gdb: Carry default property type around with dynamic properties
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop, struct type *type);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1894 static struct type *dwarf2_per_cu_addr_sized_int_type
1895 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1896
1897 /* Class, the destructor of which frees all allocated queue entries. This
1898 will only have work to do if an error was thrown while processing the
1899 dwarf. If no error was thrown then the queue entries should have all
1900 been processed, and freed, as we went along. */
1901
1902 class dwarf2_queue_guard
1903 {
1904 public:
1905 dwarf2_queue_guard () = default;
1906
1907 /* Free any entries remaining on the queue. There should only be
1908 entries left if we hit an error while processing the dwarf. */
1909 ~dwarf2_queue_guard ()
1910 {
1911 struct dwarf2_queue_item *item, *last;
1912
1913 item = dwarf2_queue;
1914 while (item)
1915 {
1916 /* Anything still marked queued is likely to be in an
1917 inconsistent state, so discard it. */
1918 if (item->per_cu->queued)
1919 {
1920 if (item->per_cu->cu != NULL)
1921 free_one_cached_comp_unit (item->per_cu);
1922 item->per_cu->queued = 0;
1923 }
1924
1925 last = item;
1926 item = item->next;
1927 xfree (last);
1928 }
1929
1930 dwarf2_queue = dwarf2_queue_tail = NULL;
1931 }
1932 };
1933
1934 /* The return type of find_file_and_directory. Note, the enclosed
1935 string pointers are only valid while this object is valid. */
1936
1937 struct file_and_directory
1938 {
1939 /* The filename. This is never NULL. */
1940 const char *name;
1941
1942 /* The compilation directory. NULL if not known. If we needed to
1943 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1944 points directly to the DW_AT_comp_dir string attribute owned by
1945 the obstack that owns the DIE. */
1946 const char *comp_dir;
1947
1948 /* If we needed to build a new string for comp_dir, this is what
1949 owns the storage. */
1950 std::string comp_dir_storage;
1951 };
1952
1953 static file_and_directory find_file_and_directory (struct die_info *die,
1954 struct dwarf2_cu *cu);
1955
1956 static char *file_full_name (int file, struct line_header *lh,
1957 const char *comp_dir);
1958
1959 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1960 enum class rcuh_kind { COMPILE, TYPE };
1961
1962 static const gdb_byte *read_and_check_comp_unit_head
1963 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1964 struct comp_unit_head *header,
1965 struct dwarf2_section_info *section,
1966 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1967 rcuh_kind section_kind);
1968
1969 static void init_cutu_and_read_dies
1970 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1971 int use_existing_cu, int keep, bool skip_partial,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static void init_cutu_and_read_dies_simple
1975 (struct dwarf2_per_cu_data *this_cu,
1976 die_reader_func_ftype *die_reader_func, void *data);
1977
1978 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1979
1980 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1981
1982 static struct dwo_unit *lookup_dwo_unit_in_dwp
1983 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1984 struct dwp_file *dwp_file, const char *comp_dir,
1985 ULONGEST signature, int is_debug_types);
1986
1987 static struct dwp_file *get_dwp_file
1988 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1989
1990 static struct dwo_unit *lookup_dwo_comp_unit
1991 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1992
1993 static struct dwo_unit *lookup_dwo_type_unit
1994 (struct signatured_type *, const char *, const char *);
1995
1996 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1997
1998 /* A unique pointer to a dwo_file. */
1999
2000 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2001
2002 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2003
2004 static void check_producer (struct dwarf2_cu *cu);
2005
2006 static void free_line_header_voidp (void *arg);
2007 \f
2008 /* Various complaints about symbol reading that don't abort the process. */
2009
2010 static void
2011 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2012 {
2013 complaint (_("statement list doesn't fit in .debug_line section"));
2014 }
2015
2016 static void
2017 dwarf2_debug_line_missing_file_complaint (void)
2018 {
2019 complaint (_(".debug_line section has line data without a file"));
2020 }
2021
2022 static void
2023 dwarf2_debug_line_missing_end_sequence_complaint (void)
2024 {
2025 complaint (_(".debug_line section has line "
2026 "program sequence without an end"));
2027 }
2028
2029 static void
2030 dwarf2_complex_location_expr_complaint (void)
2031 {
2032 complaint (_("location expression too complex"));
2033 }
2034
2035 static void
2036 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2037 int arg3)
2038 {
2039 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2040 arg1, arg2, arg3);
2041 }
2042
2043 static void
2044 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2045 {
2046 complaint (_("debug info runs off end of %s section"
2047 " [in module %s]"),
2048 get_section_name (section),
2049 get_section_file_name (section));
2050 }
2051
2052 static void
2053 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2054 {
2055 complaint (_("macro debug info contains a "
2056 "malformed macro definition:\n`%s'"),
2057 arg1);
2058 }
2059
2060 static void
2061 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2062 {
2063 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2064 arg1, arg2);
2065 }
2066
2067 /* Hash function for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash (const struct line_header *ofs)
2071 {
2072 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2073 }
2074
2075 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2076
2077 static hashval_t
2078 line_header_hash_voidp (const void *item)
2079 {
2080 const struct line_header *ofs = (const struct line_header *) item;
2081
2082 return line_header_hash (ofs);
2083 }
2084
2085 /* Equality function for line_header_hash. */
2086
2087 static int
2088 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2089 {
2090 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2091 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2092
2093 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2094 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2095 }
2096
2097 \f
2098
2099 /* Read the given attribute value as an address, taking the attribute's
2100 form into account. */
2101
2102 static CORE_ADDR
2103 attr_value_as_address (struct attribute *attr)
2104 {
2105 CORE_ADDR addr;
2106
2107 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2108 && attr->form != DW_FORM_GNU_addr_index)
2109 {
2110 /* Aside from a few clearly defined exceptions, attributes that
2111 contain an address must always be in DW_FORM_addr form.
2112 Unfortunately, some compilers happen to be violating this
2113 requirement by encoding addresses using other forms, such
2114 as DW_FORM_data4 for example. For those broken compilers,
2115 we try to do our best, without any guarantee of success,
2116 to interpret the address correctly. It would also be nice
2117 to generate a complaint, but that would require us to maintain
2118 a list of legitimate cases where a non-address form is allowed,
2119 as well as update callers to pass in at least the CU's DWARF
2120 version. This is more overhead than what we're willing to
2121 expand for a pretty rare case. */
2122 addr = DW_UNSND (attr);
2123 }
2124 else
2125 addr = DW_ADDR (attr);
2126
2127 return addr;
2128 }
2129
2130 /* See declaration. */
2131
2132 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2133 const dwarf2_debug_sections *names)
2134 : objfile (objfile_)
2135 {
2136 if (names == NULL)
2137 names = &dwarf2_elf_names;
2138
2139 bfd *obfd = objfile->obfd;
2140
2141 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2142 locate_sections (obfd, sec, *names);
2143 }
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 /* Everything else should be on the objfile obstack. */
2163 }
2164
2165 /* See declaration. */
2166
2167 void
2168 dwarf2_per_objfile::free_cached_comp_units ()
2169 {
2170 dwarf2_per_cu_data *per_cu = read_in_chain;
2171 dwarf2_per_cu_data **last_chain = &read_in_chain;
2172 while (per_cu != NULL)
2173 {
2174 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2175
2176 delete per_cu->cu;
2177 *last_chain = next_cu;
2178 per_cu = next_cu;
2179 }
2180 }
2181
2182 /* A helper class that calls free_cached_comp_units on
2183 destruction. */
2184
2185 class free_cached_comp_units
2186 {
2187 public:
2188
2189 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2190 : m_per_objfile (per_objfile)
2191 {
2192 }
2193
2194 ~free_cached_comp_units ()
2195 {
2196 m_per_objfile->free_cached_comp_units ();
2197 }
2198
2199 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2200
2201 private:
2202
2203 dwarf2_per_objfile *m_per_objfile;
2204 };
2205
2206 /* Try to locate the sections we need for DWARF 2 debugging
2207 information and return true if we have enough to do something.
2208 NAMES points to the dwarf2 section names, or is NULL if the standard
2209 ELF names are used. */
2210
2211 int
2212 dwarf2_has_info (struct objfile *objfile,
2213 const struct dwarf2_debug_sections *names)
2214 {
2215 if (objfile->flags & OBJF_READNEVER)
2216 return 0;
2217
2218 struct dwarf2_per_objfile *dwarf2_per_objfile
2219 = get_dwarf2_per_objfile (objfile);
2220
2221 if (dwarf2_per_objfile == NULL)
2222 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2223 names);
2224
2225 return (!dwarf2_per_objfile->info.is_virtual
2226 && dwarf2_per_objfile->info.s.section != NULL
2227 && !dwarf2_per_objfile->abbrev.is_virtual
2228 && dwarf2_per_objfile->abbrev.s.section != NULL);
2229 }
2230
2231 /* Return the containing section of virtual section SECTION. */
2232
2233 static struct dwarf2_section_info *
2234 get_containing_section (const struct dwarf2_section_info *section)
2235 {
2236 gdb_assert (section->is_virtual);
2237 return section->s.containing_section;
2238 }
2239
2240 /* Return the bfd owner of SECTION. */
2241
2242 static struct bfd *
2243 get_section_bfd_owner (const struct dwarf2_section_info *section)
2244 {
2245 if (section->is_virtual)
2246 {
2247 section = get_containing_section (section);
2248 gdb_assert (!section->is_virtual);
2249 }
2250 return section->s.section->owner;
2251 }
2252
2253 /* Return the bfd section of SECTION.
2254 Returns NULL if the section is not present. */
2255
2256 static asection *
2257 get_section_bfd_section (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 {
2261 section = get_containing_section (section);
2262 gdb_assert (!section->is_virtual);
2263 }
2264 return section->s.section;
2265 }
2266
2267 /* Return the name of SECTION. */
2268
2269 static const char *
2270 get_section_name (const struct dwarf2_section_info *section)
2271 {
2272 asection *sectp = get_section_bfd_section (section);
2273
2274 gdb_assert (sectp != NULL);
2275 return bfd_section_name (get_section_bfd_owner (section), sectp);
2276 }
2277
2278 /* Return the name of the file SECTION is in. */
2279
2280 static const char *
2281 get_section_file_name (const struct dwarf2_section_info *section)
2282 {
2283 bfd *abfd = get_section_bfd_owner (section);
2284
2285 return bfd_get_filename (abfd);
2286 }
2287
2288 /* Return the id of SECTION.
2289 Returns 0 if SECTION doesn't exist. */
2290
2291 static int
2292 get_section_id (const struct dwarf2_section_info *section)
2293 {
2294 asection *sectp = get_section_bfd_section (section);
2295
2296 if (sectp == NULL)
2297 return 0;
2298 return sectp->id;
2299 }
2300
2301 /* Return the flags of SECTION.
2302 SECTION (or containing section if this is a virtual section) must exist. */
2303
2304 static int
2305 get_section_flags (const struct dwarf2_section_info *section)
2306 {
2307 asection *sectp = get_section_bfd_section (section);
2308
2309 gdb_assert (sectp != NULL);
2310 return bfd_get_section_flags (sectp->owner, sectp);
2311 }
2312
2313 /* When loading sections, we look either for uncompressed section or for
2314 compressed section names. */
2315
2316 static int
2317 section_is_p (const char *section_name,
2318 const struct dwarf2_section_names *names)
2319 {
2320 if (names->normal != NULL
2321 && strcmp (section_name, names->normal) == 0)
2322 return 1;
2323 if (names->compressed != NULL
2324 && strcmp (section_name, names->compressed) == 0)
2325 return 1;
2326 return 0;
2327 }
2328
2329 /* See declaration. */
2330
2331 void
2332 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2333 const dwarf2_debug_sections &names)
2334 {
2335 flagword aflag = bfd_get_section_flags (abfd, sectp);
2336
2337 if ((aflag & SEC_HAS_CONTENTS) == 0)
2338 {
2339 }
2340 else if (section_is_p (sectp->name, &names.info))
2341 {
2342 this->info.s.section = sectp;
2343 this->info.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names.abbrev))
2346 {
2347 this->abbrev.s.section = sectp;
2348 this->abbrev.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names.line))
2351 {
2352 this->line.s.section = sectp;
2353 this->line.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names.loc))
2356 {
2357 this->loc.s.section = sectp;
2358 this->loc.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names.loclists))
2361 {
2362 this->loclists.s.section = sectp;
2363 this->loclists.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names.macinfo))
2366 {
2367 this->macinfo.s.section = sectp;
2368 this->macinfo.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names.macro))
2371 {
2372 this->macro.s.section = sectp;
2373 this->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names.str))
2376 {
2377 this->str.s.section = sectp;
2378 this->str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.line_str))
2381 {
2382 this->line_str.s.section = sectp;
2383 this->line_str.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.addr))
2386 {
2387 this->addr.s.section = sectp;
2388 this->addr.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.frame))
2391 {
2392 this->frame.s.section = sectp;
2393 this->frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.eh_frame))
2396 {
2397 this->eh_frame.s.section = sectp;
2398 this->eh_frame.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.ranges))
2401 {
2402 this->ranges.s.section = sectp;
2403 this->ranges.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.rnglists))
2406 {
2407 this->rnglists.s.section = sectp;
2408 this->rnglists.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.types))
2411 {
2412 struct dwarf2_section_info type_section;
2413
2414 memset (&type_section, 0, sizeof (type_section));
2415 type_section.s.section = sectp;
2416 type_section.size = bfd_get_section_size (sectp);
2417
2418 this->types.push_back (type_section);
2419 }
2420 else if (section_is_p (sectp->name, &names.gdb_index))
2421 {
2422 this->gdb_index.s.section = sectp;
2423 this->gdb_index.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.debug_names))
2426 {
2427 this->debug_names.s.section = sectp;
2428 this->debug_names.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.debug_aranges))
2431 {
2432 this->debug_aranges.s.section = sectp;
2433 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 }
2435
2436 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2437 && bfd_section_vma (abfd, sectp) == 0)
2438 this->has_section_at_zero = true;
2439 }
2440
2441 /* A helper function that decides whether a section is empty,
2442 or not present. */
2443
2444 static int
2445 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2446 {
2447 if (section->is_virtual)
2448 return section->size == 0;
2449 return section->s.section == NULL || section->size == 0;
2450 }
2451
2452 /* See dwarf2read.h. */
2453
2454 void
2455 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2456 {
2457 asection *sectp;
2458 bfd *abfd;
2459 gdb_byte *buf, *retbuf;
2460
2461 if (info->readin)
2462 return;
2463 info->buffer = NULL;
2464 info->readin = true;
2465
2466 if (dwarf2_section_empty_p (info))
2467 return;
2468
2469 sectp = get_section_bfd_section (info);
2470
2471 /* If this is a virtual section we need to read in the real one first. */
2472 if (info->is_virtual)
2473 {
2474 struct dwarf2_section_info *containing_section =
2475 get_containing_section (info);
2476
2477 gdb_assert (sectp != NULL);
2478 if ((sectp->flags & SEC_RELOC) != 0)
2479 {
2480 error (_("Dwarf Error: DWP format V2 with relocations is not"
2481 " supported in section %s [in module %s]"),
2482 get_section_name (info), get_section_file_name (info));
2483 }
2484 dwarf2_read_section (objfile, containing_section);
2485 /* Other code should have already caught virtual sections that don't
2486 fit. */
2487 gdb_assert (info->virtual_offset + info->size
2488 <= containing_section->size);
2489 /* If the real section is empty or there was a problem reading the
2490 section we shouldn't get here. */
2491 gdb_assert (containing_section->buffer != NULL);
2492 info->buffer = containing_section->buffer + info->virtual_offset;
2493 return;
2494 }
2495
2496 /* If the section has relocations, we must read it ourselves.
2497 Otherwise we attach it to the BFD. */
2498 if ((sectp->flags & SEC_RELOC) == 0)
2499 {
2500 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2501 return;
2502 }
2503
2504 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 info->buffer = buf;
2506
2507 /* When debugging .o files, we may need to apply relocations; see
2508 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2509 We never compress sections in .o files, so we only need to
2510 try this when the section is not compressed. */
2511 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 if (retbuf != NULL)
2513 {
2514 info->buffer = retbuf;
2515 return;
2516 }
2517
2518 abfd = get_section_bfd_owner (info);
2519 gdb_assert (abfd != NULL);
2520
2521 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2522 || bfd_bread (buf, info->size, abfd) != info->size)
2523 {
2524 error (_("Dwarf Error: Can't read DWARF data"
2525 " in section %s [in module %s]"),
2526 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2527 }
2528 }
2529
2530 /* A helper function that returns the size of a section in a safe way.
2531 If you are positive that the section has been read before using the
2532 size, then it is safe to refer to the dwarf2_section_info object's
2533 "size" field directly. In other cases, you must call this
2534 function, because for compressed sections the size field is not set
2535 correctly until the section has been read. */
2536
2537 static bfd_size_type
2538 dwarf2_section_size (struct objfile *objfile,
2539 struct dwarf2_section_info *info)
2540 {
2541 if (!info->readin)
2542 dwarf2_read_section (objfile, info);
2543 return info->size;
2544 }
2545
2546 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2547 SECTION_NAME. */
2548
2549 void
2550 dwarf2_get_section_info (struct objfile *objfile,
2551 enum dwarf2_section_enum sect,
2552 asection **sectp, const gdb_byte **bufp,
2553 bfd_size_type *sizep)
2554 {
2555 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* See dwarf2read.h. */
2633
2634 struct dwz_file *
2635 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2636 {
2637 const char *filename;
2638 bfd_size_type buildid_len_arg;
2639 size_t buildid_len;
2640 bfd_byte *buildid;
2641
2642 if (dwarf2_per_objfile->dwz_file != NULL)
2643 return dwarf2_per_objfile->dwz_file.get ();
2644
2645 bfd_set_error (bfd_error_no_error);
2646 gdb::unique_xmalloc_ptr<char> data
2647 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2648 &buildid_len_arg, &buildid));
2649 if (data == NULL)
2650 {
2651 if (bfd_get_error () == bfd_error_no_error)
2652 return NULL;
2653 error (_("could not read '.gnu_debugaltlink' section: %s"),
2654 bfd_errmsg (bfd_get_error ()));
2655 }
2656
2657 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2658
2659 buildid_len = (size_t) buildid_len_arg;
2660
2661 filename = data.get ();
2662
2663 std::string abs_storage;
2664 if (!IS_ABSOLUTE_PATH (filename))
2665 {
2666 gdb::unique_xmalloc_ptr<char> abs
2667 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2668
2669 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2670 filename = abs_storage.c_str ();
2671 }
2672
2673 /* First try the file name given in the section. If that doesn't
2674 work, try to use the build-id instead. */
2675 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2676 if (dwz_bfd != NULL)
2677 {
2678 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2679 dwz_bfd.reset (nullptr);
2680 }
2681
2682 if (dwz_bfd == NULL)
2683 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2684
2685 if (dwz_bfd == NULL)
2686 error (_("could not find '.gnu_debugaltlink' file for %s"),
2687 objfile_name (dwarf2_per_objfile->objfile));
2688
2689 std::unique_ptr<struct dwz_file> result
2690 (new struct dwz_file (std::move (dwz_bfd)));
2691
2692 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2693 result.get ());
2694
2695 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2696 result->dwz_bfd.get ());
2697 dwarf2_per_objfile->dwz_file = std::move (result);
2698 return dwarf2_per_objfile->dwz_file.get ();
2699 }
2700 \f
2701 /* DWARF quick_symbols_functions support. */
2702
2703 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2704 unique line tables, so we maintain a separate table of all .debug_line
2705 derived entries to support the sharing.
2706 All the quick functions need is the list of file names. We discard the
2707 line_header when we're done and don't need to record it here. */
2708 struct quick_file_names
2709 {
2710 /* The data used to construct the hash key. */
2711 struct stmt_list_hash hash;
2712
2713 /* The number of entries in file_names, real_names. */
2714 unsigned int num_file_names;
2715
2716 /* The file names from the line table, after being run through
2717 file_full_name. */
2718 const char **file_names;
2719
2720 /* The file names from the line table after being run through
2721 gdb_realpath. These are computed lazily. */
2722 const char **real_names;
2723 };
2724
2725 /* When using the index (and thus not using psymtabs), each CU has an
2726 object of this type. This is used to hold information needed by
2727 the various "quick" methods. */
2728 struct dwarf2_per_cu_quick_data
2729 {
2730 /* The file table. This can be NULL if there was no file table
2731 or it's currently not read in.
2732 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2733 struct quick_file_names *file_names;
2734
2735 /* The corresponding symbol table. This is NULL if symbols for this
2736 CU have not yet been read. */
2737 struct compunit_symtab *compunit_symtab;
2738
2739 /* A temporary mark bit used when iterating over all CUs in
2740 expand_symtabs_matching. */
2741 unsigned int mark : 1;
2742
2743 /* True if we've tried to read the file table and found there isn't one.
2744 There will be no point in trying to read it again next time. */
2745 unsigned int no_file_data : 1;
2746 };
2747
2748 /* Utility hash function for a stmt_list_hash. */
2749
2750 static hashval_t
2751 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2752 {
2753 hashval_t v = 0;
2754
2755 if (stmt_list_hash->dwo_unit != NULL)
2756 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2757 v += to_underlying (stmt_list_hash->line_sect_off);
2758 return v;
2759 }
2760
2761 /* Utility equality function for a stmt_list_hash. */
2762
2763 static int
2764 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2765 const struct stmt_list_hash *rhs)
2766 {
2767 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2768 return 0;
2769 if (lhs->dwo_unit != NULL
2770 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2771 return 0;
2772
2773 return lhs->line_sect_off == rhs->line_sect_off;
2774 }
2775
2776 /* Hash function for a quick_file_names. */
2777
2778 static hashval_t
2779 hash_file_name_entry (const void *e)
2780 {
2781 const struct quick_file_names *file_data
2782 = (const struct quick_file_names *) e;
2783
2784 return hash_stmt_list_entry (&file_data->hash);
2785 }
2786
2787 /* Equality function for a quick_file_names. */
2788
2789 static int
2790 eq_file_name_entry (const void *a, const void *b)
2791 {
2792 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2793 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2794
2795 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2796 }
2797
2798 /* Delete function for a quick_file_names. */
2799
2800 static void
2801 delete_file_name_entry (void *e)
2802 {
2803 struct quick_file_names *file_data = (struct quick_file_names *) e;
2804 int i;
2805
2806 for (i = 0; i < file_data->num_file_names; ++i)
2807 {
2808 xfree ((void*) file_data->file_names[i]);
2809 if (file_data->real_names)
2810 xfree ((void*) file_data->real_names[i]);
2811 }
2812
2813 /* The space for the struct itself lives on objfile_obstack,
2814 so we don't free it here. */
2815 }
2816
2817 /* Create a quick_file_names hash table. */
2818
2819 static htab_t
2820 create_quick_file_names_table (unsigned int nr_initial_entries)
2821 {
2822 return htab_create_alloc (nr_initial_entries,
2823 hash_file_name_entry, eq_file_name_entry,
2824 delete_file_name_entry, xcalloc, xfree);
2825 }
2826
2827 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2828 have to be created afterwards. You should call age_cached_comp_units after
2829 processing PER_CU->CU. dw2_setup must have been already called. */
2830
2831 static void
2832 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2833 {
2834 if (per_cu->is_debug_types)
2835 load_full_type_unit (per_cu);
2836 else
2837 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2838
2839 if (per_cu->cu == NULL)
2840 return; /* Dummy CU. */
2841
2842 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2843 }
2844
2845 /* Read in the symbols for PER_CU. */
2846
2847 static void
2848 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2849 {
2850 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2851
2852 /* Skip type_unit_groups, reading the type units they contain
2853 is handled elsewhere. */
2854 if (IS_TYPE_UNIT_GROUP (per_cu))
2855 return;
2856
2857 /* The destructor of dwarf2_queue_guard frees any entries left on
2858 the queue. After this point we're guaranteed to leave this function
2859 with the dwarf queue empty. */
2860 dwarf2_queue_guard q_guard;
2861
2862 if (dwarf2_per_objfile->using_index
2863 ? per_cu->v.quick->compunit_symtab == NULL
2864 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2865 {
2866 queue_comp_unit (per_cu, language_minimal);
2867 load_cu (per_cu, skip_partial);
2868
2869 /* If we just loaded a CU from a DWO, and we're working with an index
2870 that may badly handle TUs, load all the TUs in that DWO as well.
