may elide them for certain symbols
5036 (gold does this). */
5037 int attrs_valid =
5038 (index.version >= 7
5039 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5040
5041 /* Work around gold/15646. */
5042 if (attrs_valid)
5043 {
5044 if (!is_static && global_seen)
5045 continue;
5046 if (!is_static)
5047 global_seen = true;
5048 }
5049
5050 /* Only check the symbol's kind if it has one. */
5051 if (attrs_valid)
5052 {
5053 switch (kind)
5054 {
5055 case VARIABLES_DOMAIN:
5056 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5057 continue;
5058 break;
5059 case FUNCTIONS_DOMAIN:
5060 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5061 continue;
5062 break;
5063 case TYPES_DOMAIN:
5064 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5065 continue;
5066 break;
5067 default:
5068 break;
5069 }
5070 }
5071
5072 /* Don't crash on bad data. */
5073 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5074 + dwarf2_per_objfile->all_type_units.size ()))
5075 {
5076 complaint (_(".gdb_index entry has bad CU index"
5077 " [in module %s]"),
5078 objfile_name (dwarf2_per_objfile->objfile));
5079 continue;
5080 }
5081
5082 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5083 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5084 expansion_notify);
5085 }
5086 }
5087
5088 /* If FILE_MATCHER is non-NULL, set all the
5089 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5090 that match FILE_MATCHER. */
5091
5092 static void
5093 dw_expand_symtabs_matching_file_matcher
5094 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5095 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5096 {
5097 if (file_matcher == NULL)
5098 return;
5099
5100 objfile *const objfile = dwarf2_per_objfile->objfile;
5101
5102 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5103 htab_eq_pointer,
5104 NULL, xcalloc, xfree));
5105 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5106 htab_eq_pointer,
5107 NULL, xcalloc, xfree));
5108
5109 /* The rule is CUs specify all the files, including those used by
5110 any TU, so there's no need to scan TUs here. */
5111
5112 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5113 {
5114 QUIT;
5115
5116 per_cu->v.quick->mark = 0;
5117
5118 /* We only need to look at symtabs not already expanded. */
5119 if (per_cu->v.quick->compunit_symtab)
5120 continue;
5121
5122 quick_file_names *file_data = dw2_get_file_names (per_cu);
5123 if (file_data == NULL)
5124 continue;
5125
5126 if (htab_find (visited_not_found.get (), file_data) != NULL)
5127 continue;
5128 else if (htab_find (visited_found.get (), file_data) != NULL)
5129 {
5130 per_cu->v.quick->mark = 1;
5131 continue;
5132 }
5133
5134 for (int j = 0; j < file_data->num_file_names; ++j)
5135 {
5136 const char *this_real_name;
5137
5138 if (file_matcher (file_data->file_names[j], false))
5139 {
5140 per_cu->v.quick->mark = 1;
5141 break;
5142 }
5143
5144 /* Before we invoke realpath, which can get expensive when many
5145 files are involved, do a quick comparison of the basenames. */
5146 if (!basenames_may_differ
5147 && !file_matcher (lbasename (file_data->file_names[j]),
5148 true))
5149 continue;
5150
5151 this_real_name = dw2_get_real_path (objfile, file_data, j);
5152 if (file_matcher (this_real_name, false))
5153 {
5154 per_cu->v.quick->mark = 1;
5155 break;
5156 }
5157 }
5158
5159 void **slot = htab_find_slot (per_cu->v.quick->mark
5160 ? visited_found.get ()
5161 : visited_not_found.get (),
5162 file_data, INSERT);
5163 *slot = file_data;
5164 }
5165 }
5166
5167 static void
5168 dw2_expand_symtabs_matching
5169 (struct objfile *objfile,
5170 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5171 const lookup_name_info &lookup_name,
5172 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5173 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5174 enum search_domain kind)
5175 {
5176 struct dwarf2_per_objfile *dwarf2_per_objfile
5177 = get_dwarf2_per_objfile (objfile);
5178
5179 /* index_table is NULL if OBJF_READNOW. */
5180 if (!dwarf2_per_objfile->index_table)
5181 return;
5182
5183 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5184
5185 mapped_index &index = *dwarf2_per_objfile->index_table;
5186
5187 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5188 symbol_matcher,
5189 kind, [&] (offset_type idx)
5190 {
5191 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5192 expansion_notify, kind);
5193 return true;
5194 });
5195 }
5196
5197 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5198 symtab. */
5199
5200 static struct compunit_symtab *
5201 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5202 CORE_ADDR pc)
5203 {
5204 int i;
5205
5206 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5207 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5208 return cust;
5209
5210 if (cust->includes == NULL)
5211 return NULL;
5212
5213 for (i = 0; cust->includes[i]; ++i)
5214 {
5215 struct compunit_symtab *s = cust->includes[i];
5216
5217 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5218 if (s != NULL)
5219 return s;
5220 }
5221
5222 return NULL;
5223 }
5224
5225 static struct compunit_symtab *
5226 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5227 struct bound_minimal_symbol msymbol,
5228 CORE_ADDR pc,
5229 struct obj_section *section,
5230 int warn_if_readin)
5231 {
5232 struct dwarf2_per_cu_data *data;
5233 struct compunit_symtab *result;
5234
5235 if (!objfile->partial_symtabs->psymtabs_addrmap)
5236 return NULL;
5237
5238 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5239 SECT_OFF_TEXT (objfile));
5240 data = (struct dwarf2_per_cu_data *) addrmap_find
5241 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5242 if (!data)
5243 return NULL;
5244
5245 if (warn_if_readin && data->v.quick->compunit_symtab)
5246 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5247 paddress (get_objfile_arch (objfile), pc));
5248
5249 result
5250 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5251 false),
5252 pc);
5253 gdb_assert (result != NULL);
5254 return result;
5255 }
5256
5257 static void
5258 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5259 void *data, int need_fullname)
5260 {
5261 struct dwarf2_per_objfile *dwarf2_per_objfile
5262 = get_dwarf2_per_objfile (objfile);
5263
5264 if (!dwarf2_per_objfile->filenames_cache)
5265 {
5266 dwarf2_per_objfile->filenames_cache.emplace ();
5267
5268 htab_up visited (htab_create_alloc (10,
5269 htab_hash_pointer, htab_eq_pointer,
5270 NULL, xcalloc, xfree));
5271
5272 /* The rule is CUs specify all the files, including those used
5273 by any TU, so there's no need to scan TUs here. We can
5274 ignore file names coming from already-expanded CUs. */
5275
5276 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5277 {
5278 if (per_cu->v.quick->compunit_symtab)
5279 {
5280 void **slot = htab_find_slot (visited.get (),
5281 per_cu->v.quick->file_names,
5282 INSERT);
5283
5284 *slot = per_cu->v.quick->file_names;
5285 }
5286 }
5287
5288 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5289 {
5290 /* We only need to look at symtabs not already expanded. */
5291 if (per_cu->v.quick->compunit_symtab)
5292 continue;
5293
5294 quick_file_names *file_data = dw2_get_file_names (per_cu);
5295 if (file_data == NULL)
5296 continue;
5297
5298 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5299 if (*slot)
5300 {
5301 /* Already visited. */
5302 continue;
5303 }
5304 *slot = file_data;
5305
5306 for (int j = 0; j < file_data->num_file_names; ++j)
5307 {
5308 const char *filename = file_data->file_names[j];
5309 dwarf2_per_objfile->filenames_cache->seen (filename);
5310 }
5311 }
5312 }
5313
5314 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5315 {
5316 gdb::unique_xmalloc_ptr<char> this_real_name;
5317
5318 if (need_fullname)
5319 this_real_name = gdb_realpath (filename);
5320 (*fun) (filename, this_real_name.get (), data);
5321 });
5322 }
5323
5324 static int
5325 dw2_has_symbols (struct objfile *objfile)
5326 {
5327 return 1;
5328 }
5329
5330 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5331 {
5332 dw2_has_symbols,
5333 dw2_find_last_source_symtab,
5334 dw2_forget_cached_source_info,
5335 dw2_map_symtabs_matching_filename,
5336 dw2_lookup_symbol,
5337 dw2_print_stats,
5338 dw2_dump,
5339 dw2_expand_symtabs_for_function,
5340 dw2_expand_all_symtabs,
5341 dw2_expand_symtabs_with_fullname,
5342 dw2_map_matching_symbols,
5343 dw2_expand_symtabs_matching,
5344 dw2_find_pc_sect_compunit_symtab,
5345 NULL,
5346 dw2_map_symbol_filenames
5347 };
5348
5349 /* DWARF-5 debug_names reader. */
5350
5351 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5352 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5353
5354 /* A helper function that reads the .debug_names section in SECTION
5355 and fills in MAP. FILENAME is the name of the file containing the
5356 section; it is used for error reporting.
5357
5358 Returns true if all went well, false otherwise. */
5359
5360 static bool
5361 read_debug_names_from_section (struct objfile *objfile,
5362 const char *filename,
5363 struct dwarf2_section_info *section,
5364 mapped_debug_names &map)
5365 {
5366 if (dwarf2_section_empty_p (section))
5367 return false;
5368
5369 /* Older elfutils strip versions could keep the section in the main
5370 executable while splitting it for the separate debug info file. */
5371 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5372 return false;
5373
5374 dwarf2_read_section (objfile, section);
5375
5376 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5377
5378 const gdb_byte *addr = section->buffer;
5379
5380 bfd *const abfd = get_section_bfd_owner (section);
5381
5382 unsigned int bytes_read;
5383 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5384 addr += bytes_read;
5385
5386 map.dwarf5_is_dwarf64 = bytes_read != 4;
5387 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5388 if (bytes_read + length != section->size)
5389 {
5390 /* There may be multiple per-CU indices. */
5391 warning (_("Section .debug_names in %s length %s does not match "
5392 "section length %s, ignoring .debug_names."),
5393 filename, plongest (bytes_read + length),
5394 pulongest (section->size));
5395 return false;
5396 }
5397
5398 /* The version number. */
5399 uint16_t version = read_2_bytes (abfd, addr);
5400 addr += 2;
5401 if (version != 5)
5402 {
5403 warning (_("Section .debug_names in %s has unsupported version %d, "
5404 "ignoring .debug_names."),
5405 filename, version);
5406 return false;
5407 }
5408
5409 /* Padding. */
5410 uint16_t padding = read_2_bytes (abfd, addr);
5411 addr += 2;
5412 if (padding != 0)
5413 {
5414 warning (_("Section .debug_names in %s has unsupported padding %d, "
5415 "ignoring .debug_names."),
5416 filename, padding);
5417 return false;
5418 }
5419
5420 /* comp_unit_count - The number of CUs in the CU list. */
5421 map.cu_count = read_4_bytes (abfd, addr);
5422 addr += 4;
5423
5424 /* local_type_unit_count - The number of TUs in the local TU
5425 list. */
5426 map.tu_count = read_4_bytes (abfd, addr);
5427 addr += 4;
5428
5429 /* foreign_type_unit_count - The number of TUs in the foreign TU
5430 list. */
5431 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5432 addr += 4;
5433 if (foreign_tu_count != 0)
5434 {
5435 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5436 "ignoring .debug_names."),
5437 filename, static_cast<unsigned long> (foreign_tu_count));
5438 return false;
5439 }
5440
5441 /* bucket_count - The number of hash buckets in the hash lookup
5442 table. */
5443 map.bucket_count = read_4_bytes (abfd, addr);
5444 addr += 4;
5445
5446 /* name_count - The number of unique names in the index. */
5447 map.name_count = read_4_bytes (abfd, addr);
5448 addr += 4;
5449
5450 /* abbrev_table_size - The size in bytes of the abbreviations
5451 table. */
5452 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5453 addr += 4;
5454
5455 /* augmentation_string_size - The size in bytes of the augmentation
5456 string. This value is rounded up to a multiple of 4. */
5457 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5458 addr += 4;
5459 map.augmentation_is_gdb = ((augmentation_string_size
5460 == sizeof (dwarf5_augmentation))
5461 && memcmp (addr, dwarf5_augmentation,
5462 sizeof (dwarf5_augmentation)) == 0);
5463 augmentation_string_size += (-augmentation_string_size) & 3;
5464 addr += augmentation_string_size;
5465
5466 /* List of CUs */
5467 map.cu_table_reordered = addr;
5468 addr += map.cu_count * map.offset_size;
5469
5470 /* List of Local TUs */
5471 map.tu_table_reordered = addr;
5472 addr += map.tu_count * map.offset_size;
5473
5474 /* Hash Lookup Table */
5475 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5476 addr += map.bucket_count * 4;
5477 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5478 addr += map.name_count * 4;
5479
5480 /* Name Table */
5481 map.name_table_string_offs_reordered = addr;
5482 addr += map.name_count * map.offset_size;
5483 map.name_table_entry_offs_reordered = addr;
5484 addr += map.name_count * map.offset_size;
5485
5486 const gdb_byte *abbrev_table_start = addr;
5487 for (;;)
5488 {
5489 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5490 addr += bytes_read;
5491 if (index_num == 0)
5492 break;
5493
5494 const auto insertpair
5495 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5496 if (!insertpair.second)
5497 {
5498 warning (_("Section .debug_names in %s has duplicate index %s, "
5499 "ignoring .debug_names."),
5500 filename, pulongest (index_num));
5501 return false;
5502 }
5503 mapped_debug_names::index_val &indexval = insertpair.first->second;
5504 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5505 addr += bytes_read;
5506
5507 for (;;)
5508 {
5509 mapped_debug_names::index_val::attr attr;
5510 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5511 addr += bytes_read;
5512 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5513 addr += bytes_read;
5514 if (attr.form == DW_FORM_implicit_const)
5515 {
5516 attr.implicit_const = read_signed_leb128 (abfd, addr,
5517 &bytes_read);
5518 addr += bytes_read;
5519 }
5520 if (attr.dw_idx == 0 && attr.form == 0)
5521 break;
5522 indexval.attr_vec.push_back (std::move (attr));
5523 }
5524 }
5525 if (addr != abbrev_table_start + abbrev_table_size)
5526 {
5527 warning (_("Section .debug_names in %s has abbreviation_table "
5528 "of size %s vs. written as %u, ignoring .debug_names."),
5529 filename, plongest (addr - abbrev_table_start),
5530 abbrev_table_size);
5531 return false;
5532 }
5533 map.entry_pool = addr;
5534
5535 return true;
5536 }
5537
5538 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5539 list. */
5540
5541 static void
5542 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5543 const mapped_debug_names &map,
5544 dwarf2_section_info &section,
5545 bool is_dwz)
5546 {
5547 sect_offset sect_off_prev;
5548 for (uint32_t i = 0; i <= map.cu_count; ++i)
5549 {
5550 sect_offset sect_off_next;
5551 if (i < map.cu_count)
5552 {
5553 sect_off_next
5554 = (sect_offset) (extract_unsigned_integer
5555 (map.cu_table_reordered + i * map.offset_size,
5556 map.offset_size,
5557 map.dwarf5_byte_order));
5558 }
5559 else
5560 sect_off_next = (sect_offset) section.size;
5561 if (i >= 1)
5562 {
5563 const ULONGEST length = sect_off_next - sect_off_prev;
5564 dwarf2_per_cu_data *per_cu
5565 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5566 sect_off_prev, length);
5567 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5568 }
5569 sect_off_prev = sect_off_next;
5570 }
5571 }
5572
5573 /* Read the CU list from the mapped index, and use it to create all
5574 the CU objects for this dwarf2_per_objfile. */
5575
5576 static void
5577 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5578 const mapped_debug_names &map,
5579 const mapped_debug_names &dwz_map)
5580 {
5581 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5582 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5583
5584 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5585 dwarf2_per_objfile->info,
5586 false /* is_dwz */);
5587
5588 if (dwz_map.cu_count == 0)
5589 return;
5590
5591 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5592 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5593 true /* is_dwz */);
5594 }
5595
5596 /* Read .debug_names. If everything went ok, initialize the "quick"
5597 elements of all the CUs and return true. Otherwise, return false. */
5598
5599 static bool
5600 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5601 {
5602 std::unique_ptr<mapped_debug_names> map
5603 (new mapped_debug_names (dwarf2_per_objfile));
5604 mapped_debug_names dwz_map (dwarf2_per_objfile);
5605 struct objfile *objfile = dwarf2_per_objfile->objfile;
5606
5607 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5608 &dwarf2_per_objfile->debug_names,
5609 *map))
5610 return false;
5611
5612 /* Don't use the index if it's empty. */
5613 if (map->name_count == 0)
5614 return false;
5615
5616 /* If there is a .dwz file, read it so we can get its CU list as
5617 well. */
5618 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5619 if (dwz != NULL)
5620 {
5621 if (!read_debug_names_from_section (objfile,
5622 bfd_get_filename (dwz->dwz_bfd.get ()),
5623 &dwz->debug_names, dwz_map))
5624 {
5625 warning (_("could not read '.debug_names' section from %s; skipping"),
5626 bfd_get_filename (dwz->dwz_bfd.get ()));
5627 return false;
5628 }
5629 }
5630
5631 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5632
5633 if (map->tu_count != 0)
5634 {
5635 /* We can only handle a single .debug_types when we have an
5636 index. */
5637 if (dwarf2_per_objfile->types.size () != 1)
5638 return false;
5639
5640 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5641
5642 create_signatured_type_table_from_debug_names
5643 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5644 }
5645
5646 create_addrmap_from_aranges (dwarf2_per_objfile,
5647 &dwarf2_per_objfile->debug_aranges);
5648
5649 dwarf2_per_objfile->debug_names_table = std::move (map);
5650 dwarf2_per_objfile->using_index = 1;
5651 dwarf2_per_objfile->quick_file_names_table =
5652 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5653
5654 return true;
5655 }
5656
5657 /* Type used to manage iterating over all CUs looking for a symbol for
5658 .debug_names. */
5659
5660 class dw2_debug_names_iterator
5661 {
5662 public:
5663 dw2_debug_names_iterator (const mapped_debug_names &map,
5664 gdb::optional<block_enum> block_index,
5665 domain_enum domain,
5666 const char *name)
5667 : m_map (map), m_block_index (block_index), m_domain (domain),
5668 m_addr (find_vec_in_debug_names (map, name))
5669 {}
5670
5671 dw2_debug_names_iterator (const mapped_debug_names &map,
5672 search_domain search, uint32_t namei)
5673 : m_map (map),
5674 m_search (search),
5675 m_addr (find_vec_in_debug_names (map, namei))
5676 {}
5677
5678 dw2_debug_names_iterator (const mapped_debug_names &map,
5679 block_enum block_index, domain_enum domain,
5680 uint32_t namei)
5681 : m_map (map), m_block_index (block_index), m_domain (domain),
5682 m_addr (find_vec_in_debug_names (map, namei))
5683 {}
5684
5685 /* Return the next matching CU or NULL if there are no more. */
5686 dwarf2_per_cu_data *next ();
5687
5688 private:
5689 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5690 const char *name);
5691 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5692 uint32_t namei);
5693
5694 /* The internalized form of .debug_names. */
5695 const mapped_debug_names &m_map;
5696
5697 /* If set, only look for symbols that match that block. Valid values are
5698 GLOBAL_BLOCK and STATIC_BLOCK. */
5699 const gdb::optional<block_enum> m_block_index;
5700
5701 /* The kind of symbol we're looking for. */
5702 const domain_enum m_domain = UNDEF_DOMAIN;
5703 const search_domain m_search = ALL_DOMAIN;
5704
5705 /* The list of CUs from the index entry of the symbol, or NULL if
5706 not found. */
5707 const gdb_byte *m_addr;
5708 };
5709
5710 const char *
5711 mapped_debug_names::namei_to_name (uint32_t namei) const
5712 {
5713 const ULONGEST namei_string_offs
5714 = extract_unsigned_integer ((name_table_string_offs_reordered
5715 + namei * offset_size),
5716 offset_size,
5717 dwarf5_byte_order);
5718 return read_indirect_string_at_offset
5719 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5720 }
5721
5722 /* Find a slot in .debug_names for the object named NAME. If NAME is
5723 found, return pointer to its pool data. If NAME cannot be found,
5724 return NULL. */
5725
5726 const gdb_byte *
5727 dw2_debug_names_iterator::find_vec_in_debug_names
5728 (const mapped_debug_names &map, const char *name)
5729 {
5730 int (*cmp) (const char *, const char *);
5731
5732 gdb::unique_xmalloc_ptr<char> without_params;
5733 if (current_language->la_language == language_cplus
5734 || current_language->la_language == language_fortran
5735 || current_language->la_language == language_d)
5736 {
5737 /* NAME is already canonical. Drop any qualifiers as
5738 .debug_names does not contain any. */
5739
5740 if (strchr (name, '(') != NULL)
5741 {
5742 without_params = cp_remove_params (name);
5743 if (without_params != NULL)
5744 name = without_params.get ();
5745 }
5746 }
5747
5748 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5749
5750 const uint32_t full_hash = dwarf5_djb_hash (name);
5751 uint32_t namei
5752 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5753 (map.bucket_table_reordered
5754 + (full_hash % map.bucket_count)), 4,
5755 map.dwarf5_byte_order);
5756 if (namei == 0)
5757 return NULL;
5758 --namei;
5759 if (namei >= map.name_count)
5760 {
5761 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5762 "[in module %s]"),
5763 namei, map.name_count,
5764 objfile_name (map.dwarf2_per_objfile->objfile));
5765 return NULL;
5766 }
5767
5768 for (;;)
5769 {
5770 const uint32_t namei_full_hash
5771 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5772 (map.hash_table_reordered + namei), 4,
5773 map.dwarf5_byte_order);
5774 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5775 return NULL;
5776
5777 if (full_hash == namei_full_hash)
5778 {
5779 const char *const namei_string = map.namei_to_name (namei);
5780
5781 #if 0 /* An expensive sanity check. */
5782 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5783 {
5784 complaint (_("Wrong .debug_names hash for string at index %u "
5785 "[in module %s]"),
5786 namei, objfile_name (dwarf2_per_objfile->objfile));
5787 return NULL;
5788 }
5789 #endif
5790
5791 if (cmp (namei_string, name) == 0)
5792 {
5793 const ULONGEST namei_entry_offs
5794 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5795 + namei * map.offset_size),
5796 map.offset_size, map.dwarf5_byte_order);
5797 return map.entry_pool + namei_entry_offs;
5798 }
5799 }
5800
5801 ++namei;
5802 if (namei >= map.name_count)
5803 return NULL;
5804 }
5805 }
5806
5807 const gdb_byte *
5808 dw2_debug_names_iterator::find_vec_in_debug_names
5809 (const mapped_debug_names &map, uint32_t namei)
5810 {
5811 if (namei >= map.name_count)
5812 {
5813 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5814 "[in module %s]"),
5815 namei, map.name_count,
5816 objfile_name (map.dwarf2_per_objfile->objfile));
5817 return NULL;
5818 }
5819
5820 const ULONGEST namei_entry_offs
5821 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5822 + namei * map.offset_size),
5823 map.offset_size, map.dwarf5_byte_order);
5824 return map.entry_pool + namei_entry_offs;
5825 }
5826
5827 /* See dw2_debug_names_iterator. */
5828
5829 dwarf2_per_cu_data *
5830 dw2_debug_names_iterator::next ()
5831 {
5832 if (m_addr == NULL)
5833 return NULL;
5834
5835 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5836 struct objfile *objfile = dwarf2_per_objfile->objfile;
5837 bfd *const abfd = objfile->obfd;
5838
5839 again:
5840
5841 unsigned int bytes_read;
5842 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5843 m_addr += bytes_read;
5844 if (abbrev == 0)
5845 return NULL;
5846
5847 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5848 if (indexval_it == m_map.abbrev_map.cend ())
5849 {
5850 complaint (_("Wrong .debug_names undefined abbrev code %s "
5851 "[in module %s]"),
5852 pulongest (abbrev), objfile_name (objfile));
5853 return NULL;
5854 }
5855 const mapped_debug_names::index_val &indexval = indexval_it->second;
5856 enum class symbol_linkage {
5857 unknown,
5858 static_,
5859 extern_,
5860 } symbol_linkage_ = symbol_linkage::unknown;
5861 dwarf2_per_cu_data *per_cu = NULL;
5862 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5863 {
5864 ULONGEST ull;
5865 switch (attr.form)
5866 {
5867 case DW_FORM_implicit_const:
5868 ull = attr.implicit_const;
5869 break;
5870 case DW_FORM_flag_present:
5871 ull = 1;
5872 break;
5873 case DW_FORM_udata:
5874 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5875 m_addr += bytes_read;
5876 break;
5877 default:
5878 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5879 dwarf_form_name (attr.form),
5880 objfile_name (objfile));
5881 return NULL;
5882 }
5883 switch (attr.dw_idx)
5884 {
5885 case DW_IDX_compile_unit:
5886 /* Don't crash on bad data. */
5887 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5888 {
5889 complaint (_(".debug_names entry has bad CU index %s"
5890 " [in module %s]"),
5891 pulongest (ull),
5892 objfile_name (dwarf2_per_objfile->objfile));
5893 continue;
5894 }
5895 per_cu = dwarf2_per_objfile->get_cutu (ull);
5896 break;
5897 case DW_IDX_type_unit:
5898 /* Don't crash on bad data. */
5899 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5900 {
5901 complaint (_(".debug_names entry has bad TU index %s"
5902 " [in module %s]"),
5903 pulongest (ull),
5904 objfile_name (dwarf2_per_objfile->objfile));
5905 continue;
5906 }
5907 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5908 break;
5909 case DW_IDX_GNU_internal:
5910 if (!m_map.augmentation_is_gdb)
5911 break;
5912 symbol_linkage_ = symbol_linkage::static_;
5913 break;
5914 case DW_IDX_GNU_external:
5915 if (!m_map.augmentation_is_gdb)
5916 break;
5917 symbol_linkage_ = symbol_linkage::extern_;
5918 break;
5919 }
5920 }
5921
5922 /* Skip if already read in. */
5923 if (per_cu->v.quick->compunit_symtab)
5924 goto again;
5925
5926 /* Check static vs global. */
5927 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5928 {
5929 const bool want_static = *m_block_index == STATIC_BLOCK;
5930 const bool symbol_is_static =
5931 symbol_linkage_ == symbol_linkage::static_;
5932 if (want_static != symbol_is_static)
5933 goto again;
5934 }
5935
5936 /* Match dw2_symtab_iter_next, symbol_kind
5937 and debug_names::psymbol_tag. */
5938 switch (m_domain)
5939 {
5940 case VAR_DOMAIN:
5941 switch (indexval.dwarf_tag)
5942 {
5943 case DW_TAG_variable:
5944 case DW_TAG_subprogram:
5945 /* Some types are also in VAR_DOMAIN. */
5946 case DW_TAG_typedef:
5947 case DW_TAG_structure_type:
5948 break;
5949 default:
5950 goto again;
5951 }
5952 break;
5953 case STRUCT_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case DW_TAG_typedef:
5957 case DW_TAG_structure_type:
5958 break;
5959 default:
5960 goto again;
5961 }
5962 break;
5963 case LABEL_DOMAIN:
5964 switch (indexval.dwarf_tag)
5965 {
5966 case 0:
5967 case DW_TAG_variable:
5968 break;
5969 default:
5970 goto again;
5971 }
5972 break;
5973 default:
5974 break;
5975 }
5976
5977 /* Match dw2_expand_symtabs_matching, symbol_kind and
5978 debug_names::psymbol_tag. */
5979 switch (m_search)
5980 {
5981 case VARIABLES_DOMAIN:
5982 switch (indexval.dwarf_tag)
5983 {
5984 case DW_TAG_variable:
5985 break;
5986 default:
5987 goto again;
5988 }
5989 break;
5990 case FUNCTIONS_DOMAIN:
5991 switch (indexval.dwarf_tag)
5992 {
5993 case DW_TAG_subprogram:
5994 break;
5995 default:
5996 goto again;
5997 }
5998 break;
5999 case TYPES_DOMAIN:
6000 switch (indexval.dwarf_tag)
6001 {
6002 case DW_TAG_typedef:
6003 case DW_TAG_structure_type:
6004 break;
6005 default:
6006 goto again;
6007 }
6008 break;
6009 default:
6010 break;
6011 }
6012
6013 return per_cu;
6014 }
6015
6016 static struct compunit_symtab *
6017 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
6018 const char *name, domain_enum domain)
6019 {
6020 struct dwarf2_per_objfile *dwarf2_per_objfile
6021 = get_dwarf2_per_objfile (objfile);
6022
6023 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6024 if (!mapp)
6025 {
6026 /* index is NULL if OBJF_READNOW. */
6027 return NULL;
6028 }
6029 const auto &map = *mapp;
6030
6031 dw2_debug_names_iterator iter (map, block_index, domain, name);
6032
6033 struct compunit_symtab *stab_best = NULL;
6034 struct dwarf2_per_cu_data *per_cu;
6035 while ((per_cu = iter.next ()) != NULL)
6036 {
6037 struct symbol *sym, *with_opaque = NULL;
6038 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6039 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6040 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6041
6042 sym = block_find_symbol (block, name, domain,
6043 block_find_non_opaque_type_preferred,
6044 &with_opaque);
6045
6046 /* Some caution must be observed with overloaded functions and
6047 methods, since the index will not contain any overload
6048 information (but NAME might contain it). */
6049
6050 if (sym != NULL
6051 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6052 return stab;
6053 if (with_opaque != NULL
6054 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6055 stab_best = stab;
6056
6057 /* Keep looking through other CUs. */
6058 }
6059
6060 return stab_best;
6061 }
6062
6063 /* This dumps minimal information about .debug_names. It is called
6064 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6065 uses this to verify that .debug_names has been loaded. */
6066
6067 static void
6068 dw2_debug_names_dump (struct objfile *objfile)
6069 {
6070 struct dwarf2_per_objfile *dwarf2_per_objfile
6071 = get_dwarf2_per_objfile (objfile);
6072
6073 gdb_assert (dwarf2_per_objfile->using_index);
6074 printf_filtered (".debug_names:");
6075 if (dwarf2_per_objfile->debug_names_table)
6076 printf_filtered (" exists\n");
6077 else
6078 printf_filtered (" faked for \"readnow\"\n");
6079 printf_filtered ("\n");
6080 }
6081
6082 static void
6083 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6084 const char *func_name)
6085 {
6086 struct dwarf2_per_objfile *dwarf2_per_objfile
6087 = get_dwarf2_per_objfile (objfile);
6088
6089 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6090 if (dwarf2_per_objfile->debug_names_table)
6091 {
6092 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6093
6094 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6095
6096 struct dwarf2_per_cu_data *per_cu;
6097 while ((per_cu = iter.next ()) != NULL)
6098 dw2_instantiate_symtab (per_cu, false);
6099 }
6100 }
6101
6102 static void
6103 dw2_debug_names_map_matching_symbols
6104 (struct objfile *objfile,
6105 const lookup_name_info &name, domain_enum domain,
6106 int global,
6107 gdb::function_view<symbol_found_callback_ftype> callback,
6108 symbol_compare_ftype *ordered_compare)
6109 {
6110 struct dwarf2_per_objfile *dwarf2_per_objfile
6111 = get_dwarf2_per_objfile (objfile);
6112
6113 /* debug_names_table is NULL if OBJF_READNOW. */
6114 if (!dwarf2_per_objfile->debug_names_table)
6115 return;
6116
6117 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6118 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6119
6120 const char *match_name = name.ada ().lookup_name ().c_str ();
6121 auto matcher = [&] (const char *symname)
6122 {
6123 if (ordered_compare == nullptr)
6124 return true;
6125 return ordered_compare (symname, match_name) == 0;
6126 };
6127
6128 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6129 [&] (offset_type namei)
6130 {
6131 /* The name was matched, now expand corresponding CUs that were
6132 marked. */
6133 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6134
6135 struct dwarf2_per_cu_data *per_cu;
6136 while ((per_cu = iter.next ()) != NULL)
6137 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6138 return true;
6139 });
6140
6141 /* It's a shame we couldn't do this inside the
6142 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6143 that have already been expanded. Instead, this loop matches what
6144 the psymtab code does. */
6145 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6146 {
6147 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6148 if (cust != nullptr)
6149 {
6150 const struct block *block
6151 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6152 if (!iterate_over_symbols_terminated (block, name,
6153 domain, callback))
6154 break;
6155 }
6156 }
6157 }
6158
6159 static void
6160 dw2_debug_names_expand_symtabs_matching
6161 (struct objfile *objfile,
6162 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6163 const lookup_name_info &lookup_name,
6164 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6165 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6166 enum search_domain kind)
6167 {
6168 struct dwarf2_per_objfile *dwarf2_per_objfile
6169 = get_dwarf2_per_objfile (objfile);
6170
6171 /* debug_names_table is NULL if OBJF_READNOW. */
6172 if (!dwarf2_per_objfile->debug_names_table)
6173 return;
6174
6175 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6176
6177 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6178
6179 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6180 symbol_matcher,
6181 kind, [&] (offset_type namei)
6182 {
6183 /* The name was matched, now expand corresponding CUs that were
6184 marked. */
6185 dw2_debug_names_iterator iter (map, kind, namei);
6186
6187 struct dwarf2_per_cu_data *per_cu;
6188 while ((per_cu = iter.next ()) != NULL)
6189 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6190 expansion_notify);
6191 return true;
6192 });
6193 }
6194
6195 const struct quick_symbol_functions dwarf2_debug_names_functions =
6196 {
6197 dw2_has_symbols,
6198 dw2_find_last_source_symtab,
6199 dw2_forget_cached_source_info,
6200 dw2_map_symtabs_matching_filename,
6201 dw2_debug_names_lookup_symbol,
6202 dw2_print_stats,
6203 dw2_debug_names_dump,
6204 dw2_debug_names_expand_symtabs_for_function,
6205 dw2_expand_all_symtabs,
6206 dw2_expand_symtabs_with_fullname,
6207 dw2_debug_names_map_matching_symbols,
6208 dw2_debug_names_expand_symtabs_matching,
6209 dw2_find_pc_sect_compunit_symtab,
6210 NULL,
6211 dw2_map_symbol_filenames
6212 };
6213
6214 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6215 to either a dwarf2_per_objfile or dwz_file object. */
6216
6217 template <typename T>
6218 static gdb::array_view<const gdb_byte>
6219 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6220 {
6221 dwarf2_section_info *section = &section_owner->gdb_index;
6222
6223 if (dwarf2_section_empty_p (section))
6224 return {};
6225
6226 /* Older elfutils strip versions could keep the section in the main
6227 executable while splitting it for the separate debug info file. */
6228 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6229 return {};
6230
6231 dwarf2_read_section (obj, section);
6232
6233 /* dwarf2_section_info::size is a bfd_size_type, while
6234 gdb::array_view works with size_t. On 32-bit hosts, with
6235 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6236 is 32-bit. So we need an explicit narrowing conversion here.
6237 This is fine, because it's impossible to allocate or mmap an
6238 array/buffer larger than what size_t can represent. */
6239 return gdb::make_array_view (section->buffer, section->size);
6240 }
6241
6242 /* Lookup the index cache for the contents of the index associated to
6243 DWARF2_OBJ. */
6244
6245 static gdb::array_view<const gdb_byte>
6246 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6247 {
6248 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6249 if (build_id == nullptr)
6250 return {};
6251
6252 return global_index_cache.lookup_gdb_index (build_id,
6253 &dwarf2_obj->index_cache_res);
6254 }
6255
6256 /* Same as the above, but for DWZ. */
6257
6258 static gdb::array_view<const gdb_byte>
6259 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6260 {
6261 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6262 if (build_id == nullptr)
6263 return {};
6264
6265 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6266 }
6267
6268 /* See symfile.h. */
6269
6270 bool
6271 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6272 {
6273 struct dwarf2_per_objfile *dwarf2_per_objfile
6274 = get_dwarf2_per_objfile (objfile);
6275
6276 /* If we're about to read full symbols, don't bother with the
6277 indices. In this case we also don't care if some other debug
6278 format is making psymtabs, because they are all about to be
6279 expanded anyway. */
6280 if ((objfile->flags & OBJF_READNOW))
6281 {
6282 dwarf2_per_objfile->using_index = 1;
6283 create_all_comp_units (dwarf2_per_objfile);
6284 create_all_type_units (dwarf2_per_objfile);
6285 dwarf2_per_objfile->quick_file_names_table
6286 = create_quick_file_names_table
6287 (dwarf2_per_objfile->all_comp_units.size ());
6288
6289 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6290 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6291 {
6292 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6293
6294 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6295 struct dwarf2_per_cu_quick_data);
6296 }
6297
6298 /* Return 1 so that gdb sees the "quick" functions. However,
6299 these functions will be no-ops because we will have expanded
6300 all symtabs. */
6301 *index_kind = dw_index_kind::GDB_INDEX;
6302 return true;
6303 }
6304
6305 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6306 {
6307 *index_kind = dw_index_kind::DEBUG_NAMES;
6308 return true;
6309 }
6310
6311 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6312 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6313 get_gdb_index_contents_from_section<dwz_file>))
6314 {
6315 *index_kind = dw_index_kind::GDB_INDEX;
6316 return true;
6317 }
6318
6319 /* ... otherwise, try to find the index in the index cache. */
6320 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6321 get_gdb_index_contents_from_cache,
6322 get_gdb_index_contents_from_cache_dwz))
6323 {
6324 global_index_cache.hit ();
6325 *index_kind = dw_index_kind::GDB_INDEX;
6326 return true;
6327 }
6328
6329 global_index_cache.miss ();
6330 return false;
6331 }
6332
6333 \f
6334
6335 /* Build a partial symbol table. */
6336
6337 void
6338 dwarf2_build_psymtabs (struct objfile *objfile)
6339 {
6340 struct dwarf2_per_objfile *dwarf2_per_objfile
6341 = get_dwarf2_per_objfile (objfile);
6342
6343 init_psymbol_list (objfile, 1024);
6344
6345 try
6346 {
6347 /* This isn't really ideal: all the data we allocate on the
6348 objfile's obstack is still uselessly kept around. However,
6349 freeing it seems unsafe. */
6350 psymtab_discarder psymtabs (objfile);
6351 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6352 psymtabs.keep ();
6353
6354 /* (maybe) store an index in the cache. */
6355 global_index_cache.store (dwarf2_per_objfile);
6356 }
6357 catch (const gdb_exception_error &except)
6358 {
6359 exception_print (gdb_stderr, except);
6360 }
6361 }
6362
6363 /* Return the total length of the CU described by HEADER. */
6364
6365 static unsigned int
6366 get_cu_length (const struct comp_unit_head *header)
6367 {
6368 return header->initial_length_size + header->length;
6369 }
6370
6371 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6372
6373 static inline bool
6374 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6375 {
6376 sect_offset bottom = cu_header->sect_off;
6377 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6378
6379 return sect_off >= bottom && sect_off < top;
6380 }
6381
6382 /* Find the base address of the compilation unit for range lists and
6383 location lists. It will normally be specified by DW_AT_low_pc.
6384 In DWARF-3 draft 4, the base address could be overridden by
6385 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6386 compilation units with discontinuous ranges. */
6387
6388 static void
6389 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6390 {
6391 struct attribute *attr;
6392
6393 cu->base_known = 0;
6394 cu->base_address = 0;
6395
6396 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6397 if (attr)
6398 {
6399 cu->base_address = attr_value_as_address (attr);
6400 cu->base_known = 1;
6401 }
6402 else
6403 {
6404 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6405 if (attr)
6406 {
6407 cu->base_address = attr_value_as_address (attr);
6408 cu->base_known = 1;
6409 }
6410 }
6411 }
6412
6413 /* Read in the comp unit header information from the debug_info at info_ptr.
6414 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6415 NOTE: This leaves members offset, first_die_offset to be filled in
6416 by the caller. */
6417
6418 static const gdb_byte *
6419 read_comp_unit_head (struct comp_unit_head *cu_header,
6420 const gdb_byte *info_ptr,
6421 struct dwarf2_section_info *section,
6422 rcuh_kind section_kind)
6423 {
6424 int signed_addr;
6425 unsigned int bytes_read;
6426 const char *filename = get_section_file_name (section);
6427 bfd *abfd = get_section_bfd_owner (section);
6428
6429 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6430 cu_header->initial_length_size = bytes_read;
6431 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6432 info_ptr += bytes_read;
6433 cu_header->version = read_2_bytes (abfd, info_ptr);
6434 if (cu_header->version < 2 || cu_header->version > 5)
6435 error (_("Dwarf Error: wrong version in compilation unit header "
6436 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6437 cu_header->version, filename);
6438 info_ptr += 2;
6439 if (cu_header->version < 5)
6440 switch (section_kind)
6441 {
6442 case rcuh_kind::COMPILE:
6443 cu_header->unit_type = DW_UT_compile;
6444 break;
6445 case rcuh_kind::TYPE:
6446 cu_header->unit_type = DW_UT_type;
6447 break;
6448 default:
6449 internal_error (__FILE__, __LINE__,
6450 _("read_comp_unit_head: invalid section_kind"));
6451 }
6452 else
6453 {
6454 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6455 (read_1_byte (abfd, info_ptr));
6456 info_ptr += 1;
6457 switch (cu_header->unit_type)
6458 {
6459 case DW_UT_compile:
6460 case DW_UT_partial:
6461 case DW_UT_skeleton:
6462 case DW_UT_split_compile:
6463 if (section_kind != rcuh_kind::COMPILE)
6464 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6465 "(is %s, should be %s) [in module %s]"),
6466 dwarf_unit_type_name (cu_header->unit_type),
6467 dwarf_unit_type_name (DW_UT_type), filename);
6468 break;
6469 case DW_UT_type:
6470 case DW_UT_split_type:
6471 section_kind = rcuh_kind::TYPE;
6472 break;
6473 default:
6474 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6475 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6476 "[in module %s]"), cu_header->unit_type,
6477 dwarf_unit_type_name (DW_UT_compile),
6478 dwarf_unit_type_name (DW_UT_skeleton),
6479 dwarf_unit_type_name (DW_UT_split_compile),
6480 dwarf_unit_type_name (DW_UT_type),
6481 dwarf_unit_type_name (DW_UT_split_type), filename);
6482 }
6483
6484 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6485 info_ptr += 1;
6486 }
6487 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6488 cu_header,
6489 &bytes_read);
6490 info_ptr += bytes_read;
6491 if (cu_header->version < 5)
6492 {
6493 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6494 info_ptr += 1;
6495 }
6496 signed_addr = bfd_get_sign_extend_vma (abfd);
6497 if (signed_addr < 0)
6498 internal_error (__FILE__, __LINE__,
6499 _("read_comp_unit_head: dwarf from non elf file"));
6500 cu_header->signed_addr_p = signed_addr;
6501
6502 bool header_has_signature = section_kind == rcuh_kind::TYPE
6503 || cu_header->unit_type == DW_UT_skeleton
6504 || cu_header->unit_type == DW_UT_split_compile;
6505
6506 if (header_has_signature)
6507 {
6508 cu_header->signature = read_8_bytes (abfd, info_ptr);
6509 info_ptr += 8;
6510 }
6511
6512 if (section_kind == rcuh_kind::TYPE)
6513 {
6514 LONGEST type_offset;
6515 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6516 info_ptr += bytes_read;
6517 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6518 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6519 error (_("Dwarf Error: Too big type_offset in compilation unit "
6520 "header (is %s) [in module %s]"), plongest (type_offset),
6521 filename);
6522 }
6523
6524 return info_ptr;
6525 }
6526
6527 /* Helper function that returns the proper abbrev section for
6528 THIS_CU. */
6529
6530 static struct dwarf2_section_info *
6531 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6532 {
6533 struct dwarf2_section_info *abbrev;
6534 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6535
6536 if (this_cu->is_dwz)
6537 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6538 else
6539 abbrev = &dwarf2_per_objfile->abbrev;
6540
6541 return abbrev;
6542 }
6543
6544 /* Subroutine of read_and_check_comp_unit_head and
6545 read_and_check_type_unit_head to simplify them.
6546 Perform various error checking on the header. */
6547
6548 static void
6549 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct comp_unit_head *header,
6551 struct dwarf2_section_info *section,
6552 struct dwarf2_section_info *abbrev_section)
6553 {
6554 const char *filename = get_section_file_name (section);
6555
6556 if (to_underlying (header->abbrev_sect_off)
6557 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6558 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6559 "(offset %s + 6) [in module %s]"),
6560 sect_offset_str (header->abbrev_sect_off),
6561 sect_offset_str (header->sect_off),
6562 filename);
6563
6564 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6565 avoid potential 32-bit overflow. */
6566 if (((ULONGEST) header->sect_off + get_cu_length (header))
6567 > section->size)
6568 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6569 "(offset %s + 0) [in module %s]"),
6570 header->length, sect_offset_str (header->sect_off),
6571 filename);
6572 }
6573
6574 /* Read in a CU/TU header and perform some basic error checking.
6575 The contents of the header are stored in HEADER.
6576 The result is a pointer to the start of the first DIE. */
6577
6578 static const gdb_byte *
6579 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6580 struct comp_unit_head *header,
6581 struct dwarf2_section_info *section,
6582 struct dwarf2_section_info *abbrev_section,
6583 const gdb_byte *info_ptr,
6584 rcuh_kind section_kind)
6585 {
6586 const gdb_byte *beg_of_comp_unit = info_ptr;
6587
6588 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6589
6590 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6591
6592 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6593
6594 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6595 abbrev_section);
6596
6597 return info_ptr;
6598 }
6599
6600 /* Fetch the abbreviation table offset from a comp or type unit header. */
6601
6602 static sect_offset
6603 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6604 struct dwarf2_section_info *section,
6605 sect_offset sect_off)
6606 {
6607 bfd *abfd = get_section_bfd_owner (section);
6608 const gdb_byte *info_ptr;
6609 unsigned int initial_length_size, offset_size;
6610 uint16_t version;
6611
6612 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6613 info_ptr = section->buffer + to_underlying (sect_off);
6614 read_initial_length (abfd, info_ptr, &initial_length_size);
6615 offset_size = initial_length_size == 4 ? 4 : 8;
6616 info_ptr += initial_length_size;
6617
6618 version = read_2_bytes (abfd, info_ptr);
6619 info_ptr += 2;
6620 if (version >= 5)
6621 {
6622 /* Skip unit type and address size. */
6623 info_ptr += 2;
6624 }
6625
6626 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6627 }
6628
6629 /* Allocate a new partial symtab for file named NAME and mark this new
6630 partial symtab as being an include of PST. */
6631
6632 static void
6633 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6634 struct objfile *objfile)
6635 {
6636 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6637
6638 if (!IS_ABSOLUTE_PATH (subpst->filename))
6639 {
6640 /* It shares objfile->objfile_obstack. */
6641 subpst->dirname = pst->dirname;
6642 }
6643
6644 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6645 subpst->dependencies[0] = pst;
6646 subpst->number_of_dependencies = 1;
6647
6648 subpst->read_symtab = pst->read_symtab;
6649
6650 /* No private part is necessary for include psymtabs. This property
6651 can be used to differentiate between such include psymtabs and
6652 the regular ones. */
6653 subpst->read_symtab_private = NULL;
6654 }
6655
6656 /* Read the Line Number Program data and extract the list of files
6657 included by the source file represented by PST. Build an include
6658 partial symtab for each of these included files. */
6659
6660 static void
6661 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6662 struct die_info *die,
6663 struct partial_symtab *pst)
6664 {
6665 line_header_up lh;
6666 struct attribute *attr;
6667
6668 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6669 if (attr)
6670 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6671 if (lh == NULL)
6672 return; /* No linetable, so no includes. */
6673
6674 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6675 that we pass in the raw text_low here; that is ok because we're
6676 only decoding the line table to make include partial symtabs, and
6677 so the addresses aren't really used. */
6678 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6679 pst->raw_text_low (), 1);
6680 }
6681
6682 static hashval_t
6683 hash_signatured_type (const void *item)
6684 {
6685 const struct signatured_type *sig_type
6686 = (const struct signatured_type *) item;
6687
6688 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6689 return sig_type->signature;
6690 }
6691
6692 static int
6693 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6694 {
6695 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6696 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6697
6698 return lhs->signature == rhs->signature;
6699 }
6700
6701 /* Allocate a hash table for signatured types. */
6702
6703 static htab_t
6704 allocate_signatured_type_table (struct objfile *objfile)
6705 {
6706 return htab_create_alloc_ex (41,
6707 hash_signatured_type,
6708 eq_signatured_type,
6709 NULL,
6710 &objfile->objfile_obstack,
6711 hashtab_obstack_allocate,
6712 dummy_obstack_deallocate);
6713 }
6714
6715 /* A helper function to add a signatured type CU to a table. */
6716
6717 static int
6718 add_signatured_type_cu_to_table (void **slot, void *datum)
6719 {
6720 struct signatured_type *sigt = (struct signatured_type *) *slot;
6721 std::vector<signatured_type *> *all_type_units
6722 = (std::vector<signatured_type *> *) datum;
6723
6724 all_type_units->push_back (sigt);
6725
6726 return 1;
6727 }
6728
6729 /* A helper for create_debug_types_hash_table. Read types from SECTION
6730 and fill them into TYPES_HTAB. It will process only type units,
6731 therefore DW_UT_type. */
6732
6733 static void
6734 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6735 struct dwo_file *dwo_file,
6736 dwarf2_section_info *section, htab_t &types_htab,
6737 rcuh_kind section_kind)
6738 {
6739 struct objfile *objfile = dwarf2_per_objfile->objfile;
6740 struct dwarf2_section_info *abbrev_section;
6741 bfd *abfd;
6742 const gdb_byte *info_ptr, *end_ptr;
6743
6744 abbrev_section = (dwo_file != NULL
6745 ? &dwo_file->sections.abbrev
6746 : &dwarf2_per_objfile->abbrev);
6747
6748 if (dwarf_read_debug)
6749 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6750 get_section_name (section),
6751 get_section_file_name (abbrev_section));
6752
6753 dwarf2_read_section (objfile, section);
6754 info_ptr = section->buffer;
6755
6756 if (info_ptr == NULL)
6757 return;
6758
6759 /* We can't set abfd until now because the section may be empty or
6760 not present, in which case the bfd is unknown. */
6761 abfd = get_section_bfd_owner (section);
6762
6763 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6764 because we don't need to read any dies: the signature is in the
6765 header. */
6766
6767 end_ptr = info_ptr + section->size;
6768 while (info_ptr < end_ptr)
6769 {
6770 struct signatured_type *sig_type;
6771 struct dwo_unit *dwo_tu;
6772 void **slot;
6773 const gdb_byte *ptr = info_ptr;
6774 struct comp_unit_head header;
6775 unsigned int length;
6776
6777 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6778
6779 /* Initialize it due to a false compiler warning. */
6780 header.signature = -1;
6781 header.type_cu_offset_in_tu = (cu_offset) -1;
6782
6783 /* We need to read the type's signature in order to build the hash
6784 table, but we don't need anything else just yet. */
6785
6786 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6787 abbrev_section, ptr, section_kind);
6788
6789 length = get_cu_length (&header);
6790
6791 /* Skip dummy type units. */
6792 if (ptr >= info_ptr + length
6793 || peek_abbrev_code (abfd, ptr) == 0
6794 || header.unit_type != DW_UT_type)
6795 {
6796 info_ptr += length;
6797 continue;
6798 }
6799
6800 if (types_htab == NULL)
6801 {
6802 if (dwo_file)
6803 types_htab = allocate_dwo_unit_table (objfile);
6804 else
6805 types_htab = allocate_signatured_type_table (objfile);
6806 }
6807
6808 if (dwo_file)
6809 {
6810 sig_type = NULL;
6811 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6812 struct dwo_unit);
6813 dwo_tu->dwo_file = dwo_file;
6814 dwo_tu->signature = header.signature;
6815 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6816 dwo_tu->section = section;
6817 dwo_tu->sect_off = sect_off;
6818 dwo_tu->length = length;
6819 }
6820 else
6821 {
6822 /* N.B.: type_offset is not usable if this type uses a DWO file.
6823 The real type_offset is in the DWO file. */
6824 dwo_tu = NULL;
6825 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6826 struct signatured_type);
6827 sig_type->signature = header.signature;
6828 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6829 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6830 sig_type->per_cu.is_debug_types = 1;
6831 sig_type->per_cu.section = section;
6832 sig_type->per_cu.sect_off = sect_off;
6833 sig_type->per_cu.length = length;
6834 }
6835
6836 slot = htab_find_slot (types_htab,
6837 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6838 INSERT);
6839 gdb_assert (slot != NULL);
6840 if (*slot != NULL)
6841 {
6842 sect_offset dup_sect_off;
6843
6844 if (dwo_file)
6845 {
6846 const struct dwo_unit *dup_tu
6847 = (const struct dwo_unit *) *slot;
6848
6849 dup_sect_off = dup_tu->sect_off;
6850 }
6851 else
6852 {
6853 const struct signatured_type *dup_tu
6854 = (const struct signatured_type *) *slot;
6855
6856 dup_sect_off = dup_tu->per_cu.sect_off;
6857 }
6858
6859 complaint (_("debug type entry at offset %s is duplicate to"
6860 " the entry at offset %s, signature %s"),
6861 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6862 hex_string (header.signature));
6863 }
6864 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6865
6866 if (dwarf_read_debug > 1)
6867 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6868 sect_offset_str (sect_off),
6869 hex_string (header.signature));
6870
6871 info_ptr += length;
6872 }
6873 }
6874
6875 /* Create the hash table of all entries in the .debug_types
6876 (or .debug_types.dwo) section(s).
6877 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6878 otherwise it is NULL.
6879
6880 The result is a pointer to the hash table or NULL if there are no types.
6881
6882 Note: This function processes DWO files only, not DWP files. */
6883
6884 static void
6885 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6886 struct dwo_file *dwo_file,
6887 gdb::array_view<dwarf2_section_info> type_sections,
6888 htab_t &types_htab)
6889 {
6890 for (dwarf2_section_info &section : type_sections)
6891 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6892 types_htab, rcuh_kind::TYPE);
6893 }
6894
6895 /* Create the hash table of all entries in the .debug_types section,
6896 and initialize all_type_units.
6897 The result is zero if there is an error (e.g. missing .debug_types section),
6898 otherwise non-zero. */
6899
6900 static int
6901 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6902 {
6903 htab_t types_htab = NULL;
6904
6905 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6906 &dwarf2_per_objfile->info, types_htab,
6907 rcuh_kind::COMPILE);
6908 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6909 dwarf2_per_objfile->types, types_htab);
6910 if (types_htab == NULL)
6911 {
6912 dwarf2_per_objfile->signatured_types = NULL;
6913 return 0;
6914 }
6915
6916 dwarf2_per_objfile->signatured_types = types_htab;
6917
6918 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6919 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6920
6921 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6922 &dwarf2_per_objfile->all_type_units);
6923
6924 return 1;
6925 }
6926
6927 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6928 If SLOT is non-NULL, it is the entry to use in the hash table.
6929 Otherwise we find one. */
6930
6931 static struct signatured_type *
6932 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6933 void **slot)
6934 {
6935 struct objfile *objfile = dwarf2_per_objfile->objfile;
6936
6937 if (dwarf2_per_objfile->all_type_units.size ()
6938 == dwarf2_per_objfile->all_type_units.capacity ())
6939 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6940
6941 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6942 struct signatured_type);
6943
6944 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6945 sig_type->signature = sig;
6946 sig_type->per_cu.is_debug_types = 1;
6947 if (dwarf2_per_objfile->using_index)
6948 {
6949 sig_type->per_cu.v.quick =
6950 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6951 struct dwarf2_per_cu_quick_data);
6952 }
6953
6954 if (slot == NULL)
6955 {
6956 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6957 sig_type, INSERT);
6958 }
6959 gdb_assert (*slot == NULL);
6960 *slot = sig_type;
6961 /* The rest of sig_type must be filled in by the caller. */
6962 return sig_type;
6963 }
6964
6965 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6966 Fill in SIG_ENTRY with DWO_ENTRY. */
6967
6968 static void
6969 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6970 struct signatured_type *sig_entry,
6971 struct dwo_unit *dwo_entry)
6972 {
6973 /* Make sure we're not clobbering something we don't expect to. */
6974 gdb_assert (! sig_entry->per_cu.queued);
6975 gdb_assert (sig_entry->per_cu.cu == NULL);
6976 if (dwarf2_per_objfile->using_index)
6977 {
6978 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6979 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6980 }
6981 else
6982 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6983 gdb_assert (sig_entry->signature == dwo_entry->signature);
6984 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6985 gdb_assert (sig_entry->type_unit_group == NULL);
6986 gdb_assert (sig_entry->dwo_unit == NULL);
6987
6988 sig_entry->per_cu.section = dwo_entry->section;
6989 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6990 sig_entry->per_cu.length = dwo_entry->length;
6991 sig_entry->per_cu.reading_dwo_directly = 1;
6992 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6993 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6994 sig_entry->dwo_unit = dwo_entry;
6995 }
6996
6997 /* Subroutine of lookup_signatured_type.
6998 If we haven't read the TU yet, create the signatured_type data structure
6999 for a TU to be read in directly from a DWO file, bypassing the stub.
7000 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7001 using .gdb_index, then when reading a CU we want to stay in the DWO file
7002 containing that CU. Otherwise we could end up reading several other DWO
7003 files (due to comdat folding) to process the transitive closure of all the
7004 mentioned TUs, and that can be slow. The current DWO file will have every
7005 type signature that it needs.
7006 We only do this for .gdb_index because in the psymtab case we already have
7007 to read all the DWOs to build the type unit groups. */
7008
7009 static struct signatured_type *
7010 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7011 {
7012 struct dwarf2_per_objfile *dwarf2_per_objfile
7013 = cu->per_cu->dwarf2_per_objfile;
7014 struct objfile *objfile = dwarf2_per_objfile->objfile;
7015 struct dwo_file *dwo_file;
7016 struct dwo_unit find_dwo_entry, *dwo_entry;
7017 struct signatured_type find_sig_entry, *sig_entry;
7018 void **slot;
7019
7020 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7021
7022 /* If TU skeletons have been removed then we may not have read in any
7023 TUs yet. */
7024 if (dwarf2_per_objfile->signatured_types == NULL)
7025 {
7026 dwarf2_per_objfile->signatured_types
7027 = allocate_signatured_type_table (objfile);
7028 }
7029
7030 /* We only ever need to read in one copy of a signatured type.
7031 Use the global signatured_types array to do our own comdat-folding
7032 of types. If this is the first time we're reading this TU, and
7033 the TU has an entry in .gdb_index, replace the recorded data from
7034 .gdb_index with this TU. */
7035
7036 find_sig_entry.signature = sig;
7037 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7038 &find_sig_entry, INSERT);
7039 sig_entry = (struct signatured_type *) *slot;
7040
7041 /* We can get here with the TU already read, *or* in the process of being
7042 read. Don't reassign the global entry to point to this DWO if that's
7043 the case. Also note that if the TU is already being read, it may not
7044 have come from a DWO, the program may be a mix of Fission-compiled
7045 code and non-Fission-compiled code. */
7046
7047 /* Have we already tried to read this TU?
7048 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7049 needn't exist in the global table yet). */
7050 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7051 return sig_entry;
7052
7053 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7054 dwo_unit of the TU itself. */
7055 dwo_file = cu->dwo_unit->dwo_file;
7056
7057 /* Ok, this is the first time we're reading this TU. */
7058 if (dwo_file->tus == NULL)
7059 return NULL;
7060 find_dwo_entry.signature = sig;
7061 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7062 if (dwo_entry == NULL)
7063 return NULL;
7064
7065 /* If the global table doesn't have an entry for this TU, add one. */
7066 if (sig_entry == NULL)
7067 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7068
7069 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7070 sig_entry->per_cu.tu_read = 1;
7071 return sig_entry;
7072 }
7073
7074 /* Subroutine of lookup_signatured_type.
7075 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7076 then try the DWP file. If the TU stub (skeleton) has been removed then
7077 it won't be in .gdb_index. */
7078
7079 static struct signatured_type *
7080 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7081 {
7082 struct dwarf2_per_objfile *dwarf2_per_objfile
7083 = cu->per_cu->dwarf2_per_objfile;
7084 struct objfile *objfile = dwarf2_per_objfile->objfile;
7085 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7086 struct dwo_unit *dwo_entry;
7087 struct signatured_type find_sig_entry, *sig_entry;
7088 void **slot;
7089
7090 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7091 gdb_assert (dwp_file != NULL);
7092
7093 /* If TU skeletons have been removed then we may not have read in any
7094 TUs yet. */
7095 if (dwarf2_per_objfile->signatured_types == NULL)
7096 {
7097 dwarf2_per_objfile->signatured_types
7098 = allocate_signatured_type_table (objfile);
7099 }
7100
7101 find_sig_entry.signature = sig;
7102 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7103 &find_sig_entry, INSERT);
7104 sig_entry = (struct signatured_type *) *slot;
7105
7106 /* Have we already tried to read this TU?
7107 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7108 needn't exist in the global table yet). */
7109 if (sig_entry != NULL)
7110 return sig_entry;
7111
7112 if (dwp_file->tus == NULL)
7113 return NULL;
7114 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7115 sig, 1 /* is_debug_types */);
7116 if (dwo_entry == NULL)
7117 return NULL;
7118
7119 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7120 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7121
7122 return sig_entry;
7123 }
7124
7125 /* Lookup a signature based type for DW_FORM_ref_sig8.
7126 Returns NULL if signature SIG is not present in the table.
7127 It is up to the caller to complain about this. */
7128
7129 static struct signatured_type *
7130 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7131 {
7132 struct dwarf2_per_objfile *dwarf2_per_objfile
7133 = cu->per_cu->dwarf2_per_objfile;
7134
7135 if (cu->dwo_unit
7136 && dwarf2_per_objfile->using_index)
7137 {
7138 /* We're in a DWO/DWP file, and we're using .gdb_index.
7139 These cases require special processing. */
7140 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7141 return lookup_dwo_signatured_type (cu, sig);
7142 else
7143 return lookup_dwp_signatured_type (cu, sig);
7144 }
7145 else
7146 {
7147 struct signatured_type find_entry, *entry;
7148
7149 if (dwarf2_per_objfile->signatured_types == NULL)
7150 return NULL;
7151 find_entry.signature = sig;
7152 entry = ((struct signatured_type *)
7153 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7154 return entry;
7155 }
7156 }
7157 \f
7158 /* Low level DIE reading support. */
7159
7160 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7161
7162 static void
7163 init_cu_die_reader (struct die_reader_specs *reader,
7164 struct dwarf2_cu *cu,
7165 struct dwarf2_section_info *section,
7166 struct dwo_file *dwo_file,
7167 struct abbrev_table *abbrev_table)
7168 {
7169 gdb_assert (section->readin && section->buffer != NULL);
7170 reader->abfd = get_section_bfd_owner (section);
7171 reader->cu = cu;
7172 reader->dwo_file = dwo_file;
7173 reader->die_section = section;
7174 reader->buffer = section->buffer;
7175 reader->buffer_end = section->buffer + section->size;
7176 reader->comp_dir = NULL;
7177 reader->abbrev_table = abbrev_table;
7178 }
7179
7180 /* Subroutine of init_cutu_and_read_dies to simplify it.
7181 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7182 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7183 already.
7184
7185 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7186 from it to the DIE in the DWO. If NULL we are skipping the stub.
7187 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7188 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7189 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7190 STUB_COMP_DIR may be non-NULL.
7191 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7192 are filled in with the info of the DIE from the DWO file.
7193 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7194 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7195 kept around for at least as long as *RESULT_READER.
7196
7197 The result is non-zero if a valid (non-dummy) DIE was found. */
7198
7199 static int
7200 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7201 struct dwo_unit *dwo_unit,
7202 struct die_info *stub_comp_unit_die,
7203 const char *stub_comp_dir,
7204 struct die_reader_specs *result_reader,
7205 const gdb_byte **result_info_ptr,
7206 struct die_info **result_comp_unit_die,
7207 int *result_has_children,
7208 abbrev_table_up *result_dwo_abbrev_table)
7209 {
7210 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7211 struct objfile *objfile = dwarf2_per_objfile->objfile;
7212 struct dwarf2_cu *cu = this_cu->cu;
7213 bfd *abfd;
7214 const gdb_byte *begin_info_ptr, *info_ptr;
7215 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7216 int i,num_extra_attrs;
7217 struct dwarf2_section_info *dwo_abbrev_section;
7218 struct attribute *attr;
7219 struct die_info *comp_unit_die;
7220
7221 /* At most one of these may be provided. */
7222 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7223
7224 /* These attributes aren't processed until later:
7225 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7226 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7227 referenced later. However, these attributes are found in the stub
7228 which we won't have later. In order to not impose this complication
7229 on the rest of the code, we read them here and copy them to the
7230 DWO CU/TU die. */
7231
7232 stmt_list = NULL;
7233 low_pc = NULL;
7234 high_pc = NULL;
7235 ranges = NULL;
7236 comp_dir = NULL;
7237
7238 if (stub_comp_unit_die != NULL)
7239 {
7240 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7241 DWO file. */
7242 if (! this_cu->is_debug_types)
7243 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7244 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7245 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7246 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7247 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7248
7249 /* There should be a DW_AT_addr_base attribute here (if needed).
7250 We need the value before we can process DW_FORM_GNU_addr_index
7251 or DW_FORM_addrx. */
7252 cu->addr_base = 0;
7253 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7254 if (attr)
7255 cu->addr_base = DW_UNSND (attr);
7256
7257 /* There should be a DW_AT_ranges_base attribute here (if needed).
7258 We need the value before we can process DW_AT_ranges. */
7259 cu->ranges_base = 0;
7260 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7261 if (attr)
7262 cu->ranges_base = DW_UNSND (attr);
7263 }
7264 else if (stub_comp_dir != NULL)
7265 {
7266 /* Reconstruct the comp_dir attribute to simplify the code below. */
7267 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7268 comp_dir->name = DW_AT_comp_dir;
7269 comp_dir->form = DW_FORM_string;
7270 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7271 DW_STRING (comp_dir) = stub_comp_dir;
7272 }
7273
7274 /* Set up for reading the DWO CU/TU. */
7275 cu->dwo_unit = dwo_unit;
7276 dwarf2_section_info *section = dwo_unit->section;
7277 dwarf2_read_section (objfile, section);
7278 abfd = get_section_bfd_owner (section);
7279 begin_info_ptr = info_ptr = (section->buffer
7280 + to_underlying (dwo_unit->sect_off));
7281 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7282
7283 if (this_cu->is_debug_types)
7284 {
7285 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7286
7287 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7288 &cu->header, section,
7289 dwo_abbrev_section,
7290 info_ptr, rcuh_kind::TYPE);
7291 /* This is not an assert because it can be caused by bad debug info. */
7292 if (sig_type->signature != cu->header.signature)
7293 {
7294 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7295 " TU at offset %s [in module %s]"),
7296 hex_string (sig_type->signature),
7297 hex_string (cu->header.signature),
7298 sect_offset_str (dwo_unit->sect_off),
7299 bfd_get_filename (abfd));
7300 }
7301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7302 /* For DWOs coming from DWP files, we don't know the CU length
7303 nor the type's offset in the TU until now. */
7304 dwo_unit->length = get_cu_length (&cu->header);
7305 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7306
7307 /* Establish the type offset that can be used to lookup the type.
7308 For DWO files, we don't know it until now. */
7309 sig_type->type_offset_in_section
7310 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7311 }
7312 else
7313 {
7314 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7315 &cu->header, section,
7316 dwo_abbrev_section,
7317 info_ptr, rcuh_kind::COMPILE);
7318 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7319 /* For DWOs coming from DWP files, we don't know the CU length
7320 until now. */
7321 dwo_unit->length = get_cu_length (&cu->header);
7322 }
7323
7324 *result_dwo_abbrev_table
7325 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7326 cu->header.abbrev_sect_off);
7327 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7328 result_dwo_abbrev_table->get ());
7329
7330 /* Read in the die, but leave space to copy over the attributes
7331 from the stub. This has the benefit of simplifying the rest of
7332 the code - all the work to maintain the illusion of a single
7333 DW_TAG_{compile,type}_unit DIE is done here. */
7334 num_extra_attrs = ((stmt_list != NULL)
7335 + (low_pc != NULL)
7336 + (high_pc != NULL)
7337 + (ranges != NULL)
7338 + (comp_dir != NULL));
7339 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7340 result_has_children, num_extra_attrs);
7341
7342 /* Copy over the attributes from the stub to the DIE we just read in. */
7343 comp_unit_die = *result_comp_unit_die;
7344 i = comp_unit_die->num_attrs;
7345 if (stmt_list != NULL)
7346 comp_unit_die->attrs[i++] = *stmt_list;
7347 if (low_pc != NULL)
7348 comp_unit_die->attrs[i++] = *low_pc;
7349 if (high_pc != NULL)
7350 comp_unit_die->attrs[i++] = *high_pc;
7351 if (ranges != NULL)
7352 comp_unit_die->attrs[i++] = *ranges;
7353 if (comp_dir != NULL)
7354 comp_unit_die->attrs[i++] = *comp_dir;
7355 comp_unit_die->num_attrs += num_extra_attrs;
7356
7357 if (dwarf_die_debug)
7358 {
7359 fprintf_unfiltered (gdb_stdlog,
7360 "Read die from %s@0x%x of %s:\n",
7361 get_section_name (section),
7362 (unsigned) (begin_info_ptr - section->buffer),
7363 bfd_get_filename (abfd));
7364 dump_die (comp_unit_die, dwarf_die_debug);
7365 }
7366
7367 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7368 TUs by skipping the stub and going directly to the entry in the DWO file.
7369 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7370 to get it via circuitous means. Blech. */
7371 if (comp_dir != NULL)
7372 result_reader->comp_dir = DW_STRING (comp_dir);
7373
7374 /* Skip dummy compilation units. */
7375 if (info_ptr >= begin_info_ptr + dwo_unit->length
7376 || peek_abbrev_code (abfd, info_ptr) == 0)
7377 return 0;
7378
7379 *result_info_ptr = info_ptr;
7380 return 1;
7381 }
7382
7383 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7384 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7385 signature is part of the header. */
7386 static gdb::optional<ULONGEST>
7387 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7388 {
7389 if (cu->header.version >= 5)
7390 return cu->header.signature;
7391 struct attribute *attr;
7392 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7393 if (attr == nullptr)
7394 return gdb::optional<ULONGEST> ();
7395 return DW_UNSND (attr);
7396 }
7397
7398 /* Subroutine of init_cutu_and_read_dies to simplify it.
7399 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7400 Returns NULL if the specified DWO unit cannot be found. */
7401
7402 static struct dwo_unit *
7403 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7404 struct die_info *comp_unit_die)
7405 {
7406 struct dwarf2_cu *cu = this_cu->cu;
7407 struct dwo_unit *dwo_unit;
7408 const char *comp_dir, *dwo_name;
7409
7410 gdb_assert (cu != NULL);
7411
7412 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7413 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7414 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7415
7416 if (this_cu->is_debug_types)
7417 {
7418 struct signatured_type *sig_type;
7419
7420 /* Since this_cu is the first member of struct signatured_type,
7421 we can go from a pointer to one to a pointer to the other. */
7422 sig_type = (struct signatured_type *) this_cu;
7423 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7424 }
7425 else
7426 {
7427 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7428 if (!signature.has_value ())
7429 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7430 " [in module %s]"),
7431 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7432 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7433 *signature);
7434 }
7435
7436 return dwo_unit;
7437 }
7438
7439 /* Subroutine of init_cutu_and_read_dies to simplify it.
7440 See it for a description of the parameters.
7441 Read a TU directly from a DWO file, bypassing the stub. */
7442
7443 static void
7444 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7445 int use_existing_cu, int keep,
7446 die_reader_func_ftype *die_reader_func,
7447 void *data)
7448 {
7449 std::unique_ptr<dwarf2_cu> new_cu;
7450 struct signatured_type *sig_type;
7451 struct die_reader_specs reader;
7452 const gdb_byte *info_ptr;
7453 struct die_info *comp_unit_die;
7454 int has_children;
7455 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7456
7457 /* Verify we can do the following downcast, and that we have the
7458 data we need. */
7459 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7460 sig_type = (struct signatured_type *) this_cu;
7461 gdb_assert (sig_type->dwo_unit != NULL);
7462
7463 if (use_existing_cu && this_cu->cu != NULL)
7464 {
7465 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7466 /* There's no need to do the rereading_dwo_cu handling that
7467 init_cutu_and_read_dies does since we don't read the stub. */
7468 }
7469 else
7470 {
7471 /* If !use_existing_cu, this_cu->cu must be NULL. */
7472 gdb_assert (this_cu->cu == NULL);
7473 new_cu.reset (new dwarf2_cu (this_cu));
7474 }
7475
7476 /* A future optimization, if needed, would be to use an existing
7477 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7478 could share abbrev tables. */
7479
7480 /* The abbreviation table used by READER, this must live at least as long as
7481 READER. */
7482 abbrev_table_up dwo_abbrev_table;
7483
7484 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7485 NULL /* stub_comp_unit_die */,
7486 sig_type->dwo_unit->dwo_file->comp_dir,
7487 &reader, &info_ptr,
7488 &comp_unit_die, &has_children,
7489 &dwo_abbrev_table) == 0)
7490 {
7491 /* Dummy die. */
7492 return;
7493 }
7494
7495 /* All the "real" work is done here. */
7496 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7497
7498 /* This duplicates the code in init_cutu_and_read_dies,
7499 but the alternative is making the latter more complex.
7500 This function is only for the special case of using DWO files directly:
7501 no point in overly complicating the general case just to handle this. */
7502 if (new_cu != NULL && keep)
7503 {
7504 /* Link this CU into read_in_chain. */
7505 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7506 dwarf2_per_objfile->read_in_chain = this_cu;
7507 /* The chain owns it now. */
7508 new_cu.release ();
7509 }
7510 }
7511
7512 /* Initialize a CU (or TU) and read its DIEs.
7513 If the CU defers to a DWO file, read the DWO file as well.
7514
7515 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7516 Otherwise the table specified in the comp unit header is read in and used.
7517 This is an optimization for when we already have the abbrev table.
7518
7519 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7520 Otherwise, a new CU is allocated with xmalloc.
7521
7522 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7523 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7524
7525 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7526 linker) then DIE_READER_FUNC will not get called. */
7527
7528 static void
7529 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7530 struct abbrev_table *abbrev_table,
7531 int use_existing_cu, int keep,
7532 bool skip_partial,
7533 die_reader_func_ftype *die_reader_func,
7534 void *data)
7535 {
7536 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7537 struct objfile *objfile = dwarf2_per_objfile->objfile;
7538 struct dwarf2_section_info *section = this_cu->section;
7539 bfd *abfd = get_section_bfd_owner (section);
7540 struct dwarf2_cu *cu;
7541 const gdb_byte *begin_info_ptr, *info_ptr;
7542 struct die_reader_specs reader;
7543 struct die_info *comp_unit_die;
7544 int has_children;
7545 struct signatured_type *sig_type = NULL;
7546 struct dwarf2_section_info *abbrev_section;
7547 /* Non-zero if CU currently points to a DWO file and we need to
7548 reread it. When this happens we need to reread the skeleton die
7549 before we can reread the DWO file (this only applies to CUs, not TUs). */
7550 int rereading_dwo_cu = 0;
7551
7552 if (dwarf_die_debug)
7553 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7554 this_cu->is_debug_types ? "type" : "comp",
7555 sect_offset_str (this_cu->sect_off));
7556
7557 if (use_existing_cu)
7558 gdb_assert (keep);
7559
7560 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7561 file (instead of going through the stub), short-circuit all of this. */
7562 if (this_cu->reading_dwo_directly)
7563 {
7564 /* Narrow down the scope of possibilities to have to understand. */
7565 gdb_assert (this_cu->is_debug_types);
7566 gdb_assert (abbrev_table == NULL);
7567 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7568 die_reader_func, data);
7569 return;
7570 }
7571
7572 /* This is cheap if the section is already read in. */
7573 dwarf2_read_section (objfile, section);
7574
7575 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7576
7577 abbrev_section = get_abbrev_section_for_cu (this_cu);
7578
7579 std::unique_ptr<dwarf2_cu> new_cu;
7580 if (use_existing_cu && this_cu->cu != NULL)
7581 {
7582 cu = this_cu->cu;
7583 /* If this CU is from a DWO file we need to start over, we need to
7584 refetch the attributes from the skeleton CU.
7585 This could be optimized by retrieving those attributes from when we
7586 were here the first time: the previous comp_unit_die was stored in
7587 comp_unit_obstack. But there's no data yet that we need this
7588 optimization. */
7589 if (cu->dwo_unit != NULL)
7590 rereading_dwo_cu = 1;
7591 }
7592 else
7593 {
7594 /* If !use_existing_cu, this_cu->cu must be NULL. */
7595 gdb_assert (this_cu->cu == NULL);
7596 new_cu.reset (new dwarf2_cu (this_cu));
7597 cu = new_cu.get ();
7598 }
7599
7600 /* Get the header. */
7601 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7602 {
7603 /* We already have the header, there's no need to read it in again. */
7604 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7605 }
7606 else
7607 {
7608 if (this_cu->is_debug_types)
7609 {
7610 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7611 &cu->header, section,
7612 abbrev_section, info_ptr,
7613 rcuh_kind::TYPE);
7614
7615 /* Since per_cu is the first member of struct signatured_type,
7616 we can go from a pointer to one to a pointer to the other. */
7617 sig_type = (struct signatured_type *) this_cu;
7618 gdb_assert (sig_type->signature == cu->header.signature);
7619 gdb_assert (sig_type->type_offset_in_tu
7620 == cu->header.type_cu_offset_in_tu);
7621 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7622
7623 /* LENGTH has not been set yet for type units if we're
7624 using .gdb_index. */
7625 this_cu->length = get_cu_length (&cu->header);
7626
7627 /* Establish the type offset that can be used to lookup the type. */
7628 sig_type->type_offset_in_section =
7629 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7630
7631 this_cu->dwarf_version = cu->header.version;
7632 }
7633 else
7634 {
7635 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7636 &cu->header, section,
7637 abbrev_section,
7638 info_ptr,
7639 rcuh_kind::COMPILE);
7640
7641 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7642 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7643 this_cu->dwarf_version = cu->header.version;
7644 }
7645 }
7646
7647 /* Skip dummy compilation units. */
7648 if (info_ptr >= begin_info_ptr + this_cu->length
7649 || peek_abbrev_code (abfd, info_ptr) == 0)
7650 return;
7651
7652 /* If we don't have them yet, read the abbrevs for this compilation unit.
