[gdb/symtab] Support DW_AT_main_subprogram with -readnow.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 VEC (dwarf2_section_info_def) *types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 /* The DW_AT_GNU_dwo_name attribute.
707 For virtual DWO files the name is constructed from the section offsets
708 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
709 from related CU+TUs. */
710 const char *dwo_name;
711
712 /* The DW_AT_comp_dir attribute. */
713 const char *comp_dir;
714
715 /* The bfd, when the file is open. Otherwise this is NULL.
716 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
717 bfd *dbfd;
718
719 /* The sections that make up this DWO file.
720 Remember that for virtual DWO files in DWP V2, these are virtual
721 sections (for lack of a better name). */
722 struct dwo_sections sections;
723
724 /* The CUs in the file.
725 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
726 an extension to handle LLVM's Link Time Optimization output (where
727 multiple source files may be compiled into a single object/dwo pair). */
728 htab_t cus;
729
730 /* Table of TUs in the file.
731 Each element is a struct dwo_unit. */
732 htab_t tus;
733 };
734
735 /* These sections are what may appear in a DWP file. */
736
737 struct dwp_sections
738 {
739 /* These are used by both DWP version 1 and 2. */
740 struct dwarf2_section_info str;
741 struct dwarf2_section_info cu_index;
742 struct dwarf2_section_info tu_index;
743
744 /* These are only used by DWP version 2 files.
745 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
746 sections are referenced by section number, and are not recorded here.
747 In DWP version 2 there is at most one copy of all these sections, each
748 section being (effectively) comprised of the concatenation of all of the
749 individual sections that exist in the version 1 format.
750 To keep the code simple we treat each of these concatenated pieces as a
751 section itself (a virtual section?). */
752 struct dwarf2_section_info abbrev;
753 struct dwarf2_section_info info;
754 struct dwarf2_section_info line;
755 struct dwarf2_section_info loc;
756 struct dwarf2_section_info macinfo;
757 struct dwarf2_section_info macro;
758 struct dwarf2_section_info str_offsets;
759 struct dwarf2_section_info types;
760 };
761
762 /* These sections are what may appear in a virtual DWO file in DWP version 1.
763 A virtual DWO file is a DWO file as it appears in a DWP file. */
764
765 struct virtual_v1_dwo_sections
766 {
767 struct dwarf2_section_info abbrev;
768 struct dwarf2_section_info line;
769 struct dwarf2_section_info loc;
770 struct dwarf2_section_info macinfo;
771 struct dwarf2_section_info macro;
772 struct dwarf2_section_info str_offsets;
773 /* Each DWP hash table entry records one CU or one TU.
774 That is recorded here, and copied to dwo_unit.section. */
775 struct dwarf2_section_info info_or_types;
776 };
777
778 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
779 In version 2, the sections of the DWO files are concatenated together
780 and stored in one section of that name. Thus each ELF section contains
781 several "virtual" sections. */
782
783 struct virtual_v2_dwo_sections
784 {
785 bfd_size_type abbrev_offset;
786 bfd_size_type abbrev_size;
787
788 bfd_size_type line_offset;
789 bfd_size_type line_size;
790
791 bfd_size_type loc_offset;
792 bfd_size_type loc_size;
793
794 bfd_size_type macinfo_offset;
795 bfd_size_type macinfo_size;
796
797 bfd_size_type macro_offset;
798 bfd_size_type macro_size;
799
800 bfd_size_type str_offsets_offset;
801 bfd_size_type str_offsets_size;
802
803 /* Each DWP hash table entry records one CU or one TU.
804 That is recorded here, and copied to dwo_unit.section. */
805 bfd_size_type info_or_types_offset;
806 bfd_size_type info_or_types_size;
807 };
808
809 /* Contents of DWP hash tables. */
810
811 struct dwp_hash_table
812 {
813 uint32_t version, nr_columns;
814 uint32_t nr_units, nr_slots;
815 const gdb_byte *hash_table, *unit_table;
816 union
817 {
818 struct
819 {
820 const gdb_byte *indices;
821 } v1;
822 struct
823 {
824 /* This is indexed by column number and gives the id of the section
825 in that column. */
826 #define MAX_NR_V2_DWO_SECTIONS \
827 (1 /* .debug_info or .debug_types */ \
828 + 1 /* .debug_abbrev */ \
829 + 1 /* .debug_line */ \
830 + 1 /* .debug_loc */ \
831 + 1 /* .debug_str_offsets */ \
832 + 1 /* .debug_macro or .debug_macinfo */)
833 int section_ids[MAX_NR_V2_DWO_SECTIONS];
834 const gdb_byte *offsets;
835 const gdb_byte *sizes;
836 } v2;
837 } section_pool;
838 };
839
840 /* Data for one DWP file. */
841
842 struct dwp_file
843 {
844 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
845 : name (name_),
846 dbfd (std::move (abfd))
847 {
848 }
849
850 /* Name of the file. */
851 const char *name;
852
853 /* File format version. */
854 int version = 0;
855
856 /* The bfd. */
857 gdb_bfd_ref_ptr dbfd;
858
859 /* Section info for this file. */
860 struct dwp_sections sections {};
861
862 /* Table of CUs in the file. */
863 const struct dwp_hash_table *cus = nullptr;
864
865 /* Table of TUs in the file. */
866 const struct dwp_hash_table *tus = nullptr;
867
868 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
869 htab_t loaded_cus {};
870 htab_t loaded_tus {};
871
872 /* Table to map ELF section numbers to their sections.
873 This is only needed for the DWP V1 file format. */
874 unsigned int num_sections = 0;
875 asection **elf_sections = nullptr;
876 };
877
878 /* This represents a '.dwz' file. */
879
880 struct dwz_file
881 {
882 dwz_file (gdb_bfd_ref_ptr &&bfd)
883 : dwz_bfd (std::move (bfd))
884 {
885 }
886
887 /* A dwz file can only contain a few sections. */
888 struct dwarf2_section_info abbrev {};
889 struct dwarf2_section_info info {};
890 struct dwarf2_section_info str {};
891 struct dwarf2_section_info line {};
892 struct dwarf2_section_info macro {};
893 struct dwarf2_section_info gdb_index {};
894 struct dwarf2_section_info debug_names {};
895
896 /* The dwz's BFD. */
897 gdb_bfd_ref_ptr dwz_bfd;
898
899 /* If we loaded the index from an external file, this contains the
900 resources associated to the open file, memory mapping, etc. */
901 std::unique_ptr<index_cache_resource> index_cache_res;
902 };
903
904 /* Struct used to pass misc. parameters to read_die_and_children, et
905 al. which are used for both .debug_info and .debug_types dies.
906 All parameters here are unchanging for the life of the call. This
907 struct exists to abstract away the constant parameters of die reading. */
908
909 struct die_reader_specs
910 {
911 /* The bfd of die_section. */
912 bfd* abfd;
913
914 /* The CU of the DIE we are parsing. */
915 struct dwarf2_cu *cu;
916
917 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
918 struct dwo_file *dwo_file;
919
920 /* The section the die comes from.
921 This is either .debug_info or .debug_types, or the .dwo variants. */
922 struct dwarf2_section_info *die_section;
923
924 /* die_section->buffer. */
925 const gdb_byte *buffer;
926
927 /* The end of the buffer. */
928 const gdb_byte *buffer_end;
929
930 /* The value of the DW_AT_comp_dir attribute. */
931 const char *comp_dir;
932
933 /* The abbreviation table to use when reading the DIEs. */
934 struct abbrev_table *abbrev_table;
935 };
936
937 /* Type of function passed to init_cutu_and_read_dies, et.al. */
938 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
939 const gdb_byte *info_ptr,
940 struct die_info *comp_unit_die,
941 int has_children,
942 void *data);
943
944 /* A 1-based directory index. This is a strong typedef to prevent
945 accidentally using a directory index as a 0-based index into an
946 array/vector. */
947 enum class dir_index : unsigned int {};
948
949 /* Likewise, a 1-based file name index. */
950 enum class file_name_index : unsigned int {};
951
952 struct file_entry
953 {
954 file_entry () = default;
955
956 file_entry (const char *name_, dir_index d_index_,
957 unsigned int mod_time_, unsigned int length_)
958 : name (name_),
959 d_index (d_index_),
960 mod_time (mod_time_),
961 length (length_)
962 {}
963
964 /* Return the include directory at D_INDEX stored in LH. Returns
965 NULL if D_INDEX is out of bounds. */
966 const char *include_dir (const line_header *lh) const;
967
968 /* The file name. Note this is an observing pointer. The memory is
969 owned by debug_line_buffer. */
970 const char *name {};
971
972 /* The directory index (1-based). */
973 dir_index d_index {};
974
975 unsigned int mod_time {};
976
977 unsigned int length {};
978
979 /* True if referenced by the Line Number Program. */
980 bool included_p {};
981
982 /* The associated symbol table, if any. */
983 struct symtab *symtab {};
984 };
985
986 /* The line number information for a compilation unit (found in the
987 .debug_line section) begins with a "statement program header",
988 which contains the following information. */
989 struct line_header
990 {
991 line_header ()
992 : offset_in_dwz {}
993 {}
994
995 /* Add an entry to the include directory table. */
996 void add_include_dir (const char *include_dir);
997
998 /* Add an entry to the file name table. */
999 void add_file_name (const char *name, dir_index d_index,
1000 unsigned int mod_time, unsigned int length);
1001
1002 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1003 is out of bounds. */
1004 const char *include_dir_at (dir_index index) const
1005 {
1006 /* Convert directory index number (1-based) to vector index
1007 (0-based). */
1008 size_t vec_index = to_underlying (index) - 1;
1009
1010 if (vec_index >= include_dirs.size ())
1011 return NULL;
1012 return include_dirs[vec_index];
1013 }
1014
1015 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1016 is out of bounds. */
1017 file_entry *file_name_at (file_name_index index)
1018 {
1019 /* Convert file name index number (1-based) to vector index
1020 (0-based). */
1021 size_t vec_index = to_underlying (index) - 1;
1022
1023 if (vec_index >= file_names.size ())
1024 return NULL;
1025 return &file_names[vec_index];
1026 }
1027
1028 /* Offset of line number information in .debug_line section. */
1029 sect_offset sect_off {};
1030
1031 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1032 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1033
1034 unsigned int total_length {};
1035 unsigned short version {};
1036 unsigned int header_length {};
1037 unsigned char minimum_instruction_length {};
1038 unsigned char maximum_ops_per_instruction {};
1039 unsigned char default_is_stmt {};
1040 int line_base {};
1041 unsigned char line_range {};
1042 unsigned char opcode_base {};
1043
1044 /* standard_opcode_lengths[i] is the number of operands for the
1045 standard opcode whose value is i. This means that
1046 standard_opcode_lengths[0] is unused, and the last meaningful
1047 element is standard_opcode_lengths[opcode_base - 1]. */
1048 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1049
1050 /* The include_directories table. Note these are observing
1051 pointers. The memory is owned by debug_line_buffer. */
1052 std::vector<const char *> include_dirs;
1053
1054 /* The file_names table. */
1055 std::vector<file_entry> file_names;
1056
1057 /* The start and end of the statement program following this
1058 header. These point into dwarf2_per_objfile->line_buffer. */
1059 const gdb_byte *statement_program_start {}, *statement_program_end {};
1060 };
1061
1062 typedef std::unique_ptr<line_header> line_header_up;
1063
1064 const char *
1065 file_entry::include_dir (const line_header *lh) const
1066 {
1067 return lh->include_dir_at (d_index);
1068 }
1069
1070 /* When we construct a partial symbol table entry we only
1071 need this much information. */
1072 struct partial_die_info : public allocate_on_obstack
1073 {
1074 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1075
1076 /* Disable assign but still keep copy ctor, which is needed
1077 load_partial_dies. */
1078 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1079
1080 /* Adjust the partial die before generating a symbol for it. This
1081 function may set the is_external flag or change the DIE's
1082 name. */
1083 void fixup (struct dwarf2_cu *cu);
1084
1085 /* Read a minimal amount of information into the minimal die
1086 structure. */
1087 const gdb_byte *read (const struct die_reader_specs *reader,
1088 const struct abbrev_info &abbrev,
1089 const gdb_byte *info_ptr);
1090
1091 /* Offset of this DIE. */
1092 const sect_offset sect_off;
1093
1094 /* DWARF-2 tag for this DIE. */
1095 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1096
1097 /* Assorted flags describing the data found in this DIE. */
1098 const unsigned int has_children : 1;
1099
1100 unsigned int is_external : 1;
1101 unsigned int is_declaration : 1;
1102 unsigned int has_type : 1;
1103 unsigned int has_specification : 1;
1104 unsigned int has_pc_info : 1;
1105 unsigned int may_be_inlined : 1;
1106
1107 /* This DIE has been marked DW_AT_main_subprogram. */
1108 unsigned int main_subprogram : 1;
1109
1110 /* Flag set if the SCOPE field of this structure has been
1111 computed. */
1112 unsigned int scope_set : 1;
1113
1114 /* Flag set if the DIE has a byte_size attribute. */
1115 unsigned int has_byte_size : 1;
1116
1117 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1118 unsigned int has_const_value : 1;
1119
1120 /* Flag set if any of the DIE's children are template arguments. */
1121 unsigned int has_template_arguments : 1;
1122
1123 /* Flag set if fixup has been called on this die. */
1124 unsigned int fixup_called : 1;
1125
1126 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1127 unsigned int is_dwz : 1;
1128
1129 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1130 unsigned int spec_is_dwz : 1;
1131
1132 /* The name of this DIE. Normally the value of DW_AT_name, but
1133 sometimes a default name for unnamed DIEs. */
1134 const char *name = nullptr;
1135
1136 /* The linkage name, if present. */
1137 const char *linkage_name = nullptr;
1138
1139 /* The scope to prepend to our children. This is generally
1140 allocated on the comp_unit_obstack, so will disappear
1141 when this compilation unit leaves the cache. */
1142 const char *scope = nullptr;
1143
1144 /* Some data associated with the partial DIE. The tag determines
1145 which field is live. */
1146 union
1147 {
1148 /* The location description associated with this DIE, if any. */
1149 struct dwarf_block *locdesc;
1150 /* The offset of an import, for DW_TAG_imported_unit. */
1151 sect_offset sect_off;
1152 } d {};
1153
1154 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1155 CORE_ADDR lowpc = 0;
1156 CORE_ADDR highpc = 0;
1157
1158 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1159 DW_AT_sibling, if any. */
1160 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1161 could return DW_AT_sibling values to its caller load_partial_dies. */
1162 const gdb_byte *sibling = nullptr;
1163
1164 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1165 DW_AT_specification (or DW_AT_abstract_origin or
1166 DW_AT_extension). */
1167 sect_offset spec_offset {};
1168
1169 /* Pointers to this DIE's parent, first child, and next sibling,
1170 if any. */
1171 struct partial_die_info *die_parent = nullptr;
1172 struct partial_die_info *die_child = nullptr;
1173 struct partial_die_info *die_sibling = nullptr;
1174
1175 friend struct partial_die_info *
1176 dwarf2_cu::find_partial_die (sect_offset sect_off);
1177
1178 private:
1179 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1180 partial_die_info (sect_offset sect_off)
1181 : partial_die_info (sect_off, DW_TAG_padding, 0)
1182 {
1183 }
1184
1185 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1186 int has_children_)
1187 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1188 {
1189 is_external = 0;
1190 is_declaration = 0;
1191 has_type = 0;
1192 has_specification = 0;
1193 has_pc_info = 0;
1194 may_be_inlined = 0;
1195 main_subprogram = 0;
1196 scope_set = 0;
1197 has_byte_size = 0;
1198 has_const_value = 0;
1199 has_template_arguments = 0;
1200 fixup_called = 0;
1201 is_dwz = 0;
1202 spec_is_dwz = 0;
1203 }
1204 };
1205
1206 /* This data structure holds the information of an abbrev. */
1207 struct abbrev_info
1208 {
1209 unsigned int number; /* number identifying abbrev */
1210 enum dwarf_tag tag; /* dwarf tag */
1211 unsigned short has_children; /* boolean */
1212 unsigned short num_attrs; /* number of attributes */
1213 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1214 struct abbrev_info *next; /* next in chain */
1215 };
1216
1217 struct attr_abbrev
1218 {
1219 ENUM_BITFIELD(dwarf_attribute) name : 16;
1220 ENUM_BITFIELD(dwarf_form) form : 16;
1221
1222 /* It is valid only if FORM is DW_FORM_implicit_const. */
1223 LONGEST implicit_const;
1224 };
1225
1226 /* Size of abbrev_table.abbrev_hash_table. */
1227 #define ABBREV_HASH_SIZE 121
1228
1229 /* Top level data structure to contain an abbreviation table. */
1230
1231 struct abbrev_table
1232 {
1233 explicit abbrev_table (sect_offset off)
1234 : sect_off (off)
1235 {
1236 m_abbrevs =
1237 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1238 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1239 }
1240
1241 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1242
1243 /* Allocate space for a struct abbrev_info object in
1244 ABBREV_TABLE. */
1245 struct abbrev_info *alloc_abbrev ();
1246
1247 /* Add an abbreviation to the table. */
1248 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1249
1250 /* Look up an abbrev in the table.
1251 Returns NULL if the abbrev is not found. */
1252
1253 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1254
1255
1256 /* Where the abbrev table came from.
1257 This is used as a sanity check when the table is used. */
1258 const sect_offset sect_off;
1259
1260 /* Storage for the abbrev table. */
1261 auto_obstack abbrev_obstack;
1262
1263 private:
1264
1265 /* Hash table of abbrevs.
1266 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1267 It could be statically allocated, but the previous code didn't so we
1268 don't either. */
1269 struct abbrev_info **m_abbrevs;
1270 };
1271
1272 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1273
1274 /* Attributes have a name and a value. */
1275 struct attribute
1276 {
1277 ENUM_BITFIELD(dwarf_attribute) name : 16;
1278 ENUM_BITFIELD(dwarf_form) form : 15;
1279
1280 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1281 field should be in u.str (existing only for DW_STRING) but it is kept
1282 here for better struct attribute alignment. */
1283 unsigned int string_is_canonical : 1;
1284
1285 union
1286 {
1287 const char *str;
1288 struct dwarf_block *blk;
1289 ULONGEST unsnd;
1290 LONGEST snd;
1291 CORE_ADDR addr;
1292 ULONGEST signature;
1293 }
1294 u;
1295 };
1296
1297 /* This data structure holds a complete die structure. */
1298 struct die_info
1299 {
1300 /* DWARF-2 tag for this DIE. */
1301 ENUM_BITFIELD(dwarf_tag) tag : 16;
1302
1303 /* Number of attributes */
1304 unsigned char num_attrs;
1305
1306 /* True if we're presently building the full type name for the
1307 type derived from this DIE. */
1308 unsigned char building_fullname : 1;
1309
1310 /* True if this die is in process. PR 16581. */
1311 unsigned char in_process : 1;
1312
1313 /* Abbrev number */
1314 unsigned int abbrev;
1315
1316 /* Offset in .debug_info or .debug_types section. */
1317 sect_offset sect_off;
1318
1319 /* The dies in a compilation unit form an n-ary tree. PARENT
1320 points to this die's parent; CHILD points to the first child of
1321 this node; and all the children of a given node are chained
1322 together via their SIBLING fields. */
1323 struct die_info *child; /* Its first child, if any. */
1324 struct die_info *sibling; /* Its next sibling, if any. */
1325 struct die_info *parent; /* Its parent, if any. */
1326
1327 /* An array of attributes, with NUM_ATTRS elements. There may be
1328 zero, but it's not common and zero-sized arrays are not
1329 sufficiently portable C. */
1330 struct attribute attrs[1];
1331 };
1332
1333 /* Get at parts of an attribute structure. */
1334
1335 #define DW_STRING(attr) ((attr)->u.str)
1336 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1337 #define DW_UNSND(attr) ((attr)->u.unsnd)
1338 #define DW_BLOCK(attr) ((attr)->u.blk)
1339 #define DW_SND(attr) ((attr)->u.snd)
1340 #define DW_ADDR(attr) ((attr)->u.addr)
1341 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1342
1343 /* Blocks are a bunch of untyped bytes. */
1344 struct dwarf_block
1345 {
1346 size_t size;
1347
1348 /* Valid only if SIZE is not zero. */
1349 const gdb_byte *data;
1350 };
1351
1352 #ifndef ATTR_ALLOC_CHUNK
1353 #define ATTR_ALLOC_CHUNK 4
1354 #endif
1355
1356 /* Allocate fields for structs, unions and enums in this size. */
1357 #ifndef DW_FIELD_ALLOC_CHUNK
1358 #define DW_FIELD_ALLOC_CHUNK 4
1359 #endif
1360
1361 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1362 but this would require a corresponding change in unpack_field_as_long
1363 and friends. */
1364 static int bits_per_byte = 8;
1365
1366 /* When reading a variant or variant part, we track a bit more
1367 information about the field, and store it in an object of this
1368 type. */
1369
1370 struct variant_field
1371 {
1372 /* If we see a DW_TAG_variant, then this will be the discriminant
1373 value. */
1374 ULONGEST discriminant_value;
1375 /* If we see a DW_TAG_variant, then this will be set if this is the
1376 default branch. */
1377 bool default_branch;
1378 /* While reading a DW_TAG_variant_part, this will be set if this
1379 field is the discriminant. */
1380 bool is_discriminant;
1381 };
1382
1383 struct nextfield
1384 {
1385 int accessibility = 0;
1386 int virtuality = 0;
1387 /* Extra information to describe a variant or variant part. */
1388 struct variant_field variant {};
1389 struct field field {};
1390 };
1391
1392 struct fnfieldlist
1393 {
1394 const char *name = nullptr;
1395 std::vector<struct fn_field> fnfields;
1396 };
1397
1398 /* The routines that read and process dies for a C struct or C++ class
1399 pass lists of data member fields and lists of member function fields
1400 in an instance of a field_info structure, as defined below. */
1401 struct field_info
1402 {
1403 /* List of data member and baseclasses fields. */
1404 std::vector<struct nextfield> fields;
1405 std::vector<struct nextfield> baseclasses;
1406
1407 /* Number of fields (including baseclasses). */
1408 int nfields = 0;
1409
1410 /* Set if the accesibility of one of the fields is not public. */
1411 int non_public_fields = 0;
1412
1413 /* Member function fieldlist array, contains name of possibly overloaded
1414 member function, number of overloaded member functions and a pointer
1415 to the head of the member function field chain. */
1416 std::vector<struct fnfieldlist> fnfieldlists;
1417
1418 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1419 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1420 std::vector<struct decl_field> typedef_field_list;
1421
1422 /* Nested types defined by this class and the number of elements in this
1423 list. */
1424 std::vector<struct decl_field> nested_types_list;
1425 };
1426
1427 /* One item on the queue of compilation units to read in full symbols
1428 for. */
1429 struct dwarf2_queue_item
1430 {
1431 struct dwarf2_per_cu_data *per_cu;
1432 enum language pretend_language;
1433 struct dwarf2_queue_item *next;
1434 };
1435
1436 /* The current queue. */
1437 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1438
1439 /* Loaded secondary compilation units are kept in memory until they
1440 have not been referenced for the processing of this many
1441 compilation units. Set this to zero to disable caching. Cache
1442 sizes of up to at least twenty will improve startup time for
1443 typical inter-CU-reference binaries, at an obvious memory cost. */
1444 static int dwarf_max_cache_age = 5;
1445 static void
1446 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c, const char *value)
1448 {
1449 fprintf_filtered (file, _("The upper bound on the age of cached "
1450 "DWARF compilation units is %s.\n"),
1451 value);
1452 }
1453 \f
1454 /* local function prototypes */
1455
1456 static const char *get_section_name (const struct dwarf2_section_info *);
1457
1458 static const char *get_section_file_name (const struct dwarf2_section_info *);
1459
1460 static void dwarf2_find_base_address (struct die_info *die,
1461 struct dwarf2_cu *cu);
1462
1463 static struct partial_symtab *create_partial_symtab
1464 (struct dwarf2_per_cu_data *per_cu, const char *name);
1465
1466 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1467 const gdb_byte *info_ptr,
1468 struct die_info *type_unit_die,
1469 int has_children, void *data);
1470
1471 static void dwarf2_build_psymtabs_hard
1472 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1473
1474 static void scan_partial_symbols (struct partial_die_info *,
1475 CORE_ADDR *, CORE_ADDR *,
1476 int, struct dwarf2_cu *);
1477
1478 static void add_partial_symbol (struct partial_die_info *,
1479 struct dwarf2_cu *);
1480
1481 static void add_partial_namespace (struct partial_die_info *pdi,
1482 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1483 int set_addrmap, struct dwarf2_cu *cu);
1484
1485 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1486 CORE_ADDR *highpc, int set_addrmap,
1487 struct dwarf2_cu *cu);
1488
1489 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1490 struct dwarf2_cu *cu);
1491
1492 static void add_partial_subprogram (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int need_pc, struct dwarf2_cu *cu);
1495
1496 static void dwarf2_read_symtab (struct partial_symtab *,
1497 struct objfile *);
1498
1499 static void psymtab_to_symtab_1 (struct partial_symtab *);
1500
1501 static abbrev_table_up abbrev_table_read_table
1502 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1503 sect_offset);
1504
1505 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1506
1507 static struct partial_die_info *load_partial_dies
1508 (const struct die_reader_specs *, const gdb_byte *, int);
1509
1510 /* A pair of partial_die_info and compilation unit. */
1511 struct cu_partial_die_info
1512 {
1513 /* The compilation unit of the partial_die_info. */
1514 struct dwarf2_cu *cu;
1515 /* A partial_die_info. */
1516 struct partial_die_info *pdi;
1517
1518 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1519 : cu (cu),
1520 pdi (pdi)
1521 { /* Nothhing. */ }
1522
1523 private:
1524 cu_partial_die_info () = delete;
1525 };
1526
1527 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1528 struct dwarf2_cu *);
1529
1530 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1531 struct attribute *, struct attr_abbrev *,
1532 const gdb_byte *);
1533
1534 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1535
1536 static int read_1_signed_byte (bfd *, const gdb_byte *);
1537
1538 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1539
1540 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1541 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1542
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1544
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1546
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1548 unsigned int *);
1549
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1551
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1555
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1558 unsigned int *);
1559
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1561
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1565
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1567
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1569
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1573
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1577
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1581
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1584
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1586
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1588 const gdb_byte *,
1589 unsigned int *);
1590
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1593
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1595
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1598
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1600 unsigned int);
1601
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1604
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1607
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1609
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1612
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1615
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1619
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1621 const char *);
1622
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1625
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1628
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1630 struct type *type,
1631 const char *name,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1636
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1638
1639 static int need_gnat_info (struct dwarf2_cu *);
1640
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1643
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1646
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1649
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1652
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1654
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1658
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1662
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1664
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1666
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1672
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1677
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1680 enum pc_bounds_kind
1681 {
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1684
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1687 PC_BOUNDS_INVALID,
1688
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1690 PC_BOUNDS_RANGES,
1691
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1693 PC_BOUNDS_HIGH_LOW,
1694 };
1695
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1698 struct dwarf2_cu *,
1699 struct partial_symtab *);
1700
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1704
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1707
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1713
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1717
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1719 struct type *,
1720 struct dwarf2_cu *);
1721
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1723
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1725
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1727
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1729
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1731
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1733
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1735
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1738
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1741
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1745
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1748
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1751 struct die_info *);
1752
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1757
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1760 int *, int);
1761
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1764 int *);
1765
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1767
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1769 struct obstack *);
1770
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1772
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1776
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1779
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1782
1783 static const char *dwarf_tag_name (unsigned int);
1784
1785 static const char *dwarf_attr_name (unsigned int);
1786
1787 static const char *dwarf_form_name (unsigned int);
1788
1789 static const char *dwarf_bool_name (unsigned int);
1790
1791 static const char *dwarf_type_encoding_name (unsigned int);
1792
1793 static struct die_info *sibling_die (struct die_info *);
1794
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1796
1797 static void dump_die_for_error (struct die_info *);
1798
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1800 struct die_info *);
1801
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1803
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1806
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1808
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1810
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1814
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1818
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1822
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1825
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1829
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1831
1832 static void read_signatured_type (struct signatured_type *);
1833
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1837
1838 /* memory allocation interface */
1839
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1841
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1843
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1845
1846 static int attr_form_is_block (const struct attribute *);
1847
1848 static int attr_form_is_section_offset (const struct attribute *);
1849
1850 static int attr_form_is_constant (const struct attribute *);
1851
1852 static int attr_form_is_ref (const struct attribute *);
1853
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1857
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1859 struct symbol *sym,
1860 struct dwarf2_cu *cu,
1861 int is_block);
1862
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1866
1867 static hashval_t partial_die_hash (const void *item);
1868
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1870
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1878
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1880
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1882
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1885
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1887
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1889
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1891 enum language);
1892
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1894 enum language);
1895
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1897 enum language);
1898
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1901
1902 static void dwarf2_mark (struct dwarf2_cu *);
1903
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1905
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1908
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1910
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1913
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1915
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1920
1921 class dwarf2_queue_guard
1922 {
1923 public:
1924 dwarf2_queue_guard () = default;
1925
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1929 {
1930 struct dwarf2_queue_item *item, *last;
1931
1932 item = dwarf2_queue;
1933 while (item)
1934 {
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1938 {
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1942 }
1943
1944 last = item;
1945 item = item->next;
1946 xfree (last);
1947 }
1948
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1950 }
1951 };
1952
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1955
1956 struct file_and_directory
1957 {
1958 /* The filename. This is never NULL. */
1959 const char *name;
1960
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1966
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1970 };
1971
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1974
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1977
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1980
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1987
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1992
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1996
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1998
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2000
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2005
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2008
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2011
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2014
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2016
2017 static void free_dwo_file (struct dwo_file *);
2018
2019 /* A unique_ptr helper to free a dwo_file. */
2020
2021 struct dwo_file_deleter
2022 {
2023 void operator() (struct dwo_file *df) const
2024 {
2025 free_dwo_file (df);
2026 }
2027 };
2028
2029 /* A unique pointer to a dwo_file. */
2030
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2032
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2034
2035 static void check_producer (struct dwarf2_cu *cu);
2036
2037 static void free_line_header_voidp (void *arg);
2038 \f
2039 /* Various complaints about symbol reading that don't abort the process. */
2040
2041 static void
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2043 {
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2045 }
2046
2047 static void
2048 dwarf2_debug_line_missing_file_complaint (void)
2049 {
2050 complaint (_(".debug_line section has line data without a file"));
2051 }
2052
2053 static void
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2055 {
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2058 }
2059
2060 static void
2061 dwarf2_complex_location_expr_complaint (void)
2062 {
2063 complaint (_("location expression too complex"));
2064 }
2065
2066 static void
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2068 int arg3)
2069 {
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2071 arg1, arg2, arg3);
2072 }
2073
2074 static void
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2076 {
2077 complaint (_("debug info runs off end of %s section"
2078 " [in module %s]"),
2079 get_section_name (section),
2080 get_section_file_name (section));
2081 }
2082
2083 static void
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2085 {
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2088 arg1);
2089 }
2090
2091 static void
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2093 {
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2095 arg1, arg2);
2096 }
2097
2098 /* Hash function for line_header_hash. */
2099
2100 static hashval_t
2101 line_header_hash (const struct line_header *ofs)
2102 {
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2104 }
2105
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2107
2108 static hashval_t
2109 line_header_hash_voidp (const void *item)
2110 {
2111 const struct line_header *ofs = (const struct line_header *) item;
2112
2113 return line_header_hash (ofs);
2114 }
2115
2116 /* Equality function for line_header_hash. */
2117
2118 static int
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2120 {
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2123
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2126 }
2127
2128 \f
2129
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2132
2133 static CORE_ADDR
2134 attr_value_as_address (struct attribute *attr)
2135 {
2136 CORE_ADDR addr;
2137
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2139 && attr->form != DW_FORM_GNU_addr_index)
2140 {
2141 /* Aside from a few clearly defined exceptions, attributes that
2142 contain an address must always be in DW_FORM_addr form.
2143 Unfortunately, some compilers happen to be violating this
2144 requirement by encoding addresses using other forms, such
2145 as DW_FORM_data4 for example. For those broken compilers,
2146 we try to do our best, without any guarantee of success,
2147 to interpret the address correctly. It would also be nice
2148 to generate a complaint, but that would require us to maintain
2149 a list of legitimate cases where a non-address form is allowed,
2150 as well as update callers to pass in at least the CU's DWARF
2151 version. This is more overhead than what we're willing to
2152 expand for a pretty rare case. */
2153 addr = DW_UNSND (attr);
2154 }
2155 else
2156 addr = DW_ADDR (attr);
2157
2158 return addr;
2159 }
2160
2161 /* See declaration. */
2162
2163 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2164 const dwarf2_debug_sections *names)
2165 : objfile (objfile_)
2166 {
2167 if (names == NULL)
2168 names = &dwarf2_elf_names;
2169
2170 bfd *obfd = objfile->obfd;
2171
2172 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2173 locate_sections (obfd, sec, *names);
2174 }
2175
2176 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2177
2178 dwarf2_per_objfile::~dwarf2_per_objfile ()
2179 {
2180 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2181 free_cached_comp_units ();
2182
2183 if (quick_file_names_table)
2184 htab_delete (quick_file_names_table);
2185
2186 if (line_header_hash)
2187 htab_delete (line_header_hash);
2188
2189 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2190 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2191
2192 for (signatured_type *sig_type : all_type_units)
2193 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2194
2195 VEC_free (dwarf2_section_info_def, types);
2196
2197 if (dwo_files != NULL)
2198 free_dwo_files (dwo_files, objfile);
2199
2200 /* Everything else should be on the objfile obstack. */
2201 }
2202
2203 /* See declaration. */
2204
2205 void
2206 dwarf2_per_objfile::free_cached_comp_units ()
2207 {
2208 dwarf2_per_cu_data *per_cu = read_in_chain;
2209 dwarf2_per_cu_data **last_chain = &read_in_chain;
2210 while (per_cu != NULL)
2211 {
2212 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2213
2214 delete per_cu->cu;
2215 *last_chain = next_cu;
2216 per_cu = next_cu;
2217 }
2218 }
2219
2220 /* A helper class that calls free_cached_comp_units on
2221 destruction. */
2222
2223 class free_cached_comp_units
2224 {
2225 public:
2226
2227 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2228 : m_per_objfile (per_objfile)
2229 {
2230 }
2231
2232 ~free_cached_comp_units ()
2233 {
2234 m_per_objfile->free_cached_comp_units ();
2235 }
2236
2237 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2238
2239 private:
2240
2241 dwarf2_per_objfile *m_per_objfile;
2242 };
2243
2244 /* Try to locate the sections we need for DWARF 2 debugging
2245 information and return true if we have enough to do something.
2246 NAMES points to the dwarf2 section names, or is NULL if the standard
2247 ELF names are used. */
2248
2249 int
2250 dwarf2_has_info (struct objfile *objfile,
2251 const struct dwarf2_debug_sections *names)
2252 {
2253 if (objfile->flags & OBJF_READNEVER)
2254 return 0;
2255
2256 struct dwarf2_per_objfile *dwarf2_per_objfile
2257 = get_dwarf2_per_objfile (objfile);
2258
2259 if (dwarf2_per_objfile == NULL)
2260 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2261 names);
2262
2263 return (!dwarf2_per_objfile->info.is_virtual
2264 && dwarf2_per_objfile->info.s.section != NULL
2265 && !dwarf2_per_objfile->abbrev.is_virtual
2266 && dwarf2_per_objfile->abbrev.s.section != NULL);
2267 }
2268
2269 /* Return the containing section of virtual section SECTION. */
2270
2271 static struct dwarf2_section_info *
2272 get_containing_section (const struct dwarf2_section_info *section)
2273 {
2274 gdb_assert (section->is_virtual);
2275 return section->s.containing_section;
2276 }
2277
2278 /* Return the bfd owner of SECTION. */
2279
2280 static struct bfd *
2281 get_section_bfd_owner (const struct dwarf2_section_info *section)
2282 {
2283 if (section->is_virtual)
2284 {
2285 section = get_containing_section (section);
2286 gdb_assert (!section->is_virtual);
2287 }
2288 return section->s.section->owner;
2289 }
2290
2291 /* Return the bfd section of SECTION.
2292 Returns NULL if the section is not present. */
2293
2294 static asection *
2295 get_section_bfd_section (const struct dwarf2_section_info *section)
2296 {
2297 if (section->is_virtual)
2298 {
2299 section = get_containing_section (section);
2300 gdb_assert (!section->is_virtual);
2301 }
2302 return section->s.section;
2303 }
2304
2305 /* Return the name of SECTION. */
2306
2307 static const char *
2308 get_section_name (const struct dwarf2_section_info *section)
2309 {
2310 asection *sectp = get_section_bfd_section (section);
2311
2312 gdb_assert (sectp != NULL);
2313 return bfd_section_name (get_section_bfd_owner (section), sectp);
2314 }
2315
2316 /* Return the name of the file SECTION is in. */
2317
2318 static const char *
2319 get_section_file_name (const struct dwarf2_section_info *section)
2320 {
2321 bfd *abfd = get_section_bfd_owner (section);
2322
2323 return bfd_get_filename (abfd);
2324 }
2325
2326 /* Return the id of SECTION.
2327 Returns 0 if SECTION doesn't exist. */
2328
2329 static int
2330 get_section_id (const struct dwarf2_section_info *section)
2331 {
2332 asection *sectp = get_section_bfd_section (section);
2333
2334 if (sectp == NULL)
2335 return 0;
2336 return sectp->id;
2337 }
2338
2339 /* Return the flags of SECTION.
2340 SECTION (or containing section if this is a virtual section) must exist. */
2341
2342 static int
2343 get_section_flags (const struct dwarf2_section_info *section)
2344 {
2345 asection *sectp = get_section_bfd_section (section);
2346
2347 gdb_assert (sectp != NULL);
2348 return bfd_get_section_flags (sectp->owner, sectp);
2349 }
2350
2351 /* When loading sections, we look either for uncompressed section or for
2352 compressed section names. */
2353
2354 static int
2355 section_is_p (const char *section_name,
2356 const struct dwarf2_section_names *names)
2357 {
2358 if (names->normal != NULL
2359 && strcmp (section_name, names->normal) == 0)
2360 return 1;
2361 if (names->compressed != NULL
2362 && strcmp (section_name, names->compressed) == 0)
2363 return 1;
2364 return 0;
2365 }
2366
2367 /* See declaration. */
2368
2369 void
2370 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2371 const dwarf2_debug_sections &names)
2372 {
2373 flagword aflag = bfd_get_section_flags (abfd, sectp);
2374
2375 if ((aflag & SEC_HAS_CONTENTS) == 0)
2376 {
2377 }
2378 else if (section_is_p (sectp->name, &names.info))
2379 {
2380 this->info.s.section = sectp;
2381 this->info.size = bfd_get_section_size (sectp);
2382 }
2383 else if (section_is_p (sectp->name, &names.abbrev))
2384 {
2385 this->abbrev.s.section = sectp;
2386 this->abbrev.size = bfd_get_section_size (sectp);
2387 }
2388 else if (section_is_p (sectp->name, &names.line))
2389 {
2390 this->line.s.section = sectp;
2391 this->line.size = bfd_get_section_size (sectp);
2392 }
2393 else if (section_is_p (sectp->name, &names.loc))
2394 {
2395 this->loc.s.section = sectp;
2396 this->loc.size = bfd_get_section_size (sectp);
2397 }
2398 else if (section_is_p (sectp->name, &names.loclists))
2399 {
2400 this->loclists.s.section = sectp;
2401 this->loclists.size = bfd_get_section_size (sectp);
2402 }
2403 else if (section_is_p (sectp->name, &names.macinfo))
2404 {
2405 this->macinfo.s.section = sectp;
2406 this->macinfo.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &names.macro))
2409 {
2410 this->macro.s.section = sectp;
2411 this->macro.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &names.str))
2414 {
2415 this->str.s.section = sectp;
2416 this->str.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &names.line_str))
2419 {
2420 this->line_str.s.section = sectp;
2421 this->line_str.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &names.addr))
2424 {
2425 this->addr.s.section = sectp;
2426 this->addr.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &names.frame))
2429 {
2430 this->frame.s.section = sectp;
2431 this->frame.size = bfd_get_section_size (sectp);
2432 }
2433 else if (section_is_p (sectp->name, &names.eh_frame))
2434 {
2435 this->eh_frame.s.section = sectp;
2436 this->eh_frame.size = bfd_get_section_size (sectp);
2437 }
2438 else if (section_is_p (sectp->name, &names.ranges))
2439 {
2440 this->ranges.s.section = sectp;
2441 this->ranges.size = bfd_get_section_size (sectp);
2442 }
2443 else if (section_is_p (sectp->name, &names.rnglists))
2444 {
2445 this->rnglists.s.section = sectp;
2446 this->rnglists.size = bfd_get_section_size (sectp);
2447 }
2448 else if (section_is_p (sectp->name, &names.types))
2449 {
2450 struct dwarf2_section_info type_section;
2451
2452 memset (&type_section, 0, sizeof (type_section));
2453 type_section.s.section = sectp;
2454 type_section.size = bfd_get_section_size (sectp);
2455
2456 VEC_safe_push (dwarf2_section_info_def, this->types,
2457 &type_section);
2458 }
2459 else if (section_is_p (sectp->name, &names.gdb_index))
2460 {
2461 this->gdb_index.s.section = sectp;
2462 this->gdb_index.size = bfd_get_section_size (sectp);
2463 }
2464 else if (section_is_p (sectp->name, &names.debug_names))
2465 {
2466 this->debug_names.s.section = sectp;
2467 this->debug_names.size = bfd_get_section_size (sectp);
2468 }
2469 else if (section_is_p (sectp->name, &names.debug_aranges))
2470 {
2471 this->debug_aranges.s.section = sectp;
2472 this->debug_aranges.size = bfd_get_section_size (sectp);
2473 }
2474
2475 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2476 && bfd_section_vma (abfd, sectp) == 0)
2477 this->has_section_at_zero = true;
2478 }
2479
2480 /* A helper function that decides whether a section is empty,
2481 or not present. */
2482
2483 static int
2484 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2485 {
2486 if (section->is_virtual)
2487 return section->size == 0;
2488 return section->s.section == NULL || section->size == 0;
2489 }
2490
2491 /* See dwarf2read.h. */
2492
2493 void
2494 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2495 {
2496 asection *sectp;
2497 bfd *abfd;
2498 gdb_byte *buf, *retbuf;
2499
2500 if (info->readin)
2501 return;
2502 info->buffer = NULL;
2503 info->readin = 1;
2504
2505 if (dwarf2_section_empty_p (info))
2506 return;
2507
2508 sectp = get_section_bfd_section (info);
2509
2510 /* If this is a virtual section we need to read in the real one first. */
2511 if (info->is_virtual)
2512 {
2513 struct dwarf2_section_info *containing_section =
2514 get_containing_section (info);
2515
2516 gdb_assert (sectp != NULL);
2517 if ((sectp->flags & SEC_RELOC) != 0)
2518 {
2519 error (_("Dwarf Error: DWP format V2 with relocations is not"
2520 " supported in section %s [in module %s]"),
2521 get_section_name (info), get_section_file_name (info));
2522 }
2523 dwarf2_read_section (objfile, containing_section);
2524 /* Other code should have already caught virtual sections that don't
2525 fit. */
2526 gdb_assert (info->virtual_offset + info->size
2527 <= containing_section->size);
2528 /* If the real section is empty or there was a problem reading the
2529 section we shouldn't get here. */
2530 gdb_assert (containing_section->buffer != NULL);
2531 info->buffer = containing_section->buffer + info->virtual_offset;
2532 return;
2533 }
2534
2535 /* If the section has relocations, we must read it ourselves.
2536 Otherwise we attach it to the BFD. */
2537 if ((sectp->flags & SEC_RELOC) == 0)
2538 {
2539 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2540 return;
2541 }
2542
2543 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2544 info->buffer = buf;
2545
2546 /* When debugging .o files, we may need to apply relocations; see
2547 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2548 We never compress sections in .o files, so we only need to
2549 try this when the section is not compressed. */
2550 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2551 if (retbuf != NULL)
2552 {
2553 info->buffer = retbuf;
2554 return;
2555 }
2556
2557 abfd = get_section_bfd_owner (info);
2558 gdb_assert (abfd != NULL);
2559
2560 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2561 || bfd_bread (buf, info->size, abfd) != info->size)
2562 {
2563 error (_("Dwarf Error: Can't read DWARF data"
2564 " in section %s [in module %s]"),
2565 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2566 }
2567 }
2568
2569 /* A helper function that returns the size of a section in a safe way.
2570 If you are positive that the section has been read before using the
2571 size, then it is safe to refer to the dwarf2_section_info object's
2572 "size" field directly. In other cases, you must call this
2573 function, because for compressed sections the size field is not set
2574 correctly until the section has been read. */
2575
2576 static bfd_size_type
2577 dwarf2_section_size (struct objfile *objfile,
2578 struct dwarf2_section_info *info)
2579 {
2580 if (!info->readin)
2581 dwarf2_read_section (objfile, info);
2582 return info->size;
2583 }
2584
2585 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2586 SECTION_NAME. */
2587
2588 void
2589 dwarf2_get_section_info (struct objfile *objfile,
2590 enum dwarf2_section_enum sect,
2591 asection **sectp, const gdb_byte **bufp,
2592 bfd_size_type *sizep)
2593 {
2594 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2595 struct dwarf2_section_info *info;
2596
2597 /* We may see an objfile without any DWARF, in which case we just
2598 return nothing. */
2599 if (data == NULL)
2600 {
2601 *sectp = NULL;
2602 *bufp = NULL;
2603 *sizep = 0;
2604 return;
2605 }
2606 switch (sect)
2607 {
2608 case DWARF2_DEBUG_FRAME:
2609 info = &data->frame;
2610 break;
2611 case DWARF2_EH_FRAME:
2612 info = &data->eh_frame;
2613 break;
2614 default:
2615 gdb_assert_not_reached ("unexpected section");
2616 }
2617
2618 dwarf2_read_section (objfile, info);
2619
2620 *sectp = get_section_bfd_section (info);
2621 *bufp = info->buffer;
2622 *sizep = info->size;
2623 }
2624
2625 /* A helper function to find the sections for a .dwz file. */
2626
2627 static void
2628 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2629 {
2630 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2631
2632 /* Note that we only support the standard ELF names, because .dwz
2633 is ELF-only (at the time of writing). */
2634 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2635 {
2636 dwz_file->abbrev.s.section = sectp;
2637 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2638 }
2639 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2640 {
2641 dwz_file->info.s.section = sectp;
2642 dwz_file->info.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2645 {
2646 dwz_file->str.s.section = sectp;
2647 dwz_file->str.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2650 {
2651 dwz_file->line.s.section = sectp;
2652 dwz_file->line.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2655 {
2656 dwz_file->macro.s.section = sectp;
2657 dwz_file->macro.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2660 {
2661 dwz_file->gdb_index.s.section = sectp;
2662 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2665 {
2666 dwz_file->debug_names.s.section = sectp;
2667 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2668 }
2669 }
2670
2671 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2672 there is no .gnu_debugaltlink section in the file. Error if there
2673 is such a section but the file cannot be found. */
2674
2675 static struct dwz_file *
2676 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2677 {
2678 const char *filename;
2679 bfd_size_type buildid_len_arg;
2680 size_t buildid_len;
2681 bfd_byte *buildid;
2682
2683 if (dwarf2_per_objfile->dwz_file != NULL)
2684 return dwarf2_per_objfile->dwz_file.get ();
2685
2686 bfd_set_error (bfd_error_no_error);
2687 gdb::unique_xmalloc_ptr<char> data
2688 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2689 &buildid_len_arg, &buildid));
2690 if (data == NULL)
2691 {
2692 if (bfd_get_error () == bfd_error_no_error)
2693 return NULL;
2694 error (_("could not read '.gnu_debugaltlink' section: %s"),
2695 bfd_errmsg (bfd_get_error ()));
2696 }
2697
2698 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2699
2700 buildid_len = (size_t) buildid_len_arg;
2701
2702 filename = data.get ();
2703
2704 std::string abs_storage;
2705 if (!IS_ABSOLUTE_PATH (filename))
2706 {
2707 gdb::unique_xmalloc_ptr<char> abs
2708 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2709
2710 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2711 filename = abs_storage.c_str ();
2712 }
2713
2714 /* First try the file name given in the section. If that doesn't
2715 work, try to use the build-id instead. */
2716 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2717 if (dwz_bfd != NULL)
2718 {
2719 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2720 dwz_bfd.reset (nullptr);
2721 }
2722
2723 if (dwz_bfd == NULL)
2724 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2725
2726 if (dwz_bfd == NULL)
2727 error (_("could not find '.gnu_debugaltlink' file for %s"),
2728 objfile_name (dwarf2_per_objfile->objfile));
2729
2730 std::unique_ptr<struct dwz_file> result
2731 (new struct dwz_file (std::move (dwz_bfd)));
2732
2733 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2734 result.get ());
2735
2736 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2737 result->dwz_bfd.get ());
2738 dwarf2_per_objfile->dwz_file = std::move (result);
2739 return dwarf2_per_objfile->dwz_file.get ();
2740 }
2741 \f
2742 /* DWARF quick_symbols_functions support. */
2743
2744 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2745 unique line tables, so we maintain a separate table of all .debug_line
2746 derived entries to support the sharing.
2747 All the quick functions need is the list of file names. We discard the
2748 line_header when we're done and don't need to record it here. */
2749 struct quick_file_names
2750 {
2751 /* The data used to construct the hash key. */
2752 struct stmt_list_hash hash;
2753
2754 /* The number of entries in file_names, real_names. */
2755 unsigned int num_file_names;
2756
2757 /* The file names from the line table, after being run through
2758 file_full_name. */
2759 const char **file_names;
2760
2761 /* The file names from the line table after being run through
2762 gdb_realpath. These are computed lazily. */
2763 const char **real_names;
2764 };
2765
2766 /* When using the index (and thus not using psymtabs), each CU has an
2767 object of this type. This is used to hold information needed by
2768 the various "quick" methods. */
2769 struct dwarf2_per_cu_quick_data
2770 {
2771 /* The file table. This can be NULL if there was no file table
2772 or it's currently not read in.
2773 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2774 struct quick_file_names *file_names;
2775
2776 /* The corresponding symbol table. This is NULL if symbols for this
2777 CU have not yet been read. */
2778 struct compunit_symtab *compunit_symtab;
2779
2780 /* A temporary mark bit used when iterating over all CUs in
2781 expand_symtabs_matching. */
2782 unsigned int mark : 1;
2783
2784 /* True if we've tried to read the file table and found there isn't one.
2785 There will be no point in trying to read it again next time. */
2786 unsigned int no_file_data : 1;
2787 };
2788
2789 /* Utility hash function for a stmt_list_hash. */
2790
2791 static hashval_t
2792 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2793 {
2794 hashval_t v = 0;
2795
2796 if (stmt_list_hash->dwo_unit != NULL)
2797 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2798 v += to_underlying (stmt_list_hash->line_sect_off);
2799 return v;
2800 }
2801
2802 /* Utility equality function for a stmt_list_hash. */
2803
2804 static int
2805 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2806 const struct stmt_list_hash *rhs)
2807 {
2808 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2809 return 0;
2810 if (lhs->dwo_unit != NULL
2811 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2812 return 0;
2813
2814 return lhs->line_sect_off == rhs->line_sect_off;
2815 }
2816
2817 /* Hash function for a quick_file_names. */
2818
2819 static hashval_t
2820 hash_file_name_entry (const void *e)
2821 {
2822 const struct quick_file_names *file_data
2823 = (const struct quick_file_names *) e;
2824
2825 return hash_stmt_list_entry (&file_data->hash);
2826 }
2827
2828 /* Equality function for a quick_file_names. */
2829
2830 static int
2831 eq_file_name_entry (const void *a, const void *b)
2832 {
2833 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2834 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2835
2836 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2837 }
2838
2839 /* Delete function for a quick_file_names. */
2840
2841 static void
2842 delete_file_name_entry (void *e)
2843 {
2844 struct quick_file_names *file_data = (struct quick_file_names *) e;
2845 int i;
2846
2847 for (i = 0; i < file_data->num_file_names; ++i)
2848 {
2849 xfree ((void*) file_data->file_names[i]);
2850 if (file_data->real_names)
2851 xfree ((void*) file_data->real_names[i]);
2852 }
2853
2854 /* The space for the struct itself lives on objfile_obstack,
2855 so we don't free it here. */
2856 }
2857
2858 /* Create a quick_file_names hash table. */
2859
2860 static htab_t
2861 create_quick_file_names_table (unsigned int nr_initial_entries)
2862 {
2863 return htab_create_alloc (nr_initial_entries,
2864 hash_file_name_entry, eq_file_name_entry,
2865 delete_file_name_entry, xcalloc, xfree);
2866 }
2867
2868 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2869 have to be created afterwards. You should call age_cached_comp_units after
2870 processing PER_CU->CU. dw2_setup must have been already called. */
2871
2872 static void
2873 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2874 {
2875 if (per_cu->is_debug_types)
2876 load_full_type_unit (per_cu);
2877 else
2878 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2879
2880 if (per_cu->cu == NULL)
2881 return; /* Dummy CU. */
2882
2883 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2884 }
2885
2886 /* Read in the symbols for PER_CU. */
2887
2888 static void
2889 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2890 {
2891 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2892
2893 /* Skip type_unit_groups, reading the type units they contain
2894 is handled elsewhere. */
2895 if (IS_TYPE_UNIT_GROUP (per_cu))
2896 return;
2897
2898 /* The destructor of dwarf2_queue_guard frees any entries left on
2899 the queue. After this point we're guaranteed to leave this function
2900 with the dwarf queue empty. */
2901 dwarf2_queue_guard q_guard;
2902
2903 if (dwarf2_per_objfile->using_index
2904 ? per_cu->v.quick->compunit_symtab == NULL
2905 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2906 {
2907 queue_comp_unit (per_cu, language_minimal);
2908 load_cu (per_cu, skip_partial);
2909
2910 /* If we just loaded a CU from a DWO, and we're working with an index
2911 that may badly handle TUs, load all the TUs in that DWO as well.
2912 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2913 if (!per_cu->is_debug_types
2914 && per_cu->cu != NULL
2915 && per_cu->cu->dwo_unit != NULL
2916 && dwarf2_per_objfile->index_table != NULL
2917 && dwarf2_per_objfile->index_table->version <= 7
2918 /* DWP files aren't supported yet. */
2919 && get_dwp_file (dwarf2_per_objfile) == NULL)
2920 queue_and_load_all_dwo_tus (per_cu);
2921 }
2922
2923 process_queue (dwarf2_per_objfile);
2924
2925 /* Age the cache, releasing compilation units that have not
2926 been used recently. */
2927 age_cached_comp_units (dwarf2_per_objfile);
2928 }
2929
2930 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2931 the objfile from which this CU came. Returns the resulting symbol
2932 table. */
2933
2934 static struct compunit_symtab *
2935 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2936 {
2937 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2938
2939 gdb_assert (dwarf2_per_objfile->using_index);
2940 if (!per_cu->v.quick->compunit_symtab)
2941 {
2942 free_cached_comp_units freer (dwarf2_per_objfile);
2943 scoped_restore decrementer = increment_reading_symtab ();
2944 dw2_do_instantiate_symtab (per_cu, skip_partial);
2945 process_cu_includes (dwarf2_per_objfile);
2946 }
2947
2948 return per_cu->v.quick->compunit_symtab;
2949 }
2950
2951 /* See declaration. */
2952
2953 dwarf2_per_cu_data *
2954 dwarf2_per_objfile::get_cutu (int index)
2955 {
2956 if (index >= this->all_comp_units.size ())
2957 {
2958 index -= this->all_comp_units.size ();
2959 gdb_assert (index < this->all_type_units.size ());
2960 return &this->all_type_units[index]->per_cu;
2961 }
2962
2963 return this->all_comp_units[index];
2964 }
2965
2966 /* See declaration. */
2967
2968 dwarf2_per_cu_data *
2969 dwarf2_per_objfile::get_cu (int index)
2970 {
2971 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2972
2973 return this->all_comp_units[index];
2974 }
2975
2976 /* See declaration. */
2977
2978 signatured_type *
2979 dwarf2_per_objfile::get_tu (int index)
2980 {
2981 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2982
2983 return this->all_type_units[index];
2984 }
2985
2986 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2987 objfile_obstack, and constructed with the specified field
2988 values. */
2989
2990 static dwarf2_per_cu_data *
2991 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2992 struct dwarf2_section_info *section,
2993 int is_dwz,
2994 sect_offset sect_off, ULONGEST length)
2995 {
2996 struct objfile *objfile = dwarf2_per_objfile->objfile;
2997 dwarf2_per_cu_data *the_cu
2998 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_data);
3000 the_cu->sect_off = sect_off;
3001 the_cu->length = length;
3002 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3003 the_cu->section = section;
3004 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3005 struct dwarf2_per_cu_quick_data);
3006 the_cu->is_dwz = is_dwz;
3007 return the_cu;
3008 }
3009
3010 /* A helper for create_cus_from_index that handles a given list of
3011 CUs. */
3012
3013 static void
3014 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3015 const gdb_byte *cu_list, offset_type n_elements,
3016 struct dwarf2_section_info *section,
3017 int is_dwz)
3018 {
3019 for (offset_type i = 0; i < n_elements; i += 2)
3020 {
3021 gdb_static_assert (sizeof (ULONGEST) >= 8);
3022
3023 sect_offset sect_off
3024 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3025 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3026 cu_list += 2 * 8;
3027
3028 dwarf2_per_cu_data *per_cu
3029 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3030 sect_off, length);
3031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3032 }
3033 }
3034
3035 /* Read the CU list from the mapped index, and use it to create all
3036 the CU objects for this objfile. */
3037
3038 static void
3039 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3040 const gdb_byte *cu_list, offset_type cu_list_elements,
3041 const gdb_byte *dwz_list, offset_type dwz_elements)
3042 {
3043 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3044 dwarf2_per_objfile->all_comp_units.reserve
3045 ((cu_list_elements + dwz_elements) / 2);
3046
3047 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3048 &dwarf2_per_objfile->info, 0);
3049
3050 if (dwz_elements == 0)
3051 return;
3052
3053 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3055 &dwz->info, 1);
3056 }
3057
3058 /* Create the signatured type hash table from the index. */
3059
3060 static void
3061 create_signatured_type_table_from_index
3062 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3066 {
3067 struct objfile *objfile = dwarf2_per_objfile->objfile;
3068
3069 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3070 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3071
3072 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3073
3074 for (offset_type i = 0; i < elements; i += 3)
3075 {
3076 struct signatured_type *sig_type;
3077 ULONGEST signature;
3078 void **slot;
3079 cu_offset type_offset_in_tu;
3080
3081 gdb_static_assert (sizeof (ULONGEST) >= 8);
3082 sect_offset sect_off
3083 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3084 type_offset_in_tu
3085 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3086 BFD_ENDIAN_LITTLE);
3087 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3088 bytes += 3 * 8;
3089
3090 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct signatured_type);
3092 sig_type->signature = signature;
3093 sig_type->type_offset_in_tu = type_offset_in_tu;
3094 sig_type->per_cu.is_debug_types = 1;
3095 sig_type->per_cu.section = section;
3096 sig_type->per_cu.sect_off = sect_off;
3097 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3098 sig_type->per_cu.v.quick
3099 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3100 struct dwarf2_per_cu_quick_data);
3101
3102 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3103 *slot = sig_type;
3104
3105 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3106 }
3107
3108 dwarf2_per_objfile->signatured_types = sig_types_hash;
3109 }
3110
3111 /* Create the signatured type hash table from .debug_names. */
3112
3113 static void
3114 create_signatured_type_table_from_debug_names
3115 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3116 const mapped_debug_names &map,
3117 struct dwarf2_section_info *section,
3118 struct dwarf2_section_info *abbrev_section)
3119 {
3120 struct objfile *objfile = dwarf2_per_objfile->objfile;
3121
3122 dwarf2_read_section (objfile, section);
3123 dwarf2_read_section (objfile, abbrev_section);
3124
3125 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3126 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3127
3128 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3129
3130 for (uint32_t i = 0; i < map.tu_count; ++i)
3131 {
3132 struct signatured_type *sig_type;
3133 void **slot;
3134
3135 sect_offset sect_off
3136 = (sect_offset) (extract_unsigned_integer
3137 (map.tu_table_reordered + i * map.offset_size,
3138 map.offset_size,
3139 map.dwarf5_byte_order));
3140
3141 comp_unit_head cu_header;
3142 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3143 abbrev_section,
3144 section->buffer + to_underlying (sect_off),
3145 rcuh_kind::TYPE);
3146
3147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct signatured_type);
3149 sig_type->signature = cu_header.signature;
3150 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3151 sig_type->per_cu.is_debug_types = 1;
3152 sig_type->per_cu.section = section;
3153 sig_type->per_cu.sect_off = sect_off;
3154 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3155 sig_type->per_cu.v.quick
3156 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3157 struct dwarf2_per_cu_quick_data);
3158
3159 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3160 *slot = sig_type;
3161
3162 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3163 }
3164
3165 dwarf2_per_objfile->signatured_types = sig_types_hash;
3166 }
3167
3168 /* Read the address map data from the mapped index, and use it to
3169 populate the objfile's psymtabs_addrmap. */
3170
3171 static void
3172 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3173 struct mapped_index *index)
3174 {
3175 struct objfile *objfile = dwarf2_per_objfile->objfile;
3176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3177 const gdb_byte *iter, *end;
3178 struct addrmap *mutable_map;
3179 CORE_ADDR baseaddr;
3180
3181 auto_obstack temp_obstack;
3182
3183 mutable_map = addrmap_create_mutable (&temp_obstack);
3184
3185 iter = index->address_table.data ();
3186 end = iter + index->address_table.size ();
3187
3188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3189
3190 while (iter < end)
3191 {
3192 ULONGEST hi, lo, cu_index;
3193 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3194 iter += 8;
3195 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3196 iter += 8;
3197 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3198 iter += 4;
3199
3200 if (lo > hi)
3201 {
3202 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3203 hex_string (lo), hex_string (hi));
3204 continue;
3205 }
3206
3207 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3208 {
3209 complaint (_(".gdb_index address table has invalid CU number %u"),
3210 (unsigned) cu_index);
3211 continue;
3212 }
3213
3214 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3215 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3216 addrmap_set_empty (mutable_map, lo, hi - 1,
3217 dwarf2_per_objfile->get_cu (cu_index));
3218 }
3219
3220 objfile->partial_symtabs->psymtabs_addrmap
3221 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3222 }
3223
3224 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3225 populate the objfile's psymtabs_addrmap. */
3226
3227 static void
3228 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3229 struct dwarf2_section_info *section)
3230 {
3231 struct objfile *objfile = dwarf2_per_objfile->objfile;
3232 bfd *abfd = objfile->obfd;
3233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3234 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3235 SECT_OFF_TEXT (objfile));
3236
3237 auto_obstack temp_obstack;
3238 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3239
3240 std::unordered_map<sect_offset,
3241 dwarf2_per_cu_data *,
3242 gdb::hash_enum<sect_offset>>
3243 debug_info_offset_to_per_cu;
3244 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3245 {
3246 const auto insertpair
3247 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3248 if (!insertpair.second)
3249 {
3250 warning (_("Section .debug_aranges in %s has duplicate "
3251 "debug_info_offset %s, ignoring .debug_aranges."),
3252 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3253 return;
3254 }
3255 }
3256
3257 dwarf2_read_section (objfile, section);
3258
3259 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3260
3261 const gdb_byte *addr = section->buffer;
3262
3263 while (addr < section->buffer + section->size)
3264 {
3265 const gdb_byte *const entry_addr = addr;
3266 unsigned int bytes_read;
3267
3268 const LONGEST entry_length = read_initial_length (abfd, addr,
3269 &bytes_read);
3270 addr += bytes_read;
3271
3272 const gdb_byte *const entry_end = addr + entry_length;
3273 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3274 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3275 if (addr + entry_length > section->buffer + section->size)
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "length %s exceeds section length %s, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 plongest (bytes_read + entry_length),
3282 pulongest (section->size));
3283 return;
3284 }
3285
3286 /* The version number. */
3287 const uint16_t version = read_2_bytes (abfd, addr);
3288 addr += 2;
3289 if (version != 2)
3290 {
3291 warning (_("Section .debug_aranges in %s entry at offset %zu "
3292 "has unsupported version %d, ignoring .debug_aranges."),
3293 objfile_name (objfile), entry_addr - section->buffer,
3294 version);
3295 return;
3296 }
3297
3298 const uint64_t debug_info_offset
3299 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3300 addr += offset_size;
3301 const auto per_cu_it
3302 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3303 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %zu "
3306 "debug_info_offset %s does not exists, "
3307 "ignoring .debug_aranges."),
3308 objfile_name (objfile), entry_addr - section->buffer,
3309 pulongest (debug_info_offset));
3310 return;
3311 }
3312 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3313
3314 const uint8_t address_size = *addr++;
3315 if (address_size < 1 || address_size > 8)
3316 {
3317 warning (_("Section .debug_aranges in %s entry at offset %zu "
3318 "address_size %u is invalid, ignoring .debug_aranges."),
3319 objfile_name (objfile), entry_addr - section->buffer,
3320 address_size);
3321 return;
3322 }
3323
3324 const uint8_t segment_selector_size = *addr++;
3325 if (segment_selector_size != 0)
3326 {
3327 warning (_("Section .debug_aranges in %s entry at offset %zu "
3328 "segment_selector_size %u is not supported, "
3329 "ignoring .debug_aranges."),
3330 objfile_name (objfile), entry_addr - section->buffer,
3331 segment_selector_size);
3332 return;
3333 }
3334
3335 /* Must pad to an alignment boundary that is twice the address
3336 size. It is undocumented by the DWARF standard but GCC does
3337 use it. */
3338 for (size_t padding = ((-(addr - section->buffer))
3339 & (2 * address_size - 1));
3340 padding > 0; padding--)
3341 if (*addr++ != 0)
3342 {
3343 warning (_("Section .debug_aranges in %s entry at offset %zu "
3344 "padding is not zero, ignoring .debug_aranges."),
3345 objfile_name (objfile), entry_addr - section->buffer);
3346 return;
3347 }
3348
3349 for (;;)
3350 {
3351 if (addr + 2 * address_size > entry_end)
3352 {
3353 warning (_("Section .debug_aranges in %s entry at offset %zu "
3354 "address list is not properly terminated, "
3355 "ignoring .debug_aranges."),
3356 objfile_name (objfile), entry_addr - section->buffer);
3357 return;
3358 }
3359 ULONGEST start = extract_unsigned_integer (addr, address_size,
3360 dwarf5_byte_order);
3361 addr += address_size;
3362 ULONGEST length = extract_unsigned_integer (addr, address_size,
3363 dwarf5_byte_order);
3364 addr += address_size;
3365 if (start == 0 && length == 0)
3366 break;
3367 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3368 {
3369 /* Symbol was eliminated due to a COMDAT group. */
3370 continue;
3371 }
3372 ULONGEST end = start + length;
3373 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3374 - baseaddr);
3375 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3376 - baseaddr);
3377 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3378 }
3379 }
3380
3381 objfile->partial_symtabs->psymtabs_addrmap
3382 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3383 }
3384
3385 /* Find a slot in the mapped index INDEX for the object named NAME.
3386 If NAME is found, set *VEC_OUT to point to the CU vector in the
3387 constant pool and return true. If NAME cannot be found, return
3388 false. */
3389
3390 static bool
3391 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3392 offset_type **vec_out)
3393 {
3394 offset_type hash;
3395 offset_type slot, step;
3396 int (*cmp) (const char *, const char *);
3397
3398 gdb::unique_xmalloc_ptr<char> without_params;
3399 if (current_language->la_language == language_cplus
3400 || current_language->la_language == language_fortran
3401 || current_language->la_language == language_d)
3402 {
3403 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3404 not contain any. */
3405
3406 if (strchr (name, '(') != NULL)
3407 {
3408 without_params = cp_remove_params (name);
3409
3410 if (without_params != NULL)
3411 name = without_params.get ();
3412 }
3413 }
3414
3415 /* Index version 4 did not support case insensitive searches. But the
3416 indices for case insensitive languages are built in lowercase, therefore
3417 simulate our NAME being searched is also lowercased. */
3418 hash = mapped_index_string_hash ((index->version == 4
3419 && case_sensitivity == case_sensitive_off
3420 ? 5 : index->version),
3421 name);
3422
3423 slot = hash & (index->symbol_table.size () - 1);
3424 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3425 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3426
3427 for (;;)
3428 {
3429 const char *str;
3430
3431 const auto &bucket = index->symbol_table[slot];
3432 if (bucket.name == 0 && bucket.vec == 0)
3433 return false;
3434
3435 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3436 if (!cmp (name, str))
3437 {
3438 *vec_out = (offset_type *) (index->constant_pool
3439 + MAYBE_SWAP (bucket.vec));
3440 return true;
3441 }
3442
3443 slot = (slot + step) & (index->symbol_table.size () - 1);
3444 }
3445 }
3446
3447 /* A helper function that reads the .gdb_index from BUFFER and fills
3448 in MAP. FILENAME is the name of the file containing the data;
3449 it is used for error reporting. DEPRECATED_OK is true if it is
3450 ok to use deprecated sections.
3451
3452 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3453 out parameters that are filled in with information about the CU and
3454 TU lists in the section.
3455
3456 Returns true if all went well, false otherwise. */
3457
3458 static bool
3459 read_gdb_index_from_buffer (struct objfile *objfile,
3460 const char *filename,
3461 bool deprecated_ok,
3462 gdb::array_view<const gdb_byte> buffer,
3463 struct mapped_index *map,
3464 const gdb_byte **cu_list,
3465 offset_type *cu_list_elements,
3466 const gdb_byte **types_list,
3467 offset_type *types_list_elements)
3468 {
3469 const gdb_byte *addr = &buffer[0];
3470
3471 /* Version check. */
3472 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3473 /* Versions earlier than 3 emitted every copy of a psymbol. This
3474 causes the index to behave very poorly for certain requests. Version 3
3475 contained incomplete addrmap. So, it seems better to just ignore such
3476 indices. */
3477 if (version < 4)
3478 {
3479 static int warning_printed = 0;
3480 if (!warning_printed)
3481 {
3482 warning (_("Skipping obsolete .gdb_index section in %s."),
3483 filename);
3484 warning_printed = 1;
3485 }
3486 return 0;
3487 }
3488 /* Index version 4 uses a different hash function than index version
3489 5 and later.
3490
3491 Versions earlier than 6 did not emit psymbols for inlined
3492 functions. Using these files will cause GDB not to be able to
3493 set breakpoints on inlined functions by name, so we ignore these
3494 indices unless the user has done
3495 "set use-deprecated-index-sections on". */
3496 if (version < 6 && !deprecated_ok)
3497 {
3498 static int warning_printed = 0;
3499 if (!warning_printed)
3500 {
3501 warning (_("\
3502 Skipping deprecated .gdb_index section in %s.\n\
3503 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3504 to use the section anyway."),
3505 filename);
3506 warning_printed = 1;
3507 }
3508 return 0;
3509 }
3510 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3511 of the TU (for symbols coming from TUs),
3512 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3513 Plus gold-generated indices can have duplicate entries for global symbols,
3514 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3515 These are just performance bugs, and we can't distinguish gdb-generated
3516 indices from gold-generated ones, so issue no warning here. */
3517
3518 /* Indexes with higher version than the one supported by GDB may be no
3519 longer backward compatible. */
3520 if (version > 8)
3521 return 0;
3522
3523 map->version = version;
3524
3525 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3526
3527 int i = 0;
3528 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3529 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3530 / 8);
3531 ++i;
3532
3533 *types_list = addr + MAYBE_SWAP (metadata[i]);
3534 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3535 - MAYBE_SWAP (metadata[i]))
3536 / 8);
3537 ++i;
3538
3539 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3540 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3541 map->address_table
3542 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3543 ++i;
3544
3545 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3546 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 map->symbol_table
3548 = gdb::array_view<mapped_index::symbol_table_slot>
3549 ((mapped_index::symbol_table_slot *) symbol_table,
3550 (mapped_index::symbol_table_slot *) symbol_table_end);
3551
3552 ++i;
3553 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3554
3555 return 1;
3556 }
3557
3558 /* Callback types for dwarf2_read_gdb_index. */
3559
3560 typedef gdb::function_view
3561 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3562 get_gdb_index_contents_ftype;
3563 typedef gdb::function_view
3564 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3565 get_gdb_index_contents_dwz_ftype;
3566
3567 /* Read .gdb_index. If everything went ok, initialize the "quick"
3568 elements of all the CUs and return 1. Otherwise, return 0. */
3569
3570 static int
3571 dwarf2_read_gdb_index
3572 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3573 get_gdb_index_contents_ftype get_gdb_index_contents,
3574 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3575 {
3576 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3577 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3578 struct dwz_file *dwz;
3579 struct objfile *objfile = dwarf2_per_objfile->objfile;
3580
3581 gdb::array_view<const gdb_byte> main_index_contents
3582 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3583
3584 if (main_index_contents.empty ())
3585 return 0;
3586
3587 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3588 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3589 use_deprecated_index_sections,
3590 main_index_contents, map.get (), &cu_list,
3591 &cu_list_elements, &types_list,
3592 &types_list_elements))
3593 return 0;
3594
3595 /* Don't use the index if it's empty. */
3596 if (map->symbol_table.empty ())
3597 return 0;
3598
3599 /* If there is a .dwz file, read it so we can get its CU list as
3600 well. */
3601 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3602 if (dwz != NULL)
3603 {
3604 struct mapped_index dwz_map;
3605 const gdb_byte *dwz_types_ignore;
3606 offset_type dwz_types_elements_ignore;
3607
3608 gdb::array_view<const gdb_byte> dwz_index_content
3609 = get_gdb_index_contents_dwz (objfile, dwz);
3610
3611 if (dwz_index_content.empty ())
3612 return 0;
3613
3614 if (!read_gdb_index_from_buffer (objfile,
3615 bfd_get_filename (dwz->dwz_bfd), 1,
3616 dwz_index_content, &dwz_map,
3617 &dwz_list, &dwz_list_elements,
3618 &dwz_types_ignore,
3619 &dwz_types_elements_ignore))
3620 {
3621 warning (_("could not read '.gdb_index' section from %s; skipping"),
3622 bfd_get_filename (dwz->dwz_bfd));
3623 return 0;
3624 }
3625 }
3626
3627 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3628 dwz_list, dwz_list_elements);
3629
3630 if (types_list_elements)
3631 {
3632 struct dwarf2_section_info *section;
3633
3634 /* We can only handle a single .debug_types when we have an
3635 index. */
3636 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3637 return 0;
3638
3639 section = VEC_index (dwarf2_section_info_def,
3640 dwarf2_per_objfile->types, 0);
3641
3642 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3643 types_list, types_list_elements);
3644 }
3645
3646 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3647
3648 dwarf2_per_objfile->index_table = std::move (map);
3649 dwarf2_per_objfile->using_index = 1;
3650 dwarf2_per_objfile->quick_file_names_table =
3651 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3652
3653 return 1;
3654 }
3655
3656 /* die_reader_func for dw2_get_file_names. */
3657
3658 static void
3659 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3660 const gdb_byte *info_ptr,
3661 struct die_info *comp_unit_die,
3662 int has_children,
3663 void *data)
3664 {
3665 struct dwarf2_cu *cu = reader->cu;
3666 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3667 struct dwarf2_per_objfile *dwarf2_per_objfile
3668 = cu->per_cu->dwarf2_per_objfile;
3669 struct objfile *objfile = dwarf2_per_objfile->objfile;
3670 struct dwarf2_per_cu_data *lh_cu;
3671 struct attribute *attr;
3672 int i;
3673 void **slot;
3674 struct quick_file_names *qfn;
3675
3676 gdb_assert (! this_cu->is_debug_types);
3677
3678 /* Our callers never want to match partial units -- instead they
3679 will match the enclosing full CU. */
3680 if (comp_unit_die->tag == DW_TAG_partial_unit)
3681 {
3682 this_cu->v.quick->no_file_data = 1;
3683 return;
3684 }
3685
3686 lh_cu = this_cu;
3687 slot = NULL;
3688
3689 line_header_up lh;
3690 sect_offset line_offset {};
3691
3692 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3693 if (attr)
3694 {
3695 struct quick_file_names find_entry;
3696
3697 line_offset = (sect_offset) DW_UNSND (attr);
3698
3699 /* We may have already read in this line header (TU line header sharing).
3700 If we have we're done. */
3701 find_entry.hash.dwo_unit = cu->dwo_unit;
3702 find_entry.hash.line_sect_off = line_offset;
3703 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3704 &find_entry, INSERT);
3705 if (*slot != NULL)
3706 {
3707 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3708 return;
3709 }
3710
3711 lh = dwarf_decode_line_header (line_offset, cu);
3712 }
3713 if (lh == NULL)
3714 {
3715 lh_cu->v.quick->no_file_data = 1;
3716 return;
3717 }
3718
3719 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3720 qfn->hash.dwo_unit = cu->dwo_unit;
3721 qfn->hash.line_sect_off = line_offset;
3722 gdb_assert (slot != NULL);
3723 *slot = qfn;
3724
3725 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3726
3727 qfn->num_file_names = lh->file_names.size ();
3728 qfn->file_names =
3729 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3730 for (i = 0; i < lh->file_names.size (); ++i)
3731 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3732 qfn->real_names = NULL;
3733
3734 lh_cu->v.quick->file_names = qfn;
3735 }
3736
3737 /* A helper for the "quick" functions which attempts to read the line
3738 table for THIS_CU. */
3739
3740 static struct quick_file_names *
3741 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3742 {
3743 /* This should never be called for TUs. */
3744 gdb_assert (! this_cu->is_debug_types);
3745 /* Nor type unit groups. */
3746 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3747
3748 if (this_cu->v.quick->file_names != NULL)
3749 return this_cu->v.quick->file_names;
3750 /* If we know there is no line data, no point in looking again. */
3751 if (this_cu->v.quick->no_file_data)
3752 return NULL;
3753
3754 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3755
3756 if (this_cu->v.quick->no_file_data)
3757 return NULL;
3758 return this_cu->v.quick->file_names;
3759 }
3760
3761 /* A helper for the "quick" functions which computes and caches the
3762 real path for a given file name from the line table. */
3763
3764 static const char *
3765 dw2_get_real_path (struct objfile *objfile,
3766 struct quick_file_names *qfn, int index)
3767 {
3768 if (qfn->real_names == NULL)
3769 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3770 qfn->num_file_names, const char *);
3771
3772 if (qfn->real_names[index] == NULL)
3773 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3774
3775 return qfn->real_names[index];
3776 }
3777
3778 static struct symtab *
3779 dw2_find_last_source_symtab (struct objfile *objfile)
3780 {
3781 struct dwarf2_per_objfile *dwarf2_per_objfile
3782 = get_dwarf2_per_objfile (objfile);
3783 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3784 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3785
3786 if (cust == NULL)
3787 return NULL;
3788
3789 return compunit_primary_filetab (cust);
3790 }
3791
3792 /* Traversal function for dw2_forget_cached_source_info. */
3793
3794 static int
3795 dw2_free_cached_file_names (void **slot, void *info)
3796 {
3797 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3798
3799 if (file_data->real_names)
3800 {
3801 int i;
3802
3803 for (i = 0; i < file_data->num_file_names; ++i)
3804 {
3805 xfree ((void*) file_data->real_names[i]);
3806 file_data->real_names[i] = NULL;
3807 }
3808 }
3809
3810 return 1;
3811 }
3812
3813 static void
3814 dw2_forget_cached_source_info (struct objfile *objfile)
3815 {
3816 struct dwarf2_per_objfile *dwarf2_per_objfile
3817 = get_dwarf2_per_objfile (objfile);
3818
3819 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3820 dw2_free_cached_file_names, NULL);
3821 }
3822
3823 /* Helper function for dw2_map_symtabs_matching_filename that expands
3824 the symtabs and calls the iterator. */
3825
3826 static int
3827 dw2_map_expand_apply (struct objfile *objfile,
3828 struct dwarf2_per_cu_data *per_cu,
3829 const char *name, const char *real_path,
3830 gdb::function_view<bool (symtab *)> callback)
3831 {
3832 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3833
3834 /* Don't visit already-expanded CUs. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 return 0;
3837
3838 /* This may expand more than one symtab, and we want to iterate over
3839 all of them. */
3840 dw2_instantiate_symtab (per_cu, false);
3841
3842 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3843 last_made, callback);
3844 }
3845
3846 /* Implementation of the map_symtabs_matching_filename method. */
3847
3848 static bool
3849 dw2_map_symtabs_matching_filename
3850 (struct objfile *objfile, const char *name, const char *real_path,
3851 gdb::function_view<bool (symtab *)> callback)
3852 {
3853 const char *name_basename = lbasename (name);
3854 struct dwarf2_per_objfile *dwarf2_per_objfile
3855 = get_dwarf2_per_objfile (objfile);
3856
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3859
3860 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3861 {
3862 /* We only need to look at symtabs not already expanded. */
3863 if (per_cu->v.quick->compunit_symtab)
3864 continue;
3865
3866 quick_file_names *file_data = dw2_get_file_names (per_cu);
3867 if (file_data == NULL)
3868 continue;
3869
3870 for (int j = 0; j < file_data->num_file_names; ++j)
3871 {
3872 const char *this_name = file_data->file_names[j];
3873 const char *this_real_name;
3874
3875 if (compare_filenames_for_search (this_name, name))
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882
3883 /* Before we invoke realpath, which can get expensive when many
3884 files are involved, do a quick comparison of the basenames. */
3885 if (! basenames_may_differ
3886 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3887 continue;
3888
3889 this_real_name = dw2_get_real_path (objfile, file_data, j);
3890 if (compare_filenames_for_search (this_real_name, name))
3891 {
3892 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3893 callback))
3894 return true;
3895 continue;
3896 }
3897
3898 if (real_path != NULL)
3899 {
3900 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3901 gdb_assert (IS_ABSOLUTE_PATH (name));
3902 if (this_real_name != NULL
3903 && FILENAME_CMP (real_path, this_real_name) == 0)
3904 {
3905 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3906 callback))
3907 return true;
3908 continue;
3909 }
3910 }
3911 }
3912 }
3913
3914 return false;
3915 }
3916
3917 /* Struct used to manage iterating over all CUs looking for a symbol. */
3918
3919 struct dw2_symtab_iterator
3920 {
3921 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3922 struct dwarf2_per_objfile *dwarf2_per_objfile;
3923 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3924 int want_specific_block;
3925 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3926 Unused if !WANT_SPECIFIC_BLOCK. */
3927 int block_index;
3928 /* The kind of symbol we're looking for. */
3929 domain_enum domain;
3930 /* The list of CUs from the index entry of the symbol,
3931 or NULL if not found. */
3932 offset_type *vec;
3933 /* The next element in VEC to look at. */
3934 int next;
3935 /* The number of elements in VEC, or zero if there is no match. */
3936 int length;
3937 /* Have we seen a global version of the symbol?
3938 If so we can ignore all further global instances.
3939 This is to work around gold/15646, inefficient gold-generated
3940 indices. */
3941 int global_seen;
3942 };
3943
3944 /* Initialize the index symtab iterator ITER.
3945 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3946 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3947
3948 static void
3949 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3950 struct dwarf2_per_objfile *dwarf2_per_objfile,
3951 int want_specific_block,
3952 int block_index,
3953 domain_enum domain,
3954 const char *name)
3955 {
3956 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3957 iter->want_specific_block = want_specific_block;
3958 iter->block_index = block_index;
3959 iter->domain = domain;
3960 iter->next = 0;
3961 iter->global_seen = 0;
3962
3963 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3964
3965 /* index is NULL if OBJF_READNOW. */
3966 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3967 iter->length = MAYBE_SWAP (*iter->vec);
3968 else
3969 {
3970 iter->vec = NULL;
3971 iter->length = 0;
3972 }
3973 }
3974
3975 /* Return the next matching CU or NULL if there are no more. */
3976
3977 static struct dwarf2_per_cu_data *
3978 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3979 {
3980 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3981
3982 for ( ; iter->next < iter->length; ++iter->next)
3983 {
3984 offset_type cu_index_and_attrs =
3985 MAYBE_SWAP (iter->vec[iter->next + 1]);
3986 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 int want_static = iter->block_index != GLOBAL_BLOCK;
3988 /* This value is only valid for index versions >= 7. */
3989 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3990 gdb_index_symbol_kind symbol_kind =
3991 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3992 /* Only check the symbol attributes if they're present.
3993 Indices prior to version 7 don't record them,
3994 and indices >= 7 may elide them for certain symbols
3995 (gold does this). */
3996 int attrs_valid =
3997 (dwarf2_per_objfile->index_table->version >= 7
3998 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3999
4000 /* Don't crash on bad data. */
4001 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4002 + dwarf2_per_objfile->all_type_units.size ()))
4003 {
4004 complaint (_(".gdb_index entry has bad CU index"
4005 " [in module %s]"),
4006 objfile_name (dwarf2_per_objfile->objfile));
4007 continue;
4008 }
4009
4010 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4011
4012 /* Skip if already read in. */
4013 if (per_cu->v.quick->compunit_symtab)
4014 continue;
4015
4016 /* Check static vs global. */
4017 if (attrs_valid)
4018 {
4019 if (iter->want_specific_block
4020 && want_static != is_static)
4021 continue;
4022 /* Work around gold/15646. */
4023 if (!is_static && iter->global_seen)
4024 continue;
4025 if (!is_static)
4026 iter->global_seen = 1;
4027 }
4028
4029 /* Only check the symbol's kind if it has one. */
4030 if (attrs_valid)
4031 {
4032 switch (iter->domain)
4033 {
4034 case VAR_DOMAIN:
4035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4036 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4037 /* Some types are also in VAR_DOMAIN. */
4038 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4039 continue;
4040 break;
4041 case STRUCT_DOMAIN:
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4043 continue;
4044 break;
4045 case LABEL_DOMAIN:
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4047 continue;
4048 break;
4049 default:
4050 break;
4051 }
4052 }
4053
4054 ++iter->next;
4055 return per_cu;
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static struct compunit_symtab *
4062 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4063 const char *name, domain_enum domain)
4064 {
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4070
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4073
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4075
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4077 {
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4082
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4085 &with_opaque);
4086
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4090
4091 if (sym != NULL
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4093 return stab;
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4096 stab_best = stab;
4097
4098 /* Keep looking through other CUs. */
4099 }
4100
4101 return stab_best;
4102 }
4103
4104 static void
4105 dw2_print_stats (struct objfile *objfile)
4106 {
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4111 int count = 0;
4112
4113 for (int i = 0; i < total; ++i)
4114 {
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4116
4117 if (!per_cu->v.quick->compunit_symtab)
4118 ++count;
4119 }
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4122 }
4123
4124 /* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4128
4129 static void
4130 dw2_dump (struct objfile *objfile)
4131 {
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4134
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4138 {
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4141 }
4142 else
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4145 }
4146
4147 static void
4148 dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4150 {
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4153
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4156
4157 /* Note: It doesn't matter what we pass for block_index here. */
4158 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4159 func_name);
4160
4161 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4162 dw2_instantiate_symtab (per_cu, false);
4163
4164 }
4165
4166 static void
4167 dw2_expand_all_symtabs (struct objfile *objfile)
4168 {
4169 struct dwarf2_per_objfile *dwarf2_per_objfile
4170 = get_dwarf2_per_objfile (objfile);
4171 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4172 + dwarf2_per_objfile->all_type_units.size ());
4173
4174 for (int i = 0; i < total_units; ++i)
4175 {
4176 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4177
4178 /* We don't want to directly expand a partial CU, because if we
4179 read it with the wrong language, then assertion failures can
4180 be triggered later on. See PR symtab/23010. So, tell
4181 dw2_instantiate_symtab to skip partial CUs -- any important
4182 partial CU will be read via DW_TAG_imported_unit anyway. */
4183 dw2_instantiate_symtab (per_cu, true);
4184 }
4185 }
4186
4187 static void
4188 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4189 const char *fullname)
4190 {
4191 struct dwarf2_per_objfile *dwarf2_per_objfile
4192 = get_dwarf2_per_objfile (objfile);
4193
4194 /* We don't need to consider type units here.
4195 This is only called for examining code, e.g. expand_line_sal.
4196 There can be an order of magnitude (or more) more type units
4197 than comp units, and we avoid them if we can. */
4198
4199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4200 {
4201 /* We only need to look at symtabs not already expanded. */
4202 if (per_cu->v.quick->compunit_symtab)
4203 continue;
4204
4205 quick_file_names *file_data = dw2_get_file_names (per_cu);
4206 if (file_data == NULL)
4207 continue;
4208
4209 for (int j = 0; j < file_data->num_file_names; ++j)
4210 {
4211 const char *this_fullname = file_data->file_names[j];
4212
4213 if (filename_cmp (this_fullname, fullname) == 0)
4214 {
4215 dw2_instantiate_symtab (per_cu, false);
4216 break;
4217 }
4218 }
4219 }
4220 }
4221
4222 static void
4223 dw2_map_matching_symbols (struct objfile *objfile,
4224 const char * name, domain_enum domain,
4225 int global,
4226 int (*callback) (const struct block *,
4227 struct symbol *, void *),
4228 void *data, symbol_name_match_type match,
4229 symbol_compare_ftype *ordered_compare)
4230 {
4231 /* Currently unimplemented; used for Ada. The function can be called if the
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
4234 }
4235
4236 /* Symbol name matcher for .gdb_index names.
4237
4238 Symbol names in .gdb_index have a few particularities:
4239
4240 - There's no indication of which is the language of each symbol.
4241
4242 Since each language has its own symbol name matching algorithm,
4243 and we don't know which language is the right one, we must match
4244 each symbol against all languages. This would be a potential
4245 performance problem if it were not mitigated by the
4246 mapped_index::name_components lookup table, which significantly
4247 reduces the number of times we need to call into this matcher,
4248 making it a non-issue.
4249
4250 - Symbol names in the index have no overload (parameter)
4251 information. I.e., in C++, "foo(int)" and "foo(long)" both
4252 appear as "foo" in the index, for example.
4253
4254 This means that the lookup names passed to the symbol name
4255 matcher functions must have no parameter information either
4256 because (e.g.) symbol search name "foo" does not match
4257 lookup-name "foo(int)" [while swapping search name for lookup
4258 name would match].