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2872 if (!per_cu->is_debug_types
2873 && per_cu->cu != NULL
2874 && per_cu->cu->dwo_unit != NULL
2875 && dwarf2_per_objfile->index_table != NULL
2876 && dwarf2_per_objfile->index_table->version <= 7
2877 /* DWP files aren't supported yet. */
2878 && get_dwp_file (dwarf2_per_objfile) == NULL)
2879 queue_and_load_all_dwo_tus (per_cu);
2880 }
2881
2882 process_queue (dwarf2_per_objfile);
2883
2884 /* Age the cache, releasing compilation units that have not
2885 been used recently. */
2886 age_cached_comp_units (dwarf2_per_objfile);
2887 }
2888
2889 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2890 the objfile from which this CU came. Returns the resulting symbol
2891 table. */
2892
2893 static struct compunit_symtab *
2894 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 gdb_assert (dwarf2_per_objfile->using_index);
2899 if (!per_cu->v.quick->compunit_symtab)
2900 {
2901 free_cached_comp_units freer (dwarf2_per_objfile);
2902 scoped_restore decrementer = increment_reading_symtab ();
2903 dw2_do_instantiate_symtab (per_cu, skip_partial);
2904 process_cu_includes (dwarf2_per_objfile);
2905 }
2906
2907 return per_cu->v.quick->compunit_symtab;
2908 }
2909
2910 /* See declaration. */
2911
2912 dwarf2_per_cu_data *
2913 dwarf2_per_objfile::get_cutu (int index)
2914 {
2915 if (index >= this->all_comp_units.size ())
2916 {
2917 index -= this->all_comp_units.size ();
2918 gdb_assert (index < this->all_type_units.size ());
2919 return &this->all_type_units[index]->per_cu;
2920 }
2921
2922 return this->all_comp_units[index];
2923 }
2924
2925 /* See declaration. */
2926
2927 dwarf2_per_cu_data *
2928 dwarf2_per_objfile::get_cu (int index)
2929 {
2930 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2931
2932 return this->all_comp_units[index];
2933 }
2934
2935 /* See declaration. */
2936
2937 signatured_type *
2938 dwarf2_per_objfile::get_tu (int index)
2939 {
2940 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2941
2942 return this->all_type_units[index];
2943 }
2944
2945 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2946 objfile_obstack, and constructed with the specified field
2947 values. */
2948
2949 static dwarf2_per_cu_data *
2950 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2951 struct dwarf2_section_info *section,
2952 int is_dwz,
2953 sect_offset sect_off, ULONGEST length)
2954 {
2955 struct objfile *objfile = dwarf2_per_objfile->objfile;
2956 dwarf2_per_cu_data *the_cu
2957 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2958 struct dwarf2_per_cu_data);
2959 the_cu->sect_off = sect_off;
2960 the_cu->length = length;
2961 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2962 the_cu->section = section;
2963 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_quick_data);
2965 the_cu->is_dwz = is_dwz;
2966 return the_cu;
2967 }
2968
2969 /* A helper for create_cus_from_index that handles a given list of
2970 CUs. */
2971
2972 static void
2973 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2974 const gdb_byte *cu_list, offset_type n_elements,
2975 struct dwarf2_section_info *section,
2976 int is_dwz)
2977 {
2978 for (offset_type i = 0; i < n_elements; i += 2)
2979 {
2980 gdb_static_assert (sizeof (ULONGEST) >= 8);
2981
2982 sect_offset sect_off
2983 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2984 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2985 cu_list += 2 * 8;
2986
2987 dwarf2_per_cu_data *per_cu
2988 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2989 sect_off, length);
2990 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2991 }
2992 }
2993
2994 /* Read the CU list from the mapped index, and use it to create all
2995 the CU objects for this objfile. */
2996
2997 static void
2998 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2999 const gdb_byte *cu_list, offset_type cu_list_elements,
3000 const gdb_byte *dwz_list, offset_type dwz_elements)
3001 {
3002 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3003 dwarf2_per_objfile->all_comp_units.reserve
3004 ((cu_list_elements + dwz_elements) / 2);
3005
3006 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3007 &dwarf2_per_objfile->info, 0);
3008
3009 if (dwz_elements == 0)
3010 return;
3011
3012 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3013 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3014 &dwz->info, 1);
3015 }
3016
3017 /* Create the signatured type hash table from the index. */
3018
3019 static void
3020 create_signatured_type_table_from_index
3021 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3022 struct dwarf2_section_info *section,
3023 const gdb_byte *bytes,
3024 offset_type elements)
3025 {
3026 struct objfile *objfile = dwarf2_per_objfile->objfile;
3027
3028 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3029 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3030
3031 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3032
3033 for (offset_type i = 0; i < elements; i += 3)
3034 {
3035 struct signatured_type *sig_type;
3036 ULONGEST signature;
3037 void **slot;
3038 cu_offset type_offset_in_tu;
3039
3040 gdb_static_assert (sizeof (ULONGEST) >= 8);
3041 sect_offset sect_off
3042 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3043 type_offset_in_tu
3044 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3045 BFD_ENDIAN_LITTLE);
3046 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3047 bytes += 3 * 8;
3048
3049 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3050 struct signatured_type);
3051 sig_type->signature = signature;
3052 sig_type->type_offset_in_tu = type_offset_in_tu;
3053 sig_type->per_cu.is_debug_types = 1;
3054 sig_type->per_cu.section = section;
3055 sig_type->per_cu.sect_off = sect_off;
3056 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3057 sig_type->per_cu.v.quick
3058 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3059 struct dwarf2_per_cu_quick_data);
3060
3061 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3062 *slot = sig_type;
3063
3064 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3065 }
3066
3067 dwarf2_per_objfile->signatured_types = sig_types_hash;
3068 }
3069
3070 /* Create the signatured type hash table from .debug_names. */
3071
3072 static void
3073 create_signatured_type_table_from_debug_names
3074 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3075 const mapped_debug_names &map,
3076 struct dwarf2_section_info *section,
3077 struct dwarf2_section_info *abbrev_section)
3078 {
3079 struct objfile *objfile = dwarf2_per_objfile->objfile;
3080
3081 dwarf2_read_section (objfile, section);
3082 dwarf2_read_section (objfile, abbrev_section);
3083
3084 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3085 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3086
3087 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3088
3089 for (uint32_t i = 0; i < map.tu_count; ++i)
3090 {
3091 struct signatured_type *sig_type;
3092 void **slot;
3093
3094 sect_offset sect_off
3095 = (sect_offset) (extract_unsigned_integer
3096 (map.tu_table_reordered + i * map.offset_size,
3097 map.offset_size,
3098 map.dwarf5_byte_order));
3099
3100 comp_unit_head cu_header;
3101 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3102 abbrev_section,
3103 section->buffer + to_underlying (sect_off),
3104 rcuh_kind::TYPE);
3105
3106 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct signatured_type);
3108 sig_type->signature = cu_header.signature;
3109 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3110 sig_type->per_cu.is_debug_types = 1;
3111 sig_type->per_cu.section = section;
3112 sig_type->per_cu.sect_off = sect_off;
3113 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3114 sig_type->per_cu.v.quick
3115 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3116 struct dwarf2_per_cu_quick_data);
3117
3118 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3119 *slot = sig_type;
3120
3121 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3122 }
3123
3124 dwarf2_per_objfile->signatured_types = sig_types_hash;
3125 }
3126
3127 /* Read the address map data from the mapped index, and use it to
3128 populate the objfile's psymtabs_addrmap. */
3129
3130 static void
3131 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3132 struct mapped_index *index)
3133 {
3134 struct objfile *objfile = dwarf2_per_objfile->objfile;
3135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3136 const gdb_byte *iter, *end;
3137 struct addrmap *mutable_map;
3138 CORE_ADDR baseaddr;
3139
3140 auto_obstack temp_obstack;
3141
3142 mutable_map = addrmap_create_mutable (&temp_obstack);
3143
3144 iter = index->address_table.data ();
3145 end = iter + index->address_table.size ();
3146
3147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3148
3149 while (iter < end)
3150 {
3151 ULONGEST hi, lo, cu_index;
3152 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3153 iter += 8;
3154 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3157 iter += 4;
3158
3159 if (lo > hi)
3160 {
3161 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3162 hex_string (lo), hex_string (hi));
3163 continue;
3164 }
3165
3166 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3167 {
3168 complaint (_(".gdb_index address table has invalid CU number %u"),
3169 (unsigned) cu_index);
3170 continue;
3171 }
3172
3173 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3174 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3175 addrmap_set_empty (mutable_map, lo, hi - 1,
3176 dwarf2_per_objfile->get_cu (cu_index));
3177 }
3178
3179 objfile->partial_symtabs->psymtabs_addrmap
3180 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3181 }
3182
3183 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3184 populate the objfile's psymtabs_addrmap. */
3185
3186 static void
3187 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3188 struct dwarf2_section_info *section)
3189 {
3190 struct objfile *objfile = dwarf2_per_objfile->objfile;
3191 bfd *abfd = objfile->obfd;
3192 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3193 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3194 SECT_OFF_TEXT (objfile));
3195
3196 auto_obstack temp_obstack;
3197 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3198
3199 std::unordered_map<sect_offset,
3200 dwarf2_per_cu_data *,
3201 gdb::hash_enum<sect_offset>>
3202 debug_info_offset_to_per_cu;
3203 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3204 {
3205 const auto insertpair
3206 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3207 if (!insertpair.second)
3208 {
3209 warning (_("Section .debug_aranges in %s has duplicate "
3210 "debug_info_offset %s, ignoring .debug_aranges."),
3211 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3212 return;
3213 }
3214 }
3215
3216 dwarf2_read_section (objfile, section);
3217
3218 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3219
3220 const gdb_byte *addr = section->buffer;
3221
3222 while (addr < section->buffer + section->size)
3223 {
3224 const gdb_byte *const entry_addr = addr;
3225 unsigned int bytes_read;
3226
3227 const LONGEST entry_length = read_initial_length (abfd, addr,
3228 &bytes_read);
3229 addr += bytes_read;
3230
3231 const gdb_byte *const entry_end = addr + entry_length;
3232 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3233 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3234 if (addr + entry_length > section->buffer + section->size)
3235 {
3236 warning (_("Section .debug_aranges in %s entry at offset %s "
3237 "length %s exceeds section length %s, "
3238 "ignoring .debug_aranges."),
3239 objfile_name (objfile),
3240 plongest (entry_addr - section->buffer),
3241 plongest (bytes_read + entry_length),
3242 pulongest (section->size));
3243 return;
3244 }
3245
3246 /* The version number. */
3247 const uint16_t version = read_2_bytes (abfd, addr);
3248 addr += 2;
3249 if (version != 2)
3250 {
3251 warning (_("Section .debug_aranges in %s entry at offset %s "
3252 "has unsupported version %d, ignoring .debug_aranges."),
3253 objfile_name (objfile),
3254 plongest (entry_addr - section->buffer), version);
3255 return;
3256 }
3257
3258 const uint64_t debug_info_offset
3259 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3260 addr += offset_size;
3261 const auto per_cu_it
3262 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3263 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3264 {
3265 warning (_("Section .debug_aranges in %s entry at offset %s "
3266 "debug_info_offset %s does not exists, "
3267 "ignoring .debug_aranges."),
3268 objfile_name (objfile),
3269 plongest (entry_addr - section->buffer),
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %s "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile),
3281 plongest (entry_addr - section->buffer), address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %s "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile),
3292 plongest (entry_addr - section->buffer),
3293 segment_selector_size);
3294 return;
3295 }
3296
3297 /* Must pad to an alignment boundary that is twice the address
3298 size. It is undocumented by the DWARF standard but GCC does
3299 use it. */
3300 for (size_t padding = ((-(addr - section->buffer))
3301 & (2 * address_size - 1));
3302 padding > 0; padding--)
3303 if (*addr++ != 0)
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %s "
3306 "padding is not zero, ignoring .debug_aranges."),
3307 objfile_name (objfile),
3308 plongest (entry_addr - section->buffer));
3309 return;
3310 }
3311
3312 for (;;)
3313 {
3314 if (addr + 2 * address_size > entry_end)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %s "
3317 "address list is not properly terminated, "
3318 "ignoring .debug_aranges."),
3319 objfile_name (objfile),
3320 plongest (entry_addr - section->buffer));
3321 return;
3322 }
3323 ULONGEST start = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 ULONGEST length = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 if (start == 0 && length == 0)
3330 break;
3331 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3332 {
3333 /* Symbol was eliminated due to a COMDAT group. */
3334 continue;
3335 }
3336 ULONGEST end = start + length;
3337 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3338 - baseaddr);
3339 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3340 - baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->partial_symtabs->psymtabs_addrmap
3346 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from BUFFER and fills
3412 in MAP. FILENAME is the name of the file containing the data;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns true if all went well, false otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_buffer (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 gdb::array_view<const gdb_byte> buffer,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr = &buffer[0];
3434
3435 /* Version check. */
3436 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3437 /* Versions earlier than 3 emitted every copy of a psymbol. This
3438 causes the index to behave very poorly for certain requests. Version 3
3439 contained incomplete addrmap. So, it seems better to just ignore such
3440 indices. */
3441 if (version < 4)
3442 {
3443 static int warning_printed = 0;
3444 if (!warning_printed)
3445 {
3446 warning (_("Skipping obsolete .gdb_index section in %s."),
3447 filename);
3448 warning_printed = 1;
3449 }
3450 return 0;
3451 }
3452 /* Index version 4 uses a different hash function than index version
3453 5 and later.
3454
3455 Versions earlier than 6 did not emit psymbols for inlined
3456 functions. Using these files will cause GDB not to be able to
3457 set breakpoints on inlined functions by name, so we ignore these
3458 indices unless the user has done
3459 "set use-deprecated-index-sections on". */
3460 if (version < 6 && !deprecated_ok)
3461 {
3462 static int warning_printed = 0;
3463 if (!warning_printed)
3464 {
3465 warning (_("\
3466 Skipping deprecated .gdb_index section in %s.\n\
3467 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3468 to use the section anyway."),
3469 filename);
3470 warning_printed = 1;
3471 }
3472 return 0;
3473 }
3474 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3475 of the TU (for symbols coming from TUs),
3476 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3477 Plus gold-generated indices can have duplicate entries for global symbols,
3478 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3479 These are just performance bugs, and we can't distinguish gdb-generated
3480 indices from gold-generated ones, so issue no warning here. */
3481
3482 /* Indexes with higher version than the one supported by GDB may be no
3483 longer backward compatible. */
3484 if (version > 8)
3485 return 0;
3486
3487 map->version = version;
3488
3489 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3490
3491 int i = 0;
3492 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3493 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3494 / 8);
3495 ++i;
3496
3497 *types_list = addr + MAYBE_SWAP (metadata[i]);
3498 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3499 - MAYBE_SWAP (metadata[i]))
3500 / 8);
3501 ++i;
3502
3503 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3504 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3505 map->address_table
3506 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3507 ++i;
3508
3509 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3510 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3511 map->symbol_table
3512 = gdb::array_view<mapped_index::symbol_table_slot>
3513 ((mapped_index::symbol_table_slot *) symbol_table,
3514 (mapped_index::symbol_table_slot *) symbol_table_end);
3515
3516 ++i;
3517 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3518
3519 return 1;
3520 }
3521
3522 /* Callback types for dwarf2_read_gdb_index. */
3523
3524 typedef gdb::function_view
3525 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3526 get_gdb_index_contents_ftype;
3527 typedef gdb::function_view
3528 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3529 get_gdb_index_contents_dwz_ftype;
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index
3536 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3537 get_gdb_index_contents_ftype get_gdb_index_contents,
3538 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3539 {
3540 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3541 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3542 struct dwz_file *dwz;
3543 struct objfile *objfile = dwarf2_per_objfile->objfile;
3544
3545 gdb::array_view<const gdb_byte> main_index_contents
3546 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3547
3548 if (main_index_contents.empty ())
3549 return 0;
3550
3551 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3552 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3553 use_deprecated_index_sections,
3554 main_index_contents, map.get (), &cu_list,
3555 &cu_list_elements, &types_list,
3556 &types_list_elements))
3557 return 0;
3558
3559 /* Don't use the index if it's empty. */
3560 if (map->symbol_table.empty ())
3561 return 0;
3562
3563 /* If there is a .dwz file, read it so we can get its CU list as
3564 well. */
3565 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3566 if (dwz != NULL)
3567 {
3568 struct mapped_index dwz_map;
3569 const gdb_byte *dwz_types_ignore;
3570 offset_type dwz_types_elements_ignore;
3571
3572 gdb::array_view<const gdb_byte> dwz_index_content
3573 = get_gdb_index_contents_dwz (objfile, dwz);
3574
3575 if (dwz_index_content.empty ())
3576 return 0;
3577
3578 if (!read_gdb_index_from_buffer (objfile,
3579 bfd_get_filename (dwz->dwz_bfd), 1,
3580 dwz_index_content, &dwz_map,
3581 &dwz_list, &dwz_list_elements,
3582 &dwz_types_ignore,
3583 &dwz_types_elements_ignore))
3584 {
3585 warning (_("could not read '.gdb_index' section from %s; skipping"),
3586 bfd_get_filename (dwz->dwz_bfd));
3587 return 0;
3588 }
3589 }
3590
3591 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3592 dwz_list, dwz_list_elements);
3593
3594 if (types_list_elements)
3595 {
3596 /* We can only handle a single .debug_types when we have an
3597 index. */
3598 if (dwarf2_per_objfile->types.size () != 1)
3599 return 0;
3600
3601 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3602
3603 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3604 types_list, types_list_elements);
3605 }
3606
3607 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3608
3609 dwarf2_per_objfile->index_table = std::move (map);
3610 dwarf2_per_objfile->using_index = 1;
3611 dwarf2_per_objfile->quick_file_names_table =
3612 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3613
3614 return 1;
3615 }
3616
3617 /* die_reader_func for dw2_get_file_names. */
3618
3619 static void
3620 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3621 const gdb_byte *info_ptr,
3622 struct die_info *comp_unit_die,
3623 int has_children,
3624 void *data)
3625 {
3626 struct dwarf2_cu *cu = reader->cu;
3627 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3628 struct dwarf2_per_objfile *dwarf2_per_objfile
3629 = cu->per_cu->dwarf2_per_objfile;
3630 struct objfile *objfile = dwarf2_per_objfile->objfile;
3631 struct dwarf2_per_cu_data *lh_cu;
3632 struct attribute *attr;
3633 int i;
3634 void **slot;
3635 struct quick_file_names *qfn;
3636
3637 gdb_assert (! this_cu->is_debug_types);
3638
3639 /* Our callers never want to match partial units -- instead they
3640 will match the enclosing full CU. */
3641 if (comp_unit_die->tag == DW_TAG_partial_unit)
3642 {
3643 this_cu->v.quick->no_file_data = 1;
3644 return;
3645 }
3646
3647 lh_cu = this_cu;
3648 slot = NULL;
3649
3650 line_header_up lh;
3651 sect_offset line_offset {};
3652
3653 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3654 if (attr)
3655 {
3656 struct quick_file_names find_entry;
3657
3658 line_offset = (sect_offset) DW_UNSND (attr);
3659
3660 /* We may have already read in this line header (TU line header sharing).
3661 If we have we're done. */
3662 find_entry.hash.dwo_unit = cu->dwo_unit;
3663 find_entry.hash.line_sect_off = line_offset;
3664 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3665 &find_entry, INSERT);
3666 if (*slot != NULL)
3667 {
3668 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3669 return;
3670 }
3671
3672 lh = dwarf_decode_line_header (line_offset, cu);
3673 }
3674 if (lh == NULL)
3675 {
3676 lh_cu->v.quick->no_file_data = 1;
3677 return;
3678 }
3679
3680 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3681 qfn->hash.dwo_unit = cu->dwo_unit;
3682 qfn->hash.line_sect_off = line_offset;
3683 gdb_assert (slot != NULL);
3684 *slot = qfn;
3685
3686 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3687
3688 qfn->num_file_names = lh->file_names.size ();
3689 qfn->file_names =
3690 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3691 for (i = 0; i < lh->file_names.size (); ++i)
3692 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3693 qfn->real_names = NULL;
3694
3695 lh_cu->v.quick->file_names = qfn;
3696 }
3697
3698 /* A helper for the "quick" functions which attempts to read the line
3699 table for THIS_CU. */
3700
3701 static struct quick_file_names *
3702 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3703 {
3704 /* This should never be called for TUs. */
3705 gdb_assert (! this_cu->is_debug_types);
3706 /* Nor type unit groups. */
3707 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3708
3709 if (this_cu->v.quick->file_names != NULL)
3710 return this_cu->v.quick->file_names;
3711 /* If we know there is no line data, no point in looking again. */
3712 if (this_cu->v.quick->no_file_data)
3713 return NULL;
3714
3715 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3716
3717 if (this_cu->v.quick->no_file_data)
3718 return NULL;
3719 return this_cu->v.quick->file_names;
3720 }
3721
3722 /* A helper for the "quick" functions which computes and caches the
3723 real path for a given file name from the line table. */
3724
3725 static const char *
3726 dw2_get_real_path (struct objfile *objfile,
3727 struct quick_file_names *qfn, int index)
3728 {
3729 if (qfn->real_names == NULL)
3730 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3731 qfn->num_file_names, const char *);
3732
3733 if (qfn->real_names[index] == NULL)
3734 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3735
3736 return qfn->real_names[index];
3737 }
3738
3739 static struct symtab *
3740 dw2_find_last_source_symtab (struct objfile *objfile)
3741 {
3742 struct dwarf2_per_objfile *dwarf2_per_objfile
3743 = get_dwarf2_per_objfile (objfile);
3744 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3745 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3746
3747 if (cust == NULL)
3748 return NULL;
3749
3750 return compunit_primary_filetab (cust);
3751 }
3752
3753 /* Traversal function for dw2_forget_cached_source_info. */
3754
3755 static int
3756 dw2_free_cached_file_names (void **slot, void *info)
3757 {
3758 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3759
3760 if (file_data->real_names)
3761 {
3762 int i;
3763
3764 for (i = 0; i < file_data->num_file_names; ++i)
3765 {
3766 xfree ((void*) file_data->real_names[i]);
3767 file_data->real_names[i] = NULL;
3768 }
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 dw2_forget_cached_source_info (struct objfile *objfile)
3776 {
3777 struct dwarf2_per_objfile *dwarf2_per_objfile
3778 = get_dwarf2_per_objfile (objfile);
3779
3780 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3781 dw2_free_cached_file_names, NULL);
3782 }
3783
3784 /* Helper function for dw2_map_symtabs_matching_filename that expands
3785 the symtabs and calls the iterator. */
3786
3787 static int
3788 dw2_map_expand_apply (struct objfile *objfile,
3789 struct dwarf2_per_cu_data *per_cu,
3790 const char *name, const char *real_path,
3791 gdb::function_view<bool (symtab *)> callback)
3792 {
3793 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3794
3795 /* Don't visit already-expanded CUs. */
3796 if (per_cu->v.quick->compunit_symtab)
3797 return 0;
3798
3799 /* This may expand more than one symtab, and we want to iterate over
3800 all of them. */
3801 dw2_instantiate_symtab (per_cu, false);
3802
3803 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3804 last_made, callback);
3805 }
3806
3807 /* Implementation of the map_symtabs_matching_filename method. */
3808
3809 static bool
3810 dw2_map_symtabs_matching_filename
3811 (struct objfile *objfile, const char *name, const char *real_path,
3812 gdb::function_view<bool (symtab *)> callback)
3813 {
3814 const char *name_basename = lbasename (name);
3815 struct dwarf2_per_objfile *dwarf2_per_objfile
3816 = get_dwarf2_per_objfile (objfile);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3822 {
3823 /* We only need to look at symtabs not already expanded. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 quick_file_names *file_data = dw2_get_file_names (per_cu);
3828 if (file_data == NULL)
3829 continue;
3830
3831 for (int j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_name = file_data->file_names[j];
3834 const char *this_real_name;
3835
3836 if (compare_filenames_for_search (this_name, name))
3837 {
3838 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3839 callback))
3840 return true;
3841 continue;
3842 }
3843
3844 /* Before we invoke realpath, which can get expensive when many
3845 files are involved, do a quick comparison of the basenames. */
3846 if (! basenames_may_differ
3847 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3848 continue;
3849
3850 this_real_name = dw2_get_real_path (objfile, file_data, j);
3851 if (compare_filenames_for_search (this_real_name, name))
3852 {
3853 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3854 callback))
3855 return true;
3856 continue;
3857 }
3858
3859 if (real_path != NULL)
3860 {
3861 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3862 gdb_assert (IS_ABSOLUTE_PATH (name));
3863 if (this_real_name != NULL
3864 && FILENAME_CMP (real_path, this_real_name) == 0)
3865 {
3866 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3867 callback))
3868 return true;
3869 continue;
3870 }
3871 }
3872 }
3873 }
3874
3875 return false;
3876 }
3877
3878 /* Struct used to manage iterating over all CUs looking for a symbol. */
3879
3880 struct dw2_symtab_iterator
3881 {
3882 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3883 struct dwarf2_per_objfile *dwarf2_per_objfile;
3884 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3885 int want_specific_block;
3886 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3887 Unused if !WANT_SPECIFIC_BLOCK. */
3888 int block_index;
3889 /* The kind of symbol we're looking for. */
3890 domain_enum domain;
3891 /* The list of CUs from the index entry of the symbol,
3892 or NULL if not found. */
3893 offset_type *vec;
3894 /* The next element in VEC to look at. */
3895 int next;
3896 /* The number of elements in VEC, or zero if there is no match. */
3897 int length;
3898 /* Have we seen a global version of the symbol?
3899 If so we can ignore all further global instances.
3900 This is to work around gold/15646, inefficient gold-generated
3901 indices. */
3902 int global_seen;
3903 };
3904
3905 /* Initialize the index symtab iterator ITER.
3906 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3907 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3908
3909 static void
3910 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3911 struct dwarf2_per_objfile *dwarf2_per_objfile,
3912 int want_specific_block,
3913 int block_index,
3914 domain_enum domain,
3915 const char *name)
3916 {
3917 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3918 iter->want_specific_block = want_specific_block;
3919 iter->block_index = block_index;
3920 iter->domain = domain;
3921 iter->next = 0;
3922 iter->global_seen = 0;
3923
3924 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3925
3926 /* index is NULL if OBJF_READNOW. */
3927 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3928 iter->length = MAYBE_SWAP (*iter->vec);
3929 else
3930 {
3931 iter->vec = NULL;
3932 iter->length = 0;
3933 }
3934 }
3935
3936 /* Return the next matching CU or NULL if there are no more. */
3937
3938 static struct dwarf2_per_cu_data *
3939 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3940 {
3941 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3942
3943 for ( ; iter->next < iter->length; ++iter->next)
3944 {
3945 offset_type cu_index_and_attrs =
3946 MAYBE_SWAP (iter->vec[iter->next + 1]);
3947 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3948 int want_static = iter->block_index != GLOBAL_BLOCK;
3949 /* This value is only valid for index versions >= 7. */
3950 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3951 gdb_index_symbol_kind symbol_kind =
3952 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3953 /* Only check the symbol attributes if they're present.
3954 Indices prior to version 7 don't record them,
3955 and indices >= 7 may elide them for certain symbols
3956 (gold does this). */
3957 int attrs_valid =
3958 (dwarf2_per_objfile->index_table->version >= 7
3959 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3960
3961 /* Don't crash on bad data. */
3962 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3963 + dwarf2_per_objfile->all_type_units.size ()))
3964 {
3965 complaint (_(".gdb_index entry has bad CU index"
3966 " [in module %s]"),
3967 objfile_name (dwarf2_per_objfile->objfile));
3968 continue;
3969 }
3970
3971 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3972
3973 /* Skip if already read in. */
3974 if (per_cu->v.quick->compunit_symtab)
3975 continue;
3976
3977 /* Check static vs global. */
3978 if (attrs_valid)
3979 {
3980 if (iter->want_specific_block
3981 && want_static != is_static)
3982 continue;
3983 /* Work around gold/15646. */
3984 if (!is_static && iter->global_seen)
3985 continue;
3986 if (!is_static)
3987 iter->global_seen = 1;
3988 }
3989
3990 /* Only check the symbol's kind if it has one. */
3991 if (attrs_valid)
3992 {
3993 switch (iter->domain)
3994 {
3995 case VAR_DOMAIN:
3996 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3998 /* Some types are also in VAR_DOMAIN. */
3999 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4000 continue;
4001 break;
4002 case STRUCT_DOMAIN:
4003 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4004 continue;
4005 break;
4006 case LABEL_DOMAIN:
4007 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4008 continue;
4009 break;
4010 default:
4011 break;
4012 }
4013 }
4014
4015 ++iter->next;
4016 return per_cu;
4017 }
4018
4019 return NULL;
4020 }
4021
4022 static struct compunit_symtab *
4023 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4024 const char *name, domain_enum domain)
4025 {
4026 struct compunit_symtab *stab_best = NULL;
4027 struct dwarf2_per_objfile *dwarf2_per_objfile
4028 = get_dwarf2_per_objfile (objfile);
4029
4030 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4031
4032 struct dw2_symtab_iterator iter;
4033 struct dwarf2_per_cu_data *per_cu;
4034
4035 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4036
4037 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4038 {
4039 struct symbol *sym, *with_opaque = NULL;
4040 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4041 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4042 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4043
4044 sym = block_find_symbol (block, name, domain,
4045 block_find_non_opaque_type_preferred,
4046 &with_opaque);
4047
4048 /* Some caution must be observed with overloaded functions
4049 and methods, since the index will not contain any overload
4050 information (but NAME might contain it). */
4051
4052 if (sym != NULL
4053 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4054 return stab;
4055 if (with_opaque != NULL
4056 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4057 stab_best = stab;
4058
4059 /* Keep looking through other CUs. */
4060 }
4061
4062 return stab_best;
4063 }
4064
4065 static void
4066 dw2_print_stats (struct objfile *objfile)
4067 {
4068 struct dwarf2_per_objfile *dwarf2_per_objfile
4069 = get_dwarf2_per_objfile (objfile);
4070 int total = (dwarf2_per_objfile->all_comp_units.size ()
4071 + dwarf2_per_objfile->all_type_units.size ());
4072 int count = 0;
4073
4074 for (int i = 0; i < total; ++i)
4075 {
4076 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4077
4078 if (!per_cu->v.quick->compunit_symtab)
4079 ++count;
4080 }
4081 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4082 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4083 }
4084
4085 /* This dumps minimal information about the index.
4086 It is called via "mt print objfiles".
4087 One use is to verify .gdb_index has been loaded by the
4088 gdb.dwarf2/gdb-index.exp testcase. */
4089
4090 static void
4091 dw2_dump (struct objfile *objfile)
4092 {
4093 struct dwarf2_per_objfile *dwarf2_per_objfile
4094 = get_dwarf2_per_objfile (objfile);
4095
4096 gdb_assert (dwarf2_per_objfile->using_index);
4097 printf_filtered (".gdb_index:");
4098 if (dwarf2_per_objfile->index_table != NULL)
4099 {
4100 printf_filtered (" version %d\n",
4101 dwarf2_per_objfile->index_table->version);
4102 }
4103 else
4104 printf_filtered (" faked for \"readnow\"\n");
4105 printf_filtered ("\n");
4106 }
4107
4108 static void
4109 dw2_expand_symtabs_for_function (struct objfile *objfile,
4110 const char *func_name)
4111 {
4112 struct dwarf2_per_objfile *dwarf2_per_objfile
4113 = get_dwarf2_per_objfile (objfile);
4114
4115 struct dw2_symtab_iterator iter;
4116 struct dwarf2_per_cu_data *per_cu;
4117
4118 /* Note: It doesn't matter what we pass for block_index here. */
4119 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4120 func_name);
4121
4122 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4123 dw2_instantiate_symtab (per_cu, false);
4124
4125 }
4126
4127 static void
4128 dw2_expand_all_symtabs (struct objfile *objfile)
4129 {
4130 struct dwarf2_per_objfile *dwarf2_per_objfile
4131 = get_dwarf2_per_objfile (objfile);
4132 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4133 + dwarf2_per_objfile->all_type_units.size ());
4134
4135 for (int i = 0; i < total_units; ++i)
4136 {
4137 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4138
4139 /* We don't want to directly expand a partial CU, because if we
4140 read it with the wrong language, then assertion failures can
4141 be triggered later on. See PR symtab/23010. So, tell
4142 dw2_instantiate_symtab to skip partial CUs -- any important
4143 partial CU will be read via DW_TAG_imported_unit anyway. */
4144 dw2_instantiate_symtab (per_cu, true);
4145 }
4146 }
4147
4148 static void
4149 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4150 const char *fullname)
4151 {
4152 struct dwarf2_per_objfile *dwarf2_per_objfile
4153 = get_dwarf2_per_objfile (objfile);
4154
4155 /* We don't need to consider type units here.
4156 This is only called for examining code, e.g. expand_line_sal.
4157 There can be an order of magnitude (or more) more type units
4158 than comp units, and we avoid them if we can. */
4159
4160 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4161 {
4162 /* We only need to look at symtabs not already expanded. */
4163 if (per_cu->v.quick->compunit_symtab)
4164 continue;
4165
4166 quick_file_names *file_data = dw2_get_file_names (per_cu);
4167 if (file_data == NULL)
4168 continue;
4169
4170 for (int j = 0; j < file_data->num_file_names; ++j)
4171 {
4172 const char *this_fullname = file_data->file_names[j];
4173
4174 if (filename_cmp (this_fullname, fullname) == 0)
4175 {
4176 dw2_instantiate_symtab (per_cu, false);
4177 break;
4178 }
4179 }
4180 }
4181 }
4182
4183 static void
4184 dw2_map_matching_symbols (struct objfile *objfile,
4185 const char * name, domain_enum domain,
4186 int global,
4187 int (*callback) (const struct block *,
4188 struct symbol *, void *),
4189 void *data, symbol_name_match_type match,
4190 symbol_compare_ftype *ordered_compare)
4191 {
4192 /* Currently unimplemented; used for Ada. The function can be called if the
4193 current language is Ada for a non-Ada objfile using GNU index. As Ada
4194 does not look for non-Ada symbols this function should just return. */
4195 }
4196
4197 /* Symbol name matcher for .gdb_index names.
4198
4199 Symbol names in .gdb_index have a few particularities:
4200
4201 - There's no indication of which is the language of each symbol.
4202
4203 Since each language has its own symbol name matching algorithm,
4204 and we don't know which language is the right one, we must match
4205 each symbol against all languages. This would be a potential
4206 performance problem if it were not mitigated by the
4207 mapped_index::name_components lookup table, which significantly
4208 reduces the number of times we need to call into this matcher,
4209 making it a non-issue.
4210
4211 - Symbol names in the index have no overload (parameter)
4212 information. I.e., in C++, "foo(int)" and "foo(long)" both
4213 appear as "foo" in the index, for example.
4214
4215 This means that the lookup names passed to the symbol name
4216 matcher functions must have no parameter information either
4217 because (e.g.) symbol search name "foo" does not match
4218 lookup-name "foo(int)" [while swapping search name for lookup
4219 name would match].
4220 */
4221 class gdb_index_symbol_name_matcher
4222 {
4223 public:
4224 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4225 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4226
4227 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4228 Returns true if any matcher matches. */
4229 bool matches (const char *symbol_name);
4230
4231 private:
4232 /* A reference to the lookup name we're matching against. */
4233 const lookup_name_info &m_lookup_name;
4234
4235 /* A vector holding all the different symbol name matchers, for all
4236 languages. */
4237 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4238 };
4239
4240 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4241 (const lookup_name_info &lookup_name)
4242 : m_lookup_name (lookup_name)
4243 {
4244 /* Prepare the vector of comparison functions upfront, to avoid
4245 doing the same work for each symbol. Care is taken to avoid
4246 matching with the same matcher more than once if/when multiple
4247 languages use the same matcher function. */
4248 auto &matchers = m_symbol_name_matcher_funcs;
4249 matchers.reserve (nr_languages);
4250
4251 matchers.push_back (default_symbol_name_matcher);
4252
4253 for (int i = 0; i < nr_languages; i++)
4254 {
4255 const language_defn *lang = language_def ((enum language) i);
4256 symbol_name_matcher_ftype *name_matcher
4257 = get_symbol_name_matcher (lang, m_lookup_name);
4258
4259 /* Don't insert the same comparison routine more than once.