7653 And if we need to read them now, make sure they're freed when we're
7654 done (own the table through ABBREV_TABLE_HOLDER). */
7655 abbrev_table_up abbrev_table_holder;
7656 if (abbrev_table != NULL)
7657 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7658 else
7659 {
7660 abbrev_table_holder
7661 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7662 cu->header.abbrev_sect_off);
7663 abbrev_table = abbrev_table_holder.get ();
7664 }
7665
7666 /* Read the top level CU/TU die. */
7667 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7668 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7669
7670 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7671 return;
7672
7673 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7674 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7675 table from the DWO file and pass the ownership over to us. It will be
7676 referenced from READER, so we must make sure to free it after we're done
7677 with READER.
7678
7679 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7680 DWO CU, that this test will fail (the attribute will not be present). */
7681 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7682 abbrev_table_up dwo_abbrev_table;
7683 if (dwo_name != nullptr)
7684 {
7685 struct dwo_unit *dwo_unit;
7686 struct die_info *dwo_comp_unit_die;
7687
7688 if (has_children)
7689 {
7690 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7691 " has children (offset %s) [in module %s]"),
7692 sect_offset_str (this_cu->sect_off),
7693 bfd_get_filename (abfd));
7694 }
7695 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7696 if (dwo_unit != NULL)
7697 {
7698 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7699 comp_unit_die, NULL,
7700 &reader, &info_ptr,
7701 &dwo_comp_unit_die, &has_children,
7702 &dwo_abbrev_table) == 0)
7703 {
7704 /* Dummy die. */
7705 return;
7706 }
7707 comp_unit_die = dwo_comp_unit_die;
7708 }
7709 else
7710 {
7711 /* Yikes, we couldn't find the rest of the DIE, we only have
7712 the stub. A complaint has already been logged. There's
7713 not much more we can do except pass on the stub DIE to
7714 die_reader_func. We don't want to throw an error on bad
7715 debug info. */
7716 }
7717 }
7718
7719 /* All of the above is setup for this call. Yikes. */
7720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7721
7722 /* Done, clean up. */
7723 if (new_cu != NULL && keep)
7724 {
7725 /* Link this CU into read_in_chain. */
7726 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7727 dwarf2_per_objfile->read_in_chain = this_cu;
7728 /* The chain owns it now. */
7729 new_cu.release ();
7730 }
7731 }
7732
7733 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7734 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7735 to have already done the lookup to find the DWO file).
7736
7737 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7738 THIS_CU->is_debug_types, but nothing else.
7739
7740 We fill in THIS_CU->length.
7741
7742 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7743 linker) then DIE_READER_FUNC will not get called.
7744
7745 THIS_CU->cu is always freed when done.
7746 This is done in order to not leave THIS_CU->cu in a state where we have
7747 to care whether it refers to the "main" CU or the DWO CU. */
7748
7749 static void
7750 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7751 struct dwo_file *dwo_file,
7752 die_reader_func_ftype *die_reader_func,
7753 void *data)
7754 {
7755 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7756 struct objfile *objfile = dwarf2_per_objfile->objfile;
7757 struct dwarf2_section_info *section = this_cu->section;
7758 bfd *abfd = get_section_bfd_owner (section);
7759 struct dwarf2_section_info *abbrev_section;
7760 const gdb_byte *begin_info_ptr, *info_ptr;
7761 struct die_reader_specs reader;
7762 struct die_info *comp_unit_die;
7763 int has_children;
7764
7765 if (dwarf_die_debug)
7766 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7767 this_cu->is_debug_types ? "type" : "comp",
7768 sect_offset_str (this_cu->sect_off));
7769
7770 gdb_assert (this_cu->cu == NULL);
7771
7772 abbrev_section = (dwo_file != NULL
7773 ? &dwo_file->sections.abbrev
7774 : get_abbrev_section_for_cu (this_cu));
7775
7776 /* This is cheap if the section is already read in. */
7777 dwarf2_read_section (objfile, section);
7778
7779 struct dwarf2_cu cu (this_cu);
7780
7781 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7782 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7783 &cu.header, section,
7784 abbrev_section, info_ptr,
7785 (this_cu->is_debug_types
7786 ? rcuh_kind::TYPE
7787 : rcuh_kind::COMPILE));
7788
7789 this_cu->length = get_cu_length (&cu.header);
7790
7791 /* Skip dummy compilation units. */
7792 if (info_ptr >= begin_info_ptr + this_cu->length
7793 || peek_abbrev_code (abfd, info_ptr) == 0)
7794 return;
7795
7796 abbrev_table_up abbrev_table
7797 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7798 cu.header.abbrev_sect_off);
7799
7800 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7801 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7802
7803 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7804 }
7805
7806 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7807 does not lookup the specified DWO file.
7808 This cannot be used to read DWO files.
7809
7810 THIS_CU->cu is always freed when done.
7811 This is done in order to not leave THIS_CU->cu in a state where we have
7812 to care whether it refers to the "main" CU or the DWO CU.
7813 We can revisit this if the data shows there's a performance issue. */
7814
7815 static void
7816 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7817 die_reader_func_ftype *die_reader_func,
7818 void *data)
7819 {
7820 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7821 }
7822 \f
7823 /* Type Unit Groups.
7824
7825 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7826 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7827 so that all types coming from the same compilation (.o file) are grouped
7828 together. A future step could be to put the types in the same symtab as
7829 the CU the types ultimately came from. */
7830
7831 static hashval_t
7832 hash_type_unit_group (const void *item)
7833 {
7834 const struct type_unit_group *tu_group
7835 = (const struct type_unit_group *) item;
7836
7837 return hash_stmt_list_entry (&tu_group->hash);
7838 }
7839
7840 static int
7841 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7842 {
7843 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7844 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7845
7846 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7847 }
7848
7849 /* Allocate a hash table for type unit groups. */
7850
7851 static htab_t
7852 allocate_type_unit_groups_table (struct objfile *objfile)
7853 {
7854 return htab_create_alloc_ex (3,
7855 hash_type_unit_group,
7856 eq_type_unit_group,
7857 NULL,
7858 &objfile->objfile_obstack,
7859 hashtab_obstack_allocate,
7860 dummy_obstack_deallocate);
7861 }
7862
7863 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7864 partial symtabs. We combine several TUs per psymtab to not let the size
7865 of any one psymtab grow too big. */
7866 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7867 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7868
7869 /* Helper routine for get_type_unit_group.
7870 Create the type_unit_group object used to hold one or more TUs. */
7871
7872 static struct type_unit_group *
7873 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7874 {
7875 struct dwarf2_per_objfile *dwarf2_per_objfile
7876 = cu->per_cu->dwarf2_per_objfile;
7877 struct objfile *objfile = dwarf2_per_objfile->objfile;
7878 struct dwarf2_per_cu_data *per_cu;
7879 struct type_unit_group *tu_group;
7880
7881 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7882 struct type_unit_group);
7883 per_cu = &tu_group->per_cu;
7884 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7885
7886 if (dwarf2_per_objfile->using_index)
7887 {
7888 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7889 struct dwarf2_per_cu_quick_data);
7890 }
7891 else
7892 {
7893 unsigned int line_offset = to_underlying (line_offset_struct);
7894 struct partial_symtab *pst;
7895 std::string name;
7896
7897 /* Give the symtab a useful name for debug purposes. */
7898 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7899 name = string_printf ("<type_units_%d>",
7900 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7901 else
7902 name = string_printf ("<type_units_at_0x%x>", line_offset);
7903
7904 pst = create_partial_symtab (per_cu, name.c_str ());
7905 pst->anonymous = 1;
7906 }
7907
7908 tu_group->hash.dwo_unit = cu->dwo_unit;
7909 tu_group->hash.line_sect_off = line_offset_struct;
7910
7911 return tu_group;
7912 }
7913
7914 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7915 STMT_LIST is a DW_AT_stmt_list attribute. */
7916
7917 static struct type_unit_group *
7918 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7919 {
7920 struct dwarf2_per_objfile *dwarf2_per_objfile
7921 = cu->per_cu->dwarf2_per_objfile;
7922 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7923 struct type_unit_group *tu_group;
7924 void **slot;
7925 unsigned int line_offset;
7926 struct type_unit_group type_unit_group_for_lookup;
7927
7928 if (dwarf2_per_objfile->type_unit_groups == NULL)
7929 {
7930 dwarf2_per_objfile->type_unit_groups =
7931 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7932 }
7933
7934 /* Do we need to create a new group, or can we use an existing one? */
7935
7936 if (stmt_list)
7937 {
7938 line_offset = DW_UNSND (stmt_list);
7939 ++tu_stats->nr_symtab_sharers;
7940 }
7941 else
7942 {
7943 /* Ugh, no stmt_list. Rare, but we have to handle it.
7944 We can do various things here like create one group per TU or
7945 spread them over multiple groups to split up the expansion work.
7946 To avoid worst case scenarios (too many groups or too large groups)
7947 we, umm, group them in bunches. */
7948 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7949 | (tu_stats->nr_stmt_less_type_units
7950 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7951 ++tu_stats->nr_stmt_less_type_units;
7952 }
7953
7954 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7955 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7956 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7957 &type_unit_group_for_lookup, INSERT);
7958 if (*slot != NULL)
7959 {
7960 tu_group = (struct type_unit_group *) *slot;
7961 gdb_assert (tu_group != NULL);
7962 }
7963 else
7964 {
7965 sect_offset line_offset_struct = (sect_offset) line_offset;
7966 tu_group = create_type_unit_group (cu, line_offset_struct);
7967 *slot = tu_group;
7968 ++tu_stats->nr_symtabs;
7969 }
7970
7971 return tu_group;
7972 }
7973 \f
7974 /* Partial symbol tables. */
7975
7976 /* Create a psymtab named NAME and assign it to PER_CU.
7977
7978 The caller must fill in the following details:
7979 dirname, textlow, texthigh. */
7980
7981 static struct partial_symtab *
7982 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7983 {
7984 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7985 struct partial_symtab *pst;
7986
7987 pst = start_psymtab_common (objfile, name, 0);
7988
7989 pst->psymtabs_addrmap_supported = 1;
7990
7991 /* This is the glue that links PST into GDB's symbol API. */
7992 pst->read_symtab_private = per_cu;
7993 pst->read_symtab = dwarf2_read_symtab;
7994 per_cu->v.psymtab = pst;
7995
7996 return pst;
7997 }
7998
7999 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8000 type. */
8001
8002 struct process_psymtab_comp_unit_data
8003 {
8004 /* True if we are reading a DW_TAG_partial_unit. */
8005
8006 int want_partial_unit;
8007
8008 /* The "pretend" language that is used if the CU doesn't declare a
8009 language. */
8010
8011 enum language pretend_language;
8012 };
8013
8014 /* die_reader_func for process_psymtab_comp_unit. */
8015
8016 static void
8017 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8018 const gdb_byte *info_ptr,
8019 struct die_info *comp_unit_die,
8020 int has_children,
8021 void *data)
8022 {
8023 struct dwarf2_cu *cu = reader->cu;
8024 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8025 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8026 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8027 CORE_ADDR baseaddr;
8028 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8029 struct partial_symtab *pst;
8030 enum pc_bounds_kind cu_bounds_kind;
8031 const char *filename;
8032 struct process_psymtab_comp_unit_data *info
8033 = (struct process_psymtab_comp_unit_data *) data;
8034
8035 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8036 return;
8037
8038 gdb_assert (! per_cu->is_debug_types);
8039
8040 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8041
8042 /* Allocate a new partial symbol table structure. */
8043 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8044 if (filename == NULL)
8045 filename = "";
8046
8047 pst = create_partial_symtab (per_cu, filename);
8048
8049 /* This must be done before calling dwarf2_build_include_psymtabs. */
8050 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8051
8052 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8053
8054 dwarf2_find_base_address (comp_unit_die, cu);
8055
8056 /* Possibly set the default values of LOWPC and HIGHPC from
8057 `DW_AT_ranges'. */
8058 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8059 &best_highpc, cu, pst);
8060 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8061 {
8062 CORE_ADDR low
8063 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8064 - baseaddr);
8065 CORE_ADDR high
8066 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8067 - baseaddr - 1);
8068 /* Store the contiguous range if it is not empty; it can be
8069 empty for CUs with no code. */
8070 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8071 low, high, pst);
8072 }
8073
8074 /* Check if comp unit has_children.
8075 If so, read the rest of the partial symbols from this comp unit.
8076 If not, there's no more debug_info for this comp unit. */
8077 if (has_children)
8078 {
8079 struct partial_die_info *first_die;
8080 CORE_ADDR lowpc, highpc;
8081
8082 lowpc = ((CORE_ADDR) -1);
8083 highpc = ((CORE_ADDR) 0);
8084
8085 first_die = load_partial_dies (reader, info_ptr, 1);
8086
8087 scan_partial_symbols (first_die, &lowpc, &highpc,
8088 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8089
8090 /* If we didn't find a lowpc, set it to highpc to avoid
8091 complaints from `maint check'. */
8092 if (lowpc == ((CORE_ADDR) -1))
8093 lowpc = highpc;
8094
8095 /* If the compilation unit didn't have an explicit address range,
8096 then use the information extracted from its child dies. */
8097 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8098 {
8099 best_lowpc = lowpc;
8100 best_highpc = highpc;
8101 }
8102 }
8103 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8104 best_lowpc + baseaddr)
8105 - baseaddr);
8106 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8107 best_highpc + baseaddr)
8108 - baseaddr);
8109
8110 end_psymtab_common (objfile, pst);
8111
8112 if (!cu->per_cu->imported_symtabs_empty ())
8113 {
8114 int i;
8115 int len = cu->per_cu->imported_symtabs_size ();
8116
8117 /* Fill in 'dependencies' here; we fill in 'users' in a
8118 post-pass. */
8119 pst->number_of_dependencies = len;
8120 pst->dependencies
8121 = objfile->partial_symtabs->allocate_dependencies (len);
8122 for (i = 0; i < len; ++i)
8123 {
8124 pst->dependencies[i]
8125 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
8126 }
8127
8128 cu->per_cu->imported_symtabs_free ();
8129 }
8130
8131 /* Get the list of files included in the current compilation unit,
8132 and build a psymtab for each of them. */
8133 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8134
8135 if (dwarf_read_debug)
8136 fprintf_unfiltered (gdb_stdlog,
8137 "Psymtab for %s unit @%s: %s - %s"
8138 ", %d global, %d static syms\n",
8139 per_cu->is_debug_types ? "type" : "comp",
8140 sect_offset_str (per_cu->sect_off),
8141 paddress (gdbarch, pst->text_low (objfile)),
8142 paddress (gdbarch, pst->text_high (objfile)),
8143 pst->n_global_syms, pst->n_static_syms);
8144 }
8145
8146 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8147 Process compilation unit THIS_CU for a psymtab. */
8148
8149 static void
8150 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8151 int want_partial_unit,
8152 enum language pretend_language)
8153 {
8154 /* If this compilation unit was already read in, free the
8155 cached copy in order to read it in again. This is
8156 necessary because we skipped some symbols when we first
8157 read in the compilation unit (see load_partial_dies).
8158 This problem could be avoided, but the benefit is unclear. */
8159 if (this_cu->cu != NULL)
8160 free_one_cached_comp_unit (this_cu);
8161
8162 if (this_cu->is_debug_types)
8163 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8164 build_type_psymtabs_reader, NULL);
8165 else
8166 {
8167 process_psymtab_comp_unit_data info;
8168 info.want_partial_unit = want_partial_unit;
8169 info.pretend_language = pretend_language;
8170 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8171 process_psymtab_comp_unit_reader, &info);
8172 }
8173
8174 /* Age out any secondary CUs. */
8175 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8176 }
8177
8178 /* Reader function for build_type_psymtabs. */
8179
8180 static void
8181 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8182 const gdb_byte *info_ptr,
8183 struct die_info *type_unit_die,
8184 int has_children,
8185 void *data)
8186 {
8187 struct dwarf2_per_objfile *dwarf2_per_objfile
8188 = reader->cu->per_cu->dwarf2_per_objfile;
8189 struct objfile *objfile = dwarf2_per_objfile->objfile;
8190 struct dwarf2_cu *cu = reader->cu;
8191 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8192 struct signatured_type *sig_type;
8193 struct type_unit_group *tu_group;
8194 struct attribute *attr;
8195 struct partial_die_info *first_die;
8196 CORE_ADDR lowpc, highpc;
8197 struct partial_symtab *pst;
8198
8199 gdb_assert (data == NULL);
8200 gdb_assert (per_cu->is_debug_types);
8201 sig_type = (struct signatured_type *) per_cu;
8202
8203 if (! has_children)
8204 return;
8205
8206 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8207 tu_group = get_type_unit_group (cu, attr);
8208
8209 if (tu_group->tus == nullptr)
8210 tu_group->tus = new std::vector<signatured_type *>;
8211 tu_group->tus->push_back (sig_type);
8212
8213 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8214 pst = create_partial_symtab (per_cu, "");
8215 pst->anonymous = 1;
8216
8217 first_die = load_partial_dies (reader, info_ptr, 1);
8218
8219 lowpc = (CORE_ADDR) -1;
8220 highpc = (CORE_ADDR) 0;
8221 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8222
8223 end_psymtab_common (objfile, pst);
8224 }
8225
8226 /* Struct used to sort TUs by their abbreviation table offset. */
8227
8228 struct tu_abbrev_offset
8229 {
8230 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8231 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8232 {}
8233
8234 signatured_type *sig_type;
8235 sect_offset abbrev_offset;
8236 };
8237
8238 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8239
8240 static bool
8241 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8242 const struct tu_abbrev_offset &b)
8243 {
8244 return a.abbrev_offset < b.abbrev_offset;
8245 }
8246
8247 /* Efficiently read all the type units.
8248 This does the bulk of the work for build_type_psymtabs.
8249
8250 The efficiency is because we sort TUs by the abbrev table they use and
8251 only read each abbrev table once. In one program there are 200K TUs
8252 sharing 8K abbrev tables.
8253
8254 The main purpose of this function is to support building the
8255 dwarf2_per_objfile->type_unit_groups table.
8256 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8257 can collapse the search space by grouping them by stmt_list.
8258 The savings can be significant, in the same program from above the 200K TUs
8259 share 8K stmt_list tables.
8260
8261 FUNC is expected to call get_type_unit_group, which will create the
8262 struct type_unit_group if necessary and add it to
8263 dwarf2_per_objfile->type_unit_groups. */
8264
8265 static void
8266 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8267 {
8268 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8269 abbrev_table_up abbrev_table;
8270 sect_offset abbrev_offset;
8271
8272 /* It's up to the caller to not call us multiple times. */
8273 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8274
8275 if (dwarf2_per_objfile->all_type_units.empty ())
8276 return;
8277
8278 /* TUs typically share abbrev tables, and there can be way more TUs than
8279 abbrev tables. Sort by abbrev table to reduce the number of times we
8280 read each abbrev table in.
8281 Alternatives are to punt or to maintain a cache of abbrev tables.
8282 This is simpler and efficient enough for now.
8283
8284 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8285 symtab to use). Typically TUs with the same abbrev offset have the same
8286 stmt_list value too so in practice this should work well.
8287
8288 The basic algorithm here is:
8289
8290 sort TUs by abbrev table
8291 for each TU with same abbrev table:
8292 read abbrev table if first user
8293 read TU top level DIE
8294 [IWBN if DWO skeletons had DW_AT_stmt_list]
8295 call FUNC */
8296
8297 if (dwarf_read_debug)
8298 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8299
8300 /* Sort in a separate table to maintain the order of all_type_units
8301 for .gdb_index: TU indices directly index all_type_units. */
8302 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8303 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8304
8305 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8306 sorted_by_abbrev.emplace_back
8307 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8308 sig_type->per_cu.section,
8309 sig_type->per_cu.sect_off));
8310
8311 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8312 sort_tu_by_abbrev_offset);
8313
8314 abbrev_offset = (sect_offset) ~(unsigned) 0;
8315
8316 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8317 {
8318 /* Switch to the next abbrev table if necessary. */
8319 if (abbrev_table == NULL
8320 || tu.abbrev_offset != abbrev_offset)
8321 {
8322 abbrev_offset = tu.abbrev_offset;
8323 abbrev_table =
8324 abbrev_table_read_table (dwarf2_per_objfile,
8325 &dwarf2_per_objfile->abbrev,
8326 abbrev_offset);
8327 ++tu_stats->nr_uniq_abbrev_tables;
8328 }
8329
8330 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8331 0, 0, false, build_type_psymtabs_reader, NULL);
8332 }
8333 }
8334
8335 /* Print collected type unit statistics. */
8336
8337 static void
8338 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8339 {
8340 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8341
8342 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8343 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8344 dwarf2_per_objfile->all_type_units.size ());
8345 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8346 tu_stats->nr_uniq_abbrev_tables);
8347 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8348 tu_stats->nr_symtabs);
8349 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8350 tu_stats->nr_symtab_sharers);
8351 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8352 tu_stats->nr_stmt_less_type_units);
8353 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8354 tu_stats->nr_all_type_units_reallocs);
8355 }
8356
8357 /* Traversal function for build_type_psymtabs. */
8358
8359 static int
8360 build_type_psymtab_dependencies (void **slot, void *info)
8361 {
8362 struct dwarf2_per_objfile *dwarf2_per_objfile
8363 = (struct dwarf2_per_objfile *) info;
8364 struct objfile *objfile = dwarf2_per_objfile->objfile;
8365 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8366 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8367 struct partial_symtab *pst = per_cu->v.psymtab;
8368 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8369 int i;
8370
8371 gdb_assert (len > 0);
8372 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8373
8374 pst->number_of_dependencies = len;
8375 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8376 for (i = 0; i < len; ++i)
8377 {
8378 struct signatured_type *iter = tu_group->tus->at (i);
8379 gdb_assert (iter->per_cu.is_debug_types);
8380 pst->dependencies[i] = iter->per_cu.v.psymtab;
8381 iter->type_unit_group = tu_group;
8382 }
8383
8384 delete tu_group->tus;
8385 tu_group->tus = nullptr;
8386
8387 return 1;
8388 }
8389
8390 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8391 Build partial symbol tables for the .debug_types comp-units. */
8392
8393 static void
8394 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8395 {
8396 if (! create_all_type_units (dwarf2_per_objfile))
8397 return;
8398
8399 build_type_psymtabs_1 (dwarf2_per_objfile);
8400 }
8401
8402 /* Traversal function for process_skeletonless_type_unit.
8403 Read a TU in a DWO file and build partial symbols for it. */
8404
8405 static int
8406 process_skeletonless_type_unit (void **slot, void *info)
8407 {
8408 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8409 struct dwarf2_per_objfile *dwarf2_per_objfile
8410 = (struct dwarf2_per_objfile *) info;
8411 struct signatured_type find_entry, *entry;
8412
8413 /* If this TU doesn't exist in the global table, add it and read it in. */
8414
8415 if (dwarf2_per_objfile->signatured_types == NULL)
8416 {
8417 dwarf2_per_objfile->signatured_types
8418 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8419 }
8420
8421 find_entry.signature = dwo_unit->signature;
8422 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8423 INSERT);
8424 /* If we've already seen this type there's nothing to do. What's happening
8425 is we're doing our own version of comdat-folding here. */
8426 if (*slot != NULL)
8427 return 1;
8428
8429 /* This does the job that create_all_type_units would have done for
8430 this TU. */
8431 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8432 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8433 *slot = entry;
8434
8435 /* This does the job that build_type_psymtabs_1 would have done. */
8436 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8437 build_type_psymtabs_reader, NULL);
8438
8439 return 1;
8440 }
8441
8442 /* Traversal function for process_skeletonless_type_units. */
8443
8444 static int
8445 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8446 {
8447 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8448
8449 if (dwo_file->tus != NULL)
8450 {
8451 htab_traverse_noresize (dwo_file->tus,
8452 process_skeletonless_type_unit, info);
8453 }
8454
8455 return 1;
8456 }
8457
8458 /* Scan all TUs of DWO files, verifying we've processed them.
8459 This is needed in case a TU was emitted without its skeleton.
8460 Note: This can't be done until we know what all the DWO files are. */
8461
8462 static void
8463 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8464 {
8465 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8466 if (get_dwp_file (dwarf2_per_objfile) == NULL
8467 && dwarf2_per_objfile->dwo_files != NULL)
8468 {
8469 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8470 process_dwo_file_for_skeletonless_type_units,
8471 dwarf2_per_objfile);
8472 }
8473 }
8474
8475 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8476
8477 static void
8478 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8479 {
8480 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8481 {
8482 struct partial_symtab *pst = per_cu->v.psymtab;
8483
8484 if (pst == NULL)
8485 continue;
8486
8487 for (int j = 0; j < pst->number_of_dependencies; ++j)
8488 {
8489 /* Set the 'user' field only if it is not already set. */
8490 if (pst->dependencies[j]->user == NULL)
8491 pst->dependencies[j]->user = pst;
8492 }
8493 }
8494 }
8495
8496 /* Build the partial symbol table by doing a quick pass through the
8497 .debug_info and .debug_abbrev sections. */
8498
8499 static void
8500 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8501 {
8502 struct objfile *objfile = dwarf2_per_objfile->objfile;
8503
8504 if (dwarf_read_debug)
8505 {
8506 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8507 objfile_name (objfile));
8508 }
8509
8510 dwarf2_per_objfile->reading_partial_symbols = 1;
8511
8512 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8513
8514 /* Any cached compilation units will be linked by the per-objfile
8515 read_in_chain. Make sure to free them when we're done. */
8516 free_cached_comp_units freer (dwarf2_per_objfile);
8517
8518 build_type_psymtabs (dwarf2_per_objfile);
8519
8520 create_all_comp_units (dwarf2_per_objfile);
8521
8522 /* Create a temporary address map on a temporary obstack. We later
8523 copy this to the final obstack. */
8524 auto_obstack temp_obstack;
8525
8526 scoped_restore save_psymtabs_addrmap
8527 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8528 addrmap_create_mutable (&temp_obstack));
8529
8530 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8531 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8532
8533 /* This has to wait until we read the CUs, we need the list of DWOs. */
8534 process_skeletonless_type_units (dwarf2_per_objfile);
8535
8536 /* Now that all TUs have been processed we can fill in the dependencies. */
8537 if (dwarf2_per_objfile->type_unit_groups != NULL)
8538 {
8539 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8540 build_type_psymtab_dependencies, dwarf2_per_objfile);
8541 }
8542
8543 if (dwarf_read_debug)
8544 print_tu_stats (dwarf2_per_objfile);
8545
8546 set_partial_user (dwarf2_per_objfile);
8547
8548 objfile->partial_symtabs->psymtabs_addrmap
8549 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8550 objfile->partial_symtabs->obstack ());
8551 /* At this point we want to keep the address map. */
8552 save_psymtabs_addrmap.release ();
8553
8554 if (dwarf_read_debug)
8555 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8556 objfile_name (objfile));
8557 }
8558
8559 /* die_reader_func for load_partial_comp_unit. */
8560
8561 static void
8562 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8563 const gdb_byte *info_ptr,
8564 struct die_info *comp_unit_die,
8565 int has_children,
8566 void *data)
8567 {
8568 struct dwarf2_cu *cu = reader->cu;
8569
8570 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8571
8572 /* Check if comp unit has_children.
8573 If so, read the rest of the partial symbols from this comp unit.
8574 If not, there's no more debug_info for this comp unit. */
8575 if (has_children)
8576 load_partial_dies (reader, info_ptr, 0);
8577 }
8578
8579 /* Load the partial DIEs for a secondary CU into memory.
8580 This is also used when rereading a primary CU with load_all_dies. */
8581
8582 static void
8583 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8584 {
8585 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8586 load_partial_comp_unit_reader, NULL);
8587 }
8588
8589 static void
8590 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8591 struct dwarf2_section_info *section,
8592 struct dwarf2_section_info *abbrev_section,
8593 unsigned int is_dwz)
8594 {
8595 const gdb_byte *info_ptr;
8596 struct objfile *objfile = dwarf2_per_objfile->objfile;
8597
8598 if (dwarf_read_debug)
8599 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8600 get_section_name (section),
8601 get_section_file_name (section));
8602
8603 dwarf2_read_section (objfile, section);
8604
8605 info_ptr = section->buffer;
8606
8607 while (info_ptr < section->buffer + section->size)
8608 {
8609 struct dwarf2_per_cu_data *this_cu;
8610
8611 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8612
8613 comp_unit_head cu_header;
8614 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8615 abbrev_section, info_ptr,
8616 rcuh_kind::COMPILE);
8617
8618 /* Save the compilation unit for later lookup. */
8619 if (cu_header.unit_type != DW_UT_type)
8620 {
8621 this_cu = XOBNEW (&objfile->objfile_obstack,
8622 struct dwarf2_per_cu_data);
8623 memset (this_cu, 0, sizeof (*this_cu));
8624 }
8625 else
8626 {
8627 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8628 struct signatured_type);
8629 memset (sig_type, 0, sizeof (*sig_type));
8630 sig_type->signature = cu_header.signature;
8631 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8632 this_cu = &sig_type->per_cu;
8633 }
8634 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8635 this_cu->sect_off = sect_off;
8636 this_cu->length = cu_header.length + cu_header.initial_length_size;
8637 this_cu->is_dwz = is_dwz;
8638 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8639 this_cu->section = section;
8640
8641 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8642
8643 info_ptr = info_ptr + this_cu->length;
8644 }
8645 }
8646
8647 /* Create a list of all compilation units in OBJFILE.
8648 This is only done for -readnow and building partial symtabs. */
8649
8650 static void
8651 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8652 {
8653 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8654 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8655 &dwarf2_per_objfile->abbrev, 0);
8656
8657 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8658 if (dwz != NULL)
8659 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8660 1);
8661 }
8662
8663 /* Process all loaded DIEs for compilation unit CU, starting at
8664 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8665 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8666 DW_AT_ranges). See the comments of add_partial_subprogram on how
8667 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8668
8669 static void
8670 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8671 CORE_ADDR *highpc, int set_addrmap,
8672 struct dwarf2_cu *cu)
8673 {
8674 struct partial_die_info *pdi;
8675
8676 /* Now, march along the PDI's, descending into ones which have
8677 interesting children but skipping the children of the other ones,
8678 until we reach the end of the compilation unit. */
8679
8680 pdi = first_die;
8681
8682 while (pdi != NULL)
8683 {
8684 pdi->fixup (cu);
8685
8686 /* Anonymous namespaces or modules have no name but have interesting
8687 children, so we need to look at them. Ditto for anonymous
8688 enums. */
8689
8690 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8691 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8692 || pdi->tag == DW_TAG_imported_unit
8693 || pdi->tag == DW_TAG_inlined_subroutine)
8694 {
8695 switch (pdi->tag)
8696 {
8697 case DW_TAG_subprogram:
8698 case DW_TAG_inlined_subroutine:
8699 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8700 break;
8701 case DW_TAG_constant:
8702 case DW_TAG_variable:
8703 case DW_TAG_typedef:
8704 case DW_TAG_union_type:
8705 if (!pdi->is_declaration)
8706 {
8707 add_partial_symbol (pdi, cu);
8708 }
8709 break;
8710 case DW_TAG_class_type:
8711 case DW_TAG_interface_type:
8712 case DW_TAG_structure_type:
8713 if (!pdi->is_declaration)
8714 {
8715 add_partial_symbol (pdi, cu);
8716 }
8717 if ((cu->language == language_rust
8718 || cu->language == language_cplus) && pdi->has_children)
8719 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8720 set_addrmap, cu);
8721 break;
8722 case DW_TAG_enumeration_type:
8723 if (!pdi->is_declaration)
8724 add_partial_enumeration (pdi, cu);
8725 break;
8726 case DW_TAG_base_type:
8727 case DW_TAG_subrange_type:
8728 /* File scope base type definitions are added to the partial
8729 symbol table. */
8730 add_partial_symbol (pdi, cu);
8731 break;
8732 case DW_TAG_namespace:
8733 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8734 break;
8735 case DW_TAG_module:
8736 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8737 break;
8738 case DW_TAG_imported_unit:
8739 {
8740 struct dwarf2_per_cu_data *per_cu;
8741
8742 /* For now we don't handle imported units in type units. */
8743 if (cu->per_cu->is_debug_types)
8744 {
8745 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8746 " supported in type units [in module %s]"),
8747 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8748 }
8749
8750 per_cu = dwarf2_find_containing_comp_unit
8751 (pdi->d.sect_off, pdi->is_dwz,
8752 cu->per_cu->dwarf2_per_objfile);
8753
8754 /* Go read the partial unit, if needed. */
8755 if (per_cu->v.psymtab == NULL)
8756 process_psymtab_comp_unit (per_cu, 1, cu->language);
8757
8758 cu->per_cu->imported_symtabs_push (per_cu);
8759 }
8760 break;
8761 case DW_TAG_imported_declaration:
8762 add_partial_symbol (pdi, cu);
8763 break;
8764 default:
8765 break;
8766 }
8767 }
8768
8769 /* If the die has a sibling, skip to the sibling. */
8770
8771 pdi = pdi->die_sibling;
8772 }
8773 }
8774
8775 /* Functions used to compute the fully scoped name of a partial DIE.
8776
8777 Normally, this is simple. For C++, the parent DIE's fully scoped
8778 name is concatenated with "::" and the partial DIE's name.
8779 Enumerators are an exception; they use the scope of their parent
8780 enumeration type, i.e. the name of the enumeration type is not
8781 prepended to the enumerator.
8782
8783 There are two complexities. One is DW_AT_specification; in this
8784 case "parent" means the parent of the target of the specification,
8785 instead of the direct parent of the DIE. The other is compilers
8786 which do not emit DW_TAG_namespace; in this case we try to guess
8787 the fully qualified name of structure types from their members'
8788 linkage names. This must be done using the DIE's children rather
8789 than the children of any DW_AT_specification target. We only need
8790 to do this for structures at the top level, i.e. if the target of
8791 any DW_AT_specification (if any; otherwise the DIE itself) does not
8792 have a parent. */
8793
8794 /* Compute the scope prefix associated with PDI's parent, in
8795 compilation unit CU. The result will be allocated on CU's
8796 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8797 field. NULL is returned if no prefix is necessary. */
8798 static const char *
8799 partial_die_parent_scope (struct partial_die_info *pdi,
8800 struct dwarf2_cu *cu)
8801 {
8802 const char *grandparent_scope;
8803 struct partial_die_info *parent, *real_pdi;
8804
8805 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8806 then this means the parent of the specification DIE. */
8807
8808 real_pdi = pdi;
8809 while (real_pdi->has_specification)
8810 {
8811 auto res = find_partial_die (real_pdi->spec_offset,
8812 real_pdi->spec_is_dwz, cu);
8813 real_pdi = res.pdi;
8814 cu = res.cu;
8815 }
8816
8817 parent = real_pdi->die_parent;
8818 if (parent == NULL)
8819 return NULL;
8820
8821 if (parent->scope_set)
8822 return parent->scope;
8823
8824 parent->fixup (cu);
8825
8826 grandparent_scope = partial_die_parent_scope (parent, cu);
8827
8828 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8829 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8830 Work around this problem here. */
8831 if (cu->language == language_cplus
8832 && parent->tag == DW_TAG_namespace
8833 && strcmp (parent->name, "::") == 0
8834 && grandparent_scope == NULL)
8835 {
8836 parent->scope = NULL;
8837 parent->scope_set = 1;
8838 return NULL;
8839 }
8840
8841 /* Nested subroutines in Fortran get a prefix. */
8842 if (pdi->tag == DW_TAG_enumerator)
8843 /* Enumerators should not get the name of the enumeration as a prefix. */
8844 parent->scope = grandparent_scope;
8845 else if (parent->tag == DW_TAG_namespace
8846 || parent->tag == DW_TAG_module
8847 || parent->tag == DW_TAG_structure_type
8848 || parent->tag == DW_TAG_class_type
8849 || parent->tag == DW_TAG_interface_type
8850 || parent->tag == DW_TAG_union_type
8851 || parent->tag == DW_TAG_enumeration_type
8852 || (cu->language == language_fortran
8853 && parent->tag == DW_TAG_subprogram
8854 && pdi->tag == DW_TAG_subprogram))
8855 {
8856 if (grandparent_scope == NULL)
8857 parent->scope = parent->name;
8858 else
8859 parent->scope = typename_concat (&cu->comp_unit_obstack,
8860 grandparent_scope,
8861 parent->name, 0, cu);
8862 }
8863 else
8864 {
8865 /* FIXME drow/2004-04-01: What should we be doing with
8866 function-local names? For partial symbols, we should probably be
8867 ignoring them. */
8868 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8869 dwarf_tag_name (parent->tag),
8870 sect_offset_str (pdi->sect_off));
8871 parent->scope = grandparent_scope;
8872 }
8873
8874 parent->scope_set = 1;
8875 return parent->scope;
8876 }
8877
8878 /* Return the fully scoped name associated with PDI, from compilation unit
8879 CU. The result will be allocated with malloc. */
8880
8881 static char *
8882 partial_die_full_name (struct partial_die_info *pdi,
8883 struct dwarf2_cu *cu)
8884 {
8885 const char *parent_scope;
8886
8887 /* If this is a template instantiation, we can not work out the
8888 template arguments from partial DIEs. So, unfortunately, we have
8889 to go through the full DIEs. At least any work we do building
8890 types here will be reused if full symbols are loaded later. */
8891 if (pdi->has_template_arguments)
8892 {
8893 pdi->fixup (cu);
8894
8895 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8896 {
8897 struct die_info *die;
8898 struct attribute attr;
8899 struct dwarf2_cu *ref_cu = cu;
8900
8901 /* DW_FORM_ref_addr is using section offset. */
8902 attr.name = (enum dwarf_attribute) 0;
8903 attr.form = DW_FORM_ref_addr;
8904 attr.u.unsnd = to_underlying (pdi->sect_off);
8905 die = follow_die_ref (NULL, &attr, &ref_cu);
8906
8907 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8908 }
8909 }
8910
8911 parent_scope = partial_die_parent_scope (pdi, cu);
8912 if (parent_scope == NULL)
8913 return NULL;
8914 else
8915 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8916 }
8917
8918 static void
8919 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8920 {
8921 struct dwarf2_per_objfile *dwarf2_per_objfile
8922 = cu->per_cu->dwarf2_per_objfile;
8923 struct objfile *objfile = dwarf2_per_objfile->objfile;
8924 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8925 CORE_ADDR addr = 0;
8926 const char *actual_name = NULL;
8927 CORE_ADDR baseaddr;
8928 char *built_actual_name;
8929
8930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8931
8932 built_actual_name = partial_die_full_name (pdi, cu);
8933 if (built_actual_name != NULL)
8934 actual_name = built_actual_name;
8935
8936 if (actual_name == NULL)
8937 actual_name = pdi->name;
8938
8939 switch (pdi->tag)
8940 {
8941 case DW_TAG_inlined_subroutine:
8942 case DW_TAG_subprogram:
8943 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8944 - baseaddr);
8945 if (pdi->is_external
8946 || cu->language == language_ada
8947 || (cu->language == language_fortran
8948 && pdi->die_parent != NULL
8949 && pdi->die_parent->tag == DW_TAG_subprogram))
8950 {
8951 /* Normally, only "external" DIEs are part of the global scope.
8952 But in Ada and Fortran, we want to be able to access nested
8953 procedures globally. So all Ada and Fortran subprograms are
8954 stored in the global scope. */
8955 add_psymbol_to_list (actual_name, strlen (actual_name),
8956 built_actual_name != NULL,
8957 VAR_DOMAIN, LOC_BLOCK,
8958 SECT_OFF_TEXT (objfile),
8959 psymbol_placement::GLOBAL,
8960 addr,
8961 cu->language, objfile);
8962 }
8963 else
8964 {
8965 add_psymbol_to_list (actual_name, strlen (actual_name),
8966 built_actual_name != NULL,
8967 VAR_DOMAIN, LOC_BLOCK,
8968 SECT_OFF_TEXT (objfile),
8969 psymbol_placement::STATIC,
8970 addr, cu->language, objfile);
8971 }
8972
8973 if (pdi->main_subprogram && actual_name != NULL)
8974 set_objfile_main_name (objfile, actual_name, cu->language);
8975 break;
8976 case DW_TAG_constant:
8977 add_psymbol_to_list (actual_name, strlen (actual_name),
8978 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8979 -1, (pdi->is_external
8980 ? psymbol_placement::GLOBAL
8981 : psymbol_placement::STATIC),
8982 0, cu->language, objfile);
8983 break;
8984 case DW_TAG_variable:
8985 if (pdi->d.locdesc)
8986 addr = decode_locdesc (pdi->d.locdesc, cu);
8987
8988 if (pdi->d.locdesc
8989 && addr == 0
8990 && !dwarf2_per_objfile->has_section_at_zero)
8991 {
8992 /* A global or static variable may also have been stripped
8993 out by the linker if unused, in which case its address
8994 will be nullified; do not add such variables into partial
8995 symbol table then. */
8996 }
8997 else if (pdi->is_external)
8998 {
8999 /* Global Variable.
9000 Don't enter into the minimal symbol tables as there is
9001 a minimal symbol table entry from the ELF symbols already.
9002 Enter into partial symbol table if it has a location
9003 descriptor or a type.
9004 If the location descriptor is missing, new_symbol will create
9005 a LOC_UNRESOLVED symbol, the address of the variable will then
9006 be determined from the minimal symbol table whenever the variable
9007 is referenced.
9008 The address for the partial symbol table entry is not
9009 used by GDB, but it comes in handy for debugging partial symbol
9010 table building. */
9011
9012 if (pdi->d.locdesc || pdi->has_type)
9013 add_psymbol_to_list (actual_name, strlen (actual_name),
9014 built_actual_name != NULL,
9015 VAR_DOMAIN, LOC_STATIC,
9016 SECT_OFF_TEXT (objfile),
9017 psymbol_placement::GLOBAL,
9018 addr, cu->language, objfile);
9019 }
9020 else
9021 {
9022 int has_loc = pdi->d.locdesc != NULL;
9023
9024 /* Static Variable. Skip symbols whose value we cannot know (those
9025 without location descriptors or constant values). */
9026 if (!has_loc && !pdi->has_const_value)
9027 {
9028 xfree (built_actual_name);
9029 return;
9030 }
9031
9032 add_psymbol_to_list (actual_name, strlen (actual_name),
9033 built_actual_name != NULL,
9034 VAR_DOMAIN, LOC_STATIC,
9035 SECT_OFF_TEXT (objfile),
9036 psymbol_placement::STATIC,
9037 has_loc ? addr : 0,
9038 cu->language, objfile);
9039 }
9040 break;
9041 case DW_TAG_typedef:
9042 case DW_TAG_base_type:
9043 case DW_TAG_subrange_type:
9044 add_psymbol_to_list (actual_name, strlen (actual_name),
9045 built_actual_name != NULL,
9046 VAR_DOMAIN, LOC_TYPEDEF, -1,
9047 psymbol_placement::STATIC,
9048 0, cu->language, objfile);
9049 break;
9050 case DW_TAG_imported_declaration:
9051 case DW_TAG_namespace:
9052 add_psymbol_to_list (actual_name, strlen (actual_name),
9053 built_actual_name != NULL,
9054 VAR_DOMAIN, LOC_TYPEDEF, -1,
9055 psymbol_placement::GLOBAL,
9056 0, cu->language, objfile);
9057 break;
9058 case DW_TAG_module:
9059 /* With Fortran 77 there might be a "BLOCK DATA" module
9060 available without any name. If so, we skip the module as it
9061 doesn't bring any value. */
9062 if (actual_name != nullptr)
9063 add_psymbol_to_list (actual_name, strlen (actual_name),
9064 built_actual_name != NULL,
9065 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9066 psymbol_placement::GLOBAL,
9067 0, cu->language, objfile);
9068 break;
9069 case DW_TAG_class_type:
9070 case DW_TAG_interface_type:
9071 case DW_TAG_structure_type:
9072 case DW_TAG_union_type:
9073 case DW_TAG_enumeration_type:
9074 /* Skip external references. The DWARF standard says in the section
9075 about "Structure, Union, and Class Type Entries": "An incomplete
9076 structure, union or class type is represented by a structure,
9077 union or class entry that does not have a byte size attribute
9078 and that has a DW_AT_declaration attribute." */
9079 if (!pdi->has_byte_size && pdi->is_declaration)
9080 {
9081 xfree (built_actual_name);
9082 return;
9083 }
9084
9085 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9086 static vs. global. */
9087 add_psymbol_to_list (actual_name, strlen (actual_name),
9088 built_actual_name != NULL,
9089 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9090 cu->language == language_cplus
9091 ? psymbol_placement::GLOBAL
9092 : psymbol_placement::STATIC,
9093 0, cu->language, objfile);
9094
9095 break;
9096 case DW_TAG_enumerator:
9097 add_psymbol_to_list (actual_name, strlen (actual_name),
9098 built_actual_name != NULL,
9099 VAR_DOMAIN, LOC_CONST, -1,
9100 cu->language == language_cplus
9101 ? psymbol_placement::GLOBAL
9102 : psymbol_placement::STATIC,
9103 0, cu->language, objfile);
9104 break;
9105 default:
9106 break;
9107 }
9108
9109 xfree (built_actual_name);
9110 }
9111
9112 /* Read a partial die corresponding to a namespace; also, add a symbol
9113 corresponding to that namespace to the symbol table. NAMESPACE is
9114 the name of the enclosing namespace. */
9115
9116 static void
9117 add_partial_namespace (struct partial_die_info *pdi,
9118 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9119 int set_addrmap, struct dwarf2_cu *cu)
9120 {
9121 /* Add a symbol for the namespace. */
9122
9123 add_partial_symbol (pdi, cu);
9124
9125 /* Now scan partial symbols in that namespace. */
9126
9127 if (pdi->has_children)
9128 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9129 }
9130
9131 /* Read a partial die corresponding to a Fortran module. */
9132
9133 static void
9134 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9135 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9136 {
9137 /* Add a symbol for the namespace. */
9138
9139 add_partial_symbol (pdi, cu);
9140
9141 /* Now scan partial symbols in that module. */
9142
9143 if (pdi->has_children)
9144 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9145 }
9146
9147 /* Read a partial die corresponding to a subprogram or an inlined
9148 subprogram and create a partial symbol for that subprogram.
9149 When the CU language allows it, this routine also defines a partial
9150 symbol for each nested subprogram that this subprogram contains.
9151 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9152 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9153
9154 PDI may also be a lexical block, in which case we simply search
9155 recursively for subprograms defined inside that lexical block.
9156 Again, this is only performed when the CU language allows this
9157 type of definitions. */
9158
9159 static void
9160 add_partial_subprogram (struct partial_die_info *pdi,
9161 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9162 int set_addrmap, struct dwarf2_cu *cu)
9163 {
9164 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9165 {
9166 if (pdi->has_pc_info)
9167 {
9168 if (pdi->lowpc < *lowpc)
9169 *lowpc = pdi->lowpc;
9170 if (pdi->highpc > *highpc)
9171 *highpc = pdi->highpc;
9172 if (set_addrmap)
9173 {
9174 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9176 CORE_ADDR baseaddr;
9177 CORE_ADDR this_highpc;
9178 CORE_ADDR this_lowpc;
9179
9180 baseaddr = ANOFFSET (objfile->section_offsets,
9181 SECT_OFF_TEXT (objfile));
9182 this_lowpc
9183 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9184 pdi->lowpc + baseaddr)
9185 - baseaddr);
9186 this_highpc
9187 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9188 pdi->highpc + baseaddr)
9189 - baseaddr);
9190 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9191 this_lowpc, this_highpc - 1,
9192 cu->per_cu->v.psymtab);
9193 }
9194 }
9195
9196 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9197 {
9198 if (!pdi->is_declaration)
9199 /* Ignore subprogram DIEs that do not have a name, they are
9200 illegal. Do not emit a complaint at this point, we will
9201 do so when we convert this psymtab into a symtab. */
9202 if (pdi->name)
9203 add_partial_symbol (pdi, cu);
9204 }
9205 }
9206
9207 if (! pdi->has_children)
9208 return;
9209
9210 if (cu->language == language_ada || cu->language == language_fortran)
9211 {
9212 pdi = pdi->die_child;
9213 while (pdi != NULL)
9214 {
9215 pdi->fixup (cu);
9216 if (pdi->tag == DW_TAG_subprogram
9217 || pdi->tag == DW_TAG_inlined_subroutine
9218 || pdi->tag == DW_TAG_lexical_block)
9219 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9220 pdi = pdi->die_sibling;
9221 }
9222 }
9223 }
9224
9225 /* Read a partial die corresponding to an enumeration type. */
9226
9227 static void
9228 add_partial_enumeration (struct partial_die_info *enum_pdi,
9229 struct dwarf2_cu *cu)
9230 {
9231 struct partial_die_info *pdi;
9232
9233 if (enum_pdi->name != NULL)
9234 add_partial_symbol (enum_pdi, cu);
9235
9236 pdi = enum_pdi->die_child;
9237 while (pdi)
9238 {
9239 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9240 complaint (_("malformed enumerator DIE ignored"));
9241 else
9242 add_partial_symbol (pdi, cu);
9243 pdi = pdi->die_sibling;
9244 }
9245 }
9246
9247 /* Return the initial uleb128 in the die at INFO_PTR. */
9248
9249 static unsigned int
9250 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9251 {
9252 unsigned int bytes_read;
9253
9254 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9255 }
9256
9257 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9258 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9259
9260 Return the corresponding abbrev, or NULL if the number is zero (indicating
9261 an empty DIE). In either case *BYTES_READ will be set to the length of
9262 the initial number. */
9263
9264 static struct abbrev_info *
9265 peek_die_abbrev (const die_reader_specs &reader,
9266 const gdb_byte *info_ptr, unsigned int *bytes_read)
9267 {
9268 dwarf2_cu *cu = reader.cu;
9269 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9270 unsigned int abbrev_number
9271 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9272
9273 if (abbrev_number == 0)
9274 return NULL;
9275
9276 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9277 if (!abbrev)
9278 {
9279 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9280 " at offset %s [in module %s]"),
9281 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9282 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9283 }
9284
9285 return abbrev;
9286 }
9287
9288 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9289 Returns a pointer to the end of a series of DIEs, terminated by an empty
9290 DIE. Any children of the skipped DIEs will also be skipped. */
9291
9292 static const gdb_byte *
9293 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9294 {
9295 while (1)
9296 {
9297 unsigned int bytes_read;
9298 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9299
9300 if (abbrev == NULL)
9301 return info_ptr + bytes_read;
9302 else
9303 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9304 }
9305 }
9306
9307 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9308 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9309 abbrev corresponding to that skipped uleb128 should be passed in
9310 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9311 children. */
9312
9313 static const gdb_byte *
9314 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9315 struct abbrev_info *abbrev)
9316 {
9317 unsigned int bytes_read;
9318 struct attribute attr;
9319 bfd *abfd = reader->abfd;
9320 struct dwarf2_cu *cu = reader->cu;
9321 const gdb_byte *buffer = reader->buffer;
9322 const gdb_byte *buffer_end = reader->buffer_end;
9323 unsigned int form, i;
9324
9325 for (i = 0; i < abbrev->num_attrs; i++)
9326 {
9327 /* The only abbrev we care about is DW_AT_sibling. */
9328 if (abbrev->attrs[i].name == DW_AT_sibling)
9329 {
9330 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9331 if (attr.form == DW_FORM_ref_addr)
9332 complaint (_("ignoring absolute DW_AT_sibling"));
9333 else
9334 {
9335 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9336 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9337
9338 if (sibling_ptr < info_ptr)
9339 complaint (_("DW_AT_sibling points backwards"));
9340 else if (sibling_ptr > reader->buffer_end)
9341 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9342 else
9343 return sibling_ptr;
9344 }
9345 }
9346
9347 /* If it isn't DW_AT_sibling, skip this attribute. */
9348 form = abbrev->attrs[i].form;
9349 skip_attribute:
9350 switch (form)
9351 {
9352 case DW_FORM_ref_addr:
9353 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9354 and later it is offset sized. */
9355 if (cu->header.version == 2)
9356 info_ptr += cu->header.addr_size;
9357 else
9358 info_ptr += cu->header.offset_size;
9359 break;
9360 case DW_FORM_GNU_ref_alt:
9361 info_ptr += cu->header.offset_size;
9362 break;
9363 case DW_FORM_addr:
9364 info_ptr += cu->header.addr_size;
9365 break;
9366 case DW_FORM_data1:
9367 case DW_FORM_ref1:
9368 case DW_FORM_flag:
9369 case DW_FORM_strx1:
9370 info_ptr += 1;
9371 break;
9372 case DW_FORM_flag_present:
9373 case DW_FORM_implicit_const:
9374 break;
9375 case DW_FORM_data2:
9376 case DW_FORM_ref2:
9377 case DW_FORM_strx2:
9378 info_ptr += 2;
9379 break;
9380 case DW_FORM_strx3:
9381 info_ptr += 3;
9382 break;
9383 case DW_FORM_data4:
9384 case DW_FORM_ref4:
9385 case DW_FORM_strx4:
9386 info_ptr += 4;
9387 break;
9388 case DW_FORM_data8:
9389 case DW_FORM_ref8:
9390 case DW_FORM_ref_sig8:
9391 info_ptr += 8;
9392 break;
9393 case DW_FORM_data16:
9394 info_ptr += 16;
9395 break;
9396 case DW_FORM_string:
9397 read_direct_string (abfd, info_ptr, &bytes_read);
9398 info_ptr += bytes_read;
9399 break;
9400 case DW_FORM_sec_offset:
9401 case DW_FORM_strp:
9402 case DW_FORM_GNU_strp_alt:
9403 info_ptr += cu->header.offset_size;
9404 break;
9405 case DW_FORM_exprloc:
9406 case DW_FORM_block:
9407 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9408 info_ptr += bytes_read;
9409 break;
9410 case DW_FORM_block1:
9411 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9412 break;
9413 case DW_FORM_block2:
9414 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9415 break;
9416 case DW_FORM_block4:
9417 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9418 break;
9419 case DW_FORM_addrx:
9420 case DW_FORM_strx:
9421 case DW_FORM_sdata:
9422 case DW_FORM_udata:
9423 case DW_FORM_ref_udata:
9424 case DW_FORM_GNU_addr_index:
9425 case DW_FORM_GNU_str_index:
9426 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9427 break;
9428 case DW_FORM_indirect:
9429 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9430 info_ptr += bytes_read;
9431 /* We need to continue parsing from here, so just go back to
9432 the top. */
9433 goto skip_attribute;
9434
9435 default:
9436 error (_("Dwarf Error: Cannot handle %s "
9437 "in DWARF reader [in module %s]"),
9438 dwarf_form_name (form),
9439 bfd_get_filename (abfd));
9440 }
9441 }
9442
9443 if (abbrev->has_children)
9444 return skip_children (reader, info_ptr);
9445 else
9446 return info_ptr;
9447 }
9448
9449 /* Locate ORIG_PDI's sibling.
9450 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9451
9452 static const gdb_byte *
9453 locate_pdi_sibling (const struct die_reader_specs *reader,
9454 struct partial_die_info *orig_pdi,
9455 const gdb_byte *info_ptr)
9456 {
9457 /* Do we know the sibling already? */
9458
9459 if (orig_pdi->sibling)
9460 return orig_pdi->sibling;
9461
9462 /* Are there any children to deal with? */
9463
9464 if (!orig_pdi->has_children)
9465 return info_ptr;
9466
9467 /* Skip the children the long way. */
9468
9469 return skip_children (reader, info_ptr);
9470 }
9471
9472 /* Expand this partial symbol table into a full symbol table. SELF is
9473 not NULL. */
9474
9475 static void
9476 dwarf2_read_symtab (struct partial_symtab *self,
9477 struct objfile *objfile)
9478 {
9479 struct dwarf2_per_objfile *dwarf2_per_objfile
9480 = get_dwarf2_per_objfile (objfile);
9481
9482 if (self->readin)
9483 {
9484 warning (_("bug: psymtab for %s is already read in."),
9485 self->filename);
9486 }
9487 else
9488 {
9489 if (info_verbose)
9490 {
9491 printf_filtered (_("Reading in symbols for %s..."),
9492 self->filename);
9493 gdb_flush (gdb_stdout);
9494 }
9495
9496 /* If this psymtab is constructed from a debug-only objfile, the
9497 has_section_at_zero flag will not necessarily be correct. We
9498 can get the correct value for this flag by looking at the data
9499 associated with the (presumably stripped) associated objfile. */
9500 if (objfile->separate_debug_objfile_backlink)
9501 {
9502 struct dwarf2_per_objfile *dpo_backlink
9503 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9504
9505 dwarf2_per_objfile->has_section_at_zero
9506 = dpo_backlink->has_section_at_zero;
9507 }
9508
9509 dwarf2_per_objfile->reading_partial_symbols = 0;
9510
9511 psymtab_to_symtab_1 (self);
9512
9513 /* Finish up the debug error message. */
9514 if (info_verbose)
9515 printf_filtered (_("done.\n"));
9516 }
9517
9518 process_cu_includes (dwarf2_per_objfile);
9519 }
9520 \f
9521 /* Reading in full CUs. */
9522
9523 /* Add PER_CU to the queue. */
9524
9525 static void
9526 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9527 enum language pretend_language)
9528 {
9529 struct dwarf2_queue_item *item;
9530
9531 per_cu->queued = 1;
9532 item = XNEW (struct dwarf2_queue_item);
9533 item->per_cu = per_cu;
9534 item->pretend_language = pretend_language;
9535 item->next = NULL;
9536
9537 if (dwarf2_queue == NULL)
9538 dwarf2_queue = item;
9539 else
9540 dwarf2_queue_tail->next = item;
9541
9542 dwarf2_queue_tail = item;
9543 }
9544
9545 /* If PER_CU is not yet queued, add it to the queue.
9546 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9547 dependency.
9548 The result is non-zero if PER_CU was queued, otherwise the result is zero
9549 meaning either PER_CU is already queued or it is already loaded.
9550
9551 N.B. There is an invariant here that if a CU is queued then it is loaded.
9552 The caller is required to load PER_CU if we return non-zero. */
9553
9554 static int
9555 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9556 struct dwarf2_per_cu_data *per_cu,
9557 enum language pretend_language)
9558 {
9559 /* We may arrive here during partial symbol reading, if we need full
9560 DIEs to process an unusual case (e.g. template arguments). Do
9561 not queue PER_CU, just tell our caller to load its DIEs. */
9562 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9563 {
9564 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9565 return 1;
9566 return 0;
9567 }
9568
9569 /* Mark the dependence relation so that we don't flush PER_CU
9570 too early. */
9571 if (dependent_cu != NULL)
9572 dwarf2_add_dependence (dependent_cu, per_cu);
9573
9574 /* If it's already on the queue, we have nothing to do. */
9575 if (per_cu->queued)
9576 return 0;
9577
9578 /* If the compilation unit is already loaded, just mark it as
9579 used. */
9580 if (per_cu->cu != NULL)
9581 {
9582 per_cu->cu->last_used = 0;
9583 return 0;
9584 }
9585
9586 /* Add it to the queue. */
9587 queue_comp_unit (per_cu, pretend_language);
9588
9589 return 1;
9590 }
9591
9592 /* Process the queue. */
9593
9594 static void
9595 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9596 {
9597 struct dwarf2_queue_item *item, *next_item;
9598
9599 if (dwarf_read_debug)
9600 {
9601 fprintf_unfiltered (gdb_stdlog,
9602 "Expanding one or more symtabs of objfile %s ...\n",
9603 objfile_name (dwarf2_per_objfile->objfile));
9604 }
9605
9606 /* The queue starts out with one item, but following a DIE reference
9607 may load a new CU, adding it to the end of the queue. */
9608 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9609 {
9610 if ((dwarf2_per_objfile->using_index
9611 ? !item->per_cu->v.quick->compunit_symtab
9612 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9613 /* Skip dummy CUs. */
9614 && item->per_cu->cu != NULL)
9615 {
9616 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9617 unsigned int debug_print_threshold;
9618 char buf[100];
9619
9620 if (per_cu->is_debug_types)
9621 {
9622 struct signatured_type *sig_type =
9623 (struct signatured_type *) per_cu;
9624
9625 sprintf (buf, "TU %s at offset %s",
9626 hex_string (sig_type->signature),
9627 sect_offset_str (per_cu->sect_off));
9628 /* There can be 100s of TUs.
9629 Only print them in verbose mode. */
9630 debug_print_threshold = 2;
9631 }
9632 else
9633 {
9634 sprintf (buf, "CU at offset %s",
9635 sect_offset_str (per_cu->sect_off));
9636 debug_print_threshold = 1;
9637 }
9638
9639 if (dwarf_read_debug >= debug_print_threshold)
9640 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9641
9642 if (per_cu->is_debug_types)
9643 process_full_type_unit (per_cu, item->pretend_language);
9644 else
9645 process_full_comp_unit (per_cu, item->pretend_language);
9646
9647 if (dwarf_read_debug >= debug_print_threshold)
9648 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9649 }
9650
9651 item->per_cu->queued = 0;
9652 next_item = item->next;
9653 xfree (item);
9654 }
9655
9656 dwarf2_queue_tail = NULL;
9657
9658 if (dwarf_read_debug)
9659 {
9660 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9661 objfile_name (dwarf2_per_objfile->objfile));
9662 }
9663 }
9664
9665 /* Read in full symbols for PST, and anything it depends on. */
9666
9667 static void
9668 psymtab_to_symtab_1 (struct partial_symtab *pst)
9669 {
9670 struct dwarf2_per_cu_data *per_cu;
9671 int i;
9672
9673 if (pst->readin)
9674 return;
9675
9676 for (i = 0; i < pst->number_of_dependencies; i++)
9677 if (!pst->dependencies[i]->readin
9678 && pst->dependencies[i]->user == NULL)
9679 {
9680 /* Inform about additional files that need to be read in. */
9681 if (info_verbose)
9682 {
9683 /* FIXME: i18n: Need to make this a single string. */
9684 fputs_filtered (" ", gdb_stdout);
9685 wrap_here ("");
9686 fputs_filtered ("and ", gdb_stdout);
9687 wrap_here ("");
9688 printf_filtered ("%s...", pst->dependencies[i]->filename);
9689 wrap_here (""); /* Flush output. */
9690 gdb_flush (gdb_stdout);
9691 }
9692 psymtab_to_symtab_1 (pst->dependencies[i]);
9693 }
9694
9695 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9696
9697 if (per_cu == NULL)
9698 {
9699 /* It's an include file, no symbols to read for it.
9700 Everything is in the parent symtab. */
9701 pst->readin = 1;
9702 return;
9703 }
9704
9705 dw2_do_instantiate_symtab (per_cu, false);
9706 }
9707
9708 /* Trivial hash function for die_info: the hash value of a DIE
9709 is its offset in .debug_info for this objfile. */
9710
9711 static hashval_t
9712 die_hash (const void *item)
9713 {
9714 const struct die_info *die = (const struct die_info *) item;
9715
9716 return to_underlying (die->sect_off);
9717 }
9718
9719 /* Trivial comparison function for die_info structures: two DIEs
9720 are equal if they have the same offset. */
9721
9722 static int
9723 die_eq (const void *item_lhs, const void *item_rhs)
9724 {
9725 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9726 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9727
9728 return die_lhs->sect_off == die_rhs->sect_off;
9729 }
9730
9731 /* die_reader_func for load_full_comp_unit.
9732 This is identical to read_signatured_type_reader,
9733 but is kept separate for now. */
9734
9735 static void
9736 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9737 const gdb_byte *info_ptr,
9738 struct die_info *comp_unit_die,
9739 int has_children,
9740 void *data)
9741 {
9742 struct dwarf2_cu *cu = reader->cu;
9743 enum language *language_ptr = (enum language *) data;
9744
9745 gdb_assert (cu->die_hash == NULL);
9746 cu->die_hash =
9747 htab_create_alloc_ex (cu->header.length / 12,
9748 die_hash,
9749 die_eq,
9750 NULL,
9751 &cu->comp_unit_obstack,
9752 hashtab_obstack_allocate,
9753 dummy_obstack_deallocate);
9754
9755 if (has_children)
9756 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9757 &info_ptr, comp_unit_die);
9758 cu->dies = comp_unit_die;
9759 /* comp_unit_die is not stored in die_hash, no need. */
9760
9761 /* We try not to read any attributes in this function, because not
9762 all CUs needed for references have been loaded yet, and symbol
9763 table processing isn't initialized. But we have to set the CU language,
9764 or we won't be able to build types correctly.
9765 Similarly, if we do not read the producer, we can not apply
9766 producer-specific interpretation. */
9767 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9768 }
9769
9770 /* Load the DIEs associated with PER_CU into memory. */
9771
9772 static void
9773 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9774 bool skip_partial,
9775 enum language pretend_language)
9776 {
9777 gdb_assert (! this_cu->is_debug_types);
9778
9779 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9780 load_full_comp_unit_reader, &pretend_language);
9781 }
9782
9783 /* Add a DIE to the delayed physname list. */
9784
9785 static void
9786 add_to_method_list (struct type *type, int fnfield_index, int index,
9787 const char *name, struct die_info *die,
9788 struct dwarf2_cu *cu)
9789 {
9790 struct delayed_method_info mi;
9791 mi.type = type;
9792 mi.fnfield_index = fnfield_index;
9793 mi.index = index;
9794 mi.name = name;
9795 mi.die = die;
9796 cu->method_list.push_back (mi);
9797 }
9798
9799 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9800 "const" / "volatile". If so, decrements LEN by the length of the
9801 modifier and return true. Otherwise return false. */
9802
9803 template<size_t N>
9804 static bool
9805 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9806 {
9807 size_t mod_len = sizeof (mod) - 1;
9808 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9809 {
9810 len -= mod_len;
9811 return true;
9812 }
9813 return false;
9814 }
9815
9816 /* Compute the physnames of any methods on the CU's method list.
9817
9818 The computation of method physnames is delayed in order to avoid the
9819 (bad) condition that one of the method's formal parameters is of an as yet
9820 incomplete type. */
9821
9822 static void
9823 compute_delayed_physnames (struct dwarf2_cu *cu)
9824 {
9825 /* Only C++ delays computing physnames. */
9826 if (cu->method_list.empty ())
9827 return;
9828 gdb_assert (cu->language == language_cplus);
9829
9830 for (const delayed_method_info &mi : cu->method_list)
9831 {
9832 const char *physname;
9833 struct fn_fieldlist *fn_flp
9834 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9835 physname = dwarf2_physname (mi.name, mi.die, cu);
9836 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9837 = physname ? physname : "";
9838
9839 /* Since there's no tag to indicate whether a method is a
9840 const/volatile overload, extract that information out of the
9841 demangled name. */
9842 if (physname != NULL)
9843 {
9844 size_t len = strlen (physname);
9845
9846 while (1)
9847 {
9848 if (physname[len] == ')') /* shortcut */
9849 break;
9850 else if (check_modifier (physname, len, " const"))
9851 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9852 else if (check_modifier (physname, len, " volatile"))
9853 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9854 else
9855 break;
9856 }
9857 }
9858 }
9859
9860 /* The list is no longer needed. */
9861 cu->method_list.clear ();
9862 }
9863
9864 /* Go objects should be embedded in a DW_TAG_module DIE,
9865 and it's not clear if/how imported objects will appear.
9866 To keep Go support simple until that's worked out,
9867 go back through what we've read and create something usable.
9868 We could do this while processing each DIE, and feels kinda cleaner,
9869 but that way is more invasive.
9870 This is to, for example, allow the user to type "p var" or "b main"
9871 without having to specify the package name, and allow lookups
9872 of module.object to work in contexts that use the expression
9873 parser. */
9874
9875 static void
9876 fixup_go_packaging (struct dwarf2_cu *cu)
9877 {
9878 char *package_name = NULL;
9879 struct pending *list;
9880 int i;
9881
9882 for (list = *cu->get_builder ()->get_global_symbols ();
9883 list != NULL;
9884 list = list->next)
9885 {
9886 for (i = 0; i < list->nsyms; ++i)
9887 {
9888 struct symbol *sym = list->symbol[i];
9889
9890 if (SYMBOL_LANGUAGE (sym) == language_go
9891 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9892 {
9893 char *this_package_name = go_symbol_package_name (sym);
9894
9895 if (this_package_name == NULL)
9896 continue;
9897 if (package_name == NULL)
9898 package_name = this_package_name;
9899 else
9900 {
9901 struct objfile *objfile
9902 = cu->per_cu->dwarf2_per_objfile->objfile;
9903 if (strcmp (package_name, this_package_name) != 0)
9904 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9905 (symbol_symtab (sym) != NULL
9906 ? symtab_to_filename_for_display
9907 (symbol_symtab (sym))
9908 : objfile_name (objfile)),
9909 this_package_name, package_name);
9910 xfree (this_package_name);
9911 }
9912 }
9913 }
9914 }
9915
9916 if (package_name != NULL)
9917 {
9918 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9919 const char *saved_package_name
9920 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9921 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9922 saved_package_name);
9923 struct symbol *sym;
9924
9925 sym = allocate_symbol (objfile);
9926 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9927 SYMBOL_SET_NAMES (sym, saved_package_name,
9928 strlen (saved_package_name), 0, objfile);
9929 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9930 e.g., "main" finds the "main" module and not C's main(). */
9931 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9932 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9933 SYMBOL_TYPE (sym) = type;
9934
9935 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9936
9937 xfree (package_name);
9938 }
9939 }
9940
9941 /* Allocate a fully-qualified name consisting of the two parts on the
9942 obstack. */
9943
9944 static const char *
9945 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9946 {
9947 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9948 }
9949
9950 /* A helper that allocates a struct discriminant_info to attach to a
9951 union type. */
9952
9953 static struct discriminant_info *
9954 alloc_discriminant_info (struct type *type, int discriminant_index,
9955 int default_index)
9956 {
9957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9958 gdb_assert (discriminant_index == -1
9959 || (discriminant_index >= 0
9960 && discriminant_index < TYPE_NFIELDS (type)));
9961 gdb_assert (default_index == -1
9962 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9963
9964 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9965
9966 struct discriminant_info *disc
9967 = ((struct discriminant_info *)
9968 TYPE_ZALLOC (type,
9969 offsetof (struct discriminant_info, discriminants)
9970 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9971 disc->default_index = default_index;
9972 disc->discriminant_index = discriminant_index;
9973
9974 struct dynamic_prop prop;
9975 prop.kind = PROP_UNDEFINED;
9976 prop.data.baton = disc;
9977
9978 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9979
9980 return disc;
9981 }
9982
9983 /* Some versions of rustc emitted enums in an unusual way.
9984
9985 Ordinary enums were emitted as unions. The first element of each
9986 structure in the union was named "RUST$ENUM$DISR". This element
9987 held the discriminant.
9988
9989 These versions of Rust also implemented the "non-zero"
9990 optimization. When the enum had two values, and one is empty and
9991 the other holds a pointer that cannot be zero, the pointer is used
9992 as the discriminant, with a zero value meaning the empty variant.
9993 Here, the union's first member is of the form
9994 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9995 where the fieldnos are the indices of the fields that should be
9996 traversed in order to find the field (which may be several fields deep)
9997 and the variantname is the name of the variant of the case when the
9998 field is zero.
9999
10000 This function recognizes whether TYPE is of one of these forms,
10001 and, if so, smashes it to be a variant type. */
10002
10003 static void
10004 quirk_rust_enum (struct type *type, struct objfile *objfile)
10005 {
10006 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10007
10008 /* We don't need to deal with empty enums. */
10009 if (TYPE_NFIELDS (type) == 0)
10010 return;
10011
10012 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
10013 if (TYPE_NFIELDS (type) == 1
10014 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
10015 {
10016 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
10017
10018 /* Decode the field name to find the offset of the
10019 discriminant. */
10020 ULONGEST bit_offset = 0;
10021 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
10022 while (name[0] >= '0' && name[0] <= '9')
10023 {
10024 char *tail;
10025 unsigned long index = strtoul (name, &tail, 10);
10026 name = tail;
10027 if (*name != '$'
10028 || index >= TYPE_NFIELDS (field_type)
10029 || (TYPE_FIELD_LOC_KIND (field_type, index)
10030 != FIELD_LOC_KIND_BITPOS))
10031 {
10032 complaint (_("Could not parse Rust enum encoding string \"%s\""
10033 "[in module %s]"),
10034 TYPE_FIELD_NAME (type, 0),
10035 objfile_name (objfile));
10036 return;
10037 }
10038 ++name;
10039
10040 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10041 field_type = TYPE_FIELD_TYPE (field_type, index);
10042 }
10043
10044 /* Make a union to hold the variants. */
10045 struct type *union_type = alloc_type (objfile);
10046 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10047 TYPE_NFIELDS (union_type) = 3;
10048 TYPE_FIELDS (union_type)
10049 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10050 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10051 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10052
10053 /* Put the discriminant must at index 0. */
10054 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10055 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10056 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10057 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10058
10059 /* The order of fields doesn't really matter, so put the real
10060 field at index 1 and the data-less field at index 2. */
10061 struct discriminant_info *disc
10062 = alloc_discriminant_info (union_type, 0, 1);
10063 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10064 TYPE_FIELD_NAME (union_type, 1)
10065 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10066 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10067 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10068 TYPE_FIELD_NAME (union_type, 1));
10069
10070 const char *dataless_name
10071 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10072 name);
10073 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10074 dataless_name);
10075 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10076 /* NAME points into the original discriminant name, which
10077 already has the correct lifetime. */
10078 TYPE_FIELD_NAME (union_type, 2) = name;
10079 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10080 disc->discriminants[2] = 0;
10081
10082 /* Smash this type to be a structure type. We have to do this
10083 because the type has already been recorded. */
10084 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10085 TYPE_NFIELDS (type) = 1;
10086 TYPE_FIELDS (type)
10087 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10088
10089 /* Install the variant part. */
10090 TYPE_FIELD_TYPE (type, 0) = union_type;
10091 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10092 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10093 }
10094 /* A union with a single anonymous field is probably an old-style
10095 univariant enum. */
10096 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
10097 {
10098 /* Smash this type to be a structure type. We have to do this
10099 because the type has already been recorded. */
10100 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10101
10102 /* Make a union to hold the variants. */
10103 struct type *union_type = alloc_type (objfile);
10104 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10105 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10106 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10107 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10108 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10109
10110 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10111 const char *variant_name
10112 = rust_last_path_segment (TYPE_NAME (field_type));
10113 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10114 TYPE_NAME (field_type)
10115 = rust_fully_qualify (&objfile->objfile_obstack,
10116 TYPE_NAME (type), variant_name);
10117
10118 /* Install the union in the outer struct type. */
10119 TYPE_NFIELDS (type) = 1;
10120 TYPE_FIELDS (type)
10121 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10122 TYPE_FIELD_TYPE (type, 0) = union_type;
10123 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10124 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10125
10126 alloc_discriminant_info (union_type, -1, 0);
10127 }
10128 else
10129 {
10130 struct type *disr_type = nullptr;
10131 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10132 {
10133 disr_type = TYPE_FIELD_TYPE (type, i);
10134
10135 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10136 {
10137 /* All fields of a true enum will be structs. */
10138 return;
10139 }
10140 else if (TYPE_NFIELDS (disr_type) == 0)
10141 {
10142 /* Could be data-less variant, so keep going. */
10143 disr_type = nullptr;
10144 }
10145 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10146 "RUST$ENUM$DISR") != 0)
10147 {
10148 /* Not a Rust enum. */
10149 return;
10150 }
10151 else
10152 {
10153 /* Found one. */
10154 break;
10155 }
10156 }
10157
10158 /* If we got here without a discriminant, then it's probably
10159 just a union. */
10160 if (disr_type == nullptr)
10161 return;
10162
10163 /* Smash this type to be a structure type. We have to do this
10164 because the type has already been recorded. */
10165 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10166
10167 /* Make a union to hold the variants. */
10168 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10169 struct type *union_type = alloc_type (objfile);
10170 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10171 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10172 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10173 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10174 TYPE_FIELDS (union_type)
10175 = (struct field *) TYPE_ZALLOC (union_type,
10176 (TYPE_NFIELDS (union_type)
10177 * sizeof (struct field)));
10178
10179 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10180 TYPE_NFIELDS (type) * sizeof (struct field));
10181
10182 /* Install the discriminant at index 0 in the union. */
10183 TYPE_FIELD (union_type, 0) = *disr_field;
10184 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10185 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10186
10187 /* Install the union in the outer struct type. */
10188 TYPE_FIELD_TYPE (type, 0) = union_type;
10189 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10190 TYPE_NFIELDS (type) = 1;
10191
10192 /* Set the size and offset of the union type. */
10193 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10194
10195 /* We need a way to find the correct discriminant given a
10196 variant name. For convenience we build a map here. */
10197 struct type *enum_type = FIELD_TYPE (*disr_field);
10198 std::unordered_map<std::string, ULONGEST> discriminant_map;
10199 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10200 {
10201 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10202 {
10203 const char *name
10204 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10205 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10206 }
10207 }
10208
10209 int n_fields = TYPE_NFIELDS (union_type);
10210 struct discriminant_info *disc
10211 = alloc_discriminant_info (union_type, 0, -1);
10212 /* Skip the discriminant here. */
10213 for (int i = 1; i < n_fields; ++i)
10214 {
10215 /* Find the final word in the name of this variant's type.