4259 */
4260 class gdb_index_symbol_name_matcher
4261 {
4262 public:
4263 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4264 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4265
4266 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4267 Returns true if any matcher matches. */
4268 bool matches (const char *symbol_name);
4269
4270 private:
4271 /* A reference to the lookup name we're matching against. */
4272 const lookup_name_info &m_lookup_name;
4273
4274 /* A vector holding all the different symbol name matchers, for all
4275 languages. */
4276 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4277 };
4278
4279 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4280 (const lookup_name_info &lookup_name)
4281 : m_lookup_name (lookup_name)
4282 {
4283 /* Prepare the vector of comparison functions upfront, to avoid
4284 doing the same work for each symbol. Care is taken to avoid
4285 matching with the same matcher more than once if/when multiple
4286 languages use the same matcher function. */
4287 auto &matchers = m_symbol_name_matcher_funcs;
4288 matchers.reserve (nr_languages);
4289
4290 matchers.push_back (default_symbol_name_matcher);
4291
4292 for (int i = 0; i < nr_languages; i++)
4293 {
4294 const language_defn *lang = language_def ((enum language) i);
4295 symbol_name_matcher_ftype *name_matcher
4296 = get_symbol_name_matcher (lang, m_lookup_name);
4297
4298 /* Don't insert the same comparison routine more than once.
4299 Note that we do this linear walk instead of a seemingly
4300 cheaper sorted insert, or use a std::set or something like
4301 that, because relative order of function addresses is not
4302 stable. This is not a problem in practice because the number
4303 of supported languages is low, and the cost here is tiny
4304 compared to the number of searches we'll do afterwards using
4305 this object. */
4306 if (name_matcher != default_symbol_name_matcher
4307 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4308 == matchers.end ()))
4309 matchers.push_back (name_matcher);
4310 }
4311 }
4312
4313 bool
4314 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4315 {
4316 for (auto matches_name : m_symbol_name_matcher_funcs)
4317 if (matches_name (symbol_name, m_lookup_name, NULL))
4318 return true;
4319
4320 return false;
4321 }
4322
4323 /* Starting from a search name, return the string that finds the upper
4324 bound of all strings that start with SEARCH_NAME in a sorted name
4325 list. Returns the empty string to indicate that the upper bound is
4326 the end of the list. */
4327
4328 static std::string
4329 make_sort_after_prefix_name (const char *search_name)
4330 {
4331 /* When looking to complete "func", we find the upper bound of all
4332 symbols that start with "func" by looking for where we'd insert
4333 the closest string that would follow "func" in lexicographical
4334 order. Usually, that's "func"-with-last-character-incremented,
4335 i.e. "fund". Mind non-ASCII characters, though. Usually those
4336 will be UTF-8 multi-byte sequences, but we can't be certain.
4337 Especially mind the 0xff character, which is a valid character in
4338 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4339 rule out compilers allowing it in identifiers. Note that
4340 conveniently, strcmp/strcasecmp are specified to compare
4341 characters interpreted as unsigned char. So what we do is treat
4342 the whole string as a base 256 number composed of a sequence of
4343 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4344 to 0, and carries 1 to the following more-significant position.
4345 If the very first character in SEARCH_NAME ends up incremented
4346 and carries/overflows, then the upper bound is the end of the
4347 list. The string after the empty string is also the empty
4348 string.
4349
4350 Some examples of this operation:
4351
4352 SEARCH_NAME => "+1" RESULT
4353
4354 "abc" => "abd"
4355 "ab\xff" => "ac"
4356 "\xff" "a" "\xff" => "\xff" "b"
4357 "\xff" => ""
4358 "\xff\xff" => ""
4359 "" => ""
4360
4361 Then, with these symbols for example:
4362
4363 func
4364 func1
4365 fund
4366
4367 completing "func" looks for symbols between "func" and
4368 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4369 which finds "func" and "func1", but not "fund".
4370
4371 And with:
4372
4373 funcÿ (Latin1 'ÿ' [0xff])
4374 funcÿ1
4375 fund
4376
4377 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4378 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4379
4380 And with:
4381
4382 ÿÿ (Latin1 'ÿ' [0xff])
4383 ÿÿ1
4384
4385 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4386 the end of the list.
4387 */
4388 std::string after = search_name;
4389 while (!after.empty () && (unsigned char) after.back () == 0xff)
4390 after.pop_back ();
4391 if (!after.empty ())
4392 after.back () = (unsigned char) after.back () + 1;
4393 return after;
4394 }
4395
4396 /* See declaration. */
4397
4398 std::pair<std::vector<name_component>::const_iterator,
4399 std::vector<name_component>::const_iterator>
4400 mapped_index_base::find_name_components_bounds
4401 (const lookup_name_info &lookup_name_without_params) const
4402 {
4403 auto *name_cmp
4404 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4405
4406 const char *cplus
4407 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4408
4409 /* Comparison function object for lower_bound that matches against a
4410 given symbol name. */
4411 auto lookup_compare_lower = [&] (const name_component &elem,
4412 const char *name)
4413 {
4414 const char *elem_qualified = this->symbol_name_at (elem.idx);
4415 const char *elem_name = elem_qualified + elem.name_offset;
4416 return name_cmp (elem_name, name) < 0;
4417 };
4418
4419 /* Comparison function object for upper_bound that matches against a
4420 given symbol name. */
4421 auto lookup_compare_upper = [&] (const char *name,
4422 const name_component &elem)
4423 {
4424 const char *elem_qualified = this->symbol_name_at (elem.idx);
4425 const char *elem_name = elem_qualified + elem.name_offset;
4426 return name_cmp (name, elem_name) < 0;
4427 };
4428
4429 auto begin = this->name_components.begin ();
4430 auto end = this->name_components.end ();
4431
4432 /* Find the lower bound. */
4433 auto lower = [&] ()
4434 {
4435 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4436 return begin;
4437 else
4438 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4439 } ();
4440
4441 /* Find the upper bound. */
4442 auto upper = [&] ()
4443 {
4444 if (lookup_name_without_params.completion_mode ())
4445 {
4446 /* In completion mode, we want UPPER to point past all
4447 symbols names that have the same prefix. I.e., with
4448 these symbols, and completing "func":
4449
4450 function << lower bound
4451 function1
4452 other_function << upper bound
4453
4454 We find the upper bound by looking for the insertion
4455 point of "func"-with-last-character-incremented,
4456 i.e. "fund". */
4457 std::string after = make_sort_after_prefix_name (cplus);
4458 if (after.empty ())
4459 return end;
4460 return std::lower_bound (lower, end, after.c_str (),
4461 lookup_compare_lower);
4462 }
4463 else
4464 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4465 } ();
4466
4467 return {lower, upper};
4468 }
4469
4470 /* See declaration. */
4471
4472 void
4473 mapped_index_base::build_name_components ()
4474 {
4475 if (!this->name_components.empty ())
4476 return;
4477
4478 this->name_components_casing = case_sensitivity;
4479 auto *name_cmp
4480 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4481
4482 /* The code below only knows how to break apart components of C++
4483 symbol names (and other languages that use '::' as
4484 namespace/module separator). If we add support for wild matching
4485 to some language that uses some other operator (E.g., Ada, Go and
4486 D use '.'), then we'll need to try splitting the symbol name
4487 according to that language too. Note that Ada does support wild
4488 matching, but doesn't currently support .gdb_index. */
4489 auto count = this->symbol_name_count ();
4490 for (offset_type idx = 0; idx < count; idx++)
4491 {
4492 if (this->symbol_name_slot_invalid (idx))
4493 continue;
4494
4495 const char *name = this->symbol_name_at (idx);
4496
4497 /* Add each name component to the name component table. */
4498 unsigned int previous_len = 0;
4499 for (unsigned int current_len = cp_find_first_component (name);
4500 name[current_len] != '\0';
4501 current_len += cp_find_first_component (name + current_len))
4502 {
4503 gdb_assert (name[current_len] == ':');
4504 this->name_components.push_back ({previous_len, idx});
4505 /* Skip the '::'. */
4506 current_len += 2;
4507 previous_len = current_len;
4508 }
4509 this->name_components.push_back ({previous_len, idx});
4510 }
4511
4512 /* Sort name_components elements by name. */
4513 auto name_comp_compare = [&] (const name_component &left,
4514 const name_component &right)
4515 {
4516 const char *left_qualified = this->symbol_name_at (left.idx);
4517 const char *right_qualified = this->symbol_name_at (right.idx);
4518
4519 const char *left_name = left_qualified + left.name_offset;
4520 const char *right_name = right_qualified + right.name_offset;
4521
4522 return name_cmp (left_name, right_name) < 0;
4523 };
4524
4525 std::sort (this->name_components.begin (),
4526 this->name_components.end (),
4527 name_comp_compare);
4528 }
4529
4530 /* Helper for dw2_expand_symtabs_matching that works with a
4531 mapped_index_base instead of the containing objfile. This is split
4532 to a separate function in order to be able to unit test the
4533 name_components matching using a mock mapped_index_base. For each
4534 symbol name that matches, calls MATCH_CALLBACK, passing it the
4535 symbol's index in the mapped_index_base symbol table. */
4536
4537 static void
4538 dw2_expand_symtabs_matching_symbol
4539 (mapped_index_base &index,
4540 const lookup_name_info &lookup_name_in,
4541 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4542 enum search_domain kind,
4543 gdb::function_view<void (offset_type)> match_callback)
4544 {
4545 lookup_name_info lookup_name_without_params
4546 = lookup_name_in.make_ignore_params ();
4547 gdb_index_symbol_name_matcher lookup_name_matcher
4548 (lookup_name_without_params);
4549
4550 /* Build the symbol name component sorted vector, if we haven't
4551 yet. */
4552 index.build_name_components ();
4553
4554 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4555
4556 /* Now for each symbol name in range, check to see if we have a name
4557 match, and if so, call the MATCH_CALLBACK callback. */
4558
4559 /* The same symbol may appear more than once in the range though.
4560 E.g., if we're looking for symbols that complete "w", and we have
4561 a symbol named "w1::w2", we'll find the two name components for
4562 that same symbol in the range. To be sure we only call the
4563 callback once per symbol, we first collect the symbol name
4564 indexes that matched in a temporary vector and ignore
4565 duplicates. */
4566 std::vector<offset_type> matches;
4567 matches.reserve (std::distance (bounds.first, bounds.second));
4568
4569 for (; bounds.first != bounds.second; ++bounds.first)
4570 {
4571 const char *qualified = index.symbol_name_at (bounds.first->idx);
4572
4573 if (!lookup_name_matcher.matches (qualified)
4574 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4575 continue;
4576
4577 matches.push_back (bounds.first->idx);
4578 }
4579
4580 std::sort (matches.begin (), matches.end ());
4581
4582 /* Finally call the callback, once per match. */
4583 ULONGEST prev = -1;
4584 for (offset_type idx : matches)
4585 {
4586 if (prev != idx)
4587 {
4588 match_callback (idx);
4589 prev = idx;
4590 }
4591 }
4592
4593 /* Above we use a type wider than idx's for 'prev', since 0 and
4594 (offset_type)-1 are both possible values. */
4595 static_assert (sizeof (prev) > sizeof (offset_type), "");
4596 }
4597
4598 #if GDB_SELF_TEST
4599
4600 namespace selftests { namespace dw2_expand_symtabs_matching {
4601
4602 /* A mock .gdb_index/.debug_names-like name index table, enough to
4603 exercise dw2_expand_symtabs_matching_symbol, which works with the
4604 mapped_index_base interface. Builds an index from the symbol list
4605 passed as parameter to the constructor. */
4606 class mock_mapped_index : public mapped_index_base
4607 {
4608 public:
4609 mock_mapped_index (gdb::array_view<const char *> symbols)
4610 : m_symbol_table (symbols)
4611 {}
4612
4613 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4614
4615 /* Return the number of names in the symbol table. */
4616 size_t symbol_name_count () const override
4617 {
4618 return m_symbol_table.size ();
4619 }
4620
4621 /* Get the name of the symbol at IDX in the symbol table. */
4622 const char *symbol_name_at (offset_type idx) const override
4623 {
4624 return m_symbol_table[idx];
4625 }
4626
4627 private:
4628 gdb::array_view<const char *> m_symbol_table;
4629 };
4630
4631 /* Convenience function that converts a NULL pointer to a "<null>"
4632 string, to pass to print routines. */
4633
4634 static const char *
4635 string_or_null (const char *str)
4636 {
4637 return str != NULL ? str : "<null>";
4638 }
4639
4640 /* Check if a lookup_name_info built from
4641 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4642 index. EXPECTED_LIST is the list of expected matches, in expected
4643 matching order. If no match expected, then an empty list is
4644 specified. Returns true on success. On failure prints a warning
4645 indicating the file:line that failed, and returns false. */
4646
4647 static bool
4648 check_match (const char *file, int line,
4649 mock_mapped_index &mock_index,
4650 const char *name, symbol_name_match_type match_type,
4651 bool completion_mode,
4652 std::initializer_list<const char *> expected_list)
4653 {
4654 lookup_name_info lookup_name (name, match_type, completion_mode);
4655
4656 bool matched = true;
4657
4658 auto mismatch = [&] (const char *expected_str,
4659 const char *got)
4660 {
4661 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4662 "expected=\"%s\", got=\"%s\"\n"),
4663 file, line,
4664 (match_type == symbol_name_match_type::FULL
4665 ? "FULL" : "WILD"),
4666 name, string_or_null (expected_str), string_or_null (got));
4667 matched = false;
4668 };
4669
4670 auto expected_it = expected_list.begin ();
4671 auto expected_end = expected_list.end ();
4672
4673 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4674 NULL, ALL_DOMAIN,
4675 [&] (offset_type idx)
4676 {
4677 const char *matched_name = mock_index.symbol_name_at (idx);
4678 const char *expected_str
4679 = expected_it == expected_end ? NULL : *expected_it++;
4680
4681 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4682 mismatch (expected_str, matched_name);
4683 });
4684
4685 const char *expected_str
4686 = expected_it == expected_end ? NULL : *expected_it++;
4687 if (expected_str != NULL)
4688 mismatch (expected_str, NULL);
4689
4690 return matched;
4691 }
4692
4693 /* The symbols added to the mock mapped_index for testing (in
4694 canonical form). */
4695 static const char *test_symbols[] = {
4696 "function",
4697 "std::bar",
4698 "std::zfunction",
4699 "std::zfunction2",
4700 "w1::w2",
4701 "ns::foo<char*>",
4702 "ns::foo<int>",
4703 "ns::foo<long>",
4704 "ns2::tmpl<int>::foo2",
4705 "(anonymous namespace)::A::B::C",
4706
4707 /* These are used to check that the increment-last-char in the
4708 matching algorithm for completion doesn't match "t1_fund" when
4709 completing "t1_func". */
4710 "t1_func",
4711 "t1_func1",
4712 "t1_fund",
4713 "t1_fund1",
4714
4715 /* A UTF-8 name with multi-byte sequences to make sure that
4716 cp-name-parser understands this as a single identifier ("função"
4717 is "function" in PT). */
4718 u8"u8função",
4719
4720 /* \377 (0xff) is Latin1 'ÿ'. */
4721 "yfunc\377",
4722
4723 /* \377 (0xff) is Latin1 'ÿ'. */
4724 "\377",
4725 "\377\377123",
4726
4727 /* A name with all sorts of complications. Starts with "z" to make
4728 it easier for the completion tests below. */
4729 #define Z_SYM_NAME \
4730 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4731 "::tuple<(anonymous namespace)::ui*, " \
4732 "std::default_delete<(anonymous namespace)::ui>, void>"
4733
4734 Z_SYM_NAME
4735 };
4736
4737 /* Returns true if the mapped_index_base::find_name_component_bounds
4738 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4739 in completion mode. */
4740
4741 static bool
4742 check_find_bounds_finds (mapped_index_base &index,
4743 const char *search_name,
4744 gdb::array_view<const char *> expected_syms)
4745 {
4746 lookup_name_info lookup_name (search_name,
4747 symbol_name_match_type::FULL, true);
4748
4749 auto bounds = index.find_name_components_bounds (lookup_name);
4750
4751 size_t distance = std::distance (bounds.first, bounds.second);
4752 if (distance != expected_syms.size ())
4753 return false;
4754
4755 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4756 {
4757 auto nc_elem = bounds.first + exp_elem;
4758 const char *qualified = index.symbol_name_at (nc_elem->idx);
4759 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4760 return false;
4761 }
4762
4763 return true;
4764 }
4765
4766 /* Test the lower-level mapped_index::find_name_component_bounds
4767 method. */
4768
4769 static void
4770 test_mapped_index_find_name_component_bounds ()
4771 {
4772 mock_mapped_index mock_index (test_symbols);
4773
4774 mock_index.build_name_components ();
4775
4776 /* Test the lower-level mapped_index::find_name_component_bounds
4777 method in completion mode. */
4778 {
4779 static const char *expected_syms[] = {
4780 "t1_func",
4781 "t1_func1",
4782 };
4783
4784 SELF_CHECK (check_find_bounds_finds (mock_index,
4785 "t1_func", expected_syms));
4786 }
4787
4788 /* Check that the increment-last-char in the name matching algorithm
4789 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4790 {
4791 static const char *expected_syms1[] = {
4792 "\377",
4793 "\377\377123",
4794 };
4795 SELF_CHECK (check_find_bounds_finds (mock_index,
4796 "\377", expected_syms1));
4797
4798 static const char *expected_syms2[] = {
4799 "\377\377123",
4800 };
4801 SELF_CHECK (check_find_bounds_finds (mock_index,
4802 "\377\377", expected_syms2));
4803 }
4804 }
4805
4806 /* Test dw2_expand_symtabs_matching_symbol. */
4807
4808 static void
4809 test_dw2_expand_symtabs_matching_symbol ()
4810 {
4811 mock_mapped_index mock_index (test_symbols);
4812
4813 /* We let all tests run until the end even if some fails, for debug
4814 convenience. */
4815 bool any_mismatch = false;
4816
4817 /* Create the expected symbols list (an initializer_list). Needed
4818 because lists have commas, and we need to pass them to CHECK,
4819 which is a macro. */
4820 #define EXPECT(...) { __VA_ARGS__ }
4821
4822 /* Wrapper for check_match that passes down the current
4823 __FILE__/__LINE__. */
4824 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4825 any_mismatch |= !check_match (__FILE__, __LINE__, \
4826 mock_index, \
4827 NAME, MATCH_TYPE, COMPLETION_MODE, \
4828 EXPECTED_LIST)
4829
4830 /* Identity checks. */
4831 for (const char *sym : test_symbols)
4832 {
4833 /* Should be able to match all existing symbols. */
4834 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4835 EXPECT (sym));
4836
4837 /* Should be able to match all existing symbols with
4838 parameters. */
4839 std::string with_params = std::string (sym) + "(int)";
4840 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4841 EXPECT (sym));
4842
4843 /* Should be able to match all existing symbols with
4844 parameters and qualifiers. */
4845 with_params = std::string (sym) + " ( int ) const";
4846 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4847 EXPECT (sym));
4848
4849 /* This should really find sym, but cp-name-parser.y doesn't
4850 know about lvalue/rvalue qualifiers yet. */
4851 with_params = std::string (sym) + " ( int ) &&";
4852 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4853 {});
4854 }
4855
4856 /* Check that the name matching algorithm for completion doesn't get
4857 confused with Latin1 'ÿ' / 0xff. */
4858 {
4859 static const char str[] = "\377";
4860 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4861 EXPECT ("\377", "\377\377123"));
4862 }
4863
4864 /* Check that the increment-last-char in the matching algorithm for
4865 completion doesn't match "t1_fund" when completing "t1_func". */
4866 {
4867 static const char str[] = "t1_func";
4868 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4869 EXPECT ("t1_func", "t1_func1"));
4870 }
4871
4872 /* Check that completion mode works at each prefix of the expected
4873 symbol name. */
4874 {
4875 static const char str[] = "function(int)";
4876 size_t len = strlen (str);
4877 std::string lookup;
4878
4879 for (size_t i = 1; i < len; i++)
4880 {
4881 lookup.assign (str, i);
4882 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4883 EXPECT ("function"));
4884 }
4885 }
4886
4887 /* While "w" is a prefix of both components, the match function
4888 should still only be called once. */
4889 {
4890 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4891 EXPECT ("w1::w2"));
4892 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4893 EXPECT ("w1::w2"));
4894 }
4895
4896 /* Same, with a "complicated" symbol. */
4897 {
4898 static const char str[] = Z_SYM_NAME;
4899 size_t len = strlen (str);
4900 std::string lookup;
4901
4902 for (size_t i = 1; i < len; i++)
4903 {
4904 lookup.assign (str, i);
4905 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4906 EXPECT (Z_SYM_NAME));
4907 }
4908 }
4909
4910 /* In FULL mode, an incomplete symbol doesn't match. */
4911 {
4912 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4913 {});
4914 }
4915
4916 /* A complete symbol with parameters matches any overload, since the
4917 index has no overload info. */
4918 {
4919 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4920 EXPECT ("std::zfunction", "std::zfunction2"));
4921 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4922 EXPECT ("std::zfunction", "std::zfunction2"));
4923 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4925 }
4926
4927 /* Check that whitespace is ignored appropriately. A symbol with a
4928 template argument list. */
4929 {
4930 static const char expected[] = "ns::foo<int>";
4931 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4932 EXPECT (expected));
4933 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4934 EXPECT (expected));
4935 }
4936
4937 /* Check that whitespace is ignored appropriately. A symbol with a
4938 template argument list that includes a pointer. */
4939 {
4940 static const char expected[] = "ns::foo<char*>";
4941 /* Try both completion and non-completion modes. */
4942 static const bool completion_mode[2] = {false, true};
4943 for (size_t i = 0; i < 2; i++)
4944 {
4945 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4946 completion_mode[i], EXPECT (expected));
4947 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4948 completion_mode[i], EXPECT (expected));
4949
4950 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4954 }
4955 }
4956
4957 {
4958 /* Check method qualifiers are ignored. */
4959 static const char expected[] = "ns::foo<char*>";
4960 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4961 symbol_name_match_type::FULL, true, EXPECT (expected));
4962 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4963 symbol_name_match_type::FULL, true, EXPECT (expected));
4964 CHECK_MATCH ("foo < char * > ( int ) const",
4965 symbol_name_match_type::WILD, true, EXPECT (expected));
4966 CHECK_MATCH ("foo < char * > ( int ) &&",
4967 symbol_name_match_type::WILD, true, EXPECT (expected));
4968 }
4969
4970 /* Test lookup names that don't match anything. */
4971 {
4972 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4973 {});
4974
4975 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4976 {});
4977 }
4978
4979 /* Some wild matching tests, exercising "(anonymous namespace)",
4980 which should not be confused with a parameter list. */
4981 {
4982 static const char *syms[] = {
4983 "A::B::C",
4984 "B::C",
4985 "C",
4986 "A :: B :: C ( int )",
4987 "B :: C ( int )",
4988 "C ( int )",
4989 };
4990
4991 for (const char *s : syms)
4992 {
4993 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4994 EXPECT ("(anonymous namespace)::A::B::C"));
4995 }
4996 }
4997
4998 {
4999 static const char expected[] = "ns2::tmpl<int>::foo2";
5000 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5001 EXPECT (expected));
5002 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5003 EXPECT (expected));
5004 }
5005
5006 SELF_CHECK (!any_mismatch);
5007
5008 #undef EXPECT
5009 #undef CHECK_MATCH
5010 }
5011
5012 static void
5013 run_test ()
5014 {
5015 test_mapped_index_find_name_component_bounds ();
5016 test_dw2_expand_symtabs_matching_symbol ();
5017 }
5018
5019 }} // namespace selftests::dw2_expand_symtabs_matching
5020
5021 #endif /* GDB_SELF_TEST */
5022
5023 /* If FILE_MATCHER is NULL or if PER_CU has
5024 dwarf2_per_cu_quick_data::MARK set (see
5025 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5026 EXPANSION_NOTIFY on it. */
5027
5028 static void
5029 dw2_expand_symtabs_matching_one
5030 (struct dwarf2_per_cu_data *per_cu,
5031 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5032 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5033 {
5034 if (file_matcher == NULL || per_cu->v.quick->mark)
5035 {
5036 bool symtab_was_null
5037 = (per_cu->v.quick->compunit_symtab == NULL);
5038
5039 dw2_instantiate_symtab (per_cu, false);
5040
5041 if (expansion_notify != NULL
5042 && symtab_was_null
5043 && per_cu->v.quick->compunit_symtab != NULL)
5044 expansion_notify (per_cu->v.quick->compunit_symtab);
5045 }
5046 }
5047
5048 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5049 matched, to expand corresponding CUs that were marked. IDX is the
5050 index of the symbol name that matched. */
5051
5052 static void
5053 dw2_expand_marked_cus
5054 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5055 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5056 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5057 search_domain kind)
5058 {
5059 offset_type *vec, vec_len, vec_idx;
5060 bool global_seen = false;
5061 mapped_index &index = *dwarf2_per_objfile->index_table;
5062
5063 vec = (offset_type *) (index.constant_pool
5064 + MAYBE_SWAP (index.symbol_table[idx].vec));
5065 vec_len = MAYBE_SWAP (vec[0]);
5066 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5067 {
5068 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5069 /* This value is only valid for index versions >= 7. */
5070 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5071 gdb_index_symbol_kind symbol_kind =
5072 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5073 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5074 /* Only check the symbol attributes if they're present.
5075 Indices prior to version 7 don't record them,
5076 and indices >= 7 may elide them for certain symbols
5077 (gold does this). */
5078 int attrs_valid =
5079 (index.version >= 7
5080 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5081
5082 /* Work around gold/15646. */
5083 if (attrs_valid)
5084 {
5085 if (!is_static && global_seen)
5086 continue;
5087 if (!is_static)
5088 global_seen = true;
5089 }
5090
5091 /* Only check the symbol's kind if it has one. */
5092 if (attrs_valid)
5093 {
5094 switch (kind)
5095 {
5096 case VARIABLES_DOMAIN:
5097 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5098 continue;
5099 break;
5100 case FUNCTIONS_DOMAIN:
5101 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5102 continue;
5103 break;
5104 case TYPES_DOMAIN:
5105 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5106 continue;
5107 break;
5108 default:
5109 break;
5110 }
5111 }
5112
5113 /* Don't crash on bad data. */
5114 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5115 + dwarf2_per_objfile->all_type_units.size ()))
5116 {
5117 complaint (_(".gdb_index entry has bad CU index"
5118 " [in module %s]"),
5119 objfile_name (dwarf2_per_objfile->objfile));
5120 continue;
5121 }
5122
5123 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5124 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5125 expansion_notify);
5126 }
5127 }
5128
5129 /* If FILE_MATCHER is non-NULL, set all the
5130 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5131 that match FILE_MATCHER. */
5132
5133 static void
5134 dw_expand_symtabs_matching_file_matcher
5135 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5136 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5137 {
5138 if (file_matcher == NULL)
5139 return;
5140
5141 objfile *const objfile = dwarf2_per_objfile->objfile;
5142
5143 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5144 htab_eq_pointer,
5145 NULL, xcalloc, xfree));
5146 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5147 htab_eq_pointer,
5148 NULL, xcalloc, xfree));
5149
5150 /* The rule is CUs specify all the files, including those used by
5151 any TU, so there's no need to scan TUs here. */
5152
5153 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5154 {
5155 QUIT;
5156
5157 per_cu->v.quick->mark = 0;
5158
5159 /* We only need to look at symtabs not already expanded. */
5160 if (per_cu->v.quick->compunit_symtab)
5161 continue;
5162
5163 quick_file_names *file_data = dw2_get_file_names (per_cu);
5164 if (file_data == NULL)
5165 continue;
5166
5167 if (htab_find (visited_not_found.get (), file_data) != NULL)
5168 continue;
5169 else if (htab_find (visited_found.get (), file_data) != NULL)
5170 {
5171 per_cu->v.quick->mark = 1;
5172 continue;
5173 }
5174
5175 for (int j = 0; j < file_data->num_file_names; ++j)
5176 {
5177 const char *this_real_name;
5178
5179 if (file_matcher (file_data->file_names[j], false))
5180 {
5181 per_cu->v.quick->mark = 1;
5182 break;
5183 }
5184
5185 /* Before we invoke realpath, which can get expensive when many
5186 files are involved, do a quick comparison of the basenames. */
5187 if (!basenames_may_differ
5188 && !file_matcher (lbasename (file_data->file_names[j]),
5189 true))
5190 continue;
5191
5192 this_real_name = dw2_get_real_path (objfile, file_data, j);
5193 if (file_matcher (this_real_name, false))
5194 {
5195 per_cu->v.quick->mark = 1;
5196 break;
5197 }
5198 }
5199
5200 void **slot = htab_find_slot (per_cu->v.quick->mark
5201 ? visited_found.get ()
5202 : visited_not_found.get (),
5203 file_data, INSERT);
5204 *slot = file_data;
5205 }
5206 }
5207
5208 static void
5209 dw2_expand_symtabs_matching
5210 (struct objfile *objfile,
5211 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5212 const lookup_name_info &lookup_name,
5213 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5215 enum search_domain kind)
5216 {
5217 struct dwarf2_per_objfile *dwarf2_per_objfile
5218 = get_dwarf2_per_objfile (objfile);
5219
5220 /* index_table is NULL if OBJF_READNOW. */
5221 if (!dwarf2_per_objfile->index_table)
5222 return;
5223
5224 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5225
5226 mapped_index &index = *dwarf2_per_objfile->index_table;
5227
5228 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5229 symbol_matcher,
5230 kind, [&] (offset_type idx)
5231 {
5232 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5233 expansion_notify, kind);
5234 });
5235 }
5236
5237 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5238 symtab. */
5239
5240 static struct compunit_symtab *
5241 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5242 CORE_ADDR pc)
5243 {
5244 int i;
5245
5246 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5247 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5248 return cust;
5249
5250 if (cust->includes == NULL)
5251 return NULL;
5252
5253 for (i = 0; cust->includes[i]; ++i)
5254 {
5255 struct compunit_symtab *s = cust->includes[i];
5256
5257 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5258 if (s != NULL)
5259 return s;
5260 }
5261
5262 return NULL;
5263 }
5264
5265 static struct compunit_symtab *
5266 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5267 struct bound_minimal_symbol msymbol,
5268 CORE_ADDR pc,
5269 struct obj_section *section,
5270 int warn_if_readin)
5271 {
5272 struct dwarf2_per_cu_data *data;
5273 struct compunit_symtab *result;
5274
5275 if (!objfile->partial_symtabs->psymtabs_addrmap)
5276 return NULL;
5277
5278 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5279 SECT_OFF_TEXT (objfile));
5280 data = (struct dwarf2_per_cu_data *) addrmap_find
5281 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5282 if (!data)
5283 return NULL;
5284
5285 if (warn_if_readin && data->v.quick->compunit_symtab)
5286 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5287 paddress (get_objfile_arch (objfile), pc));
5288
5289 result
5290 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5291 false),
5292 pc);
5293 gdb_assert (result != NULL);
5294 return result;
5295 }
5296
5297 static void
5298 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5299 void *data, int need_fullname)
5300 {
5301 struct dwarf2_per_objfile *dwarf2_per_objfile
5302 = get_dwarf2_per_objfile (objfile);
5303
5304 if (!dwarf2_per_objfile->filenames_cache)
5305 {
5306 dwarf2_per_objfile->filenames_cache.emplace ();
5307
5308 htab_up visited (htab_create_alloc (10,
5309 htab_hash_pointer, htab_eq_pointer,
5310 NULL, xcalloc, xfree));
5311
5312 /* The rule is CUs specify all the files, including those used
5313 by any TU, so there's no need to scan TUs here. We can
5314 ignore file names coming from already-expanded CUs. */
5315
5316 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5317 {
5318 if (per_cu->v.quick->compunit_symtab)
5319 {
5320 void **slot = htab_find_slot (visited.get (),
5321 per_cu->v.quick->file_names,
5322 INSERT);
5323
5324 *slot = per_cu->v.quick->file_names;
5325 }
5326 }
5327
5328 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5329 {
5330 /* We only need to look at symtabs not already expanded. */
5331 if (per_cu->v.quick->compunit_symtab)
5332 continue;
5333
5334 quick_file_names *file_data = dw2_get_file_names (per_cu);
5335 if (file_data == NULL)
5336 continue;
5337
5338 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5339 if (*slot)
5340 {
5341 /* Already visited. */
5342 continue;
5343 }
5344 *slot = file_data;
5345
5346 for (int j = 0; j < file_data->num_file_names; ++j)
5347 {
5348 const char *filename = file_data->file_names[j];
5349 dwarf2_per_objfile->filenames_cache->seen (filename);
5350 }
5351 }
5352 }
5353
5354 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5355 {
5356 gdb::unique_xmalloc_ptr<char> this_real_name;
5357
5358 if (need_fullname)
5359 this_real_name = gdb_realpath (filename);
5360 (*fun) (filename, this_real_name.get (), data);
5361 });
5362 }
5363
5364 static int
5365 dw2_has_symbols (struct objfile *objfile)
5366 {
5367 return 1;
5368 }
5369
5370 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5371 {
5372 dw2_has_symbols,
5373 dw2_find_last_source_symtab,
5374 dw2_forget_cached_source_info,
5375 dw2_map_symtabs_matching_filename,
5376 dw2_lookup_symbol,
5377 dw2_print_stats,
5378 dw2_dump,
5379 dw2_expand_symtabs_for_function,
5380 dw2_expand_all_symtabs,
5381 dw2_expand_symtabs_with_fullname,
5382 dw2_map_matching_symbols,
5383 dw2_expand_symtabs_matching,
5384 dw2_find_pc_sect_compunit_symtab,
5385 NULL,
5386 dw2_map_symbol_filenames
5387 };
5388
5389 /* DWARF-5 debug_names reader. */
5390
5391 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5392 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5393
5394 /* A helper function that reads the .debug_names section in SECTION
5395 and fills in MAP. FILENAME is the name of the file containing the
5396 section; it is used for error reporting.
5397
5398 Returns true if all went well, false otherwise. */
5399
5400 static bool
5401 read_debug_names_from_section (struct objfile *objfile,
5402 const char *filename,
5403 struct dwarf2_section_info *section,
5404 mapped_debug_names &map)
5405 {
5406 if (dwarf2_section_empty_p (section))
5407 return false;
5408
5409 /* Older elfutils strip versions could keep the section in the main
5410 executable while splitting it for the separate debug info file. */
5411 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5412 return false;
5413
5414 dwarf2_read_section (objfile, section);
5415
5416 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5417
5418 const gdb_byte *addr = section->buffer;
5419
5420 bfd *const abfd = get_section_bfd_owner (section);
5421
5422 unsigned int bytes_read;
5423 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5424 addr += bytes_read;
5425
5426 map.dwarf5_is_dwarf64 = bytes_read != 4;
5427 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5428 if (bytes_read + length != section->size)
5429 {
5430 /* There may be multiple per-CU indices. */
5431 warning (_("Section .debug_names in %s length %s does not match "
5432 "section length %s, ignoring .debug_names."),
5433 filename, plongest (bytes_read + length),
5434 pulongest (section->size));
5435 return false;
5436 }
5437
5438 /* The version number. */
5439 uint16_t version = read_2_bytes (abfd, addr);
5440 addr += 2;
5441 if (version != 5)
5442 {
5443 warning (_("Section .debug_names in %s has unsupported version %d, "
5444 "ignoring .debug_names."),
5445 filename, version);
5446 return false;
5447 }
5448
5449 /* Padding. */
5450 uint16_t padding = read_2_bytes (abfd, addr);
5451 addr += 2;
5452 if (padding != 0)
5453 {
5454 warning (_("Section .debug_names in %s has unsupported padding %d, "
5455 "ignoring .debug_names."),
5456 filename, padding);
5457 return false;
5458 }
5459
5460 /* comp_unit_count - The number of CUs in the CU list. */
5461 map.cu_count = read_4_bytes (abfd, addr);
5462 addr += 4;
5463
5464 /* local_type_unit_count - The number of TUs in the local TU
5465 list. */
5466 map.tu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* foreign_type_unit_count - The number of TUs in the foreign TU
5470 list. */
5471 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473 if (foreign_tu_count != 0)
5474 {
5475 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5476 "ignoring .debug_names."),
5477 filename, static_cast<unsigned long> (foreign_tu_count));
5478 return false;
5479 }
5480
5481 /* bucket_count - The number of hash buckets in the hash lookup
5482 table. */
5483 map.bucket_count = read_4_bytes (abfd, addr);
5484 addr += 4;
5485
5486 /* name_count - The number of unique names in the index. */
5487 map.name_count = read_4_bytes (abfd, addr);
5488 addr += 4;
5489
5490 /* abbrev_table_size - The size in bytes of the abbreviations
5491 table. */
5492 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* augmentation_string_size - The size in bytes of the augmentation
5496 string. This value is rounded up to a multiple of 4. */
5497 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499 map.augmentation_is_gdb = ((augmentation_string_size
5500 == sizeof (dwarf5_augmentation))
5501 && memcmp (addr, dwarf5_augmentation,
5502 sizeof (dwarf5_augmentation)) == 0);
5503 augmentation_string_size += (-augmentation_string_size) & 3;
5504 addr += augmentation_string_size;
5505
5506 /* List of CUs */
5507 map.cu_table_reordered = addr;
5508 addr += map.cu_count * map.offset_size;
5509
5510 /* List of Local TUs */
5511 map.tu_table_reordered = addr;
5512 addr += map.tu_count * map.offset_size;
5513
5514 /* Hash Lookup Table */
5515 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5516 addr += map.bucket_count * 4;
5517 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5518 addr += map.name_count * 4;
5519
5520 /* Name Table */
5521 map.name_table_string_offs_reordered = addr;
5522 addr += map.name_count * map.offset_size;
5523 map.name_table_entry_offs_reordered = addr;
5524 addr += map.name_count * map.offset_size;
5525
5526 const gdb_byte *abbrev_table_start = addr;
5527 for (;;)
5528 {
5529 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5530 addr += bytes_read;
5531 if (index_num == 0)
5532 break;
5533
5534 const auto insertpair
5535 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5536 if (!insertpair.second)
5537 {
5538 warning (_("Section .debug_names in %s has duplicate index %s, "
5539 "ignoring .debug_names."),
5540 filename, pulongest (index_num));
5541 return false;
5542 }
5543 mapped_debug_names::index_val &indexval = insertpair.first->second;
5544 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5545 addr += bytes_read;
5546
5547 for (;;)
5548 {
5549 mapped_debug_names::index_val::attr attr;
5550 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5551 addr += bytes_read;
5552 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5553 addr += bytes_read;
5554 if (attr.form == DW_FORM_implicit_const)
5555 {
5556 attr.implicit_const = read_signed_leb128 (abfd, addr,
5557 &bytes_read);
5558 addr += bytes_read;
5559 }
5560 if (attr.dw_idx == 0 && attr.form == 0)
5561 break;
5562 indexval.attr_vec.push_back (std::move (attr));
5563 }
5564 }
5565 if (addr != abbrev_table_start + abbrev_table_size)
5566 {
5567 warning (_("Section .debug_names in %s has abbreviation_table "
5568 "of size %zu vs. written as %u, ignoring .debug_names."),
5569 filename, addr - abbrev_table_start, abbrev_table_size);
5570 return false;
5571 }
5572 map.entry_pool = addr;
5573
5574 return true;
5575 }
5576
5577 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5578 list. */
5579
5580 static void
5581 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5582 const mapped_debug_names &map,
5583 dwarf2_section_info &section,
5584 bool is_dwz)
5585 {
5586 sect_offset sect_off_prev;
5587 for (uint32_t i = 0; i <= map.cu_count; ++i)
5588 {
5589 sect_offset sect_off_next;
5590 if (i < map.cu_count)
5591 {
5592 sect_off_next
5593 = (sect_offset) (extract_unsigned_integer
5594 (map.cu_table_reordered + i * map.offset_size,
5595 map.offset_size,
5596 map.dwarf5_byte_order));
5597 }
5598 else
5599 sect_off_next = (sect_offset) section.size;
5600 if (i >= 1)
5601 {
5602 const ULONGEST length = sect_off_next - sect_off_prev;
5603 dwarf2_per_cu_data *per_cu
5604 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5605 sect_off_prev, length);
5606 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5607 }
5608 sect_off_prev = sect_off_next;
5609 }
5610 }
5611
5612 /* Read the CU list from the mapped index, and use it to create all
5613 the CU objects for this dwarf2_per_objfile. */
5614
5615 static void
5616 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5617 const mapped_debug_names &map,
5618 const mapped_debug_names &dwz_map)
5619 {
5620 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5621 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5622
5623 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5624 dwarf2_per_objfile->info,
5625 false /* is_dwz */);
5626
5627 if (dwz_map.cu_count == 0)
5628 return;
5629
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5632 true /* is_dwz */);
5633 }
5634
5635 /* Read .debug_names. If everything went ok, initialize the "quick"
5636 elements of all the CUs and return true. Otherwise, return false. */
5637
5638 static bool
5639 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5640 {
5641 std::unique_ptr<mapped_debug_names> map
5642 (new mapped_debug_names (dwarf2_per_objfile));
5643 mapped_debug_names dwz_map (dwarf2_per_objfile);
5644 struct objfile *objfile = dwarf2_per_objfile->objfile;
5645
5646 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5647 &dwarf2_per_objfile->debug_names,
5648 *map))
5649 return false;
5650
5651 /* Don't use the index if it's empty. */
5652 if (map->name_count == 0)
5653 return false;
5654
5655 /* If there is a .dwz file, read it so we can get its CU list as
5656 well. */
5657 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5658 if (dwz != NULL)
5659 {
5660 if (!read_debug_names_from_section (objfile,
5661 bfd_get_filename (dwz->dwz_bfd),
5662 &dwz->debug_names, dwz_map))
5663 {
5664 warning (_("could not read '.debug_names' section from %s; skipping"),
5665 bfd_get_filename (dwz->dwz_bfd));
5666 return false;
5667 }
5668 }
5669
5670 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5671
5672 if (map->tu_count != 0)
5673 {
5674 /* We can only handle a single .debug_types when we have an
5675 index. */
5676 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5677 return false;
5678
5679 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5680 dwarf2_per_objfile->types, 0);
5681
5682 create_signatured_type_table_from_debug_names
5683 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5684 }
5685
5686 create_addrmap_from_aranges (dwarf2_per_objfile,
5687 &dwarf2_per_objfile->debug_aranges);
5688
5689 dwarf2_per_objfile->debug_names_table = std::move (map);
5690 dwarf2_per_objfile->using_index = 1;
5691 dwarf2_per_objfile->quick_file_names_table =
5692 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5693
5694 return true;
5695 }
5696
5697 /* Type used to manage iterating over all CUs looking for a symbol for
5698 .debug_names. */
5699
5700 class dw2_debug_names_iterator
5701 {
5702 public:
5703 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5704 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5705 dw2_debug_names_iterator (const mapped_debug_names &map,
5706 bool want_specific_block,
5707 block_enum block_index, domain_enum domain,
5708 const char *name)
5709 : m_map (map), m_want_specific_block (want_specific_block),
5710 m_block_index (block_index), m_domain (domain),
5711 m_addr (find_vec_in_debug_names (map, name))
5712 {}
5713
5714 dw2_debug_names_iterator (const mapped_debug_names &map,
5715 search_domain search, uint32_t namei)
5716 : m_map (map),
5717 m_search (search),
5718 m_addr (find_vec_in_debug_names (map, namei))
5719 {}
5720
5721 /* Return the next matching CU or NULL if there are no more. */
5722 dwarf2_per_cu_data *next ();
5723
5724 private:
5725 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5726 const char *name);
5727 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5728 uint32_t namei);
5729
5730 /* The internalized form of .debug_names. */
5731 const mapped_debug_names &m_map;
5732
5733 /* If true, only look for symbols that match BLOCK_INDEX. */
5734 const bool m_want_specific_block = false;
5735
5736 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5737 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5738 value. */
5739 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5740
5741 /* The kind of symbol we're looking for. */
5742 const domain_enum m_domain = UNDEF_DOMAIN;
5743 const search_domain m_search = ALL_DOMAIN;
5744
5745 /* The list of CUs from the index entry of the symbol, or NULL if
5746 not found. */
5747 const gdb_byte *m_addr;
5748 };
5749
5750 const char *
5751 mapped_debug_names::namei_to_name (uint32_t namei) const
5752 {
5753 const ULONGEST namei_string_offs
5754 = extract_unsigned_integer ((name_table_string_offs_reordered
5755 + namei * offset_size),
5756 offset_size,
5757 dwarf5_byte_order);
5758 return read_indirect_string_at_offset
5759 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5760 }
5761
5762 /* Find a slot in .debug_names for the object named NAME. If NAME is
5763 found, return pointer to its pool data. If NAME cannot be found,
5764 return NULL. */
5765
5766 const gdb_byte *
5767 dw2_debug_names_iterator::find_vec_in_debug_names
5768 (const mapped_debug_names &map, const char *name)
5769 {
5770 int (*cmp) (const char *, const char *);
5771
5772 if (current_language->la_language == language_cplus
5773 || current_language->la_language == language_fortran
5774 || current_language->la_language == language_d)
5775 {
5776 /* NAME is already canonical. Drop any qualifiers as
5777 .debug_names does not contain any. */
5778
5779 if (strchr (name, '(') != NULL)
5780 {
5781 gdb::unique_xmalloc_ptr<char> without_params
5782 = cp_remove_params (name);
5783
5784 if (without_params != NULL)
5785 {
5786 name = without_params.get();
5787 }
5788 }
5789 }
5790
5791 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5792
5793 const uint32_t full_hash = dwarf5_djb_hash (name);
5794 uint32_t namei
5795 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5796 (map.bucket_table_reordered
5797 + (full_hash % map.bucket_count)), 4,
5798 map.dwarf5_byte_order);
5799 if (namei == 0)
5800 return NULL;
5801 --namei;
5802 if (namei >= map.name_count)
5803 {
5804 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5805 "[in module %s]"),
5806 namei, map.name_count,
5807 objfile_name (map.dwarf2_per_objfile->objfile));
5808 return NULL;
5809 }
5810
5811 for (;;)
5812 {
5813 const uint32_t namei_full_hash
5814 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5815 (map.hash_table_reordered + namei), 4,
5816 map.dwarf5_byte_order);
5817 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5818 return NULL;
5819
5820 if (full_hash == namei_full_hash)
5821 {
5822 const char *const namei_string = map.namei_to_name (namei);
5823
5824 #if 0 /* An expensive sanity check. */
5825 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5826 {
5827 complaint (_("Wrong .debug_names hash for string at index %u "
5828 "[in module %s]"),
5829 namei, objfile_name (dwarf2_per_objfile->objfile));
5830 return NULL;
5831 }
5832 #endif
5833
5834 if (cmp (namei_string, name) == 0)
5835 {
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842 }
5843
5844 ++namei;
5845 if (namei >= map.name_count)
5846 return NULL;
5847 }
5848 }
5849
5850 const gdb_byte *
5851 dw2_debug_names_iterator::find_vec_in_debug_names
5852 (const mapped_debug_names &map, uint32_t namei)
5853 {
5854 if (namei >= map.name_count)
5855 {
5856 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5857 "[in module %s]"),
5858 namei, map.name_count,
5859 objfile_name (map.dwarf2_per_objfile->objfile));
5860 return NULL;
5861 }
5862
5863 const ULONGEST namei_entry_offs
5864 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5865 + namei * map.offset_size),
5866 map.offset_size, map.dwarf5_byte_order);
5867 return map.entry_pool + namei_entry_offs;
5868 }
5869
5870 /* See dw2_debug_names_iterator. */
5871
5872 dwarf2_per_cu_data *
5873 dw2_debug_names_iterator::next ()
5874 {
5875 if (m_addr == NULL)
5876 return NULL;
5877
5878 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5879 struct objfile *objfile = dwarf2_per_objfile->objfile;
5880 bfd *const abfd = objfile->obfd;
5881
5882 again:
5883
5884 unsigned int bytes_read;
5885 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5887 if (abbrev == 0)
5888 return NULL;
5889
5890 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5891 if (indexval_it == m_map.abbrev_map.cend ())
5892 {
5893 complaint (_("Wrong .debug_names undefined abbrev code %s "
5894 "[in module %s]"),
5895 pulongest (abbrev), objfile_name (objfile));
5896 return NULL;
5897 }
5898 const mapped_debug_names::index_val &indexval = indexval_it->second;
5899 bool have_is_static = false;
5900 bool is_static;
5901 dwarf2_per_cu_data *per_cu = NULL;
5902 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5903 {
5904 ULONGEST ull;
5905 switch (attr.form)
5906 {
5907 case DW_FORM_implicit_const:
5908 ull = attr.implicit_const;
5909 break;
5910 case DW_FORM_flag_present:
5911 ull = 1;
5912 break;
5913 case DW_FORM_udata:
5914 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5915 m_addr += bytes_read;
5916 break;
5917 default:
5918 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5919 dwarf_form_name (attr.form),
5920 objfile_name (objfile));
5921 return NULL;
5922 }
5923 switch (attr.dw_idx)
5924 {
5925 case DW_IDX_compile_unit:
5926 /* Don't crash on bad data. */
5927 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5928 {
5929 complaint (_(".debug_names entry has bad CU index %s"
5930 " [in module %s]"),
5931 pulongest (ull),
5932 objfile_name (dwarf2_per_objfile->objfile));
5933 continue;
5934 }
5935 per_cu = dwarf2_per_objfile->get_cutu (ull);
5936 break;
5937 case DW_IDX_type_unit:
5938 /* Don't crash on bad data. */
5939 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5940 {
5941 complaint (_(".debug_names entry has bad TU index %s"
5942 " [in module %s]"),
5943 pulongest (ull),
5944 objfile_name (dwarf2_per_objfile->objfile));
5945 continue;
5946 }
5947 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5948 break;
5949 case DW_IDX_GNU_internal:
5950 if (!m_map.augmentation_is_gdb)
5951 break;
5952 have_is_static = true;
5953 is_static = true;
5954 break;
5955 case DW_IDX_GNU_external:
5956 if (!m_map.augmentation_is_gdb)
5957 break;
5958 have_is_static = true;
5959 is_static = false;
5960 break;
5961 }
5962 }
5963
5964 /* Skip if already read in. */
5965 if (per_cu->v.quick->compunit_symtab)
5966 goto again;
5967
5968 /* Check static vs global. */
5969 if (have_is_static)
5970 {
5971 const bool want_static = m_block_index != GLOBAL_BLOCK;
5972 if (m_want_specific_block && want_static != is_static)
5973 goto again;
5974 }
5975
5976 /* Match dw2_symtab_iter_next, symbol_kind
5977 and debug_names::psymbol_tag. */
5978 switch (m_domain)
5979 {
5980 case VAR_DOMAIN:
5981 switch (indexval.dwarf_tag)
5982 {
5983 case DW_TAG_variable:
5984 case DW_TAG_subprogram:
5985 /* Some types are also in VAR_DOMAIN. */
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 case STRUCT_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case LABEL_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case 0:
6007 case DW_TAG_variable:
6008 break;
6009 default:
6010 goto again;
6011 }
6012 break;
6013 default:
6014 break;
6015 }
6016
6017 /* Match dw2_expand_symtabs_matching, symbol_kind and
6018 debug_names::psymbol_tag. */
6019 switch (m_search)
6020 {
6021 case VARIABLES_DOMAIN:
6022 switch (indexval.dwarf_tag)
6023 {
6024 case DW_TAG_variable:
6025 break;
6026 default:
6027 goto again;
6028 }
6029 break;
6030 case FUNCTIONS_DOMAIN:
6031 switch (indexval.dwarf_tag)
6032 {
6033 case DW_TAG_subprogram:
6034 break;
6035 default:
6036 goto again;
6037 }
6038 break;
6039 case TYPES_DOMAIN:
6040 switch (indexval.dwarf_tag)
6041 {
6042 case DW_TAG_typedef:
6043 case DW_TAG_structure_type:
6044 break;
6045 default:
6046 goto again;
6047 }
6048 break;
6049 default:
6050 break;
6051 }
6052
6053 return per_cu;
6054 }
6055
6056 static struct compunit_symtab *
6057 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6058 const char *name, domain_enum domain)
6059 {
6060 const block_enum block_index = static_cast<block_enum> (block_index_int);
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6063
6064 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6065 if (!mapp)
6066 {
6067 /* index is NULL if OBJF_READNOW. */
6068 return NULL;
6069 }
6070 const auto &map = *mapp;
6071
6072 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6073 block_index, domain, name);
6074
6075 struct compunit_symtab *stab_best = NULL;
6076 struct dwarf2_per_cu_data *per_cu;
6077 while ((per_cu = iter.next ()) != NULL)
6078 {
6079 struct symbol *sym, *with_opaque = NULL;
6080 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6081 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6082 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6083
6084 sym = block_find_symbol (block, name, domain,
6085 block_find_non_opaque_type_preferred,
6086 &with_opaque);
6087
6088 /* Some caution must be observed with overloaded functions and
6089 methods, since the index will not contain any overload
6090 information (but NAME might contain it). */
6091
6092 if (sym != NULL
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6094 return stab;
6095 if (with_opaque != NULL
6096 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6097 stab_best = stab;
6098
6099 /* Keep looking through other CUs. */
6100 }
6101
6102 return stab_best;
6103 }
6104
6105 /* This dumps minimal information about .debug_names. It is called
6106 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6107 uses this to verify that .debug_names has been loaded. */
6108
6109 static void
6110 dw2_debug_names_dump (struct objfile *objfile)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 gdb_assert (dwarf2_per_objfile->using_index);
6116 printf_filtered (".debug_names:");
6117 if (dwarf2_per_objfile->debug_names_table)
6118 printf_filtered (" exists\n");
6119 else
6120 printf_filtered (" faked for \"readnow\"\n");
6121 printf_filtered ("\n");
6122 }
6123
6124 static void
6125 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6126 const char *func_name)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6132 if (dwarf2_per_objfile->debug_names_table)
6133 {
6134 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6135
6136 /* Note: It doesn't matter what we pass for block_index here. */
6137 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6138 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6139
6140 struct dwarf2_per_cu_data *per_cu;
6141 while ((per_cu = iter.next ()) != NULL)
6142 dw2_instantiate_symtab (per_cu, false);
6143 }
6144 }
6145
6146 static void
6147 dw2_debug_names_expand_symtabs_matching
6148 (struct objfile *objfile,
6149 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6150 const lookup_name_info &lookup_name,
6151 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6152 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6153 enum search_domain kind)
6154 {
6155 struct dwarf2_per_objfile *dwarf2_per_objfile
6156 = get_dwarf2_per_objfile (objfile);
6157
6158 /* debug_names_table is NULL if OBJF_READNOW. */
6159 if (!dwarf2_per_objfile->debug_names_table)
6160 return;
6161
6162 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6163
6164 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6165
6166 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6167 symbol_matcher,
6168 kind, [&] (offset_type namei)
6169 {
6170 /* The name was matched, now expand corresponding CUs that were
6171 marked. */
6172 dw2_debug_names_iterator iter (map, kind, namei);
6173
6174 struct dwarf2_per_cu_data *per_cu;
6175 while ((per_cu = iter.next ()) != NULL)
6176 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6177 expansion_notify);
6178 });
6179 }
6180
6181 const struct quick_symbol_functions dwarf2_debug_names_functions =
6182 {
6183 dw2_has_symbols,
6184 dw2_find_last_source_symtab,
6185 dw2_forget_cached_source_info,
6186 dw2_map_symtabs_matching_filename,
6187 dw2_debug_names_lookup_symbol,
6188 dw2_print_stats,
6189 dw2_debug_names_dump,
6190 dw2_debug_names_expand_symtabs_for_function,
6191 dw2_expand_all_symtabs,
6192 dw2_expand_symtabs_with_fullname,
6193 dw2_map_matching_symbols,
6194 dw2_debug_names_expand_symtabs_matching,
6195 dw2_find_pc_sect_compunit_symtab,
6196 NULL,
6197 dw2_map_symbol_filenames
6198 };
6199
6200 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6201 to either a dwarf2_per_objfile or dwz_file object. */
6202
6203 template <typename T>
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6206 {
6207 dwarf2_section_info *section = &section_owner->gdb_index;
6208
6209 if (dwarf2_section_empty_p (section))
6210 return {};
6211
6212 /* Older elfutils strip versions could keep the section in the main
6213 executable while splitting it for the separate debug info file. */
6214 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6215 return {};
6216
6217 dwarf2_read_section (obj, section);
6218
6219 /* dwarf2_section_info::size is a bfd_size_type, while
6220 gdb::array_view works with size_t. On 32-bit hosts, with
6221 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6222 is 32-bit. So we need an explicit narrowing conversion here.
6223 This is fine, because it's impossible to allocate or mmap an
6224 array/buffer larger than what size_t can represent. */
6225 return gdb::make_array_view (section->buffer, section->size);
6226 }
6227
6228 /* Lookup the index cache for the contents of the index associated to
6229 DWARF2_OBJ. */
6230
6231 static gdb::array_view<const gdb_byte>
6232 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6233 {
6234 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6235 if (build_id == nullptr)
6236 return {};
6237
6238 return global_index_cache.lookup_gdb_index (build_id,
6239 &dwarf2_obj->index_cache_res);
6240 }
6241
6242 /* Same as the above, but for DWZ. */
6243
6244 static gdb::array_view<const gdb_byte>
6245 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6246 {
6247 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6248 if (build_id == nullptr)
6249 return {};
6250
6251 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6252 }
6253
6254 /* See symfile.h. */
6255
6256 bool
6257 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6258 {
6259 struct dwarf2_per_objfile *dwarf2_per_objfile
6260 = get_dwarf2_per_objfile (objfile);
6261
6262 /* If we're about to read full symbols, don't bother with the
6263 indices. In this case we also don't care if some other debug
6264 format is making psymtabs, because they are all about to be
6265 expanded anyway. */
6266 if ((objfile->flags & OBJF_READNOW))
6267 {
6268 dwarf2_per_objfile->using_index = 1;
6269 create_all_comp_units (dwarf2_per_objfile);
6270 create_all_type_units (dwarf2_per_objfile);
6271 dwarf2_per_objfile->quick_file_names_table
6272 = create_quick_file_names_table
6273 (dwarf2_per_objfile->all_comp_units.size ());
6274
6275 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6276 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6277 {
6278 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6279
6280 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6281 struct dwarf2_per_cu_quick_data);
6282 }
6283
6284 /* Return 1 so that gdb sees the "quick" functions. However,
6285 these functions will be no-ops because we will have expanded
6286 all symtabs. */
6287 *index_kind = dw_index_kind::GDB_INDEX;
6288 return true;
6289 }
6290
6291 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6292 {
6293 *index_kind = dw_index_kind::DEBUG_NAMES;
6294 return true;
6295 }
6296
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6299 get_gdb_index_contents_from_section<dwz_file>))
6300 {
6301 *index_kind = dw_index_kind::GDB_INDEX;
6302 return true;
6303 }
6304
6305 /* ... otherwise, try to find the index in the index cache. */
6306 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6307 get_gdb_index_contents_from_cache,
6308 get_gdb_index_contents_from_cache_dwz))
6309 {
6310 global_index_cache.hit ();
6311 *index_kind = dw_index_kind::GDB_INDEX;
6312 return true;
6313 }
6314
6315 global_index_cache.miss ();
6316 return false;
6317 }
6318
6319 \f
6320
6321 /* Build a partial symbol table. */
6322
6323 void
6324 dwarf2_build_psymtabs (struct objfile *objfile)
6325 {
6326 struct dwarf2_per_objfile *dwarf2_per_objfile
6327 = get_dwarf2_per_objfile (objfile);
6328
6329 init_psymbol_list (objfile, 1024);
6330
6331 try
6332 {
6333 /* This isn't really ideal: all the data we allocate on the
6334 objfile's obstack is still uselessly kept around. However,
6335 freeing it seems unsafe. */
6336 psymtab_discarder psymtabs (objfile);
6337 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6338 psymtabs.keep ();
6339
6340 /* (maybe) store an index in the cache. */
6341 global_index_cache.store (dwarf2_per_objfile);
6342 }
6343 catch (const gdb_exception_error &except)
6344 {
6345 exception_print (gdb_stderr, except);
6346 }
6347 }
6348
6349 /* Return the total length of the CU described by HEADER. */
6350
6351 static unsigned int
6352 get_cu_length (const struct comp_unit_head *header)
6353 {
6354 return header->initial_length_size + header->length;
6355 }
6356
6357 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6358
6359 static inline bool
6360 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6361 {
6362 sect_offset bottom = cu_header->sect_off;
6363 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6364
6365 return sect_off >= bottom && sect_off < top;
6366 }
6367
6368 /* Find the base address of the compilation unit for range lists and
6369 location lists. It will normally be specified by DW_AT_low_pc.
6370 In DWARF-3 draft 4, the base address could be overridden by
6371 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6372 compilation units with discontinuous ranges. */
6373
6374 static void
6375 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6376 {
6377 struct attribute *attr;
6378
6379 cu->base_known = 0;
6380 cu->base_address = 0;
6381
6382 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6383 if (attr)
6384 {
6385 cu->base_address = attr_value_as_address (attr);
6386 cu->base_known = 1;
6387 }
6388 else
6389 {
6390 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6391 if (attr)
6392 {
6393 cu->base_address = attr_value_as_address (attr);
6394 cu->base_known = 1;
6395 }
6396 }
6397 }
6398
6399 /* Read in the comp unit header information from the debug_info at info_ptr.
6400 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6401 NOTE: This leaves members offset, first_die_offset to be filled in
6402 by the caller. */
6403
6404 static const gdb_byte *
6405 read_comp_unit_head (struct comp_unit_head *cu_header,
6406 const gdb_byte *info_ptr,
6407 struct dwarf2_section_info *section,
6408 rcuh_kind section_kind)
6409 {
6410 int signed_addr;
6411 unsigned int bytes_read;
6412 const char *filename = get_section_file_name (section);
6413 bfd *abfd = get_section_bfd_owner (section);
6414
6415 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6416 cu_header->initial_length_size = bytes_read;
6417 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6418 info_ptr += bytes_read;
6419 cu_header->version = read_2_bytes (abfd, info_ptr);
6420 if (cu_header->version < 2 || cu_header->version > 5)
6421 error (_("Dwarf Error: wrong version in compilation unit header "
6422 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6423 cu_header->version, filename);
6424 info_ptr += 2;
6425 if (cu_header->version < 5)
6426 switch (section_kind)
6427 {
6428 case rcuh_kind::COMPILE:
6429 cu_header->unit_type = DW_UT_compile;
6430 break;
6431 case rcuh_kind::TYPE:
6432 cu_header->unit_type = DW_UT_type;
6433 break;
6434 default:
6435 internal_error (__FILE__, __LINE__,
6436 _("read_comp_unit_head: invalid section_kind"));
6437 }
6438 else
6439 {
6440 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6441 (read_1_byte (abfd, info_ptr));
6442 info_ptr += 1;
6443 switch (cu_header->unit_type)
6444 {
6445 case DW_UT_compile:
6446 if (section_kind != rcuh_kind::COMPILE)
6447 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6448 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6449 filename);
6450 break;
6451 case DW_UT_type:
6452 section_kind = rcuh_kind::TYPE;
6453 break;
6454 default:
6455 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6456 "(is %d, should be %d or %d) [in module %s]"),
6457 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6458 }
6459
6460 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6461 info_ptr += 1;
6462 }
6463 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6464 cu_header,
6465 &bytes_read);
6466 info_ptr += bytes_read;
6467 if (cu_header->version < 5)
6468 {
6469 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6470 info_ptr += 1;
6471 }
6472 signed_addr = bfd_get_sign_extend_vma (abfd);
6473 if (signed_addr < 0)
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: dwarf from non elf file"));
6476 cu_header->signed_addr_p = signed_addr;
6477
6478 if (section_kind == rcuh_kind::TYPE)
6479 {
6480 LONGEST type_offset;
6481
6482 cu_header->signature = read_8_bytes (abfd, info_ptr);
6483 info_ptr += 8;
6484
6485 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6486 info_ptr += bytes_read;
6487 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6488 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6489 error (_("Dwarf Error: Too big type_offset in compilation unit "
6490 "header (is %s) [in module %s]"), plongest (type_offset),
6491 filename);
6492 }
6493
6494 return info_ptr;
6495 }
6496
6497 /* Helper function that returns the proper abbrev section for
6498 THIS_CU. */
6499
6500 static struct dwarf2_section_info *
6501 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6502 {
6503 struct dwarf2_section_info *abbrev;
6504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6505
6506 if (this_cu->is_dwz)
6507 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6508 else
6509 abbrev = &dwarf2_per_objfile->abbrev;
6510
6511 return abbrev;
6512 }
6513
6514 /* Subroutine of read_and_check_comp_unit_head and
6515 read_and_check_type_unit_head to simplify them.
6516 Perform various error checking on the header. */
6517
6518 static void
6519 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct comp_unit_head *header,
6521 struct dwarf2_section_info *section,
6522 struct dwarf2_section_info *abbrev_section)
6523 {
6524 const char *filename = get_section_file_name (section);
6525
6526 if (to_underlying (header->abbrev_sect_off)
6527 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6528 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6529 "(offset %s + 6) [in module %s]"),
6530 sect_offset_str (header->abbrev_sect_off),
6531 sect_offset_str (header->sect_off),
6532 filename);
6533
6534 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6535 avoid potential 32-bit overflow. */
6536 if (((ULONGEST) header->sect_off + get_cu_length (header))
6537 > section->size)
6538 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6539 "(offset %s + 0) [in module %s]"),
6540 header->length, sect_offset_str (header->sect_off),
6541 filename);
6542 }
6543
6544 /* Read in a CU/TU header and perform some basic error checking.
6545 The contents of the header are stored in HEADER.
6546 The result is a pointer to the start of the first DIE. */
6547
6548 static const gdb_byte *
6549 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct comp_unit_head *header,
6551 struct dwarf2_section_info *section,
6552 struct dwarf2_section_info *abbrev_section,
6553 const gdb_byte *info_ptr,
6554 rcuh_kind section_kind)
6555 {
6556 const gdb_byte *beg_of_comp_unit = info_ptr;
6557
6558 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6559
6560 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6561
6562 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6563
6564 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6565 abbrev_section);
6566
6567 return info_ptr;
6568 }
6569
6570 /* Fetch the abbreviation table offset from a comp or type unit header. */
6571
6572 static sect_offset
6573 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6574 struct dwarf2_section_info *section,
6575 sect_offset sect_off)
6576 {
6577 bfd *abfd = get_section_bfd_owner (section);
6578 const gdb_byte *info_ptr;
6579 unsigned int initial_length_size, offset_size;
6580 uint16_t version;
6581
6582 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6583 info_ptr = section->buffer + to_underlying (sect_off);
6584 read_initial_length (abfd, info_ptr, &initial_length_size);
6585 offset_size = initial_length_size == 4 ? 4 : 8;
6586 info_ptr += initial_length_size;
6587
6588 version = read_2_bytes (abfd, info_ptr);
6589 info_ptr += 2;
6590 if (version >= 5)
6591 {
6592 /* Skip unit type and address size. */
6593 info_ptr += 2;
6594 }
6595
6596 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6597 }
6598
6599 /* Allocate a new partial symtab for file named NAME and mark this new
6600 partial symtab as being an include of PST. */
6601
6602 static void
6603 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6604 struct objfile *objfile)
6605 {
6606 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6607
6608 if (!IS_ABSOLUTE_PATH (subpst->filename))
6609 {
6610 /* It shares objfile->objfile_obstack. */
6611 subpst->dirname = pst->dirname;
6612 }
6613
6614 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6615 subpst->dependencies[0] = pst;
6616 subpst->number_of_dependencies = 1;
6617
6618 subpst->read_symtab = pst->read_symtab;
6619
6620 /* No private part is necessary for include psymtabs. This property
6621 can be used to differentiate between such include psymtabs and
6622 the regular ones. */
6623 subpst->read_symtab_private = NULL;
6624 }
6625
6626 /* Read the Line Number Program data and extract the list of files
6627 included by the source file represented by PST. Build an include
6628 partial symtab for each of these included files. */
6629
6630 static void
6631 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6632 struct die_info *die,
6633 struct partial_symtab *pst)
6634 {
6635 line_header_up lh;
6636 struct attribute *attr;
6637
6638 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6639 if (attr)
6640 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6641 if (lh == NULL)
6642 return; /* No linetable, so no includes. */
6643
6644 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6645 that we pass in the raw text_low here; that is ok because we're
6646 only decoding the line table to make include partial symtabs, and
6647 so the addresses aren't really used. */
6648 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6649 pst->raw_text_low (), 1);
6650 }
6651
6652 static hashval_t
6653 hash_signatured_type (const void *item)
6654 {
6655 const struct signatured_type *sig_type
6656 = (const struct signatured_type *) item;
6657
6658 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6659 return sig_type->signature;
6660 }
6661
6662 static int
6663 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6664 {
6665 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6666 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6667
6668 return lhs->signature == rhs->signature;
6669 }
6670
6671 /* Allocate a hash table for signatured types. */
6672
6673 static htab_t
6674 allocate_signatured_type_table (struct objfile *objfile)
6675 {
6676 return htab_create_alloc_ex (41,
6677 hash_signatured_type,
6678 eq_signatured_type,
6679 NULL,
6680 &objfile->objfile_obstack,
6681 hashtab_obstack_allocate,
6682 dummy_obstack_deallocate);
6683 }
6684
6685 /* A helper function to add a signatured type CU to a table. */
6686
6687 static int
6688 add_signatured_type_cu_to_table (void **slot, void *datum)
6689 {
6690 struct signatured_type *sigt = (struct signatured_type *) *slot;
6691 std::vector<signatured_type *> *all_type_units
6692 = (std::vector<signatured_type *> *) datum;
6693
6694 all_type_units->push_back (sigt);
6695
6696 return 1;
6697 }
6698
6699 /* A helper for create_debug_types_hash_table. Read types from SECTION
6700 and fill them into TYPES_HTAB. It will process only type units,
6701 therefore DW_UT_type. */
6702
6703 static void
6704 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6705 struct dwo_file *dwo_file,
6706 dwarf2_section_info *section, htab_t &types_htab,
6707 rcuh_kind section_kind)
6708 {
6709 struct objfile *objfile = dwarf2_per_objfile->objfile;
6710 struct dwarf2_section_info *abbrev_section;
6711 bfd *abfd;
6712 const gdb_byte *info_ptr, *end_ptr;
6713
6714 abbrev_section = (dwo_file != NULL
6715 ? &dwo_file->sections.abbrev
6716 : &dwarf2_per_objfile->abbrev);
6717
6718 if (dwarf_read_debug)
6719 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6720 get_section_name (section),
6721 get_section_file_name (abbrev_section));
6722
6723 dwarf2_read_section (objfile, section);
6724 info_ptr = section->buffer;
6725
6726 if (info_ptr == NULL)
6727 return;
6728
6729 /* We can't set abfd until now because the section may be empty or
6730 not present, in which case the bfd is unknown. */
6731 abfd = get_section_bfd_owner (section);
6732
6733 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6734 because we don't need to read any dies: the signature is in the
6735 header. */
6736
6737 end_ptr = info_ptr + section->size;
6738 while (info_ptr < end_ptr)
6739 {
6740 struct signatured_type *sig_type;
6741 struct dwo_unit *dwo_tu;
6742 void **slot;
6743 const gdb_byte *ptr = info_ptr;
6744 struct comp_unit_head header;
6745 unsigned int length;
6746
6747 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6748
6749 /* Initialize it due to a false compiler warning. */
6750 header.signature = -1;
6751 header.type_cu_offset_in_tu = (cu_offset) -1;
6752
6753 /* We need to read the type's signature in order to build the hash
6754 table, but we don't need anything else just yet. */
6755
6756 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6757 abbrev_section, ptr, section_kind);
6758
6759 length = get_cu_length (&header);
6760
6761 /* Skip dummy type units. */
6762 if (ptr >= info_ptr + length
6763 || peek_abbrev_code (abfd, ptr) == 0
6764 || header.unit_type != DW_UT_type)
6765 {
6766 info_ptr += length;
6767 continue;
6768 }
6769
6770 if (types_htab == NULL)
6771 {
6772 if (dwo_file)
6773 types_htab = allocate_dwo_unit_table (objfile);
6774 else
6775 types_htab = allocate_signatured_type_table (objfile);
6776 }
6777
6778 if (dwo_file)
6779 {
6780 sig_type = NULL;
6781 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6782 struct dwo_unit);
6783 dwo_tu->dwo_file = dwo_file;
6784 dwo_tu->signature = header.signature;
6785 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6786 dwo_tu->section = section;
6787 dwo_tu->sect_off = sect_off;
6788 dwo_tu->length = length;
6789 }
6790 else
6791 {
6792 /* N.B.: type_offset is not usable if this type uses a DWO file.
6793 The real type_offset is in the DWO file. */
6794 dwo_tu = NULL;
6795 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6796 struct signatured_type);
6797 sig_type->signature = header.signature;
6798 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6799 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6800 sig_type->per_cu.is_debug_types = 1;
6801 sig_type->per_cu.section = section;
6802 sig_type->per_cu.sect_off = sect_off;
6803 sig_type->per_cu.length = length;
6804 }
6805
6806 slot = htab_find_slot (types_htab,
6807 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6808 INSERT);
6809 gdb_assert (slot != NULL);
6810 if (*slot != NULL)
6811 {
6812 sect_offset dup_sect_off;
6813
6814 if (dwo_file)
6815 {
6816 const struct dwo_unit *dup_tu
6817 = (const struct dwo_unit *) *slot;
6818
6819 dup_sect_off = dup_tu->sect_off;
6820 }
6821 else
6822 {
6823 const struct signatured_type *dup_tu
6824 = (const struct signatured_type *) *slot;
6825
6826 dup_sect_off = dup_tu->per_cu.sect_off;
6827 }
6828
6829 complaint (_("debug type entry at offset %s is duplicate to"
6830 " the entry at offset %s, signature %s"),
6831 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6832 hex_string (header.signature));
6833 }
6834 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6835
6836 if (dwarf_read_debug > 1)
6837 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6838 sect_offset_str (sect_off),
6839 hex_string (header.signature));
6840
6841 info_ptr += length;
6842 }
6843 }
6844
6845 /* Create the hash table of all entries in the .debug_types
6846 (or .debug_types.dwo) section(s).
6847 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6848 otherwise it is NULL.
6849
6850 The result is a pointer to the hash table or NULL if there are no types.
6851
6852 Note: This function processes DWO files only, not DWP files. */
6853
6854 static void
6855 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6856 struct dwo_file *dwo_file,
6857 VEC (dwarf2_section_info_def) *types,
6858 htab_t &types_htab)
6859 {
6860 int ix;
6861 struct dwarf2_section_info *section;
6862
6863 if (VEC_empty (dwarf2_section_info_def, types))
6864 return;
6865
6866 for (ix = 0;
6867 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6868 ++ix)
6869 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6870 types_htab, rcuh_kind::TYPE);
6871 }
6872
6873 /* Create the hash table of all entries in the .debug_types section,
6874 and initialize all_type_units.
6875 The result is zero if there is an error (e.g. missing .debug_types section),
6876 otherwise non-zero. */
6877
6878 static int
6879 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6880 {
6881 htab_t types_htab = NULL;
6882
6883 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6884 &dwarf2_per_objfile->info, types_htab,
6885 rcuh_kind::COMPILE);
6886 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6887 dwarf2_per_objfile->types, types_htab);
6888 if (types_htab == NULL)
6889 {
6890 dwarf2_per_objfile->signatured_types = NULL;
6891 return 0;
6892 }
6893
6894 dwarf2_per_objfile->signatured_types = types_htab;
6895
6896 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6897 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6898
6899 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6900 &dwarf2_per_objfile->all_type_units);
6901
6902 return 1;
6903 }
6904
6905 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6906 If SLOT is non-NULL, it is the entry to use in the hash table.
6907 Otherwise we find one. */
6908
6909 static struct signatured_type *
6910 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6911 void **slot)
6912 {
6913 struct objfile *objfile = dwarf2_per_objfile->objfile;
6914
6915 if (dwarf2_per_objfile->all_type_units.size ()
6916 == dwarf2_per_objfile->all_type_units.capacity ())
6917 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6918
6919 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6920 struct signatured_type);
6921
6922 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6923 sig_type->signature = sig;
6924 sig_type->per_cu.is_debug_types = 1;
6925 if (dwarf2_per_objfile->using_index)
6926 {
6927 sig_type->per_cu.v.quick =
6928 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6929 struct dwarf2_per_cu_quick_data);
6930 }
6931
6932 if (slot == NULL)
6933 {
6934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6935 sig_type, INSERT);
6936 }
6937 gdb_assert (*slot == NULL);
6938 *slot = sig_type;
6939 /* The rest of sig_type must be filled in by the caller. */
6940 return sig_type;
6941 }
6942
6943 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6944 Fill in SIG_ENTRY with DWO_ENTRY. */
6945
6946 static void
6947 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6948 struct signatured_type *sig_entry,
6949 struct dwo_unit *dwo_entry)
6950 {
6951 /* Make sure we're not clobbering something we don't expect to. */
6952 gdb_assert (! sig_entry->per_cu.queued);
6953 gdb_assert (sig_entry->per_cu.cu == NULL);
6954 if (dwarf2_per_objfile->using_index)
6955 {
6956 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6957 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6958 }
6959 else
6960 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6961 gdb_assert (sig_entry->signature == dwo_entry->signature);
6962 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6963 gdb_assert (sig_entry->type_unit_group == NULL);
6964 gdb_assert (sig_entry->dwo_unit == NULL);
6965
6966 sig_entry->per_cu.section = dwo_entry->section;
6967 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6968 sig_entry->per_cu.length = dwo_entry->length;
6969 sig_entry->per_cu.reading_dwo_directly = 1;
6970 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6971 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6972 sig_entry->dwo_unit = dwo_entry;
6973 }
6974
6975 /* Subroutine of lookup_signatured_type.
6976 If we haven't read the TU yet, create the signatured_type data structure
6977 for a TU to be read in directly from a DWO file, bypassing the stub.
6978 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6979 using .gdb_index, then when reading a CU we want to stay in the DWO file
6980 containing that CU. Otherwise we could end up reading several other DWO
6981 files (due to comdat folding) to process the transitive closure of all the
6982 mentioned TUs, and that can be slow. The current DWO file will have every
6983 type signature that it needs.
6984 We only do this for .gdb_index because in the psymtab case we already have
6985 to read all the DWOs to build the type unit groups. */
6986
6987 static struct signatured_type *
6988 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6989 {
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = cu->per_cu->dwarf2_per_objfile;
6992 struct objfile *objfile = dwarf2_per_objfile->objfile;
6993 struct dwo_file *dwo_file;
6994 struct dwo_unit find_dwo_entry, *dwo_entry;
6995 struct signatured_type find_sig_entry, *sig_entry;
6996 void **slot;
6997
6998 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6999
7000 /* If TU skeletons have been removed then we may not have read in any
7001 TUs yet. */
7002 if (dwarf2_per_objfile->signatured_types == NULL)
7003 {
7004 dwarf2_per_objfile->signatured_types
7005 = allocate_signatured_type_table (objfile);
7006 }
7007
7008 /* We only ever need to read in one copy of a signatured type.
7009 Use the global signatured_types array to do our own comdat-folding
7010 of types. If this is the first time we're reading this TU, and
7011 the TU has an entry in .gdb_index, replace the recorded data from
7012 .gdb_index with this TU. */
7013
7014 find_sig_entry.signature = sig;
7015 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7016 &find_sig_entry, INSERT);
7017 sig_entry = (struct signatured_type *) *slot;
7018
7019 /* We can get here with the TU already read, *or* in the process of being
7020 read. Don't reassign the global entry to point to this DWO if that's
7021 the case. Also note that if the TU is already being read, it may not
7022 have come from a DWO, the program may be a mix of Fission-compiled
7023 code and non-Fission-compiled code. */
7024
7025 /* Have we already tried to read this TU?
7026 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7027 needn't exist in the global table yet). */
7028 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7029 return sig_entry;
7030
7031 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7032 dwo_unit of the TU itself. */
7033 dwo_file = cu->dwo_unit->dwo_file;
7034
7035 /* Ok, this is the first time we're reading this TU. */
7036 if (dwo_file->tus == NULL)
7037 return NULL;
7038 find_dwo_entry.signature = sig;
7039 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7040 if (dwo_entry == NULL)
7041 return NULL;
7042
7043 /* If the global table doesn't have an entry for this TU, add one. */
7044 if (sig_entry == NULL)
7045 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7046
7047 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7048 sig_entry->per_cu.tu_read = 1;
7049 return sig_entry;
7050 }
7051
7052 /* Subroutine of lookup_signatured_type.
7053 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7054 then try the DWP file. If the TU stub (skeleton) has been removed then
7055 it won't be in .gdb_index. */
7056
7057 static struct signatured_type *
7058 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7059 {
7060 struct dwarf2_per_objfile *dwarf2_per_objfile
7061 = cu->per_cu->dwarf2_per_objfile;
7062 struct objfile *objfile = dwarf2_per_objfile->objfile;
7063 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7064 struct dwo_unit *dwo_entry;
7065 struct signatured_type find_sig_entry, *sig_entry;
7066 void **slot;
7067
7068 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7069 gdb_assert (dwp_file != NULL);
7070
7071 /* If TU skeletons have been removed then we may not have read in any
7072 TUs yet. */
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7074 {
7075 dwarf2_per_objfile->signatured_types
7076 = allocate_signatured_type_table (objfile);
7077 }
7078
7079 find_sig_entry.signature = sig;
7080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7081 &find_sig_entry, INSERT);
7082 sig_entry = (struct signatured_type *) *slot;
7083
7084 /* Have we already tried to read this TU?
7085 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7086 needn't exist in the global table yet). */
7087 if (sig_entry != NULL)
7088 return sig_entry;
7089
7090 if (dwp_file->tus == NULL)
7091 return NULL;
7092 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7093 sig, 1 /* is_debug_types */);
7094 if (dwo_entry == NULL)
7095 return NULL;
7096
7097 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7098 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7099
7100 return sig_entry;
7101 }
7102
7103 /* Lookup a signature based type for DW_FORM_ref_sig8.
7104 Returns NULL if signature SIG is not present in the table.
7105 It is up to the caller to complain about this. */
7106
7107 static struct signatured_type *
7108 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7109 {
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
7112
7113 if (cu->dwo_unit
7114 && dwarf2_per_objfile->using_index)
7115 {
7116 /* We're in a DWO/DWP file, and we're using .gdb_index.
7117 These cases require special processing. */
7118 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7119 return lookup_dwo_signatured_type (cu, sig);
7120 else
7121 return lookup_dwp_signatured_type (cu, sig);
7122 }
7123 else
7124 {
7125 struct signatured_type find_entry, *entry;
7126
7127 if (dwarf2_per_objfile->signatured_types == NULL)
7128 return NULL;
7129 find_entry.signature = sig;
7130 entry = ((struct signatured_type *)
7131 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7132 return entry;
7133 }
7134 }
7135 \f
7136 /* Low level DIE reading support. */
7137
7138 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7139
7140 static void
7141 init_cu_die_reader (struct die_reader_specs *reader,
7142 struct dwarf2_cu *cu,
7143 struct dwarf2_section_info *section,
7144 struct dwo_file *dwo_file,
7145 struct abbrev_table *abbrev_table)
7146 {
7147 gdb_assert (section->readin && section->buffer != NULL);
7148 reader->abfd = get_section_bfd_owner (section);
7149 reader->cu = cu;
7150 reader->dwo_file = dwo_file;
7151 reader->die_section = section;
7152 reader->buffer = section->buffer;
7153 reader->buffer_end = section->buffer + section->size;
7154 reader->comp_dir = NULL;
7155 reader->abbrev_table = abbrev_table;
7156 }
7157
7158 /* Subroutine of init_cutu_and_read_dies to simplify it.
7159 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7160 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7161 already.
7162
7163 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7164 from it to the DIE in the DWO. If NULL we are skipping the stub.
7165 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7166 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7167 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7168 STUB_COMP_DIR may be non-NULL.
7169 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7170 are filled in with the info of the DIE from the DWO file.
7171 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7172 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7173 kept around for at least as long as *RESULT_READER.
7174
7175 The result is non-zero if a valid (non-dummy) DIE was found. */
7176
7177 static int
7178 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7179 struct dwo_unit *dwo_unit,
7180 struct die_info *stub_comp_unit_die,
7181 const char *stub_comp_dir,
7182 struct die_reader_specs *result_reader,
7183 const gdb_byte **result_info_ptr,
7184 struct die_info **result_comp_unit_die,
7185 int *result_has_children,
7186 abbrev_table_up *result_dwo_abbrev_table)
7187 {
7188 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7189 struct objfile *objfile = dwarf2_per_objfile->objfile;
7190 struct dwarf2_cu *cu = this_cu->cu;
7191 bfd *abfd;
7192 const gdb_byte *begin_info_ptr, *info_ptr;
7193 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7194 int i,num_extra_attrs;
7195 struct dwarf2_section_info *dwo_abbrev_section;
7196 struct attribute *attr;
7197 struct die_info *comp_unit_die;
7198
7199 /* At most one of these may be provided. */
7200 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7201
7202 /* These attributes aren't processed until later:
7203 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7204 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7205 referenced later. However, these attributes are found in the stub
7206 which we won't have later. In order to not impose this complication
7207 on the rest of the code, we read them here and copy them to the
7208 DWO CU/TU die. */
7209
7210 stmt_list = NULL;
7211 low_pc = NULL;
7212 high_pc = NULL;
7213 ranges = NULL;
7214 comp_dir = NULL;
7215
7216 if (stub_comp_unit_die != NULL)
7217 {
7218 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7219 DWO file. */
7220 if (! this_cu->is_debug_types)
7221 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7222 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7223 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7224 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7225 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7226
7227 /* There should be a DW_AT_addr_base attribute here (if needed).
7228 We need the value before we can process DW_FORM_GNU_addr_index
7229 or DW_FORM_addrx. */
7230 cu->addr_base = 0;
7231 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7232 if (attr)
7233 cu->addr_base = DW_UNSND (attr);
7234
7235 /* There should be a DW_AT_ranges_base attribute here (if needed).
7236 We need the value before we can process DW_AT_ranges. */
7237 cu->ranges_base = 0;
7238 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7239 if (attr)
7240 cu->ranges_base = DW_UNSND (attr);
7241 }
7242 else if (stub_comp_dir != NULL)
7243 {
7244 /* Reconstruct the comp_dir attribute to simplify the code below. */
7245 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7246 comp_dir->name = DW_AT_comp_dir;
7247 comp_dir->form = DW_FORM_string;
7248 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7249 DW_STRING (comp_dir) = stub_comp_dir;
7250 }
7251
7252 /* Set up for reading the DWO CU/TU. */
7253 cu->dwo_unit = dwo_unit;
7254 dwarf2_section_info *section = dwo_unit->section;
7255 dwarf2_read_section (objfile, section);
7256 abfd = get_section_bfd_owner (section);
7257 begin_info_ptr = info_ptr = (section->buffer
7258 + to_underlying (dwo_unit->sect_off));
7259 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7260
7261 if (this_cu->is_debug_types)
7262 {
7263 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7264
7265 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7266 &cu->header, section,
7267 dwo_abbrev_section,
7268 info_ptr, rcuh_kind::TYPE);
7269 /* This is not an assert because it can be caused by bad debug info. */
7270 if (sig_type->signature != cu->header.signature)
7271 {
7272 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7273 " TU at offset %s [in module %s]"),
7274 hex_string (sig_type->signature),
7275 hex_string (cu->header.signature),
7276 sect_offset_str (dwo_unit->sect_off),
7277 bfd_get_filename (abfd));
7278 }
7279 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7280 /* For DWOs coming from DWP files, we don't know the CU length
7281 nor the type's offset in the TU until now. */
7282 dwo_unit->length = get_cu_length (&cu->header);
7283 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7284
7285 /* Establish the type offset that can be used to lookup the type.
7286 For DWO files, we don't know it until now. */
7287 sig_type->type_offset_in_section
7288 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7289 }
7290 else
7291 {
7292 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7293 &cu->header, section,
7294 dwo_abbrev_section,
7295 info_ptr, rcuh_kind::COMPILE);
7296 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7297 /* For DWOs coming from DWP files, we don't know the CU length
7298 until now. */
7299 dwo_unit->length = get_cu_length (&cu->header);
7300 }
7301
7302 *result_dwo_abbrev_table
7303 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7304 cu->header.abbrev_sect_off);
7305 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7306 result_dwo_abbrev_table->get ());
7307
7308 /* Read in the die, but leave space to copy over the attributes
7309 from the stub. This has the benefit of simplifying the rest of
7310 the code - all the work to maintain the illusion of a single
7311 DW_TAG_{compile,type}_unit DIE is done here. */
7312 num_extra_attrs = ((stmt_list != NULL)
7313 + (low_pc != NULL)
7314 + (high_pc != NULL)
7315 + (ranges != NULL)
7316 + (comp_dir != NULL));
7317 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7318 result_has_children, num_extra_attrs);
7319
7320 /* Copy over the attributes from the stub to the DIE we just read in. */
7321 comp_unit_die = *result_comp_unit_die;
7322 i = comp_unit_die->num_attrs;
7323 if (stmt_list != NULL)
7324 comp_unit_die->attrs[i++] = *stmt_list;
7325 if (low_pc != NULL)
7326 comp_unit_die->attrs[i++] = *low_pc;
7327 if (high_pc != NULL)
7328 comp_unit_die->attrs[i++] = *high_pc;
7329 if (ranges != NULL)
7330 comp_unit_die->attrs[i++] = *ranges;
7331 if (comp_dir != NULL)
7332 comp_unit_die->attrs[i++] = *comp_dir;
7333 comp_unit_die->num_attrs += num_extra_attrs;
7334
7335 if (dwarf_die_debug)
7336 {
7337 fprintf_unfiltered (gdb_stdlog,
7338 "Read die from %s@0x%x of %s:\n",
7339 get_section_name (section),
7340 (unsigned) (begin_info_ptr - section->buffer),
7341 bfd_get_filename (abfd));
7342 dump_die (comp_unit_die, dwarf_die_debug);
7343 }
7344
7345 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7346 TUs by skipping the stub and going directly to the entry in the DWO file.
7347 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7348 to get it via circuitous means. Blech. */
7349 if (comp_dir != NULL)
7350 result_reader->comp_dir = DW_STRING (comp_dir);
7351
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + dwo_unit->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7355 return 0;
7356
7357 *result_info_ptr = info_ptr;
7358 return 1;
7359 }
7360
7361 /* Subroutine of init_cutu_and_read_dies to simplify it.
7362 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7363 Returns NULL if the specified DWO unit cannot be found. */
7364
7365 static struct dwo_unit *
7366 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7367 struct die_info *comp_unit_die)
7368 {
7369 struct dwarf2_cu *cu = this_cu->cu;
7370 ULONGEST signature;
7371 struct dwo_unit *dwo_unit;
7372 const char *comp_dir, *dwo_name;
7373
7374 gdb_assert (cu != NULL);
7375
7376 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7377 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7378 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7379
7380 if (this_cu->is_debug_types)
7381 {
7382 struct signatured_type *sig_type;
7383
7384 /* Since this_cu is the first member of struct signatured_type,
7385 we can go from a pointer to one to a pointer to the other. */
7386 sig_type = (struct signatured_type *) this_cu;
7387 signature = sig_type->signature;
7388 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7389 }
7390 else
7391 {
7392 struct attribute *attr;
7393
7394 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7395 if (! attr)
7396 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7397 " [in module %s]"),
7398 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7399 signature = DW_UNSND (attr);
7400 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7401 signature);
7402 }
7403
7404 return dwo_unit;
7405 }
7406
7407 /* Subroutine of init_cutu_and_read_dies to simplify it.