4260 Note that we do this linear walk instead of a seemingly
4261 cheaper sorted insert, or use a std::set or something like
4262 that, because relative order of function addresses is not
4263 stable. This is not a problem in practice because the number
4264 of supported languages is low, and the cost here is tiny
4265 compared to the number of searches we'll do afterwards using
4266 this object. */
4267 if (name_matcher != default_symbol_name_matcher
4268 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4269 == matchers.end ()))
4270 matchers.push_back (name_matcher);
4271 }
4272 }
4273
4274 bool
4275 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4276 {
4277 for (auto matches_name : m_symbol_name_matcher_funcs)
4278 if (matches_name (symbol_name, m_lookup_name, NULL))
4279 return true;
4280
4281 return false;
4282 }
4283
4284 /* Starting from a search name, return the string that finds the upper
4285 bound of all strings that start with SEARCH_NAME in a sorted name
4286 list. Returns the empty string to indicate that the upper bound is
4287 the end of the list. */
4288
4289 static std::string
4290 make_sort_after_prefix_name (const char *search_name)
4291 {
4292 /* When looking to complete "func", we find the upper bound of all
4293 symbols that start with "func" by looking for where we'd insert
4294 the closest string that would follow "func" in lexicographical
4295 order. Usually, that's "func"-with-last-character-incremented,
4296 i.e. "fund". Mind non-ASCII characters, though. Usually those
4297 will be UTF-8 multi-byte sequences, but we can't be certain.
4298 Especially mind the 0xff character, which is a valid character in
4299 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4300 rule out compilers allowing it in identifiers. Note that
4301 conveniently, strcmp/strcasecmp are specified to compare
4302 characters interpreted as unsigned char. So what we do is treat
4303 the whole string as a base 256 number composed of a sequence of
4304 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4305 to 0, and carries 1 to the following more-significant position.
4306 If the very first character in SEARCH_NAME ends up incremented
4307 and carries/overflows, then the upper bound is the end of the
4308 list. The string after the empty string is also the empty
4309 string.
4310
4311 Some examples of this operation:
4312
4313 SEARCH_NAME => "+1" RESULT
4314
4315 "abc" => "abd"
4316 "ab\xff" => "ac"
4317 "\xff" "a" "\xff" => "\xff" "b"
4318 "\xff" => ""
4319 "\xff\xff" => ""
4320 "" => ""
4321
4322 Then, with these symbols for example:
4323
4324 func
4325 func1
4326 fund
4327
4328 completing "func" looks for symbols between "func" and
4329 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4330 which finds "func" and "func1", but not "fund".
4331
4332 And with:
4333
4334 funcÿ (Latin1 'ÿ' [0xff])
4335 funcÿ1
4336 fund
4337
4338 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4339 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4340
4341 And with:
4342
4343 ÿÿ (Latin1 'ÿ' [0xff])
4344 ÿÿ1
4345
4346 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4347 the end of the list.
4348 */
4349 std::string after = search_name;
4350 while (!after.empty () && (unsigned char) after.back () == 0xff)
4351 after.pop_back ();
4352 if (!after.empty ())
4353 after.back () = (unsigned char) after.back () + 1;
4354 return after;
4355 }
4356
4357 /* See declaration. */
4358
4359 std::pair<std::vector<name_component>::const_iterator,
4360 std::vector<name_component>::const_iterator>
4361 mapped_index_base::find_name_components_bounds
4362 (const lookup_name_info &lookup_name_without_params) const
4363 {
4364 auto *name_cmp
4365 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4366
4367 const char *cplus
4368 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4369
4370 /* Comparison function object for lower_bound that matches against a
4371 given symbol name. */
4372 auto lookup_compare_lower = [&] (const name_component &elem,
4373 const char *name)
4374 {
4375 const char *elem_qualified = this->symbol_name_at (elem.idx);
4376 const char *elem_name = elem_qualified + elem.name_offset;
4377 return name_cmp (elem_name, name) < 0;
4378 };
4379
4380 /* Comparison function object for upper_bound that matches against a
4381 given symbol name. */
4382 auto lookup_compare_upper = [&] (const char *name,
4383 const name_component &elem)
4384 {
4385 const char *elem_qualified = this->symbol_name_at (elem.idx);
4386 const char *elem_name = elem_qualified + elem.name_offset;
4387 return name_cmp (name, elem_name) < 0;
4388 };
4389
4390 auto begin = this->name_components.begin ();
4391 auto end = this->name_components.end ();
4392
4393 /* Find the lower bound. */
4394 auto lower = [&] ()
4395 {
4396 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4397 return begin;
4398 else
4399 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4400 } ();
4401
4402 /* Find the upper bound. */
4403 auto upper = [&] ()
4404 {
4405 if (lookup_name_without_params.completion_mode ())
4406 {
4407 /* In completion mode, we want UPPER to point past all
4408 symbols names that have the same prefix. I.e., with
4409 these symbols, and completing "func":
4410
4411 function << lower bound
4412 function1
4413 other_function << upper bound
4414
4415 We find the upper bound by looking for the insertion
4416 point of "func"-with-last-character-incremented,
4417 i.e. "fund". */
4418 std::string after = make_sort_after_prefix_name (cplus);
4419 if (after.empty ())
4420 return end;
4421 return std::lower_bound (lower, end, after.c_str (),
4422 lookup_compare_lower);
4423 }
4424 else
4425 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4426 } ();
4427
4428 return {lower, upper};
4429 }
4430
4431 /* See declaration. */
4432
4433 void
4434 mapped_index_base::build_name_components ()
4435 {
4436 if (!this->name_components.empty ())
4437 return;
4438
4439 this->name_components_casing = case_sensitivity;
4440 auto *name_cmp
4441 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4442
4443 /* The code below only knows how to break apart components of C++
4444 symbol names (and other languages that use '::' as
4445 namespace/module separator). If we add support for wild matching
4446 to some language that uses some other operator (E.g., Ada, Go and
4447 D use '.'), then we'll need to try splitting the symbol name
4448 according to that language too. Note that Ada does support wild
4449 matching, but doesn't currently support .gdb_index. */
4450 auto count = this->symbol_name_count ();
4451 for (offset_type idx = 0; idx < count; idx++)
4452 {
4453 if (this->symbol_name_slot_invalid (idx))
4454 continue;
4455
4456 const char *name = this->symbol_name_at (idx);
4457
4458 /* Add each name component to the name component table. */
4459 unsigned int previous_len = 0;
4460 for (unsigned int current_len = cp_find_first_component (name);
4461 name[current_len] != '\0';
4462 current_len += cp_find_first_component (name + current_len))
4463 {
4464 gdb_assert (name[current_len] == ':');
4465 this->name_components.push_back ({previous_len, idx});
4466 /* Skip the '::'. */
4467 current_len += 2;
4468 previous_len = current_len;
4469 }
4470 this->name_components.push_back ({previous_len, idx});
4471 }
4472
4473 /* Sort name_components elements by name. */
4474 auto name_comp_compare = [&] (const name_component &left,
4475 const name_component &right)
4476 {
4477 const char *left_qualified = this->symbol_name_at (left.idx);
4478 const char *right_qualified = this->symbol_name_at (right.idx);
4479
4480 const char *left_name = left_qualified + left.name_offset;
4481 const char *right_name = right_qualified + right.name_offset;
4482
4483 return name_cmp (left_name, right_name) < 0;
4484 };
4485
4486 std::sort (this->name_components.begin (),
4487 this->name_components.end (),
4488 name_comp_compare);
4489 }
4490
4491 /* Helper for dw2_expand_symtabs_matching that works with a
4492 mapped_index_base instead of the containing objfile. This is split
4493 to a separate function in order to be able to unit test the
4494 name_components matching using a mock mapped_index_base. For each
4495 symbol name that matches, calls MATCH_CALLBACK, passing it the
4496 symbol's index in the mapped_index_base symbol table. */
4497
4498 static void
4499 dw2_expand_symtabs_matching_symbol
4500 (mapped_index_base &index,
4501 const lookup_name_info &lookup_name_in,
4502 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4503 enum search_domain kind,
4504 gdb::function_view<void (offset_type)> match_callback)
4505 {
4506 lookup_name_info lookup_name_without_params
4507 = lookup_name_in.make_ignore_params ();
4508 gdb_index_symbol_name_matcher lookup_name_matcher
4509 (lookup_name_without_params);
4510
4511 /* Build the symbol name component sorted vector, if we haven't
4512 yet. */
4513 index.build_name_components ();
4514
4515 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4516
4517 /* Now for each symbol name in range, check to see if we have a name
4518 match, and if so, call the MATCH_CALLBACK callback. */
4519
4520 /* The same symbol may appear more than once in the range though.
4521 E.g., if we're looking for symbols that complete "w", and we have
4522 a symbol named "w1::w2", we'll find the two name components for
4523 that same symbol in the range. To be sure we only call the
4524 callback once per symbol, we first collect the symbol name
4525 indexes that matched in a temporary vector and ignore
4526 duplicates. */
4527 std::vector<offset_type> matches;
4528 matches.reserve (std::distance (bounds.first, bounds.second));
4529
4530 for (; bounds.first != bounds.second; ++bounds.first)
4531 {
4532 const char *qualified = index.symbol_name_at (bounds.first->idx);
4533
4534 if (!lookup_name_matcher.matches (qualified)
4535 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4536 continue;
4537
4538 matches.push_back (bounds.first->idx);
4539 }
4540
4541 std::sort (matches.begin (), matches.end ());
4542
4543 /* Finally call the callback, once per match. */
4544 ULONGEST prev = -1;
4545 for (offset_type idx : matches)
4546 {
4547 if (prev != idx)
4548 {
4549 match_callback (idx);
4550 prev = idx;
4551 }
4552 }
4553
4554 /* Above we use a type wider than idx's for 'prev', since 0 and
4555 (offset_type)-1 are both possible values. */
4556 static_assert (sizeof (prev) > sizeof (offset_type), "");
4557 }
4558
4559 #if GDB_SELF_TEST
4560
4561 namespace selftests { namespace dw2_expand_symtabs_matching {
4562
4563 /* A mock .gdb_index/.debug_names-like name index table, enough to
4564 exercise dw2_expand_symtabs_matching_symbol, which works with the
4565 mapped_index_base interface. Builds an index from the symbol list
4566 passed as parameter to the constructor. */
4567 class mock_mapped_index : public mapped_index_base
4568 {
4569 public:
4570 mock_mapped_index (gdb::array_view<const char *> symbols)
4571 : m_symbol_table (symbols)
4572 {}
4573
4574 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4575
4576 /* Return the number of names in the symbol table. */
4577 size_t symbol_name_count () const override
4578 {
4579 return m_symbol_table.size ();
4580 }
4581
4582 /* Get the name of the symbol at IDX in the symbol table. */
4583 const char *symbol_name_at (offset_type idx) const override
4584 {
4585 return m_symbol_table[idx];
4586 }
4587
4588 private:
4589 gdb::array_view<const char *> m_symbol_table;
4590 };
4591
4592 /* Convenience function that converts a NULL pointer to a "<null>"
4593 string, to pass to print routines. */
4594
4595 static const char *
4596 string_or_null (const char *str)
4597 {
4598 return str != NULL ? str : "<null>";
4599 }
4600
4601 /* Check if a lookup_name_info built from
4602 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4603 index. EXPECTED_LIST is the list of expected matches, in expected
4604 matching order. If no match expected, then an empty list is
4605 specified. Returns true on success. On failure prints a warning
4606 indicating the file:line that failed, and returns false. */
4607
4608 static bool
4609 check_match (const char *file, int line,
4610 mock_mapped_index &mock_index,
4611 const char *name, symbol_name_match_type match_type,
4612 bool completion_mode,
4613 std::initializer_list<const char *> expected_list)
4614 {
4615 lookup_name_info lookup_name (name, match_type, completion_mode);
4616
4617 bool matched = true;
4618
4619 auto mismatch = [&] (const char *expected_str,
4620 const char *got)
4621 {
4622 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4623 "expected=\"%s\", got=\"%s\"\n"),
4624 file, line,
4625 (match_type == symbol_name_match_type::FULL
4626 ? "FULL" : "WILD"),
4627 name, string_or_null (expected_str), string_or_null (got));
4628 matched = false;
4629 };
4630
4631 auto expected_it = expected_list.begin ();
4632 auto expected_end = expected_list.end ();
4633
4634 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4635 NULL, ALL_DOMAIN,
4636 [&] (offset_type idx)
4637 {
4638 const char *matched_name = mock_index.symbol_name_at (idx);
4639 const char *expected_str
4640 = expected_it == expected_end ? NULL : *expected_it++;
4641
4642 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4643 mismatch (expected_str, matched_name);
4644 });
4645
4646 const char *expected_str
4647 = expected_it == expected_end ? NULL : *expected_it++;
4648 if (expected_str != NULL)
4649 mismatch (expected_str, NULL);
4650
4651 return matched;
4652 }
4653
4654 /* The symbols added to the mock mapped_index for testing (in
4655 canonical form). */
4656 static const char *test_symbols[] = {
4657 "function",
4658 "std::bar",
4659 "std::zfunction",
4660 "std::zfunction2",
4661 "w1::w2",
4662 "ns::foo<char*>",
4663 "ns::foo<int>",
4664 "ns::foo<long>",
4665 "ns2::tmpl<int>::foo2",
4666 "(anonymous namespace)::A::B::C",
4667
4668 /* These are used to check that the increment-last-char in the
4669 matching algorithm for completion doesn't match "t1_fund" when
4670 completing "t1_func". */
4671 "t1_func",
4672 "t1_func1",
4673 "t1_fund",
4674 "t1_fund1",
4675
4676 /* A UTF-8 name with multi-byte sequences to make sure that
4677 cp-name-parser understands this as a single identifier ("função"
4678 is "function" in PT). */
4679 u8"u8função",
4680
4681 /* \377 (0xff) is Latin1 'ÿ'. */
4682 "yfunc\377",
4683
4684 /* \377 (0xff) is Latin1 'ÿ'. */
4685 "\377",
4686 "\377\377123",
4687
4688 /* A name with all sorts of complications. Starts with "z" to make
4689 it easier for the completion tests below. */
4690 #define Z_SYM_NAME \
4691 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4692 "::tuple<(anonymous namespace)::ui*, " \
4693 "std::default_delete<(anonymous namespace)::ui>, void>"
4694
4695 Z_SYM_NAME
4696 };
4697
4698 /* Returns true if the mapped_index_base::find_name_component_bounds
4699 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4700 in completion mode. */
4701
4702 static bool
4703 check_find_bounds_finds (mapped_index_base &index,
4704 const char *search_name,
4705 gdb::array_view<const char *> expected_syms)
4706 {
4707 lookup_name_info lookup_name (search_name,
4708 symbol_name_match_type::FULL, true);
4709
4710 auto bounds = index.find_name_components_bounds (lookup_name);
4711
4712 size_t distance = std::distance (bounds.first, bounds.second);
4713 if (distance != expected_syms.size ())
4714 return false;
4715
4716 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4717 {
4718 auto nc_elem = bounds.first + exp_elem;
4719 const char *qualified = index.symbol_name_at (nc_elem->idx);
4720 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4721 return false;
4722 }
4723
4724 return true;
4725 }
4726
4727 /* Test the lower-level mapped_index::find_name_component_bounds
4728 method. */
4729
4730 static void
4731 test_mapped_index_find_name_component_bounds ()
4732 {
4733 mock_mapped_index mock_index (test_symbols);
4734
4735 mock_index.build_name_components ();
4736
4737 /* Test the lower-level mapped_index::find_name_component_bounds
4738 method in completion mode. */
4739 {
4740 static const char *expected_syms[] = {
4741 "t1_func",
4742 "t1_func1",
4743 };
4744
4745 SELF_CHECK (check_find_bounds_finds (mock_index,
4746 "t1_func", expected_syms));
4747 }
4748
4749 /* Check that the increment-last-char in the name matching algorithm
4750 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4751 {
4752 static const char *expected_syms1[] = {
4753 "\377",
4754 "\377\377123",
4755 };
4756 SELF_CHECK (check_find_bounds_finds (mock_index,
4757 "\377", expected_syms1));
4758
4759 static const char *expected_syms2[] = {
4760 "\377\377123",
4761 };
4762 SELF_CHECK (check_find_bounds_finds (mock_index,
4763 "\377\377", expected_syms2));
4764 }
4765 }
4766
4767 /* Test dw2_expand_symtabs_matching_symbol. */
4768
4769 static void
4770 test_dw2_expand_symtabs_matching_symbol ()
4771 {
4772 mock_mapped_index mock_index (test_symbols);
4773
4774 /* We let all tests run until the end even if some fails, for debug
4775 convenience. */
4776 bool any_mismatch = false;
4777
4778 /* Create the expected symbols list (an initializer_list). Needed
4779 because lists have commas, and we need to pass them to CHECK,
4780 which is a macro. */
4781 #define EXPECT(...) { __VA_ARGS__ }
4782
4783 /* Wrapper for check_match that passes down the current
4784 __FILE__/__LINE__. */
4785 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4786 any_mismatch |= !check_match (__FILE__, __LINE__, \
4787 mock_index, \
4788 NAME, MATCH_TYPE, COMPLETION_MODE, \
4789 EXPECTED_LIST)
4790
4791 /* Identity checks. */
4792 for (const char *sym : test_symbols)
4793 {
4794 /* Should be able to match all existing symbols. */
4795 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4796 EXPECT (sym));
4797
4798 /* Should be able to match all existing symbols with
4799 parameters. */
4800 std::string with_params = std::string (sym) + "(int)";
4801 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4802 EXPECT (sym));
4803
4804 /* Should be able to match all existing symbols with
4805 parameters and qualifiers. */
4806 with_params = std::string (sym) + " ( int ) const";
4807 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4808 EXPECT (sym));
4809
4810 /* This should really find sym, but cp-name-parser.y doesn't
4811 know about lvalue/rvalue qualifiers yet. */
4812 with_params = std::string (sym) + " ( int ) &&";
4813 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 {});
4815 }
4816
4817 /* Check that the name matching algorithm for completion doesn't get
4818 confused with Latin1 'ÿ' / 0xff. */
4819 {
4820 static const char str[] = "\377";
4821 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4822 EXPECT ("\377", "\377\377123"));
4823 }
4824
4825 /* Check that the increment-last-char in the matching algorithm for
4826 completion doesn't match "t1_fund" when completing "t1_func". */
4827 {
4828 static const char str[] = "t1_func";
4829 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4830 EXPECT ("t1_func", "t1_func1"));
4831 }
4832
4833 /* Check that completion mode works at each prefix of the expected
4834 symbol name. */
4835 {
4836 static const char str[] = "function(int)";
4837 size_t len = strlen (str);
4838 std::string lookup;
4839
4840 for (size_t i = 1; i < len; i++)
4841 {
4842 lookup.assign (str, i);
4843 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4844 EXPECT ("function"));
4845 }
4846 }
4847
4848 /* While "w" is a prefix of both components, the match function
4849 should still only be called once. */
4850 {
4851 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4852 EXPECT ("w1::w2"));
4853 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4854 EXPECT ("w1::w2"));
4855 }
4856
4857 /* Same, with a "complicated" symbol. */
4858 {
4859 static const char str[] = Z_SYM_NAME;
4860 size_t len = strlen (str);
4861 std::string lookup;
4862
4863 for (size_t i = 1; i < len; i++)
4864 {
4865 lookup.assign (str, i);
4866 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4867 EXPECT (Z_SYM_NAME));
4868 }
4869 }
4870
4871 /* In FULL mode, an incomplete symbol doesn't match. */
4872 {
4873 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4874 {});
4875 }
4876
4877 /* A complete symbol with parameters matches any overload, since the
4878 index has no overload info. */
4879 {
4880 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4883 EXPECT ("std::zfunction", "std::zfunction2"));
4884 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4885 EXPECT ("std::zfunction", "std::zfunction2"));
4886 }
4887
4888 /* Check that whitespace is ignored appropriately. A symbol with a
4889 template argument list. */
4890 {
4891 static const char expected[] = "ns::foo<int>";
4892 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4893 EXPECT (expected));
4894 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4895 EXPECT (expected));
4896 }
4897
4898 /* Check that whitespace is ignored appropriately. A symbol with a
4899 template argument list that includes a pointer. */
4900 {
4901 static const char expected[] = "ns::foo<char*>";
4902 /* Try both completion and non-completion modes. */
4903 static const bool completion_mode[2] = {false, true};
4904 for (size_t i = 0; i < 2; i++)
4905 {
4906 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4907 completion_mode[i], EXPECT (expected));
4908 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4909 completion_mode[i], EXPECT (expected));
4910
4911 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4912 completion_mode[i], EXPECT (expected));
4913 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4914 completion_mode[i], EXPECT (expected));
4915 }
4916 }
4917
4918 {
4919 /* Check method qualifiers are ignored. */
4920 static const char expected[] = "ns::foo<char*>";
4921 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4922 symbol_name_match_type::FULL, true, EXPECT (expected));
4923 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4924 symbol_name_match_type::FULL, true, EXPECT (expected));
4925 CHECK_MATCH ("foo < char * > ( int ) const",
4926 symbol_name_match_type::WILD, true, EXPECT (expected));
4927 CHECK_MATCH ("foo < char * > ( int ) &&",
4928 symbol_name_match_type::WILD, true, EXPECT (expected));
4929 }
4930
4931 /* Test lookup names that don't match anything. */
4932 {
4933 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4934 {});
4935
4936 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4937 {});
4938 }
4939
4940 /* Some wild matching tests, exercising "(anonymous namespace)",
4941 which should not be confused with a parameter list. */
4942 {
4943 static const char *syms[] = {
4944 "A::B::C",
4945 "B::C",
4946 "C",
4947 "A :: B :: C ( int )",
4948 "B :: C ( int )",
4949 "C ( int )",
4950 };
4951
4952 for (const char *s : syms)
4953 {
4954 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4955 EXPECT ("(anonymous namespace)::A::B::C"));
4956 }
4957 }
4958
4959 {
4960 static const char expected[] = "ns2::tmpl<int>::foo2";
4961 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4962 EXPECT (expected));
4963 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4964 EXPECT (expected));
4965 }
4966
4967 SELF_CHECK (!any_mismatch);
4968
4969 #undef EXPECT
4970 #undef CHECK_MATCH
4971 }
4972
4973 static void
4974 run_test ()
4975 {
4976 test_mapped_index_find_name_component_bounds ();
4977 test_dw2_expand_symtabs_matching_symbol ();
4978 }
4979
4980 }} // namespace selftests::dw2_expand_symtabs_matching
4981
4982 #endif /* GDB_SELF_TEST */
4983
4984 /* If FILE_MATCHER is NULL or if PER_CU has
4985 dwarf2_per_cu_quick_data::MARK set (see
4986 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4987 EXPANSION_NOTIFY on it. */
4988
4989 static void
4990 dw2_expand_symtabs_matching_one
4991 (struct dwarf2_per_cu_data *per_cu,
4992 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4993 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4994 {
4995 if (file_matcher == NULL || per_cu->v.quick->mark)
4996 {
4997 bool symtab_was_null
4998 = (per_cu->v.quick->compunit_symtab == NULL);
4999
5000 dw2_instantiate_symtab (per_cu, false);
5001
5002 if (expansion_notify != NULL
5003 && symtab_was_null
5004 && per_cu->v.quick->compunit_symtab != NULL)
5005 expansion_notify (per_cu->v.quick->compunit_symtab);
5006 }
5007 }
5008
5009 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5010 matched, to expand corresponding CUs that were marked. IDX is the
5011 index of the symbol name that matched. */
5012
5013 static void
5014 dw2_expand_marked_cus
5015 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5016 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5017 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5018 search_domain kind)
5019 {
5020 offset_type *vec, vec_len, vec_idx;
5021 bool global_seen = false;
5022 mapped_index &index = *dwarf2_per_objfile->index_table;
5023
5024 vec = (offset_type *) (index.constant_pool
5025 + MAYBE_SWAP (index.symbol_table[idx].vec));
5026 vec_len = MAYBE_SWAP (vec[0]);
5027 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5028 {
5029 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5030 /* This value is only valid for index versions >= 7. */
5031 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5032 gdb_index_symbol_kind symbol_kind =
5033 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5034 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5035 /* Only check the symbol attributes if they're present.
5036 Indices prior to version 7 don't record them,
5037 and indices >= 7 may elide them for certain symbols
5038 (gold does this). */
5039 int attrs_valid =
5040 (index.version >= 7
5041 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5042
5043 /* Work around gold/15646. */
5044 if (attrs_valid)
5045 {
5046 if (!is_static && global_seen)
5047 continue;
5048 if (!is_static)
5049 global_seen = true;
5050 }
5051
5052 /* Only check the symbol's kind if it has one. */
5053 if (attrs_valid)
5054 {
5055 switch (kind)
5056 {
5057 case VARIABLES_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5059 continue;
5060 break;
5061 case FUNCTIONS_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5063 continue;
5064 break;
5065 case TYPES_DOMAIN:
5066 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5067 continue;
5068 break;
5069 default:
5070 break;
5071 }
5072 }
5073
5074 /* Don't crash on bad data. */
5075 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5076 + dwarf2_per_objfile->all_type_units.size ()))
5077 {
5078 complaint (_(".gdb_index entry has bad CU index"
5079 " [in module %s]"),
5080 objfile_name (dwarf2_per_objfile->objfile));
5081 continue;
5082 }
5083
5084 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5085 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5086 expansion_notify);
5087 }
5088 }
5089
5090 /* If FILE_MATCHER is non-NULL, set all the
5091 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5092 that match FILE_MATCHER. */
5093
5094 static void
5095 dw_expand_symtabs_matching_file_matcher
5096 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5097 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5098 {
5099 if (file_matcher == NULL)
5100 return;
5101
5102 objfile *const objfile = dwarf2_per_objfile->objfile;
5103
5104 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5105 htab_eq_pointer,
5106 NULL, xcalloc, xfree));
5107 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5108 htab_eq_pointer,
5109 NULL, xcalloc, xfree));
5110
5111 /* The rule is CUs specify all the files, including those used by
5112 any TU, so there's no need to scan TUs here. */
5113
5114 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5115 {
5116 QUIT;
5117
5118 per_cu->v.quick->mark = 0;
5119
5120 /* We only need to look at symtabs not already expanded. */
5121 if (per_cu->v.quick->compunit_symtab)
5122 continue;
5123
5124 quick_file_names *file_data = dw2_get_file_names (per_cu);
5125 if (file_data == NULL)
5126 continue;
5127
5128 if (htab_find (visited_not_found.get (), file_data) != NULL)
5129 continue;
5130 else if (htab_find (visited_found.get (), file_data) != NULL)
5131 {
5132 per_cu->v.quick->mark = 1;
5133 continue;
5134 }
5135
5136 for (int j = 0; j < file_data->num_file_names; ++j)
5137 {
5138 const char *this_real_name;
5139
5140 if (file_matcher (file_data->file_names[j], false))
5141 {
5142 per_cu->v.quick->mark = 1;
5143 break;
5144 }
5145
5146 /* Before we invoke realpath, which can get expensive when many
5147 files are involved, do a quick comparison of the basenames. */
5148 if (!basenames_may_differ
5149 && !file_matcher (lbasename (file_data->file_names[j]),
5150 true))
5151 continue;
5152
5153 this_real_name = dw2_get_real_path (objfile, file_data, j);
5154 if (file_matcher (this_real_name, false))
5155 {
5156 per_cu->v.quick->mark = 1;
5157 break;
5158 }
5159 }
5160
5161 void **slot = htab_find_slot (per_cu->v.quick->mark
5162 ? visited_found.get ()
5163 : visited_not_found.get (),
5164 file_data, INSERT);
5165 *slot = file_data;
5166 }
5167 }
5168
5169 static void
5170 dw2_expand_symtabs_matching
5171 (struct objfile *objfile,
5172 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5173 const lookup_name_info &lookup_name,
5174 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5175 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5176 enum search_domain kind)
5177 {
5178 struct dwarf2_per_objfile *dwarf2_per_objfile
5179 = get_dwarf2_per_objfile (objfile);
5180
5181 /* index_table is NULL if OBJF_READNOW. */
5182 if (!dwarf2_per_objfile->index_table)
5183 return;
5184
5185 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5186
5187 mapped_index &index = *dwarf2_per_objfile->index_table;
5188
5189 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5190 symbol_matcher,
5191 kind, [&] (offset_type idx)
5192 {
5193 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5194 expansion_notify, kind);
5195 });
5196 }
5197
5198 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5199 symtab. */
5200
5201 static struct compunit_symtab *
5202 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5203 CORE_ADDR pc)
5204 {
5205 int i;
5206
5207 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5208 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5209 return cust;
5210
5211 if (cust->includes == NULL)
5212 return NULL;
5213
5214 for (i = 0; cust->includes[i]; ++i)
5215 {
5216 struct compunit_symtab *s = cust->includes[i];
5217
5218 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5219 if (s != NULL)
5220 return s;
5221 }
5222
5223 return NULL;
5224 }
5225
5226 static struct compunit_symtab *
5227 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5228 struct bound_minimal_symbol msymbol,
5229 CORE_ADDR pc,
5230 struct obj_section *section,
5231 int warn_if_readin)
5232 {
5233 struct dwarf2_per_cu_data *data;
5234 struct compunit_symtab *result;
5235
5236 if (!objfile->partial_symtabs->psymtabs_addrmap)
5237 return NULL;
5238
5239 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5240 SECT_OFF_TEXT (objfile));
5241 data = (struct dwarf2_per_cu_data *) addrmap_find
5242 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5243 if (!data)
5244 return NULL;
5245
5246 if (warn_if_readin && data->v.quick->compunit_symtab)
5247 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5248 paddress (get_objfile_arch (objfile), pc));
5249
5250 result
5251 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5252 false),
5253 pc);
5254 gdb_assert (result != NULL);
5255 return result;
5256 }
5257
5258 static void
5259 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5260 void *data, int need_fullname)
5261 {
5262 struct dwarf2_per_objfile *dwarf2_per_objfile
5263 = get_dwarf2_per_objfile (objfile);
5264
5265 if (!dwarf2_per_objfile->filenames_cache)
5266 {
5267 dwarf2_per_objfile->filenames_cache.emplace ();
5268
5269 htab_up visited (htab_create_alloc (10,
5270 htab_hash_pointer, htab_eq_pointer,
5271 NULL, xcalloc, xfree));
5272
5273 /* The rule is CUs specify all the files, including those used
5274 by any TU, so there's no need to scan TUs here. We can
5275 ignore file names coming from already-expanded CUs. */
5276
5277 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5278 {
5279 if (per_cu->v.quick->compunit_symtab)
5280 {
5281 void **slot = htab_find_slot (visited.get (),
5282 per_cu->v.quick->file_names,
5283 INSERT);
5284
5285 *slot = per_cu->v.quick->file_names;
5286 }
5287 }
5288
5289 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5290 {
5291 /* We only need to look at symtabs not already expanded. */
5292 if (per_cu->v.quick->compunit_symtab)
5293 continue;
5294
5295 quick_file_names *file_data = dw2_get_file_names (per_cu);
5296 if (file_data == NULL)
5297 continue;
5298
5299 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5300 if (*slot)
5301 {
5302 /* Already visited. */
5303 continue;
5304 }
5305 *slot = file_data;
5306
5307 for (int j = 0; j < file_data->num_file_names; ++j)
5308 {
5309 const char *filename = file_data->file_names[j];
5310 dwarf2_per_objfile->filenames_cache->seen (filename);
5311 }
5312 }
5313 }
5314
5315 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5316 {
5317 gdb::unique_xmalloc_ptr<char> this_real_name;
5318
5319 if (need_fullname)
5320 this_real_name = gdb_realpath (filename);
5321 (*fun) (filename, this_real_name.get (), data);
5322 });
5323 }
5324
5325 static int
5326 dw2_has_symbols (struct objfile *objfile)
5327 {
5328 return 1;
5329 }
5330
5331 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5332 {
5333 dw2_has_symbols,
5334 dw2_find_last_source_symtab,
5335 dw2_forget_cached_source_info,
5336 dw2_map_symtabs_matching_filename,
5337 dw2_lookup_symbol,
5338 dw2_print_stats,
5339 dw2_dump,
5340 dw2_expand_symtabs_for_function,
5341 dw2_expand_all_symtabs,
5342 dw2_expand_symtabs_with_fullname,
5343 dw2_map_matching_symbols,
5344 dw2_expand_symtabs_matching,
5345 dw2_find_pc_sect_compunit_symtab,
5346 NULL,
5347 dw2_map_symbol_filenames
5348 };
5349
5350 /* DWARF-5 debug_names reader. */
5351
5352 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5353 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5354
5355 /* A helper function that reads the .debug_names section in SECTION
5356 and fills in MAP. FILENAME is the name of the file containing the
5357 section; it is used for error reporting.