10216 That name can be used to look up the correct
10217 discriminant. */
10218 const char *variant_name
10219 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10220 i)));
10221
10222 auto iter = discriminant_map.find (variant_name);
10223 if (iter != discriminant_map.end ())
10224 disc->discriminants[i] = iter->second;
10225
10226 /* Remove the discriminant field, if it exists. */
10227 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10228 if (TYPE_NFIELDS (sub_type) > 0)
10229 {
10230 --TYPE_NFIELDS (sub_type);
10231 ++TYPE_FIELDS (sub_type);
10232 }
10233 TYPE_FIELD_NAME (union_type, i) = variant_name;
10234 TYPE_NAME (sub_type)
10235 = rust_fully_qualify (&objfile->objfile_obstack,
10236 TYPE_NAME (type), variant_name);
10237 }
10238 }
10239 }
10240
10241 /* Rewrite some Rust unions to be structures with variants parts. */
10242
10243 static void
10244 rust_union_quirks (struct dwarf2_cu *cu)
10245 {
10246 gdb_assert (cu->language == language_rust);
10247 for (type *type_ : cu->rust_unions)
10248 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10249 /* We don't need this any more. */
10250 cu->rust_unions.clear ();
10251 }
10252
10253 /* Return the symtab for PER_CU. This works properly regardless of
10254 whether we're using the index or psymtabs. */
10255
10256 static struct compunit_symtab *
10257 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10258 {
10259 return (per_cu->dwarf2_per_objfile->using_index
10260 ? per_cu->v.quick->compunit_symtab
10261 : per_cu->v.psymtab->compunit_symtab);
10262 }
10263
10264 /* A helper function for computing the list of all symbol tables
10265 included by PER_CU. */
10266
10267 static void
10268 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10269 htab_t all_children, htab_t all_type_symtabs,
10270 struct dwarf2_per_cu_data *per_cu,
10271 struct compunit_symtab *immediate_parent)
10272 {
10273 void **slot;
10274 struct compunit_symtab *cust;
10275
10276 slot = htab_find_slot (all_children, per_cu, INSERT);
10277 if (*slot != NULL)
10278 {
10279 /* This inclusion and its children have been processed. */
10280 return;
10281 }
10282
10283 *slot = per_cu;
10284 /* Only add a CU if it has a symbol table. */
10285 cust = get_compunit_symtab (per_cu);
10286 if (cust != NULL)
10287 {
10288 /* If this is a type unit only add its symbol table if we haven't
10289 seen it yet (type unit per_cu's can share symtabs). */
10290 if (per_cu->is_debug_types)
10291 {
10292 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10293 if (*slot == NULL)
10294 {
10295 *slot = cust;
10296 result->push_back (cust);
10297 if (cust->user == NULL)
10298 cust->user = immediate_parent;
10299 }
10300 }
10301 else
10302 {
10303 result->push_back (cust);
10304 if (cust->user == NULL)
10305 cust->user = immediate_parent;
10306 }
10307 }
10308
10309 if (!per_cu->imported_symtabs_empty ())
10310 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10311 {
10312 recursively_compute_inclusions (result, all_children,
10313 all_type_symtabs, ptr, cust);
10314 }
10315 }
10316
10317 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10318 PER_CU. */
10319
10320 static void
10321 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10322 {
10323 gdb_assert (! per_cu->is_debug_types);
10324
10325 if (!per_cu->imported_symtabs_empty ())
10326 {
10327 int len;
10328 std::vector<compunit_symtab *> result_symtabs;
10329 htab_t all_children, all_type_symtabs;
10330 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10331
10332 /* If we don't have a symtab, we can just skip this case. */
10333 if (cust == NULL)
10334 return;
10335
10336 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10337 NULL, xcalloc, xfree);
10338 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10339 NULL, xcalloc, xfree);
10340
10341 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10342 {
10343 recursively_compute_inclusions (&result_symtabs, all_children,
10344 all_type_symtabs, ptr, cust);
10345 }
10346
10347 /* Now we have a transitive closure of all the included symtabs. */
10348 len = result_symtabs.size ();
10349 cust->includes
10350 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10351 struct compunit_symtab *, len + 1);
10352 memcpy (cust->includes, result_symtabs.data (),
10353 len * sizeof (compunit_symtab *));
10354 cust->includes[len] = NULL;
10355
10356 htab_delete (all_children);
10357 htab_delete (all_type_symtabs);
10358 }
10359 }
10360
10361 /* Compute the 'includes' field for the symtabs of all the CUs we just
10362 read. */
10363
10364 static void
10365 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10366 {
10367 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10368 {
10369 if (! iter->is_debug_types)
10370 compute_compunit_symtab_includes (iter);
10371 }
10372
10373 dwarf2_per_objfile->just_read_cus.clear ();
10374 }
10375
10376 /* Generate full symbol information for PER_CU, whose DIEs have
10377 already been loaded into memory. */
10378
10379 static void
10380 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10381 enum language pretend_language)
10382 {
10383 struct dwarf2_cu *cu = per_cu->cu;
10384 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10385 struct objfile *objfile = dwarf2_per_objfile->objfile;
10386 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10387 CORE_ADDR lowpc, highpc;
10388 struct compunit_symtab *cust;
10389 CORE_ADDR baseaddr;
10390 struct block *static_block;
10391 CORE_ADDR addr;
10392
10393 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10394
10395 /* Clear the list here in case something was left over. */
10396 cu->method_list.clear ();
10397
10398 cu->language = pretend_language;
10399 cu->language_defn = language_def (cu->language);
10400
10401 /* Do line number decoding in read_file_scope () */
10402 process_die (cu->dies, cu);
10403
10404 /* For now fudge the Go package. */
10405 if (cu->language == language_go)
10406 fixup_go_packaging (cu);
10407
10408 /* Now that we have processed all the DIEs in the CU, all the types
10409 should be complete, and it should now be safe to compute all of the
10410 physnames. */
10411 compute_delayed_physnames (cu);
10412
10413 if (cu->language == language_rust)
10414 rust_union_quirks (cu);
10415
10416 /* Some compilers don't define a DW_AT_high_pc attribute for the
10417 compilation unit. If the DW_AT_high_pc is missing, synthesize
10418 it, by scanning the DIE's below the compilation unit. */
10419 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10420
10421 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10422 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10423
10424 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10425 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10426 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10427 addrmap to help ensure it has an accurate map of pc values belonging to
10428 this comp unit. */
10429 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10430
10431 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10432 SECT_OFF_TEXT (objfile),
10433 0);
10434
10435 if (cust != NULL)
10436 {
10437 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10438
10439 /* Set symtab language to language from DW_AT_language. If the
10440 compilation is from a C file generated by language preprocessors, do
10441 not set the language if it was already deduced by start_subfile. */
10442 if (!(cu->language == language_c
10443 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10444 COMPUNIT_FILETABS (cust)->language = cu->language;
10445
10446 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10447 produce DW_AT_location with location lists but it can be possibly
10448 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10449 there were bugs in prologue debug info, fixed later in GCC-4.5
10450 by "unwind info for epilogues" patch (which is not directly related).
10451
10452 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10453 needed, it would be wrong due to missing DW_AT_producer there.
10454
10455 Still one can confuse GDB by using non-standard GCC compilation
10456 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10457 */
10458 if (cu->has_loclist && gcc_4_minor >= 5)
10459 cust->locations_valid = 1;
10460
10461 if (gcc_4_minor >= 5)
10462 cust->epilogue_unwind_valid = 1;
10463
10464 cust->call_site_htab = cu->call_site_htab;
10465 }
10466
10467 if (dwarf2_per_objfile->using_index)
10468 per_cu->v.quick->compunit_symtab = cust;
10469 else
10470 {
10471 struct partial_symtab *pst = per_cu->v.psymtab;
10472 pst->compunit_symtab = cust;
10473 pst->readin = 1;
10474 }
10475
10476 /* Push it for inclusion processing later. */
10477 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10478
10479 /* Not needed any more. */
10480 cu->reset_builder ();
10481 }
10482
10483 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10484 already been loaded into memory. */
10485
10486 static void
10487 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10488 enum language pretend_language)
10489 {
10490 struct dwarf2_cu *cu = per_cu->cu;
10491 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10492 struct objfile *objfile = dwarf2_per_objfile->objfile;
10493 struct compunit_symtab *cust;
10494 struct signatured_type *sig_type;
10495
10496 gdb_assert (per_cu->is_debug_types);
10497 sig_type = (struct signatured_type *) per_cu;
10498
10499 /* Clear the list here in case something was left over. */
10500 cu->method_list.clear ();
10501
10502 cu->language = pretend_language;
10503 cu->language_defn = language_def (cu->language);
10504
10505 /* The symbol tables are set up in read_type_unit_scope. */
10506 process_die (cu->dies, cu);
10507
10508 /* For now fudge the Go package. */
10509 if (cu->language == language_go)
10510 fixup_go_packaging (cu);
10511
10512 /* Now that we have processed all the DIEs in the CU, all the types
10513 should be complete, and it should now be safe to compute all of the
10514 physnames. */
10515 compute_delayed_physnames (cu);
10516
10517 if (cu->language == language_rust)
10518 rust_union_quirks (cu);
10519
10520 /* TUs share symbol tables.
10521 If this is the first TU to use this symtab, complete the construction
10522 of it with end_expandable_symtab. Otherwise, complete the addition of
10523 this TU's symbols to the existing symtab. */
10524 if (sig_type->type_unit_group->compunit_symtab == NULL)
10525 {
10526 buildsym_compunit *builder = cu->get_builder ();
10527 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10528 sig_type->type_unit_group->compunit_symtab = cust;
10529
10530 if (cust != NULL)
10531 {
10532 /* Set symtab language to language from DW_AT_language. If the
10533 compilation is from a C file generated by language preprocessors,
10534 do not set the language if it was already deduced by
10535 start_subfile. */
10536 if (!(cu->language == language_c
10537 && COMPUNIT_FILETABS (cust)->language != language_c))
10538 COMPUNIT_FILETABS (cust)->language = cu->language;
10539 }
10540 }
10541 else
10542 {
10543 cu->get_builder ()->augment_type_symtab ();
10544 cust = sig_type->type_unit_group->compunit_symtab;
10545 }
10546
10547 if (dwarf2_per_objfile->using_index)
10548 per_cu->v.quick->compunit_symtab = cust;
10549 else
10550 {
10551 struct partial_symtab *pst = per_cu->v.psymtab;
10552 pst->compunit_symtab = cust;
10553 pst->readin = 1;
10554 }
10555
10556 /* Not needed any more. */
10557 cu->reset_builder ();
10558 }
10559
10560 /* Process an imported unit DIE. */
10561
10562 static void
10563 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10564 {
10565 struct attribute *attr;
10566
10567 /* For now we don't handle imported units in type units. */
10568 if (cu->per_cu->is_debug_types)
10569 {
10570 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10571 " supported in type units [in module %s]"),
10572 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10573 }
10574
10575 attr = dwarf2_attr (die, DW_AT_import, cu);
10576 if (attr != NULL)
10577 {
10578 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10579 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10580 dwarf2_per_cu_data *per_cu
10581 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10582 cu->per_cu->dwarf2_per_objfile);
10583
10584 /* If necessary, add it to the queue and load its DIEs. */
10585 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10586 load_full_comp_unit (per_cu, false, cu->language);
10587
10588 cu->per_cu->imported_symtabs_push (per_cu);
10589 }
10590 }
10591
10592 /* RAII object that represents a process_die scope: i.e.,
10593 starts/finishes processing a DIE. */
10594 class process_die_scope
10595 {
10596 public:
10597 process_die_scope (die_info *die, dwarf2_cu *cu)
10598 : m_die (die), m_cu (cu)
10599 {
10600 /* We should only be processing DIEs not already in process. */
10601 gdb_assert (!m_die->in_process);
10602 m_die->in_process = true;
10603 }
10604
10605 ~process_die_scope ()
10606 {
10607 m_die->in_process = false;
10608
10609 /* If we're done processing the DIE for the CU that owns the line
10610 header, we don't need the line header anymore. */
10611 if (m_cu->line_header_die_owner == m_die)
10612 {
10613 delete m_cu->line_header;
10614 m_cu->line_header = NULL;
10615 m_cu->line_header_die_owner = NULL;
10616 }
10617 }
10618
10619 private:
10620 die_info *m_die;
10621 dwarf2_cu *m_cu;
10622 };
10623
10624 /* Process a die and its children. */
10625
10626 static void
10627 process_die (struct die_info *die, struct dwarf2_cu *cu)
10628 {
10629 process_die_scope scope (die, cu);
10630
10631 switch (die->tag)
10632 {
10633 case DW_TAG_padding:
10634 break;
10635 case DW_TAG_compile_unit:
10636 case DW_TAG_partial_unit:
10637 read_file_scope (die, cu);
10638 break;
10639 case DW_TAG_type_unit:
10640 read_type_unit_scope (die, cu);
10641 break;
10642 case DW_TAG_subprogram:
10643 /* Nested subprograms in Fortran get a prefix. */
10644 if (cu->language == language_fortran
10645 && die->parent != NULL
10646 && die->parent->tag == DW_TAG_subprogram)
10647 cu->processing_has_namespace_info = true;
10648 /* Fall through. */
10649 case DW_TAG_inlined_subroutine:
10650 read_func_scope (die, cu);
10651 break;
10652 case DW_TAG_lexical_block:
10653 case DW_TAG_try_block:
10654 case DW_TAG_catch_block:
10655 read_lexical_block_scope (die, cu);
10656 break;
10657 case DW_TAG_call_site:
10658 case DW_TAG_GNU_call_site:
10659 read_call_site_scope (die, cu);
10660 break;
10661 case DW_TAG_class_type:
10662 case DW_TAG_interface_type:
10663 case DW_TAG_structure_type:
10664 case DW_TAG_union_type:
10665 process_structure_scope (die, cu);
10666 break;
10667 case DW_TAG_enumeration_type:
10668 process_enumeration_scope (die, cu);
10669 break;
10670
10671 /* These dies have a type, but processing them does not create
10672 a symbol or recurse to process the children. Therefore we can
10673 read them on-demand through read_type_die. */
10674 case DW_TAG_subroutine_type:
10675 case DW_TAG_set_type:
10676 case DW_TAG_array_type:
10677 case DW_TAG_pointer_type:
10678 case DW_TAG_ptr_to_member_type:
10679 case DW_TAG_reference_type:
10680 case DW_TAG_rvalue_reference_type:
10681 case DW_TAG_string_type:
10682 break;
10683
10684 case DW_TAG_base_type:
10685 case DW_TAG_subrange_type:
10686 case DW_TAG_typedef:
10687 /* Add a typedef symbol for the type definition, if it has a
10688 DW_AT_name. */
10689 new_symbol (die, read_type_die (die, cu), cu);
10690 break;
10691 case DW_TAG_common_block:
10692 read_common_block (die, cu);
10693 break;
10694 case DW_TAG_common_inclusion:
10695 break;
10696 case DW_TAG_namespace:
10697 cu->processing_has_namespace_info = true;
10698 read_namespace (die, cu);
10699 break;
10700 case DW_TAG_module:
10701 cu->processing_has_namespace_info = true;
10702 read_module (die, cu);
10703 break;
10704 case DW_TAG_imported_declaration:
10705 cu->processing_has_namespace_info = true;
10706 if (read_namespace_alias (die, cu))
10707 break;
10708 /* The declaration is not a global namespace alias. */
10709 /* Fall through. */
10710 case DW_TAG_imported_module:
10711 cu->processing_has_namespace_info = true;
10712 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10713 || cu->language != language_fortran))
10714 complaint (_("Tag '%s' has unexpected children"),
10715 dwarf_tag_name (die->tag));
10716 read_import_statement (die, cu);
10717 break;
10718
10719 case DW_TAG_imported_unit:
10720 process_imported_unit_die (die, cu);
10721 break;
10722
10723 case DW_TAG_variable:
10724 read_variable (die, cu);
10725 break;
10726
10727 default:
10728 new_symbol (die, NULL, cu);
10729 break;
10730 }
10731 }
10732 \f
10733 /* DWARF name computation. */
10734
10735 /* A helper function for dwarf2_compute_name which determines whether DIE
10736 needs to have the name of the scope prepended to the name listed in the
10737 die. */
10738
10739 static int
10740 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10741 {
10742 struct attribute *attr;
10743
10744 switch (die->tag)
10745 {
10746 case DW_TAG_namespace:
10747 case DW_TAG_typedef:
10748 case DW_TAG_class_type:
10749 case DW_TAG_interface_type:
10750 case DW_TAG_structure_type:
10751 case DW_TAG_union_type:
10752 case DW_TAG_enumeration_type:
10753 case DW_TAG_enumerator:
10754 case DW_TAG_subprogram:
10755 case DW_TAG_inlined_subroutine:
10756 case DW_TAG_member:
10757 case DW_TAG_imported_declaration:
10758 return 1;
10759
10760 case DW_TAG_variable:
10761 case DW_TAG_constant:
10762 /* We only need to prefix "globally" visible variables. These include
10763 any variable marked with DW_AT_external or any variable that
10764 lives in a namespace. [Variables in anonymous namespaces
10765 require prefixing, but they are not DW_AT_external.] */
10766
10767 if (dwarf2_attr (die, DW_AT_specification, cu))
10768 {
10769 struct dwarf2_cu *spec_cu = cu;
10770
10771 return die_needs_namespace (die_specification (die, &spec_cu),
10772 spec_cu);
10773 }
10774
10775 attr = dwarf2_attr (die, DW_AT_external, cu);
10776 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10777 && die->parent->tag != DW_TAG_module)
10778 return 0;
10779 /* A variable in a lexical block of some kind does not need a
10780 namespace, even though in C++ such variables may be external
10781 and have a mangled name. */
10782 if (die->parent->tag == DW_TAG_lexical_block
10783 || die->parent->tag == DW_TAG_try_block
10784 || die->parent->tag == DW_TAG_catch_block
10785 || die->parent->tag == DW_TAG_subprogram)
10786 return 0;
10787 return 1;
10788
10789 default:
10790 return 0;
10791 }
10792 }
10793
10794 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10795 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10796 defined for the given DIE. */
10797
10798 static struct attribute *
10799 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10800 {
10801 struct attribute *attr;
10802
10803 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10804 if (attr == NULL)
10805 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10806
10807 return attr;
10808 }
10809
10810 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10811 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10812 defined for the given DIE. */
10813
10814 static const char *
10815 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10816 {
10817 const char *linkage_name;
10818
10819 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10820 if (linkage_name == NULL)
10821 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10822
10823 return linkage_name;
10824 }
10825
10826 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10827 compute the physname for the object, which include a method's:
10828 - formal parameters (C++),
10829 - receiver type (Go),
10830
10831 The term "physname" is a bit confusing.
10832 For C++, for example, it is the demangled name.
10833 For Go, for example, it's the mangled name.
10834
10835 For Ada, return the DIE's linkage name rather than the fully qualified
10836 name. PHYSNAME is ignored..
10837
10838 The result is allocated on the objfile_obstack and canonicalized. */
10839
10840 static const char *
10841 dwarf2_compute_name (const char *name,
10842 struct die_info *die, struct dwarf2_cu *cu,
10843 int physname)
10844 {
10845 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10846
10847 if (name == NULL)
10848 name = dwarf2_name (die, cu);
10849
10850 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10851 but otherwise compute it by typename_concat inside GDB.
10852 FIXME: Actually this is not really true, or at least not always true.
10853 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10854 Fortran names because there is no mangling standard. So new_symbol
10855 will set the demangled name to the result of dwarf2_full_name, and it is
10856 the demangled name that GDB uses if it exists. */
10857 if (cu->language == language_ada
10858 || (cu->language == language_fortran && physname))
10859 {
10860 /* For Ada unit, we prefer the linkage name over the name, as
10861 the former contains the exported name, which the user expects
10862 to be able to reference. Ideally, we want the user to be able
10863 to reference this entity using either natural or linkage name,
10864 but we haven't started looking at this enhancement yet. */
10865 const char *linkage_name = dw2_linkage_name (die, cu);
10866
10867 if (linkage_name != NULL)
10868 return linkage_name;
10869 }
10870
10871 /* These are the only languages we know how to qualify names in. */
10872 if (name != NULL
10873 && (cu->language == language_cplus
10874 || cu->language == language_fortran || cu->language == language_d
10875 || cu->language == language_rust))
10876 {
10877 if (die_needs_namespace (die, cu))
10878 {
10879 const char *prefix;
10880 const char *canonical_name = NULL;
10881
10882 string_file buf;
10883
10884 prefix = determine_prefix (die, cu);
10885 if (*prefix != '\0')
10886 {
10887 char *prefixed_name = typename_concat (NULL, prefix, name,
10888 physname, cu);
10889
10890 buf.puts (prefixed_name);
10891 xfree (prefixed_name);
10892 }
10893 else
10894 buf.puts (name);
10895
10896 /* Template parameters may be specified in the DIE's DW_AT_name, or
10897 as children with DW_TAG_template_type_param or
10898 DW_TAG_value_type_param. If the latter, add them to the name
10899 here. If the name already has template parameters, then
10900 skip this step; some versions of GCC emit both, and
10901 it is more efficient to use the pre-computed name.
10902
10903 Something to keep in mind about this process: it is very
10904 unlikely, or in some cases downright impossible, to produce
10905 something that will match the mangled name of a function.
10906 If the definition of the function has the same debug info,
10907 we should be able to match up with it anyway. But fallbacks
10908 using the minimal symbol, for instance to find a method
10909 implemented in a stripped copy of libstdc++, will not work.
10910 If we do not have debug info for the definition, we will have to
10911 match them up some other way.
10912
10913 When we do name matching there is a related problem with function
10914 templates; two instantiated function templates are allowed to
10915 differ only by their return types, which we do not add here. */
10916
10917 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10918 {
10919 struct attribute *attr;
10920 struct die_info *child;
10921 int first = 1;
10922
10923 die->building_fullname = 1;
10924
10925 for (child = die->child; child != NULL; child = child->sibling)
10926 {
10927 struct type *type;
10928 LONGEST value;
10929 const gdb_byte *bytes;
10930 struct dwarf2_locexpr_baton *baton;
10931 struct value *v;
10932
10933 if (child->tag != DW_TAG_template_type_param
10934 && child->tag != DW_TAG_template_value_param)
10935 continue;
10936
10937 if (first)
10938 {
10939 buf.puts ("<");
10940 first = 0;
10941 }
10942 else
10943 buf.puts (", ");
10944
10945 attr = dwarf2_attr (child, DW_AT_type, cu);
10946 if (attr == NULL)
10947 {
10948 complaint (_("template parameter missing DW_AT_type"));
10949 buf.puts ("UNKNOWN_TYPE");
10950 continue;
10951 }
10952 type = die_type (child, cu);
10953
10954 if (child->tag == DW_TAG_template_type_param)
10955 {
10956 c_print_type (type, "", &buf, -1, 0, cu->language,
10957 &type_print_raw_options);
10958 continue;
10959 }
10960
10961 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10962 if (attr == NULL)
10963 {
10964 complaint (_("template parameter missing "
10965 "DW_AT_const_value"));
10966 buf.puts ("UNKNOWN_VALUE");
10967 continue;
10968 }
10969
10970 dwarf2_const_value_attr (attr, type, name,
10971 &cu->comp_unit_obstack, cu,
10972 &value, &bytes, &baton);
10973
10974 if (TYPE_NOSIGN (type))
10975 /* GDB prints characters as NUMBER 'CHAR'. If that's
10976 changed, this can use value_print instead. */
10977 c_printchar (value, type, &buf);
10978 else
10979 {
10980 struct value_print_options opts;
10981
10982 if (baton != NULL)
10983 v = dwarf2_evaluate_loc_desc (type, NULL,
10984 baton->data,
10985 baton->size,
10986 baton->per_cu);
10987 else if (bytes != NULL)
10988 {
10989 v = allocate_value (type);
10990 memcpy (value_contents_writeable (v), bytes,
10991 TYPE_LENGTH (type));
10992 }
10993 else
10994 v = value_from_longest (type, value);
10995
10996 /* Specify decimal so that we do not depend on
10997 the radix. */
10998 get_formatted_print_options (&opts, 'd');
10999 opts.raw = 1;
11000 value_print (v, &buf, &opts);
11001 release_value (v);
11002 }
11003 }
11004
11005 die->building_fullname = 0;
11006
11007 if (!first)
11008 {
11009 /* Close the argument list, with a space if necessary
11010 (nested templates). */
11011 if (!buf.empty () && buf.string ().back () == '>')
11012 buf.puts (" >");
11013 else
11014 buf.puts (">");
11015 }
11016 }
11017
11018 /* For C++ methods, append formal parameter type
11019 information, if PHYSNAME. */
11020
11021 if (physname && die->tag == DW_TAG_subprogram
11022 && cu->language == language_cplus)
11023 {
11024 struct type *type = read_type_die (die, cu);
11025
11026 c_type_print_args (type, &buf, 1, cu->language,
11027 &type_print_raw_options);
11028
11029 if (cu->language == language_cplus)
11030 {
11031 /* Assume that an artificial first parameter is
11032 "this", but do not crash if it is not. RealView
11033 marks unnamed (and thus unused) parameters as
11034 artificial; there is no way to differentiate
11035 the two cases. */
11036 if (TYPE_NFIELDS (type) > 0
11037 && TYPE_FIELD_ARTIFICIAL (type, 0)
11038 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11039 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11040 0))))
11041 buf.puts (" const");
11042 }
11043 }
11044
11045 const std::string &intermediate_name = buf.string ();
11046
11047 if (cu->language == language_cplus)
11048 canonical_name
11049 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11050 &objfile->per_bfd->storage_obstack);
11051
11052 /* If we only computed INTERMEDIATE_NAME, or if
11053 INTERMEDIATE_NAME is already canonical, then we need to
11054 copy it to the appropriate obstack. */
11055 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11056 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11057 intermediate_name);
11058 else
11059 name = canonical_name;
11060 }
11061 }
11062
11063 return name;
11064 }
11065
11066 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11067 If scope qualifiers are appropriate they will be added. The result
11068 will be allocated on the storage_obstack, or NULL if the DIE does
11069 not have a name. NAME may either be from a previous call to
11070 dwarf2_name or NULL.
11071
11072 The output string will be canonicalized (if C++). */
11073
11074 static const char *
11075 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11076 {
11077 return dwarf2_compute_name (name, die, cu, 0);
11078 }
11079
11080 /* Construct a physname for the given DIE in CU. NAME may either be
11081 from a previous call to dwarf2_name or NULL. The result will be
11082 allocated on the objfile_objstack or NULL if the DIE does not have a
11083 name.
11084
11085 The output string will be canonicalized (if C++). */
11086
11087 static const char *
11088 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11089 {
11090 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11091 const char *retval, *mangled = NULL, *canon = NULL;
11092 int need_copy = 1;
11093
11094 /* In this case dwarf2_compute_name is just a shortcut not building anything
11095 on its own. */
11096 if (!die_needs_namespace (die, cu))
11097 return dwarf2_compute_name (name, die, cu, 1);
11098
11099 mangled = dw2_linkage_name (die, cu);
11100
11101 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11102 See https://github.com/rust-lang/rust/issues/32925. */
11103 if (cu->language == language_rust && mangled != NULL
11104 && strchr (mangled, '{') != NULL)
11105 mangled = NULL;
11106
11107 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11108 has computed. */
11109 gdb::unique_xmalloc_ptr<char> demangled;
11110 if (mangled != NULL)
11111 {
11112
11113 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11114 {
11115 /* Do nothing (do not demangle the symbol name). */
11116 }
11117 else if (cu->language == language_go)
11118 {
11119 /* This is a lie, but we already lie to the caller new_symbol.
11120 new_symbol assumes we return the mangled name.
11121 This just undoes that lie until things are cleaned up. */
11122 }
11123 else
11124 {
11125 /* Use DMGL_RET_DROP for C++ template functions to suppress
11126 their return type. It is easier for GDB users to search
11127 for such functions as `name(params)' than `long name(params)'.
11128 In such case the minimal symbol names do not match the full
11129 symbol names but for template functions there is never a need
11130 to look up their definition from their declaration so
11131 the only disadvantage remains the minimal symbol variant
11132 `long name(params)' does not have the proper inferior type. */
11133 demangled.reset (gdb_demangle (mangled,
11134 (DMGL_PARAMS | DMGL_ANSI
11135 | DMGL_RET_DROP)));
11136 }
11137 if (demangled)
11138 canon = demangled.get ();
11139 else
11140 {
11141 canon = mangled;
11142 need_copy = 0;
11143 }
11144 }
11145
11146 if (canon == NULL || check_physname)
11147 {
11148 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11149
11150 if (canon != NULL && strcmp (physname, canon) != 0)
11151 {
11152 /* It may not mean a bug in GDB. The compiler could also
11153 compute DW_AT_linkage_name incorrectly. But in such case
11154 GDB would need to be bug-to-bug compatible. */
11155
11156 complaint (_("Computed physname <%s> does not match demangled <%s> "
11157 "(from linkage <%s>) - DIE at %s [in module %s]"),
11158 physname, canon, mangled, sect_offset_str (die->sect_off),
11159 objfile_name (objfile));
11160
11161 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11162 is available here - over computed PHYSNAME. It is safer
11163 against both buggy GDB and buggy compilers. */
11164
11165 retval = canon;
11166 }
11167 else
11168 {
11169 retval = physname;
11170 need_copy = 0;
11171 }
11172 }
11173 else
11174 retval = canon;
11175
11176 if (need_copy)
11177 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11178
11179 return retval;
11180 }
11181
11182 /* Inspect DIE in CU for a namespace alias. If one exists, record
11183 a new symbol for it.
11184
11185 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11186
11187 static int
11188 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11189 {
11190 struct attribute *attr;
11191
11192 /* If the die does not have a name, this is not a namespace
11193 alias. */
11194 attr = dwarf2_attr (die, DW_AT_name, cu);
11195 if (attr != NULL)
11196 {
11197 int num;
11198 struct die_info *d = die;
11199 struct dwarf2_cu *imported_cu = cu;
11200
11201 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11202 keep inspecting DIEs until we hit the underlying import. */
11203 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11204 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11205 {
11206 attr = dwarf2_attr (d, DW_AT_import, cu);
11207 if (attr == NULL)
11208 break;
11209
11210 d = follow_die_ref (d, attr, &imported_cu);
11211 if (d->tag != DW_TAG_imported_declaration)
11212 break;
11213 }
11214
11215 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11216 {
11217 complaint (_("DIE at %s has too many recursively imported "
11218 "declarations"), sect_offset_str (d->sect_off));
11219 return 0;
11220 }
11221
11222 if (attr != NULL)
11223 {
11224 struct type *type;
11225 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11226
11227 type = get_die_type_at_offset (sect_off, cu->per_cu);
11228 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11229 {
11230 /* This declaration is a global namespace alias. Add
11231 a symbol for it whose type is the aliased namespace. */
11232 new_symbol (die, type, cu);
11233 return 1;
11234 }
11235 }
11236 }
11237
11238 return 0;
11239 }
11240
11241 /* Return the using directives repository (global or local?) to use in the
11242 current context for CU.
11243
11244 For Ada, imported declarations can materialize renamings, which *may* be
11245 global. However it is impossible (for now?) in DWARF to distinguish
11246 "external" imported declarations and "static" ones. As all imported
11247 declarations seem to be static in all other languages, make them all CU-wide
11248 global only in Ada. */
11249
11250 static struct using_direct **
11251 using_directives (struct dwarf2_cu *cu)
11252 {
11253 if (cu->language == language_ada
11254 && cu->get_builder ()->outermost_context_p ())
11255 return cu->get_builder ()->get_global_using_directives ();
11256 else
11257 return cu->get_builder ()->get_local_using_directives ();
11258 }
11259
11260 /* Read the import statement specified by the given die and record it. */
11261
11262 static void
11263 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11264 {
11265 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11266 struct attribute *import_attr;
11267 struct die_info *imported_die, *child_die;
11268 struct dwarf2_cu *imported_cu;
11269 const char *imported_name;
11270 const char *imported_name_prefix;
11271 const char *canonical_name;
11272 const char *import_alias;
11273 const char *imported_declaration = NULL;
11274 const char *import_prefix;
11275 std::vector<const char *> excludes;
11276
11277 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11278 if (import_attr == NULL)
11279 {
11280 complaint (_("Tag '%s' has no DW_AT_import"),
11281 dwarf_tag_name (die->tag));
11282 return;
11283 }
11284
11285 imported_cu = cu;
11286 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11287 imported_name = dwarf2_name (imported_die, imported_cu);
11288 if (imported_name == NULL)
11289 {
11290 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11291
11292 The import in the following code:
11293 namespace A
11294 {
11295 typedef int B;
11296 }
11297
11298 int main ()
11299 {
11300 using A::B;
11301 B b;
11302 return b;
11303 }
11304
11305 ...
11306 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11307 <52> DW_AT_decl_file : 1
11308 <53> DW_AT_decl_line : 6
11309 <54> DW_AT_import : <0x75>
11310 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11311 <59> DW_AT_name : B
11312 <5b> DW_AT_decl_file : 1
11313 <5c> DW_AT_decl_line : 2
11314 <5d> DW_AT_type : <0x6e>
11315 ...
11316 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11317 <76> DW_AT_byte_size : 4
11318 <77> DW_AT_encoding : 5 (signed)
11319
11320 imports the wrong die ( 0x75 instead of 0x58 ).
11321 This case will be ignored until the gcc bug is fixed. */
11322 return;
11323 }
11324
11325 /* Figure out the local name after import. */
11326 import_alias = dwarf2_name (die, cu);
11327
11328 /* Figure out where the statement is being imported to. */
11329 import_prefix = determine_prefix (die, cu);
11330
11331 /* Figure out what the scope of the imported die is and prepend it
11332 to the name of the imported die. */
11333 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11334
11335 if (imported_die->tag != DW_TAG_namespace
11336 && imported_die->tag != DW_TAG_module)
11337 {
11338 imported_declaration = imported_name;
11339 canonical_name = imported_name_prefix;
11340 }
11341 else if (strlen (imported_name_prefix) > 0)
11342 canonical_name = obconcat (&objfile->objfile_obstack,
11343 imported_name_prefix,
11344 (cu->language == language_d ? "." : "::"),
11345 imported_name, (char *) NULL);
11346 else
11347 canonical_name = imported_name;
11348
11349 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11350 for (child_die = die->child; child_die && child_die->tag;
11351 child_die = sibling_die (child_die))
11352 {
11353 /* DWARF-4: A Fortran use statement with a “rename list” may be
11354 represented by an imported module entry with an import attribute
11355 referring to the module and owned entries corresponding to those
11356 entities that are renamed as part of being imported. */
11357
11358 if (child_die->tag != DW_TAG_imported_declaration)
11359 {
11360 complaint (_("child DW_TAG_imported_declaration expected "
11361 "- DIE at %s [in module %s]"),
11362 sect_offset_str (child_die->sect_off),
11363 objfile_name (objfile));
11364 continue;
11365 }
11366
11367 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11368 if (import_attr == NULL)
11369 {
11370 complaint (_("Tag '%s' has no DW_AT_import"),
11371 dwarf_tag_name (child_die->tag));
11372 continue;
11373 }
11374
11375 imported_cu = cu;
11376 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11377 &imported_cu);
11378 imported_name = dwarf2_name (imported_die, imported_cu);
11379 if (imported_name == NULL)
11380 {
11381 complaint (_("child DW_TAG_imported_declaration has unknown "
11382 "imported name - DIE at %s [in module %s]"),
11383 sect_offset_str (child_die->sect_off),
11384 objfile_name (objfile));
11385 continue;
11386 }
11387
11388 excludes.push_back (imported_name);
11389
11390 process_die (child_die, cu);
11391 }
11392
11393 add_using_directive (using_directives (cu),
11394 import_prefix,
11395 canonical_name,
11396 import_alias,
11397 imported_declaration,
11398 excludes,
11399 0,
11400 &objfile->objfile_obstack);
11401 }
11402
11403 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11404 types, but gives them a size of zero. Starting with version 14,
11405 ICC is compatible with GCC. */
11406
11407 static bool
11408 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11409 {
11410 if (!cu->checked_producer)
11411 check_producer (cu);
11412
11413 return cu->producer_is_icc_lt_14;
11414 }
11415
11416 /* ICC generates a DW_AT_type for C void functions. This was observed on
11417 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11418 which says that void functions should not have a DW_AT_type. */
11419
11420 static bool
11421 producer_is_icc (struct dwarf2_cu *cu)
11422 {
11423 if (!cu->checked_producer)
11424 check_producer (cu);
11425
11426 return cu->producer_is_icc;
11427 }
11428
11429 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11430 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11431 this, it was first present in GCC release 4.3.0. */
11432
11433 static bool
11434 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11435 {
11436 if (!cu->checked_producer)
11437 check_producer (cu);
11438
11439 return cu->producer_is_gcc_lt_4_3;
11440 }
11441
11442 static file_and_directory
11443 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11444 {
11445 file_and_directory res;
11446
11447 /* Find the filename. Do not use dwarf2_name here, since the filename
11448 is not a source language identifier. */
11449 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11450 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11451
11452 if (res.comp_dir == NULL
11453 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11454 && IS_ABSOLUTE_PATH (res.name))
11455 {
11456 res.comp_dir_storage = ldirname (res.name);
11457 if (!res.comp_dir_storage.empty ())
11458 res.comp_dir = res.comp_dir_storage.c_str ();
11459 }
11460 if (res.comp_dir != NULL)
11461 {
11462 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11463 directory, get rid of it. */
11464 const char *cp = strchr (res.comp_dir, ':');
11465
11466 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11467 res.comp_dir = cp + 1;
11468 }
11469
11470 if (res.name == NULL)
11471 res.name = "<unknown>";
11472
11473 return res;
11474 }
11475
11476 /* Handle DW_AT_stmt_list for a compilation unit.
11477 DIE is the DW_TAG_compile_unit die for CU.
11478 COMP_DIR is the compilation directory. LOWPC is passed to
11479 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11480
11481 static void
11482 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11483 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11484 {
11485 struct dwarf2_per_objfile *dwarf2_per_objfile
11486 = cu->per_cu->dwarf2_per_objfile;
11487 struct objfile *objfile = dwarf2_per_objfile->objfile;
11488 struct attribute *attr;
11489 struct line_header line_header_local;
11490 hashval_t line_header_local_hash;
11491 void **slot;
11492 int decode_mapping;
11493
11494 gdb_assert (! cu->per_cu->is_debug_types);
11495
11496 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11497 if (attr == NULL)
11498 return;
11499
11500 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11501
11502 /* The line header hash table is only created if needed (it exists to
11503 prevent redundant reading of the line table for partial_units).
11504 If we're given a partial_unit, we'll need it. If we're given a
11505 compile_unit, then use the line header hash table if it's already
11506 created, but don't create one just yet. */
11507
11508 if (dwarf2_per_objfile->line_header_hash == NULL
11509 && die->tag == DW_TAG_partial_unit)
11510 {
11511 dwarf2_per_objfile->line_header_hash
11512 = htab_create_alloc_ex (127, line_header_hash_voidp,
11513 line_header_eq_voidp,
11514 free_line_header_voidp,
11515 &objfile->objfile_obstack,
11516 hashtab_obstack_allocate,
11517 dummy_obstack_deallocate);
11518 }
11519
11520 line_header_local.sect_off = line_offset;
11521 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11522 line_header_local_hash = line_header_hash (&line_header_local);
11523 if (dwarf2_per_objfile->line_header_hash != NULL)
11524 {
11525 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11526 &line_header_local,
11527 line_header_local_hash, NO_INSERT);
11528
11529 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11530 is not present in *SLOT (since if there is something in *SLOT then
11531 it will be for a partial_unit). */
11532 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11533 {
11534 gdb_assert (*slot != NULL);
11535 cu->line_header = (struct line_header *) *slot;
11536 return;
11537 }
11538 }
11539
11540 /* dwarf_decode_line_header does not yet provide sufficient information.
11541 We always have to call also dwarf_decode_lines for it. */
11542 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11543 if (lh == NULL)
11544 return;
11545
11546 cu->line_header = lh.release ();
11547 cu->line_header_die_owner = die;
11548
11549 if (dwarf2_per_objfile->line_header_hash == NULL)
11550 slot = NULL;
11551 else
11552 {
11553 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11554 &line_header_local,
11555 line_header_local_hash, INSERT);
11556 gdb_assert (slot != NULL);
11557 }
11558 if (slot != NULL && *slot == NULL)
11559 {
11560 /* This newly decoded line number information unit will be owned
11561 by line_header_hash hash table. */
11562 *slot = cu->line_header;
11563 cu->line_header_die_owner = NULL;
11564 }
11565 else
11566 {
11567 /* We cannot free any current entry in (*slot) as that struct line_header
11568 may be already used by multiple CUs. Create only temporary decoded
11569 line_header for this CU - it may happen at most once for each line
11570 number information unit. And if we're not using line_header_hash
11571 then this is what we want as well. */
11572 gdb_assert (die->tag != DW_TAG_partial_unit);
11573 }
11574 decode_mapping = (die->tag != DW_TAG_partial_unit);
11575 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11576 decode_mapping);
11577
11578 }
11579
11580 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11581
11582 static void
11583 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11584 {
11585 struct dwarf2_per_objfile *dwarf2_per_objfile
11586 = cu->per_cu->dwarf2_per_objfile;
11587 struct objfile *objfile = dwarf2_per_objfile->objfile;
11588 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11589 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11590 CORE_ADDR highpc = ((CORE_ADDR) 0);
11591 struct attribute *attr;
11592 struct die_info *child_die;
11593 CORE_ADDR baseaddr;
11594
11595 prepare_one_comp_unit (cu, die, cu->language);
11596 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11597
11598 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11599
11600 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11601 from finish_block. */
11602 if (lowpc == ((CORE_ADDR) -1))
11603 lowpc = highpc;
11604 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11605
11606 file_and_directory fnd = find_file_and_directory (die, cu);
11607
11608 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11609 standardised yet. As a workaround for the language detection we fall
11610 back to the DW_AT_producer string. */
11611 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11612 cu->language = language_opencl;
11613
11614 /* Similar hack for Go. */
11615 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11616 set_cu_language (DW_LANG_Go, cu);
11617
11618 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11619
11620 /* Decode line number information if present. We do this before
11621 processing child DIEs, so that the line header table is available
11622 for DW_AT_decl_file. */
11623 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11624
11625 /* Process all dies in compilation unit. */
11626 if (die->child != NULL)
11627 {
11628 child_die = die->child;
11629 while (child_die && child_die->tag)
11630 {
11631 process_die (child_die, cu);
11632 child_die = sibling_die (child_die);
11633 }
11634 }
11635
11636 /* Decode macro information, if present. Dwarf 2 macro information
11637 refers to information in the line number info statement program
11638 header, so we can only read it if we've read the header
11639 successfully. */
11640 attr = dwarf2_attr (die, DW_AT_macros, cu);
11641 if (attr == NULL)
11642 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11643 if (attr && cu->line_header)
11644 {
11645 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11646 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11647
11648 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11649 }
11650 else
11651 {
11652 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11653 if (attr && cu->line_header)
11654 {
11655 unsigned int macro_offset = DW_UNSND (attr);
11656
11657 dwarf_decode_macros (cu, macro_offset, 0);
11658 }
11659 }
11660 }
11661
11662 void
11663 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11664 {
11665 struct type_unit_group *tu_group;
11666 int first_time;
11667 struct attribute *attr;
11668 unsigned int i;
11669 struct signatured_type *sig_type;
11670
11671 gdb_assert (per_cu->is_debug_types);
11672 sig_type = (struct signatured_type *) per_cu;
11673
11674 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11675
11676 /* If we're using .gdb_index (includes -readnow) then
11677 per_cu->type_unit_group may not have been set up yet. */
11678 if (sig_type->type_unit_group == NULL)
11679 sig_type->type_unit_group = get_type_unit_group (this, attr);
11680 tu_group = sig_type->type_unit_group;
11681
11682 /* If we've already processed this stmt_list there's no real need to
11683 do it again, we could fake it and just recreate the part we need
11684 (file name,index -> symtab mapping). If data shows this optimization
11685 is useful we can do it then. */
11686 first_time = tu_group->compunit_symtab == NULL;
11687
11688 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11689 debug info. */
11690 line_header_up lh;
11691 if (attr != NULL)
11692 {
11693 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11694 lh = dwarf_decode_line_header (line_offset, this);
11695 }
11696 if (lh == NULL)
11697 {
11698 if (first_time)
11699 start_symtab ("", NULL, 0);
11700 else
11701 {
11702 gdb_assert (tu_group->symtabs == NULL);
11703 gdb_assert (m_builder == nullptr);
11704 struct compunit_symtab *cust = tu_group->compunit_symtab;
11705 m_builder.reset (new struct buildsym_compunit
11706 (COMPUNIT_OBJFILE (cust), "",
11707 COMPUNIT_DIRNAME (cust),
11708 compunit_language (cust),
11709 0, cust));
11710 }
11711 return;
11712 }
11713
11714 line_header = lh.release ();
11715 line_header_die_owner = die;
11716
11717 if (first_time)
11718 {
11719 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11720
11721 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11722 still initializing it, and our caller (a few levels up)
11723 process_full_type_unit still needs to know if this is the first
11724 time. */
11725
11726 tu_group->num_symtabs = line_header->file_names_size ();
11727 tu_group->symtabs = XNEWVEC (struct symtab *,
11728 line_header->file_names_size ());
11729
11730 auto &file_names = line_header->file_names ();
11731 for (i = 0; i < file_names.size (); ++i)
11732 {
11733 file_entry &fe = file_names[i];
11734 dwarf2_start_subfile (this, fe.name,
11735 fe.include_dir (line_header));
11736 buildsym_compunit *b = get_builder ();
11737 if (b->get_current_subfile ()->symtab == NULL)
11738 {
11739 /* NOTE: start_subfile will recognize when it's been
11740 passed a file it has already seen. So we can't
11741 assume there's a simple mapping from
11742 cu->line_header->file_names to subfiles, plus
11743 cu->line_header->file_names may contain dups. */
11744 b->get_current_subfile ()->symtab
11745 = allocate_symtab (cust, b->get_current_subfile ()->name);
11746 }
11747
11748 fe.symtab = b->get_current_subfile ()->symtab;
11749 tu_group->symtabs[i] = fe.symtab;
11750 }
11751 }
11752 else
11753 {
11754 gdb_assert (m_builder == nullptr);
11755 struct compunit_symtab *cust = tu_group->compunit_symtab;
11756 m_builder.reset (new struct buildsym_compunit
11757 (COMPUNIT_OBJFILE (cust), "",
11758 COMPUNIT_DIRNAME (cust),
11759 compunit_language (cust),
11760 0, cust));
11761
11762 auto &file_names = line_header->file_names ();
11763 for (i = 0; i < file_names.size (); ++i)
11764 {
11765 file_entry &fe = file_names[i];
11766 fe.symtab = tu_group->symtabs[i];
11767 }
11768 }
11769
11770 /* The main symtab is allocated last. Type units don't have DW_AT_name
11771 so they don't have a "real" (so to speak) symtab anyway.
11772 There is later code that will assign the main symtab to all symbols
11773 that don't have one. We need to handle the case of a symbol with a
11774 missing symtab (DW_AT_decl_file) anyway. */
11775 }
11776
11777 /* Process DW_TAG_type_unit.
11778 For TUs we want to skip the first top level sibling if it's not the
11779 actual type being defined by this TU. In this case the first top
11780 level sibling is there to provide context only. */
11781
11782 static void
11783 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11784 {
11785 struct die_info *child_die;
11786
11787 prepare_one_comp_unit (cu, die, language_minimal);
11788
11789 /* Initialize (or reinitialize) the machinery for building symtabs.
11790 We do this before processing child DIEs, so that the line header table
11791 is available for DW_AT_decl_file. */
11792 cu->setup_type_unit_groups (die);
11793
11794 if (die->child != NULL)
11795 {
11796 child_die = die->child;
11797 while (child_die && child_die->tag)
11798 {
11799 process_die (child_die, cu);
11800 child_die = sibling_die (child_die);
11801 }
11802 }
11803 }
11804 \f
11805 /* DWO/DWP files.
11806
11807 http://gcc.gnu.org/wiki/DebugFission
11808 http://gcc.gnu.org/wiki/DebugFissionDWP
11809
11810 To simplify handling of both DWO files ("object" files with the DWARF info)
11811 and DWP files (a file with the DWOs packaged up into one file), we treat
11812 DWP files as having a collection of virtual DWO files. */
11813
11814 static hashval_t
11815 hash_dwo_file (const void *item)
11816 {
11817 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11818 hashval_t hash;
11819
11820 hash = htab_hash_string (dwo_file->dwo_name);
11821 if (dwo_file->comp_dir != NULL)
11822 hash += htab_hash_string (dwo_file->comp_dir);
11823 return hash;
11824 }
11825
11826 static int
11827 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11828 {
11829 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11830 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11831
11832 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11833 return 0;
11834 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11835 return lhs->comp_dir == rhs->comp_dir;
11836 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11837 }
11838
11839 /* Allocate a hash table for DWO files. */
11840
11841 static htab_up
11842 allocate_dwo_file_hash_table (struct objfile *objfile)
11843 {
11844 auto delete_dwo_file = [] (void *item)
11845 {
11846 struct dwo_file *dwo_file = (struct dwo_file *) item;
11847
11848 delete dwo_file;
11849 };
11850
11851 return htab_up (htab_create_alloc_ex (41,
11852 hash_dwo_file,
11853 eq_dwo_file,
11854 delete_dwo_file,
11855 &objfile->objfile_obstack,
11856 hashtab_obstack_allocate,
11857 dummy_obstack_deallocate));
11858 }
11859
11860 /* Lookup DWO file DWO_NAME. */
11861
11862 static void **
11863 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11864 const char *dwo_name,
11865 const char *comp_dir)
11866 {
11867 struct dwo_file find_entry;
11868 void **slot;
11869
11870 if (dwarf2_per_objfile->dwo_files == NULL)
11871 dwarf2_per_objfile->dwo_files
11872 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11873
11874 find_entry.dwo_name = dwo_name;
11875 find_entry.comp_dir = comp_dir;
11876 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11877 INSERT);
11878
11879 return slot;
11880 }
11881
11882 static hashval_t
11883 hash_dwo_unit (const void *item)
11884 {
11885 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11886
11887 /* This drops the top 32 bits of the id, but is ok for a hash. */
11888 return dwo_unit->signature;
11889 }
11890
11891 static int
11892 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11893 {
11894 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11895 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11896
11897 /* The signature is assumed to be unique within the DWO file.
11898 So while object file CU dwo_id's always have the value zero,
11899 that's OK, assuming each object file DWO file has only one CU,
11900 and that's the rule for now. */
11901 return lhs->signature == rhs->signature;
11902 }
11903
11904 /* Allocate a hash table for DWO CUs,TUs.
11905 There is one of these tables for each of CUs,TUs for each DWO file. */
11906
11907 static htab_t
11908 allocate_dwo_unit_table (struct objfile *objfile)
11909 {
11910 /* Start out with a pretty small number.
11911 Generally DWO files contain only one CU and maybe some TUs. */
11912 return htab_create_alloc_ex (3,
11913 hash_dwo_unit,
11914 eq_dwo_unit,
11915 NULL,
11916 &objfile->objfile_obstack,
11917 hashtab_obstack_allocate,
11918 dummy_obstack_deallocate);
11919 }
11920
11921 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11922
11923 struct create_dwo_cu_data
11924 {
11925 struct dwo_file *dwo_file;
11926 struct dwo_unit dwo_unit;
11927 };
11928
11929 /* die_reader_func for create_dwo_cu. */
11930
11931 static void
11932 create_dwo_cu_reader (const struct die_reader_specs *reader,
11933 const gdb_byte *info_ptr,
11934 struct die_info *comp_unit_die,
11935 int has_children,
11936 void *datap)
11937 {
11938 struct dwarf2_cu *cu = reader->cu;
11939 sect_offset sect_off = cu->per_cu->sect_off;
11940 struct dwarf2_section_info *section = cu->per_cu->section;
11941 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11942 struct dwo_file *dwo_file = data->dwo_file;
11943 struct dwo_unit *dwo_unit = &data->dwo_unit;
11944
11945 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11946 if (!signature.has_value ())
11947 {
11948 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11949 " its dwo_id [in module %s]"),
11950 sect_offset_str (sect_off), dwo_file->dwo_name);
11951 return;
11952 }
11953
11954 dwo_unit->dwo_file = dwo_file;
11955 dwo_unit->signature = *signature;
11956 dwo_unit->section = section;
11957 dwo_unit->sect_off = sect_off;
11958 dwo_unit->length = cu->per_cu->length;
11959
11960 if (dwarf_read_debug)
11961 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11962 sect_offset_str (sect_off),
11963 hex_string (dwo_unit->signature));
11964 }
11965
11966 /* Create the dwo_units for the CUs in a DWO_FILE.
11967 Note: This function processes DWO files only, not DWP files. */
11968
11969 static void
11970 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11971 struct dwo_file &dwo_file, dwarf2_section_info &section,
11972 htab_t &cus_htab)
11973 {
11974 struct objfile *objfile = dwarf2_per_objfile->objfile;
11975 const gdb_byte *info_ptr, *end_ptr;
11976
11977 dwarf2_read_section (objfile, &section);
11978 info_ptr = section.buffer;
11979
11980 if (info_ptr == NULL)
11981 return;
11982
11983 if (dwarf_read_debug)
11984 {
11985 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11986 get_section_name (&section),
11987 get_section_file_name (&section));
11988 }
11989
11990 end_ptr = info_ptr + section.size;
11991 while (info_ptr < end_ptr)
11992 {
11993 struct dwarf2_per_cu_data per_cu;
11994 struct create_dwo_cu_data create_dwo_cu_data;
11995 struct dwo_unit *dwo_unit;
11996 void **slot;
11997 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11998
11999 memset (&create_dwo_cu_data.dwo_unit, 0,
12000 sizeof (create_dwo_cu_data.dwo_unit));
12001 memset (&per_cu, 0, sizeof (per_cu));
12002 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12003 per_cu.is_debug_types = 0;
12004 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12005 per_cu.section = &section;
12006 create_dwo_cu_data.dwo_file = &dwo_file;
12007
12008 init_cutu_and_read_dies_no_follow (
12009 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12010 info_ptr += per_cu.length;
12011
12012 // If the unit could not be parsed, skip it.
12013 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12014 continue;
12015
12016 if (cus_htab == NULL)
12017 cus_htab = allocate_dwo_unit_table (objfile);
12018
12019 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12020 *dwo_unit = create_dwo_cu_data.dwo_unit;
12021 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12022 gdb_assert (slot != NULL);
12023 if (*slot != NULL)
12024 {
12025 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12026 sect_offset dup_sect_off = dup_cu->sect_off;
12027
12028 complaint (_("debug cu entry at offset %s is duplicate to"
12029 " the entry at offset %s, signature %s"),
12030 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12031 hex_string (dwo_unit->signature));
12032 }
12033 *slot = (void *)dwo_unit;
12034 }
12035 }
12036
12037 /* DWP file .debug_{cu,tu}_index section format:
12038 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12039
12040 DWP Version 1:
12041
12042 Both index sections have the same format, and serve to map a 64-bit
12043 signature to a set of section numbers. Each section begins with a header,
12044 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12045 indexes, and a pool of 32-bit section numbers. The index sections will be
12046 aligned at 8-byte boundaries in the file.
12047
12048 The index section header consists of:
12049
12050 V, 32 bit version number
12051 -, 32 bits unused
12052 N, 32 bit number of compilation units or type units in the index
12053 M, 32 bit number of slots in the hash table
12054
12055 Numbers are recorded using the byte order of the application binary.
12056
12057 The hash table begins at offset 16 in the section, and consists of an array
12058 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12059 order of the application binary). Unused slots in the hash table are 0.
12060 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12061
12062 The parallel table begins immediately after the hash table
12063 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12064 array of 32-bit indexes (using the byte order of the application binary),
12065 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12066 table contains a 32-bit index into the pool of section numbers. For unused
12067 hash table slots, the corresponding entry in the parallel table will be 0.
12068
12069 The pool of section numbers begins immediately following the hash table
12070 (at offset 16 + 12 * M from the beginning of the section). The pool of
12071 section numbers consists of an array of 32-bit words (using the byte order
12072 of the application binary). Each item in the array is indexed starting
12073 from 0. The hash table entry provides the index of the first section
12074 number in the set. Additional section numbers in the set follow, and the
12075 set is terminated by a 0 entry (section number 0 is not used in ELF).
12076
12077 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12078 section must be the first entry in the set, and the .debug_abbrev.dwo must
12079 be the second entry. Other members of the set may follow in any order.
12080
12081 ---
12082
12083 DWP Version 2:
12084
12085 DWP Version 2 combines all the .debug_info, etc. sections into one,
12086 and the entries in the index tables are now offsets into these sections.
12087 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12088 section.
12089
12090 Index Section Contents:
12091 Header
12092 Hash Table of Signatures dwp_hash_table.hash_table
12093 Parallel Table of Indices dwp_hash_table.unit_table
12094 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12095 Table of Section Sizes dwp_hash_table.v2.sizes
12096
12097 The index section header consists of:
12098
12099 V, 32 bit version number
12100 L, 32 bit number of columns in the table of section offsets
12101 N, 32 bit number of compilation units or type units in the index
12102 M, 32 bit number of slots in the hash table
12103
12104 Numbers are recorded using the byte order of the application binary.
12105
12106 The hash table has the same format as version 1.
12107 The parallel table of indices has the same format as version 1,
12108 except that the entries are origin-1 indices into the table of sections
12109 offsets and the table of section sizes.
12110
12111 The table of offsets begins immediately following the parallel table
12112 (at offset 16 + 12 * M from the beginning of the section). The table is
12113 a two-dimensional array of 32-bit words (using the byte order of the
12114 application binary), with L columns and N+1 rows, in row-major order.
12115 Each row in the array is indexed starting from 0. The first row provides
12116 a key to the remaining rows: each column in this row provides an identifier
12117 for a debug section, and the offsets in the same column of subsequent rows
12118 refer to that section. The section identifiers are:
12119
12120 DW_SECT_INFO 1 .debug_info.dwo
12121 DW_SECT_TYPES 2 .debug_types.dwo
12122 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12123 DW_SECT_LINE 4 .debug_line.dwo
12124 DW_SECT_LOC 5 .debug_loc.dwo
12125 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12126 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12127 DW_SECT_MACRO 8 .debug_macro.dwo
12128
12129 The offsets provided by the CU and TU index sections are the base offsets
12130 for the contributions made by each CU or TU to the corresponding section
12131 in the package file. Each CU and TU header contains an abbrev_offset
12132 field, used to find the abbreviations table for that CU or TU within the
12133 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12134 be interpreted as relative to the base offset given in the index section.
12135 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12136 should be interpreted as relative to the base offset for .debug_line.dwo,
12137 and offsets into other debug sections obtained from DWARF attributes should
12138 also be interpreted as relative to the corresponding base offset.
12139
12140 The table of sizes begins immediately following the table of offsets.
12141 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12142 with L columns and N rows, in row-major order. Each row in the array is
12143 indexed starting from 1 (row 0 is shared by the two tables).
12144
12145 ---
12146
12147 Hash table lookup is handled the same in version 1 and 2:
12148
12149 We assume that N and M will not exceed 2^32 - 1.
12150 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12151
12152 Given a 64-bit compilation unit signature or a type signature S, an entry
12153 in the hash table is located as follows:
12154
12155 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12156 the low-order k bits all set to 1.
12157
12158 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12159
12160 3) If the hash table entry at index H matches the signature, use that
12161 entry. If the hash table entry at index H is unused (all zeroes),
12162 terminate the search: the signature is not present in the table.
12163
12164 4) Let H = (H + H') modulo M. Repeat at Step 3.
12165
12166 Because M > N and H' and M are relatively prime, the search is guaranteed
12167 to stop at an unused slot or find the match. */
12168
12169 /* Create a hash table to map DWO IDs to their CU/TU entry in
12170 .debug_{info,types}.dwo in DWP_FILE.
12171 Returns NULL if there isn't one.
12172 Note: This function processes DWP files only, not DWO files. */
12173
12174 static struct dwp_hash_table *
12175 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12176 struct dwp_file *dwp_file, int is_debug_types)
12177 {
12178 struct objfile *objfile = dwarf2_per_objfile->objfile;
12179 bfd *dbfd = dwp_file->dbfd.get ();
12180 const gdb_byte *index_ptr, *index_end;
12181 struct dwarf2_section_info *index;
12182 uint32_t version, nr_columns, nr_units, nr_slots;
12183 struct dwp_hash_table *htab;
12184
12185 if (is_debug_types)
12186 index = &dwp_file->sections.tu_index;
12187 else
12188 index = &dwp_file->sections.cu_index;
12189
12190 if (dwarf2_section_empty_p (index))
12191 return NULL;
12192 dwarf2_read_section (objfile, index);
12193
12194 index_ptr = index->buffer;
12195 index_end = index_ptr + index->size;
12196
12197 version = read_4_bytes (dbfd, index_ptr);
12198 index_ptr += 4;
12199 if (version == 2)
12200 nr_columns = read_4_bytes (dbfd, index_ptr);
12201 else
12202 nr_columns = 0;
12203 index_ptr += 4;
12204 nr_units = read_4_bytes (dbfd, index_ptr);
12205 index_ptr += 4;
12206 nr_slots = read_4_bytes (dbfd, index_ptr);
12207 index_ptr += 4;
12208
12209 if (version != 1 && version != 2)
12210 {
12211 error (_("Dwarf Error: unsupported DWP file version (%s)"
12212 " [in module %s]"),
12213 pulongest (version), dwp_file->name);
12214 }
12215 if (nr_slots != (nr_slots & -nr_slots))
12216 {
12217 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12218 " is not power of 2 [in module %s]"),
12219 pulongest (nr_slots), dwp_file->name);
12220 }
12221
12222 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12223 htab->version = version;
12224 htab->nr_columns = nr_columns;
12225 htab->nr_units = nr_units;
12226 htab->nr_slots = nr_slots;
12227 htab->hash_table = index_ptr;
12228 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12229
12230 /* Exit early if the table is empty. */
12231 if (nr_slots == 0 || nr_units == 0
12232 || (version == 2 && nr_columns == 0))
12233 {
12234 /* All must be zero. */
12235 if (nr_slots != 0 || nr_units != 0
12236 || (version == 2 && nr_columns != 0))
12237 {
12238 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12239 " all zero [in modules %s]"),
12240 dwp_file->name);
12241 }
12242 return htab;
12243 }
12244
12245 if (version == 1)
12246 {
12247 htab->section_pool.v1.indices =
12248 htab->unit_table + sizeof (uint32_t) * nr_slots;
12249 /* It's harder to decide whether the section is too small in v1.
12250 V1 is deprecated anyway so we punt. */
12251 }
12252 else
12253 {
12254 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12255 int *ids = htab->section_pool.v2.section_ids;
12256 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12257 /* Reverse map for error checking. */
12258 int ids_seen[DW_SECT_MAX + 1];
12259 int i;
12260
12261 if (nr_columns < 2)
12262 {
12263 error (_("Dwarf Error: bad DWP hash table, too few columns"
12264 " in section table [in module %s]"),
12265 dwp_file->name);
12266 }
12267 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12268 {
12269 error (_("Dwarf Error: bad DWP hash table, too many columns"
12270 " in section table [in module %s]"),
12271 dwp_file->name);
12272 }
12273 memset (ids, 255, sizeof_ids);
12274 memset (ids_seen, 255, sizeof (ids_seen));
12275 for (i = 0; i < nr_columns; ++i)
12276 {
12277 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12278
12279 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12280 {
12281 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12282 " in section table [in module %s]"),
12283 id, dwp_file->name);
12284 }
12285 if (ids_seen[id] != -1)
12286 {
12287 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12288 " id %d in section table [in module %s]"),
12289 id, dwp_file->name);
12290 }
12291 ids_seen[id] = i;
12292 ids[i] = id;
12293 }
12294 /* Must have exactly one info or types section. */
12295 if (((ids_seen[DW_SECT_INFO] != -1)
12296 + (ids_seen[DW_SECT_TYPES] != -1))
12297 != 1)
12298 {
12299 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12300 " DWO info/types section [in module %s]"),
12301 dwp_file->name);
12302 }
12303 /* Must have an abbrev section. */
12304 if (ids_seen[DW_SECT_ABBREV] == -1)
12305 {
12306 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12307 " section [in module %s]"),
12308 dwp_file->name);
12309 }
12310 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12311 htab->section_pool.v2.sizes =
12312 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12313 * nr_units * nr_columns);
12314 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12315 * nr_units * nr_columns))
12316 > index_end)
12317 {
12318 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12319 " [in module %s]"),
12320 dwp_file->name);
12321 }
12322 }
12323
12324 return htab;
12325 }
12326
12327 /* Update SECTIONS with the data from SECTP.
12328
12329 This function is like the other "locate" section routines that are
12330 passed to bfd_map_over_sections, but in this context the sections to
12331 read comes from the DWP V1 hash table, not the full ELF section table.
12332
12333 The result is non-zero for success, or zero if an error was found. */
12334
12335 static int
12336 locate_v1_virtual_dwo_sections (asection *sectp,
12337 struct virtual_v1_dwo_sections *sections)
12338 {
12339 const struct dwop_section_names *names = &dwop_section_names;
12340
12341 if (section_is_p (sectp->name, &names->abbrev_dwo))
12342 {
12343 /* There can be only one. */
12344 if (sections->abbrev.s.section != NULL)
12345 return 0;
12346 sections->abbrev.s.section = sectp;
12347 sections->abbrev.size = bfd_section_size (sectp);
12348 }
12349 else if (section_is_p (sectp->name, &names->info_dwo)
12350 || section_is_p (sectp->name, &names->types_dwo))
12351 {
12352 /* There can be only one. */
12353 if (sections->info_or_types.s.section != NULL)
12354 return 0;
12355 sections->info_or_types.s.section = sectp;
12356 sections->info_or_types.size = bfd_section_size (sectp);
12357 }
12358 else if (section_is_p (sectp->name, &names->line_dwo))
12359 {
12360 /* There can be only one. */
12361 if (sections->line.s.section != NULL)
12362 return 0;
12363 sections->line.s.section = sectp;
12364 sections->line.size = bfd_section_size (sectp);
12365 }
12366 else if (section_is_p (sectp->name, &names->loc_dwo))
12367 {
12368 /* There can be only one. */
12369 if (sections->loc.s.section != NULL)
12370 return 0;
12371 sections->loc.s.section = sectp;
12372 sections->loc.size = bfd_section_size (sectp);
12373 }
12374 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12375 {
12376 /* There can be only one. */
12377 if (sections->macinfo.s.section != NULL)
12378 return 0;
12379 sections->macinfo.s.section = sectp;
12380 sections->macinfo.size = bfd_section_size (sectp);
12381 }
12382 else if (section_is_p (sectp->name, &names->macro_dwo))
12383 {
12384 /* There can be only one. */
12385 if (sections->macro.s.section != NULL)
12386 return 0;
12387 sections->macro.s.section = sectp;
12388 sections->macro.size = bfd_section_size (sectp);
12389 }
12390 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12391 {
12392 /* There can be only one. */
12393 if (sections->str_offsets.s.section != NULL)
12394 return 0;
12395 sections->str_offsets.s.section = sectp;
12396 sections->str_offsets.size = bfd_section_size (sectp);
12397 }
12398 else
12399 {
12400 /* No other kind of section is valid. */
12401 return 0;
12402 }
12403
12404 return 1;
12405 }
12406
12407 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12408 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12409 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12410 This is for DWP version 1 files. */
12411
12412 static struct dwo_unit *
12413 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12414 struct dwp_file *dwp_file,
12415 uint32_t unit_index,
12416 const char *comp_dir,
12417 ULONGEST signature, int is_debug_types)
12418 {
12419 struct objfile *objfile = dwarf2_per_objfile->objfile;
12420 const struct dwp_hash_table *dwp_htab =
12421 is_debug_types ? dwp_file->tus : dwp_file->cus;
12422 bfd *dbfd = dwp_file->dbfd.get ();
12423 const char *kind = is_debug_types ? "TU" : "CU";
12424 struct dwo_file *dwo_file;
12425 struct dwo_unit *dwo_unit;
12426 struct virtual_v1_dwo_sections sections;
12427 void **dwo_file_slot;
12428 int i;
12429
12430 gdb_assert (dwp_file->version == 1);
12431
12432 if (dwarf_read_debug)
12433 {
12434 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12435 kind,
12436 pulongest (unit_index), hex_string (signature),
12437 dwp_file->name);
12438 }
12439
12440 /* Fetch the sections of this DWO unit.
12441 Put a limit on the number of sections we look for so that bad data
12442 doesn't cause us to loop forever. */
12443
12444 #define MAX_NR_V1_DWO_SECTIONS \
12445 (1 /* .debug_info or .debug_types */ \
12446 + 1 /* .debug_abbrev */ \
12447 + 1 /* .debug_line */ \
12448 + 1 /* .debug_loc */ \
12449 + 1 /* .debug_str_offsets */ \
12450 + 1 /* .debug_macro or .debug_macinfo */ \
12451 + 1 /* trailing zero */)
12452
12453 memset (&sections, 0, sizeof (sections));
12454
12455 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12456 {
12457 asection *sectp;
12458 uint32_t section_nr =
12459 read_4_bytes (dbfd,
12460 dwp_htab->section_pool.v1.indices
12461 + (unit_index + i) * sizeof (uint32_t));
12462
12463 if (section_nr == 0)
12464 break;
12465 if (section_nr >= dwp_file->num_sections)
12466 {
12467 error (_("Dwarf Error: bad DWP hash table, section number too large"
12468 " [in module %s]"),
12469 dwp_file->name);
12470 }
12471
12472 sectp = dwp_file->elf_sections[section_nr];
12473 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12474 {
12475 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12476 " [in module %s]"),
12477 dwp_file->name);
12478 }
12479 }
12480
12481 if (i < 2
12482 || dwarf2_section_empty_p (&sections.info_or_types)
12483 || dwarf2_section_empty_p (&sections.abbrev))
12484 {
12485 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12486 " [in module %s]"),
12487 dwp_file->name);
12488 }
12489 if (i == MAX_NR_V1_DWO_SECTIONS)
12490 {
12491 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12492 " [in module %s]"),
12493 dwp_file->name);
12494 }
12495
12496 /* It's easier for the rest of the code if we fake a struct dwo_file and
12497 have dwo_unit "live" in that. At least for now.
12498
12499 The DWP file can be made up of a random collection of CUs and TUs.
12500 However, for each CU + set of TUs that came from the same original DWO
12501 file, we can combine them back into a virtual DWO file to save space
12502 (fewer struct dwo_file objects to allocate). Remember that for really
12503 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12504
12505 std::string virtual_dwo_name =
12506 string_printf ("virtual-dwo/%d-%d-%d-%d",
12507 get_section_id (&sections.abbrev),
12508 get_section_id (&sections.line),
12509 get_section_id (&sections.loc),
12510 get_section_id (&sections.str_offsets));
12511 /* Can we use an existing virtual DWO file? */
12512 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12513 virtual_dwo_name.c_str (),
12514 comp_dir);
12515 /* Create one if necessary. */
12516 if (*dwo_file_slot == NULL)
12517 {
12518 if (dwarf_read_debug)
12519 {
12520 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12521 virtual_dwo_name.c_str ());
12522 }
12523 dwo_file = new struct dwo_file;
12524 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12525 virtual_dwo_name);
12526 dwo_file->comp_dir = comp_dir;
12527 dwo_file->sections.abbrev = sections.abbrev;
12528 dwo_file->sections.line = sections.line;
12529 dwo_file->sections.loc = sections.loc;
12530 dwo_file->sections.macinfo = sections.macinfo;
12531 dwo_file->sections.macro = sections.macro;
12532 dwo_file->sections.str_offsets = sections.str_offsets;
12533 /* The "str" section is global to the entire DWP file. */
12534 dwo_file->sections.str = dwp_file->sections.str;
12535 /* The info or types section is assigned below to dwo_unit,
12536 there's no need to record it in dwo_file.
12537 Also, we can't simply record type sections in dwo_file because
12538 we record a pointer into the vector in dwo_unit. As we collect more
12539 types we'll grow the vector and eventually have to reallocate space
12540 for it, invalidating all copies of pointers into the previous
12541 contents. */
12542 *dwo_file_slot = dwo_file;
12543 }
12544 else
12545 {
12546 if (dwarf_read_debug)
12547 {
12548 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12549 virtual_dwo_name.c_str ());
12550 }
12551 dwo_file = (struct dwo_file *) *dwo_file_slot;
12552 }
12553
12554 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12555 dwo_unit->dwo_file = dwo_file;
12556 dwo_unit->signature = signature;
12557 dwo_unit->section =
12558 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12559 *dwo_unit->section = sections.info_or_types;
12560 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12561
12562 return dwo_unit;
12563 }
12564
12565 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12566 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12567 piece within that section used by a TU/CU, return a virtual section
12568 of just that piece. */
12569
12570 static struct dwarf2_section_info
12571 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12572 struct dwarf2_section_info *section,
12573 bfd_size_type offset, bfd_size_type size)
12574 {
12575 struct dwarf2_section_info result;
12576 asection *sectp;
12577
12578 gdb_assert (section != NULL);
12579 gdb_assert (!section->is_virtual);
12580
12581 memset (&result, 0, sizeof (result));
12582 result.s.containing_section = section;
12583 result.is_virtual = true;
12584
12585 if (size == 0)
12586 return result;
12587
12588 sectp = get_section_bfd_section (section);
12589
12590 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12591 bounds of the real section. This is a pretty-rare event, so just
12592 flag an error (easier) instead of a warning and trying to cope. */
12593 if (sectp == NULL
12594 || offset + size > bfd_section_size (sectp))
12595 {
12596 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12597 " in section %s [in module %s]"),
12598 sectp ? bfd_section_name (sectp) : "<unknown>",
12599 objfile_name (dwarf2_per_objfile->objfile));
12600 }
12601
12602 result.virtual_offset = offset;
12603 result.size = size;
12604 return result;
12605 }
12606
12607 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12608 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12609 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12610 This is for DWP version 2 files. */
12611
12612 static struct dwo_unit *
12613 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12614 struct dwp_file *dwp_file,
12615 uint32_t unit_index,
12616 const char *comp_dir,
12617 ULONGEST signature, int is_debug_types)
12618 {
12619 struct objfile *objfile = dwarf2_per_objfile->objfile;
12620 const struct dwp_hash_table *dwp_htab =
12621 is_debug_types ? dwp_file->tus : dwp_file->cus;
12622 bfd *dbfd = dwp_file->dbfd.get ();
12623 const char *kind = is_debug_types ? "TU" : "CU";
12624 struct dwo_file *dwo_file;
12625 struct dwo_unit *dwo_unit;
12626 struct virtual_v2_dwo_sections sections;
12627 void **dwo_file_slot;
12628 int i;
12629
12630 gdb_assert (dwp_file->version == 2);
12631
12632 if (dwarf_read_debug)
12633 {
12634 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12635 kind,
12636 pulongest (unit_index), hex_string (signature),
12637 dwp_file->name);
12638 }
12639
12640 /* Fetch the section offsets of this DWO unit. */
12641
12642 memset (&sections, 0, sizeof (sections));
12643
12644 for (i = 0; i < dwp_htab->nr_columns; ++i)
12645 {
12646 uint32_t offset = read_4_bytes (dbfd,
12647 dwp_htab->section_pool.v2.offsets
12648 + (((unit_index - 1) * dwp_htab->nr_columns
12649 + i)
12650 * sizeof (uint32_t)));
12651 uint32_t size = read_4_bytes (dbfd,
12652 dwp_htab->section_pool.v2.sizes
12653 + (((unit_index - 1) * dwp_htab->nr_columns
12654 + i)
12655 * sizeof (uint32_t)));
12656
12657 switch (dwp_htab->section_pool.v2.section_ids[i])
12658 {
12659 case DW_SECT_INFO:
12660 case DW_SECT_TYPES:
12661 sections.info_or_types_offset = offset;
12662 sections.info_or_types_size = size;
12663 break;
12664 case DW_SECT_ABBREV:
12665 sections.abbrev_offset = offset;
12666 sections.abbrev_size = size;
12667 break;
12668 case DW_SECT_LINE:
12669 sections.line_offset = offset;
12670 sections.line_size = size;
12671 break;
12672 case DW_SECT_LOC:
12673 sections.loc_offset = offset;
12674 sections.loc_size = size;
12675 break;
12676 case DW_SECT_STR_OFFSETS:
12677 sections.str_offsets_offset = offset;
12678 sections.str_offsets_size = size;
12679 break;
12680 case DW_SECT_MACINFO:
12681 sections.macinfo_offset = offset;
12682 sections.macinfo_size = size;
12683 break;
12684 case DW_SECT_MACRO:
12685 sections.macro_offset = offset;
12686 sections.macro_size = size;
12687 break;
12688 }
12689 }
12690
12691 /* It's easier for the rest of the code if we fake a struct dwo_file and
12692 have dwo_unit "live" in that. At least for now.
12693
12694 The DWP file can be made up of a random collection of CUs and TUs.
12695 However, for each CU + set of TUs that came from the same original DWO
12696 file, we can combine them back into a virtual DWO file to save space
12697 (fewer struct dwo_file objects to allocate). Remember that for really
12698 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12699
12700 std::string virtual_dwo_name =
12701 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12702 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12703 (long) (sections.line_size ? sections.line_offset : 0),
12704 (long) (sections.loc_size ? sections.loc_offset : 0),
12705 (long) (sections.str_offsets_size
12706 ? sections.str_offsets_offset : 0));
12707 /* Can we use an existing virtual DWO file? */
12708 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12709 virtual_dwo_name.c_str (),
12710 comp_dir);
12711 /* Create one if necessary. */
12712 if (*dwo_file_slot == NULL)
12713 {
12714 if (dwarf_read_debug)
12715 {
12716 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12717 virtual_dwo_name.c_str ());
12718 }
12719 dwo_file = new struct dwo_file;
12720 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12721 virtual_dwo_name);
12722 dwo_file->comp_dir = comp_dir;
12723 dwo_file->sections.abbrev =
12724 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12725 sections.abbrev_offset, sections.abbrev_size);
12726 dwo_file->sections.line =
12727 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12728 sections.line_offset, sections.line_size);
12729 dwo_file->sections.loc =
12730 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12731 sections.loc_offset, sections.loc_size);
12732 dwo_file->sections.macinfo =
12733 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12734 sections.macinfo_offset, sections.macinfo_size);
12735 dwo_file->sections.macro =
12736 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12737 sections.macro_offset, sections.macro_size);
12738 dwo_file->sections.str_offsets =
12739 create_dwp_v2_section (dwarf2_per_objfile,
12740 &dwp_file->sections.str_offsets,
12741 sections.str_offsets_offset,
12742 sections.str_offsets_size);
12743 /* The "str" section is global to the entire DWP file. */
12744 dwo_file->sections.str = dwp_file->sections.str;
12745 /* The info or types section is assigned below to dwo_unit,
12746 there's no need to record it in dwo_file.