7408 See it for a description of the parameters.
7409 Read a TU directly from a DWO file, bypassing the stub. */
7410
7411 static void
7412 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7413 int use_existing_cu, int keep,
7414 die_reader_func_ftype *die_reader_func,
7415 void *data)
7416 {
7417 std::unique_ptr<dwarf2_cu> new_cu;
7418 struct signatured_type *sig_type;
7419 struct die_reader_specs reader;
7420 const gdb_byte *info_ptr;
7421 struct die_info *comp_unit_die;
7422 int has_children;
7423 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7424
7425 /* Verify we can do the following downcast, and that we have the
7426 data we need. */
7427 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7428 sig_type = (struct signatured_type *) this_cu;
7429 gdb_assert (sig_type->dwo_unit != NULL);
7430
7431 if (use_existing_cu && this_cu->cu != NULL)
7432 {
7433 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7434 /* There's no need to do the rereading_dwo_cu handling that
7435 init_cutu_and_read_dies does since we don't read the stub. */
7436 }
7437 else
7438 {
7439 /* If !use_existing_cu, this_cu->cu must be NULL. */
7440 gdb_assert (this_cu->cu == NULL);
7441 new_cu.reset (new dwarf2_cu (this_cu));
7442 }
7443
7444 /* A future optimization, if needed, would be to use an existing
7445 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7446 could share abbrev tables. */
7447
7448 /* The abbreviation table used by READER, this must live at least as long as
7449 READER. */
7450 abbrev_table_up dwo_abbrev_table;
7451
7452 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7453 NULL /* stub_comp_unit_die */,
7454 sig_type->dwo_unit->dwo_file->comp_dir,
7455 &reader, &info_ptr,
7456 &comp_unit_die, &has_children,
7457 &dwo_abbrev_table) == 0)
7458 {
7459 /* Dummy die. */
7460 return;
7461 }
7462
7463 /* All the "real" work is done here. */
7464 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7465
7466 /* This duplicates the code in init_cutu_and_read_dies,
7467 but the alternative is making the latter more complex.
7468 This function is only for the special case of using DWO files directly:
7469 no point in overly complicating the general case just to handle this. */
7470 if (new_cu != NULL && keep)
7471 {
7472 /* Link this CU into read_in_chain. */
7473 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7474 dwarf2_per_objfile->read_in_chain = this_cu;
7475 /* The chain owns it now. */
7476 new_cu.release ();
7477 }
7478 }
7479
7480 /* Initialize a CU (or TU) and read its DIEs.
7481 If the CU defers to a DWO file, read the DWO file as well.
7482
7483 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7484 Otherwise the table specified in the comp unit header is read in and used.
7485 This is an optimization for when we already have the abbrev table.
7486
7487 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7488 Otherwise, a new CU is allocated with xmalloc.
7489
7490 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7491 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7492
7493 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7494 linker) then DIE_READER_FUNC will not get called. */
7495
7496 static void
7497 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7498 struct abbrev_table *abbrev_table,
7499 int use_existing_cu, int keep,
7500 bool skip_partial,
7501 die_reader_func_ftype *die_reader_func,
7502 void *data)
7503 {
7504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7505 struct objfile *objfile = dwarf2_per_objfile->objfile;
7506 struct dwarf2_section_info *section = this_cu->section;
7507 bfd *abfd = get_section_bfd_owner (section);
7508 struct dwarf2_cu *cu;
7509 const gdb_byte *begin_info_ptr, *info_ptr;
7510 struct die_reader_specs reader;
7511 struct die_info *comp_unit_die;
7512 int has_children;
7513 struct attribute *attr;
7514 struct signatured_type *sig_type = NULL;
7515 struct dwarf2_section_info *abbrev_section;
7516 /* Non-zero if CU currently points to a DWO file and we need to
7517 reread it. When this happens we need to reread the skeleton die
7518 before we can reread the DWO file (this only applies to CUs, not TUs). */
7519 int rereading_dwo_cu = 0;
7520
7521 if (dwarf_die_debug)
7522 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7523 this_cu->is_debug_types ? "type" : "comp",
7524 sect_offset_str (this_cu->sect_off));
7525
7526 if (use_existing_cu)
7527 gdb_assert (keep);
7528
7529 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7530 file (instead of going through the stub), short-circuit all of this. */
7531 if (this_cu->reading_dwo_directly)
7532 {
7533 /* Narrow down the scope of possibilities to have to understand. */
7534 gdb_assert (this_cu->is_debug_types);
7535 gdb_assert (abbrev_table == NULL);
7536 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7537 die_reader_func, data);
7538 return;
7539 }
7540
7541 /* This is cheap if the section is already read in. */
7542 dwarf2_read_section (objfile, section);
7543
7544 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7545
7546 abbrev_section = get_abbrev_section_for_cu (this_cu);
7547
7548 std::unique_ptr<dwarf2_cu> new_cu;
7549 if (use_existing_cu && this_cu->cu != NULL)
7550 {
7551 cu = this_cu->cu;
7552 /* If this CU is from a DWO file we need to start over, we need to
7553 refetch the attributes from the skeleton CU.
7554 This could be optimized by retrieving those attributes from when we
7555 were here the first time: the previous comp_unit_die was stored in
7556 comp_unit_obstack. But there's no data yet that we need this
7557 optimization. */
7558 if (cu->dwo_unit != NULL)
7559 rereading_dwo_cu = 1;
7560 }
7561 else
7562 {
7563 /* If !use_existing_cu, this_cu->cu must be NULL. */
7564 gdb_assert (this_cu->cu == NULL);
7565 new_cu.reset (new dwarf2_cu (this_cu));
7566 cu = new_cu.get ();
7567 }
7568
7569 /* Get the header. */
7570 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7571 {
7572 /* We already have the header, there's no need to read it in again. */
7573 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7574 }
7575 else
7576 {
7577 if (this_cu->is_debug_types)
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section, info_ptr,
7582 rcuh_kind::TYPE);
7583
7584 /* Since per_cu is the first member of struct signatured_type,
7585 we can go from a pointer to one to a pointer to the other. */
7586 sig_type = (struct signatured_type *) this_cu;
7587 gdb_assert (sig_type->signature == cu->header.signature);
7588 gdb_assert (sig_type->type_offset_in_tu
7589 == cu->header.type_cu_offset_in_tu);
7590 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7591
7592 /* LENGTH has not been set yet for type units if we're
7593 using .gdb_index. */
7594 this_cu->length = get_cu_length (&cu->header);
7595
7596 /* Establish the type offset that can be used to lookup the type. */
7597 sig_type->type_offset_in_section =
7598 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7599
7600 this_cu->dwarf_version = cu->header.version;
7601 }
7602 else
7603 {
7604 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7605 &cu->header, section,
7606 abbrev_section,
7607 info_ptr,
7608 rcuh_kind::COMPILE);
7609
7610 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7611 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7612 this_cu->dwarf_version = cu->header.version;
7613 }
7614 }
7615
7616 /* Skip dummy compilation units. */
7617 if (info_ptr >= begin_info_ptr + this_cu->length
7618 || peek_abbrev_code (abfd, info_ptr) == 0)
7619 return;
7620
7621 /* If we don't have them yet, read the abbrevs for this compilation unit.
7622 And if we need to read them now, make sure they're freed when we're
7623 done (own the table through ABBREV_TABLE_HOLDER). */
7624 abbrev_table_up abbrev_table_holder;
7625 if (abbrev_table != NULL)
7626 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7627 else
7628 {
7629 abbrev_table_holder
7630 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7631 cu->header.abbrev_sect_off);
7632 abbrev_table = abbrev_table_holder.get ();
7633 }
7634
7635 /* Read the top level CU/TU die. */
7636 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7637 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7638
7639 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7640 return;
7641
7642 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7643 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7644 table from the DWO file and pass the ownership over to us. It will be
7645 referenced from READER, so we must make sure to free it after we're done
7646 with READER.
7647
7648 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7649 DWO CU, that this test will fail (the attribute will not be present). */
7650 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7651 abbrev_table_up dwo_abbrev_table;
7652 if (attr)
7653 {
7654 struct dwo_unit *dwo_unit;
7655 struct die_info *dwo_comp_unit_die;
7656
7657 if (has_children)
7658 {
7659 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7660 " has children (offset %s) [in module %s]"),
7661 sect_offset_str (this_cu->sect_off),
7662 bfd_get_filename (abfd));
7663 }
7664 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7665 if (dwo_unit != NULL)
7666 {
7667 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7668 comp_unit_die, NULL,
7669 &reader, &info_ptr,
7670 &dwo_comp_unit_die, &has_children,
7671 &dwo_abbrev_table) == 0)
7672 {
7673 /* Dummy die. */
7674 return;
7675 }
7676 comp_unit_die = dwo_comp_unit_die;
7677 }
7678 else
7679 {
7680 /* Yikes, we couldn't find the rest of the DIE, we only have
7681 the stub. A complaint has already been logged. There's
7682 not much more we can do except pass on the stub DIE to
7683 die_reader_func. We don't want to throw an error on bad
7684 debug info. */
7685 }
7686 }
7687
7688 /* All of the above is setup for this call. Yikes. */
7689 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7690
7691 /* Done, clean up. */
7692 if (new_cu != NULL && keep)
7693 {
7694 /* Link this CU into read_in_chain. */
7695 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7696 dwarf2_per_objfile->read_in_chain = this_cu;
7697 /* The chain owns it now. */
7698 new_cu.release ();
7699 }
7700 }
7701
7702 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7703 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7704 to have already done the lookup to find the DWO file).
7705
7706 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7707 THIS_CU->is_debug_types, but nothing else.
7708
7709 We fill in THIS_CU->length.
7710
7711 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7712 linker) then DIE_READER_FUNC will not get called.
7713
7714 THIS_CU->cu is always freed when done.
7715 This is done in order to not leave THIS_CU->cu in a state where we have
7716 to care whether it refers to the "main" CU or the DWO CU. */
7717
7718 static void
7719 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7720 struct dwo_file *dwo_file,
7721 die_reader_func_ftype *die_reader_func,
7722 void *data)
7723 {
7724 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7725 struct objfile *objfile = dwarf2_per_objfile->objfile;
7726 struct dwarf2_section_info *section = this_cu->section;
7727 bfd *abfd = get_section_bfd_owner (section);
7728 struct dwarf2_section_info *abbrev_section;
7729 const gdb_byte *begin_info_ptr, *info_ptr;
7730 struct die_reader_specs reader;
7731 struct die_info *comp_unit_die;
7732 int has_children;
7733
7734 if (dwarf_die_debug)
7735 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7736 this_cu->is_debug_types ? "type" : "comp",
7737 sect_offset_str (this_cu->sect_off));
7738
7739 gdb_assert (this_cu->cu == NULL);
7740
7741 abbrev_section = (dwo_file != NULL
7742 ? &dwo_file->sections.abbrev
7743 : get_abbrev_section_for_cu (this_cu));
7744
7745 /* This is cheap if the section is already read in. */
7746 dwarf2_read_section (objfile, section);
7747
7748 struct dwarf2_cu cu (this_cu);
7749
7750 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7751 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7752 &cu.header, section,
7753 abbrev_section, info_ptr,
7754 (this_cu->is_debug_types
7755 ? rcuh_kind::TYPE
7756 : rcuh_kind::COMPILE));
7757
7758 this_cu->length = get_cu_length (&cu.header);
7759
7760 /* Skip dummy compilation units. */
7761 if (info_ptr >= begin_info_ptr + this_cu->length
7762 || peek_abbrev_code (abfd, info_ptr) == 0)
7763 return;
7764
7765 abbrev_table_up abbrev_table
7766 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7767 cu.header.abbrev_sect_off);
7768
7769 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7771
7772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7773 }
7774
7775 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7776 does not lookup the specified DWO file.
7777 This cannot be used to read DWO files.
7778
7779 THIS_CU->cu is always freed when done.
7780 This is done in order to not leave THIS_CU->cu in a state where we have
7781 to care whether it refers to the "main" CU or the DWO CU.
7782 We can revisit this if the data shows there's a performance issue. */
7783
7784 static void
7785 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7786 die_reader_func_ftype *die_reader_func,
7787 void *data)
7788 {
7789 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7790 }
7791 \f
7792 /* Type Unit Groups.
7793
7794 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7795 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7796 so that all types coming from the same compilation (.o file) are grouped
7797 together. A future step could be to put the types in the same symtab as
7798 the CU the types ultimately came from. */
7799
7800 static hashval_t
7801 hash_type_unit_group (const void *item)
7802 {
7803 const struct type_unit_group *tu_group
7804 = (const struct type_unit_group *) item;
7805
7806 return hash_stmt_list_entry (&tu_group->hash);
7807 }
7808
7809 static int
7810 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7811 {
7812 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7813 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7814
7815 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7816 }
7817
7818 /* Allocate a hash table for type unit groups. */
7819
7820 static htab_t
7821 allocate_type_unit_groups_table (struct objfile *objfile)
7822 {
7823 return htab_create_alloc_ex (3,
7824 hash_type_unit_group,
7825 eq_type_unit_group,
7826 NULL,
7827 &objfile->objfile_obstack,
7828 hashtab_obstack_allocate,
7829 dummy_obstack_deallocate);
7830 }
7831
7832 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7833 partial symtabs. We combine several TUs per psymtab to not let the size
7834 of any one psymtab grow too big. */
7835 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7836 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7837
7838 /* Helper routine for get_type_unit_group.
7839 Create the type_unit_group object used to hold one or more TUs. */
7840
7841 static struct type_unit_group *
7842 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7843 {
7844 struct dwarf2_per_objfile *dwarf2_per_objfile
7845 = cu->per_cu->dwarf2_per_objfile;
7846 struct objfile *objfile = dwarf2_per_objfile->objfile;
7847 struct dwarf2_per_cu_data *per_cu;
7848 struct type_unit_group *tu_group;
7849
7850 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7851 struct type_unit_group);
7852 per_cu = &tu_group->per_cu;
7853 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7854
7855 if (dwarf2_per_objfile->using_index)
7856 {
7857 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7858 struct dwarf2_per_cu_quick_data);
7859 }
7860 else
7861 {
7862 unsigned int line_offset = to_underlying (line_offset_struct);
7863 struct partial_symtab *pst;
7864 std::string name;
7865
7866 /* Give the symtab a useful name for debug purposes. */
7867 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7868 name = string_printf ("<type_units_%d>",
7869 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7870 else
7871 name = string_printf ("<type_units_at_0x%x>", line_offset);
7872
7873 pst = create_partial_symtab (per_cu, name.c_str ());
7874 pst->anonymous = 1;
7875 }
7876
7877 tu_group->hash.dwo_unit = cu->dwo_unit;
7878 tu_group->hash.line_sect_off = line_offset_struct;
7879
7880 return tu_group;
7881 }
7882
7883 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7884 STMT_LIST is a DW_AT_stmt_list attribute. */
7885
7886 static struct type_unit_group *
7887 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7888 {
7889 struct dwarf2_per_objfile *dwarf2_per_objfile
7890 = cu->per_cu->dwarf2_per_objfile;
7891 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7892 struct type_unit_group *tu_group;
7893 void **slot;
7894 unsigned int line_offset;
7895 struct type_unit_group type_unit_group_for_lookup;
7896
7897 if (dwarf2_per_objfile->type_unit_groups == NULL)
7898 {
7899 dwarf2_per_objfile->type_unit_groups =
7900 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7901 }
7902
7903 /* Do we need to create a new group, or can we use an existing one? */
7904
7905 if (stmt_list)
7906 {
7907 line_offset = DW_UNSND (stmt_list);
7908 ++tu_stats->nr_symtab_sharers;
7909 }
7910 else
7911 {
7912 /* Ugh, no stmt_list. Rare, but we have to handle it.
7913 We can do various things here like create one group per TU or
7914 spread them over multiple groups to split up the expansion work.
7915 To avoid worst case scenarios (too many groups or too large groups)
7916 we, umm, group them in bunches. */
7917 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7918 | (tu_stats->nr_stmt_less_type_units
7919 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7920 ++tu_stats->nr_stmt_less_type_units;
7921 }
7922
7923 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7924 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7925 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7926 &type_unit_group_for_lookup, INSERT);
7927 if (*slot != NULL)
7928 {
7929 tu_group = (struct type_unit_group *) *slot;
7930 gdb_assert (tu_group != NULL);
7931 }
7932 else
7933 {
7934 sect_offset line_offset_struct = (sect_offset) line_offset;
7935 tu_group = create_type_unit_group (cu, line_offset_struct);
7936 *slot = tu_group;
7937 ++tu_stats->nr_symtabs;
7938 }
7939
7940 return tu_group;
7941 }
7942 \f
7943 /* Partial symbol tables. */
7944
7945 /* Create a psymtab named NAME and assign it to PER_CU.
7946
7947 The caller must fill in the following details:
7948 dirname, textlow, texthigh. */
7949
7950 static struct partial_symtab *
7951 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7952 {
7953 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7954 struct partial_symtab *pst;
7955
7956 pst = start_psymtab_common (objfile, name, 0);
7957
7958 pst->psymtabs_addrmap_supported = 1;
7959
7960 /* This is the glue that links PST into GDB's symbol API. */
7961 pst->read_symtab_private = per_cu;
7962 pst->read_symtab = dwarf2_read_symtab;
7963 per_cu->v.psymtab = pst;
7964
7965 return pst;
7966 }
7967
7968 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7969 type. */
7970
7971 struct process_psymtab_comp_unit_data
7972 {
7973 /* True if we are reading a DW_TAG_partial_unit. */
7974
7975 int want_partial_unit;
7976
7977 /* The "pretend" language that is used if the CU doesn't declare a
7978 language. */
7979
7980 enum language pretend_language;
7981 };
7982
7983 /* die_reader_func for process_psymtab_comp_unit. */
7984
7985 static void
7986 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7987 const gdb_byte *info_ptr,
7988 struct die_info *comp_unit_die,
7989 int has_children,
7990 void *data)
7991 {
7992 struct dwarf2_cu *cu = reader->cu;
7993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7995 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7996 CORE_ADDR baseaddr;
7997 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7998 struct partial_symtab *pst;
7999 enum pc_bounds_kind cu_bounds_kind;
8000 const char *filename;
8001 struct process_psymtab_comp_unit_data *info
8002 = (struct process_psymtab_comp_unit_data *) data;
8003
8004 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8005 return;
8006
8007 gdb_assert (! per_cu->is_debug_types);
8008
8009 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8010
8011 /* Allocate a new partial symbol table structure. */
8012 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8013 if (filename == NULL)
8014 filename = "";
8015
8016 pst = create_partial_symtab (per_cu, filename);
8017
8018 /* This must be done before calling dwarf2_build_include_psymtabs. */
8019 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8020
8021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8022
8023 dwarf2_find_base_address (comp_unit_die, cu);
8024
8025 /* Possibly set the default values of LOWPC and HIGHPC from
8026 `DW_AT_ranges'. */
8027 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8028 &best_highpc, cu, pst);
8029 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8030 {
8031 CORE_ADDR low
8032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8033 - baseaddr);
8034 CORE_ADDR high
8035 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8036 - baseaddr - 1);
8037 /* Store the contiguous range if it is not empty; it can be
8038 empty for CUs with no code. */
8039 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8040 low, high, pst);
8041 }
8042
8043 /* Check if comp unit has_children.
8044 If so, read the rest of the partial symbols from this comp unit.
8045 If not, there's no more debug_info for this comp unit. */
8046 if (has_children)
8047 {
8048 struct partial_die_info *first_die;
8049 CORE_ADDR lowpc, highpc;
8050
8051 lowpc = ((CORE_ADDR) -1);
8052 highpc = ((CORE_ADDR) 0);
8053
8054 first_die = load_partial_dies (reader, info_ptr, 1);
8055
8056 scan_partial_symbols (first_die, &lowpc, &highpc,
8057 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8058
8059 /* If we didn't find a lowpc, set it to highpc to avoid
8060 complaints from `maint check'. */
8061 if (lowpc == ((CORE_ADDR) -1))
8062 lowpc = highpc;
8063
8064 /* If the compilation unit didn't have an explicit address range,
8065 then use the information extracted from its child dies. */
8066 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8067 {
8068 best_lowpc = lowpc;
8069 best_highpc = highpc;
8070 }
8071 }
8072 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8073 best_lowpc + baseaddr)
8074 - baseaddr);
8075 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8076 best_highpc + baseaddr)
8077 - baseaddr);
8078
8079 end_psymtab_common (objfile, pst);
8080
8081 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8082 {
8083 int i;
8084 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8085 struct dwarf2_per_cu_data *iter;
8086
8087 /* Fill in 'dependencies' here; we fill in 'users' in a
8088 post-pass. */
8089 pst->number_of_dependencies = len;
8090 pst->dependencies
8091 = objfile->partial_symtabs->allocate_dependencies (len);
8092 for (i = 0;
8093 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8094 i, iter);
8095 ++i)
8096 pst->dependencies[i] = iter->v.psymtab;
8097
8098 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8099 }
8100
8101 /* Get the list of files included in the current compilation unit,
8102 and build a psymtab for each of them. */
8103 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8104
8105 if (dwarf_read_debug)
8106 fprintf_unfiltered (gdb_stdlog,
8107 "Psymtab for %s unit @%s: %s - %s"
8108 ", %d global, %d static syms\n",
8109 per_cu->is_debug_types ? "type" : "comp",
8110 sect_offset_str (per_cu->sect_off),
8111 paddress (gdbarch, pst->text_low (objfile)),
8112 paddress (gdbarch, pst->text_high (objfile)),
8113 pst->n_global_syms, pst->n_static_syms);
8114 }
8115
8116 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8117 Process compilation unit THIS_CU for a psymtab. */
8118
8119 static void
8120 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8121 int want_partial_unit,
8122 enum language pretend_language)
8123 {
8124 /* If this compilation unit was already read in, free the
8125 cached copy in order to read it in again. This is
8126 necessary because we skipped some symbols when we first
8127 read in the compilation unit (see load_partial_dies).
8128 This problem could be avoided, but the benefit is unclear. */
8129 if (this_cu->cu != NULL)
8130 free_one_cached_comp_unit (this_cu);
8131
8132 if (this_cu->is_debug_types)
8133 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8134 build_type_psymtabs_reader, NULL);
8135 else
8136 {
8137 process_psymtab_comp_unit_data info;
8138 info.want_partial_unit = want_partial_unit;
8139 info.pretend_language = pretend_language;
8140 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8141 process_psymtab_comp_unit_reader, &info);
8142 }
8143
8144 /* Age out any secondary CUs. */
8145 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8146 }
8147
8148 /* Reader function for build_type_psymtabs. */
8149
8150 static void
8151 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8152 const gdb_byte *info_ptr,
8153 struct die_info *type_unit_die,
8154 int has_children,
8155 void *data)
8156 {
8157 struct dwarf2_per_objfile *dwarf2_per_objfile
8158 = reader->cu->per_cu->dwarf2_per_objfile;
8159 struct objfile *objfile = dwarf2_per_objfile->objfile;
8160 struct dwarf2_cu *cu = reader->cu;
8161 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8162 struct signatured_type *sig_type;
8163 struct type_unit_group *tu_group;
8164 struct attribute *attr;
8165 struct partial_die_info *first_die;
8166 CORE_ADDR lowpc, highpc;
8167 struct partial_symtab *pst;
8168
8169 gdb_assert (data == NULL);
8170 gdb_assert (per_cu->is_debug_types);
8171 sig_type = (struct signatured_type *) per_cu;
8172
8173 if (! has_children)
8174 return;
8175
8176 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8177 tu_group = get_type_unit_group (cu, attr);
8178
8179 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8180
8181 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8182 pst = create_partial_symtab (per_cu, "");
8183 pst->anonymous = 1;
8184
8185 first_die = load_partial_dies (reader, info_ptr, 1);
8186
8187 lowpc = (CORE_ADDR) -1;
8188 highpc = (CORE_ADDR) 0;
8189 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8190
8191 end_psymtab_common (objfile, pst);
8192 }
8193
8194 /* Struct used to sort TUs by their abbreviation table offset. */
8195
8196 struct tu_abbrev_offset
8197 {
8198 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8199 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8200 {}
8201
8202 signatured_type *sig_type;
8203 sect_offset abbrev_offset;
8204 };
8205
8206 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8207
8208 static bool
8209 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8210 const struct tu_abbrev_offset &b)
8211 {
8212 return a.abbrev_offset < b.abbrev_offset;
8213 }
8214
8215 /* Efficiently read all the type units.
8216 This does the bulk of the work for build_type_psymtabs.
8217
8218 The efficiency is because we sort TUs by the abbrev table they use and
8219 only read each abbrev table once. In one program there are 200K TUs
8220 sharing 8K abbrev tables.
8221
8222 The main purpose of this function is to support building the
8223 dwarf2_per_objfile->type_unit_groups table.
8224 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8225 can collapse the search space by grouping them by stmt_list.
8226 The savings can be significant, in the same program from above the 200K TUs
8227 share 8K stmt_list tables.
8228
8229 FUNC is expected to call get_type_unit_group, which will create the
8230 struct type_unit_group if necessary and add it to
8231 dwarf2_per_objfile->type_unit_groups. */
8232
8233 static void
8234 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8235 {
8236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8237 abbrev_table_up abbrev_table;
8238 sect_offset abbrev_offset;
8239
8240 /* It's up to the caller to not call us multiple times. */
8241 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8242
8243 if (dwarf2_per_objfile->all_type_units.empty ())
8244 return;
8245
8246 /* TUs typically share abbrev tables, and there can be way more TUs than
8247 abbrev tables. Sort by abbrev table to reduce the number of times we
8248 read each abbrev table in.
8249 Alternatives are to punt or to maintain a cache of abbrev tables.
8250 This is simpler and efficient enough for now.
8251
8252 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8253 symtab to use). Typically TUs with the same abbrev offset have the same
8254 stmt_list value too so in practice this should work well.
8255
8256 The basic algorithm here is:
8257
8258 sort TUs by abbrev table
8259 for each TU with same abbrev table:
8260 read abbrev table if first user
8261 read TU top level DIE
8262 [IWBN if DWO skeletons had DW_AT_stmt_list]
8263 call FUNC */
8264
8265 if (dwarf_read_debug)
8266 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8267
8268 /* Sort in a separate table to maintain the order of all_type_units
8269 for .gdb_index: TU indices directly index all_type_units. */
8270 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8271 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8272
8273 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8274 sorted_by_abbrev.emplace_back
8275 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8276 sig_type->per_cu.section,
8277 sig_type->per_cu.sect_off));
8278
8279 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8280 sort_tu_by_abbrev_offset);
8281
8282 abbrev_offset = (sect_offset) ~(unsigned) 0;
8283
8284 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8285 {
8286 /* Switch to the next abbrev table if necessary. */
8287 if (abbrev_table == NULL
8288 || tu.abbrev_offset != abbrev_offset)
8289 {
8290 abbrev_offset = tu.abbrev_offset;
8291 abbrev_table =
8292 abbrev_table_read_table (dwarf2_per_objfile,
8293 &dwarf2_per_objfile->abbrev,
8294 abbrev_offset);
8295 ++tu_stats->nr_uniq_abbrev_tables;
8296 }
8297
8298 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8299 0, 0, false, build_type_psymtabs_reader, NULL);
8300 }
8301 }
8302
8303 /* Print collected type unit statistics. */
8304
8305 static void
8306 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8307 {
8308 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8309
8310 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8311 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8312 dwarf2_per_objfile->all_type_units.size ());
8313 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8314 tu_stats->nr_uniq_abbrev_tables);
8315 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8316 tu_stats->nr_symtabs);
8317 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8318 tu_stats->nr_symtab_sharers);
8319 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8320 tu_stats->nr_stmt_less_type_units);
8321 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8322 tu_stats->nr_all_type_units_reallocs);
8323 }
8324
8325 /* Traversal function for build_type_psymtabs. */
8326
8327 static int
8328 build_type_psymtab_dependencies (void **slot, void *info)
8329 {
8330 struct dwarf2_per_objfile *dwarf2_per_objfile
8331 = (struct dwarf2_per_objfile *) info;
8332 struct objfile *objfile = dwarf2_per_objfile->objfile;
8333 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8334 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8335 struct partial_symtab *pst = per_cu->v.psymtab;
8336 int len = VEC_length (sig_type_ptr, tu_group->tus);
8337 struct signatured_type *iter;
8338 int i;
8339
8340 gdb_assert (len > 0);
8341 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8342
8343 pst->number_of_dependencies = len;
8344 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8345 for (i = 0;
8346 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8347 ++i)
8348 {
8349 gdb_assert (iter->per_cu.is_debug_types);
8350 pst->dependencies[i] = iter->per_cu.v.psymtab;
8351 iter->type_unit_group = tu_group;
8352 }
8353
8354 VEC_free (sig_type_ptr, tu_group->tus);
8355
8356 return 1;
8357 }
8358
8359 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8360 Build partial symbol tables for the .debug_types comp-units. */
8361
8362 static void
8363 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8364 {
8365 if (! create_all_type_units (dwarf2_per_objfile))
8366 return;
8367
8368 build_type_psymtabs_1 (dwarf2_per_objfile);
8369 }
8370
8371 /* Traversal function for process_skeletonless_type_unit.
8372 Read a TU in a DWO file and build partial symbols for it. */
8373
8374 static int
8375 process_skeletonless_type_unit (void **slot, void *info)
8376 {
8377 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8378 struct dwarf2_per_objfile *dwarf2_per_objfile
8379 = (struct dwarf2_per_objfile *) info;
8380 struct signatured_type find_entry, *entry;
8381
8382 /* If this TU doesn't exist in the global table, add it and read it in. */
8383
8384 if (dwarf2_per_objfile->signatured_types == NULL)
8385 {
8386 dwarf2_per_objfile->signatured_types
8387 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8388 }
8389
8390 find_entry.signature = dwo_unit->signature;
8391 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8392 INSERT);
8393 /* If we've already seen this type there's nothing to do. What's happening
8394 is we're doing our own version of comdat-folding here. */
8395 if (*slot != NULL)
8396 return 1;
8397
8398 /* This does the job that create_all_type_units would have done for
8399 this TU. */
8400 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8402 *slot = entry;
8403
8404 /* This does the job that build_type_psymtabs_1 would have done. */
8405 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8406 build_type_psymtabs_reader, NULL);
8407
8408 return 1;
8409 }
8410
8411 /* Traversal function for process_skeletonless_type_units. */
8412
8413 static int
8414 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8415 {
8416 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8417
8418 if (dwo_file->tus != NULL)
8419 {
8420 htab_traverse_noresize (dwo_file->tus,
8421 process_skeletonless_type_unit, info);
8422 }
8423
8424 return 1;
8425 }
8426
8427 /* Scan all TUs of DWO files, verifying we've processed them.
8428 This is needed in case a TU was emitted without its skeleton.
8429 Note: This can't be done until we know what all the DWO files are. */
8430
8431 static void
8432 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8433 {
8434 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8435 if (get_dwp_file (dwarf2_per_objfile) == NULL
8436 && dwarf2_per_objfile->dwo_files != NULL)
8437 {
8438 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8439 process_dwo_file_for_skeletonless_type_units,
8440 dwarf2_per_objfile);
8441 }
8442 }
8443
8444 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8445
8446 static void
8447 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8448 {
8449 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8450 {
8451 struct partial_symtab *pst = per_cu->v.psymtab;
8452
8453 if (pst == NULL)
8454 continue;
8455
8456 for (int j = 0; j < pst->number_of_dependencies; ++j)
8457 {
8458 /* Set the 'user' field only if it is not already set. */
8459 if (pst->dependencies[j]->user == NULL)
8460 pst->dependencies[j]->user = pst;
8461 }
8462 }
8463 }
8464
8465 /* Build the partial symbol table by doing a quick pass through the
8466 .debug_info and .debug_abbrev sections. */
8467
8468 static void
8469 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8470 {
8471 struct objfile *objfile = dwarf2_per_objfile->objfile;
8472
8473 if (dwarf_read_debug)
8474 {
8475 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8476 objfile_name (objfile));
8477 }
8478
8479 dwarf2_per_objfile->reading_partial_symbols = 1;
8480
8481 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8482
8483 /* Any cached compilation units will be linked by the per-objfile
8484 read_in_chain. Make sure to free them when we're done. */
8485 free_cached_comp_units freer (dwarf2_per_objfile);
8486
8487 build_type_psymtabs (dwarf2_per_objfile);
8488
8489 create_all_comp_units (dwarf2_per_objfile);
8490
8491 /* Create a temporary address map on a temporary obstack. We later
8492 copy this to the final obstack. */
8493 auto_obstack temp_obstack;
8494
8495 scoped_restore save_psymtabs_addrmap
8496 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8497 addrmap_create_mutable (&temp_obstack));
8498
8499 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8501
8502 /* This has to wait until we read the CUs, we need the list of DWOs. */
8503 process_skeletonless_type_units (dwarf2_per_objfile);
8504
8505 /* Now that all TUs have been processed we can fill in the dependencies. */
8506 if (dwarf2_per_objfile->type_unit_groups != NULL)
8507 {
8508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8509 build_type_psymtab_dependencies, dwarf2_per_objfile);
8510 }
8511
8512 if (dwarf_read_debug)
8513 print_tu_stats (dwarf2_per_objfile);
8514
8515 set_partial_user (dwarf2_per_objfile);
8516
8517 objfile->partial_symtabs->psymtabs_addrmap
8518 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8519 objfile->partial_symtabs->obstack ());
8520 /* At this point we want to keep the address map. */
8521 save_psymtabs_addrmap.release ();
8522
8523 if (dwarf_read_debug)
8524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8525 objfile_name (objfile));
8526 }
8527
8528 /* die_reader_func for load_partial_comp_unit. */
8529
8530 static void
8531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8532 const gdb_byte *info_ptr,
8533 struct die_info *comp_unit_die,
8534 int has_children,
8535 void *data)
8536 {
8537 struct dwarf2_cu *cu = reader->cu;
8538
8539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8540
8541 /* Check if comp unit has_children.
8542 If so, read the rest of the partial symbols from this comp unit.
8543 If not, there's no more debug_info for this comp unit. */
8544 if (has_children)
8545 load_partial_dies (reader, info_ptr, 0);
8546 }
8547
8548 /* Load the partial DIEs for a secondary CU into memory.
8549 This is also used when rereading a primary CU with load_all_dies. */
8550
8551 static void
8552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8553 {
8554 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8555 load_partial_comp_unit_reader, NULL);
8556 }
8557
8558 static void
8559 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8560 struct dwarf2_section_info *section,
8561 struct dwarf2_section_info *abbrev_section,
8562 unsigned int is_dwz)
8563 {
8564 const gdb_byte *info_ptr;
8565 struct objfile *objfile = dwarf2_per_objfile->objfile;
8566
8567 if (dwarf_read_debug)
8568 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8569 get_section_name (section),
8570 get_section_file_name (section));
8571
8572 dwarf2_read_section (objfile, section);
8573
8574 info_ptr = section->buffer;
8575
8576 while (info_ptr < section->buffer + section->size)
8577 {
8578 struct dwarf2_per_cu_data *this_cu;
8579
8580 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8581
8582 comp_unit_head cu_header;
8583 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8584 abbrev_section, info_ptr,
8585 rcuh_kind::COMPILE);
8586
8587 /* Save the compilation unit for later lookup. */
8588 if (cu_header.unit_type != DW_UT_type)
8589 {
8590 this_cu = XOBNEW (&objfile->objfile_obstack,
8591 struct dwarf2_per_cu_data);
8592 memset (this_cu, 0, sizeof (*this_cu));
8593 }
8594 else
8595 {
8596 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8597 struct signatured_type);
8598 memset (sig_type, 0, sizeof (*sig_type));
8599 sig_type->signature = cu_header.signature;
8600 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8601 this_cu = &sig_type->per_cu;
8602 }
8603 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8604 this_cu->sect_off = sect_off;
8605 this_cu->length = cu_header.length + cu_header.initial_length_size;
8606 this_cu->is_dwz = is_dwz;
8607 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8608 this_cu->section = section;
8609
8610 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8611
8612 info_ptr = info_ptr + this_cu->length;
8613 }
8614 }
8615
8616 /* Create a list of all compilation units in OBJFILE.
8617 This is only done for -readnow and building partial symtabs. */
8618
8619 static void
8620 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8621 {
8622 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8623 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8624 &dwarf2_per_objfile->abbrev, 0);
8625
8626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8627 if (dwz != NULL)
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8629 1);
8630 }
8631
8632 /* Process all loaded DIEs for compilation unit CU, starting at
8633 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8634 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8635 DW_AT_ranges). See the comments of add_partial_subprogram on how
8636 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8637
8638 static void
8639 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8640 CORE_ADDR *highpc, int set_addrmap,
8641 struct dwarf2_cu *cu)
8642 {
8643 struct partial_die_info *pdi;
8644
8645 /* Now, march along the PDI's, descending into ones which have
8646 interesting children but skipping the children of the other ones,
8647 until we reach the end of the compilation unit. */
8648
8649 pdi = first_die;
8650
8651 while (pdi != NULL)
8652 {
8653 pdi->fixup (cu);
8654
8655 /* Anonymous namespaces or modules have no name but have interesting
8656 children, so we need to look at them. Ditto for anonymous
8657 enums. */
8658
8659 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8660 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8661 || pdi->tag == DW_TAG_imported_unit
8662 || pdi->tag == DW_TAG_inlined_subroutine)
8663 {
8664 switch (pdi->tag)
8665 {
8666 case DW_TAG_subprogram:
8667 case DW_TAG_inlined_subroutine:
8668 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8669 break;
8670 case DW_TAG_constant:
8671 case DW_TAG_variable:
8672 case DW_TAG_typedef:
8673 case DW_TAG_union_type:
8674 if (!pdi->is_declaration)
8675 {
8676 add_partial_symbol (pdi, cu);
8677 }
8678 break;
8679 case DW_TAG_class_type:
8680 case DW_TAG_interface_type:
8681 case DW_TAG_structure_type:
8682 if (!pdi->is_declaration)
8683 {
8684 add_partial_symbol (pdi, cu);
8685 }
8686 if ((cu->language == language_rust
8687 || cu->language == language_cplus) && pdi->has_children)
8688 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8689 set_addrmap, cu);
8690 break;
8691 case DW_TAG_enumeration_type:
8692 if (!pdi->is_declaration)
8693 add_partial_enumeration (pdi, cu);
8694 break;
8695 case DW_TAG_base_type:
8696 case DW_TAG_subrange_type:
8697 /* File scope base type definitions are added to the partial
8698 symbol table. */
8699 add_partial_symbol (pdi, cu);
8700 break;
8701 case DW_TAG_namespace:
8702 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8703 break;
8704 case DW_TAG_module:
8705 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8706 break;
8707 case DW_TAG_imported_unit:
8708 {
8709 struct dwarf2_per_cu_data *per_cu;
8710
8711 /* For now we don't handle imported units in type units. */
8712 if (cu->per_cu->is_debug_types)
8713 {
8714 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8715 " supported in type units [in module %s]"),
8716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8717 }
8718
8719 per_cu = dwarf2_find_containing_comp_unit
8720 (pdi->d.sect_off, pdi->is_dwz,
8721 cu->per_cu->dwarf2_per_objfile);
8722
8723 /* Go read the partial unit, if needed. */
8724 if (per_cu->v.psymtab == NULL)
8725 process_psymtab_comp_unit (per_cu, 1, cu->language);
8726
8727 VEC_safe_push (dwarf2_per_cu_ptr,
8728 cu->per_cu->imported_symtabs, per_cu);
8729 }
8730 break;
8731 case DW_TAG_imported_declaration:
8732 add_partial_symbol (pdi, cu);
8733 break;
8734 default:
8735 break;
8736 }
8737 }
8738
8739 /* If the die has a sibling, skip to the sibling. */
8740
8741 pdi = pdi->die_sibling;
8742 }
8743 }
8744
8745 /* Functions used to compute the fully scoped name of a partial DIE.
8746
8747 Normally, this is simple. For C++, the parent DIE's fully scoped
8748 name is concatenated with "::" and the partial DIE's name.
8749 Enumerators are an exception; they use the scope of their parent
8750 enumeration type, i.e. the name of the enumeration type is not
8751 prepended to the enumerator.
8752
8753 There are two complexities. One is DW_AT_specification; in this
8754 case "parent" means the parent of the target of the specification,
8755 instead of the direct parent of the DIE. The other is compilers
8756 which do not emit DW_TAG_namespace; in this case we try to guess
8757 the fully qualified name of structure types from their members'
8758 linkage names. This must be done using the DIE's children rather
8759 than the children of any DW_AT_specification target. We only need
8760 to do this for structures at the top level, i.e. if the target of
8761 any DW_AT_specification (if any; otherwise the DIE itself) does not
8762 have a parent. */
8763
8764 /* Compute the scope prefix associated with PDI's parent, in
8765 compilation unit CU. The result will be allocated on CU's
8766 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8767 field. NULL is returned if no prefix is necessary. */
8768 static const char *
8769 partial_die_parent_scope (struct partial_die_info *pdi,
8770 struct dwarf2_cu *cu)
8771 {
8772 const char *grandparent_scope;
8773 struct partial_die_info *parent, *real_pdi;
8774
8775 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8776 then this means the parent of the specification DIE. */
8777
8778 real_pdi = pdi;
8779 while (real_pdi->has_specification)
8780 {
8781 auto res = find_partial_die (real_pdi->spec_offset,
8782 real_pdi->spec_is_dwz, cu);
8783 real_pdi = res.pdi;
8784 cu = res.cu;
8785 }
8786
8787 parent = real_pdi->die_parent;
8788 if (parent == NULL)
8789 return NULL;
8790
8791 if (parent->scope_set)
8792 return parent->scope;
8793
8794 parent->fixup (cu);
8795
8796 grandparent_scope = partial_die_parent_scope (parent, cu);
8797
8798 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8799 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8800 Work around this problem here. */
8801 if (cu->language == language_cplus
8802 && parent->tag == DW_TAG_namespace
8803 && strcmp (parent->name, "::") == 0
8804 && grandparent_scope == NULL)
8805 {
8806 parent->scope = NULL;
8807 parent->scope_set = 1;
8808 return NULL;
8809 }
8810
8811 if (pdi->tag == DW_TAG_enumerator)
8812 /* Enumerators should not get the name of the enumeration as a prefix. */
8813 parent->scope = grandparent_scope;
8814 else if (parent->tag == DW_TAG_namespace
8815 || parent->tag == DW_TAG_module
8816 || parent->tag == DW_TAG_structure_type
8817 || parent->tag == DW_TAG_class_type
8818 || parent->tag == DW_TAG_interface_type
8819 || parent->tag == DW_TAG_union_type
8820 || parent->tag == DW_TAG_enumeration_type)
8821 {
8822 if (grandparent_scope == NULL)
8823 parent->scope = parent->name;
8824 else
8825 parent->scope = typename_concat (&cu->comp_unit_obstack,
8826 grandparent_scope,
8827 parent->name, 0, cu);
8828 }
8829 else
8830 {
8831 /* FIXME drow/2004-04-01: What should we be doing with
8832 function-local names? For partial symbols, we should probably be
8833 ignoring them. */
8834 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8835 dwarf_tag_name (parent->tag),
8836 sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8838 }
8839
8840 parent->scope_set = 1;
8841 return parent->scope;
8842 }
8843
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8846
8847 static char *
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8850 {
8851 const char *parent_scope;
8852
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8858 {
8859 pdi->fixup (cu);
8860
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8862 {
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8866
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8872
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8874 }
8875 }
8876
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8879 return NULL;
8880 else
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8882 }
8883
8884 static void
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8886 {
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8891 CORE_ADDR addr = 0;
8892 const char *actual_name = NULL;
8893 CORE_ADDR baseaddr;
8894 char *built_actual_name;
8895
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8897
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8901
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8904
8905 switch (pdi->tag)
8906 {
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8910 - baseaddr);
8911 if (pdi->is_external || cu->language == language_ada)
8912 {
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8922 addr,
8923 cu->language, objfile);
8924 }
8925 else
8926 {
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8933 }
8934
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8937 break;
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8945 break;
8946 case DW_TAG_variable:
8947 if (pdi->d.locdesc)
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8949
8950 if (pdi->d.locdesc
8951 && addr == 0
8952 && !dwarf2_per_objfile->has_section_at_zero)
8953 {
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8958 }
8959 else if (pdi->is_external)
8960 {
8961 /* Global Variable.
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8969 is referenced.
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8972 table building. */
8973
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8981 }
8982 else
8983 {
8984 int has_loc = pdi->d.locdesc != NULL;
8985
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8989 {
8990 xfree (built_actual_name);
8991 return;
8992 }
8993
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
8999 has_loc ? addr : 0,
9000 cu->language, objfile);
9001 }
9002 break;
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9011 break;
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9019 break;
9020 case DW_TAG_module:
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9024 psymbol_placement::GLOBAL,
9025 0, cu->language, objfile);
9026 break;
9027 case DW_TAG_class_type:
9028 case DW_TAG_interface_type:
9029 case DW_TAG_structure_type:
9030 case DW_TAG_union_type:
9031 case DW_TAG_enumeration_type:
9032 /* Skip external references. The DWARF standard says in the section
9033 about "Structure, Union, and Class Type Entries": "An incomplete
9034 structure, union or class type is represented by a structure,
9035 union or class entry that does not have a byte size attribute
9036 and that has a DW_AT_declaration attribute." */
9037 if (!pdi->has_byte_size && pdi->is_declaration)
9038 {
9039 xfree (built_actual_name);
9040 return;
9041 }
9042
9043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9044 static vs. global. */
9045 add_psymbol_to_list (actual_name, strlen (actual_name),
9046 built_actual_name != NULL,
9047 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9048 cu->language == language_cplus
9049 ? psymbol_placement::GLOBAL
9050 : psymbol_placement::STATIC,
9051 0, cu->language, objfile);
9052
9053 break;
9054 case DW_TAG_enumerator:
9055 add_psymbol_to_list (actual_name, strlen (actual_name),
9056 built_actual_name != NULL,
9057 VAR_DOMAIN, LOC_CONST, -1,
9058 cu->language == language_cplus
9059 ? psymbol_placement::GLOBAL
9060 : psymbol_placement::STATIC,
9061 0, cu->language, objfile);
9062 break;
9063 default:
9064 break;
9065 }
9066
9067 xfree (built_actual_name);
9068 }
9069
9070 /* Read a partial die corresponding to a namespace; also, add a symbol
9071 corresponding to that namespace to the symbol table. NAMESPACE is
9072 the name of the enclosing namespace. */
9073
9074 static void
9075 add_partial_namespace (struct partial_die_info *pdi,
9076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9077 int set_addrmap, struct dwarf2_cu *cu)
9078 {
9079 /* Add a symbol for the namespace. */
9080
9081 add_partial_symbol (pdi, cu);
9082
9083 /* Now scan partial symbols in that namespace. */
9084
9085 if (pdi->has_children)
9086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9087 }
9088
9089 /* Read a partial die corresponding to a Fortran module. */
9090
9091 static void
9092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9094 {
9095 /* Add a symbol for the namespace. */
9096
9097 add_partial_symbol (pdi, cu);
9098
9099 /* Now scan partial symbols in that module. */
9100
9101 if (pdi->has_children)
9102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9103 }
9104
9105 /* Read a partial die corresponding to a subprogram or an inlined
9106 subprogram and create a partial symbol for that subprogram.
9107 When the CU language allows it, this routine also defines a partial
9108 symbol for each nested subprogram that this subprogram contains.
9109 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9110 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9111
9112 PDI may also be a lexical block, in which case we simply search
9113 recursively for subprograms defined inside that lexical block.
9114 Again, this is only performed when the CU language allows this
9115 type of definitions. */
9116
9117 static void
9118 add_partial_subprogram (struct partial_die_info *pdi,
9119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9120 int set_addrmap, struct dwarf2_cu *cu)
9121 {
9122 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9123 {
9124 if (pdi->has_pc_info)
9125 {
9126 if (pdi->lowpc < *lowpc)
9127 *lowpc = pdi->lowpc;
9128 if (pdi->highpc > *highpc)
9129 *highpc = pdi->highpc;
9130 if (set_addrmap)
9131 {
9132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9134 CORE_ADDR baseaddr;
9135 CORE_ADDR this_highpc;
9136 CORE_ADDR this_lowpc;
9137
9138 baseaddr = ANOFFSET (objfile->section_offsets,
9139 SECT_OFF_TEXT (objfile));
9140 this_lowpc
9141 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9142 pdi->lowpc + baseaddr)
9143 - baseaddr);
9144 this_highpc
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->highpc + baseaddr)
9147 - baseaddr);
9148 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9149 this_lowpc, this_highpc - 1,
9150 cu->per_cu->v.psymtab);
9151 }
9152 }
9153
9154 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9155 {
9156 if (!pdi->is_declaration)
9157 /* Ignore subprogram DIEs that do not have a name, they are
9158 illegal. Do not emit a complaint at this point, we will
9159 do so when we convert this psymtab into a symtab. */
9160 if (pdi->name)
9161 add_partial_symbol (pdi, cu);
9162 }
9163 }
9164
9165 if (! pdi->has_children)
9166 return;
9167
9168 if (cu->language == language_ada)
9169 {
9170 pdi = pdi->die_child;
9171 while (pdi != NULL)
9172 {
9173 pdi->fixup (cu);
9174 if (pdi->tag == DW_TAG_subprogram
9175 || pdi->tag == DW_TAG_inlined_subroutine
9176 || pdi->tag == DW_TAG_lexical_block)
9177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9178 pdi = pdi->die_sibling;
9179 }
9180 }
9181 }
9182
9183 /* Read a partial die corresponding to an enumeration type. */
9184
9185 static void
9186 add_partial_enumeration (struct partial_die_info *enum_pdi,
9187 struct dwarf2_cu *cu)
9188 {
9189 struct partial_die_info *pdi;
9190
9191 if (enum_pdi->name != NULL)
9192 add_partial_symbol (enum_pdi, cu);
9193
9194 pdi = enum_pdi->die_child;
9195 while (pdi)
9196 {
9197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9198 complaint (_("malformed enumerator DIE ignored"));
9199 else
9200 add_partial_symbol (pdi, cu);
9201 pdi = pdi->die_sibling;
9202 }
9203 }
9204
9205 /* Return the initial uleb128 in the die at INFO_PTR. */
9206
9207 static unsigned int
9208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9209 {
9210 unsigned int bytes_read;
9211
9212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9213 }
9214
9215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9216 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9217
9218 Return the corresponding abbrev, or NULL if the number is zero (indicating
9219 an empty DIE). In either case *BYTES_READ will be set to the length of
9220 the initial number. */
9221
9222 static struct abbrev_info *
9223 peek_die_abbrev (const die_reader_specs &reader,
9224 const gdb_byte *info_ptr, unsigned int *bytes_read)
9225 {
9226 dwarf2_cu *cu = reader.cu;
9227 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9228 unsigned int abbrev_number
9229 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9230
9231 if (abbrev_number == 0)
9232 return NULL;
9233
9234 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9235 if (!abbrev)
9236 {
9237 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9238 " at offset %s [in module %s]"),
9239 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9240 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9241 }
9242
9243 return abbrev;
9244 }
9245
9246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9247 Returns a pointer to the end of a series of DIEs, terminated by an empty
9248 DIE. Any children of the skipped DIEs will also be skipped. */
9249
9250 static const gdb_byte *
9251 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9252 {
9253 while (1)
9254 {
9255 unsigned int bytes_read;
9256 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9257
9258 if (abbrev == NULL)
9259 return info_ptr + bytes_read;
9260 else
9261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9262 }
9263 }
9264
9265 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9267 abbrev corresponding to that skipped uleb128 should be passed in
9268 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9269 children. */
9270
9271 static const gdb_byte *
9272 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9273 struct abbrev_info *abbrev)
9274 {
9275 unsigned int bytes_read;
9276 struct attribute attr;
9277 bfd *abfd = reader->abfd;
9278 struct dwarf2_cu *cu = reader->cu;
9279 const gdb_byte *buffer = reader->buffer;
9280 const gdb_byte *buffer_end = reader->buffer_end;
9281 unsigned int form, i;
9282
9283 for (i = 0; i < abbrev->num_attrs; i++)
9284 {
9285 /* The only abbrev we care about is DW_AT_sibling. */
9286 if (abbrev->attrs[i].name == DW_AT_sibling)
9287 {
9288 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9289 if (attr.form == DW_FORM_ref_addr)
9290 complaint (_("ignoring absolute DW_AT_sibling"));
9291 else
9292 {
9293 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9294 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9295
9296 if (sibling_ptr < info_ptr)
9297 complaint (_("DW_AT_sibling points backwards"));
9298 else if (sibling_ptr > reader->buffer_end)
9299 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9300 else
9301 return sibling_ptr;
9302 }
9303 }
9304
9305 /* If it isn't DW_AT_sibling, skip this attribute. */
9306 form = abbrev->attrs[i].form;
9307 skip_attribute:
9308 switch (form)
9309 {
9310 case DW_FORM_ref_addr:
9311 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9312 and later it is offset sized. */
9313 if (cu->header.version == 2)
9314 info_ptr += cu->header.addr_size;
9315 else
9316 info_ptr += cu->header.offset_size;
9317 break;
9318 case DW_FORM_GNU_ref_alt:
9319 info_ptr += cu->header.offset_size;
9320 break;
9321 case DW_FORM_addr:
9322 info_ptr += cu->header.addr_size;
9323 break;
9324 case DW_FORM_data1:
9325 case DW_FORM_ref1:
9326 case DW_FORM_flag:
9327 info_ptr += 1;
9328 break;
9329 case DW_FORM_flag_present:
9330 case DW_FORM_implicit_const:
9331 break;
9332 case DW_FORM_data2:
9333 case DW_FORM_ref2:
9334 info_ptr += 2;
9335 break;
9336 case DW_FORM_data4:
9337 case DW_FORM_ref4:
9338 info_ptr += 4;
9339 break;
9340 case DW_FORM_data8:
9341 case DW_FORM_ref8:
9342 case DW_FORM_ref_sig8:
9343 info_ptr += 8;
9344 break;
9345 case DW_FORM_data16:
9346 info_ptr += 16;
9347 break;
9348 case DW_FORM_string:
9349 read_direct_string (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9351 break;
9352 case DW_FORM_sec_offset:
9353 case DW_FORM_strp:
9354 case DW_FORM_GNU_strp_alt:
9355 info_ptr += cu->header.offset_size;
9356 break;
9357 case DW_FORM_exprloc:
9358 case DW_FORM_block:
9359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9361 break;
9362 case DW_FORM_block1:
9363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9364 break;
9365 case DW_FORM_block2:
9366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9367 break;
9368 case DW_FORM_block4:
9369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9370 break;
9371 case DW_FORM_addrx:
9372 case DW_FORM_strx:
9373 case DW_FORM_sdata:
9374 case DW_FORM_udata:
9375 case DW_FORM_ref_udata:
9376 case DW_FORM_GNU_addr_index:
9377 case DW_FORM_GNU_str_index:
9378 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9379 break;
9380 case DW_FORM_indirect:
9381 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9382 info_ptr += bytes_read;
9383 /* We need to continue parsing from here, so just go back to
9384 the top. */
9385 goto skip_attribute;
9386
9387 default:
9388 error (_("Dwarf Error: Cannot handle %s "
9389 "in DWARF reader [in module %s]"),
9390 dwarf_form_name (form),
9391 bfd_get_filename (abfd));
9392 }
9393 }
9394
9395 if (abbrev->has_children)
9396 return skip_children (reader, info_ptr);
9397 else
9398 return info_ptr;
9399 }
9400
9401 /* Locate ORIG_PDI's sibling.
9402 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9403
9404 static const gdb_byte *
9405 locate_pdi_sibling (const struct die_reader_specs *reader,
9406 struct partial_die_info *orig_pdi,
9407 const gdb_byte *info_ptr)
9408 {
9409 /* Do we know the sibling already? */
9410
9411 if (orig_pdi->sibling)
9412 return orig_pdi->sibling;
9413
9414 /* Are there any children to deal with? */
9415
9416 if (!orig_pdi->has_children)
9417 return info_ptr;
9418
9419 /* Skip the children the long way. */
9420
9421 return skip_children (reader, info_ptr);
9422 }
9423
9424 /* Expand this partial symbol table into a full symbol table. SELF is
9425 not NULL. */
9426
9427 static void
9428 dwarf2_read_symtab (struct partial_symtab *self,
9429 struct objfile *objfile)
9430 {
9431 struct dwarf2_per_objfile *dwarf2_per_objfile
9432 = get_dwarf2_per_objfile (objfile);
9433
9434 if (self->readin)
9435 {
9436 warning (_("bug: psymtab for %s is already read in."),
9437 self->filename);
9438 }
9439 else
9440 {
9441 if (info_verbose)
9442 {
9443 printf_filtered (_("Reading in symbols for %s..."),
9444 self->filename);
9445 gdb_flush (gdb_stdout);
9446 }
9447
9448 /* If this psymtab is constructed from a debug-only objfile, the
9449 has_section_at_zero flag will not necessarily be correct. We
9450 can get the correct value for this flag by looking at the data
9451 associated with the (presumably stripped) associated objfile. */
9452 if (objfile->separate_debug_objfile_backlink)
9453 {
9454 struct dwarf2_per_objfile *dpo_backlink
9455 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9456
9457 dwarf2_per_objfile->has_section_at_zero
9458 = dpo_backlink->has_section_at_zero;
9459 }
9460
9461 dwarf2_per_objfile->reading_partial_symbols = 0;
9462
9463 psymtab_to_symtab_1 (self);
9464
9465 /* Finish up the debug error message. */
9466 if (info_verbose)
9467 printf_filtered (_("done.\n"));
9468 }
9469
9470 process_cu_includes (dwarf2_per_objfile);
9471 }
9472 \f
9473 /* Reading in full CUs. */
9474
9475 /* Add PER_CU to the queue. */
9476
9477 static void
9478 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9479 enum language pretend_language)
9480 {
9481 struct dwarf2_queue_item *item;
9482
9483 per_cu->queued = 1;
9484 item = XNEW (struct dwarf2_queue_item);
9485 item->per_cu = per_cu;
9486 item->pretend_language = pretend_language;
9487 item->next = NULL;
9488
9489 if (dwarf2_queue == NULL)
9490 dwarf2_queue = item;
9491 else
9492 dwarf2_queue_tail->next = item;
9493
9494 dwarf2_queue_tail = item;
9495 }
9496
9497 /* If PER_CU is not yet queued, add it to the queue.
9498 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9499 dependency.
9500 The result is non-zero if PER_CU was queued, otherwise the result is zero
9501 meaning either PER_CU is already queued or it is already loaded.
9502
9503 N.B. There is an invariant here that if a CU is queued then it is loaded.
9504 The caller is required to load PER_CU if we return non-zero. */
9505
9506 static int
9507 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9508 struct dwarf2_per_cu_data *per_cu,
9509 enum language pretend_language)
9510 {
9511 /* We may arrive here during partial symbol reading, if we need full
9512 DIEs to process an unusual case (e.g. template arguments). Do
9513 not queue PER_CU, just tell our caller to load its DIEs. */
9514 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9515 {
9516 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9517 return 1;
9518 return 0;
9519 }
9520
9521 /* Mark the dependence relation so that we don't flush PER_CU
9522 too early. */
9523 if (dependent_cu != NULL)
9524 dwarf2_add_dependence (dependent_cu, per_cu);
9525
9526 /* If it's already on the queue, we have nothing to do. */
9527 if (per_cu->queued)
9528 return 0;
9529
9530 /* If the compilation unit is already loaded, just mark it as
9531 used. */
9532 if (per_cu->cu != NULL)
9533 {
9534 per_cu->cu->last_used = 0;
9535 return 0;
9536 }
9537
9538 /* Add it to the queue. */
9539 queue_comp_unit (per_cu, pretend_language);
9540
9541 return 1;
9542 }
9543
9544 /* Process the queue. */
9545
9546 static void
9547 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9548 {
9549 struct dwarf2_queue_item *item, *next_item;
9550
9551 if (dwarf_read_debug)
9552 {
9553 fprintf_unfiltered (gdb_stdlog,
9554 "Expanding one or more symtabs of objfile %s ...\n",
9555 objfile_name (dwarf2_per_objfile->objfile));
9556 }
9557
9558 /* The queue starts out with one item, but following a DIE reference
9559 may load a new CU, adding it to the end of the queue. */
9560 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9561 {
9562 if ((dwarf2_per_objfile->using_index
9563 ? !item->per_cu->v.quick->compunit_symtab
9564 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9565 /* Skip dummy CUs. */
9566 && item->per_cu->cu != NULL)
9567 {
9568 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9569 unsigned int debug_print_threshold;
9570 char buf[100];
9571
9572 if (per_cu->is_debug_types)
9573 {
9574 struct signatured_type *sig_type =
9575 (struct signatured_type *) per_cu;
9576
9577 sprintf (buf, "TU %s at offset %s",
9578 hex_string (sig_type->signature),
9579 sect_offset_str (per_cu->sect_off));
9580 /* There can be 100s of TUs.
9581 Only print them in verbose mode. */
9582 debug_print_threshold = 2;
9583 }
9584 else
9585 {
9586 sprintf (buf, "CU at offset %s",
9587 sect_offset_str (per_cu->sect_off));
9588 debug_print_threshold = 1;
9589 }
9590
9591 if (dwarf_read_debug >= debug_print_threshold)
9592 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9593
9594 if (per_cu->is_debug_types)
9595 process_full_type_unit (per_cu, item->pretend_language);
9596 else
9597 process_full_comp_unit (per_cu, item->pretend_language);
9598
9599 if (dwarf_read_debug >= debug_print_threshold)
9600 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9601 }
9602
9603 item->per_cu->queued = 0;
9604 next_item = item->next;
9605 xfree (item);
9606 }
9607
9608 dwarf2_queue_tail = NULL;
9609
9610 if (dwarf_read_debug)
9611 {
9612 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9613 objfile_name (dwarf2_per_objfile->objfile));
9614 }
9615 }
9616
9617 /* Read in full symbols for PST, and anything it depends on. */
9618
9619 static void
9620 psymtab_to_symtab_1 (struct partial_symtab *pst)
9621 {
9622 struct dwarf2_per_cu_data *per_cu;
9623 int i;
9624
9625 if (pst->readin)
9626 return;
9627
9628 for (i = 0; i < pst->number_of_dependencies; i++)
9629 if (!pst->dependencies[i]->readin
9630 && pst->dependencies[i]->user == NULL)
9631 {
9632 /* Inform about additional files that need to be read in. */
9633 if (info_verbose)
9634 {
9635 /* FIXME: i18n: Need to make this a single string. */
9636 fputs_filtered (" ", gdb_stdout);
9637 wrap_here ("");
9638 fputs_filtered ("and ", gdb_stdout);
9639 wrap_here ("");
9640 printf_filtered ("%s...", pst->dependencies[i]->filename);
9641 wrap_here (""); /* Flush output. */
9642 gdb_flush (gdb_stdout);
9643 }
9644 psymtab_to_symtab_1 (pst->dependencies[i]);
9645 }
9646
9647 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9648
9649 if (per_cu == NULL)
9650 {
9651 /* It's an include file, no symbols to read for it.
9652 Everything is in the parent symtab. */
9653 pst->readin = 1;
9654 return;
9655 }
9656
9657 dw2_do_instantiate_symtab (per_cu, false);
9658 }
9659
9660 /* Trivial hash function for die_info: the hash value of a DIE
9661 is its offset in .debug_info for this objfile. */
9662
9663 static hashval_t
9664 die_hash (const void *item)
9665 {
9666 const struct die_info *die = (const struct die_info *) item;
9667
9668 return to_underlying (die->sect_off);
9669 }
9670
9671 /* Trivial comparison function for die_info structures: two DIEs
9672 are equal if they have the same offset. */
9673
9674 static int
9675 die_eq (const void *item_lhs, const void *item_rhs)
9676 {
9677 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9678 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9679
9680 return die_lhs->sect_off == die_rhs->sect_off;
9681 }
9682
9683 /* die_reader_func for load_full_comp_unit.
9684 This is identical to read_signatured_type_reader,
9685 but is kept separate for now. */
9686
9687 static void
9688 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9689 const gdb_byte *info_ptr,
9690 struct die_info *comp_unit_die,
9691 int has_children,
9692 void *data)
9693 {
9694 struct dwarf2_cu *cu = reader->cu;
9695 enum language *language_ptr = (enum language *) data;
9696
9697 gdb_assert (cu->die_hash == NULL);
9698 cu->die_hash =
9699 htab_create_alloc_ex (cu->header.length / 12,
9700 die_hash,
9701 die_eq,
9702 NULL,
9703 &cu->comp_unit_obstack,
9704 hashtab_obstack_allocate,
9705 dummy_obstack_deallocate);
9706
9707 if (has_children)
9708 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9709 &info_ptr, comp_unit_die);
9710 cu->dies = comp_unit_die;
9711 /* comp_unit_die is not stored in die_hash, no need. */
9712
9713 /* We try not to read any attributes in this function, because not
9714 all CUs needed for references have been loaded yet, and symbol
9715 table processing isn't initialized. But we have to set the CU language,
9716 or we won't be able to build types correctly.
9717 Similarly, if we do not read the producer, we can not apply
9718 producer-specific interpretation. */
9719 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9720 }
9721
9722 /* Load the DIEs associated with PER_CU into memory. */
9723
9724 static void
9725 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9726 bool skip_partial,
9727 enum language pretend_language)
9728 {
9729 gdb_assert (! this_cu->is_debug_types);
9730
9731 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9732 load_full_comp_unit_reader, &pretend_language);
9733 }
9734
9735 /* Add a DIE to the delayed physname list. */
9736
9737 static void
9738 add_to_method_list (struct type *type, int fnfield_index, int index,
9739 const char *name, struct die_info *die,
9740 struct dwarf2_cu *cu)
9741 {
9742 struct delayed_method_info mi;
9743 mi.type = type;
9744 mi.fnfield_index = fnfield_index;
9745 mi.index = index;
9746 mi.name = name;
9747 mi.die = die;
9748 cu->method_list.push_back (mi);
9749 }
9750
9751 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9752 "const" / "volatile". If so, decrements LEN by the length of the
9753 modifier and return true. Otherwise return false. */
9754
9755 template<size_t N>
9756 static bool
9757 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9758 {
9759 size_t mod_len = sizeof (mod) - 1;
9760 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9761 {
9762 len -= mod_len;
9763 return true;
9764 }
9765 return false;
9766 }
9767
9768 /* Compute the physnames of any methods on the CU's method list.
9769
9770 The computation of method physnames is delayed in order to avoid the
9771 (bad) condition that one of the method's formal parameters is of an as yet
9772 incomplete type. */
9773
9774 static void
9775 compute_delayed_physnames (struct dwarf2_cu *cu)
9776 {
9777 /* Only C++ delays computing physnames. */
9778 if (cu->method_list.empty ())
9779 return;
9780 gdb_assert (cu->language == language_cplus);
9781
9782 for (const delayed_method_info &mi : cu->method_list)
9783 {
9784 const char *physname;
9785 struct fn_fieldlist *fn_flp
9786 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9787 physname = dwarf2_physname (mi.name, mi.die, cu);
9788 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9789 = physname ? physname : "";
9790
9791 /* Since there's no tag to indicate whether a method is a
9792 const/volatile overload, extract that information out of the
9793 demangled name. */
9794 if (physname != NULL)
9795 {
9796 size_t len = strlen (physname);
9797
9798 while (1)
9799 {
9800 if (physname[len] == ')') /* shortcut */
9801 break;
9802 else if (check_modifier (physname, len, " const"))
9803 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9804 else if (check_modifier (physname, len, " volatile"))
9805 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9806 else
9807 break;
9808 }
9809 }
9810 }
9811
9812 /* The list is no longer needed. */
9813 cu->method_list.clear ();
9814 }
9815
9816 /* Go objects should be embedded in a DW_TAG_module DIE,
9817 and it's not clear if/how imported objects will appear.
9818 To keep Go support simple until that's worked out,
9819 go back through what we've read and create something usable.
9820 We could do this while processing each DIE, and feels kinda cleaner,
9821 but that way is more invasive.
9822 This is to, for example, allow the user to type "p var" or "b main"
9823 without having to specify the package name, and allow lookups
9824 of module.object to work in contexts that use the expression
9825 parser. */
9826
9827 static void
9828 fixup_go_packaging (struct dwarf2_cu *cu)
9829 {
9830 char *package_name = NULL;
9831 struct pending *list;
9832 int i;
9833
9834 for (list = *cu->get_builder ()->get_global_symbols ();
9835 list != NULL;
9836 list = list->next)
9837 {
9838 for (i = 0; i < list->nsyms; ++i)
9839 {
9840 struct symbol *sym = list->symbol[i];
9841
9842 if (SYMBOL_LANGUAGE (sym) == language_go
9843 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9844 {
9845 char *this_package_name = go_symbol_package_name (sym);
9846
9847 if (this_package_name == NULL)
9848 continue;
9849 if (package_name == NULL)
9850 package_name = this_package_name;
9851 else
9852 {
9853 struct objfile *objfile
9854 = cu->per_cu->dwarf2_per_objfile->objfile;
9855 if (strcmp (package_name, this_package_name) != 0)
9856 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9857 (symbol_symtab (sym) != NULL
9858 ? symtab_to_filename_for_display
9859 (symbol_symtab (sym))
9860 : objfile_name (objfile)),
9861 this_package_name, package_name);
9862 xfree (this_package_name);
9863 }
9864 }
9865 }
9866 }
9867
9868 if (package_name != NULL)
9869 {
9870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9871 const char *saved_package_name
9872 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9873 package_name,
9874 strlen (package_name));
9875 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9876 saved_package_name);
9877 struct symbol *sym;
9878
9879 sym = allocate_symbol (objfile);
9880 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9881 SYMBOL_SET_NAMES (sym, saved_package_name,
9882 strlen (saved_package_name), 0, objfile);
9883 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9884 e.g., "main" finds the "main" module and not C's main(). */
9885 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9886 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9887 SYMBOL_TYPE (sym) = type;
9888
9889 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9890
9891 xfree (package_name);
9892 }
9893 }
9894
9895 /* Allocate a fully-qualified name consisting of the two parts on the
9896 obstack. */
9897
9898 static const char *
9899 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9900 {
9901 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9902 }
9903
9904 /* A helper that allocates a struct discriminant_info to attach to a
9905 union type. */
9906
9907 static struct discriminant_info *
9908 alloc_discriminant_info (struct type *type, int discriminant_index,
9909 int default_index)
9910 {
9911 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9912 gdb_assert (discriminant_index == -1
9913 || (discriminant_index >= 0
9914 && discriminant_index < TYPE_NFIELDS (type)));
9915 gdb_assert (default_index == -1
9916 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9917
9918 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9919
9920 struct discriminant_info *disc
9921 = ((struct discriminant_info *)
9922 TYPE_ZALLOC (type,
9923 offsetof (struct discriminant_info, discriminants)
9924 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9925 disc->default_index = default_index;
9926 disc->discriminant_index = discriminant_index;
9927
9928 struct dynamic_prop prop;
9929 prop.kind = PROP_UNDEFINED;
9930 prop.data.baton = disc;
9931
9932 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9933
9934 return disc;
9935 }
9936
9937 /* Some versions of rustc emitted enums in an unusual way.
9938
9939 Ordinary enums were emitted as unions. The first element of each
9940 structure in the union was named "RUST$ENUM$DISR". This element
9941 held the discriminant.
9942
9943 These versions of Rust also implemented the "non-zero"
9944 optimization. When the enum had two values, and one is empty and
9945 the other holds a pointer that cannot be zero, the pointer is used
9946 as the discriminant, with a zero value meaning the empty variant.
9947 Here, the union's first member is of the form
9948 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9949 where the fieldnos are the indices of the fields that should be
9950 traversed in order to find the field (which may be several fields deep)
9951 and the variantname is the name of the variant of the case when the
9952 field is zero.
9953
9954 This function recognizes whether TYPE is of one of these forms,
9955 and, if so, smashes it to be a variant type. */
9956
9957 static void
9958 quirk_rust_enum (struct type *type, struct objfile *objfile)
9959 {
9960 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9961
9962 /* We don't need to deal with empty enums. */
9963 if (TYPE_NFIELDS (type) == 0)
9964 return;
9965
9966 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9967 if (TYPE_NFIELDS (type) == 1
9968 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9969 {
9970 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9971
9972 /* Decode the field name to find the offset of the
9973 discriminant. */
9974 ULONGEST bit_offset = 0;
9975 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9976 while (name[0] >= '0' && name[0] <= '9')
9977 {
9978 char *tail;
9979 unsigned long index = strtoul (name, &tail, 10);
9980 name = tail;
9981 if (*name != '$'
9982 || index >= TYPE_NFIELDS (field_type)
9983 || (TYPE_FIELD_LOC_KIND (field_type, index)
9984 != FIELD_LOC_KIND_BITPOS))
9985 {
9986 complaint (_("Could not parse Rust enum encoding string \"%s\""
9987 "[in module %s]"),
9988 TYPE_FIELD_NAME (type, 0),
9989 objfile_name (objfile));
9990 return;
9991 }
9992 ++name;
9993
9994 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9995 field_type = TYPE_FIELD_TYPE (field_type, index);
9996 }
9997
9998 /* Make a union to hold the variants. */
9999 struct type *union_type = alloc_type (objfile);
10000 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10001 TYPE_NFIELDS (union_type) = 3;
10002 TYPE_FIELDS (union_type)
10003 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10004 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10005 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10006
10007 /* Put the discriminant must at index 0. */
10008 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10009 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10010 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10011 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10012
10013 /* The order of fields doesn't really matter, so put the real
10014 field at index 1 and the data-less field at index 2. */
10015 struct discriminant_info *disc
10016 = alloc_discriminant_info (union_type, 0, 1);
10017 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10018 TYPE_FIELD_NAME (union_type, 1)
10019 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10020 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10021 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10022 TYPE_FIELD_NAME (union_type, 1));
10023
10024 const char *dataless_name
10025 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10026 name);
10027 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10028 dataless_name);
10029 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10030 /* NAME points into the original discriminant name, which
10031 already has the correct lifetime. */
10032 TYPE_FIELD_NAME (union_type, 2) = name;
10033 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10034 disc->discriminants[2] = 0;
10035
10036 /* Smash this type to be a structure type. We have to do this
10037 because the type has already been recorded. */
10038 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10039 TYPE_NFIELDS (type) = 1;
10040 TYPE_FIELDS (type)
10041 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10042
10043 /* Install the variant part. */
10044 TYPE_FIELD_TYPE (type, 0) = union_type;
10045 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10046 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10047 }
10048 else if (TYPE_NFIELDS (type) == 1)
10049 {
10050 /* We assume that a union with a single field is a univariant
10051 enum. */
10052 /* Smash this type to be a structure type. We have to do this
10053 because the type has already been recorded. */
10054 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10055
10056 /* Make a union to hold the variants. */
10057 struct type *union_type = alloc_type (objfile);
10058 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10059 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10060 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10061 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10062 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10063
10064 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10065 const char *variant_name
10066 = rust_last_path_segment (TYPE_NAME (field_type));
10067 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10068 TYPE_NAME (field_type)
10069 = rust_fully_qualify (&objfile->objfile_obstack,
10070 TYPE_NAME (type), variant_name);
10071
10072 /* Install the union in the outer struct type. */
10073 TYPE_NFIELDS (type) = 1;
10074 TYPE_FIELDS (type)
10075 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10076 TYPE_FIELD_TYPE (type, 0) = union_type;
10077 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10078 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10079
10080 alloc_discriminant_info (union_type, -1, 0);
10081 }
10082 else
10083 {
10084 struct type *disr_type = nullptr;
10085 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10086 {
10087 disr_type = TYPE_FIELD_TYPE (type, i);
10088
10089 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10090 {
10091 /* All fields of a true enum will be structs. */
10092 return;
10093 }
10094 else if (TYPE_NFIELDS (disr_type) == 0)
10095 {
10096 /* Could be data-less variant, so keep going. */
10097 disr_type = nullptr;
10098 }
10099 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10100 "RUST$ENUM$DISR") != 0)
10101 {
10102 /* Not a Rust enum. */
10103 return;
10104 }
10105 else
10106 {
10107 /* Found one. */
10108 break;
10109 }
10110 }
10111
10112 /* If we got here without a discriminant, then it's probably
10113 just a union. */
10114 if (disr_type == nullptr)
10115 return;
10116
10117 /* Smash this type to be a structure type. We have to do this
10118 because the type has already been recorded. */
10119 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10120
10121 /* Make a union to hold the variants. */
10122 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10123 struct type *union_type = alloc_type (objfile);
10124 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10125 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10126 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10127 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10128 TYPE_FIELDS (union_type)
10129 = (struct field *) TYPE_ZALLOC (union_type,
10130 (TYPE_NFIELDS (union_type)
10131 * sizeof (struct field)));
10132
10133 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10134 TYPE_NFIELDS (type) * sizeof (struct field));
10135
10136 /* Install the discriminant at index 0 in the union. */
10137 TYPE_FIELD (union_type, 0) = *disr_field;
10138 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10139 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10140
10141 /* Install the union in the outer struct type. */
10142 TYPE_FIELD_TYPE (type, 0) = union_type;
10143 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10144 TYPE_NFIELDS (type) = 1;
10145
10146 /* Set the size and offset of the union type. */
10147 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10148
10149 /* We need a way to find the correct discriminant given a
10150 variant name. For convenience we build a map here. */
10151 struct type *enum_type = FIELD_TYPE (*disr_field);
10152 std::unordered_map<std::string, ULONGEST> discriminant_map;
10153 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10154 {
10155 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10156 {
10157 const char *name
10158 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10159 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10160 }
10161 }
10162
10163 int n_fields = TYPE_NFIELDS (union_type);
10164 struct discriminant_info *disc
10165 = alloc_discriminant_info (union_type, 0, -1);
10166 /* Skip the discriminant here. */
10167 for (int i = 1; i < n_fields; ++i)
10168 {
10169 /* Find the final word in the name of this variant's type.
10170 That name can be used to look up the correct
10171 discriminant. */
10172 const char *variant_name
10173 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10174 i)));
10175
10176 auto iter = discriminant_map.find (variant_name);
10177 if (iter != discriminant_map.end ())
10178 disc->discriminants[i] = iter->second;
10179
10180 /* Remove the discriminant field, if it exists. */
10181 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10182 if (TYPE_NFIELDS (sub_type) > 0)
10183 {
10184 --TYPE_NFIELDS (sub_type);
10185 ++TYPE_FIELDS (sub_type);
10186 }
10187 TYPE_FIELD_NAME (union_type, i) = variant_name;
10188 TYPE_NAME (sub_type)
10189 = rust_fully_qualify (&objfile->objfile_obstack,
10190 TYPE_NAME (type), variant_name);
10191 }
10192 }
10193 }
10194
10195 /* Rewrite some Rust unions to be structures with variants parts. */
10196
10197 static void
10198 rust_union_quirks (struct dwarf2_cu *cu)
10199 {
10200 gdb_assert (cu->language == language_rust);
10201 for (type *type_ : cu->rust_unions)
10202 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10203 /* We don't need this any more. */
10204 cu->rust_unions.clear ();
10205 }
10206
10207 /* Return the symtab for PER_CU. This works properly regardless of
10208 whether we're using the index or psymtabs. */
10209
10210 static struct compunit_symtab *
10211 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10212 {
10213 return (per_cu->dwarf2_per_objfile->using_index
10214 ? per_cu->v.quick->compunit_symtab
10215 : per_cu->v.psymtab->compunit_symtab);
10216 }
10217
10218 /* A helper function for computing the list of all symbol tables
10219 included by PER_CU. */
10220
10221 static void
10222 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10223 htab_t all_children, htab_t all_type_symtabs,
10224 struct dwarf2_per_cu_data *per_cu,
10225 struct compunit_symtab *immediate_parent)
10226 {
10227 void **slot;
10228 int ix;
10229 struct compunit_symtab *cust;
10230 struct dwarf2_per_cu_data *iter;
10231
10232 slot = htab_find_slot (all_children, per_cu, INSERT);
10233 if (*slot != NULL)
10234 {
10235 /* This inclusion and its children have been processed. */
10236 return;
10237 }
10238
10239 *slot = per_cu;
10240 /* Only add a CU if it has a symbol table. */
10241 cust = get_compunit_symtab (per_cu);
10242 if (cust != NULL)
10243 {
10244 /* If this is a type unit only add its symbol table if we haven't
10245 seen it yet (type unit per_cu's can share symtabs). */
10246 if (per_cu->is_debug_types)
10247 {
10248 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10249 if (*slot == NULL)
10250 {
10251 *slot = cust;
10252 result->push_back (cust);
10253 if (cust->user == NULL)
10254 cust->user = immediate_parent;
10255 }
10256 }
10257 else
10258 {
10259 result->push_back (cust);
10260 if (cust->user == NULL)
10261 cust->user = immediate_parent;
10262 }
10263 }
10264
10265 for (ix = 0;
10266 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10267 ++ix)
10268 {
10269 recursively_compute_inclusions (result, all_children,
10270 all_type_symtabs, iter, cust);
10271 }
10272 }
10273
10274 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10275 PER_CU. */
10276
10277 static void
10278 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10279 {
10280 gdb_assert (! per_cu->is_debug_types);
10281
10282 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10283 {
10284 int ix, len;
10285 struct dwarf2_per_cu_data *per_cu_iter;
10286 std::vector<compunit_symtab *> result_symtabs;
10287 htab_t all_children, all_type_symtabs;
10288 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10289
10290 /* If we don't have a symtab, we can just skip this case. */
10291 if (cust == NULL)
10292 return;
10293
10294 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10295 NULL, xcalloc, xfree);
10296 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10297 NULL, xcalloc, xfree);
10298
10299 for (ix = 0;
10300 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10301 ix, per_cu_iter);
10302 ++ix)
10303 {
10304 recursively_compute_inclusions (&result_symtabs, all_children,
10305 all_type_symtabs, per_cu_iter,
10306 cust);
10307 }
10308
10309 /* Now we have a transitive closure of all the included symtabs. */
10310 len = result_symtabs.size ();
10311 cust->includes
10312 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10313 struct compunit_symtab *, len + 1);
10314 memcpy (cust->includes, result_symtabs.data (),
10315 len * sizeof (compunit_symtab *));
10316 cust->includes[len] = NULL;
10317
10318 htab_delete (all_children);
10319 htab_delete (all_type_symtabs);
10320 }
10321 }
10322
10323 /* Compute the 'includes' field for the symtabs of all the CUs we just
10324 read. */
10325
10326 static void
10327 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10328 {
10329 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10330 {
10331 if (! iter->is_debug_types)
10332 compute_compunit_symtab_includes (iter);
10333 }
10334
10335 dwarf2_per_objfile->just_read_cus.clear ();
10336 }
10337
10338 /* Generate full symbol information for PER_CU, whose DIEs have
10339 already been loaded into memory. */
10340
10341 static void
10342 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10343 enum language pretend_language)
10344 {
10345 struct dwarf2_cu *cu = per_cu->cu;
10346 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10347 struct objfile *objfile = dwarf2_per_objfile->objfile;
10348 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10349 CORE_ADDR lowpc, highpc;
10350 struct compunit_symtab *cust;
10351 CORE_ADDR baseaddr;
10352 struct block *static_block;
10353 CORE_ADDR addr;
10354
10355 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10356
10357 /* Clear the list here in case something was left over. */
10358 cu->method_list.clear ();
10359
10360 cu->language = pretend_language;
10361 cu->language_defn = language_def (cu->language);
10362
10363 /* Do line number decoding in read_file_scope () */
10364 process_die (cu->dies, cu);
10365
10366 /* For now fudge the Go package. */
10367 if (cu->language == language_go)
10368 fixup_go_packaging (cu);
10369
10370 /* Now that we have processed all the DIEs in the CU, all the types
10371 should be complete, and it should now be safe to compute all of the
10372 physnames. */
10373 compute_delayed_physnames (cu);
10374
10375 if (cu->language == language_rust)
10376 rust_union_quirks (cu);
10377
10378 /* Some compilers don't define a DW_AT_high_pc attribute for the
10379 compilation unit. If the DW_AT_high_pc is missing, synthesize
10380 it, by scanning the DIE's below the compilation unit. */
10381 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10382
10383 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10384 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10385
10386 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10387 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10388 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10389 addrmap to help ensure it has an accurate map of pc values belonging to
10390 this comp unit. */
10391 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10392
10393 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10394 SECT_OFF_TEXT (objfile),
10395 0);
10396
10397 if (cust != NULL)
10398 {
10399 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10400
10401 /* Set symtab language to language from DW_AT_language. If the
10402 compilation is from a C file generated by language preprocessors, do
10403 not set the language if it was already deduced by start_subfile. */
10404 if (!(cu->language == language_c
10405 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10406 COMPUNIT_FILETABS (cust)->language = cu->language;
10407
10408 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10409 produce DW_AT_location with location lists but it can be possibly
10410 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10411 there were bugs in prologue debug info, fixed later in GCC-4.5
10412 by "unwind info for epilogues" patch (which is not directly related).
10413
10414 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10415 needed, it would be wrong due to missing DW_AT_producer there.
10416
10417 Still one can confuse GDB by using non-standard GCC compilation
10418 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10419 */
10420 if (cu->has_loclist && gcc_4_minor >= 5)
10421 cust->locations_valid = 1;
10422
10423 if (gcc_4_minor >= 5)
10424 cust->epilogue_unwind_valid = 1;
10425
10426 cust->call_site_htab = cu->call_site_htab;
10427 }
10428
10429 if (dwarf2_per_objfile->using_index)
10430 per_cu->v.quick->compunit_symtab = cust;
10431 else
10432 {
10433 struct partial_symtab *pst = per_cu->v.psymtab;
10434 pst->compunit_symtab = cust;
10435 pst->readin = 1;
10436 }
10437
10438 /* Push it for inclusion processing later. */
10439 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10440
10441 /* Not needed any more. */
10442 cu->reset_builder ();
10443 }
10444
10445 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10446 already been loaded into memory. */
10447
10448 static void
10449 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10450 enum language pretend_language)
10451 {
10452 struct dwarf2_cu *cu = per_cu->cu;
10453 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10454 struct objfile *objfile = dwarf2_per_objfile->objfile;
10455 struct compunit_symtab *cust;
10456 struct signatured_type *sig_type;
10457
10458 gdb_assert (per_cu->is_debug_types);
10459 sig_type = (struct signatured_type *) per_cu;
10460
10461 /* Clear the list here in case something was left over. */
10462 cu->method_list.clear ();
10463
10464 cu->language = pretend_language;
10465 cu->language_defn = language_def (cu->language);
10466
10467 /* The symbol tables are set up in read_type_unit_scope. */
10468 process_die (cu->dies, cu);
10469
10470 /* For now fudge the Go package. */
10471 if (cu->language == language_go)
10472 fixup_go_packaging (cu);
10473
10474 /* Now that we have processed all the DIEs in the CU, all the types
10475 should be complete, and it should now be safe to compute all of the
10476 physnames. */
10477 compute_delayed_physnames (cu);
10478
10479 if (cu->language == language_rust)
10480 rust_union_quirks (cu);
10481
10482 /* TUs share symbol tables.