5358
5359 Returns true if all went well, false otherwise. */
5360
5361 static bool
5362 read_debug_names_from_section (struct objfile *objfile,
5363 const char *filename,
5364 struct dwarf2_section_info *section,
5365 mapped_debug_names &map)
5366 {
5367 if (dwarf2_section_empty_p (section))
5368 return false;
5369
5370 /* Older elfutils strip versions could keep the section in the main
5371 executable while splitting it for the separate debug info file. */
5372 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5373 return false;
5374
5375 dwarf2_read_section (objfile, section);
5376
5377 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5378
5379 const gdb_byte *addr = section->buffer;
5380
5381 bfd *const abfd = get_section_bfd_owner (section);
5382
5383 unsigned int bytes_read;
5384 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5385 addr += bytes_read;
5386
5387 map.dwarf5_is_dwarf64 = bytes_read != 4;
5388 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5389 if (bytes_read + length != section->size)
5390 {
5391 /* There may be multiple per-CU indices. */
5392 warning (_("Section .debug_names in %s length %s does not match "
5393 "section length %s, ignoring .debug_names."),
5394 filename, plongest (bytes_read + length),
5395 pulongest (section->size));
5396 return false;
5397 }
5398
5399 /* The version number. */
5400 uint16_t version = read_2_bytes (abfd, addr);
5401 addr += 2;
5402 if (version != 5)
5403 {
5404 warning (_("Section .debug_names in %s has unsupported version %d, "
5405 "ignoring .debug_names."),
5406 filename, version);
5407 return false;
5408 }
5409
5410 /* Padding. */
5411 uint16_t padding = read_2_bytes (abfd, addr);
5412 addr += 2;
5413 if (padding != 0)
5414 {
5415 warning (_("Section .debug_names in %s has unsupported padding %d, "
5416 "ignoring .debug_names."),
5417 filename, padding);
5418 return false;
5419 }
5420
5421 /* comp_unit_count - The number of CUs in the CU list. */
5422 map.cu_count = read_4_bytes (abfd, addr);
5423 addr += 4;
5424
5425 /* local_type_unit_count - The number of TUs in the local TU
5426 list. */
5427 map.tu_count = read_4_bytes (abfd, addr);
5428 addr += 4;
5429
5430 /* foreign_type_unit_count - The number of TUs in the foreign TU
5431 list. */
5432 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434 if (foreign_tu_count != 0)
5435 {
5436 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5437 "ignoring .debug_names."),
5438 filename, static_cast<unsigned long> (foreign_tu_count));
5439 return false;
5440 }
5441
5442 /* bucket_count - The number of hash buckets in the hash lookup
5443 table. */
5444 map.bucket_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* name_count - The number of unique names in the index. */
5448 map.name_count = read_4_bytes (abfd, addr);
5449 addr += 4;
5450
5451 /* abbrev_table_size - The size in bytes of the abbreviations
5452 table. */
5453 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5454 addr += 4;
5455
5456 /* augmentation_string_size - The size in bytes of the augmentation
5457 string. This value is rounded up to a multiple of 4. */
5458 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5459 addr += 4;
5460 map.augmentation_is_gdb = ((augmentation_string_size
5461 == sizeof (dwarf5_augmentation))
5462 && memcmp (addr, dwarf5_augmentation,
5463 sizeof (dwarf5_augmentation)) == 0);
5464 augmentation_string_size += (-augmentation_string_size) & 3;
5465 addr += augmentation_string_size;
5466
5467 /* List of CUs */
5468 map.cu_table_reordered = addr;
5469 addr += map.cu_count * map.offset_size;
5470
5471 /* List of Local TUs */
5472 map.tu_table_reordered = addr;
5473 addr += map.tu_count * map.offset_size;
5474
5475 /* Hash Lookup Table */
5476 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5477 addr += map.bucket_count * 4;
5478 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5479 addr += map.name_count * 4;
5480
5481 /* Name Table */
5482 map.name_table_string_offs_reordered = addr;
5483 addr += map.name_count * map.offset_size;
5484 map.name_table_entry_offs_reordered = addr;
5485 addr += map.name_count * map.offset_size;
5486
5487 const gdb_byte *abbrev_table_start = addr;
5488 for (;;)
5489 {
5490 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5491 addr += bytes_read;
5492 if (index_num == 0)
5493 break;
5494
5495 const auto insertpair
5496 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5497 if (!insertpair.second)
5498 {
5499 warning (_("Section .debug_names in %s has duplicate index %s, "
5500 "ignoring .debug_names."),
5501 filename, pulongest (index_num));
5502 return false;
5503 }
5504 mapped_debug_names::index_val &indexval = insertpair.first->second;
5505 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5506 addr += bytes_read;
5507
5508 for (;;)
5509 {
5510 mapped_debug_names::index_val::attr attr;
5511 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5512 addr += bytes_read;
5513 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5514 addr += bytes_read;
5515 if (attr.form == DW_FORM_implicit_const)
5516 {
5517 attr.implicit_const = read_signed_leb128 (abfd, addr,
5518 &bytes_read);
5519 addr += bytes_read;
5520 }
5521 if (attr.dw_idx == 0 && attr.form == 0)
5522 break;
5523 indexval.attr_vec.push_back (std::move (attr));
5524 }
5525 }
5526 if (addr != abbrev_table_start + abbrev_table_size)
5527 {
5528 warning (_("Section .debug_names in %s has abbreviation_table "
5529 "of size %s vs. written as %u, ignoring .debug_names."),
5530 filename, plongest (addr - abbrev_table_start),
5531 abbrev_table_size);
5532 return false;
5533 }
5534 map.entry_pool = addr;
5535
5536 return true;
5537 }
5538
5539 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5540 list. */
5541
5542 static void
5543 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5544 const mapped_debug_names &map,
5545 dwarf2_section_info &section,
5546 bool is_dwz)
5547 {
5548 sect_offset sect_off_prev;
5549 for (uint32_t i = 0; i <= map.cu_count; ++i)
5550 {
5551 sect_offset sect_off_next;
5552 if (i < map.cu_count)
5553 {
5554 sect_off_next
5555 = (sect_offset) (extract_unsigned_integer
5556 (map.cu_table_reordered + i * map.offset_size,
5557 map.offset_size,
5558 map.dwarf5_byte_order));
5559 }
5560 else
5561 sect_off_next = (sect_offset) section.size;
5562 if (i >= 1)
5563 {
5564 const ULONGEST length = sect_off_next - sect_off_prev;
5565 dwarf2_per_cu_data *per_cu
5566 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5567 sect_off_prev, length);
5568 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5569 }
5570 sect_off_prev = sect_off_next;
5571 }
5572 }
5573
5574 /* Read the CU list from the mapped index, and use it to create all
5575 the CU objects for this dwarf2_per_objfile. */
5576
5577 static void
5578 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5579 const mapped_debug_names &map,
5580 const mapped_debug_names &dwz_map)
5581 {
5582 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5583 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5584
5585 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5586 dwarf2_per_objfile->info,
5587 false /* is_dwz */);
5588
5589 if (dwz_map.cu_count == 0)
5590 return;
5591
5592 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5593 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5594 true /* is_dwz */);
5595 }
5596
5597 /* Read .debug_names. If everything went ok, initialize the "quick"
5598 elements of all the CUs and return true. Otherwise, return false. */
5599
5600 static bool
5601 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5602 {
5603 std::unique_ptr<mapped_debug_names> map
5604 (new mapped_debug_names (dwarf2_per_objfile));
5605 mapped_debug_names dwz_map (dwarf2_per_objfile);
5606 struct objfile *objfile = dwarf2_per_objfile->objfile;
5607
5608 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5609 &dwarf2_per_objfile->debug_names,
5610 *map))
5611 return false;
5612
5613 /* Don't use the index if it's empty. */
5614 if (map->name_count == 0)
5615 return false;
5616
5617 /* If there is a .dwz file, read it so we can get its CU list as
5618 well. */
5619 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5620 if (dwz != NULL)
5621 {
5622 if (!read_debug_names_from_section (objfile,
5623 bfd_get_filename (dwz->dwz_bfd),
5624 &dwz->debug_names, dwz_map))
5625 {
5626 warning (_("could not read '.debug_names' section from %s; skipping"),
5627 bfd_get_filename (dwz->dwz_bfd));
5628 return false;
5629 }
5630 }
5631
5632 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5633
5634 if (map->tu_count != 0)
5635 {
5636 /* We can only handle a single .debug_types when we have an
5637 index. */
5638 if (dwarf2_per_objfile->types.size () != 1)
5639 return false;
5640
5641 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5642
5643 create_signatured_type_table_from_debug_names
5644 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5645 }
5646
5647 create_addrmap_from_aranges (dwarf2_per_objfile,
5648 &dwarf2_per_objfile->debug_aranges);
5649
5650 dwarf2_per_objfile->debug_names_table = std::move (map);
5651 dwarf2_per_objfile->using_index = 1;
5652 dwarf2_per_objfile->quick_file_names_table =
5653 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5654
5655 return true;
5656 }
5657
5658 /* Type used to manage iterating over all CUs looking for a symbol for
5659 .debug_names. */
5660
5661 class dw2_debug_names_iterator
5662 {
5663 public:
5664 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5665 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5666 dw2_debug_names_iterator (const mapped_debug_names &map,
5667 bool want_specific_block,
5668 block_enum block_index, domain_enum domain,
5669 const char *name)
5670 : m_map (map), m_want_specific_block (want_specific_block),
5671 m_block_index (block_index), m_domain (domain),
5672 m_addr (find_vec_in_debug_names (map, name))
5673 {}
5674
5675 dw2_debug_names_iterator (const mapped_debug_names &map,
5676 search_domain search, uint32_t namei)
5677 : m_map (map),
5678 m_search (search),
5679 m_addr (find_vec_in_debug_names (map, namei))
5680 {}
5681
5682 /* Return the next matching CU or NULL if there are no more. */
5683 dwarf2_per_cu_data *next ();
5684
5685 private:
5686 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5687 const char *name);
5688 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5689 uint32_t namei);
5690
5691 /* The internalized form of .debug_names. */
5692 const mapped_debug_names &m_map;
5693
5694 /* If true, only look for symbols that match BLOCK_INDEX. */
5695 const bool m_want_specific_block = false;
5696
5697 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5698 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5699 value. */
5700 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5701
5702 /* The kind of symbol we're looking for. */
5703 const domain_enum m_domain = UNDEF_DOMAIN;
5704 const search_domain m_search = ALL_DOMAIN;
5705
5706 /* The list of CUs from the index entry of the symbol, or NULL if
5707 not found. */
5708 const gdb_byte *m_addr;
5709 };
5710
5711 const char *
5712 mapped_debug_names::namei_to_name (uint32_t namei) const
5713 {
5714 const ULONGEST namei_string_offs
5715 = extract_unsigned_integer ((name_table_string_offs_reordered
5716 + namei * offset_size),
5717 offset_size,
5718 dwarf5_byte_order);
5719 return read_indirect_string_at_offset
5720 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5721 }
5722
5723 /* Find a slot in .debug_names for the object named NAME. If NAME is
5724 found, return pointer to its pool data. If NAME cannot be found,
5725 return NULL. */
5726
5727 const gdb_byte *
5728 dw2_debug_names_iterator::find_vec_in_debug_names
5729 (const mapped_debug_names &map, const char *name)
5730 {
5731 int (*cmp) (const char *, const char *);
5732
5733 gdb::unique_xmalloc_ptr<char> without_params;
5734 if (current_language->la_language == language_cplus
5735 || current_language->la_language == language_fortran
5736 || current_language->la_language == language_d)
5737 {
5738 /* NAME is already canonical. Drop any qualifiers as
5739 .debug_names does not contain any. */
5740
5741 if (strchr (name, '(') != NULL)
5742 {
5743 without_params = cp_remove_params (name);
5744 if (without_params != NULL)
5745 name = without_params.get ();
5746 }
5747 }
5748
5749 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5750
5751 const uint32_t full_hash = dwarf5_djb_hash (name);
5752 uint32_t namei
5753 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5754 (map.bucket_table_reordered
5755 + (full_hash % map.bucket_count)), 4,
5756 map.dwarf5_byte_order);
5757 if (namei == 0)
5758 return NULL;
5759 --namei;
5760 if (namei >= map.name_count)
5761 {
5762 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5763 "[in module %s]"),
5764 namei, map.name_count,
5765 objfile_name (map.dwarf2_per_objfile->objfile));
5766 return NULL;
5767 }
5768
5769 for (;;)
5770 {
5771 const uint32_t namei_full_hash
5772 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5773 (map.hash_table_reordered + namei), 4,
5774 map.dwarf5_byte_order);
5775 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5776 return NULL;
5777
5778 if (full_hash == namei_full_hash)
5779 {
5780 const char *const namei_string = map.namei_to_name (namei);
5781
5782 #if 0 /* An expensive sanity check. */
5783 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5784 {
5785 complaint (_("Wrong .debug_names hash for string at index %u "
5786 "[in module %s]"),
5787 namei, objfile_name (dwarf2_per_objfile->objfile));
5788 return NULL;
5789 }
5790 #endif
5791
5792 if (cmp (namei_string, name) == 0)
5793 {
5794 const ULONGEST namei_entry_offs
5795 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5796 + namei * map.offset_size),
5797 map.offset_size, map.dwarf5_byte_order);
5798 return map.entry_pool + namei_entry_offs;
5799 }
5800 }
5801
5802 ++namei;
5803 if (namei >= map.name_count)
5804 return NULL;
5805 }
5806 }
5807
5808 const gdb_byte *
5809 dw2_debug_names_iterator::find_vec_in_debug_names
5810 (const mapped_debug_names &map, uint32_t namei)
5811 {
5812 if (namei >= map.name_count)
5813 {
5814 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5815 "[in module %s]"),
5816 namei, map.name_count,
5817 objfile_name (map.dwarf2_per_objfile->objfile));
5818 return NULL;
5819 }
5820
5821 const ULONGEST namei_entry_offs
5822 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5823 + namei * map.offset_size),
5824 map.offset_size, map.dwarf5_byte_order);
5825 return map.entry_pool + namei_entry_offs;
5826 }
5827
5828 /* See dw2_debug_names_iterator. */
5829
5830 dwarf2_per_cu_data *
5831 dw2_debug_names_iterator::next ()
5832 {
5833 if (m_addr == NULL)
5834 return NULL;
5835
5836 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5837 struct objfile *objfile = dwarf2_per_objfile->objfile;
5838 bfd *const abfd = objfile->obfd;
5839
5840 again:
5841
5842 unsigned int bytes_read;
5843 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5844 m_addr += bytes_read;
5845 if (abbrev == 0)
5846 return NULL;
5847
5848 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5849 if (indexval_it == m_map.abbrev_map.cend ())
5850 {
5851 complaint (_("Wrong .debug_names undefined abbrev code %s "
5852 "[in module %s]"),
5853 pulongest (abbrev), objfile_name (objfile));
5854 return NULL;
5855 }
5856 const mapped_debug_names::index_val &indexval = indexval_it->second;
5857 bool have_is_static = false;
5858 bool is_static;
5859 dwarf2_per_cu_data *per_cu = NULL;
5860 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5861 {
5862 ULONGEST ull;
5863 switch (attr.form)
5864 {
5865 case DW_FORM_implicit_const:
5866 ull = attr.implicit_const;
5867 break;
5868 case DW_FORM_flag_present:
5869 ull = 1;
5870 break;
5871 case DW_FORM_udata:
5872 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5873 m_addr += bytes_read;
5874 break;
5875 default:
5876 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5877 dwarf_form_name (attr.form),
5878 objfile_name (objfile));
5879 return NULL;
5880 }
5881 switch (attr.dw_idx)
5882 {
5883 case DW_IDX_compile_unit:
5884 /* Don't crash on bad data. */
5885 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5886 {
5887 complaint (_(".debug_names entry has bad CU index %s"
5888 " [in module %s]"),
5889 pulongest (ull),
5890 objfile_name (dwarf2_per_objfile->objfile));
5891 continue;
5892 }
5893 per_cu = dwarf2_per_objfile->get_cutu (ull);
5894 break;
5895 case DW_IDX_type_unit:
5896 /* Don't crash on bad data. */
5897 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5898 {
5899 complaint (_(".debug_names entry has bad TU index %s"
5900 " [in module %s]"),
5901 pulongest (ull),
5902 objfile_name (dwarf2_per_objfile->objfile));
5903 continue;
5904 }
5905 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5906 break;
5907 case DW_IDX_GNU_internal:
5908 if (!m_map.augmentation_is_gdb)
5909 break;
5910 have_is_static = true;
5911 is_static = true;
5912 break;
5913 case DW_IDX_GNU_external:
5914 if (!m_map.augmentation_is_gdb)
5915 break;
5916 have_is_static = true;
5917 is_static = false;
5918 break;
5919 }
5920 }
5921
5922 /* Skip if already read in. */
5923 if (per_cu->v.quick->compunit_symtab)
5924 goto again;
5925
5926 /* Check static vs global. */
5927 if (have_is_static)
5928 {
5929 const bool want_static = m_block_index != GLOBAL_BLOCK;
5930 if (m_want_specific_block && want_static != is_static)
5931 goto again;
5932 }
5933
5934 /* Match dw2_symtab_iter_next, symbol_kind
5935 and debug_names::psymbol_tag. */
5936 switch (m_domain)
5937 {
5938 case VAR_DOMAIN:
5939 switch (indexval.dwarf_tag)
5940 {
5941 case DW_TAG_variable:
5942 case DW_TAG_subprogram:
5943 /* Some types are also in VAR_DOMAIN. */
5944 case DW_TAG_typedef:
5945 case DW_TAG_structure_type:
5946 break;
5947 default:
5948 goto again;
5949 }
5950 break;
5951 case STRUCT_DOMAIN:
5952 switch (indexval.dwarf_tag)
5953 {
5954 case DW_TAG_typedef:
5955 case DW_TAG_structure_type:
5956 break;
5957 default:
5958 goto again;
5959 }
5960 break;
5961 case LABEL_DOMAIN:
5962 switch (indexval.dwarf_tag)
5963 {
5964 case 0:
5965 case DW_TAG_variable:
5966 break;
5967 default:
5968 goto again;
5969 }
5970 break;
5971 default:
5972 break;
5973 }
5974
5975 /* Match dw2_expand_symtabs_matching, symbol_kind and
5976 debug_names::psymbol_tag. */
5977 switch (m_search)
5978 {
5979 case VARIABLES_DOMAIN:
5980 switch (indexval.dwarf_tag)
5981 {
5982 case DW_TAG_variable:
5983 break;
5984 default:
5985 goto again;
5986 }
5987 break;
5988 case FUNCTIONS_DOMAIN:
5989 switch (indexval.dwarf_tag)
5990 {
5991 case DW_TAG_subprogram:
5992 break;
5993 default:
5994 goto again;
5995 }
5996 break;
5997 case TYPES_DOMAIN:
5998 switch (indexval.dwarf_tag)
5999 {
6000 case DW_TAG_typedef:
6001 case DW_TAG_structure_type:
6002 break;
6003 default:
6004 goto again;
6005 }
6006 break;
6007 default:
6008 break;
6009 }
6010
6011 return per_cu;
6012 }
6013
6014 static struct compunit_symtab *
6015 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6016 const char *name, domain_enum domain)
6017 {
6018 const block_enum block_index = static_cast<block_enum> (block_index_int);
6019 struct dwarf2_per_objfile *dwarf2_per_objfile
6020 = get_dwarf2_per_objfile (objfile);
6021
6022 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6023 if (!mapp)
6024 {
6025 /* index is NULL if OBJF_READNOW. */
6026 return NULL;
6027 }
6028 const auto &map = *mapp;
6029
6030 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6031 block_index, domain, name);
6032
6033 struct compunit_symtab *stab_best = NULL;
6034 struct dwarf2_per_cu_data *per_cu;
6035 while ((per_cu = iter.next ()) != NULL)
6036 {
6037 struct symbol *sym, *with_opaque = NULL;
6038 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6039 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6040 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6041
6042 sym = block_find_symbol (block, name, domain,
6043 block_find_non_opaque_type_preferred,
6044 &with_opaque);
6045
6046 /* Some caution must be observed with overloaded functions and
6047 methods, since the index will not contain any overload
6048 information (but NAME might contain it). */
6049
6050 if (sym != NULL
6051 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6052 return stab;
6053 if (with_opaque != NULL
6054 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6055 stab_best = stab;
6056
6057 /* Keep looking through other CUs. */
6058 }
6059
6060 return stab_best;
6061 }
6062
6063 /* This dumps minimal information about .debug_names. It is called
6064 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6065 uses this to verify that .debug_names has been loaded. */
6066
6067 static void
6068 dw2_debug_names_dump (struct objfile *objfile)
6069 {
6070 struct dwarf2_per_objfile *dwarf2_per_objfile
6071 = get_dwarf2_per_objfile (objfile);
6072
6073 gdb_assert (dwarf2_per_objfile->using_index);
6074 printf_filtered (".debug_names:");
6075 if (dwarf2_per_objfile->debug_names_table)
6076 printf_filtered (" exists\n");
6077 else
6078 printf_filtered (" faked for \"readnow\"\n");
6079 printf_filtered ("\n");
6080 }
6081
6082 static void
6083 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6084 const char *func_name)
6085 {
6086 struct dwarf2_per_objfile *dwarf2_per_objfile
6087 = get_dwarf2_per_objfile (objfile);
6088
6089 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6090 if (dwarf2_per_objfile->debug_names_table)
6091 {
6092 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6093
6094 /* Note: It doesn't matter what we pass for block_index here. */
6095 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6096 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6097
6098 struct dwarf2_per_cu_data *per_cu;
6099 while ((per_cu = iter.next ()) != NULL)
6100 dw2_instantiate_symtab (per_cu, false);
6101 }
6102 }
6103
6104 static void
6105 dw2_debug_names_expand_symtabs_matching
6106 (struct objfile *objfile,
6107 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6108 const lookup_name_info &lookup_name,
6109 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6110 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6111 enum search_domain kind)
6112 {
6113 struct dwarf2_per_objfile *dwarf2_per_objfile
6114 = get_dwarf2_per_objfile (objfile);
6115
6116 /* debug_names_table is NULL if OBJF_READNOW. */
6117 if (!dwarf2_per_objfile->debug_names_table)
6118 return;
6119
6120 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6121
6122 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6123
6124 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6125 symbol_matcher,
6126 kind, [&] (offset_type namei)
6127 {
6128 /* The name was matched, now expand corresponding CUs that were
6129 marked. */
6130 dw2_debug_names_iterator iter (map, kind, namei);
6131
6132 struct dwarf2_per_cu_data *per_cu;
6133 while ((per_cu = iter.next ()) != NULL)
6134 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6135 expansion_notify);
6136 });
6137 }
6138
6139 const struct quick_symbol_functions dwarf2_debug_names_functions =
6140 {
6141 dw2_has_symbols,
6142 dw2_find_last_source_symtab,
6143 dw2_forget_cached_source_info,
6144 dw2_map_symtabs_matching_filename,
6145 dw2_debug_names_lookup_symbol,
6146 dw2_print_stats,
6147 dw2_debug_names_dump,
6148 dw2_debug_names_expand_symtabs_for_function,
6149 dw2_expand_all_symtabs,
6150 dw2_expand_symtabs_with_fullname,
6151 dw2_map_matching_symbols,
6152 dw2_debug_names_expand_symtabs_matching,
6153 dw2_find_pc_sect_compunit_symtab,
6154 NULL,
6155 dw2_map_symbol_filenames
6156 };
6157
6158 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6159 to either a dwarf2_per_objfile or dwz_file object. */
6160
6161 template <typename T>
6162 static gdb::array_view<const gdb_byte>
6163 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6164 {
6165 dwarf2_section_info *section = &section_owner->gdb_index;
6166
6167 if (dwarf2_section_empty_p (section))
6168 return {};
6169
6170 /* Older elfutils strip versions could keep the section in the main
6171 executable while splitting it for the separate debug info file. */
6172 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6173 return {};
6174
6175 dwarf2_read_section (obj, section);
6176
6177 /* dwarf2_section_info::size is a bfd_size_type, while
6178 gdb::array_view works with size_t. On 32-bit hosts, with
6179 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6180 is 32-bit. So we need an explicit narrowing conversion here.
6181 This is fine, because it's impossible to allocate or mmap an
6182 array/buffer larger than what size_t can represent. */
6183 return gdb::make_array_view (section->buffer, section->size);
6184 }
6185
6186 /* Lookup the index cache for the contents of the index associated to
6187 DWARF2_OBJ. */
6188
6189 static gdb::array_view<const gdb_byte>
6190 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6191 {
6192 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6193 if (build_id == nullptr)
6194 return {};
6195
6196 return global_index_cache.lookup_gdb_index (build_id,
6197 &dwarf2_obj->index_cache_res);
6198 }
6199
6200 /* Same as the above, but for DWZ. */
6201
6202 static gdb::array_view<const gdb_byte>
6203 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6204 {
6205 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6206 if (build_id == nullptr)
6207 return {};
6208
6209 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6210 }
6211
6212 /* See symfile.h. */
6213
6214 bool
6215 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6216 {
6217 struct dwarf2_per_objfile *dwarf2_per_objfile
6218 = get_dwarf2_per_objfile (objfile);
6219
6220 /* If we're about to read full symbols, don't bother with the
6221 indices. In this case we also don't care if some other debug
6222 format is making psymtabs, because they are all about to be
6223 expanded anyway. */
6224 if ((objfile->flags & OBJF_READNOW))
6225 {
6226 dwarf2_per_objfile->using_index = 1;
6227 create_all_comp_units (dwarf2_per_objfile);
6228 create_all_type_units (dwarf2_per_objfile);
6229 dwarf2_per_objfile->quick_file_names_table
6230 = create_quick_file_names_table
6231 (dwarf2_per_objfile->all_comp_units.size ());
6232
6233 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6234 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6235 {
6236 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6237
6238 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6239 struct dwarf2_per_cu_quick_data);
6240 }
6241
6242 /* Return 1 so that gdb sees the "quick" functions. However,
6243 these functions will be no-ops because we will have expanded
6244 all symtabs. */
6245 *index_kind = dw_index_kind::GDB_INDEX;
6246 return true;
6247 }
6248
6249 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6250 {
6251 *index_kind = dw_index_kind::DEBUG_NAMES;
6252 return true;
6253 }
6254
6255 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6256 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6257 get_gdb_index_contents_from_section<dwz_file>))
6258 {
6259 *index_kind = dw_index_kind::GDB_INDEX;
6260 return true;
6261 }
6262
6263 /* ... otherwise, try to find the index in the index cache. */
6264 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6265 get_gdb_index_contents_from_cache,
6266 get_gdb_index_contents_from_cache_dwz))
6267 {
6268 global_index_cache.hit ();
6269 *index_kind = dw_index_kind::GDB_INDEX;
6270 return true;
6271 }
6272
6273 global_index_cache.miss ();
6274 return false;
6275 }
6276
6277 \f
6278
6279 /* Build a partial symbol table. */
6280
6281 void
6282 dwarf2_build_psymtabs (struct objfile *objfile)
6283 {
6284 struct dwarf2_per_objfile *dwarf2_per_objfile
6285 = get_dwarf2_per_objfile (objfile);
6286
6287 init_psymbol_list (objfile, 1024);
6288
6289 try
6290 {
6291 /* This isn't really ideal: all the data we allocate on the
6292 objfile's obstack is still uselessly kept around. However,
6293 freeing it seems unsafe. */
6294 psymtab_discarder psymtabs (objfile);
6295 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6296 psymtabs.keep ();
6297
6298 /* (maybe) store an index in the cache. */
6299 global_index_cache.store (dwarf2_per_objfile);
6300 }
6301 catch (const gdb_exception_error &except)
6302 {
6303 exception_print (gdb_stderr, except);
6304 }
6305 }
6306
6307 /* Return the total length of the CU described by HEADER. */
6308
6309 static unsigned int
6310 get_cu_length (const struct comp_unit_head *header)
6311 {
6312 return header->initial_length_size + header->length;
6313 }
6314
6315 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6316
6317 static inline bool
6318 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6319 {
6320 sect_offset bottom = cu_header->sect_off;
6321 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6322
6323 return sect_off >= bottom && sect_off < top;
6324 }
6325
6326 /* Find the base address of the compilation unit for range lists and
6327 location lists. It will normally be specified by DW_AT_low_pc.
6328 In DWARF-3 draft 4, the base address could be overridden by
6329 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6330 compilation units with discontinuous ranges. */
6331
6332 static void
6333 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6334 {
6335 struct attribute *attr;
6336
6337 cu->base_known = 0;
6338 cu->base_address = 0;
6339
6340 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6341 if (attr)
6342 {
6343 cu->base_address = attr_value_as_address (attr);
6344 cu->base_known = 1;
6345 }
6346 else
6347 {
6348 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6349 if (attr)
6350 {
6351 cu->base_address = attr_value_as_address (attr);
6352 cu->base_known = 1;
6353 }
6354 }
6355 }
6356
6357 /* Read in the comp unit header information from the debug_info at info_ptr.