12747 Also, we can't simply record type sections in dwo_file because
12748 we record a pointer into the vector in dwo_unit. As we collect more
12749 types we'll grow the vector and eventually have to reallocate space
12750 for it, invalidating all copies of pointers into the previous
12751 contents. */
12752 *dwo_file_slot = dwo_file;
12753 }
12754 else
12755 {
12756 if (dwarf_read_debug)
12757 {
12758 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12759 virtual_dwo_name.c_str ());
12760 }
12761 dwo_file = (struct dwo_file *) *dwo_file_slot;
12762 }
12763
12764 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12765 dwo_unit->dwo_file = dwo_file;
12766 dwo_unit->signature = signature;
12767 dwo_unit->section =
12768 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12769 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12770 is_debug_types
12771 ? &dwp_file->sections.types
12772 : &dwp_file->sections.info,
12773 sections.info_or_types_offset,
12774 sections.info_or_types_size);
12775 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12776
12777 return dwo_unit;
12778 }
12779
12780 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12781 Returns NULL if the signature isn't found. */
12782
12783 static struct dwo_unit *
12784 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12785 struct dwp_file *dwp_file, const char *comp_dir,
12786 ULONGEST signature, int is_debug_types)
12787 {
12788 const struct dwp_hash_table *dwp_htab =
12789 is_debug_types ? dwp_file->tus : dwp_file->cus;
12790 bfd *dbfd = dwp_file->dbfd.get ();
12791 uint32_t mask = dwp_htab->nr_slots - 1;
12792 uint32_t hash = signature & mask;
12793 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12794 unsigned int i;
12795 void **slot;
12796 struct dwo_unit find_dwo_cu;
12797
12798 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12799 find_dwo_cu.signature = signature;
12800 slot = htab_find_slot (is_debug_types
12801 ? dwp_file->loaded_tus
12802 : dwp_file->loaded_cus,
12803 &find_dwo_cu, INSERT);
12804
12805 if (*slot != NULL)
12806 return (struct dwo_unit *) *slot;
12807
12808 /* Use a for loop so that we don't loop forever on bad debug info. */
12809 for (i = 0; i < dwp_htab->nr_slots; ++i)
12810 {
12811 ULONGEST signature_in_table;
12812
12813 signature_in_table =
12814 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12815 if (signature_in_table == signature)
12816 {
12817 uint32_t unit_index =
12818 read_4_bytes (dbfd,
12819 dwp_htab->unit_table + hash * sizeof (uint32_t));
12820
12821 if (dwp_file->version == 1)
12822 {
12823 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12824 dwp_file, unit_index,
12825 comp_dir, signature,
12826 is_debug_types);
12827 }
12828 else
12829 {
12830 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12831 dwp_file, unit_index,
12832 comp_dir, signature,
12833 is_debug_types);
12834 }
12835 return (struct dwo_unit *) *slot;
12836 }
12837 if (signature_in_table == 0)
12838 return NULL;
12839 hash = (hash + hash2) & mask;
12840 }
12841
12842 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12843 " [in module %s]"),
12844 dwp_file->name);
12845 }
12846
12847 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12848 Open the file specified by FILE_NAME and hand it off to BFD for
12849 preliminary analysis. Return a newly initialized bfd *, which
12850 includes a canonicalized copy of FILE_NAME.
12851 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12852 SEARCH_CWD is true if the current directory is to be searched.
12853 It will be searched before debug-file-directory.
12854 If successful, the file is added to the bfd include table of the
12855 objfile's bfd (see gdb_bfd_record_inclusion).
12856 If unable to find/open the file, return NULL.
12857 NOTE: This function is derived from symfile_bfd_open. */
12858
12859 static gdb_bfd_ref_ptr
12860 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12861 const char *file_name, int is_dwp, int search_cwd)
12862 {
12863 int desc;
12864 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12865 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12866 to debug_file_directory. */
12867 const char *search_path;
12868 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12869
12870 gdb::unique_xmalloc_ptr<char> search_path_holder;
12871 if (search_cwd)
12872 {
12873 if (*debug_file_directory != '\0')
12874 {
12875 search_path_holder.reset (concat (".", dirname_separator_string,
12876 debug_file_directory,
12877 (char *) NULL));
12878 search_path = search_path_holder.get ();
12879 }
12880 else
12881 search_path = ".";
12882 }
12883 else
12884 search_path = debug_file_directory;
12885
12886 openp_flags flags = OPF_RETURN_REALPATH;
12887 if (is_dwp)
12888 flags |= OPF_SEARCH_IN_PATH;
12889
12890 gdb::unique_xmalloc_ptr<char> absolute_name;
12891 desc = openp (search_path, flags, file_name,
12892 O_RDONLY | O_BINARY, &absolute_name);
12893 if (desc < 0)
12894 return NULL;
12895
12896 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12897 gnutarget, desc));
12898 if (sym_bfd == NULL)
12899 return NULL;
12900 bfd_set_cacheable (sym_bfd.get (), 1);
12901
12902 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12903 return NULL;
12904
12905 /* Success. Record the bfd as having been included by the objfile's bfd.
12906 This is important because things like demangled_names_hash lives in the
12907 objfile's per_bfd space and may have references to things like symbol
12908 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12909 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12910
12911 return sym_bfd;
12912 }
12913
12914 /* Try to open DWO file FILE_NAME.
12915 COMP_DIR is the DW_AT_comp_dir attribute.
12916 The result is the bfd handle of the file.
12917 If there is a problem finding or opening the file, return NULL.
12918 Upon success, the canonicalized path of the file is stored in the bfd,
12919 same as symfile_bfd_open. */
12920
12921 static gdb_bfd_ref_ptr
12922 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12923 const char *file_name, const char *comp_dir)
12924 {
12925 if (IS_ABSOLUTE_PATH (file_name))
12926 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12927 0 /*is_dwp*/, 0 /*search_cwd*/);
12928
12929 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12930
12931 if (comp_dir != NULL)
12932 {
12933 char *path_to_try = concat (comp_dir, SLASH_STRING,
12934 file_name, (char *) NULL);
12935
12936 /* NOTE: If comp_dir is a relative path, this will also try the
12937 search path, which seems useful. */
12938 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12939 path_to_try,
12940 0 /*is_dwp*/,
12941 1 /*search_cwd*/));
12942 xfree (path_to_try);
12943 if (abfd != NULL)
12944 return abfd;
12945 }
12946
12947 /* That didn't work, try debug-file-directory, which, despite its name,
12948 is a list of paths. */
12949
12950 if (*debug_file_directory == '\0')
12951 return NULL;
12952
12953 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12954 0 /*is_dwp*/, 1 /*search_cwd*/);
12955 }
12956
12957 /* This function is mapped across the sections and remembers the offset and
12958 size of each of the DWO debugging sections we are interested in. */
12959
12960 static void
12961 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12962 {
12963 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12964 const struct dwop_section_names *names = &dwop_section_names;
12965
12966 if (section_is_p (sectp->name, &names->abbrev_dwo))
12967 {
12968 dwo_sections->abbrev.s.section = sectp;
12969 dwo_sections->abbrev.size = bfd_section_size (sectp);
12970 }
12971 else if (section_is_p (sectp->name, &names->info_dwo))
12972 {
12973 dwo_sections->info.s.section = sectp;
12974 dwo_sections->info.size = bfd_section_size (sectp);
12975 }
12976 else if (section_is_p (sectp->name, &names->line_dwo))
12977 {
12978 dwo_sections->line.s.section = sectp;
12979 dwo_sections->line.size = bfd_section_size (sectp);
12980 }
12981 else if (section_is_p (sectp->name, &names->loc_dwo))
12982 {
12983 dwo_sections->loc.s.section = sectp;
12984 dwo_sections->loc.size = bfd_section_size (sectp);
12985 }
12986 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12987 {
12988 dwo_sections->macinfo.s.section = sectp;
12989 dwo_sections->macinfo.size = bfd_section_size (sectp);
12990 }
12991 else if (section_is_p (sectp->name, &names->macro_dwo))
12992 {
12993 dwo_sections->macro.s.section = sectp;
12994 dwo_sections->macro.size = bfd_section_size (sectp);
12995 }
12996 else if (section_is_p (sectp->name, &names->str_dwo))
12997 {
12998 dwo_sections->str.s.section = sectp;
12999 dwo_sections->str.size = bfd_section_size (sectp);
13000 }
13001 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13002 {
13003 dwo_sections->str_offsets.s.section = sectp;
13004 dwo_sections->str_offsets.size = bfd_section_size (sectp);
13005 }
13006 else if (section_is_p (sectp->name, &names->types_dwo))
13007 {
13008 struct dwarf2_section_info type_section;
13009
13010 memset (&type_section, 0, sizeof (type_section));
13011 type_section.s.section = sectp;
13012 type_section.size = bfd_section_size (sectp);
13013 dwo_sections->types.push_back (type_section);
13014 }
13015 }
13016
13017 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13018 by PER_CU. This is for the non-DWP case.
13019 The result is NULL if DWO_NAME can't be found. */
13020
13021 static struct dwo_file *
13022 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13023 const char *dwo_name, const char *comp_dir)
13024 {
13025 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13026
13027 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
13028 if (dbfd == NULL)
13029 {
13030 if (dwarf_read_debug)
13031 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13032 return NULL;
13033 }
13034
13035 dwo_file_up dwo_file (new struct dwo_file);
13036 dwo_file->dwo_name = dwo_name;
13037 dwo_file->comp_dir = comp_dir;
13038 dwo_file->dbfd = std::move (dbfd);
13039
13040 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
13041 &dwo_file->sections);
13042
13043 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13044 dwo_file->cus);
13045
13046 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13047 dwo_file->sections.types, dwo_file->tus);
13048
13049 if (dwarf_read_debug)
13050 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13051
13052 return dwo_file.release ();
13053 }
13054
13055 /* This function is mapped across the sections and remembers the offset and
13056 size of each of the DWP debugging sections common to version 1 and 2 that
13057 we are interested in. */
13058
13059 static void
13060 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13061 void *dwp_file_ptr)
13062 {
13063 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13064 const struct dwop_section_names *names = &dwop_section_names;
13065 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13066
13067 /* Record the ELF section number for later lookup: this is what the
13068 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13069 gdb_assert (elf_section_nr < dwp_file->num_sections);
13070 dwp_file->elf_sections[elf_section_nr] = sectp;
13071
13072 /* Look for specific sections that we need. */
13073 if (section_is_p (sectp->name, &names->str_dwo))
13074 {
13075 dwp_file->sections.str.s.section = sectp;
13076 dwp_file->sections.str.size = bfd_section_size (sectp);
13077 }
13078 else if (section_is_p (sectp->name, &names->cu_index))
13079 {
13080 dwp_file->sections.cu_index.s.section = sectp;
13081 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
13082 }
13083 else if (section_is_p (sectp->name, &names->tu_index))
13084 {
13085 dwp_file->sections.tu_index.s.section = sectp;
13086 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
13087 }
13088 }
13089
13090 /* This function is mapped across the sections and remembers the offset and
13091 size of each of the DWP version 2 debugging sections that we are interested
13092 in. This is split into a separate function because we don't know if we
13093 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13094
13095 static void
13096 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13097 {
13098 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13099 const struct dwop_section_names *names = &dwop_section_names;
13100 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13101
13102 /* Record the ELF section number for later lookup: this is what the
13103 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13104 gdb_assert (elf_section_nr < dwp_file->num_sections);
13105 dwp_file->elf_sections[elf_section_nr] = sectp;
13106
13107 /* Look for specific sections that we need. */
13108 if (section_is_p (sectp->name, &names->abbrev_dwo))
13109 {
13110 dwp_file->sections.abbrev.s.section = sectp;
13111 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
13112 }
13113 else if (section_is_p (sectp->name, &names->info_dwo))
13114 {
13115 dwp_file->sections.info.s.section = sectp;
13116 dwp_file->sections.info.size = bfd_section_size (sectp);
13117 }
13118 else if (section_is_p (sectp->name, &names->line_dwo))
13119 {
13120 dwp_file->sections.line.s.section = sectp;
13121 dwp_file->sections.line.size = bfd_section_size (sectp);
13122 }
13123 else if (section_is_p (sectp->name, &names->loc_dwo))
13124 {
13125 dwp_file->sections.loc.s.section = sectp;
13126 dwp_file->sections.loc.size = bfd_section_size (sectp);
13127 }
13128 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13129 {
13130 dwp_file->sections.macinfo.s.section = sectp;
13131 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
13132 }
13133 else if (section_is_p (sectp->name, &names->macro_dwo))
13134 {
13135 dwp_file->sections.macro.s.section = sectp;
13136 dwp_file->sections.macro.size = bfd_section_size (sectp);
13137 }
13138 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13139 {
13140 dwp_file->sections.str_offsets.s.section = sectp;
13141 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
13142 }
13143 else if (section_is_p (sectp->name, &names->types_dwo))
13144 {
13145 dwp_file->sections.types.s.section = sectp;
13146 dwp_file->sections.types.size = bfd_section_size (sectp);
13147 }
13148 }
13149
13150 /* Hash function for dwp_file loaded CUs/TUs. */
13151
13152 static hashval_t
13153 hash_dwp_loaded_cutus (const void *item)
13154 {
13155 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13156
13157 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13158 return dwo_unit->signature;
13159 }
13160
13161 /* Equality function for dwp_file loaded CUs/TUs. */
13162
13163 static int
13164 eq_dwp_loaded_cutus (const void *a, const void *b)
13165 {
13166 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13167 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13168
13169 return dua->signature == dub->signature;
13170 }
13171
13172 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13173
13174 static htab_t
13175 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13176 {
13177 return htab_create_alloc_ex (3,
13178 hash_dwp_loaded_cutus,
13179 eq_dwp_loaded_cutus,
13180 NULL,
13181 &objfile->objfile_obstack,
13182 hashtab_obstack_allocate,
13183 dummy_obstack_deallocate);
13184 }
13185
13186 /* Try to open DWP file FILE_NAME.
13187 The result is the bfd handle of the file.
13188 If there is a problem finding or opening the file, return NULL.
13189 Upon success, the canonicalized path of the file is stored in the bfd,
13190 same as symfile_bfd_open. */
13191
13192 static gdb_bfd_ref_ptr
13193 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13194 const char *file_name)
13195 {
13196 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13197 1 /*is_dwp*/,
13198 1 /*search_cwd*/));
13199 if (abfd != NULL)
13200 return abfd;
13201
13202 /* Work around upstream bug 15652.
13203 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13204 [Whether that's a "bug" is debatable, but it is getting in our way.]
13205 We have no real idea where the dwp file is, because gdb's realpath-ing
13206 of the executable's path may have discarded the needed info.
13207 [IWBN if the dwp file name was recorded in the executable, akin to
13208 .gnu_debuglink, but that doesn't exist yet.]
13209 Strip the directory from FILE_NAME and search again. */
13210 if (*debug_file_directory != '\0')
13211 {
13212 /* Don't implicitly search the current directory here.
13213 If the user wants to search "." to handle this case,
13214 it must be added to debug-file-directory. */
13215 return try_open_dwop_file (dwarf2_per_objfile,
13216 lbasename (file_name), 1 /*is_dwp*/,
13217 0 /*search_cwd*/);
13218 }
13219
13220 return NULL;
13221 }
13222
13223 /* Initialize the use of the DWP file for the current objfile.
13224 By convention the name of the DWP file is ${objfile}.dwp.
13225 The result is NULL if it can't be found. */
13226
13227 static std::unique_ptr<struct dwp_file>
13228 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13229 {
13230 struct objfile *objfile = dwarf2_per_objfile->objfile;
13231
13232 /* Try to find first .dwp for the binary file before any symbolic links
13233 resolving. */
13234
13235 /* If the objfile is a debug file, find the name of the real binary
13236 file and get the name of dwp file from there. */
13237 std::string dwp_name;
13238 if (objfile->separate_debug_objfile_backlink != NULL)
13239 {
13240 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13241 const char *backlink_basename = lbasename (backlink->original_name);
13242
13243 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13244 }
13245 else
13246 dwp_name = objfile->original_name;
13247
13248 dwp_name += ".dwp";
13249
13250 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13251 if (dbfd == NULL
13252 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13253 {
13254 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13255 dwp_name = objfile_name (objfile);
13256 dwp_name += ".dwp";
13257 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13258 }
13259
13260 if (dbfd == NULL)
13261 {
13262 if (dwarf_read_debug)
13263 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13264 return std::unique_ptr<dwp_file> ();
13265 }
13266
13267 const char *name = bfd_get_filename (dbfd.get ());
13268 std::unique_ptr<struct dwp_file> dwp_file
13269 (new struct dwp_file (name, std::move (dbfd)));
13270
13271 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13272 dwp_file->elf_sections =
13273 OBSTACK_CALLOC (&objfile->objfile_obstack,
13274 dwp_file->num_sections, asection *);
13275
13276 bfd_map_over_sections (dwp_file->dbfd.get (),
13277 dwarf2_locate_common_dwp_sections,
13278 dwp_file.get ());
13279
13280 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13281 0);
13282
13283 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13284 1);
13285
13286 /* The DWP file version is stored in the hash table. Oh well. */
13287 if (dwp_file->cus && dwp_file->tus
13288 && dwp_file->cus->version != dwp_file->tus->version)
13289 {
13290 /* Technically speaking, we should try to limp along, but this is
13291 pretty bizarre. We use pulongest here because that's the established
13292 portability solution (e.g, we cannot use %u for uint32_t). */
13293 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13294 " TU version %s [in DWP file %s]"),
13295 pulongest (dwp_file->cus->version),
13296 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13297 }
13298
13299 if (dwp_file->cus)
13300 dwp_file->version = dwp_file->cus->version;
13301 else if (dwp_file->tus)
13302 dwp_file->version = dwp_file->tus->version;
13303 else
13304 dwp_file->version = 2;
13305
13306 if (dwp_file->version == 2)
13307 bfd_map_over_sections (dwp_file->dbfd.get (),
13308 dwarf2_locate_v2_dwp_sections,
13309 dwp_file.get ());
13310
13311 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13312 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13313
13314 if (dwarf_read_debug)
13315 {
13316 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13317 fprintf_unfiltered (gdb_stdlog,
13318 " %s CUs, %s TUs\n",
13319 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13320 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13321 }
13322
13323 return dwp_file;
13324 }
13325
13326 /* Wrapper around open_and_init_dwp_file, only open it once. */
13327
13328 static struct dwp_file *
13329 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13330 {
13331 if (! dwarf2_per_objfile->dwp_checked)
13332 {
13333 dwarf2_per_objfile->dwp_file
13334 = open_and_init_dwp_file (dwarf2_per_objfile);
13335 dwarf2_per_objfile->dwp_checked = 1;
13336 }
13337 return dwarf2_per_objfile->dwp_file.get ();
13338 }
13339
13340 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13341 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13342 or in the DWP file for the objfile, referenced by THIS_UNIT.
13343 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13344 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13345
13346 This is called, for example, when wanting to read a variable with a
13347 complex location. Therefore we don't want to do file i/o for every call.
13348 Therefore we don't want to look for a DWO file on every call.
13349 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13350 then we check if we've already seen DWO_NAME, and only THEN do we check
13351 for a DWO file.
13352
13353 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13354 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13355
13356 static struct dwo_unit *
13357 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13358 const char *dwo_name, const char *comp_dir,
13359 ULONGEST signature, int is_debug_types)
13360 {
13361 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13362 struct objfile *objfile = dwarf2_per_objfile->objfile;
13363 const char *kind = is_debug_types ? "TU" : "CU";
13364 void **dwo_file_slot;
13365 struct dwo_file *dwo_file;
13366 struct dwp_file *dwp_file;
13367
13368 /* First see if there's a DWP file.
13369 If we have a DWP file but didn't find the DWO inside it, don't
13370 look for the original DWO file. It makes gdb behave differently
13371 depending on whether one is debugging in the build tree. */
13372
13373 dwp_file = get_dwp_file (dwarf2_per_objfile);
13374 if (dwp_file != NULL)
13375 {
13376 const struct dwp_hash_table *dwp_htab =
13377 is_debug_types ? dwp_file->tus : dwp_file->cus;
13378
13379 if (dwp_htab != NULL)
13380 {
13381 struct dwo_unit *dwo_cutu =
13382 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13383 signature, is_debug_types);
13384
13385 if (dwo_cutu != NULL)
13386 {
13387 if (dwarf_read_debug)
13388 {
13389 fprintf_unfiltered (gdb_stdlog,
13390 "Virtual DWO %s %s found: @%s\n",
13391 kind, hex_string (signature),
13392 host_address_to_string (dwo_cutu));
13393 }
13394 return dwo_cutu;
13395 }
13396 }
13397 }
13398 else
13399 {
13400 /* No DWP file, look for the DWO file. */
13401
13402 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13403 dwo_name, comp_dir);
13404 if (*dwo_file_slot == NULL)
13405 {
13406 /* Read in the file and build a table of the CUs/TUs it contains. */
13407 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13408 }
13409 /* NOTE: This will be NULL if unable to open the file. */
13410 dwo_file = (struct dwo_file *) *dwo_file_slot;
13411
13412 if (dwo_file != NULL)
13413 {
13414 struct dwo_unit *dwo_cutu = NULL;
13415
13416 if (is_debug_types && dwo_file->tus)
13417 {
13418 struct dwo_unit find_dwo_cutu;
13419
13420 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13421 find_dwo_cutu.signature = signature;
13422 dwo_cutu
13423 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13424 }
13425 else if (!is_debug_types && dwo_file->cus)
13426 {
13427 struct dwo_unit find_dwo_cutu;
13428
13429 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13430 find_dwo_cutu.signature = signature;
13431 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13432 &find_dwo_cutu);
13433 }
13434
13435 if (dwo_cutu != NULL)
13436 {
13437 if (dwarf_read_debug)
13438 {
13439 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13440 kind, dwo_name, hex_string (signature),
13441 host_address_to_string (dwo_cutu));
13442 }
13443 return dwo_cutu;
13444 }
13445 }
13446 }
13447
13448 /* We didn't find it. This could mean a dwo_id mismatch, or
13449 someone deleted the DWO/DWP file, or the search path isn't set up
13450 correctly to find the file. */
13451
13452 if (dwarf_read_debug)
13453 {
13454 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13455 kind, dwo_name, hex_string (signature));
13456 }
13457
13458 /* This is a warning and not a complaint because it can be caused by
13459 pilot error (e.g., user accidentally deleting the DWO). */
13460 {
13461 /* Print the name of the DWP file if we looked there, helps the user
13462 better diagnose the problem. */
13463 std::string dwp_text;
13464
13465 if (dwp_file != NULL)
13466 dwp_text = string_printf (" [in DWP file %s]",
13467 lbasename (dwp_file->name));
13468
13469 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13470 " [in module %s]"),
13471 kind, dwo_name, hex_string (signature),
13472 dwp_text.c_str (),
13473 this_unit->is_debug_types ? "TU" : "CU",
13474 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13475 }
13476 return NULL;
13477 }
13478
13479 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13480 See lookup_dwo_cutu_unit for details. */
13481
13482 static struct dwo_unit *
13483 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13484 const char *dwo_name, const char *comp_dir,
13485 ULONGEST signature)
13486 {
13487 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13488 }
13489
13490 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13491 See lookup_dwo_cutu_unit for details. */
13492
13493 static struct dwo_unit *
13494 lookup_dwo_type_unit (struct signatured_type *this_tu,
13495 const char *dwo_name, const char *comp_dir)
13496 {
13497 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13498 }
13499
13500 /* Traversal function for queue_and_load_all_dwo_tus. */
13501
13502 static int
13503 queue_and_load_dwo_tu (void **slot, void *info)
13504 {
13505 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13506 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13507 ULONGEST signature = dwo_unit->signature;
13508 struct signatured_type *sig_type =
13509 lookup_dwo_signatured_type (per_cu->cu, signature);
13510
13511 if (sig_type != NULL)
13512 {
13513 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13514
13515 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13516 a real dependency of PER_CU on SIG_TYPE. That is detected later
13517 while processing PER_CU. */
13518 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13519 load_full_type_unit (sig_cu);
13520 per_cu->imported_symtabs_push (sig_cu);
13521 }
13522
13523 return 1;
13524 }
13525
13526 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13527 The DWO may have the only definition of the type, though it may not be
13528 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13529 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13530
13531 static void
13532 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13533 {
13534 struct dwo_unit *dwo_unit;
13535 struct dwo_file *dwo_file;
13536
13537 gdb_assert (!per_cu->is_debug_types);
13538 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13539 gdb_assert (per_cu->cu != NULL);
13540
13541 dwo_unit = per_cu->cu->dwo_unit;
13542 gdb_assert (dwo_unit != NULL);
13543
13544 dwo_file = dwo_unit->dwo_file;
13545 if (dwo_file->tus != NULL)
13546 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13547 }
13548
13549 /* Read in various DIEs. */
13550
13551 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13552 Inherit only the children of the DW_AT_abstract_origin DIE not being
13553 already referenced by DW_AT_abstract_origin from the children of the
13554 current DIE. */
13555
13556 static void
13557 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13558 {
13559 struct die_info *child_die;
13560 sect_offset *offsetp;
13561 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13562 struct die_info *origin_die;
13563 /* Iterator of the ORIGIN_DIE children. */
13564 struct die_info *origin_child_die;
13565 struct attribute *attr;
13566 struct dwarf2_cu *origin_cu;
13567 struct pending **origin_previous_list_in_scope;
13568
13569 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13570 if (!attr)
13571 return;
13572
13573 /* Note that following die references may follow to a die in a
13574 different cu. */
13575
13576 origin_cu = cu;
13577 origin_die = follow_die_ref (die, attr, &origin_cu);
13578
13579 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13580 symbols in. */
13581 origin_previous_list_in_scope = origin_cu->list_in_scope;
13582 origin_cu->list_in_scope = cu->list_in_scope;
13583
13584 if (die->tag != origin_die->tag
13585 && !(die->tag == DW_TAG_inlined_subroutine
13586 && origin_die->tag == DW_TAG_subprogram))
13587 complaint (_("DIE %s and its abstract origin %s have different tags"),
13588 sect_offset_str (die->sect_off),
13589 sect_offset_str (origin_die->sect_off));
13590
13591 std::vector<sect_offset> offsets;
13592
13593 for (child_die = die->child;
13594 child_die && child_die->tag;
13595 child_die = sibling_die (child_die))
13596 {
13597 struct die_info *child_origin_die;
13598 struct dwarf2_cu *child_origin_cu;
13599
13600 /* We are trying to process concrete instance entries:
13601 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13602 it's not relevant to our analysis here. i.e. detecting DIEs that are
13603 present in the abstract instance but not referenced in the concrete
13604 one. */
13605 if (child_die->tag == DW_TAG_call_site
13606 || child_die->tag == DW_TAG_GNU_call_site)
13607 continue;
13608
13609 /* For each CHILD_DIE, find the corresponding child of
13610 ORIGIN_DIE. If there is more than one layer of
13611 DW_AT_abstract_origin, follow them all; there shouldn't be,
13612 but GCC versions at least through 4.4 generate this (GCC PR
13613 40573). */
13614 child_origin_die = child_die;
13615 child_origin_cu = cu;
13616 while (1)
13617 {
13618 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13619 child_origin_cu);
13620 if (attr == NULL)
13621 break;
13622 child_origin_die = follow_die_ref (child_origin_die, attr,
13623 &child_origin_cu);
13624 }
13625
13626 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13627 counterpart may exist. */
13628 if (child_origin_die != child_die)
13629 {
13630 if (child_die->tag != child_origin_die->tag
13631 && !(child_die->tag == DW_TAG_inlined_subroutine
13632 && child_origin_die->tag == DW_TAG_subprogram))
13633 complaint (_("Child DIE %s and its abstract origin %s have "
13634 "different tags"),
13635 sect_offset_str (child_die->sect_off),
13636 sect_offset_str (child_origin_die->sect_off));
13637 if (child_origin_die->parent != origin_die)
13638 complaint (_("Child DIE %s and its abstract origin %s have "
13639 "different parents"),
13640 sect_offset_str (child_die->sect_off),
13641 sect_offset_str (child_origin_die->sect_off));
13642 else
13643 offsets.push_back (child_origin_die->sect_off);
13644 }
13645 }
13646 std::sort (offsets.begin (), offsets.end ());
13647 sect_offset *offsets_end = offsets.data () + offsets.size ();
13648 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13649 if (offsetp[-1] == *offsetp)
13650 complaint (_("Multiple children of DIE %s refer "
13651 "to DIE %s as their abstract origin"),
13652 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13653
13654 offsetp = offsets.data ();
13655 origin_child_die = origin_die->child;
13656 while (origin_child_die && origin_child_die->tag)
13657 {
13658 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13659 while (offsetp < offsets_end
13660 && *offsetp < origin_child_die->sect_off)
13661 offsetp++;
13662 if (offsetp >= offsets_end
13663 || *offsetp > origin_child_die->sect_off)
13664 {
13665 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13666 Check whether we're already processing ORIGIN_CHILD_DIE.
13667 This can happen with mutually referenced abstract_origins.
13668 PR 16581. */
13669 if (!origin_child_die->in_process)
13670 process_die (origin_child_die, origin_cu);
13671 }
13672 origin_child_die = sibling_die (origin_child_die);
13673 }
13674 origin_cu->list_in_scope = origin_previous_list_in_scope;
13675 }
13676
13677 static void
13678 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13679 {
13680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13682 struct context_stack *newobj;
13683 CORE_ADDR lowpc;
13684 CORE_ADDR highpc;
13685 struct die_info *child_die;
13686 struct attribute *attr, *call_line, *call_file;
13687 const char *name;
13688 CORE_ADDR baseaddr;
13689 struct block *block;
13690 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13691 std::vector<struct symbol *> template_args;
13692 struct template_symbol *templ_func = NULL;
13693
13694 if (inlined_func)
13695 {
13696 /* If we do not have call site information, we can't show the
13697 caller of this inlined function. That's too confusing, so
13698 only use the scope for local variables. */
13699 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13700 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13701 if (call_line == NULL || call_file == NULL)
13702 {
13703 read_lexical_block_scope (die, cu);
13704 return;
13705 }
13706 }
13707
13708 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13709
13710 name = dwarf2_name (die, cu);
13711
13712 /* Ignore functions with missing or empty names. These are actually
13713 illegal according to the DWARF standard. */
13714 if (name == NULL)
13715 {
13716 complaint (_("missing name for subprogram DIE at %s"),
13717 sect_offset_str (die->sect_off));
13718 return;
13719 }
13720
13721 /* Ignore functions with missing or invalid low and high pc attributes. */
13722 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13723 <= PC_BOUNDS_INVALID)
13724 {
13725 attr = dwarf2_attr (die, DW_AT_external, cu);
13726 if (!attr || !DW_UNSND (attr))
13727 complaint (_("cannot get low and high bounds "
13728 "for subprogram DIE at %s"),
13729 sect_offset_str (die->sect_off));
13730 return;
13731 }
13732
13733 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13734 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13735
13736 /* If we have any template arguments, then we must allocate a
13737 different sort of symbol. */
13738 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13739 {
13740 if (child_die->tag == DW_TAG_template_type_param
13741 || child_die->tag == DW_TAG_template_value_param)
13742 {
13743 templ_func = allocate_template_symbol (objfile);
13744 templ_func->subclass = SYMBOL_TEMPLATE;
13745 break;
13746 }
13747 }
13748
13749 newobj = cu->get_builder ()->push_context (0, lowpc);
13750 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13751 (struct symbol *) templ_func);
13752
13753 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13754 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13755 cu->language);
13756
13757 /* If there is a location expression for DW_AT_frame_base, record
13758 it. */
13759 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13760 if (attr)
13761 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13762
13763 /* If there is a location for the static link, record it. */
13764 newobj->static_link = NULL;
13765 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13766 if (attr)
13767 {
13768 newobj->static_link
13769 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13770 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13771 dwarf2_per_cu_addr_type (cu->per_cu));
13772 }
13773
13774 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13775
13776 if (die->child != NULL)
13777 {
13778 child_die = die->child;
13779 while (child_die && child_die->tag)
13780 {
13781 if (child_die->tag == DW_TAG_template_type_param
13782 || child_die->tag == DW_TAG_template_value_param)
13783 {
13784 struct symbol *arg = new_symbol (child_die, NULL, cu);
13785
13786 if (arg != NULL)
13787 template_args.push_back (arg);
13788 }
13789 else
13790 process_die (child_die, cu);
13791 child_die = sibling_die (child_die);
13792 }
13793 }
13794
13795 inherit_abstract_dies (die, cu);
13796
13797 /* If we have a DW_AT_specification, we might need to import using
13798 directives from the context of the specification DIE. See the
13799 comment in determine_prefix. */
13800 if (cu->language == language_cplus
13801 && dwarf2_attr (die, DW_AT_specification, cu))
13802 {
13803 struct dwarf2_cu *spec_cu = cu;
13804 struct die_info *spec_die = die_specification (die, &spec_cu);
13805
13806 while (spec_die)
13807 {
13808 child_die = spec_die->child;
13809 while (child_die && child_die->tag)
13810 {
13811 if (child_die->tag == DW_TAG_imported_module)
13812 process_die (child_die, spec_cu);
13813 child_die = sibling_die (child_die);
13814 }
13815
13816 /* In some cases, GCC generates specification DIEs that
13817 themselves contain DW_AT_specification attributes. */
13818 spec_die = die_specification (spec_die, &spec_cu);
13819 }
13820 }
13821
13822 struct context_stack cstk = cu->get_builder ()->pop_context ();
13823 /* Make a block for the local symbols within. */
13824 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13825 cstk.static_link, lowpc, highpc);
13826
13827 /* For C++, set the block's scope. */
13828 if ((cu->language == language_cplus
13829 || cu->language == language_fortran
13830 || cu->language == language_d
13831 || cu->language == language_rust)
13832 && cu->processing_has_namespace_info)
13833 block_set_scope (block, determine_prefix (die, cu),
13834 &objfile->objfile_obstack);
13835
13836 /* If we have address ranges, record them. */
13837 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13838
13839 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13840
13841 /* Attach template arguments to function. */
13842 if (!template_args.empty ())
13843 {
13844 gdb_assert (templ_func != NULL);
13845
13846 templ_func->n_template_arguments = template_args.size ();
13847 templ_func->template_arguments
13848 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13849 templ_func->n_template_arguments);
13850 memcpy (templ_func->template_arguments,
13851 template_args.data (),
13852 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13853
13854 /* Make sure that the symtab is set on the new symbols. Even
13855 though they don't appear in this symtab directly, other parts
13856 of gdb assume that symbols do, and this is reasonably
13857 true. */
13858 for (symbol *sym : template_args)
13859 symbol_set_symtab (sym, symbol_symtab (templ_func));
13860 }
13861
13862 /* In C++, we can have functions nested inside functions (e.g., when
13863 a function declares a class that has methods). This means that
13864 when we finish processing a function scope, we may need to go
13865 back to building a containing block's symbol lists. */
13866 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13867 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13868
13869 /* If we've finished processing a top-level function, subsequent
13870 symbols go in the file symbol list. */
13871 if (cu->get_builder ()->outermost_context_p ())
13872 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13873 }
13874
13875 /* Process all the DIES contained within a lexical block scope. Start
13876 a new scope, process the dies, and then close the scope. */
13877
13878 static void
13879 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13880 {
13881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13883 CORE_ADDR lowpc, highpc;
13884 struct die_info *child_die;
13885 CORE_ADDR baseaddr;
13886
13887 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13888
13889 /* Ignore blocks with missing or invalid low and high pc attributes. */
13890 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13891 as multiple lexical blocks? Handling children in a sane way would
13892 be nasty. Might be easier to properly extend generic blocks to
13893 describe ranges. */
13894 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13895 {
13896 case PC_BOUNDS_NOT_PRESENT:
13897 /* DW_TAG_lexical_block has no attributes, process its children as if
13898 there was no wrapping by that DW_TAG_lexical_block.
13899 GCC does no longer produces such DWARF since GCC r224161. */
13900 for (child_die = die->child;
13901 child_die != NULL && child_die->tag;
13902 child_die = sibling_die (child_die))
13903 process_die (child_die, cu);
13904 return;
13905 case PC_BOUNDS_INVALID:
13906 return;
13907 }
13908 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13909 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13910
13911 cu->get_builder ()->push_context (0, lowpc);
13912 if (die->child != NULL)
13913 {
13914 child_die = die->child;
13915 while (child_die && child_die->tag)
13916 {
13917 process_die (child_die, cu);
13918 child_die = sibling_die (child_die);
13919 }
13920 }
13921 inherit_abstract_dies (die, cu);
13922 struct context_stack cstk = cu->get_builder ()->pop_context ();
13923
13924 if (*cu->get_builder ()->get_local_symbols () != NULL
13925 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13926 {
13927 struct block *block
13928 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13929 cstk.start_addr, highpc);
13930
13931 /* Note that recording ranges after traversing children, as we
13932 do here, means that recording a parent's ranges entails
13933 walking across all its children's ranges as they appear in
13934 the address map, which is quadratic behavior.
13935
13936 It would be nicer to record the parent's ranges before
13937 traversing its children, simply overriding whatever you find
13938 there. But since we don't even decide whether to create a
13939 block until after we've traversed its children, that's hard
13940 to do. */
13941 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13942 }
13943 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13944 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13945 }
13946
13947 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13948
13949 static void
13950 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13951 {
13952 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13953 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13954 CORE_ADDR pc, baseaddr;
13955 struct attribute *attr;
13956 struct call_site *call_site, call_site_local;
13957 void **slot;
13958 int nparams;
13959 struct die_info *child_die;
13960
13961 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13962
13963 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13964 if (attr == NULL)
13965 {
13966 /* This was a pre-DWARF-5 GNU extension alias
13967 for DW_AT_call_return_pc. */
13968 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13969 }
13970 if (!attr)
13971 {
13972 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13973 "DIE %s [in module %s]"),
13974 sect_offset_str (die->sect_off), objfile_name (objfile));
13975 return;
13976 }
13977 pc = attr_value_as_address (attr) + baseaddr;
13978 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13979
13980 if (cu->call_site_htab == NULL)
13981 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13982 NULL, &objfile->objfile_obstack,
13983 hashtab_obstack_allocate, NULL);
13984 call_site_local.pc = pc;
13985 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13986 if (*slot != NULL)
13987 {
13988 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13989 "DIE %s [in module %s]"),
13990 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13991 objfile_name (objfile));
13992 return;
13993 }
13994
13995 /* Count parameters at the caller. */
13996
13997 nparams = 0;
13998 for (child_die = die->child; child_die && child_die->tag;
13999 child_die = sibling_die (child_die))
14000 {
14001 if (child_die->tag != DW_TAG_call_site_parameter
14002 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14003 {
14004 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
14005 "DW_TAG_call_site child DIE %s [in module %s]"),
14006 child_die->tag, sect_offset_str (child_die->sect_off),
14007 objfile_name (objfile));
14008 continue;
14009 }
14010
14011 nparams++;
14012 }
14013
14014 call_site
14015 = ((struct call_site *)
14016 obstack_alloc (&objfile->objfile_obstack,
14017 sizeof (*call_site)
14018 + (sizeof (*call_site->parameter) * (nparams - 1))));
14019 *slot = call_site;
14020 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14021 call_site->pc = pc;
14022
14023 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14024 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14025 {
14026 struct die_info *func_die;
14027
14028 /* Skip also over DW_TAG_inlined_subroutine. */
14029 for (func_die = die->parent;
14030 func_die && func_die->tag != DW_TAG_subprogram
14031 && func_die->tag != DW_TAG_subroutine_type;
14032 func_die = func_die->parent);
14033
14034 /* DW_AT_call_all_calls is a superset
14035 of DW_AT_call_all_tail_calls. */
14036 if (func_die
14037 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14038 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14039 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14040 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14041 {
14042 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14043 not complete. But keep CALL_SITE for look ups via call_site_htab,
14044 both the initial caller containing the real return address PC and
14045 the final callee containing the current PC of a chain of tail
14046 calls do not need to have the tail call list complete. But any
14047 function candidate for a virtual tail call frame searched via
14048 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14049 determined unambiguously. */
14050 }
14051 else
14052 {
14053 struct type *func_type = NULL;
14054
14055 if (func_die)
14056 func_type = get_die_type (func_die, cu);
14057 if (func_type != NULL)
14058 {
14059 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14060
14061 /* Enlist this call site to the function. */
14062 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14063 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14064 }
14065 else
14066 complaint (_("Cannot find function owning DW_TAG_call_site "
14067 "DIE %s [in module %s]"),
14068 sect_offset_str (die->sect_off), objfile_name (objfile));
14069 }
14070 }
14071
14072 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14073 if (attr == NULL)
14074 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14075 if (attr == NULL)
14076 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14077 if (attr == NULL)
14078 {
14079 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14080 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14081 }
14082 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14083 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14084 /* Keep NULL DWARF_BLOCK. */;
14085 else if (attr_form_is_block (attr))
14086 {
14087 struct dwarf2_locexpr_baton *dlbaton;
14088
14089 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14090 dlbaton->data = DW_BLOCK (attr)->data;
14091 dlbaton->size = DW_BLOCK (attr)->size;
14092 dlbaton->per_cu = cu->per_cu;
14093
14094 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14095 }
14096 else if (attr_form_is_ref (attr))
14097 {
14098 struct dwarf2_cu *target_cu = cu;
14099 struct die_info *target_die;
14100
14101 target_die = follow_die_ref (die, attr, &target_cu);
14102 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14103 if (die_is_declaration (target_die, target_cu))
14104 {
14105 const char *target_physname;
14106
14107 /* Prefer the mangled name; otherwise compute the demangled one. */
14108 target_physname = dw2_linkage_name (target_die, target_cu);
14109 if (target_physname == NULL)
14110 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14111 if (target_physname == NULL)
14112 complaint (_("DW_AT_call_target target DIE has invalid "
14113 "physname, for referencing DIE %s [in module %s]"),
14114 sect_offset_str (die->sect_off), objfile_name (objfile));
14115 else
14116 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14117 }
14118 else
14119 {
14120 CORE_ADDR lowpc;
14121
14122 /* DW_AT_entry_pc should be preferred. */
14123 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14124 <= PC_BOUNDS_INVALID)
14125 complaint (_("DW_AT_call_target target DIE has invalid "
14126 "low pc, for referencing DIE %s [in module %s]"),
14127 sect_offset_str (die->sect_off), objfile_name (objfile));
14128 else
14129 {
14130 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14131 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14132 }
14133 }
14134 }
14135 else
14136 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14137 "block nor reference, for DIE %s [in module %s]"),
14138 sect_offset_str (die->sect_off), objfile_name (objfile));
14139
14140 call_site->per_cu = cu->per_cu;
14141
14142 for (child_die = die->child;
14143 child_die && child_die->tag;
14144 child_die = sibling_die (child_die))
14145 {
14146 struct call_site_parameter *parameter;
14147 struct attribute *loc, *origin;
14148
14149 if (child_die->tag != DW_TAG_call_site_parameter
14150 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14151 {
14152 /* Already printed the complaint above. */
14153 continue;
14154 }
14155
14156 gdb_assert (call_site->parameter_count < nparams);
14157 parameter = &call_site->parameter[call_site->parameter_count];
14158
14159 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14160 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14161 register is contained in DW_AT_call_value. */
14162
14163 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14164 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14165 if (origin == NULL)
14166 {
14167 /* This was a pre-DWARF-5 GNU extension alias
14168 for DW_AT_call_parameter. */
14169 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14170 }
14171 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14172 {
14173 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14174
14175 sect_offset sect_off
14176 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14177 if (!offset_in_cu_p (&cu->header, sect_off))
14178 {
14179 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14180 binding can be done only inside one CU. Such referenced DIE
14181 therefore cannot be even moved to DW_TAG_partial_unit. */
14182 complaint (_("DW_AT_call_parameter offset is not in CU for "
14183 "DW_TAG_call_site child DIE %s [in module %s]"),
14184 sect_offset_str (child_die->sect_off),
14185 objfile_name (objfile));
14186 continue;
14187 }
14188 parameter->u.param_cu_off
14189 = (cu_offset) (sect_off - cu->header.sect_off);
14190 }
14191 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14192 {
14193 complaint (_("No DW_FORM_block* DW_AT_location for "
14194 "DW_TAG_call_site child DIE %s [in module %s]"),
14195 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14196 continue;
14197 }
14198 else
14199 {
14200 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14201 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14202 if (parameter->u.dwarf_reg != -1)
14203 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14204 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14205 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14206 &parameter->u.fb_offset))
14207 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14208 else
14209 {
14210 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14211 "for DW_FORM_block* DW_AT_location is supported for "
14212 "DW_TAG_call_site child DIE %s "
14213 "[in module %s]"),
14214 sect_offset_str (child_die->sect_off),
14215 objfile_name (objfile));
14216 continue;
14217 }
14218 }
14219
14220 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14221 if (attr == NULL)
14222 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14223 if (!attr_form_is_block (attr))
14224 {
14225 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14226 "DW_TAG_call_site child DIE %s [in module %s]"),
14227 sect_offset_str (child_die->sect_off),
14228 objfile_name (objfile));
14229 continue;
14230 }
14231 parameter->value = DW_BLOCK (attr)->data;
14232 parameter->value_size = DW_BLOCK (attr)->size;
14233
14234 /* Parameters are not pre-cleared by memset above. */
14235 parameter->data_value = NULL;
14236 parameter->data_value_size = 0;
14237 call_site->parameter_count++;
14238
14239 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14240 if (attr == NULL)
14241 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14242 if (attr)
14243 {
14244 if (!attr_form_is_block (attr))
14245 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14246 "DW_TAG_call_site child DIE %s [in module %s]"),
14247 sect_offset_str (child_die->sect_off),
14248 objfile_name (objfile));
14249 else
14250 {
14251 parameter->data_value = DW_BLOCK (attr)->data;
14252 parameter->data_value_size = DW_BLOCK (attr)->size;
14253 }
14254 }
14255 }
14256 }
14257
14258 /* Helper function for read_variable. If DIE represents a virtual
14259 table, then return the type of the concrete object that is
14260 associated with the virtual table. Otherwise, return NULL. */
14261
14262 static struct type *
14263 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14264 {
14265 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14266 if (attr == NULL)
14267 return NULL;
14268
14269 /* Find the type DIE. */
14270 struct die_info *type_die = NULL;
14271 struct dwarf2_cu *type_cu = cu;
14272
14273 if (attr_form_is_ref (attr))
14274 type_die = follow_die_ref (die, attr, &type_cu);
14275 if (type_die == NULL)
14276 return NULL;
14277
14278 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14279 return NULL;
14280 return die_containing_type (type_die, type_cu);
14281 }
14282
14283 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14284
14285 static void
14286 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14287 {
14288 struct rust_vtable_symbol *storage = NULL;
14289
14290 if (cu->language == language_rust)
14291 {
14292 struct type *containing_type = rust_containing_type (die, cu);
14293
14294 if (containing_type != NULL)
14295 {
14296 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14297
14298 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14299 struct rust_vtable_symbol);
14300 initialize_objfile_symbol (storage);
14301 storage->concrete_type = containing_type;
14302 storage->subclass = SYMBOL_RUST_VTABLE;
14303 }
14304 }
14305
14306 struct symbol *res = new_symbol (die, NULL, cu, storage);
14307 struct attribute *abstract_origin
14308 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14309 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14310 if (res == NULL && loc && abstract_origin)
14311 {
14312 /* We have a variable without a name, but with a location and an abstract
14313 origin. This may be a concrete instance of an abstract variable
14314 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14315 later. */
14316 struct dwarf2_cu *origin_cu = cu;
14317 struct die_info *origin_die
14318 = follow_die_ref (die, abstract_origin, &origin_cu);
14319 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14320 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14321 }
14322 }
14323
14324 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14325 reading .debug_rnglists.
14326 Callback's type should be:
14327 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14328 Return true if the attributes are present and valid, otherwise,
14329 return false. */
14330
14331 template <typename Callback>
14332 static bool
14333 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14334 Callback &&callback)
14335 {
14336 struct dwarf2_per_objfile *dwarf2_per_objfile
14337 = cu->per_cu->dwarf2_per_objfile;
14338 struct objfile *objfile = dwarf2_per_objfile->objfile;
14339 bfd *obfd = objfile->obfd;
14340 /* Base address selection entry. */
14341 CORE_ADDR base;
14342 int found_base;
14343 const gdb_byte *buffer;
14344 CORE_ADDR baseaddr;
14345 bool overflow = false;
14346
14347 found_base = cu->base_known;
14348 base = cu->base_address;
14349
14350 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14351 if (offset >= dwarf2_per_objfile->rnglists.size)
14352 {
14353 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14354 offset);
14355 return false;
14356 }
14357 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14358
14359 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14360
14361 while (1)
14362 {
14363 /* Initialize it due to a false compiler warning. */
14364 CORE_ADDR range_beginning = 0, range_end = 0;
14365 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14366 + dwarf2_per_objfile->rnglists.size);
14367 unsigned int bytes_read;
14368
14369 if (buffer == buf_end)
14370 {
14371 overflow = true;
14372 break;
14373 }
14374 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14375 switch (rlet)
14376 {
14377 case DW_RLE_end_of_list:
14378 break;
14379 case DW_RLE_base_address:
14380 if (buffer + cu->header.addr_size > buf_end)
14381 {
14382 overflow = true;
14383 break;
14384 }
14385 base = read_address (obfd, buffer, cu, &bytes_read);
14386 found_base = 1;
14387 buffer += bytes_read;
14388 break;
14389 case DW_RLE_start_length:
14390 if (buffer + cu->header.addr_size > buf_end)
14391 {
14392 overflow = true;
14393 break;
14394 }
14395 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14396 buffer += bytes_read;
14397 range_end = (range_beginning
14398 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14399 buffer += bytes_read;
14400 if (buffer > buf_end)
14401 {
14402 overflow = true;
14403 break;
14404 }
14405 break;
14406 case DW_RLE_offset_pair:
14407 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14408 buffer += bytes_read;
14409 if (buffer > buf_end)
14410 {
14411 overflow = true;
14412 break;
14413 }
14414 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14415 buffer += bytes_read;
14416 if (buffer > buf_end)
14417 {
14418 overflow = true;
14419 break;
14420 }
14421 break;
14422 case DW_RLE_start_end:
14423 if (buffer + 2 * cu->header.addr_size > buf_end)
14424 {
14425 overflow = true;
14426 break;
14427 }
14428 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14429 buffer += bytes_read;
14430 range_end = read_address (obfd, buffer, cu, &bytes_read);
14431 buffer += bytes_read;
14432 break;
14433 default:
14434 complaint (_("Invalid .debug_rnglists data (no base address)"));
14435 return false;
14436 }
14437 if (rlet == DW_RLE_end_of_list || overflow)
14438 break;
14439 if (rlet == DW_RLE_base_address)
14440 continue;
14441
14442 if (!found_base)
14443 {
14444 /* We have no valid base address for the ranges
14445 data. */
14446 complaint (_("Invalid .debug_rnglists data (no base address)"));
14447 return false;
14448 }
14449
14450 if (range_beginning > range_end)
14451 {
14452 /* Inverted range entries are invalid. */
14453 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14454 return false;
14455 }
14456
14457 /* Empty range entries have no effect. */
14458 if (range_beginning == range_end)
14459 continue;
14460
14461 range_beginning += base;
14462 range_end += base;
14463
14464 /* A not-uncommon case of bad debug info.
14465 Don't pollute the addrmap with bad data. */
14466 if (range_beginning + baseaddr == 0
14467 && !dwarf2_per_objfile->has_section_at_zero)
14468 {
14469 complaint (_(".debug_rnglists entry has start address of zero"
14470 " [in module %s]"), objfile_name (objfile));
14471 continue;
14472 }
14473
14474 callback (range_beginning, range_end);
14475 }
14476
14477 if (overflow)
14478 {
14479 complaint (_("Offset %d is not terminated "
14480 "for DW_AT_ranges attribute"),
14481 offset);
14482 return false;
14483 }
14484
14485 return true;
14486 }
14487
14488 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14489 Callback's type should be:
14490 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14491 Return 1 if the attributes are present and valid, otherwise, return 0. */
14492
14493 template <typename Callback>
14494 static int
14495 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14496 Callback &&callback)
14497 {
14498 struct dwarf2_per_objfile *dwarf2_per_objfile
14499 = cu->per_cu->dwarf2_per_objfile;
14500 struct objfile *objfile = dwarf2_per_objfile->objfile;
14501 struct comp_unit_head *cu_header = &cu->header;
14502 bfd *obfd = objfile->obfd;
14503 unsigned int addr_size = cu_header->addr_size;
14504 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14505 /* Base address selection entry. */
14506 CORE_ADDR base;
14507 int found_base;
14508 unsigned int dummy;
14509 const gdb_byte *buffer;
14510 CORE_ADDR baseaddr;
14511
14512 if (cu_header->version >= 5)
14513 return dwarf2_rnglists_process (offset, cu, callback);
14514
14515 found_base = cu->base_known;
14516 base = cu->base_address;
14517
14518 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14519 if (offset >= dwarf2_per_objfile->ranges.size)
14520 {
14521 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14522 offset);
14523 return 0;
14524 }
14525 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14526
14527 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14528
14529 while (1)
14530 {
14531 CORE_ADDR range_beginning, range_end;
14532
14533 range_beginning = read_address (obfd, buffer, cu, &dummy);
14534 buffer += addr_size;
14535 range_end = read_address (obfd, buffer, cu, &dummy);
14536 buffer += addr_size;
14537 offset += 2 * addr_size;
14538
14539 /* An end of list marker is a pair of zero addresses. */
14540 if (range_beginning == 0 && range_end == 0)
14541 /* Found the end of list entry. */
14542 break;
14543
14544 /* Each base address selection entry is a pair of 2 values.
14545 The first is the largest possible address, the second is
14546 the base address. Check for a base address here. */
14547 if ((range_beginning & mask) == mask)
14548 {
14549 /* If we found the largest possible address, then we already
14550 have the base address in range_end. */
14551 base = range_end;
14552 found_base = 1;
14553 continue;
14554 }
14555
14556 if (!found_base)
14557 {
14558 /* We have no valid base address for the ranges
14559 data. */
14560 complaint (_("Invalid .debug_ranges data (no base address)"));
14561 return 0;
14562 }
14563
14564 if (range_beginning > range_end)
14565 {
14566 /* Inverted range entries are invalid. */
14567 complaint (_("Invalid .debug_ranges data (inverted range)"));
14568 return 0;
14569 }
14570
14571 /* Empty range entries have no effect. */
14572 if (range_beginning == range_end)
14573 continue;
14574
14575 range_beginning += base;
14576 range_end += base;
14577
14578 /* A not-uncommon case of bad debug info.
14579 Don't pollute the addrmap with bad data. */
14580 if (range_beginning + baseaddr == 0
14581 && !dwarf2_per_objfile->has_section_at_zero)
14582 {
14583 complaint (_(".debug_ranges entry has start address of zero"
14584 " [in module %s]"), objfile_name (objfile));
14585 continue;
14586 }
14587
14588 callback (range_beginning, range_end);
14589 }
14590
14591 return 1;
14592 }
14593
14594 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14595 Return 1 if the attributes are present and valid, otherwise, return 0.
14596 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14597
14598 static int
14599 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14600 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14601 struct partial_symtab *ranges_pst)
14602 {
14603 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14605 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14606 SECT_OFF_TEXT (objfile));
14607 int low_set = 0;
14608 CORE_ADDR low = 0;
14609 CORE_ADDR high = 0;
14610 int retval;
14611
14612 retval = dwarf2_ranges_process (offset, cu,
14613 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14614 {
14615 if (ranges_pst != NULL)
14616 {
14617 CORE_ADDR lowpc;
14618 CORE_ADDR highpc;
14619
14620 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14621 range_beginning + baseaddr)
14622 - baseaddr);
14623 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14624 range_end + baseaddr)
14625 - baseaddr);
14626 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14627 lowpc, highpc - 1, ranges_pst);
14628 }
14629
14630 /* FIXME: This is recording everything as a low-high
14631 segment of consecutive addresses. We should have a
14632 data structure for discontiguous block ranges
14633 instead. */
14634 if (! low_set)
14635 {
14636 low = range_beginning;
14637 high = range_end;
14638 low_set = 1;
14639 }
14640 else
14641 {
14642 if (range_beginning < low)
14643 low = range_beginning;
14644 if (range_end > high)
14645 high = range_end;
14646 }
14647 });
14648 if (!retval)
14649 return 0;
14650
14651 if (! low_set)
14652 /* If the first entry is an end-of-list marker, the range
14653 describes an empty scope, i.e. no instructions. */
14654 return 0;
14655
14656 if (low_return)
14657 *low_return = low;
14658 if (high_return)
14659 *high_return = high;
14660 return 1;
14661 }
14662
14663 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14664 definition for the return value. *LOWPC and *HIGHPC are set iff
14665 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14666
14667 static enum pc_bounds_kind
14668 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14669 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14670 struct partial_symtab *pst)
14671 {
14672 struct dwarf2_per_objfile *dwarf2_per_objfile
14673 = cu->per_cu->dwarf2_per_objfile;
14674 struct attribute *attr;
14675 struct attribute *attr_high;
14676 CORE_ADDR low = 0;
14677 CORE_ADDR high = 0;
14678 enum pc_bounds_kind ret;
14679
14680 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14681 if (attr_high)
14682 {
14683 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14684 if (attr)
14685 {
14686 low = attr_value_as_address (attr);
14687 high = attr_value_as_address (attr_high);
14688 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14689 high += low;
14690 }
14691 else
14692 /* Found high w/o low attribute. */
14693 return PC_BOUNDS_INVALID;
14694
14695 /* Found consecutive range of addresses. */
14696 ret = PC_BOUNDS_HIGH_LOW;
14697 }
14698 else
14699 {
14700 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14701 if (attr != NULL)
14702 {
14703 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14704 We take advantage of the fact that DW_AT_ranges does not appear
14705 in DW_TAG_compile_unit of DWO files. */
14706 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14707 unsigned int ranges_offset = (DW_UNSND (attr)
14708 + (need_ranges_base
14709 ? cu->ranges_base
14710 : 0));
14711
14712 /* Value of the DW_AT_ranges attribute is the offset in the
14713 .debug_ranges section. */
14714 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14715 return PC_BOUNDS_INVALID;
14716 /* Found discontinuous range of addresses. */
14717 ret = PC_BOUNDS_RANGES;
14718 }
14719 else
14720 return PC_BOUNDS_NOT_PRESENT;
14721 }
14722
14723 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14724 if (high <= low)
14725 return PC_BOUNDS_INVALID;
14726
14727 /* When using the GNU linker, .gnu.linkonce. sections are used to
14728 eliminate duplicate copies of functions and vtables and such.
14729 The linker will arbitrarily choose one and discard the others.
14730 The AT_*_pc values for such functions refer to local labels in
14731 these sections. If the section from that file was discarded, the
14732 labels are not in the output, so the relocs get a value of 0.
14733 If this is a discarded function, mark the pc bounds as invalid,
14734 so that GDB will ignore it. */
14735 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14736 return PC_BOUNDS_INVALID;
14737
14738 *lowpc = low;
14739 if (highpc)
14740 *highpc = high;
14741 return ret;
14742 }
14743
14744 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14745 its low and high PC addresses. Do nothing if these addresses could not
14746 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14747 and HIGHPC to the high address if greater than HIGHPC. */
14748
14749 static void
14750 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14751 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14752 struct dwarf2_cu *cu)
14753 {
14754 CORE_ADDR low, high;
14755 struct die_info *child = die->child;
14756
14757 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14758 {
14759 *lowpc = std::min (*lowpc, low);
14760 *highpc = std::max (*highpc, high);
14761 }
14762
14763 /* If the language does not allow nested subprograms (either inside
14764 subprograms or lexical blocks), we're done. */
14765 if (cu->language != language_ada)
14766 return;
14767
14768 /* Check all the children of the given DIE. If it contains nested
14769 subprograms, then check their pc bounds. Likewise, we need to
14770 check lexical blocks as well, as they may also contain subprogram
14771 definitions. */
14772 while (child && child->tag)
14773 {
14774 if (child->tag == DW_TAG_subprogram
14775 || child->tag == DW_TAG_lexical_block)
14776 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14777 child = sibling_die (child);
14778 }
14779 }
14780
14781 /* Get the low and high pc's represented by the scope DIE, and store
14782 them in *LOWPC and *HIGHPC. If the correct values can't be
14783 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14784
14785 static void
14786 get_scope_pc_bounds (struct die_info *die,
14787 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14788 struct dwarf2_cu *cu)
14789 {
14790 CORE_ADDR best_low = (CORE_ADDR) -1;
14791 CORE_ADDR best_high = (CORE_ADDR) 0;
14792 CORE_ADDR current_low, current_high;
14793
14794 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14795 >= PC_BOUNDS_RANGES)
14796 {
14797 best_low = current_low;
14798 best_high = current_high;
14799 }
14800 else
14801 {
14802 struct die_info *child = die->child;
14803
14804 while (child && child->tag)
14805 {
14806 switch (child->tag) {
14807 case DW_TAG_subprogram:
14808 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14809 break;
14810 case DW_TAG_namespace:
14811 case DW_TAG_module:
14812 /* FIXME: carlton/2004-01-16: Should we do this for
14813 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14814 that current GCC's always emit the DIEs corresponding
14815 to definitions of methods of classes as children of a
14816 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14817 the DIEs giving the declarations, which could be
14818 anywhere). But I don't see any reason why the
14819 standards says that they have to be there. */
14820 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14821
14822 if (current_low != ((CORE_ADDR) -1))
14823 {
14824 best_low = std::min (best_low, current_low);
14825 best_high = std::max (best_high, current_high);
14826 }
14827 break;
14828 default:
14829 /* Ignore. */
14830 break;
14831 }
14832
14833 child = sibling_die (child);
14834 }
14835 }
14836
14837 *lowpc = best_low;
14838 *highpc = best_high;
14839 }
14840
14841 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14842 in DIE. */
14843
14844 static void
14845 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14846 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14847 {
14848 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14850 struct attribute *attr;
14851 struct attribute *attr_high;
14852
14853 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14854 if (attr_high)
14855 {
14856 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14857 if (attr)
14858 {
14859 CORE_ADDR low = attr_value_as_address (attr);
14860 CORE_ADDR high = attr_value_as_address (attr_high);
14861
14862 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14863 high += low;
14864
14865 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14866 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14867 cu->get_builder ()->record_block_range (block, low, high - 1);
14868 }
14869 }
14870
14871 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14872 if (attr)
14873 {
14874 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14875 We take advantage of the fact that DW_AT_ranges does not appear
14876 in DW_TAG_compile_unit of DWO files. */
14877 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14878
14879 /* The value of the DW_AT_ranges attribute is the offset of the
14880 address range list in the .debug_ranges section. */
14881 unsigned long offset = (DW_UNSND (attr)
14882 + (need_ranges_base ? cu->ranges_base : 0));
14883
14884 std::vector<blockrange> blockvec;
14885 dwarf2_ranges_process (offset, cu,
14886 [&] (CORE_ADDR start, CORE_ADDR end)
14887 {
14888 start += baseaddr;
14889 end += baseaddr;
14890 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14891 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14892 cu->get_builder ()->record_block_range (block, start, end - 1);
14893 blockvec.emplace_back (start, end);
14894 });
14895
14896 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14897 }
14898 }
14899
14900 /* Check whether the producer field indicates either of GCC < 4.6, or the
14901 Intel C/C++ compiler, and cache the result in CU. */
14902
14903 static void
14904 check_producer (struct dwarf2_cu *cu)
14905 {
14906 int major, minor;
14907
14908 if (cu->producer == NULL)
14909 {
14910 /* For unknown compilers expect their behavior is DWARF version
14911 compliant.
14912
14913 GCC started to support .debug_types sections by -gdwarf-4 since
14914 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14915 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14916 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14917 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14918 }
14919 else if (producer_is_gcc (cu->producer, &major, &minor))
14920 {
14921 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14922 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14923 }
14924 else if (producer_is_icc (cu->producer, &major, &minor))
14925 {
14926 cu->producer_is_icc = true;
14927 cu->producer_is_icc_lt_14 = major < 14;
14928 }
14929 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14930 cu->producer_is_codewarrior = true;
14931 else
14932 {
14933 /* For other non-GCC compilers, expect their behavior is DWARF version
14934 compliant. */
14935 }
14936
14937 cu->checked_producer = true;
14938 }
14939
14940 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14941 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14942 during 4.6.0 experimental. */
14943
14944 static bool
14945 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14946 {
14947 if (!cu->checked_producer)
14948 check_producer (cu);
14949
14950 return cu->producer_is_gxx_lt_4_6;
14951 }
14952
14953
14954 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14955 with incorrect is_stmt attributes. */
14956
14957 static bool
14958 producer_is_codewarrior (struct dwarf2_cu *cu)
14959 {
14960 if (!cu->checked_producer)
14961 check_producer (cu);
14962
14963 return cu->producer_is_codewarrior;
14964 }
14965
14966 /* Return the default accessibility type if it is not overridden by
14967 DW_AT_accessibility. */
14968
14969 static enum dwarf_access_attribute
14970 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14971 {
14972 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14973 {
14974 /* The default DWARF 2 accessibility for members is public, the default
14975 accessibility for inheritance is private. */
14976
14977 if (die->tag != DW_TAG_inheritance)
14978 return DW_ACCESS_public;
14979 else
14980 return DW_ACCESS_private;
14981 }
14982 else
14983 {
14984 /* DWARF 3+ defines the default accessibility a different way. The same
14985 rules apply now for DW_TAG_inheritance as for the members and it only
14986 depends on the container kind. */
14987
14988 if (die->parent->tag == DW_TAG_class_type)
14989 return DW_ACCESS_private;
14990 else
14991 return DW_ACCESS_public;
14992 }
14993 }
14994
14995 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14996 offset. If the attribute was not found return 0, otherwise return
14997 1. If it was found but could not properly be handled, set *OFFSET
14998 to 0. */
14999
15000 static int
15001 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15002 LONGEST *offset)
15003 {
15004 struct attribute *attr;
15005
15006 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15007 if (attr != NULL)
15008 {
15009 *offset = 0;
15010
15011 /* Note that we do not check for a section offset first here.
15012 This is because DW_AT_data_member_location is new in DWARF 4,
15013 so if we see it, we can assume that a constant form is really
15014 a constant and not a section offset. */
15015 if (attr_form_is_constant (attr))
15016 *offset = dwarf2_get_attr_constant_value (attr, 0);
15017 else if (attr_form_is_section_offset (attr))
15018 dwarf2_complex_location_expr_complaint ();
15019 else if (attr_form_is_block (attr))
15020 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15021 else
15022 dwarf2_complex_location_expr_complaint ();
15023
15024 return 1;
15025 }
15026
15027 return 0;
15028 }
15029
15030 /* Add an aggregate field to the field list. */
15031
15032 static void
15033 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15034 struct dwarf2_cu *cu)
15035 {
15036 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15038 struct nextfield *new_field;
15039 struct attribute *attr;
15040 struct field *fp;
15041 const char *fieldname = "";
15042
15043 if (die->tag == DW_TAG_inheritance)
15044 {
15045 fip->baseclasses.emplace_back ();
15046 new_field = &fip->baseclasses.back ();
15047 }
15048 else
15049 {
15050 fip->fields.emplace_back ();
15051 new_field = &fip->fields.back ();
15052 }
15053
15054 fip->nfields++;
15055
15056 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15057 if (attr)
15058 new_field->accessibility = DW_UNSND (attr);
15059 else
15060 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15061 if (new_field->accessibility != DW_ACCESS_public)
15062 fip->non_public_fields = 1;
15063
15064 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15065 if (attr)
15066 new_field->virtuality = DW_UNSND (attr);
15067 else
15068 new_field->virtuality = DW_VIRTUALITY_none;
15069
15070 fp = &new_field->field;
15071
15072 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15073 {
15074 LONGEST offset;
15075
15076 /* Data member other than a C++ static data member. */
15077
15078 /* Get type of field. */
15079 fp->type = die_type (die, cu);
15080
15081 SET_FIELD_BITPOS (*fp, 0);
15082
15083 /* Get bit size of field (zero if none). */
15084 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15085 if (attr)
15086 {
15087 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15088 }
15089 else
15090 {
15091 FIELD_BITSIZE (*fp) = 0;
15092 }
15093
15094 /* Get bit offset of field. */
15095 if (handle_data_member_location (die, cu, &offset))
15096 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15097 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15098 if (attr)
15099 {
15100 if (gdbarch_bits_big_endian (gdbarch))
15101 {
15102 /* For big endian bits, the DW_AT_bit_offset gives the
15103 additional bit offset from the MSB of the containing
15104 anonymous object to the MSB of the field. We don't
15105 have to do anything special since we don't need to
15106 know the size of the anonymous object. */
15107 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15108 }
15109 else
15110 {
15111 /* For little endian bits, compute the bit offset to the
15112 MSB of the anonymous object, subtract off the number of
15113 bits from the MSB of the field to the MSB of the
15114 object, and then subtract off the number of bits of
15115 the field itself. The result is the bit offset of
15116 the LSB of the field. */
15117 int anonymous_size;
15118 int bit_offset = DW_UNSND (attr);
15119
15120 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15121 if (attr)
15122 {
15123 /* The size of the anonymous object containing
15124 the bit field is explicit, so use the
15125 indicated size (in bytes). */
15126 anonymous_size = DW_UNSND (attr);
15127 }
15128 else
15129 {
15130 /* The size of the anonymous object containing
15131 the bit field must be inferred from the type
15132 attribute of the data member containing the
15133 bit field. */
15134 anonymous_size = TYPE_LENGTH (fp->type);
15135 }
15136 SET_FIELD_BITPOS (*fp,
15137 (FIELD_BITPOS (*fp)
15138 + anonymous_size * bits_per_byte
15139 - bit_offset - FIELD_BITSIZE (*fp)));
15140 }
15141 }
15142 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15143 if (attr != NULL)
15144 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15145 + dwarf2_get_attr_constant_value (attr, 0)));
15146
15147 /* Get name of field. */
15148 fieldname = dwarf2_name (die, cu);
15149 if (fieldname == NULL)
15150 fieldname = "";
15151
15152 /* The name is already allocated along with this objfile, so we don't
15153 need to duplicate it for the type. */
15154 fp->name = fieldname;
15155
15156 /* Change accessibility for artificial fields (e.g. virtual table
15157 pointer or virtual base class pointer) to private. */
15158 if (dwarf2_attr (die, DW_AT_artificial, cu))
15159 {
15160 FIELD_ARTIFICIAL (*fp) = 1;
15161 new_field->accessibility = DW_ACCESS_private;
15162 fip->non_public_fields = 1;
15163 }
15164 }
15165 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15166 {
15167 /* C++ static member. */
15168
15169 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15170 is a declaration, but all versions of G++ as of this writing
15171 (so through at least 3.2.1) incorrectly generate
15172 DW_TAG_variable tags. */
15173
15174 const char *physname;
15175
15176 /* Get name of field. */
15177 fieldname = dwarf2_name (die, cu);
15178 if (fieldname == NULL)
15179 return;
15180
15181 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15182 if (attr
15183 /* Only create a symbol if this is an external value.
15184 new_symbol checks this and puts the value in the global symbol
15185 table, which we want. If it is not external, new_symbol
15186 will try to put the value in cu->list_in_scope which is wrong. */
15187 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15188 {
15189 /* A static const member, not much different than an enum as far as
15190 we're concerned, except that we can support more types. */
15191 new_symbol (die, NULL, cu);
15192 }
15193
15194 /* Get physical name. */
15195 physname = dwarf2_physname (fieldname, die, cu);
15196
15197 /* The name is already allocated along with this objfile, so we don't
15198 need to duplicate it for the type. */
15199 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15200 FIELD_TYPE (*fp) = die_type (die, cu);
15201 FIELD_NAME (*fp) = fieldname;
15202 }
15203 else if (die->tag == DW_TAG_inheritance)
15204 {
15205 LONGEST offset;
15206
15207 /* C++ base class field. */
15208 if (handle_data_member_location (die, cu, &offset))
15209 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15210 FIELD_BITSIZE (*fp) = 0;
15211 FIELD_TYPE (*fp) = die_type (die, cu);
15212 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15213 }
15214 else if (die->tag == DW_TAG_variant_part)
15215 {
15216 /* process_structure_scope will treat this DIE as a union. */
15217 process_structure_scope (die, cu);
15218
15219 /* The variant part is relative to the start of the enclosing
15220 structure. */
15221 SET_FIELD_BITPOS (*fp, 0);
15222 fp->type = get_die_type (die, cu);
15223 fp->artificial = 1;
15224 fp->name = "<<variant>>";
15225
15226 /* Normally a DW_TAG_variant_part won't have a size, but our
15227 representation requires one, so set it to the maximum of the
15228 child sizes. */
15229 if (TYPE_LENGTH (fp->type) == 0)
15230 {
15231 unsigned max = 0;
15232 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15233 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15234 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15235 TYPE_LENGTH (fp->type) = max;
15236 }
15237 }
15238 else
15239 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15240 }
15241
15242 /* Can the type given by DIE define another type? */
15243
15244 static bool
15245 type_can_define_types (const struct die_info *die)
15246 {
15247 switch (die->tag)
15248 {
15249 case DW_TAG_typedef:
15250 case DW_TAG_class_type:
15251 case DW_TAG_structure_type:
15252 case DW_TAG_union_type:
15253 case DW_TAG_enumeration_type:
15254 return true;
15255
15256 default:
15257 return false;
15258 }
15259 }
15260
15261 /* Add a type definition defined in the scope of the FIP's class. */
15262
15263 static void
15264 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15265 struct dwarf2_cu *cu)
15266 {
15267 struct decl_field fp;
15268 memset (&fp, 0, sizeof (fp));
15269
15270 gdb_assert (type_can_define_types (die));
15271
15272 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15273 fp.name = dwarf2_name (die, cu);
15274 fp.type = read_type_die (die, cu);
15275
15276 /* Save accessibility. */
15277 enum dwarf_access_attribute accessibility;
15278 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15279 if (attr != NULL)
15280 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15281 else
15282 accessibility = dwarf2_default_access_attribute (die, cu);
15283 switch (accessibility)
15284 {
15285 case DW_ACCESS_public:
15286 /* The assumed value if neither private nor protected. */
15287 break;
15288 case DW_ACCESS_private:
15289 fp.is_private = 1;
15290 break;
15291 case DW_ACCESS_protected:
15292 fp.is_protected = 1;
15293 break;
15294 default:
15295 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15296 }
15297
15298 if (die->tag == DW_TAG_typedef)
15299 fip->typedef_field_list.push_back (fp);
15300 else
15301 fip->nested_types_list.push_back (fp);
15302 }
15303
15304 /* Create the vector of fields, and attach it to the type. */
15305
15306 static void
15307 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15308 struct dwarf2_cu *cu)
15309 {
15310 int nfields = fip->nfields;
15311
15312 /* Record the field count, allocate space for the array of fields,
15313 and create blank accessibility bitfields if necessary. */
15314 TYPE_NFIELDS (type) = nfields;
15315 TYPE_FIELDS (type) = (struct field *)
15316 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15317
15318 if (fip->non_public_fields && cu->language != language_ada)
15319 {
15320 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15321
15322 TYPE_FIELD_PRIVATE_BITS (type) =
15323 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15324 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15325
15326 TYPE_FIELD_PROTECTED_BITS (type) =
15327 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15328 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15329
15330 TYPE_FIELD_IGNORE_BITS (type) =
15331 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15332 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15333 }
15334
15335 /* If the type has baseclasses, allocate and clear a bit vector for
15336 TYPE_FIELD_VIRTUAL_BITS. */
15337 if (!fip->baseclasses.empty () && cu->language != language_ada)
15338 {
15339 int num_bytes = B_BYTES (fip->baseclasses.size ());
15340 unsigned char *pointer;
15341
15342 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15343 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15344 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15345 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15346 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15347 }
15348
15349 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15350 {
15351 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15352
15353 for (int index = 0; index < nfields; ++index)
15354 {
15355 struct nextfield &field = fip->fields[index];
15356
15357 if (field.variant.is_discriminant)
15358 di->discriminant_index = index;
15359 else if (field.variant.default_branch)
15360 di->default_index = index;
15361 else
15362 di->discriminants[index] = field.variant.discriminant_value;
15363 }
15364 }
15365
15366 /* Copy the saved-up fields into the field vector. */
15367 for (int i = 0; i < nfields; ++i)
15368 {
15369 struct nextfield &field
15370 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15371 : fip->fields[i - fip->baseclasses.size ()]);
15372
15373 TYPE_FIELD (type, i) = field.field;
15374 switch (field.accessibility)
15375 {
15376 case DW_ACCESS_private:
15377 if (cu->language != language_ada)
15378 SET_TYPE_FIELD_PRIVATE (type, i);
15379 break;
15380
15381 case DW_ACCESS_protected:
15382 if (cu->language != language_ada)
15383 SET_TYPE_FIELD_PROTECTED (type, i);
15384 break;
15385
15386 case DW_ACCESS_public:
15387 break;
15388
15389 default:
15390 /* Unknown accessibility. Complain and treat it as public. */
15391 {
15392 complaint (_("unsupported accessibility %d"),
15393 field.accessibility);
15394 }
15395 break;
15396 }
15397 if (i < fip->baseclasses.size ())
15398 {
15399 switch (field.virtuality)
15400 {
15401 case DW_VIRTUALITY_virtual:
15402 case DW_VIRTUALITY_pure_virtual:
15403 if (cu->language == language_ada)
15404 error (_("unexpected virtuality in component of Ada type"));
15405 SET_TYPE_FIELD_VIRTUAL (type, i);
15406 break;
15407 }
15408 }
15409 }
15410 }
15411
15412 /* Return true if this member function is a constructor, false
15413 otherwise. */
15414
15415 static int
15416 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15417 {
15418 const char *fieldname;
15419 const char *type_name;
15420 int len;
15421
15422 if (die->parent == NULL)
15423 return 0;
15424
15425 if (die->parent->tag != DW_TAG_structure_type
15426 && die->parent->tag != DW_TAG_union_type
15427 && die->parent->tag != DW_TAG_class_type)
15428 return 0;
15429
15430 fieldname = dwarf2_name (die, cu);
15431 type_name = dwarf2_name (die->parent, cu);
15432 if (fieldname == NULL || type_name == NULL)
15433 return 0;
15434
15435 len = strlen (fieldname);
15436 return (strncmp (fieldname, type_name, len) == 0
15437 && (type_name[len] == '\0' || type_name[len] == '<'));
15438 }
15439
15440 /* Add a member function to the proper fieldlist. */
15441
15442 static void
15443 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15444 struct type *type, struct dwarf2_cu *cu)
15445 {
15446 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15447 struct attribute *attr;
15448 int i;
15449 struct fnfieldlist *flp = nullptr;
15450 struct fn_field *fnp;
15451 const char *fieldname;
15452 struct type *this_type;
15453 enum dwarf_access_attribute accessibility;
15454
15455 if (cu->language == language_ada)
15456 error (_("unexpected member function in Ada type"));
15457
15458 /* Get name of member function. */
15459 fieldname = dwarf2_name (die, cu);
15460 if (fieldname == NULL)
15461 return;
15462
15463 /* Look up member function name in fieldlist. */
15464 for (i = 0; i < fip->fnfieldlists.size (); i++)
15465 {
15466 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15467 {
15468 flp = &fip->fnfieldlists[i];
15469 break;
15470 }
15471 }
15472
15473 /* Create a new fnfieldlist if necessary. */
15474 if (flp == nullptr)
15475 {
15476 fip->fnfieldlists.emplace_back ();
15477 flp = &fip->fnfieldlists.back ();
15478 flp->name = fieldname;
15479 i = fip->fnfieldlists.size () - 1;
15480 }
15481
15482 /* Create a new member function field and add it to the vector of
15483 fnfieldlists. */
15484 flp->fnfields.emplace_back ();
15485 fnp = &flp->fnfields.back ();
15486
15487 /* Delay processing of the physname until later. */
15488 if (cu->language == language_cplus)
15489 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15490 die, cu);
15491 else
15492 {
15493 const char *physname = dwarf2_physname (fieldname, die, cu);
15494 fnp->physname = physname ? physname : "";
15495 }
15496
15497 fnp->type = alloc_type (objfile);
15498 this_type = read_type_die (die, cu);
15499 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15500 {
15501 int nparams = TYPE_NFIELDS (this_type);
15502
15503 /* TYPE is the domain of this method, and THIS_TYPE is the type
15504 of the method itself (TYPE_CODE_METHOD). */
15505 smash_to_method_type (fnp->type, type,
15506 TYPE_TARGET_TYPE (this_type),
15507 TYPE_FIELDS (this_type),
15508 TYPE_NFIELDS (this_type),
15509 TYPE_VARARGS (this_type));
15510
15511 /* Handle static member functions.