10483 If this is the first TU to use this symtab, complete the construction
10484 of it with end_expandable_symtab. Otherwise, complete the addition of
10485 this TU's symbols to the existing symtab. */
10486 if (sig_type->type_unit_group->compunit_symtab == NULL)
10487 {
10488 buildsym_compunit *builder = cu->get_builder ();
10489 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10490 sig_type->type_unit_group->compunit_symtab = cust;
10491
10492 if (cust != NULL)
10493 {
10494 /* Set symtab language to language from DW_AT_language. If the
10495 compilation is from a C file generated by language preprocessors,
10496 do not set the language if it was already deduced by
10497 start_subfile. */
10498 if (!(cu->language == language_c
10499 && COMPUNIT_FILETABS (cust)->language != language_c))
10500 COMPUNIT_FILETABS (cust)->language = cu->language;
10501 }
10502 }
10503 else
10504 {
10505 cu->get_builder ()->augment_type_symtab ();
10506 cust = sig_type->type_unit_group->compunit_symtab;
10507 }
10508
10509 if (dwarf2_per_objfile->using_index)
10510 per_cu->v.quick->compunit_symtab = cust;
10511 else
10512 {
10513 struct partial_symtab *pst = per_cu->v.psymtab;
10514 pst->compunit_symtab = cust;
10515 pst->readin = 1;
10516 }
10517
10518 /* Not needed any more. */
10519 cu->reset_builder ();
10520 }
10521
10522 /* Process an imported unit DIE. */
10523
10524 static void
10525 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10526 {
10527 struct attribute *attr;
10528
10529 /* For now we don't handle imported units in type units. */
10530 if (cu->per_cu->is_debug_types)
10531 {
10532 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10533 " supported in type units [in module %s]"),
10534 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10535 }
10536
10537 attr = dwarf2_attr (die, DW_AT_import, cu);
10538 if (attr != NULL)
10539 {
10540 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10541 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10542 dwarf2_per_cu_data *per_cu
10543 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10544 cu->per_cu->dwarf2_per_objfile);
10545
10546 /* If necessary, add it to the queue and load its DIEs. */
10547 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10548 load_full_comp_unit (per_cu, false, cu->language);
10549
10550 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10551 per_cu);
10552 }
10553 }
10554
10555 /* RAII object that represents a process_die scope: i.e.,
10556 starts/finishes processing a DIE. */
10557 class process_die_scope
10558 {
10559 public:
10560 process_die_scope (die_info *die, dwarf2_cu *cu)
10561 : m_die (die), m_cu (cu)
10562 {
10563 /* We should only be processing DIEs not already in process. */
10564 gdb_assert (!m_die->in_process);
10565 m_die->in_process = true;
10566 }
10567
10568 ~process_die_scope ()
10569 {
10570 m_die->in_process = false;
10571
10572 /* If we're done processing the DIE for the CU that owns the line
10573 header, we don't need the line header anymore. */
10574 if (m_cu->line_header_die_owner == m_die)
10575 {
10576 delete m_cu->line_header;
10577 m_cu->line_header = NULL;
10578 m_cu->line_header_die_owner = NULL;
10579 }
10580 }
10581
10582 private:
10583 die_info *m_die;
10584 dwarf2_cu *m_cu;
10585 };
10586
10587 /* Process a die and its children. */
10588
10589 static void
10590 process_die (struct die_info *die, struct dwarf2_cu *cu)
10591 {
10592 process_die_scope scope (die, cu);
10593
10594 switch (die->tag)
10595 {
10596 case DW_TAG_padding:
10597 break;
10598 case DW_TAG_compile_unit:
10599 case DW_TAG_partial_unit:
10600 read_file_scope (die, cu);
10601 break;
10602 case DW_TAG_type_unit:
10603 read_type_unit_scope (die, cu);
10604 break;
10605 case DW_TAG_subprogram:
10606 case DW_TAG_inlined_subroutine:
10607 read_func_scope (die, cu);
10608 break;
10609 case DW_TAG_lexical_block:
10610 case DW_TAG_try_block:
10611 case DW_TAG_catch_block:
10612 read_lexical_block_scope (die, cu);
10613 break;
10614 case DW_TAG_call_site:
10615 case DW_TAG_GNU_call_site:
10616 read_call_site_scope (die, cu);
10617 break;
10618 case DW_TAG_class_type:
10619 case DW_TAG_interface_type:
10620 case DW_TAG_structure_type:
10621 case DW_TAG_union_type:
10622 process_structure_scope (die, cu);
10623 break;
10624 case DW_TAG_enumeration_type:
10625 process_enumeration_scope (die, cu);
10626 break;
10627
10628 /* These dies have a type, but processing them does not create
10629 a symbol or recurse to process the children. Therefore we can
10630 read them on-demand through read_type_die. */
10631 case DW_TAG_subroutine_type:
10632 case DW_TAG_set_type:
10633 case DW_TAG_array_type:
10634 case DW_TAG_pointer_type:
10635 case DW_TAG_ptr_to_member_type:
10636 case DW_TAG_reference_type:
10637 case DW_TAG_rvalue_reference_type:
10638 case DW_TAG_string_type:
10639 break;
10640
10641 case DW_TAG_base_type:
10642 case DW_TAG_subrange_type:
10643 case DW_TAG_typedef:
10644 /* Add a typedef symbol for the type definition, if it has a
10645 DW_AT_name. */
10646 new_symbol (die, read_type_die (die, cu), cu);
10647 break;
10648 case DW_TAG_common_block:
10649 read_common_block (die, cu);
10650 break;
10651 case DW_TAG_common_inclusion:
10652 break;
10653 case DW_TAG_namespace:
10654 cu->processing_has_namespace_info = true;
10655 read_namespace (die, cu);
10656 break;
10657 case DW_TAG_module:
10658 cu->processing_has_namespace_info = true;
10659 read_module (die, cu);
10660 break;
10661 case DW_TAG_imported_declaration:
10662 cu->processing_has_namespace_info = true;
10663 if (read_namespace_alias (die, cu))
10664 break;
10665 /* The declaration is not a global namespace alias. */
10666 /* Fall through. */
10667 case DW_TAG_imported_module:
10668 cu->processing_has_namespace_info = true;
10669 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10670 || cu->language != language_fortran))
10671 complaint (_("Tag '%s' has unexpected children"),
10672 dwarf_tag_name (die->tag));
10673 read_import_statement (die, cu);
10674 break;
10675
10676 case DW_TAG_imported_unit:
10677 process_imported_unit_die (die, cu);
10678 break;
10679
10680 case DW_TAG_variable:
10681 read_variable (die, cu);
10682 break;
10683
10684 default:
10685 new_symbol (die, NULL, cu);
10686 break;
10687 }
10688 }
10689 \f
10690 /* DWARF name computation. */
10691
10692 /* A helper function for dwarf2_compute_name which determines whether DIE
10693 needs to have the name of the scope prepended to the name listed in the
10694 die. */
10695
10696 static int
10697 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10698 {
10699 struct attribute *attr;
10700
10701 switch (die->tag)
10702 {
10703 case DW_TAG_namespace:
10704 case DW_TAG_typedef:
10705 case DW_TAG_class_type:
10706 case DW_TAG_interface_type:
10707 case DW_TAG_structure_type:
10708 case DW_TAG_union_type:
10709 case DW_TAG_enumeration_type:
10710 case DW_TAG_enumerator:
10711 case DW_TAG_subprogram:
10712 case DW_TAG_inlined_subroutine:
10713 case DW_TAG_member:
10714 case DW_TAG_imported_declaration:
10715 return 1;
10716
10717 case DW_TAG_variable:
10718 case DW_TAG_constant:
10719 /* We only need to prefix "globally" visible variables. These include
10720 any variable marked with DW_AT_external or any variable that
10721 lives in a namespace. [Variables in anonymous namespaces
10722 require prefixing, but they are not DW_AT_external.] */
10723
10724 if (dwarf2_attr (die, DW_AT_specification, cu))
10725 {
10726 struct dwarf2_cu *spec_cu = cu;
10727
10728 return die_needs_namespace (die_specification (die, &spec_cu),
10729 spec_cu);
10730 }
10731
10732 attr = dwarf2_attr (die, DW_AT_external, cu);
10733 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10734 && die->parent->tag != DW_TAG_module)
10735 return 0;
10736 /* A variable in a lexical block of some kind does not need a
10737 namespace, even though in C++ such variables may be external
10738 and have a mangled name. */
10739 if (die->parent->tag == DW_TAG_lexical_block
10740 || die->parent->tag == DW_TAG_try_block
10741 || die->parent->tag == DW_TAG_catch_block
10742 || die->parent->tag == DW_TAG_subprogram)
10743 return 0;
10744 return 1;
10745
10746 default:
10747 return 0;
10748 }
10749 }
10750
10751 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10752 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10753 defined for the given DIE. */
10754
10755 static struct attribute *
10756 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10757 {
10758 struct attribute *attr;
10759
10760 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10761 if (attr == NULL)
10762 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10763
10764 return attr;
10765 }
10766
10767 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10768 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10769 defined for the given DIE. */
10770
10771 static const char *
10772 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10773 {
10774 const char *linkage_name;
10775
10776 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10777 if (linkage_name == NULL)
10778 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10779
10780 return linkage_name;
10781 }
10782
10783 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10784 compute the physname for the object, which include a method's:
10785 - formal parameters (C++),
10786 - receiver type (Go),
10787
10788 The term "physname" is a bit confusing.
10789 For C++, for example, it is the demangled name.
10790 For Go, for example, it's the mangled name.
10791
10792 For Ada, return the DIE's linkage name rather than the fully qualified
10793 name. PHYSNAME is ignored..
10794
10795 The result is allocated on the objfile_obstack and canonicalized. */
10796
10797 static const char *
10798 dwarf2_compute_name (const char *name,
10799 struct die_info *die, struct dwarf2_cu *cu,
10800 int physname)
10801 {
10802 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10803
10804 if (name == NULL)
10805 name = dwarf2_name (die, cu);
10806
10807 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10808 but otherwise compute it by typename_concat inside GDB.
10809 FIXME: Actually this is not really true, or at least not always true.
10810 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10811 Fortran names because there is no mangling standard. So new_symbol
10812 will set the demangled name to the result of dwarf2_full_name, and it is
10813 the demangled name that GDB uses if it exists. */
10814 if (cu->language == language_ada
10815 || (cu->language == language_fortran && physname))
10816 {
10817 /* For Ada unit, we prefer the linkage name over the name, as
10818 the former contains the exported name, which the user expects
10819 to be able to reference. Ideally, we want the user to be able
10820 to reference this entity using either natural or linkage name,
10821 but we haven't started looking at this enhancement yet. */
10822 const char *linkage_name = dw2_linkage_name (die, cu);
10823
10824 if (linkage_name != NULL)
10825 return linkage_name;
10826 }
10827
10828 /* These are the only languages we know how to qualify names in. */
10829 if (name != NULL
10830 && (cu->language == language_cplus
10831 || cu->language == language_fortran || cu->language == language_d
10832 || cu->language == language_rust))
10833 {
10834 if (die_needs_namespace (die, cu))
10835 {
10836 const char *prefix;
10837 const char *canonical_name = NULL;
10838
10839 string_file buf;
10840
10841 prefix = determine_prefix (die, cu);
10842 if (*prefix != '\0')
10843 {
10844 char *prefixed_name = typename_concat (NULL, prefix, name,
10845 physname, cu);
10846
10847 buf.puts (prefixed_name);
10848 xfree (prefixed_name);
10849 }
10850 else
10851 buf.puts (name);
10852
10853 /* Template parameters may be specified in the DIE's DW_AT_name, or
10854 as children with DW_TAG_template_type_param or
10855 DW_TAG_value_type_param. If the latter, add them to the name
10856 here. If the name already has template parameters, then
10857 skip this step; some versions of GCC emit both, and
10858 it is more efficient to use the pre-computed name.
10859
10860 Something to keep in mind about this process: it is very
10861 unlikely, or in some cases downright impossible, to produce
10862 something that will match the mangled name of a function.
10863 If the definition of the function has the same debug info,
10864 we should be able to match up with it anyway. But fallbacks
10865 using the minimal symbol, for instance to find a method
10866 implemented in a stripped copy of libstdc++, will not work.
10867 If we do not have debug info for the definition, we will have to
10868 match them up some other way.
10869
10870 When we do name matching there is a related problem with function
10871 templates; two instantiated function templates are allowed to
10872 differ only by their return types, which we do not add here. */
10873
10874 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10875 {
10876 struct attribute *attr;
10877 struct die_info *child;
10878 int first = 1;
10879
10880 die->building_fullname = 1;
10881
10882 for (child = die->child; child != NULL; child = child->sibling)
10883 {
10884 struct type *type;
10885 LONGEST value;
10886 const gdb_byte *bytes;
10887 struct dwarf2_locexpr_baton *baton;
10888 struct value *v;
10889
10890 if (child->tag != DW_TAG_template_type_param
10891 && child->tag != DW_TAG_template_value_param)
10892 continue;
10893
10894 if (first)
10895 {
10896 buf.puts ("<");
10897 first = 0;
10898 }
10899 else
10900 buf.puts (", ");
10901
10902 attr = dwarf2_attr (child, DW_AT_type, cu);
10903 if (attr == NULL)
10904 {
10905 complaint (_("template parameter missing DW_AT_type"));
10906 buf.puts ("UNKNOWN_TYPE");
10907 continue;
10908 }
10909 type = die_type (child, cu);
10910
10911 if (child->tag == DW_TAG_template_type_param)
10912 {
10913 c_print_type (type, "", &buf, -1, 0, cu->language,
10914 &type_print_raw_options);
10915 continue;
10916 }
10917
10918 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10919 if (attr == NULL)
10920 {
10921 complaint (_("template parameter missing "
10922 "DW_AT_const_value"));
10923 buf.puts ("UNKNOWN_VALUE");
10924 continue;
10925 }
10926
10927 dwarf2_const_value_attr (attr, type, name,
10928 &cu->comp_unit_obstack, cu,
10929 &value, &bytes, &baton);
10930
10931 if (TYPE_NOSIGN (type))
10932 /* GDB prints characters as NUMBER 'CHAR'. If that's
10933 changed, this can use value_print instead. */
10934 c_printchar (value, type, &buf);
10935 else
10936 {
10937 struct value_print_options opts;
10938
10939 if (baton != NULL)
10940 v = dwarf2_evaluate_loc_desc (type, NULL,
10941 baton->data,
10942 baton->size,
10943 baton->per_cu);
10944 else if (bytes != NULL)
10945 {
10946 v = allocate_value (type);
10947 memcpy (value_contents_writeable (v), bytes,
10948 TYPE_LENGTH (type));
10949 }
10950 else
10951 v = value_from_longest (type, value);
10952
10953 /* Specify decimal so that we do not depend on
10954 the radix. */
10955 get_formatted_print_options (&opts, 'd');
10956 opts.raw = 1;
10957 value_print (v, &buf, &opts);
10958 release_value (v);
10959 }
10960 }
10961
10962 die->building_fullname = 0;
10963
10964 if (!first)
10965 {
10966 /* Close the argument list, with a space if necessary
10967 (nested templates). */
10968 if (!buf.empty () && buf.string ().back () == '>')
10969 buf.puts (" >");
10970 else
10971 buf.puts (">");
10972 }
10973 }
10974
10975 /* For C++ methods, append formal parameter type
10976 information, if PHYSNAME. */
10977
10978 if (physname && die->tag == DW_TAG_subprogram
10979 && cu->language == language_cplus)
10980 {
10981 struct type *type = read_type_die (die, cu);
10982
10983 c_type_print_args (type, &buf, 1, cu->language,
10984 &type_print_raw_options);
10985
10986 if (cu->language == language_cplus)
10987 {
10988 /* Assume that an artificial first parameter is
10989 "this", but do not crash if it is not. RealView
10990 marks unnamed (and thus unused) parameters as
10991 artificial; there is no way to differentiate
10992 the two cases. */
10993 if (TYPE_NFIELDS (type) > 0
10994 && TYPE_FIELD_ARTIFICIAL (type, 0)
10995 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10996 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10997 0))))
10998 buf.puts (" const");
10999 }
11000 }
11001
11002 const std::string &intermediate_name = buf.string ();
11003
11004 if (cu->language == language_cplus)
11005 canonical_name
11006 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11007 &objfile->per_bfd->storage_obstack);
11008
11009 /* If we only computed INTERMEDIATE_NAME, or if
11010 INTERMEDIATE_NAME is already canonical, then we need to
11011 copy it to the appropriate obstack. */
11012 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11013 name = ((const char *)
11014 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11015 intermediate_name.c_str (),
11016 intermediate_name.length ()));
11017 else
11018 name = canonical_name;
11019 }
11020 }
11021
11022 return name;
11023 }
11024
11025 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11026 If scope qualifiers are appropriate they will be added. The result
11027 will be allocated on the storage_obstack, or NULL if the DIE does
11028 not have a name. NAME may either be from a previous call to
11029 dwarf2_name or NULL.
11030
11031 The output string will be canonicalized (if C++). */
11032
11033 static const char *
11034 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11035 {
11036 return dwarf2_compute_name (name, die, cu, 0);
11037 }
11038
11039 /* Construct a physname for the given DIE in CU. NAME may either be
11040 from a previous call to dwarf2_name or NULL. The result will be
11041 allocated on the objfile_objstack or NULL if the DIE does not have a
11042 name.
11043
11044 The output string will be canonicalized (if C++). */
11045
11046 static const char *
11047 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11048 {
11049 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11050 const char *retval, *mangled = NULL, *canon = NULL;
11051 int need_copy = 1;
11052
11053 /* In this case dwarf2_compute_name is just a shortcut not building anything
11054 on its own. */
11055 if (!die_needs_namespace (die, cu))
11056 return dwarf2_compute_name (name, die, cu, 1);
11057
11058 mangled = dw2_linkage_name (die, cu);
11059
11060 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11061 See https://github.com/rust-lang/rust/issues/32925. */
11062 if (cu->language == language_rust && mangled != NULL
11063 && strchr (mangled, '{') != NULL)
11064 mangled = NULL;
11065
11066 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11067 has computed. */
11068 gdb::unique_xmalloc_ptr<char> demangled;
11069 if (mangled != NULL)
11070 {
11071
11072 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11073 {
11074 /* Do nothing (do not demangle the symbol name). */
11075 }
11076 else if (cu->language == language_go)
11077 {
11078 /* This is a lie, but we already lie to the caller new_symbol.
11079 new_symbol assumes we return the mangled name.
11080 This just undoes that lie until things are cleaned up. */
11081 }
11082 else
11083 {
11084 /* Use DMGL_RET_DROP for C++ template functions to suppress
11085 their return type. It is easier for GDB users to search
11086 for such functions as `name(params)' than `long name(params)'.
11087 In such case the minimal symbol names do not match the full
11088 symbol names but for template functions there is never a need
11089 to look up their definition from their declaration so
11090 the only disadvantage remains the minimal symbol variant
11091 `long name(params)' does not have the proper inferior type. */
11092 demangled.reset (gdb_demangle (mangled,
11093 (DMGL_PARAMS | DMGL_ANSI
11094 | DMGL_RET_DROP)));
11095 }
11096 if (demangled)
11097 canon = demangled.get ();
11098 else
11099 {
11100 canon = mangled;
11101 need_copy = 0;
11102 }
11103 }
11104
11105 if (canon == NULL || check_physname)
11106 {
11107 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11108
11109 if (canon != NULL && strcmp (physname, canon) != 0)
11110 {
11111 /* It may not mean a bug in GDB. The compiler could also
11112 compute DW_AT_linkage_name incorrectly. But in such case
11113 GDB would need to be bug-to-bug compatible. */
11114
11115 complaint (_("Computed physname <%s> does not match demangled <%s> "
11116 "(from linkage <%s>) - DIE at %s [in module %s]"),
11117 physname, canon, mangled, sect_offset_str (die->sect_off),
11118 objfile_name (objfile));
11119
11120 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11121 is available here - over computed PHYSNAME. It is safer
11122 against both buggy GDB and buggy compilers. */
11123
11124 retval = canon;
11125 }
11126 else
11127 {
11128 retval = physname;
11129 need_copy = 0;
11130 }
11131 }
11132 else
11133 retval = canon;
11134
11135 if (need_copy)
11136 retval = ((const char *)
11137 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11138 retval, strlen (retval)));
11139
11140 return retval;
11141 }
11142
11143 /* Inspect DIE in CU for a namespace alias. If one exists, record
11144 a new symbol for it.
11145
11146 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11147
11148 static int
11149 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11150 {
11151 struct attribute *attr;
11152
11153 /* If the die does not have a name, this is not a namespace
11154 alias. */
11155 attr = dwarf2_attr (die, DW_AT_name, cu);
11156 if (attr != NULL)
11157 {
11158 int num;
11159 struct die_info *d = die;
11160 struct dwarf2_cu *imported_cu = cu;
11161
11162 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11163 keep inspecting DIEs until we hit the underlying import. */
11164 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11165 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11166 {
11167 attr = dwarf2_attr (d, DW_AT_import, cu);
11168 if (attr == NULL)
11169 break;
11170
11171 d = follow_die_ref (d, attr, &imported_cu);
11172 if (d->tag != DW_TAG_imported_declaration)
11173 break;
11174 }
11175
11176 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11177 {
11178 complaint (_("DIE at %s has too many recursively imported "
11179 "declarations"), sect_offset_str (d->sect_off));
11180 return 0;
11181 }
11182
11183 if (attr != NULL)
11184 {
11185 struct type *type;
11186 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11187
11188 type = get_die_type_at_offset (sect_off, cu->per_cu);
11189 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11190 {
11191 /* This declaration is a global namespace alias. Add
11192 a symbol for it whose type is the aliased namespace. */
11193 new_symbol (die, type, cu);
11194 return 1;
11195 }
11196 }
11197 }
11198
11199 return 0;
11200 }
11201
11202 /* Return the using directives repository (global or local?) to use in the
11203 current context for CU.
11204
11205 For Ada, imported declarations can materialize renamings, which *may* be
11206 global. However it is impossible (for now?) in DWARF to distinguish
11207 "external" imported declarations and "static" ones. As all imported
11208 declarations seem to be static in all other languages, make them all CU-wide
11209 global only in Ada. */
11210
11211 static struct using_direct **
11212 using_directives (struct dwarf2_cu *cu)
11213 {
11214 if (cu->language == language_ada
11215 && cu->get_builder ()->outermost_context_p ())
11216 return cu->get_builder ()->get_global_using_directives ();
11217 else
11218 return cu->get_builder ()->get_local_using_directives ();
11219 }
11220
11221 /* Read the import statement specified by the given die and record it. */
11222
11223 static void
11224 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11225 {
11226 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11227 struct attribute *import_attr;
11228 struct die_info *imported_die, *child_die;
11229 struct dwarf2_cu *imported_cu;
11230 const char *imported_name;
11231 const char *imported_name_prefix;
11232 const char *canonical_name;
11233 const char *import_alias;
11234 const char *imported_declaration = NULL;
11235 const char *import_prefix;
11236 std::vector<const char *> excludes;
11237
11238 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11239 if (import_attr == NULL)
11240 {
11241 complaint (_("Tag '%s' has no DW_AT_import"),
11242 dwarf_tag_name (die->tag));
11243 return;
11244 }
11245
11246 imported_cu = cu;
11247 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11248 imported_name = dwarf2_name (imported_die, imported_cu);
11249 if (imported_name == NULL)
11250 {
11251 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11252
11253 The import in the following code:
11254 namespace A
11255 {
11256 typedef int B;
11257 }
11258
11259 int main ()
11260 {
11261 using A::B;
11262 B b;
11263 return b;
11264 }
11265
11266 ...
11267 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11268 <52> DW_AT_decl_file : 1
11269 <53> DW_AT_decl_line : 6
11270 <54> DW_AT_import : <0x75>
11271 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11272 <59> DW_AT_name : B
11273 <5b> DW_AT_decl_file : 1
11274 <5c> DW_AT_decl_line : 2
11275 <5d> DW_AT_type : <0x6e>
11276 ...
11277 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11278 <76> DW_AT_byte_size : 4
11279 <77> DW_AT_encoding : 5 (signed)
11280
11281 imports the wrong die ( 0x75 instead of 0x58 ).
11282 This case will be ignored until the gcc bug is fixed. */
11283 return;
11284 }
11285
11286 /* Figure out the local name after import. */
11287 import_alias = dwarf2_name (die, cu);
11288
11289 /* Figure out where the statement is being imported to. */
11290 import_prefix = determine_prefix (die, cu);
11291
11292 /* Figure out what the scope of the imported die is and prepend it
11293 to the name of the imported die. */
11294 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11295
11296 if (imported_die->tag != DW_TAG_namespace
11297 && imported_die->tag != DW_TAG_module)
11298 {
11299 imported_declaration = imported_name;
11300 canonical_name = imported_name_prefix;
11301 }
11302 else if (strlen (imported_name_prefix) > 0)
11303 canonical_name = obconcat (&objfile->objfile_obstack,
11304 imported_name_prefix,
11305 (cu->language == language_d ? "." : "::"),
11306 imported_name, (char *) NULL);
11307 else
11308 canonical_name = imported_name;
11309
11310 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11311 for (child_die = die->child; child_die && child_die->tag;
11312 child_die = sibling_die (child_die))
11313 {
11314 /* DWARF-4: A Fortran use statement with a “rename list” may be
11315 represented by an imported module entry with an import attribute
11316 referring to the module and owned entries corresponding to those
11317 entities that are renamed as part of being imported. */
11318
11319 if (child_die->tag != DW_TAG_imported_declaration)
11320 {
11321 complaint (_("child DW_TAG_imported_declaration expected "
11322 "- DIE at %s [in module %s]"),
11323 sect_offset_str (child_die->sect_off),
11324 objfile_name (objfile));
11325 continue;
11326 }
11327
11328 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11329 if (import_attr == NULL)
11330 {
11331 complaint (_("Tag '%s' has no DW_AT_import"),
11332 dwarf_tag_name (child_die->tag));
11333 continue;
11334 }
11335
11336 imported_cu = cu;
11337 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11338 &imported_cu);
11339 imported_name = dwarf2_name (imported_die, imported_cu);
11340 if (imported_name == NULL)
11341 {
11342 complaint (_("child DW_TAG_imported_declaration has unknown "
11343 "imported name - DIE at %s [in module %s]"),
11344 sect_offset_str (child_die->sect_off),
11345 objfile_name (objfile));
11346 continue;
11347 }
11348
11349 excludes.push_back (imported_name);
11350
11351 process_die (child_die, cu);
11352 }
11353
11354 add_using_directive (using_directives (cu),
11355 import_prefix,
11356 canonical_name,
11357 import_alias,
11358 imported_declaration,
11359 excludes,
11360 0,
11361 &objfile->objfile_obstack);
11362 }
11363
11364 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11365 types, but gives them a size of zero. Starting with version 14,
11366 ICC is compatible with GCC. */
11367
11368 static bool
11369 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11370 {
11371 if (!cu->checked_producer)
11372 check_producer (cu);
11373
11374 return cu->producer_is_icc_lt_14;
11375 }
11376
11377 /* ICC generates a DW_AT_type for C void functions. This was observed on
11378 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11379 which says that void functions should not have a DW_AT_type. */
11380
11381 static bool
11382 producer_is_icc (struct dwarf2_cu *cu)
11383 {
11384 if (!cu->checked_producer)
11385 check_producer (cu);
11386
11387 return cu->producer_is_icc;
11388 }
11389
11390 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11391 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11392 this, it was first present in GCC release 4.3.0. */
11393
11394 static bool
11395 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11396 {
11397 if (!cu->checked_producer)
11398 check_producer (cu);
11399
11400 return cu->producer_is_gcc_lt_4_3;
11401 }
11402
11403 static file_and_directory
11404 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11405 {
11406 file_and_directory res;
11407
11408 /* Find the filename. Do not use dwarf2_name here, since the filename
11409 is not a source language identifier. */
11410 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11411 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11412
11413 if (res.comp_dir == NULL
11414 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11415 && IS_ABSOLUTE_PATH (res.name))
11416 {
11417 res.comp_dir_storage = ldirname (res.name);
11418 if (!res.comp_dir_storage.empty ())
11419 res.comp_dir = res.comp_dir_storage.c_str ();
11420 }
11421 if (res.comp_dir != NULL)
11422 {
11423 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11424 directory, get rid of it. */
11425 const char *cp = strchr (res.comp_dir, ':');
11426
11427 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11428 res.comp_dir = cp + 1;
11429 }
11430
11431 if (res.name == NULL)
11432 res.name = "<unknown>";
11433
11434 return res;
11435 }
11436
11437 /* Handle DW_AT_stmt_list for a compilation unit.
11438 DIE is the DW_TAG_compile_unit die for CU.
11439 COMP_DIR is the compilation directory. LOWPC is passed to
11440 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11441
11442 static void
11443 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11444 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11445 {
11446 struct dwarf2_per_objfile *dwarf2_per_objfile
11447 = cu->per_cu->dwarf2_per_objfile;
11448 struct objfile *objfile = dwarf2_per_objfile->objfile;
11449 struct attribute *attr;
11450 struct line_header line_header_local;
11451 hashval_t line_header_local_hash;
11452 void **slot;
11453 int decode_mapping;
11454
11455 gdb_assert (! cu->per_cu->is_debug_types);
11456
11457 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11458 if (attr == NULL)
11459 return;
11460
11461 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11462
11463 /* The line header hash table is only created if needed (it exists to
11464 prevent redundant reading of the line table for partial_units).
11465 If we're given a partial_unit, we'll need it. If we're given a
11466 compile_unit, then use the line header hash table if it's already
11467 created, but don't create one just yet. */
11468
11469 if (dwarf2_per_objfile->line_header_hash == NULL
11470 && die->tag == DW_TAG_partial_unit)
11471 {
11472 dwarf2_per_objfile->line_header_hash
11473 = htab_create_alloc_ex (127, line_header_hash_voidp,
11474 line_header_eq_voidp,
11475 free_line_header_voidp,
11476 &objfile->objfile_obstack,
11477 hashtab_obstack_allocate,
11478 dummy_obstack_deallocate);
11479 }
11480
11481 line_header_local.sect_off = line_offset;
11482 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11483 line_header_local_hash = line_header_hash (&line_header_local);
11484 if (dwarf2_per_objfile->line_header_hash != NULL)
11485 {
11486 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11487 &line_header_local,
11488 line_header_local_hash, NO_INSERT);
11489
11490 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11491 is not present in *SLOT (since if there is something in *SLOT then
11492 it will be for a partial_unit). */
11493 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11494 {
11495 gdb_assert (*slot != NULL);
11496 cu->line_header = (struct line_header *) *slot;
11497 return;
11498 }
11499 }
11500
11501 /* dwarf_decode_line_header does not yet provide sufficient information.
11502 We always have to call also dwarf_decode_lines for it. */
11503 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11504 if (lh == NULL)
11505 return;
11506
11507 cu->line_header = lh.release ();
11508 cu->line_header_die_owner = die;
11509
11510 if (dwarf2_per_objfile->line_header_hash == NULL)
11511 slot = NULL;
11512 else
11513 {
11514 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11515 &line_header_local,
11516 line_header_local_hash, INSERT);
11517 gdb_assert (slot != NULL);
11518 }
11519 if (slot != NULL && *slot == NULL)
11520 {
11521 /* This newly decoded line number information unit will be owned
11522 by line_header_hash hash table. */
11523 *slot = cu->line_header;
11524 cu->line_header_die_owner = NULL;
11525 }
11526 else
11527 {
11528 /* We cannot free any current entry in (*slot) as that struct line_header
11529 may be already used by multiple CUs. Create only temporary decoded
11530 line_header for this CU - it may happen at most once for each line
11531 number information unit. And if we're not using line_header_hash
11532 then this is what we want as well. */
11533 gdb_assert (die->tag != DW_TAG_partial_unit);
11534 }
11535 decode_mapping = (die->tag != DW_TAG_partial_unit);
11536 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11537 decode_mapping);
11538
11539 }
11540
11541 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11542
11543 static void
11544 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11545 {
11546 struct dwarf2_per_objfile *dwarf2_per_objfile
11547 = cu->per_cu->dwarf2_per_objfile;
11548 struct objfile *objfile = dwarf2_per_objfile->objfile;
11549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11550 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11551 CORE_ADDR highpc = ((CORE_ADDR) 0);
11552 struct attribute *attr;
11553 struct die_info *child_die;
11554 CORE_ADDR baseaddr;
11555
11556 prepare_one_comp_unit (cu, die, cu->language);
11557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11558
11559 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11560
11561 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11562 from finish_block. */
11563 if (lowpc == ((CORE_ADDR) -1))
11564 lowpc = highpc;
11565 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11566
11567 file_and_directory fnd = find_file_and_directory (die, cu);
11568
11569 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11570 standardised yet. As a workaround for the language detection we fall
11571 back to the DW_AT_producer string. */
11572 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11573 cu->language = language_opencl;
11574
11575 /* Similar hack for Go. */
11576 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11577 set_cu_language (DW_LANG_Go, cu);
11578
11579 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11580
11581 /* Decode line number information if present. We do this before
11582 processing child DIEs, so that the line header table is available
11583 for DW_AT_decl_file. */
11584 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11585
11586 /* Process all dies in compilation unit. */
11587 if (die->child != NULL)
11588 {
11589 child_die = die->child;
11590 while (child_die && child_die->tag)
11591 {
11592 process_die (child_die, cu);
11593 child_die = sibling_die (child_die);
11594 }
11595 }
11596
11597 /* Decode macro information, if present. Dwarf 2 macro information
11598 refers to information in the line number info statement program
11599 header, so we can only read it if we've read the header
11600 successfully. */
11601 attr = dwarf2_attr (die, DW_AT_macros, cu);
11602 if (attr == NULL)
11603 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11604 if (attr && cu->line_header)
11605 {
11606 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11607 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11608
11609 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11610 }
11611 else
11612 {
11613 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11614 if (attr && cu->line_header)
11615 {
11616 unsigned int macro_offset = DW_UNSND (attr);
11617
11618 dwarf_decode_macros (cu, macro_offset, 0);
11619 }
11620 }
11621 }
11622
11623 void
11624 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11625 {
11626 struct type_unit_group *tu_group;
11627 int first_time;
11628 struct attribute *attr;
11629 unsigned int i;
11630 struct signatured_type *sig_type;
11631
11632 gdb_assert (per_cu->is_debug_types);
11633 sig_type = (struct signatured_type *) per_cu;
11634
11635 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11636
11637 /* If we're using .gdb_index (includes -readnow) then
11638 per_cu->type_unit_group may not have been set up yet. */
11639 if (sig_type->type_unit_group == NULL)
11640 sig_type->type_unit_group = get_type_unit_group (this, attr);
11641 tu_group = sig_type->type_unit_group;
11642
11643 /* If we've already processed this stmt_list there's no real need to
11644 do it again, we could fake it and just recreate the part we need
11645 (file name,index -> symtab mapping). If data shows this optimization
11646 is useful we can do it then. */
11647 first_time = tu_group->compunit_symtab == NULL;
11648
11649 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11650 debug info. */
11651 line_header_up lh;
11652 if (attr != NULL)
11653 {
11654 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11655 lh = dwarf_decode_line_header (line_offset, this);
11656 }
11657 if (lh == NULL)
11658 {
11659 if (first_time)
11660 start_symtab ("", NULL, 0);
11661 else
11662 {
11663 gdb_assert (tu_group->symtabs == NULL);
11664 gdb_assert (m_builder == nullptr);
11665 struct compunit_symtab *cust = tu_group->compunit_symtab;
11666 m_builder.reset (new struct buildsym_compunit
11667 (COMPUNIT_OBJFILE (cust), "",
11668 COMPUNIT_DIRNAME (cust),
11669 compunit_language (cust),
11670 0, cust));
11671 }
11672 return;
11673 }
11674
11675 line_header = lh.release ();
11676 line_header_die_owner = die;
11677
11678 if (first_time)
11679 {
11680 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11681
11682 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11683 still initializing it, and our caller (a few levels up)
11684 process_full_type_unit still needs to know if this is the first
11685 time. */
11686
11687 tu_group->num_symtabs = line_header->file_names.size ();
11688 tu_group->symtabs = XNEWVEC (struct symtab *,
11689 line_header->file_names.size ());
11690
11691 for (i = 0; i < line_header->file_names.size (); ++i)
11692 {
11693 file_entry &fe = line_header->file_names[i];
11694
11695 dwarf2_start_subfile (this, fe.name,
11696 fe.include_dir (line_header));
11697 buildsym_compunit *b = get_builder ();
11698 if (b->get_current_subfile ()->symtab == NULL)
11699 {
11700 /* NOTE: start_subfile will recognize when it's been
11701 passed a file it has already seen. So we can't
11702 assume there's a simple mapping from
11703 cu->line_header->file_names to subfiles, plus
11704 cu->line_header->file_names may contain dups. */
11705 b->get_current_subfile ()->symtab
11706 = allocate_symtab (cust, b->get_current_subfile ()->name);
11707 }
11708
11709 fe.symtab = b->get_current_subfile ()->symtab;
11710 tu_group->symtabs[i] = fe.symtab;
11711 }
11712 }
11713 else
11714 {
11715 gdb_assert (m_builder == nullptr);
11716 struct compunit_symtab *cust = tu_group->compunit_symtab;
11717 m_builder.reset (new struct buildsym_compunit
11718 (COMPUNIT_OBJFILE (cust), "",
11719 COMPUNIT_DIRNAME (cust),
11720 compunit_language (cust),
11721 0, cust));
11722
11723 for (i = 0; i < line_header->file_names.size (); ++i)
11724 {
11725 file_entry &fe = line_header->file_names[i];
11726
11727 fe.symtab = tu_group->symtabs[i];
11728 }
11729 }
11730
11731 /* The main symtab is allocated last. Type units don't have DW_AT_name
11732 so they don't have a "real" (so to speak) symtab anyway.
11733 There is later code that will assign the main symtab to all symbols
11734 that don't have one. We need to handle the case of a symbol with a
11735 missing symtab (DW_AT_decl_file) anyway. */
11736 }
11737
11738 /* Process DW_TAG_type_unit.
11739 For TUs we want to skip the first top level sibling if it's not the
11740 actual type being defined by this TU. In this case the first top
11741 level sibling is there to provide context only. */
11742
11743 static void
11744 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11745 {
11746 struct die_info *child_die;
11747
11748 prepare_one_comp_unit (cu, die, language_minimal);
11749
11750 /* Initialize (or reinitialize) the machinery for building symtabs.
11751 We do this before processing child DIEs, so that the line header table
11752 is available for DW_AT_decl_file. */
11753 cu->setup_type_unit_groups (die);
11754
11755 if (die->child != NULL)
11756 {
11757 child_die = die->child;
11758 while (child_die && child_die->tag)
11759 {
11760 process_die (child_die, cu);
11761 child_die = sibling_die (child_die);
11762 }
11763 }
11764 }
11765 \f
11766 /* DWO/DWP files.
11767
11768 http://gcc.gnu.org/wiki/DebugFission
11769 http://gcc.gnu.org/wiki/DebugFissionDWP
11770
11771 To simplify handling of both DWO files ("object" files with the DWARF info)
11772 and DWP files (a file with the DWOs packaged up into one file), we treat
11773 DWP files as having a collection of virtual DWO files. */
11774
11775 static hashval_t
11776 hash_dwo_file (const void *item)
11777 {
11778 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11779 hashval_t hash;
11780
11781 hash = htab_hash_string (dwo_file->dwo_name);
11782 if (dwo_file->comp_dir != NULL)
11783 hash += htab_hash_string (dwo_file->comp_dir);
11784 return hash;
11785 }
11786
11787 static int
11788 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11789 {
11790 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11791 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11792
11793 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11794 return 0;
11795 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11796 return lhs->comp_dir == rhs->comp_dir;
11797 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11798 }
11799
11800 /* Allocate a hash table for DWO files. */
11801
11802 static htab_t
11803 allocate_dwo_file_hash_table (struct objfile *objfile)
11804 {
11805 return htab_create_alloc_ex (41,
11806 hash_dwo_file,
11807 eq_dwo_file,
11808 NULL,
11809 &objfile->objfile_obstack,
11810 hashtab_obstack_allocate,
11811 dummy_obstack_deallocate);
11812 }
11813
11814 /* Lookup DWO file DWO_NAME. */
11815
11816 static void **
11817 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11818 const char *dwo_name,
11819 const char *comp_dir)
11820 {
11821 struct dwo_file find_entry;
11822 void **slot;
11823
11824 if (dwarf2_per_objfile->dwo_files == NULL)
11825 dwarf2_per_objfile->dwo_files
11826 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11827
11828 memset (&find_entry, 0, sizeof (find_entry));
11829 find_entry.dwo_name = dwo_name;
11830 find_entry.comp_dir = comp_dir;
11831 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11832
11833 return slot;
11834 }
11835
11836 static hashval_t
11837 hash_dwo_unit (const void *item)
11838 {
11839 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11840
11841 /* This drops the top 32 bits of the id, but is ok for a hash. */
11842 return dwo_unit->signature;
11843 }
11844
11845 static int
11846 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11847 {
11848 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11849 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11850
11851 /* The signature is assumed to be unique within the DWO file.
11852 So while object file CU dwo_id's always have the value zero,
11853 that's OK, assuming each object file DWO file has only one CU,
11854 and that's the rule for now. */
11855 return lhs->signature == rhs->signature;
11856 }
11857
11858 /* Allocate a hash table for DWO CUs,TUs.
11859 There is one of these tables for each of CUs,TUs for each DWO file. */
11860
11861 static htab_t
11862 allocate_dwo_unit_table (struct objfile *objfile)
11863 {
11864 /* Start out with a pretty small number.
11865 Generally DWO files contain only one CU and maybe some TUs. */
11866 return htab_create_alloc_ex (3,
11867 hash_dwo_unit,
11868 eq_dwo_unit,
11869 NULL,
11870 &objfile->objfile_obstack,
11871 hashtab_obstack_allocate,
11872 dummy_obstack_deallocate);
11873 }
11874
11875 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11876
11877 struct create_dwo_cu_data
11878 {
11879 struct dwo_file *dwo_file;
11880 struct dwo_unit dwo_unit;
11881 };
11882
11883 /* die_reader_func for create_dwo_cu. */
11884
11885 static void
11886 create_dwo_cu_reader (const struct die_reader_specs *reader,
11887 const gdb_byte *info_ptr,
11888 struct die_info *comp_unit_die,
11889 int has_children,
11890 void *datap)
11891 {
11892 struct dwarf2_cu *cu = reader->cu;
11893 sect_offset sect_off = cu->per_cu->sect_off;
11894 struct dwarf2_section_info *section = cu->per_cu->section;
11895 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11896 struct dwo_file *dwo_file = data->dwo_file;
11897 struct dwo_unit *dwo_unit = &data->dwo_unit;
11898 struct attribute *attr;
11899
11900 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11901 if (attr == NULL)
11902 {
11903 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11904 " its dwo_id [in module %s]"),
11905 sect_offset_str (sect_off), dwo_file->dwo_name);
11906 return;
11907 }
11908
11909 dwo_unit->dwo_file = dwo_file;
11910 dwo_unit->signature = DW_UNSND (attr);
11911 dwo_unit->section = section;
11912 dwo_unit->sect_off = sect_off;
11913 dwo_unit->length = cu->per_cu->length;
11914
11915 if (dwarf_read_debug)
11916 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11917 sect_offset_str (sect_off),
11918 hex_string (dwo_unit->signature));
11919 }
11920
11921 /* Create the dwo_units for the CUs in a DWO_FILE.
11922 Note: This function processes DWO files only, not DWP files. */
11923
11924 static void
11925 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11926 struct dwo_file &dwo_file, dwarf2_section_info &section,
11927 htab_t &cus_htab)
11928 {
11929 struct objfile *objfile = dwarf2_per_objfile->objfile;
11930 const gdb_byte *info_ptr, *end_ptr;
11931
11932 dwarf2_read_section (objfile, &section);
11933 info_ptr = section.buffer;
11934
11935 if (info_ptr == NULL)
11936 return;
11937
11938 if (dwarf_read_debug)
11939 {
11940 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11941 get_section_name (&section),
11942 get_section_file_name (&section));
11943 }
11944
11945 end_ptr = info_ptr + section.size;
11946 while (info_ptr < end_ptr)
11947 {
11948 struct dwarf2_per_cu_data per_cu;
11949 struct create_dwo_cu_data create_dwo_cu_data;
11950 struct dwo_unit *dwo_unit;
11951 void **slot;
11952 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11953
11954 memset (&create_dwo_cu_data.dwo_unit, 0,
11955 sizeof (create_dwo_cu_data.dwo_unit));
11956 memset (&per_cu, 0, sizeof (per_cu));
11957 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11958 per_cu.is_debug_types = 0;
11959 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11960 per_cu.section = &section;
11961 create_dwo_cu_data.dwo_file = &dwo_file;
11962
11963 init_cutu_and_read_dies_no_follow (
11964 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11965 info_ptr += per_cu.length;
11966
11967 // If the unit could not be parsed, skip it.
11968 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11969 continue;
11970
11971 if (cus_htab == NULL)
11972 cus_htab = allocate_dwo_unit_table (objfile);
11973
11974 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11975 *dwo_unit = create_dwo_cu_data.dwo_unit;
11976 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11977 gdb_assert (slot != NULL);
11978 if (*slot != NULL)
11979 {
11980 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11981 sect_offset dup_sect_off = dup_cu->sect_off;
11982
11983 complaint (_("debug cu entry at offset %s is duplicate to"
11984 " the entry at offset %s, signature %s"),
11985 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11986 hex_string (dwo_unit->signature));
11987 }
11988 *slot = (void *)dwo_unit;
11989 }
11990 }
11991
11992 /* DWP file .debug_{cu,tu}_index section format:
11993 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11994
11995 DWP Version 1:
11996
11997 Both index sections have the same format, and serve to map a 64-bit
11998 signature to a set of section numbers. Each section begins with a header,
11999 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12000 indexes, and a pool of 32-bit section numbers. The index sections will be
12001 aligned at 8-byte boundaries in the file.
12002
12003 The index section header consists of:
12004
12005 V, 32 bit version number
12006 -, 32 bits unused
12007 N, 32 bit number of compilation units or type units in the index
12008 M, 32 bit number of slots in the hash table
12009
12010 Numbers are recorded using the byte order of the application binary.
12011
12012 The hash table begins at offset 16 in the section, and consists of an array
12013 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12014 order of the application binary). Unused slots in the hash table are 0.
12015 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12016
12017 The parallel table begins immediately after the hash table
12018 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12019 array of 32-bit indexes (using the byte order of the application binary),
12020 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12021 table contains a 32-bit index into the pool of section numbers. For unused
12022 hash table slots, the corresponding entry in the parallel table will be 0.
12023
12024 The pool of section numbers begins immediately following the hash table
12025 (at offset 16 + 12 * M from the beginning of the section). The pool of
12026 section numbers consists of an array of 32-bit words (using the byte order
12027 of the application binary). Each item in the array is indexed starting
12028 from 0. The hash table entry provides the index of the first section
12029 number in the set. Additional section numbers in the set follow, and the
12030 set is terminated by a 0 entry (section number 0 is not used in ELF).
12031
12032 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12033 section must be the first entry in the set, and the .debug_abbrev.dwo must
12034 be the second entry. Other members of the set may follow in any order.
12035
12036 ---
12037
12038 DWP Version 2:
12039
12040 DWP Version 2 combines all the .debug_info, etc. sections into one,
12041 and the entries in the index tables are now offsets into these sections.
12042 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12043 section.
12044
12045 Index Section Contents:
12046 Header
12047 Hash Table of Signatures dwp_hash_table.hash_table
12048 Parallel Table of Indices dwp_hash_table.unit_table
12049 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12050 Table of Section Sizes dwp_hash_table.v2.sizes
12051
12052 The index section header consists of:
12053
12054 V, 32 bit version number
12055 L, 32 bit number of columns in the table of section offsets
12056 N, 32 bit number of compilation units or type units in the index
12057 M, 32 bit number of slots in the hash table
12058
12059 Numbers are recorded using the byte order of the application binary.
12060
12061 The hash table has the same format as version 1.
12062 The parallel table of indices has the same format as version 1,
12063 except that the entries are origin-1 indices into the table of sections
12064 offsets and the table of section sizes.
12065
12066 The table of offsets begins immediately following the parallel table
12067 (at offset 16 + 12 * M from the beginning of the section). The table is
12068 a two-dimensional array of 32-bit words (using the byte order of the
12069 application binary), with L columns and N+1 rows, in row-major order.
12070 Each row in the array is indexed starting from 0. The first row provides
12071 a key to the remaining rows: each column in this row provides an identifier
12072 for a debug section, and the offsets in the same column of subsequent rows
12073 refer to that section. The section identifiers are:
12074
12075 DW_SECT_INFO 1 .debug_info.dwo
12076 DW_SECT_TYPES 2 .debug_types.dwo
12077 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12078 DW_SECT_LINE 4 .debug_line.dwo
12079 DW_SECT_LOC 5 .debug_loc.dwo
12080 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12081 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12082 DW_SECT_MACRO 8 .debug_macro.dwo
12083
12084 The offsets provided by the CU and TU index sections are the base offsets
12085 for the contributions made by each CU or TU to the corresponding section
12086 in the package file. Each CU and TU header contains an abbrev_offset
12087 field, used to find the abbreviations table for that CU or TU within the
12088 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12089 be interpreted as relative to the base offset given in the index section.
12090 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12091 should be interpreted as relative to the base offset for .debug_line.dwo,
12092 and offsets into other debug sections obtained from DWARF attributes should
12093 also be interpreted as relative to the corresponding base offset.
12094
12095 The table of sizes begins immediately following the table of offsets.
12096 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12097 with L columns and N rows, in row-major order. Each row in the array is
12098 indexed starting from 1 (row 0 is shared by the two tables).
12099
12100 ---
12101
12102 Hash table lookup is handled the same in version 1 and 2:
12103
12104 We assume that N and M will not exceed 2^32 - 1.
12105 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12106
12107 Given a 64-bit compilation unit signature or a type signature S, an entry
12108 in the hash table is located as follows:
12109
12110 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12111 the low-order k bits all set to 1.
12112
12113 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12114
12115 3) If the hash table entry at index H matches the signature, use that
12116 entry. If the hash table entry at index H is unused (all zeroes),
12117 terminate the search: the signature is not present in the table.
12118
12119 4) Let H = (H + H') modulo M. Repeat at Step 3.
12120
12121 Because M > N and H' and M are relatively prime, the search is guaranteed
12122 to stop at an unused slot or find the match. */
12123
12124 /* Create a hash table to map DWO IDs to their CU/TU entry in
12125 .debug_{info,types}.dwo in DWP_FILE.
12126 Returns NULL if there isn't one.
12127 Note: This function processes DWP files only, not DWO files. */
12128
12129 static struct dwp_hash_table *
12130 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12131 struct dwp_file *dwp_file, int is_debug_types)
12132 {
12133 struct objfile *objfile = dwarf2_per_objfile->objfile;
12134 bfd *dbfd = dwp_file->dbfd.get ();
12135 const gdb_byte *index_ptr, *index_end;
12136 struct dwarf2_section_info *index;
12137 uint32_t version, nr_columns, nr_units, nr_slots;
12138 struct dwp_hash_table *htab;
12139
12140 if (is_debug_types)
12141 index = &dwp_file->sections.tu_index;
12142 else
12143 index = &dwp_file->sections.cu_index;
12144
12145 if (dwarf2_section_empty_p (index))
12146 return NULL;
12147 dwarf2_read_section (objfile, index);
12148
12149 index_ptr = index->buffer;
12150 index_end = index_ptr + index->size;
12151
12152 version = read_4_bytes (dbfd, index_ptr);
12153 index_ptr += 4;
12154 if (version == 2)
12155 nr_columns = read_4_bytes (dbfd, index_ptr);
12156 else
12157 nr_columns = 0;
12158 index_ptr += 4;
12159 nr_units = read_4_bytes (dbfd, index_ptr);
12160 index_ptr += 4;
12161 nr_slots = read_4_bytes (dbfd, index_ptr);
12162 index_ptr += 4;
12163
12164 if (version != 1 && version != 2)
12165 {
12166 error (_("Dwarf Error: unsupported DWP file version (%s)"
12167 " [in module %s]"),
12168 pulongest (version), dwp_file->name);
12169 }
12170 if (nr_slots != (nr_slots & -nr_slots))
12171 {
12172 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12173 " is not power of 2 [in module %s]"),
12174 pulongest (nr_slots), dwp_file->name);
12175 }
12176
12177 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12178 htab->version = version;
12179 htab->nr_columns = nr_columns;
12180 htab->nr_units = nr_units;
12181 htab->nr_slots = nr_slots;
12182 htab->hash_table = index_ptr;
12183 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12184
12185 /* Exit early if the table is empty. */
12186 if (nr_slots == 0 || nr_units == 0
12187 || (version == 2 && nr_columns == 0))
12188 {
12189 /* All must be zero. */
12190 if (nr_slots != 0 || nr_units != 0
12191 || (version == 2 && nr_columns != 0))
12192 {
12193 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12194 " all zero [in modules %s]"),
12195 dwp_file->name);
12196 }
12197 return htab;
12198 }
12199
12200 if (version == 1)
12201 {
12202 htab->section_pool.v1.indices =
12203 htab->unit_table + sizeof (uint32_t) * nr_slots;
12204 /* It's harder to decide whether the section is too small in v1.
12205 V1 is deprecated anyway so we punt. */
12206 }
12207 else
12208 {
12209 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12210 int *ids = htab->section_pool.v2.section_ids;
12211 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12212 /* Reverse map for error checking. */
12213 int ids_seen[DW_SECT_MAX + 1];
12214 int i;
12215
12216 if (nr_columns < 2)
12217 {
12218 error (_("Dwarf Error: bad DWP hash table, too few columns"
12219 " in section table [in module %s]"),
12220 dwp_file->name);
12221 }
12222 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12223 {
12224 error (_("Dwarf Error: bad DWP hash table, too many columns"
12225 " in section table [in module %s]"),
12226 dwp_file->name);
12227 }
12228 memset (ids, 255, sizeof_ids);
12229 memset (ids_seen, 255, sizeof (ids_seen));
12230 for (i = 0; i < nr_columns; ++i)
12231 {
12232 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12233
12234 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12235 {
12236 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12237 " in section table [in module %s]"),
12238 id, dwp_file->name);
12239 }
12240 if (ids_seen[id] != -1)
12241 {
12242 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12243 " id %d in section table [in module %s]"),
12244 id, dwp_file->name);
12245 }
12246 ids_seen[id] = i;
12247 ids[i] = id;
12248 }
12249 /* Must have exactly one info or types section. */
12250 if (((ids_seen[DW_SECT_INFO] != -1)
12251 + (ids_seen[DW_SECT_TYPES] != -1))
12252 != 1)
12253 {
12254 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12255 " DWO info/types section [in module %s]"),
12256 dwp_file->name);
12257 }
12258 /* Must have an abbrev section. */
12259 if (ids_seen[DW_SECT_ABBREV] == -1)
12260 {
12261 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12262 " section [in module %s]"),
12263 dwp_file->name);
12264 }
12265 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12266 htab->section_pool.v2.sizes =
12267 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12268 * nr_units * nr_columns);
12269 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12270 * nr_units * nr_columns))
12271 > index_end)
12272 {
12273 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12274 " [in module %s]"),
12275 dwp_file->name);
12276 }
12277 }
12278
12279 return htab;
12280 }
12281
12282 /* Update SECTIONS with the data from SECTP.
12283
12284 This function is like the other "locate" section routines that are
12285 passed to bfd_map_over_sections, but in this context the sections to
12286 read comes from the DWP V1 hash table, not the full ELF section table.
12287
12288 The result is non-zero for success, or zero if an error was found. */
12289
12290 static int
12291 locate_v1_virtual_dwo_sections (asection *sectp,
12292 struct virtual_v1_dwo_sections *sections)
12293 {
12294 const struct dwop_section_names *names = &dwop_section_names;
12295
12296 if (section_is_p (sectp->name, &names->abbrev_dwo))
12297 {
12298 /* There can be only one. */
12299 if (sections->abbrev.s.section != NULL)
12300 return 0;
12301 sections->abbrev.s.section = sectp;
12302 sections->abbrev.size = bfd_get_section_size (sectp);
12303 }
12304 else if (section_is_p (sectp->name, &names->info_dwo)
12305 || section_is_p (sectp->name, &names->types_dwo))
12306 {
12307 /* There can be only one. */
12308 if (sections->info_or_types.s.section != NULL)
12309 return 0;
12310 sections->info_or_types.s.section = sectp;
12311 sections->info_or_types.size = bfd_get_section_size (sectp);
12312 }
12313 else if (section_is_p (sectp->name, &names->line_dwo))
12314 {
12315 /* There can be only one. */
12316 if (sections->line.s.section != NULL)
12317 return 0;
12318 sections->line.s.section = sectp;
12319 sections->line.size = bfd_get_section_size (sectp);
12320 }
12321 else if (section_is_p (sectp->name, &names->loc_dwo))
12322 {
12323 /* There can be only one. */
12324 if (sections->loc.s.section != NULL)
12325 return 0;
12326 sections->loc.s.section = sectp;
12327 sections->loc.size = bfd_get_section_size (sectp);
12328 }
12329 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12330 {
12331 /* There can be only one. */
12332 if (sections->macinfo.s.section != NULL)
12333 return 0;
12334 sections->macinfo.s.section = sectp;
12335 sections->macinfo.size = bfd_get_section_size (sectp);
12336 }
12337 else if (section_is_p (sectp->name, &names->macro_dwo))
12338 {
12339 /* There can be only one. */
12340 if (sections->macro.s.section != NULL)
12341 return 0;
12342 sections->macro.s.section = sectp;
12343 sections->macro.size = bfd_get_section_size (sectp);
12344 }
12345 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12346 {
12347 /* There can be only one. */
12348 if (sections->str_offsets.s.section != NULL)
12349 return 0;
12350 sections->str_offsets.s.section = sectp;
12351 sections->str_offsets.size = bfd_get_section_size (sectp);
12352 }
12353 else
12354 {
12355 /* No other kind of section is valid. */
12356 return 0;
12357 }
12358
12359 return 1;
12360 }
12361
12362 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12363 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12364 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12365 This is for DWP version 1 files. */
12366
12367 static struct dwo_unit *
12368 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12369 struct dwp_file *dwp_file,
12370 uint32_t unit_index,
12371 const char *comp_dir,
12372 ULONGEST signature, int is_debug_types)
12373 {
12374 struct objfile *objfile = dwarf2_per_objfile->objfile;
12375 const struct dwp_hash_table *dwp_htab =
12376 is_debug_types ? dwp_file->tus : dwp_file->cus;
12377 bfd *dbfd = dwp_file->dbfd.get ();
12378 const char *kind = is_debug_types ? "TU" : "CU";
12379 struct dwo_file *dwo_file;
12380 struct dwo_unit *dwo_unit;
12381 struct virtual_v1_dwo_sections sections;
12382 void **dwo_file_slot;
12383 int i;
12384
12385 gdb_assert (dwp_file->version == 1);
12386
12387 if (dwarf_read_debug)
12388 {
12389 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12390 kind,
12391 pulongest (unit_index), hex_string (signature),
12392 dwp_file->name);
12393 }
12394
12395 /* Fetch the sections of this DWO unit.
12396 Put a limit on the number of sections we look for so that bad data
12397 doesn't cause us to loop forever. */
12398
12399 #define MAX_NR_V1_DWO_SECTIONS \
12400 (1 /* .debug_info or .debug_types */ \
12401 + 1 /* .debug_abbrev */ \
12402 + 1 /* .debug_line */ \
12403 + 1 /* .debug_loc */ \
12404 + 1 /* .debug_str_offsets */ \
12405 + 1 /* .debug_macro or .debug_macinfo */ \
12406 + 1 /* trailing zero */)
12407
12408 memset (&sections, 0, sizeof (sections));
12409
12410 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12411 {
12412 asection *sectp;
12413 uint32_t section_nr =
12414 read_4_bytes (dbfd,
12415 dwp_htab->section_pool.v1.indices
12416 + (unit_index + i) * sizeof (uint32_t));
12417
12418 if (section_nr == 0)
12419 break;
12420 if (section_nr >= dwp_file->num_sections)
12421 {
12422 error (_("Dwarf Error: bad DWP hash table, section number too large"
12423 " [in module %s]"),
12424 dwp_file->name);
12425 }
12426
12427 sectp = dwp_file->elf_sections[section_nr];
12428 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12429 {
12430 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12431 " [in module %s]"),
12432 dwp_file->name);
12433 }
12434 }
12435
12436 if (i < 2
12437 || dwarf2_section_empty_p (&sections.info_or_types)
12438 || dwarf2_section_empty_p (&sections.abbrev))
12439 {
12440 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12441 " [in module %s]"),
12442 dwp_file->name);
12443 }
12444 if (i == MAX_NR_V1_DWO_SECTIONS)
12445 {
12446 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12447 " [in module %s]"),
12448 dwp_file->name);
12449 }
12450
12451 /* It's easier for the rest of the code if we fake a struct dwo_file and
12452 have dwo_unit "live" in that. At least for now.
12453
12454 The DWP file can be made up of a random collection of CUs and TUs.
12455 However, for each CU + set of TUs that came from the same original DWO
12456 file, we can combine them back into a virtual DWO file to save space
12457 (fewer struct dwo_file objects to allocate). Remember that for really
12458 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12459
12460 std::string virtual_dwo_name =
12461 string_printf ("virtual-dwo/%d-%d-%d-%d",
12462 get_section_id (&sections.abbrev),
12463 get_section_id (&sections.line),
12464 get_section_id (&sections.loc),
12465 get_section_id (&sections.str_offsets));
12466 /* Can we use an existing virtual DWO file? */
12467 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12468 virtual_dwo_name.c_str (),
12469 comp_dir);
12470 /* Create one if necessary. */
12471 if (*dwo_file_slot == NULL)
12472 {
12473 if (dwarf_read_debug)
12474 {
12475 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12476 virtual_dwo_name.c_str ());
12477 }
12478 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12479 dwo_file->dwo_name
12480 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12481 virtual_dwo_name.c_str (),
12482 virtual_dwo_name.size ());
12483 dwo_file->comp_dir = comp_dir;
12484 dwo_file->sections.abbrev = sections.abbrev;
12485 dwo_file->sections.line = sections.line;
12486 dwo_file->sections.loc = sections.loc;
12487 dwo_file->sections.macinfo = sections.macinfo;
12488 dwo_file->sections.macro = sections.macro;
12489 dwo_file->sections.str_offsets = sections.str_offsets;
12490 /* The "str" section is global to the entire DWP file. */
12491 dwo_file->sections.str = dwp_file->sections.str;
12492 /* The info or types section is assigned below to dwo_unit,
12493 there's no need to record it in dwo_file.
12494 Also, we can't simply record type sections in dwo_file because
12495 we record a pointer into the vector in dwo_unit. As we collect more
12496 types we'll grow the vector and eventually have to reallocate space
12497 for it, invalidating all copies of pointers into the previous
12498 contents. */
12499 *dwo_file_slot = dwo_file;
12500 }
12501 else
12502 {
12503 if (dwarf_read_debug)
12504 {
12505 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12506 virtual_dwo_name.c_str ());
12507 }
12508 dwo_file = (struct dwo_file *) *dwo_file_slot;
12509 }
12510
12511 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12512 dwo_unit->dwo_file = dwo_file;
12513 dwo_unit->signature = signature;
12514 dwo_unit->section =
12515 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12516 *dwo_unit->section = sections.info_or_types;
12517 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12518
12519 return dwo_unit;
12520 }
12521
12522 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12523 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12524 piece within that section used by a TU/CU, return a virtual section
12525 of just that piece. */
12526
12527 static struct dwarf2_section_info
12528 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12529 struct dwarf2_section_info *section,
12530 bfd_size_type offset, bfd_size_type size)
12531 {
12532 struct dwarf2_section_info result;
12533 asection *sectp;
12534
12535 gdb_assert (section != NULL);
12536 gdb_assert (!section->is_virtual);
12537
12538 memset (&result, 0, sizeof (result));
12539 result.s.containing_section = section;
12540 result.is_virtual = 1;
12541
12542 if (size == 0)
12543 return result;
12544
12545 sectp = get_section_bfd_section (section);
12546
12547 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12548 bounds of the real section. This is a pretty-rare event, so just
12549 flag an error (easier) instead of a warning and trying to cope. */
12550 if (sectp == NULL
12551 || offset + size > bfd_get_section_size (sectp))
12552 {
12553 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12554 " in section %s [in module %s]"),
12555 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12556 objfile_name (dwarf2_per_objfile->objfile));
12557 }
12558
12559 result.virtual_offset = offset;
12560 result.size = size;
12561 return result;
12562 }
12563
12564 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12565 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12566 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12567 This is for DWP version 2 files. */
12568
12569 static struct dwo_unit *
12570 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12571 struct dwp_file *dwp_file,
12572 uint32_t unit_index,
12573 const char *comp_dir,
12574 ULONGEST signature, int is_debug_types)
12575 {
12576 struct objfile *objfile = dwarf2_per_objfile->objfile;
12577 const struct dwp_hash_table *dwp_htab =
12578 is_debug_types ? dwp_file->tus : dwp_file->cus;
12579 bfd *dbfd = dwp_file->dbfd.get ();
12580 const char *kind = is_debug_types ? "TU" : "CU";
12581 struct dwo_file *dwo_file;
12582 struct dwo_unit *dwo_unit;
12583 struct virtual_v2_dwo_sections sections;
12584 void **dwo_file_slot;
12585 int i;
12586
12587 gdb_assert (dwp_file->version == 2);
12588
12589 if (dwarf_read_debug)
12590 {
12591 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12592 kind,
12593 pulongest (unit_index), hex_string (signature),
12594 dwp_file->name);
12595 }
12596
12597 /* Fetch the section offsets of this DWO unit. */
12598
12599 memset (&sections, 0, sizeof (sections));
12600
12601 for (i = 0; i < dwp_htab->nr_columns; ++i)
12602 {
12603 uint32_t offset = read_4_bytes (dbfd,
12604 dwp_htab->section_pool.v2.offsets
12605 + (((unit_index - 1) * dwp_htab->nr_columns
12606 + i)
12607 * sizeof (uint32_t)));
12608 uint32_t size = read_4_bytes (dbfd,
12609 dwp_htab->section_pool.v2.sizes
12610 + (((unit_index - 1) * dwp_htab->nr_columns
12611 + i)
12612 * sizeof (uint32_t)));
12613
12614 switch (dwp_htab->section_pool.v2.section_ids[i])
12615 {
12616 case DW_SECT_INFO:
12617 case DW_SECT_TYPES:
12618 sections.info_or_types_offset = offset;
12619 sections.info_or_types_size = size;
12620 break;
12621 case DW_SECT_ABBREV:
12622 sections.abbrev_offset = offset;
12623 sections.abbrev_size = size;
12624 break;
12625 case DW_SECT_LINE:
12626 sections.line_offset = offset;
12627 sections.line_size = size;
12628 break;
12629 case DW_SECT_LOC:
12630 sections.loc_offset = offset;
12631 sections.loc_size = size;
12632 break;
12633 case DW_SECT_STR_OFFSETS:
12634 sections.str_offsets_offset = offset;
12635 sections.str_offsets_size = size;
12636 break;
12637 case DW_SECT_MACINFO:
12638 sections.macinfo_offset = offset;
12639 sections.macinfo_size = size;
12640 break;
12641 case DW_SECT_MACRO:
12642 sections.macro_offset = offset;
12643 sections.macro_size = size;
12644 break;
12645 }
12646 }
12647
12648 /* It's easier for the rest of the code if we fake a struct dwo_file and
12649 have dwo_unit "live" in that. At least for now.
12650
12651 The DWP file can be made up of a random collection of CUs and TUs.
12652 However, for each CU + set of TUs that came from the same original DWO
12653 file, we can combine them back into a virtual DWO file to save space
12654 (fewer struct dwo_file objects to allocate). Remember that for really
12655 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12656
12657 std::string virtual_dwo_name =
12658 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12659 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12660 (long) (sections.line_size ? sections.line_offset : 0),
12661 (long) (sections.loc_size ? sections.loc_offset : 0),
12662 (long) (sections.str_offsets_size
12663 ? sections.str_offsets_offset : 0));
12664 /* Can we use an existing virtual DWO file? */
12665 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12666 virtual_dwo_name.c_str (),
12667 comp_dir);
12668 /* Create one if necessary. */
12669 if (*dwo_file_slot == NULL)
12670 {
12671 if (dwarf_read_debug)
12672 {
12673 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12674 virtual_dwo_name.c_str ());
12675 }
12676 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12677 dwo_file->dwo_name
12678 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12679 virtual_dwo_name.c_str (),
12680 virtual_dwo_name.size ());
12681 dwo_file->comp_dir = comp_dir;
12682 dwo_file->sections.abbrev =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12684 sections.abbrev_offset, sections.abbrev_size);
12685 dwo_file->sections.line =
12686 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12687 sections.line_offset, sections.line_size);
12688 dwo_file->sections.loc =
12689 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12690 sections.loc_offset, sections.loc_size);
12691 dwo_file->sections.macinfo =
12692 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12693 sections.macinfo_offset, sections.macinfo_size);
12694 dwo_file->sections.macro =
12695 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12696 sections.macro_offset, sections.macro_size);
12697 dwo_file->sections.str_offsets =
12698 create_dwp_v2_section (dwarf2_per_objfile,
12699 &dwp_file->sections.str_offsets,
12700 sections.str_offsets_offset,
12701 sections.str_offsets_size);
12702 /* The "str" section is global to the entire DWP file. */
12703 dwo_file->sections.str = dwp_file->sections.str;
12704 /* The info or types section is assigned below to dwo_unit,
12705 there's no need to record it in dwo_file.
12706 Also, we can't simply record type sections in dwo_file because
12707 we record a pointer into the vector in dwo_unit. As we collect more
12708 types we'll grow the vector and eventually have to reallocate space
12709 for it, invalidating all copies of pointers into the previous
12710 contents. */
12711 *dwo_file_slot = dwo_file;
12712 }
12713 else
12714 {
12715 if (dwarf_read_debug)
12716 {
12717 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12718 virtual_dwo_name.c_str ());
12719 }
12720 dwo_file = (struct dwo_file *) *dwo_file_slot;
12721 }
12722
12723 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12724 dwo_unit->dwo_file = dwo_file;
12725 dwo_unit->signature = signature;
12726 dwo_unit->section =
12727 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12728 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12729 is_debug_types
12730 ? &dwp_file->sections.types
12731 : &dwp_file->sections.info,
12732 sections.info_or_types_offset,
12733 sections.info_or_types_size);
12734 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12735
12736 return dwo_unit;
12737 }
12738
12739 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12740 Returns NULL if the signature isn't found. */
12741
12742 static struct dwo_unit *
12743 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12744 struct dwp_file *dwp_file, const char *comp_dir,
12745 ULONGEST signature, int is_debug_types)
12746 {
12747 const struct dwp_hash_table *dwp_htab =
12748 is_debug_types ? dwp_file->tus : dwp_file->cus;
12749 bfd *dbfd = dwp_file->dbfd.get ();
12750 uint32_t mask = dwp_htab->nr_slots - 1;
12751 uint32_t hash = signature & mask;
12752 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12753 unsigned int i;
12754 void **slot;
12755 struct dwo_unit find_dwo_cu;
12756
12757 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12758 find_dwo_cu.signature = signature;
12759 slot = htab_find_slot (is_debug_types
12760 ? dwp_file->loaded_tus
12761 : dwp_file->loaded_cus,
12762 &find_dwo_cu, INSERT);
12763
12764 if (*slot != NULL)
12765 return (struct dwo_unit *) *slot;
12766
12767 /* Use a for loop so that we don't loop forever on bad debug info. */
12768 for (i = 0; i < dwp_htab->nr_slots; ++i)
12769 {
12770 ULONGEST signature_in_table;
12771
12772 signature_in_table =
12773 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12774 if (signature_in_table == signature)
12775 {
12776 uint32_t unit_index =
12777 read_4_bytes (dbfd,
12778 dwp_htab->unit_table + hash * sizeof (uint32_t));
12779
12780 if (dwp_file->version == 1)
12781 {
12782 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12783 dwp_file, unit_index,
12784 comp_dir, signature,
12785 is_debug_types);
12786 }
12787 else
12788 {
12789 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12790 dwp_file, unit_index,
12791 comp_dir, signature,
12792 is_debug_types);
12793 }
12794 return (struct dwo_unit *) *slot;
12795 }
12796 if (signature_in_table == 0)
12797 return NULL;
12798 hash = (hash + hash2) & mask;
12799 }
12800
12801 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12802 " [in module %s]"),
12803 dwp_file->name);
12804 }
12805
12806 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12807 Open the file specified by FILE_NAME and hand it off to BFD for
12808 preliminary analysis. Return a newly initialized bfd *, which
12809 includes a canonicalized copy of FILE_NAME.
12810 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12811 SEARCH_CWD is true if the current directory is to be searched.
12812 It will be searched before debug-file-directory.
12813 If successful, the file is added to the bfd include table of the
12814 objfile's bfd (see gdb_bfd_record_inclusion).
12815 If unable to find/open the file, return NULL.
12816 NOTE: This function is derived from symfile_bfd_open. */
12817
12818 static gdb_bfd_ref_ptr
12819 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12820 const char *file_name, int is_dwp, int search_cwd)
12821 {
12822 int desc;
12823 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12824 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12825 to debug_file_directory. */
12826 const char *search_path;
12827 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12828
12829 gdb::unique_xmalloc_ptr<char> search_path_holder;
12830 if (search_cwd)
12831 {
12832 if (*debug_file_directory != '\0')
12833 {
12834 search_path_holder.reset (concat (".", dirname_separator_string,
12835 debug_file_directory,
12836 (char *) NULL));
12837 search_path = search_path_holder.get ();
12838 }
12839 else
12840 search_path = ".";
12841 }
12842 else
12843 search_path = debug_file_directory;
12844
12845 openp_flags flags = OPF_RETURN_REALPATH;
12846 if (is_dwp)
12847 flags |= OPF_SEARCH_IN_PATH;
12848
12849 gdb::unique_xmalloc_ptr<char> absolute_name;
12850 desc = openp (search_path, flags, file_name,
12851 O_RDONLY | O_BINARY, &absolute_name);
12852 if (desc < 0)
12853 return NULL;
12854
12855 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12856 gnutarget, desc));
12857 if (sym_bfd == NULL)
12858 return NULL;
12859 bfd_set_cacheable (sym_bfd.get (), 1);
12860
12861 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12862 return NULL;
12863
12864 /* Success. Record the bfd as having been included by the objfile's bfd.
12865 This is important because things like demangled_names_hash lives in the
12866 objfile's per_bfd space and may have references to things like symbol
12867 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12868 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12869
12870 return sym_bfd;
12871 }
12872
12873 /* Try to open DWO file FILE_NAME.
12874 COMP_DIR is the DW_AT_comp_dir attribute.
12875 The result is the bfd handle of the file.
12876 If there is a problem finding or opening the file, return NULL.
12877 Upon success, the canonicalized path of the file is stored in the bfd,
12878 same as symfile_bfd_open. */
12879
12880 static gdb_bfd_ref_ptr
12881 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12882 const char *file_name, const char *comp_dir)
12883 {
12884 if (IS_ABSOLUTE_PATH (file_name))
12885 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12886 0 /*is_dwp*/, 0 /*search_cwd*/);
12887
12888 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12889
12890 if (comp_dir != NULL)
12891 {
12892 char *path_to_try = concat (comp_dir, SLASH_STRING,
12893 file_name, (char *) NULL);
12894
12895 /* NOTE: If comp_dir is a relative path, this will also try the
12896 search path, which seems useful. */
12897 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12898 path_to_try,
12899 0 /*is_dwp*/,
12900 1 /*search_cwd*/));
12901 xfree (path_to_try);
12902 if (abfd != NULL)
12903 return abfd;
12904 }
12905
12906 /* That didn't work, try debug-file-directory, which, despite its name,
12907 is a list of paths. */
12908
12909 if (*debug_file_directory == '\0')
12910 return NULL;
12911
12912 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12913 0 /*is_dwp*/, 1 /*search_cwd*/);
12914 }
12915
12916 /* This function is mapped across the sections and remembers the offset and
12917 size of each of the DWO debugging sections we are interested in. */
12918
12919 static void
12920 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12921 {
12922 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12923 const struct dwop_section_names *names = &dwop_section_names;
12924
12925 if (section_is_p (sectp->name, &names->abbrev_dwo))
12926 {
12927 dwo_sections->abbrev.s.section = sectp;
12928 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12929 }
12930 else if (section_is_p (sectp->name, &names->info_dwo))
12931 {
12932 dwo_sections->info.s.section = sectp;
12933 dwo_sections->info.size = bfd_get_section_size (sectp);
12934 }
12935 else if (section_is_p (sectp->name, &names->line_dwo))
12936 {
12937 dwo_sections->line.s.section = sectp;
12938 dwo_sections->line.size = bfd_get_section_size (sectp);
12939 }
12940 else if (section_is_p (sectp->name, &names->loc_dwo))
12941 {
12942 dwo_sections->loc.s.section = sectp;
12943 dwo_sections->loc.size = bfd_get_section_size (sectp);
12944 }
12945 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12946 {
12947 dwo_sections->macinfo.s.section = sectp;
12948 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12949 }
12950 else if (section_is_p (sectp->name, &names->macro_dwo))
12951 {
12952 dwo_sections->macro.s.section = sectp;
12953 dwo_sections->macro.size = bfd_get_section_size (sectp);
12954 }
12955 else if (section_is_p (sectp->name, &names->str_dwo))
12956 {
12957 dwo_sections->str.s.section = sectp;
12958 dwo_sections->str.size = bfd_get_section_size (sectp);
12959 }
12960 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12961 {
12962 dwo_sections->str_offsets.s.section = sectp;
12963 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12964 }
12965 else if (section_is_p (sectp->name, &names->types_dwo))
12966 {
12967 struct dwarf2_section_info type_section;
12968
12969 memset (&type_section, 0, sizeof (type_section));
12970 type_section.s.section = sectp;
12971 type_section.size = bfd_get_section_size (sectp);
12972 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12973 &type_section);
12974 }
12975 }
12976
12977 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12978 by PER_CU. This is for the non-DWP case.
12979 The result is NULL if DWO_NAME can't be found. */
12980
12981 static struct dwo_file *
12982 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12983 const char *dwo_name, const char *comp_dir)
12984 {
12985 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12986 struct objfile *objfile = dwarf2_per_objfile->objfile;
12987
12988 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12989 if (dbfd == NULL)
12990 {
12991 if (dwarf_read_debug)
12992 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12993 return NULL;
12994 }
12995
12996 /* We use a unique pointer here, despite the obstack allocation,
12997 because a dwo_file needs some cleanup if it is abandoned. */
12998 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12999 struct dwo_file));
13000 dwo_file->dwo_name = dwo_name;
13001 dwo_file->comp_dir = comp_dir;
13002 dwo_file->dbfd = dbfd.release ();
13003
13004 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13005 &dwo_file->sections);
13006
13007 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13008 dwo_file->cus);
13009
13010 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13011 dwo_file->sections.types, dwo_file->tus);
13012
13013 if (dwarf_read_debug)
13014 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13015
13016 return dwo_file.release ();
13017 }
13018
13019 /* This function is mapped across the sections and remembers the offset and
13020 size of each of the DWP debugging sections common to version 1 and 2 that
13021 we are interested in. */
13022
13023 static void
13024 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13025 void *dwp_file_ptr)
13026 {
13027 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13028 const struct dwop_section_names *names = &dwop_section_names;
13029 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13030
13031 /* Record the ELF section number for later lookup: this is what the
13032 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13033 gdb_assert (elf_section_nr < dwp_file->num_sections);
13034 dwp_file->elf_sections[elf_section_nr] = sectp;
13035
13036 /* Look for specific sections that we need. */
13037 if (section_is_p (sectp->name, &names->str_dwo))
13038 {
13039 dwp_file->sections.str.s.section = sectp;
13040 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->cu_index))
13043 {
13044 dwp_file->sections.cu_index.s.section = sectp;
13045 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13046 }
13047 else if (section_is_p (sectp->name, &names->tu_index))
13048 {
13049 dwp_file->sections.tu_index.s.section = sectp;
13050 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13051 }
13052 }
13053
13054 /* This function is mapped across the sections and remembers the offset and
13055 size of each of the DWP version 2 debugging sections that we are interested
13056 in. This is split into a separate function because we don't know if we
13057 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13058
13059 static void
13060 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13061 {
13062 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13063 const struct dwop_section_names *names = &dwop_section_names;
13064 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13065
13066 /* Record the ELF section number for later lookup: this is what the
13067 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13068 gdb_assert (elf_section_nr < dwp_file->num_sections);
13069 dwp_file->elf_sections[elf_section_nr] = sectp;
13070
13071 /* Look for specific sections that we need. */
13072 if (section_is_p (sectp->name, &names->abbrev_dwo))
13073 {
13074 dwp_file->sections.abbrev.s.section = sectp;
13075 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13076 }
13077 else if (section_is_p (sectp->name, &names->info_dwo))
13078 {
13079 dwp_file->sections.info.s.section = sectp;
13080 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13081 }
13082 else if (section_is_p (sectp->name, &names->line_dwo))
13083 {
13084 dwp_file->sections.line.s.section = sectp;
13085 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13086 }
13087 else if (section_is_p (sectp->name, &names->loc_dwo))
13088 {
13089 dwp_file->sections.loc.s.section = sectp;
13090 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13091 }
13092 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13093 {
13094 dwp_file->sections.macinfo.s.section = sectp;
13095 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13096 }
13097 else if (section_is_p (sectp->name, &names->macro_dwo))
13098 {
13099 dwp_file->sections.macro.s.section = sectp;
13100 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13101 }
13102 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13103 {
13104 dwp_file->sections.str_offsets.s.section = sectp;
13105 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13106 }
13107 else if (section_is_p (sectp->name, &names->types_dwo))
13108 {
13109 dwp_file->sections.types.s.section = sectp;
13110 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13111 }
13112 }
13113
13114 /* Hash function for dwp_file loaded CUs/TUs. */
13115
13116 static hashval_t
13117 hash_dwp_loaded_cutus (const void *item)
13118 {
13119 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13120
13121 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13122 return dwo_unit->signature;
13123 }
13124
13125 /* Equality function for dwp_file loaded CUs/TUs. */
13126
13127 static int
13128 eq_dwp_loaded_cutus (const void *a, const void *b)
13129 {
13130 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13131 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13132
13133 return dua->signature == dub->signature;
13134 }
13135
13136 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13137
13138 static htab_t
13139 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13140 {
13141 return htab_create_alloc_ex (3,
13142 hash_dwp_loaded_cutus,
13143 eq_dwp_loaded_cutus,
13144 NULL,
13145 &objfile->objfile_obstack,
13146 hashtab_obstack_allocate,
13147 dummy_obstack_deallocate);
13148 }
13149
13150 /* Try to open DWP file FILE_NAME.
13151 The result is the bfd handle of the file.
13152 If there is a problem finding or opening the file, return NULL.
13153 Upon success, the canonicalized path of the file is stored in the bfd,
13154 same as symfile_bfd_open. */
13155
13156 static gdb_bfd_ref_ptr
13157 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13158 const char *file_name)
13159 {
13160 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13161 1 /*is_dwp*/,
13162 1 /*search_cwd*/));
13163 if (abfd != NULL)
13164 return abfd;
13165
13166 /* Work around upstream bug 15652.
13167 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13168 [Whether that's a "bug" is debatable, but it is getting in our way.]
13169 We have no real idea where the dwp file is, because gdb's realpath-ing
13170 of the executable's path may have discarded the needed info.
13171 [IWBN if the dwp file name was recorded in the executable, akin to
13172 .gnu_debuglink, but that doesn't exist yet.]
13173 Strip the directory from FILE_NAME and search again. */
13174 if (*debug_file_directory != '\0')
13175 {
13176 /* Don't implicitly search the current directory here.
13177 If the user wants to search "." to handle this case,
13178 it must be added to debug-file-directory. */
13179 return try_open_dwop_file (dwarf2_per_objfile,
13180 lbasename (file_name), 1 /*is_dwp*/,
13181 0 /*search_cwd*/);
13182 }
13183
13184 return NULL;
13185 }
13186
13187 /* Initialize the use of the DWP file for the current objfile.
13188 By convention the name of the DWP file is ${objfile}.dwp.
13189 The result is NULL if it can't be found. */
13190
13191 static std::unique_ptr<struct dwp_file>
13192 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13193 {
13194 struct objfile *objfile = dwarf2_per_objfile->objfile;
13195
13196 /* Try to find first .dwp for the binary file before any symbolic links
13197 resolving. */
13198
13199 /* If the objfile is a debug file, find the name of the real binary
13200 file and get the name of dwp file from there. */
13201 std::string dwp_name;
13202 if (objfile->separate_debug_objfile_backlink != NULL)
13203 {
13204 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13205 const char *backlink_basename = lbasename (backlink->original_name);
13206
13207 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13208 }
13209 else
13210 dwp_name = objfile->original_name;
13211
13212 dwp_name += ".dwp";
13213
13214 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13215 if (dbfd == NULL
13216 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13217 {
13218 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13219 dwp_name = objfile_name (objfile);
13220 dwp_name += ".dwp";
13221 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13222 }
13223
13224 if (dbfd == NULL)
13225 {
13226 if (dwarf_read_debug)
13227 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13228 return std::unique_ptr<dwp_file> ();
13229 }
13230
13231 const char *name = bfd_get_filename (dbfd.get ());
13232 std::unique_ptr<struct dwp_file> dwp_file
13233 (new struct dwp_file (name, std::move (dbfd)));
13234
13235 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13236 dwp_file->elf_sections =
13237 OBSTACK_CALLOC (&objfile->objfile_obstack,
13238 dwp_file->num_sections, asection *);
13239
13240 bfd_map_over_sections (dwp_file->dbfd.get (),
13241 dwarf2_locate_common_dwp_sections,
13242 dwp_file.get ());
13243
13244 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13245 0);
13246
13247 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13248 1);
13249
13250 /* The DWP file version is stored in the hash table. Oh well. */
13251 if (dwp_file->cus && dwp_file->tus
13252 && dwp_file->cus->version != dwp_file->tus->version)
13253 {
13254 /* Technically speaking, we should try to limp along, but this is
13255 pretty bizarre. We use pulongest here because that's the established
13256 portability solution (e.g, we cannot use %u for uint32_t). */
13257 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13258 " TU version %s [in DWP file %s]"),
13259 pulongest (dwp_file->cus->version),
13260 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13261 }
13262
13263 if (dwp_file->cus)
13264 dwp_file->version = dwp_file->cus->version;
13265 else if (dwp_file->tus)
13266 dwp_file->version = dwp_file->tus->version;
13267 else
13268 dwp_file->version = 2;
13269
13270 if (dwp_file->version == 2)
13271 bfd_map_over_sections (dwp_file->dbfd.get (),
13272 dwarf2_locate_v2_dwp_sections,
13273 dwp_file.get ());
13274
13275 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13276 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13277
13278 if (dwarf_read_debug)
13279 {
13280 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13281 fprintf_unfiltered (gdb_stdlog,
13282 " %s CUs, %s TUs\n",
13283 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13284 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13285 }
13286
13287 return dwp_file;
13288 }
13289
13290 /* Wrapper around open_and_init_dwp_file, only open it once. */
13291
13292 static struct dwp_file *
13293 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13294 {
13295 if (! dwarf2_per_objfile->dwp_checked)
13296 {
13297 dwarf2_per_objfile->dwp_file
13298 = open_and_init_dwp_file (dwarf2_per_objfile);
13299 dwarf2_per_objfile->dwp_checked = 1;
13300 }
13301 return dwarf2_per_objfile->dwp_file.get ();
13302 }
13303
13304 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13305 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13306 or in the DWP file for the objfile, referenced by THIS_UNIT.
13307 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13308 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13309
13310 This is called, for example, when wanting to read a variable with a
13311 complex location. Therefore we don't want to do file i/o for every call.
13312 Therefore we don't want to look for a DWO file on every call.
13313 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13314 then we check if we've already seen DWO_NAME, and only THEN do we check
13315 for a DWO file.
13316
13317 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13318 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13319
13320 static struct dwo_unit *
13321 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13322 const char *dwo_name, const char *comp_dir,
13323 ULONGEST signature, int is_debug_types)
13324 {
13325 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13326 struct objfile *objfile = dwarf2_per_objfile->objfile;
13327 const char *kind = is_debug_types ? "TU" : "CU";
13328 void **dwo_file_slot;
13329 struct dwo_file *dwo_file;
13330 struct dwp_file *dwp_file;
13331
13332 /* First see if there's a DWP file.
13333 If we have a DWP file but didn't find the DWO inside it, don't
13334 look for the original DWO file. It makes gdb behave differently
13335 depending on whether one is debugging in the build tree. */
13336
13337 dwp_file = get_dwp_file (dwarf2_per_objfile);
13338 if (dwp_file != NULL)
13339 {
13340 const struct dwp_hash_table *dwp_htab =
13341 is_debug_types ? dwp_file->tus : dwp_file->cus;
13342
13343 if (dwp_htab != NULL)
13344 {
13345 struct dwo_unit *dwo_cutu =
13346 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13347 signature, is_debug_types);
13348
13349 if (dwo_cutu != NULL)
13350 {
13351 if (dwarf_read_debug)
13352 {
13353 fprintf_unfiltered (gdb_stdlog,
13354 "Virtual DWO %s %s found: @%s\n",
13355 kind, hex_string (signature),
13356 host_address_to_string (dwo_cutu));
13357 }
13358 return dwo_cutu;
13359 }
13360 }
13361 }
13362 else
13363 {
13364 /* No DWP file, look for the DWO file. */
13365
13366 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13367 dwo_name, comp_dir);
13368 if (*dwo_file_slot == NULL)
13369 {
13370 /* Read in the file and build a table of the CUs/TUs it contains. */
13371 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13372 }
13373 /* NOTE: This will be NULL if unable to open the file. */
13374 dwo_file = (struct dwo_file *) *dwo_file_slot;
13375
13376 if (dwo_file != NULL)
13377 {
13378 struct dwo_unit *dwo_cutu = NULL;
13379
13380 if (is_debug_types && dwo_file->tus)
13381 {
13382 struct dwo_unit find_dwo_cutu;
13383
13384 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13385 find_dwo_cutu.signature = signature;
13386 dwo_cutu
13387 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13388 }
13389 else if (!is_debug_types && dwo_file->cus)
13390 {
13391 struct dwo_unit find_dwo_cutu;
13392
13393 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13394 find_dwo_cutu.signature = signature;
13395 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13396 &find_dwo_cutu);
13397 }
13398
13399 if (dwo_cutu != NULL)
13400 {
13401 if (dwarf_read_debug)
13402 {
13403 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13404 kind, dwo_name, hex_string (signature),
13405 host_address_to_string (dwo_cutu));
13406 }
13407 return dwo_cutu;
13408 }
13409 }
13410 }
13411
13412 /* We didn't find it. This could mean a dwo_id mismatch, or
13413 someone deleted the DWO/DWP file, or the search path isn't set up
13414 correctly to find the file. */
13415
13416 if (dwarf_read_debug)
13417 {
13418 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13419 kind, dwo_name, hex_string (signature));
13420 }
13421
13422 /* This is a warning and not a complaint because it can be caused by
13423 pilot error (e.g., user accidentally deleting the DWO). */
13424 {
13425 /* Print the name of the DWP file if we looked there, helps the user
13426 better diagnose the problem. */
13427 std::string dwp_text;
13428
13429 if (dwp_file != NULL)
13430 dwp_text = string_printf (" [in DWP file %s]",
13431 lbasename (dwp_file->name));
13432
13433 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13434 " [in module %s]"),
13435 kind, dwo_name, hex_string (signature),
13436 dwp_text.c_str (),
13437 this_unit->is_debug_types ? "TU" : "CU",
13438 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13439 }
13440 return NULL;
13441 }
13442
13443 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13444 See lookup_dwo_cutu_unit for details. */
13445
13446 static struct dwo_unit *
13447 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13448 const char *dwo_name, const char *comp_dir,
13449 ULONGEST signature)
13450 {
13451 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13452 }
13453
13454 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13455 See lookup_dwo_cutu_unit for details. */
13456
13457 static struct dwo_unit *
13458 lookup_dwo_type_unit (struct signatured_type *this_tu,
13459 const char *dwo_name, const char *comp_dir)
13460 {
13461 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13462 }
13463
13464 /* Traversal function for queue_and_load_all_dwo_tus. */
13465
13466 static int
13467 queue_and_load_dwo_tu (void **slot, void *info)
13468 {
13469 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13470 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13471 ULONGEST signature = dwo_unit->signature;
13472 struct signatured_type *sig_type =
13473 lookup_dwo_signatured_type (per_cu->cu, signature);
13474
13475 if (sig_type != NULL)
13476 {
13477 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13478
13479 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13480 a real dependency of PER_CU on SIG_TYPE. That is detected later
13481 while processing PER_CU. */
13482 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13483 load_full_type_unit (sig_cu);
13484 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13485 }
13486
13487 return 1;
13488 }
13489
13490 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13491 The DWO may have the only definition of the type, though it may not be
13492 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13493 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13494
13495 static void
13496 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13497 {
13498 struct dwo_unit *dwo_unit;
13499 struct dwo_file *dwo_file;
13500
13501 gdb_assert (!per_cu->is_debug_types);
13502 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13503 gdb_assert (per_cu->cu != NULL);
13504
13505 dwo_unit = per_cu->cu->dwo_unit;
13506 gdb_assert (dwo_unit != NULL);
13507
13508 dwo_file = dwo_unit->dwo_file;
13509 if (dwo_file->tus != NULL)
13510 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13511 }
13512
13513 /* Free all resources associated with DWO_FILE.