6358 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6359 NOTE: This leaves members offset, first_die_offset to be filled in
6360 by the caller. */
6361
6362 static const gdb_byte *
6363 read_comp_unit_head (struct comp_unit_head *cu_header,
6364 const gdb_byte *info_ptr,
6365 struct dwarf2_section_info *section,
6366 rcuh_kind section_kind)
6367 {
6368 int signed_addr;
6369 unsigned int bytes_read;
6370 const char *filename = get_section_file_name (section);
6371 bfd *abfd = get_section_bfd_owner (section);
6372
6373 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6374 cu_header->initial_length_size = bytes_read;
6375 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6376 info_ptr += bytes_read;
6377 cu_header->version = read_2_bytes (abfd, info_ptr);
6378 if (cu_header->version < 2 || cu_header->version > 5)
6379 error (_("Dwarf Error: wrong version in compilation unit header "
6380 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6381 cu_header->version, filename);
6382 info_ptr += 2;
6383 if (cu_header->version < 5)
6384 switch (section_kind)
6385 {
6386 case rcuh_kind::COMPILE:
6387 cu_header->unit_type = DW_UT_compile;
6388 break;
6389 case rcuh_kind::TYPE:
6390 cu_header->unit_type = DW_UT_type;
6391 break;
6392 default:
6393 internal_error (__FILE__, __LINE__,
6394 _("read_comp_unit_head: invalid section_kind"));
6395 }
6396 else
6397 {
6398 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6399 (read_1_byte (abfd, info_ptr));
6400 info_ptr += 1;
6401 switch (cu_header->unit_type)
6402 {
6403 case DW_UT_compile:
6404 if (section_kind != rcuh_kind::COMPILE)
6405 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6406 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6407 filename);
6408 break;
6409 case DW_UT_type:
6410 section_kind = rcuh_kind::TYPE;
6411 break;
6412 default:
6413 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6414 "(is %d, should be %d or %d) [in module %s]"),
6415 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6416 }
6417
6418 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6419 info_ptr += 1;
6420 }
6421 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6422 cu_header,
6423 &bytes_read);
6424 info_ptr += bytes_read;
6425 if (cu_header->version < 5)
6426 {
6427 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6428 info_ptr += 1;
6429 }
6430 signed_addr = bfd_get_sign_extend_vma (abfd);
6431 if (signed_addr < 0)
6432 internal_error (__FILE__, __LINE__,
6433 _("read_comp_unit_head: dwarf from non elf file"));
6434 cu_header->signed_addr_p = signed_addr;
6435
6436 if (section_kind == rcuh_kind::TYPE)
6437 {
6438 LONGEST type_offset;
6439
6440 cu_header->signature = read_8_bytes (abfd, info_ptr);
6441 info_ptr += 8;
6442
6443 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6444 info_ptr += bytes_read;
6445 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6446 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6447 error (_("Dwarf Error: Too big type_offset in compilation unit "
6448 "header (is %s) [in module %s]"), plongest (type_offset),
6449 filename);
6450 }
6451
6452 return info_ptr;
6453 }
6454
6455 /* Helper function that returns the proper abbrev section for
6456 THIS_CU. */
6457
6458 static struct dwarf2_section_info *
6459 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6460 {
6461 struct dwarf2_section_info *abbrev;
6462 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6463
6464 if (this_cu->is_dwz)
6465 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6466 else
6467 abbrev = &dwarf2_per_objfile->abbrev;
6468
6469 return abbrev;
6470 }
6471
6472 /* Subroutine of read_and_check_comp_unit_head and
6473 read_and_check_type_unit_head to simplify them.
6474 Perform various error checking on the header. */
6475
6476 static void
6477 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6478 struct comp_unit_head *header,
6479 struct dwarf2_section_info *section,
6480 struct dwarf2_section_info *abbrev_section)
6481 {
6482 const char *filename = get_section_file_name (section);
6483
6484 if (to_underlying (header->abbrev_sect_off)
6485 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6486 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6487 "(offset %s + 6) [in module %s]"),
6488 sect_offset_str (header->abbrev_sect_off),
6489 sect_offset_str (header->sect_off),
6490 filename);
6491
6492 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6493 avoid potential 32-bit overflow. */
6494 if (((ULONGEST) header->sect_off + get_cu_length (header))
6495 > section->size)
6496 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6497 "(offset %s + 0) [in module %s]"),
6498 header->length, sect_offset_str (header->sect_off),
6499 filename);
6500 }
6501
6502 /* Read in a CU/TU header and perform some basic error checking.
6503 The contents of the header are stored in HEADER.
6504 The result is a pointer to the start of the first DIE. */
6505
6506 static const gdb_byte *
6507 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6508 struct comp_unit_head *header,
6509 struct dwarf2_section_info *section,
6510 struct dwarf2_section_info *abbrev_section,
6511 const gdb_byte *info_ptr,
6512 rcuh_kind section_kind)
6513 {
6514 const gdb_byte *beg_of_comp_unit = info_ptr;
6515
6516 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6517
6518 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6519
6520 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6521
6522 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6523 abbrev_section);
6524
6525 return info_ptr;
6526 }
6527
6528 /* Fetch the abbreviation table offset from a comp or type unit header. */
6529
6530 static sect_offset
6531 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6532 struct dwarf2_section_info *section,
6533 sect_offset sect_off)
6534 {
6535 bfd *abfd = get_section_bfd_owner (section);
6536 const gdb_byte *info_ptr;
6537 unsigned int initial_length_size, offset_size;
6538 uint16_t version;
6539
6540 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6541 info_ptr = section->buffer + to_underlying (sect_off);
6542 read_initial_length (abfd, info_ptr, &initial_length_size);
6543 offset_size = initial_length_size == 4 ? 4 : 8;
6544 info_ptr += initial_length_size;
6545
6546 version = read_2_bytes (abfd, info_ptr);
6547 info_ptr += 2;
6548 if (version >= 5)
6549 {
6550 /* Skip unit type and address size. */
6551 info_ptr += 2;
6552 }
6553
6554 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6555 }
6556
6557 /* Allocate a new partial symtab for file named NAME and mark this new
6558 partial symtab as being an include of PST. */
6559
6560 static void
6561 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6562 struct objfile *objfile)
6563 {
6564 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6565
6566 if (!IS_ABSOLUTE_PATH (subpst->filename))
6567 {
6568 /* It shares objfile->objfile_obstack. */
6569 subpst->dirname = pst->dirname;
6570 }
6571
6572 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6573 subpst->dependencies[0] = pst;
6574 subpst->number_of_dependencies = 1;
6575
6576 subpst->read_symtab = pst->read_symtab;
6577
6578 /* No private part is necessary for include psymtabs. This property
6579 can be used to differentiate between such include psymtabs and
6580 the regular ones. */
6581 subpst->read_symtab_private = NULL;
6582 }
6583
6584 /* Read the Line Number Program data and extract the list of files
6585 included by the source file represented by PST. Build an include
6586 partial symtab for each of these included files. */
6587
6588 static void
6589 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6590 struct die_info *die,
6591 struct partial_symtab *pst)
6592 {
6593 line_header_up lh;
6594 struct attribute *attr;
6595
6596 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6597 if (attr)
6598 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6599 if (lh == NULL)
6600 return; /* No linetable, so no includes. */
6601
6602 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6603 that we pass in the raw text_low here; that is ok because we're
6604 only decoding the line table to make include partial symtabs, and
6605 so the addresses aren't really used. */
6606 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6607 pst->raw_text_low (), 1);
6608 }
6609
6610 static hashval_t
6611 hash_signatured_type (const void *item)
6612 {
6613 const struct signatured_type *sig_type
6614 = (const struct signatured_type *) item;
6615
6616 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6617 return sig_type->signature;
6618 }
6619
6620 static int
6621 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6622 {
6623 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6624 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6625
6626 return lhs->signature == rhs->signature;
6627 }
6628
6629 /* Allocate a hash table for signatured types. */
6630
6631 static htab_t
6632 allocate_signatured_type_table (struct objfile *objfile)
6633 {
6634 return htab_create_alloc_ex (41,
6635 hash_signatured_type,
6636 eq_signatured_type,
6637 NULL,
6638 &objfile->objfile_obstack,
6639 hashtab_obstack_allocate,
6640 dummy_obstack_deallocate);
6641 }
6642
6643 /* A helper function to add a signatured type CU to a table. */
6644
6645 static int
6646 add_signatured_type_cu_to_table (void **slot, void *datum)
6647 {
6648 struct signatured_type *sigt = (struct signatured_type *) *slot;
6649 std::vector<signatured_type *> *all_type_units
6650 = (std::vector<signatured_type *> *) datum;
6651
6652 all_type_units->push_back (sigt);
6653
6654 return 1;
6655 }
6656
6657 /* A helper for create_debug_types_hash_table. Read types from SECTION
6658 and fill them into TYPES_HTAB. It will process only type units,
6659 therefore DW_UT_type. */
6660
6661 static void
6662 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6663 struct dwo_file *dwo_file,
6664 dwarf2_section_info *section, htab_t &types_htab,
6665 rcuh_kind section_kind)
6666 {
6667 struct objfile *objfile = dwarf2_per_objfile->objfile;
6668 struct dwarf2_section_info *abbrev_section;
6669 bfd *abfd;
6670 const gdb_byte *info_ptr, *end_ptr;
6671
6672 abbrev_section = (dwo_file != NULL
6673 ? &dwo_file->sections.abbrev
6674 : &dwarf2_per_objfile->abbrev);
6675
6676 if (dwarf_read_debug)
6677 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6678 get_section_name (section),
6679 get_section_file_name (abbrev_section));
6680
6681 dwarf2_read_section (objfile, section);
6682 info_ptr = section->buffer;
6683
6684 if (info_ptr == NULL)
6685 return;
6686
6687 /* We can't set abfd until now because the section may be empty or
6688 not present, in which case the bfd is unknown. */
6689 abfd = get_section_bfd_owner (section);
6690
6691 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6692 because we don't need to read any dies: the signature is in the
6693 header. */
6694
6695 end_ptr = info_ptr + section->size;
6696 while (info_ptr < end_ptr)
6697 {
6698 struct signatured_type *sig_type;
6699 struct dwo_unit *dwo_tu;
6700 void **slot;
6701 const gdb_byte *ptr = info_ptr;
6702 struct comp_unit_head header;
6703 unsigned int length;
6704
6705 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6706
6707 /* Initialize it due to a false compiler warning. */
6708 header.signature = -1;
6709 header.type_cu_offset_in_tu = (cu_offset) -1;
6710
6711 /* We need to read the type's signature in order to build the hash
6712 table, but we don't need anything else just yet. */
6713
6714 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6715 abbrev_section, ptr, section_kind);
6716
6717 length = get_cu_length (&header);
6718
6719 /* Skip dummy type units. */
6720 if (ptr >= info_ptr + length
6721 || peek_abbrev_code (abfd, ptr) == 0
6722 || header.unit_type != DW_UT_type)
6723 {
6724 info_ptr += length;
6725 continue;
6726 }
6727
6728 if (types_htab == NULL)
6729 {
6730 if (dwo_file)
6731 types_htab = allocate_dwo_unit_table (objfile);
6732 else
6733 types_htab = allocate_signatured_type_table (objfile);
6734 }
6735
6736 if (dwo_file)
6737 {
6738 sig_type = NULL;
6739 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6740 struct dwo_unit);
6741 dwo_tu->dwo_file = dwo_file;
6742 dwo_tu->signature = header.signature;
6743 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6744 dwo_tu->section = section;
6745 dwo_tu->sect_off = sect_off;
6746 dwo_tu->length = length;
6747 }
6748 else
6749 {
6750 /* N.B.: type_offset is not usable if this type uses a DWO file.
6751 The real type_offset is in the DWO file. */
6752 dwo_tu = NULL;
6753 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6754 struct signatured_type);
6755 sig_type->signature = header.signature;
6756 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6757 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6758 sig_type->per_cu.is_debug_types = 1;
6759 sig_type->per_cu.section = section;
6760 sig_type->per_cu.sect_off = sect_off;
6761 sig_type->per_cu.length = length;
6762 }
6763
6764 slot = htab_find_slot (types_htab,
6765 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6766 INSERT);
6767 gdb_assert (slot != NULL);
6768 if (*slot != NULL)
6769 {
6770 sect_offset dup_sect_off;
6771
6772 if (dwo_file)
6773 {
6774 const struct dwo_unit *dup_tu
6775 = (const struct dwo_unit *) *slot;
6776
6777 dup_sect_off = dup_tu->sect_off;
6778 }
6779 else
6780 {
6781 const struct signatured_type *dup_tu
6782 = (const struct signatured_type *) *slot;
6783
6784 dup_sect_off = dup_tu->per_cu.sect_off;
6785 }
6786
6787 complaint (_("debug type entry at offset %s is duplicate to"
6788 " the entry at offset %s, signature %s"),
6789 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6790 hex_string (header.signature));
6791 }
6792 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6793
6794 if (dwarf_read_debug > 1)
6795 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6796 sect_offset_str (sect_off),
6797 hex_string (header.signature));
6798
6799 info_ptr += length;
6800 }
6801 }
6802
6803 /* Create the hash table of all entries in the .debug_types
6804 (or .debug_types.dwo) section(s).
6805 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6806 otherwise it is NULL.
6807
6808 The result is a pointer to the hash table or NULL if there are no types.
6809
6810 Note: This function processes DWO files only, not DWP files. */
6811
6812 static void
6813 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6814 struct dwo_file *dwo_file,
6815 gdb::array_view<dwarf2_section_info> type_sections,
6816 htab_t &types_htab)
6817 {
6818 for (dwarf2_section_info &section : type_sections)
6819 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6820 types_htab, rcuh_kind::TYPE);
6821 }
6822
6823 /* Create the hash table of all entries in the .debug_types section,
6824 and initialize all_type_units.
6825 The result is zero if there is an error (e.g. missing .debug_types section),
6826 otherwise non-zero. */
6827
6828 static int
6829 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6830 {
6831 htab_t types_htab = NULL;
6832
6833 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6834 &dwarf2_per_objfile->info, types_htab,
6835 rcuh_kind::COMPILE);
6836 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6837 dwarf2_per_objfile->types, types_htab);
6838 if (types_htab == NULL)
6839 {
6840 dwarf2_per_objfile->signatured_types = NULL;
6841 return 0;
6842 }
6843
6844 dwarf2_per_objfile->signatured_types = types_htab;
6845
6846 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6847 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6848
6849 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6850 &dwarf2_per_objfile->all_type_units);
6851
6852 return 1;
6853 }
6854
6855 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6856 If SLOT is non-NULL, it is the entry to use in the hash table.
6857 Otherwise we find one. */
6858
6859 static struct signatured_type *
6860 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6861 void **slot)
6862 {
6863 struct objfile *objfile = dwarf2_per_objfile->objfile;
6864
6865 if (dwarf2_per_objfile->all_type_units.size ()
6866 == dwarf2_per_objfile->all_type_units.capacity ())
6867 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6868
6869 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6870 struct signatured_type);
6871
6872 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6873 sig_type->signature = sig;
6874 sig_type->per_cu.is_debug_types = 1;
6875 if (dwarf2_per_objfile->using_index)
6876 {
6877 sig_type->per_cu.v.quick =
6878 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6879 struct dwarf2_per_cu_quick_data);
6880 }
6881
6882 if (slot == NULL)
6883 {
6884 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6885 sig_type, INSERT);
6886 }
6887 gdb_assert (*slot == NULL);
6888 *slot = sig_type;
6889 /* The rest of sig_type must be filled in by the caller. */
6890 return sig_type;
6891 }
6892
6893 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6894 Fill in SIG_ENTRY with DWO_ENTRY. */
6895
6896 static void
6897 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6898 struct signatured_type *sig_entry,
6899 struct dwo_unit *dwo_entry)
6900 {
6901 /* Make sure we're not clobbering something we don't expect to. */
6902 gdb_assert (! sig_entry->per_cu.queued);
6903 gdb_assert (sig_entry->per_cu.cu == NULL);
6904 if (dwarf2_per_objfile->using_index)
6905 {
6906 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6907 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6908 }
6909 else
6910 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6911 gdb_assert (sig_entry->signature == dwo_entry->signature);
6912 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6913 gdb_assert (sig_entry->type_unit_group == NULL);
6914 gdb_assert (sig_entry->dwo_unit == NULL);
6915
6916 sig_entry->per_cu.section = dwo_entry->section;
6917 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6918 sig_entry->per_cu.length = dwo_entry->length;
6919 sig_entry->per_cu.reading_dwo_directly = 1;
6920 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6921 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6922 sig_entry->dwo_unit = dwo_entry;
6923 }
6924
6925 /* Subroutine of lookup_signatured_type.
6926 If we haven't read the TU yet, create the signatured_type data structure
6927 for a TU to be read in directly from a DWO file, bypassing the stub.
6928 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6929 using .gdb_index, then when reading a CU we want to stay in the DWO file
6930 containing that CU. Otherwise we could end up reading several other DWO
6931 files (due to comdat folding) to process the transitive closure of all the
6932 mentioned TUs, and that can be slow. The current DWO file will have every
6933 type signature that it needs.
6934 We only do this for .gdb_index because in the psymtab case we already have
6935 to read all the DWOs to build the type unit groups. */
6936
6937 static struct signatured_type *
6938 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6939 {
6940 struct dwarf2_per_objfile *dwarf2_per_objfile
6941 = cu->per_cu->dwarf2_per_objfile;
6942 struct objfile *objfile = dwarf2_per_objfile->objfile;
6943 struct dwo_file *dwo_file;
6944 struct dwo_unit find_dwo_entry, *dwo_entry;
6945 struct signatured_type find_sig_entry, *sig_entry;
6946 void **slot;
6947
6948 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6949
6950 /* If TU skeletons have been removed then we may not have read in any
6951 TUs yet. */
6952 if (dwarf2_per_objfile->signatured_types == NULL)
6953 {
6954 dwarf2_per_objfile->signatured_types
6955 = allocate_signatured_type_table (objfile);
6956 }
6957
6958 /* We only ever need to read in one copy of a signatured type.
6959 Use the global signatured_types array to do our own comdat-folding
6960 of types. If this is the first time we're reading this TU, and
6961 the TU has an entry in .gdb_index, replace the recorded data from
6962 .gdb_index with this TU. */
6963
6964 find_sig_entry.signature = sig;
6965 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6966 &find_sig_entry, INSERT);
6967 sig_entry = (struct signatured_type *) *slot;
6968
6969 /* We can get here with the TU already read, *or* in the process of being
6970 read. Don't reassign the global entry to point to this DWO if that's
6971 the case. Also note that if the TU is already being read, it may not
6972 have come from a DWO, the program may be a mix of Fission-compiled
6973 code and non-Fission-compiled code. */
6974
6975 /* Have we already tried to read this TU?
6976 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6977 needn't exist in the global table yet). */
6978 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6979 return sig_entry;
6980
6981 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6982 dwo_unit of the TU itself. */
6983 dwo_file = cu->dwo_unit->dwo_file;
6984
6985 /* Ok, this is the first time we're reading this TU. */
6986 if (dwo_file->tus == NULL)
6987 return NULL;
6988 find_dwo_entry.signature = sig;
6989 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6990 if (dwo_entry == NULL)
6991 return NULL;
6992
6993 /* If the global table doesn't have an entry for this TU, add one. */
6994 if (sig_entry == NULL)
6995 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6996
6997 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6998 sig_entry->per_cu.tu_read = 1;
6999 return sig_entry;
7000 }
7001
7002 /* Subroutine of lookup_signatured_type.
7003 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7004 then try the DWP file. If the TU stub (skeleton) has been removed then
7005 it won't be in .gdb_index. */
7006
7007 static struct signatured_type *
7008 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7009 {
7010 struct dwarf2_per_objfile *dwarf2_per_objfile
7011 = cu->per_cu->dwarf2_per_objfile;
7012 struct objfile *objfile = dwarf2_per_objfile->objfile;
7013 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7014 struct dwo_unit *dwo_entry;
7015 struct signatured_type find_sig_entry, *sig_entry;
7016 void **slot;
7017
7018 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7019 gdb_assert (dwp_file != NULL);
7020
7021 /* If TU skeletons have been removed then we may not have read in any
7022 TUs yet. */
7023 if (dwarf2_per_objfile->signatured_types == NULL)
7024 {
7025 dwarf2_per_objfile->signatured_types
7026 = allocate_signatured_type_table (objfile);
7027 }
7028
7029 find_sig_entry.signature = sig;
7030 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7031 &find_sig_entry, INSERT);
7032 sig_entry = (struct signatured_type *) *slot;
7033
7034 /* Have we already tried to read this TU?
7035 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7036 needn't exist in the global table yet). */
7037 if (sig_entry != NULL)
7038 return sig_entry;
7039
7040 if (dwp_file->tus == NULL)
7041 return NULL;
7042 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7043 sig, 1 /* is_debug_types */);
7044 if (dwo_entry == NULL)
7045 return NULL;
7046
7047 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7048 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7049
7050 return sig_entry;
7051 }
7052
7053 /* Lookup a signature based type for DW_FORM_ref_sig8.
7054 Returns NULL if signature SIG is not present in the table.
7055 It is up to the caller to complain about this. */
7056
7057 static struct signatured_type *
7058 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7059 {
7060 struct dwarf2_per_objfile *dwarf2_per_objfile
7061 = cu->per_cu->dwarf2_per_objfile;
7062
7063 if (cu->dwo_unit
7064 && dwarf2_per_objfile->using_index)
7065 {
7066 /* We're in a DWO/DWP file, and we're using .gdb_index.
7067 These cases require special processing. */
7068 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7069 return lookup_dwo_signatured_type (cu, sig);
7070 else
7071 return lookup_dwp_signatured_type (cu, sig);
7072 }
7073 else
7074 {
7075 struct signatured_type find_entry, *entry;
7076
7077 if (dwarf2_per_objfile->signatured_types == NULL)
7078 return NULL;
7079 find_entry.signature = sig;
7080 entry = ((struct signatured_type *)
7081 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7082 return entry;
7083 }
7084 }
7085 \f
7086 /* Low level DIE reading support. */
7087
7088 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7089
7090 static void
7091 init_cu_die_reader (struct die_reader_specs *reader,
7092 struct dwarf2_cu *cu,
7093 struct dwarf2_section_info *section,
7094 struct dwo_file *dwo_file,
7095 struct abbrev_table *abbrev_table)
7096 {
7097 gdb_assert (section->readin && section->buffer != NULL);
7098 reader->abfd = get_section_bfd_owner (section);
7099 reader->cu = cu;
7100 reader->dwo_file = dwo_file;
7101 reader->die_section = section;
7102 reader->buffer = section->buffer;
7103 reader->buffer_end = section->buffer + section->size;
7104 reader->comp_dir = NULL;
7105 reader->abbrev_table = abbrev_table;
7106 }
7107
7108 /* Subroutine of init_cutu_and_read_dies to simplify it.
7109 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7110 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7111 already.
7112
7113 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7114 from it to the DIE in the DWO. If NULL we are skipping the stub.
7115 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7116 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7117 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7118 STUB_COMP_DIR may be non-NULL.
7119 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7120 are filled in with the info of the DIE from the DWO file.
7121 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7122 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7123 kept around for at least as long as *RESULT_READER.
7124
7125 The result is non-zero if a valid (non-dummy) DIE was found. */
7126
7127 static int
7128 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7129 struct dwo_unit *dwo_unit,
7130 struct die_info *stub_comp_unit_die,
7131 const char *stub_comp_dir,
7132 struct die_reader_specs *result_reader,
7133 const gdb_byte **result_info_ptr,
7134 struct die_info **result_comp_unit_die,
7135 int *result_has_children,
7136 abbrev_table_up *result_dwo_abbrev_table)
7137 {
7138 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7139 struct objfile *objfile = dwarf2_per_objfile->objfile;
7140 struct dwarf2_cu *cu = this_cu->cu;
7141 bfd *abfd;
7142 const gdb_byte *begin_info_ptr, *info_ptr;
7143 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7144 int i,num_extra_attrs;
7145 struct dwarf2_section_info *dwo_abbrev_section;
7146 struct attribute *attr;
7147 struct die_info *comp_unit_die;
7148
7149 /* At most one of these may be provided. */
7150 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7151
7152 /* These attributes aren't processed until later:
7153 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7154 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7155 referenced later. However, these attributes are found in the stub
7156 which we won't have later. In order to not impose this complication
7157 on the rest of the code, we read them here and copy them to the
7158 DWO CU/TU die. */
7159
7160 stmt_list = NULL;
7161 low_pc = NULL;
7162 high_pc = NULL;
7163 ranges = NULL;
7164 comp_dir = NULL;
7165
7166 if (stub_comp_unit_die != NULL)
7167 {
7168 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7169 DWO file. */
7170 if (! this_cu->is_debug_types)
7171 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7172 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7173 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7174 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7175 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7176
7177 /* There should be a DW_AT_addr_base attribute here (if needed).
7178 We need the value before we can process DW_FORM_GNU_addr_index
7179 or DW_FORM_addrx. */
7180 cu->addr_base = 0;
7181 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7182 if (attr)
7183 cu->addr_base = DW_UNSND (attr);
7184
7185 /* There should be a DW_AT_ranges_base attribute here (if needed).
7186 We need the value before we can process DW_AT_ranges. */
7187 cu->ranges_base = 0;
7188 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7189 if (attr)
7190 cu->ranges_base = DW_UNSND (attr);
7191 }
7192 else if (stub_comp_dir != NULL)
7193 {
7194 /* Reconstruct the comp_dir attribute to simplify the code below. */
7195 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7196 comp_dir->name = DW_AT_comp_dir;
7197 comp_dir->form = DW_FORM_string;
7198 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7199 DW_STRING (comp_dir) = stub_comp_dir;
7200 }
7201
7202 /* Set up for reading the DWO CU/TU. */
7203 cu->dwo_unit = dwo_unit;
7204 dwarf2_section_info *section = dwo_unit->section;
7205 dwarf2_read_section (objfile, section);
7206 abfd = get_section_bfd_owner (section);
7207 begin_info_ptr = info_ptr = (section->buffer
7208 + to_underlying (dwo_unit->sect_off));
7209 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7210
7211 if (this_cu->is_debug_types)
7212 {
7213 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7214
7215 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7216 &cu->header, section,
7217 dwo_abbrev_section,
7218 info_ptr, rcuh_kind::TYPE);
7219 /* This is not an assert because it can be caused by bad debug info. */
7220 if (sig_type->signature != cu->header.signature)
7221 {
7222 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7223 " TU at offset %s [in module %s]"),
7224 hex_string (sig_type->signature),
7225 hex_string (cu->header.signature),
7226 sect_offset_str (dwo_unit->sect_off),
7227 bfd_get_filename (abfd));
7228 }
7229 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7230 /* For DWOs coming from DWP files, we don't know the CU length
7231 nor the type's offset in the TU until now. */
7232 dwo_unit->length = get_cu_length (&cu->header);
7233 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7234
7235 /* Establish the type offset that can be used to lookup the type.
7236 For DWO files, we don't know it until now. */
7237 sig_type->type_offset_in_section
7238 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7239 }
7240 else
7241 {
7242 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7243 &cu->header, section,
7244 dwo_abbrev_section,
7245 info_ptr, rcuh_kind::COMPILE);
7246 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7247 /* For DWOs coming from DWP files, we don't know the CU length
7248 until now. */
7249 dwo_unit->length = get_cu_length (&cu->header);
7250 }
7251
7252 *result_dwo_abbrev_table
7253 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7254 cu->header.abbrev_sect_off);
7255 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7256 result_dwo_abbrev_table->get ());
7257
7258 /* Read in the die, but leave space to copy over the attributes
7259 from the stub. This has the benefit of simplifying the rest of
7260 the code - all the work to maintain the illusion of a single
7261 DW_TAG_{compile,type}_unit DIE is done here. */
7262 num_extra_attrs = ((stmt_list != NULL)
7263 + (low_pc != NULL)
7264 + (high_pc != NULL)
7265 + (ranges != NULL)
7266 + (comp_dir != NULL));
7267 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7268 result_has_children, num_extra_attrs);
7269
7270 /* Copy over the attributes from the stub to the DIE we just read in. */
7271 comp_unit_die = *result_comp_unit_die;
7272 i = comp_unit_die->num_attrs;
7273 if (stmt_list != NULL)
7274 comp_unit_die->attrs[i++] = *stmt_list;
7275 if (low_pc != NULL)
7276 comp_unit_die->attrs[i++] = *low_pc;
7277 if (high_pc != NULL)
7278 comp_unit_die->attrs[i++] = *high_pc;
7279 if (ranges != NULL)
7280 comp_unit_die->attrs[i++] = *ranges;
7281 if (comp_dir != NULL)
7282 comp_unit_die->attrs[i++] = *comp_dir;
7283 comp_unit_die->num_attrs += num_extra_attrs;
7284
7285 if (dwarf_die_debug)
7286 {
7287 fprintf_unfiltered (gdb_stdlog,
7288 "Read die from %s@0x%x of %s:\n",
7289 get_section_name (section),
7290 (unsigned) (begin_info_ptr - section->buffer),
7291 bfd_get_filename (abfd));
7292 dump_die (comp_unit_die, dwarf_die_debug);
7293 }
7294
7295 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7296 TUs by skipping the stub and going directly to the entry in the DWO file.
7297 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7298 to get it via circuitous means. Blech. */
7299 if (comp_dir != NULL)
7300 result_reader->comp_dir = DW_STRING (comp_dir);
7301
7302 /* Skip dummy compilation units. */
7303 if (info_ptr >= begin_info_ptr + dwo_unit->length
7304 || peek_abbrev_code (abfd, info_ptr) == 0)
7305 return 0;
7306
7307 *result_info_ptr = info_ptr;
7308 return 1;
7309 }
7310
7311 /* Subroutine of init_cutu_and_read_dies to simplify it.
7312 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7313 Returns NULL if the specified DWO unit cannot be found. */
7314
7315 static struct dwo_unit *
7316 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7317 struct die_info *comp_unit_die)
7318 {
7319 struct dwarf2_cu *cu = this_cu->cu;
7320 ULONGEST signature;
7321 struct dwo_unit *dwo_unit;
7322 const char *comp_dir, *dwo_name;
7323
7324 gdb_assert (cu != NULL);
7325
7326 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7327 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7328 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7329
7330 if (this_cu->is_debug_types)
7331 {
7332 struct signatured_type *sig_type;
7333
7334 /* Since this_cu is the first member of struct signatured_type,
7335 we can go from a pointer to one to a pointer to the other. */
7336 sig_type = (struct signatured_type *) this_cu;
7337 signature = sig_type->signature;
7338 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7339 }
7340 else
7341 {
7342 struct attribute *attr;
7343
7344 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7345 if (! attr)
7346 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7347 " [in module %s]"),
7348 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7349 signature = DW_UNSND (attr);
7350 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7351 signature);
7352 }
7353
7354 return dwo_unit;
7355 }
7356
7357 /* Subroutine of init_cutu_and_read_dies to simplify it.