15512 Dwarf2 has no clean way to discern C++ static and non-static
15513 member functions. G++ helps GDB by marking the first
15514 parameter for non-static member functions (which is the this
15515 pointer) as artificial. We obtain this information from
15516 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15517 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15518 fnp->voffset = VOFFSET_STATIC;
15519 }
15520 else
15521 complaint (_("member function type missing for '%s'"),
15522 dwarf2_full_name (fieldname, die, cu));
15523
15524 /* Get fcontext from DW_AT_containing_type if present. */
15525 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15526 fnp->fcontext = die_containing_type (die, cu);
15527
15528 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15529 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15530
15531 /* Get accessibility. */
15532 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15533 if (attr)
15534 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15535 else
15536 accessibility = dwarf2_default_access_attribute (die, cu);
15537 switch (accessibility)
15538 {
15539 case DW_ACCESS_private:
15540 fnp->is_private = 1;
15541 break;
15542 case DW_ACCESS_protected:
15543 fnp->is_protected = 1;
15544 break;
15545 }
15546
15547 /* Check for artificial methods. */
15548 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15549 if (attr && DW_UNSND (attr) != 0)
15550 fnp->is_artificial = 1;
15551
15552 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15553
15554 /* Get index in virtual function table if it is a virtual member
15555 function. For older versions of GCC, this is an offset in the
15556 appropriate virtual table, as specified by DW_AT_containing_type.
15557 For everyone else, it is an expression to be evaluated relative
15558 to the object address. */
15559
15560 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15561 if (attr)
15562 {
15563 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15564 {
15565 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15566 {
15567 /* Old-style GCC. */
15568 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15569 }
15570 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15571 || (DW_BLOCK (attr)->size > 1
15572 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15573 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15574 {
15575 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15576 if ((fnp->voffset % cu->header.addr_size) != 0)
15577 dwarf2_complex_location_expr_complaint ();
15578 else
15579 fnp->voffset /= cu->header.addr_size;
15580 fnp->voffset += 2;
15581 }
15582 else
15583 dwarf2_complex_location_expr_complaint ();
15584
15585 if (!fnp->fcontext)
15586 {
15587 /* If there is no `this' field and no DW_AT_containing_type,
15588 we cannot actually find a base class context for the
15589 vtable! */
15590 if (TYPE_NFIELDS (this_type) == 0
15591 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15592 {
15593 complaint (_("cannot determine context for virtual member "
15594 "function \"%s\" (offset %s)"),
15595 fieldname, sect_offset_str (die->sect_off));
15596 }
15597 else
15598 {
15599 fnp->fcontext
15600 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15601 }
15602 }
15603 }
15604 else if (attr_form_is_section_offset (attr))
15605 {
15606 dwarf2_complex_location_expr_complaint ();
15607 }
15608 else
15609 {
15610 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15611 fieldname);
15612 }
15613 }
15614 else
15615 {
15616 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15617 if (attr && DW_UNSND (attr))
15618 {
15619 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15620 complaint (_("Member function \"%s\" (offset %s) is virtual "
15621 "but the vtable offset is not specified"),
15622 fieldname, sect_offset_str (die->sect_off));
15623 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15624 TYPE_CPLUS_DYNAMIC (type) = 1;
15625 }
15626 }
15627 }
15628
15629 /* Create the vector of member function fields, and attach it to the type. */
15630
15631 static void
15632 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15633 struct dwarf2_cu *cu)
15634 {
15635 if (cu->language == language_ada)
15636 error (_("unexpected member functions in Ada type"));
15637
15638 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15639 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15640 TYPE_ALLOC (type,
15641 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15642
15643 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15644 {
15645 struct fnfieldlist &nf = fip->fnfieldlists[i];
15646 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15647
15648 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15649 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15650 fn_flp->fn_fields = (struct fn_field *)
15651 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15652
15653 for (int k = 0; k < nf.fnfields.size (); ++k)
15654 fn_flp->fn_fields[k] = nf.fnfields[k];
15655 }
15656
15657 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15658 }
15659
15660 /* Returns non-zero if NAME is the name of a vtable member in CU's
15661 language, zero otherwise. */
15662 static int
15663 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15664 {
15665 static const char vptr[] = "_vptr";
15666
15667 /* Look for the C++ form of the vtable. */
15668 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15669 return 1;
15670
15671 return 0;
15672 }
15673
15674 /* GCC outputs unnamed structures that are really pointers to member
15675 functions, with the ABI-specified layout. If TYPE describes
15676 such a structure, smash it into a member function type.
15677
15678 GCC shouldn't do this; it should just output pointer to member DIEs.
15679 This is GCC PR debug/28767. */
15680
15681 static void
15682 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15683 {
15684 struct type *pfn_type, *self_type, *new_type;
15685
15686 /* Check for a structure with no name and two children. */
15687 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15688 return;
15689
15690 /* Check for __pfn and __delta members. */
15691 if (TYPE_FIELD_NAME (type, 0) == NULL
15692 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15693 || TYPE_FIELD_NAME (type, 1) == NULL
15694 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15695 return;
15696
15697 /* Find the type of the method. */
15698 pfn_type = TYPE_FIELD_TYPE (type, 0);
15699 if (pfn_type == NULL
15700 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15701 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15702 return;
15703
15704 /* Look for the "this" argument. */
15705 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15706 if (TYPE_NFIELDS (pfn_type) == 0
15707 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15708 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15709 return;
15710
15711 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15712 new_type = alloc_type (objfile);
15713 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15714 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15715 TYPE_VARARGS (pfn_type));
15716 smash_to_methodptr_type (type, new_type);
15717 }
15718
15719 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15720 appropriate error checking and issuing complaints if there is a
15721 problem. */
15722
15723 static ULONGEST
15724 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15725 {
15726 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15727
15728 if (attr == nullptr)
15729 return 0;
15730
15731 if (!attr_form_is_constant (attr))
15732 {
15733 complaint (_("DW_AT_alignment must have constant form"
15734 " - DIE at %s [in module %s]"),
15735 sect_offset_str (die->sect_off),
15736 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15737 return 0;
15738 }
15739
15740 ULONGEST align;
15741 if (attr->form == DW_FORM_sdata)
15742 {
15743 LONGEST val = DW_SND (attr);
15744 if (val < 0)
15745 {
15746 complaint (_("DW_AT_alignment value must not be negative"
15747 " - DIE at %s [in module %s]"),
15748 sect_offset_str (die->sect_off),
15749 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15750 return 0;
15751 }
15752 align = val;
15753 }
15754 else
15755 align = DW_UNSND (attr);
15756
15757 if (align == 0)
15758 {
15759 complaint (_("DW_AT_alignment value must not be zero"
15760 " - DIE at %s [in module %s]"),
15761 sect_offset_str (die->sect_off),
15762 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15763 return 0;
15764 }
15765 if ((align & (align - 1)) != 0)
15766 {
15767 complaint (_("DW_AT_alignment value must be a power of 2"
15768 " - DIE at %s [in module %s]"),
15769 sect_offset_str (die->sect_off),
15770 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15771 return 0;
15772 }
15773
15774 return align;
15775 }
15776
15777 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15778 the alignment for TYPE. */
15779
15780 static void
15781 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15782 struct type *type)
15783 {
15784 if (!set_type_align (type, get_alignment (cu, die)))
15785 complaint (_("DW_AT_alignment value too large"
15786 " - DIE at %s [in module %s]"),
15787 sect_offset_str (die->sect_off),
15788 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15789 }
15790
15791 /* Called when we find the DIE that starts a structure or union scope
15792 (definition) to create a type for the structure or union. Fill in
15793 the type's name and general properties; the members will not be
15794 processed until process_structure_scope. A symbol table entry for
15795 the type will also not be done until process_structure_scope (assuming
15796 the type has a name).
15797
15798 NOTE: we need to call these functions regardless of whether or not the
15799 DIE has a DW_AT_name attribute, since it might be an anonymous
15800 structure or union. This gets the type entered into our set of
15801 user defined types. */
15802
15803 static struct type *
15804 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15805 {
15806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15807 struct type *type;
15808 struct attribute *attr;
15809 const char *name;
15810
15811 /* If the definition of this type lives in .debug_types, read that type.
15812 Don't follow DW_AT_specification though, that will take us back up
15813 the chain and we want to go down. */
15814 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15815 if (attr)
15816 {
15817 type = get_DW_AT_signature_type (die, attr, cu);
15818
15819 /* The type's CU may not be the same as CU.
15820 Ensure TYPE is recorded with CU in die_type_hash. */
15821 return set_die_type (die, type, cu);
15822 }
15823
15824 type = alloc_type (objfile);
15825 INIT_CPLUS_SPECIFIC (type);
15826
15827 name = dwarf2_name (die, cu);
15828 if (name != NULL)
15829 {
15830 if (cu->language == language_cplus
15831 || cu->language == language_d
15832 || cu->language == language_rust)
15833 {
15834 const char *full_name = dwarf2_full_name (name, die, cu);
15835
15836 /* dwarf2_full_name might have already finished building the DIE's
15837 type. If so, there is no need to continue. */
15838 if (get_die_type (die, cu) != NULL)
15839 return get_die_type (die, cu);
15840
15841 TYPE_NAME (type) = full_name;
15842 }
15843 else
15844 {
15845 /* The name is already allocated along with this objfile, so
15846 we don't need to duplicate it for the type. */
15847 TYPE_NAME (type) = name;
15848 }
15849 }
15850
15851 if (die->tag == DW_TAG_structure_type)
15852 {
15853 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15854 }
15855 else if (die->tag == DW_TAG_union_type)
15856 {
15857 TYPE_CODE (type) = TYPE_CODE_UNION;
15858 }
15859 else if (die->tag == DW_TAG_variant_part)
15860 {
15861 TYPE_CODE (type) = TYPE_CODE_UNION;
15862 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15863 }
15864 else
15865 {
15866 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15867 }
15868
15869 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15870 TYPE_DECLARED_CLASS (type) = 1;
15871
15872 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15873 if (attr)
15874 {
15875 if (attr_form_is_constant (attr))
15876 TYPE_LENGTH (type) = DW_UNSND (attr);
15877 else
15878 {
15879 /* For the moment, dynamic type sizes are not supported
15880 by GDB's struct type. The actual size is determined
15881 on-demand when resolving the type of a given object,
15882 so set the type's length to zero for now. Otherwise,
15883 we record an expression as the length, and that expression
15884 could lead to a very large value, which could eventually
15885 lead to us trying to allocate that much memory when creating
15886 a value of that type. */
15887 TYPE_LENGTH (type) = 0;
15888 }
15889 }
15890 else
15891 {
15892 TYPE_LENGTH (type) = 0;
15893 }
15894
15895 maybe_set_alignment (cu, die, type);
15896
15897 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15898 {
15899 /* ICC<14 does not output the required DW_AT_declaration on
15900 incomplete types, but gives them a size of zero. */
15901 TYPE_STUB (type) = 1;
15902 }
15903 else
15904 TYPE_STUB_SUPPORTED (type) = 1;
15905
15906 if (die_is_declaration (die, cu))
15907 TYPE_STUB (type) = 1;
15908 else if (attr == NULL && die->child == NULL
15909 && producer_is_realview (cu->producer))
15910 /* RealView does not output the required DW_AT_declaration
15911 on incomplete types. */
15912 TYPE_STUB (type) = 1;
15913
15914 /* We need to add the type field to the die immediately so we don't
15915 infinitely recurse when dealing with pointers to the structure
15916 type within the structure itself. */
15917 set_die_type (die, type, cu);
15918
15919 /* set_die_type should be already done. */
15920 set_descriptive_type (type, die, cu);
15921
15922 return type;
15923 }
15924
15925 /* A helper for process_structure_scope that handles a single member
15926 DIE. */
15927
15928 static void
15929 handle_struct_member_die (struct die_info *child_die, struct type *type,
15930 struct field_info *fi,
15931 std::vector<struct symbol *> *template_args,
15932 struct dwarf2_cu *cu)
15933 {
15934 if (child_die->tag == DW_TAG_member
15935 || child_die->tag == DW_TAG_variable
15936 || child_die->tag == DW_TAG_variant_part)
15937 {
15938 /* NOTE: carlton/2002-11-05: A C++ static data member
15939 should be a DW_TAG_member that is a declaration, but
15940 all versions of G++ as of this writing (so through at
15941 least 3.2.1) incorrectly generate DW_TAG_variable
15942 tags for them instead. */
15943 dwarf2_add_field (fi, child_die, cu);
15944 }
15945 else if (child_die->tag == DW_TAG_subprogram)
15946 {
15947 /* Rust doesn't have member functions in the C++ sense.
15948 However, it does emit ordinary functions as children
15949 of a struct DIE. */
15950 if (cu->language == language_rust)
15951 read_func_scope (child_die, cu);
15952 else
15953 {
15954 /* C++ member function. */
15955 dwarf2_add_member_fn (fi, child_die, type, cu);
15956 }
15957 }
15958 else if (child_die->tag == DW_TAG_inheritance)
15959 {
15960 /* C++ base class field. */
15961 dwarf2_add_field (fi, child_die, cu);
15962 }
15963 else if (type_can_define_types (child_die))
15964 dwarf2_add_type_defn (fi, child_die, cu);
15965 else if (child_die->tag == DW_TAG_template_type_param
15966 || child_die->tag == DW_TAG_template_value_param)
15967 {
15968 struct symbol *arg = new_symbol (child_die, NULL, cu);
15969
15970 if (arg != NULL)
15971 template_args->push_back (arg);
15972 }
15973 else if (child_die->tag == DW_TAG_variant)
15974 {
15975 /* In a variant we want to get the discriminant and also add a
15976 field for our sole member child. */
15977 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15978
15979 for (die_info *variant_child = child_die->child;
15980 variant_child != NULL;
15981 variant_child = sibling_die (variant_child))
15982 {
15983 if (variant_child->tag == DW_TAG_member)
15984 {
15985 handle_struct_member_die (variant_child, type, fi,
15986 template_args, cu);
15987 /* Only handle the one. */
15988 break;
15989 }
15990 }
15991
15992 /* We don't handle this but we might as well report it if we see
15993 it. */
15994 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15995 complaint (_("DW_AT_discr_list is not supported yet"
15996 " - DIE at %s [in module %s]"),
15997 sect_offset_str (child_die->sect_off),
15998 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15999
16000 /* The first field was just added, so we can stash the
16001 discriminant there. */
16002 gdb_assert (!fi->fields.empty ());
16003 if (discr == NULL)
16004 fi->fields.back ().variant.default_branch = true;
16005 else
16006 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16007 }
16008 }
16009
16010 /* Finish creating a structure or union type, including filling in
16011 its members and creating a symbol for it. */
16012
16013 static void
16014 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16015 {
16016 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16017 struct die_info *child_die;
16018 struct type *type;
16019
16020 type = get_die_type (die, cu);
16021 if (type == NULL)
16022 type = read_structure_type (die, cu);
16023
16024 /* When reading a DW_TAG_variant_part, we need to notice when we
16025 read the discriminant member, so we can record it later in the
16026 discriminant_info. */
16027 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16028 sect_offset discr_offset;
16029 bool has_template_parameters = false;
16030
16031 if (is_variant_part)
16032 {
16033 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16034 if (discr == NULL)
16035 {
16036 /* Maybe it's a univariant form, an extension we support.
16037 In this case arrange not to check the offset. */
16038 is_variant_part = false;
16039 }
16040 else if (attr_form_is_ref (discr))
16041 {
16042 struct dwarf2_cu *target_cu = cu;
16043 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16044
16045 discr_offset = target_die->sect_off;
16046 }
16047 else
16048 {
16049 complaint (_("DW_AT_discr does not have DIE reference form"
16050 " - DIE at %s [in module %s]"),
16051 sect_offset_str (die->sect_off),
16052 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16053 is_variant_part = false;
16054 }
16055 }
16056
16057 if (die->child != NULL && ! die_is_declaration (die, cu))
16058 {
16059 struct field_info fi;
16060 std::vector<struct symbol *> template_args;
16061
16062 child_die = die->child;
16063
16064 while (child_die && child_die->tag)
16065 {
16066 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16067
16068 if (is_variant_part && discr_offset == child_die->sect_off)
16069 fi.fields.back ().variant.is_discriminant = true;
16070
16071 child_die = sibling_die (child_die);
16072 }
16073
16074 /* Attach template arguments to type. */
16075 if (!template_args.empty ())
16076 {
16077 has_template_parameters = true;
16078 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16079 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16080 TYPE_TEMPLATE_ARGUMENTS (type)
16081 = XOBNEWVEC (&objfile->objfile_obstack,
16082 struct symbol *,
16083 TYPE_N_TEMPLATE_ARGUMENTS (type));
16084 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16085 template_args.data (),
16086 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16087 * sizeof (struct symbol *)));
16088 }
16089
16090 /* Attach fields and member functions to the type. */
16091 if (fi.nfields)
16092 dwarf2_attach_fields_to_type (&fi, type, cu);
16093 if (!fi.fnfieldlists.empty ())
16094 {
16095 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16096
16097 /* Get the type which refers to the base class (possibly this
16098 class itself) which contains the vtable pointer for the current
16099 class from the DW_AT_containing_type attribute. This use of
16100 DW_AT_containing_type is a GNU extension. */
16101
16102 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16103 {
16104 struct type *t = die_containing_type (die, cu);
16105
16106 set_type_vptr_basetype (type, t);
16107 if (type == t)
16108 {
16109 int i;
16110
16111 /* Our own class provides vtbl ptr. */
16112 for (i = TYPE_NFIELDS (t) - 1;
16113 i >= TYPE_N_BASECLASSES (t);
16114 --i)
16115 {
16116 const char *fieldname = TYPE_FIELD_NAME (t, i);
16117
16118 if (is_vtable_name (fieldname, cu))
16119 {
16120 set_type_vptr_fieldno (type, i);
16121 break;
16122 }
16123 }
16124
16125 /* Complain if virtual function table field not found. */
16126 if (i < TYPE_N_BASECLASSES (t))
16127 complaint (_("virtual function table pointer "
16128 "not found when defining class '%s'"),
16129 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16130 }
16131 else
16132 {
16133 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16134 }
16135 }
16136 else if (cu->producer
16137 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16138 {
16139 /* The IBM XLC compiler does not provide direct indication
16140 of the containing type, but the vtable pointer is
16141 always named __vfp. */
16142
16143 int i;
16144
16145 for (i = TYPE_NFIELDS (type) - 1;
16146 i >= TYPE_N_BASECLASSES (type);
16147 --i)
16148 {
16149 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16150 {
16151 set_type_vptr_fieldno (type, i);
16152 set_type_vptr_basetype (type, type);
16153 break;
16154 }
16155 }
16156 }
16157 }
16158
16159 /* Copy fi.typedef_field_list linked list elements content into the
16160 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16161 if (!fi.typedef_field_list.empty ())
16162 {
16163 int count = fi.typedef_field_list.size ();
16164
16165 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16166 TYPE_TYPEDEF_FIELD_ARRAY (type)
16167 = ((struct decl_field *)
16168 TYPE_ALLOC (type,
16169 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16170 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16171
16172 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16173 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16174 }
16175
16176 /* Copy fi.nested_types_list linked list elements content into the
16177 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16178 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16179 {
16180 int count = fi.nested_types_list.size ();
16181
16182 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16183 TYPE_NESTED_TYPES_ARRAY (type)
16184 = ((struct decl_field *)
16185 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16186 TYPE_NESTED_TYPES_COUNT (type) = count;
16187
16188 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16189 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16190 }
16191 }
16192
16193 quirk_gcc_member_function_pointer (type, objfile);
16194 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16195 cu->rust_unions.push_back (type);
16196
16197 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16198 snapshots) has been known to create a die giving a declaration
16199 for a class that has, as a child, a die giving a definition for a
16200 nested class. So we have to process our children even if the
16201 current die is a declaration. Normally, of course, a declaration
16202 won't have any children at all. */
16203
16204 child_die = die->child;
16205
16206 while (child_die != NULL && child_die->tag)
16207 {
16208 if (child_die->tag == DW_TAG_member
16209 || child_die->tag == DW_TAG_variable
16210 || child_die->tag == DW_TAG_inheritance
16211 || child_die->tag == DW_TAG_template_value_param
16212 || child_die->tag == DW_TAG_template_type_param)
16213 {
16214 /* Do nothing. */
16215 }
16216 else
16217 process_die (child_die, cu);
16218
16219 child_die = sibling_die (child_die);
16220 }
16221
16222 /* Do not consider external references. According to the DWARF standard,
16223 these DIEs are identified by the fact that they have no byte_size
16224 attribute, and a declaration attribute. */
16225 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16226 || !die_is_declaration (die, cu))
16227 {
16228 struct symbol *sym = new_symbol (die, type, cu);
16229
16230 if (has_template_parameters)
16231 {
16232 struct symtab *symtab;
16233 if (sym != nullptr)
16234 symtab = symbol_symtab (sym);
16235 else if (cu->line_header != nullptr)
16236 {
16237 /* Any related symtab will do. */
16238 symtab
16239 = cu->line_header->file_names ()[0].symtab;
16240 }
16241 else
16242 {
16243 symtab = nullptr;
16244 complaint (_("could not find suitable "
16245 "symtab for template parameter"
16246 " - DIE at %s [in module %s]"),
16247 sect_offset_str (die->sect_off),
16248 objfile_name (objfile));
16249 }
16250
16251 if (symtab != nullptr)
16252 {
16253 /* Make sure that the symtab is set on the new symbols.
16254 Even though they don't appear in this symtab directly,
16255 other parts of gdb assume that symbols do, and this is
16256 reasonably true. */
16257 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16258 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16259 }
16260 }
16261 }
16262 }
16263
16264 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16265 update TYPE using some information only available in DIE's children. */
16266
16267 static void
16268 update_enumeration_type_from_children (struct die_info *die,
16269 struct type *type,
16270 struct dwarf2_cu *cu)
16271 {
16272 struct die_info *child_die;
16273 int unsigned_enum = 1;
16274 int flag_enum = 1;
16275 ULONGEST mask = 0;
16276
16277 auto_obstack obstack;
16278
16279 for (child_die = die->child;
16280 child_die != NULL && child_die->tag;
16281 child_die = sibling_die (child_die))
16282 {
16283 struct attribute *attr;
16284 LONGEST value;
16285 const gdb_byte *bytes;
16286 struct dwarf2_locexpr_baton *baton;
16287 const char *name;
16288
16289 if (child_die->tag != DW_TAG_enumerator)
16290 continue;
16291
16292 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16293 if (attr == NULL)
16294 continue;
16295
16296 name = dwarf2_name (child_die, cu);
16297 if (name == NULL)
16298 name = "<anonymous enumerator>";
16299
16300 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16301 &value, &bytes, &baton);
16302 if (value < 0)
16303 {
16304 unsigned_enum = 0;
16305 flag_enum = 0;
16306 }
16307 else if ((mask & value) != 0)
16308 flag_enum = 0;
16309 else
16310 mask |= value;
16311
16312 /* If we already know that the enum type is neither unsigned, nor
16313 a flag type, no need to look at the rest of the enumerates. */
16314 if (!unsigned_enum && !flag_enum)
16315 break;
16316 }
16317
16318 if (unsigned_enum)
16319 TYPE_UNSIGNED (type) = 1;
16320 if (flag_enum)
16321 TYPE_FLAG_ENUM (type) = 1;
16322 }
16323
16324 /* Given a DW_AT_enumeration_type die, set its type. We do not
16325 complete the type's fields yet, or create any symbols. */
16326
16327 static struct type *
16328 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16329 {
16330 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16331 struct type *type;
16332 struct attribute *attr;
16333 const char *name;
16334
16335 /* If the definition of this type lives in .debug_types, read that type.
16336 Don't follow DW_AT_specification though, that will take us back up
16337 the chain and we want to go down. */
16338 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16339 if (attr)
16340 {
16341 type = get_DW_AT_signature_type (die, attr, cu);
16342
16343 /* The type's CU may not be the same as CU.
16344 Ensure TYPE is recorded with CU in die_type_hash. */
16345 return set_die_type (die, type, cu);
16346 }
16347
16348 type = alloc_type (objfile);
16349
16350 TYPE_CODE (type) = TYPE_CODE_ENUM;
16351 name = dwarf2_full_name (NULL, die, cu);
16352 if (name != NULL)
16353 TYPE_NAME (type) = name;
16354
16355 attr = dwarf2_attr (die, DW_AT_type, cu);
16356 if (attr != NULL)
16357 {
16358 struct type *underlying_type = die_type (die, cu);
16359
16360 TYPE_TARGET_TYPE (type) = underlying_type;
16361 }
16362
16363 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16364 if (attr)
16365 {
16366 TYPE_LENGTH (type) = DW_UNSND (attr);
16367 }
16368 else
16369 {
16370 TYPE_LENGTH (type) = 0;
16371 }
16372
16373 maybe_set_alignment (cu, die, type);
16374
16375 /* The enumeration DIE can be incomplete. In Ada, any type can be
16376 declared as private in the package spec, and then defined only
16377 inside the package body. Such types are known as Taft Amendment
16378 Types. When another package uses such a type, an incomplete DIE
16379 may be generated by the compiler. */
16380 if (die_is_declaration (die, cu))
16381 TYPE_STUB (type) = 1;
16382
16383 /* Finish the creation of this type by using the enum's children.
16384 We must call this even when the underlying type has been provided
16385 so that we can determine if we're looking at a "flag" enum. */
16386 update_enumeration_type_from_children (die, type, cu);
16387
16388 /* If this type has an underlying type that is not a stub, then we
16389 may use its attributes. We always use the "unsigned" attribute
16390 in this situation, because ordinarily we guess whether the type
16391 is unsigned -- but the guess can be wrong and the underlying type
16392 can tell us the reality. However, we defer to a local size
16393 attribute if one exists, because this lets the compiler override
16394 the underlying type if needed. */
16395 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16396 {
16397 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16398 if (TYPE_LENGTH (type) == 0)
16399 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16400 if (TYPE_RAW_ALIGN (type) == 0
16401 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16402 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16403 }
16404
16405 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16406
16407 return set_die_type (die, type, cu);
16408 }
16409
16410 /* Given a pointer to a die which begins an enumeration, process all
16411 the dies that define the members of the enumeration, and create the
16412 symbol for the enumeration type.
16413
16414 NOTE: We reverse the order of the element list. */
16415
16416 static void
16417 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16418 {
16419 struct type *this_type;
16420
16421 this_type = get_die_type (die, cu);
16422 if (this_type == NULL)
16423 this_type = read_enumeration_type (die, cu);
16424
16425 if (die->child != NULL)
16426 {
16427 struct die_info *child_die;
16428 struct symbol *sym;
16429 struct field *fields = NULL;
16430 int num_fields = 0;
16431 const char *name;
16432
16433 child_die = die->child;
16434 while (child_die && child_die->tag)
16435 {
16436 if (child_die->tag != DW_TAG_enumerator)
16437 {
16438 process_die (child_die, cu);
16439 }
16440 else
16441 {
16442 name = dwarf2_name (child_die, cu);
16443 if (name)
16444 {
16445 sym = new_symbol (child_die, this_type, cu);
16446
16447 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16448 {
16449 fields = (struct field *)
16450 xrealloc (fields,
16451 (num_fields + DW_FIELD_ALLOC_CHUNK)
16452 * sizeof (struct field));
16453 }
16454
16455 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16456 FIELD_TYPE (fields[num_fields]) = NULL;
16457 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16458 FIELD_BITSIZE (fields[num_fields]) = 0;
16459
16460 num_fields++;
16461 }
16462 }
16463
16464 child_die = sibling_die (child_die);
16465 }
16466
16467 if (num_fields)
16468 {
16469 TYPE_NFIELDS (this_type) = num_fields;
16470 TYPE_FIELDS (this_type) = (struct field *)
16471 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16472 memcpy (TYPE_FIELDS (this_type), fields,
16473 sizeof (struct field) * num_fields);
16474 xfree (fields);
16475 }
16476 }
16477
16478 /* If we are reading an enum from a .debug_types unit, and the enum
16479 is a declaration, and the enum is not the signatured type in the
16480 unit, then we do not want to add a symbol for it. Adding a
16481 symbol would in some cases obscure the true definition of the
16482 enum, giving users an incomplete type when the definition is
16483 actually available. Note that we do not want to do this for all
16484 enums which are just declarations, because C++0x allows forward
16485 enum declarations. */
16486 if (cu->per_cu->is_debug_types
16487 && die_is_declaration (die, cu))
16488 {
16489 struct signatured_type *sig_type;
16490
16491 sig_type = (struct signatured_type *) cu->per_cu;
16492 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16493 if (sig_type->type_offset_in_section != die->sect_off)
16494 return;
16495 }
16496
16497 new_symbol (die, this_type, cu);
16498 }
16499
16500 /* Extract all information from a DW_TAG_array_type DIE and put it in
16501 the DIE's type field. For now, this only handles one dimensional
16502 arrays. */
16503
16504 static struct type *
16505 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16506 {
16507 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16508 struct die_info *child_die;
16509 struct type *type;
16510 struct type *element_type, *range_type, *index_type;
16511 struct attribute *attr;
16512 const char *name;
16513 struct dynamic_prop *byte_stride_prop = NULL;
16514 unsigned int bit_stride = 0;
16515
16516 element_type = die_type (die, cu);
16517
16518 /* The die_type call above may have already set the type for this DIE. */
16519 type = get_die_type (die, cu);
16520 if (type)
16521 return type;
16522
16523 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16524 if (attr != NULL)
16525 {
16526 int stride_ok;
16527 struct type *prop_type
16528 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16529
16530 byte_stride_prop
16531 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16532 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16533 prop_type);
16534 if (!stride_ok)
16535 {
16536 complaint (_("unable to read array DW_AT_byte_stride "
16537 " - DIE at %s [in module %s]"),
16538 sect_offset_str (die->sect_off),
16539 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16540 /* Ignore this attribute. We will likely not be able to print
16541 arrays of this type correctly, but there is little we can do
16542 to help if we cannot read the attribute's value. */
16543 byte_stride_prop = NULL;
16544 }
16545 }
16546
16547 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16548 if (attr != NULL)
16549 bit_stride = DW_UNSND (attr);
16550
16551 /* Irix 6.2 native cc creates array types without children for
16552 arrays with unspecified length. */
16553 if (die->child == NULL)
16554 {
16555 index_type = objfile_type (objfile)->builtin_int;
16556 range_type = create_static_range_type (NULL, index_type, 0, -1);
16557 type = create_array_type_with_stride (NULL, element_type, range_type,
16558 byte_stride_prop, bit_stride);
16559 return set_die_type (die, type, cu);
16560 }
16561
16562 std::vector<struct type *> range_types;
16563 child_die = die->child;
16564 while (child_die && child_die->tag)
16565 {
16566 if (child_die->tag == DW_TAG_subrange_type)
16567 {
16568 struct type *child_type = read_type_die (child_die, cu);
16569
16570 if (child_type != NULL)
16571 {
16572 /* The range type was succesfully read. Save it for the
16573 array type creation. */
16574 range_types.push_back (child_type);
16575 }
16576 }
16577 child_die = sibling_die (child_die);
16578 }
16579
16580 /* Dwarf2 dimensions are output from left to right, create the
16581 necessary array types in backwards order. */
16582
16583 type = element_type;
16584
16585 if (read_array_order (die, cu) == DW_ORD_col_major)
16586 {
16587 int i = 0;
16588
16589 while (i < range_types.size ())
16590 type = create_array_type_with_stride (NULL, type, range_types[i++],
16591 byte_stride_prop, bit_stride);
16592 }
16593 else
16594 {
16595 size_t ndim = range_types.size ();
16596 while (ndim-- > 0)
16597 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16598 byte_stride_prop, bit_stride);
16599 }
16600
16601 /* Understand Dwarf2 support for vector types (like they occur on
16602 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16603 array type. This is not part of the Dwarf2/3 standard yet, but a
16604 custom vendor extension. The main difference between a regular
16605 array and the vector variant is that vectors are passed by value
16606 to functions. */
16607 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16608 if (attr)
16609 make_vector_type (type);
16610
16611 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16612 implementation may choose to implement triple vectors using this
16613 attribute. */
16614 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16615 if (attr)
16616 {
16617 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16618 TYPE_LENGTH (type) = DW_UNSND (attr);
16619 else
16620 complaint (_("DW_AT_byte_size for array type smaller "
16621 "than the total size of elements"));
16622 }
16623
16624 name = dwarf2_name (die, cu);
16625 if (name)
16626 TYPE_NAME (type) = name;
16627
16628 maybe_set_alignment (cu, die, type);
16629
16630 /* Install the type in the die. */
16631 set_die_type (die, type, cu);
16632
16633 /* set_die_type should be already done. */
16634 set_descriptive_type (type, die, cu);
16635
16636 return type;
16637 }
16638
16639 static enum dwarf_array_dim_ordering
16640 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16641 {
16642 struct attribute *attr;
16643
16644 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16645
16646 if (attr)
16647 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16648
16649 /* GNU F77 is a special case, as at 08/2004 array type info is the
16650 opposite order to the dwarf2 specification, but data is still
16651 laid out as per normal fortran.
16652
16653 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16654 version checking. */
16655
16656 if (cu->language == language_fortran
16657 && cu->producer && strstr (cu->producer, "GNU F77"))
16658 {
16659 return DW_ORD_row_major;
16660 }
16661
16662 switch (cu->language_defn->la_array_ordering)
16663 {
16664 case array_column_major:
16665 return DW_ORD_col_major;
16666 case array_row_major:
16667 default:
16668 return DW_ORD_row_major;
16669 };
16670 }
16671
16672 /* Extract all information from a DW_TAG_set_type DIE and put it in
16673 the DIE's type field. */
16674
16675 static struct type *
16676 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16677 {
16678 struct type *domain_type, *set_type;
16679 struct attribute *attr;
16680
16681 domain_type = die_type (die, cu);
16682
16683 /* The die_type call above may have already set the type for this DIE. */
16684 set_type = get_die_type (die, cu);
16685 if (set_type)
16686 return set_type;
16687
16688 set_type = create_set_type (NULL, domain_type);
16689
16690 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16691 if (attr)
16692 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16693
16694 maybe_set_alignment (cu, die, set_type);
16695
16696 return set_die_type (die, set_type, cu);
16697 }
16698
16699 /* A helper for read_common_block that creates a locexpr baton.
16700 SYM is the symbol which we are marking as computed.
16701 COMMON_DIE is the DIE for the common block.
16702 COMMON_LOC is the location expression attribute for the common
16703 block itself.
16704 MEMBER_LOC is the location expression attribute for the particular
16705 member of the common block that we are processing.
16706 CU is the CU from which the above come. */
16707
16708 static void
16709 mark_common_block_symbol_computed (struct symbol *sym,
16710 struct die_info *common_die,
16711 struct attribute *common_loc,
16712 struct attribute *member_loc,
16713 struct dwarf2_cu *cu)
16714 {
16715 struct dwarf2_per_objfile *dwarf2_per_objfile
16716 = cu->per_cu->dwarf2_per_objfile;
16717 struct objfile *objfile = dwarf2_per_objfile->objfile;
16718 struct dwarf2_locexpr_baton *baton;
16719 gdb_byte *ptr;
16720 unsigned int cu_off;
16721 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16722 LONGEST offset = 0;
16723
16724 gdb_assert (common_loc && member_loc);
16725 gdb_assert (attr_form_is_block (common_loc));
16726 gdb_assert (attr_form_is_block (member_loc)
16727 || attr_form_is_constant (member_loc));
16728
16729 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16730 baton->per_cu = cu->per_cu;
16731 gdb_assert (baton->per_cu);
16732
16733 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16734
16735 if (attr_form_is_constant (member_loc))
16736 {
16737 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16738 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16739 }
16740 else
16741 baton->size += DW_BLOCK (member_loc)->size;
16742
16743 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16744 baton->data = ptr;
16745
16746 *ptr++ = DW_OP_call4;
16747 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16748 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16749 ptr += 4;
16750
16751 if (attr_form_is_constant (member_loc))
16752 {
16753 *ptr++ = DW_OP_addr;
16754 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16755 ptr += cu->header.addr_size;
16756 }
16757 else
16758 {
16759 /* We have to copy the data here, because DW_OP_call4 will only
16760 use a DW_AT_location attribute. */
16761 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16762 ptr += DW_BLOCK (member_loc)->size;
16763 }
16764
16765 *ptr++ = DW_OP_plus;
16766 gdb_assert (ptr - baton->data == baton->size);
16767
16768 SYMBOL_LOCATION_BATON (sym) = baton;
16769 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16770 }
16771
16772 /* Create appropriate locally-scoped variables for all the
16773 DW_TAG_common_block entries. Also create a struct common_block
16774 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16775 is used to separate the common blocks name namespace from regular
16776 variable names. */
16777
16778 static void
16779 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16780 {
16781 struct attribute *attr;
16782
16783 attr = dwarf2_attr (die, DW_AT_location, cu);
16784 if (attr)
16785 {
16786 /* Support the .debug_loc offsets. */
16787 if (attr_form_is_block (attr))
16788 {
16789 /* Ok. */
16790 }
16791 else if (attr_form_is_section_offset (attr))
16792 {
16793 dwarf2_complex_location_expr_complaint ();
16794 attr = NULL;
16795 }
16796 else
16797 {
16798 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16799 "common block member");
16800 attr = NULL;
16801 }
16802 }
16803
16804 if (die->child != NULL)
16805 {
16806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16807 struct die_info *child_die;
16808 size_t n_entries = 0, size;
16809 struct common_block *common_block;
16810 struct symbol *sym;
16811
16812 for (child_die = die->child;
16813 child_die && child_die->tag;
16814 child_die = sibling_die (child_die))
16815 ++n_entries;
16816
16817 size = (sizeof (struct common_block)
16818 + (n_entries - 1) * sizeof (struct symbol *));
16819 common_block
16820 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16821 size);
16822 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16823 common_block->n_entries = 0;
16824
16825 for (child_die = die->child;
16826 child_die && child_die->tag;
16827 child_die = sibling_die (child_die))
16828 {
16829 /* Create the symbol in the DW_TAG_common_block block in the current
16830 symbol scope. */
16831 sym = new_symbol (child_die, NULL, cu);
16832 if (sym != NULL)
16833 {
16834 struct attribute *member_loc;
16835
16836 common_block->contents[common_block->n_entries++] = sym;
16837
16838 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16839 cu);
16840 if (member_loc)
16841 {
16842 /* GDB has handled this for a long time, but it is
16843 not specified by DWARF. It seems to have been
16844 emitted by gfortran at least as recently as:
16845 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16846 complaint (_("Variable in common block has "
16847 "DW_AT_data_member_location "
16848 "- DIE at %s [in module %s]"),
16849 sect_offset_str (child_die->sect_off),
16850 objfile_name (objfile));
16851
16852 if (attr_form_is_section_offset (member_loc))
16853 dwarf2_complex_location_expr_complaint ();
16854 else if (attr_form_is_constant (member_loc)
16855 || attr_form_is_block (member_loc))
16856 {
16857 if (attr)
16858 mark_common_block_symbol_computed (sym, die, attr,
16859 member_loc, cu);
16860 }
16861 else
16862 dwarf2_complex_location_expr_complaint ();
16863 }
16864 }
16865 }
16866
16867 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16868 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16869 }
16870 }
16871
16872 /* Create a type for a C++ namespace. */
16873
16874 static struct type *
16875 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16876 {
16877 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16878 const char *previous_prefix, *name;
16879 int is_anonymous;
16880 struct type *type;
16881
16882 /* For extensions, reuse the type of the original namespace. */
16883 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16884 {
16885 struct die_info *ext_die;
16886 struct dwarf2_cu *ext_cu = cu;
16887
16888 ext_die = dwarf2_extension (die, &ext_cu);
16889 type = read_type_die (ext_die, ext_cu);
16890
16891 /* EXT_CU may not be the same as CU.
16892 Ensure TYPE is recorded with CU in die_type_hash. */
16893 return set_die_type (die, type, cu);
16894 }
16895
16896 name = namespace_name (die, &is_anonymous, cu);
16897
16898 /* Now build the name of the current namespace. */
16899
16900 previous_prefix = determine_prefix (die, cu);
16901 if (previous_prefix[0] != '\0')
16902 name = typename_concat (&objfile->objfile_obstack,
16903 previous_prefix, name, 0, cu);
16904
16905 /* Create the type. */
16906 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16907
16908 return set_die_type (die, type, cu);
16909 }
16910
16911 /* Read a namespace scope. */
16912
16913 static void
16914 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16915 {
16916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16917 int is_anonymous;
16918
16919 /* Add a symbol associated to this if we haven't seen the namespace
16920 before. Also, add a using directive if it's an anonymous
16921 namespace. */
16922
16923 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16924 {
16925 struct type *type;
16926
16927 type = read_type_die (die, cu);
16928 new_symbol (die, type, cu);
16929
16930 namespace_name (die, &is_anonymous, cu);
16931 if (is_anonymous)
16932 {
16933 const char *previous_prefix = determine_prefix (die, cu);
16934
16935 std::vector<const char *> excludes;
16936 add_using_directive (using_directives (cu),
16937 previous_prefix, TYPE_NAME (type), NULL,
16938 NULL, excludes, 0, &objfile->objfile_obstack);
16939 }
16940 }
16941
16942 if (die->child != NULL)
16943 {
16944 struct die_info *child_die = die->child;
16945
16946 while (child_die && child_die->tag)
16947 {
16948 process_die (child_die, cu);
16949 child_die = sibling_die (child_die);
16950 }
16951 }
16952 }
16953
16954 /* Read a Fortran module as type. This DIE can be only a declaration used for
16955 imported module. Still we need that type as local Fortran "use ... only"
16956 declaration imports depend on the created type in determine_prefix. */
16957
16958 static struct type *
16959 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16960 {
16961 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16962 const char *module_name;
16963 struct type *type;
16964
16965 module_name = dwarf2_name (die, cu);
16966 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16967
16968 return set_die_type (die, type, cu);
16969 }
16970
16971 /* Read a Fortran module. */
16972
16973 static void
16974 read_module (struct die_info *die, struct dwarf2_cu *cu)
16975 {
16976 struct die_info *child_die = die->child;
16977 struct type *type;
16978
16979 type = read_type_die (die, cu);
16980 new_symbol (die, type, cu);
16981
16982 while (child_die && child_die->tag)
16983 {
16984 process_die (child_die, cu);
16985 child_die = sibling_die (child_die);
16986 }
16987 }
16988
16989 /* Return the name of the namespace represented by DIE. Set
16990 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16991 namespace. */
16992
16993 static const char *
16994 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16995 {
16996 struct die_info *current_die;
16997 const char *name = NULL;
16998
16999 /* Loop through the extensions until we find a name. */
17000
17001 for (current_die = die;
17002 current_die != NULL;
17003 current_die = dwarf2_extension (die, &cu))
17004 {
17005 /* We don't use dwarf2_name here so that we can detect the absence
17006 of a name -> anonymous namespace. */
17007 name = dwarf2_string_attr (die, DW_AT_name, cu);
17008
17009 if (name != NULL)
17010 break;
17011 }
17012
17013 /* Is it an anonymous namespace? */
17014
17015 *is_anonymous = (name == NULL);
17016 if (*is_anonymous)
17017 name = CP_ANONYMOUS_NAMESPACE_STR;
17018
17019 return name;
17020 }
17021
17022 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17023 the user defined type vector. */
17024
17025 static struct type *
17026 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17027 {
17028 struct gdbarch *gdbarch
17029 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17030 struct comp_unit_head *cu_header = &cu->header;
17031 struct type *type;
17032 struct attribute *attr_byte_size;
17033 struct attribute *attr_address_class;
17034 int byte_size, addr_class;
17035 struct type *target_type;
17036
17037 target_type = die_type (die, cu);
17038
17039 /* The die_type call above may have already set the type for this DIE. */
17040 type = get_die_type (die, cu);
17041 if (type)
17042 return type;
17043
17044 type = lookup_pointer_type (target_type);
17045
17046 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17047 if (attr_byte_size)
17048 byte_size = DW_UNSND (attr_byte_size);
17049 else
17050 byte_size = cu_header->addr_size;
17051
17052 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17053 if (attr_address_class)
17054 addr_class = DW_UNSND (attr_address_class);
17055 else
17056 addr_class = DW_ADDR_none;
17057
17058 ULONGEST alignment = get_alignment (cu, die);
17059
17060 /* If the pointer size, alignment, or address class is different
17061 than the default, create a type variant marked as such and set
17062 the length accordingly. */
17063 if (TYPE_LENGTH (type) != byte_size
17064 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17065 && alignment != TYPE_RAW_ALIGN (type))
17066 || addr_class != DW_ADDR_none)
17067 {
17068 if (gdbarch_address_class_type_flags_p (gdbarch))
17069 {
17070 int type_flags;
17071
17072 type_flags = gdbarch_address_class_type_flags
17073 (gdbarch, byte_size, addr_class);
17074 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17075 == 0);
17076 type = make_type_with_address_space (type, type_flags);
17077 }
17078 else if (TYPE_LENGTH (type) != byte_size)
17079 {
17080 complaint (_("invalid pointer size %d"), byte_size);
17081 }
17082 else if (TYPE_RAW_ALIGN (type) != alignment)
17083 {
17084 complaint (_("Invalid DW_AT_alignment"
17085 " - DIE at %s [in module %s]"),
17086 sect_offset_str (die->sect_off),
17087 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17088 }
17089 else
17090 {
17091 /* Should we also complain about unhandled address classes? */
17092 }
17093 }
17094
17095 TYPE_LENGTH (type) = byte_size;
17096 set_type_align (type, alignment);
17097 return set_die_type (die, type, cu);
17098 }
17099
17100 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17101 the user defined type vector. */
17102
17103 static struct type *
17104 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17105 {
17106 struct type *type;
17107 struct type *to_type;
17108 struct type *domain;
17109
17110 to_type = die_type (die, cu);
17111 domain = die_containing_type (die, cu);
17112
17113 /* The calls above may have already set the type for this DIE. */
17114 type = get_die_type (die, cu);
17115 if (type)
17116 return type;
17117
17118 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17119 type = lookup_methodptr_type (to_type);
17120 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17121 {
17122 struct type *new_type
17123 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17124
17125 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17126 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17127 TYPE_VARARGS (to_type));
17128 type = lookup_methodptr_type (new_type);
17129 }
17130 else
17131 type = lookup_memberptr_type (to_type, domain);
17132
17133 return set_die_type (die, type, cu);
17134 }
17135
17136 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17137 the user defined type vector. */
17138
17139 static struct type *
17140 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17141 enum type_code refcode)
17142 {
17143 struct comp_unit_head *cu_header = &cu->header;
17144 struct type *type, *target_type;
17145 struct attribute *attr;
17146
17147 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17148
17149 target_type = die_type (die, cu);
17150
17151 /* The die_type call above may have already set the type for this DIE. */
17152 type = get_die_type (die, cu);
17153 if (type)
17154 return type;
17155
17156 type = lookup_reference_type (target_type, refcode);
17157 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17158 if (attr)
17159 {
17160 TYPE_LENGTH (type) = DW_UNSND (attr);
17161 }
17162 else
17163 {
17164 TYPE_LENGTH (type) = cu_header->addr_size;
17165 }
17166 maybe_set_alignment (cu, die, type);
17167 return set_die_type (die, type, cu);
17168 }
17169
17170 /* Add the given cv-qualifiers to the element type of the array. GCC
17171 outputs DWARF type qualifiers that apply to an array, not the
17172 element type. But GDB relies on the array element type to carry
17173 the cv-qualifiers. This mimics section 6.7.3 of the C99
17174 specification. */
17175
17176 static struct type *
17177 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17178 struct type *base_type, int cnst, int voltl)
17179 {
17180 struct type *el_type, *inner_array;
17181
17182 base_type = copy_type (base_type);
17183 inner_array = base_type;
17184
17185 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17186 {
17187 TYPE_TARGET_TYPE (inner_array) =
17188 copy_type (TYPE_TARGET_TYPE (inner_array));
17189 inner_array = TYPE_TARGET_TYPE (inner_array);
17190 }
17191
17192 el_type = TYPE_TARGET_TYPE (inner_array);
17193 cnst |= TYPE_CONST (el_type);
17194 voltl |= TYPE_VOLATILE (el_type);
17195 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17196
17197 return set_die_type (die, base_type, cu);
17198 }
17199
17200 static struct type *
17201 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17202 {
17203 struct type *base_type, *cv_type;
17204
17205 base_type = die_type (die, cu);
17206
17207 /* The die_type call above may have already set the type for this DIE. */
17208 cv_type = get_die_type (die, cu);
17209 if (cv_type)
17210 return cv_type;
17211
17212 /* In case the const qualifier is applied to an array type, the element type
17213 is so qualified, not the array type (section 6.7.3 of C99). */
17214 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17215 return add_array_cv_type (die, cu, base_type, 1, 0);
17216
17217 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17218 return set_die_type (die, cv_type, cu);
17219 }
17220
17221 static struct type *
17222 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17223 {
17224 struct type *base_type, *cv_type;
17225
17226 base_type = die_type (die, cu);
17227
17228 /* The die_type call above may have already set the type for this DIE. */
17229 cv_type = get_die_type (die, cu);
17230 if (cv_type)
17231 return cv_type;
17232
17233 /* In case the volatile qualifier is applied to an array type, the
17234 element type is so qualified, not the array type (section 6.7.3
17235 of C99). */
17236 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17237 return add_array_cv_type (die, cu, base_type, 0, 1);
17238
17239 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17240 return set_die_type (die, cv_type, cu);
17241 }
17242
17243 /* Handle DW_TAG_restrict_type. */
17244
17245 static struct type *
17246 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17247 {
17248 struct type *base_type, *cv_type;
17249
17250 base_type = die_type (die, cu);
17251
17252 /* The die_type call above may have already set the type for this DIE. */
17253 cv_type = get_die_type (die, cu);
17254 if (cv_type)
17255 return cv_type;
17256
17257 cv_type = make_restrict_type (base_type);
17258 return set_die_type (die, cv_type, cu);
17259 }
17260
17261 /* Handle DW_TAG_atomic_type. */
17262
17263 static struct type *
17264 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17265 {
17266 struct type *base_type, *cv_type;
17267
17268 base_type = die_type (die, cu);
17269
17270 /* The die_type call above may have already set the type for this DIE. */
17271 cv_type = get_die_type (die, cu);
17272 if (cv_type)
17273 return cv_type;
17274
17275 cv_type = make_atomic_type (base_type);
17276 return set_die_type (die, cv_type, cu);
17277 }
17278
17279 /* Extract all information from a DW_TAG_string_type DIE and add to
17280 the user defined type vector. It isn't really a user defined type,
17281 but it behaves like one, with other DIE's using an AT_user_def_type
17282 attribute to reference it. */
17283
17284 static struct type *
17285 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17286 {
17287 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17288 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17289 struct type *type, *range_type, *index_type, *char_type;
17290 struct attribute *attr;
17291 unsigned int length;
17292
17293 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17294 if (attr)
17295 {
17296 length = DW_UNSND (attr);
17297 }
17298 else
17299 {
17300 /* Check for the DW_AT_byte_size attribute. */
17301 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17302 if (attr)
17303 {
17304 length = DW_UNSND (attr);
17305 }
17306 else
17307 {
17308 length = 1;
17309 }
17310 }
17311
17312 index_type = objfile_type (objfile)->builtin_int;
17313 range_type = create_static_range_type (NULL, index_type, 1, length);
17314 char_type = language_string_char_type (cu->language_defn, gdbarch);
17315 type = create_string_type (NULL, char_type, range_type);
17316
17317 return set_die_type (die, type, cu);
17318 }
17319
17320 /* Assuming that DIE corresponds to a function, returns nonzero
17321 if the function is prototyped. */
17322
17323 static int
17324 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17325 {
17326 struct attribute *attr;
17327
17328 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17329 if (attr && (DW_UNSND (attr) != 0))
17330 return 1;
17331
17332 /* The DWARF standard implies that the DW_AT_prototyped attribute
17333 is only meaningful for C, but the concept also extends to other
17334 languages that allow unprototyped functions (Eg: Objective C).
17335 For all other languages, assume that functions are always
17336 prototyped. */
17337 if (cu->language != language_c
17338 && cu->language != language_objc
17339 && cu->language != language_opencl)
17340 return 1;
17341
17342 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17343 prototyped and unprototyped functions; default to prototyped,
17344 since that is more common in modern code (and RealView warns
17345 about unprototyped functions). */
17346 if (producer_is_realview (cu->producer))
17347 return 1;
17348
17349 return 0;
17350 }
17351
17352 /* Handle DIES due to C code like:
17353
17354 struct foo
17355 {
17356 int (*funcp)(int a, long l);
17357 int b;
17358 };
17359
17360 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17361
17362 static struct type *
17363 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17364 {
17365 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17366 struct type *type; /* Type that this function returns. */
17367 struct type *ftype; /* Function that returns above type. */
17368 struct attribute *attr;
17369
17370 type = die_type (die, cu);
17371
17372 /* The die_type call above may have already set the type for this DIE. */
17373 ftype = get_die_type (die, cu);
17374 if (ftype)
17375 return ftype;
17376
17377 ftype = lookup_function_type (type);
17378
17379 if (prototyped_function_p (die, cu))
17380 TYPE_PROTOTYPED (ftype) = 1;
17381
17382 /* Store the calling convention in the type if it's available in
17383 the subroutine die. Otherwise set the calling convention to
17384 the default value DW_CC_normal. */
17385 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17386 if (attr)
17387 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17388 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17389 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17390 else
17391 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17392
17393 /* Record whether the function returns normally to its caller or not
17394 if the DWARF producer set that information. */
17395 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17396 if (attr && (DW_UNSND (attr) != 0))
17397 TYPE_NO_RETURN (ftype) = 1;
17398
17399 /* We need to add the subroutine type to the die immediately so
17400 we don't infinitely recurse when dealing with parameters
17401 declared as the same subroutine type. */
17402 set_die_type (die, ftype, cu);
17403
17404 if (die->child != NULL)
17405 {
17406 struct type *void_type = objfile_type (objfile)->builtin_void;
17407 struct die_info *child_die;
17408 int nparams, iparams;
17409
17410 /* Count the number of parameters.
17411 FIXME: GDB currently ignores vararg functions, but knows about
17412 vararg member functions. */
17413 nparams = 0;
17414 child_die = die->child;
17415 while (child_die && child_die->tag)
17416 {
17417 if (child_die->tag == DW_TAG_formal_parameter)
17418 nparams++;
17419 else if (child_die->tag == DW_TAG_unspecified_parameters)
17420 TYPE_VARARGS (ftype) = 1;
17421 child_die = sibling_die (child_die);
17422 }
17423
17424 /* Allocate storage for parameters and fill them in. */
17425 TYPE_NFIELDS (ftype) = nparams;
17426 TYPE_FIELDS (ftype) = (struct field *)
17427 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17428
17429 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17430 even if we error out during the parameters reading below. */
17431 for (iparams = 0; iparams < nparams; iparams++)
17432 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17433
17434 iparams = 0;
17435 child_die = die->child;
17436 while (child_die && child_die->tag)
17437 {
17438 if (child_die->tag == DW_TAG_formal_parameter)
17439 {
17440 struct type *arg_type;
17441
17442 /* DWARF version 2 has no clean way to discern C++
17443 static and non-static member functions. G++ helps
17444 GDB by marking the first parameter for non-static
17445 member functions (which is the this pointer) as
17446 artificial. We pass this information to
17447 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17448
17449 DWARF version 3 added DW_AT_object_pointer, which GCC
17450 4.5 does not yet generate. */
17451 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17452 if (attr)
17453 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17454 else
17455 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17456 arg_type = die_type (child_die, cu);
17457
17458 /* RealView does not mark THIS as const, which the testsuite
17459 expects. GCC marks THIS as const in method definitions,
17460 but not in the class specifications (GCC PR 43053). */
17461 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17462 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17463 {
17464 int is_this = 0;
17465 struct dwarf2_cu *arg_cu = cu;
17466 const char *name = dwarf2_name (child_die, cu);
17467
17468 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17469 if (attr)
17470 {
17471 /* If the compiler emits this, use it. */
17472 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17473 is_this = 1;
17474 }
17475 else if (name && strcmp (name, "this") == 0)
17476 /* Function definitions will have the argument names. */
17477 is_this = 1;
17478 else if (name == NULL && iparams == 0)
17479 /* Declarations may not have the names, so like
17480 elsewhere in GDB, assume an artificial first
17481 argument is "this". */
17482 is_this = 1;
17483
17484 if (is_this)
17485 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17486 arg_type, 0);
17487 }
17488
17489 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17490 iparams++;
17491 }
17492 child_die = sibling_die (child_die);
17493 }
17494 }
17495
17496 return ftype;
17497 }
17498
17499 static struct type *
17500 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17501 {
17502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17503 const char *name = NULL;
17504 struct type *this_type, *target_type;
17505
17506 name = dwarf2_full_name (NULL, die, cu);
17507 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17508 TYPE_TARGET_STUB (this_type) = 1;
17509 set_die_type (die, this_type, cu);
17510 target_type = die_type (die, cu);
17511 if (target_type != this_type)
17512 TYPE_TARGET_TYPE (this_type) = target_type;
17513 else
17514 {
17515 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17516 spec and cause infinite loops in GDB. */
17517 complaint (_("Self-referential DW_TAG_typedef "
17518 "- DIE at %s [in module %s]"),
17519 sect_offset_str (die->sect_off), objfile_name (objfile));
17520 TYPE_TARGET_TYPE (this_type) = NULL;
17521 }
17522 return this_type;
17523 }
17524
17525 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17526 (which may be different from NAME) to the architecture back-end to allow
17527 it to guess the correct format if necessary. */
17528
17529 static struct type *
17530 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17531 const char *name_hint)
17532 {
17533 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17534 const struct floatformat **format;
17535 struct type *type;
17536
17537 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17538 if (format)
17539 type = init_float_type (objfile, bits, name, format);
17540 else
17541 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17542
17543 return type;
17544 }
17545
17546 /* Allocate an integer type of size BITS and name NAME. */
17547
17548 static struct type *
17549 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17550 int bits, int unsigned_p, const char *name)
17551 {
17552 struct type *type;
17553
17554 /* Versions of Intel's C Compiler generate an integer type called "void"
17555 instead of using DW_TAG_unspecified_type. This has been seen on
17556 at least versions 14, 17, and 18. */
17557 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17558 && strcmp (name, "void") == 0)
17559 type = objfile_type (objfile)->builtin_void;
17560 else
17561 type = init_integer_type (objfile, bits, unsigned_p, name);
17562
17563 return type;
17564 }
17565
17566 /* Initialise and return a floating point type of size BITS suitable for
17567 use as a component of a complex number. The NAME_HINT is passed through
17568 when initialising the floating point type and is the name of the complex
17569 type.
17570
17571 As DWARF doesn't currently provide an explicit name for the components
17572 of a complex number, but it can be helpful to have these components
17573 named, we try to select a suitable name based on the size of the
17574 component. */
17575 static struct type *
17576 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17577 struct objfile *objfile,
17578 int bits, const char *name_hint)
17579 {
17580 gdbarch *gdbarch = get_objfile_arch (objfile);
17581 struct type *tt = nullptr;
17582
17583 /* Try to find a suitable floating point builtin type of size BITS.
17584 We're going to use the name of this type as the name for the complex
17585 target type that we are about to create. */
17586 switch (cu->language)
17587 {
17588 case language_fortran:
17589 switch (bits)
17590 {
17591 case 32:
17592 tt = builtin_f_type (gdbarch)->builtin_real;
17593 break;
17594 case 64:
17595 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17596 break;
17597 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17598 case 128:
17599 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17600 break;
17601 }
17602 break;
17603 default:
17604 switch (bits)
17605 {
17606 case 32:
17607 tt = builtin_type (gdbarch)->builtin_float;
17608 break;
17609 case 64:
17610 tt = builtin_type (gdbarch)->builtin_double;
17611 break;
17612 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17613 case 128:
17614 tt = builtin_type (gdbarch)->builtin_long_double;
17615 break;
17616 }
17617 break;
17618 }
17619
17620 /* If the type we found doesn't match the size we were looking for, then
17621 pretend we didn't find a type at all, the complex target type we
17622 create will then be nameless. */
17623 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17624 tt = nullptr;
17625
17626 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17627 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17628 }
17629
17630 /* Find a representation of a given base type and install
17631 it in the TYPE field of the die. */
17632
17633 static struct type *
17634 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17635 {
17636 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17637 struct type *type;
17638 struct attribute *attr;
17639 int encoding = 0, bits = 0;
17640 const char *name;
17641
17642 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17643 if (attr)
17644 {
17645 encoding = DW_UNSND (attr);
17646 }
17647 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17648 if (attr)
17649 {
17650 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17651 }
17652 name = dwarf2_name (die, cu);
17653 if (!name)
17654 {
17655 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17656 }
17657
17658 switch (encoding)
17659 {
17660 case DW_ATE_address:
17661 /* Turn DW_ATE_address into a void * pointer. */
17662 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17663 type = init_pointer_type (objfile, bits, name, type);
17664 break;
17665 case DW_ATE_boolean:
17666 type = init_boolean_type (objfile, bits, 1, name);
17667 break;
17668 case DW_ATE_complex_float:
17669 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17670 type = init_complex_type (objfile, name, type);
17671 break;
17672 case DW_ATE_decimal_float:
17673 type = init_decfloat_type (objfile, bits, name);
17674 break;
17675 case DW_ATE_float:
17676 type = dwarf2_init_float_type (objfile, bits, name, name);
17677 break;
17678 case DW_ATE_signed:
17679 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17680 break;
17681 case DW_ATE_unsigned:
17682 if (cu->language == language_fortran
17683 && name
17684 && startswith (name, "character("))
17685 type = init_character_type (objfile, bits, 1, name);
17686 else
17687 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17688 break;
17689 case DW_ATE_signed_char:
17690 if (cu->language == language_ada || cu->language == language_m2
17691 || cu->language == language_pascal
17692 || cu->language == language_fortran)
17693 type = init_character_type (objfile, bits, 0, name);
17694 else
17695 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17696 break;
17697 case DW_ATE_unsigned_char:
17698 if (cu->language == language_ada || cu->language == language_m2
17699 || cu->language == language_pascal
17700 || cu->language == language_fortran
17701 || cu->language == language_rust)
17702 type = init_character_type (objfile, bits, 1, name);
17703 else
17704 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17705 break;
17706 case DW_ATE_UTF:
17707 {
17708 gdbarch *arch = get_objfile_arch (objfile);
17709
17710 if (bits == 16)
17711 type = builtin_type (arch)->builtin_char16;
17712 else if (bits == 32)
17713 type = builtin_type (arch)->builtin_char32;
17714 else
17715 {
17716 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17717 bits);
17718 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17719 }
17720 return set_die_type (die, type, cu);
17721 }
17722 break;
17723
17724 default:
17725 complaint (_("unsupported DW_AT_encoding: '%s'"),
17726 dwarf_type_encoding_name (encoding));
17727 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17728 break;
17729 }
17730
17731 if (name && strcmp (name, "char") == 0)
17732 TYPE_NOSIGN (type) = 1;
17733
17734 maybe_set_alignment (cu, die, type);
17735
17736 return set_die_type (die, type, cu);
17737 }
17738
17739 /* Parse dwarf attribute if it's a block, reference or constant and put the
17740 resulting value of the attribute into struct bound_prop.
17741 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17742
17743 static int
17744 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17745 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17746 struct type *default_type)
17747 {
17748 struct dwarf2_property_baton *baton;
17749 struct obstack *obstack
17750 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17751
17752 gdb_assert (default_type != NULL);
17753
17754 if (attr == NULL || prop == NULL)
17755 return 0;
17756
17757 if (attr_form_is_block (attr))
17758 {
17759 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17760 baton->property_type = default_type;
17761 baton->locexpr.per_cu = cu->per_cu;
17762 baton->locexpr.size = DW_BLOCK (attr)->size;
17763 baton->locexpr.data = DW_BLOCK (attr)->data;
17764 baton->locexpr.is_reference = false;
17765 prop->data.baton = baton;
17766 prop->kind = PROP_LOCEXPR;
17767 gdb_assert (prop->data.baton != NULL);
17768 }
17769 else if (attr_form_is_ref (attr))
17770 {
17771 struct dwarf2_cu *target_cu = cu;
17772 struct die_info *target_die;
17773 struct attribute *target_attr;
17774
17775 target_die = follow_die_ref (die, attr, &target_cu);
17776 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17777 if (target_attr == NULL)
17778 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17779 target_cu);
17780 if (target_attr == NULL)
17781 return 0;
17782
17783 switch (target_attr->name)
17784 {
17785 case DW_AT_location:
17786 if (attr_form_is_section_offset (target_attr))
17787 {
17788 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17789 baton->property_type = die_type (target_die, target_cu);
17790 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17791 prop->data.baton = baton;
17792 prop->kind = PROP_LOCLIST;
17793 gdb_assert (prop->data.baton != NULL);
17794 }
17795 else if (attr_form_is_block (target_attr))
17796 {
17797 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17798 baton->property_type = die_type (target_die, target_cu);
17799 baton->locexpr.per_cu = cu->per_cu;
17800 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17801 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17802 baton->locexpr.is_reference = true;
17803 prop->data.baton = baton;
17804 prop->kind = PROP_LOCEXPR;
17805 gdb_assert (prop->data.baton != NULL);
17806 }
17807 else
17808 {
17809 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17810 "dynamic property");
17811 return 0;
17812 }
17813 break;
17814 case DW_AT_data_member_location:
17815 {
17816 LONGEST offset;
17817
17818 if (!handle_data_member_location (target_die, target_cu,
17819 &offset))
17820 return 0;
17821
17822 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17823 baton->property_type = read_type_die (target_die->parent,
17824 target_cu);
17825 baton->offset_info.offset = offset;
17826 baton->offset_info.type = die_type (target_die, target_cu);
17827 prop->data.baton = baton;
17828 prop->kind = PROP_ADDR_OFFSET;
17829 break;
17830 }
17831 }
17832 }
17833 else if (attr_form_is_constant (attr))
17834 {
17835 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17836 prop->kind = PROP_CONST;
17837 }
17838 else
17839 {
17840 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17841 dwarf2_name (die, cu));
17842 return 0;
17843 }
17844
17845 return 1;
17846 }
17847
17848 /* Find an integer type the same size as the address size given in the
17849 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17850 is unsigned or not. */
17851
17852 static struct type *
17853 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17854 bool unsigned_p)
17855 {
17856 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17857 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17858 struct type *int_type;
17859
17860 /* Helper macro to examine the various builtin types. */
17861 #define TRY_TYPE(F) \
17862 int_type = (unsigned_p \
17863 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17864 : objfile_type (objfile)->builtin_ ## F); \
17865 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17866 return int_type
17867
17868 TRY_TYPE (char);
17869 TRY_TYPE (short);
17870 TRY_TYPE (int);
17871 TRY_TYPE (long);
17872 TRY_TYPE (long_long);
17873
17874 #undef TRY_TYPE
17875
17876 gdb_assert_not_reached ("unable to find suitable integer type");
17877 }
17878
17879 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17880 present (which is valid) then compute the default type based on the
17881 compilation units address size. */
17882
17883 static struct type *
17884 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17885 {
17886 struct type *index_type = die_type (die, cu);
17887
17888 /* Dwarf-2 specifications explicitly allows to create subrange types
17889 without specifying a base type.
17890 In that case, the base type must be set to the type of
17891 the lower bound, upper bound or count, in that order, if any of these
17892 three attributes references an object that has a type.
17893 If no base type is found, the Dwarf-2 specifications say that
17894 a signed integer type of size equal to the size of an address should
17895 be used.
17896 For the following C code: `extern char gdb_int [];'
17897 GCC produces an empty range DIE.
17898 FIXME: muller/2010-05-28: Possible references to object for low bound,
17899 high bound or count are not yet handled by this code. */
17900 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17901 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17902
17903 return index_type;
17904 }
17905
17906 /* Read the given DW_AT_subrange DIE. */
17907
17908 static struct type *
17909 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17910 {
17911 struct type *base_type, *orig_base_type;
17912 struct type *range_type;
17913 struct attribute *attr;
17914 struct dynamic_prop low, high;
17915 int low_default_is_valid;
17916 int high_bound_is_count = 0;
17917 const char *name;
17918 ULONGEST negative_mask;
17919
17920 orig_base_type = read_subrange_index_type (die, cu);
17921
17922 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17923 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17924 creating the range type, but we use the result of check_typedef
17925 when examining properties of the type. */
17926 base_type = check_typedef (orig_base_type);
17927
17928 /* The die_type call above may have already set the type for this DIE. */
17929 range_type = get_die_type (die, cu);
17930 if (range_type)
17931 return range_type;
17932
17933 low.kind = PROP_CONST;
17934 high.kind = PROP_CONST;
17935 high.data.const_val = 0;
17936
17937 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17938 omitting DW_AT_lower_bound. */
17939 switch (cu->language)
17940 {
17941 case language_c:
17942 case language_cplus:
17943 low.data.const_val = 0;
17944 low_default_is_valid = 1;
17945 break;
17946 case language_fortran:
17947 low.data.const_val = 1;
17948 low_default_is_valid = 1;
17949 break;
17950 case language_d:
17951 case language_objc:
17952 case language_rust:
17953 low.data.const_val = 0;
17954 low_default_is_valid = (cu->header.version >= 4);
17955 break;
17956 case language_ada:
17957 case language_m2:
17958 case language_pascal:
17959 low.data.const_val = 1;
17960 low_default_is_valid = (cu->header.version >= 4);
17961 break;
17962 default:
17963 low.data.const_val = 0;
17964 low_default_is_valid = 0;
17965 break;
17966 }
17967
17968 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17969 if (attr)
17970 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17971 else if (!low_default_is_valid)
17972 complaint (_("Missing DW_AT_lower_bound "
17973 "- DIE at %s [in module %s]"),
17974 sect_offset_str (die->sect_off),
17975 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17976
17977 struct attribute *attr_ub, *attr_count;
17978 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17979 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17980 {
17981 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17982 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17983 {
17984 /* If bounds are constant do the final calculation here. */
17985 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17986 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17987 else
17988 high_bound_is_count = 1;
17989 }
17990 else
17991 {
17992 if (attr_ub != NULL)
17993 complaint (_("Unresolved DW_AT_upper_bound "
17994 "- DIE at %s [in module %s]"),
17995 sect_offset_str (die->sect_off),
17996 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17997 if (attr_count != NULL)
17998 complaint (_("Unresolved DW_AT_count "
17999 "- DIE at %s [in module %s]"),
18000 sect_offset_str (die->sect_off),
18001 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18002 }
18003 }
18004
18005 LONGEST bias = 0;
18006 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18007 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
18008 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
18009
18010 /* Normally, the DWARF producers are expected to use a signed
18011 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18012 But this is unfortunately not always the case, as witnessed
18013 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18014 is used instead. To work around that ambiguity, we treat
18015 the bounds as signed, and thus sign-extend their values, when
18016 the base type is signed. */
18017 negative_mask =
18018 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18019 if (low.kind == PROP_CONST
18020 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18021 low.data.const_val |= negative_mask;
18022 if (high.kind == PROP_CONST
18023 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18024 high.data.const_val |= negative_mask;
18025
18026 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18027
18028 if (high_bound_is_count)
18029 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18030
18031 /* Ada expects an empty array on no boundary attributes. */
18032 if (attr == NULL && cu->language != language_ada)
18033 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18034
18035 name = dwarf2_name (die, cu);
18036 if (name)
18037 TYPE_NAME (range_type) = name;
18038
18039 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18040 if (attr)
18041 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18042
18043 maybe_set_alignment (cu, die, range_type);
18044
18045 set_die_type (die, range_type, cu);
18046
18047 /* set_die_type should be already done. */
18048 set_descriptive_type (range_type, die, cu);
18049
18050 return range_type;
18051 }
18052
18053 static struct type *
18054 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18055 {
18056 struct type *type;
18057
18058 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18059 NULL);
18060 TYPE_NAME (type) = dwarf2_name (die, cu);
18061
18062 /* In Ada, an unspecified type is typically used when the description
18063 of the type is deferred to a different unit. When encountering
18064 such a type, we treat it as a stub, and try to resolve it later on,
18065 when needed. */
18066 if (cu->language == language_ada)
18067 TYPE_STUB (type) = 1;
18068
18069 return set_die_type (die, type, cu);
18070 }
18071
18072 /* Read a single die and all its descendents. Set the die's sibling
18073 field to NULL; set other fields in the die correctly, and set all
18074 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18075 location of the info_ptr after reading all of those dies. PARENT
18076 is the parent of the die in question. */
18077
18078 static struct die_info *
18079 read_die_and_children (const struct die_reader_specs *reader,
18080 const gdb_byte *info_ptr,
18081 const gdb_byte **new_info_ptr,
18082 struct die_info *parent)
18083 {
18084 struct die_info *die;
18085 const gdb_byte *cur_ptr;
18086 int has_children;
18087
18088 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18089 if (die == NULL)
18090 {
18091 *new_info_ptr = cur_ptr;
18092 return NULL;
18093 }
18094 store_in_ref_table (die, reader->cu);
18095
18096 if (has_children)
18097 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18098 else
18099 {
18100 die->child = NULL;
18101 *new_info_ptr = cur_ptr;
18102 }
18103
18104 die->sibling = NULL;
18105 die->parent = parent;
18106 return die;
18107 }
18108
18109 /* Read a die, all of its descendents, and all of its siblings; set
18110 all of the fields of all of the dies correctly. Arguments are as
18111 in read_die_and_children. */
18112
18113 static struct die_info *
18114 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18115 const gdb_byte *info_ptr,
18116 const gdb_byte **new_info_ptr,
18117 struct die_info *parent)
18118 {
18119 struct die_info *first_die, *last_sibling;
18120 const gdb_byte *cur_ptr;
18121
18122 cur_ptr = info_ptr;
18123 first_die = last_sibling = NULL;
18124
18125 while (1)
18126 {
18127 struct die_info *die
18128 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18129
18130 if (die == NULL)
18131 {
18132 *new_info_ptr = cur_ptr;
18133 return first_die;
18134 }
18135
18136 if (!first_die)
18137 first_die = die;
18138 else
18139 last_sibling->sibling = die;
18140
18141 last_sibling = die;
18142 }
18143 }
18144
18145 /* Read a die, all of its descendents, and all of its siblings; set
18146 all of the fields of all of the dies correctly. Arguments are as
18147 in read_die_and_children.
18148 This the main entry point for reading a DIE and all its children. */
18149
18150 static struct die_info *
18151 read_die_and_siblings (const struct die_reader_specs *reader,
18152 const gdb_byte *info_ptr,
18153 const gdb_byte **new_info_ptr,
18154 struct die_info *parent)
18155 {
18156 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18157 new_info_ptr, parent);
18158
18159 if (dwarf_die_debug)
18160 {
18161 fprintf_unfiltered (gdb_stdlog,
18162 "Read die from %s@0x%x of %s:\n",
18163 get_section_name (reader->die_section),
18164 (unsigned) (info_ptr - reader->die_section->buffer),
18165 bfd_get_filename (reader->abfd));
18166 dump_die (die, dwarf_die_debug);
18167 }
18168
18169 return die;
18170 }
18171
18172 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18173 attributes.
18174 The caller is responsible for filling in the extra attributes
18175 and updating (*DIEP)->num_attrs.
18176 Set DIEP to point to a newly allocated die with its information,
18177 except for its child, sibling, and parent fields.
18178 Set HAS_CHILDREN to tell whether the die has children or not. */
18179
18180 static const gdb_byte *
18181 read_full_die_1 (const struct die_reader_specs *reader,
18182 struct die_info **diep, const gdb_byte *info_ptr,
18183 int *has_children, int num_extra_attrs)
18184 {
18185 unsigned int abbrev_number, bytes_read, i;
18186 struct abbrev_info *abbrev;
18187 struct die_info *die;
18188 struct dwarf2_cu *cu = reader->cu;
18189 bfd *abfd = reader->abfd;
18190
18191 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18192 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18193 info_ptr += bytes_read;
18194 if (!abbrev_number)
18195 {
18196 *diep = NULL;
18197 *has_children = 0;
18198 return info_ptr;
18199 }
18200
18201 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18202 if (!abbrev)
18203 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18204 abbrev_number,
18205 bfd_get_filename (abfd));
18206
18207 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18208 die->sect_off = sect_off;
18209 die->tag = abbrev->tag;
18210 die->abbrev = abbrev_number;
18211
18212 /* Make the result usable.