13514 Close the DWO file and munmap the sections. */
13515
13516 static void
13517 free_dwo_file (struct dwo_file *dwo_file)
13518 {
13519 /* Note: dbfd is NULL for virtual DWO files. */
13520 gdb_bfd_unref (dwo_file->dbfd);
13521
13522 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13523 }
13524
13525 /* Traversal function for free_dwo_files. */
13526
13527 static int
13528 free_dwo_file_from_slot (void **slot, void *info)
13529 {
13530 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13531
13532 free_dwo_file (dwo_file);
13533
13534 return 1;
13535 }
13536
13537 /* Free all resources associated with DWO_FILES. */
13538
13539 static void
13540 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13541 {
13542 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13543 }
13544 \f
13545 /* Read in various DIEs. */
13546
13547 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13548 Inherit only the children of the DW_AT_abstract_origin DIE not being
13549 already referenced by DW_AT_abstract_origin from the children of the
13550 current DIE. */
13551
13552 static void
13553 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13554 {
13555 struct die_info *child_die;
13556 sect_offset *offsetp;
13557 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13558 struct die_info *origin_die;
13559 /* Iterator of the ORIGIN_DIE children. */
13560 struct die_info *origin_child_die;
13561 struct attribute *attr;
13562 struct dwarf2_cu *origin_cu;
13563 struct pending **origin_previous_list_in_scope;
13564
13565 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13566 if (!attr)
13567 return;
13568
13569 /* Note that following die references may follow to a die in a
13570 different cu. */
13571
13572 origin_cu = cu;
13573 origin_die = follow_die_ref (die, attr, &origin_cu);
13574
13575 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13576 symbols in. */
13577 origin_previous_list_in_scope = origin_cu->list_in_scope;
13578 origin_cu->list_in_scope = cu->list_in_scope;
13579
13580 if (die->tag != origin_die->tag
13581 && !(die->tag == DW_TAG_inlined_subroutine
13582 && origin_die->tag == DW_TAG_subprogram))
13583 complaint (_("DIE %s and its abstract origin %s have different tags"),
13584 sect_offset_str (die->sect_off),
13585 sect_offset_str (origin_die->sect_off));
13586
13587 std::vector<sect_offset> offsets;
13588
13589 for (child_die = die->child;
13590 child_die && child_die->tag;
13591 child_die = sibling_die (child_die))
13592 {
13593 struct die_info *child_origin_die;
13594 struct dwarf2_cu *child_origin_cu;
13595
13596 /* We are trying to process concrete instance entries:
13597 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13598 it's not relevant to our analysis here. i.e. detecting DIEs that are
13599 present in the abstract instance but not referenced in the concrete
13600 one. */
13601 if (child_die->tag == DW_TAG_call_site
13602 || child_die->tag == DW_TAG_GNU_call_site)
13603 continue;
13604
13605 /* For each CHILD_DIE, find the corresponding child of
13606 ORIGIN_DIE. If there is more than one layer of
13607 DW_AT_abstract_origin, follow them all; there shouldn't be,
13608 but GCC versions at least through 4.4 generate this (GCC PR
13609 40573). */
13610 child_origin_die = child_die;
13611 child_origin_cu = cu;
13612 while (1)
13613 {
13614 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13615 child_origin_cu);
13616 if (attr == NULL)
13617 break;
13618 child_origin_die = follow_die_ref (child_origin_die, attr,
13619 &child_origin_cu);
13620 }
13621
13622 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13623 counterpart may exist. */
13624 if (child_origin_die != child_die)
13625 {
13626 if (child_die->tag != child_origin_die->tag
13627 && !(child_die->tag == DW_TAG_inlined_subroutine
13628 && child_origin_die->tag == DW_TAG_subprogram))
13629 complaint (_("Child DIE %s and its abstract origin %s have "
13630 "different tags"),
13631 sect_offset_str (child_die->sect_off),
13632 sect_offset_str (child_origin_die->sect_off));
13633 if (child_origin_die->parent != origin_die)
13634 complaint (_("Child DIE %s and its abstract origin %s have "
13635 "different parents"),
13636 sect_offset_str (child_die->sect_off),
13637 sect_offset_str (child_origin_die->sect_off));
13638 else
13639 offsets.push_back (child_origin_die->sect_off);
13640 }
13641 }
13642 std::sort (offsets.begin (), offsets.end ());
13643 sect_offset *offsets_end = offsets.data () + offsets.size ();
13644 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13645 if (offsetp[-1] == *offsetp)
13646 complaint (_("Multiple children of DIE %s refer "
13647 "to DIE %s as their abstract origin"),
13648 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13649
13650 offsetp = offsets.data ();
13651 origin_child_die = origin_die->child;
13652 while (origin_child_die && origin_child_die->tag)
13653 {
13654 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13655 while (offsetp < offsets_end
13656 && *offsetp < origin_child_die->sect_off)
13657 offsetp++;
13658 if (offsetp >= offsets_end
13659 || *offsetp > origin_child_die->sect_off)
13660 {
13661 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13662 Check whether we're already processing ORIGIN_CHILD_DIE.
13663 This can happen with mutually referenced abstract_origins.
13664 PR 16581. */
13665 if (!origin_child_die->in_process)
13666 process_die (origin_child_die, origin_cu);
13667 }
13668 origin_child_die = sibling_die (origin_child_die);
13669 }
13670 origin_cu->list_in_scope = origin_previous_list_in_scope;
13671 }
13672
13673 static void
13674 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13675 {
13676 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13677 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13678 struct context_stack *newobj;
13679 CORE_ADDR lowpc;
13680 CORE_ADDR highpc;
13681 struct die_info *child_die;
13682 struct attribute *attr, *call_line, *call_file;
13683 const char *name;
13684 CORE_ADDR baseaddr;
13685 struct block *block;
13686 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13687 std::vector<struct symbol *> template_args;
13688 struct template_symbol *templ_func = NULL;
13689
13690 if (inlined_func)
13691 {
13692 /* If we do not have call site information, we can't show the
13693 caller of this inlined function. That's too confusing, so
13694 only use the scope for local variables. */
13695 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13696 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13697 if (call_line == NULL || call_file == NULL)
13698 {
13699 read_lexical_block_scope (die, cu);
13700 return;
13701 }
13702 }
13703
13704 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13705
13706 name = dwarf2_name (die, cu);
13707
13708 /* Ignore functions with missing or empty names. These are actually
13709 illegal according to the DWARF standard. */
13710 if (name == NULL)
13711 {
13712 complaint (_("missing name for subprogram DIE at %s"),
13713 sect_offset_str (die->sect_off));
13714 return;
13715 }
13716
13717 /* Ignore functions with missing or invalid low and high pc attributes. */
13718 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13719 <= PC_BOUNDS_INVALID)
13720 {
13721 attr = dwarf2_attr (die, DW_AT_external, cu);
13722 if (!attr || !DW_UNSND (attr))
13723 complaint (_("cannot get low and high bounds "
13724 "for subprogram DIE at %s"),
13725 sect_offset_str (die->sect_off));
13726 return;
13727 }
13728
13729 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13730 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13731
13732 /* If we have any template arguments, then we must allocate a
13733 different sort of symbol. */
13734 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13735 {
13736 if (child_die->tag == DW_TAG_template_type_param
13737 || child_die->tag == DW_TAG_template_value_param)
13738 {
13739 templ_func = allocate_template_symbol (objfile);
13740 templ_func->subclass = SYMBOL_TEMPLATE;
13741 break;
13742 }
13743 }
13744
13745 newobj = cu->get_builder ()->push_context (0, lowpc);
13746 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13747 (struct symbol *) templ_func);
13748
13749 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13750 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13751 cu->language);
13752
13753 /* If there is a location expression for DW_AT_frame_base, record
13754 it. */
13755 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13756 if (attr)
13757 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13758
13759 /* If there is a location for the static link, record it. */
13760 newobj->static_link = NULL;
13761 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13762 if (attr)
13763 {
13764 newobj->static_link
13765 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13766 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13767 }
13768
13769 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13770
13771 if (die->child != NULL)
13772 {
13773 child_die = die->child;
13774 while (child_die && child_die->tag)
13775 {
13776 if (child_die->tag == DW_TAG_template_type_param
13777 || child_die->tag == DW_TAG_template_value_param)
13778 {
13779 struct symbol *arg = new_symbol (child_die, NULL, cu);
13780
13781 if (arg != NULL)
13782 template_args.push_back (arg);
13783 }
13784 else
13785 process_die (child_die, cu);
13786 child_die = sibling_die (child_die);
13787 }
13788 }
13789
13790 inherit_abstract_dies (die, cu);
13791
13792 /* If we have a DW_AT_specification, we might need to import using
13793 directives from the context of the specification DIE. See the
13794 comment in determine_prefix. */
13795 if (cu->language == language_cplus
13796 && dwarf2_attr (die, DW_AT_specification, cu))
13797 {
13798 struct dwarf2_cu *spec_cu = cu;
13799 struct die_info *spec_die = die_specification (die, &spec_cu);
13800
13801 while (spec_die)
13802 {
13803 child_die = spec_die->child;
13804 while (child_die && child_die->tag)
13805 {
13806 if (child_die->tag == DW_TAG_imported_module)
13807 process_die (child_die, spec_cu);
13808 child_die = sibling_die (child_die);
13809 }
13810
13811 /* In some cases, GCC generates specification DIEs that
13812 themselves contain DW_AT_specification attributes. */
13813 spec_die = die_specification (spec_die, &spec_cu);
13814 }
13815 }
13816
13817 struct context_stack cstk = cu->get_builder ()->pop_context ();
13818 /* Make a block for the local symbols within. */
13819 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13820 cstk.static_link, lowpc, highpc);
13821
13822 /* For C++, set the block's scope. */
13823 if ((cu->language == language_cplus
13824 || cu->language == language_fortran
13825 || cu->language == language_d
13826 || cu->language == language_rust)
13827 && cu->processing_has_namespace_info)
13828 block_set_scope (block, determine_prefix (die, cu),
13829 &objfile->objfile_obstack);
13830
13831 /* If we have address ranges, record them. */
13832 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13833
13834 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13835
13836 /* Attach template arguments to function. */
13837 if (!template_args.empty ())
13838 {
13839 gdb_assert (templ_func != NULL);
13840
13841 templ_func->n_template_arguments = template_args.size ();
13842 templ_func->template_arguments
13843 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13844 templ_func->n_template_arguments);
13845 memcpy (templ_func->template_arguments,
13846 template_args.data (),
13847 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13848
13849 /* Make sure that the symtab is set on the new symbols. Even
13850 though they don't appear in this symtab directly, other parts
13851 of gdb assume that symbols do, and this is reasonably
13852 true. */
13853 for (symbol *sym : template_args)
13854 symbol_set_symtab (sym, symbol_symtab (templ_func));
13855 }
13856
13857 /* In C++, we can have functions nested inside functions (e.g., when
13858 a function declares a class that has methods). This means that
13859 when we finish processing a function scope, we may need to go
13860 back to building a containing block's symbol lists. */
13861 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13862 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13863
13864 /* If we've finished processing a top-level function, subsequent
13865 symbols go in the file symbol list. */
13866 if (cu->get_builder ()->outermost_context_p ())
13867 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13868 }
13869
13870 /* Process all the DIES contained within a lexical block scope. Start
13871 a new scope, process the dies, and then close the scope. */
13872
13873 static void
13874 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13875 {
13876 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13878 CORE_ADDR lowpc, highpc;
13879 struct die_info *child_die;
13880 CORE_ADDR baseaddr;
13881
13882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13883
13884 /* Ignore blocks with missing or invalid low and high pc attributes. */
13885 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13886 as multiple lexical blocks? Handling children in a sane way would
13887 be nasty. Might be easier to properly extend generic blocks to
13888 describe ranges. */
13889 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13890 {
13891 case PC_BOUNDS_NOT_PRESENT:
13892 /* DW_TAG_lexical_block has no attributes, process its children as if
13893 there was no wrapping by that DW_TAG_lexical_block.
13894 GCC does no longer produces such DWARF since GCC r224161. */
13895 for (child_die = die->child;
13896 child_die != NULL && child_die->tag;
13897 child_die = sibling_die (child_die))
13898 process_die (child_die, cu);
13899 return;
13900 case PC_BOUNDS_INVALID:
13901 return;
13902 }
13903 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13904 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13905
13906 cu->get_builder ()->push_context (0, lowpc);
13907 if (die->child != NULL)
13908 {
13909 child_die = die->child;
13910 while (child_die && child_die->tag)
13911 {
13912 process_die (child_die, cu);
13913 child_die = sibling_die (child_die);
13914 }
13915 }
13916 inherit_abstract_dies (die, cu);
13917 struct context_stack cstk = cu->get_builder ()->pop_context ();
13918
13919 if (*cu->get_builder ()->get_local_symbols () != NULL
13920 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13921 {
13922 struct block *block
13923 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13924 cstk.start_addr, highpc);
13925
13926 /* Note that recording ranges after traversing children, as we
13927 do here, means that recording a parent's ranges entails
13928 walking across all its children's ranges as they appear in
13929 the address map, which is quadratic behavior.
13930
13931 It would be nicer to record the parent's ranges before
13932 traversing its children, simply overriding whatever you find
13933 there. But since we don't even decide whether to create a
13934 block until after we've traversed its children, that's hard
13935 to do. */
13936 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13937 }
13938 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13939 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13940 }
13941
13942 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13943
13944 static void
13945 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13946 {
13947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13948 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13949 CORE_ADDR pc, baseaddr;
13950 struct attribute *attr;
13951 struct call_site *call_site, call_site_local;
13952 void **slot;
13953 int nparams;
13954 struct die_info *child_die;
13955
13956 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13957
13958 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13959 if (attr == NULL)
13960 {
13961 /* This was a pre-DWARF-5 GNU extension alias
13962 for DW_AT_call_return_pc. */
13963 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13964 }
13965 if (!attr)
13966 {
13967 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13968 "DIE %s [in module %s]"),
13969 sect_offset_str (die->sect_off), objfile_name (objfile));
13970 return;
13971 }
13972 pc = attr_value_as_address (attr) + baseaddr;
13973 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13974
13975 if (cu->call_site_htab == NULL)
13976 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13977 NULL, &objfile->objfile_obstack,
13978 hashtab_obstack_allocate, NULL);
13979 call_site_local.pc = pc;
13980 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13981 if (*slot != NULL)
13982 {
13983 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13984 "DIE %s [in module %s]"),
13985 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13986 objfile_name (objfile));
13987 return;
13988 }
13989
13990 /* Count parameters at the caller. */
13991
13992 nparams = 0;
13993 for (child_die = die->child; child_die && child_die->tag;
13994 child_die = sibling_die (child_die))
13995 {
13996 if (child_die->tag != DW_TAG_call_site_parameter
13997 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13998 {
13999 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
14000 "DW_TAG_call_site child DIE %s [in module %s]"),
14001 child_die->tag, sect_offset_str (child_die->sect_off),
14002 objfile_name (objfile));
14003 continue;
14004 }
14005
14006 nparams++;
14007 }
14008
14009 call_site
14010 = ((struct call_site *)
14011 obstack_alloc (&objfile->objfile_obstack,
14012 sizeof (*call_site)
14013 + (sizeof (*call_site->parameter) * (nparams - 1))));
14014 *slot = call_site;
14015 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14016 call_site->pc = pc;
14017
14018 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14019 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14020 {
14021 struct die_info *func_die;
14022
14023 /* Skip also over DW_TAG_inlined_subroutine. */
14024 for (func_die = die->parent;
14025 func_die && func_die->tag != DW_TAG_subprogram
14026 && func_die->tag != DW_TAG_subroutine_type;
14027 func_die = func_die->parent);
14028
14029 /* DW_AT_call_all_calls is a superset
14030 of DW_AT_call_all_tail_calls. */
14031 if (func_die
14032 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14033 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14034 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14035 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14036 {
14037 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14038 not complete. But keep CALL_SITE for look ups via call_site_htab,
14039 both the initial caller containing the real return address PC and
14040 the final callee containing the current PC of a chain of tail
14041 calls do not need to have the tail call list complete. But any
14042 function candidate for a virtual tail call frame searched via
14043 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14044 determined unambiguously. */
14045 }
14046 else
14047 {
14048 struct type *func_type = NULL;
14049
14050 if (func_die)
14051 func_type = get_die_type (func_die, cu);
14052 if (func_type != NULL)
14053 {
14054 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14055
14056 /* Enlist this call site to the function. */
14057 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14058 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14059 }
14060 else
14061 complaint (_("Cannot find function owning DW_TAG_call_site "
14062 "DIE %s [in module %s]"),
14063 sect_offset_str (die->sect_off), objfile_name (objfile));
14064 }
14065 }
14066
14067 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14068 if (attr == NULL)
14069 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14070 if (attr == NULL)
14071 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14072 if (attr == NULL)
14073 {
14074 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14075 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14076 }
14077 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14078 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14079 /* Keep NULL DWARF_BLOCK. */;
14080 else if (attr_form_is_block (attr))
14081 {
14082 struct dwarf2_locexpr_baton *dlbaton;
14083
14084 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14085 dlbaton->data = DW_BLOCK (attr)->data;
14086 dlbaton->size = DW_BLOCK (attr)->size;
14087 dlbaton->per_cu = cu->per_cu;
14088
14089 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14090 }
14091 else if (attr_form_is_ref (attr))
14092 {
14093 struct dwarf2_cu *target_cu = cu;
14094 struct die_info *target_die;
14095
14096 target_die = follow_die_ref (die, attr, &target_cu);
14097 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14098 if (die_is_declaration (target_die, target_cu))
14099 {
14100 const char *target_physname;
14101
14102 /* Prefer the mangled name; otherwise compute the demangled one. */
14103 target_physname = dw2_linkage_name (target_die, target_cu);
14104 if (target_physname == NULL)
14105 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14106 if (target_physname == NULL)
14107 complaint (_("DW_AT_call_target target DIE has invalid "
14108 "physname, for referencing DIE %s [in module %s]"),
14109 sect_offset_str (die->sect_off), objfile_name (objfile));
14110 else
14111 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14112 }
14113 else
14114 {
14115 CORE_ADDR lowpc;
14116
14117 /* DW_AT_entry_pc should be preferred. */
14118 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14119 <= PC_BOUNDS_INVALID)
14120 complaint (_("DW_AT_call_target target DIE has invalid "
14121 "low pc, for referencing DIE %s [in module %s]"),
14122 sect_offset_str (die->sect_off), objfile_name (objfile));
14123 else
14124 {
14125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14126 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14127 }
14128 }
14129 }
14130 else
14131 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14132 "block nor reference, for DIE %s [in module %s]"),
14133 sect_offset_str (die->sect_off), objfile_name (objfile));
14134
14135 call_site->per_cu = cu->per_cu;
14136
14137 for (child_die = die->child;
14138 child_die && child_die->tag;
14139 child_die = sibling_die (child_die))
14140 {
14141 struct call_site_parameter *parameter;
14142 struct attribute *loc, *origin;
14143
14144 if (child_die->tag != DW_TAG_call_site_parameter
14145 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14146 {
14147 /* Already printed the complaint above. */
14148 continue;
14149 }
14150
14151 gdb_assert (call_site->parameter_count < nparams);
14152 parameter = &call_site->parameter[call_site->parameter_count];
14153
14154 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14155 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14156 register is contained in DW_AT_call_value. */
14157
14158 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14159 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14160 if (origin == NULL)
14161 {
14162 /* This was a pre-DWARF-5 GNU extension alias
14163 for DW_AT_call_parameter. */
14164 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14165 }
14166 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14167 {
14168 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14169
14170 sect_offset sect_off
14171 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14172 if (!offset_in_cu_p (&cu->header, sect_off))
14173 {
14174 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14175 binding can be done only inside one CU. Such referenced DIE
14176 therefore cannot be even moved to DW_TAG_partial_unit. */
14177 complaint (_("DW_AT_call_parameter offset is not in CU for "
14178 "DW_TAG_call_site child DIE %s [in module %s]"),
14179 sect_offset_str (child_die->sect_off),
14180 objfile_name (objfile));
14181 continue;
14182 }
14183 parameter->u.param_cu_off
14184 = (cu_offset) (sect_off - cu->header.sect_off);
14185 }
14186 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14187 {
14188 complaint (_("No DW_FORM_block* DW_AT_location for "
14189 "DW_TAG_call_site child DIE %s [in module %s]"),
14190 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14191 continue;
14192 }
14193 else
14194 {
14195 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14196 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14197 if (parameter->u.dwarf_reg != -1)
14198 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14199 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14200 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14201 &parameter->u.fb_offset))
14202 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14203 else
14204 {
14205 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14206 "for DW_FORM_block* DW_AT_location is supported for "
14207 "DW_TAG_call_site child DIE %s "
14208 "[in module %s]"),
14209 sect_offset_str (child_die->sect_off),
14210 objfile_name (objfile));
14211 continue;
14212 }
14213 }
14214
14215 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14216 if (attr == NULL)
14217 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14218 if (!attr_form_is_block (attr))
14219 {
14220 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14221 "DW_TAG_call_site child DIE %s [in module %s]"),
14222 sect_offset_str (child_die->sect_off),
14223 objfile_name (objfile));
14224 continue;
14225 }
14226 parameter->value = DW_BLOCK (attr)->data;
14227 parameter->value_size = DW_BLOCK (attr)->size;
14228
14229 /* Parameters are not pre-cleared by memset above. */
14230 parameter->data_value = NULL;
14231 parameter->data_value_size = 0;
14232 call_site->parameter_count++;
14233
14234 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14235 if (attr == NULL)
14236 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14237 if (attr)
14238 {
14239 if (!attr_form_is_block (attr))
14240 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14241 "DW_TAG_call_site child DIE %s [in module %s]"),
14242 sect_offset_str (child_die->sect_off),
14243 objfile_name (objfile));
14244 else
14245 {
14246 parameter->data_value = DW_BLOCK (attr)->data;
14247 parameter->data_value_size = DW_BLOCK (attr)->size;
14248 }
14249 }
14250 }
14251 }
14252
14253 /* Helper function for read_variable. If DIE represents a virtual
14254 table, then return the type of the concrete object that is
14255 associated with the virtual table. Otherwise, return NULL. */
14256
14257 static struct type *
14258 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14259 {
14260 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14261 if (attr == NULL)
14262 return NULL;
14263
14264 /* Find the type DIE. */
14265 struct die_info *type_die = NULL;
14266 struct dwarf2_cu *type_cu = cu;
14267
14268 if (attr_form_is_ref (attr))
14269 type_die = follow_die_ref (die, attr, &type_cu);
14270 if (type_die == NULL)
14271 return NULL;
14272
14273 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14274 return NULL;
14275 return die_containing_type (type_die, type_cu);
14276 }
14277
14278 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14279
14280 static void
14281 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14282 {
14283 struct rust_vtable_symbol *storage = NULL;
14284
14285 if (cu->language == language_rust)
14286 {
14287 struct type *containing_type = rust_containing_type (die, cu);
14288
14289 if (containing_type != NULL)
14290 {
14291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14292
14293 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14294 struct rust_vtable_symbol);
14295 initialize_objfile_symbol (storage);
14296 storage->concrete_type = containing_type;
14297 storage->subclass = SYMBOL_RUST_VTABLE;
14298 }
14299 }
14300
14301 struct symbol *res = new_symbol (die, NULL, cu, storage);
14302 struct attribute *abstract_origin
14303 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14304 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14305 if (res == NULL && loc && abstract_origin)
14306 {
14307 /* We have a variable without a name, but with a location and an abstract
14308 origin. This may be a concrete instance of an abstract variable
14309 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14310 later. */
14311 struct dwarf2_cu *origin_cu = cu;
14312 struct die_info *origin_die
14313 = follow_die_ref (die, abstract_origin, &origin_cu);
14314 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14315 dpo->abstract_to_concrete[origin_die].push_back (die);
14316 }
14317 }
14318
14319 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14320 reading .debug_rnglists.
14321 Callback's type should be:
14322 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14323 Return true if the attributes are present and valid, otherwise,
14324 return false. */
14325
14326 template <typename Callback>
14327 static bool
14328 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14329 Callback &&callback)
14330 {
14331 struct dwarf2_per_objfile *dwarf2_per_objfile
14332 = cu->per_cu->dwarf2_per_objfile;
14333 struct objfile *objfile = dwarf2_per_objfile->objfile;
14334 bfd *obfd = objfile->obfd;
14335 /* Base address selection entry. */
14336 CORE_ADDR base;
14337 int found_base;
14338 const gdb_byte *buffer;
14339 CORE_ADDR baseaddr;
14340 bool overflow = false;
14341
14342 found_base = cu->base_known;
14343 base = cu->base_address;
14344
14345 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14346 if (offset >= dwarf2_per_objfile->rnglists.size)
14347 {
14348 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14349 offset);
14350 return false;
14351 }
14352 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14353
14354 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14355
14356 while (1)
14357 {
14358 /* Initialize it due to a false compiler warning. */
14359 CORE_ADDR range_beginning = 0, range_end = 0;
14360 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14361 + dwarf2_per_objfile->rnglists.size);
14362 unsigned int bytes_read;
14363
14364 if (buffer == buf_end)
14365 {
14366 overflow = true;
14367 break;
14368 }
14369 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14370 switch (rlet)
14371 {
14372 case DW_RLE_end_of_list:
14373 break;
14374 case DW_RLE_base_address:
14375 if (buffer + cu->header.addr_size > buf_end)
14376 {
14377 overflow = true;
14378 break;
14379 }
14380 base = read_address (obfd, buffer, cu, &bytes_read);
14381 found_base = 1;
14382 buffer += bytes_read;
14383 break;
14384 case DW_RLE_start_length:
14385 if (buffer + cu->header.addr_size > buf_end)
14386 {
14387 overflow = true;
14388 break;
14389 }
14390 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14391 buffer += bytes_read;
14392 range_end = (range_beginning
14393 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14394 buffer += bytes_read;
14395 if (buffer > buf_end)
14396 {
14397 overflow = true;
14398 break;
14399 }
14400 break;
14401 case DW_RLE_offset_pair:
14402 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14403 buffer += bytes_read;
14404 if (buffer > buf_end)
14405 {
14406 overflow = true;
14407 break;
14408 }
14409 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14410 buffer += bytes_read;
14411 if (buffer > buf_end)
14412 {
14413 overflow = true;
14414 break;
14415 }
14416 break;
14417 case DW_RLE_start_end:
14418 if (buffer + 2 * cu->header.addr_size > buf_end)
14419 {
14420 overflow = true;
14421 break;
14422 }
14423 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14424 buffer += bytes_read;
14425 range_end = read_address (obfd, buffer, cu, &bytes_read);
14426 buffer += bytes_read;
14427 break;
14428 default:
14429 complaint (_("Invalid .debug_rnglists data (no base address)"));
14430 return false;
14431 }
14432 if (rlet == DW_RLE_end_of_list || overflow)
14433 break;
14434 if (rlet == DW_RLE_base_address)
14435 continue;
14436
14437 if (!found_base)
14438 {
14439 /* We have no valid base address for the ranges
14440 data. */
14441 complaint (_("Invalid .debug_rnglists data (no base address)"));
14442 return false;
14443 }
14444
14445 if (range_beginning > range_end)
14446 {
14447 /* Inverted range entries are invalid. */
14448 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14449 return false;
14450 }
14451
14452 /* Empty range entries have no effect. */
14453 if (range_beginning == range_end)
14454 continue;
14455
14456 range_beginning += base;
14457 range_end += base;
14458
14459 /* A not-uncommon case of bad debug info.
14460 Don't pollute the addrmap with bad data. */
14461 if (range_beginning + baseaddr == 0
14462 && !dwarf2_per_objfile->has_section_at_zero)
14463 {
14464 complaint (_(".debug_rnglists entry has start address of zero"
14465 " [in module %s]"), objfile_name (objfile));
14466 continue;
14467 }
14468
14469 callback (range_beginning, range_end);
14470 }
14471
14472 if (overflow)
14473 {
14474 complaint (_("Offset %d is not terminated "
14475 "for DW_AT_ranges attribute"),
14476 offset);
14477 return false;
14478 }
14479
14480 return true;
14481 }
14482
14483 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14484 Callback's type should be:
14485 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14486 Return 1 if the attributes are present and valid, otherwise, return 0. */
14487
14488 template <typename Callback>
14489 static int
14490 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14491 Callback &&callback)
14492 {
14493 struct dwarf2_per_objfile *dwarf2_per_objfile
14494 = cu->per_cu->dwarf2_per_objfile;
14495 struct objfile *objfile = dwarf2_per_objfile->objfile;
14496 struct comp_unit_head *cu_header = &cu->header;
14497 bfd *obfd = objfile->obfd;
14498 unsigned int addr_size = cu_header->addr_size;
14499 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14500 /* Base address selection entry. */
14501 CORE_ADDR base;
14502 int found_base;
14503 unsigned int dummy;
14504 const gdb_byte *buffer;
14505 CORE_ADDR baseaddr;
14506
14507 if (cu_header->version >= 5)
14508 return dwarf2_rnglists_process (offset, cu, callback);
14509
14510 found_base = cu->base_known;
14511 base = cu->base_address;
14512
14513 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14514 if (offset >= dwarf2_per_objfile->ranges.size)
14515 {
14516 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14517 offset);
14518 return 0;
14519 }
14520 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14521
14522 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14523
14524 while (1)
14525 {
14526 CORE_ADDR range_beginning, range_end;
14527
14528 range_beginning = read_address (obfd, buffer, cu, &dummy);
14529 buffer += addr_size;
14530 range_end = read_address (obfd, buffer, cu, &dummy);
14531 buffer += addr_size;
14532 offset += 2 * addr_size;
14533
14534 /* An end of list marker is a pair of zero addresses. */
14535 if (range_beginning == 0 && range_end == 0)
14536 /* Found the end of list entry. */
14537 break;
14538
14539 /* Each base address selection entry is a pair of 2 values.
14540 The first is the largest possible address, the second is
14541 the base address. Check for a base address here. */
14542 if ((range_beginning & mask) == mask)
14543 {
14544 /* If we found the largest possible address, then we already
14545 have the base address in range_end. */
14546 base = range_end;
14547 found_base = 1;
14548 continue;
14549 }
14550
14551 if (!found_base)
14552 {
14553 /* We have no valid base address for the ranges
14554 data. */
14555 complaint (_("Invalid .debug_ranges data (no base address)"));
14556 return 0;
14557 }
14558
14559 if (range_beginning > range_end)
14560 {
14561 /* Inverted range entries are invalid. */
14562 complaint (_("Invalid .debug_ranges data (inverted range)"));
14563 return 0;
14564 }
14565
14566 /* Empty range entries have no effect. */
14567 if (range_beginning == range_end)
14568 continue;
14569
14570 range_beginning += base;
14571 range_end += base;
14572
14573 /* A not-uncommon case of bad debug info.
14574 Don't pollute the addrmap with bad data. */
14575 if (range_beginning + baseaddr == 0
14576 && !dwarf2_per_objfile->has_section_at_zero)
14577 {
14578 complaint (_(".debug_ranges entry has start address of zero"
14579 " [in module %s]"), objfile_name (objfile));
14580 continue;
14581 }
14582
14583 callback (range_beginning, range_end);
14584 }
14585
14586 return 1;
14587 }
14588
14589 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14590 Return 1 if the attributes are present and valid, otherwise, return 0.
14591 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14592
14593 static int
14594 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14595 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14596 struct partial_symtab *ranges_pst)
14597 {
14598 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14599 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14600 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14601 SECT_OFF_TEXT (objfile));
14602 int low_set = 0;
14603 CORE_ADDR low = 0;
14604 CORE_ADDR high = 0;
14605 int retval;
14606
14607 retval = dwarf2_ranges_process (offset, cu,
14608 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14609 {
14610 if (ranges_pst != NULL)
14611 {
14612 CORE_ADDR lowpc;
14613 CORE_ADDR highpc;
14614
14615 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14616 range_beginning + baseaddr)
14617 - baseaddr);
14618 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14619 range_end + baseaddr)
14620 - baseaddr);
14621 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14622 lowpc, highpc - 1, ranges_pst);
14623 }
14624
14625 /* FIXME: This is recording everything as a low-high
14626 segment of consecutive addresses. We should have a
14627 data structure for discontiguous block ranges
14628 instead. */
14629 if (! low_set)
14630 {
14631 low = range_beginning;
14632 high = range_end;
14633 low_set = 1;
14634 }
14635 else
14636 {
14637 if (range_beginning < low)
14638 low = range_beginning;
14639 if (range_end > high)
14640 high = range_end;
14641 }
14642 });
14643 if (!retval)
14644 return 0;
14645
14646 if (! low_set)
14647 /* If the first entry is an end-of-list marker, the range
14648 describes an empty scope, i.e. no instructions. */
14649 return 0;
14650
14651 if (low_return)
14652 *low_return = low;
14653 if (high_return)
14654 *high_return = high;
14655 return 1;
14656 }
14657
14658 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14659 definition for the return value. *LOWPC and *HIGHPC are set iff
14660 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14661
14662 static enum pc_bounds_kind
14663 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14664 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14665 struct partial_symtab *pst)
14666 {
14667 struct dwarf2_per_objfile *dwarf2_per_objfile
14668 = cu->per_cu->dwarf2_per_objfile;
14669 struct attribute *attr;
14670 struct attribute *attr_high;
14671 CORE_ADDR low = 0;
14672 CORE_ADDR high = 0;
14673 enum pc_bounds_kind ret;
14674
14675 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14676 if (attr_high)
14677 {
14678 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14679 if (attr)
14680 {
14681 low = attr_value_as_address (attr);
14682 high = attr_value_as_address (attr_high);
14683 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14684 high += low;
14685 }
14686 else
14687 /* Found high w/o low attribute. */
14688 return PC_BOUNDS_INVALID;
14689
14690 /* Found consecutive range of addresses. */
14691 ret = PC_BOUNDS_HIGH_LOW;
14692 }
14693 else
14694 {
14695 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14696 if (attr != NULL)
14697 {
14698 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14699 We take advantage of the fact that DW_AT_ranges does not appear
14700 in DW_TAG_compile_unit of DWO files. */
14701 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14702 unsigned int ranges_offset = (DW_UNSND (attr)
14703 + (need_ranges_base
14704 ? cu->ranges_base
14705 : 0));
14706
14707 /* Value of the DW_AT_ranges attribute is the offset in the
14708 .debug_ranges section. */
14709 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14710 return PC_BOUNDS_INVALID;
14711 /* Found discontinuous range of addresses. */
14712 ret = PC_BOUNDS_RANGES;
14713 }
14714 else
14715 return PC_BOUNDS_NOT_PRESENT;
14716 }
14717
14718 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14719 if (high <= low)
14720 return PC_BOUNDS_INVALID;
14721
14722 /* When using the GNU linker, .gnu.linkonce. sections are used to
14723 eliminate duplicate copies of functions and vtables and such.
14724 The linker will arbitrarily choose one and discard the others.
14725 The AT_*_pc values for such functions refer to local labels in
14726 these sections. If the section from that file was discarded, the
14727 labels are not in the output, so the relocs get a value of 0.
14728 If this is a discarded function, mark the pc bounds as invalid,
14729 so that GDB will ignore it. */
14730 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14731 return PC_BOUNDS_INVALID;
14732
14733 *lowpc = low;
14734 if (highpc)
14735 *highpc = high;
14736 return ret;
14737 }
14738
14739 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14740 its low and high PC addresses. Do nothing if these addresses could not
14741 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14742 and HIGHPC to the high address if greater than HIGHPC. */
14743
14744 static void
14745 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14746 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14747 struct dwarf2_cu *cu)
14748 {
14749 CORE_ADDR low, high;
14750 struct die_info *child = die->child;
14751
14752 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14753 {
14754 *lowpc = std::min (*lowpc, low);
14755 *highpc = std::max (*highpc, high);
14756 }
14757
14758 /* If the language does not allow nested subprograms (either inside
14759 subprograms or lexical blocks), we're done. */
14760 if (cu->language != language_ada)
14761 return;
14762
14763 /* Check all the children of the given DIE. If it contains nested
14764 subprograms, then check their pc bounds. Likewise, we need to
14765 check lexical blocks as well, as they may also contain subprogram
14766 definitions. */
14767 while (child && child->tag)
14768 {
14769 if (child->tag == DW_TAG_subprogram
14770 || child->tag == DW_TAG_lexical_block)
14771 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14772 child = sibling_die (child);
14773 }
14774 }
14775
14776 /* Get the low and high pc's represented by the scope DIE, and store
14777 them in *LOWPC and *HIGHPC. If the correct values can't be
14778 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14779
14780 static void
14781 get_scope_pc_bounds (struct die_info *die,
14782 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14783 struct dwarf2_cu *cu)
14784 {
14785 CORE_ADDR best_low = (CORE_ADDR) -1;
14786 CORE_ADDR best_high = (CORE_ADDR) 0;
14787 CORE_ADDR current_low, current_high;
14788
14789 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14790 >= PC_BOUNDS_RANGES)
14791 {
14792 best_low = current_low;
14793 best_high = current_high;
14794 }
14795 else
14796 {
14797 struct die_info *child = die->child;
14798
14799 while (child && child->tag)
14800 {
14801 switch (child->tag) {
14802 case DW_TAG_subprogram:
14803 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14804 break;
14805 case DW_TAG_namespace:
14806 case DW_TAG_module:
14807 /* FIXME: carlton/2004-01-16: Should we do this for
14808 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14809 that current GCC's always emit the DIEs corresponding
14810 to definitions of methods of classes as children of a
14811 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14812 the DIEs giving the declarations, which could be
14813 anywhere). But I don't see any reason why the
14814 standards says that they have to be there. */
14815 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14816
14817 if (current_low != ((CORE_ADDR) -1))
14818 {
14819 best_low = std::min (best_low, current_low);
14820 best_high = std::max (best_high, current_high);
14821 }
14822 break;
14823 default:
14824 /* Ignore. */
14825 break;
14826 }
14827
14828 child = sibling_die (child);
14829 }
14830 }
14831
14832 *lowpc = best_low;
14833 *highpc = best_high;
14834 }
14835
14836 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14837 in DIE. */
14838
14839 static void
14840 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14841 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14842 {
14843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14845 struct attribute *attr;
14846 struct attribute *attr_high;
14847
14848 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14849 if (attr_high)
14850 {
14851 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14852 if (attr)
14853 {
14854 CORE_ADDR low = attr_value_as_address (attr);
14855 CORE_ADDR high = attr_value_as_address (attr_high);
14856
14857 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14858 high += low;
14859
14860 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14861 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14862 cu->get_builder ()->record_block_range (block, low, high - 1);
14863 }
14864 }
14865
14866 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14867 if (attr)
14868 {
14869 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14870 We take advantage of the fact that DW_AT_ranges does not appear
14871 in DW_TAG_compile_unit of DWO files. */
14872 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14873
14874 /* The value of the DW_AT_ranges attribute is the offset of the
14875 address range list in the .debug_ranges section. */
14876 unsigned long offset = (DW_UNSND (attr)
14877 + (need_ranges_base ? cu->ranges_base : 0));
14878
14879 std::vector<blockrange> blockvec;
14880 dwarf2_ranges_process (offset, cu,
14881 [&] (CORE_ADDR start, CORE_ADDR end)
14882 {
14883 start += baseaddr;
14884 end += baseaddr;
14885 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14886 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14887 cu->get_builder ()->record_block_range (block, start, end - 1);
14888 blockvec.emplace_back (start, end);
14889 });
14890
14891 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14892 }
14893 }
14894
14895 /* Check whether the producer field indicates either of GCC < 4.6, or the
14896 Intel C/C++ compiler, and cache the result in CU. */
14897
14898 static void
14899 check_producer (struct dwarf2_cu *cu)
14900 {
14901 int major, minor;
14902
14903 if (cu->producer == NULL)
14904 {
14905 /* For unknown compilers expect their behavior is DWARF version
14906 compliant.
14907
14908 GCC started to support .debug_types sections by -gdwarf-4 since
14909 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14910 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14911 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14912 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14913 }
14914 else if (producer_is_gcc (cu->producer, &major, &minor))
14915 {
14916 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14917 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14918 }
14919 else if (producer_is_icc (cu->producer, &major, &minor))
14920 {
14921 cu->producer_is_icc = true;
14922 cu->producer_is_icc_lt_14 = major < 14;
14923 }
14924 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14925 cu->producer_is_codewarrior = true;
14926 else
14927 {
14928 /* For other non-GCC compilers, expect their behavior is DWARF version
14929 compliant. */
14930 }
14931
14932 cu->checked_producer = true;
14933 }
14934
14935 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14936 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14937 during 4.6.0 experimental. */
14938
14939 static bool
14940 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14941 {
14942 if (!cu->checked_producer)
14943 check_producer (cu);
14944
14945 return cu->producer_is_gxx_lt_4_6;
14946 }
14947
14948
14949 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14950 with incorrect is_stmt attributes. */
14951
14952 static bool
14953 producer_is_codewarrior (struct dwarf2_cu *cu)
14954 {
14955 if (!cu->checked_producer)
14956 check_producer (cu);
14957
14958 return cu->producer_is_codewarrior;
14959 }
14960
14961 /* Return the default accessibility type if it is not overriden by
14962 DW_AT_accessibility. */
14963
14964 static enum dwarf_access_attribute
14965 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14966 {
14967 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14968 {
14969 /* The default DWARF 2 accessibility for members is public, the default
14970 accessibility for inheritance is private. */
14971
14972 if (die->tag != DW_TAG_inheritance)
14973 return DW_ACCESS_public;
14974 else
14975 return DW_ACCESS_private;
14976 }
14977 else
14978 {
14979 /* DWARF 3+ defines the default accessibility a different way. The same
14980 rules apply now for DW_TAG_inheritance as for the members and it only
14981 depends on the container kind. */
14982
14983 if (die->parent->tag == DW_TAG_class_type)
14984 return DW_ACCESS_private;
14985 else
14986 return DW_ACCESS_public;
14987 }
14988 }
14989
14990 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14991 offset. If the attribute was not found return 0, otherwise return
14992 1. If it was found but could not properly be handled, set *OFFSET
14993 to 0. */
14994
14995 static int
14996 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14997 LONGEST *offset)
14998 {
14999 struct attribute *attr;
15000
15001 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15002 if (attr != NULL)
15003 {
15004 *offset = 0;
15005
15006 /* Note that we do not check for a section offset first here.
15007 This is because DW_AT_data_member_location is new in DWARF 4,
15008 so if we see it, we can assume that a constant form is really
15009 a constant and not a section offset. */
15010 if (attr_form_is_constant (attr))
15011 *offset = dwarf2_get_attr_constant_value (attr, 0);
15012 else if (attr_form_is_section_offset (attr))
15013 dwarf2_complex_location_expr_complaint ();
15014 else if (attr_form_is_block (attr))
15015 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15016 else
15017 dwarf2_complex_location_expr_complaint ();
15018
15019 return 1;
15020 }
15021
15022 return 0;
15023 }
15024
15025 /* Add an aggregate field to the field list. */
15026
15027 static void
15028 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15029 struct dwarf2_cu *cu)
15030 {
15031 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15032 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15033 struct nextfield *new_field;
15034 struct attribute *attr;
15035 struct field *fp;
15036 const char *fieldname = "";
15037
15038 if (die->tag == DW_TAG_inheritance)
15039 {
15040 fip->baseclasses.emplace_back ();
15041 new_field = &fip->baseclasses.back ();
15042 }
15043 else
15044 {
15045 fip->fields.emplace_back ();
15046 new_field = &fip->fields.back ();
15047 }
15048
15049 fip->nfields++;
15050
15051 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15052 if (attr)
15053 new_field->accessibility = DW_UNSND (attr);
15054 else
15055 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15056 if (new_field->accessibility != DW_ACCESS_public)
15057 fip->non_public_fields = 1;
15058
15059 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15060 if (attr)
15061 new_field->virtuality = DW_UNSND (attr);
15062 else
15063 new_field->virtuality = DW_VIRTUALITY_none;
15064
15065 fp = &new_field->field;
15066
15067 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15068 {
15069 LONGEST offset;
15070
15071 /* Data member other than a C++ static data member. */
15072
15073 /* Get type of field. */
15074 fp->type = die_type (die, cu);
15075
15076 SET_FIELD_BITPOS (*fp, 0);
15077
15078 /* Get bit size of field (zero if none). */
15079 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15080 if (attr)
15081 {
15082 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15083 }
15084 else
15085 {
15086 FIELD_BITSIZE (*fp) = 0;
15087 }
15088
15089 /* Get bit offset of field. */
15090 if (handle_data_member_location (die, cu, &offset))
15091 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15092 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15093 if (attr)
15094 {
15095 if (gdbarch_bits_big_endian (gdbarch))
15096 {
15097 /* For big endian bits, the DW_AT_bit_offset gives the
15098 additional bit offset from the MSB of the containing
15099 anonymous object to the MSB of the field. We don't
15100 have to do anything special since we don't need to
15101 know the size of the anonymous object. */
15102 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15103 }
15104 else
15105 {
15106 /* For little endian bits, compute the bit offset to the
15107 MSB of the anonymous object, subtract off the number of
15108 bits from the MSB of the field to the MSB of the
15109 object, and then subtract off the number of bits of
15110 the field itself. The result is the bit offset of
15111 the LSB of the field. */
15112 int anonymous_size;
15113 int bit_offset = DW_UNSND (attr);
15114
15115 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15116 if (attr)
15117 {
15118 /* The size of the anonymous object containing
15119 the bit field is explicit, so use the
15120 indicated size (in bytes). */
15121 anonymous_size = DW_UNSND (attr);
15122 }
15123 else
15124 {
15125 /* The size of the anonymous object containing
15126 the bit field must be inferred from the type
15127 attribute of the data member containing the
15128 bit field. */
15129 anonymous_size = TYPE_LENGTH (fp->type);
15130 }
15131 SET_FIELD_BITPOS (*fp,
15132 (FIELD_BITPOS (*fp)
15133 + anonymous_size * bits_per_byte
15134 - bit_offset - FIELD_BITSIZE (*fp)));
15135 }
15136 }
15137 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15138 if (attr != NULL)
15139 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15140 + dwarf2_get_attr_constant_value (attr, 0)));
15141
15142 /* Get name of field. */
15143 fieldname = dwarf2_name (die, cu);
15144 if (fieldname == NULL)
15145 fieldname = "";
15146
15147 /* The name is already allocated along with this objfile, so we don't
15148 need to duplicate it for the type. */
15149 fp->name = fieldname;
15150
15151 /* Change accessibility for artificial fields (e.g. virtual table
15152 pointer or virtual base class pointer) to private. */
15153 if (dwarf2_attr (die, DW_AT_artificial, cu))
15154 {
15155 FIELD_ARTIFICIAL (*fp) = 1;
15156 new_field->accessibility = DW_ACCESS_private;
15157 fip->non_public_fields = 1;
15158 }
15159 }
15160 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15161 {
15162 /* C++ static member. */
15163
15164 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15165 is a declaration, but all versions of G++ as of this writing
15166 (so through at least 3.2.1) incorrectly generate
15167 DW_TAG_variable tags. */
15168
15169 const char *physname;
15170
15171 /* Get name of field. */
15172 fieldname = dwarf2_name (die, cu);
15173 if (fieldname == NULL)
15174 return;
15175
15176 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15177 if (attr
15178 /* Only create a symbol if this is an external value.
15179 new_symbol checks this and puts the value in the global symbol
15180 table, which we want. If it is not external, new_symbol
15181 will try to put the value in cu->list_in_scope which is wrong. */
15182 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15183 {
15184 /* A static const member, not much different than an enum as far as
15185 we're concerned, except that we can support more types. */
15186 new_symbol (die, NULL, cu);
15187 }
15188
15189 /* Get physical name. */
15190 physname = dwarf2_physname (fieldname, die, cu);
15191
15192 /* The name is already allocated along with this objfile, so we don't
15193 need to duplicate it for the type. */
15194 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15195 FIELD_TYPE (*fp) = die_type (die, cu);
15196 FIELD_NAME (*fp) = fieldname;
15197 }
15198 else if (die->tag == DW_TAG_inheritance)
15199 {
15200 LONGEST offset;
15201
15202 /* C++ base class field. */
15203 if (handle_data_member_location (die, cu, &offset))
15204 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15205 FIELD_BITSIZE (*fp) = 0;
15206 FIELD_TYPE (*fp) = die_type (die, cu);
15207 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15208 }
15209 else if (die->tag == DW_TAG_variant_part)
15210 {
15211 /* process_structure_scope will treat this DIE as a union. */
15212 process_structure_scope (die, cu);
15213
15214 /* The variant part is relative to the start of the enclosing
15215 structure. */
15216 SET_FIELD_BITPOS (*fp, 0);
15217 fp->type = get_die_type (die, cu);
15218 fp->artificial = 1;
15219 fp->name = "<<variant>>";
15220
15221 /* Normally a DW_TAG_variant_part won't have a size, but our
15222 representation requires one, so set it to the maximum of the
15223 child sizes. */
15224 if (TYPE_LENGTH (fp->type) == 0)
15225 {
15226 unsigned max = 0;
15227 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15228 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15229 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15230 TYPE_LENGTH (fp->type) = max;
15231 }
15232 }
15233 else
15234 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15235 }
15236
15237 /* Can the type given by DIE define another type? */
15238
15239 static bool
15240 type_can_define_types (const struct die_info *die)
15241 {
15242 switch (die->tag)
15243 {
15244 case DW_TAG_typedef:
15245 case DW_TAG_class_type:
15246 case DW_TAG_structure_type:
15247 case DW_TAG_union_type:
15248 case DW_TAG_enumeration_type:
15249 return true;
15250
15251 default:
15252 return false;
15253 }
15254 }
15255
15256 /* Add a type definition defined in the scope of the FIP's class. */
15257
15258 static void
15259 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15260 struct dwarf2_cu *cu)
15261 {
15262 struct decl_field fp;
15263 memset (&fp, 0, sizeof (fp));
15264
15265 gdb_assert (type_can_define_types (die));
15266
15267 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15268 fp.name = dwarf2_name (die, cu);
15269 fp.type = read_type_die (die, cu);
15270
15271 /* Save accessibility. */
15272 enum dwarf_access_attribute accessibility;
15273 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15274 if (attr != NULL)
15275 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15276 else
15277 accessibility = dwarf2_default_access_attribute (die, cu);
15278 switch (accessibility)
15279 {
15280 case DW_ACCESS_public:
15281 /* The assumed value if neither private nor protected. */
15282 break;
15283 case DW_ACCESS_private:
15284 fp.is_private = 1;
15285 break;
15286 case DW_ACCESS_protected:
15287 fp.is_protected = 1;
15288 break;
15289 default:
15290 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15291 }
15292
15293 if (die->tag == DW_TAG_typedef)
15294 fip->typedef_field_list.push_back (fp);
15295 else
15296 fip->nested_types_list.push_back (fp);
15297 }
15298
15299 /* Create the vector of fields, and attach it to the type. */
15300
15301 static void
15302 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15303 struct dwarf2_cu *cu)
15304 {
15305 int nfields = fip->nfields;
15306
15307 /* Record the field count, allocate space for the array of fields,
15308 and create blank accessibility bitfields if necessary. */
15309 TYPE_NFIELDS (type) = nfields;
15310 TYPE_FIELDS (type) = (struct field *)
15311 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15312
15313 if (fip->non_public_fields && cu->language != language_ada)
15314 {
15315 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15316
15317 TYPE_FIELD_PRIVATE_BITS (type) =
15318 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15319 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15320
15321 TYPE_FIELD_PROTECTED_BITS (type) =
15322 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15323 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15324
15325 TYPE_FIELD_IGNORE_BITS (type) =
15326 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15327 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15328 }
15329
15330 /* If the type has baseclasses, allocate and clear a bit vector for
15331 TYPE_FIELD_VIRTUAL_BITS. */
15332 if (!fip->baseclasses.empty () && cu->language != language_ada)
15333 {
15334 int num_bytes = B_BYTES (fip->baseclasses.size ());
15335 unsigned char *pointer;
15336
15337 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15338 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15339 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15340 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15341 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15342 }
15343
15344 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15345 {
15346 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15347
15348 for (int index = 0; index < nfields; ++index)
15349 {
15350 struct nextfield &field = fip->fields[index];
15351
15352 if (field.variant.is_discriminant)
15353 di->discriminant_index = index;
15354 else if (field.variant.default_branch)
15355 di->default_index = index;
15356 else
15357 di->discriminants[index] = field.variant.discriminant_value;
15358 }
15359 }
15360
15361 /* Copy the saved-up fields into the field vector. */
15362 for (int i = 0; i < nfields; ++i)
15363 {
15364 struct nextfield &field
15365 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15366 : fip->fields[i - fip->baseclasses.size ()]);
15367
15368 TYPE_FIELD (type, i) = field.field;
15369 switch (field.accessibility)
15370 {
15371 case DW_ACCESS_private:
15372 if (cu->language != language_ada)
15373 SET_TYPE_FIELD_PRIVATE (type, i);
15374 break;
15375
15376 case DW_ACCESS_protected:
15377 if (cu->language != language_ada)
15378 SET_TYPE_FIELD_PROTECTED (type, i);
15379 break;
15380
15381 case DW_ACCESS_public:
15382 break;
15383
15384 default:
15385 /* Unknown accessibility. Complain and treat it as public. */
15386 {
15387 complaint (_("unsupported accessibility %d"),
15388 field.accessibility);
15389 }
15390 break;
15391 }
15392 if (i < fip->baseclasses.size ())
15393 {
15394 switch (field.virtuality)
15395 {
15396 case DW_VIRTUALITY_virtual:
15397 case DW_VIRTUALITY_pure_virtual:
15398 if (cu->language == language_ada)
15399 error (_("unexpected virtuality in component of Ada type"));
15400 SET_TYPE_FIELD_VIRTUAL (type, i);
15401 break;
15402 }
15403 }
15404 }
15405 }
15406
15407 /* Return true if this member function is a constructor, false
15408 otherwise. */
15409
15410 static int
15411 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15412 {
15413 const char *fieldname;
15414 const char *type_name;
15415 int len;
15416
15417 if (die->parent == NULL)
15418 return 0;
15419
15420 if (die->parent->tag != DW_TAG_structure_type
15421 && die->parent->tag != DW_TAG_union_type
15422 && die->parent->tag != DW_TAG_class_type)
15423 return 0;
15424
15425 fieldname = dwarf2_name (die, cu);
15426 type_name = dwarf2_name (die->parent, cu);
15427 if (fieldname == NULL || type_name == NULL)
15428 return 0;
15429
15430 len = strlen (fieldname);
15431 return (strncmp (fieldname, type_name, len) == 0
15432 && (type_name[len] == '\0' || type_name[len] == '<'));
15433 }
15434
15435 /* Add a member function to the proper fieldlist. */
15436
15437 static void
15438 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15439 struct type *type, struct dwarf2_cu *cu)
15440 {
15441 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15442 struct attribute *attr;
15443 int i;
15444 struct fnfieldlist *flp = nullptr;
15445 struct fn_field *fnp;
15446 const char *fieldname;
15447 struct type *this_type;
15448 enum dwarf_access_attribute accessibility;
15449
15450 if (cu->language == language_ada)
15451 error (_("unexpected member function in Ada type"));
15452
15453 /* Get name of member function. */
15454 fieldname = dwarf2_name (die, cu);
15455 if (fieldname == NULL)
15456 return;
15457
15458 /* Look up member function name in fieldlist. */
15459 for (i = 0; i < fip->fnfieldlists.size (); i++)
15460 {
15461 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15462 {
15463 flp = &fip->fnfieldlists[i];
15464 break;
15465 }
15466 }
15467
15468 /* Create a new fnfieldlist if necessary. */
15469 if (flp == nullptr)
15470 {
15471 fip->fnfieldlists.emplace_back ();
15472 flp = &fip->fnfieldlists.back ();
15473 flp->name = fieldname;
15474 i = fip->fnfieldlists.size () - 1;
15475 }
15476
15477 /* Create a new member function field and add it to the vector of
15478 fnfieldlists. */
15479 flp->fnfields.emplace_back ();
15480 fnp = &flp->fnfields.back ();
15481
15482 /* Delay processing of the physname until later. */
15483 if (cu->language == language_cplus)
15484 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15485 die, cu);
15486 else
15487 {
15488 const char *physname = dwarf2_physname (fieldname, die, cu);
15489 fnp->physname = physname ? physname : "";
15490 }
15491
15492 fnp->type = alloc_type (objfile);
15493 this_type = read_type_die (die, cu);
15494 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15495 {
15496 int nparams = TYPE_NFIELDS (this_type);
15497
15498 /* TYPE is the domain of this method, and THIS_TYPE is the type
15499 of the method itself (TYPE_CODE_METHOD). */
15500 smash_to_method_type (fnp->type, type,
15501 TYPE_TARGET_TYPE (this_type),
15502 TYPE_FIELDS (this_type),
15503 TYPE_NFIELDS (this_type),
15504 TYPE_VARARGS (this_type));
15505
15506 /* Handle static member functions.
15507 Dwarf2 has no clean way to discern C++ static and non-static
15508 member functions. G++ helps GDB by marking the first
15509 parameter for non-static member functions (which is the this
15510 pointer) as artificial. We obtain this information from
15511 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15512 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15513 fnp->voffset = VOFFSET_STATIC;
15514 }
15515 else
15516 complaint (_("member function type missing for '%s'"),
15517 dwarf2_full_name (fieldname, die, cu));
15518
15519 /* Get fcontext from DW_AT_containing_type if present. */
15520 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15521 fnp->fcontext = die_containing_type (die, cu);
15522
15523 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15524 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15525
15526 /* Get accessibility. */
15527 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15528 if (attr)
15529 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15530 else
15531 accessibility = dwarf2_default_access_attribute (die, cu);
15532 switch (accessibility)
15533 {
15534 case DW_ACCESS_private:
15535 fnp->is_private = 1;
15536 break;
15537 case DW_ACCESS_protected:
15538 fnp->is_protected = 1;
15539 break;
15540 }
15541
15542 /* Check for artificial methods. */
15543 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15544 if (attr && DW_UNSND (attr) != 0)
15545 fnp->is_artificial = 1;
15546
15547 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15548
15549 /* Get index in virtual function table if it is a virtual member
15550 function. For older versions of GCC, this is an offset in the
15551 appropriate virtual table, as specified by DW_AT_containing_type.
15552 For everyone else, it is an expression to be evaluated relative
15553 to the object address. */
15554
15555 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15556 if (attr)
15557 {
15558 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15559 {
15560 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15561 {
15562 /* Old-style GCC. */
15563 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15564 }
15565 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15566 || (DW_BLOCK (attr)->size > 1
15567 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15568 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15569 {
15570 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15571 if ((fnp->voffset % cu->header.addr_size) != 0)
15572 dwarf2_complex_location_expr_complaint ();
15573 else
15574 fnp->voffset /= cu->header.addr_size;
15575 fnp->voffset += 2;
15576 }
15577 else
15578 dwarf2_complex_location_expr_complaint ();
15579
15580 if (!fnp->fcontext)
15581 {
15582 /* If there is no `this' field and no DW_AT_containing_type,
15583 we cannot actually find a base class context for the
15584 vtable! */
15585 if (TYPE_NFIELDS (this_type) == 0
15586 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15587 {
15588 complaint (_("cannot determine context for virtual member "
15589 "function \"%s\" (offset %s)"),
15590 fieldname, sect_offset_str (die->sect_off));
15591 }
15592 else
15593 {
15594 fnp->fcontext
15595 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15596 }
15597 }
15598 }
15599 else if (attr_form_is_section_offset (attr))
15600 {
15601 dwarf2_complex_location_expr_complaint ();
15602 }
15603 else
15604 {
15605 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15606 fieldname);
15607 }
15608 }
15609 else
15610 {
15611 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15612 if (attr && DW_UNSND (attr))
15613 {
15614 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15615 complaint (_("Member function \"%s\" (offset %s) is virtual "
15616 "but the vtable offset is not specified"),
15617 fieldname, sect_offset_str (die->sect_off));
15618 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15619 TYPE_CPLUS_DYNAMIC (type) = 1;
15620 }
15621 }
15622 }
15623
15624 /* Create the vector of member function fields, and attach it to the type. */
15625
15626 static void
15627 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15628 struct dwarf2_cu *cu)
15629 {
15630 if (cu->language == language_ada)
15631 error (_("unexpected member functions in Ada type"));
15632
15633 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15634 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15635 TYPE_ALLOC (type,
15636 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15637
15638 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15639 {
15640 struct fnfieldlist &nf = fip->fnfieldlists[i];
15641 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15642
15643 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15644 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15645 fn_flp->fn_fields = (struct fn_field *)
15646 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15647
15648 for (int k = 0; k < nf.fnfields.size (); ++k)
15649 fn_flp->fn_fields[k] = nf.fnfields[k];
15650 }
15651
15652 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15653 }
15654
15655 /* Returns non-zero if NAME is the name of a vtable member in CU's
15656 language, zero otherwise. */
15657 static int
15658 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15659 {
15660 static const char vptr[] = "_vptr";
15661
15662 /* Look for the C++ form of the vtable. */
15663 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15664 return 1;
15665
15666 return 0;
15667 }
15668
15669 /* GCC outputs unnamed structures that are really pointers to member
15670 functions, with the ABI-specified layout. If TYPE describes
15671 such a structure, smash it into a member function type.
15672
15673 GCC shouldn't do this; it should just output pointer to member DIEs.
15674 This is GCC PR debug/28767. */
15675
15676 static void
15677 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15678 {
15679 struct type *pfn_type, *self_type, *new_type;
15680
15681 /* Check for a structure with no name and two children. */
15682 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15683 return;
15684
15685 /* Check for __pfn and __delta members. */
15686 if (TYPE_FIELD_NAME (type, 0) == NULL
15687 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15688 || TYPE_FIELD_NAME (type, 1) == NULL
15689 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15690 return;
15691
15692 /* Find the type of the method. */
15693 pfn_type = TYPE_FIELD_TYPE (type, 0);
15694 if (pfn_type == NULL
15695 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15696 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15697 return;
15698
15699 /* Look for the "this" argument. */
15700 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15701 if (TYPE_NFIELDS (pfn_type) == 0
15702 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15703 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15704 return;
15705
15706 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15707 new_type = alloc_type (objfile);
15708 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15709 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15710 TYPE_VARARGS (pfn_type));
15711 smash_to_methodptr_type (type, new_type);
15712 }
15713
15714 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15715 appropriate error checking and issuing complaints if there is a
15716 problem. */
15717
15718 static ULONGEST
15719 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15720 {
15721 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15722
15723 if (attr == nullptr)
15724 return 0;
15725
15726 if (!attr_form_is_constant (attr))
15727 {
15728 complaint (_("DW_AT_alignment must have constant form"
15729 " - DIE at %s [in module %s]"),
15730 sect_offset_str (die->sect_off),
15731 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15732 return 0;
15733 }
15734
15735 ULONGEST align;
15736 if (attr->form == DW_FORM_sdata)
15737 {
15738 LONGEST val = DW_SND (attr);
15739 if (val < 0)
15740 {
15741 complaint (_("DW_AT_alignment value must not be negative"
15742 " - DIE at %s [in module %s]"),
15743 sect_offset_str (die->sect_off),
15744 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15745 return 0;
15746 }
15747 align = val;
15748 }
15749 else
15750 align = DW_UNSND (attr);
15751
15752 if (align == 0)
15753 {
15754 complaint (_("DW_AT_alignment value must not be zero"
15755 " - DIE at %s [in module %s]"),
15756 sect_offset_str (die->sect_off),
15757 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15758 return 0;
15759 }
15760 if ((align & (align - 1)) != 0)
15761 {
15762 complaint (_("DW_AT_alignment value must be a power of 2"
15763 " - DIE at %s [in module %s]"),
15764 sect_offset_str (die->sect_off),
15765 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15766 return 0;
15767 }
15768
15769 return align;
15770 }
15771
15772 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15773 the alignment for TYPE. */
15774
15775 static void
15776 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15777 struct type *type)
15778 {
15779 if (!set_type_align (type, get_alignment (cu, die)))
15780 complaint (_("DW_AT_alignment value too large"
15781 " - DIE at %s [in module %s]"),
15782 sect_offset_str (die->sect_off),
15783 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15784 }
15785
15786 /* Called when we find the DIE that starts a structure or union scope
15787 (definition) to create a type for the structure or union. Fill in
15788 the type's name and general properties; the members will not be
15789 processed until process_structure_scope. A symbol table entry for
15790 the type will also not be done until process_structure_scope (assuming
15791 the type has a name).
15792
15793 NOTE: we need to call these functions regardless of whether or not the
15794 DIE has a DW_AT_name attribute, since it might be an anonymous
15795 structure or union. This gets the type entered into our set of
15796 user defined types. */
15797
15798 static struct type *
15799 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15800 {
15801 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15802 struct type *type;
15803 struct attribute *attr;
15804 const char *name;
15805
15806 /* If the definition of this type lives in .debug_types, read that type.
15807 Don't follow DW_AT_specification though, that will take us back up
15808 the chain and we want to go down. */
15809 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15810 if (attr)
15811 {
15812 type = get_DW_AT_signature_type (die, attr, cu);
15813
15814 /* The type's CU may not be the same as CU.
15815 Ensure TYPE is recorded with CU in die_type_hash. */
15816 return set_die_type (die, type, cu);
15817 }
15818
15819 type = alloc_type (objfile);
15820 INIT_CPLUS_SPECIFIC (type);
15821
15822 name = dwarf2_name (die, cu);
15823 if (name != NULL)
15824 {
15825 if (cu->language == language_cplus
15826 || cu->language == language_d
15827 || cu->language == language_rust)
15828 {
15829 const char *full_name = dwarf2_full_name (name, die, cu);
15830
15831 /* dwarf2_full_name might have already finished building the DIE's
15832 type. If so, there is no need to continue. */
15833 if (get_die_type (die, cu) != NULL)
15834 return get_die_type (die, cu);
15835
15836 TYPE_NAME (type) = full_name;
15837 }
15838 else
15839 {
15840 /* The name is already allocated along with this objfile, so
15841 we don't need to duplicate it for the type. */
15842 TYPE_NAME (type) = name;
15843 }
15844 }
15845
15846 if (die->tag == DW_TAG_structure_type)
15847 {
15848 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15849 }
15850 else if (die->tag == DW_TAG_union_type)
15851 {
15852 TYPE_CODE (type) = TYPE_CODE_UNION;
15853 }
15854 else if (die->tag == DW_TAG_variant_part)
15855 {
15856 TYPE_CODE (type) = TYPE_CODE_UNION;
15857 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15858 }
15859 else
15860 {
15861 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15862 }
15863
15864 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15865 TYPE_DECLARED_CLASS (type) = 1;
15866
15867 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15868 if (attr)
15869 {
15870 if (attr_form_is_constant (attr))
15871 TYPE_LENGTH (type) = DW_UNSND (attr);
15872 else
15873 {
15874 /* For the moment, dynamic type sizes are not supported
15875 by GDB's struct type. The actual size is determined
15876 on-demand when resolving the type of a given object,
15877 so set the type's length to zero for now. Otherwise,
15878 we record an expression as the length, and that expression
15879 could lead to a very large value, which could eventually
15880 lead to us trying to allocate that much memory when creating
15881 a value of that type. */
15882 TYPE_LENGTH (type) = 0;
15883 }
15884 }
15885 else
15886 {
15887 TYPE_LENGTH (type) = 0;
15888 }
15889
15890 maybe_set_alignment (cu, die, type);
15891
15892 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15893 {
15894 /* ICC<14 does not output the required DW_AT_declaration on
15895 incomplete types, but gives them a size of zero. */
15896 TYPE_STUB (type) = 1;
15897 }
15898 else
15899 TYPE_STUB_SUPPORTED (type) = 1;
15900
15901 if (die_is_declaration (die, cu))
15902 TYPE_STUB (type) = 1;
15903 else if (attr == NULL && die->child == NULL
15904 && producer_is_realview (cu->producer))
15905 /* RealView does not output the required DW_AT_declaration
15906 on incomplete types. */
15907 TYPE_STUB (type) = 1;
15908
15909 /* We need to add the type field to the die immediately so we don't
15910 infinitely recurse when dealing with pointers to the structure
15911 type within the structure itself. */
15912 set_die_type (die, type, cu);
15913
15914 /* set_die_type should be already done. */
15915 set_descriptive_type (type, die, cu);
15916
15917 return type;
15918 }
15919
15920 /* A helper for process_structure_scope that handles a single member
15921 DIE. */
15922
15923 static void
15924 handle_struct_member_die (struct die_info *child_die, struct type *type,
15925 struct field_info *fi,
15926 std::vector<struct symbol *> *template_args,
15927 struct dwarf2_cu *cu)
15928 {
15929 if (child_die->tag == DW_TAG_member
15930 || child_die->tag == DW_TAG_variable
15931 || child_die->tag == DW_TAG_variant_part)
15932 {
15933 /* NOTE: carlton/2002-11-05: A C++ static data member
15934 should be a DW_TAG_member that is a declaration, but
15935 all versions of G++ as of this writing (so through at
15936 least 3.2.1) incorrectly generate DW_TAG_variable
15937 tags for them instead. */
15938 dwarf2_add_field (fi, child_die, cu);
15939 }
15940 else if (child_die->tag == DW_TAG_subprogram)
15941 {
15942 /* Rust doesn't have member functions in the C++ sense.
15943 However, it does emit ordinary functions as children
15944 of a struct DIE. */
15945 if (cu->language == language_rust)
15946 read_func_scope (child_die, cu);
15947 else
15948 {
15949 /* C++ member function. */
15950 dwarf2_add_member_fn (fi, child_die, type, cu);
15951 }
15952 }
15953 else if (child_die->tag == DW_TAG_inheritance)
15954 {
15955 /* C++ base class field. */
15956 dwarf2_add_field (fi, child_die, cu);
15957 }
15958 else if (type_can_define_types (child_die))
15959 dwarf2_add_type_defn (fi, child_die, cu);
15960 else if (child_die->tag == DW_TAG_template_type_param
15961 || child_die->tag == DW_TAG_template_value_param)
15962 {
15963 struct symbol *arg = new_symbol (child_die, NULL, cu);
15964
15965 if (arg != NULL)
15966 template_args->push_back (arg);
15967 }
15968 else if (child_die->tag == DW_TAG_variant)
15969 {
15970 /* In a variant we want to get the discriminant and also add a
15971 field for our sole member child. */
15972 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15973
15974 for (die_info *variant_child = child_die->child;
15975 variant_child != NULL;
15976 variant_child = sibling_die (variant_child))
15977 {
15978 if (variant_child->tag == DW_TAG_member)
15979 {
15980 handle_struct_member_die (variant_child, type, fi,
15981 template_args, cu);
15982 /* Only handle the one. */
15983 break;
15984 }
15985 }
15986
15987 /* We don't handle this but we might as well report it if we see
15988 it. */
15989 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15990 complaint (_("DW_AT_discr_list is not supported yet"
15991 " - DIE at %s [in module %s]"),
15992 sect_offset_str (child_die->sect_off),
15993 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15994
15995 /* The first field was just added, so we can stash the
15996 discriminant there. */
15997 gdb_assert (!fi->fields.empty ());
15998 if (discr == NULL)
15999 fi->fields.back ().variant.default_branch = true;
16000 else
16001 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16002 }
16003 }
16004
16005 /* Finish creating a structure or union type, including filling in
16006 its members and creating a symbol for it. */
16007
16008 static void
16009 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16010 {
16011 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16012 struct die_info *child_die;
16013 struct type *type;
16014
16015 type = get_die_type (die, cu);
16016 if (type == NULL)
16017 type = read_structure_type (die, cu);
16018
16019 /* When reading a DW_TAG_variant_part, we need to notice when we
16020 read the discriminant member, so we can record it later in the
16021 discriminant_info. */
16022 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16023 sect_offset discr_offset;
16024 bool has_template_parameters = false;
16025
16026 if (is_variant_part)
16027 {
16028 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16029 if (discr == NULL)
16030 {
16031 /* Maybe it's a univariant form, an extension we support.
16032 In this case arrange not to check the offset. */
16033 is_variant_part = false;
16034 }
16035 else if (attr_form_is_ref (discr))
16036 {
16037 struct dwarf2_cu *target_cu = cu;
16038 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16039
16040 discr_offset = target_die->sect_off;
16041 }
16042 else
16043 {
16044 complaint (_("DW_AT_discr does not have DIE reference form"
16045 " - DIE at %s [in module %s]"),
16046 sect_offset_str (die->sect_off),
16047 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16048 is_variant_part = false;
16049 }
16050 }
16051
16052 if (die->child != NULL && ! die_is_declaration (die, cu))
16053 {
16054 struct field_info fi;
16055 std::vector<struct symbol *> template_args;
16056
16057 child_die = die->child;
16058
16059 while (child_die && child_die->tag)
16060 {
16061 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16062
16063 if (is_variant_part && discr_offset == child_die->sect_off)
16064 fi.fields.back ().variant.is_discriminant = true;
16065
16066 child_die = sibling_die (child_die);
16067 }
16068
16069 /* Attach template arguments to type. */
16070 if (!template_args.empty ())
16071 {
16072 has_template_parameters = true;
16073 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16074 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16075 TYPE_TEMPLATE_ARGUMENTS (type)
16076 = XOBNEWVEC (&objfile->objfile_obstack,
16077 struct symbol *,
16078 TYPE_N_TEMPLATE_ARGUMENTS (type));
16079 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16080 template_args.data (),
16081 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16082 * sizeof (struct symbol *)));
16083 }
16084
16085 /* Attach fields and member functions to the type. */
16086 if (fi.nfields)
16087 dwarf2_attach_fields_to_type (&fi, type, cu);
16088 if (!fi.fnfieldlists.empty ())
16089 {
16090 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16091
16092 /* Get the type which refers to the base class (possibly this
16093 class itself) which contains the vtable pointer for the current
16094 class from the DW_AT_containing_type attribute. This use of
16095 DW_AT_containing_type is a GNU extension. */
16096
16097 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16098 {
16099 struct type *t = die_containing_type (die, cu);
16100
16101 set_type_vptr_basetype (type, t);
16102 if (type == t)
16103 {
16104 int i;
16105
16106 /* Our own class provides vtbl ptr. */
16107 for (i = TYPE_NFIELDS (t) - 1;
16108 i >= TYPE_N_BASECLASSES (t);
16109 --i)
16110 {
16111 const char *fieldname = TYPE_FIELD_NAME (t, i);
16112
16113 if (is_vtable_name (fieldname, cu))
16114 {
16115 set_type_vptr_fieldno (type, i);
16116 break;
16117 }
16118 }
16119
16120 /* Complain if virtual function table field not found. */
16121 if (i < TYPE_N_BASECLASSES (t))
16122 complaint (_("virtual function table pointer "
16123 "not found when defining class '%s'"),
16124 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16125 }
16126 else
16127 {
16128 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16129 }
16130 }
16131 else if (cu->producer
16132 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16133 {
16134 /* The IBM XLC compiler does not provide direct indication
16135 of the containing type, but the vtable pointer is
16136 always named __vfp. */
16137
16138 int i;
16139
16140 for (i = TYPE_NFIELDS (type) - 1;
16141 i >= TYPE_N_BASECLASSES (type);
16142 --i)
16143 {
16144 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16145 {
16146 set_type_vptr_fieldno (type, i);
16147 set_type_vptr_basetype (type, type);
16148 break;
16149 }
16150 }
16151 }
16152 }
16153
16154 /* Copy fi.typedef_field_list linked list elements content into the
16155 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16156 if (!fi.typedef_field_list.empty ())
16157 {
16158 int count = fi.typedef_field_list.size ();
16159
16160 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16161 TYPE_TYPEDEF_FIELD_ARRAY (type)
16162 = ((struct decl_field *)
16163 TYPE_ALLOC (type,
16164 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16165 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16166
16167 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16168 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16169 }
16170
16171 /* Copy fi.nested_types_list linked list elements content into the
16172 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16173 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16174 {
16175 int count = fi.nested_types_list.size ();
16176
16177 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16178 TYPE_NESTED_TYPES_ARRAY (type)
16179 = ((struct decl_field *)
16180 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16181 TYPE_NESTED_TYPES_COUNT (type) = count;
16182
16183 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16184 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16185 }
16186 }
16187
16188 quirk_gcc_member_function_pointer (type, objfile);
16189 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16190 cu->rust_unions.push_back (type);
16191
16192 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16193 snapshots) has been known to create a die giving a declaration
16194 for a class that has, as a child, a die giving a definition for a
16195 nested class. So we have to process our children even if the
16196 current die is a declaration. Normally, of course, a declaration
16197 won't have any children at all. */
16198
16199 child_die = die->child;
16200
16201 while (child_die != NULL && child_die->tag)
16202 {
16203 if (child_die->tag == DW_TAG_member
16204 || child_die->tag == DW_TAG_variable
16205 || child_die->tag == DW_TAG_inheritance
16206 || child_die->tag == DW_TAG_template_value_param
16207 || child_die->tag == DW_TAG_template_type_param)
16208 {
16209 /* Do nothing. */
16210 }
16211 else
16212 process_die (child_die, cu);
16213
16214 child_die = sibling_die (child_die);
16215 }
16216
16217 /* Do not consider external references. According to the DWARF standard,
16218 these DIEs are identified by the fact that they have no byte_size
16219 attribute, and a declaration attribute. */
16220 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16221 || !die_is_declaration (die, cu))
16222 {
16223 struct symbol *sym = new_symbol (die, type, cu);
16224
16225 if (has_template_parameters)
16226 {
16227 struct symtab *symtab;
16228 if (sym != nullptr)
16229 symtab = symbol_symtab (sym);
16230 else if (cu->line_header != nullptr)
16231 {
16232 /* Any related symtab will do. */
16233 symtab
16234 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16235 }
16236 else
16237 {
16238 symtab = nullptr;
16239 complaint (_("could not find suitable "
16240 "symtab for template parameter"
16241 " - DIE at %s [in module %s]"),
16242 sect_offset_str (die->sect_off),
16243 objfile_name (objfile));
16244 }
16245
16246 if (symtab != nullptr)
16247 {
16248 /* Make sure that the symtab is set on the new symbols.
16249 Even though they don't appear in this symtab directly,
16250 other parts of gdb assume that symbols do, and this is
16251 reasonably true. */
16252 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16253 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16254 }
16255 }
16256 }
16257 }
16258
16259 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16260 update TYPE using some information only available in DIE's children. */
16261
16262 static void
16263 update_enumeration_type_from_children (struct die_info *die,
16264 struct type *type,
16265 struct dwarf2_cu *cu)
16266 {
16267 struct die_info *child_die;
16268 int unsigned_enum = 1;
16269 int flag_enum = 1;
16270 ULONGEST mask = 0;
16271
16272 auto_obstack obstack;
16273
16274 for (child_die = die->child;
16275 child_die != NULL && child_die->tag;
16276 child_die = sibling_die (child_die))
16277 {
16278 struct attribute *attr;
16279 LONGEST value;
16280 const gdb_byte *bytes;
16281 struct dwarf2_locexpr_baton *baton;
16282 const char *name;
16283
16284 if (child_die->tag != DW_TAG_enumerator)
16285 continue;
16286
16287 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16288 if (attr == NULL)
16289 continue;
16290
16291 name = dwarf2_name (child_die, cu);
16292 if (name == NULL)
16293 name = "<anonymous enumerator>";
16294
16295 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16296 &value, &bytes, &baton);
16297 if (value < 0)
16298 {
16299 unsigned_enum = 0;
16300 flag_enum = 0;
16301 }
16302 else if ((mask & value) != 0)
16303 flag_enum = 0;
16304 else
16305 mask |= value;
16306
16307 /* If we already know that the enum type is neither unsigned, nor
16308 a flag type, no need to look at the rest of the enumerates. */
16309 if (!unsigned_enum && !flag_enum)
16310 break;
16311 }
16312
16313 if (unsigned_enum)
16314 TYPE_UNSIGNED (type) = 1;
16315 if (flag_enum)
16316 TYPE_FLAG_ENUM (type) = 1;
16317 }
16318
16319 /* Given a DW_AT_enumeration_type die, set its type. We do not
16320 complete the type's fields yet, or create any symbols. */
16321
16322 static struct type *
16323 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16324 {
16325 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16326 struct type *type;
16327 struct attribute *attr;
16328 const char *name;
16329
16330 /* If the definition of this type lives in .debug_types, read that type.
16331 Don't follow DW_AT_specification though, that will take us back up
16332 the chain and we want to go down. */
16333 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16334 if (attr)
16335 {
16336 type = get_DW_AT_signature_type (die, attr, cu);
16337
16338 /* The type's CU may not be the same as CU.
16339 Ensure TYPE is recorded with CU in die_type_hash. */
16340 return set_die_type (die, type, cu);
16341 }
16342
16343 type = alloc_type (objfile);
16344
16345 TYPE_CODE (type) = TYPE_CODE_ENUM;
16346 name = dwarf2_full_name (NULL, die, cu);
16347 if (name != NULL)
16348 TYPE_NAME (type) = name;
16349
16350 attr = dwarf2_attr (die, DW_AT_type, cu);
16351 if (attr != NULL)
16352 {
16353 struct type *underlying_type = die_type (die, cu);
16354
16355 TYPE_TARGET_TYPE (type) = underlying_type;
16356 }
16357
16358 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16359 if (attr)
16360 {
16361 TYPE_LENGTH (type) = DW_UNSND (attr);
16362 }
16363 else
16364 {
16365 TYPE_LENGTH (type) = 0;
16366 }
16367
16368 maybe_set_alignment (cu, die, type);
16369
16370 /* The enumeration DIE can be incomplete. In Ada, any type can be
16371 declared as private in the package spec, and then defined only
16372 inside the package body. Such types are known as Taft Amendment
16373 Types. When another package uses such a type, an incomplete DIE
16374 may be generated by the compiler. */
16375 if (die_is_declaration (die, cu))
16376 TYPE_STUB (type) = 1;
16377
16378 /* Finish the creation of this type by using the enum's children.
16379 We must call this even when the underlying type has been provided
16380 so that we can determine if we're looking at a "flag" enum. */
16381 update_enumeration_type_from_children (die, type, cu);
16382
16383 /* If this type has an underlying type that is not a stub, then we
16384 may use its attributes. We always use the "unsigned" attribute
16385 in this situation, because ordinarily we guess whether the type
16386 is unsigned -- but the guess can be wrong and the underlying type
16387 can tell us the reality. However, we defer to a local size
16388 attribute if one exists, because this lets the compiler override
16389 the underlying type if needed. */
16390 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16391 {
16392 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16393 if (TYPE_LENGTH (type) == 0)
16394 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16395 if (TYPE_RAW_ALIGN (type) == 0
16396 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16397 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16398 }
16399
16400 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16401
16402 return set_die_type (die, type, cu);
16403 }
16404
16405 /* Given a pointer to a die which begins an enumeration, process all
16406 the dies that define the members of the enumeration, and create the
16407 symbol for the enumeration type.
16408
16409 NOTE: We reverse the order of the element list. */
16410
16411 static void
16412 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16413 {
16414 struct type *this_type;
16415
16416 this_type = get_die_type (die, cu);
16417 if (this_type == NULL)
16418 this_type = read_enumeration_type (die, cu);
16419
16420 if (die->child != NULL)
16421 {
16422 struct die_info *child_die;
16423 struct symbol *sym;
16424 struct field *fields = NULL;
16425 int num_fields = 0;
16426 const char *name;
16427
16428 child_die = die->child;
16429 while (child_die && child_die->tag)
16430 {
16431 if (child_die->tag != DW_TAG_enumerator)
16432 {
16433 process_die (child_die, cu);
16434 }
16435 else
16436 {
16437 name = dwarf2_name (child_die, cu);
16438 if (name)
16439 {
16440 sym = new_symbol (child_die, this_type, cu);
16441
16442 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16443 {
16444 fields = (struct field *)
16445 xrealloc (fields,
16446 (num_fields + DW_FIELD_ALLOC_CHUNK)
16447 * sizeof (struct field));
16448 }
16449
16450 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16451 FIELD_TYPE (fields[num_fields]) = NULL;
16452 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16453 FIELD_BITSIZE (fields[num_fields]) = 0;
16454
16455 num_fields++;
16456 }
16457 }
16458
16459 child_die = sibling_die (child_die);
16460 }
16461
16462 if (num_fields)
16463 {
16464 TYPE_NFIELDS (this_type) = num_fields;
16465 TYPE_FIELDS (this_type) = (struct field *)
16466 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16467 memcpy (TYPE_FIELDS (this_type), fields,
16468 sizeof (struct field) * num_fields);
16469 xfree (fields);
16470 }
16471 }
16472
16473 /* If we are reading an enum from a .debug_types unit, and the enum
16474 is a declaration, and the enum is not the signatured type in the
16475 unit, then we do not want to add a symbol for it. Adding a
16476 symbol would in some cases obscure the true definition of the
16477 enum, giving users an incomplete type when the definition is
16478 actually available. Note that we do not want to do this for all
16479 enums which are just declarations, because C++0x allows forward
16480 enum declarations. */
16481 if (cu->per_cu->is_debug_types
16482 && die_is_declaration (die, cu))
16483 {
16484 struct signatured_type *sig_type;
16485
16486 sig_type = (struct signatured_type *) cu->per_cu;
16487 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16488 if (sig_type->type_offset_in_section != die->sect_off)
16489 return;
16490 }
16491
16492 new_symbol (die, this_type, cu);
16493 }
16494
16495 /* Extract all information from a DW_TAG_array_type DIE and put it in
16496 the DIE's type field. For now, this only handles one dimensional
16497 arrays. */
16498
16499 static struct type *
16500 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16501 {
16502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16503 struct die_info *child_die;
16504 struct type *type;
16505 struct type *element_type, *range_type, *index_type;
16506 struct attribute *attr;
16507 const char *name;
16508 struct dynamic_prop *byte_stride_prop = NULL;
16509 unsigned int bit_stride = 0;
16510
16511 element_type = die_type (die, cu);
16512
16513 /* The die_type call above may have already set the type for this DIE. */
16514 type = get_die_type (die, cu);
16515 if (type)
16516 return type;
16517
16518 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16519 if (attr != NULL)
16520 {
16521 int stride_ok;
16522
16523 byte_stride_prop
16524 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16525 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16526 if (!stride_ok)
16527 {
16528 complaint (_("unable to read array DW_AT_byte_stride "
16529 " - DIE at %s [in module %s]"),
16530 sect_offset_str (die->sect_off),
16531 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16532 /* Ignore this attribute. We will likely not be able to print
16533 arrays of this type correctly, but there is little we can do
16534 to help if we cannot read the attribute's value. */
16535 byte_stride_prop = NULL;
16536 }
16537 }
16538
16539 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16540 if (attr != NULL)
16541 bit_stride = DW_UNSND (attr);
16542
16543 /* Irix 6.2 native cc creates array types without children for
16544 arrays with unspecified length. */
16545 if (die->child == NULL)
16546 {
16547 index_type = objfile_type (objfile)->builtin_int;
16548 range_type = create_static_range_type (NULL, index_type, 0, -1);
16549 type = create_array_type_with_stride (NULL, element_type, range_type,
16550 byte_stride_prop, bit_stride);
16551 return set_die_type (die, type, cu);
16552 }
16553
16554 std::vector<struct type *> range_types;
16555 child_die = die->child;
16556 while (child_die && child_die->tag)
16557 {
16558 if (child_die->tag == DW_TAG_subrange_type)
16559 {
16560 struct type *child_type = read_type_die (child_die, cu);
16561
16562 if (child_type != NULL)
16563 {
16564 /* The range type was succesfully read. Save it for the
16565 array type creation. */
16566 range_types.push_back (child_type);
16567 }
16568 }
16569 child_die = sibling_die (child_die);
16570 }
16571
16572 /* Dwarf2 dimensions are output from left to right, create the
16573 necessary array types in backwards order. */
16574
16575 type = element_type;
16576
16577 if (read_array_order (die, cu) == DW_ORD_col_major)
16578 {
16579 int i = 0;
16580
16581 while (i < range_types.size ())
16582 type = create_array_type_with_stride (NULL, type, range_types[i++],
16583 byte_stride_prop, bit_stride);
16584 }
16585 else
16586 {
16587 size_t ndim = range_types.size ();
16588 while (ndim-- > 0)
16589 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16590 byte_stride_prop, bit_stride);
16591 }
16592
16593 /* Understand Dwarf2 support for vector types (like they occur on
16594 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16595 array type. This is not part of the Dwarf2/3 standard yet, but a
16596 custom vendor extension. The main difference between a regular
16597 array and the vector variant is that vectors are passed by value
16598 to functions. */
16599 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16600 if (attr)
16601 make_vector_type (type);
16602
16603 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16604 implementation may choose to implement triple vectors using this
16605 attribute. */
16606 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16607 if (attr)
16608 {
16609 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16610 TYPE_LENGTH (type) = DW_UNSND (attr);
16611 else
16612 complaint (_("DW_AT_byte_size for array type smaller "
16613 "than the total size of elements"));
16614 }
16615
16616 name = dwarf2_name (die, cu);
16617 if (name)
16618 TYPE_NAME (type) = name;
16619
16620 maybe_set_alignment (cu, die, type);
16621
16622 /* Install the type in the die. */
16623 set_die_type (die, type, cu);
16624
16625 /* set_die_type should be already done. */
16626 set_descriptive_type (type, die, cu);
16627
16628 return type;
16629 }
16630
16631 static enum dwarf_array_dim_ordering
16632 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16633 {
16634 struct attribute *attr;
16635
16636 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16637
16638 if (attr)
16639 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16640
16641 /* GNU F77 is a special case, as at 08/2004 array type info is the
16642 opposite order to the dwarf2 specification, but data is still
16643 laid out as per normal fortran.
16644
16645 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16646 version checking. */
16647
16648 if (cu->language == language_fortran
16649 && cu->producer && strstr (cu->producer, "GNU F77"))
16650 {
16651 return DW_ORD_row_major;
16652 }
16653
16654 switch (cu->language_defn->la_array_ordering)
16655 {
16656 case array_column_major:
16657 return DW_ORD_col_major;
16658 case array_row_major:
16659 default:
16660 return DW_ORD_row_major;
16661 };
16662 }
16663
16664 /* Extract all information from a DW_TAG_set_type DIE and put it in
16665 the DIE's type field. */
16666
16667 static struct type *
16668 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16669 {
16670 struct type *domain_type, *set_type;
16671 struct attribute *attr;
16672
16673 domain_type = die_type (die, cu);
16674
16675 /* The die_type call above may have already set the type for this DIE. */
16676 set_type = get_die_type (die, cu);
16677 if (set_type)
16678 return set_type;
16679
16680 set_type = create_set_type (NULL, domain_type);
16681
16682 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16683 if (attr)
16684 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16685
16686 maybe_set_alignment (cu, die, set_type);
16687
16688 return set_die_type (die, set_type, cu);
16689 }
16690
16691 /* A helper for read_common_block that creates a locexpr baton.
16692 SYM is the symbol which we are marking as computed.
16693 COMMON_DIE is the DIE for the common block.
16694 COMMON_LOC is the location expression attribute for the common
16695 block itself.
16696 MEMBER_LOC is the location expression attribute for the particular
16697 member of the common block that we are processing.