7358 See it for a description of the parameters.
7359 Read a TU directly from a DWO file, bypassing the stub. */
7360
7361 static void
7362 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7363 int use_existing_cu, int keep,
7364 die_reader_func_ftype *die_reader_func,
7365 void *data)
7366 {
7367 std::unique_ptr<dwarf2_cu> new_cu;
7368 struct signatured_type *sig_type;
7369 struct die_reader_specs reader;
7370 const gdb_byte *info_ptr;
7371 struct die_info *comp_unit_die;
7372 int has_children;
7373 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7374
7375 /* Verify we can do the following downcast, and that we have the
7376 data we need. */
7377 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7378 sig_type = (struct signatured_type *) this_cu;
7379 gdb_assert (sig_type->dwo_unit != NULL);
7380
7381 if (use_existing_cu && this_cu->cu != NULL)
7382 {
7383 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7384 /* There's no need to do the rereading_dwo_cu handling that
7385 init_cutu_and_read_dies does since we don't read the stub. */
7386 }
7387 else
7388 {
7389 /* If !use_existing_cu, this_cu->cu must be NULL. */
7390 gdb_assert (this_cu->cu == NULL);
7391 new_cu.reset (new dwarf2_cu (this_cu));
7392 }
7393
7394 /* A future optimization, if needed, would be to use an existing
7395 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7396 could share abbrev tables. */
7397
7398 /* The abbreviation table used by READER, this must live at least as long as
7399 READER. */
7400 abbrev_table_up dwo_abbrev_table;
7401
7402 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7403 NULL /* stub_comp_unit_die */,
7404 sig_type->dwo_unit->dwo_file->comp_dir,
7405 &reader, &info_ptr,
7406 &comp_unit_die, &has_children,
7407 &dwo_abbrev_table) == 0)
7408 {
7409 /* Dummy die. */
7410 return;
7411 }
7412
7413 /* All the "real" work is done here. */
7414 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7415
7416 /* This duplicates the code in init_cutu_and_read_dies,
7417 but the alternative is making the latter more complex.
7418 This function is only for the special case of using DWO files directly:
7419 no point in overly complicating the general case just to handle this. */
7420 if (new_cu != NULL && keep)
7421 {
7422 /* Link this CU into read_in_chain. */
7423 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7424 dwarf2_per_objfile->read_in_chain = this_cu;
7425 /* The chain owns it now. */
7426 new_cu.release ();
7427 }
7428 }
7429
7430 /* Initialize a CU (or TU) and read its DIEs.
7431 If the CU defers to a DWO file, read the DWO file as well.
7432
7433 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7434 Otherwise the table specified in the comp unit header is read in and used.
7435 This is an optimization for when we already have the abbrev table.
7436
7437 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7438 Otherwise, a new CU is allocated with xmalloc.
7439
7440 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7441 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7442
7443 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7444 linker) then DIE_READER_FUNC will not get called. */
7445
7446 static void
7447 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7448 struct abbrev_table *abbrev_table,
7449 int use_existing_cu, int keep,
7450 bool skip_partial,
7451 die_reader_func_ftype *die_reader_func,
7452 void *data)
7453 {
7454 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7455 struct objfile *objfile = dwarf2_per_objfile->objfile;
7456 struct dwarf2_section_info *section = this_cu->section;
7457 bfd *abfd = get_section_bfd_owner (section);
7458 struct dwarf2_cu *cu;
7459 const gdb_byte *begin_info_ptr, *info_ptr;
7460 struct die_reader_specs reader;
7461 struct die_info *comp_unit_die;
7462 int has_children;
7463 struct attribute *attr;
7464 struct signatured_type *sig_type = NULL;
7465 struct dwarf2_section_info *abbrev_section;
7466 /* Non-zero if CU currently points to a DWO file and we need to
7467 reread it. When this happens we need to reread the skeleton die
7468 before we can reread the DWO file (this only applies to CUs, not TUs). */
7469 int rereading_dwo_cu = 0;
7470
7471 if (dwarf_die_debug)
7472 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7473 this_cu->is_debug_types ? "type" : "comp",
7474 sect_offset_str (this_cu->sect_off));
7475
7476 if (use_existing_cu)
7477 gdb_assert (keep);
7478
7479 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7480 file (instead of going through the stub), short-circuit all of this. */
7481 if (this_cu->reading_dwo_directly)
7482 {
7483 /* Narrow down the scope of possibilities to have to understand. */
7484 gdb_assert (this_cu->is_debug_types);
7485 gdb_assert (abbrev_table == NULL);
7486 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7487 die_reader_func, data);
7488 return;
7489 }
7490
7491 /* This is cheap if the section is already read in. */
7492 dwarf2_read_section (objfile, section);
7493
7494 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7495
7496 abbrev_section = get_abbrev_section_for_cu (this_cu);
7497
7498 std::unique_ptr<dwarf2_cu> new_cu;
7499 if (use_existing_cu && this_cu->cu != NULL)
7500 {
7501 cu = this_cu->cu;
7502 /* If this CU is from a DWO file we need to start over, we need to
7503 refetch the attributes from the skeleton CU.
7504 This could be optimized by retrieving those attributes from when we
7505 were here the first time: the previous comp_unit_die was stored in
7506 comp_unit_obstack. But there's no data yet that we need this
7507 optimization. */
7508 if (cu->dwo_unit != NULL)
7509 rereading_dwo_cu = 1;
7510 }
7511 else
7512 {
7513 /* If !use_existing_cu, this_cu->cu must be NULL. */
7514 gdb_assert (this_cu->cu == NULL);
7515 new_cu.reset (new dwarf2_cu (this_cu));
7516 cu = new_cu.get ();
7517 }
7518
7519 /* Get the header. */
7520 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7521 {
7522 /* We already have the header, there's no need to read it in again. */
7523 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7524 }
7525 else
7526 {
7527 if (this_cu->is_debug_types)
7528 {
7529 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7530 &cu->header, section,
7531 abbrev_section, info_ptr,
7532 rcuh_kind::TYPE);
7533
7534 /* Since per_cu is the first member of struct signatured_type,
7535 we can go from a pointer to one to a pointer to the other. */
7536 sig_type = (struct signatured_type *) this_cu;
7537 gdb_assert (sig_type->signature == cu->header.signature);
7538 gdb_assert (sig_type->type_offset_in_tu
7539 == cu->header.type_cu_offset_in_tu);
7540 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7541
7542 /* LENGTH has not been set yet for type units if we're
7543 using .gdb_index. */
7544 this_cu->length = get_cu_length (&cu->header);
7545
7546 /* Establish the type offset that can be used to lookup the type. */
7547 sig_type->type_offset_in_section =
7548 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7549
7550 this_cu->dwarf_version = cu->header.version;
7551 }
7552 else
7553 {
7554 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7555 &cu->header, section,
7556 abbrev_section,
7557 info_ptr,
7558 rcuh_kind::COMPILE);
7559
7560 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7561 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7562 this_cu->dwarf_version = cu->header.version;
7563 }
7564 }
7565
7566 /* Skip dummy compilation units. */
7567 if (info_ptr >= begin_info_ptr + this_cu->length
7568 || peek_abbrev_code (abfd, info_ptr) == 0)
7569 return;
7570
7571 /* If we don't have them yet, read the abbrevs for this compilation unit.
7572 And if we need to read them now, make sure they're freed when we're
7573 done (own the table through ABBREV_TABLE_HOLDER). */
7574 abbrev_table_up abbrev_table_holder;
7575 if (abbrev_table != NULL)
7576 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7577 else
7578 {
7579 abbrev_table_holder
7580 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7581 cu->header.abbrev_sect_off);
7582 abbrev_table = abbrev_table_holder.get ();
7583 }
7584
7585 /* Read the top level CU/TU die. */
7586 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7587 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7588
7589 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7590 return;
7591
7592 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7593 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7594 table from the DWO file and pass the ownership over to us. It will be
7595 referenced from READER, so we must make sure to free it after we're done
7596 with READER.
7597
7598 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7599 DWO CU, that this test will fail (the attribute will not be present). */
7600 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7601 abbrev_table_up dwo_abbrev_table;
7602 if (attr)
7603 {
7604 struct dwo_unit *dwo_unit;
7605 struct die_info *dwo_comp_unit_die;
7606
7607 if (has_children)
7608 {
7609 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7610 " has children (offset %s) [in module %s]"),
7611 sect_offset_str (this_cu->sect_off),
7612 bfd_get_filename (abfd));
7613 }
7614 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7615 if (dwo_unit != NULL)
7616 {
7617 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7618 comp_unit_die, NULL,
7619 &reader, &info_ptr,
7620 &dwo_comp_unit_die, &has_children,
7621 &dwo_abbrev_table) == 0)
7622 {
7623 /* Dummy die. */
7624 return;
7625 }
7626 comp_unit_die = dwo_comp_unit_die;
7627 }
7628 else
7629 {
7630 /* Yikes, we couldn't find the rest of the DIE, we only have
7631 the stub. A complaint has already been logged. There's
7632 not much more we can do except pass on the stub DIE to
7633 die_reader_func. We don't want to throw an error on bad
7634 debug info. */
7635 }
7636 }
7637
7638 /* All of the above is setup for this call. Yikes. */
7639 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7640
7641 /* Done, clean up. */
7642 if (new_cu != NULL && keep)
7643 {
7644 /* Link this CU into read_in_chain. */
7645 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7646 dwarf2_per_objfile->read_in_chain = this_cu;
7647 /* The chain owns it now. */
7648 new_cu.release ();
7649 }
7650 }
7651
7652 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7653 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7654 to have already done the lookup to find the DWO file).
7655
7656 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7657 THIS_CU->is_debug_types, but nothing else.
7658
7659 We fill in THIS_CU->length.
7660
7661 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7662 linker) then DIE_READER_FUNC will not get called.
7663
7664 THIS_CU->cu is always freed when done.
7665 This is done in order to not leave THIS_CU->cu in a state where we have
7666 to care whether it refers to the "main" CU or the DWO CU. */
7667
7668 static void
7669 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7670 struct dwo_file *dwo_file,
7671 die_reader_func_ftype *die_reader_func,
7672 void *data)
7673 {
7674 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7675 struct objfile *objfile = dwarf2_per_objfile->objfile;
7676 struct dwarf2_section_info *section = this_cu->section;
7677 bfd *abfd = get_section_bfd_owner (section);
7678 struct dwarf2_section_info *abbrev_section;
7679 const gdb_byte *begin_info_ptr, *info_ptr;
7680 struct die_reader_specs reader;
7681 struct die_info *comp_unit_die;
7682 int has_children;
7683
7684 if (dwarf_die_debug)
7685 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7686 this_cu->is_debug_types ? "type" : "comp",
7687 sect_offset_str (this_cu->sect_off));
7688
7689 gdb_assert (this_cu->cu == NULL);
7690
7691 abbrev_section = (dwo_file != NULL
7692 ? &dwo_file->sections.abbrev
7693 : get_abbrev_section_for_cu (this_cu));
7694
7695 /* This is cheap if the section is already read in. */
7696 dwarf2_read_section (objfile, section);
7697
7698 struct dwarf2_cu cu (this_cu);
7699
7700 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7701 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7702 &cu.header, section,
7703 abbrev_section, info_ptr,
7704 (this_cu->is_debug_types
7705 ? rcuh_kind::TYPE
7706 : rcuh_kind::COMPILE));
7707
7708 this_cu->length = get_cu_length (&cu.header);
7709
7710 /* Skip dummy compilation units. */
7711 if (info_ptr >= begin_info_ptr + this_cu->length
7712 || peek_abbrev_code (abfd, info_ptr) == 0)
7713 return;
7714
7715 abbrev_table_up abbrev_table
7716 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7717 cu.header.abbrev_sect_off);
7718
7719 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7720 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7721
7722 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7723 }
7724
7725 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7726 does not lookup the specified DWO file.
7727 This cannot be used to read DWO files.
7728
7729 THIS_CU->cu is always freed when done.
7730 This is done in order to not leave THIS_CU->cu in a state where we have
7731 to care whether it refers to the "main" CU or the DWO CU.
7732 We can revisit this if the data shows there's a performance issue. */
7733
7734 static void
7735 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7736 die_reader_func_ftype *die_reader_func,
7737 void *data)
7738 {
7739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7740 }
7741 \f
7742 /* Type Unit Groups.
7743
7744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7746 so that all types coming from the same compilation (.o file) are grouped
7747 together. A future step could be to put the types in the same symtab as
7748 the CU the types ultimately came from. */
7749
7750 static hashval_t
7751 hash_type_unit_group (const void *item)
7752 {
7753 const struct type_unit_group *tu_group
7754 = (const struct type_unit_group *) item;
7755
7756 return hash_stmt_list_entry (&tu_group->hash);
7757 }
7758
7759 static int
7760 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7761 {
7762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7764
7765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7766 }
7767
7768 /* Allocate a hash table for type unit groups. */
7769
7770 static htab_t
7771 allocate_type_unit_groups_table (struct objfile *objfile)
7772 {
7773 return htab_create_alloc_ex (3,
7774 hash_type_unit_group,
7775 eq_type_unit_group,
7776 NULL,
7777 &objfile->objfile_obstack,
7778 hashtab_obstack_allocate,
7779 dummy_obstack_deallocate);
7780 }
7781
7782 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7783 partial symtabs. We combine several TUs per psymtab to not let the size
7784 of any one psymtab grow too big. */
7785 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7786 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7787
7788 /* Helper routine for get_type_unit_group.
7789 Create the type_unit_group object used to hold one or more TUs. */
7790
7791 static struct type_unit_group *
7792 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7793 {
7794 struct dwarf2_per_objfile *dwarf2_per_objfile
7795 = cu->per_cu->dwarf2_per_objfile;
7796 struct objfile *objfile = dwarf2_per_objfile->objfile;
7797 struct dwarf2_per_cu_data *per_cu;
7798 struct type_unit_group *tu_group;
7799
7800 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7801 struct type_unit_group);
7802 per_cu = &tu_group->per_cu;
7803 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7804
7805 if (dwarf2_per_objfile->using_index)
7806 {
7807 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7808 struct dwarf2_per_cu_quick_data);
7809 }
7810 else
7811 {
7812 unsigned int line_offset = to_underlying (line_offset_struct);
7813 struct partial_symtab *pst;
7814 std::string name;
7815
7816 /* Give the symtab a useful name for debug purposes. */
7817 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7818 name = string_printf ("<type_units_%d>",
7819 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7820 else
7821 name = string_printf ("<type_units_at_0x%x>", line_offset);
7822
7823 pst = create_partial_symtab (per_cu, name.c_str ());
7824 pst->anonymous = 1;
7825 }
7826
7827 tu_group->hash.dwo_unit = cu->dwo_unit;
7828 tu_group->hash.line_sect_off = line_offset_struct;
7829
7830 return tu_group;
7831 }
7832
7833 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7834 STMT_LIST is a DW_AT_stmt_list attribute. */
7835
7836 static struct type_unit_group *
7837 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7838 {
7839 struct dwarf2_per_objfile *dwarf2_per_objfile
7840 = cu->per_cu->dwarf2_per_objfile;
7841 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7842 struct type_unit_group *tu_group;
7843 void **slot;
7844 unsigned int line_offset;
7845 struct type_unit_group type_unit_group_for_lookup;
7846
7847 if (dwarf2_per_objfile->type_unit_groups == NULL)
7848 {
7849 dwarf2_per_objfile->type_unit_groups =
7850 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7851 }
7852
7853 /* Do we need to create a new group, or can we use an existing one? */
7854
7855 if (stmt_list)
7856 {
7857 line_offset = DW_UNSND (stmt_list);
7858 ++tu_stats->nr_symtab_sharers;
7859 }
7860 else
7861 {
7862 /* Ugh, no stmt_list. Rare, but we have to handle it.
7863 We can do various things here like create one group per TU or
7864 spread them over multiple groups to split up the expansion work.
7865 To avoid worst case scenarios (too many groups or too large groups)
7866 we, umm, group them in bunches. */
7867 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7868 | (tu_stats->nr_stmt_less_type_units
7869 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7870 ++tu_stats->nr_stmt_less_type_units;
7871 }
7872
7873 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7874 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7875 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7876 &type_unit_group_for_lookup, INSERT);
7877 if (*slot != NULL)
7878 {
7879 tu_group = (struct type_unit_group *) *slot;
7880 gdb_assert (tu_group != NULL);
7881 }
7882 else
7883 {
7884 sect_offset line_offset_struct = (sect_offset) line_offset;
7885 tu_group = create_type_unit_group (cu, line_offset_struct);
7886 *slot = tu_group;
7887 ++tu_stats->nr_symtabs;
7888 }
7889
7890 return tu_group;
7891 }
7892 \f
7893 /* Partial symbol tables. */
7894
7895 /* Create a psymtab named NAME and assign it to PER_CU.
7896
7897 The caller must fill in the following details:
7898 dirname, textlow, texthigh. */
7899
7900 static struct partial_symtab *
7901 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7902 {
7903 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7904 struct partial_symtab *pst;
7905
7906 pst = start_psymtab_common (objfile, name, 0);
7907
7908 pst->psymtabs_addrmap_supported = 1;
7909
7910 /* This is the glue that links PST into GDB's symbol API. */
7911 pst->read_symtab_private = per_cu;
7912 pst->read_symtab = dwarf2_read_symtab;
7913 per_cu->v.psymtab = pst;
7914
7915 return pst;
7916 }
7917
7918 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7919 type. */
7920
7921 struct process_psymtab_comp_unit_data
7922 {
7923 /* True if we are reading a DW_TAG_partial_unit. */
7924
7925 int want_partial_unit;
7926
7927 /* The "pretend" language that is used if the CU doesn't declare a
7928 language. */
7929
7930 enum language pretend_language;
7931 };
7932
7933 /* die_reader_func for process_psymtab_comp_unit. */
7934
7935 static void
7936 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7937 const gdb_byte *info_ptr,
7938 struct die_info *comp_unit_die,
7939 int has_children,
7940 void *data)
7941 {
7942 struct dwarf2_cu *cu = reader->cu;
7943 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7944 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7945 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7946 CORE_ADDR baseaddr;
7947 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7948 struct partial_symtab *pst;
7949 enum pc_bounds_kind cu_bounds_kind;
7950 const char *filename;
7951 struct process_psymtab_comp_unit_data *info
7952 = (struct process_psymtab_comp_unit_data *) data;
7953
7954 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7955 return;
7956
7957 gdb_assert (! per_cu->is_debug_types);
7958
7959 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7960
7961 /* Allocate a new partial symbol table structure. */
7962 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7963 if (filename == NULL)
7964 filename = "";
7965
7966 pst = create_partial_symtab (per_cu, filename);
7967
7968 /* This must be done before calling dwarf2_build_include_psymtabs. */
7969 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7970
7971 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7972
7973 dwarf2_find_base_address (comp_unit_die, cu);
7974
7975 /* Possibly set the default values of LOWPC and HIGHPC from
7976 `DW_AT_ranges'. */
7977 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7978 &best_highpc, cu, pst);
7979 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7980 {
7981 CORE_ADDR low
7982 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7983 - baseaddr);
7984 CORE_ADDR high
7985 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7986 - baseaddr - 1);
7987 /* Store the contiguous range if it is not empty; it can be
7988 empty for CUs with no code. */
7989 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7990 low, high, pst);
7991 }
7992
7993 /* Check if comp unit has_children.
7994 If so, read the rest of the partial symbols from this comp unit.
7995 If not, there's no more debug_info for this comp unit. */
7996 if (has_children)
7997 {
7998 struct partial_die_info *first_die;
7999 CORE_ADDR lowpc, highpc;
8000
8001 lowpc = ((CORE_ADDR) -1);
8002 highpc = ((CORE_ADDR) 0);
8003
8004 first_die = load_partial_dies (reader, info_ptr, 1);
8005
8006 scan_partial_symbols (first_die, &lowpc, &highpc,
8007 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8008
8009 /* If we didn't find a lowpc, set it to highpc to avoid
8010 complaints from `maint check'. */
8011 if (lowpc == ((CORE_ADDR) -1))
8012 lowpc = highpc;
8013
8014 /* If the compilation unit didn't have an explicit address range,
8015 then use the information extracted from its child dies. */
8016 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8017 {
8018 best_lowpc = lowpc;
8019 best_highpc = highpc;
8020 }
8021 }
8022 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8023 best_lowpc + baseaddr)
8024 - baseaddr);
8025 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8026 best_highpc + baseaddr)
8027 - baseaddr);
8028
8029 end_psymtab_common (objfile, pst);
8030
8031 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8032 {
8033 int i;
8034 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8035 struct dwarf2_per_cu_data *iter;
8036
8037 /* Fill in 'dependencies' here; we fill in 'users' in a
8038 post-pass. */
8039 pst->number_of_dependencies = len;
8040 pst->dependencies
8041 = objfile->partial_symtabs->allocate_dependencies (len);
8042 for (i = 0;
8043 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8044 i, iter);
8045 ++i)
8046 pst->dependencies[i] = iter->v.psymtab;
8047
8048 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8049 }
8050
8051 /* Get the list of files included in the current compilation unit,
8052 and build a psymtab for each of them. */
8053 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8054
8055 if (dwarf_read_debug)
8056 fprintf_unfiltered (gdb_stdlog,
8057 "Psymtab for %s unit @%s: %s - %s"
8058 ", %d global, %d static syms\n",
8059 per_cu->is_debug_types ? "type" : "comp",
8060 sect_offset_str (per_cu->sect_off),
8061 paddress (gdbarch, pst->text_low (objfile)),
8062 paddress (gdbarch, pst->text_high (objfile)),
8063 pst->n_global_syms, pst->n_static_syms);
8064 }
8065
8066 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8067 Process compilation unit THIS_CU for a psymtab. */
8068
8069 static void
8070 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8071 int want_partial_unit,
8072 enum language pretend_language)
8073 {
8074 /* If this compilation unit was already read in, free the
8075 cached copy in order to read it in again. This is
8076 necessary because we skipped some symbols when we first
8077 read in the compilation unit (see load_partial_dies).
8078 This problem could be avoided, but the benefit is unclear. */
8079 if (this_cu->cu != NULL)
8080 free_one_cached_comp_unit (this_cu);
8081
8082 if (this_cu->is_debug_types)
8083 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8084 build_type_psymtabs_reader, NULL);
8085 else
8086 {
8087 process_psymtab_comp_unit_data info;
8088 info.want_partial_unit = want_partial_unit;
8089 info.pretend_language = pretend_language;
8090 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8091 process_psymtab_comp_unit_reader, &info);
8092 }
8093
8094 /* Age out any secondary CUs. */
8095 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8096 }
8097
8098 /* Reader function for build_type_psymtabs. */
8099
8100 static void
8101 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8102 const gdb_byte *info_ptr,
8103 struct die_info *type_unit_die,
8104 int has_children,
8105 void *data)
8106 {
8107 struct dwarf2_per_objfile *dwarf2_per_objfile
8108 = reader->cu->per_cu->dwarf2_per_objfile;
8109 struct objfile *objfile = dwarf2_per_objfile->objfile;
8110 struct dwarf2_cu *cu = reader->cu;
8111 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8112 struct signatured_type *sig_type;
8113 struct type_unit_group *tu_group;
8114 struct attribute *attr;
8115 struct partial_die_info *first_die;
8116 CORE_ADDR lowpc, highpc;
8117 struct partial_symtab *pst;
8118
8119 gdb_assert (data == NULL);
8120 gdb_assert (per_cu->is_debug_types);
8121 sig_type = (struct signatured_type *) per_cu;
8122
8123 if (! has_children)
8124 return;
8125
8126 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8127 tu_group = get_type_unit_group (cu, attr);
8128
8129 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8130
8131 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8132 pst = create_partial_symtab (per_cu, "");
8133 pst->anonymous = 1;
8134
8135 first_die = load_partial_dies (reader, info_ptr, 1);
8136
8137 lowpc = (CORE_ADDR) -1;
8138 highpc = (CORE_ADDR) 0;
8139 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8140
8141 end_psymtab_common (objfile, pst);
8142 }
8143
8144 /* Struct used to sort TUs by their abbreviation table offset. */
8145
8146 struct tu_abbrev_offset
8147 {
8148 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8149 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8150 {}
8151
8152 signatured_type *sig_type;
8153 sect_offset abbrev_offset;
8154 };
8155
8156 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8157
8158 static bool
8159 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8160 const struct tu_abbrev_offset &b)
8161 {
8162 return a.abbrev_offset < b.abbrev_offset;
8163 }
8164
8165 /* Efficiently read all the type units.
8166 This does the bulk of the work for build_type_psymtabs.
8167
8168 The efficiency is because we sort TUs by the abbrev table they use and
8169 only read each abbrev table once. In one program there are 200K TUs
8170 sharing 8K abbrev tables.
8171
8172 The main purpose of this function is to support building the
8173 dwarf2_per_objfile->type_unit_groups table.
8174 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8175 can collapse the search space by grouping them by stmt_list.
8176 The savings can be significant, in the same program from above the 200K TUs
8177 share 8K stmt_list tables.
8178
8179 FUNC is expected to call get_type_unit_group, which will create the
8180 struct type_unit_group if necessary and add it to
8181 dwarf2_per_objfile->type_unit_groups. */
8182
8183 static void
8184 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8185 {
8186 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8187 abbrev_table_up abbrev_table;
8188 sect_offset abbrev_offset;
8189
8190 /* It's up to the caller to not call us multiple times. */
8191 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8192
8193 if (dwarf2_per_objfile->all_type_units.empty ())
8194 return;
8195
8196 /* TUs typically share abbrev tables, and there can be way more TUs than
8197 abbrev tables. Sort by abbrev table to reduce the number of times we
8198 read each abbrev table in.
8199 Alternatives are to punt or to maintain a cache of abbrev tables.
8200 This is simpler and efficient enough for now.
8201
8202 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8203 symtab to use). Typically TUs with the same abbrev offset have the same
8204 stmt_list value too so in practice this should work well.
8205
8206 The basic algorithm here is:
8207
8208 sort TUs by abbrev table
8209 for each TU with same abbrev table:
8210 read abbrev table if first user
8211 read TU top level DIE
8212 [IWBN if DWO skeletons had DW_AT_stmt_list]
8213 call FUNC */
8214
8215 if (dwarf_read_debug)
8216 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8217
8218 /* Sort in a separate table to maintain the order of all_type_units
8219 for .gdb_index: TU indices directly index all_type_units. */
8220 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8221 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8222
8223 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8224 sorted_by_abbrev.emplace_back
8225 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8226 sig_type->per_cu.section,
8227 sig_type->per_cu.sect_off));
8228
8229 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8230 sort_tu_by_abbrev_offset);
8231
8232 abbrev_offset = (sect_offset) ~(unsigned) 0;
8233
8234 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8235 {
8236 /* Switch to the next abbrev table if necessary. */
8237 if (abbrev_table == NULL
8238 || tu.abbrev_offset != abbrev_offset)
8239 {
8240 abbrev_offset = tu.abbrev_offset;
8241 abbrev_table =
8242 abbrev_table_read_table (dwarf2_per_objfile,
8243 &dwarf2_per_objfile->abbrev,
8244 abbrev_offset);
8245 ++tu_stats->nr_uniq_abbrev_tables;
8246 }
8247
8248 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8249 0, 0, false, build_type_psymtabs_reader, NULL);
8250 }
8251 }
8252
8253 /* Print collected type unit statistics. */
8254
8255 static void
8256 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8257 {
8258 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8259
8260 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8261 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8262 dwarf2_per_objfile->all_type_units.size ());
8263 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8264 tu_stats->nr_uniq_abbrev_tables);
8265 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8266 tu_stats->nr_symtabs);
8267 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8268 tu_stats->nr_symtab_sharers);
8269 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8270 tu_stats->nr_stmt_less_type_units);
8271 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8272 tu_stats->nr_all_type_units_reallocs);
8273 }
8274
8275 /* Traversal function for build_type_psymtabs. */
8276
8277 static int
8278 build_type_psymtab_dependencies (void **slot, void *info)
8279 {
8280 struct dwarf2_per_objfile *dwarf2_per_objfile
8281 = (struct dwarf2_per_objfile *) info;
8282 struct objfile *objfile = dwarf2_per_objfile->objfile;
8283 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8284 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8285 struct partial_symtab *pst = per_cu->v.psymtab;
8286 int len = VEC_length (sig_type_ptr, tu_group->tus);
8287 struct signatured_type *iter;
8288 int i;
8289
8290 gdb_assert (len > 0);
8291 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8292
8293 pst->number_of_dependencies = len;
8294 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8295 for (i = 0;
8296 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8297 ++i)
8298 {
8299 gdb_assert (iter->per_cu.is_debug_types);
8300 pst->dependencies[i] = iter->per_cu.v.psymtab;
8301 iter->type_unit_group = tu_group;
8302 }
8303
8304 VEC_free (sig_type_ptr, tu_group->tus);
8305
8306 return 1;
8307 }
8308
8309 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8310 Build partial symbol tables for the .debug_types comp-units. */
8311
8312 static void
8313 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8314 {
8315 if (! create_all_type_units (dwarf2_per_objfile))
8316 return;
8317
8318 build_type_psymtabs_1 (dwarf2_per_objfile);
8319 }
8320
8321 /* Traversal function for process_skeletonless_type_unit.
8322 Read a TU in a DWO file and build partial symbols for it. */
8323
8324 static int
8325 process_skeletonless_type_unit (void **slot, void *info)
8326 {
8327 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8328 struct dwarf2_per_objfile *dwarf2_per_objfile
8329 = (struct dwarf2_per_objfile *) info;
8330 struct signatured_type find_entry, *entry;
8331
8332 /* If this TU doesn't exist in the global table, add it and read it in. */
8333
8334 if (dwarf2_per_objfile->signatured_types == NULL)
8335 {
8336 dwarf2_per_objfile->signatured_types
8337 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8338 }
8339
8340 find_entry.signature = dwo_unit->signature;
8341 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8342 INSERT);
8343 /* If we've already seen this type there's nothing to do. What's happening
8344 is we're doing our own version of comdat-folding here. */
8345 if (*slot != NULL)
8346 return 1;
8347
8348 /* This does the job that create_all_type_units would have done for
8349 this TU. */
8350 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8351 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8352 *slot = entry;
8353
8354 /* This does the job that build_type_psymtabs_1 would have done. */
8355 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8356 build_type_psymtabs_reader, NULL);
8357
8358 return 1;
8359 }
8360
8361 /* Traversal function for process_skeletonless_type_units. */
8362
8363 static int
8364 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8365 {
8366 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8367
8368 if (dwo_file->tus != NULL)
8369 {
8370 htab_traverse_noresize (dwo_file->tus,
8371 process_skeletonless_type_unit, info);
8372 }
8373
8374 return 1;
8375 }
8376
8377 /* Scan all TUs of DWO files, verifying we've processed them.