18213 The caller needs to update num_attrs after adding the extra
18214 attributes. */
18215 die->num_attrs = abbrev->num_attrs;
18216
18217 for (i = 0; i < abbrev->num_attrs; ++i)
18218 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18219 info_ptr);
18220
18221 *diep = die;
18222 *has_children = abbrev->has_children;
18223 return info_ptr;
18224 }
18225
18226 /* Read a die and all its attributes.
18227 Set DIEP to point to a newly allocated die with its information,
18228 except for its child, sibling, and parent fields.
18229 Set HAS_CHILDREN to tell whether the die has children or not. */
18230
18231 static const gdb_byte *
18232 read_full_die (const struct die_reader_specs *reader,
18233 struct die_info **diep, const gdb_byte *info_ptr,
18234 int *has_children)
18235 {
18236 const gdb_byte *result;
18237
18238 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18239
18240 if (dwarf_die_debug)
18241 {
18242 fprintf_unfiltered (gdb_stdlog,
18243 "Read die from %s@0x%x of %s:\n",
18244 get_section_name (reader->die_section),
18245 (unsigned) (info_ptr - reader->die_section->buffer),
18246 bfd_get_filename (reader->abfd));
18247 dump_die (*diep, dwarf_die_debug);
18248 }
18249
18250 return result;
18251 }
18252 \f
18253 /* Abbreviation tables.
18254
18255 In DWARF version 2, the description of the debugging information is
18256 stored in a separate .debug_abbrev section. Before we read any
18257 dies from a section we read in all abbreviations and install them
18258 in a hash table. */
18259
18260 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18261
18262 struct abbrev_info *
18263 abbrev_table::alloc_abbrev ()
18264 {
18265 struct abbrev_info *abbrev;
18266
18267 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18268 memset (abbrev, 0, sizeof (struct abbrev_info));
18269
18270 return abbrev;
18271 }
18272
18273 /* Add an abbreviation to the table. */
18274
18275 void
18276 abbrev_table::add_abbrev (unsigned int abbrev_number,
18277 struct abbrev_info *abbrev)
18278 {
18279 unsigned int hash_number;
18280
18281 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18282 abbrev->next = m_abbrevs[hash_number];
18283 m_abbrevs[hash_number] = abbrev;
18284 }
18285
18286 /* Look up an abbrev in the table.
18287 Returns NULL if the abbrev is not found. */
18288
18289 struct abbrev_info *
18290 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18291 {
18292 unsigned int hash_number;
18293 struct abbrev_info *abbrev;
18294
18295 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18296 abbrev = m_abbrevs[hash_number];
18297
18298 while (abbrev)
18299 {
18300 if (abbrev->number == abbrev_number)
18301 return abbrev;
18302 abbrev = abbrev->next;
18303 }
18304 return NULL;
18305 }
18306
18307 /* Read in an abbrev table. */
18308
18309 static abbrev_table_up
18310 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18311 struct dwarf2_section_info *section,
18312 sect_offset sect_off)
18313 {
18314 struct objfile *objfile = dwarf2_per_objfile->objfile;
18315 bfd *abfd = get_section_bfd_owner (section);
18316 const gdb_byte *abbrev_ptr;
18317 struct abbrev_info *cur_abbrev;
18318 unsigned int abbrev_number, bytes_read, abbrev_name;
18319 unsigned int abbrev_form;
18320 struct attr_abbrev *cur_attrs;
18321 unsigned int allocated_attrs;
18322
18323 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18324
18325 dwarf2_read_section (objfile, section);
18326 abbrev_ptr = section->buffer + to_underlying (sect_off);
18327 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18328 abbrev_ptr += bytes_read;
18329
18330 allocated_attrs = ATTR_ALLOC_CHUNK;
18331 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18332
18333 /* Loop until we reach an abbrev number of 0. */
18334 while (abbrev_number)
18335 {
18336 cur_abbrev = abbrev_table->alloc_abbrev ();
18337
18338 /* read in abbrev header */
18339 cur_abbrev->number = abbrev_number;
18340 cur_abbrev->tag
18341 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18342 abbrev_ptr += bytes_read;
18343 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18344 abbrev_ptr += 1;
18345
18346 /* now read in declarations */
18347 for (;;)
18348 {
18349 LONGEST implicit_const;
18350
18351 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18352 abbrev_ptr += bytes_read;
18353 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18354 abbrev_ptr += bytes_read;
18355 if (abbrev_form == DW_FORM_implicit_const)
18356 {
18357 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18358 &bytes_read);
18359 abbrev_ptr += bytes_read;
18360 }
18361 else
18362 {
18363 /* Initialize it due to a false compiler warning. */
18364 implicit_const = -1;
18365 }
18366
18367 if (abbrev_name == 0)
18368 break;
18369
18370 if (cur_abbrev->num_attrs == allocated_attrs)
18371 {
18372 allocated_attrs += ATTR_ALLOC_CHUNK;
18373 cur_attrs
18374 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18375 }
18376
18377 cur_attrs[cur_abbrev->num_attrs].name
18378 = (enum dwarf_attribute) abbrev_name;
18379 cur_attrs[cur_abbrev->num_attrs].form
18380 = (enum dwarf_form) abbrev_form;
18381 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18382 ++cur_abbrev->num_attrs;
18383 }
18384
18385 cur_abbrev->attrs =
18386 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18387 cur_abbrev->num_attrs);
18388 memcpy (cur_abbrev->attrs, cur_attrs,
18389 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18390
18391 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18392
18393 /* Get next abbreviation.
18394 Under Irix6 the abbreviations for a compilation unit are not
18395 always properly terminated with an abbrev number of 0.
18396 Exit loop if we encounter an abbreviation which we have
18397 already read (which means we are about to read the abbreviations
18398 for the next compile unit) or if the end of the abbreviation
18399 table is reached. */
18400 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18401 break;
18402 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18403 abbrev_ptr += bytes_read;
18404 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18405 break;
18406 }
18407
18408 xfree (cur_attrs);
18409 return abbrev_table;
18410 }
18411
18412 /* Returns nonzero if TAG represents a type that we might generate a partial
18413 symbol for. */
18414
18415 static int
18416 is_type_tag_for_partial (int tag)
18417 {
18418 switch (tag)
18419 {
18420 #if 0
18421 /* Some types that would be reasonable to generate partial symbols for,
18422 that we don't at present. */
18423 case DW_TAG_array_type:
18424 case DW_TAG_file_type:
18425 case DW_TAG_ptr_to_member_type:
18426 case DW_TAG_set_type:
18427 case DW_TAG_string_type:
18428 case DW_TAG_subroutine_type:
18429 #endif
18430 case DW_TAG_base_type:
18431 case DW_TAG_class_type:
18432 case DW_TAG_interface_type:
18433 case DW_TAG_enumeration_type:
18434 case DW_TAG_structure_type:
18435 case DW_TAG_subrange_type:
18436 case DW_TAG_typedef:
18437 case DW_TAG_union_type:
18438 return 1;
18439 default:
18440 return 0;
18441 }
18442 }
18443
18444 /* Load all DIEs that are interesting for partial symbols into memory. */
18445
18446 static struct partial_die_info *
18447 load_partial_dies (const struct die_reader_specs *reader,
18448 const gdb_byte *info_ptr, int building_psymtab)
18449 {
18450 struct dwarf2_cu *cu = reader->cu;
18451 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18452 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18453 unsigned int bytes_read;
18454 unsigned int load_all = 0;
18455 int nesting_level = 1;
18456
18457 parent_die = NULL;
18458 last_die = NULL;
18459
18460 gdb_assert (cu->per_cu != NULL);
18461 if (cu->per_cu->load_all_dies)
18462 load_all = 1;
18463
18464 cu->partial_dies
18465 = htab_create_alloc_ex (cu->header.length / 12,
18466 partial_die_hash,
18467 partial_die_eq,
18468 NULL,
18469 &cu->comp_unit_obstack,
18470 hashtab_obstack_allocate,
18471 dummy_obstack_deallocate);
18472
18473 while (1)
18474 {
18475 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18476
18477 /* A NULL abbrev means the end of a series of children. */
18478 if (abbrev == NULL)
18479 {
18480 if (--nesting_level == 0)
18481 return first_die;
18482
18483 info_ptr += bytes_read;
18484 last_die = parent_die;
18485 parent_die = parent_die->die_parent;
18486 continue;
18487 }
18488
18489 /* Check for template arguments. We never save these; if
18490 they're seen, we just mark the parent, and go on our way. */
18491 if (parent_die != NULL
18492 && cu->language == language_cplus
18493 && (abbrev->tag == DW_TAG_template_type_param
18494 || abbrev->tag == DW_TAG_template_value_param))
18495 {
18496 parent_die->has_template_arguments = 1;
18497
18498 if (!load_all)
18499 {
18500 /* We don't need a partial DIE for the template argument. */
18501 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18502 continue;
18503 }
18504 }
18505
18506 /* We only recurse into c++ subprograms looking for template arguments.
18507 Skip their other children. */
18508 if (!load_all
18509 && cu->language == language_cplus
18510 && parent_die != NULL
18511 && parent_die->tag == DW_TAG_subprogram)
18512 {
18513 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18514 continue;
18515 }
18516
18517 /* Check whether this DIE is interesting enough to save. Normally
18518 we would not be interested in members here, but there may be
18519 later variables referencing them via DW_AT_specification (for
18520 static members). */
18521 if (!load_all
18522 && !is_type_tag_for_partial (abbrev->tag)
18523 && abbrev->tag != DW_TAG_constant
18524 && abbrev->tag != DW_TAG_enumerator
18525 && abbrev->tag != DW_TAG_subprogram
18526 && abbrev->tag != DW_TAG_inlined_subroutine
18527 && abbrev->tag != DW_TAG_lexical_block
18528 && abbrev->tag != DW_TAG_variable
18529 && abbrev->tag != DW_TAG_namespace
18530 && abbrev->tag != DW_TAG_module
18531 && abbrev->tag != DW_TAG_member
18532 && abbrev->tag != DW_TAG_imported_unit
18533 && abbrev->tag != DW_TAG_imported_declaration)
18534 {
18535 /* Otherwise we skip to the next sibling, if any. */
18536 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18537 continue;
18538 }
18539
18540 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18541 abbrev);
18542
18543 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18544
18545 /* This two-pass algorithm for processing partial symbols has a
18546 high cost in cache pressure. Thus, handle some simple cases
18547 here which cover the majority of C partial symbols. DIEs
18548 which neither have specification tags in them, nor could have
18549 specification tags elsewhere pointing at them, can simply be
18550 processed and discarded.
18551
18552 This segment is also optional; scan_partial_symbols and
18553 add_partial_symbol will handle these DIEs if we chain
18554 them in normally. When compilers which do not emit large
18555 quantities of duplicate debug information are more common,
18556 this code can probably be removed. */
18557
18558 /* Any complete simple types at the top level (pretty much all
18559 of them, for a language without namespaces), can be processed
18560 directly. */
18561 if (parent_die == NULL
18562 && pdi.has_specification == 0
18563 && pdi.is_declaration == 0
18564 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18565 || pdi.tag == DW_TAG_base_type
18566 || pdi.tag == DW_TAG_subrange_type))
18567 {
18568 if (building_psymtab && pdi.name != NULL)
18569 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
18570 VAR_DOMAIN, LOC_TYPEDEF, -1,
18571 psymbol_placement::STATIC,
18572 0, cu->language, objfile);
18573 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18574 continue;
18575 }
18576
18577 /* The exception for DW_TAG_typedef with has_children above is
18578 a workaround of GCC PR debug/47510. In the case of this complaint
18579 type_name_or_error will error on such types later.
18580
18581 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18582 it could not find the child DIEs referenced later, this is checked
18583 above. In correct DWARF DW_TAG_typedef should have no children. */
18584
18585 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18586 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18587 "- DIE at %s [in module %s]"),
18588 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18589
18590 /* If we're at the second level, and we're an enumerator, and
18591 our parent has no specification (meaning possibly lives in a
18592 namespace elsewhere), then we can add the partial symbol now
18593 instead of queueing it. */
18594 if (pdi.tag == DW_TAG_enumerator
18595 && parent_die != NULL
18596 && parent_die->die_parent == NULL
18597 && parent_die->tag == DW_TAG_enumeration_type
18598 && parent_die->has_specification == 0)
18599 {
18600 if (pdi.name == NULL)
18601 complaint (_("malformed enumerator DIE ignored"));
18602 else if (building_psymtab)
18603 add_psymbol_to_list (pdi.name, strlen (pdi.name), false,
18604 VAR_DOMAIN, LOC_CONST, -1,
18605 cu->language == language_cplus
18606 ? psymbol_placement::GLOBAL
18607 : psymbol_placement::STATIC,
18608 0, cu->language, objfile);
18609
18610 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18611 continue;
18612 }
18613
18614 struct partial_die_info *part_die
18615 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18616
18617 /* We'll save this DIE so link it in. */
18618 part_die->die_parent = parent_die;
18619 part_die->die_sibling = NULL;
18620 part_die->die_child = NULL;
18621
18622 if (last_die && last_die == parent_die)
18623 last_die->die_child = part_die;
18624 else if (last_die)
18625 last_die->die_sibling = part_die;
18626
18627 last_die = part_die;
18628
18629 if (first_die == NULL)
18630 first_die = part_die;
18631
18632 /* Maybe add the DIE to the hash table. Not all DIEs that we
18633 find interesting need to be in the hash table, because we
18634 also have the parent/sibling/child chains; only those that we
18635 might refer to by offset later during partial symbol reading.
18636
18637 For now this means things that might have be the target of a
18638 DW_AT_specification, DW_AT_abstract_origin, or
18639 DW_AT_extension. DW_AT_extension will refer only to
18640 namespaces; DW_AT_abstract_origin refers to functions (and
18641 many things under the function DIE, but we do not recurse
18642 into function DIEs during partial symbol reading) and
18643 possibly variables as well; DW_AT_specification refers to
18644 declarations. Declarations ought to have the DW_AT_declaration
18645 flag. It happens that GCC forgets to put it in sometimes, but
18646 only for functions, not for types.
18647
18648 Adding more things than necessary to the hash table is harmless
18649 except for the performance cost. Adding too few will result in
18650 wasted time in find_partial_die, when we reread the compilation
18651 unit with load_all_dies set. */
18652
18653 if (load_all
18654 || abbrev->tag == DW_TAG_constant
18655 || abbrev->tag == DW_TAG_subprogram
18656 || abbrev->tag == DW_TAG_variable
18657 || abbrev->tag == DW_TAG_namespace
18658 || part_die->is_declaration)
18659 {
18660 void **slot;
18661
18662 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18663 to_underlying (part_die->sect_off),
18664 INSERT);
18665 *slot = part_die;
18666 }
18667
18668 /* For some DIEs we want to follow their children (if any). For C
18669 we have no reason to follow the children of structures; for other
18670 languages we have to, so that we can get at method physnames
18671 to infer fully qualified class names, for DW_AT_specification,
18672 and for C++ template arguments. For C++, we also look one level
18673 inside functions to find template arguments (if the name of the
18674 function does not already contain the template arguments).
18675
18676 For Ada and Fortran, we need to scan the children of subprograms
18677 and lexical blocks as well because these languages allow the
18678 definition of nested entities that could be interesting for the
18679 debugger, such as nested subprograms for instance. */
18680 if (last_die->has_children
18681 && (load_all
18682 || last_die->tag == DW_TAG_namespace
18683 || last_die->tag == DW_TAG_module
18684 || last_die->tag == DW_TAG_enumeration_type
18685 || (cu->language == language_cplus
18686 && last_die->tag == DW_TAG_subprogram
18687 && (last_die->name == NULL
18688 || strchr (last_die->name, '<') == NULL))
18689 || (cu->language != language_c
18690 && (last_die->tag == DW_TAG_class_type
18691 || last_die->tag == DW_TAG_interface_type
18692 || last_die->tag == DW_TAG_structure_type
18693 || last_die->tag == DW_TAG_union_type))
18694 || ((cu->language == language_ada
18695 || cu->language == language_fortran)
18696 && (last_die->tag == DW_TAG_subprogram
18697 || last_die->tag == DW_TAG_lexical_block))))
18698 {
18699 nesting_level++;
18700 parent_die = last_die;
18701 continue;
18702 }
18703
18704 /* Otherwise we skip to the next sibling, if any. */
18705 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18706
18707 /* Back to the top, do it again. */
18708 }
18709 }
18710
18711 partial_die_info::partial_die_info (sect_offset sect_off_,
18712 struct abbrev_info *abbrev)
18713 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18714 {
18715 }
18716
18717 /* Read a minimal amount of information into the minimal die structure.
18718 INFO_PTR should point just after the initial uleb128 of a DIE. */
18719
18720 const gdb_byte *
18721 partial_die_info::read (const struct die_reader_specs *reader,
18722 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18723 {
18724 struct dwarf2_cu *cu = reader->cu;
18725 struct dwarf2_per_objfile *dwarf2_per_objfile
18726 = cu->per_cu->dwarf2_per_objfile;
18727 unsigned int i;
18728 int has_low_pc_attr = 0;
18729 int has_high_pc_attr = 0;
18730 int high_pc_relative = 0;
18731
18732 for (i = 0; i < abbrev.num_attrs; ++i)
18733 {
18734 struct attribute attr;
18735
18736 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18737
18738 /* Store the data if it is of an attribute we want to keep in a
18739 partial symbol table. */
18740 switch (attr.name)
18741 {
18742 case DW_AT_name:
18743 switch (tag)
18744 {
18745 case DW_TAG_compile_unit:
18746 case DW_TAG_partial_unit:
18747 case DW_TAG_type_unit:
18748 /* Compilation units have a DW_AT_name that is a filename, not
18749 a source language identifier. */
18750 case DW_TAG_enumeration_type:
18751 case DW_TAG_enumerator:
18752 /* These tags always have simple identifiers already; no need
18753 to canonicalize them. */
18754 name = DW_STRING (&attr);
18755 break;
18756 default:
18757 {
18758 struct objfile *objfile = dwarf2_per_objfile->objfile;
18759
18760 name
18761 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18762 &objfile->per_bfd->storage_obstack);
18763 }
18764 break;
18765 }
18766 break;
18767 case DW_AT_linkage_name:
18768 case DW_AT_MIPS_linkage_name:
18769 /* Note that both forms of linkage name might appear. We
18770 assume they will be the same, and we only store the last
18771 one we see. */
18772 linkage_name = DW_STRING (&attr);
18773 break;
18774 case DW_AT_low_pc:
18775 has_low_pc_attr = 1;
18776 lowpc = attr_value_as_address (&attr);
18777 break;
18778 case DW_AT_high_pc:
18779 has_high_pc_attr = 1;
18780 highpc = attr_value_as_address (&attr);
18781 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18782 high_pc_relative = 1;
18783 break;
18784 case DW_AT_location:
18785 /* Support the .debug_loc offsets. */
18786 if (attr_form_is_block (&attr))
18787 {
18788 d.locdesc = DW_BLOCK (&attr);
18789 }
18790 else if (attr_form_is_section_offset (&attr))
18791 {
18792 dwarf2_complex_location_expr_complaint ();
18793 }
18794 else
18795 {
18796 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18797 "partial symbol information");
18798 }
18799 break;
18800 case DW_AT_external:
18801 is_external = DW_UNSND (&attr);
18802 break;
18803 case DW_AT_declaration:
18804 is_declaration = DW_UNSND (&attr);
18805 break;
18806 case DW_AT_type:
18807 has_type = 1;
18808 break;
18809 case DW_AT_abstract_origin:
18810 case DW_AT_specification:
18811 case DW_AT_extension:
18812 has_specification = 1;
18813 spec_offset = dwarf2_get_ref_die_offset (&attr);
18814 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18815 || cu->per_cu->is_dwz);
18816 break;
18817 case DW_AT_sibling:
18818 /* Ignore absolute siblings, they might point outside of
18819 the current compile unit. */
18820 if (attr.form == DW_FORM_ref_addr)
18821 complaint (_("ignoring absolute DW_AT_sibling"));
18822 else
18823 {
18824 const gdb_byte *buffer = reader->buffer;
18825 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18826 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18827
18828 if (sibling_ptr < info_ptr)
18829 complaint (_("DW_AT_sibling points backwards"));
18830 else if (sibling_ptr > reader->buffer_end)
18831 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18832 else
18833 sibling = sibling_ptr;
18834 }
18835 break;
18836 case DW_AT_byte_size:
18837 has_byte_size = 1;
18838 break;
18839 case DW_AT_const_value:
18840 has_const_value = 1;
18841 break;
18842 case DW_AT_calling_convention:
18843 /* DWARF doesn't provide a way to identify a program's source-level
18844 entry point. DW_AT_calling_convention attributes are only meant
18845 to describe functions' calling conventions.
18846
18847 However, because it's a necessary piece of information in
18848 Fortran, and before DWARF 4 DW_CC_program was the only
18849 piece of debugging information whose definition refers to
18850 a 'main program' at all, several compilers marked Fortran
18851 main programs with DW_CC_program --- even when those
18852 functions use the standard calling conventions.
18853
18854 Although DWARF now specifies a way to provide this
18855 information, we support this practice for backward
18856 compatibility. */
18857 if (DW_UNSND (&attr) == DW_CC_program
18858 && cu->language == language_fortran)
18859 main_subprogram = 1;
18860 break;
18861 case DW_AT_inline:
18862 if (DW_UNSND (&attr) == DW_INL_inlined
18863 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18864 may_be_inlined = 1;
18865 break;
18866
18867 case DW_AT_import:
18868 if (tag == DW_TAG_imported_unit)
18869 {
18870 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18871 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18872 || cu->per_cu->is_dwz);
18873 }
18874 break;
18875
18876 case DW_AT_main_subprogram:
18877 main_subprogram = DW_UNSND (&attr);
18878 break;
18879
18880 case DW_AT_ranges:
18881 {
18882 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18883 but that requires a full DIE, so instead we just
18884 reimplement it. */
18885 int need_ranges_base = tag != DW_TAG_compile_unit;
18886 unsigned int ranges_offset = (DW_UNSND (&attr)
18887 + (need_ranges_base
18888 ? cu->ranges_base
18889 : 0));
18890
18891 /* Value of the DW_AT_ranges attribute is the offset in the
18892 .debug_ranges section. */
18893 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18894 nullptr))
18895 has_pc_info = 1;
18896 }
18897 break;
18898
18899 default:
18900 break;
18901 }
18902 }
18903
18904 /* For Ada, if both the name and the linkage name appear, we prefer
18905 the latter. This lets "catch exception" work better, regardless
18906 of the order in which the name and linkage name were emitted.
18907 Really, though, this is just a workaround for the fact that gdb
18908 doesn't store both the name and the linkage name. */
18909 if (cu->language == language_ada && linkage_name != nullptr)
18910 name = linkage_name;
18911
18912 if (high_pc_relative)
18913 highpc += lowpc;
18914
18915 if (has_low_pc_attr && has_high_pc_attr)
18916 {
18917 /* When using the GNU linker, .gnu.linkonce. sections are used to
18918 eliminate duplicate copies of functions and vtables and such.
18919 The linker will arbitrarily choose one and discard the others.
18920 The AT_*_pc values for such functions refer to local labels in
18921 these sections. If the section from that file was discarded, the
18922 labels are not in the output, so the relocs get a value of 0.
18923 If this is a discarded function, mark the pc bounds as invalid,
18924 so that GDB will ignore it. */
18925 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18926 {
18927 struct objfile *objfile = dwarf2_per_objfile->objfile;
18928 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18929
18930 complaint (_("DW_AT_low_pc %s is zero "
18931 "for DIE at %s [in module %s]"),
18932 paddress (gdbarch, lowpc),
18933 sect_offset_str (sect_off),
18934 objfile_name (objfile));
18935 }
18936 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18937 else if (lowpc >= highpc)
18938 {
18939 struct objfile *objfile = dwarf2_per_objfile->objfile;
18940 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18941
18942 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18943 "for DIE at %s [in module %s]"),
18944 paddress (gdbarch, lowpc),
18945 paddress (gdbarch, highpc),
18946 sect_offset_str (sect_off),
18947 objfile_name (objfile));
18948 }
18949 else
18950 has_pc_info = 1;
18951 }
18952
18953 return info_ptr;
18954 }
18955
18956 /* Find a cached partial DIE at OFFSET in CU. */
18957
18958 struct partial_die_info *
18959 dwarf2_cu::find_partial_die (sect_offset sect_off)
18960 {
18961 struct partial_die_info *lookup_die = NULL;
18962 struct partial_die_info part_die (sect_off);
18963
18964 lookup_die = ((struct partial_die_info *)
18965 htab_find_with_hash (partial_dies, &part_die,
18966 to_underlying (sect_off)));
18967
18968 return lookup_die;
18969 }
18970
18971 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18972 except in the case of .debug_types DIEs which do not reference
18973 outside their CU (they do however referencing other types via
18974 DW_FORM_ref_sig8). */
18975
18976 static const struct cu_partial_die_info
18977 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18978 {
18979 struct dwarf2_per_objfile *dwarf2_per_objfile
18980 = cu->per_cu->dwarf2_per_objfile;
18981 struct objfile *objfile = dwarf2_per_objfile->objfile;
18982 struct dwarf2_per_cu_data *per_cu = NULL;
18983 struct partial_die_info *pd = NULL;
18984
18985 if (offset_in_dwz == cu->per_cu->is_dwz
18986 && offset_in_cu_p (&cu->header, sect_off))
18987 {
18988 pd = cu->find_partial_die (sect_off);
18989 if (pd != NULL)
18990 return { cu, pd };
18991 /* We missed recording what we needed.
18992 Load all dies and try again. */
18993 per_cu = cu->per_cu;
18994 }
18995 else
18996 {
18997 /* TUs don't reference other CUs/TUs (except via type signatures). */
18998 if (cu->per_cu->is_debug_types)
18999 {
19000 error (_("Dwarf Error: Type Unit at offset %s contains"
19001 " external reference to offset %s [in module %s].\n"),
19002 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19003 bfd_get_filename (objfile->obfd));
19004 }
19005 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19006 dwarf2_per_objfile);
19007
19008 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
19009 load_partial_comp_unit (per_cu);
19010
19011 per_cu->cu->last_used = 0;
19012 pd = per_cu->cu->find_partial_die (sect_off);
19013 }
19014
19015 /* If we didn't find it, and not all dies have been loaded,
19016 load them all and try again. */
19017
19018 if (pd == NULL && per_cu->load_all_dies == 0)
19019 {
19020 per_cu->load_all_dies = 1;
19021
19022 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19023 THIS_CU->cu may already be in use. So we can't just free it and
19024 replace its DIEs with the ones we read in. Instead, we leave those
19025 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19026 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19027 set. */
19028 load_partial_comp_unit (per_cu);
19029
19030 pd = per_cu->cu->find_partial_die (sect_off);
19031 }
19032
19033 if (pd == NULL)
19034 internal_error (__FILE__, __LINE__,
19035 _("could not find partial DIE %s "
19036 "in cache [from module %s]\n"),
19037 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19038 return { per_cu->cu, pd };
19039 }
19040
19041 /* See if we can figure out if the class lives in a namespace. We do
19042 this by looking for a member function; its demangled name will
19043 contain namespace info, if there is any. */
19044
19045 static void
19046 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19047 struct dwarf2_cu *cu)
19048 {
19049 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19050 what template types look like, because the demangler
19051 frequently doesn't give the same name as the debug info. We
19052 could fix this by only using the demangled name to get the
19053 prefix (but see comment in read_structure_type). */
19054
19055 struct partial_die_info *real_pdi;
19056 struct partial_die_info *child_pdi;
19057
19058 /* If this DIE (this DIE's specification, if any) has a parent, then
19059 we should not do this. We'll prepend the parent's fully qualified
19060 name when we create the partial symbol. */
19061
19062 real_pdi = struct_pdi;
19063 while (real_pdi->has_specification)
19064 {
19065 auto res = find_partial_die (real_pdi->spec_offset,
19066 real_pdi->spec_is_dwz, cu);
19067 real_pdi = res.pdi;
19068 cu = res.cu;
19069 }
19070
19071 if (real_pdi->die_parent != NULL)
19072 return;
19073
19074 for (child_pdi = struct_pdi->die_child;
19075 child_pdi != NULL;
19076 child_pdi = child_pdi->die_sibling)
19077 {
19078 if (child_pdi->tag == DW_TAG_subprogram
19079 && child_pdi->linkage_name != NULL)
19080 {
19081 char *actual_class_name
19082 = language_class_name_from_physname (cu->language_defn,
19083 child_pdi->linkage_name);
19084 if (actual_class_name != NULL)
19085 {
19086 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19087 struct_pdi->name
19088 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19089 actual_class_name);
19090 xfree (actual_class_name);
19091 }
19092 break;
19093 }
19094 }
19095 }
19096
19097 void
19098 partial_die_info::fixup (struct dwarf2_cu *cu)
19099 {
19100 /* Once we've fixed up a die, there's no point in doing so again.
19101 This also avoids a memory leak if we were to call
19102 guess_partial_die_structure_name multiple times. */
19103 if (fixup_called)
19104 return;
19105
19106 /* If we found a reference attribute and the DIE has no name, try
19107 to find a name in the referred to DIE. */
19108
19109 if (name == NULL && has_specification)
19110 {
19111 struct partial_die_info *spec_die;
19112
19113 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19114 spec_die = res.pdi;
19115 cu = res.cu;
19116
19117 spec_die->fixup (cu);
19118
19119 if (spec_die->name)
19120 {
19121 name = spec_die->name;
19122
19123 /* Copy DW_AT_external attribute if it is set. */
19124 if (spec_die->is_external)
19125 is_external = spec_die->is_external;
19126 }
19127 }
19128
19129 /* Set default names for some unnamed DIEs. */
19130
19131 if (name == NULL && tag == DW_TAG_namespace)
19132 name = CP_ANONYMOUS_NAMESPACE_STR;
19133
19134 /* If there is no parent die to provide a namespace, and there are
19135 children, see if we can determine the namespace from their linkage
19136 name. */
19137 if (cu->language == language_cplus
19138 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19139 && die_parent == NULL
19140 && has_children
19141 && (tag == DW_TAG_class_type
19142 || tag == DW_TAG_structure_type
19143 || tag == DW_TAG_union_type))
19144 guess_partial_die_structure_name (this, cu);
19145
19146 /* GCC might emit a nameless struct or union that has a linkage
19147 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19148 if (name == NULL
19149 && (tag == DW_TAG_class_type
19150 || tag == DW_TAG_interface_type
19151 || tag == DW_TAG_structure_type
19152 || tag == DW_TAG_union_type)
19153 && linkage_name != NULL)
19154 {
19155 char *demangled;
19156
19157 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19158 if (demangled)
19159 {
19160 const char *base;
19161
19162 /* Strip any leading namespaces/classes, keep only the base name.
19163 DW_AT_name for named DIEs does not contain the prefixes. */
19164 base = strrchr (demangled, ':');
19165 if (base && base > demangled && base[-1] == ':')
19166 base++;
19167 else
19168 base = demangled;
19169
19170 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19171 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19172 xfree (demangled);
19173 }
19174 }
19175
19176 fixup_called = 1;
19177 }
19178
19179 /* Read an attribute value described by an attribute form. */
19180
19181 static const gdb_byte *
19182 read_attribute_value (const struct die_reader_specs *reader,
19183 struct attribute *attr, unsigned form,
19184 LONGEST implicit_const, const gdb_byte *info_ptr)
19185 {
19186 struct dwarf2_cu *cu = reader->cu;
19187 struct dwarf2_per_objfile *dwarf2_per_objfile
19188 = cu->per_cu->dwarf2_per_objfile;
19189 struct objfile *objfile = dwarf2_per_objfile->objfile;
19190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19191 bfd *abfd = reader->abfd;
19192 struct comp_unit_head *cu_header = &cu->header;
19193 unsigned int bytes_read;
19194 struct dwarf_block *blk;
19195
19196 attr->form = (enum dwarf_form) form;
19197 switch (form)
19198 {
19199 case DW_FORM_ref_addr:
19200 if (cu->header.version == 2)
19201 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19202 else
19203 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19204 &cu->header, &bytes_read);
19205 info_ptr += bytes_read;
19206 break;
19207 case DW_FORM_GNU_ref_alt:
19208 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19209 info_ptr += bytes_read;
19210 break;
19211 case DW_FORM_addr:
19212 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19213 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19214 info_ptr += bytes_read;
19215 break;
19216 case DW_FORM_block2:
19217 blk = dwarf_alloc_block (cu);
19218 blk->size = read_2_bytes (abfd, info_ptr);
19219 info_ptr += 2;
19220 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19221 info_ptr += blk->size;
19222 DW_BLOCK (attr) = blk;
19223 break;
19224 case DW_FORM_block4:
19225 blk = dwarf_alloc_block (cu);
19226 blk->size = read_4_bytes (abfd, info_ptr);
19227 info_ptr += 4;
19228 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19229 info_ptr += blk->size;
19230 DW_BLOCK (attr) = blk;
19231 break;
19232 case DW_FORM_data2:
19233 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19234 info_ptr += 2;
19235 break;
19236 case DW_FORM_data4:
19237 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19238 info_ptr += 4;
19239 break;
19240 case DW_FORM_data8:
19241 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19242 info_ptr += 8;
19243 break;
19244 case DW_FORM_data16:
19245 blk = dwarf_alloc_block (cu);
19246 blk->size = 16;
19247 blk->data = read_n_bytes (abfd, info_ptr, 16);
19248 info_ptr += 16;
19249 DW_BLOCK (attr) = blk;
19250 break;
19251 case DW_FORM_sec_offset:
19252 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19253 info_ptr += bytes_read;
19254 break;
19255 case DW_FORM_string:
19256 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19257 DW_STRING_IS_CANONICAL (attr) = 0;
19258 info_ptr += bytes_read;
19259 break;
19260 case DW_FORM_strp:
19261 if (!cu->per_cu->is_dwz)
19262 {
19263 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19264 abfd, info_ptr, cu_header,
19265 &bytes_read);
19266 DW_STRING_IS_CANONICAL (attr) = 0;
19267 info_ptr += bytes_read;
19268 break;
19269 }
19270 /* FALLTHROUGH */
19271 case DW_FORM_line_strp:
19272 if (!cu->per_cu->is_dwz)
19273 {
19274 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19275 abfd, info_ptr,
19276 cu_header, &bytes_read);
19277 DW_STRING_IS_CANONICAL (attr) = 0;
19278 info_ptr += bytes_read;
19279 break;
19280 }
19281 /* FALLTHROUGH */
19282 case DW_FORM_GNU_strp_alt:
19283 {
19284 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19285 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19286 &bytes_read);
19287
19288 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19289 dwz, str_offset);
19290 DW_STRING_IS_CANONICAL (attr) = 0;
19291 info_ptr += bytes_read;
19292 }
19293 break;
19294 case DW_FORM_exprloc:
19295 case DW_FORM_block:
19296 blk = dwarf_alloc_block (cu);
19297 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19298 info_ptr += bytes_read;
19299 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19300 info_ptr += blk->size;
19301 DW_BLOCK (attr) = blk;
19302 break;
19303 case DW_FORM_block1:
19304 blk = dwarf_alloc_block (cu);
19305 blk->size = read_1_byte (abfd, info_ptr);
19306 info_ptr += 1;
19307 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19308 info_ptr += blk->size;
19309 DW_BLOCK (attr) = blk;
19310 break;
19311 case DW_FORM_data1:
19312 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19313 info_ptr += 1;
19314 break;
19315 case DW_FORM_flag:
19316 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19317 info_ptr += 1;
19318 break;
19319 case DW_FORM_flag_present:
19320 DW_UNSND (attr) = 1;
19321 break;
19322 case DW_FORM_sdata:
19323 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19324 info_ptr += bytes_read;
19325 break;
19326 case DW_FORM_udata:
19327 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19328 info_ptr += bytes_read;
19329 break;
19330 case DW_FORM_ref1:
19331 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19332 + read_1_byte (abfd, info_ptr));
19333 info_ptr += 1;
19334 break;
19335 case DW_FORM_ref2:
19336 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19337 + read_2_bytes (abfd, info_ptr));
19338 info_ptr += 2;
19339 break;
19340 case DW_FORM_ref4:
19341 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19342 + read_4_bytes (abfd, info_ptr));
19343 info_ptr += 4;
19344 break;
19345 case DW_FORM_ref8:
19346 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19347 + read_8_bytes (abfd, info_ptr));
19348 info_ptr += 8;
19349 break;
19350 case DW_FORM_ref_sig8:
19351 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19352 info_ptr += 8;
19353 break;
19354 case DW_FORM_ref_udata:
19355 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19356 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19357 info_ptr += bytes_read;
19358 break;
19359 case DW_FORM_indirect:
19360 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19361 info_ptr += bytes_read;
19362 if (form == DW_FORM_implicit_const)
19363 {
19364 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19365 info_ptr += bytes_read;
19366 }
19367 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19368 info_ptr);
19369 break;
19370 case DW_FORM_implicit_const:
19371 DW_SND (attr) = implicit_const;
19372 break;
19373 case DW_FORM_addrx:
19374 case DW_FORM_GNU_addr_index:
19375 if (reader->dwo_file == NULL)
19376 {
19377 /* For now flag a hard error.
19378 Later we can turn this into a complaint. */
19379 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19380 dwarf_form_name (form),
19381 bfd_get_filename (abfd));
19382 }
19383 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19384 info_ptr += bytes_read;
19385 break;
19386 case DW_FORM_strx:
19387 case DW_FORM_strx1:
19388 case DW_FORM_strx2:
19389 case DW_FORM_strx3:
19390 case DW_FORM_strx4:
19391 case DW_FORM_GNU_str_index:
19392 if (reader->dwo_file == NULL)
19393 {
19394 /* For now flag a hard error.
19395 Later we can turn this into a complaint if warranted. */
19396 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19397 dwarf_form_name (form),
19398 bfd_get_filename (abfd));
19399 }
19400 {
19401 ULONGEST str_index;
19402 if (form == DW_FORM_strx1)
19403 {
19404 str_index = read_1_byte (abfd, info_ptr);
19405 info_ptr += 1;
19406 }
19407 else if (form == DW_FORM_strx2)
19408 {
19409 str_index = read_2_bytes (abfd, info_ptr);
19410 info_ptr += 2;
19411 }
19412 else if (form == DW_FORM_strx3)
19413 {
19414 str_index = read_3_bytes (abfd, info_ptr);
19415 info_ptr += 3;
19416 }
19417 else if (form == DW_FORM_strx4)
19418 {
19419 str_index = read_4_bytes (abfd, info_ptr);
19420 info_ptr += 4;
19421 }
19422 else
19423 {
19424 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19425 info_ptr += bytes_read;
19426 }
19427 DW_STRING (attr) = read_str_index (reader, str_index);
19428 DW_STRING_IS_CANONICAL (attr) = 0;
19429 }
19430 break;
19431 default:
19432 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19433 dwarf_form_name (form),
19434 bfd_get_filename (abfd));
19435 }
19436
19437 /* Super hack. */
19438 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19439 attr->form = DW_FORM_GNU_ref_alt;
19440
19441 /* We have seen instances where the compiler tried to emit a byte
19442 size attribute of -1 which ended up being encoded as an unsigned
19443 0xffffffff. Although 0xffffffff is technically a valid size value,
19444 an object of this size seems pretty unlikely so we can relatively
19445 safely treat these cases as if the size attribute was invalid and
19446 treat them as zero by default. */
19447 if (attr->name == DW_AT_byte_size
19448 && form == DW_FORM_data4
19449 && DW_UNSND (attr) >= 0xffffffff)
19450 {
19451 complaint
19452 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19453 hex_string (DW_UNSND (attr)));
19454 DW_UNSND (attr) = 0;
19455 }
19456
19457 return info_ptr;
19458 }
19459
19460 /* Read an attribute described by an abbreviated attribute. */
19461
19462 static const gdb_byte *
19463 read_attribute (const struct die_reader_specs *reader,
19464 struct attribute *attr, struct attr_abbrev *abbrev,
19465 const gdb_byte *info_ptr)
19466 {
19467 attr->name = abbrev->name;
19468 return read_attribute_value (reader, attr, abbrev->form,
19469 abbrev->implicit_const, info_ptr);
19470 }
19471
19472 /* Read dwarf information from a buffer. */
19473
19474 static unsigned int
19475 read_1_byte (bfd *abfd, const gdb_byte *buf)
19476 {
19477 return bfd_get_8 (abfd, buf);
19478 }
19479
19480 static int
19481 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19482 {
19483 return bfd_get_signed_8 (abfd, buf);
19484 }
19485
19486 static unsigned int
19487 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19488 {
19489 return bfd_get_16 (abfd, buf);
19490 }
19491
19492 static int
19493 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19494 {
19495 return bfd_get_signed_16 (abfd, buf);
19496 }
19497
19498 static unsigned int
19499 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19500 {
19501 unsigned int result = 0;
19502 for (int i = 0; i < 3; ++i)
19503 {
19504 unsigned char byte = bfd_get_8 (abfd, buf);
19505 buf++;
19506 result |= ((unsigned int) byte << (i * 8));
19507 }
19508 return result;
19509 }
19510
19511 static unsigned int
19512 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19513 {
19514 return bfd_get_32 (abfd, buf);
19515 }
19516
19517 static int
19518 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19519 {
19520 return bfd_get_signed_32 (abfd, buf);
19521 }
19522
19523 static ULONGEST
19524 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19525 {
19526 return bfd_get_64 (abfd, buf);
19527 }
19528
19529 static CORE_ADDR
19530 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19531 unsigned int *bytes_read)
19532 {
19533 struct comp_unit_head *cu_header = &cu->header;
19534 CORE_ADDR retval = 0;
19535
19536 if (cu_header->signed_addr_p)
19537 {
19538 switch (cu_header->addr_size)
19539 {
19540 case 2:
19541 retval = bfd_get_signed_16 (abfd, buf);
19542 break;
19543 case 4:
19544 retval = bfd_get_signed_32 (abfd, buf);
19545 break;
19546 case 8:
19547 retval = bfd_get_signed_64 (abfd, buf);
19548 break;
19549 default:
19550 internal_error (__FILE__, __LINE__,
19551 _("read_address: bad switch, signed [in module %s]"),
19552 bfd_get_filename (abfd));
19553 }
19554 }
19555 else
19556 {
19557 switch (cu_header->addr_size)
19558 {
19559 case 2:
19560 retval = bfd_get_16 (abfd, buf);
19561 break;
19562 case 4:
19563 retval = bfd_get_32 (abfd, buf);
19564 break;
19565 case 8:
19566 retval = bfd_get_64 (abfd, buf);
19567 break;
19568 default:
19569 internal_error (__FILE__, __LINE__,
19570 _("read_address: bad switch, "
19571 "unsigned [in module %s]"),
19572 bfd_get_filename (abfd));
19573 }
19574 }
19575
19576 *bytes_read = cu_header->addr_size;
19577 return retval;
19578 }
19579
19580 /* Read the initial length from a section. The (draft) DWARF 3
19581 specification allows the initial length to take up either 4 bytes
19582 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19583 bytes describe the length and all offsets will be 8 bytes in length
19584 instead of 4.
19585
19586 An older, non-standard 64-bit format is also handled by this
19587 function. The older format in question stores the initial length
19588 as an 8-byte quantity without an escape value. Lengths greater
19589 than 2^32 aren't very common which means that the initial 4 bytes
19590 is almost always zero. Since a length value of zero doesn't make
19591 sense for the 32-bit format, this initial zero can be considered to
19592 be an escape value which indicates the presence of the older 64-bit
19593 format. As written, the code can't detect (old format) lengths
19594 greater than 4GB. If it becomes necessary to handle lengths
19595 somewhat larger than 4GB, we could allow other small values (such
19596 as the non-sensical values of 1, 2, and 3) to also be used as
19597 escape values indicating the presence of the old format.
19598
19599 The value returned via bytes_read should be used to increment the
19600 relevant pointer after calling read_initial_length().
19601
19602 [ Note: read_initial_length() and read_offset() are based on the
19603 document entitled "DWARF Debugging Information Format", revision
19604 3, draft 8, dated November 19, 2001. This document was obtained
19605 from:
19606
19607 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19608
19609 This document is only a draft and is subject to change. (So beware.)
19610
19611 Details regarding the older, non-standard 64-bit format were
19612 determined empirically by examining 64-bit ELF files produced by
19613 the SGI toolchain on an IRIX 6.5 machine.
19614
19615 - Kevin, July 16, 2002
19616 ] */
19617
19618 static LONGEST
19619 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19620 {
19621 LONGEST length = bfd_get_32 (abfd, buf);
19622
19623 if (length == 0xffffffff)
19624 {
19625 length = bfd_get_64 (abfd, buf + 4);
19626 *bytes_read = 12;
19627 }
19628 else if (length == 0)
19629 {
19630 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19631 length = bfd_get_64 (abfd, buf);
19632 *bytes_read = 8;
19633 }
19634 else
19635 {
19636 *bytes_read = 4;
19637 }
19638
19639 return length;
19640 }
19641
19642 /* Cover function for read_initial_length.
19643 Returns the length of the object at BUF, and stores the size of the
19644 initial length in *BYTES_READ and stores the size that offsets will be in
19645 *OFFSET_SIZE.
19646 If the initial length size is not equivalent to that specified in
19647 CU_HEADER then issue a complaint.
19648 This is useful when reading non-comp-unit headers. */
19649
19650 static LONGEST
19651 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19652 const struct comp_unit_head *cu_header,
19653 unsigned int *bytes_read,
19654 unsigned int *offset_size)
19655 {
19656 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19657
19658 gdb_assert (cu_header->initial_length_size == 4
19659 || cu_header->initial_length_size == 8
19660 || cu_header->initial_length_size == 12);
19661
19662 if (cu_header->initial_length_size != *bytes_read)
19663 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19664
19665 *offset_size = (*bytes_read == 4) ? 4 : 8;
19666 return length;
19667 }
19668
19669 /* Read an offset from the data stream. The size of the offset is
19670 given by cu_header->offset_size. */
19671
19672 static LONGEST
19673 read_offset (bfd *abfd, const gdb_byte *buf,
19674 const struct comp_unit_head *cu_header,
19675 unsigned int *bytes_read)
19676 {
19677 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19678
19679 *bytes_read = cu_header->offset_size;
19680 return offset;
19681 }
19682
19683 /* Read an offset from the data stream. */
19684
19685 static LONGEST
19686 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19687 {
19688 LONGEST retval = 0;
19689
19690 switch (offset_size)
19691 {
19692 case 4:
19693 retval = bfd_get_32 (abfd, buf);
19694 break;
19695 case 8:
19696 retval = bfd_get_64 (abfd, buf);
19697 break;
19698 default:
19699 internal_error (__FILE__, __LINE__,
19700 _("read_offset_1: bad switch [in module %s]"),
19701 bfd_get_filename (abfd));
19702 }
19703
19704 return retval;
19705 }
19706
19707 static const gdb_byte *
19708 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19709 {
19710 /* If the size of a host char is 8 bits, we can return a pointer
19711 to the buffer, otherwise we have to copy the data to a buffer
19712 allocated on the temporary obstack. */
19713 gdb_assert (HOST_CHAR_BIT == 8);
19714 return buf;
19715 }
19716
19717 static const char *
19718 read_direct_string (bfd *abfd, const gdb_byte *buf,
19719 unsigned int *bytes_read_ptr)
19720 {
19721 /* If the size of a host char is 8 bits, we can return a pointer
19722 to the string, otherwise we have to copy the string to a buffer
19723 allocated on the temporary obstack. */
19724 gdb_assert (HOST_CHAR_BIT == 8);
19725 if (*buf == '\0')
19726 {
19727 *bytes_read_ptr = 1;
19728 return NULL;
19729 }
19730 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19731 return (const char *) buf;
19732 }
19733
19734 /* Return pointer to string at section SECT offset STR_OFFSET with error
19735 reporting strings FORM_NAME and SECT_NAME. */
19736
19737 static const char *
19738 read_indirect_string_at_offset_from (struct objfile *objfile,
19739 bfd *abfd, LONGEST str_offset,
19740 struct dwarf2_section_info *sect,
19741 const char *form_name,
19742 const char *sect_name)
19743 {
19744 dwarf2_read_section (objfile, sect);
19745 if (sect->buffer == NULL)
19746 error (_("%s used without %s section [in module %s]"),
19747 form_name, sect_name, bfd_get_filename (abfd));
19748 if (str_offset >= sect->size)
19749 error (_("%s pointing outside of %s section [in module %s]"),
19750 form_name, sect_name, bfd_get_filename (abfd));
19751 gdb_assert (HOST_CHAR_BIT == 8);
19752 if (sect->buffer[str_offset] == '\0')
19753 return NULL;
19754 return (const char *) (sect->buffer + str_offset);
19755 }
19756
19757 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19758
19759 static const char *
19760 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19761 bfd *abfd, LONGEST str_offset)
19762 {
19763 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19764 abfd, str_offset,
19765 &dwarf2_per_objfile->str,
19766 "DW_FORM_strp", ".debug_str");
19767 }
19768
19769 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19770
19771 static const char *
19772 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19773 bfd *abfd, LONGEST str_offset)
19774 {
19775 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19776 abfd, str_offset,
19777 &dwarf2_per_objfile->line_str,
19778 "DW_FORM_line_strp",
19779 ".debug_line_str");
19780 }
19781
19782 /* Read a string at offset STR_OFFSET in the .debug_str section from
19783 the .dwz file DWZ. Throw an error if the offset is too large. If
19784 the string consists of a single NUL byte, return NULL; otherwise
19785 return a pointer to the string. */
19786
19787 static const char *
19788 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19789 LONGEST str_offset)
19790 {
19791 dwarf2_read_section (objfile, &dwz->str);
19792
19793 if (dwz->str.buffer == NULL)
19794 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19795 "section [in module %s]"),
19796 bfd_get_filename (dwz->dwz_bfd.get ()));
19797 if (str_offset >= dwz->str.size)
19798 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19799 ".debug_str section [in module %s]"),
19800 bfd_get_filename (dwz->dwz_bfd.get ()));
19801 gdb_assert (HOST_CHAR_BIT == 8);
19802 if (dwz->str.buffer[str_offset] == '\0')
19803 return NULL;
19804 return (const char *) (dwz->str.buffer + str_offset);
19805 }
19806
19807 /* Return pointer to string at .debug_str offset as read from BUF.
19808 BUF is assumed to be in a compilation unit described by CU_HEADER.
19809 Return *BYTES_READ_PTR count of bytes read from BUF. */
19810
19811 static const char *
19812 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19813 const gdb_byte *buf,
19814 const struct comp_unit_head *cu_header,
19815 unsigned int *bytes_read_ptr)
19816 {
19817 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19818
19819 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19820 }
19821
19822 /* Return pointer to string at .debug_line_str offset as read from BUF.
19823 BUF is assumed to be in a compilation unit described by CU_HEADER.
19824 Return *BYTES_READ_PTR count of bytes read from BUF. */
19825
19826 static const char *
19827 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19828 bfd *abfd, const gdb_byte *buf,
19829 const struct comp_unit_head *cu_header,
19830 unsigned int *bytes_read_ptr)
19831 {
19832 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19833
19834 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19835 str_offset);
19836 }
19837
19838 ULONGEST
19839 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19840 unsigned int *bytes_read_ptr)
19841 {
19842 ULONGEST result;
19843 unsigned int num_read;
19844 int shift;
19845 unsigned char byte;
19846
19847 result = 0;
19848 shift = 0;
19849 num_read = 0;
19850 while (1)
19851 {
19852 byte = bfd_get_8 (abfd, buf);
19853 buf++;
19854 num_read++;
19855 result |= ((ULONGEST) (byte & 127) << shift);
19856 if ((byte & 128) == 0)
19857 {
19858 break;
19859 }
19860 shift += 7;
19861 }
19862 *bytes_read_ptr = num_read;
19863 return result;
19864 }
19865
19866 static LONGEST
19867 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19868 unsigned int *bytes_read_ptr)
19869 {
19870 ULONGEST result;
19871 int shift, num_read;
19872 unsigned char byte;
19873
19874 result = 0;
19875 shift = 0;
19876 num_read = 0;
19877 while (1)
19878 {
19879 byte = bfd_get_8 (abfd, buf);
19880 buf++;
19881 num_read++;
19882 result |= ((ULONGEST) (byte & 127) << shift);
19883 shift += 7;
19884 if ((byte & 128) == 0)
19885 {
19886 break;
19887 }
19888 }
19889 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19890 result |= -(((ULONGEST) 1) << shift);
19891 *bytes_read_ptr = num_read;
19892 return result;
19893 }
19894
19895 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19896 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19897 ADDR_SIZE is the size of addresses from the CU header. */
19898
19899 static CORE_ADDR
19900 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19901 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19902 {
19903 struct objfile *objfile = dwarf2_per_objfile->objfile;
19904 bfd *abfd = objfile->obfd;
19905 const gdb_byte *info_ptr;
19906
19907 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19908 if (dwarf2_per_objfile->addr.buffer == NULL)
19909 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19910 objfile_name (objfile));
19911 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19912 error (_("DW_FORM_addr_index pointing outside of "
19913 ".debug_addr section [in module %s]"),
19914 objfile_name (objfile));
19915 info_ptr = (dwarf2_per_objfile->addr.buffer
19916 + addr_base + addr_index * addr_size);
19917 if (addr_size == 4)
19918 return bfd_get_32 (abfd, info_ptr);
19919 else
19920 return bfd_get_64 (abfd, info_ptr);
19921 }
19922
19923 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19924
19925 static CORE_ADDR
19926 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19927 {
19928 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19929 cu->addr_base, cu->header.addr_size);
19930 }
19931
19932 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19933
19934 static CORE_ADDR
19935 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19936 unsigned int *bytes_read)
19937 {
19938 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19939 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19940
19941 return read_addr_index (cu, addr_index);
19942 }
19943
19944 /* Data structure to pass results from dwarf2_read_addr_index_reader
19945 back to dwarf2_read_addr_index. */
19946
19947 struct dwarf2_read_addr_index_data
19948 {
19949 ULONGEST addr_base;
19950 int addr_size;
19951 };
19952
19953 /* die_reader_func for dwarf2_read_addr_index. */
19954
19955 static void
19956 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19957 const gdb_byte *info_ptr,
19958 struct die_info *comp_unit_die,
19959 int has_children,
19960 void *data)
19961 {
19962 struct dwarf2_cu *cu = reader->cu;
19963 struct dwarf2_read_addr_index_data *aidata =
19964 (struct dwarf2_read_addr_index_data *) data;
19965
19966 aidata->addr_base = cu->addr_base;
19967 aidata->addr_size = cu->header.addr_size;
19968 }
19969
19970 /* Given an index in .debug_addr, fetch the value.
19971 NOTE: This can be called during dwarf expression evaluation,
19972 long after the debug information has been read, and thus per_cu->cu
19973 may no longer exist. */
19974
19975 CORE_ADDR
19976 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19977 unsigned int addr_index)
19978 {
19979 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19980 struct dwarf2_cu *cu = per_cu->cu;
19981 ULONGEST addr_base;
19982 int addr_size;
19983
19984 /* We need addr_base and addr_size.
19985 If we don't have PER_CU->cu, we have to get it.
19986 Nasty, but the alternative is storing the needed info in PER_CU,
19987 which at this point doesn't seem justified: it's not clear how frequently
19988 it would get used and it would increase the size of every PER_CU.
19989 Entry points like dwarf2_per_cu_addr_size do a similar thing
19990 so we're not in uncharted territory here.
19991 Alas we need to be a bit more complicated as addr_base is contained
19992 in the DIE.
19993
19994 We don't need to read the entire CU(/TU).
19995 We just need the header and top level die.
19996
19997 IWBN to use the aging mechanism to let us lazily later discard the CU.
19998 For now we skip this optimization. */
19999
20000 if (cu != NULL)
20001 {
20002 addr_base = cu->addr_base;
20003 addr_size = cu->header.addr_size;
20004 }
20005 else
20006 {
20007 struct dwarf2_read_addr_index_data aidata;
20008
20009 /* Note: We can't use init_cutu_and_read_dies_simple here,
20010 we need addr_base. */
20011 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
20012 dwarf2_read_addr_index_reader, &aidata);
20013 addr_base = aidata.addr_base;
20014 addr_size = aidata.addr_size;
20015 }
20016
20017 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20018 addr_size);
20019 }
20020
20021 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
20022 This is only used by the Fission support. */
20023
20024 static const char *
20025 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20026 {
20027 struct dwarf2_cu *cu = reader->cu;
20028 struct dwarf2_per_objfile *dwarf2_per_objfile
20029 = cu->per_cu->dwarf2_per_objfile;
20030 struct objfile *objfile = dwarf2_per_objfile->objfile;
20031 const char *objf_name = objfile_name (objfile);
20032 bfd *abfd = objfile->obfd;
20033 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20034 struct dwarf2_section_info *str_offsets_section =
20035 &reader->dwo_file->sections.str_offsets;
20036 const gdb_byte *info_ptr;
20037 ULONGEST str_offset;
20038 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20039
20040 dwarf2_read_section (objfile, str_section);
20041 dwarf2_read_section (objfile, str_offsets_section);
20042 if (str_section->buffer == NULL)
20043 error (_("%s used without .debug_str.dwo section"
20044 " in CU at offset %s [in module %s]"),
20045 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20046 if (str_offsets_section->buffer == NULL)
20047 error (_("%s used without .debug_str_offsets.dwo section"
20048 " in CU at offset %s [in module %s]"),
20049 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20050 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20051 error (_("%s pointing outside of .debug_str_offsets.dwo"
20052 " section in CU at offset %s [in module %s]"),
20053 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20054 info_ptr = (str_offsets_section->buffer
20055 + str_index * cu->header.offset_size);
20056 if (cu->header.offset_size == 4)
20057 str_offset = bfd_get_32 (abfd, info_ptr);
20058 else
20059 str_offset = bfd_get_64 (abfd, info_ptr);
20060 if (str_offset >= str_section->size)
20061 error (_("Offset from %s pointing outside of"
20062 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20063 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20064 return (const char *) (str_section->buffer + str_offset);
20065 }
20066
20067 /* Return the length of an LEB128 number in BUF. */
20068
20069 static int
20070 leb128_size (const gdb_byte *buf)
20071 {
20072 const gdb_byte *begin = buf;
20073 gdb_byte byte;
20074
20075 while (1)
20076 {
20077 byte = *buf++;
20078 if ((byte & 128) == 0)
20079 return buf - begin;
20080 }
20081 }
20082
20083 static void
20084 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20085 {
20086 switch (lang)
20087 {
20088 case DW_LANG_C89:
20089 case DW_LANG_C99:
20090 case DW_LANG_C11:
20091 case DW_LANG_C:
20092 case DW_LANG_UPC:
20093 cu->language = language_c;
20094 break;
20095 case DW_LANG_Java:
20096 case DW_LANG_C_plus_plus:
20097 case DW_LANG_C_plus_plus_11:
20098 case DW_LANG_C_plus_plus_14:
20099 cu->language = language_cplus;
20100 break;
20101 case DW_LANG_D:
20102 cu->language = language_d;
20103 break;
20104 case DW_LANG_Fortran77:
20105 case DW_LANG_Fortran90:
20106 case DW_LANG_Fortran95:
20107 case DW_LANG_Fortran03:
20108 case DW_LANG_Fortran08:
20109 cu->language = language_fortran;
20110 break;
20111 case DW_LANG_Go:
20112 cu->language = language_go;
20113 break;
20114 case DW_LANG_Mips_Assembler:
20115 cu->language = language_asm;
20116 break;
20117 case DW_LANG_Ada83:
20118 case DW_LANG_Ada95:
20119 cu->language = language_ada;
20120 break;
20121 case DW_LANG_Modula2:
20122 cu->language = language_m2;
20123 break;
20124 case DW_LANG_Pascal83:
20125 cu->language = language_pascal;
20126 break;
20127 case DW_LANG_ObjC:
20128 cu->language = language_objc;
20129 break;
20130 case DW_LANG_Rust:
20131 case DW_LANG_Rust_old:
20132 cu->language = language_rust;
20133 break;
20134 case DW_LANG_Cobol74:
20135 case DW_LANG_Cobol85:
20136 default:
20137 cu->language = language_minimal;
20138 break;
20139 }
20140 cu->language_defn = language_def (cu->language);
20141 }
20142
20143 /* Return the named attribute or NULL if not there. */
20144
20145 static struct attribute *
20146 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20147 {
20148 for (;;)
20149 {
20150 unsigned int i;
20151 struct attribute *spec = NULL;
20152
20153 for (i = 0; i < die->num_attrs; ++i)
20154 {
20155 if (die->attrs[i].name == name)
20156 return &die->attrs[i];
20157 if (die->attrs[i].name == DW_AT_specification
20158 || die->attrs[i].name == DW_AT_abstract_origin)
20159 spec = &die->attrs[i];
20160 }
20161
20162 if (!spec)
20163 break;
20164
20165 die = follow_die_ref (die, spec, &cu);
20166 }
20167
20168 return NULL;
20169 }
20170
20171 /* Return the named attribute or NULL if not there,
20172 but do not follow DW_AT_specification, etc.
20173 This is for use in contexts where we're reading .debug_types dies.
20174 Following DW_AT_specification, DW_AT_abstract_origin will take us
20175 back up the chain, and we want to go down. */
20176
20177 static struct attribute *
20178 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20179 {
20180 unsigned int i;
20181
20182 for (i = 0; i < die->num_attrs; ++i)
20183 if (die->attrs[i].name == name)
20184 return &die->attrs[i];
20185
20186 return NULL;
20187 }
20188
20189 /* Return the string associated with a string-typed attribute, or NULL if it
20190 is either not found or is of an incorrect type. */
20191
20192 static const char *
20193 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20194 {
20195 struct attribute *attr;
20196 const char *str = NULL;
20197
20198 attr = dwarf2_attr (die, name, cu);
20199
20200 if (attr != NULL)
20201 {
20202 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20203 || attr->form == DW_FORM_string
20204 || attr->form == DW_FORM_strx
20205 || attr->form == DW_FORM_strx1
20206 || attr->form == DW_FORM_strx2
20207 || attr->form == DW_FORM_strx3
20208 || attr->form == DW_FORM_strx4
20209 || attr->form == DW_FORM_GNU_str_index
20210 || attr->form == DW_FORM_GNU_strp_alt)
20211 str = DW_STRING (attr);
20212 else
20213 complaint (_("string type expected for attribute %s for "
20214 "DIE at %s in module %s"),
20215 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20216 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20217 }
20218
20219 return str;
20220 }
20221
20222 /* Return the dwo name or NULL if not present. If present, it is in either
20223 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20224 static const char *
20225 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20226 {
20227 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20228 if (dwo_name == nullptr)
20229 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20230 return dwo_name;
20231 }
20232
20233 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20234 and holds a non-zero value. This function should only be used for
20235 DW_FORM_flag or DW_FORM_flag_present attributes. */
20236
20237 static int
20238 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20239 {
20240 struct attribute *attr = dwarf2_attr (die, name, cu);
20241
20242 return (attr && DW_UNSND (attr));
20243 }
20244
20245 static int
20246 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20247 {
20248 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20249 which value is non-zero. However, we have to be careful with
20250 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20251 (via dwarf2_flag_true_p) follows this attribute. So we may
20252 end up accidently finding a declaration attribute that belongs
20253 to a different DIE referenced by the specification attribute,
20254 even though the given DIE does not have a declaration attribute. */
20255 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20256 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20257 }
20258
20259 /* Return the die giving the specification for DIE, if there is
20260 one. *SPEC_CU is the CU containing DIE on input, and the CU
20261 containing the return value on output. If there is no
20262 specification, but there is an abstract origin, that is
20263 returned. */
20264
20265 static struct die_info *
20266 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20267 {
20268 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20269 *spec_cu);
20270
20271 if (spec_attr == NULL)
20272 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20273
20274 if (spec_attr == NULL)
20275 return NULL;
20276 else
20277 return follow_die_ref (die, spec_attr, spec_cu);
20278 }
20279
20280 /* Stub for free_line_header to match void * callback types. */
20281
20282 static void
20283 free_line_header_voidp (void *arg)
20284 {
20285 struct line_header *lh = (struct line_header *) arg;
20286
20287 delete lh;
20288 }
20289
20290 void
20291 line_header::add_include_dir (const char *include_dir)
20292 {
20293 if (dwarf_line_debug >= 2)
20294 {
20295 size_t new_size;
20296 if (version >= 5)
20297 new_size = m_include_dirs.size ();
20298 else
20299 new_size = m_include_dirs.size () + 1;
20300 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20301 new_size, include_dir);
20302 }
20303 m_include_dirs.push_back (include_dir);
20304 }
20305
20306 void
20307 line_header::add_file_name (const char *name,
20308 dir_index d_index,
20309 unsigned int mod_time,
20310 unsigned int length)
20311 {
20312 if (dwarf_line_debug >= 2)
20313 {
20314 size_t new_size;
20315 if (version >= 5)
20316 new_size = file_names_size ();
20317 else
20318 new_size = file_names_size () + 1;
20319 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
20320 new_size, name);
20321 }
20322 m_file_names.emplace_back (name, d_index, mod_time, length);
20323 }
20324
20325 /* A convenience function to find the proper .debug_line section for a CU. */
20326
20327 static struct dwarf2_section_info *
20328 get_debug_line_section (struct dwarf2_cu *cu)
20329 {
20330 struct dwarf2_section_info *section;
20331 struct dwarf2_per_objfile *dwarf2_per_objfile
20332 = cu->per_cu->dwarf2_per_objfile;
20333
20334 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20335 DWO file. */
20336 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20337 section = &cu->dwo_unit->dwo_file->sections.line;
20338 else if (cu->per_cu->is_dwz)
20339 {
20340 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20341
20342 section = &dwz->line;
20343 }
20344 else
20345 section = &dwarf2_per_objfile->line;
20346
20347 return section;
20348 }
20349
20350 /* Read directory or file name entry format, starting with byte of
20351 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20352 entries count and the entries themselves in the described entry
20353 format. */
20354
20355 static void
20356 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20357 bfd *abfd, const gdb_byte **bufp,
20358 struct line_header *lh,
20359 const struct comp_unit_head *cu_header,
20360 void (*callback) (struct line_header *lh,
20361 const char *name,
20362 dir_index d_index,
20363 unsigned int mod_time,
20364 unsigned int length))
20365 {
20366 gdb_byte format_count, formati;
20367 ULONGEST data_count, datai;
20368 const gdb_byte *buf = *bufp;
20369 const gdb_byte *format_header_data;
20370 unsigned int bytes_read;
20371
20372 format_count = read_1_byte (abfd, buf);
20373 buf += 1;
20374 format_header_data = buf;
20375 for (formati = 0; formati < format_count; formati++)
20376 {
20377 read_unsigned_leb128 (abfd, buf, &bytes_read);
20378 buf += bytes_read;
20379 read_unsigned_leb128 (abfd, buf, &bytes_read);
20380 buf += bytes_read;
20381 }
20382
20383 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20384 buf += bytes_read;
20385 for (datai = 0; datai < data_count; datai++)
20386 {
20387 const gdb_byte *format = format_header_data;
20388 struct file_entry fe;
20389
20390 for (formati = 0; formati < format_count; formati++)
20391 {
20392 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20393 format += bytes_read;
20394
20395 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20396 format += bytes_read;
20397
20398 gdb::optional<const char *> string;
20399 gdb::optional<unsigned int> uint;
20400
20401 switch (form)
20402 {
20403 case DW_FORM_string:
20404 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20405 buf += bytes_read;
20406 break;
20407
20408 case DW_FORM_line_strp:
20409 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20410 abfd, buf,
20411 cu_header,
20412 &bytes_read));
20413 buf += bytes_read;
20414 break;
20415
20416 case DW_FORM_data1:
20417 uint.emplace (read_1_byte (abfd, buf));
20418 buf += 1;
20419 break;
20420
20421 case DW_FORM_data2:
20422 uint.emplace (read_2_bytes (abfd, buf));
20423 buf += 2;
20424 break;
20425
20426 case DW_FORM_data4:
20427 uint.emplace (read_4_bytes (abfd, buf));
20428 buf += 4;
20429 break;
20430
20431 case DW_FORM_data8:
20432 uint.emplace (read_8_bytes (abfd, buf));
20433 buf += 8;
20434 break;
20435
20436 case DW_FORM_data16:
20437 /* This is used for MD5, but file_entry does not record MD5s. */
20438 buf += 16;
20439 break;
20440
20441 case DW_FORM_udata:
20442 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20443 buf += bytes_read;
20444 break;
20445
20446 case DW_FORM_block:
20447 /* It is valid only for DW_LNCT_timestamp which is ignored by
20448 current GDB. */
20449 break;
20450 }
20451
20452 switch (content_type)
20453 {
20454 case DW_LNCT_path:
20455 if (string.has_value ())
20456 fe.name = *string;
20457 break;
20458 case DW_LNCT_directory_index:
20459 if (uint.has_value ())
20460 fe.d_index = (dir_index) *uint;
20461 break;
20462 case DW_LNCT_timestamp:
20463 if (uint.has_value ())
20464 fe.mod_time = *uint;
20465 break;
20466 case DW_LNCT_size:
20467 if (uint.has_value ())
20468 fe.length = *uint;
20469 break;
20470 case DW_LNCT_MD5:
20471 break;
20472 default:
20473 complaint (_("Unknown format content type %s"),
20474 pulongest (content_type));
20475 }
20476 }
20477
20478 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20479 }
20480
20481 *bufp = buf;
20482 }
20483
20484 /* Read the statement program header starting at OFFSET in
20485 .debug_line, or .debug_line.dwo. Return a pointer
20486 to a struct line_header, allocated using xmalloc.
20487 Returns NULL if there is a problem reading the header, e.g., if it
20488 has a version we don't understand.
20489
20490 NOTE: the strings in the include directory and file name tables of
20491 the returned object point into the dwarf line section buffer,
20492 and must not be freed. */
20493
20494 static line_header_up
20495 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20496 {
20497 const gdb_byte *line_ptr;
20498 unsigned int bytes_read, offset_size;
20499 int i;
20500 const char *cur_dir, *cur_file;
20501 struct dwarf2_section_info *section;
20502 bfd *abfd;
20503 struct dwarf2_per_objfile *dwarf2_per_objfile
20504 = cu->per_cu->dwarf2_per_objfile;
20505
20506 section = get_debug_line_section (cu);
20507 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20508 if (section->buffer == NULL)
20509 {
20510 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20511 complaint (_("missing .debug_line.dwo section"));
20512 else
20513 complaint (_("missing .debug_line section"));
20514 return 0;
20515 }
20516
20517 /* We can't do this until we know the section is non-empty.
20518 Only then do we know we have such a section. */
20519 abfd = get_section_bfd_owner (section);
20520
20521 /* Make sure that at least there's room for the total_length field.
20522 That could be 12 bytes long, but we're just going to fudge that. */
20523 if (to_underlying (sect_off) + 4 >= section->size)
20524 {
20525 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20526 return 0;
20527 }
20528
20529 line_header_up lh (new line_header ());
20530
20531 lh->sect_off = sect_off;
20532 lh->offset_in_dwz = cu->per_cu->is_dwz;
20533
20534 line_ptr = section->buffer + to_underlying (sect_off);
20535
20536 /* Read in the header. */
20537 lh->total_length =
20538 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20539 &bytes_read, &offset_size);
20540 line_ptr += bytes_read;
20541
20542 const gdb_byte *start_here = line_ptr;
20543
20544 if (line_ptr + lh->total_length > (section->buffer + section->size))
20545 {
20546 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20547 return 0;
20548 }
20549 lh->statement_program_end = start_here + lh->total_length;
20550 lh->version = read_2_bytes (abfd, line_ptr);
20551 line_ptr += 2;
20552 if (lh->version > 5)
20553 {
20554 /* This is a version we don't understand. The format could have
20555 changed in ways we don't handle properly so just punt. */
20556 complaint (_("unsupported version in .debug_line section"));
20557 return NULL;
20558 }
20559 if (lh->version >= 5)
20560 {
20561 gdb_byte segment_selector_size;
20562
20563 /* Skip address size. */
20564 read_1_byte (abfd, line_ptr);
20565 line_ptr += 1;
20566
20567 segment_selector_size = read_1_byte (abfd, line_ptr);
20568 line_ptr += 1;
20569 if (segment_selector_size != 0)
20570 {
20571 complaint (_("unsupported segment selector size %u "
20572 "in .debug_line section"),
20573 segment_selector_size);
20574 return NULL;
20575 }
20576 }
20577 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20578 line_ptr += offset_size;
20579 lh->statement_program_start = line_ptr + lh->header_length;
20580 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20581 line_ptr += 1;
20582 if (lh->version >= 4)
20583 {
20584 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20585 line_ptr += 1;
20586 }
20587 else
20588 lh->maximum_ops_per_instruction = 1;
20589
20590 if (lh->maximum_ops_per_instruction == 0)
20591 {
20592 lh->maximum_ops_per_instruction = 1;
20593 complaint (_("invalid maximum_ops_per_instruction "
20594 "in `.debug_line' section"));
20595 }
20596
20597 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20598 line_ptr += 1;
20599 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20600 line_ptr += 1;
20601 lh->line_range = read_1_byte (abfd, line_ptr);
20602 line_ptr += 1;
20603 lh->opcode_base = read_1_byte (abfd, line_ptr);
20604 line_ptr += 1;
20605 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20606
20607 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20608 for (i = 1; i < lh->opcode_base; ++i)
20609 {
20610 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20611 line_ptr += 1;
20612 }
20613
20614 if (lh->version >= 5)
20615 {
20616 /* Read directory table. */
20617 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20618 &cu->header,
20619 [] (struct line_header *header, const char *name,
20620 dir_index d_index, unsigned int mod_time,
20621 unsigned int length)
20622 {
20623 header->add_include_dir (name);
20624 });
20625
20626 /* Read file name table. */
20627 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20628 &cu->header,
20629 [] (struct line_header *header, const char *name,
20630 dir_index d_index, unsigned int mod_time,
20631 unsigned int length)
20632 {
20633 header->add_file_name (name, d_index, mod_time, length);
20634 });
20635 }
20636 else
20637 {
20638 /* Read directory table. */
20639 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20640 {
20641 line_ptr += bytes_read;
20642 lh->add_include_dir (cur_dir);
20643 }
20644 line_ptr += bytes_read;
20645
20646 /* Read file name table. */
20647 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20648 {
20649 unsigned int mod_time, length;
20650 dir_index d_index;
20651
20652 line_ptr += bytes_read;
20653 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20654 line_ptr += bytes_read;
20655 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20656 line_ptr += bytes_read;
20657 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20658 line_ptr += bytes_read;
20659
20660 lh->add_file_name (cur_file, d_index, mod_time, length);
20661 }
20662 line_ptr += bytes_read;
20663 }
20664
20665 if (line_ptr > (section->buffer + section->size))
20666 complaint (_("line number info header doesn't "
20667 "fit in `.debug_line' section"));
20668
20669 return lh;
20670 }
20671
20672 /* Subroutine of dwarf_decode_lines to simplify it.
20673 Return the file name of the psymtab for the given file_entry.
20674 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20675 If space for the result is malloc'd, *NAME_HOLDER will be set.
20676 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20677
20678 static const char *
20679 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20680 const struct partial_symtab *pst,
20681 const char *comp_dir,
20682 gdb::unique_xmalloc_ptr<char> *name_holder)
20683 {
20684 const char *include_name = fe.name;
20685 const char *include_name_to_compare = include_name;
20686 const char *pst_filename;
20687 int file_is_pst;
20688
20689 const char *dir_name = fe.include_dir (lh);
20690
20691 gdb::unique_xmalloc_ptr<char> hold_compare;
20692 if (!IS_ABSOLUTE_PATH (include_name)
20693 && (dir_name != NULL || comp_dir != NULL))
20694 {
20695 /* Avoid creating a duplicate psymtab for PST.
20696 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20697 Before we do the comparison, however, we need to account
20698 for DIR_NAME and COMP_DIR.
20699 First prepend dir_name (if non-NULL). If we still don't
20700 have an absolute path prepend comp_dir (if non-NULL).
20701 However, the directory we record in the include-file's
20702 psymtab does not contain COMP_DIR (to match the
20703 corresponding symtab(s)).
20704
20705 Example:
20706
20707 bash$ cd /tmp
20708 bash$ gcc -g ./hello.c
20709 include_name = "hello.c"
20710 dir_name = "."
20711 DW_AT_comp_dir = comp_dir = "/tmp"
20712 DW_AT_name = "./hello.c"
20713
20714 */
20715
20716 if (dir_name != NULL)
20717 {
20718 name_holder->reset (concat (dir_name, SLASH_STRING,
20719 include_name, (char *) NULL));
20720 include_name = name_holder->get ();
20721 include_name_to_compare = include_name;
20722 }
20723 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20724 {
20725 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20726 include_name, (char *) NULL));
20727 include_name_to_compare = hold_compare.get ();
20728 }
20729 }
20730
20731 pst_filename = pst->filename;
20732 gdb::unique_xmalloc_ptr<char> copied_name;
20733 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20734 {
20735 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20736 pst_filename, (char *) NULL));
20737 pst_filename = copied_name.get ();
20738 }
20739
20740 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20741
20742 if (file_is_pst)
20743 return NULL;
20744 return include_name;
20745 }
20746
20747 /* State machine to track the state of the line number program. */
20748
20749 class lnp_state_machine
20750 {
20751 public:
20752 /* Initialize a machine state for the start of a line number
20753 program. */
20754 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20755 bool record_lines_p);
20756
20757 file_entry *current_file ()
20758 {
20759 /* lh->file_names is 0-based, but the file name numbers in the
20760 statement program are 1-based. */
20761 return m_line_header->file_name_at (m_file);
20762 }
20763
20764 /* Record the line in the state machine. END_SEQUENCE is true if
20765 we're processing the end of a sequence. */
20766 void record_line (bool end_sequence);
20767
20768 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20769 nop-out rest of the lines in this sequence. */
20770 void check_line_address (struct dwarf2_cu *cu,
20771 const gdb_byte *line_ptr,
20772 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20773
20774 void handle_set_discriminator (unsigned int discriminator)
20775 {
20776 m_discriminator = discriminator;
20777 m_line_has_non_zero_discriminator |= discriminator != 0;
20778 }
20779
20780 /* Handle DW_LNE_set_address. */
20781 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20782 {
20783 m_op_index = 0;
20784 address += baseaddr;
20785 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20786 }
20787
20788 /* Handle DW_LNS_advance_pc. */
20789 void handle_advance_pc (CORE_ADDR adjust);
20790
20791 /* Handle a special opcode. */
20792 void handle_special_opcode (unsigned char op_code);
20793
20794 /* Handle DW_LNS_advance_line. */
20795 void handle_advance_line (int line_delta)
20796 {
20797 advance_line (line_delta);
20798 }
20799
20800 /* Handle DW_LNS_set_file. */
20801 void handle_set_file (file_name_index file);
20802
20803 /* Handle DW_LNS_negate_stmt. */
20804 void handle_negate_stmt ()
20805 {
20806 m_is_stmt = !m_is_stmt;
20807 }
20808
20809 /* Handle DW_LNS_const_add_pc. */
20810 void handle_const_add_pc ();
20811
20812 /* Handle DW_LNS_fixed_advance_pc. */
20813 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20814 {
20815 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20816 m_op_index = 0;
20817 }
20818
20819 /* Handle DW_LNS_copy. */
20820 void handle_copy ()
20821 {
20822 record_line (false);
20823 m_discriminator = 0;
20824 }
20825
20826 /* Handle DW_LNE_end_sequence. */
20827 void handle_end_sequence ()
20828 {
20829 m_currently_recording_lines = true;
20830 }
20831
20832 private:
20833 /* Advance the line by LINE_DELTA. */
20834 void advance_line (int line_delta)
20835 {
20836 m_line += line_delta;
20837
20838 if (line_delta != 0)
20839 m_line_has_non_zero_discriminator = m_discriminator != 0;
20840 }
20841
20842 struct dwarf2_cu *m_cu;
20843
20844 gdbarch *m_gdbarch;
20845
20846 /* True if we're recording lines.