16698 CU is the CU from which the above come. */
16699
16700 static void
16701 mark_common_block_symbol_computed (struct symbol *sym,
16702 struct die_info *common_die,
16703 struct attribute *common_loc,
16704 struct attribute *member_loc,
16705 struct dwarf2_cu *cu)
16706 {
16707 struct dwarf2_per_objfile *dwarf2_per_objfile
16708 = cu->per_cu->dwarf2_per_objfile;
16709 struct objfile *objfile = dwarf2_per_objfile->objfile;
16710 struct dwarf2_locexpr_baton *baton;
16711 gdb_byte *ptr;
16712 unsigned int cu_off;
16713 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16714 LONGEST offset = 0;
16715
16716 gdb_assert (common_loc && member_loc);
16717 gdb_assert (attr_form_is_block (common_loc));
16718 gdb_assert (attr_form_is_block (member_loc)
16719 || attr_form_is_constant (member_loc));
16720
16721 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16722 baton->per_cu = cu->per_cu;
16723 gdb_assert (baton->per_cu);
16724
16725 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16726
16727 if (attr_form_is_constant (member_loc))
16728 {
16729 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16730 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16731 }
16732 else
16733 baton->size += DW_BLOCK (member_loc)->size;
16734
16735 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16736 baton->data = ptr;
16737
16738 *ptr++ = DW_OP_call4;
16739 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16740 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16741 ptr += 4;
16742
16743 if (attr_form_is_constant (member_loc))
16744 {
16745 *ptr++ = DW_OP_addr;
16746 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16747 ptr += cu->header.addr_size;
16748 }
16749 else
16750 {
16751 /* We have to copy the data here, because DW_OP_call4 will only
16752 use a DW_AT_location attribute. */
16753 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16754 ptr += DW_BLOCK (member_loc)->size;
16755 }
16756
16757 *ptr++ = DW_OP_plus;
16758 gdb_assert (ptr - baton->data == baton->size);
16759
16760 SYMBOL_LOCATION_BATON (sym) = baton;
16761 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16762 }
16763
16764 /* Create appropriate locally-scoped variables for all the
16765 DW_TAG_common_block entries. Also create a struct common_block
16766 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16767 is used to sepate the common blocks name namespace from regular
16768 variable names. */
16769
16770 static void
16771 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16772 {
16773 struct attribute *attr;
16774
16775 attr = dwarf2_attr (die, DW_AT_location, cu);
16776 if (attr)
16777 {
16778 /* Support the .debug_loc offsets. */
16779 if (attr_form_is_block (attr))
16780 {
16781 /* Ok. */
16782 }
16783 else if (attr_form_is_section_offset (attr))
16784 {
16785 dwarf2_complex_location_expr_complaint ();
16786 attr = NULL;
16787 }
16788 else
16789 {
16790 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16791 "common block member");
16792 attr = NULL;
16793 }
16794 }
16795
16796 if (die->child != NULL)
16797 {
16798 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16799 struct die_info *child_die;
16800 size_t n_entries = 0, size;
16801 struct common_block *common_block;
16802 struct symbol *sym;
16803
16804 for (child_die = die->child;
16805 child_die && child_die->tag;
16806 child_die = sibling_die (child_die))
16807 ++n_entries;
16808
16809 size = (sizeof (struct common_block)
16810 + (n_entries - 1) * sizeof (struct symbol *));
16811 common_block
16812 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16813 size);
16814 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16815 common_block->n_entries = 0;
16816
16817 for (child_die = die->child;
16818 child_die && child_die->tag;
16819 child_die = sibling_die (child_die))
16820 {
16821 /* Create the symbol in the DW_TAG_common_block block in the current
16822 symbol scope. */
16823 sym = new_symbol (child_die, NULL, cu);
16824 if (sym != NULL)
16825 {
16826 struct attribute *member_loc;
16827
16828 common_block->contents[common_block->n_entries++] = sym;
16829
16830 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16831 cu);
16832 if (member_loc)
16833 {
16834 /* GDB has handled this for a long time, but it is
16835 not specified by DWARF. It seems to have been
16836 emitted by gfortran at least as recently as:
16837 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16838 complaint (_("Variable in common block has "
16839 "DW_AT_data_member_location "
16840 "- DIE at %s [in module %s]"),
16841 sect_offset_str (child_die->sect_off),
16842 objfile_name (objfile));
16843
16844 if (attr_form_is_section_offset (member_loc))
16845 dwarf2_complex_location_expr_complaint ();
16846 else if (attr_form_is_constant (member_loc)
16847 || attr_form_is_block (member_loc))
16848 {
16849 if (attr)
16850 mark_common_block_symbol_computed (sym, die, attr,
16851 member_loc, cu);
16852 }
16853 else
16854 dwarf2_complex_location_expr_complaint ();
16855 }
16856 }
16857 }
16858
16859 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16860 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16861 }
16862 }
16863
16864 /* Create a type for a C++ namespace. */
16865
16866 static struct type *
16867 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16868 {
16869 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16870 const char *previous_prefix, *name;
16871 int is_anonymous;
16872 struct type *type;
16873
16874 /* For extensions, reuse the type of the original namespace. */
16875 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16876 {
16877 struct die_info *ext_die;
16878 struct dwarf2_cu *ext_cu = cu;
16879
16880 ext_die = dwarf2_extension (die, &ext_cu);
16881 type = read_type_die (ext_die, ext_cu);
16882
16883 /* EXT_CU may not be the same as CU.
16884 Ensure TYPE is recorded with CU in die_type_hash. */
16885 return set_die_type (die, type, cu);
16886 }
16887
16888 name = namespace_name (die, &is_anonymous, cu);
16889
16890 /* Now build the name of the current namespace. */
16891
16892 previous_prefix = determine_prefix (die, cu);
16893 if (previous_prefix[0] != '\0')
16894 name = typename_concat (&objfile->objfile_obstack,
16895 previous_prefix, name, 0, cu);
16896
16897 /* Create the type. */
16898 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16899
16900 return set_die_type (die, type, cu);
16901 }
16902
16903 /* Read a namespace scope. */
16904
16905 static void
16906 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16907 {
16908 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16909 int is_anonymous;
16910
16911 /* Add a symbol associated to this if we haven't seen the namespace
16912 before. Also, add a using directive if it's an anonymous
16913 namespace. */
16914
16915 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16916 {
16917 struct type *type;
16918
16919 type = read_type_die (die, cu);
16920 new_symbol (die, type, cu);
16921
16922 namespace_name (die, &is_anonymous, cu);
16923 if (is_anonymous)
16924 {
16925 const char *previous_prefix = determine_prefix (die, cu);
16926
16927 std::vector<const char *> excludes;
16928 add_using_directive (using_directives (cu),
16929 previous_prefix, TYPE_NAME (type), NULL,
16930 NULL, excludes, 0, &objfile->objfile_obstack);
16931 }
16932 }
16933
16934 if (die->child != NULL)
16935 {
16936 struct die_info *child_die = die->child;
16937
16938 while (child_die && child_die->tag)
16939 {
16940 process_die (child_die, cu);
16941 child_die = sibling_die (child_die);
16942 }
16943 }
16944 }
16945
16946 /* Read a Fortran module as type. This DIE can be only a declaration used for
16947 imported module. Still we need that type as local Fortran "use ... only"
16948 declaration imports depend on the created type in determine_prefix. */
16949
16950 static struct type *
16951 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16952 {
16953 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16954 const char *module_name;
16955 struct type *type;
16956
16957 module_name = dwarf2_name (die, cu);
16958 if (!module_name)
16959 complaint (_("DW_TAG_module has no name, offset %s"),
16960 sect_offset_str (die->sect_off));
16961 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16962
16963 return set_die_type (die, type, cu);
16964 }
16965
16966 /* Read a Fortran module. */
16967
16968 static void
16969 read_module (struct die_info *die, struct dwarf2_cu *cu)
16970 {
16971 struct die_info *child_die = die->child;
16972 struct type *type;
16973
16974 type = read_type_die (die, cu);
16975 new_symbol (die, type, cu);
16976
16977 while (child_die && child_die->tag)
16978 {
16979 process_die (child_die, cu);
16980 child_die = sibling_die (child_die);
16981 }
16982 }
16983
16984 /* Return the name of the namespace represented by DIE. Set
16985 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16986 namespace. */
16987
16988 static const char *
16989 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16990 {
16991 struct die_info *current_die;
16992 const char *name = NULL;
16993
16994 /* Loop through the extensions until we find a name. */
16995
16996 for (current_die = die;
16997 current_die != NULL;
16998 current_die = dwarf2_extension (die, &cu))
16999 {
17000 /* We don't use dwarf2_name here so that we can detect the absence
17001 of a name -> anonymous namespace. */
17002 name = dwarf2_string_attr (die, DW_AT_name, cu);
17003
17004 if (name != NULL)
17005 break;
17006 }
17007
17008 /* Is it an anonymous namespace? */
17009
17010 *is_anonymous = (name == NULL);
17011 if (*is_anonymous)
17012 name = CP_ANONYMOUS_NAMESPACE_STR;
17013
17014 return name;
17015 }
17016
17017 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17018 the user defined type vector. */
17019
17020 static struct type *
17021 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17022 {
17023 struct gdbarch *gdbarch
17024 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17025 struct comp_unit_head *cu_header = &cu->header;
17026 struct type *type;
17027 struct attribute *attr_byte_size;
17028 struct attribute *attr_address_class;
17029 int byte_size, addr_class;
17030 struct type *target_type;
17031
17032 target_type = die_type (die, cu);
17033
17034 /* The die_type call above may have already set the type for this DIE. */
17035 type = get_die_type (die, cu);
17036 if (type)
17037 return type;
17038
17039 type = lookup_pointer_type (target_type);
17040
17041 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17042 if (attr_byte_size)
17043 byte_size = DW_UNSND (attr_byte_size);
17044 else
17045 byte_size = cu_header->addr_size;
17046
17047 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17048 if (attr_address_class)
17049 addr_class = DW_UNSND (attr_address_class);
17050 else
17051 addr_class = DW_ADDR_none;
17052
17053 ULONGEST alignment = get_alignment (cu, die);
17054
17055 /* If the pointer size, alignment, or address class is different
17056 than the default, create a type variant marked as such and set
17057 the length accordingly. */
17058 if (TYPE_LENGTH (type) != byte_size
17059 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17060 && alignment != TYPE_RAW_ALIGN (type))
17061 || addr_class != DW_ADDR_none)
17062 {
17063 if (gdbarch_address_class_type_flags_p (gdbarch))
17064 {
17065 int type_flags;
17066
17067 type_flags = gdbarch_address_class_type_flags
17068 (gdbarch, byte_size, addr_class);
17069 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17070 == 0);
17071 type = make_type_with_address_space (type, type_flags);
17072 }
17073 else if (TYPE_LENGTH (type) != byte_size)
17074 {
17075 complaint (_("invalid pointer size %d"), byte_size);
17076 }
17077 else if (TYPE_RAW_ALIGN (type) != alignment)
17078 {
17079 complaint (_("Invalid DW_AT_alignment"
17080 " - DIE at %s [in module %s]"),
17081 sect_offset_str (die->sect_off),
17082 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17083 }
17084 else
17085 {
17086 /* Should we also complain about unhandled address classes? */
17087 }
17088 }
17089
17090 TYPE_LENGTH (type) = byte_size;
17091 set_type_align (type, alignment);
17092 return set_die_type (die, type, cu);
17093 }
17094
17095 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17096 the user defined type vector. */
17097
17098 static struct type *
17099 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17100 {
17101 struct type *type;
17102 struct type *to_type;
17103 struct type *domain;
17104
17105 to_type = die_type (die, cu);
17106 domain = die_containing_type (die, cu);
17107
17108 /* The calls above may have already set the type for this DIE. */
17109 type = get_die_type (die, cu);
17110 if (type)
17111 return type;
17112
17113 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17114 type = lookup_methodptr_type (to_type);
17115 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17116 {
17117 struct type *new_type
17118 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17119
17120 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17121 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17122 TYPE_VARARGS (to_type));
17123 type = lookup_methodptr_type (new_type);
17124 }
17125 else
17126 type = lookup_memberptr_type (to_type, domain);
17127
17128 return set_die_type (die, type, cu);
17129 }
17130
17131 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17132 the user defined type vector. */
17133
17134 static struct type *
17135 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17136 enum type_code refcode)
17137 {
17138 struct comp_unit_head *cu_header = &cu->header;
17139 struct type *type, *target_type;
17140 struct attribute *attr;
17141
17142 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17143
17144 target_type = die_type (die, cu);
17145
17146 /* The die_type call above may have already set the type for this DIE. */
17147 type = get_die_type (die, cu);
17148 if (type)
17149 return type;
17150
17151 type = lookup_reference_type (target_type, refcode);
17152 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17153 if (attr)
17154 {
17155 TYPE_LENGTH (type) = DW_UNSND (attr);
17156 }
17157 else
17158 {
17159 TYPE_LENGTH (type) = cu_header->addr_size;
17160 }
17161 maybe_set_alignment (cu, die, type);
17162 return set_die_type (die, type, cu);
17163 }
17164
17165 /* Add the given cv-qualifiers to the element type of the array. GCC
17166 outputs DWARF type qualifiers that apply to an array, not the
17167 element type. But GDB relies on the array element type to carry
17168 the cv-qualifiers. This mimics section 6.7.3 of the C99
17169 specification. */
17170
17171 static struct type *
17172 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17173 struct type *base_type, int cnst, int voltl)
17174 {
17175 struct type *el_type, *inner_array;
17176
17177 base_type = copy_type (base_type);
17178 inner_array = base_type;
17179
17180 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17181 {
17182 TYPE_TARGET_TYPE (inner_array) =
17183 copy_type (TYPE_TARGET_TYPE (inner_array));
17184 inner_array = TYPE_TARGET_TYPE (inner_array);
17185 }
17186
17187 el_type = TYPE_TARGET_TYPE (inner_array);
17188 cnst |= TYPE_CONST (el_type);
17189 voltl |= TYPE_VOLATILE (el_type);
17190 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17191
17192 return set_die_type (die, base_type, cu);
17193 }
17194
17195 static struct type *
17196 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17197 {
17198 struct type *base_type, *cv_type;
17199
17200 base_type = die_type (die, cu);
17201
17202 /* The die_type call above may have already set the type for this DIE. */
17203 cv_type = get_die_type (die, cu);
17204 if (cv_type)
17205 return cv_type;
17206
17207 /* In case the const qualifier is applied to an array type, the element type
17208 is so qualified, not the array type (section 6.7.3 of C99). */
17209 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17210 return add_array_cv_type (die, cu, base_type, 1, 0);
17211
17212 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17213 return set_die_type (die, cv_type, cu);
17214 }
17215
17216 static struct type *
17217 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17218 {
17219 struct type *base_type, *cv_type;
17220
17221 base_type = die_type (die, cu);
17222
17223 /* The die_type call above may have already set the type for this DIE. */
17224 cv_type = get_die_type (die, cu);
17225 if (cv_type)
17226 return cv_type;
17227
17228 /* In case the volatile qualifier is applied to an array type, the
17229 element type is so qualified, not the array type (section 6.7.3
17230 of C99). */
17231 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17232 return add_array_cv_type (die, cu, base_type, 0, 1);
17233
17234 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17235 return set_die_type (die, cv_type, cu);
17236 }
17237
17238 /* Handle DW_TAG_restrict_type. */
17239
17240 static struct type *
17241 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17242 {
17243 struct type *base_type, *cv_type;
17244
17245 base_type = die_type (die, cu);
17246
17247 /* The die_type call above may have already set the type for this DIE. */
17248 cv_type = get_die_type (die, cu);
17249 if (cv_type)
17250 return cv_type;
17251
17252 cv_type = make_restrict_type (base_type);
17253 return set_die_type (die, cv_type, cu);
17254 }
17255
17256 /* Handle DW_TAG_atomic_type. */
17257
17258 static struct type *
17259 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17260 {
17261 struct type *base_type, *cv_type;
17262
17263 base_type = die_type (die, cu);
17264
17265 /* The die_type call above may have already set the type for this DIE. */
17266 cv_type = get_die_type (die, cu);
17267 if (cv_type)
17268 return cv_type;
17269
17270 cv_type = make_atomic_type (base_type);
17271 return set_die_type (die, cv_type, cu);
17272 }
17273
17274 /* Extract all information from a DW_TAG_string_type DIE and add to
17275 the user defined type vector. It isn't really a user defined type,
17276 but it behaves like one, with other DIE's using an AT_user_def_type
17277 attribute to reference it. */
17278
17279 static struct type *
17280 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17281 {
17282 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17283 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17284 struct type *type, *range_type, *index_type, *char_type;
17285 struct attribute *attr;
17286 unsigned int length;
17287
17288 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17289 if (attr)
17290 {
17291 length = DW_UNSND (attr);
17292 }
17293 else
17294 {
17295 /* Check for the DW_AT_byte_size attribute. */
17296 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17297 if (attr)
17298 {
17299 length = DW_UNSND (attr);
17300 }
17301 else
17302 {
17303 length = 1;
17304 }
17305 }
17306
17307 index_type = objfile_type (objfile)->builtin_int;
17308 range_type = create_static_range_type (NULL, index_type, 1, length);
17309 char_type = language_string_char_type (cu->language_defn, gdbarch);
17310 type = create_string_type (NULL, char_type, range_type);
17311
17312 return set_die_type (die, type, cu);
17313 }
17314
17315 /* Assuming that DIE corresponds to a function, returns nonzero
17316 if the function is prototyped. */
17317
17318 static int
17319 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17320 {
17321 struct attribute *attr;
17322
17323 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17324 if (attr && (DW_UNSND (attr) != 0))
17325 return 1;
17326
17327 /* The DWARF standard implies that the DW_AT_prototyped attribute
17328 is only meaninful for C, but the concept also extends to other
17329 languages that allow unprototyped functions (Eg: Objective C).
17330 For all other languages, assume that functions are always
17331 prototyped. */
17332 if (cu->language != language_c
17333 && cu->language != language_objc
17334 && cu->language != language_opencl)
17335 return 1;
17336
17337 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17338 prototyped and unprototyped functions; default to prototyped,
17339 since that is more common in modern code (and RealView warns
17340 about unprototyped functions). */
17341 if (producer_is_realview (cu->producer))
17342 return 1;
17343
17344 return 0;
17345 }
17346
17347 /* Handle DIES due to C code like:
17348
17349 struct foo
17350 {
17351 int (*funcp)(int a, long l);
17352 int b;
17353 };
17354
17355 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17356
17357 static struct type *
17358 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17359 {
17360 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17361 struct type *type; /* Type that this function returns. */
17362 struct type *ftype; /* Function that returns above type. */
17363 struct attribute *attr;
17364
17365 type = die_type (die, cu);
17366
17367 /* The die_type call above may have already set the type for this DIE. */
17368 ftype = get_die_type (die, cu);
17369 if (ftype)
17370 return ftype;
17371
17372 ftype = lookup_function_type (type);
17373
17374 if (prototyped_function_p (die, cu))
17375 TYPE_PROTOTYPED (ftype) = 1;
17376
17377 /* Store the calling convention in the type if it's available in
17378 the subroutine die. Otherwise set the calling convention to
17379 the default value DW_CC_normal. */
17380 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17381 if (attr)
17382 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17383 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17384 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17385 else
17386 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17387
17388 /* Record whether the function returns normally to its caller or not
17389 if the DWARF producer set that information. */
17390 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17391 if (attr && (DW_UNSND (attr) != 0))
17392 TYPE_NO_RETURN (ftype) = 1;
17393
17394 /* We need to add the subroutine type to the die immediately so
17395 we don't infinitely recurse when dealing with parameters
17396 declared as the same subroutine type. */
17397 set_die_type (die, ftype, cu);
17398
17399 if (die->child != NULL)
17400 {
17401 struct type *void_type = objfile_type (objfile)->builtin_void;
17402 struct die_info *child_die;
17403 int nparams, iparams;
17404
17405 /* Count the number of parameters.
17406 FIXME: GDB currently ignores vararg functions, but knows about
17407 vararg member functions. */
17408 nparams = 0;
17409 child_die = die->child;
17410 while (child_die && child_die->tag)
17411 {
17412 if (child_die->tag == DW_TAG_formal_parameter)
17413 nparams++;
17414 else if (child_die->tag == DW_TAG_unspecified_parameters)
17415 TYPE_VARARGS (ftype) = 1;
17416 child_die = sibling_die (child_die);
17417 }
17418
17419 /* Allocate storage for parameters and fill them in. */
17420 TYPE_NFIELDS (ftype) = nparams;
17421 TYPE_FIELDS (ftype) = (struct field *)
17422 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17423
17424 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17425 even if we error out during the parameters reading below. */
17426 for (iparams = 0; iparams < nparams; iparams++)
17427 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17428
17429 iparams = 0;
17430 child_die = die->child;
17431 while (child_die && child_die->tag)
17432 {
17433 if (child_die->tag == DW_TAG_formal_parameter)
17434 {
17435 struct type *arg_type;
17436
17437 /* DWARF version 2 has no clean way to discern C++
17438 static and non-static member functions. G++ helps
17439 GDB by marking the first parameter for non-static
17440 member functions (which is the this pointer) as
17441 artificial. We pass this information to
17442 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17443
17444 DWARF version 3 added DW_AT_object_pointer, which GCC
17445 4.5 does not yet generate. */
17446 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17447 if (attr)
17448 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17449 else
17450 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17451 arg_type = die_type (child_die, cu);
17452
17453 /* RealView does not mark THIS as const, which the testsuite
17454 expects. GCC marks THIS as const in method definitions,
17455 but not in the class specifications (GCC PR 43053). */
17456 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17457 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17458 {
17459 int is_this = 0;
17460 struct dwarf2_cu *arg_cu = cu;
17461 const char *name = dwarf2_name (child_die, cu);
17462
17463 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17464 if (attr)
17465 {
17466 /* If the compiler emits this, use it. */
17467 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17468 is_this = 1;
17469 }
17470 else if (name && strcmp (name, "this") == 0)
17471 /* Function definitions will have the argument names. */
17472 is_this = 1;
17473 else if (name == NULL && iparams == 0)
17474 /* Declarations may not have the names, so like
17475 elsewhere in GDB, assume an artificial first
17476 argument is "this". */
17477 is_this = 1;
17478
17479 if (is_this)
17480 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17481 arg_type, 0);
17482 }
17483
17484 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17485 iparams++;
17486 }
17487 child_die = sibling_die (child_die);
17488 }
17489 }
17490
17491 return ftype;
17492 }
17493
17494 static struct type *
17495 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17496 {
17497 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17498 const char *name = NULL;
17499 struct type *this_type, *target_type;
17500
17501 name = dwarf2_full_name (NULL, die, cu);
17502 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17503 TYPE_TARGET_STUB (this_type) = 1;
17504 set_die_type (die, this_type, cu);
17505 target_type = die_type (die, cu);
17506 if (target_type != this_type)
17507 TYPE_TARGET_TYPE (this_type) = target_type;
17508 else
17509 {
17510 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17511 spec and cause infinite loops in GDB. */
17512 complaint (_("Self-referential DW_TAG_typedef "
17513 "- DIE at %s [in module %s]"),
17514 sect_offset_str (die->sect_off), objfile_name (objfile));
17515 TYPE_TARGET_TYPE (this_type) = NULL;
17516 }
17517 return this_type;
17518 }
17519
17520 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17521 (which may be different from NAME) to the architecture back-end to allow
17522 it to guess the correct format if necessary. */
17523
17524 static struct type *
17525 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17526 const char *name_hint)
17527 {
17528 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17529 const struct floatformat **format;
17530 struct type *type;
17531
17532 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17533 if (format)
17534 type = init_float_type (objfile, bits, name, format);
17535 else
17536 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17537
17538 return type;
17539 }
17540
17541 /* Allocate an integer type of size BITS and name NAME. */
17542
17543 static struct type *
17544 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17545 int bits, int unsigned_p, const char *name)
17546 {
17547 struct type *type;
17548
17549 /* Versions of Intel's C Compiler generate an integer type called "void"
17550 instead of using DW_TAG_unspecified_type. This has been seen on
17551 at least versions 14, 17, and 18. */
17552 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17553 && strcmp (name, "void") == 0)
17554 type = objfile_type (objfile)->builtin_void;
17555 else
17556 type = init_integer_type (objfile, bits, unsigned_p, name);
17557
17558 return type;
17559 }
17560
17561 /* Initialise and return a floating point type of size BITS suitable for
17562 use as a component of a complex number. The NAME_HINT is passed through
17563 when initialising the floating point type and is the name of the complex
17564 type.
17565
17566 As DWARF doesn't currently provide an explicit name for the components
17567 of a complex number, but it can be helpful to have these components
17568 named, we try to select a suitable name based on the size of the
17569 component. */
17570 static struct type *
17571 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17572 struct objfile *objfile,
17573 int bits, const char *name_hint)
17574 {
17575 gdbarch *gdbarch = get_objfile_arch (objfile);
17576 struct type *tt = nullptr;
17577
17578 /* Try to find a suitable floating point builtin type of size BITS.
17579 We're going to use the name of this type as the name for the complex
17580 target type that we are about to create. */
17581 switch (cu->language)
17582 {
17583 case language_fortran:
17584 switch (bits)
17585 {
17586 case 32:
17587 tt = builtin_f_type (gdbarch)->builtin_real;
17588 break;
17589 case 64:
17590 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17591 break;
17592 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17593 case 128:
17594 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17595 break;
17596 }
17597 break;
17598 default:
17599 switch (bits)
17600 {
17601 case 32:
17602 tt = builtin_type (gdbarch)->builtin_float;
17603 break;
17604 case 64:
17605 tt = builtin_type (gdbarch)->builtin_double;
17606 break;
17607 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17608 case 128:
17609 tt = builtin_type (gdbarch)->builtin_long_double;
17610 break;
17611 }
17612 break;
17613 }
17614
17615 /* If the type we found doesn't match the size we were looking for, then
17616 pretend we didn't find a type at all, the complex target type we
17617 create will then be nameless. */
17618 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17619 tt = nullptr;
17620
17621 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17622 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17623 }
17624
17625 /* Find a representation of a given base type and install
17626 it in the TYPE field of the die. */
17627
17628 static struct type *
17629 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17630 {
17631 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17632 struct type *type;
17633 struct attribute *attr;
17634 int encoding = 0, bits = 0;
17635 const char *name;
17636
17637 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17638 if (attr)
17639 {
17640 encoding = DW_UNSND (attr);
17641 }
17642 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17643 if (attr)
17644 {
17645 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17646 }
17647 name = dwarf2_name (die, cu);
17648 if (!name)
17649 {
17650 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17651 }
17652
17653 switch (encoding)
17654 {
17655 case DW_ATE_address:
17656 /* Turn DW_ATE_address into a void * pointer. */
17657 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17658 type = init_pointer_type (objfile, bits, name, type);
17659 break;
17660 case DW_ATE_boolean:
17661 type = init_boolean_type (objfile, bits, 1, name);
17662 break;
17663 case DW_ATE_complex_float:
17664 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17665 type = init_complex_type (objfile, name, type);
17666 break;
17667 case DW_ATE_decimal_float:
17668 type = init_decfloat_type (objfile, bits, name);
17669 break;
17670 case DW_ATE_float:
17671 type = dwarf2_init_float_type (objfile, bits, name, name);
17672 break;
17673 case DW_ATE_signed:
17674 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17675 break;
17676 case DW_ATE_unsigned:
17677 if (cu->language == language_fortran
17678 && name
17679 && startswith (name, "character("))
17680 type = init_character_type (objfile, bits, 1, name);
17681 else
17682 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17683 break;
17684 case DW_ATE_signed_char:
17685 if (cu->language == language_ada || cu->language == language_m2
17686 || cu->language == language_pascal
17687 || cu->language == language_fortran)
17688 type = init_character_type (objfile, bits, 0, name);
17689 else
17690 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17691 break;
17692 case DW_ATE_unsigned_char:
17693 if (cu->language == language_ada || cu->language == language_m2
17694 || cu->language == language_pascal
17695 || cu->language == language_fortran
17696 || cu->language == language_rust)
17697 type = init_character_type (objfile, bits, 1, name);
17698 else
17699 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17700 break;
17701 case DW_ATE_UTF:
17702 {
17703 gdbarch *arch = get_objfile_arch (objfile);
17704
17705 if (bits == 16)
17706 type = builtin_type (arch)->builtin_char16;
17707 else if (bits == 32)
17708 type = builtin_type (arch)->builtin_char32;
17709 else
17710 {
17711 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17712 bits);
17713 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17714 }
17715 return set_die_type (die, type, cu);
17716 }
17717 break;
17718
17719 default:
17720 complaint (_("unsupported DW_AT_encoding: '%s'"),
17721 dwarf_type_encoding_name (encoding));
17722 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17723 break;
17724 }
17725
17726 if (name && strcmp (name, "char") == 0)
17727 TYPE_NOSIGN (type) = 1;
17728
17729 maybe_set_alignment (cu, die, type);
17730
17731 return set_die_type (die, type, cu);
17732 }
17733
17734 /* Parse dwarf attribute if it's a block, reference or constant and put the
17735 resulting value of the attribute into struct bound_prop.
17736 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17737
17738 static int
17739 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17740 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17741 {
17742 struct dwarf2_property_baton *baton;
17743 struct obstack *obstack
17744 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17745
17746 if (attr == NULL || prop == NULL)
17747 return 0;
17748
17749 if (attr_form_is_block (attr))
17750 {
17751 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17752 baton->referenced_type = NULL;
17753 baton->locexpr.per_cu = cu->per_cu;
17754 baton->locexpr.size = DW_BLOCK (attr)->size;
17755 baton->locexpr.data = DW_BLOCK (attr)->data;
17756 prop->data.baton = baton;
17757 prop->kind = PROP_LOCEXPR;
17758 gdb_assert (prop->data.baton != NULL);
17759 }
17760 else if (attr_form_is_ref (attr))
17761 {
17762 struct dwarf2_cu *target_cu = cu;
17763 struct die_info *target_die;
17764 struct attribute *target_attr;
17765
17766 target_die = follow_die_ref (die, attr, &target_cu);
17767 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17768 if (target_attr == NULL)
17769 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17770 target_cu);
17771 if (target_attr == NULL)
17772 return 0;
17773
17774 switch (target_attr->name)
17775 {
17776 case DW_AT_location:
17777 if (attr_form_is_section_offset (target_attr))
17778 {
17779 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17780 baton->referenced_type = die_type (target_die, target_cu);
17781 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17782 prop->data.baton = baton;
17783 prop->kind = PROP_LOCLIST;
17784 gdb_assert (prop->data.baton != NULL);
17785 }
17786 else if (attr_form_is_block (target_attr))
17787 {
17788 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17789 baton->referenced_type = die_type (target_die, target_cu);
17790 baton->locexpr.per_cu = cu->per_cu;
17791 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17792 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17793 prop->data.baton = baton;
17794 prop->kind = PROP_LOCEXPR;
17795 gdb_assert (prop->data.baton != NULL);
17796 }
17797 else
17798 {
17799 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17800 "dynamic property");
17801 return 0;
17802 }
17803 break;
17804 case DW_AT_data_member_location:
17805 {
17806 LONGEST offset;
17807
17808 if (!handle_data_member_location (target_die, target_cu,
17809 &offset))
17810 return 0;
17811
17812 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17813 baton->referenced_type = read_type_die (target_die->parent,
17814 target_cu);
17815 baton->offset_info.offset = offset;
17816 baton->offset_info.type = die_type (target_die, target_cu);
17817 prop->data.baton = baton;
17818 prop->kind = PROP_ADDR_OFFSET;
17819 break;
17820 }
17821 }
17822 }
17823 else if (attr_form_is_constant (attr))
17824 {
17825 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17826 prop->kind = PROP_CONST;
17827 }
17828 else
17829 {
17830 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17831 dwarf2_name (die, cu));
17832 return 0;
17833 }
17834
17835 return 1;
17836 }
17837
17838 /* Read the given DW_AT_subrange DIE. */
17839
17840 static struct type *
17841 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17842 {
17843 struct type *base_type, *orig_base_type;
17844 struct type *range_type;
17845 struct attribute *attr;
17846 struct dynamic_prop low, high;
17847 int low_default_is_valid;
17848 int high_bound_is_count = 0;
17849 const char *name;
17850 ULONGEST negative_mask;
17851
17852 orig_base_type = die_type (die, cu);
17853 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17854 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17855 creating the range type, but we use the result of check_typedef
17856 when examining properties of the type. */
17857 base_type = check_typedef (orig_base_type);
17858
17859 /* The die_type call above may have already set the type for this DIE. */
17860 range_type = get_die_type (die, cu);
17861 if (range_type)
17862 return range_type;
17863
17864 low.kind = PROP_CONST;
17865 high.kind = PROP_CONST;
17866 high.data.const_val = 0;
17867
17868 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17869 omitting DW_AT_lower_bound. */
17870 switch (cu->language)
17871 {
17872 case language_c:
17873 case language_cplus:
17874 low.data.const_val = 0;
17875 low_default_is_valid = 1;
17876 break;
17877 case language_fortran:
17878 low.data.const_val = 1;
17879 low_default_is_valid = 1;
17880 break;
17881 case language_d:
17882 case language_objc:
17883 case language_rust:
17884 low.data.const_val = 0;
17885 low_default_is_valid = (cu->header.version >= 4);
17886 break;
17887 case language_ada:
17888 case language_m2:
17889 case language_pascal:
17890 low.data.const_val = 1;
17891 low_default_is_valid = (cu->header.version >= 4);
17892 break;
17893 default:
17894 low.data.const_val = 0;
17895 low_default_is_valid = 0;
17896 break;
17897 }
17898
17899 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17900 if (attr)
17901 attr_to_dynamic_prop (attr, die, cu, &low);
17902 else if (!low_default_is_valid)
17903 complaint (_("Missing DW_AT_lower_bound "
17904 "- DIE at %s [in module %s]"),
17905 sect_offset_str (die->sect_off),
17906 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17907
17908 struct attribute *attr_ub, *attr_count;
17909 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17910 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17911 {
17912 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17913 if (attr_to_dynamic_prop (attr, die, cu, &high))
17914 {
17915 /* If bounds are constant do the final calculation here. */
17916 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17917 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17918 else
17919 high_bound_is_count = 1;
17920 }
17921 else
17922 {
17923 if (attr_ub != NULL)
17924 complaint (_("Unresolved DW_AT_upper_bound "
17925 "- DIE at %s [in module %s]"),
17926 sect_offset_str (die->sect_off),
17927 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17928 if (attr_count != NULL)
17929 complaint (_("Unresolved DW_AT_count "
17930 "- DIE at %s [in module %s]"),
17931 sect_offset_str (die->sect_off),
17932 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17933 }
17934
17935 }
17936
17937 /* Dwarf-2 specifications explicitly allows to create subrange types
17938 without specifying a base type.
17939 In that case, the base type must be set to the type of
17940 the lower bound, upper bound or count, in that order, if any of these
17941 three attributes references an object that has a type.
17942 If no base type is found, the Dwarf-2 specifications say that
17943 a signed integer type of size equal to the size of an address should
17944 be used.
17945 For the following C code: `extern char gdb_int [];'
17946 GCC produces an empty range DIE.
17947 FIXME: muller/2010-05-28: Possible references to object for low bound,
17948 high bound or count are not yet handled by this code. */
17949 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17950 {
17951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17952 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17953 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17954 struct type *int_type = objfile_type (objfile)->builtin_int;
17955
17956 /* Test "int", "long int", and "long long int" objfile types,
17957 and select the first one having a size above or equal to the
17958 architecture address size. */
17959 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17960 base_type = int_type;
17961 else
17962 {
17963 int_type = objfile_type (objfile)->builtin_long;
17964 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17965 base_type = int_type;
17966 else
17967 {
17968 int_type = objfile_type (objfile)->builtin_long_long;
17969 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17970 base_type = int_type;
17971 }
17972 }
17973 }
17974
17975 /* Normally, the DWARF producers are expected to use a signed
17976 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17977 But this is unfortunately not always the case, as witnessed
17978 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17979 is used instead. To work around that ambiguity, we treat
17980 the bounds as signed, and thus sign-extend their values, when
17981 the base type is signed. */
17982 negative_mask =
17983 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17984 if (low.kind == PROP_CONST
17985 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17986 low.data.const_val |= negative_mask;
17987 if (high.kind == PROP_CONST
17988 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17989 high.data.const_val |= negative_mask;
17990
17991 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17992
17993 if (high_bound_is_count)
17994 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17995
17996 /* Ada expects an empty array on no boundary attributes. */
17997 if (attr == NULL && cu->language != language_ada)
17998 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17999
18000 name = dwarf2_name (die, cu);
18001 if (name)
18002 TYPE_NAME (range_type) = name;
18003
18004 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18005 if (attr)
18006 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18007
18008 maybe_set_alignment (cu, die, range_type);
18009
18010 set_die_type (die, range_type, cu);
18011
18012 /* set_die_type should be already done. */
18013 set_descriptive_type (range_type, die, cu);
18014
18015 return range_type;
18016 }
18017
18018 static struct type *
18019 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18020 {
18021 struct type *type;
18022
18023 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18024 NULL);
18025 TYPE_NAME (type) = dwarf2_name (die, cu);
18026
18027 /* In Ada, an unspecified type is typically used when the description
18028 of the type is defered to a different unit. When encountering
18029 such a type, we treat it as a stub, and try to resolve it later on,
18030 when needed. */
18031 if (cu->language == language_ada)
18032 TYPE_STUB (type) = 1;
18033
18034 return set_die_type (die, type, cu);
18035 }
18036
18037 /* Read a single die and all its descendents. Set the die's sibling
18038 field to NULL; set other fields in the die correctly, and set all
18039 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18040 location of the info_ptr after reading all of those dies. PARENT
18041 is the parent of the die in question. */
18042
18043 static struct die_info *
18044 read_die_and_children (const struct die_reader_specs *reader,
18045 const gdb_byte *info_ptr,
18046 const gdb_byte **new_info_ptr,
18047 struct die_info *parent)
18048 {
18049 struct die_info *die;
18050 const gdb_byte *cur_ptr;
18051 int has_children;
18052
18053 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18054 if (die == NULL)
18055 {
18056 *new_info_ptr = cur_ptr;
18057 return NULL;
18058 }
18059 store_in_ref_table (die, reader->cu);
18060
18061 if (has_children)
18062 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18063 else
18064 {
18065 die->child = NULL;
18066 *new_info_ptr = cur_ptr;
18067 }
18068
18069 die->sibling = NULL;
18070 die->parent = parent;
18071 return die;
18072 }
18073
18074 /* Read a die, all of its descendents, and all of its siblings; set
18075 all of the fields of all of the dies correctly. Arguments are as
18076 in read_die_and_children. */
18077
18078 static struct die_info *
18079 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18080 const gdb_byte *info_ptr,
18081 const gdb_byte **new_info_ptr,
18082 struct die_info *parent)
18083 {
18084 struct die_info *first_die, *last_sibling;
18085 const gdb_byte *cur_ptr;
18086
18087 cur_ptr = info_ptr;
18088 first_die = last_sibling = NULL;
18089
18090 while (1)
18091 {
18092 struct die_info *die
18093 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18094
18095 if (die == NULL)
18096 {
18097 *new_info_ptr = cur_ptr;
18098 return first_die;
18099 }
18100
18101 if (!first_die)
18102 first_die = die;
18103 else
18104 last_sibling->sibling = die;
18105
18106 last_sibling = die;
18107 }
18108 }
18109
18110 /* Read a die, all of its descendents, and all of its siblings; set
18111 all of the fields of all of the dies correctly. Arguments are as
18112 in read_die_and_children.
18113 This the main entry point for reading a DIE and all its children. */
18114
18115 static struct die_info *
18116 read_die_and_siblings (const struct die_reader_specs *reader,
18117 const gdb_byte *info_ptr,
18118 const gdb_byte **new_info_ptr,
18119 struct die_info *parent)
18120 {
18121 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18122 new_info_ptr, parent);
18123
18124 if (dwarf_die_debug)
18125 {
18126 fprintf_unfiltered (gdb_stdlog,
18127 "Read die from %s@0x%x of %s:\n",
18128 get_section_name (reader->die_section),
18129 (unsigned) (info_ptr - reader->die_section->buffer),
18130 bfd_get_filename (reader->abfd));
18131 dump_die (die, dwarf_die_debug);
18132 }
18133
18134 return die;
18135 }
18136
18137 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18138 attributes.
18139 The caller is responsible for filling in the extra attributes
18140 and updating (*DIEP)->num_attrs.
18141 Set DIEP to point to a newly allocated die with its information,
18142 except for its child, sibling, and parent fields.
18143 Set HAS_CHILDREN to tell whether the die has children or not. */
18144
18145 static const gdb_byte *
18146 read_full_die_1 (const struct die_reader_specs *reader,
18147 struct die_info **diep, const gdb_byte *info_ptr,
18148 int *has_children, int num_extra_attrs)
18149 {
18150 unsigned int abbrev_number, bytes_read, i;
18151 struct abbrev_info *abbrev;
18152 struct die_info *die;
18153 struct dwarf2_cu *cu = reader->cu;
18154 bfd *abfd = reader->abfd;
18155
18156 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18157 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18158 info_ptr += bytes_read;
18159 if (!abbrev_number)
18160 {
18161 *diep = NULL;
18162 *has_children = 0;
18163 return info_ptr;
18164 }
18165
18166 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18167 if (!abbrev)
18168 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18169 abbrev_number,
18170 bfd_get_filename (abfd));
18171
18172 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18173 die->sect_off = sect_off;
18174 die->tag = abbrev->tag;
18175 die->abbrev = abbrev_number;
18176
18177 /* Make the result usable.
18178 The caller needs to update num_attrs after adding the extra
18179 attributes. */
18180 die->num_attrs = abbrev->num_attrs;
18181
18182 for (i = 0; i < abbrev->num_attrs; ++i)
18183 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18184 info_ptr);
18185
18186 *diep = die;
18187 *has_children = abbrev->has_children;
18188 return info_ptr;
18189 }
18190
18191 /* Read a die and all its attributes.
18192 Set DIEP to point to a newly allocated die with its information,
18193 except for its child, sibling, and parent fields.
18194 Set HAS_CHILDREN to tell whether the die has children or not. */
18195
18196 static const gdb_byte *
18197 read_full_die (const struct die_reader_specs *reader,
18198 struct die_info **diep, const gdb_byte *info_ptr,
18199 int *has_children)
18200 {
18201 const gdb_byte *result;
18202
18203 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18204
18205 if (dwarf_die_debug)
18206 {
18207 fprintf_unfiltered (gdb_stdlog,
18208 "Read die from %s@0x%x of %s:\n",
18209 get_section_name (reader->die_section),
18210 (unsigned) (info_ptr - reader->die_section->buffer),
18211 bfd_get_filename (reader->abfd));
18212 dump_die (*diep, dwarf_die_debug);
18213 }
18214
18215 return result;
18216 }
18217 \f
18218 /* Abbreviation tables.
18219
18220 In DWARF version 2, the description of the debugging information is
18221 stored in a separate .debug_abbrev section. Before we read any
18222 dies from a section we read in all abbreviations and install them
18223 in a hash table. */
18224
18225 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18226
18227 struct abbrev_info *
18228 abbrev_table::alloc_abbrev ()
18229 {
18230 struct abbrev_info *abbrev;
18231
18232 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18233 memset (abbrev, 0, sizeof (struct abbrev_info));
18234
18235 return abbrev;
18236 }
18237
18238 /* Add an abbreviation to the table. */
18239
18240 void
18241 abbrev_table::add_abbrev (unsigned int abbrev_number,
18242 struct abbrev_info *abbrev)
18243 {
18244 unsigned int hash_number;
18245
18246 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18247 abbrev->next = m_abbrevs[hash_number];
18248 m_abbrevs[hash_number] = abbrev;
18249 }
18250
18251 /* Look up an abbrev in the table.
18252 Returns NULL if the abbrev is not found. */
18253
18254 struct abbrev_info *
18255 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18256 {
18257 unsigned int hash_number;
18258 struct abbrev_info *abbrev;
18259
18260 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18261 abbrev = m_abbrevs[hash_number];
18262
18263 while (abbrev)
18264 {
18265 if (abbrev->number == abbrev_number)
18266 return abbrev;
18267 abbrev = abbrev->next;
18268 }
18269 return NULL;
18270 }
18271
18272 /* Read in an abbrev table. */
18273
18274 static abbrev_table_up
18275 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18276 struct dwarf2_section_info *section,
18277 sect_offset sect_off)
18278 {
18279 struct objfile *objfile = dwarf2_per_objfile->objfile;
18280 bfd *abfd = get_section_bfd_owner (section);
18281 const gdb_byte *abbrev_ptr;
18282 struct abbrev_info *cur_abbrev;
18283 unsigned int abbrev_number, bytes_read, abbrev_name;
18284 unsigned int abbrev_form;
18285 struct attr_abbrev *cur_attrs;
18286 unsigned int allocated_attrs;
18287
18288 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18289
18290 dwarf2_read_section (objfile, section);
18291 abbrev_ptr = section->buffer + to_underlying (sect_off);
18292 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18293 abbrev_ptr += bytes_read;
18294
18295 allocated_attrs = ATTR_ALLOC_CHUNK;
18296 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18297
18298 /* Loop until we reach an abbrev number of 0. */
18299 while (abbrev_number)
18300 {
18301 cur_abbrev = abbrev_table->alloc_abbrev ();
18302
18303 /* read in abbrev header */
18304 cur_abbrev->number = abbrev_number;
18305 cur_abbrev->tag
18306 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18307 abbrev_ptr += bytes_read;
18308 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18309 abbrev_ptr += 1;
18310
18311 /* now read in declarations */
18312 for (;;)
18313 {
18314 LONGEST implicit_const;
18315
18316 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18317 abbrev_ptr += bytes_read;
18318 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18319 abbrev_ptr += bytes_read;
18320 if (abbrev_form == DW_FORM_implicit_const)
18321 {
18322 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18323 &bytes_read);
18324 abbrev_ptr += bytes_read;
18325 }
18326 else
18327 {
18328 /* Initialize it due to a false compiler warning. */
18329 implicit_const = -1;
18330 }
18331
18332 if (abbrev_name == 0)
18333 break;
18334
18335 if (cur_abbrev->num_attrs == allocated_attrs)
18336 {
18337 allocated_attrs += ATTR_ALLOC_CHUNK;
18338 cur_attrs
18339 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18340 }
18341
18342 cur_attrs[cur_abbrev->num_attrs].name
18343 = (enum dwarf_attribute) abbrev_name;
18344 cur_attrs[cur_abbrev->num_attrs].form
18345 = (enum dwarf_form) abbrev_form;
18346 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18347 ++cur_abbrev->num_attrs;
18348 }
18349
18350 cur_abbrev->attrs =
18351 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18352 cur_abbrev->num_attrs);
18353 memcpy (cur_abbrev->attrs, cur_attrs,
18354 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18355
18356 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18357
18358 /* Get next abbreviation.
18359 Under Irix6 the abbreviations for a compilation unit are not
18360 always properly terminated with an abbrev number of 0.
18361 Exit loop if we encounter an abbreviation which we have
18362 already read (which means we are about to read the abbreviations
18363 for the next compile unit) or if the end of the abbreviation
18364 table is reached. */
18365 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18366 break;
18367 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18368 abbrev_ptr += bytes_read;
18369 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18370 break;
18371 }
18372
18373 xfree (cur_attrs);
18374 return abbrev_table;
18375 }
18376
18377 /* Returns nonzero if TAG represents a type that we might generate a partial
18378 symbol for. */
18379
18380 static int
18381 is_type_tag_for_partial (int tag)
18382 {
18383 switch (tag)
18384 {
18385 #if 0
18386 /* Some types that would be reasonable to generate partial symbols for,
18387 that we don't at present. */
18388 case DW_TAG_array_type:
18389 case DW_TAG_file_type:
18390 case DW_TAG_ptr_to_member_type:
18391 case DW_TAG_set_type:
18392 case DW_TAG_string_type:
18393 case DW_TAG_subroutine_type:
18394 #endif
18395 case DW_TAG_base_type:
18396 case DW_TAG_class_type:
18397 case DW_TAG_interface_type:
18398 case DW_TAG_enumeration_type:
18399 case DW_TAG_structure_type:
18400 case DW_TAG_subrange_type:
18401 case DW_TAG_typedef:
18402 case DW_TAG_union_type:
18403 return 1;
18404 default:
18405 return 0;
18406 }
18407 }
18408
18409 /* Load all DIEs that are interesting for partial symbols into memory. */
18410
18411 static struct partial_die_info *
18412 load_partial_dies (const struct die_reader_specs *reader,
18413 const gdb_byte *info_ptr, int building_psymtab)
18414 {
18415 struct dwarf2_cu *cu = reader->cu;
18416 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18417 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18418 unsigned int bytes_read;
18419 unsigned int load_all = 0;
18420 int nesting_level = 1;
18421
18422 parent_die = NULL;
18423 last_die = NULL;
18424
18425 gdb_assert (cu->per_cu != NULL);
18426 if (cu->per_cu->load_all_dies)
18427 load_all = 1;
18428
18429 cu->partial_dies
18430 = htab_create_alloc_ex (cu->header.length / 12,
18431 partial_die_hash,
18432 partial_die_eq,
18433 NULL,
18434 &cu->comp_unit_obstack,
18435 hashtab_obstack_allocate,
18436 dummy_obstack_deallocate);
18437
18438 while (1)
18439 {
18440 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18441
18442 /* A NULL abbrev means the end of a series of children. */
18443 if (abbrev == NULL)
18444 {
18445 if (--nesting_level == 0)
18446 return first_die;
18447
18448 info_ptr += bytes_read;
18449 last_die = parent_die;
18450 parent_die = parent_die->die_parent;
18451 continue;
18452 }
18453
18454 /* Check for template arguments. We never save these; if
18455 they're seen, we just mark the parent, and go on our way. */
18456 if (parent_die != NULL
18457 && cu->language == language_cplus
18458 && (abbrev->tag == DW_TAG_template_type_param
18459 || abbrev->tag == DW_TAG_template_value_param))
18460 {
18461 parent_die->has_template_arguments = 1;
18462
18463 if (!load_all)
18464 {
18465 /* We don't need a partial DIE for the template argument. */
18466 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18467 continue;
18468 }
18469 }
18470
18471 /* We only recurse into c++ subprograms looking for template arguments.
18472 Skip their other children. */
18473 if (!load_all
18474 && cu->language == language_cplus
18475 && parent_die != NULL
18476 && parent_die->tag == DW_TAG_subprogram)
18477 {
18478 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18479 continue;
18480 }
18481
18482 /* Check whether this DIE is interesting enough to save. Normally
18483 we would not be interested in members here, but there may be
18484 later variables referencing them via DW_AT_specification (for
18485 static members). */
18486 if (!load_all
18487 && !is_type_tag_for_partial (abbrev->tag)
18488 && abbrev->tag != DW_TAG_constant
18489 && abbrev->tag != DW_TAG_enumerator
18490 && abbrev->tag != DW_TAG_subprogram
18491 && abbrev->tag != DW_TAG_inlined_subroutine
18492 && abbrev->tag != DW_TAG_lexical_block
18493 && abbrev->tag != DW_TAG_variable
18494 && abbrev->tag != DW_TAG_namespace
18495 && abbrev->tag != DW_TAG_module
18496 && abbrev->tag != DW_TAG_member
18497 && abbrev->tag != DW_TAG_imported_unit
18498 && abbrev->tag != DW_TAG_imported_declaration)
18499 {
18500 /* Otherwise we skip to the next sibling, if any. */
18501 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18502 continue;
18503 }
18504
18505 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18506 abbrev);
18507
18508 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18509
18510 /* This two-pass algorithm for processing partial symbols has a
18511 high cost in cache pressure. Thus, handle some simple cases
18512 here which cover the majority of C partial symbols. DIEs
18513 which neither have specification tags in them, nor could have
18514 specification tags elsewhere pointing at them, can simply be
18515 processed and discarded.
18516
18517 This segment is also optional; scan_partial_symbols and
18518 add_partial_symbol will handle these DIEs if we chain
18519 them in normally. When compilers which do not emit large
18520 quantities of duplicate debug information are more common,
18521 this code can probably be removed. */
18522
18523 /* Any complete simple types at the top level (pretty much all
18524 of them, for a language without namespaces), can be processed
18525 directly. */
18526 if (parent_die == NULL
18527 && pdi.has_specification == 0
18528 && pdi.is_declaration == 0
18529 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18530 || pdi.tag == DW_TAG_base_type
18531 || pdi.tag == DW_TAG_subrange_type))
18532 {
18533 if (building_psymtab && pdi.name != NULL)
18534 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18535 VAR_DOMAIN, LOC_TYPEDEF, -1,
18536 psymbol_placement::STATIC,
18537 0, cu->language, objfile);
18538 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18539 continue;
18540 }
18541
18542 /* The exception for DW_TAG_typedef with has_children above is
18543 a workaround of GCC PR debug/47510. In the case of this complaint
18544 type_name_or_error will error on such types later.
18545
18546 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18547 it could not find the child DIEs referenced later, this is checked
18548 above. In correct DWARF DW_TAG_typedef should have no children. */
18549
18550 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18551 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18552 "- DIE at %s [in module %s]"),
18553 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18554
18555 /* If we're at the second level, and we're an enumerator, and
18556 our parent has no specification (meaning possibly lives in a
18557 namespace elsewhere), then we can add the partial symbol now
18558 instead of queueing it. */
18559 if (pdi.tag == DW_TAG_enumerator
18560 && parent_die != NULL
18561 && parent_die->die_parent == NULL
18562 && parent_die->tag == DW_TAG_enumeration_type
18563 && parent_die->has_specification == 0)
18564 {
18565 if (pdi.name == NULL)
18566 complaint (_("malformed enumerator DIE ignored"));
18567 else if (building_psymtab)
18568 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18569 VAR_DOMAIN, LOC_CONST, -1,
18570 cu->language == language_cplus
18571 ? psymbol_placement::GLOBAL
18572 : psymbol_placement::STATIC,
18573 0, cu->language, objfile);
18574
18575 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18576 continue;
18577 }
18578
18579 struct partial_die_info *part_die
18580 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18581
18582 /* We'll save this DIE so link it in. */
18583 part_die->die_parent = parent_die;
18584 part_die->die_sibling = NULL;
18585 part_die->die_child = NULL;
18586
18587 if (last_die && last_die == parent_die)
18588 last_die->die_child = part_die;
18589 else if (last_die)
18590 last_die->die_sibling = part_die;
18591
18592 last_die = part_die;
18593
18594 if (first_die == NULL)
18595 first_die = part_die;
18596
18597 /* Maybe add the DIE to the hash table. Not all DIEs that we
18598 find interesting need to be in the hash table, because we
18599 also have the parent/sibling/child chains; only those that we
18600 might refer to by offset later during partial symbol reading.
18601
18602 For now this means things that might have be the target of a
18603 DW_AT_specification, DW_AT_abstract_origin, or
18604 DW_AT_extension. DW_AT_extension will refer only to
18605 namespaces; DW_AT_abstract_origin refers to functions (and
18606 many things under the function DIE, but we do not recurse
18607 into function DIEs during partial symbol reading) and
18608 possibly variables as well; DW_AT_specification refers to
18609 declarations. Declarations ought to have the DW_AT_declaration
18610 flag. It happens that GCC forgets to put it in sometimes, but
18611 only for functions, not for types.
18612
18613 Adding more things than necessary to the hash table is harmless
18614 except for the performance cost. Adding too few will result in
18615 wasted time in find_partial_die, when we reread the compilation
18616 unit with load_all_dies set. */
18617
18618 if (load_all
18619 || abbrev->tag == DW_TAG_constant
18620 || abbrev->tag == DW_TAG_subprogram
18621 || abbrev->tag == DW_TAG_variable
18622 || abbrev->tag == DW_TAG_namespace
18623 || part_die->is_declaration)
18624 {
18625 void **slot;
18626
18627 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18628 to_underlying (part_die->sect_off),
18629 INSERT);
18630 *slot = part_die;
18631 }
18632
18633 /* For some DIEs we want to follow their children (if any). For C
18634 we have no reason to follow the children of structures; for other
18635 languages we have to, so that we can get at method physnames
18636 to infer fully qualified class names, for DW_AT_specification,
18637 and for C++ template arguments. For C++, we also look one level
18638 inside functions to find template arguments (if the name of the
18639 function does not already contain the template arguments).
18640
18641 For Ada, we need to scan the children of subprograms and lexical
18642 blocks as well because Ada allows the definition of nested
18643 entities that could be interesting for the debugger, such as
18644 nested subprograms for instance. */
18645 if (last_die->has_children
18646 && (load_all
18647 || last_die->tag == DW_TAG_namespace
18648 || last_die->tag == DW_TAG_module
18649 || last_die->tag == DW_TAG_enumeration_type
18650 || (cu->language == language_cplus
18651 && last_die->tag == DW_TAG_subprogram
18652 && (last_die->name == NULL
18653 || strchr (last_die->name, '<') == NULL))
18654 || (cu->language != language_c
18655 && (last_die->tag == DW_TAG_class_type
18656 || last_die->tag == DW_TAG_interface_type
18657 || last_die->tag == DW_TAG_structure_type
18658 || last_die->tag == DW_TAG_union_type))
18659 || (cu->language == language_ada
18660 && (last_die->tag == DW_TAG_subprogram
18661 || last_die->tag == DW_TAG_lexical_block))))
18662 {
18663 nesting_level++;
18664 parent_die = last_die;
18665 continue;
18666 }
18667
18668 /* Otherwise we skip to the next sibling, if any. */
18669 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18670
18671 /* Back to the top, do it again. */
18672 }
18673 }
18674
18675 partial_die_info::partial_die_info (sect_offset sect_off_,
18676 struct abbrev_info *abbrev)
18677 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18678 {
18679 }
18680
18681 /* Read a minimal amount of information into the minimal die structure.
18682 INFO_PTR should point just after the initial uleb128 of a DIE. */
18683
18684 const gdb_byte *
18685 partial_die_info::read (const struct die_reader_specs *reader,
18686 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18687 {
18688 struct dwarf2_cu *cu = reader->cu;
18689 struct dwarf2_per_objfile *dwarf2_per_objfile
18690 = cu->per_cu->dwarf2_per_objfile;
18691 unsigned int i;
18692 int has_low_pc_attr = 0;
18693 int has_high_pc_attr = 0;
18694 int high_pc_relative = 0;
18695
18696 for (i = 0; i < abbrev.num_attrs; ++i)
18697 {
18698 struct attribute attr;
18699
18700 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18701
18702 /* Store the data if it is of an attribute we want to keep in a
18703 partial symbol table. */
18704 switch (attr.name)
18705 {
18706 case DW_AT_name:
18707 switch (tag)
18708 {
18709 case DW_TAG_compile_unit:
18710 case DW_TAG_partial_unit:
18711 case DW_TAG_type_unit:
18712 /* Compilation units have a DW_AT_name that is a filename, not
18713 a source language identifier. */
18714 case DW_TAG_enumeration_type:
18715 case DW_TAG_enumerator:
18716 /* These tags always have simple identifiers already; no need
18717 to canonicalize them. */
18718 name = DW_STRING (&attr);
18719 break;
18720 default:
18721 {
18722 struct objfile *objfile = dwarf2_per_objfile->objfile;
18723
18724 name
18725 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18726 &objfile->per_bfd->storage_obstack);
18727 }
18728 break;
18729 }
18730 break;
18731 case DW_AT_linkage_name:
18732 case DW_AT_MIPS_linkage_name:
18733 /* Note that both forms of linkage name might appear. We
18734 assume they will be the same, and we only store the last
18735 one we see. */
18736 if (cu->language == language_ada)
18737 name = DW_STRING (&attr);
18738 linkage_name = DW_STRING (&attr);
18739 break;
18740 case DW_AT_low_pc:
18741 has_low_pc_attr = 1;
18742 lowpc = attr_value_as_address (&attr);
18743 break;
18744 case DW_AT_high_pc:
18745 has_high_pc_attr = 1;
18746 highpc = attr_value_as_address (&attr);
18747 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18748 high_pc_relative = 1;
18749 break;
18750 case DW_AT_location:
18751 /* Support the .debug_loc offsets. */
18752 if (attr_form_is_block (&attr))
18753 {
18754 d.locdesc = DW_BLOCK (&attr);
18755 }
18756 else if (attr_form_is_section_offset (&attr))
18757 {
18758 dwarf2_complex_location_expr_complaint ();
18759 }
18760 else
18761 {
18762 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18763 "partial symbol information");
18764 }
18765 break;
18766 case DW_AT_external:
18767 is_external = DW_UNSND (&attr);
18768 break;
18769 case DW_AT_declaration:
18770 is_declaration = DW_UNSND (&attr);
18771 break;
18772 case DW_AT_type:
18773 has_type = 1;
18774 break;
18775 case DW_AT_abstract_origin:
18776 case DW_AT_specification:
18777 case DW_AT_extension:
18778 has_specification = 1;
18779 spec_offset = dwarf2_get_ref_die_offset (&attr);
18780 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18781 || cu->per_cu->is_dwz);
18782 break;
18783 case DW_AT_sibling:
18784 /* Ignore absolute siblings, they might point outside of
18785 the current compile unit. */
18786 if (attr.form == DW_FORM_ref_addr)
18787 complaint (_("ignoring absolute DW_AT_sibling"));
18788 else
18789 {
18790 const gdb_byte *buffer = reader->buffer;
18791 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18792 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18793
18794 if (sibling_ptr < info_ptr)
18795 complaint (_("DW_AT_sibling points backwards"));
18796 else if (sibling_ptr > reader->buffer_end)
18797 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18798 else
18799 sibling = sibling_ptr;
18800 }
18801 break;
18802 case DW_AT_byte_size:
18803 has_byte_size = 1;
18804 break;
18805 case DW_AT_const_value:
18806 has_const_value = 1;
18807 break;
18808 case DW_AT_calling_convention:
18809 /* DWARF doesn't provide a way to identify a program's source-level
18810 entry point. DW_AT_calling_convention attributes are only meant
18811 to describe functions' calling conventions.
18812
18813 However, because it's a necessary piece of information in
18814 Fortran, and before DWARF 4 DW_CC_program was the only
18815 piece of debugging information whose definition refers to
18816 a 'main program' at all, several compilers marked Fortran
18817 main programs with DW_CC_program --- even when those
18818 functions use the standard calling conventions.
18819
18820 Although DWARF now specifies a way to provide this
18821 information, we support this practice for backward
18822 compatibility. */
18823 if (DW_UNSND (&attr) == DW_CC_program
18824 && cu->language == language_fortran)
18825 main_subprogram = 1;
18826 break;
18827 case DW_AT_inline:
18828 if (DW_UNSND (&attr) == DW_INL_inlined
18829 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18830 may_be_inlined = 1;
18831 break;
18832
18833 case DW_AT_import:
18834 if (tag == DW_TAG_imported_unit)
18835 {
18836 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18837 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18838 || cu->per_cu->is_dwz);
18839 }
18840 break;
18841
18842 case DW_AT_main_subprogram:
18843 main_subprogram = DW_UNSND (&attr);
18844 break;
18845
18846 case DW_AT_ranges:
18847 {
18848 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18849 but that requires a full DIE, so instead we just
18850 reimplement it. */
18851 int need_ranges_base = tag != DW_TAG_compile_unit;
18852 unsigned int ranges_offset = (DW_UNSND (&attr)
18853 + (need_ranges_base
18854 ? cu->ranges_base
18855 : 0));
18856
18857 /* Value of the DW_AT_ranges attribute is the offset in the
18858 .debug_ranges section. */
18859 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18860 nullptr))
18861 has_pc_info = 1;
18862 }
18863 break;
18864
18865 default:
18866 break;
18867 }
18868 }
18869
18870 if (high_pc_relative)
18871 highpc += lowpc;
18872
18873 if (has_low_pc_attr && has_high_pc_attr)
18874 {
18875 /* When using the GNU linker, .gnu.linkonce. sections are used to
18876 eliminate duplicate copies of functions and vtables and such.
18877 The linker will arbitrarily choose one and discard the others.
18878 The AT_*_pc values for such functions refer to local labels in
18879 these sections. If the section from that file was discarded, the
18880 labels are not in the output, so the relocs get a value of 0.
18881 If this is a discarded function, mark the pc bounds as invalid,
18882 so that GDB will ignore it. */
18883 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18884 {
18885 struct objfile *objfile = dwarf2_per_objfile->objfile;
18886 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18887
18888 complaint (_("DW_AT_low_pc %s is zero "
18889 "for DIE at %s [in module %s]"),
18890 paddress (gdbarch, lowpc),
18891 sect_offset_str (sect_off),
18892 objfile_name (objfile));
18893 }
18894 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18895 else if (lowpc >= highpc)
18896 {
18897 struct objfile *objfile = dwarf2_per_objfile->objfile;
18898 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18899
18900 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18901 "for DIE at %s [in module %s]"),
18902 paddress (gdbarch, lowpc),
18903 paddress (gdbarch, highpc),
18904 sect_offset_str (sect_off),
18905 objfile_name (objfile));
18906 }
18907 else
18908 has_pc_info = 1;
18909 }
18910
18911 return info_ptr;
18912 }
18913
18914 /* Find a cached partial DIE at OFFSET in CU. */
18915
18916 struct partial_die_info *
18917 dwarf2_cu::find_partial_die (sect_offset sect_off)
18918 {
18919 struct partial_die_info *lookup_die = NULL;
18920 struct partial_die_info part_die (sect_off);
18921
18922 lookup_die = ((struct partial_die_info *)
18923 htab_find_with_hash (partial_dies, &part_die,
18924 to_underlying (sect_off)));
18925
18926 return lookup_die;
18927 }
18928
18929 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18930 except in the case of .debug_types DIEs which do not reference
18931 outside their CU (they do however referencing other types via
18932 DW_FORM_ref_sig8). */
18933
18934 static const struct cu_partial_die_info
18935 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18936 {
18937 struct dwarf2_per_objfile *dwarf2_per_objfile
18938 = cu->per_cu->dwarf2_per_objfile;
18939 struct objfile *objfile = dwarf2_per_objfile->objfile;
18940 struct dwarf2_per_cu_data *per_cu = NULL;
18941 struct partial_die_info *pd = NULL;
18942
18943 if (offset_in_dwz == cu->per_cu->is_dwz
18944 && offset_in_cu_p (&cu->header, sect_off))
18945 {
18946 pd = cu->find_partial_die (sect_off);
18947 if (pd != NULL)
18948 return { cu, pd };
18949 /* We missed recording what we needed.
18950 Load all dies and try again. */
18951 per_cu = cu->per_cu;
18952 }
18953 else
18954 {
18955 /* TUs don't reference other CUs/TUs (except via type signatures). */
18956 if (cu->per_cu->is_debug_types)
18957 {
18958 error (_("Dwarf Error: Type Unit at offset %s contains"
18959 " external reference to offset %s [in module %s].\n"),
18960 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18961 bfd_get_filename (objfile->obfd));
18962 }
18963 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18964 dwarf2_per_objfile);
18965
18966 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18967 load_partial_comp_unit (per_cu);
18968
18969 per_cu->cu->last_used = 0;
18970 pd = per_cu->cu->find_partial_die (sect_off);
18971 }
18972
18973 /* If we didn't find it, and not all dies have been loaded,
18974 load them all and try again. */
18975
18976 if (pd == NULL && per_cu->load_all_dies == 0)
18977 {
18978 per_cu->load_all_dies = 1;
18979
18980 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18981 THIS_CU->cu may already be in use. So we can't just free it and
18982 replace its DIEs with the ones we read in. Instead, we leave those
18983 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18984 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18985 set. */
18986 load_partial_comp_unit (per_cu);
18987
18988 pd = per_cu->cu->find_partial_die (sect_off);
18989 }
18990
18991 if (pd == NULL)
18992 internal_error (__FILE__, __LINE__,
18993 _("could not find partial DIE %s "
18994 "in cache [from module %s]\n"),
18995 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18996 return { per_cu->cu, pd };
18997 }
18998
18999 /* See if we can figure out if the class lives in a namespace. We do
19000 this by looking for a member function; its demangled name will
19001 contain namespace info, if there is any. */
19002
19003 static void
19004 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19005 struct dwarf2_cu *cu)
19006 {
19007 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19008 what template types look like, because the demangler
19009 frequently doesn't give the same name as the debug info. We
19010 could fix this by only using the demangled name to get the
19011 prefix (but see comment in read_structure_type). */
19012
19013 struct partial_die_info *real_pdi;
19014 struct partial_die_info *child_pdi;
19015
19016 /* If this DIE (this DIE's specification, if any) has a parent, then
19017 we should not do this. We'll prepend the parent's fully qualified
19018 name when we create the partial symbol. */
19019
19020 real_pdi = struct_pdi;
19021 while (real_pdi->has_specification)
19022 {
19023 auto res = find_partial_die (real_pdi->spec_offset,
19024 real_pdi->spec_is_dwz, cu);
19025 real_pdi = res.pdi;
19026 cu = res.cu;
19027 }
19028
19029 if (real_pdi->die_parent != NULL)
19030 return;
19031
19032 for (child_pdi = struct_pdi->die_child;
19033 child_pdi != NULL;
19034 child_pdi = child_pdi->die_sibling)
19035 {
19036 if (child_pdi->tag == DW_TAG_subprogram
19037 && child_pdi->linkage_name != NULL)
19038 {
19039 char *actual_class_name
19040 = language_class_name_from_physname (cu->language_defn,
19041 child_pdi->linkage_name);
19042 if (actual_class_name != NULL)
19043 {
19044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19045 struct_pdi->name
19046 = ((const char *)
19047 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19048 actual_class_name,
19049 strlen (actual_class_name)));
19050 xfree (actual_class_name);
19051 }
19052 break;
19053 }
19054 }
19055 }
19056
19057 void
19058 partial_die_info::fixup (struct dwarf2_cu *cu)
19059 {
19060 /* Once we've fixed up a die, there's no point in doing so again.
19061 This also avoids a memory leak if we were to call
19062 guess_partial_die_structure_name multiple times. */
19063 if (fixup_called)
19064 return;
19065
19066 /* If we found a reference attribute and the DIE has no name, try
19067 to find a name in the referred to DIE. */
19068
19069 if (name == NULL && has_specification)
19070 {
19071 struct partial_die_info *spec_die;
19072
19073 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19074 spec_die = res.pdi;
19075 cu = res.cu;
19076
19077 spec_die->fixup (cu);
19078
19079 if (spec_die->name)
19080 {
19081 name = spec_die->name;
19082
19083 /* Copy DW_AT_external attribute if it is set. */
19084 if (spec_die->is_external)
19085 is_external = spec_die->is_external;
19086 }
19087 }
19088
19089 /* Set default names for some unnamed DIEs. */
19090
19091 if (name == NULL && tag == DW_TAG_namespace)
19092 name = CP_ANONYMOUS_NAMESPACE_STR;
19093
19094 /* If there is no parent die to provide a namespace, and there are
19095 children, see if we can determine the namespace from their linkage
19096 name. */
19097 if (cu->language == language_cplus
19098 && !VEC_empty (dwarf2_section_info_def,
19099 cu->per_cu->dwarf2_per_objfile->types)
19100 && die_parent == NULL
19101 && has_children
19102 && (tag == DW_TAG_class_type
19103 || tag == DW_TAG_structure_type
19104 || tag == DW_TAG_union_type))
19105 guess_partial_die_structure_name (this, cu);
19106
19107 /* GCC might emit a nameless struct or union that has a linkage
19108 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19109 if (name == NULL
19110 && (tag == DW_TAG_class_type
19111 || tag == DW_TAG_interface_type
19112 || tag == DW_TAG_structure_type
19113 || tag == DW_TAG_union_type)
19114 && linkage_name != NULL)
19115 {
19116 char *demangled;
19117
19118 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19119 if (demangled)
19120 {
19121 const char *base;
19122
19123 /* Strip any leading namespaces/classes, keep only the base name.
19124 DW_AT_name for named DIEs does not contain the prefixes. */
19125 base = strrchr (demangled, ':');
19126 if (base && base > demangled && base[-1] == ':')
19127 base++;
19128 else
19129 base = demangled;
19130
19131 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19132 name
19133 = ((const char *)
19134 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19135 base, strlen (base)));
19136 xfree (demangled);
19137 }
19138 }
19139
19140 fixup_called = 1;
19141 }
19142
19143 /* Read an attribute value described by an attribute form. */
19144
19145 static const gdb_byte *
19146 read_attribute_value (const struct die_reader_specs *reader,
19147 struct attribute *attr, unsigned form,
19148 LONGEST implicit_const, const gdb_byte *info_ptr)
19149 {
19150 struct dwarf2_cu *cu = reader->cu;
19151 struct dwarf2_per_objfile *dwarf2_per_objfile
19152 = cu->per_cu->dwarf2_per_objfile;
19153 struct objfile *objfile = dwarf2_per_objfile->objfile;
19154 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19155 bfd *abfd = reader->abfd;
19156 struct comp_unit_head *cu_header = &cu->header;
19157 unsigned int bytes_read;
19158 struct dwarf_block *blk;
19159
19160 attr->form = (enum dwarf_form) form;
19161 switch (form)
19162 {
19163 case DW_FORM_ref_addr:
19164 if (cu->header.version == 2)
19165 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19166 else
19167 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19168 &cu->header, &bytes_read);
19169 info_ptr += bytes_read;
19170 break;
19171 case DW_FORM_GNU_ref_alt:
19172 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19173 info_ptr += bytes_read;
19174 break;
19175 case DW_FORM_addr:
19176 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19177 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19178 info_ptr += bytes_read;
19179 break;
19180 case DW_FORM_block2:
19181 blk = dwarf_alloc_block (cu);
19182 blk->size = read_2_bytes (abfd, info_ptr);
19183 info_ptr += 2;
19184 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19185 info_ptr += blk->size;
19186 DW_BLOCK (attr) = blk;
19187 break;
19188 case DW_FORM_block4:
19189 blk = dwarf_alloc_block (cu);
19190 blk->size = read_4_bytes (abfd, info_ptr);
19191 info_ptr += 4;
19192 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19193 info_ptr += blk->size;
19194 DW_BLOCK (attr) = blk;
19195 break;
19196 case DW_FORM_data2:
19197 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19198 info_ptr += 2;
19199 break;
19200 case DW_FORM_data4:
19201 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19202 info_ptr += 4;
19203 break;
19204 case DW_FORM_data8:
19205 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19206 info_ptr += 8;
19207 break;
19208 case DW_FORM_data16:
19209 blk = dwarf_alloc_block (cu);
19210 blk->size = 16;
19211 blk->data = read_n_bytes (abfd, info_ptr, 16);
19212 info_ptr += 16;
19213 DW_BLOCK (attr) = blk;
19214 break;
19215 case DW_FORM_sec_offset:
19216 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19217 info_ptr += bytes_read;
19218 break;
19219 case DW_FORM_string:
19220 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19221 DW_STRING_IS_CANONICAL (attr) = 0;
19222 info_ptr += bytes_read;
19223 break;
19224 case DW_FORM_strp:
19225 if (!cu->per_cu->is_dwz)
19226 {
19227 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19228 abfd, info_ptr, cu_header,
19229 &bytes_read);
19230 DW_STRING_IS_CANONICAL (attr) = 0;
19231 info_ptr += bytes_read;
19232 break;
19233 }
19234 /* FALLTHROUGH */
19235 case DW_FORM_line_strp:
19236 if (!cu->per_cu->is_dwz)
19237 {
19238 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19239 abfd, info_ptr,
19240 cu_header, &bytes_read);
19241 DW_STRING_IS_CANONICAL (attr) = 0;
19242 info_ptr += bytes_read;
19243 break;
19244 }
19245 /* FALLTHROUGH */
19246 case DW_FORM_GNU_strp_alt:
19247 {
19248 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19249 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19250 &bytes_read);
19251
19252 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19253 dwz, str_offset);
19254 DW_STRING_IS_CANONICAL (attr) = 0;
19255 info_ptr += bytes_read;
19256 }
19257 break;
19258 case DW_FORM_exprloc:
19259 case DW_FORM_block:
19260 blk = dwarf_alloc_block (cu);
19261 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19262 info_ptr += bytes_read;
19263 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19264 info_ptr += blk->size;
19265 DW_BLOCK (attr) = blk;
19266 break;
19267 case DW_FORM_block1:
19268 blk = dwarf_alloc_block (cu);
19269 blk->size = read_1_byte (abfd, info_ptr);
19270 info_ptr += 1;
19271 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19272 info_ptr += blk->size;
19273 DW_BLOCK (attr) = blk;
19274 break;
19275 case DW_FORM_data1:
19276 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19277 info_ptr += 1;
19278 break;
19279 case DW_FORM_flag:
19280 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19281 info_ptr += 1;
19282 break;
19283 case DW_FORM_flag_present:
19284 DW_UNSND (attr) = 1;
19285 break;
19286 case DW_FORM_sdata:
19287 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19288 info_ptr += bytes_read;
19289 break;
19290 case DW_FORM_udata:
19291 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19292 info_ptr += bytes_read;
19293 break;
19294 case DW_FORM_ref1:
19295 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19296 + read_1_byte (abfd, info_ptr));
19297 info_ptr += 1;
19298 break;
19299 case DW_FORM_ref2:
19300 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19301 + read_2_bytes (abfd, info_ptr));
19302 info_ptr += 2;
19303 break;
19304 case DW_FORM_ref4:
19305 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19306 + read_4_bytes (abfd, info_ptr));
19307 info_ptr += 4;
19308 break;
19309 case DW_FORM_ref8:
19310 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19311 + read_8_bytes (abfd, info_ptr));
19312 info_ptr += 8;
19313 break;
19314 case DW_FORM_ref_sig8:
19315 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19316 info_ptr += 8;
19317 break;
19318 case DW_FORM_ref_udata:
19319 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19320 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19321 info_ptr += bytes_read;
19322 break;
19323 case DW_FORM_indirect:
19324 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19325 info_ptr += bytes_read;
19326 if (form == DW_FORM_implicit_const)
19327 {
19328 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19329 info_ptr += bytes_read;
19330 }
19331 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19332 info_ptr);
19333 break;
19334 case DW_FORM_implicit_const:
19335 DW_SND (attr) = implicit_const;
19336 break;
19337 case DW_FORM_addrx:
19338 case DW_FORM_GNU_addr_index:
19339 if (reader->dwo_file == NULL)
19340 {
19341 /* For now flag a hard error.
19342 Later we can turn this into a complaint. */
19343 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19344 dwarf_form_name (form),
19345 bfd_get_filename (abfd));
19346 }
19347 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19348 info_ptr += bytes_read;
19349 break;
19350 case DW_FORM_strx:
19351 case DW_FORM_strx1:
19352 case DW_FORM_strx2:
19353 case DW_FORM_strx3:
19354 case DW_FORM_strx4:
19355 case DW_FORM_GNU_str_index:
19356 if (reader->dwo_file == NULL)
19357 {
19358 /* For now flag a hard error.
19359 Later we can turn this into a complaint if warranted. */
19360 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19361 dwarf_form_name (form),
19362 bfd_get_filename (abfd));
19363 }
19364 {
19365 ULONGEST str_index;
19366 if (form == DW_FORM_strx1)
19367 {
19368 str_index = read_1_byte (abfd, info_ptr);
19369 info_ptr += 1;
19370 }
19371 else if (form == DW_FORM_strx2)
19372 {
19373 str_index = read_2_bytes (abfd, info_ptr);
19374 info_ptr += 2;
19375 }
19376 else if (form == DW_FORM_strx3)
19377 {
19378 str_index = read_3_bytes (abfd, info_ptr);
19379 info_ptr += 3;
19380 }
19381 else if (form == DW_FORM_strx4)
19382 {
19383 str_index = read_4_bytes (abfd, info_ptr);
19384 info_ptr += 4;
19385 }
19386 else
19387 {
19388 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19389 info_ptr += bytes_read;
19390 }
19391 DW_STRING (attr) = read_str_index (reader, str_index);
19392 DW_STRING_IS_CANONICAL (attr) = 0;
19393 }
19394 break;
19395 default:
19396 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19397 dwarf_form_name (form),
19398 bfd_get_filename (abfd));
19399 }
19400
19401 /* Super hack. */
19402 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19403 attr->form = DW_FORM_GNU_ref_alt;
19404
19405 /* We have seen instances where the compiler tried to emit a byte
19406 size attribute of -1 which ended up being encoded as an unsigned
19407 0xffffffff. Although 0xffffffff is technically a valid size value,
19408 an object of this size seems pretty unlikely so we can relatively
19409 safely treat these cases as if the size attribute was invalid and
19410 treat them as zero by default. */
19411 if (attr->name == DW_AT_byte_size
19412 && form == DW_FORM_data4
19413 && DW_UNSND (attr) >= 0xffffffff)
19414 {
19415 complaint
19416 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19417 hex_string (DW_UNSND (attr)));
19418 DW_UNSND (attr) = 0;
19419 }
19420
19421 return info_ptr;
19422 }
19423
19424 /* Read an attribute described by an abbreviated attribute. */
19425
19426 static const gdb_byte *
19427 read_attribute (const struct die_reader_specs *reader,
19428 struct attribute *attr, struct attr_abbrev *abbrev,
19429 const gdb_byte *info_ptr)
19430 {
19431 attr->name = abbrev->name;
19432 return read_attribute_value (reader, attr, abbrev->form,
19433 abbrev->implicit_const, info_ptr);
19434 }
19435
19436 /* Read dwarf information from a buffer. */
19437
19438 static unsigned int
19439 read_1_byte (bfd *abfd, const gdb_byte *buf)
19440 {
19441 return bfd_get_8 (abfd, buf);
19442 }
19443
19444 static int
19445 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19446 {
19447 return bfd_get_signed_8 (abfd, buf);
19448 }
19449
19450 static unsigned int
19451 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19452 {
19453 return bfd_get_16 (abfd, buf);
19454 }
19455
19456 static int
19457 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19458 {
19459 return bfd_get_signed_16 (abfd, buf);
19460 }
19461
19462 static unsigned int
19463 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19464 {
19465 unsigned int result = 0;
19466 for (int i = 0; i < 3; ++i)
19467 {
19468 unsigned char byte = bfd_get_8 (abfd, buf);
19469 buf++;
19470 result |= ((unsigned int) byte << (i * 8));
19471 }
19472 return result;
19473 }
19474
19475 static unsigned int
19476 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19477 {
19478 return bfd_get_32 (abfd, buf);
19479 }
19480
19481 static int
19482 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19483 {
19484 return bfd_get_signed_32 (abfd, buf);
19485 }
19486
19487 static ULONGEST
19488 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19489 {
19490 return bfd_get_64 (abfd, buf);
19491 }
19492
19493 static CORE_ADDR
19494 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19495 unsigned int *bytes_read)
19496 {
19497 struct comp_unit_head *cu_header = &cu->header;
19498 CORE_ADDR retval = 0;
19499
19500 if (cu_header->signed_addr_p)
19501 {
19502 switch (cu_header->addr_size)
19503 {
19504 case 2:
19505 retval = bfd_get_signed_16 (abfd, buf);
19506 break;
19507 case 4:
19508 retval = bfd_get_signed_32 (abfd, buf);
19509 break;
19510 case 8:
19511 retval = bfd_get_signed_64 (abfd, buf);
19512 break;
19513 default:
19514 internal_error (__FILE__, __LINE__,
19515 _("read_address: bad switch, signed [in module %s]"),
19516 bfd_get_filename (abfd));
19517 }
19518 }
19519 else
19520 {
19521 switch (cu_header->addr_size)
19522 {
19523 case 2:
19524 retval = bfd_get_16 (abfd, buf);
19525 break;
19526 case 4:
19527 retval = bfd_get_32 (abfd, buf);
19528 break;
19529 case 8:
19530 retval = bfd_get_64 (abfd, buf);
19531 break;
19532 default:
19533 internal_error (__FILE__, __LINE__,
19534 _("read_address: bad switch, "
19535 "unsigned [in module %s]"),
19536 bfd_get_filename (abfd));
19537 }
19538 }
19539
19540 *bytes_read = cu_header->addr_size;
19541 return retval;
19542 }
19543
19544 /* Read the initial length from a section. The (draft) DWARF 3
19545 specification allows the initial length to take up either 4 bytes
19546 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19547 bytes describe the length and all offsets will be 8 bytes in length
19548 instead of 4.
19549
19550 An older, non-standard 64-bit format is also handled by this
19551 function. The older format in question stores the initial length
19552 as an 8-byte quantity without an escape value. Lengths greater
19553 than 2^32 aren't very common which means that the initial 4 bytes
19554 is almost always zero. Since a length value of zero doesn't make
19555 sense for the 32-bit format, this initial zero can be considered to
19556 be an escape value which indicates the presence of the older 64-bit
19557 format. As written, the code can't detect (old format) lengths
19558 greater than 4GB. If it becomes necessary to handle lengths
19559 somewhat larger than 4GB, we could allow other small values (such
19560 as the non-sensical values of 1, 2, and 3) to also be used as
19561 escape values indicating the presence of the old format.
19562
19563 The value returned via bytes_read should be used to increment the
19564 relevant pointer after calling read_initial_length().
19565
19566 [ Note: read_initial_length() and read_offset() are based on the
19567 document entitled "DWARF Debugging Information Format", revision
19568 3, draft 8, dated November 19, 2001. This document was obtained
19569 from:
19570
19571 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19572
19573 This document is only a draft and is subject to change. (So beware.)
19574
19575 Details regarding the older, non-standard 64-bit format were
19576 determined empirically by examining 64-bit ELF files produced by
19577 the SGI toolchain on an IRIX 6.5 machine.
19578
19579 - Kevin, July 16, 2002
19580 ] */
19581
19582 static LONGEST
19583 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19584 {
19585 LONGEST length = bfd_get_32 (abfd, buf);
19586
19587 if (length == 0xffffffff)
19588 {
19589 length = bfd_get_64 (abfd, buf + 4);
19590 *bytes_read = 12;
19591 }
19592 else if (length == 0)
19593 {
19594 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19595 length = bfd_get_64 (abfd, buf);
19596 *bytes_read = 8;
19597 }
19598 else
19599 {
19600 *bytes_read = 4;
19601 }
19602
19603 return length;
19604 }
19605
19606 /* Cover function for read_initial_length.
19607 Returns the length of the object at BUF, and stores the size of the
19608 initial length in *BYTES_READ and stores the size that offsets will be in
19609 *OFFSET_SIZE.
19610 If the initial length size is not equivalent to that specified in
19611 CU_HEADER then issue a complaint.
19612 This is useful when reading non-comp-unit headers. */
19613
19614 static LONGEST
19615 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19616 const struct comp_unit_head *cu_header,
19617 unsigned int *bytes_read,
19618 unsigned int *offset_size)
19619 {
19620 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19621
19622 gdb_assert (cu_header->initial_length_size == 4
19623 || cu_header->initial_length_size == 8
19624 || cu_header->initial_length_size == 12);
19625
19626 if (cu_header->initial_length_size != *bytes_read)
19627 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19628
19629 *offset_size = (*bytes_read == 4) ? 4 : 8;
19630 return length;
19631 }
19632
19633 /* Read an offset from the data stream. The size of the offset is
19634 given by cu_header->offset_size. */
19635
19636 static LONGEST
19637 read_offset (bfd *abfd, const gdb_byte *buf,
19638 const struct comp_unit_head *cu_header,
19639 unsigned int *bytes_read)
19640 {
19641 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19642
19643 *bytes_read = cu_header->offset_size;
19644 return offset;
19645 }
19646
19647 /* Read an offset from the data stream. */
19648
19649 static LONGEST
19650 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19651 {
19652 LONGEST retval = 0;
19653
19654 switch (offset_size)
19655 {
19656 case 4:
19657 retval = bfd_get_32 (abfd, buf);
19658 break;
19659 case 8:
19660 retval = bfd_get_64 (abfd, buf);
19661 break;
19662 default:
19663 internal_error (__FILE__, __LINE__,
19664 _("read_offset_1: bad switch [in module %s]"),
19665 bfd_get_filename (abfd));
19666 }
19667
19668 return retval;
19669 }
19670
19671 static const gdb_byte *
19672 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19673 {
19674 /* If the size of a host char is 8 bits, we can return a pointer
19675 to the buffer, otherwise we have to copy the data to a buffer
19676 allocated on the temporary obstack. */
19677 gdb_assert (HOST_CHAR_BIT == 8);
19678 return buf;
19679 }
19680
19681 static const char *
19682 read_direct_string (bfd *abfd, const gdb_byte *buf,
19683 unsigned int *bytes_read_ptr)
19684 {
19685 /* If the size of a host char is 8 bits, we can return a pointer
19686 to the string, otherwise we have to copy the string to a buffer
19687 allocated on the temporary obstack. */
19688 gdb_assert (HOST_CHAR_BIT == 8);
19689 if (*buf == '\0')
19690 {
19691 *bytes_read_ptr = 1;
19692 return NULL;
19693 }
19694 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19695 return (const char *) buf;
19696 }
19697
19698 /* Return pointer to string at section SECT offset STR_OFFSET with error
19699 reporting strings FORM_NAME and SECT_NAME. */
19700
19701 static const char *
19702 read_indirect_string_at_offset_from (struct objfile *objfile,
19703 bfd *abfd, LONGEST str_offset,
19704 struct dwarf2_section_info *sect,
19705 const char *form_name,
19706 const char *sect_name)
19707 {
19708 dwarf2_read_section (objfile, sect);
19709 if (sect->buffer == NULL)
19710 error (_("%s used without %s section [in module %s]"),
19711 form_name, sect_name, bfd_get_filename (abfd));
19712 if (str_offset >= sect->size)
19713 error (_("%s pointing outside of %s section [in module %s]"),
19714 form_name, sect_name, bfd_get_filename (abfd));
19715 gdb_assert (HOST_CHAR_BIT == 8);
19716 if (sect->buffer[str_offset] == '\0')
19717 return NULL;
19718 return (const char *) (sect->buffer + str_offset);
19719 }
19720
19721 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19722
19723 static const char *
19724 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19725 bfd *abfd, LONGEST str_offset)
19726 {
19727 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19728 abfd, str_offset,
19729 &dwarf2_per_objfile->str,
19730 "DW_FORM_strp", ".debug_str");
19731 }
19732
19733 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19734
19735 static const char *
19736 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19737 bfd *abfd, LONGEST str_offset)
19738 {
19739 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19740 abfd, str_offset,
19741 &dwarf2_per_objfile->line_str,
19742 "DW_FORM_line_strp",
19743 ".debug_line_str");
19744 }
19745
19746 /* Read a string at offset STR_OFFSET in the .debug_str section from
19747 the .dwz file DWZ. Throw an error if the offset is too large. If
19748 the string consists of a single NUL byte, return NULL; otherwise
19749 return a pointer to the string. */
19750
19751 static const char *
19752 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19753 LONGEST str_offset)
19754 {
19755 dwarf2_read_section (objfile, &dwz->str);
19756
19757 if (dwz->str.buffer == NULL)
19758 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19759 "section [in module %s]"),
19760 bfd_get_filename (dwz->dwz_bfd));
19761 if (str_offset >= dwz->str.size)
19762 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19763 ".debug_str section [in module %s]"),
19764 bfd_get_filename (dwz->dwz_bfd));
19765 gdb_assert (HOST_CHAR_BIT == 8);
19766 if (dwz->str.buffer[str_offset] == '\0')
19767 return NULL;
19768 return (const char *) (dwz->str.buffer + str_offset);
19769 }
19770
19771 /* Return pointer to string at .debug_str offset as read from BUF.