8378 This is needed in case a TU was emitted without its skeleton.
8379 Note: This can't be done until we know what all the DWO files are. */
8380
8381 static void
8382 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8383 {
8384 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8385 if (get_dwp_file (dwarf2_per_objfile) == NULL
8386 && dwarf2_per_objfile->dwo_files != NULL)
8387 {
8388 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8389 process_dwo_file_for_skeletonless_type_units,
8390 dwarf2_per_objfile);
8391 }
8392 }
8393
8394 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8395
8396 static void
8397 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8398 {
8399 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8400 {
8401 struct partial_symtab *pst = per_cu->v.psymtab;
8402
8403 if (pst == NULL)
8404 continue;
8405
8406 for (int j = 0; j < pst->number_of_dependencies; ++j)
8407 {
8408 /* Set the 'user' field only if it is not already set. */
8409 if (pst->dependencies[j]->user == NULL)
8410 pst->dependencies[j]->user = pst;
8411 }
8412 }
8413 }
8414
8415 /* Build the partial symbol table by doing a quick pass through the
8416 .debug_info and .debug_abbrev sections. */
8417
8418 static void
8419 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8420 {
8421 struct objfile *objfile = dwarf2_per_objfile->objfile;
8422
8423 if (dwarf_read_debug)
8424 {
8425 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8426 objfile_name (objfile));
8427 }
8428
8429 dwarf2_per_objfile->reading_partial_symbols = 1;
8430
8431 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8432
8433 /* Any cached compilation units will be linked by the per-objfile
8434 read_in_chain. Make sure to free them when we're done. */
8435 free_cached_comp_units freer (dwarf2_per_objfile);
8436
8437 build_type_psymtabs (dwarf2_per_objfile);
8438
8439 create_all_comp_units (dwarf2_per_objfile);
8440
8441 /* Create a temporary address map on a temporary obstack. We later
8442 copy this to the final obstack. */
8443 auto_obstack temp_obstack;
8444
8445 scoped_restore save_psymtabs_addrmap
8446 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8447 addrmap_create_mutable (&temp_obstack));
8448
8449 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8450 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8451
8452 /* This has to wait until we read the CUs, we need the list of DWOs. */
8453 process_skeletonless_type_units (dwarf2_per_objfile);
8454
8455 /* Now that all TUs have been processed we can fill in the dependencies. */
8456 if (dwarf2_per_objfile->type_unit_groups != NULL)
8457 {
8458 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8459 build_type_psymtab_dependencies, dwarf2_per_objfile);
8460 }
8461
8462 if (dwarf_read_debug)
8463 print_tu_stats (dwarf2_per_objfile);
8464
8465 set_partial_user (dwarf2_per_objfile);
8466
8467 objfile->partial_symtabs->psymtabs_addrmap
8468 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8469 objfile->partial_symtabs->obstack ());
8470 /* At this point we want to keep the address map. */
8471 save_psymtabs_addrmap.release ();
8472
8473 if (dwarf_read_debug)
8474 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8475 objfile_name (objfile));
8476 }
8477
8478 /* die_reader_func for load_partial_comp_unit. */
8479
8480 static void
8481 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8482 const gdb_byte *info_ptr,
8483 struct die_info *comp_unit_die,
8484 int has_children,
8485 void *data)
8486 {
8487 struct dwarf2_cu *cu = reader->cu;
8488
8489 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8490
8491 /* Check if comp unit has_children.
8492 If so, read the rest of the partial symbols from this comp unit.
8493 If not, there's no more debug_info for this comp unit. */
8494 if (has_children)
8495 load_partial_dies (reader, info_ptr, 0);
8496 }
8497
8498 /* Load the partial DIEs for a secondary CU into memory.
8499 This is also used when rereading a primary CU with load_all_dies. */
8500
8501 static void
8502 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8503 {
8504 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8505 load_partial_comp_unit_reader, NULL);
8506 }
8507
8508 static void
8509 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8510 struct dwarf2_section_info *section,
8511 struct dwarf2_section_info *abbrev_section,
8512 unsigned int is_dwz)
8513 {
8514 const gdb_byte *info_ptr;
8515 struct objfile *objfile = dwarf2_per_objfile->objfile;
8516
8517 if (dwarf_read_debug)
8518 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8519 get_section_name (section),
8520 get_section_file_name (section));
8521
8522 dwarf2_read_section (objfile, section);
8523
8524 info_ptr = section->buffer;
8525
8526 while (info_ptr < section->buffer + section->size)
8527 {
8528 struct dwarf2_per_cu_data *this_cu;
8529
8530 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8531
8532 comp_unit_head cu_header;
8533 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8534 abbrev_section, info_ptr,
8535 rcuh_kind::COMPILE);
8536
8537 /* Save the compilation unit for later lookup. */
8538 if (cu_header.unit_type != DW_UT_type)
8539 {
8540 this_cu = XOBNEW (&objfile->objfile_obstack,
8541 struct dwarf2_per_cu_data);
8542 memset (this_cu, 0, sizeof (*this_cu));
8543 }
8544 else
8545 {
8546 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8547 struct signatured_type);
8548 memset (sig_type, 0, sizeof (*sig_type));
8549 sig_type->signature = cu_header.signature;
8550 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8551 this_cu = &sig_type->per_cu;
8552 }
8553 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8554 this_cu->sect_off = sect_off;
8555 this_cu->length = cu_header.length + cu_header.initial_length_size;
8556 this_cu->is_dwz = is_dwz;
8557 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8558 this_cu->section = section;
8559
8560 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8561
8562 info_ptr = info_ptr + this_cu->length;
8563 }
8564 }
8565
8566 /* Create a list of all compilation units in OBJFILE.
8567 This is only done for -readnow and building partial symtabs. */
8568
8569 static void
8570 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8571 {
8572 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8573 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8574 &dwarf2_per_objfile->abbrev, 0);
8575
8576 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8577 if (dwz != NULL)
8578 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8579 1);
8580 }
8581
8582 /* Process all loaded DIEs for compilation unit CU, starting at
8583 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8584 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8585 DW_AT_ranges). See the comments of add_partial_subprogram on how
8586 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8587
8588 static void
8589 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8590 CORE_ADDR *highpc, int set_addrmap,
8591 struct dwarf2_cu *cu)
8592 {
8593 struct partial_die_info *pdi;
8594
8595 /* Now, march along the PDI's, descending into ones which have
8596 interesting children but skipping the children of the other ones,
8597 until we reach the end of the compilation unit. */
8598
8599 pdi = first_die;
8600
8601 while (pdi != NULL)
8602 {
8603 pdi->fixup (cu);
8604
8605 /* Anonymous namespaces or modules have no name but have interesting
8606 children, so we need to look at them. Ditto for anonymous
8607 enums. */
8608
8609 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8610 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8611 || pdi->tag == DW_TAG_imported_unit
8612 || pdi->tag == DW_TAG_inlined_subroutine)
8613 {
8614 switch (pdi->tag)
8615 {
8616 case DW_TAG_subprogram:
8617 case DW_TAG_inlined_subroutine:
8618 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8619 break;
8620 case DW_TAG_constant:
8621 case DW_TAG_variable:
8622 case DW_TAG_typedef:
8623 case DW_TAG_union_type:
8624 if (!pdi->is_declaration)
8625 {
8626 add_partial_symbol (pdi, cu);
8627 }
8628 break;
8629 case DW_TAG_class_type:
8630 case DW_TAG_interface_type:
8631 case DW_TAG_structure_type:
8632 if (!pdi->is_declaration)
8633 {
8634 add_partial_symbol (pdi, cu);
8635 }
8636 if ((cu->language == language_rust
8637 || cu->language == language_cplus) && pdi->has_children)
8638 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8639 set_addrmap, cu);
8640 break;
8641 case DW_TAG_enumeration_type:
8642 if (!pdi->is_declaration)
8643 add_partial_enumeration (pdi, cu);
8644 break;
8645 case DW_TAG_base_type:
8646 case DW_TAG_subrange_type:
8647 /* File scope base type definitions are added to the partial
8648 symbol table. */
8649 add_partial_symbol (pdi, cu);
8650 break;
8651 case DW_TAG_namespace:
8652 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8653 break;
8654 case DW_TAG_module:
8655 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8656 break;
8657 case DW_TAG_imported_unit:
8658 {
8659 struct dwarf2_per_cu_data *per_cu;
8660
8661 /* For now we don't handle imported units in type units. */
8662 if (cu->per_cu->is_debug_types)
8663 {
8664 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8665 " supported in type units [in module %s]"),
8666 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8667 }
8668
8669 per_cu = dwarf2_find_containing_comp_unit
8670 (pdi->d.sect_off, pdi->is_dwz,
8671 cu->per_cu->dwarf2_per_objfile);
8672
8673 /* Go read the partial unit, if needed. */
8674 if (per_cu->v.psymtab == NULL)
8675 process_psymtab_comp_unit (per_cu, 1, cu->language);
8676
8677 VEC_safe_push (dwarf2_per_cu_ptr,
8678 cu->per_cu->imported_symtabs, per_cu);
8679 }
8680 break;
8681 case DW_TAG_imported_declaration:
8682 add_partial_symbol (pdi, cu);
8683 break;
8684 default:
8685 break;
8686 }
8687 }
8688
8689 /* If the die has a sibling, skip to the sibling. */
8690
8691 pdi = pdi->die_sibling;
8692 }
8693 }
8694
8695 /* Functions used to compute the fully scoped name of a partial DIE.
8696
8697 Normally, this is simple. For C++, the parent DIE's fully scoped
8698 name is concatenated with "::" and the partial DIE's name.
8699 Enumerators are an exception; they use the scope of their parent
8700 enumeration type, i.e. the name of the enumeration type is not
8701 prepended to the enumerator.
8702
8703 There are two complexities. One is DW_AT_specification; in this
8704 case "parent" means the parent of the target of the specification,
8705 instead of the direct parent of the DIE. The other is compilers
8706 which do not emit DW_TAG_namespace; in this case we try to guess
8707 the fully qualified name of structure types from their members'
8708 linkage names. This must be done using the DIE's children rather
8709 than the children of any DW_AT_specification target. We only need
8710 to do this for structures at the top level, i.e. if the target of
8711 any DW_AT_specification (if any; otherwise the DIE itself) does not
8712 have a parent. */
8713
8714 /* Compute the scope prefix associated with PDI's parent, in
8715 compilation unit CU. The result will be allocated on CU's
8716 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8717 field. NULL is returned if no prefix is necessary. */
8718 static const char *
8719 partial_die_parent_scope (struct partial_die_info *pdi,
8720 struct dwarf2_cu *cu)
8721 {
8722 const char *grandparent_scope;
8723 struct partial_die_info *parent, *real_pdi;
8724
8725 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8726 then this means the parent of the specification DIE. */
8727
8728 real_pdi = pdi;
8729 while (real_pdi->has_specification)
8730 {
8731 auto res = find_partial_die (real_pdi->spec_offset,
8732 real_pdi->spec_is_dwz, cu);
8733 real_pdi = res.pdi;
8734 cu = res.cu;
8735 }
8736
8737 parent = real_pdi->die_parent;
8738 if (parent == NULL)
8739 return NULL;
8740
8741 if (parent->scope_set)
8742 return parent->scope;
8743
8744 parent->fixup (cu);
8745
8746 grandparent_scope = partial_die_parent_scope (parent, cu);
8747
8748 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8749 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8750 Work around this problem here. */
8751 if (cu->language == language_cplus
8752 && parent->tag == DW_TAG_namespace
8753 && strcmp (parent->name, "::") == 0
8754 && grandparent_scope == NULL)
8755 {
8756 parent->scope = NULL;
8757 parent->scope_set = 1;
8758 return NULL;
8759 }
8760
8761 if (pdi->tag == DW_TAG_enumerator)
8762 /* Enumerators should not get the name of the enumeration as a prefix. */
8763 parent->scope = grandparent_scope;
8764 else if (parent->tag == DW_TAG_namespace
8765 || parent->tag == DW_TAG_module
8766 || parent->tag == DW_TAG_structure_type
8767 || parent->tag == DW_TAG_class_type
8768 || parent->tag == DW_TAG_interface_type
8769 || parent->tag == DW_TAG_union_type
8770 || parent->tag == DW_TAG_enumeration_type)
8771 {
8772 if (grandparent_scope == NULL)
8773 parent->scope = parent->name;
8774 else
8775 parent->scope = typename_concat (&cu->comp_unit_obstack,
8776 grandparent_scope,
8777 parent->name, 0, cu);
8778 }
8779 else
8780 {
8781 /* FIXME drow/2004-04-01: What should we be doing with
8782 function-local names? For partial symbols, we should probably be
8783 ignoring them. */
8784 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8785 dwarf_tag_name (parent->tag),
8786 sect_offset_str (pdi->sect_off));
8787 parent->scope = grandparent_scope;
8788 }
8789
8790 parent->scope_set = 1;
8791 return parent->scope;
8792 }
8793
8794 /* Return the fully scoped name associated with PDI, from compilation unit
8795 CU. The result will be allocated with malloc. */
8796
8797 static char *
8798 partial_die_full_name (struct partial_die_info *pdi,
8799 struct dwarf2_cu *cu)
8800 {
8801 const char *parent_scope;
8802
8803 /* If this is a template instantiation, we can not work out the
8804 template arguments from partial DIEs. So, unfortunately, we have
8805 to go through the full DIEs. At least any work we do building
8806 types here will be reused if full symbols are loaded later. */
8807 if (pdi->has_template_arguments)
8808 {
8809 pdi->fixup (cu);
8810
8811 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8812 {
8813 struct die_info *die;
8814 struct attribute attr;
8815 struct dwarf2_cu *ref_cu = cu;
8816
8817 /* DW_FORM_ref_addr is using section offset. */
8818 attr.name = (enum dwarf_attribute) 0;
8819 attr.form = DW_FORM_ref_addr;
8820 attr.u.unsnd = to_underlying (pdi->sect_off);
8821 die = follow_die_ref (NULL, &attr, &ref_cu);
8822
8823 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8824 }
8825 }
8826
8827 parent_scope = partial_die_parent_scope (pdi, cu);
8828 if (parent_scope == NULL)
8829 return NULL;
8830 else
8831 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8832 }
8833
8834 static void
8835 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8836 {
8837 struct dwarf2_per_objfile *dwarf2_per_objfile
8838 = cu->per_cu->dwarf2_per_objfile;
8839 struct objfile *objfile = dwarf2_per_objfile->objfile;
8840 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8841 CORE_ADDR addr = 0;
8842 const char *actual_name = NULL;
8843 CORE_ADDR baseaddr;
8844 char *built_actual_name;
8845
8846 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8847
8848 built_actual_name = partial_die_full_name (pdi, cu);
8849 if (built_actual_name != NULL)
8850 actual_name = built_actual_name;
8851
8852 if (actual_name == NULL)
8853 actual_name = pdi->name;
8854
8855 switch (pdi->tag)
8856 {
8857 case DW_TAG_inlined_subroutine:
8858 case DW_TAG_subprogram:
8859 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8860 - baseaddr);
8861 if (pdi->is_external || cu->language == language_ada)
8862 {
8863 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8864 of the global scope. But in Ada, we want to be able to access
8865 nested procedures globally. So all Ada subprograms are stored
8866 in the global scope. */
8867 add_psymbol_to_list (actual_name, strlen (actual_name),
8868 built_actual_name != NULL,
8869 VAR_DOMAIN, LOC_BLOCK,
8870 SECT_OFF_TEXT (objfile),
8871 psymbol_placement::GLOBAL,
8872 addr,
8873 cu->language, objfile);
8874 }
8875 else
8876 {
8877 add_psymbol_to_list (actual_name, strlen (actual_name),
8878 built_actual_name != NULL,
8879 VAR_DOMAIN, LOC_BLOCK,
8880 SECT_OFF_TEXT (objfile),
8881 psymbol_placement::STATIC,
8882 addr, cu->language, objfile);
8883 }
8884
8885 if (pdi->main_subprogram && actual_name != NULL)
8886 set_objfile_main_name (objfile, actual_name, cu->language);
8887 break;
8888 case DW_TAG_constant:
8889 add_psymbol_to_list (actual_name, strlen (actual_name),
8890 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8891 -1, (pdi->is_external
8892 ? psymbol_placement::GLOBAL
8893 : psymbol_placement::STATIC),
8894 0, cu->language, objfile);
8895 break;
8896 case DW_TAG_variable:
8897 if (pdi->d.locdesc)
8898 addr = decode_locdesc (pdi->d.locdesc, cu);
8899
8900 if (pdi->d.locdesc
8901 && addr == 0
8902 && !dwarf2_per_objfile->has_section_at_zero)
8903 {
8904 /* A global or static variable may also have been stripped
8905 out by the linker if unused, in which case its address
8906 will be nullified; do not add such variables into partial
8907 symbol table then. */
8908 }
8909 else if (pdi->is_external)
8910 {
8911 /* Global Variable.
8912 Don't enter into the minimal symbol tables as there is
8913 a minimal symbol table entry from the ELF symbols already.
8914 Enter into partial symbol table if it has a location
8915 descriptor or a type.
8916 If the location descriptor is missing, new_symbol will create
8917 a LOC_UNRESOLVED symbol, the address of the variable will then
8918 be determined from the minimal symbol table whenever the variable
8919 is referenced.
8920 The address for the partial symbol table entry is not
8921 used by GDB, but it comes in handy for debugging partial symbol
8922 table building. */
8923
8924 if (pdi->d.locdesc || pdi->has_type)
8925 add_psymbol_to_list (actual_name, strlen (actual_name),
8926 built_actual_name != NULL,
8927 VAR_DOMAIN, LOC_STATIC,
8928 SECT_OFF_TEXT (objfile),
8929 psymbol_placement::GLOBAL,
8930 addr, cu->language, objfile);
8931 }
8932 else
8933 {
8934 int has_loc = pdi->d.locdesc != NULL;
8935
8936 /* Static Variable. Skip symbols whose value we cannot know (those
8937 without location descriptors or constant values). */
8938 if (!has_loc && !pdi->has_const_value)
8939 {
8940 xfree (built_actual_name);
8941 return;
8942 }
8943
8944 add_psymbol_to_list (actual_name, strlen (actual_name),
8945 built_actual_name != NULL,
8946 VAR_DOMAIN, LOC_STATIC,
8947 SECT_OFF_TEXT (objfile),
8948 psymbol_placement::STATIC,
8949 has_loc ? addr : 0,
8950 cu->language, objfile);
8951 }
8952 break;
8953 case DW_TAG_typedef:
8954 case DW_TAG_base_type:
8955 case DW_TAG_subrange_type:
8956 add_psymbol_to_list (actual_name, strlen (actual_name),
8957 built_actual_name != NULL,
8958 VAR_DOMAIN, LOC_TYPEDEF, -1,
8959 psymbol_placement::STATIC,
8960 0, cu->language, objfile);
8961 break;
8962 case DW_TAG_imported_declaration:
8963 case DW_TAG_namespace:
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 VAR_DOMAIN, LOC_TYPEDEF, -1,
8967 psymbol_placement::GLOBAL,
8968 0, cu->language, objfile);
8969 break;
8970 case DW_TAG_module:
8971 /* With Fortran 77 there might be a "BLOCK DATA" module
8972 available without any name. If so, we skip the module as it
8973 doesn't bring any value. */
8974 if (actual_name != nullptr)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8978 psymbol_placement::GLOBAL,
8979 0, cu->language, objfile);
8980 break;
8981 case DW_TAG_class_type:
8982 case DW_TAG_interface_type:
8983 case DW_TAG_structure_type:
8984 case DW_TAG_union_type:
8985 case DW_TAG_enumeration_type:
8986 /* Skip external references. The DWARF standard says in the section
8987 about "Structure, Union, and Class Type Entries": "An incomplete
8988 structure, union or class type is represented by a structure,
8989 union or class entry that does not have a byte size attribute
8990 and that has a DW_AT_declaration attribute." */
8991 if (!pdi->has_byte_size && pdi->is_declaration)
8992 {
8993 xfree (built_actual_name);
8994 return;
8995 }
8996
8997 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8998 static vs. global. */
8999 add_psymbol_to_list (actual_name, strlen (actual_name),
9000 built_actual_name != NULL,
9001 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9002 cu->language == language_cplus
9003 ? psymbol_placement::GLOBAL
9004 : psymbol_placement::STATIC,
9005 0, cu->language, objfile);
9006
9007 break;
9008 case DW_TAG_enumerator:
9009 add_psymbol_to_list (actual_name, strlen (actual_name),
9010 built_actual_name != NULL,
9011 VAR_DOMAIN, LOC_CONST, -1,
9012 cu->language == language_cplus
9013 ? psymbol_placement::GLOBAL
9014 : psymbol_placement::STATIC,
9015 0, cu->language, objfile);
9016 break;
9017 default:
9018 break;
9019 }
9020
9021 xfree (built_actual_name);
9022 }
9023
9024 /* Read a partial die corresponding to a namespace; also, add a symbol
9025 corresponding to that namespace to the symbol table. NAMESPACE is
9026 the name of the enclosing namespace. */
9027
9028 static void
9029 add_partial_namespace (struct partial_die_info *pdi,
9030 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9031 int set_addrmap, struct dwarf2_cu *cu)
9032 {
9033 /* Add a symbol for the namespace. */
9034
9035 add_partial_symbol (pdi, cu);
9036
9037 /* Now scan partial symbols in that namespace. */
9038
9039 if (pdi->has_children)
9040 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9041 }
9042
9043 /* Read a partial die corresponding to a Fortran module. */
9044
9045 static void
9046 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9047 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9048 {
9049 /* Add a symbol for the namespace. */
9050
9051 add_partial_symbol (pdi, cu);
9052
9053 /* Now scan partial symbols in that module. */
9054
9055 if (pdi->has_children)
9056 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9057 }
9058
9059 /* Read a partial die corresponding to a subprogram or an inlined
9060 subprogram and create a partial symbol for that subprogram.
9061 When the CU language allows it, this routine also defines a partial
9062 symbol for each nested subprogram that this subprogram contains.
9063 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9064 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9065
9066 PDI may also be a lexical block, in which case we simply search
9067 recursively for subprograms defined inside that lexical block.
9068 Again, this is only performed when the CU language allows this
9069 type of definitions. */
9070
9071 static void
9072 add_partial_subprogram (struct partial_die_info *pdi,
9073 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9074 int set_addrmap, struct dwarf2_cu *cu)
9075 {
9076 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9077 {
9078 if (pdi->has_pc_info)
9079 {
9080 if (pdi->lowpc < *lowpc)
9081 *lowpc = pdi->lowpc;
9082 if (pdi->highpc > *highpc)
9083 *highpc = pdi->highpc;
9084 if (set_addrmap)
9085 {
9086 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9087 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9088 CORE_ADDR baseaddr;
9089 CORE_ADDR this_highpc;
9090 CORE_ADDR this_lowpc;
9091
9092 baseaddr = ANOFFSET (objfile->section_offsets,
9093 SECT_OFF_TEXT (objfile));
9094 this_lowpc
9095 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9096 pdi->lowpc + baseaddr)
9097 - baseaddr);
9098 this_highpc
9099 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9100 pdi->highpc + baseaddr)
9101 - baseaddr);
9102 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9103 this_lowpc, this_highpc - 1,
9104 cu->per_cu->v.psymtab);
9105 }
9106 }
9107
9108 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9109 {
9110 if (!pdi->is_declaration)
9111 /* Ignore subprogram DIEs that do not have a name, they are
9112 illegal. Do not emit a complaint at this point, we will
9113 do so when we convert this psymtab into a symtab. */
9114 if (pdi->name)
9115 add_partial_symbol (pdi, cu);
9116 }
9117 }
9118
9119 if (! pdi->has_children)
9120 return;
9121
9122 if (cu->language == language_ada)
9123 {
9124 pdi = pdi->die_child;
9125 while (pdi != NULL)
9126 {
9127 pdi->fixup (cu);
9128 if (pdi->tag == DW_TAG_subprogram
9129 || pdi->tag == DW_TAG_inlined_subroutine
9130 || pdi->tag == DW_TAG_lexical_block)
9131 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9132 pdi = pdi->die_sibling;
9133 }
9134 }
9135 }
9136
9137 /* Read a partial die corresponding to an enumeration type. */
9138
9139 static void
9140 add_partial_enumeration (struct partial_die_info *enum_pdi,
9141 struct dwarf2_cu *cu)
9142 {
9143 struct partial_die_info *pdi;
9144
9145 if (enum_pdi->name != NULL)
9146 add_partial_symbol (enum_pdi, cu);
9147
9148 pdi = enum_pdi->die_child;
9149 while (pdi)
9150 {
9151 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9152 complaint (_("malformed enumerator DIE ignored"));
9153 else
9154 add_partial_symbol (pdi, cu);
9155 pdi = pdi->die_sibling;
9156 }
9157 }
9158
9159 /* Return the initial uleb128 in the die at INFO_PTR. */
9160
9161 static unsigned int
9162 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9163 {
9164 unsigned int bytes_read;
9165
9166 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9167 }
9168
9169 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9170 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9171
9172 Return the corresponding abbrev, or NULL if the number is zero (indicating
9173 an empty DIE). In either case *BYTES_READ will be set to the length of
9174 the initial number. */
9175
9176 static struct abbrev_info *
9177 peek_die_abbrev (const die_reader_specs &reader,
9178 const gdb_byte *info_ptr, unsigned int *bytes_read)
9179 {
9180 dwarf2_cu *cu = reader.cu;
9181 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9182 unsigned int abbrev_number
9183 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9184
9185 if (abbrev_number == 0)
9186 return NULL;
9187
9188 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9189 if (!abbrev)
9190 {
9191 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9192 " at offset %s [in module %s]"),
9193 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9194 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9195 }
9196
9197 return abbrev;
9198 }
9199
9200 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9201 Returns a pointer to the end of a series of DIEs, terminated by an empty
9202 DIE. Any children of the skipped DIEs will also be skipped. */
9203
9204 static const gdb_byte *
9205 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9206 {
9207 while (1)
9208 {
9209 unsigned int bytes_read;
9210 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9211
9212 if (abbrev == NULL)
9213 return info_ptr + bytes_read;
9214 else
9215 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9216 }
9217 }
9218
9219 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9220 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9221 abbrev corresponding to that skipped uleb128 should be passed in
9222 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9223 children. */
9224
9225 static const gdb_byte *
9226 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9227 struct abbrev_info *abbrev)
9228 {
9229 unsigned int bytes_read;
9230 struct attribute attr;
9231 bfd *abfd = reader->abfd;
9232 struct dwarf2_cu *cu = reader->cu;
9233 const gdb_byte *buffer = reader->buffer;
9234 const gdb_byte *buffer_end = reader->buffer_end;
9235 unsigned int form, i;
9236
9237 for (i = 0; i < abbrev->num_attrs; i++)
9238 {
9239 /* The only abbrev we care about is DW_AT_sibling. */
9240 if (abbrev->attrs[i].name == DW_AT_sibling)
9241 {
9242 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9243 if (attr.form == DW_FORM_ref_addr)
9244 complaint (_("ignoring absolute DW_AT_sibling"));
9245 else
9246 {
9247 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9248 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9249
9250 if (sibling_ptr < info_ptr)
9251 complaint (_("DW_AT_sibling points backwards"));
9252 else if (sibling_ptr > reader->buffer_end)
9253 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9254 else
9255 return sibling_ptr;
9256 }
9257 }
9258
9259 /* If it isn't DW_AT_sibling, skip this attribute. */
9260 form = abbrev->attrs[i].form;
9261 skip_attribute:
9262 switch (form)
9263 {
9264 case DW_FORM_ref_addr:
9265 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9266 and later it is offset sized. */
9267 if (cu->header.version == 2)
9268 info_ptr += cu->header.addr_size;
9269 else
9270 info_ptr += cu->header.offset_size;
9271 break;
9272 case DW_FORM_GNU_ref_alt:
9273 info_ptr += cu->header.offset_size;
9274 break;
9275 case DW_FORM_addr:
9276 info_ptr += cu->header.addr_size;
9277 break;
9278 case DW_FORM_data1:
9279 case DW_FORM_ref1:
9280 case DW_FORM_flag:
9281 info_ptr += 1;
9282 break;
9283 case DW_FORM_flag_present:
9284 case DW_FORM_implicit_const:
9285 break;
9286 case DW_FORM_data2:
9287 case DW_FORM_ref2:
9288 info_ptr += 2;
9289 break;
9290 case DW_FORM_data4:
9291 case DW_FORM_ref4:
9292 info_ptr += 4;
9293 break;
9294 case DW_FORM_data8:
9295 case DW_FORM_ref8:
9296 case DW_FORM_ref_sig8:
9297 info_ptr += 8;
9298 break;
9299 case DW_FORM_data16:
9300 info_ptr += 16;
9301 break;
9302 case DW_FORM_string:
9303 read_direct_string (abfd, info_ptr, &bytes_read);
9304 info_ptr += bytes_read;
9305 break;
9306 case DW_FORM_sec_offset:
9307 case DW_FORM_strp:
9308 case DW_FORM_GNU_strp_alt:
9309 info_ptr += cu->header.offset_size;
9310 break;
9311 case DW_FORM_exprloc:
9312 case DW_FORM_block:
9313 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9314 info_ptr += bytes_read;
9315 break;
9316 case DW_FORM_block1:
9317 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9318 break;
9319 case DW_FORM_block2:
9320 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9321 break;
9322 case DW_FORM_block4:
9323 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9324 break;
9325 case DW_FORM_addrx:
9326 case DW_FORM_strx:
9327 case DW_FORM_sdata:
9328 case DW_FORM_udata:
9329 case DW_FORM_ref_udata:
9330 case DW_FORM_GNU_addr_index:
9331 case DW_FORM_GNU_str_index:
9332 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9333 break;
9334 case DW_FORM_indirect:
9335 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9336 info_ptr += bytes_read;
9337 /* We need to continue parsing from here, so just go back to
9338 the top. */
9339 goto skip_attribute;
9340
9341 default:
9342 error (_("Dwarf Error: Cannot handle %s "
9343 "in DWARF reader [in module %s]"),
9344 dwarf_form_name (form),
9345 bfd_get_filename (abfd));
9346 }
9347 }
9348
9349 if (abbrev->has_children)
9350 return skip_children (reader, info_ptr);
9351 else
9352 return info_ptr;
9353 }
9354
9355 /* Locate ORIG_PDI's sibling.