20847 Otherwise we're building partial symtabs and are just interested in
20848 finding include files mentioned by the line number program. */
20849 bool m_record_lines_p;
20850
20851 /* The line number header. */
20852 line_header *m_line_header;
20853
20854 /* These are part of the standard DWARF line number state machine,
20855 and initialized according to the DWARF spec. */
20856
20857 unsigned char m_op_index = 0;
20858 /* The line table index of the current file. */
20859 file_name_index m_file = 1;
20860 unsigned int m_line = 1;
20861
20862 /* These are initialized in the constructor. */
20863
20864 CORE_ADDR m_address;
20865 bool m_is_stmt;
20866 unsigned int m_discriminator;
20867
20868 /* Additional bits of state we need to track. */
20869
20870 /* The last file that we called dwarf2_start_subfile for.
20871 This is only used for TLLs. */
20872 unsigned int m_last_file = 0;
20873 /* The last file a line number was recorded for. */
20874 struct subfile *m_last_subfile = NULL;
20875
20876 /* When true, record the lines we decode. */
20877 bool m_currently_recording_lines = false;
20878
20879 /* The last line number that was recorded, used to coalesce
20880 consecutive entries for the same line. This can happen, for
20881 example, when discriminators are present. PR 17276. */
20882 unsigned int m_last_line = 0;
20883 bool m_line_has_non_zero_discriminator = false;
20884 };
20885
20886 void
20887 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20888 {
20889 CORE_ADDR addr_adj = (((m_op_index + adjust)
20890 / m_line_header->maximum_ops_per_instruction)
20891 * m_line_header->minimum_instruction_length);
20892 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20893 m_op_index = ((m_op_index + adjust)
20894 % m_line_header->maximum_ops_per_instruction);
20895 }
20896
20897 void
20898 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20899 {
20900 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20901 CORE_ADDR addr_adj = (((m_op_index
20902 + (adj_opcode / m_line_header->line_range))
20903 / m_line_header->maximum_ops_per_instruction)
20904 * m_line_header->minimum_instruction_length);
20905 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20906 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20907 % m_line_header->maximum_ops_per_instruction);
20908
20909 int line_delta = (m_line_header->line_base
20910 + (adj_opcode % m_line_header->line_range));
20911 advance_line (line_delta);
20912 record_line (false);
20913 m_discriminator = 0;
20914 }
20915
20916 void
20917 lnp_state_machine::handle_set_file (file_name_index file)
20918 {
20919 m_file = file;
20920
20921 const file_entry *fe = current_file ();
20922 if (fe == NULL)
20923 dwarf2_debug_line_missing_file_complaint ();
20924 else if (m_record_lines_p)
20925 {
20926 const char *dir = fe->include_dir (m_line_header);
20927
20928 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20929 m_line_has_non_zero_discriminator = m_discriminator != 0;
20930 dwarf2_start_subfile (m_cu, fe->name, dir);
20931 }
20932 }
20933
20934 void
20935 lnp_state_machine::handle_const_add_pc ()
20936 {
20937 CORE_ADDR adjust
20938 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20939
20940 CORE_ADDR addr_adj
20941 = (((m_op_index + adjust)
20942 / m_line_header->maximum_ops_per_instruction)
20943 * m_line_header->minimum_instruction_length);
20944
20945 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20946 m_op_index = ((m_op_index + adjust)
20947 % m_line_header->maximum_ops_per_instruction);
20948 }
20949
20950 /* Return non-zero if we should add LINE to the line number table.
20951 LINE is the line to add, LAST_LINE is the last line that was added,
20952 LAST_SUBFILE is the subfile for LAST_LINE.
20953 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20954 had a non-zero discriminator.
20955
20956 We have to be careful in the presence of discriminators.
20957 E.g., for this line:
20958
20959 for (i = 0; i < 100000; i++);
20960
20961 clang can emit four line number entries for that one line,
20962 each with a different discriminator.
20963 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20964
20965 However, we want gdb to coalesce all four entries into one.
20966 Otherwise the user could stepi into the middle of the line and
20967 gdb would get confused about whether the pc really was in the
20968 middle of the line.
20969
20970 Things are further complicated by the fact that two consecutive
20971 line number entries for the same line is a heuristic used by gcc
20972 to denote the end of the prologue. So we can't just discard duplicate
20973 entries, we have to be selective about it. The heuristic we use is
20974 that we only collapse consecutive entries for the same line if at least
20975 one of those entries has a non-zero discriminator. PR 17276.
20976
20977 Note: Addresses in the line number state machine can never go backwards
20978 within one sequence, thus this coalescing is ok. */
20979
20980 static int
20981 dwarf_record_line_p (struct dwarf2_cu *cu,
20982 unsigned int line, unsigned int last_line,
20983 int line_has_non_zero_discriminator,
20984 struct subfile *last_subfile)
20985 {
20986 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20987 return 1;
20988 if (line != last_line)
20989 return 1;
20990 /* Same line for the same file that we've seen already.
20991 As a last check, for pr 17276, only record the line if the line
20992 has never had a non-zero discriminator. */
20993 if (!line_has_non_zero_discriminator)
20994 return 1;
20995 return 0;
20996 }
20997
20998 /* Use the CU's builder to record line number LINE beginning at
20999 address ADDRESS in the line table of subfile SUBFILE. */
21000
21001 static void
21002 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21003 unsigned int line, CORE_ADDR address,
21004 struct dwarf2_cu *cu)
21005 {
21006 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21007
21008 if (dwarf_line_debug)
21009 {
21010 fprintf_unfiltered (gdb_stdlog,
21011 "Recording line %u, file %s, address %s\n",
21012 line, lbasename (subfile->name),
21013 paddress (gdbarch, address));
21014 }
21015
21016 if (cu != nullptr)
21017 cu->get_builder ()->record_line (subfile, line, addr);
21018 }
21019
21020 /* Subroutine of dwarf_decode_lines_1 to simplify it.
21021 Mark the end of a set of line number records.
21022 The arguments are the same as for dwarf_record_line_1.
21023 If SUBFILE is NULL the request is ignored. */
21024
21025 static void
21026 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21027 CORE_ADDR address, struct dwarf2_cu *cu)
21028 {
21029 if (subfile == NULL)
21030 return;
21031
21032 if (dwarf_line_debug)
21033 {
21034 fprintf_unfiltered (gdb_stdlog,
21035 "Finishing current line, file %s, address %s\n",
21036 lbasename (subfile->name),
21037 paddress (gdbarch, address));
21038 }
21039
21040 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
21041 }
21042
21043 void
21044 lnp_state_machine::record_line (bool end_sequence)
21045 {
21046 if (dwarf_line_debug)
21047 {
21048 fprintf_unfiltered (gdb_stdlog,
21049 "Processing actual line %u: file %u,"
21050 " address %s, is_stmt %u, discrim %u\n",
21051 m_line, m_file,
21052 paddress (m_gdbarch, m_address),
21053 m_is_stmt, m_discriminator);
21054 }
21055
21056 file_entry *fe = current_file ();
21057
21058 if (fe == NULL)
21059 dwarf2_debug_line_missing_file_complaint ();
21060 /* For now we ignore lines not starting on an instruction boundary.
21061 But not when processing end_sequence for compatibility with the
21062 previous version of the code. */
21063 else if (m_op_index == 0 || end_sequence)
21064 {
21065 fe->included_p = 1;
21066 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
21067 {
21068 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21069 || end_sequence)
21070 {
21071 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21072 m_currently_recording_lines ? m_cu : nullptr);
21073 }
21074
21075 if (!end_sequence)
21076 {
21077 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21078 m_line_has_non_zero_discriminator,
21079 m_last_subfile))
21080 {
21081 buildsym_compunit *builder = m_cu->get_builder ();
21082 dwarf_record_line_1 (m_gdbarch,
21083 builder->get_current_subfile (),
21084 m_line, m_address,
21085 m_currently_recording_lines ? m_cu : nullptr);
21086 }
21087 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21088 m_last_line = m_line;
21089 }
21090 }
21091 }
21092 }
21093
21094 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21095 line_header *lh, bool record_lines_p)
21096 {
21097 m_cu = cu;
21098 m_gdbarch = arch;
21099 m_record_lines_p = record_lines_p;
21100 m_line_header = lh;
21101
21102 m_currently_recording_lines = true;
21103
21104 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21105 was a line entry for it so that the backend has a chance to adjust it
21106 and also record it in case it needs it. This is currently used by MIPS
21107 code, cf. `mips_adjust_dwarf2_line'. */
21108 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21109 m_is_stmt = lh->default_is_stmt;
21110 m_discriminator = 0;
21111 }
21112
21113 void
21114 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21115 const gdb_byte *line_ptr,
21116 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21117 {
21118 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21119 the pc range of the CU. However, we restrict the test to only ADDRESS
21120 values of zero to preserve GDB's previous behaviour which is to handle
21121 the specific case of a function being GC'd by the linker. */
21122
21123 if (address == 0 && address < unrelocated_lowpc)
21124 {
21125 /* This line table is for a function which has been
21126 GCd by the linker. Ignore it. PR gdb/12528 */
21127
21128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21129 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21130
21131 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21132 line_offset, objfile_name (objfile));
21133 m_currently_recording_lines = false;
21134 /* Note: m_currently_recording_lines is left as false until we see
21135 DW_LNE_end_sequence. */
21136 }
21137 }
21138
21139 /* Subroutine of dwarf_decode_lines to simplify it.
21140 Process the line number information in LH.
21141 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21142 program in order to set included_p for every referenced header. */
21143
21144 static void
21145 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21146 const int decode_for_pst_p, CORE_ADDR lowpc)
21147 {
21148 const gdb_byte *line_ptr, *extended_end;
21149 const gdb_byte *line_end;
21150 unsigned int bytes_read, extended_len;
21151 unsigned char op_code, extended_op;
21152 CORE_ADDR baseaddr;
21153 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21154 bfd *abfd = objfile->obfd;
21155 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21156 /* True if we're recording line info (as opposed to building partial
21157 symtabs and just interested in finding include files mentioned by
21158 the line number program). */
21159 bool record_lines_p = !decode_for_pst_p;
21160
21161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21162
21163 line_ptr = lh->statement_program_start;
21164 line_end = lh->statement_program_end;
21165
21166 /* Read the statement sequences until there's nothing left. */
21167 while (line_ptr < line_end)
21168 {
21169 /* The DWARF line number program state machine. Reset the state
21170 machine at the start of each sequence. */
21171 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21172 bool end_sequence = false;
21173
21174 if (record_lines_p)
21175 {
21176 /* Start a subfile for the current file of the state
21177 machine. */
21178 const file_entry *fe = state_machine.current_file ();
21179
21180 if (fe != NULL)
21181 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21182 }
21183
21184 /* Decode the table. */
21185 while (line_ptr < line_end && !end_sequence)
21186 {
21187 op_code = read_1_byte (abfd, line_ptr);
21188 line_ptr += 1;
21189
21190 if (op_code >= lh->opcode_base)
21191 {
21192 /* Special opcode. */
21193 state_machine.handle_special_opcode (op_code);
21194 }
21195 else switch (op_code)
21196 {
21197 case DW_LNS_extended_op:
21198 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21199 &bytes_read);
21200 line_ptr += bytes_read;
21201 extended_end = line_ptr + extended_len;
21202 extended_op = read_1_byte (abfd, line_ptr);
21203 line_ptr += 1;
21204 switch (extended_op)
21205 {
21206 case DW_LNE_end_sequence:
21207 state_machine.handle_end_sequence ();
21208 end_sequence = true;
21209 break;
21210 case DW_LNE_set_address:
21211 {
21212 CORE_ADDR address
21213 = read_address (abfd, line_ptr, cu, &bytes_read);
21214 line_ptr += bytes_read;
21215
21216 state_machine.check_line_address (cu, line_ptr,
21217 lowpc - baseaddr, address);
21218 state_machine.handle_set_address (baseaddr, address);
21219 }
21220 break;
21221 case DW_LNE_define_file:
21222 {
21223 const char *cur_file;
21224 unsigned int mod_time, length;
21225 dir_index dindex;
21226
21227 cur_file = read_direct_string (abfd, line_ptr,
21228 &bytes_read);
21229 line_ptr += bytes_read;
21230 dindex = (dir_index)
21231 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21232 line_ptr += bytes_read;
21233 mod_time =
21234 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21235 line_ptr += bytes_read;
21236 length =
21237 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21238 line_ptr += bytes_read;
21239 lh->add_file_name (cur_file, dindex, mod_time, length);
21240 }
21241 break;
21242 case DW_LNE_set_discriminator:
21243 {
21244 /* The discriminator is not interesting to the
21245 debugger; just ignore it. We still need to
21246 check its value though:
21247 if there are consecutive entries for the same
21248 (non-prologue) line we want to coalesce them.
21249 PR 17276. */
21250 unsigned int discr
21251 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21252 line_ptr += bytes_read;
21253
21254 state_machine.handle_set_discriminator (discr);
21255 }
21256 break;
21257 default:
21258 complaint (_("mangled .debug_line section"));
21259 return;
21260 }
21261 /* Make sure that we parsed the extended op correctly. If e.g.
21262 we expected a different address size than the producer used,
21263 we may have read the wrong number of bytes. */
21264 if (line_ptr != extended_end)
21265 {
21266 complaint (_("mangled .debug_line section"));
21267 return;
21268 }
21269 break;
21270 case DW_LNS_copy:
21271 state_machine.handle_copy ();
21272 break;
21273 case DW_LNS_advance_pc:
21274 {
21275 CORE_ADDR adjust
21276 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21277 line_ptr += bytes_read;
21278
21279 state_machine.handle_advance_pc (adjust);
21280 }
21281 break;
21282 case DW_LNS_advance_line:
21283 {
21284 int line_delta
21285 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21286 line_ptr += bytes_read;
21287
21288 state_machine.handle_advance_line (line_delta);
21289 }
21290 break;
21291 case DW_LNS_set_file:
21292 {
21293 file_name_index file
21294 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21295 &bytes_read);
21296 line_ptr += bytes_read;
21297
21298 state_machine.handle_set_file (file);
21299 }
21300 break;
21301 case DW_LNS_set_column:
21302 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21303 line_ptr += bytes_read;
21304 break;
21305 case DW_LNS_negate_stmt:
21306 state_machine.handle_negate_stmt ();
21307 break;
21308 case DW_LNS_set_basic_block:
21309 break;
21310 /* Add to the address register of the state machine the
21311 address increment value corresponding to special opcode
21312 255. I.e., this value is scaled by the minimum
21313 instruction length since special opcode 255 would have
21314 scaled the increment. */
21315 case DW_LNS_const_add_pc:
21316 state_machine.handle_const_add_pc ();
21317 break;
21318 case DW_LNS_fixed_advance_pc:
21319 {
21320 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21321 line_ptr += 2;
21322
21323 state_machine.handle_fixed_advance_pc (addr_adj);
21324 }
21325 break;
21326 default:
21327 {
21328 /* Unknown standard opcode, ignore it. */
21329 int i;
21330
21331 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21332 {
21333 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21334 line_ptr += bytes_read;
21335 }
21336 }
21337 }
21338 }
21339
21340 if (!end_sequence)
21341 dwarf2_debug_line_missing_end_sequence_complaint ();
21342
21343 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21344 in which case we still finish recording the last line). */
21345 state_machine.record_line (true);
21346 }
21347 }
21348
21349 /* Decode the Line Number Program (LNP) for the given line_header
21350 structure and CU. The actual information extracted and the type
21351 of structures created from the LNP depends on the value of PST.
21352
21353 1. If PST is NULL, then this procedure uses the data from the program
21354 to create all necessary symbol tables, and their linetables.
21355
21356 2. If PST is not NULL, this procedure reads the program to determine
21357 the list of files included by the unit represented by PST, and
21358 builds all the associated partial symbol tables.
21359
21360 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21361 It is used for relative paths in the line table.
21362 NOTE: When processing partial symtabs (pst != NULL),
21363 comp_dir == pst->dirname.
21364
21365 NOTE: It is important that psymtabs have the same file name (via strcmp)
21366 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21367 symtab we don't use it in the name of the psymtabs we create.
21368 E.g. expand_line_sal requires this when finding psymtabs to expand.
21369 A good testcase for this is mb-inline.exp.
21370
21371 LOWPC is the lowest address in CU (or 0 if not known).
21372
21373 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21374 for its PC<->lines mapping information. Otherwise only the filename
21375 table is read in. */
21376
21377 static void
21378 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21379 struct dwarf2_cu *cu, struct partial_symtab *pst,
21380 CORE_ADDR lowpc, int decode_mapping)
21381 {
21382 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21383 const int decode_for_pst_p = (pst != NULL);
21384
21385 if (decode_mapping)
21386 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21387
21388 if (decode_for_pst_p)
21389 {
21390 /* Now that we're done scanning the Line Header Program, we can
21391 create the psymtab of each included file. */
21392 for (auto &file_entry : lh->file_names ())
21393 if (file_entry.included_p == 1)
21394 {
21395 gdb::unique_xmalloc_ptr<char> name_holder;
21396 const char *include_name =
21397 psymtab_include_file_name (lh, file_entry, pst,
21398 comp_dir, &name_holder);
21399 if (include_name != NULL)
21400 dwarf2_create_include_psymtab (include_name, pst, objfile);
21401 }
21402 }
21403 else
21404 {
21405 /* Make sure a symtab is created for every file, even files
21406 which contain only variables (i.e. no code with associated
21407 line numbers). */
21408 buildsym_compunit *builder = cu->get_builder ();
21409 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21410
21411 for (auto &fe : lh->file_names ())
21412 {
21413 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21414 if (builder->get_current_subfile ()->symtab == NULL)
21415 {
21416 builder->get_current_subfile ()->symtab
21417 = allocate_symtab (cust,
21418 builder->get_current_subfile ()->name);
21419 }
21420 fe.symtab = builder->get_current_subfile ()->symtab;
21421 }
21422 }
21423 }
21424
21425 /* Start a subfile for DWARF. FILENAME is the name of the file and
21426 DIRNAME the name of the source directory which contains FILENAME
21427 or NULL if not known.
21428 This routine tries to keep line numbers from identical absolute and
21429 relative file names in a common subfile.
21430
21431 Using the `list' example from the GDB testsuite, which resides in
21432 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21433 of /srcdir/list0.c yields the following debugging information for list0.c:
21434
21435 DW_AT_name: /srcdir/list0.c
21436 DW_AT_comp_dir: /compdir
21437 files.files[0].name: list0.h
21438 files.files[0].dir: /srcdir
21439 files.files[1].name: list0.c
21440 files.files[1].dir: /srcdir
21441
21442 The line number information for list0.c has to end up in a single
21443 subfile, so that `break /srcdir/list0.c:1' works as expected.
21444 start_subfile will ensure that this happens provided that we pass the
21445 concatenation of files.files[1].dir and files.files[1].name as the
21446 subfile's name. */
21447
21448 static void
21449 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21450 const char *dirname)
21451 {
21452 char *copy = NULL;
21453
21454 /* In order not to lose the line information directory,
21455 we concatenate it to the filename when it makes sense.
21456 Note that the Dwarf3 standard says (speaking of filenames in line
21457 information): ``The directory index is ignored for file names
21458 that represent full path names''. Thus ignoring dirname in the
21459 `else' branch below isn't an issue. */
21460
21461 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21462 {
21463 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21464 filename = copy;
21465 }
21466
21467 cu->get_builder ()->start_subfile (filename);
21468
21469 if (copy != NULL)
21470 xfree (copy);
21471 }
21472
21473 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21474 buildsym_compunit constructor. */
21475
21476 struct compunit_symtab *
21477 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21478 CORE_ADDR low_pc)
21479 {
21480 gdb_assert (m_builder == nullptr);
21481
21482 m_builder.reset (new struct buildsym_compunit
21483 (per_cu->dwarf2_per_objfile->objfile,
21484 name, comp_dir, language, low_pc));
21485
21486 list_in_scope = get_builder ()->get_file_symbols ();
21487
21488 get_builder ()->record_debugformat ("DWARF 2");
21489 get_builder ()->record_producer (producer);
21490
21491 processing_has_namespace_info = false;
21492
21493 return get_builder ()->get_compunit_symtab ();
21494 }
21495
21496 static void
21497 var_decode_location (struct attribute *attr, struct symbol *sym,
21498 struct dwarf2_cu *cu)
21499 {
21500 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21501 struct comp_unit_head *cu_header = &cu->header;
21502
21503 /* NOTE drow/2003-01-30: There used to be a comment and some special
21504 code here to turn a symbol with DW_AT_external and a
21505 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21506 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21507 with some versions of binutils) where shared libraries could have
21508 relocations against symbols in their debug information - the
21509 minimal symbol would have the right address, but the debug info
21510 would not. It's no longer necessary, because we will explicitly
21511 apply relocations when we read in the debug information now. */
21512
21513 /* A DW_AT_location attribute with no contents indicates that a
21514 variable has been optimized away. */
21515 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21516 {
21517 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21518 return;
21519 }
21520
21521 /* Handle one degenerate form of location expression specially, to
21522 preserve GDB's previous behavior when section offsets are
21523 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21524 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21525
21526 if (attr_form_is_block (attr)
21527 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21528 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21529 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21530 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21531 && (DW_BLOCK (attr)->size
21532 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21533 {
21534 unsigned int dummy;
21535
21536 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21537 SET_SYMBOL_VALUE_ADDRESS (sym,
21538 read_address (objfile->obfd,
21539 DW_BLOCK (attr)->data + 1,
21540 cu, &dummy));
21541 else
21542 SET_SYMBOL_VALUE_ADDRESS
21543 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21544 &dummy));
21545 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21546 fixup_symbol_section (sym, objfile);
21547 SET_SYMBOL_VALUE_ADDRESS (sym,
21548 SYMBOL_VALUE_ADDRESS (sym)
21549 + ANOFFSET (objfile->section_offsets,
21550 SYMBOL_SECTION (sym)));
21551 return;
21552 }
21553
21554 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21555 expression evaluator, and use LOC_COMPUTED only when necessary
21556 (i.e. when the value of a register or memory location is
21557 referenced, or a thread-local block, etc.). Then again, it might
21558 not be worthwhile. I'm assuming that it isn't unless performance
21559 or memory numbers show me otherwise. */
21560
21561 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21562
21563 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21564 cu->has_loclist = true;
21565 }
21566
21567 /* Given a pointer to a DWARF information entry, figure out if we need
21568 to make a symbol table entry for it, and if so, create a new entry
21569 and return a pointer to it.
21570 If TYPE is NULL, determine symbol type from the die, otherwise
21571 used the passed type.
21572 If SPACE is not NULL, use it to hold the new symbol. If it is
21573 NULL, allocate a new symbol on the objfile's obstack. */
21574
21575 static struct symbol *
21576 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21577 struct symbol *space)
21578 {
21579 struct dwarf2_per_objfile *dwarf2_per_objfile
21580 = cu->per_cu->dwarf2_per_objfile;
21581 struct objfile *objfile = dwarf2_per_objfile->objfile;
21582 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21583 struct symbol *sym = NULL;
21584 const char *name;
21585 struct attribute *attr = NULL;
21586 struct attribute *attr2 = NULL;
21587 CORE_ADDR baseaddr;
21588 struct pending **list_to_add = NULL;
21589
21590 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21591
21592 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21593
21594 name = dwarf2_name (die, cu);
21595 if (name)
21596 {
21597 const char *linkagename;
21598 int suppress_add = 0;
21599
21600 if (space)
21601 sym = space;
21602 else
21603 sym = allocate_symbol (objfile);
21604 OBJSTAT (objfile, n_syms++);
21605
21606 /* Cache this symbol's name and the name's demangled form (if any). */
21607 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21608 linkagename = dwarf2_physname (name, die, cu);
21609 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21610
21611 /* Fortran does not have mangling standard and the mangling does differ
21612 between gfortran, iFort etc. */
21613 if (cu->language == language_fortran
21614 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21615 symbol_set_demangled_name (&(sym->ginfo),
21616 dwarf2_full_name (name, die, cu),
21617 NULL);
21618
21619 /* Default assumptions.
21620 Use the passed type or decode it from the die. */
21621 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21622 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21623 if (type != NULL)
21624 SYMBOL_TYPE (sym) = type;
21625 else
21626 SYMBOL_TYPE (sym) = die_type (die, cu);
21627 attr = dwarf2_attr (die,
21628 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21629 cu);
21630 if (attr)
21631 {
21632 SYMBOL_LINE (sym) = DW_UNSND (attr);
21633 }
21634
21635 attr = dwarf2_attr (die,
21636 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21637 cu);
21638 if (attr)
21639 {
21640 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21641 struct file_entry *fe;
21642
21643 if (cu->line_header != NULL)
21644 fe = cu->line_header->file_name_at (file_index);
21645 else
21646 fe = NULL;
21647
21648 if (fe == NULL)
21649 complaint (_("file index out of range"));
21650 else
21651 symbol_set_symtab (sym, fe->symtab);
21652 }
21653
21654 switch (die->tag)
21655 {
21656 case DW_TAG_label:
21657 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21658 if (attr)
21659 {
21660 CORE_ADDR addr;
21661
21662 addr = attr_value_as_address (attr);
21663 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21664 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21665 }
21666 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21667 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21668 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21669 add_symbol_to_list (sym, cu->list_in_scope);
21670 break;
21671 case DW_TAG_subprogram:
21672 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21673 finish_block. */
21674 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21675 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21676 if ((attr2 && (DW_UNSND (attr2) != 0))
21677 || cu->language == language_ada
21678 || cu->language == language_fortran)
21679 {
21680 /* Subprograms marked external are stored as a global symbol.
21681 Ada and Fortran subprograms, whether marked external or
21682 not, are always stored as a global symbol, because we want
21683 to be able to access them globally. For instance, we want
21684 to be able to break on a nested subprogram without having
21685 to specify the context. */
21686 list_to_add = cu->get_builder ()->get_global_symbols ();
21687 }
21688 else
21689 {
21690 list_to_add = cu->list_in_scope;
21691 }
21692 break;
21693 case DW_TAG_inlined_subroutine:
21694 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21695 finish_block. */
21696 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21697 SYMBOL_INLINED (sym) = 1;
21698 list_to_add = cu->list_in_scope;
21699 break;
21700 case DW_TAG_template_value_param:
21701 suppress_add = 1;
21702 /* Fall through. */
21703 case DW_TAG_constant:
21704 case DW_TAG_variable:
21705 case DW_TAG_member:
21706 /* Compilation with minimal debug info may result in
21707 variables with missing type entries. Change the
21708 misleading `void' type to something sensible. */
21709 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21710 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21711
21712 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21713 /* In the case of DW_TAG_member, we should only be called for
21714 static const members. */
21715 if (die->tag == DW_TAG_member)
21716 {
21717 /* dwarf2_add_field uses die_is_declaration,
21718 so we do the same. */
21719 gdb_assert (die_is_declaration (die, cu));
21720 gdb_assert (attr);
21721 }
21722 if (attr)
21723 {
21724 dwarf2_const_value (attr, sym, cu);
21725 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21726 if (!suppress_add)
21727 {
21728 if (attr2 && (DW_UNSND (attr2) != 0))
21729 list_to_add = cu->get_builder ()->get_global_symbols ();
21730 else
21731 list_to_add = cu->list_in_scope;
21732 }
21733 break;
21734 }
21735 attr = dwarf2_attr (die, DW_AT_location, cu);
21736 if (attr)
21737 {
21738 var_decode_location (attr, sym, cu);
21739 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21740
21741 /* Fortran explicitly imports any global symbols to the local
21742 scope by DW_TAG_common_block. */
21743 if (cu->language == language_fortran && die->parent
21744 && die->parent->tag == DW_TAG_common_block)
21745 attr2 = NULL;
21746
21747 if (SYMBOL_CLASS (sym) == LOC_STATIC
21748 && SYMBOL_VALUE_ADDRESS (sym) == 0
21749 && !dwarf2_per_objfile->has_section_at_zero)
21750 {
21751 /* When a static variable is eliminated by the linker,
21752 the corresponding debug information is not stripped
21753 out, but the variable address is set to null;
21754 do not add such variables into symbol table. */
21755 }
21756 else if (attr2 && (DW_UNSND (attr2) != 0))
21757 {
21758 if (SYMBOL_CLASS (sym) == LOC_STATIC
21759 && (objfile->flags & OBJF_MAINLINE) == 0
21760 && dwarf2_per_objfile->can_copy)
21761 {
21762 /* A global static variable might be subject to
21763 copy relocation. We first check for a local
21764 minsym, though, because maybe the symbol was
21765 marked hidden, in which case this would not
21766 apply. */
21767 bound_minimal_symbol found
21768 = (lookup_minimal_symbol_linkage
21769 (SYMBOL_LINKAGE_NAME (sym), objfile));
21770 if (found.minsym != nullptr)
21771 sym->maybe_copied = 1;
21772 }
21773
21774 /* A variable with DW_AT_external is never static,
21775 but it may be block-scoped. */
21776 list_to_add
21777 = ((cu->list_in_scope
21778 == cu->get_builder ()->get_file_symbols ())
21779 ? cu->get_builder ()->get_global_symbols ()
21780 : cu->list_in_scope);
21781 }
21782 else
21783 list_to_add = cu->list_in_scope;
21784 }
21785 else
21786 {
21787 /* We do not know the address of this symbol.
21788 If it is an external symbol and we have type information
21789 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21790 The address of the variable will then be determined from
21791 the minimal symbol table whenever the variable is
21792 referenced. */
21793 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21794
21795 /* Fortran explicitly imports any global symbols to the local
21796 scope by DW_TAG_common_block. */
21797 if (cu->language == language_fortran && die->parent
21798 && die->parent->tag == DW_TAG_common_block)
21799 {
21800 /* SYMBOL_CLASS doesn't matter here because
21801 read_common_block is going to reset it. */
21802 if (!suppress_add)
21803 list_to_add = cu->list_in_scope;
21804 }
21805 else if (attr2 && (DW_UNSND (attr2) != 0)
21806 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21807 {
21808 /* A variable with DW_AT_external is never static, but it
21809 may be block-scoped. */
21810 list_to_add
21811 = ((cu->list_in_scope
21812 == cu->get_builder ()->get_file_symbols ())
21813 ? cu->get_builder ()->get_global_symbols ()
21814 : cu->list_in_scope);
21815
21816 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21817 }
21818 else if (!die_is_declaration (die, cu))
21819 {
21820 /* Use the default LOC_OPTIMIZED_OUT class. */
21821 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21822 if (!suppress_add)
21823 list_to_add = cu->list_in_scope;
21824 }
21825 }
21826 break;
21827 case DW_TAG_formal_parameter:
21828 {
21829 /* If we are inside a function, mark this as an argument. If
21830 not, we might be looking at an argument to an inlined function
21831 when we do not have enough information to show inlined frames;
21832 pretend it's a local variable in that case so that the user can
21833 still see it. */
21834 struct context_stack *curr
21835 = cu->get_builder ()->get_current_context_stack ();
21836 if (curr != nullptr && curr->name != nullptr)
21837 SYMBOL_IS_ARGUMENT (sym) = 1;
21838 attr = dwarf2_attr (die, DW_AT_location, cu);
21839 if (attr)
21840 {
21841 var_decode_location (attr, sym, cu);
21842 }
21843 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21844 if (attr)
21845 {
21846 dwarf2_const_value (attr, sym, cu);
21847 }
21848
21849 list_to_add = cu->list_in_scope;
21850 }
21851 break;
21852 case DW_TAG_unspecified_parameters:
21853 /* From varargs functions; gdb doesn't seem to have any
21854 interest in this information, so just ignore it for now.
21855 (FIXME?) */
21856 break;
21857 case DW_TAG_template_type_param:
21858 suppress_add = 1;
21859 /* Fall through. */
21860 case DW_TAG_class_type:
21861 case DW_TAG_interface_type:
21862 case DW_TAG_structure_type:
21863 case DW_TAG_union_type:
21864 case DW_TAG_set_type:
21865 case DW_TAG_enumeration_type:
21866 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21867 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21868
21869 {
21870 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21871 really ever be static objects: otherwise, if you try
21872 to, say, break of a class's method and you're in a file
21873 which doesn't mention that class, it won't work unless
21874 the check for all static symbols in lookup_symbol_aux
21875 saves you. See the OtherFileClass tests in
21876 gdb.c++/namespace.exp. */
21877
21878 if (!suppress_add)
21879 {
21880 buildsym_compunit *builder = cu->get_builder ();
21881 list_to_add
21882 = (cu->list_in_scope == builder->get_file_symbols ()
21883 && cu->language == language_cplus
21884 ? builder->get_global_symbols ()
21885 : cu->list_in_scope);
21886
21887 /* The semantics of C++ state that "struct foo {
21888 ... }" also defines a typedef for "foo". */
21889 if (cu->language == language_cplus
21890 || cu->language == language_ada
21891 || cu->language == language_d
21892 || cu->language == language_rust)
21893 {
21894 /* The symbol's name is already allocated along
21895 with this objfile, so we don't need to
21896 duplicate it for the type. */
21897 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21898 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21899 }
21900 }
21901 }
21902 break;
21903 case DW_TAG_typedef:
21904 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21905 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21906 list_to_add = cu->list_in_scope;
21907 break;
21908 case DW_TAG_base_type:
21909 case DW_TAG_subrange_type:
21910 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21911 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21912 list_to_add = cu->list_in_scope;
21913 break;
21914 case DW_TAG_enumerator:
21915 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21916 if (attr)
21917 {
21918 dwarf2_const_value (attr, sym, cu);
21919 }
21920 {
21921 /* NOTE: carlton/2003-11-10: See comment above in the
21922 DW_TAG_class_type, etc. block. */
21923
21924 list_to_add
21925 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21926 && cu->language == language_cplus
21927 ? cu->get_builder ()->get_global_symbols ()
21928 : cu->list_in_scope);
21929 }
21930 break;
21931 case DW_TAG_imported_declaration:
21932 case DW_TAG_namespace:
21933 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21934 list_to_add = cu->get_builder ()->get_global_symbols ();
21935 break;
21936 case DW_TAG_module:
21937 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21938 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21939 list_to_add = cu->get_builder ()->get_global_symbols ();
21940 break;
21941 case DW_TAG_common_block:
21942 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21943 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21944 add_symbol_to_list (sym, cu->list_in_scope);
21945 break;
21946 default:
21947 /* Not a tag we recognize. Hopefully we aren't processing
21948 trash data, but since we must specifically ignore things
21949 we don't recognize, there is nothing else we should do at
21950 this point. */
21951 complaint (_("unsupported tag: '%s'"),
21952 dwarf_tag_name (die->tag));
21953 break;
21954 }
21955
21956 if (suppress_add)
21957 {
21958 sym->hash_next = objfile->template_symbols;
21959 objfile->template_symbols = sym;
21960 list_to_add = NULL;
21961 }
21962
21963 if (list_to_add != NULL)
21964 add_symbol_to_list (sym, list_to_add);
21965
21966 /* For the benefit of old versions of GCC, check for anonymous
21967 namespaces based on the demangled name. */
21968 if (!cu->processing_has_namespace_info
21969 && cu->language == language_cplus)
21970 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21971 }
21972 return (sym);
21973 }
21974
21975 /* Given an attr with a DW_FORM_dataN value in host byte order,
21976 zero-extend it as appropriate for the symbol's type. The DWARF
21977 standard (v4) is not entirely clear about the meaning of using
21978 DW_FORM_dataN for a constant with a signed type, where the type is
21979 wider than the data. The conclusion of a discussion on the DWARF
21980 list was that this is unspecified. We choose to always zero-extend
21981 because that is the interpretation long in use by GCC. */
21982
21983 static gdb_byte *
21984 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21985 struct dwarf2_cu *cu, LONGEST *value, int bits)
21986 {
21987 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21988 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21989 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21990 LONGEST l = DW_UNSND (attr);
21991
21992 if (bits < sizeof (*value) * 8)
21993 {
21994 l &= ((LONGEST) 1 << bits) - 1;
21995 *value = l;
21996 }
21997 else if (bits == sizeof (*value) * 8)
21998 *value = l;
21999 else
22000 {
22001 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22002 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22003 return bytes;
22004 }
22005
22006 return NULL;
22007 }
22008
22009 /* Read a constant value from an attribute. Either set *VALUE, or if
22010 the value does not fit in *VALUE, set *BYTES - either already
22011 allocated on the objfile obstack, or newly allocated on OBSTACK,
22012 or, set *BATON, if we translated the constant to a location
22013 expression. */
22014
22015 static void
22016 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22017 const char *name, struct obstack *obstack,
22018 struct dwarf2_cu *cu,
22019 LONGEST *value, const gdb_byte **bytes,
22020 struct dwarf2_locexpr_baton **baton)
22021 {
22022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22023 struct comp_unit_head *cu_header = &cu->header;
22024 struct dwarf_block *blk;
22025 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22026 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22027
22028 *value = 0;
22029 *bytes = NULL;
22030 *baton = NULL;
22031
22032 switch (attr->form)
22033 {
22034 case DW_FORM_addr:
22035 case DW_FORM_addrx:
22036 case DW_FORM_GNU_addr_index:
22037 {
22038 gdb_byte *data;
22039
22040 if (TYPE_LENGTH (type) != cu_header->addr_size)
22041 dwarf2_const_value_length_mismatch_complaint (name,
22042 cu_header->addr_size,
22043 TYPE_LENGTH (type));
22044 /* Symbols of this form are reasonably rare, so we just
22045 piggyback on the existing location code rather than writing
22046 a new implementation of symbol_computed_ops. */
22047 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22048 (*baton)->per_cu = cu->per_cu;
22049 gdb_assert ((*baton)->per_cu);
22050
22051 (*baton)->size = 2 + cu_header->addr_size;
22052 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22053 (*baton)->data = data;
22054
22055 data[0] = DW_OP_addr;
22056 store_unsigned_integer (&data[1], cu_header->addr_size,
22057 byte_order, DW_ADDR (attr));
22058 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22059 }
22060 break;
22061 case DW_FORM_string:
22062 case DW_FORM_strp:
22063 case DW_FORM_strx:
22064 case DW_FORM_GNU_str_index:
22065 case DW_FORM_GNU_strp_alt:
22066 /* DW_STRING is already allocated on the objfile obstack, point
22067 directly to it. */
22068 *bytes = (const gdb_byte *) DW_STRING (attr);
22069 break;
22070 case DW_FORM_block1:
22071 case DW_FORM_block2:
22072 case DW_FORM_block4:
22073 case DW_FORM_block:
22074 case DW_FORM_exprloc:
22075 case DW_FORM_data16:
22076 blk = DW_BLOCK (attr);
22077 if (TYPE_LENGTH (type) != blk->size)
22078 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22079 TYPE_LENGTH (type));
22080 *bytes = blk->data;
22081 break;
22082
22083 /* The DW_AT_const_value attributes are supposed to carry the
22084 symbol's value "represented as it would be on the target
22085 architecture." By the time we get here, it's already been
22086 converted to host endianness, so we just need to sign- or
22087 zero-extend it as appropriate. */
22088 case DW_FORM_data1:
22089 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22090 break;
22091 case DW_FORM_data2:
22092 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22093 break;
22094 case DW_FORM_data4:
22095 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22096 break;
22097 case DW_FORM_data8:
22098 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22099 break;
22100
22101 case DW_FORM_sdata:
22102 case DW_FORM_implicit_const:
22103 *value = DW_SND (attr);
22104 break;
22105
22106 case DW_FORM_udata:
22107 *value = DW_UNSND (attr);
22108 break;
22109
22110 default:
22111 complaint (_("unsupported const value attribute form: '%s'"),
22112 dwarf_form_name (attr->form));
22113 *value = 0;
22114 break;
22115 }
22116 }
22117
22118
22119 /* Copy constant value from an attribute to a symbol. */
22120
22121 static void
22122 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22123 struct dwarf2_cu *cu)
22124 {
22125 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22126 LONGEST value;
22127 const gdb_byte *bytes;
22128 struct dwarf2_locexpr_baton *baton;
22129
22130 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22131 SYMBOL_PRINT_NAME (sym),
22132 &objfile->objfile_obstack, cu,
22133 &value, &bytes, &baton);
22134
22135 if (baton != NULL)
22136 {
22137 SYMBOL_LOCATION_BATON (sym) = baton;
22138 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22139 }
22140 else if (bytes != NULL)
22141 {
22142 SYMBOL_VALUE_BYTES (sym) = bytes;
22143 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22144 }
22145 else
22146 {
22147 SYMBOL_VALUE (sym) = value;
22148 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22149 }
22150 }
22151
22152 /* Return the type of the die in question using its DW_AT_type attribute. */
22153
22154 static struct type *
22155 die_type (struct die_info *die, struct dwarf2_cu *cu)
22156 {
22157 struct attribute *type_attr;
22158
22159 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22160 if (!type_attr)
22161 {
22162 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22163 /* A missing DW_AT_type represents a void type. */
22164 return objfile_type (objfile)->builtin_void;
22165 }
22166
22167 return lookup_die_type (die, type_attr, cu);
22168 }
22169
22170 /* True iff CU's producer generates GNAT Ada auxiliary information
22171 that allows to find parallel types through that information instead
22172 of having to do expensive parallel lookups by type name. */
22173
22174 static int
22175 need_gnat_info (struct dwarf2_cu *cu)
22176 {
22177 /* Assume that the Ada compiler was GNAT, which always produces
22178 the auxiliary information. */
22179 return (cu->language == language_ada);
22180 }
22181
22182 /* Return the auxiliary type of the die in question using its
22183 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22184 attribute is not present. */
22185
22186 static struct type *
22187 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22188 {
22189 struct attribute *type_attr;
22190
22191 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22192 if (!type_attr)
22193 return NULL;
22194
22195 return lookup_die_type (die, type_attr, cu);
22196 }
22197
22198 /* If DIE has a descriptive_type attribute, then set the TYPE's
22199 descriptive type accordingly. */
22200
22201 static void
22202 set_descriptive_type (struct type *type, struct die_info *die,
22203 struct dwarf2_cu *cu)
22204 {
22205 struct type *descriptive_type = die_descriptive_type (die, cu);
22206
22207 if (descriptive_type)
22208 {
22209 ALLOCATE_GNAT_AUX_TYPE (type);
22210 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22211 }
22212 }
22213
22214 /* Return the containing type of the die in question using its
22215 DW_AT_containing_type attribute. */
22216
22217 static struct type *
22218 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22219 {
22220 struct attribute *type_attr;
22221 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22222
22223 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22224 if (!type_attr)
22225 error (_("Dwarf Error: Problem turning containing type into gdb type "
22226 "[in module %s]"), objfile_name (objfile));
22227
22228 return lookup_die_type (die, type_attr, cu);
22229 }
22230
22231 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22232
22233 static struct type *
22234 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22235 {
22236 struct dwarf2_per_objfile *dwarf2_per_objfile
22237 = cu->per_cu->dwarf2_per_objfile;
22238 struct objfile *objfile = dwarf2_per_objfile->objfile;
22239 char *saved;
22240
22241 std::string message
22242 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22243 objfile_name (objfile),
22244 sect_offset_str (cu->header.sect_off),
22245 sect_offset_str (die->sect_off));
22246 saved = obstack_strdup (&objfile->objfile_obstack, message);
22247
22248 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22249 }
22250
22251 /* Look up the type of DIE in CU using its type attribute ATTR.
22252 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22253 DW_AT_containing_type.
22254 If there is no type substitute an error marker. */
22255
22256 static struct type *
22257 lookup_die_type (struct die_info *die, const struct attribute *attr,
22258 struct dwarf2_cu *cu)
22259 {
22260 struct dwarf2_per_objfile *dwarf2_per_objfile
22261 = cu->per_cu->dwarf2_per_objfile;
22262 struct objfile *objfile = dwarf2_per_objfile->objfile;
22263 struct type *this_type;
22264
22265 gdb_assert (attr->name == DW_AT_type
22266 || attr->name == DW_AT_GNAT_descriptive_type
22267 || attr->name == DW_AT_containing_type);
22268
22269 /* First see if we have it cached. */
22270
22271 if (attr->form == DW_FORM_GNU_ref_alt)
22272 {
22273 struct dwarf2_per_cu_data *per_cu;
22274 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22275
22276 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22277 dwarf2_per_objfile);
22278 this_type = get_die_type_at_offset (sect_off, per_cu);
22279 }
22280 else if (attr_form_is_ref (attr))
22281 {
22282 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22283
22284 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22285 }
22286 else if (attr->form == DW_FORM_ref_sig8)
22287 {
22288 ULONGEST signature = DW_SIGNATURE (attr);
22289
22290 return get_signatured_type (die, signature, cu);
22291 }
22292 else
22293 {
22294 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22295 " at %s [in module %s]"),
22296 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22297 objfile_name (objfile));
22298 return build_error_marker_type (cu, die);
22299 }
22300
22301 /* If not cached we need to read it in. */
22302
22303 if (this_type == NULL)
22304 {
22305 struct die_info *type_die = NULL;
22306 struct dwarf2_cu *type_cu = cu;
22307
22308 if (attr_form_is_ref (attr))
22309 type_die = follow_die_ref (die, attr, &type_cu);
22310 if (type_die == NULL)
22311 return build_error_marker_type (cu, die);
22312 /* If we find the type now, it's probably because the type came
22313 from an inter-CU reference and the type's CU got expanded before
22314 ours. */
22315 this_type = read_type_die (type_die, type_cu);
22316 }
22317
22318 /* If we still don't have a type use an error marker. */
22319
22320 if (this_type == NULL)
22321 return build_error_marker_type (cu, die);
22322
22323 return this_type;
22324 }
22325
22326 /* Return the type in DIE, CU.
22327 Returns NULL for invalid types.
22328
22329 This first does a lookup in die_type_hash,
22330 and only reads the die in if necessary.
22331
22332 NOTE: This can be called when reading in partial or full symbols. */
22333
22334 static struct type *
22335 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22336 {
22337 struct type *this_type;
22338
22339 this_type = get_die_type (die, cu);
22340 if (this_type)
22341 return this_type;
22342
22343 return read_type_die_1 (die, cu);
22344 }
22345
22346 /* Read the type in DIE, CU.
22347 Returns NULL for invalid types. */
22348
22349 static struct type *
22350 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22351 {
22352 struct type *this_type = NULL;
22353
22354 switch (die->tag)
22355 {
22356 case DW_TAG_class_type:
22357 case DW_TAG_interface_type:
22358 case DW_TAG_structure_type:
22359 case DW_TAG_union_type:
22360 this_type = read_structure_type (die, cu);
22361 break;
22362 case DW_TAG_enumeration_type:
22363 this_type = read_enumeration_type (die, cu);
22364 break;
22365 case DW_TAG_subprogram:
22366 case DW_TAG_subroutine_type:
22367 case DW_TAG_inlined_subroutine:
22368 this_type = read_subroutine_type (die, cu);
22369 break;
22370 case DW_TAG_array_type:
22371 this_type = read_array_type (die, cu);
22372 break;
22373 case DW_TAG_set_type:
22374 this_type = read_set_type (die, cu);
22375 break;
22376 case DW_TAG_pointer_type:
22377 this_type = read_tag_pointer_type (die, cu);
22378 break;
22379 case DW_TAG_ptr_to_member_type:
22380 this_type = read_tag_ptr_to_member_type (die, cu);
22381 break;
22382 case DW_TAG_reference_type:
22383 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22384 break;
22385 case DW_TAG_rvalue_reference_type:
22386 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22387 break;
22388 case DW_TAG_const_type:
22389 this_type = read_tag_const_type (die, cu);
22390 break;
22391 case DW_TAG_volatile_type:
22392 this_type = read_tag_volatile_type (die, cu);
22393 break;
22394 case DW_TAG_restrict_type:
22395 this_type = read_tag_restrict_type (die, cu);
22396 break;
22397 case DW_TAG_string_type:
22398 this_type = read_tag_string_type (die, cu);
22399 break;
22400 case DW_TAG_typedef:
22401 this_type = read_typedef (die, cu);
22402 break;
22403 case DW_TAG_subrange_type:
22404 this_type = read_subrange_type (die, cu);
22405 break;
22406 case DW_TAG_base_type:
22407 this_type = read_base_type (die, cu);
22408 break;
22409 case DW_TAG_unspecified_type:
22410 this_type = read_unspecified_type (die, cu);
22411 break;
22412 case DW_TAG_namespace:
22413 this_type = read_namespace_type (die, cu);
22414 break;
22415 case DW_TAG_module:
22416 this_type = read_module_type (die, cu);
22417 break;
22418 case DW_TAG_atomic_type:
22419 this_type = read_tag_atomic_type (die, cu);
22420 break;
22421 default:
22422 complaint (_("unexpected tag in read_type_die: '%s'"),
22423 dwarf_tag_name (die->tag));
22424 break;
22425 }
22426
22427 return this_type;
22428 }
22429
22430 /* See if we can figure out if the class lives in a namespace. We do
22431 this by looking for a member function; its demangled name will
22432 contain namespace info, if there is any.
22433 Return the computed name or NULL.
22434 Space for the result is allocated on the objfile's obstack.
22435 This is the full-die version of guess_partial_die_structure_name.
22436 In this case we know DIE has no useful parent. */
22437
22438 static char *
22439 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22440 {
22441 struct die_info *spec_die;
22442 struct dwarf2_cu *spec_cu;
22443 struct die_info *child;
22444 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22445
22446 spec_cu = cu;
22447 spec_die = die_specification (die, &spec_cu);
22448 if (spec_die != NULL)
22449 {
22450 die = spec_die;
22451 cu = spec_cu;
22452 }
22453
22454 for (child = die->child;
22455 child != NULL;
22456 child = child->sibling)
22457 {
22458 if (child->tag == DW_TAG_subprogram)
22459 {
22460 const char *linkage_name = dw2_linkage_name (child, cu);
22461
22462 if (linkage_name != NULL)
22463 {
22464 char *actual_name
22465 = language_class_name_from_physname (cu->language_defn,
22466 linkage_name);
22467 char *name = NULL;
22468
22469 if (actual_name != NULL)
22470 {
22471 const char *die_name = dwarf2_name (die, cu);
22472
22473 if (die_name != NULL
22474 && strcmp (die_name, actual_name) != 0)
22475 {
22476 /* Strip off the class name from the full name.
22477 We want the prefix. */
22478 int die_name_len = strlen (die_name);
22479 int actual_name_len = strlen (actual_name);
22480
22481 /* Test for '::' as a sanity check. */
22482 if (actual_name_len > die_name_len + 2
22483 && actual_name[actual_name_len
22484 - die_name_len - 1] == ':')
22485 name = obstack_strndup (
22486 &objfile->per_bfd->storage_obstack,
22487 actual_name, actual_name_len - die_name_len - 2);
22488 }
22489 }
22490 xfree (actual_name);
22491 return name;
22492 }
22493 }
22494 }
22495
22496 return NULL;
22497 }
22498
22499 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22500 prefix part in such case. See
22501 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22502
22503 static const char *
22504 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22505 {
22506 struct attribute *attr;
22507 const char *base;
22508
22509 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22510 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22511 return NULL;
22512
22513 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22514 return NULL;
22515
22516 attr = dw2_linkage_name_attr (die, cu);
22517 if (attr == NULL || DW_STRING (attr) == NULL)
22518 return NULL;
22519
22520 /* dwarf2_name had to be already called. */
22521 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22522
22523 /* Strip the base name, keep any leading namespaces/classes. */
22524 base = strrchr (DW_STRING (attr), ':');
22525 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22526 return "";
22527
22528 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22529 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22530 DW_STRING (attr),
22531 &base[-1] - DW_STRING (attr));
22532 }
22533
22534 /* Return the name of the namespace/class that DIE is defined within,
22535 or "" if we can't tell. The caller should not xfree the result.
22536
22537 For example, if we're within the method foo() in the following
22538 code:
22539
22540 namespace N {
22541 class C {
22542 void foo () {
22543 }
22544 };
22545 }
22546
22547 then determine_prefix on foo's die will return "N::C". */
22548
22549 static const char *
22550 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22551 {
22552 struct dwarf2_per_objfile *dwarf2_per_objfile
22553 = cu->per_cu->dwarf2_per_objfile;
22554 struct die_info *parent, *spec_die;
22555 struct dwarf2_cu *spec_cu;
22556 struct type *parent_type;
22557 const char *retval;
22558
22559 if (cu->language != language_cplus
22560 && cu->language != language_fortran && cu->language != language_d
22561 && cu->language != language_rust)
22562 return "";
22563
22564 retval = anonymous_struct_prefix (die, cu);
22565 if (retval)
22566 return retval;
22567
22568 /* We have to be careful in the presence of DW_AT_specification.
22569 For example, with GCC 3.4, given the code
22570
22571 namespace N {
22572 void foo() {
22573 // Definition of N::foo.
22574 }
22575 }
22576
22577 then we'll have a tree of DIEs like this:
22578
22579 1: DW_TAG_compile_unit
22580 2: DW_TAG_namespace // N
22581 3: DW_TAG_subprogram // declaration of N::foo
22582 4: DW_TAG_subprogram // definition of N::foo
22583 DW_AT_specification // refers to die #3
22584
22585 Thus, when processing die #4, we have to pretend that we're in
22586 the context of its DW_AT_specification, namely the contex of die
22587 #3. */
22588 spec_cu = cu;
22589 spec_die = die_specification (die, &spec_cu);
22590 if (spec_die == NULL)
22591 parent = die->parent;
22592 else
22593 {
22594 parent = spec_die->parent;
22595 cu = spec_cu;
22596 }
22597
22598 if (parent == NULL)
22599 return "";
22600 else if (parent->building_fullname)
22601 {
22602 const char *name;
22603 const char *parent_name;
22604
22605 /* It has been seen on RealView 2.2 built binaries,
22606 DW_TAG_template_type_param types actually _defined_ as
22607 children of the parent class:
22608
22609 enum E {};
22610 template class <class Enum> Class{};
22611 Class<enum E> class_e;
22612
22613 1: DW_TAG_class_type (Class)
22614 2: DW_TAG_enumeration_type (E)
22615 3: DW_TAG_enumerator (enum1:0)
22616 3: DW_TAG_enumerator (enum2:1)
22617 ...
22618 2: DW_TAG_template_type_param
22619 DW_AT_type DW_FORM_ref_udata (E)
22620
22621 Besides being broken debug info, it can put GDB into an
22622 infinite loop. Consider:
22623
22624 When we're building the full name for Class<E>, we'll start
22625 at Class, and go look over its template type parameters,
22626 finding E. We'll then try to build the full name of E, and
22627 reach here. We're now trying to build the full name of E,
22628 and look over the parent DIE for containing scope. In the
22629 broken case, if we followed the parent DIE of E, we'd again
22630 find Class, and once again go look at its template type
22631 arguments, etc., etc. Simply don't consider such parent die
22632 as source-level parent of this die (it can't be, the language
22633 doesn't allow it), and break the loop here. */
22634 name = dwarf2_name (die, cu);
22635 parent_name = dwarf2_name (parent, cu);
22636 complaint (_("template param type '%s' defined within parent '%s'"),
22637 name ? name : "<unknown>",
22638 parent_name ? parent_name : "<unknown>");
22639 return "";
22640 }
22641 else
22642 switch (parent->tag)
22643 {
22644 case DW_TAG_namespace:
22645 parent_type = read_type_die (parent, cu);
22646 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22647 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22648 Work around this problem here. */
22649 if (cu->language == language_cplus
22650 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22651 return "";
22652 /* We give a name to even anonymous namespaces. */
22653 return TYPE_NAME (parent_type);
22654 case DW_TAG_class_type:
22655 case DW_TAG_interface_type:
22656 case DW_TAG_structure_type:
22657 case DW_TAG_union_type:
22658 case DW_TAG_module:
22659 parent_type = read_type_die (parent, cu);
22660 if (TYPE_NAME (parent_type) != NULL)
22661 return TYPE_NAME (parent_type);
22662 else
22663 /* An anonymous structure is only allowed non-static data
22664 members; no typedefs, no member functions, et cetera.
22665 So it does not need a prefix. */
22666 return "";
22667 case DW_TAG_compile_unit:
22668 case DW_TAG_partial_unit:
22669 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22670 if (cu->language == language_cplus
22671 && !dwarf2_per_objfile->types.empty ()
22672 && die->child != NULL
22673 && (die->tag == DW_TAG_class_type
22674 || die->tag == DW_TAG_structure_type
22675 || die->tag == DW_TAG_union_type))
22676 {
22677 char *name = guess_full_die_structure_name (die, cu);
22678 if (name != NULL)
22679 return name;
22680 }
22681 return "";
22682 case DW_TAG_subprogram:
22683 /* Nested subroutines in Fortran get a prefix with the name
22684 of the parent's subroutine. */
22685 if (cu->language == language_fortran)
22686 {
22687 if ((die->tag == DW_TAG_subprogram)
22688 && (dwarf2_name (parent, cu) != NULL))
22689 return dwarf2_name (parent, cu);
22690 }
22691 return determine_prefix (parent, cu);
22692 case DW_TAG_enumeration_type:
22693 parent_type = read_type_die (parent, cu);
22694 if (TYPE_DECLARED_CLASS (parent_type))
22695 {
22696 if (TYPE_NAME (parent_type) != NULL)
22697 return TYPE_NAME (parent_type);
22698 return "";
22699 }
22700 /* Fall through. */
22701 default:
22702 return determine_prefix (parent, cu);
22703 }
22704 }
22705
22706 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22707 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22708 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22709 an obconcat, otherwise allocate storage for the result. The CU argument is
22710 used to determine the language and hence, the appropriate separator. */
22711
22712 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22713
22714 static char *
22715 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22716 int physname, struct dwarf2_cu *cu)
22717 {
22718 const char *lead = "";
22719 const char *sep;
22720
22721 if (suffix == NULL || suffix[0] == '\0'
22722 || prefix == NULL || prefix[0] == '\0')
22723 sep = "";
22724 else if (cu->language == language_d)
22725 {
22726 /* For D, the 'main' function could be defined in any module, but it
22727 should never be prefixed. */
22728 if (strcmp (suffix, "D main") == 0)
22729 {
22730 prefix = "";
22731 sep = "";
22732 }
22733 else
22734 sep = ".";
22735 }
22736 else if (cu->language == language_fortran && physname)
22737 {
22738 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22739 DW_AT_MIPS_linkage_name is preferred and used instead. */
22740
22741 lead = "__";
22742 sep = "_MOD_";
22743 }
22744 else
22745 sep = "::";
22746
22747 if (prefix == NULL)
22748 prefix = "";
22749 if (suffix == NULL)
22750 suffix = "";
22751
22752 if (obs == NULL)
22753 {
22754 char *retval
22755 = ((char *)
22756 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22757
22758 strcpy (retval, lead);
22759 strcat (retval, prefix);
22760 strcat (retval, sep);
22761 strcat (retval, suffix);
22762 return retval;
22763 }
22764 else
22765 {
22766 /* We have an obstack. */
22767 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22768 }
22769 }
22770
22771 /* Return sibling of die, NULL if no sibling. */
22772
22773 static struct die_info *
22774 sibling_die (struct die_info *die)
22775 {
22776 return die->sibling;
22777 }
22778
22779 /* Get name of a die, return NULL if not found. */
22780
22781 static const char *
22782 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22783 struct obstack *obstack)
22784 {
22785 if (name && cu->language == language_cplus)
22786 {
22787 std::string canon_name = cp_canonicalize_string (name);
22788
22789 if (!canon_name.empty ())
22790 {
22791 if (canon_name != name)
22792 name = obstack_strdup (obstack, canon_name);
22793 }
22794 }
22795
22796 return name;
22797 }
22798
22799 /* Get name of a die, return NULL if not found.
22800 Anonymous namespaces are converted to their magic string. */
22801
22802 static const char *
22803 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22804 {
22805 struct attribute *attr;
22806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22807
22808 attr = dwarf2_attr (die, DW_AT_name, cu);
22809 if ((!attr || !DW_STRING (attr))
22810 && die->tag != DW_TAG_namespace
22811 && die->tag != DW_TAG_class_type
22812 && die->tag != DW_TAG_interface_type
22813 && die->tag != DW_TAG_structure_type
22814 && die->tag != DW_TAG_union_type)
22815 return NULL;
22816
22817 switch (die->tag)
22818 {
22819 case DW_TAG_compile_unit:
22820 case DW_TAG_partial_unit:
22821 /* Compilation units have a DW_AT_name that is a filename, not
22822 a source language identifier. */
22823 case DW_TAG_enumeration_type:
22824 case DW_TAG_enumerator:
22825 /* These tags always have simple identifiers already; no need
22826 to canonicalize them. */
22827 return DW_STRING (attr);
22828
22829 case DW_TAG_namespace:
22830 if (attr != NULL && DW_STRING (attr) != NULL)
22831 return DW_STRING (attr);
22832 return CP_ANONYMOUS_NAMESPACE_STR;
22833
22834 case DW_TAG_class_type:
22835 case DW_TAG_interface_type:
22836 case DW_TAG_structure_type:
22837 case DW_TAG_union_type:
22838 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22839 structures or unions. These were of the form "._%d" in GCC 4.1,
22840 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22841 and GCC 4.4. We work around this problem by ignoring these. */
22842 if (attr && DW_STRING (attr)
22843 && (startswith (DW_STRING (attr), "._")
22844 || startswith (DW_STRING (attr), "<anonymous")))
22845 return NULL;
22846
22847 /* GCC might emit a nameless typedef that has a linkage name. See
22848 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22849 if (!attr || DW_STRING (attr) == NULL)
22850 {
22851 char *demangled = NULL;
22852
22853 attr = dw2_linkage_name_attr (die, cu);
22854 if (attr == NULL || DW_STRING (attr) == NULL)
22855 return NULL;
22856
22857 /* Avoid demangling DW_STRING (attr) the second time on a second
22858 call for the same DIE. */
22859 if (!DW_STRING_IS_CANONICAL (attr))
22860 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22861
22862 if (demangled)
22863 {
22864 const char *base;
22865
22866 /* FIXME: we already did this for the partial symbol... */
22867 DW_STRING (attr)
22868 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22869 demangled);
22870 DW_STRING_IS_CANONICAL (attr) = 1;
22871 xfree (demangled);
22872
22873 /* Strip any leading namespaces/classes, keep only the base name.
22874 DW_AT_name for named DIEs does not contain the prefixes. */
22875 base = strrchr (DW_STRING (attr), ':');
22876 if (base && base > DW_STRING (attr) && base[-1] == ':')
22877 return &base[1];
22878 else
22879 return DW_STRING (attr);
22880 }
22881 }
22882 break;
22883
22884 default:
22885 break;
22886 }
22887
22888 if (!DW_STRING_IS_CANONICAL (attr))
22889 {
22890 DW_STRING (attr)
22891 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22892 &objfile->per_bfd->storage_obstack);
22893 DW_STRING_IS_CANONICAL (attr) = 1;
22894 }
22895 return DW_STRING (attr);
22896 }
22897
22898 /* Return the die that this die in an extension of, or NULL if there
22899 is none. *EXT_CU is the CU containing DIE on input, and the CU
22900 containing the return value on output. */
22901
22902 static struct die_info *
22903 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22904 {
22905 struct attribute *attr;
22906
22907 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22908 if (attr == NULL)
22909 return NULL;
22910
22911 return follow_die_ref (die, attr, ext_cu);
22912 }
22913
22914 /* A convenience function that returns an "unknown" DWARF name,
22915 including the value of V. STR is the name of the entity being
22916 printed, e.g., "TAG". */
22917
22918 static const char *
22919 dwarf_unknown (const char *str, unsigned v)
22920 {
22921 char *cell = get_print_cell ();
22922 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22923 return cell;
22924 }
22925
22926 /* Convert a DIE tag into its string name. */
22927
22928 static const char *
22929 dwarf_tag_name (unsigned tag)
22930 {
22931 const char *name = get_DW_TAG_name (tag);
22932
22933 if (name == NULL)
22934 return dwarf_unknown ("TAG", tag);
22935
22936 return name;
22937 }
22938
22939 /* Convert a DWARF attribute code into its string name. */
22940
22941 static const char *
22942 dwarf_attr_name (unsigned attr)
22943 {
22944 const char *name;
22945
22946 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22947 if (attr == DW_AT_MIPS_fde)
22948 return "DW_AT_MIPS_fde";
22949 #else
22950 if (attr == DW_AT_HP_block_index)
22951 return "DW_AT_HP_block_index";
22952 #endif
22953
22954 name = get_DW_AT_name (attr);
22955
22956 if (name == NULL)
22957 return dwarf_unknown ("AT", attr);
22958
22959 return name;
22960 }
22961
22962 /* Convert a unit type to corresponding DW_UT name. */
22963
22964 static const char *
22965 dwarf_unit_type_name (int unit_type) {
22966 switch (unit_type)
22967 {
22968 case 0x01:
22969 return "DW_UT_compile (0x01)";
22970 case 0x02:
22971 return "DW_UT_type (0x02)";
22972 case 0x03:
22973 return "DW_UT_partial (0x03)";
22974 case 0x04:
22975 return "DW_UT_skeleton (0x04)";
22976 case 0x05:
22977 return "DW_UT_split_compile (0x05)";
22978 case 0x06:
22979 return "DW_UT_split_type (0x06)";
22980 case 0x80:
22981 return "DW_UT_lo_user (0x80)";
22982 case 0xff:
22983 return "DW_UT_hi_user (0xff)";
22984 default:
22985 return nullptr;
22986 }
22987 }
22988
22989 /* Convert a DWARF value form code into its string name. */
22990
22991 static const char *
22992 dwarf_form_name (unsigned form)
22993 {
22994 const char *name = get_DW_FORM_name (form);
22995
22996 if (name == NULL)
22997 return dwarf_unknown ("FORM", form);
22998
22999 return name;
23000 }
23001
23002 static const char *
23003 dwarf_bool_name (unsigned mybool)
23004 {
23005 if (mybool)
23006 return "TRUE";
23007 else
23008 return "FALSE";
23009 }
23010
23011 /* Convert a DWARF type code into its string name. */
23012
23013 static const char *
23014 dwarf_type_encoding_name (unsigned enc)
23015 {
23016 const char *name = get_DW_ATE_name (enc);
23017
23018 if (name == NULL)
23019 return dwarf_unknown ("ATE", enc);
23020
23021 return name;
23022 }
23023
23024 static void
23025 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23026 {
23027 unsigned int i;
23028
23029 print_spaces (indent, f);
23030 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23031 dwarf_tag_name (die->tag), die->abbrev,
23032 sect_offset_str (die->sect_off));
23033
23034 if (die->parent != NULL)
23035 {
23036 print_spaces (indent, f);
23037 fprintf_unfiltered (f, " parent at offset: %s\n",
23038 sect_offset_str (die->parent->sect_off));
23039 }
23040
23041 print_spaces (indent, f);
23042 fprintf_unfiltered (f, " has children: %s\n",
23043 dwarf_bool_name (die->child != NULL));
23044
23045 print_spaces (indent, f);
23046 fprintf_unfiltered (f, " attributes:\n");
23047
23048 for (i = 0; i < die->num_attrs; ++i)
23049 {
23050 print_spaces (indent, f);
23051 fprintf_unfiltered (f, " %s (%s) ",
23052 dwarf_attr_name (die->attrs[i].name),
23053 dwarf_form_name (die->attrs[i].form));
23054
23055 switch (die->attrs[i].form)
23056 {
23057 case DW_FORM_addr:
23058 case DW_FORM_addrx:
23059 case DW_FORM_GNU_addr_index:
23060 fprintf_unfiltered (f, "address: ");
23061 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23062 break;
23063 case DW_FORM_block2:
23064 case DW_FORM_block4:
23065 case DW_FORM_block:
23066 case DW_FORM_block1:
23067 fprintf_unfiltered (f, "block: size %s",
23068 pulongest (DW_BLOCK (&die->attrs[i])->size));
23069 break;
23070 case DW_FORM_exprloc:
23071 fprintf_unfiltered (f, "expression: size %s",
23072 pulongest (DW_BLOCK (&die->attrs[i])->size));
23073 break;
23074 case DW_FORM_data16:
23075 fprintf_unfiltered (f, "constant of 16 bytes");
23076 break;
23077 case DW_FORM_ref_addr:
23078 fprintf_unfiltered (f, "ref address: ");
23079 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23080 break;
23081 case DW_FORM_GNU_ref_alt:
23082 fprintf_unfiltered (f, "alt ref address: ");
23083 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23084 break;
23085 case DW_FORM_ref1:
23086 case DW_FORM_ref2:
23087 case DW_FORM_ref4:
23088 case DW_FORM_ref8:
23089 case DW_FORM_ref_udata:
23090 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23091 (long) (DW_UNSND (&die->attrs[i])));
23092 break;
23093 case DW_FORM_data1:
23094 case DW_FORM_data2:
23095 case DW_FORM_data4:
23096 case DW_FORM_data8:
23097 case DW_FORM_udata:
23098 case DW_FORM_sdata:
23099 fprintf_unfiltered (f, "constant: %s",
23100 pulongest (DW_UNSND (&die->attrs[i])));
23101 break;
23102 case DW_FORM_sec_offset:
23103 fprintf_unfiltered (f, "section offset: %s",
23104 pulongest (DW_UNSND (&die->attrs[i])));
23105 break;
23106 case DW_FORM_ref_sig8:
23107 fprintf_unfiltered (f, "signature: %s",
23108 hex_string (DW_SIGNATURE (&die->attrs[i])));
23109 break;
23110 case DW_FORM_string:
23111 case DW_FORM_strp:
23112 case DW_FORM_line_strp:
23113 case DW_FORM_strx:
23114 case DW_FORM_GNU_str_index:
23115 case DW_FORM_GNU_strp_alt:
23116 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23117 DW_STRING (&die->attrs[i])
23118 ? DW_STRING (&die->attrs[i]) : "",
23119 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23120 break;
23121 case DW_FORM_flag:
23122 if (DW_UNSND (&die->attrs[i]))
23123 fprintf_unfiltered (f, "flag: TRUE");
23124 else
23125 fprintf_unfiltered (f, "flag: FALSE");
23126 break;
23127 case DW_FORM_flag_present:
23128 fprintf_unfiltered (f, "flag: TRUE");
23129 break;
23130 case DW_FORM_indirect:
23131 /* The reader will have reduced the indirect form to
23132 the "base form" so this form should not occur. */
23133 fprintf_unfiltered (f,
23134 "unexpected attribute form: DW_FORM_indirect");
23135 break;
23136 case DW_FORM_implicit_const:
23137 fprintf_unfiltered (f, "constant: %s",
23138 plongest (DW_SND (&die->attrs[i])));
23139 break;
23140 default:
23141 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23142 die->attrs[i].form);
23143 break;
23144 }
23145 fprintf_unfiltered (f, "\n");
23146 }
23147 }
23148
23149 static void
23150 dump_die_for_error (struct die_info *die)
23151 {
23152 dump_die_shallow (gdb_stderr, 0, die);
23153 }
23154
23155 static void
23156 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23157 {
23158 int indent = level * 4;
23159
23160 gdb_assert (die != NULL);
23161
23162 if (level >= max_level)
23163 return;
23164
23165 dump_die_shallow (f, indent, die);
23166
23167 if (die->child != NULL)
23168 {
23169 print_spaces (indent, f);
23170 fprintf_unfiltered (f, " Children:");
23171 if (level + 1 < max_level)
23172 {
23173 fprintf_unfiltered (f, "\n");
23174 dump_die_1 (f, level + 1, max_level, die->child);
23175 }
23176 else
23177 {
23178 fprintf_unfiltered (f,
23179 " [not printed, max nesting level reached]\n");
23180 }
23181 }
23182
23183 if (die->sibling != NULL && level > 0)
23184 {
23185 dump_die_1 (f, level, max_level, die->sibling);
23186 }
23187 }
23188
23189 /* This is called from the pdie macro in gdbinit.in.
23190 It's not static so gcc will keep a copy callable from gdb. */
23191
23192 void
23193 dump_die (struct die_info *die, int max_level)
23194 {
23195 dump_die_1 (gdb_stdlog, 0, max_level, die);
23196 }
23197
23198 static void
23199 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23200 {
23201 void **slot;
23202
23203 slot = htab_find_slot_with_hash (cu->die_hash, die,
23204 to_underlying (die->sect_off),
23205 INSERT);
23206
23207 *slot = die;
23208 }
23209
23210 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23211 required kind. */
23212
23213 static sect_offset
23214 dwarf2_get_ref_die_offset (const struct attribute *attr)
23215 {
23216 if (attr_form_is_ref (attr))
23217 return (sect_offset) DW_UNSND (attr);
23218
23219 complaint (_("unsupported die ref attribute form: '%s'"),
23220 dwarf_form_name (attr->form));
23221 return {};
23222 }
23223
23224 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23225 * the value held by the attribute is not constant. */
23226
23227 static LONGEST
23228 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23229 {
23230 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23231 return DW_SND (attr);
23232 else if (attr->form == DW_FORM_udata
23233 || attr->form == DW_FORM_data1
23234 || attr->form == DW_FORM_data2
23235 || attr->form == DW_FORM_data4
23236 || attr->form == DW_FORM_data8)
23237 return DW_UNSND (attr);
23238 else
23239 {
23240 /* For DW_FORM_data16 see attr_form_is_constant. */
23241 complaint (_("Attribute value is not a constant (%s)"),
23242 dwarf_form_name (attr->form));
23243 return default_value;
23244 }
23245 }
23246
23247 /* Follow reference or signature attribute ATTR of SRC_DIE.
23248 On entry *REF_CU is the CU of SRC_DIE.
23249 On exit *REF_CU is the CU of the result. */
23250
23251 static struct die_info *
23252 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23253 struct dwarf2_cu **ref_cu)
23254 {
23255 struct die_info *die;
23256
23257 if (attr_form_is_ref (attr))
23258 die = follow_die_ref (src_die, attr, ref_cu);
23259 else if (attr->form == DW_FORM_ref_sig8)
23260 die = follow_die_sig (src_die, attr, ref_cu);
23261 else
23262 {
23263 dump_die_for_error (src_die);
23264 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23265 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23266 }
23267
23268 return die;
23269 }
23270
23271 /* Follow reference OFFSET.
23272 On entry *REF_CU is the CU of the source die referencing OFFSET.
23273 On exit *REF_CU is the CU of the result.
23274 Returns NULL if OFFSET is invalid. */
23275
23276 static struct die_info *
23277 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23278 struct dwarf2_cu **ref_cu)
23279 {
23280 struct die_info temp_die;
23281 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23282 struct dwarf2_per_objfile *dwarf2_per_objfile
23283 = cu->per_cu->dwarf2_per_objfile;
23284
23285 gdb_assert (cu->per_cu != NULL);
23286
23287 target_cu = cu;
23288
23289 if (cu->per_cu->is_debug_types)
23290 {
23291 /* .debug_types CUs cannot reference anything outside their CU.
23292 If they need to, they have to reference a signatured type via
23293 DW_FORM_ref_sig8. */
23294 if (!offset_in_cu_p (&cu->header, sect_off))
23295 return NULL;
23296 }
23297 else if (offset_in_dwz != cu->per_cu->is_dwz
23298 || !offset_in_cu_p (&cu->header, sect_off))
23299 {
23300 struct dwarf2_per_cu_data *per_cu;
23301
23302 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23303 dwarf2_per_objfile);
23304
23305 /* If necessary, add it to the queue and load its DIEs. */
23306 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23307 load_full_comp_unit (per_cu, false, cu->language);
23308
23309 target_cu = per_cu->cu;
23310 }
23311 else if (cu->dies == NULL)
23312 {
23313 /* We're loading full DIEs during partial symbol reading. */
23314 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23315 load_full_comp_unit (cu->per_cu, false, language_minimal);
23316 }
23317
23318 *ref_cu = target_cu;
23319 temp_die.sect_off = sect_off;
23320
23321 if (target_cu != cu)
23322 target_cu->ancestor = cu;
23323
23324 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23325 &temp_die,
23326 to_underlying (sect_off));
23327 }
23328
23329 /* Follow reference attribute ATTR of SRC_DIE.