19772 BUF is assumed to be in a compilation unit described by CU_HEADER.
19773 Return *BYTES_READ_PTR count of bytes read from BUF. */
19774
19775 static const char *
19776 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19777 const gdb_byte *buf,
19778 const struct comp_unit_head *cu_header,
19779 unsigned int *bytes_read_ptr)
19780 {
19781 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19782
19783 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19784 }
19785
19786 /* Return pointer to string at .debug_line_str offset as read from BUF.
19787 BUF is assumed to be in a compilation unit described by CU_HEADER.
19788 Return *BYTES_READ_PTR count of bytes read from BUF. */
19789
19790 static const char *
19791 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19792 bfd *abfd, const gdb_byte *buf,
19793 const struct comp_unit_head *cu_header,
19794 unsigned int *bytes_read_ptr)
19795 {
19796 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19797
19798 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19799 str_offset);
19800 }
19801
19802 ULONGEST
19803 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19804 unsigned int *bytes_read_ptr)
19805 {
19806 ULONGEST result;
19807 unsigned int num_read;
19808 int shift;
19809 unsigned char byte;
19810
19811 result = 0;
19812 shift = 0;
19813 num_read = 0;
19814 while (1)
19815 {
19816 byte = bfd_get_8 (abfd, buf);
19817 buf++;
19818 num_read++;
19819 result |= ((ULONGEST) (byte & 127) << shift);
19820 if ((byte & 128) == 0)
19821 {
19822 break;
19823 }
19824 shift += 7;
19825 }
19826 *bytes_read_ptr = num_read;
19827 return result;
19828 }
19829
19830 static LONGEST
19831 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19832 unsigned int *bytes_read_ptr)
19833 {
19834 ULONGEST result;
19835 int shift, num_read;
19836 unsigned char byte;
19837
19838 result = 0;
19839 shift = 0;
19840 num_read = 0;
19841 while (1)
19842 {
19843 byte = bfd_get_8 (abfd, buf);
19844 buf++;
19845 num_read++;
19846 result |= ((ULONGEST) (byte & 127) << shift);
19847 shift += 7;
19848 if ((byte & 128) == 0)
19849 {
19850 break;
19851 }
19852 }
19853 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19854 result |= -(((ULONGEST) 1) << shift);
19855 *bytes_read_ptr = num_read;
19856 return result;
19857 }
19858
19859 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19860 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19861 ADDR_SIZE is the size of addresses from the CU header. */
19862
19863 static CORE_ADDR
19864 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19865 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19866 {
19867 struct objfile *objfile = dwarf2_per_objfile->objfile;
19868 bfd *abfd = objfile->obfd;
19869 const gdb_byte *info_ptr;
19870
19871 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19872 if (dwarf2_per_objfile->addr.buffer == NULL)
19873 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19874 objfile_name (objfile));
19875 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19876 error (_("DW_FORM_addr_index pointing outside of "
19877 ".debug_addr section [in module %s]"),
19878 objfile_name (objfile));
19879 info_ptr = (dwarf2_per_objfile->addr.buffer
19880 + addr_base + addr_index * addr_size);
19881 if (addr_size == 4)
19882 return bfd_get_32 (abfd, info_ptr);
19883 else
19884 return bfd_get_64 (abfd, info_ptr);
19885 }
19886
19887 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19888
19889 static CORE_ADDR
19890 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19891 {
19892 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19893 cu->addr_base, cu->header.addr_size);
19894 }
19895
19896 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19897
19898 static CORE_ADDR
19899 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19900 unsigned int *bytes_read)
19901 {
19902 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19903 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19904
19905 return read_addr_index (cu, addr_index);
19906 }
19907
19908 /* Data structure to pass results from dwarf2_read_addr_index_reader
19909 back to dwarf2_read_addr_index. */
19910
19911 struct dwarf2_read_addr_index_data
19912 {
19913 ULONGEST addr_base;
19914 int addr_size;
19915 };
19916
19917 /* die_reader_func for dwarf2_read_addr_index. */
19918
19919 static void
19920 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19921 const gdb_byte *info_ptr,
19922 struct die_info *comp_unit_die,
19923 int has_children,
19924 void *data)
19925 {
19926 struct dwarf2_cu *cu = reader->cu;
19927 struct dwarf2_read_addr_index_data *aidata =
19928 (struct dwarf2_read_addr_index_data *) data;
19929
19930 aidata->addr_base = cu->addr_base;
19931 aidata->addr_size = cu->header.addr_size;
19932 }
19933
19934 /* Given an index in .debug_addr, fetch the value.
19935 NOTE: This can be called during dwarf expression evaluation,
19936 long after the debug information has been read, and thus per_cu->cu
19937 may no longer exist. */
19938
19939 CORE_ADDR
19940 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19941 unsigned int addr_index)
19942 {
19943 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19944 struct dwarf2_cu *cu = per_cu->cu;
19945 ULONGEST addr_base;
19946 int addr_size;
19947
19948 /* We need addr_base and addr_size.
19949 If we don't have PER_CU->cu, we have to get it.
19950 Nasty, but the alternative is storing the needed info in PER_CU,
19951 which at this point doesn't seem justified: it's not clear how frequently
19952 it would get used and it would increase the size of every PER_CU.
19953 Entry points like dwarf2_per_cu_addr_size do a similar thing
19954 so we're not in uncharted territory here.
19955 Alas we need to be a bit more complicated as addr_base is contained
19956 in the DIE.
19957
19958 We don't need to read the entire CU(/TU).
19959 We just need the header and top level die.
19960
19961 IWBN to use the aging mechanism to let us lazily later discard the CU.
19962 For now we skip this optimization. */
19963
19964 if (cu != NULL)
19965 {
19966 addr_base = cu->addr_base;
19967 addr_size = cu->header.addr_size;
19968 }
19969 else
19970 {
19971 struct dwarf2_read_addr_index_data aidata;
19972
19973 /* Note: We can't use init_cutu_and_read_dies_simple here,
19974 we need addr_base. */
19975 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19976 dwarf2_read_addr_index_reader, &aidata);
19977 addr_base = aidata.addr_base;
19978 addr_size = aidata.addr_size;
19979 }
19980
19981 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19982 addr_size);
19983 }
19984
19985 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19986 This is only used by the Fission support. */
19987
19988 static const char *
19989 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19990 {
19991 struct dwarf2_cu *cu = reader->cu;
19992 struct dwarf2_per_objfile *dwarf2_per_objfile
19993 = cu->per_cu->dwarf2_per_objfile;
19994 struct objfile *objfile = dwarf2_per_objfile->objfile;
19995 const char *objf_name = objfile_name (objfile);
19996 bfd *abfd = objfile->obfd;
19997 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19998 struct dwarf2_section_info *str_offsets_section =
19999 &reader->dwo_file->sections.str_offsets;
20000 const gdb_byte *info_ptr;
20001 ULONGEST str_offset;
20002 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20003
20004 dwarf2_read_section (objfile, str_section);
20005 dwarf2_read_section (objfile, str_offsets_section);
20006 if (str_section->buffer == NULL)
20007 error (_("%s used without .debug_str.dwo section"
20008 " in CU at offset %s [in module %s]"),
20009 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20010 if (str_offsets_section->buffer == NULL)
20011 error (_("%s used without .debug_str_offsets.dwo section"
20012 " in CU at offset %s [in module %s]"),
20013 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20014 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20015 error (_("%s pointing outside of .debug_str_offsets.dwo"
20016 " section in CU at offset %s [in module %s]"),
20017 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20018 info_ptr = (str_offsets_section->buffer
20019 + str_index * cu->header.offset_size);
20020 if (cu->header.offset_size == 4)
20021 str_offset = bfd_get_32 (abfd, info_ptr);
20022 else
20023 str_offset = bfd_get_64 (abfd, info_ptr);
20024 if (str_offset >= str_section->size)
20025 error (_("Offset from %s pointing outside of"
20026 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20027 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20028 return (const char *) (str_section->buffer + str_offset);
20029 }
20030
20031 /* Return the length of an LEB128 number in BUF. */
20032
20033 static int
20034 leb128_size (const gdb_byte *buf)
20035 {
20036 const gdb_byte *begin = buf;
20037 gdb_byte byte;
20038
20039 while (1)
20040 {
20041 byte = *buf++;
20042 if ((byte & 128) == 0)
20043 return buf - begin;
20044 }
20045 }
20046
20047 static void
20048 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20049 {
20050 switch (lang)
20051 {
20052 case DW_LANG_C89:
20053 case DW_LANG_C99:
20054 case DW_LANG_C11:
20055 case DW_LANG_C:
20056 case DW_LANG_UPC:
20057 cu->language = language_c;
20058 break;
20059 case DW_LANG_Java:
20060 case DW_LANG_C_plus_plus:
20061 case DW_LANG_C_plus_plus_11:
20062 case DW_LANG_C_plus_plus_14:
20063 cu->language = language_cplus;
20064 break;
20065 case DW_LANG_D:
20066 cu->language = language_d;
20067 break;
20068 case DW_LANG_Fortran77:
20069 case DW_LANG_Fortran90:
20070 case DW_LANG_Fortran95:
20071 case DW_LANG_Fortran03:
20072 case DW_LANG_Fortran08:
20073 cu->language = language_fortran;
20074 break;
20075 case DW_LANG_Go:
20076 cu->language = language_go;
20077 break;
20078 case DW_LANG_Mips_Assembler:
20079 cu->language = language_asm;
20080 break;
20081 case DW_LANG_Ada83:
20082 case DW_LANG_Ada95:
20083 cu->language = language_ada;
20084 break;
20085 case DW_LANG_Modula2:
20086 cu->language = language_m2;
20087 break;
20088 case DW_LANG_Pascal83:
20089 cu->language = language_pascal;
20090 break;
20091 case DW_LANG_ObjC:
20092 cu->language = language_objc;
20093 break;
20094 case DW_LANG_Rust:
20095 case DW_LANG_Rust_old:
20096 cu->language = language_rust;
20097 break;
20098 case DW_LANG_Cobol74:
20099 case DW_LANG_Cobol85:
20100 default:
20101 cu->language = language_minimal;
20102 break;
20103 }
20104 cu->language_defn = language_def (cu->language);
20105 }
20106
20107 /* Return the named attribute or NULL if not there. */
20108
20109 static struct attribute *
20110 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20111 {
20112 for (;;)
20113 {
20114 unsigned int i;
20115 struct attribute *spec = NULL;
20116
20117 for (i = 0; i < die->num_attrs; ++i)
20118 {
20119 if (die->attrs[i].name == name)
20120 return &die->attrs[i];
20121 if (die->attrs[i].name == DW_AT_specification
20122 || die->attrs[i].name == DW_AT_abstract_origin)
20123 spec = &die->attrs[i];
20124 }
20125
20126 if (!spec)
20127 break;
20128
20129 die = follow_die_ref (die, spec, &cu);
20130 }
20131
20132 return NULL;
20133 }
20134
20135 /* Return the named attribute or NULL if not there,
20136 but do not follow DW_AT_specification, etc.
20137 This is for use in contexts where we're reading .debug_types dies.
20138 Following DW_AT_specification, DW_AT_abstract_origin will take us
20139 back up the chain, and we want to go down. */
20140
20141 static struct attribute *
20142 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20143 {
20144 unsigned int i;
20145
20146 for (i = 0; i < die->num_attrs; ++i)
20147 if (die->attrs[i].name == name)
20148 return &die->attrs[i];
20149
20150 return NULL;
20151 }
20152
20153 /* Return the string associated with a string-typed attribute, or NULL if it
20154 is either not found or is of an incorrect type. */
20155
20156 static const char *
20157 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20158 {
20159 struct attribute *attr;
20160 const char *str = NULL;
20161
20162 attr = dwarf2_attr (die, name, cu);
20163
20164 if (attr != NULL)
20165 {
20166 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20167 || attr->form == DW_FORM_string
20168 || attr->form == DW_FORM_strx
20169 || attr->form == DW_FORM_GNU_str_index
20170 || attr->form == DW_FORM_GNU_strp_alt)
20171 str = DW_STRING (attr);
20172 else
20173 complaint (_("string type expected for attribute %s for "
20174 "DIE at %s in module %s"),
20175 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20176 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20177 }
20178
20179 return str;
20180 }
20181
20182 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20183 and holds a non-zero value. This function should only be used for
20184 DW_FORM_flag or DW_FORM_flag_present attributes. */
20185
20186 static int
20187 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20188 {
20189 struct attribute *attr = dwarf2_attr (die, name, cu);
20190
20191 return (attr && DW_UNSND (attr));
20192 }
20193
20194 static int
20195 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20196 {
20197 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20198 which value is non-zero. However, we have to be careful with
20199 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20200 (via dwarf2_flag_true_p) follows this attribute. So we may
20201 end up accidently finding a declaration attribute that belongs
20202 to a different DIE referenced by the specification attribute,
20203 even though the given DIE does not have a declaration attribute. */
20204 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20205 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20206 }
20207
20208 /* Return the die giving the specification for DIE, if there is
20209 one. *SPEC_CU is the CU containing DIE on input, and the CU
20210 containing the return value on output. If there is no
20211 specification, but there is an abstract origin, that is
20212 returned. */
20213
20214 static struct die_info *
20215 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20216 {
20217 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20218 *spec_cu);
20219
20220 if (spec_attr == NULL)
20221 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20222
20223 if (spec_attr == NULL)
20224 return NULL;
20225 else
20226 return follow_die_ref (die, spec_attr, spec_cu);
20227 }
20228
20229 /* Stub for free_line_header to match void * callback types. */
20230
20231 static void
20232 free_line_header_voidp (void *arg)
20233 {
20234 struct line_header *lh = (struct line_header *) arg;
20235
20236 delete lh;
20237 }
20238
20239 void
20240 line_header::add_include_dir (const char *include_dir)
20241 {
20242 if (dwarf_line_debug >= 2)
20243 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20244 include_dirs.size () + 1, include_dir);
20245
20246 include_dirs.push_back (include_dir);
20247 }
20248
20249 void
20250 line_header::add_file_name (const char *name,
20251 dir_index d_index,
20252 unsigned int mod_time,
20253 unsigned int length)
20254 {
20255 if (dwarf_line_debug >= 2)
20256 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20257 (unsigned) file_names.size () + 1, name);
20258
20259 file_names.emplace_back (name, d_index, mod_time, length);
20260 }
20261
20262 /* A convenience function to find the proper .debug_line section for a CU. */
20263
20264 static struct dwarf2_section_info *
20265 get_debug_line_section (struct dwarf2_cu *cu)
20266 {
20267 struct dwarf2_section_info *section;
20268 struct dwarf2_per_objfile *dwarf2_per_objfile
20269 = cu->per_cu->dwarf2_per_objfile;
20270
20271 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20272 DWO file. */
20273 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20274 section = &cu->dwo_unit->dwo_file->sections.line;
20275 else if (cu->per_cu->is_dwz)
20276 {
20277 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20278
20279 section = &dwz->line;
20280 }
20281 else
20282 section = &dwarf2_per_objfile->line;
20283
20284 return section;
20285 }
20286
20287 /* Read directory or file name entry format, starting with byte of
20288 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20289 entries count and the entries themselves in the described entry
20290 format. */
20291
20292 static void
20293 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20294 bfd *abfd, const gdb_byte **bufp,
20295 struct line_header *lh,
20296 const struct comp_unit_head *cu_header,
20297 void (*callback) (struct line_header *lh,
20298 const char *name,
20299 dir_index d_index,
20300 unsigned int mod_time,
20301 unsigned int length))
20302 {
20303 gdb_byte format_count, formati;
20304 ULONGEST data_count, datai;
20305 const gdb_byte *buf = *bufp;
20306 const gdb_byte *format_header_data;
20307 unsigned int bytes_read;
20308
20309 format_count = read_1_byte (abfd, buf);
20310 buf += 1;
20311 format_header_data = buf;
20312 for (formati = 0; formati < format_count; formati++)
20313 {
20314 read_unsigned_leb128 (abfd, buf, &bytes_read);
20315 buf += bytes_read;
20316 read_unsigned_leb128 (abfd, buf, &bytes_read);
20317 buf += bytes_read;
20318 }
20319
20320 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20321 buf += bytes_read;
20322 for (datai = 0; datai < data_count; datai++)
20323 {
20324 const gdb_byte *format = format_header_data;
20325 struct file_entry fe;
20326
20327 for (formati = 0; formati < format_count; formati++)
20328 {
20329 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20330 format += bytes_read;
20331
20332 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20333 format += bytes_read;
20334
20335 gdb::optional<const char *> string;
20336 gdb::optional<unsigned int> uint;
20337
20338 switch (form)
20339 {
20340 case DW_FORM_string:
20341 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20342 buf += bytes_read;
20343 break;
20344
20345 case DW_FORM_line_strp:
20346 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20347 abfd, buf,
20348 cu_header,
20349 &bytes_read));
20350 buf += bytes_read;
20351 break;
20352
20353 case DW_FORM_data1:
20354 uint.emplace (read_1_byte (abfd, buf));
20355 buf += 1;
20356 break;
20357
20358 case DW_FORM_data2:
20359 uint.emplace (read_2_bytes (abfd, buf));
20360 buf += 2;
20361 break;
20362
20363 case DW_FORM_data4:
20364 uint.emplace (read_4_bytes (abfd, buf));
20365 buf += 4;
20366 break;
20367
20368 case DW_FORM_data8:
20369 uint.emplace (read_8_bytes (abfd, buf));
20370 buf += 8;
20371 break;
20372
20373 case DW_FORM_udata:
20374 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20375 buf += bytes_read;
20376 break;
20377
20378 case DW_FORM_block:
20379 /* It is valid only for DW_LNCT_timestamp which is ignored by
20380 current GDB. */
20381 break;
20382 }
20383
20384 switch (content_type)
20385 {
20386 case DW_LNCT_path:
20387 if (string.has_value ())
20388 fe.name = *string;
20389 break;
20390 case DW_LNCT_directory_index:
20391 if (uint.has_value ())
20392 fe.d_index = (dir_index) *uint;
20393 break;
20394 case DW_LNCT_timestamp:
20395 if (uint.has_value ())
20396 fe.mod_time = *uint;
20397 break;
20398 case DW_LNCT_size:
20399 if (uint.has_value ())
20400 fe.length = *uint;
20401 break;
20402 case DW_LNCT_MD5:
20403 break;
20404 default:
20405 complaint (_("Unknown format content type %s"),
20406 pulongest (content_type));
20407 }
20408 }
20409
20410 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20411 }
20412
20413 *bufp = buf;
20414 }
20415
20416 /* Read the statement program header starting at OFFSET in
20417 .debug_line, or .debug_line.dwo. Return a pointer
20418 to a struct line_header, allocated using xmalloc.
20419 Returns NULL if there is a problem reading the header, e.g., if it
20420 has a version we don't understand.
20421
20422 NOTE: the strings in the include directory and file name tables of
20423 the returned object point into the dwarf line section buffer,
20424 and must not be freed. */
20425
20426 static line_header_up
20427 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20428 {
20429 const gdb_byte *line_ptr;
20430 unsigned int bytes_read, offset_size;
20431 int i;
20432 const char *cur_dir, *cur_file;
20433 struct dwarf2_section_info *section;
20434 bfd *abfd;
20435 struct dwarf2_per_objfile *dwarf2_per_objfile
20436 = cu->per_cu->dwarf2_per_objfile;
20437
20438 section = get_debug_line_section (cu);
20439 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20440 if (section->buffer == NULL)
20441 {
20442 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20443 complaint (_("missing .debug_line.dwo section"));
20444 else
20445 complaint (_("missing .debug_line section"));
20446 return 0;
20447 }
20448
20449 /* We can't do this until we know the section is non-empty.
20450 Only then do we know we have such a section. */
20451 abfd = get_section_bfd_owner (section);
20452
20453 /* Make sure that at least there's room for the total_length field.
20454 That could be 12 bytes long, but we're just going to fudge that. */
20455 if (to_underlying (sect_off) + 4 >= section->size)
20456 {
20457 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20458 return 0;
20459 }
20460
20461 line_header_up lh (new line_header ());
20462
20463 lh->sect_off = sect_off;
20464 lh->offset_in_dwz = cu->per_cu->is_dwz;
20465
20466 line_ptr = section->buffer + to_underlying (sect_off);
20467
20468 /* Read in the header. */
20469 lh->total_length =
20470 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20471 &bytes_read, &offset_size);
20472 line_ptr += bytes_read;
20473 if (line_ptr + lh->total_length > (section->buffer + section->size))
20474 {
20475 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20476 return 0;
20477 }
20478 lh->statement_program_end = line_ptr + lh->total_length;
20479 lh->version = read_2_bytes (abfd, line_ptr);
20480 line_ptr += 2;
20481 if (lh->version > 5)
20482 {
20483 /* This is a version we don't understand. The format could have
20484 changed in ways we don't handle properly so just punt. */
20485 complaint (_("unsupported version in .debug_line section"));
20486 return NULL;
20487 }
20488 if (lh->version >= 5)
20489 {
20490 gdb_byte segment_selector_size;
20491
20492 /* Skip address size. */
20493 read_1_byte (abfd, line_ptr);
20494 line_ptr += 1;
20495
20496 segment_selector_size = read_1_byte (abfd, line_ptr);
20497 line_ptr += 1;
20498 if (segment_selector_size != 0)
20499 {
20500 complaint (_("unsupported segment selector size %u "
20501 "in .debug_line section"),
20502 segment_selector_size);
20503 return NULL;
20504 }
20505 }
20506 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20507 line_ptr += offset_size;
20508 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20509 line_ptr += 1;
20510 if (lh->version >= 4)
20511 {
20512 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20513 line_ptr += 1;
20514 }
20515 else
20516 lh->maximum_ops_per_instruction = 1;
20517
20518 if (lh->maximum_ops_per_instruction == 0)
20519 {
20520 lh->maximum_ops_per_instruction = 1;
20521 complaint (_("invalid maximum_ops_per_instruction "
20522 "in `.debug_line' section"));
20523 }
20524
20525 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20526 line_ptr += 1;
20527 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20528 line_ptr += 1;
20529 lh->line_range = read_1_byte (abfd, line_ptr);
20530 line_ptr += 1;
20531 lh->opcode_base = read_1_byte (abfd, line_ptr);
20532 line_ptr += 1;
20533 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20534
20535 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20536 for (i = 1; i < lh->opcode_base; ++i)
20537 {
20538 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20539 line_ptr += 1;
20540 }
20541
20542 if (lh->version >= 5)
20543 {
20544 /* Read directory table. */
20545 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20546 &cu->header,
20547 [] (struct line_header *header, const char *name,
20548 dir_index d_index, unsigned int mod_time,
20549 unsigned int length)
20550 {
20551 header->add_include_dir (name);
20552 });
20553
20554 /* Read file name table. */
20555 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20556 &cu->header,
20557 [] (struct line_header *header, const char *name,
20558 dir_index d_index, unsigned int mod_time,
20559 unsigned int length)
20560 {
20561 header->add_file_name (name, d_index, mod_time, length);
20562 });
20563 }
20564 else
20565 {
20566 /* Read directory table. */
20567 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20568 {
20569 line_ptr += bytes_read;
20570 lh->add_include_dir (cur_dir);
20571 }
20572 line_ptr += bytes_read;
20573
20574 /* Read file name table. */
20575 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20576 {
20577 unsigned int mod_time, length;
20578 dir_index d_index;
20579
20580 line_ptr += bytes_read;
20581 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20582 line_ptr += bytes_read;
20583 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20584 line_ptr += bytes_read;
20585 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20586 line_ptr += bytes_read;
20587
20588 lh->add_file_name (cur_file, d_index, mod_time, length);
20589 }
20590 line_ptr += bytes_read;
20591 }
20592 lh->statement_program_start = line_ptr;
20593
20594 if (line_ptr > (section->buffer + section->size))
20595 complaint (_("line number info header doesn't "
20596 "fit in `.debug_line' section"));
20597
20598 return lh;
20599 }
20600
20601 /* Subroutine of dwarf_decode_lines to simplify it.
20602 Return the file name of the psymtab for included file FILE_INDEX
20603 in line header LH of PST.
20604 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20605 If space for the result is malloc'd, *NAME_HOLDER will be set.
20606 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20607
20608 static const char *
20609 psymtab_include_file_name (const struct line_header *lh, int file_index,
20610 const struct partial_symtab *pst,
20611 const char *comp_dir,
20612 gdb::unique_xmalloc_ptr<char> *name_holder)
20613 {
20614 const file_entry &fe = lh->file_names[file_index];
20615 const char *include_name = fe.name;
20616 const char *include_name_to_compare = include_name;
20617 const char *pst_filename;
20618 int file_is_pst;
20619
20620 const char *dir_name = fe.include_dir (lh);
20621
20622 gdb::unique_xmalloc_ptr<char> hold_compare;
20623 if (!IS_ABSOLUTE_PATH (include_name)
20624 && (dir_name != NULL || comp_dir != NULL))
20625 {
20626 /* Avoid creating a duplicate psymtab for PST.
20627 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20628 Before we do the comparison, however, we need to account
20629 for DIR_NAME and COMP_DIR.
20630 First prepend dir_name (if non-NULL). If we still don't
20631 have an absolute path prepend comp_dir (if non-NULL).
20632 However, the directory we record in the include-file's
20633 psymtab does not contain COMP_DIR (to match the
20634 corresponding symtab(s)).
20635
20636 Example:
20637
20638 bash$ cd /tmp
20639 bash$ gcc -g ./hello.c
20640 include_name = "hello.c"
20641 dir_name = "."
20642 DW_AT_comp_dir = comp_dir = "/tmp"
20643 DW_AT_name = "./hello.c"
20644
20645 */
20646
20647 if (dir_name != NULL)
20648 {
20649 name_holder->reset (concat (dir_name, SLASH_STRING,
20650 include_name, (char *) NULL));
20651 include_name = name_holder->get ();
20652 include_name_to_compare = include_name;
20653 }
20654 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20655 {
20656 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20657 include_name, (char *) NULL));
20658 include_name_to_compare = hold_compare.get ();
20659 }
20660 }
20661
20662 pst_filename = pst->filename;
20663 gdb::unique_xmalloc_ptr<char> copied_name;
20664 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20665 {
20666 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20667 pst_filename, (char *) NULL));
20668 pst_filename = copied_name.get ();
20669 }
20670
20671 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20672
20673 if (file_is_pst)
20674 return NULL;
20675 return include_name;
20676 }
20677
20678 /* State machine to track the state of the line number program. */
20679
20680 class lnp_state_machine
20681 {
20682 public:
20683 /* Initialize a machine state for the start of a line number
20684 program. */
20685 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20686 bool record_lines_p);
20687
20688 file_entry *current_file ()
20689 {
20690 /* lh->file_names is 0-based, but the file name numbers in the
20691 statement program are 1-based. */
20692 return m_line_header->file_name_at (m_file);
20693 }
20694
20695 /* Record the line in the state machine. END_SEQUENCE is true if
20696 we're processing the end of a sequence. */
20697 void record_line (bool end_sequence);
20698
20699 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20700 nop-out rest of the lines in this sequence. */
20701 void check_line_address (struct dwarf2_cu *cu,
20702 const gdb_byte *line_ptr,
20703 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20704
20705 void handle_set_discriminator (unsigned int discriminator)
20706 {
20707 m_discriminator = discriminator;
20708 m_line_has_non_zero_discriminator |= discriminator != 0;
20709 }
20710
20711 /* Handle DW_LNE_set_address. */
20712 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20713 {
20714 m_op_index = 0;
20715 address += baseaddr;
20716 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20717 }
20718
20719 /* Handle DW_LNS_advance_pc. */
20720 void handle_advance_pc (CORE_ADDR adjust);
20721
20722 /* Handle a special opcode. */
20723 void handle_special_opcode (unsigned char op_code);
20724
20725 /* Handle DW_LNS_advance_line. */
20726 void handle_advance_line (int line_delta)
20727 {
20728 advance_line (line_delta);
20729 }
20730
20731 /* Handle DW_LNS_set_file. */
20732 void handle_set_file (file_name_index file);
20733
20734 /* Handle DW_LNS_negate_stmt. */
20735 void handle_negate_stmt ()
20736 {
20737 m_is_stmt = !m_is_stmt;
20738 }
20739
20740 /* Handle DW_LNS_const_add_pc. */
20741 void handle_const_add_pc ();
20742
20743 /* Handle DW_LNS_fixed_advance_pc. */
20744 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20745 {
20746 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20747 m_op_index = 0;
20748 }
20749
20750 /* Handle DW_LNS_copy. */
20751 void handle_copy ()
20752 {
20753 record_line (false);
20754 m_discriminator = 0;
20755 }
20756
20757 /* Handle DW_LNE_end_sequence. */
20758 void handle_end_sequence ()
20759 {
20760 m_currently_recording_lines = true;
20761 }
20762
20763 private:
20764 /* Advance the line by LINE_DELTA. */
20765 void advance_line (int line_delta)
20766 {
20767 m_line += line_delta;
20768
20769 if (line_delta != 0)
20770 m_line_has_non_zero_discriminator = m_discriminator != 0;
20771 }
20772
20773 struct dwarf2_cu *m_cu;
20774
20775 gdbarch *m_gdbarch;
20776
20777 /* True if we're recording lines.
20778 Otherwise we're building partial symtabs and are just interested in
20779 finding include files mentioned by the line number program. */
20780 bool m_record_lines_p;
20781
20782 /* The line number header. */
20783 line_header *m_line_header;
20784
20785 /* These are part of the standard DWARF line number state machine,
20786 and initialized according to the DWARF spec. */
20787
20788 unsigned char m_op_index = 0;
20789 /* The line table index (1-based) of the current file. */
20790 file_name_index m_file = (file_name_index) 1;
20791 unsigned int m_line = 1;
20792
20793 /* These are initialized in the constructor. */
20794
20795 CORE_ADDR m_address;
20796 bool m_is_stmt;
20797 unsigned int m_discriminator;
20798
20799 /* Additional bits of state we need to track. */
20800
20801 /* The last file that we called dwarf2_start_subfile for.
20802 This is only used for TLLs. */
20803 unsigned int m_last_file = 0;
20804 /* The last file a line number was recorded for. */
20805 struct subfile *m_last_subfile = NULL;
20806
20807 /* When true, record the lines we decode. */
20808 bool m_currently_recording_lines = false;
20809
20810 /* The last line number that was recorded, used to coalesce
20811 consecutive entries for the same line. This can happen, for
20812 example, when discriminators are present. PR 17276. */
20813 unsigned int m_last_line = 0;
20814 bool m_line_has_non_zero_discriminator = false;
20815 };
20816
20817 void
20818 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20819 {
20820 CORE_ADDR addr_adj = (((m_op_index + adjust)
20821 / m_line_header->maximum_ops_per_instruction)
20822 * m_line_header->minimum_instruction_length);
20823 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20824 m_op_index = ((m_op_index + adjust)
20825 % m_line_header->maximum_ops_per_instruction);
20826 }
20827
20828 void
20829 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20830 {
20831 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20832 CORE_ADDR addr_adj = (((m_op_index
20833 + (adj_opcode / m_line_header->line_range))
20834 / m_line_header->maximum_ops_per_instruction)
20835 * m_line_header->minimum_instruction_length);
20836 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20837 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20838 % m_line_header->maximum_ops_per_instruction);
20839
20840 int line_delta = (m_line_header->line_base
20841 + (adj_opcode % m_line_header->line_range));
20842 advance_line (line_delta);
20843 record_line (false);
20844 m_discriminator = 0;
20845 }
20846
20847 void
20848 lnp_state_machine::handle_set_file (file_name_index file)
20849 {
20850 m_file = file;
20851
20852 const file_entry *fe = current_file ();
20853 if (fe == NULL)
20854 dwarf2_debug_line_missing_file_complaint ();
20855 else if (m_record_lines_p)
20856 {
20857 const char *dir = fe->include_dir (m_line_header);
20858
20859 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20860 m_line_has_non_zero_discriminator = m_discriminator != 0;
20861 dwarf2_start_subfile (m_cu, fe->name, dir);
20862 }
20863 }
20864
20865 void
20866 lnp_state_machine::handle_const_add_pc ()
20867 {
20868 CORE_ADDR adjust
20869 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20870
20871 CORE_ADDR addr_adj
20872 = (((m_op_index + adjust)
20873 / m_line_header->maximum_ops_per_instruction)
20874 * m_line_header->minimum_instruction_length);
20875
20876 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20877 m_op_index = ((m_op_index + adjust)
20878 % m_line_header->maximum_ops_per_instruction);
20879 }
20880
20881 /* Return non-zero if we should add LINE to the line number table.
20882 LINE is the line to add, LAST_LINE is the last line that was added,
20883 LAST_SUBFILE is the subfile for LAST_LINE.
20884 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20885 had a non-zero discriminator.
20886
20887 We have to be careful in the presence of discriminators.
20888 E.g., for this line:
20889
20890 for (i = 0; i < 100000; i++);
20891
20892 clang can emit four line number entries for that one line,
20893 each with a different discriminator.
20894 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20895
20896 However, we want gdb to coalesce all four entries into one.
20897 Otherwise the user could stepi into the middle of the line and
20898 gdb would get confused about whether the pc really was in the
20899 middle of the line.
20900
20901 Things are further complicated by the fact that two consecutive
20902 line number entries for the same line is a heuristic used by gcc
20903 to denote the end of the prologue. So we can't just discard duplicate
20904 entries, we have to be selective about it. The heuristic we use is
20905 that we only collapse consecutive entries for the same line if at least
20906 one of those entries has a non-zero discriminator. PR 17276.
20907
20908 Note: Addresses in the line number state machine can never go backwards
20909 within one sequence, thus this coalescing is ok. */
20910
20911 static int
20912 dwarf_record_line_p (struct dwarf2_cu *cu,
20913 unsigned int line, unsigned int last_line,
20914 int line_has_non_zero_discriminator,
20915 struct subfile *last_subfile)
20916 {
20917 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20918 return 1;
20919 if (line != last_line)
20920 return 1;
20921 /* Same line for the same file that we've seen already.
20922 As a last check, for pr 17276, only record the line if the line
20923 has never had a non-zero discriminator. */
20924 if (!line_has_non_zero_discriminator)
20925 return 1;
20926 return 0;
20927 }
20928
20929 /* Use the CU's builder to record line number LINE beginning at
20930 address ADDRESS in the line table of subfile SUBFILE. */
20931
20932 static void
20933 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20934 unsigned int line, CORE_ADDR address,
20935 struct dwarf2_cu *cu)
20936 {
20937 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20938
20939 if (dwarf_line_debug)
20940 {
20941 fprintf_unfiltered (gdb_stdlog,
20942 "Recording line %u, file %s, address %s\n",
20943 line, lbasename (subfile->name),
20944 paddress (gdbarch, address));
20945 }
20946
20947 if (cu != nullptr)
20948 cu->get_builder ()->record_line (subfile, line, addr);
20949 }
20950
20951 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20952 Mark the end of a set of line number records.
20953 The arguments are the same as for dwarf_record_line_1.
20954 If SUBFILE is NULL the request is ignored. */
20955
20956 static void
20957 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20958 CORE_ADDR address, struct dwarf2_cu *cu)
20959 {
20960 if (subfile == NULL)
20961 return;
20962
20963 if (dwarf_line_debug)
20964 {
20965 fprintf_unfiltered (gdb_stdlog,
20966 "Finishing current line, file %s, address %s\n",
20967 lbasename (subfile->name),
20968 paddress (gdbarch, address));
20969 }
20970
20971 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20972 }
20973
20974 void
20975 lnp_state_machine::record_line (bool end_sequence)
20976 {
20977 if (dwarf_line_debug)
20978 {
20979 fprintf_unfiltered (gdb_stdlog,
20980 "Processing actual line %u: file %u,"
20981 " address %s, is_stmt %u, discrim %u\n",
20982 m_line, to_underlying (m_file),
20983 paddress (m_gdbarch, m_address),
20984 m_is_stmt, m_discriminator);
20985 }
20986
20987 file_entry *fe = current_file ();
20988
20989 if (fe == NULL)
20990 dwarf2_debug_line_missing_file_complaint ();
20991 /* For now we ignore lines not starting on an instruction boundary.
20992 But not when processing end_sequence for compatibility with the
20993 previous version of the code. */
20994 else if (m_op_index == 0 || end_sequence)
20995 {
20996 fe->included_p = 1;
20997 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20998 {
20999 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21000 || end_sequence)
21001 {
21002 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21003 m_currently_recording_lines ? m_cu : nullptr);
21004 }
21005
21006 if (!end_sequence)
21007 {
21008 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21009 m_line_has_non_zero_discriminator,
21010 m_last_subfile))
21011 {
21012 buildsym_compunit *builder = m_cu->get_builder ();
21013 dwarf_record_line_1 (m_gdbarch,
21014 builder->get_current_subfile (),
21015 m_line, m_address,
21016 m_currently_recording_lines ? m_cu : nullptr);
21017 }
21018 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21019 m_last_line = m_line;
21020 }
21021 }
21022 }
21023 }
21024
21025 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21026 line_header *lh, bool record_lines_p)
21027 {
21028 m_cu = cu;
21029 m_gdbarch = arch;
21030 m_record_lines_p = record_lines_p;
21031 m_line_header = lh;
21032
21033 m_currently_recording_lines = true;
21034
21035 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21036 was a line entry for it so that the backend has a chance to adjust it
21037 and also record it in case it needs it. This is currently used by MIPS
21038 code, cf. `mips_adjust_dwarf2_line'. */
21039 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21040 m_is_stmt = lh->default_is_stmt;
21041 m_discriminator = 0;
21042 }
21043
21044 void
21045 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21046 const gdb_byte *line_ptr,
21047 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21048 {
21049 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21050 the pc range of the CU. However, we restrict the test to only ADDRESS
21051 values of zero to preserve GDB's previous behaviour which is to handle
21052 the specific case of a function being GC'd by the linker. */
21053
21054 if (address == 0 && address < unrelocated_lowpc)
21055 {
21056 /* This line table is for a function which has been
21057 GCd by the linker. Ignore it. PR gdb/12528 */
21058
21059 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21060 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21061
21062 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21063 line_offset, objfile_name (objfile));
21064 m_currently_recording_lines = false;
21065 /* Note: m_currently_recording_lines is left as false until we see
21066 DW_LNE_end_sequence. */
21067 }
21068 }
21069
21070 /* Subroutine of dwarf_decode_lines to simplify it.
21071 Process the line number information in LH.
21072 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21073 program in order to set included_p for every referenced header. */
21074
21075 static void
21076 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21077 const int decode_for_pst_p, CORE_ADDR lowpc)
21078 {
21079 const gdb_byte *line_ptr, *extended_end;
21080 const gdb_byte *line_end;
21081 unsigned int bytes_read, extended_len;
21082 unsigned char op_code, extended_op;
21083 CORE_ADDR baseaddr;
21084 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21085 bfd *abfd = objfile->obfd;
21086 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21087 /* True if we're recording line info (as opposed to building partial
21088 symtabs and just interested in finding include files mentioned by
21089 the line number program). */
21090 bool record_lines_p = !decode_for_pst_p;
21091
21092 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21093
21094 line_ptr = lh->statement_program_start;
21095 line_end = lh->statement_program_end;
21096
21097 /* Read the statement sequences until there's nothing left. */
21098 while (line_ptr < line_end)
21099 {
21100 /* The DWARF line number program state machine. Reset the state
21101 machine at the start of each sequence. */
21102 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21103 bool end_sequence = false;
21104
21105 if (record_lines_p)
21106 {
21107 /* Start a subfile for the current file of the state
21108 machine. */
21109 const file_entry *fe = state_machine.current_file ();
21110
21111 if (fe != NULL)
21112 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21113 }
21114
21115 /* Decode the table. */
21116 while (line_ptr < line_end && !end_sequence)
21117 {
21118 op_code = read_1_byte (abfd, line_ptr);
21119 line_ptr += 1;
21120
21121 if (op_code >= lh->opcode_base)
21122 {
21123 /* Special opcode. */
21124 state_machine.handle_special_opcode (op_code);
21125 }
21126 else switch (op_code)
21127 {
21128 case DW_LNS_extended_op:
21129 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21130 &bytes_read);
21131 line_ptr += bytes_read;
21132 extended_end = line_ptr + extended_len;
21133 extended_op = read_1_byte (abfd, line_ptr);
21134 line_ptr += 1;
21135 switch (extended_op)
21136 {
21137 case DW_LNE_end_sequence:
21138 state_machine.handle_end_sequence ();
21139 end_sequence = true;
21140 break;
21141 case DW_LNE_set_address:
21142 {
21143 CORE_ADDR address
21144 = read_address (abfd, line_ptr, cu, &bytes_read);
21145 line_ptr += bytes_read;
21146
21147 state_machine.check_line_address (cu, line_ptr,
21148 lowpc - baseaddr, address);
21149 state_machine.handle_set_address (baseaddr, address);
21150 }
21151 break;
21152 case DW_LNE_define_file:
21153 {
21154 const char *cur_file;
21155 unsigned int mod_time, length;
21156 dir_index dindex;
21157
21158 cur_file = read_direct_string (abfd, line_ptr,
21159 &bytes_read);
21160 line_ptr += bytes_read;
21161 dindex = (dir_index)
21162 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21163 line_ptr += bytes_read;
21164 mod_time =
21165 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21166 line_ptr += bytes_read;
21167 length =
21168 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21169 line_ptr += bytes_read;
21170 lh->add_file_name (cur_file, dindex, mod_time, length);
21171 }
21172 break;
21173 case DW_LNE_set_discriminator:
21174 {
21175 /* The discriminator is not interesting to the
21176 debugger; just ignore it. We still need to
21177 check its value though:
21178 if there are consecutive entries for the same
21179 (non-prologue) line we want to coalesce them.
21180 PR 17276. */
21181 unsigned int discr
21182 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21183 line_ptr += bytes_read;
21184
21185 state_machine.handle_set_discriminator (discr);
21186 }
21187 break;
21188 default:
21189 complaint (_("mangled .debug_line section"));
21190 return;
21191 }
21192 /* Make sure that we parsed the extended op correctly. If e.g.
21193 we expected a different address size than the producer used,
21194 we may have read the wrong number of bytes. */
21195 if (line_ptr != extended_end)
21196 {
21197 complaint (_("mangled .debug_line section"));
21198 return;
21199 }
21200 break;
21201 case DW_LNS_copy:
21202 state_machine.handle_copy ();
21203 break;
21204 case DW_LNS_advance_pc:
21205 {
21206 CORE_ADDR adjust
21207 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21208 line_ptr += bytes_read;
21209
21210 state_machine.handle_advance_pc (adjust);
21211 }
21212 break;
21213 case DW_LNS_advance_line:
21214 {
21215 int line_delta
21216 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21217 line_ptr += bytes_read;
21218
21219 state_machine.handle_advance_line (line_delta);
21220 }
21221 break;
21222 case DW_LNS_set_file:
21223 {
21224 file_name_index file
21225 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21226 &bytes_read);
21227 line_ptr += bytes_read;
21228
21229 state_machine.handle_set_file (file);
21230 }
21231 break;
21232 case DW_LNS_set_column:
21233 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21234 line_ptr += bytes_read;
21235 break;
21236 case DW_LNS_negate_stmt:
21237 state_machine.handle_negate_stmt ();
21238 break;
21239 case DW_LNS_set_basic_block:
21240 break;
21241 /* Add to the address register of the state machine the
21242 address increment value corresponding to special opcode
21243 255. I.e., this value is scaled by the minimum
21244 instruction length since special opcode 255 would have
21245 scaled the increment. */
21246 case DW_LNS_const_add_pc:
21247 state_machine.handle_const_add_pc ();
21248 break;
21249 case DW_LNS_fixed_advance_pc:
21250 {
21251 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21252 line_ptr += 2;
21253
21254 state_machine.handle_fixed_advance_pc (addr_adj);
21255 }
21256 break;
21257 default:
21258 {
21259 /* Unknown standard opcode, ignore it. */
21260 int i;
21261
21262 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21263 {
21264 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21265 line_ptr += bytes_read;
21266 }
21267 }
21268 }
21269 }
21270
21271 if (!end_sequence)
21272 dwarf2_debug_line_missing_end_sequence_complaint ();
21273
21274 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21275 in which case we still finish recording the last line). */
21276 state_machine.record_line (true);
21277 }
21278 }
21279
21280 /* Decode the Line Number Program (LNP) for the given line_header
21281 structure and CU. The actual information extracted and the type
21282 of structures created from the LNP depends on the value of PST.
21283
21284 1. If PST is NULL, then this procedure uses the data from the program
21285 to create all necessary symbol tables, and their linetables.
21286
21287 2. If PST is not NULL, this procedure reads the program to determine
21288 the list of files included by the unit represented by PST, and
21289 builds all the associated partial symbol tables.
21290
21291 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21292 It is used for relative paths in the line table.
21293 NOTE: When processing partial symtabs (pst != NULL),
21294 comp_dir == pst->dirname.
21295
21296 NOTE: It is important that psymtabs have the same file name (via strcmp)
21297 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21298 symtab we don't use it in the name of the psymtabs we create.
21299 E.g. expand_line_sal requires this when finding psymtabs to expand.
21300 A good testcase for this is mb-inline.exp.
21301
21302 LOWPC is the lowest address in CU (or 0 if not known).
21303
21304 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21305 for its PC<->lines mapping information. Otherwise only the filename
21306 table is read in. */
21307
21308 static void
21309 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21310 struct dwarf2_cu *cu, struct partial_symtab *pst,
21311 CORE_ADDR lowpc, int decode_mapping)
21312 {
21313 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21314 const int decode_for_pst_p = (pst != NULL);
21315
21316 if (decode_mapping)
21317 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21318
21319 if (decode_for_pst_p)
21320 {
21321 int file_index;
21322
21323 /* Now that we're done scanning the Line Header Program, we can
21324 create the psymtab of each included file. */
21325 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21326 if (lh->file_names[file_index].included_p == 1)
21327 {
21328 gdb::unique_xmalloc_ptr<char> name_holder;
21329 const char *include_name =
21330 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21331 &name_holder);
21332 if (include_name != NULL)
21333 dwarf2_create_include_psymtab (include_name, pst, objfile);
21334 }
21335 }
21336 else
21337 {
21338 /* Make sure a symtab is created for every file, even files
21339 which contain only variables (i.e. no code with associated
21340 line numbers). */
21341 buildsym_compunit *builder = cu->get_builder ();
21342 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21343 int i;
21344
21345 for (i = 0; i < lh->file_names.size (); i++)
21346 {
21347 file_entry &fe = lh->file_names[i];
21348
21349 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21350
21351 if (builder->get_current_subfile ()->symtab == NULL)
21352 {
21353 builder->get_current_subfile ()->symtab
21354 = allocate_symtab (cust,
21355 builder->get_current_subfile ()->name);
21356 }
21357 fe.symtab = builder->get_current_subfile ()->symtab;
21358 }
21359 }
21360 }
21361
21362 /* Start a subfile for DWARF. FILENAME is the name of the file and
21363 DIRNAME the name of the source directory which contains FILENAME
21364 or NULL if not known.
21365 This routine tries to keep line numbers from identical absolute and
21366 relative file names in a common subfile.
21367
21368 Using the `list' example from the GDB testsuite, which resides in
21369 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21370 of /srcdir/list0.c yields the following debugging information for list0.c:
21371
21372 DW_AT_name: /srcdir/list0.c
21373 DW_AT_comp_dir: /compdir
21374 files.files[0].name: list0.h
21375 files.files[0].dir: /srcdir
21376 files.files[1].name: list0.c
21377 files.files[1].dir: /srcdir
21378
21379 The line number information for list0.c has to end up in a single
21380 subfile, so that `break /srcdir/list0.c:1' works as expected.
21381 start_subfile will ensure that this happens provided that we pass the
21382 concatenation of files.files[1].dir and files.files[1].name as the
21383 subfile's name. */
21384
21385 static void
21386 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21387 const char *dirname)
21388 {
21389 char *copy = NULL;
21390
21391 /* In order not to lose the line information directory,
21392 we concatenate it to the filename when it makes sense.
21393 Note that the Dwarf3 standard says (speaking of filenames in line
21394 information): ``The directory index is ignored for file names
21395 that represent full path names''. Thus ignoring dirname in the
21396 `else' branch below isn't an issue. */
21397
21398 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21399 {
21400 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21401 filename = copy;
21402 }
21403
21404 cu->get_builder ()->start_subfile (filename);
21405
21406 if (copy != NULL)
21407 xfree (copy);
21408 }
21409
21410 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21411 buildsym_compunit constructor. */
21412
21413 struct compunit_symtab *
21414 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21415 CORE_ADDR low_pc)
21416 {
21417 gdb_assert (m_builder == nullptr);
21418
21419 m_builder.reset (new struct buildsym_compunit
21420 (per_cu->dwarf2_per_objfile->objfile,
21421 name, comp_dir, language, low_pc));
21422
21423 list_in_scope = get_builder ()->get_file_symbols ();
21424
21425 get_builder ()->record_debugformat ("DWARF 2");
21426 get_builder ()->record_producer (producer);
21427
21428 processing_has_namespace_info = false;
21429
21430 return get_builder ()->get_compunit_symtab ();
21431 }
21432
21433 static void
21434 var_decode_location (struct attribute *attr, struct symbol *sym,
21435 struct dwarf2_cu *cu)
21436 {
21437 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21438 struct comp_unit_head *cu_header = &cu->header;
21439
21440 /* NOTE drow/2003-01-30: There used to be a comment and some special
21441 code here to turn a symbol with DW_AT_external and a
21442 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21443 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21444 with some versions of binutils) where shared libraries could have
21445 relocations against symbols in their debug information - the
21446 minimal symbol would have the right address, but the debug info
21447 would not. It's no longer necessary, because we will explicitly
21448 apply relocations when we read in the debug information now. */
21449
21450 /* A DW_AT_location attribute with no contents indicates that a
21451 variable has been optimized away. */
21452 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21453 {
21454 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21455 return;
21456 }
21457
21458 /* Handle one degenerate form of location expression specially, to
21459 preserve GDB's previous behavior when section offsets are
21460 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21461 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21462
21463 if (attr_form_is_block (attr)
21464 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21465 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21466 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21467 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21468 && (DW_BLOCK (attr)->size
21469 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21470 {
21471 unsigned int dummy;
21472
21473 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21474 SYMBOL_VALUE_ADDRESS (sym) =
21475 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21476 else
21477 SYMBOL_VALUE_ADDRESS (sym) =
21478 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21479 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21480 fixup_symbol_section (sym, objfile);
21481 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21482 SYMBOL_SECTION (sym));
21483 return;
21484 }
21485
21486 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21487 expression evaluator, and use LOC_COMPUTED only when necessary
21488 (i.e. when the value of a register or memory location is
21489 referenced, or a thread-local block, etc.). Then again, it might
21490 not be worthwhile. I'm assuming that it isn't unless performance
21491 or memory numbers show me otherwise. */
21492
21493 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21494
21495 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21496 cu->has_loclist = true;
21497 }
21498
21499 /* Given a pointer to a DWARF information entry, figure out if we need
21500 to make a symbol table entry for it, and if so, create a new entry
21501 and return a pointer to it.
21502 If TYPE is NULL, determine symbol type from the die, otherwise
21503 used the passed type.
21504 If SPACE is not NULL, use it to hold the new symbol. If it is
21505 NULL, allocate a new symbol on the objfile's obstack. */
21506
21507 static struct symbol *
21508 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21509 struct symbol *space)
21510 {
21511 struct dwarf2_per_objfile *dwarf2_per_objfile
21512 = cu->per_cu->dwarf2_per_objfile;
21513 struct objfile *objfile = dwarf2_per_objfile->objfile;
21514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21515 struct symbol *sym = NULL;
21516 const char *name;
21517 struct attribute *attr = NULL;
21518 struct attribute *attr2 = NULL;
21519 CORE_ADDR baseaddr;
21520 struct pending **list_to_add = NULL;
21521
21522 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21523
21524 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21525
21526 name = dwarf2_name (die, cu);
21527 if (name)
21528 {
21529 const char *linkagename;
21530 int suppress_add = 0;
21531
21532 if (space)
21533 sym = space;
21534 else
21535 sym = allocate_symbol (objfile);
21536 OBJSTAT (objfile, n_syms++);
21537
21538 /* Cache this symbol's name and the name's demangled form (if any). */
21539 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21540 linkagename = dwarf2_physname (name, die, cu);
21541 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21542
21543 /* Fortran does not have mangling standard and the mangling does differ
21544 between gfortran, iFort etc. */
21545 if (cu->language == language_fortran
21546 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21547 symbol_set_demangled_name (&(sym->ginfo),
21548 dwarf2_full_name (name, die, cu),
21549 NULL);
21550
21551 /* Default assumptions.
21552 Use the passed type or decode it from the die. */
21553 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21554 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21555 if (type != NULL)
21556 SYMBOL_TYPE (sym) = type;
21557 else
21558 SYMBOL_TYPE (sym) = die_type (die, cu);
21559 attr = dwarf2_attr (die,
21560 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21561 cu);
21562 if (attr)
21563 {
21564 SYMBOL_LINE (sym) = DW_UNSND (attr);
21565 }
21566
21567 attr = dwarf2_attr (die,
21568 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21569 cu);
21570 if (attr)
21571 {
21572 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21573 struct file_entry *fe;
21574
21575 if (cu->line_header != NULL)
21576 fe = cu->line_header->file_name_at (file_index);
21577 else
21578 fe = NULL;
21579
21580 if (fe == NULL)
21581 complaint (_("file index out of range"));
21582 else
21583 symbol_set_symtab (sym, fe->symtab);
21584 }
21585
21586 switch (die->tag)
21587 {
21588 case DW_TAG_label:
21589 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21590 if (attr)
21591 {
21592 CORE_ADDR addr;
21593
21594 addr = attr_value_as_address (attr);
21595 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21596 SYMBOL_VALUE_ADDRESS (sym) = addr;
21597 }
21598 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21599 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21600 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21601 add_symbol_to_list (sym, cu->list_in_scope);
21602 break;
21603 case DW_TAG_subprogram:
21604 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21605 finish_block. */
21606 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21607 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21608 if ((attr2 && (DW_UNSND (attr2) != 0))
21609 || cu->language == language_ada)
21610 {
21611 /* Subprograms marked external are stored as a global symbol.
21612 Ada subprograms, whether marked external or not, are always
21613 stored as a global symbol, because we want to be able to
21614 access them globally. For instance, we want to be able
21615 to break on a nested subprogram without having to
21616 specify the context. */
21617 list_to_add = cu->get_builder ()->get_global_symbols ();
21618 }
21619 else
21620 {
21621 list_to_add = cu->list_in_scope;
21622 }
21623 break;
21624 case DW_TAG_inlined_subroutine:
21625 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21626 finish_block. */
21627 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21628 SYMBOL_INLINED (sym) = 1;
21629 list_to_add = cu->list_in_scope;
21630 break;
21631 case DW_TAG_template_value_param:
21632 suppress_add = 1;
21633 /* Fall through. */
21634 case DW_TAG_constant:
21635 case DW_TAG_variable:
21636 case DW_TAG_member:
21637 /* Compilation with minimal debug info may result in
21638 variables with missing type entries. Change the
21639 misleading `void' type to something sensible. */
21640 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21641 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21642
21643 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21644 /* In the case of DW_TAG_member, we should only be called for
21645 static const members. */
21646 if (die->tag == DW_TAG_member)
21647 {
21648 /* dwarf2_add_field uses die_is_declaration,
21649 so we do the same. */
21650 gdb_assert (die_is_declaration (die, cu));
21651 gdb_assert (attr);
21652 }
21653 if (attr)
21654 {
21655 dwarf2_const_value (attr, sym, cu);
21656 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21657 if (!suppress_add)
21658 {
21659 if (attr2 && (DW_UNSND (attr2) != 0))
21660 list_to_add = cu->get_builder ()->get_global_symbols ();
21661 else
21662 list_to_add = cu->list_in_scope;
21663 }
21664 break;
21665 }
21666 attr = dwarf2_attr (die, DW_AT_location, cu);
21667 if (attr)
21668 {
21669 var_decode_location (attr, sym, cu);
21670 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21671
21672 /* Fortran explicitly imports any global symbols to the local
21673 scope by DW_TAG_common_block. */
21674 if (cu->language == language_fortran && die->parent
21675 && die->parent->tag == DW_TAG_common_block)
21676 attr2 = NULL;
21677
21678 if (SYMBOL_CLASS (sym) == LOC_STATIC
21679 && SYMBOL_VALUE_ADDRESS (sym) == 0
21680 && !dwarf2_per_objfile->has_section_at_zero)
21681 {
21682 /* When a static variable is eliminated by the linker,
21683 the corresponding debug information is not stripped
21684 out, but the variable address is set to null;
21685 do not add such variables into symbol table. */
21686 }
21687 else if (attr2 && (DW_UNSND (attr2) != 0))
21688 {
21689 /* Workaround gfortran PR debug/40040 - it uses
21690 DW_AT_location for variables in -fPIC libraries which may
21691 get overriden by other libraries/executable and get
21692 a different address. Resolve it by the minimal symbol
21693 which may come from inferior's executable using copy
21694 relocation. Make this workaround only for gfortran as for
21695 other compilers GDB cannot guess the minimal symbol
21696 Fortran mangling kind. */
21697 if (cu->language == language_fortran && die->parent
21698 && die->parent->tag == DW_TAG_module
21699 && cu->producer
21700 && startswith (cu->producer, "GNU Fortran"))
21701 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21702
21703 /* A variable with DW_AT_external is never static,
21704 but it may be block-scoped. */
21705 list_to_add
21706 = ((cu->list_in_scope
21707 == cu->get_builder ()->get_file_symbols ())
21708 ? cu->get_builder ()->get_global_symbols ()
21709 : cu->list_in_scope);
21710 }
21711 else
21712 list_to_add = cu->list_in_scope;
21713 }
21714 else
21715 {
21716 /* We do not know the address of this symbol.
21717 If it is an external symbol and we have type information
21718 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21719 The address of the variable will then be determined from
21720 the minimal symbol table whenever the variable is
21721 referenced. */
21722 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21723
21724 /* Fortran explicitly imports any global symbols to the local
21725 scope by DW_TAG_common_block. */
21726 if (cu->language == language_fortran && die->parent
21727 && die->parent->tag == DW_TAG_common_block)
21728 {
21729 /* SYMBOL_CLASS doesn't matter here because
21730 read_common_block is going to reset it. */
21731 if (!suppress_add)
21732 list_to_add = cu->list_in_scope;
21733 }
21734 else if (attr2 && (DW_UNSND (attr2) != 0)
21735 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21736 {
21737 /* A variable with DW_AT_external is never static, but it
21738 may be block-scoped. */
21739 list_to_add
21740 = ((cu->list_in_scope
21741 == cu->get_builder ()->get_file_symbols ())
21742 ? cu->get_builder ()->get_global_symbols ()
21743 : cu->list_in_scope);
21744
21745 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21746 }
21747 else if (!die_is_declaration (die, cu))
21748 {
21749 /* Use the default LOC_OPTIMIZED_OUT class. */
21750 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21751 if (!suppress_add)
21752 list_to_add = cu->list_in_scope;
21753 }
21754 }
21755 break;
21756 case DW_TAG_formal_parameter:
21757 {
21758 /* If we are inside a function, mark this as an argument. If
21759 not, we might be looking at an argument to an inlined function
21760 when we do not have enough information to show inlined frames;
21761 pretend it's a local variable in that case so that the user can
21762 still see it. */
21763 struct context_stack *curr
21764 = cu->get_builder ()->get_current_context_stack ();
21765 if (curr != nullptr && curr->name != nullptr)
21766 SYMBOL_IS_ARGUMENT (sym) = 1;
21767 attr = dwarf2_attr (die, DW_AT_location, cu);
21768 if (attr)
21769 {
21770 var_decode_location (attr, sym, cu);
21771 }
21772 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21773 if (attr)
21774 {
21775 dwarf2_const_value (attr, sym, cu);
21776 }
21777
21778 list_to_add = cu->list_in_scope;
21779 }
21780 break;
21781 case DW_TAG_unspecified_parameters:
21782 /* From varargs functions; gdb doesn't seem to have any
21783 interest in this information, so just ignore it for now.
21784 (FIXME?) */
21785 break;
21786 case DW_TAG_template_type_param:
21787 suppress_add = 1;
21788 /* Fall through. */
21789 case DW_TAG_class_type:
21790 case DW_TAG_interface_type:
21791 case DW_TAG_structure_type:
21792 case DW_TAG_union_type:
21793 case DW_TAG_set_type:
21794 case DW_TAG_enumeration_type:
21795 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21796 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21797
21798 {
21799 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21800 really ever be static objects: otherwise, if you try
21801 to, say, break of a class's method and you're in a file
21802 which doesn't mention that class, it won't work unless
21803 the check for all static symbols in lookup_symbol_aux
21804 saves you. See the OtherFileClass tests in
21805 gdb.c++/namespace.exp. */
21806
21807 if (!suppress_add)
21808 {
21809 buildsym_compunit *builder = cu->get_builder ();
21810 list_to_add
21811 = (cu->list_in_scope == builder->get_file_symbols ()
21812 && cu->language == language_cplus
21813 ? builder->get_global_symbols ()
21814 : cu->list_in_scope);
21815
21816 /* The semantics of C++ state that "struct foo {
21817 ... }" also defines a typedef for "foo". */
21818 if (cu->language == language_cplus
21819 || cu->language == language_ada
21820 || cu->language == language_d
21821 || cu->language == language_rust)
21822 {
21823 /* The symbol's name is already allocated along
21824 with this objfile, so we don't need to
21825 duplicate it for the type. */
21826 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21827 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21828 }
21829 }
21830 }
21831 break;
21832 case DW_TAG_typedef:
21833 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21834 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21835 list_to_add = cu->list_in_scope;
21836 break;
21837 case DW_TAG_base_type:
21838 case DW_TAG_subrange_type:
21839 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21840 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21841 list_to_add = cu->list_in_scope;
21842 break;
21843 case DW_TAG_enumerator:
21844 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21845 if (attr)
21846 {
21847 dwarf2_const_value (attr, sym, cu);
21848 }
21849 {
21850 /* NOTE: carlton/2003-11-10: See comment above in the
21851 DW_TAG_class_type, etc. block. */
21852
21853 list_to_add
21854 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21855 && cu->language == language_cplus
21856 ? cu->get_builder ()->get_global_symbols ()
21857 : cu->list_in_scope);
21858 }
21859 break;
21860 case DW_TAG_imported_declaration:
21861 case DW_TAG_namespace:
21862 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21863 list_to_add = cu->get_builder ()->get_global_symbols ();
21864 break;
21865 case DW_TAG_module:
21866 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21867 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21868 list_to_add = cu->get_builder ()->get_global_symbols ();
21869 break;
21870 case DW_TAG_common_block:
21871 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21872 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21873 add_symbol_to_list (sym, cu->list_in_scope);
21874 break;
21875 default:
21876 /* Not a tag we recognize. Hopefully we aren't processing
21877 trash data, but since we must specifically ignore things
21878 we don't recognize, there is nothing else we should do at
21879 this point. */
21880 complaint (_("unsupported tag: '%s'"),
21881 dwarf_tag_name (die->tag));
21882 break;
21883 }
21884
21885 if (suppress_add)
21886 {
21887 sym->hash_next = objfile->template_symbols;
21888 objfile->template_symbols = sym;
21889 list_to_add = NULL;
21890 }
21891
21892 if (list_to_add != NULL)
21893 add_symbol_to_list (sym, list_to_add);
21894
21895 /* For the benefit of old versions of GCC, check for anonymous
21896 namespaces based on the demangled name. */
21897 if (!cu->processing_has_namespace_info
21898 && cu->language == language_cplus)
21899 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21900 }
21901 return (sym);
21902 }
21903
21904 /* Given an attr with a DW_FORM_dataN value in host byte order,
21905 zero-extend it as appropriate for the symbol's type. The DWARF
21906 standard (v4) is not entirely clear about the meaning of using
21907 DW_FORM_dataN for a constant with a signed type, where the type is
21908 wider than the data. The conclusion of a discussion on the DWARF
21909 list was that this is unspecified. We choose to always zero-extend
21910 because that is the interpretation long in use by GCC. */
21911
21912 static gdb_byte *
21913 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21914 struct dwarf2_cu *cu, LONGEST *value, int bits)
21915 {
21916 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21917 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21918 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21919 LONGEST l = DW_UNSND (attr);
21920
21921 if (bits < sizeof (*value) * 8)
21922 {
21923 l &= ((LONGEST) 1 << bits) - 1;
21924 *value = l;
21925 }
21926 else if (bits == sizeof (*value) * 8)
21927 *value = l;
21928 else
21929 {
21930 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21931 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21932 return bytes;
21933 }
21934
21935 return NULL;
21936 }
21937
21938 /* Read a constant value from an attribute. Either set *VALUE, or if
21939 the value does not fit in *VALUE, set *BYTES - either already
21940 allocated on the objfile obstack, or newly allocated on OBSTACK,
21941 or, set *BATON, if we translated the constant to a location
21942 expression. */
21943
21944 static void
21945 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21946 const char *name, struct obstack *obstack,
21947 struct dwarf2_cu *cu,
21948 LONGEST *value, const gdb_byte **bytes,
21949 struct dwarf2_locexpr_baton **baton)
21950 {
21951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21952 struct comp_unit_head *cu_header = &cu->header;
21953 struct dwarf_block *blk;
21954 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21955 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21956
21957 *value = 0;
21958 *bytes = NULL;
21959 *baton = NULL;
21960
21961 switch (attr->form)
21962 {
21963 case DW_FORM_addr:
21964 case DW_FORM_addrx:
21965 case DW_FORM_GNU_addr_index:
21966 {
21967 gdb_byte *data;
21968
21969 if (TYPE_LENGTH (type) != cu_header->addr_size)
21970 dwarf2_const_value_length_mismatch_complaint (name,
21971 cu_header->addr_size,
21972 TYPE_LENGTH (type));
21973 /* Symbols of this form are reasonably rare, so we just
21974 piggyback on the existing location code rather than writing
21975 a new implementation of symbol_computed_ops. */
21976 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21977 (*baton)->per_cu = cu->per_cu;
21978 gdb_assert ((*baton)->per_cu);
21979
21980 (*baton)->size = 2 + cu_header->addr_size;
21981 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21982 (*baton)->data = data;
21983
21984 data[0] = DW_OP_addr;
21985 store_unsigned_integer (&data[1], cu_header->addr_size,
21986 byte_order, DW_ADDR (attr));
21987 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21988 }
21989 break;
21990 case DW_FORM_string:
21991 case DW_FORM_strp:
21992 case DW_FORM_strx:
21993 case DW_FORM_GNU_str_index:
21994 case DW_FORM_GNU_strp_alt:
21995 /* DW_STRING is already allocated on the objfile obstack, point
21996 directly to it. */
21997 *bytes = (const gdb_byte *) DW_STRING (attr);
21998 break;
21999 case DW_FORM_block1:
22000 case DW_FORM_block2:
22001 case DW_FORM_block4:
22002 case DW_FORM_block:
22003 case DW_FORM_exprloc:
22004 case DW_FORM_data16:
22005 blk = DW_BLOCK (attr);
22006 if (TYPE_LENGTH (type) != blk->size)
22007 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22008 TYPE_LENGTH (type));
22009 *bytes = blk->data;
22010 break;
22011
22012 /* The DW_AT_const_value attributes are supposed to carry the
22013 symbol's value "represented as it would be on the target
22014 architecture." By the time we get here, it's already been
22015 converted to host endianness, so we just need to sign- or
22016 zero-extend it as appropriate. */
22017 case DW_FORM_data1:
22018 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22019 break;
22020 case DW_FORM_data2:
22021 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22022 break;
22023 case DW_FORM_data4:
22024 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22025 break;
22026 case DW_FORM_data8:
22027 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22028 break;
22029
22030 case DW_FORM_sdata:
22031 case DW_FORM_implicit_const:
22032 *value = DW_SND (attr);
22033 break;
22034
22035 case DW_FORM_udata:
22036 *value = DW_UNSND (attr);
22037 break;
22038
22039 default:
22040 complaint (_("unsupported const value attribute form: '%s'"),
22041 dwarf_form_name (attr->form));
22042 *value = 0;
22043 break;
22044 }
22045 }
22046
22047
22048 /* Copy constant value from an attribute to a symbol. */
22049
22050 static void
22051 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22052 struct dwarf2_cu *cu)
22053 {
22054 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22055 LONGEST value;
22056 const gdb_byte *bytes;
22057 struct dwarf2_locexpr_baton *baton;
22058
22059 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22060 SYMBOL_PRINT_NAME (sym),
22061 &objfile->objfile_obstack, cu,
22062 &value, &bytes, &baton);
22063
22064 if (baton != NULL)
22065 {
22066 SYMBOL_LOCATION_BATON (sym) = baton;
22067 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22068 }
22069 else if (bytes != NULL)
22070 {
22071 SYMBOL_VALUE_BYTES (sym) = bytes;
22072 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22073 }
22074 else
22075 {
22076 SYMBOL_VALUE (sym) = value;
22077 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22078 }
22079 }
22080
22081 /* Return the type of the die in question using its DW_AT_type attribute. */
22082
22083 static struct type *
22084 die_type (struct die_info *die, struct dwarf2_cu *cu)
22085 {
22086 struct attribute *type_attr;
22087
22088 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22089 if (!type_attr)
22090 {
22091 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22092 /* A missing DW_AT_type represents a void type. */
22093 return objfile_type (objfile)->builtin_void;
22094 }
22095
22096 return lookup_die_type (die, type_attr, cu);
22097 }
22098
22099 /* True iff CU's producer generates GNAT Ada auxiliary information
22100 that allows to find parallel types through that information instead
22101 of having to do expensive parallel lookups by type name. */
22102
22103 static int
22104 need_gnat_info (struct dwarf2_cu *cu)
22105 {
22106 /* Assume that the Ada compiler was GNAT, which always produces
22107 the auxiliary information. */
22108 return (cu->language == language_ada);
22109 }
22110
22111 /* Return the auxiliary type of the die in question using its
22112 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22113 attribute is not present. */
22114
22115 static struct type *
22116 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22117 {
22118 struct attribute *type_attr;
22119
22120 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22121 if (!type_attr)
22122 return NULL;
22123
22124 return lookup_die_type (die, type_attr, cu);
22125 }
22126
22127 /* If DIE has a descriptive_type attribute, then set the TYPE's
22128 descriptive type accordingly. */
22129
22130 static void
22131 set_descriptive_type (struct type *type, struct die_info *die,
22132 struct dwarf2_cu *cu)
22133 {
22134 struct type *descriptive_type = die_descriptive_type (die, cu);
22135
22136 if (descriptive_type)
22137 {
22138 ALLOCATE_GNAT_AUX_TYPE (type);
22139 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22140 }
22141 }
22142
22143 /* Return the containing type of the die in question using its
22144 DW_AT_containing_type attribute. */
22145
22146 static struct type *
22147 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22148 {
22149 struct attribute *type_attr;
22150 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22151
22152 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22153 if (!type_attr)
22154 error (_("Dwarf Error: Problem turning containing type into gdb type "
22155 "[in module %s]"), objfile_name (objfile));
22156
22157 return lookup_die_type (die, type_attr, cu);
22158 }
22159
22160 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22161
22162 static struct type *
22163 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22164 {
22165 struct dwarf2_per_objfile *dwarf2_per_objfile
22166 = cu->per_cu->dwarf2_per_objfile;
22167 struct objfile *objfile = dwarf2_per_objfile->objfile;
22168 char *saved;
22169
22170 std::string message
22171 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22172 objfile_name (objfile),
22173 sect_offset_str (cu->header.sect_off),
22174 sect_offset_str (die->sect_off));
22175 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22176 message.c_str (), message.length ());
22177
22178 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22179 }
22180
22181 /* Look up the type of DIE in CU using its type attribute ATTR.
22182 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22183 DW_AT_containing_type.
22184 If there is no type substitute an error marker. */
22185
22186 static struct type *
22187 lookup_die_type (struct die_info *die, const struct attribute *attr,
22188 struct dwarf2_cu *cu)
22189 {
22190 struct dwarf2_per_objfile *dwarf2_per_objfile
22191 = cu->per_cu->dwarf2_per_objfile;
22192 struct objfile *objfile = dwarf2_per_objfile->objfile;
22193 struct type *this_type;
22194
22195 gdb_assert (attr->name == DW_AT_type
22196 || attr->name == DW_AT_GNAT_descriptive_type
22197 || attr->name == DW_AT_containing_type);
22198
22199 /* First see if we have it cached. */
22200
22201 if (attr->form == DW_FORM_GNU_ref_alt)
22202 {
22203 struct dwarf2_per_cu_data *per_cu;
22204 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22205
22206 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22207 dwarf2_per_objfile);
22208 this_type = get_die_type_at_offset (sect_off, per_cu);
22209 }
22210 else if (attr_form_is_ref (attr))
22211 {
22212 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22213
22214 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22215 }
22216 else if (attr->form == DW_FORM_ref_sig8)
22217 {
22218 ULONGEST signature = DW_SIGNATURE (attr);
22219
22220 return get_signatured_type (die, signature, cu);
22221 }
22222 else
22223 {
22224 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22225 " at %s [in module %s]"),
22226 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22227 objfile_name (objfile));
22228 return build_error_marker_type (cu, die);
22229 }
22230
22231 /* If not cached we need to read it in. */
22232
22233 if (this_type == NULL)
22234 {
22235 struct die_info *type_die = NULL;
22236 struct dwarf2_cu *type_cu = cu;
22237
22238 if (attr_form_is_ref (attr))
22239 type_die = follow_die_ref (die, attr, &type_cu);
22240 if (type_die == NULL)
22241 return build_error_marker_type (cu, die);
22242 /* If we find the type now, it's probably because the type came
22243 from an inter-CU reference and the type's CU got expanded before
22244 ours. */
22245 this_type = read_type_die (type_die, type_cu);
22246 }
22247
22248 /* If we still don't have a type use an error marker. */
22249
22250 if (this_type == NULL)
22251 return build_error_marker_type (cu, die);
22252
22253 return this_type;
22254 }
22255
22256 /* Return the type in DIE, CU.
22257 Returns NULL for invalid types.
22258
22259 This first does a lookup in die_type_hash,
22260 and only reads the die in if necessary.
22261
22262 NOTE: This can be called when reading in partial or full symbols. */
22263
22264 static struct type *
22265 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22266 {
22267 struct type *this_type;
22268
22269 this_type = get_die_type (die, cu);
22270 if (this_type)
22271 return this_type;
22272
22273 return read_type_die_1 (die, cu);
22274 }
22275
22276 /* Read the type in DIE, CU.
22277 Returns NULL for invalid types. */
22278
22279 static struct type *
22280 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22281 {
22282 struct type *this_type = NULL;
22283
22284 switch (die->tag)
22285 {
22286 case DW_TAG_class_type:
22287 case DW_TAG_interface_type:
22288 case DW_TAG_structure_type:
22289 case DW_TAG_union_type:
22290 this_type = read_structure_type (die, cu);
22291 break;
22292 case DW_TAG_enumeration_type:
22293 this_type = read_enumeration_type (die, cu);
22294 break;
22295 case DW_TAG_subprogram:
22296 case DW_TAG_subroutine_type:
22297 case DW_TAG_inlined_subroutine:
22298 this_type = read_subroutine_type (die, cu);
22299 break;
22300 case DW_TAG_array_type:
22301 this_type = read_array_type (die, cu);
22302 break;
22303 case DW_TAG_set_type:
22304 this_type = read_set_type (die, cu);
22305 break;
22306 case DW_TAG_pointer_type:
22307 this_type = read_tag_pointer_type (die, cu);
22308 break;
22309 case DW_TAG_ptr_to_member_type:
22310 this_type = read_tag_ptr_to_member_type (die, cu);
22311 break;
22312 case DW_TAG_reference_type:
22313 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22314 break;
22315 case DW_TAG_rvalue_reference_type:
22316 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22317 break;
22318 case DW_TAG_const_type:
22319 this_type = read_tag_const_type (die, cu);
22320 break;
22321 case DW_TAG_volatile_type:
22322 this_type = read_tag_volatile_type (die, cu);
22323 break;
22324 case DW_TAG_restrict_type:
22325 this_type = read_tag_restrict_type (die, cu);
22326 break;
22327 case DW_TAG_string_type:
22328 this_type = read_tag_string_type (die, cu);
22329 break;
22330 case DW_TAG_typedef:
22331 this_type = read_typedef (die, cu);
22332 break;
22333 case DW_TAG_subrange_type:
22334 this_type = read_subrange_type (die, cu);
22335 break;
22336 case DW_TAG_base_type:
22337 this_type = read_base_type (die, cu);
22338 break;
22339 case DW_TAG_unspecified_type:
22340 this_type = read_unspecified_type (die, cu);
22341 break;
22342 case DW_TAG_namespace:
22343 this_type = read_namespace_type (die, cu);
22344 break;
22345 case DW_TAG_module:
22346 this_type = read_module_type (die, cu);
22347 break;
22348 case DW_TAG_atomic_type:
22349 this_type = read_tag_atomic_type (die, cu);
22350 break;
22351 default:
22352 complaint (_("unexpected tag in read_type_die: '%s'"),
22353 dwarf_tag_name (die->tag));
22354 break;
22355 }
22356
22357 return this_type;
22358 }
22359
22360 /* See if we can figure out if the class lives in a namespace. We do
22361 this by looking for a member function; its demangled name will
22362 contain namespace info, if there is any.
22363 Return the computed name or NULL.
22364 Space for the result is allocated on the objfile's obstack.
22365 This is the full-die version of guess_partial_die_structure_name.
22366 In this case we know DIE has no useful parent. */
22367
22368 static char *
22369 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22370 {
22371 struct die_info *spec_die;
22372 struct dwarf2_cu *spec_cu;
22373 struct die_info *child;
22374 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22375
22376 spec_cu = cu;
22377 spec_die = die_specification (die, &spec_cu);
22378 if (spec_die != NULL)
22379 {
22380 die = spec_die;
22381 cu = spec_cu;
22382 }
22383
22384 for (child = die->child;
22385 child != NULL;
22386 child = child->sibling)
22387 {
22388 if (child->tag == DW_TAG_subprogram)
22389 {
22390 const char *linkage_name = dw2_linkage_name (child, cu);
22391
22392 if (linkage_name != NULL)
22393 {
22394 char *actual_name
22395 = language_class_name_from_physname (cu->language_defn,
22396 linkage_name);
22397 char *name = NULL;
22398
22399 if (actual_name != NULL)
22400 {
22401 const char *die_name = dwarf2_name (die, cu);
22402
22403 if (die_name != NULL
22404 && strcmp (die_name, actual_name) != 0)
22405 {
22406 /* Strip off the class name from the full name.
22407 We want the prefix. */
22408 int die_name_len = strlen (die_name);
22409 int actual_name_len = strlen (actual_name);
22410
22411 /* Test for '::' as a sanity check. */
22412 if (actual_name_len > die_name_len + 2
22413 && actual_name[actual_name_len
22414 - die_name_len - 1] == ':')
22415 name = (char *) obstack_copy0 (
22416 &objfile->per_bfd->storage_obstack,
22417 actual_name, actual_name_len - die_name_len - 2);
22418 }
22419 }
22420 xfree (actual_name);
22421 return name;
22422 }
22423 }
22424 }
22425
22426 return NULL;
22427 }
22428
22429 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22430 prefix part in such case. See
22431 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22432
22433 static const char *
22434 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22435 {
22436 struct attribute *attr;
22437 const char *base;
22438
22439 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22440 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22441 return NULL;
22442
22443 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22444 return NULL;
22445
22446 attr = dw2_linkage_name_attr (die, cu);
22447 if (attr == NULL || DW_STRING (attr) == NULL)
22448 return NULL;
22449
22450 /* dwarf2_name had to be already called. */
22451 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22452
22453 /* Strip the base name, keep any leading namespaces/classes. */
22454 base = strrchr (DW_STRING (attr), ':');
22455 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22456 return "";
22457
22458 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22459 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22460 DW_STRING (attr),
22461 &base[-1] - DW_STRING (attr));
22462 }
22463
22464 /* Return the name of the namespace/class that DIE is defined within,
22465 or "" if we can't tell. The caller should not xfree the result.
22466
22467 For example, if we're within the method foo() in the following
22468 code:
22469
22470 namespace N {
22471 class C {
22472 void foo () {
22473 }
22474 };
22475 }
22476
22477 then determine_prefix on foo's die will return "N::C". */
22478
22479 static const char *
22480 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22481 {
22482 struct dwarf2_per_objfile *dwarf2_per_objfile
22483 = cu->per_cu->dwarf2_per_objfile;
22484 struct die_info *parent, *spec_die;
22485 struct dwarf2_cu *spec_cu;
22486 struct type *parent_type;
22487 const char *retval;
22488
22489 if (cu->language != language_cplus
22490 && cu->language != language_fortran && cu->language != language_d
22491 && cu->language != language_rust)
22492 return "";
22493
22494 retval = anonymous_struct_prefix (die, cu);
22495 if (retval)
22496 return retval;
22497
22498 /* We have to be careful in the presence of DW_AT_specification.
22499 For example, with GCC 3.4, given the code
22500
22501 namespace N {
22502 void foo() {
22503 // Definition of N::foo.
22504 }
22505 }
22506
22507 then we'll have a tree of DIEs like this:
22508
22509 1: DW_TAG_compile_unit
22510 2: DW_TAG_namespace // N
22511 3: DW_TAG_subprogram // declaration of N::foo
22512 4: DW_TAG_subprogram // definition of N::foo
22513 DW_AT_specification // refers to die #3
22514
22515 Thus, when processing die #4, we have to pretend that we're in
22516 the context of its DW_AT_specification, namely the contex of die
22517 #3. */
22518 spec_cu = cu;
22519 spec_die = die_specification (die, &spec_cu);
22520 if (spec_die == NULL)
22521 parent = die->parent;
22522 else
22523 {
22524 parent = spec_die->parent;
22525 cu = spec_cu;
22526 }
22527
22528 if (parent == NULL)
22529 return "";
22530 else if (parent->building_fullname)
22531 {
22532 const char *name;
22533 const char *parent_name;
22534
22535 /* It has been seen on RealView 2.2 built binaries,
22536 DW_TAG_template_type_param types actually _defined_ as
22537 children of the parent class:
22538
22539 enum E {};
22540 template class <class Enum> Class{};
22541 Class<enum E> class_e;
22542
22543 1: DW_TAG_class_type (Class)
22544 2: DW_TAG_enumeration_type (E)
22545 3: DW_TAG_enumerator (enum1:0)
22546 3: DW_TAG_enumerator (enum2:1)
22547 ...
22548 2: DW_TAG_template_type_param
22549 DW_AT_type DW_FORM_ref_udata (E)
22550
22551 Besides being broken debug info, it can put GDB into an
22552 infinite loop. Consider:
22553
22554 When we're building the full name for Class<E>, we'll start
22555 at Class, and go look over its template type parameters,
22556 finding E. We'll then try to build the full name of E, and
22557 reach here. We're now trying to build the full name of E,
22558 and look over the parent DIE for containing scope. In the
22559 broken case, if we followed the parent DIE of E, we'd again
22560 find Class, and once again go look at its template type
22561 arguments, etc., etc. Simply don't consider such parent die
22562 as source-level parent of this die (it can't be, the language
22563 doesn't allow it), and break the loop here. */
22564 name = dwarf2_name (die, cu);
22565 parent_name = dwarf2_name (parent, cu);
22566 complaint (_("template param type '%s' defined within parent '%s'"),
22567 name ? name : "<unknown>",
22568 parent_name ? parent_name : "<unknown>");
22569 return "";
22570 }
22571 else
22572 switch (parent->tag)
22573 {
22574 case DW_TAG_namespace:
22575 parent_type = read_type_die (parent, cu);
22576 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22577 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22578 Work around this problem here. */
22579 if (cu->language == language_cplus
22580 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22581 return "";
22582 /* We give a name to even anonymous namespaces. */
22583 return TYPE_NAME (parent_type);
22584 case DW_TAG_class_type:
22585 case DW_TAG_interface_type:
22586 case DW_TAG_structure_type:
22587 case DW_TAG_union_type:
22588 case DW_TAG_module:
22589 parent_type = read_type_die (parent, cu);
22590 if (TYPE_NAME (parent_type) != NULL)
22591 return TYPE_NAME (parent_type);
22592 else
22593 /* An anonymous structure is only allowed non-static data
22594 members; no typedefs, no member functions, et cetera.
22595 So it does not need a prefix. */
22596 return "";
22597 case DW_TAG_compile_unit:
22598 case DW_TAG_partial_unit:
22599 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22600 if (cu->language == language_cplus
22601 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22602 && die->child != NULL
22603 && (die->tag == DW_TAG_class_type
22604 || die->tag == DW_TAG_structure_type
22605 || die->tag == DW_TAG_union_type))
22606 {
22607 char *name = guess_full_die_structure_name (die, cu);
22608 if (name != NULL)
22609 return name;
22610 }
22611 return "";
22612 case DW_TAG_enumeration_type:
22613 parent_type = read_type_die (parent, cu);
22614 if (TYPE_DECLARED_CLASS (parent_type))
22615 {
22616 if (TYPE_NAME (parent_type) != NULL)
22617 return TYPE_NAME (parent_type);
22618 return "";
22619 }
22620 /* Fall through. */
22621 default:
22622 return determine_prefix (parent, cu);
22623 }
22624 }
22625
22626 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22627 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22628 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22629 an obconcat, otherwise allocate storage for the result. The CU argument is
22630 used to determine the language and hence, the appropriate separator. */
22631
22632 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22633
22634 static char *
22635 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22636 int physname, struct dwarf2_cu *cu)
22637 {
22638 const char *lead = "";
22639 const char *sep;
22640
22641 if (suffix == NULL || suffix[0] == '\0'
22642 || prefix == NULL || prefix[0] == '\0')
22643 sep = "";
22644 else if (cu->language == language_d)
22645 {
22646 /* For D, the 'main' function could be defined in any module, but it
22647 should never be prefixed. */
22648 if (strcmp (suffix, "D main") == 0)
22649 {
22650 prefix = "";
22651 sep = "";
22652 }
22653 else
22654 sep = ".";
22655 }
22656 else if (cu->language == language_fortran && physname)
22657 {
22658 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22659 DW_AT_MIPS_linkage_name is preferred and used instead. */
22660
22661 lead = "__";
22662 sep = "_MOD_";
22663 }
22664 else
22665 sep = "::";
22666
22667 if (prefix == NULL)
22668 prefix = "";
22669 if (suffix == NULL)
22670 suffix = "";
22671
22672 if (obs == NULL)
22673 {
22674 char *retval
22675 = ((char *)
22676 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22677
22678 strcpy (retval, lead);
22679 strcat (retval, prefix);
22680 strcat (retval, sep);
22681 strcat (retval, suffix);
22682 return retval;
22683 }
22684 else
22685 {
22686 /* We have an obstack. */
22687 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22688 }
22689 }
22690
22691 /* Return sibling of die, NULL if no sibling. */
22692
22693 static struct die_info *
22694 sibling_die (struct die_info *die)
22695 {
22696 return die->sibling;
22697 }
22698
22699 /* Get name of a die, return NULL if not found. */
22700
22701 static const char *
22702 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22703 struct obstack *obstack)
22704 {
22705 if (name && cu->language == language_cplus)
22706 {
22707 std::string canon_name = cp_canonicalize_string (name);
22708
22709 if (!canon_name.empty ())
22710 {
22711 if (canon_name != name)
22712 name = (const char *) obstack_copy0 (obstack,
22713 canon_name.c_str (),
22714 canon_name.length ());
22715 }
22716 }
22717
22718 return name;
22719 }
22720
22721 /* Get name of a die, return NULL if not found.
22722 Anonymous namespaces are converted to their magic string. */
22723
22724 static const char *
22725 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22726 {
22727 struct attribute *attr;
22728 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22729
22730 attr = dwarf2_attr (die, DW_AT_name, cu);
22731 if ((!attr || !DW_STRING (attr))
22732 && die->tag != DW_TAG_namespace
22733 && die->tag != DW_TAG_class_type
22734 && die->tag != DW_TAG_interface_type
22735 && die->tag != DW_TAG_structure_type
22736 && die->tag != DW_TAG_union_type)
22737 return NULL;
22738
22739 switch (die->tag)
22740 {
22741 case DW_TAG_compile_unit:
22742 case DW_TAG_partial_unit:
22743 /* Compilation units have a DW_AT_name that is a filename, not
22744 a source language identifier. */
22745 case DW_TAG_enumeration_type:
22746 case DW_TAG_enumerator:
22747 /* These tags always have simple identifiers already; no need
22748 to canonicalize them. */
22749 return DW_STRING (attr);
22750
22751 case DW_TAG_namespace:
22752 if (attr != NULL && DW_STRING (attr) != NULL)
22753 return DW_STRING (attr);
22754 return CP_ANONYMOUS_NAMESPACE_STR;
22755
22756 case DW_TAG_class_type:
22757 case DW_TAG_interface_type:
22758 case DW_TAG_structure_type:
22759 case DW_TAG_union_type:
22760 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22761 structures or unions. These were of the form "._%d" in GCC 4.1,
22762 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22763 and GCC 4.4. We work around this problem by ignoring these. */
22764 if (attr && DW_STRING (attr)
22765 && (startswith (DW_STRING (attr), "._")
22766 || startswith (DW_STRING (attr), "<anonymous")))
22767 return NULL;
22768
22769 /* GCC might emit a nameless typedef that has a linkage name. See
22770 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22771 if (!attr || DW_STRING (attr) == NULL)
22772 {
22773 char *demangled = NULL;
22774
22775 attr = dw2_linkage_name_attr (die, cu);
22776 if (attr == NULL || DW_STRING (attr) == NULL)
22777 return NULL;
22778
22779 /* Avoid demangling DW_STRING (attr) the second time on a second
22780 call for the same DIE. */
22781 if (!DW_STRING_IS_CANONICAL (attr))
22782 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22783
22784 if (demangled)
22785 {
22786 const char *base;
22787
22788 /* FIXME: we already did this for the partial symbol... */
22789 DW_STRING (attr)
22790 = ((const char *)
22791 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22792 demangled, strlen (demangled)));
22793 DW_STRING_IS_CANONICAL (attr) = 1;
22794 xfree (demangled);
22795
22796 /* Strip any leading namespaces/classes, keep only the base name.