23330 On entry *REF_CU is the CU of SRC_DIE.
23331 On exit *REF_CU is the CU of the result. */
23332
23333 static struct die_info *
23334 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23335 struct dwarf2_cu **ref_cu)
23336 {
23337 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23338 struct dwarf2_cu *cu = *ref_cu;
23339 struct die_info *die;
23340
23341 die = follow_die_offset (sect_off,
23342 (attr->form == DW_FORM_GNU_ref_alt
23343 || cu->per_cu->is_dwz),
23344 ref_cu);
23345 if (!die)
23346 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23347 "at %s [in module %s]"),
23348 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23349 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23350
23351 return die;
23352 }
23353
23354 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23355 Returned value is intended for DW_OP_call*. Returned
23356 dwarf2_locexpr_baton->data has lifetime of
23357 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23358
23359 struct dwarf2_locexpr_baton
23360 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23361 struct dwarf2_per_cu_data *per_cu,
23362 CORE_ADDR (*get_frame_pc) (void *baton),
23363 void *baton, bool resolve_abstract_p)
23364 {
23365 struct dwarf2_cu *cu;
23366 struct die_info *die;
23367 struct attribute *attr;
23368 struct dwarf2_locexpr_baton retval;
23369 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23370 struct objfile *objfile = dwarf2_per_objfile->objfile;
23371
23372 if (per_cu->cu == NULL)
23373 load_cu (per_cu, false);
23374 cu = per_cu->cu;
23375 if (cu == NULL)
23376 {
23377 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23378 Instead just throw an error, not much else we can do. */
23379 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23380 sect_offset_str (sect_off), objfile_name (objfile));
23381 }
23382
23383 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23384 if (!die)
23385 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23386 sect_offset_str (sect_off), objfile_name (objfile));
23387
23388 attr = dwarf2_attr (die, DW_AT_location, cu);
23389 if (!attr && resolve_abstract_p
23390 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23391 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23392 {
23393 CORE_ADDR pc = (*get_frame_pc) (baton);
23394 CORE_ADDR baseaddr
23395 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23396 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23397
23398 for (const auto &cand_off
23399 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23400 {
23401 struct dwarf2_cu *cand_cu = cu;
23402 struct die_info *cand
23403 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23404 if (!cand
23405 || !cand->parent
23406 || cand->parent->tag != DW_TAG_subprogram)
23407 continue;
23408
23409 CORE_ADDR pc_low, pc_high;
23410 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23411 if (pc_low == ((CORE_ADDR) -1))
23412 continue;
23413 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23414 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23415 if (!(pc_low <= pc && pc < pc_high))
23416 continue;
23417
23418 die = cand;
23419 attr = dwarf2_attr (die, DW_AT_location, cu);
23420 break;
23421 }
23422 }
23423
23424 if (!attr)
23425 {
23426 /* DWARF: "If there is no such attribute, then there is no effect.".
23427 DATA is ignored if SIZE is 0. */
23428
23429 retval.data = NULL;
23430 retval.size = 0;
23431 }
23432 else if (attr_form_is_section_offset (attr))
23433 {
23434 struct dwarf2_loclist_baton loclist_baton;
23435 CORE_ADDR pc = (*get_frame_pc) (baton);
23436 size_t size;
23437
23438 fill_in_loclist_baton (cu, &loclist_baton, attr);
23439
23440 retval.data = dwarf2_find_location_expression (&loclist_baton,
23441 &size, pc);
23442 retval.size = size;
23443 }
23444 else
23445 {
23446 if (!attr_form_is_block (attr))
23447 error (_("Dwarf Error: DIE at %s referenced in module %s "
23448 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23449 sect_offset_str (sect_off), objfile_name (objfile));
23450
23451 retval.data = DW_BLOCK (attr)->data;
23452 retval.size = DW_BLOCK (attr)->size;
23453 }
23454 retval.per_cu = cu->per_cu;
23455
23456 age_cached_comp_units (dwarf2_per_objfile);
23457
23458 return retval;
23459 }
23460
23461 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23462 offset. */
23463
23464 struct dwarf2_locexpr_baton
23465 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23466 struct dwarf2_per_cu_data *per_cu,
23467 CORE_ADDR (*get_frame_pc) (void *baton),
23468 void *baton)
23469 {
23470 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23471
23472 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23473 }
23474
23475 /* Write a constant of a given type as target-ordered bytes into
23476 OBSTACK. */
23477
23478 static const gdb_byte *
23479 write_constant_as_bytes (struct obstack *obstack,
23480 enum bfd_endian byte_order,
23481 struct type *type,
23482 ULONGEST value,
23483 LONGEST *len)
23484 {
23485 gdb_byte *result;
23486
23487 *len = TYPE_LENGTH (type);
23488 result = (gdb_byte *) obstack_alloc (obstack, *len);
23489 store_unsigned_integer (result, *len, byte_order, value);
23490
23491 return result;
23492 }
23493
23494 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23495 pointer to the constant bytes and set LEN to the length of the
23496 data. If memory is needed, allocate it on OBSTACK. If the DIE
23497 does not have a DW_AT_const_value, return NULL. */
23498
23499 const gdb_byte *
23500 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23501 struct dwarf2_per_cu_data *per_cu,
23502 struct obstack *obstack,
23503 LONGEST *len)
23504 {
23505 struct dwarf2_cu *cu;
23506 struct die_info *die;
23507 struct attribute *attr;
23508 const gdb_byte *result = NULL;
23509 struct type *type;
23510 LONGEST value;
23511 enum bfd_endian byte_order;
23512 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23513
23514 if (per_cu->cu == NULL)
23515 load_cu (per_cu, false);
23516 cu = per_cu->cu;
23517 if (cu == NULL)
23518 {
23519 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23520 Instead just throw an error, not much else we can do. */
23521 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23522 sect_offset_str (sect_off), objfile_name (objfile));
23523 }
23524
23525 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23526 if (!die)
23527 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23528 sect_offset_str (sect_off), objfile_name (objfile));
23529
23530 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23531 if (attr == NULL)
23532 return NULL;
23533
23534 byte_order = (bfd_big_endian (objfile->obfd)
23535 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23536
23537 switch (attr->form)
23538 {
23539 case DW_FORM_addr:
23540 case DW_FORM_addrx:
23541 case DW_FORM_GNU_addr_index:
23542 {
23543 gdb_byte *tem;
23544
23545 *len = cu->header.addr_size;
23546 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23547 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23548 result = tem;
23549 }
23550 break;
23551 case DW_FORM_string:
23552 case DW_FORM_strp:
23553 case DW_FORM_strx:
23554 case DW_FORM_GNU_str_index:
23555 case DW_FORM_GNU_strp_alt:
23556 /* DW_STRING is already allocated on the objfile obstack, point
23557 directly to it. */
23558 result = (const gdb_byte *) DW_STRING (attr);
23559 *len = strlen (DW_STRING (attr));
23560 break;
23561 case DW_FORM_block1:
23562 case DW_FORM_block2:
23563 case DW_FORM_block4:
23564 case DW_FORM_block:
23565 case DW_FORM_exprloc:
23566 case DW_FORM_data16:
23567 result = DW_BLOCK (attr)->data;
23568 *len = DW_BLOCK (attr)->size;
23569 break;
23570
23571 /* The DW_AT_const_value attributes are supposed to carry the
23572 symbol's value "represented as it would be on the target
23573 architecture." By the time we get here, it's already been
23574 converted to host endianness, so we just need to sign- or
23575 zero-extend it as appropriate. */
23576 case DW_FORM_data1:
23577 type = die_type (die, cu);
23578 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23579 if (result == NULL)
23580 result = write_constant_as_bytes (obstack, byte_order,
23581 type, value, len);
23582 break;
23583 case DW_FORM_data2:
23584 type = die_type (die, cu);
23585 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23586 if (result == NULL)
23587 result = write_constant_as_bytes (obstack, byte_order,
23588 type, value, len);
23589 break;
23590 case DW_FORM_data4:
23591 type = die_type (die, cu);
23592 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23593 if (result == NULL)
23594 result = write_constant_as_bytes (obstack, byte_order,
23595 type, value, len);
23596 break;
23597 case DW_FORM_data8:
23598 type = die_type (die, cu);
23599 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23600 if (result == NULL)
23601 result = write_constant_as_bytes (obstack, byte_order,
23602 type, value, len);
23603 break;
23604
23605 case DW_FORM_sdata:
23606 case DW_FORM_implicit_const:
23607 type = die_type (die, cu);
23608 result = write_constant_as_bytes (obstack, byte_order,
23609 type, DW_SND (attr), len);
23610 break;
23611
23612 case DW_FORM_udata:
23613 type = die_type (die, cu);
23614 result = write_constant_as_bytes (obstack, byte_order,
23615 type, DW_UNSND (attr), len);
23616 break;
23617
23618 default:
23619 complaint (_("unsupported const value attribute form: '%s'"),
23620 dwarf_form_name (attr->form));
23621 break;
23622 }
23623
23624 return result;
23625 }
23626
23627 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23628 valid type for this die is found. */
23629
23630 struct type *
23631 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23632 struct dwarf2_per_cu_data *per_cu)
23633 {
23634 struct dwarf2_cu *cu;
23635 struct die_info *die;
23636
23637 if (per_cu->cu == NULL)
23638 load_cu (per_cu, false);
23639 cu = per_cu->cu;
23640 if (!cu)
23641 return NULL;
23642
23643 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23644 if (!die)
23645 return NULL;
23646
23647 return die_type (die, cu);
23648 }
23649
23650 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23651 PER_CU. */
23652
23653 struct type *
23654 dwarf2_get_die_type (cu_offset die_offset,
23655 struct dwarf2_per_cu_data *per_cu)
23656 {
23657 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23658 return get_die_type_at_offset (die_offset_sect, per_cu);
23659 }
23660
23661 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23662 On entry *REF_CU is the CU of SRC_DIE.
23663 On exit *REF_CU is the CU of the result.
23664 Returns NULL if the referenced DIE isn't found. */
23665
23666 static struct die_info *
23667 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23668 struct dwarf2_cu **ref_cu)
23669 {
23670 struct die_info temp_die;
23671 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23672 struct die_info *die;
23673
23674 /* While it might be nice to assert sig_type->type == NULL here,
23675 we can get here for DW_AT_imported_declaration where we need
23676 the DIE not the type. */
23677
23678 /* If necessary, add it to the queue and load its DIEs. */
23679
23680 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23681 read_signatured_type (sig_type);
23682
23683 sig_cu = sig_type->per_cu.cu;
23684 gdb_assert (sig_cu != NULL);
23685 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23686 temp_die.sect_off = sig_type->type_offset_in_section;
23687 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23688 to_underlying (temp_die.sect_off));
23689 if (die)
23690 {
23691 struct dwarf2_per_objfile *dwarf2_per_objfile
23692 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23693
23694 /* For .gdb_index version 7 keep track of included TUs.
23695 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23696 if (dwarf2_per_objfile->index_table != NULL
23697 && dwarf2_per_objfile->index_table->version <= 7)
23698 {
23699 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23700 }
23701
23702 *ref_cu = sig_cu;
23703 if (sig_cu != cu)
23704 sig_cu->ancestor = cu;
23705
23706 return die;
23707 }
23708
23709 return NULL;
23710 }
23711
23712 /* Follow signatured type referenced by ATTR in SRC_DIE.
23713 On entry *REF_CU is the CU of SRC_DIE.
23714 On exit *REF_CU is the CU of the result.
23715 The result is the DIE of the type.
23716 If the referenced type cannot be found an error is thrown. */
23717
23718 static struct die_info *
23719 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23720 struct dwarf2_cu **ref_cu)
23721 {
23722 ULONGEST signature = DW_SIGNATURE (attr);
23723 struct signatured_type *sig_type;
23724 struct die_info *die;
23725
23726 gdb_assert (attr->form == DW_FORM_ref_sig8);
23727
23728 sig_type = lookup_signatured_type (*ref_cu, signature);
23729 /* sig_type will be NULL if the signatured type is missing from
23730 the debug info. */
23731 if (sig_type == NULL)
23732 {
23733 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23734 " from DIE at %s [in module %s]"),
23735 hex_string (signature), sect_offset_str (src_die->sect_off),
23736 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23737 }
23738
23739 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23740 if (die == NULL)
23741 {
23742 dump_die_for_error (src_die);
23743 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23744 " from DIE at %s [in module %s]"),
23745 hex_string (signature), sect_offset_str (src_die->sect_off),
23746 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23747 }
23748
23749 return die;
23750 }
23751
23752 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23753 reading in and processing the type unit if necessary. */
23754
23755 static struct type *
23756 get_signatured_type (struct die_info *die, ULONGEST signature,
23757 struct dwarf2_cu *cu)
23758 {
23759 struct dwarf2_per_objfile *dwarf2_per_objfile
23760 = cu->per_cu->dwarf2_per_objfile;
23761 struct signatured_type *sig_type;
23762 struct dwarf2_cu *type_cu;
23763 struct die_info *type_die;
23764 struct type *type;
23765
23766 sig_type = lookup_signatured_type (cu, signature);
23767 /* sig_type will be NULL if the signatured type is missing from
23768 the debug info. */
23769 if (sig_type == NULL)
23770 {
23771 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23772 " from DIE at %s [in module %s]"),
23773 hex_string (signature), sect_offset_str (die->sect_off),
23774 objfile_name (dwarf2_per_objfile->objfile));
23775 return build_error_marker_type (cu, die);
23776 }
23777
23778 /* If we already know the type we're done. */
23779 if (sig_type->type != NULL)
23780 return sig_type->type;
23781
23782 type_cu = cu;
23783 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23784 if (type_die != NULL)
23785 {
23786 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23787 is created. This is important, for example, because for c++ classes
23788 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23789 type = read_type_die (type_die, type_cu);
23790 if (type == NULL)
23791 {
23792 complaint (_("Dwarf Error: Cannot build signatured type %s"
23793 " referenced from DIE at %s [in module %s]"),
23794 hex_string (signature), sect_offset_str (die->sect_off),
23795 objfile_name (dwarf2_per_objfile->objfile));
23796 type = build_error_marker_type (cu, die);
23797 }
23798 }
23799 else
23800 {
23801 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23802 " from DIE at %s [in module %s]"),
23803 hex_string (signature), sect_offset_str (die->sect_off),
23804 objfile_name (dwarf2_per_objfile->objfile));
23805 type = build_error_marker_type (cu, die);
23806 }
23807 sig_type->type = type;
23808
23809 return type;
23810 }
23811
23812 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23813 reading in and processing the type unit if necessary. */
23814
23815 static struct type *
23816 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23817 struct dwarf2_cu *cu) /* ARI: editCase function */
23818 {
23819 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23820 if (attr_form_is_ref (attr))
23821 {
23822 struct dwarf2_cu *type_cu = cu;
23823 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23824
23825 return read_type_die (type_die, type_cu);
23826 }
23827 else if (attr->form == DW_FORM_ref_sig8)
23828 {
23829 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23830 }
23831 else
23832 {
23833 struct dwarf2_per_objfile *dwarf2_per_objfile
23834 = cu->per_cu->dwarf2_per_objfile;
23835
23836 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23837 " at %s [in module %s]"),
23838 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23839 objfile_name (dwarf2_per_objfile->objfile));
23840 return build_error_marker_type (cu, die);
23841 }
23842 }
23843
23844 /* Load the DIEs associated with type unit PER_CU into memory. */
23845
23846 static void
23847 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23848 {
23849 struct signatured_type *sig_type;
23850
23851 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23852 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23853
23854 /* We have the per_cu, but we need the signatured_type.
23855 Fortunately this is an easy translation. */
23856 gdb_assert (per_cu->is_debug_types);
23857 sig_type = (struct signatured_type *) per_cu;
23858
23859 gdb_assert (per_cu->cu == NULL);
23860
23861 read_signatured_type (sig_type);
23862
23863 gdb_assert (per_cu->cu != NULL);
23864 }
23865
23866 /* die_reader_func for read_signatured_type.
23867 This is identical to load_full_comp_unit_reader,
23868 but is kept separate for now. */
23869
23870 static void
23871 read_signatured_type_reader (const struct die_reader_specs *reader,
23872 const gdb_byte *info_ptr,
23873 struct die_info *comp_unit_die,
23874 int has_children,
23875 void *data)
23876 {
23877 struct dwarf2_cu *cu = reader->cu;
23878
23879 gdb_assert (cu->die_hash == NULL);
23880 cu->die_hash =
23881 htab_create_alloc_ex (cu->header.length / 12,
23882 die_hash,
23883 die_eq,
23884 NULL,
23885 &cu->comp_unit_obstack,
23886 hashtab_obstack_allocate,
23887 dummy_obstack_deallocate);
23888
23889 if (has_children)
23890 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23891 &info_ptr, comp_unit_die);
23892 cu->dies = comp_unit_die;
23893 /* comp_unit_die is not stored in die_hash, no need. */
23894
23895 /* We try not to read any attributes in this function, because not
23896 all CUs needed for references have been loaded yet, and symbol
23897 table processing isn't initialized. But we have to set the CU language,
23898 or we won't be able to build types correctly.
23899 Similarly, if we do not read the producer, we can not apply
23900 producer-specific interpretation. */
23901 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23902 }
23903
23904 /* Read in a signatured type and build its CU and DIEs.
23905 If the type is a stub for the real type in a DWO file,
23906 read in the real type from the DWO file as well. */
23907
23908 static void
23909 read_signatured_type (struct signatured_type *sig_type)
23910 {
23911 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23912
23913 gdb_assert (per_cu->is_debug_types);
23914 gdb_assert (per_cu->cu == NULL);
23915
23916 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23917 read_signatured_type_reader, NULL);
23918 sig_type->per_cu.tu_read = 1;
23919 }
23920
23921 /* Decode simple location descriptions.
23922 Given a pointer to a dwarf block that defines a location, compute
23923 the location and return the value.
23924
23925 NOTE drow/2003-11-18: This function is called in two situations
23926 now: for the address of static or global variables (partial symbols
23927 only) and for offsets into structures which are expected to be
23928 (more or less) constant. The partial symbol case should go away,
23929 and only the constant case should remain. That will let this
23930 function complain more accurately. A few special modes are allowed
23931 without complaint for global variables (for instance, global
23932 register values and thread-local values).
23933
23934 A location description containing no operations indicates that the
23935 object is optimized out. The return value is 0 for that case.
23936 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23937 callers will only want a very basic result and this can become a
23938 complaint.
23939
23940 Note that stack[0] is unused except as a default error return. */
23941
23942 static CORE_ADDR
23943 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23944 {
23945 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23946 size_t i;
23947 size_t size = blk->size;
23948 const gdb_byte *data = blk->data;
23949 CORE_ADDR stack[64];
23950 int stacki;
23951 unsigned int bytes_read, unsnd;
23952 gdb_byte op;
23953
23954 i = 0;
23955 stacki = 0;
23956 stack[stacki] = 0;
23957 stack[++stacki] = 0;
23958
23959 while (i < size)
23960 {
23961 op = data[i++];
23962 switch (op)
23963 {
23964 case DW_OP_lit0:
23965 case DW_OP_lit1:
23966 case DW_OP_lit2:
23967 case DW_OP_lit3:
23968 case DW_OP_lit4:
23969 case DW_OP_lit5:
23970 case DW_OP_lit6:
23971 case DW_OP_lit7:
23972 case DW_OP_lit8:
23973 case DW_OP_lit9:
23974 case DW_OP_lit10:
23975 case DW_OP_lit11:
23976 case DW_OP_lit12:
23977 case DW_OP_lit13:
23978 case DW_OP_lit14:
23979 case DW_OP_lit15:
23980 case DW_OP_lit16:
23981 case DW_OP_lit17:
23982 case DW_OP_lit18:
23983 case DW_OP_lit19:
23984 case DW_OP_lit20:
23985 case DW_OP_lit21:
23986 case DW_OP_lit22:
23987 case DW_OP_lit23:
23988 case DW_OP_lit24:
23989 case DW_OP_lit25:
23990 case DW_OP_lit26:
23991 case DW_OP_lit27:
23992 case DW_OP_lit28:
23993 case DW_OP_lit29:
23994 case DW_OP_lit30:
23995 case DW_OP_lit31:
23996 stack[++stacki] = op - DW_OP_lit0;
23997 break;
23998
23999 case DW_OP_reg0:
24000 case DW_OP_reg1:
24001 case DW_OP_reg2:
24002 case DW_OP_reg3:
24003 case DW_OP_reg4:
24004 case DW_OP_reg5:
24005 case DW_OP_reg6:
24006 case DW_OP_reg7:
24007 case DW_OP_reg8:
24008 case DW_OP_reg9:
24009 case DW_OP_reg10:
24010 case DW_OP_reg11:
24011 case DW_OP_reg12:
24012 case DW_OP_reg13:
24013 case DW_OP_reg14:
24014 case DW_OP_reg15:
24015 case DW_OP_reg16:
24016 case DW_OP_reg17:
24017 case DW_OP_reg18:
24018 case DW_OP_reg19:
24019 case DW_OP_reg20:
24020 case DW_OP_reg21:
24021 case DW_OP_reg22:
24022 case DW_OP_reg23:
24023 case DW_OP_reg24:
24024 case DW_OP_reg25:
24025 case DW_OP_reg26:
24026 case DW_OP_reg27:
24027 case DW_OP_reg28:
24028 case DW_OP_reg29:
24029 case DW_OP_reg30:
24030 case DW_OP_reg31:
24031 stack[++stacki] = op - DW_OP_reg0;
24032 if (i < size)
24033 dwarf2_complex_location_expr_complaint ();
24034 break;
24035
24036 case DW_OP_regx:
24037 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
24038 i += bytes_read;
24039 stack[++stacki] = unsnd;
24040 if (i < size)
24041 dwarf2_complex_location_expr_complaint ();
24042 break;
24043
24044 case DW_OP_addr:
24045 stack[++stacki] = read_address (objfile->obfd, &data[i],
24046 cu, &bytes_read);
24047 i += bytes_read;
24048 break;
24049
24050 case DW_OP_const1u:
24051 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24052 i += 1;
24053 break;
24054
24055 case DW_OP_const1s:
24056 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24057 i += 1;
24058 break;
24059
24060 case DW_OP_const2u:
24061 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24062 i += 2;
24063 break;
24064
24065 case DW_OP_const2s:
24066 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24067 i += 2;
24068 break;
24069
24070 case DW_OP_const4u:
24071 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24072 i += 4;
24073 break;
24074
24075 case DW_OP_const4s:
24076 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24077 i += 4;
24078 break;
24079
24080 case DW_OP_const8u:
24081 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24082 i += 8;
24083 break;
24084
24085 case DW_OP_constu:
24086 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24087 &bytes_read);
24088 i += bytes_read;
24089 break;
24090
24091 case DW_OP_consts:
24092 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24093 i += bytes_read;
24094 break;
24095
24096 case DW_OP_dup:
24097 stack[stacki + 1] = stack[stacki];
24098 stacki++;
24099 break;
24100
24101 case DW_OP_plus:
24102 stack[stacki - 1] += stack[stacki];
24103 stacki--;
24104 break;
24105
24106 case DW_OP_plus_uconst:
24107 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24108 &bytes_read);
24109 i += bytes_read;
24110 break;
24111
24112 case DW_OP_minus:
24113 stack[stacki - 1] -= stack[stacki];
24114 stacki--;
24115 break;
24116
24117 case DW_OP_deref:
24118 /* If we're not the last op, then we definitely can't encode
24119 this using GDB's address_class enum. This is valid for partial
24120 global symbols, although the variable's address will be bogus
24121 in the psymtab. */
24122 if (i < size)
24123 dwarf2_complex_location_expr_complaint ();
24124 break;
24125
24126 case DW_OP_GNU_push_tls_address:
24127 case DW_OP_form_tls_address:
24128 /* The top of the stack has the offset from the beginning
24129 of the thread control block at which the variable is located. */
24130 /* Nothing should follow this operator, so the top of stack would
24131 be returned. */
24132 /* This is valid for partial global symbols, but the variable's
24133 address will be bogus in the psymtab. Make it always at least
24134 non-zero to not look as a variable garbage collected by linker
24135 which have DW_OP_addr 0. */
24136 if (i < size)
24137 dwarf2_complex_location_expr_complaint ();
24138 stack[stacki]++;
24139 break;
24140
24141 case DW_OP_GNU_uninit:
24142 break;
24143
24144 case DW_OP_addrx:
24145 case DW_OP_GNU_addr_index:
24146 case DW_OP_GNU_const_index:
24147 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24148 &bytes_read);
24149 i += bytes_read;
24150 break;
24151
24152 default:
24153 {
24154 const char *name = get_DW_OP_name (op);
24155
24156 if (name)
24157 complaint (_("unsupported stack op: '%s'"),
24158 name);
24159 else
24160 complaint (_("unsupported stack op: '%02x'"),
24161 op);
24162 }
24163
24164 return (stack[stacki]);
24165 }
24166
24167 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24168 outside of the allocated space. Also enforce minimum>0. */
24169 if (stacki >= ARRAY_SIZE (stack) - 1)
24170 {
24171 complaint (_("location description stack overflow"));
24172 return 0;
24173 }
24174
24175 if (stacki <= 0)
24176 {
24177 complaint (_("location description stack underflow"));
24178 return 0;
24179 }
24180 }
24181 return (stack[stacki]);
24182 }
24183
24184 /* memory allocation interface */
24185
24186 static struct dwarf_block *
24187 dwarf_alloc_block (struct dwarf2_cu *cu)
24188 {
24189 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24190 }
24191
24192 static struct die_info *
24193 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24194 {
24195 struct die_info *die;
24196 size_t size = sizeof (struct die_info);
24197
24198 if (num_attrs > 1)
24199 size += (num_attrs - 1) * sizeof (struct attribute);
24200
24201 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24202 memset (die, 0, sizeof (struct die_info));
24203 return (die);
24204 }
24205
24206 \f
24207 /* Macro support. */
24208
24209 /* Return file name relative to the compilation directory of file number I in
24210 *LH's file name table. The result is allocated using xmalloc; the caller is
24211 responsible for freeing it. */
24212
24213 static char *
24214 file_file_name (int file, struct line_header *lh)
24215 {
24216 /* Is the file number a valid index into the line header's file name
24217 table? Remember that file numbers start with one, not zero. */
24218 if (lh->is_valid_file_index (file))
24219 {
24220 const file_entry *fe = lh->file_name_at (file);
24221
24222 if (!IS_ABSOLUTE_PATH (fe->name))
24223 {
24224 const char *dir = fe->include_dir (lh);
24225 if (dir != NULL)
24226 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
24227 }
24228 return xstrdup (fe->name);
24229 }
24230 else
24231 {
24232 /* The compiler produced a bogus file number. We can at least
24233 record the macro definitions made in the file, even if we
24234 won't be able to find the file by name. */
24235 char fake_name[80];
24236
24237 xsnprintf (fake_name, sizeof (fake_name),
24238 "<bad macro file number %d>", file);
24239
24240 complaint (_("bad file number in macro information (%d)"),
24241 file);
24242
24243 return xstrdup (fake_name);
24244 }
24245 }
24246
24247 /* Return the full name of file number I in *LH's file name table.
24248 Use COMP_DIR as the name of the current directory of the
24249 compilation. The result is allocated using xmalloc; the caller is
24250 responsible for freeing it. */
24251 static char *
24252 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24253 {
24254 /* Is the file number a valid index into the line header's file name
24255 table? Remember that file numbers start with one, not zero. */
24256 if (lh->is_valid_file_index (file))
24257 {
24258 char *relative = file_file_name (file, lh);
24259
24260 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24261 return relative;
24262 return reconcat (relative, comp_dir, SLASH_STRING,
24263 relative, (char *) NULL);
24264 }
24265 else
24266 return file_file_name (file, lh);
24267 }
24268
24269
24270 static struct macro_source_file *
24271 macro_start_file (struct dwarf2_cu *cu,
24272 int file, int line,
24273 struct macro_source_file *current_file,
24274 struct line_header *lh)
24275 {
24276 /* File name relative to the compilation directory of this source file. */
24277 char *file_name = file_file_name (file, lh);
24278
24279 if (! current_file)
24280 {
24281 /* Note: We don't create a macro table for this compilation unit
24282 at all until we actually get a filename. */
24283 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24284
24285 /* If we have no current file, then this must be the start_file
24286 directive for the compilation unit's main source file. */
24287 current_file = macro_set_main (macro_table, file_name);
24288 macro_define_special (macro_table);
24289 }
24290 else
24291 current_file = macro_include (current_file, line, file_name);
24292
24293 xfree (file_name);
24294
24295 return current_file;
24296 }
24297
24298 static const char *
24299 consume_improper_spaces (const char *p, const char *body)
24300 {
24301 if (*p == ' ')
24302 {
24303 complaint (_("macro definition contains spaces "
24304 "in formal argument list:\n`%s'"),
24305 body);
24306
24307 while (*p == ' ')
24308 p++;
24309 }
24310
24311 return p;
24312 }
24313
24314
24315 static void
24316 parse_macro_definition (struct macro_source_file *file, int line,
24317 const char *body)
24318 {
24319 const char *p;
24320
24321 /* The body string takes one of two forms. For object-like macro
24322 definitions, it should be:
24323
24324 <macro name> " " <definition>
24325
24326 For function-like macro definitions, it should be:
24327
24328 <macro name> "() " <definition>
24329 or
24330 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24331
24332 Spaces may appear only where explicitly indicated, and in the
24333 <definition>.
24334
24335 The Dwarf 2 spec says that an object-like macro's name is always
24336 followed by a space, but versions of GCC around March 2002 omit
24337 the space when the macro's definition is the empty string.
24338
24339 The Dwarf 2 spec says that there should be no spaces between the
24340 formal arguments in a function-like macro's formal argument list,
24341 but versions of GCC around March 2002 include spaces after the
24342 commas. */
24343
24344
24345 /* Find the extent of the macro name. The macro name is terminated
24346 by either a space or null character (for an object-like macro) or
24347 an opening paren (for a function-like macro). */
24348 for (p = body; *p; p++)
24349 if (*p == ' ' || *p == '(')
24350 break;
24351
24352 if (*p == ' ' || *p == '\0')
24353 {
24354 /* It's an object-like macro. */
24355 int name_len = p - body;
24356 char *name = savestring (body, name_len);
24357 const char *replacement;
24358
24359 if (*p == ' ')
24360 replacement = body + name_len + 1;
24361 else
24362 {
24363 dwarf2_macro_malformed_definition_complaint (body);
24364 replacement = body + name_len;
24365 }
24366
24367 macro_define_object (file, line, name, replacement);
24368
24369 xfree (name);
24370 }
24371 else if (*p == '(')
24372 {
24373 /* It's a function-like macro. */
24374 char *name = savestring (body, p - body);
24375 int argc = 0;
24376 int argv_size = 1;
24377 char **argv = XNEWVEC (char *, argv_size);
24378
24379 p++;
24380
24381 p = consume_improper_spaces (p, body);
24382
24383 /* Parse the formal argument list. */
24384 while (*p && *p != ')')
24385 {
24386 /* Find the extent of the current argument name. */
24387 const char *arg_start = p;
24388
24389 while (*p && *p != ',' && *p != ')' && *p != ' ')
24390 p++;
24391
24392 if (! *p || p == arg_start)
24393 dwarf2_macro_malformed_definition_complaint (body);
24394 else
24395 {
24396 /* Make sure argv has room for the new argument. */
24397 if (argc >= argv_size)
24398 {
24399 argv_size *= 2;
24400 argv = XRESIZEVEC (char *, argv, argv_size);
24401 }
24402
24403 argv[argc++] = savestring (arg_start, p - arg_start);
24404 }
24405
24406 p = consume_improper_spaces (p, body);
24407
24408 /* Consume the comma, if present. */
24409 if (*p == ',')
24410 {
24411 p++;
24412
24413 p = consume_improper_spaces (p, body);
24414 }
24415 }
24416
24417 if (*p == ')')
24418 {
24419 p++;
24420
24421 if (*p == ' ')
24422 /* Perfectly formed definition, no complaints. */
24423 macro_define_function (file, line, name,
24424 argc, (const char **) argv,
24425 p + 1);
24426 else if (*p == '\0')
24427 {
24428 /* Complain, but do define it. */
24429 dwarf2_macro_malformed_definition_complaint (body);
24430 macro_define_function (file, line, name,
24431 argc, (const char **) argv,
24432 p);
24433 }
24434 else
24435 /* Just complain. */
24436 dwarf2_macro_malformed_definition_complaint (body);
24437 }
24438 else
24439 /* Just complain. */
24440 dwarf2_macro_malformed_definition_complaint (body);
24441
24442 xfree (name);
24443 {
24444 int i;
24445
24446 for (i = 0; i < argc; i++)
24447 xfree (argv[i]);
24448 }
24449 xfree (argv);
24450 }
24451 else
24452 dwarf2_macro_malformed_definition_complaint (body);
24453 }
24454
24455 /* Skip some bytes from BYTES according to the form given in FORM.
24456 Returns the new pointer. */
24457
24458 static const gdb_byte *
24459 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24460 enum dwarf_form form,
24461 unsigned int offset_size,
24462 struct dwarf2_section_info *section)
24463 {
24464 unsigned int bytes_read;
24465
24466 switch (form)
24467 {
24468 case DW_FORM_data1:
24469 case DW_FORM_flag:
24470 ++bytes;
24471 break;
24472
24473 case DW_FORM_data2:
24474 bytes += 2;
24475 break;
24476
24477 case DW_FORM_data4:
24478 bytes += 4;
24479 break;
24480
24481 case DW_FORM_data8:
24482 bytes += 8;
24483 break;
24484
24485 case DW_FORM_data16:
24486 bytes += 16;
24487 break;
24488
24489 case DW_FORM_string:
24490 read_direct_string (abfd, bytes, &bytes_read);
24491 bytes += bytes_read;
24492 break;
24493
24494 case DW_FORM_sec_offset:
24495 case DW_FORM_strp:
24496 case DW_FORM_GNU_strp_alt:
24497 bytes += offset_size;
24498 break;
24499
24500 case DW_FORM_block:
24501 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24502 bytes += bytes_read;
24503 break;
24504
24505 case DW_FORM_block1:
24506 bytes += 1 + read_1_byte (abfd, bytes);
24507 break;
24508 case DW_FORM_block2:
24509 bytes += 2 + read_2_bytes (abfd, bytes);
24510 break;
24511 case DW_FORM_block4:
24512 bytes += 4 + read_4_bytes (abfd, bytes);
24513 break;
24514
24515 case DW_FORM_addrx:
24516 case DW_FORM_sdata:
24517 case DW_FORM_strx:
24518 case DW_FORM_udata:
24519 case DW_FORM_GNU_addr_index:
24520 case DW_FORM_GNU_str_index:
24521 bytes = gdb_skip_leb128 (bytes, buffer_end);
24522 if (bytes == NULL)
24523 {
24524 dwarf2_section_buffer_overflow_complaint (section);
24525 return NULL;
24526 }
24527 break;
24528
24529 case DW_FORM_implicit_const:
24530 break;
24531
24532 default:
24533 {
24534 complaint (_("invalid form 0x%x in `%s'"),
24535 form, get_section_name (section));
24536 return NULL;
24537 }
24538 }
24539
24540 return bytes;
24541 }
24542
24543 /* A helper for dwarf_decode_macros that handles skipping an unknown
24544 opcode. Returns an updated pointer to the macro data buffer; or,
24545 on error, issues a complaint and returns NULL. */
24546
24547 static const gdb_byte *
24548 skip_unknown_opcode (unsigned int opcode,
24549 const gdb_byte **opcode_definitions,
24550 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24551 bfd *abfd,
24552 unsigned int offset_size,
24553 struct dwarf2_section_info *section)
24554 {
24555 unsigned int bytes_read, i;
24556 unsigned long arg;
24557 const gdb_byte *defn;
24558
24559 if (opcode_definitions[opcode] == NULL)
24560 {
24561 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24562 opcode);
24563 return NULL;
24564 }
24565
24566 defn = opcode_definitions[opcode];
24567 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24568 defn += bytes_read;
24569
24570 for (i = 0; i < arg; ++i)
24571 {
24572 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24573 (enum dwarf_form) defn[i], offset_size,
24574 section);
24575 if (mac_ptr == NULL)
24576 {
24577 /* skip_form_bytes already issued the complaint. */
24578 return NULL;
24579 }
24580 }
24581
24582 return mac_ptr;
24583 }
24584
24585 /* A helper function which parses the header of a macro section.
24586 If the macro section is the extended (for now called "GNU") type,
24587 then this updates *OFFSET_SIZE. Returns a pointer to just after
24588 the header, or issues a complaint and returns NULL on error. */
24589
24590 static const gdb_byte *
24591 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24592 bfd *abfd,
24593 const gdb_byte *mac_ptr,
24594 unsigned int *offset_size,
24595 int section_is_gnu)
24596 {
24597 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24598
24599 if (section_is_gnu)
24600 {
24601 unsigned int version, flags;
24602
24603 version = read_2_bytes (abfd, mac_ptr);
24604 if (version != 4 && version != 5)
24605 {
24606 complaint (_("unrecognized version `%d' in .debug_macro section"),
24607 version);
24608 return NULL;
24609 }
24610 mac_ptr += 2;
24611
24612 flags = read_1_byte (abfd, mac_ptr);
24613 ++mac_ptr;
24614 *offset_size = (flags & 1) ? 8 : 4;
24615
24616 if ((flags & 2) != 0)
24617 /* We don't need the line table offset. */
24618 mac_ptr += *offset_size;
24619
24620 /* Vendor opcode descriptions. */
24621 if ((flags & 4) != 0)
24622 {
24623 unsigned int i, count;
24624
24625 count = read_1_byte (abfd, mac_ptr);
24626 ++mac_ptr;
24627 for (i = 0; i < count; ++i)
24628 {
24629 unsigned int opcode, bytes_read;
24630 unsigned long arg;
24631
24632 opcode = read_1_byte (abfd, mac_ptr);
24633 ++mac_ptr;
24634 opcode_definitions[opcode] = mac_ptr;
24635 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24636 mac_ptr += bytes_read;
24637 mac_ptr += arg;
24638 }
24639 }
24640 }
24641
24642 return mac_ptr;
24643 }
24644
24645 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24646 including DW_MACRO_import. */
24647
24648 static void
24649 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24650 bfd *abfd,
24651 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24652 struct macro_source_file *current_file,
24653 struct line_header *lh,
24654 struct dwarf2_section_info *section,
24655 int section_is_gnu, int section_is_dwz,
24656 unsigned int offset_size,
24657 htab_t include_hash)
24658 {
24659 struct dwarf2_per_objfile *dwarf2_per_objfile
24660 = cu->per_cu->dwarf2_per_objfile;
24661 struct objfile *objfile = dwarf2_per_objfile->objfile;
24662 enum dwarf_macro_record_type macinfo_type;
24663 int at_commandline;
24664 const gdb_byte *opcode_definitions[256];
24665
24666 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24667 &offset_size, section_is_gnu);
24668 if (mac_ptr == NULL)
24669 {
24670 /* We already issued a complaint. */
24671 return;
24672 }
24673
24674 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24675 GDB is still reading the definitions from command line. First
24676 DW_MACINFO_start_file will need to be ignored as it was already executed
24677 to create CURRENT_FILE for the main source holding also the command line
24678 definitions. On first met DW_MACINFO_start_file this flag is reset to
24679 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24680
24681 at_commandline = 1;
24682
24683 do
24684 {
24685 /* Do we at least have room for a macinfo type byte? */
24686 if (mac_ptr >= mac_end)
24687 {
24688 dwarf2_section_buffer_overflow_complaint (section);
24689 break;
24690 }
24691
24692 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24693 mac_ptr++;
24694
24695 /* Note that we rely on the fact that the corresponding GNU and
24696 DWARF constants are the same. */
24697 DIAGNOSTIC_PUSH
24698 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24699 switch (macinfo_type)
24700 {
24701 /* A zero macinfo type indicates the end of the macro
24702 information. */
24703 case 0:
24704 break;
24705
24706 case DW_MACRO_define:
24707 case DW_MACRO_undef:
24708 case DW_MACRO_define_strp:
24709 case DW_MACRO_undef_strp:
24710 case DW_MACRO_define_sup:
24711 case DW_MACRO_undef_sup:
24712 {
24713 unsigned int bytes_read;
24714 int line;
24715 const char *body;
24716 int is_define;
24717
24718 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24719 mac_ptr += bytes_read;
24720
24721 if (macinfo_type == DW_MACRO_define
24722 || macinfo_type == DW_MACRO_undef)
24723 {
24724 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24725 mac_ptr += bytes_read;
24726 }
24727 else
24728 {
24729 LONGEST str_offset;
24730
24731 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24732 mac_ptr += offset_size;
24733
24734 if (macinfo_type == DW_MACRO_define_sup
24735 || macinfo_type == DW_MACRO_undef_sup
24736 || section_is_dwz)
24737 {
24738 struct dwz_file *dwz
24739 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24740
24741 body = read_indirect_string_from_dwz (objfile,
24742 dwz, str_offset);
24743 }
24744 else
24745 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24746 abfd, str_offset);
24747 }
24748
24749 is_define = (macinfo_type == DW_MACRO_define
24750 || macinfo_type == DW_MACRO_define_strp
24751 || macinfo_type == DW_MACRO_define_sup);
24752 if (! current_file)
24753 {
24754 /* DWARF violation as no main source is present. */
24755 complaint (_("debug info with no main source gives macro %s "
24756 "on line %d: %s"),
24757 is_define ? _("definition") : _("undefinition"),
24758 line, body);
24759 break;
24760 }
24761 if ((line == 0 && !at_commandline)
24762 || (line != 0 && at_commandline))
24763 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24764 at_commandline ? _("command-line") : _("in-file"),
24765 is_define ? _("definition") : _("undefinition"),
24766 line == 0 ? _("zero") : _("non-zero"), line, body);
24767
24768 if (body == NULL)
24769 {
24770 /* Fedora's rpm-build's "debugedit" binary
24771 corrupted .debug_macro sections.
24772
24773 For more info, see
24774 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24775 complaint (_("debug info gives %s invalid macro %s "
24776 "without body (corrupted?) at line %d "
24777 "on file %s"),
24778 at_commandline ? _("command-line") : _("in-file"),
24779 is_define ? _("definition") : _("undefinition"),
24780 line, current_file->filename);
24781 }
24782 else if (is_define)
24783 parse_macro_definition (current_file, line, body);
24784 else
24785 {
24786 gdb_assert (macinfo_type == DW_MACRO_undef
24787 || macinfo_type == DW_MACRO_undef_strp
24788 || macinfo_type == DW_MACRO_undef_sup);
24789 macro_undef (current_file, line, body);
24790 }
24791 }
24792 break;
24793
24794 case DW_MACRO_start_file:
24795 {
24796 unsigned int bytes_read;
24797 int line, file;
24798
24799 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24800 mac_ptr += bytes_read;
24801 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24802 mac_ptr += bytes_read;
24803
24804 if ((line == 0 && !at_commandline)
24805 || (line != 0 && at_commandline))
24806 complaint (_("debug info gives source %d included "
24807 "from %s at %s line %d"),
24808 file, at_commandline ? _("command-line") : _("file"),
24809 line == 0 ? _("zero") : _("non-zero"), line);
24810
24811 if (at_commandline)
24812 {
24813 /* This DW_MACRO_start_file was executed in the
24814 pass one. */
24815 at_commandline = 0;
24816 }
24817 else
24818 current_file = macro_start_file (cu, file, line, current_file,
24819 lh);
24820 }
24821 break;
24822
24823 case DW_MACRO_end_file:
24824 if (! current_file)
24825 complaint (_("macro debug info has an unmatched "
24826 "`close_file' directive"));
24827 else
24828 {
24829 current_file = current_file->included_by;
24830 if (! current_file)
24831 {
24832 enum dwarf_macro_record_type next_type;
24833
24834 /* GCC circa March 2002 doesn't produce the zero
24835 type byte marking the end of the compilation
24836 unit. Complain if it's not there, but exit no
24837 matter what. */
24838
24839 /* Do we at least have room for a macinfo type byte? */
24840 if (mac_ptr >= mac_end)
24841 {
24842 dwarf2_section_buffer_overflow_complaint (section);
24843 return;
24844 }
24845
24846 /* We don't increment mac_ptr here, so this is just
24847 a look-ahead. */
24848 next_type
24849 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24850 mac_ptr);
24851 if (next_type != 0)
24852 complaint (_("no terminating 0-type entry for "
24853 "macros in `.debug_macinfo' section"));
24854
24855 return;
24856 }
24857 }
24858 break;
24859
24860 case DW_MACRO_import:
24861 case DW_MACRO_import_sup:
24862 {
24863 LONGEST offset;
24864 void **slot;
24865 bfd *include_bfd = abfd;
24866 struct dwarf2_section_info *include_section = section;
24867 const gdb_byte *include_mac_end = mac_end;
24868 int is_dwz = section_is_dwz;
24869 const gdb_byte *new_mac_ptr;
24870
24871 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24872 mac_ptr += offset_size;
24873
24874 if (macinfo_type == DW_MACRO_import_sup)
24875 {
24876 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24877
24878 dwarf2_read_section (objfile, &dwz->macro);
24879
24880 include_section = &dwz->macro;
24881 include_bfd = get_section_bfd_owner (include_section);
24882 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24883 is_dwz = 1;
24884 }
24885
24886 new_mac_ptr = include_section->buffer + offset;
24887 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24888
24889 if (*slot != NULL)
24890 {
24891 /* This has actually happened; see
24892 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24893 complaint (_("recursive DW_MACRO_import in "
24894 ".debug_macro section"));
24895 }
24896 else
24897 {
24898 *slot = (void *) new_mac_ptr;
24899
24900 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24901 include_mac_end, current_file, lh,
24902 section, section_is_gnu, is_dwz,
24903 offset_size, include_hash);
24904
24905 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24906 }
24907 }
24908 break;
24909
24910 case DW_MACINFO_vendor_ext:
24911 if (!section_is_gnu)
24912 {
24913 unsigned int bytes_read;
24914
24915 /* This reads the constant, but since we don't recognize
24916 any vendor extensions, we ignore it. */
24917 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24918 mac_ptr += bytes_read;
24919 read_direct_string (abfd, mac_ptr, &bytes_read);
24920 mac_ptr += bytes_read;
24921
24922 /* We don't recognize any vendor extensions. */
24923 break;
24924 }
24925 /* FALLTHROUGH */
24926
24927 default:
24928 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24929 mac_ptr, mac_end, abfd, offset_size,
24930 section);
24931 if (mac_ptr == NULL)
24932 return;
24933 break;
24934 }
24935 DIAGNOSTIC_POP
24936 } while (macinfo_type != 0);
24937 }
24938
24939 static void
24940 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24941 int section_is_gnu)
24942 {
24943 struct dwarf2_per_objfile *dwarf2_per_objfile
24944 = cu->per_cu->dwarf2_per_objfile;
24945 struct objfile *objfile = dwarf2_per_objfile->objfile;
24946 struct line_header *lh = cu->line_header;
24947 bfd *abfd;
24948 const gdb_byte *mac_ptr, *mac_end;
24949 struct macro_source_file *current_file = 0;
24950 enum dwarf_macro_record_type macinfo_type;
24951 unsigned int offset_size = cu->header.offset_size;
24952 const gdb_byte *opcode_definitions[256];
24953 void **slot;
24954 struct dwarf2_section_info *section;
24955 const char *section_name;
24956
24957 if (cu->dwo_unit != NULL)
24958 {
24959 if (section_is_gnu)
24960 {
24961 section = &cu->dwo_unit->dwo_file->sections.macro;
24962 section_name = ".debug_macro.dwo";
24963 }
24964 else
24965 {
24966 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24967 section_name = ".debug_macinfo.dwo";
24968 }
24969 }
24970 else
24971 {
24972 if (section_is_gnu)
24973 {
24974 section = &dwarf2_per_objfile->macro;
24975 section_name = ".debug_macro";
24976 }
24977 else
24978 {
24979 section = &dwarf2_per_objfile->macinfo;
24980 section_name = ".debug_macinfo";
24981 }
24982 }
24983
24984 dwarf2_read_section (objfile, section);
24985 if (section->buffer == NULL)
24986 {
24987 complaint (_("missing %s section"), section_name);
24988 return;
24989 }
24990 abfd = get_section_bfd_owner (section);
24991
24992 /* First pass: Find the name of the base filename.
24993 This filename is needed in order to process all macros whose definition
24994 (or undefinition) comes from the command line. These macros are defined
24995 before the first DW_MACINFO_start_file entry, and yet still need to be
24996 associated to the base file.
24997
24998 To determine the base file name, we scan the macro definitions until we
24999 reach the first DW_MACINFO_start_file entry. We then initialize
25000 CURRENT_FILE accordingly so that any macro definition found before the
25001 first DW_MACINFO_start_file can still be associated to the base file. */
25002
25003 mac_ptr = section->buffer + offset;
25004 mac_end = section->buffer + section->size;
25005
25006 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
25007 &offset_size, section_is_gnu);
25008 if (mac_ptr == NULL)
25009 {
25010 /* We already issued a complaint. */
25011 return;
25012 }
25013
25014 do
25015 {
25016 /* Do we at least have room for a macinfo type byte? */
25017 if (mac_ptr >= mac_end)
25018 {
25019 /* Complaint is printed during the second pass as GDB will probably
25020 stop the first pass earlier upon finding
25021 DW_MACINFO_start_file. */
25022 break;
25023 }
25024
25025 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
25026 mac_ptr++;
25027
25028 /* Note that we rely on the fact that the corresponding GNU and
25029 DWARF constants are the same. */
25030 DIAGNOSTIC_PUSH
25031 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
25032 switch (macinfo_type)
25033 {
25034 /* A zero macinfo type indicates the end of the macro
25035 information. */
25036 case 0:
25037 break;
25038
25039 case DW_MACRO_define:
25040 case DW_MACRO_undef:
25041 /* Only skip the data by MAC_PTR. */
25042 {
25043 unsigned int bytes_read;
25044
25045 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25046 mac_ptr += bytes_read;
25047 read_direct_string (abfd, mac_ptr, &bytes_read);
25048 mac_ptr += bytes_read;
25049 }
25050 break;
25051
25052 case DW_MACRO_start_file:
25053 {
25054 unsigned int bytes_read;
25055 int line, file;
25056
25057 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25058 mac_ptr += bytes_read;
25059 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25060 mac_ptr += bytes_read;
25061
25062 current_file = macro_start_file (cu, file, line, current_file, lh);
25063 }
25064 break;
25065
25066 case DW_MACRO_end_file:
25067 /* No data to skip by MAC_PTR. */
25068 break;
25069
25070 case DW_MACRO_define_strp:
25071 case DW_MACRO_undef_strp:
25072 case DW_MACRO_define_sup:
25073 case DW_MACRO_undef_sup:
25074 {
25075 unsigned int bytes_read;
25076
25077 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25078 mac_ptr += bytes_read;
25079 mac_ptr += offset_size;
25080 }
25081 break;
25082
25083 case DW_MACRO_import:
25084 case DW_MACRO_import_sup:
25085 /* Note that, according to the spec, a transparent include
25086 chain cannot call DW_MACRO_start_file. So, we can just
25087 skip this opcode. */
25088 mac_ptr += offset_size;
25089 break;
25090
25091 case DW_MACINFO_vendor_ext:
25092 /* Only skip the data by MAC_PTR. */
25093 if (!section_is_gnu)
25094 {
25095 unsigned int bytes_read;
25096
25097 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25098 mac_ptr += bytes_read;
25099 read_direct_string (abfd, mac_ptr, &bytes_read);
25100 mac_ptr += bytes_read;
25101 }
25102 /* FALLTHROUGH */
25103
25104 default:
25105 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25106 mac_ptr, mac_end, abfd, offset_size,
25107 section);
25108 if (mac_ptr == NULL)
25109 return;
25110 break;
25111 }
25112 DIAGNOSTIC_POP
25113 } while (macinfo_type != 0 && current_file == NULL);
25114
25115 /* Second pass: Process all entries.
25116
25117 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25118 command-line macro definitions/undefinitions. This flag is unset when we
25119 reach the first DW_MACINFO_start_file entry. */
25120
25121 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25122 htab_eq_pointer,
25123 NULL, xcalloc, xfree));
25124 mac_ptr = section->buffer + offset;
25125 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25126 *slot = (void *) mac_ptr;
25127 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25128 current_file, lh, section,
25129 section_is_gnu, 0, offset_size,
25130 include_hash.get ());
25131 }
25132
25133 /* Check if the attribute's form is a DW_FORM_block*
25134 if so return true else false. */
25135
25136 static int
25137 attr_form_is_block (const struct attribute *attr)
25138 {
25139 return (attr == NULL ? 0 :
25140 attr->form == DW_FORM_block1
25141 || attr->form == DW_FORM_block2
25142 || attr->form == DW_FORM_block4
25143 || attr->form == DW_FORM_block
25144 || attr->form == DW_FORM_exprloc);
25145 }
25146
25147 /* Return non-zero if ATTR's value is a section offset --- classes
25148 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25149 You may use DW_UNSND (attr) to retrieve such offsets.
25150
25151 Section 7.5.4, "Attribute Encodings", explains that no attribute
25152 may have a value that belongs to more than one of these classes; it
25153 would be ambiguous if we did, because we use the same forms for all
25154 of them. */
25155
25156 static int
25157 attr_form_is_section_offset (const struct attribute *attr)
25158 {
25159 return (attr->form == DW_FORM_data4
25160 || attr->form == DW_FORM_data8
25161 || attr->form == DW_FORM_sec_offset);
25162 }
25163
25164 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25165 zero otherwise. When this function returns true, you can apply
25166 dwarf2_get_attr_constant_value to it.
25167
25168 However, note that for some attributes you must check
25169 attr_form_is_section_offset before using this test. DW_FORM_data4
25170 and DW_FORM_data8 are members of both the constant class, and of
25171 the classes that contain offsets into other debug sections
25172 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25173 that, if an attribute's can be either a constant or one of the
25174 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25175 taken as section offsets, not constants.
25176
25177 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25178 cannot handle that. */
25179
25180 static int
25181 attr_form_is_constant (const struct attribute *attr)
25182 {
25183 switch (attr->form)
25184 {
25185 case DW_FORM_sdata:
25186 case DW_FORM_udata:
25187 case DW_FORM_data1:
25188 case DW_FORM_data2:
25189 case DW_FORM_data4:
25190 case DW_FORM_data8:
25191 case DW_FORM_implicit_const:
25192 return 1;
25193 default:
25194 return 0;
25195 }
25196 }
25197
25198
25199 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25200 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25201
25202 static int
25203 attr_form_is_ref (const struct attribute *attr)
25204 {
25205 switch (attr->form)
25206 {
25207 case DW_FORM_ref_addr:
25208 case DW_FORM_ref1:
25209 case DW_FORM_ref2:
25210 case DW_FORM_ref4:
25211 case DW_FORM_ref8:
25212 case DW_FORM_ref_udata:
25213 case DW_FORM_GNU_ref_alt:
25214 return 1;
25215 default:
25216 return 0;
25217 }
25218 }
25219
25220 /* Return the .debug_loc section to use for CU.
25221 For DWO files use .debug_loc.dwo. */
25222
25223 static struct dwarf2_section_info *
25224 cu_debug_loc_section (struct dwarf2_cu *cu)
25225 {
25226 struct dwarf2_per_objfile *dwarf2_per_objfile
25227 = cu->per_cu->dwarf2_per_objfile;
25228
25229 if (cu->dwo_unit)
25230 {
25231 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25232
25233 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25234 }
25235 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25236 : &dwarf2_per_objfile->loc);
25237 }
25238
25239 /* A helper function that fills in a dwarf2_loclist_baton. */
25240
25241 static void
25242 fill_in_loclist_baton (struct dwarf2_cu *cu,
25243 struct dwarf2_loclist_baton *baton,
25244 const struct attribute *attr)
25245 {
25246 struct dwarf2_per_objfile *dwarf2_per_objfile
25247 = cu->per_cu->dwarf2_per_objfile;
25248 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25249
25250 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25251
25252 baton->per_cu = cu->per_cu;
25253 gdb_assert (baton->per_cu);
25254 /* We don't know how long the location list is, but make sure we
25255 don't run off the edge of the section. */
25256 baton->size = section->size - DW_UNSND (attr);
25257 baton->data = section->buffer + DW_UNSND (attr);
25258 baton->base_address = cu->base_address;
25259 baton->from_dwo = cu->dwo_unit != NULL;
25260 }
25261
25262 static void
25263 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25264 struct dwarf2_cu *cu, int is_block)
25265 {
25266 struct dwarf2_per_objfile *dwarf2_per_objfile
25267 = cu->per_cu->dwarf2_per_objfile;
25268 struct objfile *objfile = dwarf2_per_objfile->objfile;
25269 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25270
25271 if (attr_form_is_section_offset (attr)
25272 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25273 the section. If so, fall through to the complaint in the
25274 other branch. */
25275 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25276 {
25277 struct dwarf2_loclist_baton *baton;
25278
25279 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25280
25281 fill_in_loclist_baton (cu, baton, attr);
25282
25283 if (cu->base_known == 0)
25284 complaint (_("Location list used without "
25285 "specifying the CU base address."));
25286
25287 SYMBOL_ACLASS_INDEX (sym) = (is_block
25288 ? dwarf2_loclist_block_index
25289 : dwarf2_loclist_index);
25290 SYMBOL_LOCATION_BATON (sym) = baton;
25291 }
25292 else
25293 {
25294 struct dwarf2_locexpr_baton *baton;
25295
25296 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25297 baton->per_cu = cu->per_cu;
25298 gdb_assert (baton->per_cu);
25299
25300 if (attr_form_is_block (attr))
25301 {
25302 /* Note that we're just copying the block's data pointer
25303 here, not the actual data. We're still pointing into the
25304 info_buffer for SYM's objfile; right now we never release
25305 that buffer, but when we do clean up properly this may
25306 need to change. */
25307 baton->size = DW_BLOCK (attr)->size;
25308 baton->data = DW_BLOCK (attr)->data;
25309 }
25310 else
25311 {
25312 dwarf2_invalid_attrib_class_complaint ("location description",
25313 SYMBOL_NATURAL_NAME (sym));
25314 baton->size = 0;
25315 }
25316
25317 SYMBOL_ACLASS_INDEX (sym) = (is_block
25318 ? dwarf2_locexpr_block_index
25319 : dwarf2_locexpr_index);
25320 SYMBOL_LOCATION_BATON (sym) = baton;
25321 }
25322 }
25323
25324 /* Return the OBJFILE associated with the compilation unit CU. If CU
25325 came from a separate debuginfo file, then the master objfile is
25326 returned. */
25327
25328 struct objfile *
25329 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25330 {
25331 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25332
25333 /* Return the master objfile, so that we can report and look up the
25334 correct file containing this variable. */
25335 if (objfile->separate_debug_objfile_backlink)
25336 objfile = objfile->separate_debug_objfile_backlink;
25337
25338 return objfile;
25339 }
25340
25341 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25342 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25343 CU_HEADERP first. */
25344
25345 static const struct comp_unit_head *
25346 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25347 struct dwarf2_per_cu_data *per_cu)
25348 {
25349 const gdb_byte *info_ptr;
25350
25351 if (per_cu->cu)
25352 return &per_cu->cu->header;
25353
25354 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25355
25356 memset (cu_headerp, 0, sizeof (*cu_headerp));
25357 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25358 rcuh_kind::COMPILE);
25359
25360 return cu_headerp;
25361 }
25362
25363 /* Return the address size given in the compilation unit header for CU. */
25364
25365 int
25366 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25367 {
25368 struct comp_unit_head cu_header_local;
25369 const struct comp_unit_head *cu_headerp;
25370
25371 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25372
25373 return cu_headerp->addr_size;
25374 }
25375
25376 /* Return the offset size given in the compilation unit header for CU. */
25377
25378 int
25379 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25380 {
25381 struct comp_unit_head cu_header_local;
25382 const struct comp_unit_head *cu_headerp;
25383
25384 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25385
25386 return cu_headerp->offset_size;
25387 }
25388
25389 /* See its dwarf2loc.h declaration. */
25390
25391 int
25392 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25393 {
25394 struct comp_unit_head cu_header_local;
25395 const struct comp_unit_head *cu_headerp;
25396
25397 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25398
25399 if (cu_headerp->version == 2)
25400 return cu_headerp->addr_size;
25401 else
25402 return cu_headerp->offset_size;
25403 }
25404
25405 /* Return the text offset of the CU. The returned offset comes from
25406 this CU's objfile. If this objfile came from a separate debuginfo
25407 file, then the offset may be different from the corresponding
25408 offset in the parent objfile. */
25409
25410 CORE_ADDR
25411 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25412 {
25413 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25414
25415 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25416 }
25417
25418 /* Return a type that is a generic pointer type, the size of which matches
25419 the address size given in the compilation unit header for PER_CU. */
25420 static struct type *
25421 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25422 {
25423 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25424 struct type *void_type = objfile_type (objfile)->builtin_void;
25425 struct type *addr_type = lookup_pointer_type (void_type);
25426 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25427
25428 if (TYPE_LENGTH (addr_type) == addr_size)
25429 return addr_type;
25430
25431 addr_type
25432 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25433 return addr_type;
25434 }
25435
25436 /* Return DWARF version number of PER_CU. */
25437
25438 short
25439 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25440 {
25441 return per_cu->dwarf_version;
25442 }
25443
25444 /* Locate the .debug_info compilation unit from CU's objfile which contains
25445 the DIE at OFFSET. Raises an error on failure. */
25446
25447 static struct dwarf2_per_cu_data *
25448 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25449 unsigned int offset_in_dwz,
25450 struct dwarf2_per_objfile *dwarf2_per_objfile)
25451 {
25452 struct dwarf2_per_cu_data *this_cu;
25453 int low, high;
25454
25455 low = 0;
25456 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25457 while (high > low)
25458 {
25459 struct dwarf2_per_cu_data *mid_cu;
25460 int mid = low + (high - low) / 2;
25461
25462 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25463 if (mid_cu->is_dwz > offset_in_dwz
25464 || (mid_cu->is_dwz == offset_in_dwz
25465 && mid_cu->sect_off + mid_cu->length >= sect_off))
25466 high = mid;
25467 else
25468 low = mid + 1;
25469 }
25470 gdb_assert (low == high);
25471 this_cu = dwarf2_per_objfile->all_comp_units[low];
25472 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25473 {
25474 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25475 error (_("Dwarf Error: could not find partial DIE containing "
25476 "offset %s [in module %s]"),
25477 sect_offset_str (sect_off),
25478 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25479
25480 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25481 <= sect_off);
25482 return dwarf2_per_objfile->all_comp_units[low-1];
25483 }
25484 else
25485 {
25486 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25487 && sect_off >= this_cu->sect_off + this_cu->length)
25488 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25489 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25490 return this_cu;
25491 }
25492 }
25493
25494 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25495
25496 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25497 : per_cu (per_cu_),
25498 mark (false),
25499 has_loclist (false),
25500 checked_producer (false),
25501 producer_is_gxx_lt_4_6 (false),
25502 producer_is_gcc_lt_4_3 (false),
25503 producer_is_icc (false),
25504 producer_is_icc_lt_14 (false),
25505 producer_is_codewarrior (false),
25506 processing_has_namespace_info (false)
25507 {
25508 per_cu->cu = this;
25509 }
25510
25511 /* Destroy a dwarf2_cu. */
25512
25513 dwarf2_cu::~dwarf2_cu ()
25514 {
25515 per_cu->cu = NULL;
25516 }
25517
25518 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25519
25520 static void
25521 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25522 enum language pretend_language)
25523 {
25524 struct attribute *attr;
25525
25526 /* Set the language we're debugging. */
25527 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25528 if (attr)
25529 set_cu_language (DW_UNSND (attr), cu);
25530 else
25531 {
25532 cu->language = pretend_language;
25533 cu->language_defn = language_def (cu->language);
25534 }
25535
25536 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25537 }
25538
25539 /* Increase the age counter on each cached compilation unit, and free
25540 any that are too old. */
25541
25542 static void
25543 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25544 {
25545 struct dwarf2_per_cu_data *per_cu, **last_chain;
25546
25547 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25548 per_cu = dwarf2_per_objfile->read_in_chain;
25549 while (per_cu != NULL)
25550 {
25551 per_cu->cu->last_used ++;
25552 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25553 dwarf2_mark (per_cu->cu);
25554 per_cu = per_cu->cu->read_in_chain;
25555 }
25556
25557 per_cu = dwarf2_per_objfile->read_in_chain;
25558 last_chain = &dwarf2_per_objfile->read_in_chain;
25559 while (per_cu != NULL)
25560 {
25561 struct dwarf2_per_cu_data *next_cu;
25562
25563 next_cu = per_cu->cu->read_in_chain;
25564
25565 if (!per_cu->cu->mark)
25566 {
25567 delete per_cu->cu;
25568 *last_chain = next_cu;
25569 }
25570 else
25571 last_chain = &per_cu->cu->read_in_chain;
25572
25573 per_cu = next_cu;
25574 }
25575 }
25576
25577 /* Remove a single compilation unit from the cache. */
25578
25579 static void
25580 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25581 {
25582 struct dwarf2_per_cu_data *per_cu, **last_chain;
25583 struct dwarf2_per_objfile *dwarf2_per_objfile
25584 = target_per_cu->dwarf2_per_objfile;
25585
25586 per_cu = dwarf2_per_objfile->read_in_chain;
25587 last_chain = &dwarf2_per_objfile->read_in_chain;
25588 while (per_cu != NULL)
25589 {
25590 struct dwarf2_per_cu_data *next_cu;
25591
25592 next_cu = per_cu->cu->read_in_chain;
25593
25594 if (per_cu == target_per_cu)
25595 {
25596 delete per_cu->cu;
25597 per_cu->cu = NULL;
25598 *last_chain = next_cu;
25599 break;
25600 }
25601 else
25602 last_chain = &per_cu->cu->read_in_chain;
25603
25604 per_cu = next_cu;
25605 }
25606 }
25607
25608 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25609 We store these in a hash table separate from the DIEs, and preserve them
25610 when the DIEs are flushed out of cache.
25611
25612 The CU "per_cu" pointer is needed because offset alone is not enough to
25613 uniquely identify the type. A file may have multiple .debug_types sections,
25614 or the type may come from a DWO file. Furthermore, while it's more logical
25615 to use per_cu->section+offset, with Fission the section with the data is in
25616 the DWO file but we don't know that section at the point we need it.
25617 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25618 because we can enter the lookup routine, get_die_type_at_offset, from
25619 outside this file, and thus won't necessarily have PER_CU->cu.
25620 Fortunately, PER_CU is stable for the life of the objfile. */
25621
25622 struct dwarf2_per_cu_offset_and_type
25623 {
25624 const struct dwarf2_per_cu_data *per_cu;
25625 sect_offset sect_off;
25626 struct type *type;
25627 };
25628
25629 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25630
25631 static hashval_t
25632 per_cu_offset_and_type_hash (const void *item)
25633 {
25634 const struct dwarf2_per_cu_offset_and_type *ofs
25635 = (const struct dwarf2_per_cu_offset_and_type *) item;
25636
25637 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25638 }
25639
25640 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25641
25642 static int
25643 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25644 {
25645 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25646 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25647 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25648 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25649
25650 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25651 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25652 }
25653
25654 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25655 table if necessary. For convenience, return TYPE.
25656
25657 The DIEs reading must have careful ordering to:
25658 * Not cause infinite loops trying to read in DIEs as a prerequisite for
25659 reading current DIE.
25660 * Not trying to dereference contents of still incompletely read in types
25661 while reading in other DIEs.
25662 * Enable referencing still incompletely read in types just by a pointer to
25663 the type without accessing its fields.
25664
25665 Therefore caller should follow these rules:
25666 * Try to fetch any prerequisite types we may need to build this DIE type
25667 before building the type and calling set_die_type.
25668 * After building type call set_die_type for current DIE as soon as
25669 possible before fetching more types to complete the current type.
25670 * Make the type as complete as possible before fetching more types. */
25671
25672 static struct type *
25673 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25674 {
25675 struct dwarf2_per_objfile *dwarf2_per_objfile
25676 = cu->per_cu->dwarf2_per_objfile;
25677 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25678 struct objfile *objfile = dwarf2_per_objfile->objfile;
25679 struct attribute *attr;
25680 struct dynamic_prop prop;
25681
25682 /* For Ada types, make sure that the gnat-specific data is always
25683 initialized (if not already set). There are a few types where
25684 we should not be doing so, because the type-specific area is
25685 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25686 where the type-specific area is used to store the floatformat).
25687 But this is not a problem, because the gnat-specific information
25688 is actually not needed for these types. */
25689 if (need_gnat_info (cu)
25690 && TYPE_CODE (type) != TYPE_CODE_FUNC
25691 && TYPE_CODE (type) != TYPE_CODE_FLT
25692 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25693 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25694 && TYPE_CODE (type) != TYPE_CODE_METHOD
25695 && !HAVE_GNAT_AUX_INFO (type))
25696 INIT_GNAT_SPECIFIC (type);
25697
25698 /* Read DW_AT_allocated and set in type. */
25699 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25700 if (attr_form_is_block (attr))
25701 {
25702 struct type *prop_type
25703 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25704 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25705 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25706 }
25707 else if (attr != NULL)
25708 {
25709 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25710 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25711 sect_offset_str (die->sect_off));
25712 }
25713
25714 /* Read DW_AT_associated and set in type. */
25715 attr = dwarf2_attr (die, DW_AT_associated, cu);
25716 if (attr_form_is_block (attr))
25717 {
25718 struct type *prop_type
25719 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25720 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25721 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25722 }
25723 else if (attr != NULL)
25724 {
25725 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25726 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25727 sect_offset_str (die->sect_off));
25728 }
25729
25730 /* Read DW_AT_data_location and set in type. */
25731 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25732 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25733 dwarf2_per_cu_addr_type (cu->per_cu)))
25734 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25735
25736 if (dwarf2_per_objfile->die_type_hash == NULL)
25737 {
25738 dwarf2_per_objfile->die_type_hash =
25739 htab_create_alloc_ex (127,
25740 per_cu_offset_and_type_hash,
25741 per_cu_offset_and_type_eq,
25742 NULL,
25743 &objfile->objfile_obstack,
25744 hashtab_obstack_allocate,
25745 dummy_obstack_deallocate);
25746 }
25747
25748 ofs.per_cu = cu->per_cu;
25749 ofs.sect_off = die->sect_off;
25750 ofs.type = type;
25751 slot = (struct dwarf2_per_cu_offset_and_type **)
25752 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25753 if (*slot)
25754 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25755 sect_offset_str (die->sect_off));
25756 *slot = XOBNEW (&objfile->objfile_obstack,
25757 struct dwarf2_per_cu_offset_and_type);
25758 **slot = ofs;
25759 return type;
25760 }
25761
25762 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25763 or return NULL if the die does not have a saved type. */
25764
25765 static struct type *
25766 get_die_type_at_offset (sect_offset sect_off,
25767 struct dwarf2_per_cu_data *per_cu)
25768 {
25769 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25770 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25771
25772 if (dwarf2_per_objfile->die_type_hash == NULL)
25773 return NULL;
25774
25775 ofs.per_cu = per_cu;
25776 ofs.sect_off = sect_off;
25777 slot = ((struct dwarf2_per_cu_offset_and_type *)
25778 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25779 if (slot)
25780 return slot->type;
25781 else
25782 return NULL;
25783 }
25784
25785 /* Look up the type for DIE in CU in die_type_hash,
25786 or return NULL if DIE does not have a saved type. */
25787
25788 static struct type *
25789 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25790 {
25791 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25792 }
25793
25794 /* Add a dependence relationship from CU to REF_PER_CU. */
25795
25796 static void
25797 dwarf2_add_dependence (struct dwarf2_cu *cu,
25798 struct dwarf2_per_cu_data *ref_per_cu)
25799 {
25800 void **slot;
25801
25802 if (cu->dependencies == NULL)
25803 cu->dependencies
25804 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25805 NULL, &cu->comp_unit_obstack,
25806 hashtab_obstack_allocate,
25807 dummy_obstack_deallocate);
25808
25809 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25810 if (*slot == NULL)
25811 *slot = ref_per_cu;
25812 }
25813
25814 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25815 Set the mark field in every compilation unit in the
25816 cache that we must keep because we are keeping CU. */
25817
25818 static int
25819 dwarf2_mark_helper (void **slot, void *data)
25820 {
25821 struct dwarf2_per_cu_data *per_cu;
25822
25823 per_cu = (struct dwarf2_per_cu_data *) *slot;
25824
25825 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25826 reading of the chain. As such dependencies remain valid it is not much
25827 useful to track and undo them during QUIT cleanups. */
25828 if (per_cu->cu == NULL)
25829 return 1;
25830
25831 if (per_cu->cu->mark)
25832 return 1;
25833 per_cu->cu->mark = true;
25834
25835 if (per_cu->cu->dependencies != NULL)
25836 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25837
25838 return 1;
25839 }
25840
25841 /* Set the mark field in CU and in every other compilation unit in the
25842 cache that we must keep because we are keeping CU. */
25843
25844 static void
25845 dwarf2_mark (struct dwarf2_cu *cu)
25846 {
25847 if (cu->mark)
25848 return;
25849 cu->mark = true;
25850 if (cu->dependencies != NULL)
25851 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25852 }
25853
25854 static void
25855 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25856 {
25857 while (per_cu)
25858 {
25859 per_cu->cu->mark = false;
25860 per_cu = per_cu->cu->read_in_chain;
25861 }
25862 }
25863
25864 /* Trivial hash function for partial_die_info: the hash value of a DIE
25865 is its offset in .debug_info for this objfile. */
25866
25867 static hashval_t
25868 partial_die_hash (const void *item)
25869 {
25870 const struct partial_die_info *part_die
25871 = (const struct partial_die_info *) item;
25872
25873 return to_underlying (part_die->sect_off);
25874 }
25875
25876 /* Trivial comparison function for partial_die_info structures: two DIEs
25877 are equal if they have the same offset. */
25878
25879 static int
25880 partial_die_eq (const void *item_lhs, const void *item_rhs)
25881 {
25882 const struct partial_die_info *part_die_lhs
25883 = (const struct partial_die_info *) item_lhs;
25884 const struct partial_die_info *part_die_rhs
25885 = (const struct partial_die_info *) item_rhs;
25886
25887 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25888 }
25889
25890 struct cmd_list_element *set_dwarf_cmdlist;
25891 struct cmd_list_element *show_dwarf_cmdlist;
25892
25893 static void
25894 set_dwarf_cmd (const char *args, int from_tty)
25895 {
25896 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25897 gdb_stdout);
25898 }
25899
25900 static void
25901 show_dwarf_cmd (const char *args, int from_tty)
25902 {
25903 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25904 }
25905
25906 bool dwarf_always_disassemble;
25907
25908 static void
25909 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25910 struct cmd_list_element *c, const char *value)
25911 {
25912 fprintf_filtered (file,
25913 _("Whether to always disassemble "
25914 "DWARF expressions is %s.\n"),
25915 value);
25916 }
25917
25918 static void
25919 show_check_physname (struct ui_file *file, int from_tty,
25920 struct cmd_list_element *c, const char *value)
25921 {
25922 fprintf_filtered (file,
25923 _("Whether to check \"physname\" is %s.\n"),
25924 value);
25925 }
25926
25927 void
25928 _initialize_dwarf2_read (void)
25929 {
25930 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25931 Set DWARF specific variables.\n\
25932 Configure DWARF variables such as the cache size."),
25933 &set_dwarf_cmdlist, "maintenance set dwarf ",
25934 0/*allow-unknown*/, &maintenance_set_cmdlist);
25935
25936 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25937 Show DWARF specific variables.\n\
25938 Show DWARF variables such as the cache size."),
25939 &show_dwarf_cmdlist, "maintenance show dwarf ",
25940 0/*allow-unknown*/, &maintenance_show_cmdlist);
25941
25942 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25943 &dwarf_max_cache_age, _("\
25944 Set the upper bound on the age of cached DWARF compilation units."), _("\
25945 Show the upper bound on the age of cached DWARF compilation units."), _("\
25946 A higher limit means that cached compilation units will be stored\n\
25947 in memory longer, and more total memory will be used. Zero disables\n\
25948 caching, which can slow down startup."),
25949 NULL,
25950 show_dwarf_max_cache_age,
25951 &set_dwarf_cmdlist,
25952 &show_dwarf_cmdlist);
25953
25954 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25955 &dwarf_always_disassemble, _("\
25956 Set whether `info address' always disassembles DWARF expressions."), _("\
25957 Show whether `info address' always disassembles DWARF expressions."), _("\
25958 When enabled, DWARF expressions are always printed in an assembly-like\n\
25959 syntax. When disabled, expressions will be printed in a more\n\
25960 conversational style, when possible."),
25961 NULL,
25962 show_dwarf_always_disassemble,
25963 &set_dwarf_cmdlist,
25964 &show_dwarf_cmdlist);
25965
25966 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25967 Set debugging of the DWARF reader."), _("\
25968 Show debugging of the DWARF reader."), _("\
25969 When enabled (non-zero), debugging messages are printed during DWARF\n\
25970 reading and symtab expansion. A value of 1 (one) provides basic\n\
25971 information. A value greater than 1 provides more verbose information."),
25972 NULL,
25973 NULL,
25974 &setdebuglist, &showdebuglist);
25975
25976 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25977 Set debugging of the DWARF DIE reader."), _("\
25978 Show debugging of the DWARF DIE reader."), _("\
25979 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25980 The value is the maximum depth to print."),
25981 NULL,
25982 NULL,
25983 &setdebuglist, &showdebuglist);
25984
25985 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25986 Set debugging of the dwarf line reader."), _("\
25987 Show debugging of the dwarf line reader."), _("\
25988 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25989 A value of 1 (one) provides basic information.\n\
25990 A value greater than 1 provides more verbose information."),
25991 NULL,
25992 NULL,
25993 &setdebuglist, &showdebuglist);
25994
25995 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25996 Set cross-checking of \"physname\" code against demangler."), _("\
25997 Show cross-checking of \"physname\" code against demangler."), _("\
25998 When enabled, GDB's internal \"physname\" code is checked against\n\
25999 the demangler."),
26000 NULL, show_check_physname,
26001 &setdebuglist, &showdebuglist);
26002
26003 add_setshow_boolean_cmd ("use-deprecated-index-sections",
26004 no_class, &use_deprecated_index_sections, _("\
26005 Set whether to use deprecated gdb_index sections."), _("\
26006 Show whether to use deprecated gdb_index sections."), _("\
26007 When enabled, deprecated .gdb_index sections are used anyway.\n\
26008 Normally they are ignored either because of a missing feature or\n\
26009 performance issue.\n\
26010 Warning: This option must be enabled before gdb reads the file."),
26011 NULL,
26012 NULL,
26013 &setlist, &showlist);
26014
26015 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
26016 &dwarf2_locexpr_funcs);
26017 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
26018 &dwarf2_loclist_funcs);
26019
26020 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
26021 &dwarf2_block_frame_base_locexpr_funcs);
26022 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
26023 &dwarf2_block_frame_base_loclist_funcs);
26024
26025 #if GDB_SELF_TEST
26026 selftests::register_test ("dw2_expand_symtabs_matching",
26027 selftests::dw2_expand_symtabs_matching::run_test);
26028 #endif
26029 }
This page took 0.567936 seconds and 5 git commands to generate.