22797 DW_AT_name for named DIEs does not contain the prefixes. */
22798 base = strrchr (DW_STRING (attr), ':');
22799 if (base && base > DW_STRING (attr) && base[-1] == ':')
22800 return &base[1];
22801 else
22802 return DW_STRING (attr);
22803 }
22804 }
22805 break;
22806
22807 default:
22808 break;
22809 }
22810
22811 if (!DW_STRING_IS_CANONICAL (attr))
22812 {
22813 DW_STRING (attr)
22814 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22815 &objfile->per_bfd->storage_obstack);
22816 DW_STRING_IS_CANONICAL (attr) = 1;
22817 }
22818 return DW_STRING (attr);
22819 }
22820
22821 /* Return the die that this die in an extension of, or NULL if there
22822 is none. *EXT_CU is the CU containing DIE on input, and the CU
22823 containing the return value on output. */
22824
22825 static struct die_info *
22826 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22827 {
22828 struct attribute *attr;
22829
22830 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22831 if (attr == NULL)
22832 return NULL;
22833
22834 return follow_die_ref (die, attr, ext_cu);
22835 }
22836
22837 /* A convenience function that returns an "unknown" DWARF name,
22838 including the value of V. STR is the name of the entity being
22839 printed, e.g., "TAG". */
22840
22841 static const char *
22842 dwarf_unknown (const char *str, unsigned v)
22843 {
22844 char *cell = get_print_cell ();
22845 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22846 return cell;
22847 }
22848
22849 /* Convert a DIE tag into its string name. */
22850
22851 static const char *
22852 dwarf_tag_name (unsigned tag)
22853 {
22854 const char *name = get_DW_TAG_name (tag);
22855
22856 if (name == NULL)
22857 return dwarf_unknown ("TAG", tag);
22858
22859 return name;
22860 }
22861
22862 /* Convert a DWARF attribute code into its string name. */
22863
22864 static const char *
22865 dwarf_attr_name (unsigned attr)
22866 {
22867 const char *name;
22868
22869 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22870 if (attr == DW_AT_MIPS_fde)
22871 return "DW_AT_MIPS_fde";
22872 #else
22873 if (attr == DW_AT_HP_block_index)
22874 return "DW_AT_HP_block_index";
22875 #endif
22876
22877 name = get_DW_AT_name (attr);
22878
22879 if (name == NULL)
22880 return dwarf_unknown ("AT", attr);
22881
22882 return name;
22883 }
22884
22885 /* Convert a DWARF value form code into its string name. */
22886
22887 static const char *
22888 dwarf_form_name (unsigned form)
22889 {
22890 const char *name = get_DW_FORM_name (form);
22891
22892 if (name == NULL)
22893 return dwarf_unknown ("FORM", form);
22894
22895 return name;
22896 }
22897
22898 static const char *
22899 dwarf_bool_name (unsigned mybool)
22900 {
22901 if (mybool)
22902 return "TRUE";
22903 else
22904 return "FALSE";
22905 }
22906
22907 /* Convert a DWARF type code into its string name. */
22908
22909 static const char *
22910 dwarf_type_encoding_name (unsigned enc)
22911 {
22912 const char *name = get_DW_ATE_name (enc);
22913
22914 if (name == NULL)
22915 return dwarf_unknown ("ATE", enc);
22916
22917 return name;
22918 }
22919
22920 static void
22921 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22922 {
22923 unsigned int i;
22924
22925 print_spaces (indent, f);
22926 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22927 dwarf_tag_name (die->tag), die->abbrev,
22928 sect_offset_str (die->sect_off));
22929
22930 if (die->parent != NULL)
22931 {
22932 print_spaces (indent, f);
22933 fprintf_unfiltered (f, " parent at offset: %s\n",
22934 sect_offset_str (die->parent->sect_off));
22935 }
22936
22937 print_spaces (indent, f);
22938 fprintf_unfiltered (f, " has children: %s\n",
22939 dwarf_bool_name (die->child != NULL));
22940
22941 print_spaces (indent, f);
22942 fprintf_unfiltered (f, " attributes:\n");
22943
22944 for (i = 0; i < die->num_attrs; ++i)
22945 {
22946 print_spaces (indent, f);
22947 fprintf_unfiltered (f, " %s (%s) ",
22948 dwarf_attr_name (die->attrs[i].name),
22949 dwarf_form_name (die->attrs[i].form));
22950
22951 switch (die->attrs[i].form)
22952 {
22953 case DW_FORM_addr:
22954 case DW_FORM_addrx:
22955 case DW_FORM_GNU_addr_index:
22956 fprintf_unfiltered (f, "address: ");
22957 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22958 break;
22959 case DW_FORM_block2:
22960 case DW_FORM_block4:
22961 case DW_FORM_block:
22962 case DW_FORM_block1:
22963 fprintf_unfiltered (f, "block: size %s",
22964 pulongest (DW_BLOCK (&die->attrs[i])->size));
22965 break;
22966 case DW_FORM_exprloc:
22967 fprintf_unfiltered (f, "expression: size %s",
22968 pulongest (DW_BLOCK (&die->attrs[i])->size));
22969 break;
22970 case DW_FORM_data16:
22971 fprintf_unfiltered (f, "constant of 16 bytes");
22972 break;
22973 case DW_FORM_ref_addr:
22974 fprintf_unfiltered (f, "ref address: ");
22975 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22976 break;
22977 case DW_FORM_GNU_ref_alt:
22978 fprintf_unfiltered (f, "alt ref address: ");
22979 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22980 break;
22981 case DW_FORM_ref1:
22982 case DW_FORM_ref2:
22983 case DW_FORM_ref4:
22984 case DW_FORM_ref8:
22985 case DW_FORM_ref_udata:
22986 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22987 (long) (DW_UNSND (&die->attrs[i])));
22988 break;
22989 case DW_FORM_data1:
22990 case DW_FORM_data2:
22991 case DW_FORM_data4:
22992 case DW_FORM_data8:
22993 case DW_FORM_udata:
22994 case DW_FORM_sdata:
22995 fprintf_unfiltered (f, "constant: %s",
22996 pulongest (DW_UNSND (&die->attrs[i])));
22997 break;
22998 case DW_FORM_sec_offset:
22999 fprintf_unfiltered (f, "section offset: %s",
23000 pulongest (DW_UNSND (&die->attrs[i])));
23001 break;
23002 case DW_FORM_ref_sig8:
23003 fprintf_unfiltered (f, "signature: %s",
23004 hex_string (DW_SIGNATURE (&die->attrs[i])));
23005 break;
23006 case DW_FORM_string:
23007 case DW_FORM_strp:
23008 case DW_FORM_line_strp:
23009 case DW_FORM_strx:
23010 case DW_FORM_GNU_str_index:
23011 case DW_FORM_GNU_strp_alt:
23012 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23013 DW_STRING (&die->attrs[i])
23014 ? DW_STRING (&die->attrs[i]) : "",
23015 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23016 break;
23017 case DW_FORM_flag:
23018 if (DW_UNSND (&die->attrs[i]))
23019 fprintf_unfiltered (f, "flag: TRUE");
23020 else
23021 fprintf_unfiltered (f, "flag: FALSE");
23022 break;
23023 case DW_FORM_flag_present:
23024 fprintf_unfiltered (f, "flag: TRUE");
23025 break;
23026 case DW_FORM_indirect:
23027 /* The reader will have reduced the indirect form to
23028 the "base form" so this form should not occur. */
23029 fprintf_unfiltered (f,
23030 "unexpected attribute form: DW_FORM_indirect");
23031 break;
23032 case DW_FORM_implicit_const:
23033 fprintf_unfiltered (f, "constant: %s",
23034 plongest (DW_SND (&die->attrs[i])));
23035 break;
23036 default:
23037 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23038 die->attrs[i].form);
23039 break;
23040 }
23041 fprintf_unfiltered (f, "\n");
23042 }
23043 }
23044
23045 static void
23046 dump_die_for_error (struct die_info *die)
23047 {
23048 dump_die_shallow (gdb_stderr, 0, die);
23049 }
23050
23051 static void
23052 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23053 {
23054 int indent = level * 4;
23055
23056 gdb_assert (die != NULL);
23057
23058 if (level >= max_level)
23059 return;
23060
23061 dump_die_shallow (f, indent, die);
23062
23063 if (die->child != NULL)
23064 {
23065 print_spaces (indent, f);
23066 fprintf_unfiltered (f, " Children:");
23067 if (level + 1 < max_level)
23068 {
23069 fprintf_unfiltered (f, "\n");
23070 dump_die_1 (f, level + 1, max_level, die->child);
23071 }
23072 else
23073 {
23074 fprintf_unfiltered (f,
23075 " [not printed, max nesting level reached]\n");
23076 }
23077 }
23078
23079 if (die->sibling != NULL && level > 0)
23080 {
23081 dump_die_1 (f, level, max_level, die->sibling);
23082 }
23083 }
23084
23085 /* This is called from the pdie macro in gdbinit.in.
23086 It's not static so gcc will keep a copy callable from gdb. */
23087
23088 void
23089 dump_die (struct die_info *die, int max_level)
23090 {
23091 dump_die_1 (gdb_stdlog, 0, max_level, die);
23092 }
23093
23094 static void
23095 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23096 {
23097 void **slot;
23098
23099 slot = htab_find_slot_with_hash (cu->die_hash, die,
23100 to_underlying (die->sect_off),
23101 INSERT);
23102
23103 *slot = die;
23104 }
23105
23106 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23107 required kind. */
23108
23109 static sect_offset
23110 dwarf2_get_ref_die_offset (const struct attribute *attr)
23111 {
23112 if (attr_form_is_ref (attr))
23113 return (sect_offset) DW_UNSND (attr);
23114
23115 complaint (_("unsupported die ref attribute form: '%s'"),
23116 dwarf_form_name (attr->form));
23117 return {};
23118 }
23119
23120 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23121 * the value held by the attribute is not constant. */
23122
23123 static LONGEST
23124 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23125 {
23126 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23127 return DW_SND (attr);
23128 else if (attr->form == DW_FORM_udata
23129 || attr->form == DW_FORM_data1
23130 || attr->form == DW_FORM_data2
23131 || attr->form == DW_FORM_data4
23132 || attr->form == DW_FORM_data8)
23133 return DW_UNSND (attr);
23134 else
23135 {
23136 /* For DW_FORM_data16 see attr_form_is_constant. */
23137 complaint (_("Attribute value is not a constant (%s)"),
23138 dwarf_form_name (attr->form));
23139 return default_value;
23140 }
23141 }
23142
23143 /* Follow reference or signature attribute ATTR of SRC_DIE.
23144 On entry *REF_CU is the CU of SRC_DIE.
23145 On exit *REF_CU is the CU of the result. */
23146
23147 static struct die_info *
23148 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23149 struct dwarf2_cu **ref_cu)
23150 {
23151 struct die_info *die;
23152
23153 if (attr_form_is_ref (attr))
23154 die = follow_die_ref (src_die, attr, ref_cu);
23155 else if (attr->form == DW_FORM_ref_sig8)
23156 die = follow_die_sig (src_die, attr, ref_cu);
23157 else
23158 {
23159 dump_die_for_error (src_die);
23160 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23161 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23162 }
23163
23164 return die;
23165 }
23166
23167 /* Follow reference OFFSET.
23168 On entry *REF_CU is the CU of the source die referencing OFFSET.
23169 On exit *REF_CU is the CU of the result.
23170 Returns NULL if OFFSET is invalid. */
23171
23172 static struct die_info *
23173 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23174 struct dwarf2_cu **ref_cu)
23175 {
23176 struct die_info temp_die;
23177 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23178 struct dwarf2_per_objfile *dwarf2_per_objfile
23179 = cu->per_cu->dwarf2_per_objfile;
23180
23181 gdb_assert (cu->per_cu != NULL);
23182
23183 target_cu = cu;
23184
23185 if (cu->per_cu->is_debug_types)
23186 {
23187 /* .debug_types CUs cannot reference anything outside their CU.
23188 If they need to, they have to reference a signatured type via
23189 DW_FORM_ref_sig8. */
23190 if (!offset_in_cu_p (&cu->header, sect_off))
23191 return NULL;
23192 }
23193 else if (offset_in_dwz != cu->per_cu->is_dwz
23194 || !offset_in_cu_p (&cu->header, sect_off))
23195 {
23196 struct dwarf2_per_cu_data *per_cu;
23197
23198 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23199 dwarf2_per_objfile);
23200
23201 /* If necessary, add it to the queue and load its DIEs. */
23202 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23203 load_full_comp_unit (per_cu, false, cu->language);
23204
23205 target_cu = per_cu->cu;
23206 }
23207 else if (cu->dies == NULL)
23208 {
23209 /* We're loading full DIEs during partial symbol reading. */
23210 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23211 load_full_comp_unit (cu->per_cu, false, language_minimal);
23212 }
23213
23214 *ref_cu = target_cu;
23215 temp_die.sect_off = sect_off;
23216
23217 if (target_cu != cu)
23218 target_cu->ancestor = cu;
23219
23220 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23221 &temp_die,
23222 to_underlying (sect_off));
23223 }
23224
23225 /* Follow reference attribute ATTR of SRC_DIE.
23226 On entry *REF_CU is the CU of SRC_DIE.
23227 On exit *REF_CU is the CU of the result. */
23228
23229 static struct die_info *
23230 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23231 struct dwarf2_cu **ref_cu)
23232 {
23233 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23234 struct dwarf2_cu *cu = *ref_cu;
23235 struct die_info *die;
23236
23237 die = follow_die_offset (sect_off,
23238 (attr->form == DW_FORM_GNU_ref_alt
23239 || cu->per_cu->is_dwz),
23240 ref_cu);
23241 if (!die)
23242 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23243 "at %s [in module %s]"),
23244 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23245 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23246
23247 return die;
23248 }
23249
23250 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23251 Returned value is intended for DW_OP_call*. Returned
23252 dwarf2_locexpr_baton->data has lifetime of
23253 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23254
23255 struct dwarf2_locexpr_baton
23256 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23257 struct dwarf2_per_cu_data *per_cu,
23258 CORE_ADDR (*get_frame_pc) (void *baton),
23259 void *baton, bool resolve_abstract_p)
23260 {
23261 struct dwarf2_cu *cu;
23262 struct die_info *die;
23263 struct attribute *attr;
23264 struct dwarf2_locexpr_baton retval;
23265 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23266 struct objfile *objfile = dwarf2_per_objfile->objfile;
23267
23268 if (per_cu->cu == NULL)
23269 load_cu (per_cu, false);
23270 cu = per_cu->cu;
23271 if (cu == NULL)
23272 {
23273 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23274 Instead just throw an error, not much else we can do. */
23275 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23276 sect_offset_str (sect_off), objfile_name (objfile));
23277 }
23278
23279 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23280 if (!die)
23281 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23282 sect_offset_str (sect_off), objfile_name (objfile));
23283
23284 attr = dwarf2_attr (die, DW_AT_location, cu);
23285 if (!attr && resolve_abstract_p
23286 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23287 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23288 {
23289 CORE_ADDR pc = (*get_frame_pc) (baton);
23290
23291 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23292 {
23293 if (!cand->parent
23294 || cand->parent->tag != DW_TAG_subprogram)
23295 continue;
23296
23297 CORE_ADDR pc_low, pc_high;
23298 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23299 if (pc_low == ((CORE_ADDR) -1)
23300 || !(pc_low <= pc && pc < pc_high))
23301 continue;
23302
23303 die = cand;
23304 attr = dwarf2_attr (die, DW_AT_location, cu);
23305 break;
23306 }
23307 }
23308
23309 if (!attr)
23310 {
23311 /* DWARF: "If there is no such attribute, then there is no effect.".
23312 DATA is ignored if SIZE is 0. */
23313
23314 retval.data = NULL;
23315 retval.size = 0;
23316 }
23317 else if (attr_form_is_section_offset (attr))
23318 {
23319 struct dwarf2_loclist_baton loclist_baton;
23320 CORE_ADDR pc = (*get_frame_pc) (baton);
23321 size_t size;
23322
23323 fill_in_loclist_baton (cu, &loclist_baton, attr);
23324
23325 retval.data = dwarf2_find_location_expression (&loclist_baton,
23326 &size, pc);
23327 retval.size = size;
23328 }
23329 else
23330 {
23331 if (!attr_form_is_block (attr))
23332 error (_("Dwarf Error: DIE at %s referenced in module %s "
23333 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23334 sect_offset_str (sect_off), objfile_name (objfile));
23335
23336 retval.data = DW_BLOCK (attr)->data;
23337 retval.size = DW_BLOCK (attr)->size;
23338 }
23339 retval.per_cu = cu->per_cu;
23340
23341 age_cached_comp_units (dwarf2_per_objfile);
23342
23343 return retval;
23344 }
23345
23346 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23347 offset. */
23348
23349 struct dwarf2_locexpr_baton
23350 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23351 struct dwarf2_per_cu_data *per_cu,
23352 CORE_ADDR (*get_frame_pc) (void *baton),
23353 void *baton)
23354 {
23355 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23356
23357 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23358 }
23359
23360 /* Write a constant of a given type as target-ordered bytes into
23361 OBSTACK. */
23362
23363 static const gdb_byte *
23364 write_constant_as_bytes (struct obstack *obstack,
23365 enum bfd_endian byte_order,
23366 struct type *type,
23367 ULONGEST value,
23368 LONGEST *len)
23369 {
23370 gdb_byte *result;
23371
23372 *len = TYPE_LENGTH (type);
23373 result = (gdb_byte *) obstack_alloc (obstack, *len);
23374 store_unsigned_integer (result, *len, byte_order, value);
23375
23376 return result;
23377 }
23378
23379 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23380 pointer to the constant bytes and set LEN to the length of the
23381 data. If memory is needed, allocate it on OBSTACK. If the DIE
23382 does not have a DW_AT_const_value, return NULL. */
23383
23384 const gdb_byte *
23385 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23386 struct dwarf2_per_cu_data *per_cu,
23387 struct obstack *obstack,
23388 LONGEST *len)
23389 {
23390 struct dwarf2_cu *cu;
23391 struct die_info *die;
23392 struct attribute *attr;
23393 const gdb_byte *result = NULL;
23394 struct type *type;
23395 LONGEST value;
23396 enum bfd_endian byte_order;
23397 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23398
23399 if (per_cu->cu == NULL)
23400 load_cu (per_cu, false);
23401 cu = per_cu->cu;
23402 if (cu == NULL)
23403 {
23404 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23405 Instead just throw an error, not much else we can do. */
23406 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23407 sect_offset_str (sect_off), objfile_name (objfile));
23408 }
23409
23410 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23411 if (!die)
23412 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23413 sect_offset_str (sect_off), objfile_name (objfile));
23414
23415 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23416 if (attr == NULL)
23417 return NULL;
23418
23419 byte_order = (bfd_big_endian (objfile->obfd)
23420 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23421
23422 switch (attr->form)
23423 {
23424 case DW_FORM_addr:
23425 case DW_FORM_addrx:
23426 case DW_FORM_GNU_addr_index:
23427 {
23428 gdb_byte *tem;
23429
23430 *len = cu->header.addr_size;
23431 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23432 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23433 result = tem;
23434 }
23435 break;
23436 case DW_FORM_string:
23437 case DW_FORM_strp:
23438 case DW_FORM_strx:
23439 case DW_FORM_GNU_str_index:
23440 case DW_FORM_GNU_strp_alt:
23441 /* DW_STRING is already allocated on the objfile obstack, point
23442 directly to it. */
23443 result = (const gdb_byte *) DW_STRING (attr);
23444 *len = strlen (DW_STRING (attr));
23445 break;
23446 case DW_FORM_block1:
23447 case DW_FORM_block2:
23448 case DW_FORM_block4:
23449 case DW_FORM_block:
23450 case DW_FORM_exprloc:
23451 case DW_FORM_data16:
23452 result = DW_BLOCK (attr)->data;
23453 *len = DW_BLOCK (attr)->size;
23454 break;
23455
23456 /* The DW_AT_const_value attributes are supposed to carry the
23457 symbol's value "represented as it would be on the target
23458 architecture." By the time we get here, it's already been
23459 converted to host endianness, so we just need to sign- or
23460 zero-extend it as appropriate. */
23461 case DW_FORM_data1:
23462 type = die_type (die, cu);
23463 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23464 if (result == NULL)
23465 result = write_constant_as_bytes (obstack, byte_order,
23466 type, value, len);
23467 break;
23468 case DW_FORM_data2:
23469 type = die_type (die, cu);
23470 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23471 if (result == NULL)
23472 result = write_constant_as_bytes (obstack, byte_order,
23473 type, value, len);
23474 break;
23475 case DW_FORM_data4:
23476 type = die_type (die, cu);
23477 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23478 if (result == NULL)
23479 result = write_constant_as_bytes (obstack, byte_order,
23480 type, value, len);
23481 break;
23482 case DW_FORM_data8:
23483 type = die_type (die, cu);
23484 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23485 if (result == NULL)
23486 result = write_constant_as_bytes (obstack, byte_order,
23487 type, value, len);
23488 break;
23489
23490 case DW_FORM_sdata:
23491 case DW_FORM_implicit_const:
23492 type = die_type (die, cu);
23493 result = write_constant_as_bytes (obstack, byte_order,
23494 type, DW_SND (attr), len);
23495 break;
23496
23497 case DW_FORM_udata:
23498 type = die_type (die, cu);
23499 result = write_constant_as_bytes (obstack, byte_order,
23500 type, DW_UNSND (attr), len);
23501 break;
23502
23503 default:
23504 complaint (_("unsupported const value attribute form: '%s'"),
23505 dwarf_form_name (attr->form));
23506 break;
23507 }
23508
23509 return result;
23510 }
23511
23512 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23513 valid type for this die is found. */
23514
23515 struct type *
23516 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23517 struct dwarf2_per_cu_data *per_cu)
23518 {
23519 struct dwarf2_cu *cu;
23520 struct die_info *die;
23521
23522 if (per_cu->cu == NULL)
23523 load_cu (per_cu, false);
23524 cu = per_cu->cu;
23525 if (!cu)
23526 return NULL;
23527
23528 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23529 if (!die)
23530 return NULL;
23531
23532 return die_type (die, cu);
23533 }
23534
23535 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23536 PER_CU. */
23537
23538 struct type *
23539 dwarf2_get_die_type (cu_offset die_offset,
23540 struct dwarf2_per_cu_data *per_cu)
23541 {
23542 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23543 return get_die_type_at_offset (die_offset_sect, per_cu);
23544 }
23545
23546 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23547 On entry *REF_CU is the CU of SRC_DIE.
23548 On exit *REF_CU is the CU of the result.
23549 Returns NULL if the referenced DIE isn't found. */
23550
23551 static struct die_info *
23552 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23553 struct dwarf2_cu **ref_cu)
23554 {
23555 struct die_info temp_die;
23556 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23557 struct die_info *die;
23558
23559 /* While it might be nice to assert sig_type->type == NULL here,
23560 we can get here for DW_AT_imported_declaration where we need
23561 the DIE not the type. */
23562
23563 /* If necessary, add it to the queue and load its DIEs. */
23564
23565 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23566 read_signatured_type (sig_type);
23567
23568 sig_cu = sig_type->per_cu.cu;
23569 gdb_assert (sig_cu != NULL);
23570 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23571 temp_die.sect_off = sig_type->type_offset_in_section;
23572 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23573 to_underlying (temp_die.sect_off));
23574 if (die)
23575 {
23576 struct dwarf2_per_objfile *dwarf2_per_objfile
23577 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23578
23579 /* For .gdb_index version 7 keep track of included TUs.
23580 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23581 if (dwarf2_per_objfile->index_table != NULL
23582 && dwarf2_per_objfile->index_table->version <= 7)
23583 {
23584 VEC_safe_push (dwarf2_per_cu_ptr,
23585 (*ref_cu)->per_cu->imported_symtabs,
23586 sig_cu->per_cu);
23587 }
23588
23589 *ref_cu = sig_cu;
23590 if (sig_cu != cu)
23591 sig_cu->ancestor = cu;
23592
23593 return die;
23594 }
23595
23596 return NULL;
23597 }
23598
23599 /* Follow signatured type referenced by ATTR in SRC_DIE.
23600 On entry *REF_CU is the CU of SRC_DIE.
23601 On exit *REF_CU is the CU of the result.
23602 The result is the DIE of the type.
23603 If the referenced type cannot be found an error is thrown. */
23604
23605 static struct die_info *
23606 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23607 struct dwarf2_cu **ref_cu)
23608 {
23609 ULONGEST signature = DW_SIGNATURE (attr);
23610 struct signatured_type *sig_type;
23611 struct die_info *die;
23612
23613 gdb_assert (attr->form == DW_FORM_ref_sig8);
23614
23615 sig_type = lookup_signatured_type (*ref_cu, signature);
23616 /* sig_type will be NULL if the signatured type is missing from
23617 the debug info. */
23618 if (sig_type == NULL)
23619 {
23620 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23621 " from DIE at %s [in module %s]"),
23622 hex_string (signature), sect_offset_str (src_die->sect_off),
23623 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23624 }
23625
23626 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23627 if (die == NULL)
23628 {
23629 dump_die_for_error (src_die);
23630 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23631 " from DIE at %s [in module %s]"),
23632 hex_string (signature), sect_offset_str (src_die->sect_off),
23633 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23634 }
23635
23636 return die;
23637 }
23638
23639 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23640 reading in and processing the type unit if necessary. */
23641
23642 static struct type *
23643 get_signatured_type (struct die_info *die, ULONGEST signature,
23644 struct dwarf2_cu *cu)
23645 {
23646 struct dwarf2_per_objfile *dwarf2_per_objfile
23647 = cu->per_cu->dwarf2_per_objfile;
23648 struct signatured_type *sig_type;
23649 struct dwarf2_cu *type_cu;
23650 struct die_info *type_die;
23651 struct type *type;
23652
23653 sig_type = lookup_signatured_type (cu, signature);
23654 /* sig_type will be NULL if the signatured type is missing from
23655 the debug info. */
23656 if (sig_type == NULL)
23657 {
23658 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23659 " from DIE at %s [in module %s]"),
23660 hex_string (signature), sect_offset_str (die->sect_off),
23661 objfile_name (dwarf2_per_objfile->objfile));
23662 return build_error_marker_type (cu, die);
23663 }
23664
23665 /* If we already know the type we're done. */
23666 if (sig_type->type != NULL)
23667 return sig_type->type;
23668
23669 type_cu = cu;
23670 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23671 if (type_die != NULL)
23672 {
23673 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23674 is created. This is important, for example, because for c++ classes
23675 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23676 type = read_type_die (type_die, type_cu);
23677 if (type == NULL)
23678 {
23679 complaint (_("Dwarf Error: Cannot build signatured type %s"
23680 " referenced from DIE at %s [in module %s]"),
23681 hex_string (signature), sect_offset_str (die->sect_off),
23682 objfile_name (dwarf2_per_objfile->objfile));
23683 type = build_error_marker_type (cu, die);
23684 }
23685 }
23686 else
23687 {
23688 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23689 " from DIE at %s [in module %s]"),
23690 hex_string (signature), sect_offset_str (die->sect_off),
23691 objfile_name (dwarf2_per_objfile->objfile));
23692 type = build_error_marker_type (cu, die);
23693 }
23694 sig_type->type = type;
23695
23696 return type;
23697 }
23698
23699 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23700 reading in and processing the type unit if necessary. */
23701
23702 static struct type *
23703 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23704 struct dwarf2_cu *cu) /* ARI: editCase function */
23705 {
23706 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23707 if (attr_form_is_ref (attr))
23708 {
23709 struct dwarf2_cu *type_cu = cu;
23710 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23711
23712 return read_type_die (type_die, type_cu);
23713 }
23714 else if (attr->form == DW_FORM_ref_sig8)
23715 {
23716 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23717 }
23718 else
23719 {
23720 struct dwarf2_per_objfile *dwarf2_per_objfile
23721 = cu->per_cu->dwarf2_per_objfile;
23722
23723 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23724 " at %s [in module %s]"),
23725 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23726 objfile_name (dwarf2_per_objfile->objfile));
23727 return build_error_marker_type (cu, die);
23728 }
23729 }
23730
23731 /* Load the DIEs associated with type unit PER_CU into memory. */
23732
23733 static void
23734 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23735 {
23736 struct signatured_type *sig_type;
23737
23738 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23739 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23740
23741 /* We have the per_cu, but we need the signatured_type.
23742 Fortunately this is an easy translation. */
23743 gdb_assert (per_cu->is_debug_types);
23744 sig_type = (struct signatured_type *) per_cu;
23745
23746 gdb_assert (per_cu->cu == NULL);
23747
23748 read_signatured_type (sig_type);
23749
23750 gdb_assert (per_cu->cu != NULL);
23751 }
23752
23753 /* die_reader_func for read_signatured_type.
23754 This is identical to load_full_comp_unit_reader,
23755 but is kept separate for now. */
23756
23757 static void
23758 read_signatured_type_reader (const struct die_reader_specs *reader,
23759 const gdb_byte *info_ptr,
23760 struct die_info *comp_unit_die,
23761 int has_children,
23762 void *data)
23763 {
23764 struct dwarf2_cu *cu = reader->cu;
23765
23766 gdb_assert (cu->die_hash == NULL);
23767 cu->die_hash =
23768 htab_create_alloc_ex (cu->header.length / 12,
23769 die_hash,
23770 die_eq,
23771 NULL,
23772 &cu->comp_unit_obstack,
23773 hashtab_obstack_allocate,
23774 dummy_obstack_deallocate);
23775
23776 if (has_children)
23777 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23778 &info_ptr, comp_unit_die);
23779 cu->dies = comp_unit_die;
23780 /* comp_unit_die is not stored in die_hash, no need. */
23781
23782 /* We try not to read any attributes in this function, because not
23783 all CUs needed for references have been loaded yet, and symbol
23784 table processing isn't initialized. But we have to set the CU language,
23785 or we won't be able to build types correctly.
23786 Similarly, if we do not read the producer, we can not apply
23787 producer-specific interpretation. */
23788 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23789 }
23790
23791 /* Read in a signatured type and build its CU and DIEs.
23792 If the type is a stub for the real type in a DWO file,
23793 read in the real type from the DWO file as well. */
23794
23795 static void
23796 read_signatured_type (struct signatured_type *sig_type)
23797 {
23798 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23799
23800 gdb_assert (per_cu->is_debug_types);
23801 gdb_assert (per_cu->cu == NULL);
23802
23803 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23804 read_signatured_type_reader, NULL);
23805 sig_type->per_cu.tu_read = 1;
23806 }
23807
23808 /* Decode simple location descriptions.
23809 Given a pointer to a dwarf block that defines a location, compute
23810 the location and return the value.
23811
23812 NOTE drow/2003-11-18: This function is called in two situations
23813 now: for the address of static or global variables (partial symbols
23814 only) and for offsets into structures which are expected to be
23815 (more or less) constant. The partial symbol case should go away,
23816 and only the constant case should remain. That will let this
23817 function complain more accurately. A few special modes are allowed
23818 without complaint for global variables (for instance, global
23819 register values and thread-local values).
23820
23821 A location description containing no operations indicates that the
23822 object is optimized out. The return value is 0 for that case.
23823 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23824 callers will only want a very basic result and this can become a
23825 complaint.
23826
23827 Note that stack[0] is unused except as a default error return. */
23828
23829 static CORE_ADDR
23830 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23831 {
23832 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23833 size_t i;
23834 size_t size = blk->size;
23835 const gdb_byte *data = blk->data;
23836 CORE_ADDR stack[64];
23837 int stacki;
23838 unsigned int bytes_read, unsnd;
23839 gdb_byte op;
23840
23841 i = 0;
23842 stacki = 0;
23843 stack[stacki] = 0;
23844 stack[++stacki] = 0;
23845
23846 while (i < size)
23847 {
23848 op = data[i++];
23849 switch (op)
23850 {
23851 case DW_OP_lit0:
23852 case DW_OP_lit1:
23853 case DW_OP_lit2:
23854 case DW_OP_lit3:
23855 case DW_OP_lit4:
23856 case DW_OP_lit5:
23857 case DW_OP_lit6:
23858 case DW_OP_lit7:
23859 case DW_OP_lit8:
23860 case DW_OP_lit9:
23861 case DW_OP_lit10:
23862 case DW_OP_lit11:
23863 case DW_OP_lit12:
23864 case DW_OP_lit13:
23865 case DW_OP_lit14:
23866 case DW_OP_lit15:
23867 case DW_OP_lit16:
23868 case DW_OP_lit17:
23869 case DW_OP_lit18:
23870 case DW_OP_lit19:
23871 case DW_OP_lit20:
23872 case DW_OP_lit21:
23873 case DW_OP_lit22:
23874 case DW_OP_lit23:
23875 case DW_OP_lit24:
23876 case DW_OP_lit25:
23877 case DW_OP_lit26:
23878 case DW_OP_lit27:
23879 case DW_OP_lit28:
23880 case DW_OP_lit29:
23881 case DW_OP_lit30:
23882 case DW_OP_lit31:
23883 stack[++stacki] = op - DW_OP_lit0;
23884 break;
23885
23886 case DW_OP_reg0:
23887 case DW_OP_reg1:
23888 case DW_OP_reg2:
23889 case DW_OP_reg3:
23890 case DW_OP_reg4:
23891 case DW_OP_reg5:
23892 case DW_OP_reg6:
23893 case DW_OP_reg7:
23894 case DW_OP_reg8:
23895 case DW_OP_reg9:
23896 case DW_OP_reg10:
23897 case DW_OP_reg11:
23898 case DW_OP_reg12:
23899 case DW_OP_reg13:
23900 case DW_OP_reg14:
23901 case DW_OP_reg15:
23902 case DW_OP_reg16:
23903 case DW_OP_reg17:
23904 case DW_OP_reg18:
23905 case DW_OP_reg19:
23906 case DW_OP_reg20:
23907 case DW_OP_reg21:
23908 case DW_OP_reg22:
23909 case DW_OP_reg23:
23910 case DW_OP_reg24:
23911 case DW_OP_reg25:
23912 case DW_OP_reg26:
23913 case DW_OP_reg27:
23914 case DW_OP_reg28:
23915 case DW_OP_reg29:
23916 case DW_OP_reg30:
23917 case DW_OP_reg31:
23918 stack[++stacki] = op - DW_OP_reg0;
23919 if (i < size)
23920 dwarf2_complex_location_expr_complaint ();
23921 break;
23922
23923 case DW_OP_regx:
23924 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23925 i += bytes_read;
23926 stack[++stacki] = unsnd;
23927 if (i < size)
23928 dwarf2_complex_location_expr_complaint ();
23929 break;
23930
23931 case DW_OP_addr:
23932 stack[++stacki] = read_address (objfile->obfd, &data[i],
23933 cu, &bytes_read);
23934 i += bytes_read;
23935 break;
23936
23937 case DW_OP_const1u:
23938 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23939 i += 1;
23940 break;
23941
23942 case DW_OP_const1s:
23943 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23944 i += 1;
23945 break;
23946
23947 case DW_OP_const2u:
23948 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23949 i += 2;
23950 break;
23951
23952 case DW_OP_const2s:
23953 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23954 i += 2;
23955 break;
23956
23957 case DW_OP_const4u:
23958 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23959 i += 4;
23960 break;
23961
23962 case DW_OP_const4s:
23963 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23964 i += 4;
23965 break;
23966
23967 case DW_OP_const8u:
23968 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23969 i += 8;
23970 break;
23971
23972 case DW_OP_constu:
23973 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23974 &bytes_read);
23975 i += bytes_read;
23976 break;
23977
23978 case DW_OP_consts:
23979 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23980 i += bytes_read;
23981 break;
23982
23983 case DW_OP_dup:
23984 stack[stacki + 1] = stack[stacki];
23985 stacki++;
23986 break;
23987
23988 case DW_OP_plus:
23989 stack[stacki - 1] += stack[stacki];
23990 stacki--;
23991 break;
23992
23993 case DW_OP_plus_uconst:
23994 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23995 &bytes_read);
23996 i += bytes_read;
23997 break;
23998
23999 case DW_OP_minus:
24000 stack[stacki - 1] -= stack[stacki];
24001 stacki--;
24002 break;
24003
24004 case DW_OP_deref:
24005 /* If we're not the last op, then we definitely can't encode
24006 this using GDB's address_class enum. This is valid for partial
24007 global symbols, although the variable's address will be bogus
24008 in the psymtab. */
24009 if (i < size)
24010 dwarf2_complex_location_expr_complaint ();
24011 break;
24012
24013 case DW_OP_GNU_push_tls_address:
24014 case DW_OP_form_tls_address:
24015 /* The top of the stack has the offset from the beginning
24016 of the thread control block at which the variable is located. */
24017 /* Nothing should follow this operator, so the top of stack would
24018 be returned. */
24019 /* This is valid for partial global symbols, but the variable's
24020 address will be bogus in the psymtab. Make it always at least
24021 non-zero to not look as a variable garbage collected by linker
24022 which have DW_OP_addr 0. */
24023 if (i < size)
24024 dwarf2_complex_location_expr_complaint ();
24025 stack[stacki]++;
24026 break;
24027
24028 case DW_OP_GNU_uninit:
24029 break;
24030
24031 case DW_OP_addrx:
24032 case DW_OP_GNU_addr_index:
24033 case DW_OP_GNU_const_index:
24034 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24035 &bytes_read);
24036 i += bytes_read;
24037 break;
24038
24039 default:
24040 {
24041 const char *name = get_DW_OP_name (op);
24042
24043 if (name)
24044 complaint (_("unsupported stack op: '%s'"),
24045 name);
24046 else
24047 complaint (_("unsupported stack op: '%02x'"),
24048 op);
24049 }
24050
24051 return (stack[stacki]);
24052 }
24053
24054 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24055 outside of the allocated space. Also enforce minimum>0. */
24056 if (stacki >= ARRAY_SIZE (stack) - 1)
24057 {
24058 complaint (_("location description stack overflow"));
24059 return 0;
24060 }
24061
24062 if (stacki <= 0)
24063 {
24064 complaint (_("location description stack underflow"));
24065 return 0;
24066 }
24067 }
24068 return (stack[stacki]);
24069 }
24070
24071 /* memory allocation interface */
24072
24073 static struct dwarf_block *
24074 dwarf_alloc_block (struct dwarf2_cu *cu)
24075 {
24076 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24077 }
24078
24079 static struct die_info *
24080 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24081 {
24082 struct die_info *die;
24083 size_t size = sizeof (struct die_info);
24084
24085 if (num_attrs > 1)
24086 size += (num_attrs - 1) * sizeof (struct attribute);
24087
24088 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24089 memset (die, 0, sizeof (struct die_info));
24090 return (die);
24091 }
24092
24093 \f
24094 /* Macro support. */
24095
24096 /* Return file name relative to the compilation directory of file number I in
24097 *LH's file name table. The result is allocated using xmalloc; the caller is
24098 responsible for freeing it. */
24099
24100 static char *
24101 file_file_name (int file, struct line_header *lh)
24102 {
24103 /* Is the file number a valid index into the line header's file name
24104 table? Remember that file numbers start with one, not zero. */
24105 if (1 <= file && file <= lh->file_names.size ())
24106 {
24107 const file_entry &fe = lh->file_names[file - 1];
24108
24109 if (!IS_ABSOLUTE_PATH (fe.name))
24110 {
24111 const char *dir = fe.include_dir (lh);
24112 if (dir != NULL)
24113 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24114 }
24115 return xstrdup (fe.name);
24116 }
24117 else
24118 {
24119 /* The compiler produced a bogus file number. We can at least
24120 record the macro definitions made in the file, even if we
24121 won't be able to find the file by name. */
24122 char fake_name[80];
24123
24124 xsnprintf (fake_name, sizeof (fake_name),
24125 "<bad macro file number %d>", file);
24126
24127 complaint (_("bad file number in macro information (%d)"),
24128 file);
24129
24130 return xstrdup (fake_name);
24131 }
24132 }
24133
24134 /* Return the full name of file number I in *LH's file name table.
24135 Use COMP_DIR as the name of the current directory of the
24136 compilation. The result is allocated using xmalloc; the caller is
24137 responsible for freeing it. */
24138 static char *
24139 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24140 {
24141 /* Is the file number a valid index into the line header's file name
24142 table? Remember that file numbers start with one, not zero. */
24143 if (1 <= file && file <= lh->file_names.size ())
24144 {
24145 char *relative = file_file_name (file, lh);
24146
24147 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24148 return relative;
24149 return reconcat (relative, comp_dir, SLASH_STRING,
24150 relative, (char *) NULL);
24151 }
24152 else
24153 return file_file_name (file, lh);
24154 }
24155
24156
24157 static struct macro_source_file *
24158 macro_start_file (struct dwarf2_cu *cu,
24159 int file, int line,
24160 struct macro_source_file *current_file,
24161 struct line_header *lh)
24162 {
24163 /* File name relative to the compilation directory of this source file. */
24164 char *file_name = file_file_name (file, lh);
24165
24166 if (! current_file)
24167 {
24168 /* Note: We don't create a macro table for this compilation unit
24169 at all until we actually get a filename. */
24170 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24171
24172 /* If we have no current file, then this must be the start_file
24173 directive for the compilation unit's main source file. */
24174 current_file = macro_set_main (macro_table, file_name);
24175 macro_define_special (macro_table);
24176 }
24177 else
24178 current_file = macro_include (current_file, line, file_name);
24179
24180 xfree (file_name);
24181
24182 return current_file;
24183 }
24184
24185 static const char *
24186 consume_improper_spaces (const char *p, const char *body)
24187 {
24188 if (*p == ' ')
24189 {
24190 complaint (_("macro definition contains spaces "
24191 "in formal argument list:\n`%s'"),
24192 body);
24193
24194 while (*p == ' ')
24195 p++;
24196 }
24197
24198 return p;
24199 }
24200
24201
24202 static void
24203 parse_macro_definition (struct macro_source_file *file, int line,
24204 const char *body)
24205 {
24206 const char *p;
24207
24208 /* The body string takes one of two forms. For object-like macro
24209 definitions, it should be:
24210
24211 <macro name> " " <definition>
24212
24213 For function-like macro definitions, it should be:
24214
24215 <macro name> "() " <definition>
24216 or
24217 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24218
24219 Spaces may appear only where explicitly indicated, and in the
24220 <definition>.
24221
24222 The Dwarf 2 spec says that an object-like macro's name is always
24223 followed by a space, but versions of GCC around March 2002 omit
24224 the space when the macro's definition is the empty string.
24225
24226 The Dwarf 2 spec says that there should be no spaces between the
24227 formal arguments in a function-like macro's formal argument list,
24228 but versions of GCC around March 2002 include spaces after the
24229 commas. */
24230
24231
24232 /* Find the extent of the macro name. The macro name is terminated
24233 by either a space or null character (for an object-like macro) or
24234 an opening paren (for a function-like macro). */
24235 for (p = body; *p; p++)
24236 if (*p == ' ' || *p == '(')
24237 break;
24238
24239 if (*p == ' ' || *p == '\0')
24240 {
24241 /* It's an object-like macro. */
24242 int name_len = p - body;
24243 char *name = savestring (body, name_len);
24244 const char *replacement;
24245
24246 if (*p == ' ')
24247 replacement = body + name_len + 1;
24248 else
24249 {
24250 dwarf2_macro_malformed_definition_complaint (body);
24251 replacement = body + name_len;
24252 }
24253
24254 macro_define_object (file, line, name, replacement);
24255
24256 xfree (name);
24257 }
24258 else if (*p == '(')
24259 {
24260 /* It's a function-like macro. */
24261 char *name = savestring (body, p - body);
24262 int argc = 0;
24263 int argv_size = 1;
24264 char **argv = XNEWVEC (char *, argv_size);
24265
24266 p++;
24267
24268 p = consume_improper_spaces (p, body);
24269
24270 /* Parse the formal argument list. */
24271 while (*p && *p != ')')
24272 {
24273 /* Find the extent of the current argument name. */
24274 const char *arg_start = p;
24275
24276 while (*p && *p != ',' && *p != ')' && *p != ' ')
24277 p++;
24278
24279 if (! *p || p == arg_start)
24280 dwarf2_macro_malformed_definition_complaint (body);
24281 else
24282 {
24283 /* Make sure argv has room for the new argument. */
24284 if (argc >= argv_size)
24285 {
24286 argv_size *= 2;
24287 argv = XRESIZEVEC (char *, argv, argv_size);
24288 }
24289
24290 argv[argc++] = savestring (arg_start, p - arg_start);
24291 }
24292
24293 p = consume_improper_spaces (p, body);
24294
24295 /* Consume the comma, if present. */
24296 if (*p == ',')
24297 {
24298 p++;
24299
24300 p = consume_improper_spaces (p, body);
24301 }
24302 }
24303
24304 if (*p == ')')
24305 {
24306 p++;
24307
24308 if (*p == ' ')
24309 /* Perfectly formed definition, no complaints. */
24310 macro_define_function (file, line, name,
24311 argc, (const char **) argv,
24312 p + 1);
24313 else if (*p == '\0')
24314 {
24315 /* Complain, but do define it. */
24316 dwarf2_macro_malformed_definition_complaint (body);
24317 macro_define_function (file, line, name,
24318 argc, (const char **) argv,
24319 p);
24320 }
24321 else
24322 /* Just complain. */
24323 dwarf2_macro_malformed_definition_complaint (body);
24324 }
24325 else
24326 /* Just complain. */
24327 dwarf2_macro_malformed_definition_complaint (body);
24328
24329 xfree (name);
24330 {
24331 int i;
24332
24333 for (i = 0; i < argc; i++)
24334 xfree (argv[i]);
24335 }
24336 xfree (argv);
24337 }
24338 else
24339 dwarf2_macro_malformed_definition_complaint (body);
24340 }
24341
24342 /* Skip some bytes from BYTES according to the form given in FORM.
24343 Returns the new pointer. */
24344
24345 static const gdb_byte *
24346 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24347 enum dwarf_form form,
24348 unsigned int offset_size,
24349 struct dwarf2_section_info *section)
24350 {
24351 unsigned int bytes_read;
24352
24353 switch (form)
24354 {
24355 case DW_FORM_data1:
24356 case DW_FORM_flag:
24357 ++bytes;
24358 break;
24359
24360 case DW_FORM_data2:
24361 bytes += 2;
24362 break;
24363
24364 case DW_FORM_data4:
24365 bytes += 4;
24366 break;
24367
24368 case DW_FORM_data8:
24369 bytes += 8;
24370 break;
24371
24372 case DW_FORM_data16:
24373 bytes += 16;
24374 break;
24375
24376 case DW_FORM_string:
24377 read_direct_string (abfd, bytes, &bytes_read);
24378 bytes += bytes_read;
24379 break;
24380
24381 case DW_FORM_sec_offset:
24382 case DW_FORM_strp:
24383 case DW_FORM_GNU_strp_alt:
24384 bytes += offset_size;
24385 break;
24386
24387 case DW_FORM_block:
24388 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24389 bytes += bytes_read;
24390 break;
24391
24392 case DW_FORM_block1:
24393 bytes += 1 + read_1_byte (abfd, bytes);
24394 break;
24395 case DW_FORM_block2:
24396 bytes += 2 + read_2_bytes (abfd, bytes);
24397 break;
24398 case DW_FORM_block4:
24399 bytes += 4 + read_4_bytes (abfd, bytes);
24400 break;
24401
24402 case DW_FORM_addrx:
24403 case DW_FORM_sdata:
24404 case DW_FORM_strx:
24405 case DW_FORM_udata:
24406 case DW_FORM_GNU_addr_index:
24407 case DW_FORM_GNU_str_index:
24408 bytes = gdb_skip_leb128 (bytes, buffer_end);
24409 if (bytes == NULL)
24410 {
24411 dwarf2_section_buffer_overflow_complaint (section);
24412 return NULL;
24413 }
24414 break;
24415
24416 case DW_FORM_implicit_const:
24417 break;
24418
24419 default:
24420 {
24421 complaint (_("invalid form 0x%x in `%s'"),
24422 form, get_section_name (section));
24423 return NULL;
24424 }
24425 }
24426
24427 return bytes;
24428 }
24429
24430 /* A helper for dwarf_decode_macros that handles skipping an unknown
24431 opcode. Returns an updated pointer to the macro data buffer; or,
24432 on error, issues a complaint and returns NULL. */
24433
24434 static const gdb_byte *
24435 skip_unknown_opcode (unsigned int opcode,
24436 const gdb_byte **opcode_definitions,
24437 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24438 bfd *abfd,
24439 unsigned int offset_size,
24440 struct dwarf2_section_info *section)
24441 {
24442 unsigned int bytes_read, i;
24443 unsigned long arg;
24444 const gdb_byte *defn;
24445
24446 if (opcode_definitions[opcode] == NULL)
24447 {
24448 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24449 opcode);
24450 return NULL;
24451 }
24452
24453 defn = opcode_definitions[opcode];
24454 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24455 defn += bytes_read;
24456
24457 for (i = 0; i < arg; ++i)
24458 {
24459 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24460 (enum dwarf_form) defn[i], offset_size,
24461 section);
24462 if (mac_ptr == NULL)
24463 {
24464 /* skip_form_bytes already issued the complaint. */
24465 return NULL;
24466 }
24467 }
24468
24469 return mac_ptr;
24470 }
24471
24472 /* A helper function which parses the header of a macro section.
24473 If the macro section is the extended (for now called "GNU") type,
24474 then this updates *OFFSET_SIZE. Returns a pointer to just after
24475 the header, or issues a complaint and returns NULL on error. */
24476
24477 static const gdb_byte *
24478 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24479 bfd *abfd,
24480 const gdb_byte *mac_ptr,
24481 unsigned int *offset_size,
24482 int section_is_gnu)
24483 {
24484 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24485
24486 if (section_is_gnu)
24487 {
24488 unsigned int version, flags;
24489
24490 version = read_2_bytes (abfd, mac_ptr);
24491 if (version != 4 && version != 5)
24492 {
24493 complaint (_("unrecognized version `%d' in .debug_macro section"),
24494 version);
24495 return NULL;
24496 }
24497 mac_ptr += 2;
24498
24499 flags = read_1_byte (abfd, mac_ptr);
24500 ++mac_ptr;
24501 *offset_size = (flags & 1) ? 8 : 4;
24502
24503 if ((flags & 2) != 0)
24504 /* We don't need the line table offset. */
24505 mac_ptr += *offset_size;
24506
24507 /* Vendor opcode descriptions. */
24508 if ((flags & 4) != 0)
24509 {
24510 unsigned int i, count;
24511
24512 count = read_1_byte (abfd, mac_ptr);
24513 ++mac_ptr;
24514 for (i = 0; i < count; ++i)
24515 {
24516 unsigned int opcode, bytes_read;
24517 unsigned long arg;
24518
24519 opcode = read_1_byte (abfd, mac_ptr);
24520 ++mac_ptr;
24521 opcode_definitions[opcode] = mac_ptr;
24522 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24523 mac_ptr += bytes_read;
24524 mac_ptr += arg;
24525 }
24526 }
24527 }
24528
24529 return mac_ptr;
24530 }
24531
24532 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24533 including DW_MACRO_import. */
24534
24535 static void
24536 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24537 bfd *abfd,
24538 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24539 struct macro_source_file *current_file,
24540 struct line_header *lh,
24541 struct dwarf2_section_info *section,
24542 int section_is_gnu, int section_is_dwz,
24543 unsigned int offset_size,
24544 htab_t include_hash)
24545 {
24546 struct dwarf2_per_objfile *dwarf2_per_objfile
24547 = cu->per_cu->dwarf2_per_objfile;
24548 struct objfile *objfile = dwarf2_per_objfile->objfile;
24549 enum dwarf_macro_record_type macinfo_type;
24550 int at_commandline;
24551 const gdb_byte *opcode_definitions[256];
24552
24553 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24554 &offset_size, section_is_gnu);
24555 if (mac_ptr == NULL)
24556 {
24557 /* We already issued a complaint. */
24558 return;
24559 }
24560
24561 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24562 GDB is still reading the definitions from command line. First
24563 DW_MACINFO_start_file will need to be ignored as it was already executed
24564 to create CURRENT_FILE for the main source holding also the command line
24565 definitions. On first met DW_MACINFO_start_file this flag is reset to
24566 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24567
24568 at_commandline = 1;
24569
24570 do
24571 {
24572 /* Do we at least have room for a macinfo type byte? */
24573 if (mac_ptr >= mac_end)
24574 {
24575 dwarf2_section_buffer_overflow_complaint (section);
24576 break;
24577 }
24578
24579 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24580 mac_ptr++;
24581
24582 /* Note that we rely on the fact that the corresponding GNU and
24583 DWARF constants are the same. */
24584 DIAGNOSTIC_PUSH
24585 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24586 switch (macinfo_type)
24587 {
24588 /* A zero macinfo type indicates the end of the macro
24589 information. */
24590 case 0:
24591 break;
24592
24593 case DW_MACRO_define:
24594 case DW_MACRO_undef:
24595 case DW_MACRO_define_strp:
24596 case DW_MACRO_undef_strp:
24597 case DW_MACRO_define_sup:
24598 case DW_MACRO_undef_sup:
24599 {
24600 unsigned int bytes_read;
24601 int line;
24602 const char *body;
24603 int is_define;
24604
24605 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24606 mac_ptr += bytes_read;
24607
24608 if (macinfo_type == DW_MACRO_define
24609 || macinfo_type == DW_MACRO_undef)
24610 {
24611 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24612 mac_ptr += bytes_read;
24613 }
24614 else
24615 {
24616 LONGEST str_offset;
24617
24618 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24619 mac_ptr += offset_size;
24620
24621 if (macinfo_type == DW_MACRO_define_sup
24622 || macinfo_type == DW_MACRO_undef_sup
24623 || section_is_dwz)
24624 {
24625 struct dwz_file *dwz
24626 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24627
24628 body = read_indirect_string_from_dwz (objfile,
24629 dwz, str_offset);
24630 }
24631 else
24632 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24633 abfd, str_offset);
24634 }
24635
24636 is_define = (macinfo_type == DW_MACRO_define
24637 || macinfo_type == DW_MACRO_define_strp
24638 || macinfo_type == DW_MACRO_define_sup);
24639 if (! current_file)
24640 {
24641 /* DWARF violation as no main source is present. */
24642 complaint (_("debug info with no main source gives macro %s "
24643 "on line %d: %s"),
24644 is_define ? _("definition") : _("undefinition"),
24645 line, body);
24646 break;
24647 }
24648 if ((line == 0 && !at_commandline)
24649 || (line != 0 && at_commandline))
24650 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24651 at_commandline ? _("command-line") : _("in-file"),
24652 is_define ? _("definition") : _("undefinition"),
24653 line == 0 ? _("zero") : _("non-zero"), line, body);
24654
24655 if (body == NULL)
24656 {
24657 /* Fedora's rpm-build's "debugedit" binary
24658 corrupted .debug_macro sections.
24659
24660 For more info, see
24661 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24662 complaint (_("debug info gives %s invalid macro %s "
24663 "without body (corrupted?) at line %d "
24664 "on file %s"),
24665 at_commandline ? _("command-line") : _("in-file"),
24666 is_define ? _("definition") : _("undefinition"),
24667 line, current_file->filename);
24668 }
24669 else if (is_define)
24670 parse_macro_definition (current_file, line, body);
24671 else
24672 {
24673 gdb_assert (macinfo_type == DW_MACRO_undef
24674 || macinfo_type == DW_MACRO_undef_strp
24675 || macinfo_type == DW_MACRO_undef_sup);
24676 macro_undef (current_file, line, body);
24677 }
24678 }
24679 break;
24680
24681 case DW_MACRO_start_file:
24682 {
24683 unsigned int bytes_read;
24684 int line, file;
24685
24686 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24687 mac_ptr += bytes_read;
24688 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24689 mac_ptr += bytes_read;
24690
24691 if ((line == 0 && !at_commandline)
24692 || (line != 0 && at_commandline))
24693 complaint (_("debug info gives source %d included "
24694 "from %s at %s line %d"),
24695 file, at_commandline ? _("command-line") : _("file"),
24696 line == 0 ? _("zero") : _("non-zero"), line);
24697
24698 if (at_commandline)
24699 {
24700 /* This DW_MACRO_start_file was executed in the
24701 pass one. */
24702 at_commandline = 0;
24703 }
24704 else
24705 current_file = macro_start_file (cu, file, line, current_file,
24706 lh);
24707 }
24708 break;
24709
24710 case DW_MACRO_end_file:
24711 if (! current_file)
24712 complaint (_("macro debug info has an unmatched "
24713 "`close_file' directive"));
24714 else
24715 {
24716 current_file = current_file->included_by;
24717 if (! current_file)
24718 {
24719 enum dwarf_macro_record_type next_type;
24720
24721 /* GCC circa March 2002 doesn't produce the zero
24722 type byte marking the end of the compilation
24723 unit. Complain if it's not there, but exit no
24724 matter what. */
24725
24726 /* Do we at least have room for a macinfo type byte? */
24727 if (mac_ptr >= mac_end)
24728 {
24729 dwarf2_section_buffer_overflow_complaint (section);
24730 return;
24731 }
24732
24733 /* We don't increment mac_ptr here, so this is just
24734 a look-ahead. */
24735 next_type
24736 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24737 mac_ptr);
24738 if (next_type != 0)
24739 complaint (_("no terminating 0-type entry for "
24740 "macros in `.debug_macinfo' section"));
24741
24742 return;
24743 }
24744 }
24745 break;
24746
24747 case DW_MACRO_import:
24748 case DW_MACRO_import_sup:
24749 {
24750 LONGEST offset;
24751 void **slot;
24752 bfd *include_bfd = abfd;
24753 struct dwarf2_section_info *include_section = section;
24754 const gdb_byte *include_mac_end = mac_end;
24755 int is_dwz = section_is_dwz;
24756 const gdb_byte *new_mac_ptr;
24757
24758 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24759 mac_ptr += offset_size;
24760
24761 if (macinfo_type == DW_MACRO_import_sup)
24762 {
24763 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24764
24765 dwarf2_read_section (objfile, &dwz->macro);
24766
24767 include_section = &dwz->macro;
24768 include_bfd = get_section_bfd_owner (include_section);
24769 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24770 is_dwz = 1;
24771 }
24772
24773 new_mac_ptr = include_section->buffer + offset;
24774 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24775
24776 if (*slot != NULL)
24777 {
24778 /* This has actually happened; see
24779 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24780 complaint (_("recursive DW_MACRO_import in "
24781 ".debug_macro section"));
24782 }
24783 else
24784 {
24785 *slot = (void *) new_mac_ptr;
24786
24787 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24788 include_mac_end, current_file, lh,
24789 section, section_is_gnu, is_dwz,
24790 offset_size, include_hash);
24791
24792 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24793 }
24794 }
24795 break;
24796
24797 case DW_MACINFO_vendor_ext:
24798 if (!section_is_gnu)
24799 {
24800 unsigned int bytes_read;
24801
24802 /* This reads the constant, but since we don't recognize
24803 any vendor extensions, we ignore it. */
24804 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24805 mac_ptr += bytes_read;
24806 read_direct_string (abfd, mac_ptr, &bytes_read);
24807 mac_ptr += bytes_read;
24808
24809 /* We don't recognize any vendor extensions. */
24810 break;
24811 }
24812 /* FALLTHROUGH */
24813
24814 default:
24815 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24816 mac_ptr, mac_end, abfd, offset_size,
24817 section);
24818 if (mac_ptr == NULL)
24819 return;
24820 break;
24821 }
24822 DIAGNOSTIC_POP
24823 } while (macinfo_type != 0);
24824 }
24825
24826 static void
24827 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24828 int section_is_gnu)
24829 {
24830 struct dwarf2_per_objfile *dwarf2_per_objfile
24831 = cu->per_cu->dwarf2_per_objfile;
24832 struct objfile *objfile = dwarf2_per_objfile->objfile;
24833 struct line_header *lh = cu->line_header;
24834 bfd *abfd;
24835 const gdb_byte *mac_ptr, *mac_end;
24836 struct macro_source_file *current_file = 0;
24837 enum dwarf_macro_record_type macinfo_type;
24838 unsigned int offset_size = cu->header.offset_size;
24839 const gdb_byte *opcode_definitions[256];
24840 void **slot;
24841 struct dwarf2_section_info *section;
24842 const char *section_name;
24843
24844 if (cu->dwo_unit != NULL)
24845 {
24846 if (section_is_gnu)
24847 {
24848 section = &cu->dwo_unit->dwo_file->sections.macro;
24849 section_name = ".debug_macro.dwo";
24850 }
24851 else
24852 {
24853 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24854 section_name = ".debug_macinfo.dwo";
24855 }
24856 }
24857 else
24858 {
24859 if (section_is_gnu)
24860 {
24861 section = &dwarf2_per_objfile->macro;
24862 section_name = ".debug_macro";
24863 }
24864 else
24865 {
24866 section = &dwarf2_per_objfile->macinfo;
24867 section_name = ".debug_macinfo";
24868 }
24869 }
24870
24871 dwarf2_read_section (objfile, section);
24872 if (section->buffer == NULL)
24873 {
24874 complaint (_("missing %s section"), section_name);
24875 return;
24876 }
24877 abfd = get_section_bfd_owner (section);
24878
24879 /* First pass: Find the name of the base filename.
24880 This filename is needed in order to process all macros whose definition
24881 (or undefinition) comes from the command line. These macros are defined
24882 before the first DW_MACINFO_start_file entry, and yet still need to be
24883 associated to the base file.
24884
24885 To determine the base file name, we scan the macro definitions until we
24886 reach the first DW_MACINFO_start_file entry. We then initialize
24887 CURRENT_FILE accordingly so that any macro definition found before the
24888 first DW_MACINFO_start_file can still be associated to the base file. */
24889
24890 mac_ptr = section->buffer + offset;
24891 mac_end = section->buffer + section->size;
24892
24893 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24894 &offset_size, section_is_gnu);
24895 if (mac_ptr == NULL)
24896 {
24897 /* We already issued a complaint. */
24898 return;
24899 }
24900
24901 do
24902 {
24903 /* Do we at least have room for a macinfo type byte? */
24904 if (mac_ptr >= mac_end)
24905 {
24906 /* Complaint is printed during the second pass as GDB will probably
24907 stop the first pass earlier upon finding
24908 DW_MACINFO_start_file. */
24909 break;
24910 }
24911
24912 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24913 mac_ptr++;
24914
24915 /* Note that we rely on the fact that the corresponding GNU and
24916 DWARF constants are the same. */
24917 DIAGNOSTIC_PUSH
24918 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24919 switch (macinfo_type)
24920 {
24921 /* A zero macinfo type indicates the end of the macro
24922 information. */
24923 case 0:
24924 break;
24925
24926 case DW_MACRO_define:
24927 case DW_MACRO_undef:
24928 /* Only skip the data by MAC_PTR. */
24929 {
24930 unsigned int bytes_read;
24931
24932 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24933 mac_ptr += bytes_read;
24934 read_direct_string (abfd, mac_ptr, &bytes_read);
24935 mac_ptr += bytes_read;
24936 }
24937 break;
24938
24939 case DW_MACRO_start_file:
24940 {
24941 unsigned int bytes_read;
24942 int line, file;
24943
24944 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24945 mac_ptr += bytes_read;
24946 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24947 mac_ptr += bytes_read;
24948
24949 current_file = macro_start_file (cu, file, line, current_file, lh);
24950 }
24951 break;
24952
24953 case DW_MACRO_end_file:
24954 /* No data to skip by MAC_PTR. */
24955 break;
24956
24957 case DW_MACRO_define_strp:
24958 case DW_MACRO_undef_strp:
24959 case DW_MACRO_define_sup:
24960 case DW_MACRO_undef_sup:
24961 {
24962 unsigned int bytes_read;
24963
24964 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24965 mac_ptr += bytes_read;
24966 mac_ptr += offset_size;
24967 }
24968 break;
24969
24970 case DW_MACRO_import:
24971 case DW_MACRO_import_sup:
24972 /* Note that, according to the spec, a transparent include
24973 chain cannot call DW_MACRO_start_file. So, we can just
24974 skip this opcode. */
24975 mac_ptr += offset_size;
24976 break;
24977
24978 case DW_MACINFO_vendor_ext:
24979 /* Only skip the data by MAC_PTR. */
24980 if (!section_is_gnu)
24981 {
24982 unsigned int bytes_read;
24983
24984 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24985 mac_ptr += bytes_read;
24986 read_direct_string (abfd, mac_ptr, &bytes_read);
24987 mac_ptr += bytes_read;
24988 }
24989 /* FALLTHROUGH */
24990
24991 default:
24992 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24993 mac_ptr, mac_end, abfd, offset_size,
24994 section);
24995 if (mac_ptr == NULL)
24996 return;
24997 break;
24998 }
24999 DIAGNOSTIC_POP
25000 } while (macinfo_type != 0 && current_file == NULL);
25001
25002 /* Second pass: Process all entries.
25003
25004 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25005 command-line macro definitions/undefinitions. This flag is unset when we
25006 reach the first DW_MACINFO_start_file entry. */
25007
25008 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25009 htab_eq_pointer,
25010 NULL, xcalloc, xfree));
25011 mac_ptr = section->buffer + offset;
25012 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25013 *slot = (void *) mac_ptr;
25014 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25015 current_file, lh, section,
25016 section_is_gnu, 0, offset_size,
25017 include_hash.get ());
25018 }
25019
25020 /* Check if the attribute's form is a DW_FORM_block*
25021 if so return true else false. */
25022
25023 static int
25024 attr_form_is_block (const struct attribute *attr)
25025 {
25026 return (attr == NULL ? 0 :
25027 attr->form == DW_FORM_block1
25028 || attr->form == DW_FORM_block2
25029 || attr->form == DW_FORM_block4
25030 || attr->form == DW_FORM_block
25031 || attr->form == DW_FORM_exprloc);
25032 }
25033
25034 /* Return non-zero if ATTR's value is a section offset --- classes
25035 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25036 You may use DW_UNSND (attr) to retrieve such offsets.
25037
25038 Section 7.5.4, "Attribute Encodings", explains that no attribute
25039 may have a value that belongs to more than one of these classes; it
25040 would be ambiguous if we did, because we use the same forms for all
25041 of them. */
25042
25043 static int
25044 attr_form_is_section_offset (const struct attribute *attr)
25045 {
25046 return (attr->form == DW_FORM_data4
25047 || attr->form == DW_FORM_data8
25048 || attr->form == DW_FORM_sec_offset);
25049 }
25050
25051 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25052 zero otherwise. When this function returns true, you can apply
25053 dwarf2_get_attr_constant_value to it.
25054
25055 However, note that for some attributes you must check
25056 attr_form_is_section_offset before using this test. DW_FORM_data4
25057 and DW_FORM_data8 are members of both the constant class, and of
25058 the classes that contain offsets into other debug sections
25059 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25060 that, if an attribute's can be either a constant or one of the
25061 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25062 taken as section offsets, not constants.
25063
25064 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25065 cannot handle that. */
25066
25067 static int
25068 attr_form_is_constant (const struct attribute *attr)
25069 {
25070 switch (attr->form)
25071 {
25072 case DW_FORM_sdata:
25073 case DW_FORM_udata:
25074 case DW_FORM_data1:
25075 case DW_FORM_data2:
25076 case DW_FORM_data4:
25077 case DW_FORM_data8:
25078 case DW_FORM_implicit_const:
25079 return 1;
25080 default:
25081 return 0;
25082 }
25083 }
25084
25085
25086 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25087 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25088
25089 static int
25090 attr_form_is_ref (const struct attribute *attr)
25091 {
25092 switch (attr->form)
25093 {
25094 case DW_FORM_ref_addr:
25095 case DW_FORM_ref1:
25096 case DW_FORM_ref2:
25097 case DW_FORM_ref4:
25098 case DW_FORM_ref8:
25099 case DW_FORM_ref_udata:
25100 case DW_FORM_GNU_ref_alt:
25101 return 1;
25102 default:
25103 return 0;
25104 }
25105 }
25106
25107 /* Return the .debug_loc section to use for CU.
25108 For DWO files use .debug_loc.dwo. */
25109
25110 static struct dwarf2_section_info *
25111 cu_debug_loc_section (struct dwarf2_cu *cu)
25112 {
25113 struct dwarf2_per_objfile *dwarf2_per_objfile
25114 = cu->per_cu->dwarf2_per_objfile;
25115
25116 if (cu->dwo_unit)
25117 {
25118 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25119
25120 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25121 }
25122 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25123 : &dwarf2_per_objfile->loc);
25124 }
25125
25126 /* A helper function that fills in a dwarf2_loclist_baton. */
25127
25128 static void
25129 fill_in_loclist_baton (struct dwarf2_cu *cu,
25130 struct dwarf2_loclist_baton *baton,
25131 const struct attribute *attr)
25132 {
25133 struct dwarf2_per_objfile *dwarf2_per_objfile
25134 = cu->per_cu->dwarf2_per_objfile;
25135 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25136
25137 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25138
25139 baton->per_cu = cu->per_cu;
25140 gdb_assert (baton->per_cu);
25141 /* We don't know how long the location list is, but make sure we
25142 don't run off the edge of the section. */
25143 baton->size = section->size - DW_UNSND (attr);
25144 baton->data = section->buffer + DW_UNSND (attr);
25145 baton->base_address = cu->base_address;
25146 baton->from_dwo = cu->dwo_unit != NULL;
25147 }
25148
25149 static void
25150 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25151 struct dwarf2_cu *cu, int is_block)
25152 {
25153 struct dwarf2_per_objfile *dwarf2_per_objfile
25154 = cu->per_cu->dwarf2_per_objfile;
25155 struct objfile *objfile = dwarf2_per_objfile->objfile;
25156 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25157
25158 if (attr_form_is_section_offset (attr)
25159 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25160 the section. If so, fall through to the complaint in the
25161 other branch. */
25162 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25163 {
25164 struct dwarf2_loclist_baton *baton;
25165
25166 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25167
25168 fill_in_loclist_baton (cu, baton, attr);
25169
25170 if (cu->base_known == 0)
25171 complaint (_("Location list used without "
25172 "specifying the CU base address."));
25173
25174 SYMBOL_ACLASS_INDEX (sym) = (is_block
25175 ? dwarf2_loclist_block_index
25176 : dwarf2_loclist_index);
25177 SYMBOL_LOCATION_BATON (sym) = baton;
25178 }
25179 else
25180 {
25181 struct dwarf2_locexpr_baton *baton;
25182
25183 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25184 baton->per_cu = cu->per_cu;
25185 gdb_assert (baton->per_cu);
25186
25187 if (attr_form_is_block (attr))
25188 {
25189 /* Note that we're just copying the block's data pointer
25190 here, not the actual data. We're still pointing into the
25191 info_buffer for SYM's objfile; right now we never release
25192 that buffer, but when we do clean up properly this may
25193 need to change. */
25194 baton->size = DW_BLOCK (attr)->size;
25195 baton->data = DW_BLOCK (attr)->data;
25196 }
25197 else
25198 {
25199 dwarf2_invalid_attrib_class_complaint ("location description",
25200 SYMBOL_NATURAL_NAME (sym));
25201 baton->size = 0;
25202 }
25203
25204 SYMBOL_ACLASS_INDEX (sym) = (is_block
25205 ? dwarf2_locexpr_block_index
25206 : dwarf2_locexpr_index);
25207 SYMBOL_LOCATION_BATON (sym) = baton;
25208 }
25209 }
25210
25211 /* Return the OBJFILE associated with the compilation unit CU. If CU
25212 came from a separate debuginfo file, then the master objfile is
25213 returned. */
25214
25215 struct objfile *
25216 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25217 {
25218 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25219
25220 /* Return the master objfile, so that we can report and look up the
25221 correct file containing this variable. */
25222 if (objfile->separate_debug_objfile_backlink)
25223 objfile = objfile->separate_debug_objfile_backlink;
25224
25225 return objfile;
25226 }
25227
25228 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25229 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25230 CU_HEADERP first. */
25231
25232 static const struct comp_unit_head *
25233 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25234 struct dwarf2_per_cu_data *per_cu)
25235 {
25236 const gdb_byte *info_ptr;
25237
25238 if (per_cu->cu)
25239 return &per_cu->cu->header;
25240
25241 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25242
25243 memset (cu_headerp, 0, sizeof (*cu_headerp));
25244 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25245 rcuh_kind::COMPILE);
25246
25247 return cu_headerp;
25248 }
25249
25250 /* Return the address size given in the compilation unit header for CU. */
25251
25252 int
25253 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25254 {
25255 struct comp_unit_head cu_header_local;
25256 const struct comp_unit_head *cu_headerp;
25257
25258 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25259
25260 return cu_headerp->addr_size;
25261 }
25262
25263 /* Return the offset size given in the compilation unit header for CU. */
25264
25265 int
25266 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25267 {
25268 struct comp_unit_head cu_header_local;
25269 const struct comp_unit_head *cu_headerp;
25270
25271 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25272
25273 return cu_headerp->offset_size;
25274 }
25275
25276 /* See its dwarf2loc.h declaration. */
25277
25278 int
25279 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25280 {
25281 struct comp_unit_head cu_header_local;
25282 const struct comp_unit_head *cu_headerp;
25283
25284 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25285
25286 if (cu_headerp->version == 2)
25287 return cu_headerp->addr_size;
25288 else
25289 return cu_headerp->offset_size;
25290 }
25291
25292 /* Return the text offset of the CU. The returned offset comes from
25293 this CU's objfile. If this objfile came from a separate debuginfo
25294 file, then the offset may be different from the corresponding
25295 offset in the parent objfile. */
25296
25297 CORE_ADDR
25298 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25299 {
25300 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25301
25302 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25303 }
25304
25305 /* Return DWARF version number of PER_CU. */
25306
25307 short
25308 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25309 {
25310 return per_cu->dwarf_version;
25311 }
25312
25313 /* Locate the .debug_info compilation unit from CU's objfile which contains
25314 the DIE at OFFSET. Raises an error on failure. */
25315
25316 static struct dwarf2_per_cu_data *
25317 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25318 unsigned int offset_in_dwz,
25319 struct dwarf2_per_objfile *dwarf2_per_objfile)
25320 {
25321 struct dwarf2_per_cu_data *this_cu;
25322 int low, high;
25323
25324 low = 0;
25325 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25326 while (high > low)
25327 {
25328 struct dwarf2_per_cu_data *mid_cu;
25329 int mid = low + (high - low) / 2;
25330
25331 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25332 if (mid_cu->is_dwz > offset_in_dwz
25333 || (mid_cu->is_dwz == offset_in_dwz
25334 && mid_cu->sect_off + mid_cu->length >= sect_off))
25335 high = mid;
25336 else
25337 low = mid + 1;
25338 }
25339 gdb_assert (low == high);
25340 this_cu = dwarf2_per_objfile->all_comp_units[low];
25341 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25342 {
25343 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25344 error (_("Dwarf Error: could not find partial DIE containing "
25345 "offset %s [in module %s]"),
25346 sect_offset_str (sect_off),
25347 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25348
25349 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25350 <= sect_off);
25351 return dwarf2_per_objfile->all_comp_units[low-1];
25352 }
25353 else
25354 {
25355 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25356 && sect_off >= this_cu->sect_off + this_cu->length)
25357 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25358 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25359 return this_cu;
25360 }
25361 }
25362
25363 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25364
25365 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25366 : per_cu (per_cu_),
25367 mark (false),
25368 has_loclist (false),
25369 checked_producer (false),
25370 producer_is_gxx_lt_4_6 (false),
25371 producer_is_gcc_lt_4_3 (false),
25372 producer_is_icc (false),
25373 producer_is_icc_lt_14 (false),
25374 producer_is_codewarrior (false),
25375 processing_has_namespace_info (false)
25376 {
25377 per_cu->cu = this;
25378 }
25379
25380 /* Destroy a dwarf2_cu. */
25381
25382 dwarf2_cu::~dwarf2_cu ()
25383 {
25384 per_cu->cu = NULL;
25385 }
25386
25387 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25388
25389 static void
25390 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25391 enum language pretend_language)
25392 {
25393 struct attribute *attr;
25394
25395 /* Set the language we're debugging. */
25396 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25397 if (attr)
25398 set_cu_language (DW_UNSND (attr), cu);
25399 else
25400 {
25401 cu->language = pretend_language;
25402 cu->language_defn = language_def (cu->language);
25403 }
25404
25405 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25406 }
25407
25408 /* Increase the age counter on each cached compilation unit, and free
25409 any that are too old. */
25410
25411 static void
25412 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25413 {
25414 struct dwarf2_per_cu_data *per_cu, **last_chain;
25415
25416 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25417 per_cu = dwarf2_per_objfile->read_in_chain;
25418 while (per_cu != NULL)
25419 {
25420 per_cu->cu->last_used ++;
25421 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25422 dwarf2_mark (per_cu->cu);
25423 per_cu = per_cu->cu->read_in_chain;
25424 }
25425
25426 per_cu = dwarf2_per_objfile->read_in_chain;
25427 last_chain = &dwarf2_per_objfile->read_in_chain;
25428 while (per_cu != NULL)
25429 {
25430 struct dwarf2_per_cu_data *next_cu;
25431
25432 next_cu = per_cu->cu->read_in_chain;
25433
25434 if (!per_cu->cu->mark)
25435 {
25436 delete per_cu->cu;
25437 *last_chain = next_cu;
25438 }
25439 else
25440 last_chain = &per_cu->cu->read_in_chain;
25441
25442 per_cu = next_cu;
25443 }
25444 }
25445
25446 /* Remove a single compilation unit from the cache. */
25447
25448 static void
25449 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25450 {
25451 struct dwarf2_per_cu_data *per_cu, **last_chain;
25452 struct dwarf2_per_objfile *dwarf2_per_objfile
25453 = target_per_cu->dwarf2_per_objfile;
25454
25455 per_cu = dwarf2_per_objfile->read_in_chain;
25456 last_chain = &dwarf2_per_objfile->read_in_chain;
25457 while (per_cu != NULL)
25458 {
25459 struct dwarf2_per_cu_data *next_cu;
25460
25461 next_cu = per_cu->cu->read_in_chain;
25462
25463 if (per_cu == target_per_cu)
25464 {
25465 delete per_cu->cu;
25466 per_cu->cu = NULL;
25467 *last_chain = next_cu;
25468 break;
25469 }
25470 else
25471 last_chain = &per_cu->cu->read_in_chain;
25472
25473 per_cu = next_cu;
25474 }
25475 }
25476
25477 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25478 We store these in a hash table separate from the DIEs, and preserve them
25479 when the DIEs are flushed out of cache.
25480
25481 The CU "per_cu" pointer is needed because offset alone is not enough to
25482 uniquely identify the type. A file may have multiple .debug_types sections,
25483 or the type may come from a DWO file. Furthermore, while it's more logical
25484 to use per_cu->section+offset, with Fission the section with the data is in
25485 the DWO file but we don't know that section at the point we need it.
25486 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25487 because we can enter the lookup routine, get_die_type_at_offset, from
25488 outside this file, and thus won't necessarily have PER_CU->cu.
25489 Fortunately, PER_CU is stable for the life of the objfile. */
25490
25491 struct dwarf2_per_cu_offset_and_type
25492 {
25493 const struct dwarf2_per_cu_data *per_cu;
25494 sect_offset sect_off;
25495 struct type *type;
25496 };
25497
25498 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25499
25500 static hashval_t
25501 per_cu_offset_and_type_hash (const void *item)
25502 {
25503 const struct dwarf2_per_cu_offset_and_type *ofs
25504 = (const struct dwarf2_per_cu_offset_and_type *) item;
25505
25506 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25507 }
25508
25509 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25510
25511 static int
25512 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25513 {
25514 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25515 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25516 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25517 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25518
25519 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25520 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25521 }
25522
25523 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25524 table if necessary. For convenience, return TYPE.
25525
25526 The DIEs reading must have careful ordering to:
25527 * Not cause infite loops trying to read in DIEs as a prerequisite for
25528 reading current DIE.
25529 * Not trying to dereference contents of still incompletely read in types
25530 while reading in other DIEs.
25531 * Enable referencing still incompletely read in types just by a pointer to
25532 the type without accessing its fields.
25533
25534 Therefore caller should follow these rules:
25535 * Try to fetch any prerequisite types we may need to build this DIE type
25536 before building the type and calling set_die_type.
25537 * After building type call set_die_type for current DIE as soon as
25538 possible before fetching more types to complete the current type.
25539 * Make the type as complete as possible before fetching more types. */
25540
25541 static struct type *
25542 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25543 {
25544 struct dwarf2_per_objfile *dwarf2_per_objfile
25545 = cu->per_cu->dwarf2_per_objfile;
25546 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25547 struct objfile *objfile = dwarf2_per_objfile->objfile;
25548 struct attribute *attr;
25549 struct dynamic_prop prop;
25550
25551 /* For Ada types, make sure that the gnat-specific data is always
25552 initialized (if not already set). There are a few types where
25553 we should not be doing so, because the type-specific area is
25554 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25555 where the type-specific area is used to store the floatformat).
25556 But this is not a problem, because the gnat-specific information
25557 is actually not needed for these types. */
25558 if (need_gnat_info (cu)
25559 && TYPE_CODE (type) != TYPE_CODE_FUNC
25560 && TYPE_CODE (type) != TYPE_CODE_FLT
25561 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25562 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25563 && TYPE_CODE (type) != TYPE_CODE_METHOD
25564 && !HAVE_GNAT_AUX_INFO (type))
25565 INIT_GNAT_SPECIFIC (type);
25566
25567 /* Read DW_AT_allocated and set in type. */
25568 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25569 if (attr_form_is_block (attr))
25570 {
25571 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25572 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25573 }
25574 else if (attr != NULL)
25575 {
25576 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25577 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25578 sect_offset_str (die->sect_off));
25579 }
25580
25581 /* Read DW_AT_associated and set in type. */
25582 attr = dwarf2_attr (die, DW_AT_associated, cu);
25583 if (attr_form_is_block (attr))
25584 {
25585 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25586 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25587 }
25588 else if (attr != NULL)
25589 {
25590 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25591 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25592 sect_offset_str (die->sect_off));
25593 }
25594
25595 /* Read DW_AT_data_location and set in type. */
25596 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25597 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25598 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25599
25600 if (dwarf2_per_objfile->die_type_hash == NULL)
25601 {
25602 dwarf2_per_objfile->die_type_hash =
25603 htab_create_alloc_ex (127,
25604 per_cu_offset_and_type_hash,
25605 per_cu_offset_and_type_eq,
25606 NULL,
25607 &objfile->objfile_obstack,
25608 hashtab_obstack_allocate,
25609 dummy_obstack_deallocate);
25610 }
25611
25612 ofs.per_cu = cu->per_cu;
25613 ofs.sect_off = die->sect_off;
25614 ofs.type = type;
25615 slot = (struct dwarf2_per_cu_offset_and_type **)
25616 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25617 if (*slot)
25618 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25619 sect_offset_str (die->sect_off));
25620 *slot = XOBNEW (&objfile->objfile_obstack,
25621 struct dwarf2_per_cu_offset_and_type);
25622 **slot = ofs;
25623 return type;
25624 }
25625
25626 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25627 or return NULL if the die does not have a saved type. */
25628
25629 static struct type *
25630 get_die_type_at_offset (sect_offset sect_off,
25631 struct dwarf2_per_cu_data *per_cu)
25632 {
25633 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25634 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25635
25636 if (dwarf2_per_objfile->die_type_hash == NULL)
25637 return NULL;
25638
25639 ofs.per_cu = per_cu;
25640 ofs.sect_off = sect_off;
25641 slot = ((struct dwarf2_per_cu_offset_and_type *)
25642 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25643 if (slot)
25644 return slot->type;
25645 else
25646 return NULL;
25647 }
25648
25649 /* Look up the type for DIE in CU in die_type_hash,
25650 or return NULL if DIE does not have a saved type. */
25651
25652 static struct type *
25653 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25654 {
25655 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25656 }
25657
25658 /* Add a dependence relationship from CU to REF_PER_CU. */
25659
25660 static void
25661 dwarf2_add_dependence (struct dwarf2_cu *cu,
25662 struct dwarf2_per_cu_data *ref_per_cu)
25663 {
25664 void **slot;
25665
25666 if (cu->dependencies == NULL)
25667 cu->dependencies
25668 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25669 NULL, &cu->comp_unit_obstack,
25670 hashtab_obstack_allocate,
25671 dummy_obstack_deallocate);
25672
25673 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25674 if (*slot == NULL)
25675 *slot = ref_per_cu;
25676 }
25677
25678 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25679 Set the mark field in every compilation unit in the
25680 cache that we must keep because we are keeping CU. */
25681
25682 static int
25683 dwarf2_mark_helper (void **slot, void *data)
25684 {
25685 struct dwarf2_per_cu_data *per_cu;
25686
25687 per_cu = (struct dwarf2_per_cu_data *) *slot;
25688
25689 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25690 reading of the chain. As such dependencies remain valid it is not much
25691 useful to track and undo them during QUIT cleanups. */
25692 if (per_cu->cu == NULL)
25693 return 1;
25694
25695 if (per_cu->cu->mark)
25696 return 1;
25697 per_cu->cu->mark = true;
25698
25699 if (per_cu->cu->dependencies != NULL)
25700 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25701
25702 return 1;
25703 }
25704
25705 /* Set the mark field in CU and in every other compilation unit in the
25706 cache that we must keep because we are keeping CU. */
25707
25708 static void
25709 dwarf2_mark (struct dwarf2_cu *cu)
25710 {
25711 if (cu->mark)
25712 return;
25713 cu->mark = true;
25714 if (cu->dependencies != NULL)
25715 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25716 }
25717
25718 static void
25719 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25720 {
25721 while (per_cu)
25722 {
25723 per_cu->cu->mark = false;
25724 per_cu = per_cu->cu->read_in_chain;
25725 }
25726 }
25727
25728 /* Trivial hash function for partial_die_info: the hash value of a DIE
25729 is its offset in .debug_info for this objfile. */
25730
25731 static hashval_t
25732 partial_die_hash (const void *item)
25733 {
25734 const struct partial_die_info *part_die
25735 = (const struct partial_die_info *) item;
25736
25737 return to_underlying (part_die->sect_off);
25738 }
25739
25740 /* Trivial comparison function for partial_die_info structures: two DIEs
25741 are equal if they have the same offset. */
25742
25743 static int
25744 partial_die_eq (const void *item_lhs, const void *item_rhs)
25745 {
25746 const struct partial_die_info *part_die_lhs
25747 = (const struct partial_die_info *) item_lhs;
25748 const struct partial_die_info *part_die_rhs
25749 = (const struct partial_die_info *) item_rhs;
25750
25751 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25752 }
25753
25754 struct cmd_list_element *set_dwarf_cmdlist;
25755 struct cmd_list_element *show_dwarf_cmdlist;
25756
25757 static void
25758 set_dwarf_cmd (const char *args, int from_tty)
25759 {
25760 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25761 gdb_stdout);
25762 }
25763
25764 static void
25765 show_dwarf_cmd (const char *args, int from_tty)
25766 {
25767 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25768 }
25769
25770 int dwarf_always_disassemble;
25771
25772 static void
25773 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25774 struct cmd_list_element *c, const char *value)
25775 {
25776 fprintf_filtered (file,
25777 _("Whether to always disassemble "
25778 "DWARF expressions is %s.\n"),
25779 value);
25780 }
25781
25782 static void
25783 show_check_physname (struct ui_file *file, int from_tty,
25784 struct cmd_list_element *c, const char *value)
25785 {
25786 fprintf_filtered (file,
25787 _("Whether to check \"physname\" is %s.\n"),
25788 value);
25789 }
25790
25791 void
25792 _initialize_dwarf2_read (void)
25793 {
25794 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25795 Set DWARF specific variables.\n\
25796 Configure DWARF variables such as the cache size"),
25797 &set_dwarf_cmdlist, "maintenance set dwarf ",
25798 0/*allow-unknown*/, &maintenance_set_cmdlist);
25799
25800 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25801 Show DWARF specific variables\n\
25802 Show DWARF variables such as the cache size"),
25803 &show_dwarf_cmdlist, "maintenance show dwarf ",
25804 0/*allow-unknown*/, &maintenance_show_cmdlist);
25805
25806 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25807 &dwarf_max_cache_age, _("\
25808 Set the upper bound on the age of cached DWARF compilation units."), _("\
25809 Show the upper bound on the age of cached DWARF compilation units."), _("\
25810 A higher limit means that cached compilation units will be stored\n\
25811 in memory longer, and more total memory will be used. Zero disables\n\
25812 caching, which can slow down startup."),
25813 NULL,
25814 show_dwarf_max_cache_age,
25815 &set_dwarf_cmdlist,
25816 &show_dwarf_cmdlist);
25817
25818 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25819 &dwarf_always_disassemble, _("\
25820 Set whether `info address' always disassembles DWARF expressions."), _("\
25821 Show whether `info address' always disassembles DWARF expressions."), _("\
25822 When enabled, DWARF expressions are always printed in an assembly-like\n\
25823 syntax. When disabled, expressions will be printed in a more\n\
25824 conversational style, when possible."),
25825 NULL,
25826 show_dwarf_always_disassemble,
25827 &set_dwarf_cmdlist,
25828 &show_dwarf_cmdlist);
25829
25830 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25831 Set debugging of the DWARF reader."), _("\
25832 Show debugging of the DWARF reader."), _("\
25833 When enabled (non-zero), debugging messages are printed during DWARF\n\
25834 reading and symtab expansion. A value of 1 (one) provides basic\n\
25835 information. A value greater than 1 provides more verbose information."),
25836 NULL,
25837 NULL,
25838 &setdebuglist, &showdebuglist);
25839
25840 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25841 Set debugging of the DWARF DIE reader."), _("\
25842 Show debugging of the DWARF DIE reader."), _("\
25843 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25844 The value is the maximum depth to print."),
25845 NULL,
25846 NULL,
25847 &setdebuglist, &showdebuglist);
25848
25849 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25850 Set debugging of the dwarf line reader."), _("\
25851 Show debugging of the dwarf line reader."), _("\
25852 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25853 A value of 1 (one) provides basic information.\n\
25854 A value greater than 1 provides more verbose information."),
25855 NULL,
25856 NULL,
25857 &setdebuglist, &showdebuglist);
25858
25859 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25860 Set cross-checking of \"physname\" code against demangler."), _("\
25861 Show cross-checking of \"physname\" code against demangler."), _("\
25862 When enabled, GDB's internal \"physname\" code is checked against\n\
25863 the demangler."),
25864 NULL, show_check_physname,
25865 &setdebuglist, &showdebuglist);
25866
25867 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25868 no_class, &use_deprecated_index_sections, _("\
25869 Set whether to use deprecated gdb_index sections."), _("\
25870 Show whether to use deprecated gdb_index sections."), _("\
25871 When enabled, deprecated .gdb_index sections are used anyway.\n\
25872 Normally they are ignored either because of a missing feature or\n\
25873 performance issue.\n\
25874 Warning: This option must be enabled before gdb reads the file."),
25875 NULL,
25876 NULL,
25877 &setlist, &showlist);
25878
25879 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25880 &dwarf2_locexpr_funcs);
25881 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25882 &dwarf2_loclist_funcs);
25883
25884 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25885 &dwarf2_block_frame_base_locexpr_funcs);
25886 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25887 &dwarf2_block_frame_base_loclist_funcs);
25888
25889 #if GDB_SELF_TEST
25890 selftests::register_test ("dw2_expand_symtabs_matching",
25891 selftests::dw2_expand_symtabs_matching::run_test);
25892 #endif
25893 }
This page took 1.004245 seconds and 5 git commands to generate.