9356 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9357
9358 static const gdb_byte *
9359 locate_pdi_sibling (const struct die_reader_specs *reader,
9360 struct partial_die_info *orig_pdi,
9361 const gdb_byte *info_ptr)
9362 {
9363 /* Do we know the sibling already? */
9364
9365 if (orig_pdi->sibling)
9366 return orig_pdi->sibling;
9367
9368 /* Are there any children to deal with? */
9369
9370 if (!orig_pdi->has_children)
9371 return info_ptr;
9372
9373 /* Skip the children the long way. */
9374
9375 return skip_children (reader, info_ptr);
9376 }
9377
9378 /* Expand this partial symbol table into a full symbol table. SELF is
9379 not NULL. */
9380
9381 static void
9382 dwarf2_read_symtab (struct partial_symtab *self,
9383 struct objfile *objfile)
9384 {
9385 struct dwarf2_per_objfile *dwarf2_per_objfile
9386 = get_dwarf2_per_objfile (objfile);
9387
9388 if (self->readin)
9389 {
9390 warning (_("bug: psymtab for %s is already read in."),
9391 self->filename);
9392 }
9393 else
9394 {
9395 if (info_verbose)
9396 {
9397 printf_filtered (_("Reading in symbols for %s..."),
9398 self->filename);
9399 gdb_flush (gdb_stdout);
9400 }
9401
9402 /* If this psymtab is constructed from a debug-only objfile, the
9403 has_section_at_zero flag will not necessarily be correct. We
9404 can get the correct value for this flag by looking at the data
9405 associated with the (presumably stripped) associated objfile. */
9406 if (objfile->separate_debug_objfile_backlink)
9407 {
9408 struct dwarf2_per_objfile *dpo_backlink
9409 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9410
9411 dwarf2_per_objfile->has_section_at_zero
9412 = dpo_backlink->has_section_at_zero;
9413 }
9414
9415 dwarf2_per_objfile->reading_partial_symbols = 0;
9416
9417 psymtab_to_symtab_1 (self);
9418
9419 /* Finish up the debug error message. */
9420 if (info_verbose)
9421 printf_filtered (_("done.\n"));
9422 }
9423
9424 process_cu_includes (dwarf2_per_objfile);
9425 }
9426 \f
9427 /* Reading in full CUs. */
9428
9429 /* Add PER_CU to the queue. */
9430
9431 static void
9432 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9433 enum language pretend_language)
9434 {
9435 struct dwarf2_queue_item *item;
9436
9437 per_cu->queued = 1;
9438 item = XNEW (struct dwarf2_queue_item);
9439 item->per_cu = per_cu;
9440 item->pretend_language = pretend_language;
9441 item->next = NULL;
9442
9443 if (dwarf2_queue == NULL)
9444 dwarf2_queue = item;
9445 else
9446 dwarf2_queue_tail->next = item;
9447
9448 dwarf2_queue_tail = item;
9449 }
9450
9451 /* If PER_CU is not yet queued, add it to the queue.
9452 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9453 dependency.
9454 The result is non-zero if PER_CU was queued, otherwise the result is zero
9455 meaning either PER_CU is already queued or it is already loaded.
9456
9457 N.B. There is an invariant here that if a CU is queued then it is loaded.
9458 The caller is required to load PER_CU if we return non-zero. */
9459
9460 static int
9461 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9462 struct dwarf2_per_cu_data *per_cu,
9463 enum language pretend_language)
9464 {
9465 /* We may arrive here during partial symbol reading, if we need full
9466 DIEs to process an unusual case (e.g. template arguments). Do
9467 not queue PER_CU, just tell our caller to load its DIEs. */
9468 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9469 {
9470 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9471 return 1;
9472 return 0;
9473 }
9474
9475 /* Mark the dependence relation so that we don't flush PER_CU
9476 too early. */
9477 if (dependent_cu != NULL)
9478 dwarf2_add_dependence (dependent_cu, per_cu);
9479
9480 /* If it's already on the queue, we have nothing to do. */
9481 if (per_cu->queued)
9482 return 0;
9483
9484 /* If the compilation unit is already loaded, just mark it as
9485 used. */
9486 if (per_cu->cu != NULL)
9487 {
9488 per_cu->cu->last_used = 0;
9489 return 0;
9490 }
9491
9492 /* Add it to the queue. */
9493 queue_comp_unit (per_cu, pretend_language);
9494
9495 return 1;
9496 }
9497
9498 /* Process the queue. */
9499
9500 static void
9501 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9502 {
9503 struct dwarf2_queue_item *item, *next_item;
9504
9505 if (dwarf_read_debug)
9506 {
9507 fprintf_unfiltered (gdb_stdlog,
9508 "Expanding one or more symtabs of objfile %s ...\n",
9509 objfile_name (dwarf2_per_objfile->objfile));
9510 }
9511
9512 /* The queue starts out with one item, but following a DIE reference
9513 may load a new CU, adding it to the end of the queue. */
9514 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9515 {
9516 if ((dwarf2_per_objfile->using_index
9517 ? !item->per_cu->v.quick->compunit_symtab
9518 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9519 /* Skip dummy CUs. */
9520 && item->per_cu->cu != NULL)
9521 {
9522 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9523 unsigned int debug_print_threshold;
9524 char buf[100];
9525
9526 if (per_cu->is_debug_types)
9527 {
9528 struct signatured_type *sig_type =
9529 (struct signatured_type *) per_cu;
9530
9531 sprintf (buf, "TU %s at offset %s",
9532 hex_string (sig_type->signature),
9533 sect_offset_str (per_cu->sect_off));
9534 /* There can be 100s of TUs.
9535 Only print them in verbose mode. */
9536 debug_print_threshold = 2;
9537 }
9538 else
9539 {
9540 sprintf (buf, "CU at offset %s",
9541 sect_offset_str (per_cu->sect_off));
9542 debug_print_threshold = 1;
9543 }
9544
9545 if (dwarf_read_debug >= debug_print_threshold)
9546 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9547
9548 if (per_cu->is_debug_types)
9549 process_full_type_unit (per_cu, item->pretend_language);
9550 else
9551 process_full_comp_unit (per_cu, item->pretend_language);
9552
9553 if (dwarf_read_debug >= debug_print_threshold)
9554 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9555 }
9556
9557 item->per_cu->queued = 0;
9558 next_item = item->next;
9559 xfree (item);
9560 }
9561
9562 dwarf2_queue_tail = NULL;
9563
9564 if (dwarf_read_debug)
9565 {
9566 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9567 objfile_name (dwarf2_per_objfile->objfile));
9568 }
9569 }
9570
9571 /* Read in full symbols for PST, and anything it depends on. */
9572
9573 static void
9574 psymtab_to_symtab_1 (struct partial_symtab *pst)
9575 {
9576 struct dwarf2_per_cu_data *per_cu;
9577 int i;
9578
9579 if (pst->readin)
9580 return;
9581
9582 for (i = 0; i < pst->number_of_dependencies; i++)
9583 if (!pst->dependencies[i]->readin
9584 && pst->dependencies[i]->user == NULL)
9585 {
9586 /* Inform about additional files that need to be read in. */
9587 if (info_verbose)
9588 {
9589 /* FIXME: i18n: Need to make this a single string. */
9590 fputs_filtered (" ", gdb_stdout);
9591 wrap_here ("");
9592 fputs_filtered ("and ", gdb_stdout);
9593 wrap_here ("");
9594 printf_filtered ("%s...", pst->dependencies[i]->filename);
9595 wrap_here (""); /* Flush output. */
9596 gdb_flush (gdb_stdout);
9597 }
9598 psymtab_to_symtab_1 (pst->dependencies[i]);
9599 }
9600
9601 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9602
9603 if (per_cu == NULL)
9604 {
9605 /* It's an include file, no symbols to read for it.
9606 Everything is in the parent symtab. */
9607 pst->readin = 1;
9608 return;
9609 }
9610
9611 dw2_do_instantiate_symtab (per_cu, false);
9612 }
9613
9614 /* Trivial hash function for die_info: the hash value of a DIE
9615 is its offset in .debug_info for this objfile. */
9616
9617 static hashval_t
9618 die_hash (const void *item)
9619 {
9620 const struct die_info *die = (const struct die_info *) item;
9621
9622 return to_underlying (die->sect_off);
9623 }
9624
9625 /* Trivial comparison function for die_info structures: two DIEs
9626 are equal if they have the same offset. */
9627
9628 static int
9629 die_eq (const void *item_lhs, const void *item_rhs)
9630 {
9631 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9632 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9633
9634 return die_lhs->sect_off == die_rhs->sect_off;
9635 }
9636
9637 /* die_reader_func for load_full_comp_unit.
9638 This is identical to read_signatured_type_reader,
9639 but is kept separate for now. */
9640
9641 static void
9642 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9643 const gdb_byte *info_ptr,
9644 struct die_info *comp_unit_die,
9645 int has_children,
9646 void *data)
9647 {
9648 struct dwarf2_cu *cu = reader->cu;
9649 enum language *language_ptr = (enum language *) data;
9650
9651 gdb_assert (cu->die_hash == NULL);
9652 cu->die_hash =
9653 htab_create_alloc_ex (cu->header.length / 12,
9654 die_hash,
9655 die_eq,
9656 NULL,
9657 &cu->comp_unit_obstack,
9658 hashtab_obstack_allocate,
9659 dummy_obstack_deallocate);
9660
9661 if (has_children)
9662 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9663 &info_ptr, comp_unit_die);
9664 cu->dies = comp_unit_die;
9665 /* comp_unit_die is not stored in die_hash, no need. */
9666
9667 /* We try not to read any attributes in this function, because not
9668 all CUs needed for references have been loaded yet, and symbol
9669 table processing isn't initialized. But we have to set the CU language,
9670 or we won't be able to build types correctly.
9671 Similarly, if we do not read the producer, we can not apply
9672 producer-specific interpretation. */
9673 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9674 }
9675
9676 /* Load the DIEs associated with PER_CU into memory. */
9677
9678 static void
9679 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9680 bool skip_partial,
9681 enum language pretend_language)
9682 {
9683 gdb_assert (! this_cu->is_debug_types);
9684
9685 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9686 load_full_comp_unit_reader, &pretend_language);
9687 }
9688
9689 /* Add a DIE to the delayed physname list. */
9690
9691 static void
9692 add_to_method_list (struct type *type, int fnfield_index, int index,
9693 const char *name, struct die_info *die,
9694 struct dwarf2_cu *cu)
9695 {
9696 struct delayed_method_info mi;
9697 mi.type = type;
9698 mi.fnfield_index = fnfield_index;
9699 mi.index = index;
9700 mi.name = name;
9701 mi.die = die;
9702 cu->method_list.push_back (mi);
9703 }
9704
9705 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9706 "const" / "volatile". If so, decrements LEN by the length of the
9707 modifier and return true. Otherwise return false. */
9708
9709 template<size_t N>
9710 static bool
9711 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9712 {
9713 size_t mod_len = sizeof (mod) - 1;
9714 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9715 {
9716 len -= mod_len;
9717 return true;
9718 }
9719 return false;
9720 }
9721
9722 /* Compute the physnames of any methods on the CU's method list.
9723
9724 The computation of method physnames is delayed in order to avoid the
9725 (bad) condition that one of the method's formal parameters is of an as yet
9726 incomplete type. */
9727
9728 static void
9729 compute_delayed_physnames (struct dwarf2_cu *cu)
9730 {
9731 /* Only C++ delays computing physnames. */
9732 if (cu->method_list.empty ())
9733 return;
9734 gdb_assert (cu->language == language_cplus);
9735
9736 for (const delayed_method_info &mi : cu->method_list)
9737 {
9738 const char *physname;
9739 struct fn_fieldlist *fn_flp
9740 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9741 physname = dwarf2_physname (mi.name, mi.die, cu);
9742 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9743 = physname ? physname : "";
9744
9745 /* Since there's no tag to indicate whether a method is a
9746 const/volatile overload, extract that information out of the
9747 demangled name. */
9748 if (physname != NULL)
9749 {
9750 size_t len = strlen (physname);
9751
9752 while (1)
9753 {
9754 if (physname[len] == ')') /* shortcut */
9755 break;
9756 else if (check_modifier (physname, len, " const"))
9757 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9758 else if (check_modifier (physname, len, " volatile"))
9759 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9760 else
9761 break;
9762 }
9763 }
9764 }
9765
9766 /* The list is no longer needed. */
9767 cu->method_list.clear ();
9768 }
9769
9770 /* Go objects should be embedded in a DW_TAG_module DIE,
9771 and it's not clear if/how imported objects will appear.
9772 To keep Go support simple until that's worked out,
9773 go back through what we've read and create something usable.
9774 We could do this while processing each DIE, and feels kinda cleaner,
9775 but that way is more invasive.
9776 This is to, for example, allow the user to type "p var" or "b main"
9777 without having to specify the package name, and allow lookups
9778 of module.object to work in contexts that use the expression
9779 parser. */
9780
9781 static void
9782 fixup_go_packaging (struct dwarf2_cu *cu)
9783 {
9784 char *package_name = NULL;
9785 struct pending *list;
9786 int i;
9787
9788 for (list = *cu->get_builder ()->get_global_symbols ();
9789 list != NULL;
9790 list = list->next)
9791 {
9792 for (i = 0; i < list->nsyms; ++i)
9793 {
9794 struct symbol *sym = list->symbol[i];
9795
9796 if (SYMBOL_LANGUAGE (sym) == language_go
9797 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9798 {
9799 char *this_package_name = go_symbol_package_name (sym);
9800
9801 if (this_package_name == NULL)
9802 continue;
9803 if (package_name == NULL)
9804 package_name = this_package_name;
9805 else
9806 {
9807 struct objfile *objfile
9808 = cu->per_cu->dwarf2_per_objfile->objfile;
9809 if (strcmp (package_name, this_package_name) != 0)
9810 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9811 (symbol_symtab (sym) != NULL
9812 ? symtab_to_filename_for_display
9813 (symbol_symtab (sym))
9814 : objfile_name (objfile)),
9815 this_package_name, package_name);
9816 xfree (this_package_name);
9817 }
9818 }
9819 }
9820 }
9821
9822 if (package_name != NULL)
9823 {
9824 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9825 const char *saved_package_name
9826 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9827 package_name,
9828 strlen (package_name));
9829 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9830 saved_package_name);
9831 struct symbol *sym;
9832
9833 sym = allocate_symbol (objfile);
9834 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9835 SYMBOL_SET_NAMES (sym, saved_package_name,
9836 strlen (saved_package_name), 0, objfile);
9837 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9838 e.g., "main" finds the "main" module and not C's main(). */
9839 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9840 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9841 SYMBOL_TYPE (sym) = type;
9842
9843 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9844
9845 xfree (package_name);
9846 }
9847 }
9848
9849 /* Allocate a fully-qualified name consisting of the two parts on the
9850 obstack. */
9851
9852 static const char *
9853 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9854 {
9855 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9856 }
9857
9858 /* A helper that allocates a struct discriminant_info to attach to a
9859 union type. */
9860
9861 static struct discriminant_info *
9862 alloc_discriminant_info (struct type *type, int discriminant_index,
9863 int default_index)
9864 {
9865 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9866 gdb_assert (discriminant_index == -1
9867 || (discriminant_index >= 0
9868 && discriminant_index < TYPE_NFIELDS (type)));
9869 gdb_assert (default_index == -1
9870 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9871
9872 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9873
9874 struct discriminant_info *disc
9875 = ((struct discriminant_info *)
9876 TYPE_ZALLOC (type,
9877 offsetof (struct discriminant_info, discriminants)
9878 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9879 disc->default_index = default_index;
9880 disc->discriminant_index = discriminant_index;
9881
9882 struct dynamic_prop prop;
9883 prop.kind = PROP_UNDEFINED;
9884 prop.data.baton = disc;
9885
9886 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9887
9888 return disc;
9889 }
9890
9891 /* Some versions of rustc emitted enums in an unusual way.
9892
9893 Ordinary enums were emitted as unions. The first element of each
9894 structure in the union was named "RUST$ENUM$DISR". This element
9895 held the discriminant.
9896
9897 These versions of Rust also implemented the "non-zero"
9898 optimization. When the enum had two values, and one is empty and
9899 the other holds a pointer that cannot be zero, the pointer is used
9900 as the discriminant, with a zero value meaning the empty variant.
9901 Here, the union's first member is of the form
9902 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9903 where the fieldnos are the indices of the fields that should be
9904 traversed in order to find the field (which may be several fields deep)
9905 and the variantname is the name of the variant of the case when the
9906 field is zero.
9907
9908 This function recognizes whether TYPE is of one of these forms,
9909 and, if so, smashes it to be a variant type. */
9910
9911 static void
9912 quirk_rust_enum (struct type *type, struct objfile *objfile)
9913 {
9914 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9915
9916 /* We don't need to deal with empty enums. */
9917 if (TYPE_NFIELDS (type) == 0)
9918 return;
9919
9920 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9921 if (TYPE_NFIELDS (type) == 1
9922 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9923 {
9924 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9925
9926 /* Decode the field name to find the offset of the
9927 discriminant. */
9928 ULONGEST bit_offset = 0;
9929 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9930 while (name[0] >= '0' && name[0] <= '9')
9931 {
9932 char *tail;
9933 unsigned long index = strtoul (name, &tail, 10);
9934 name = tail;
9935 if (*name != '$'
9936 || index >= TYPE_NFIELDS (field_type)
9937 || (TYPE_FIELD_LOC_KIND (field_type, index)
9938 != FIELD_LOC_KIND_BITPOS))
9939 {
9940 complaint (_("Could not parse Rust enum encoding string \"%s\""
9941 "[in module %s]"),
9942 TYPE_FIELD_NAME (type, 0),
9943 objfile_name (objfile));
9944 return;
9945 }
9946 ++name;
9947
9948 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9949 field_type = TYPE_FIELD_TYPE (field_type, index);
9950 }
9951
9952 /* Make a union to hold the variants. */
9953 struct type *union_type = alloc_type (objfile);
9954 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9955 TYPE_NFIELDS (union_type) = 3;
9956 TYPE_FIELDS (union_type)
9957 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9958 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9959 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9960
9961 /* Put the discriminant must at index 0. */
9962 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9963 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9964 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9965 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9966
9967 /* The order of fields doesn't really matter, so put the real
9968 field at index 1 and the data-less field at index 2. */
9969 struct discriminant_info *disc
9970 = alloc_discriminant_info (union_type, 0, 1);
9971 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9972 TYPE_FIELD_NAME (union_type, 1)
9973 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9974 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9975 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9976 TYPE_FIELD_NAME (union_type, 1));
9977
9978 const char *dataless_name
9979 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9980 name);
9981 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9982 dataless_name);
9983 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9984 /* NAME points into the original discriminant name, which
9985 already has the correct lifetime. */
9986 TYPE_FIELD_NAME (union_type, 2) = name;
9987 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9988 disc->discriminants[2] = 0;
9989
9990 /* Smash this type to be a structure type. We have to do this
9991 because the type has already been recorded. */
9992 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9993 TYPE_NFIELDS (type) = 1;
9994 TYPE_FIELDS (type)
9995 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9996
9997 /* Install the variant part. */
9998 TYPE_FIELD_TYPE (type, 0) = union_type;
9999 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10000 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10001 }
10002 else if (TYPE_NFIELDS (type) == 1)
10003 {
10004 /* We assume that a union with a single field is a univariant
10005 enum. */
10006 /* Smash this type to be a structure type. We have to do this
10007 because the type has already been recorded. */
10008 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10009
10010 /* Make a union to hold the variants. */
10011 struct type *union_type = alloc_type (objfile);
10012 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10013 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10014 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10015 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10016 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10017
10018 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10019 const char *variant_name
10020 = rust_last_path_segment (TYPE_NAME (field_type));
10021 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10022 TYPE_NAME (field_type)
10023 = rust_fully_qualify (&objfile->objfile_obstack,
10024 TYPE_NAME (type), variant_name);
10025
10026 /* Install the union in the outer struct type. */
10027 TYPE_NFIELDS (type) = 1;
10028 TYPE_FIELDS (type)
10029 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10030 TYPE_FIELD_TYPE (type, 0) = union_type;
10031 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10032 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10033
10034 alloc_discriminant_info (union_type, -1, 0);
10035 }
10036 else
10037 {
10038 struct type *disr_type = nullptr;
10039 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10040 {
10041 disr_type = TYPE_FIELD_TYPE (type, i);
10042
10043 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10044 {
10045 /* All fields of a true enum will be structs. */
10046 return;
10047 }
10048 else if (TYPE_NFIELDS (disr_type) == 0)
10049 {
10050 /* Could be data-less variant, so keep going. */
10051 disr_type = nullptr;
10052 }
10053 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10054 "RUST$ENUM$DISR") != 0)
10055 {
10056 /* Not a Rust enum. */
10057 return;
10058 }
10059 else
10060 {
10061 /* Found one. */
10062 break;
10063 }
10064 }
10065
10066 /* If we got here without a discriminant, then it's probably
10067 just a union. */
10068 if (disr_type == nullptr)
10069 return;
10070
10071 /* Smash this type to be a structure type. We have to do this
10072 because the type has already been recorded. */
10073 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10074
10075 /* Make a union to hold the variants. */
10076 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10077 struct type *union_type = alloc_type (objfile);
10078 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10079 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10080 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10081 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10082 TYPE_FIELDS (union_type)
10083 = (struct field *) TYPE_ZALLOC (union_type,
10084 (TYPE_NFIELDS (union_type)
10085 * sizeof (struct field)));
10086
10087 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10088 TYPE_NFIELDS (type) * sizeof (struct field));
10089
10090 /* Install the discriminant at index 0 in the union. */
10091 TYPE_FIELD (union_type, 0) = *disr_field;
10092 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10093 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10094
10095 /* Install the union in the outer struct type. */
10096 TYPE_FIELD_TYPE (type, 0) = union_type;
10097 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10098 TYPE_NFIELDS (type) = 1;
10099
10100 /* Set the size and offset of the union type. */
10101 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10102
10103 /* We need a way to find the correct discriminant given a
10104 variant name. For convenience we build a map here. */
10105 struct type *enum_type = FIELD_TYPE (*disr_field);
10106 std::unordered_map<std::string, ULONGEST> discriminant_map;
10107 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10108 {
10109 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10110 {
10111 const char *name
10112 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10113 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10114 }
10115 }
10116
10117 int n_fields = TYPE_NFIELDS (union_type);
10118 struct discriminant_info *disc
10119 = alloc_discriminant_info (union_type, 0, -1);
10120 /* Skip the discriminant here. */
10121 for (int i = 1; i < n_fields; ++i)
10122 {
10123 /* Find the final word in the name of this variant's type.
10124 That name can be used to look up the correct
10125 discriminant. */
10126 const char *variant_name
10127 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10128 i)));
10129
10130 auto iter = discriminant_map.find (variant_name);
10131 if (iter != discriminant_map.end ())
10132 disc->discriminants[i] = iter->second;
10133
10134 /* Remove the discriminant field, if it exists. */
10135 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10136 if (TYPE_NFIELDS (sub_type) > 0)
10137 {
10138 --TYPE_NFIELDS (sub_type);
10139 ++TYPE_FIELDS (sub_type);
10140 }
10141 TYPE_FIELD_NAME (union_type, i) = variant_name;
10142 TYPE_NAME (sub_type)
10143 = rust_fully_qualify (&objfile->objfile_obstack,
10144 TYPE_NAME (type), variant_name);
10145 }
10146 }
10147 }
10148
10149 /* Rewrite some Rust unions to be structures with variants parts. */
10150
10151 static void
10152 rust_union_quirks (struct dwarf2_cu *cu)
10153 {
10154 gdb_assert (cu->language == language_rust);
10155 for (type *type_ : cu->rust_unions)
10156 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10157 /* We don't need this any more. */
10158 cu->rust_unions.clear ();
10159 }
10160
10161 /* Return the symtab for PER_CU. This works properly regardless of
10162 whether we're using the index or psymtabs. */
10163
10164 static struct compunit_symtab *
10165 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10166 {
10167 return (per_cu->dwarf2_per_objfile->using_index
10168 ? per_cu->v.quick->compunit_symtab
10169 : per_cu->v.psymtab->compunit_symtab);
10170 }
10171
10172 /* A helper function for computing the list of all symbol tables
10173 included by PER_CU. */
10174
10175 static void
10176 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10177 htab_t all_children, htab_t all_type_symtabs,
10178 struct dwarf2_per_cu_data *per_cu,
10179 struct compunit_symtab *immediate_parent)
10180 {
10181 void **slot;
10182 int ix;
10183 struct compunit_symtab *cust;
10184 struct dwarf2_per_cu_data *iter;
10185
10186 slot = htab_find_slot (all_children, per_cu, INSERT);
10187 if (*slot != NULL)
10188 {
10189 /* This inclusion and its children have been processed. */
10190 return;
10191 }
10192
10193 *slot = per_cu;
10194 /* Only add a CU if it has a symbol table. */
10195 cust = get_compunit_symtab (per_cu);
10196 if (cust != NULL)
10197 {
10198 /* If this is a type unit only add its symbol table if we haven't
10199 seen it yet (type unit per_cu's can share symtabs). */
10200 if (per_cu->is_debug_types)
10201 {
10202 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10203 if (*slot == NULL)
10204 {
10205 *slot = cust;
10206 result->push_back (cust);
10207 if (cust->user == NULL)
10208 cust->user = immediate_parent;
10209 }
10210 }
10211 else
10212 {
10213 result->push_back (cust);
10214 if (cust->user == NULL)
10215 cust->user = immediate_parent;
10216 }
10217 }
10218
10219 for (ix = 0;
10220 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10221 ++ix)
10222 {
10223 recursively_compute_inclusions (result, all_children,
10224 all_type_symtabs, iter, cust);
10225 }
10226 }
10227
10228 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10229 PER_CU. */
10230
10231 static void
10232 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10233 {
10234 gdb_assert (! per_cu->is_debug_types);
10235
10236 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10237 {
10238 int ix, len;
10239 struct dwarf2_per_cu_data *per_cu_iter;
10240 std::vector<compunit_symtab *> result_symtabs;
10241 htab_t all_children, all_type_symtabs;
10242 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10243
10244 /* If we don't have a symtab, we can just skip this case. */
10245 if (cust == NULL)
10246 return;
10247
10248 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10249 NULL, xcalloc, xfree);
10250 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10251 NULL, xcalloc, xfree);
10252
10253 for (ix = 0;
10254 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10255 ix, per_cu_iter);
10256 ++ix)
10257 {
10258 recursively_compute_inclusions (&result_symtabs, all_children,
10259 all_type_symtabs, per_cu_iter,
10260 cust);
10261 }
10262
10263 /* Now we have a transitive closure of all the included symtabs. */
10264 len = result_symtabs.size ();
10265 cust->includes
10266 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10267 struct compunit_symtab *, len + 1);
10268 memcpy (cust->includes, result_symtabs.data (),
10269 len * sizeof (compunit_symtab *));
10270 cust->includes[len] = NULL;
10271
10272 htab_delete (all_children);
10273 htab_delete (all_type_symtabs);
10274 }
10275 }
10276
10277 /* Compute the 'includes' field for the symtabs of all the CUs we just
10278 read. */
10279
10280 static void
10281 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10282 {
10283 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10284 {
10285 if (! iter->is_debug_types)
10286 compute_compunit_symtab_includes (iter);
10287 }
10288
10289 dwarf2_per_objfile->just_read_cus.clear ();
10290 }
10291
10292 /* Generate full symbol information for PER_CU, whose DIEs have
10293 already been loaded into memory. */
10294
10295 static void
10296 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10297 enum language pretend_language)
10298 {
10299 struct dwarf2_cu *cu = per_cu->cu;
10300 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10301 struct objfile *objfile = dwarf2_per_objfile->objfile;
10302 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10303 CORE_ADDR lowpc, highpc;
10304 struct compunit_symtab *cust;
10305 CORE_ADDR baseaddr;
10306 struct block *static_block;
10307 CORE_ADDR addr;
10308
10309 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10310
10311 /* Clear the list here in case something was left over. */
10312 cu->method_list.clear ();
10313
10314 cu->language = pretend_language;
10315 cu->language_defn = language_def (cu->language);
10316
10317 /* Do line number decoding in read_file_scope () */
10318 process_die (cu->dies, cu);
10319
10320 /* For now fudge the Go package. */
10321 if (cu->language == language_go)
10322 fixup_go_packaging (cu);
10323
10324 /* Now that we have processed all the DIEs in the CU, all the types
10325 should be complete, and it should now be safe to compute all of the
10326 physnames. */
10327 compute_delayed_physnames (cu);
10328
10329 if (cu->language == language_rust)
10330 rust_union_quirks (cu);
10331
10332 /* Some compilers don't define a DW_AT_high_pc attribute for the
10333 compilation unit. If the DW_AT_high_pc is missing, synthesize
10334 it, by scanning the DIE's below the compilation unit. */
10335 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10336
10337 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10338 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10339
10340 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10341 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10342 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10343 addrmap to help ensure it has an accurate map of pc values belonging to
10344 this comp unit. */
10345 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10346
10347 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10348 SECT_OFF_TEXT (objfile),
10349 0);
10350
10351 if (cust != NULL)
10352 {
10353 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10354
10355 /* Set symtab language to language from DW_AT_language. If the
10356 compilation is from a C file generated by language preprocessors, do
10357 not set the language if it was already deduced by start_subfile. */
10358 if (!(cu->language == language_c
10359 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10360 COMPUNIT_FILETABS (cust)->language = cu->language;
10361
10362 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10363 produce DW_AT_location with location lists but it can be possibly
10364 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10365 there were bugs in prologue debug info, fixed later in GCC-4.5
10366 by "unwind info for epilogues" patch (which is not directly related).
10367
10368 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10369 needed, it would be wrong due to missing DW_AT_producer there.
10370
10371 Still one can confuse GDB by using non-standard GCC compilation
10372 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10373 */
10374 if (cu->has_loclist && gcc_4_minor >= 5)
10375 cust->locations_valid = 1;
10376
10377 if (gcc_4_minor >= 5)
10378 cust->epilogue_unwind_valid = 1;
10379
10380 cust->call_site_htab = cu->call_site_htab;
10381 }
10382
10383 if (dwarf2_per_objfile->using_index)
10384 per_cu->v.quick->compunit_symtab = cust;
10385 else
10386 {
10387 struct partial_symtab *pst = per_cu->v.psymtab;
10388 pst->compunit_symtab = cust;
10389 pst->readin = 1;
10390 }
10391
10392 /* Push it for inclusion processing later. */
10393 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10394
10395 /* Not needed any more. */
10396 cu->reset_builder ();
10397 }
10398
10399 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10400 already been loaded into memory. */
10401
10402 static void
10403 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10404 enum language pretend_language)
10405 {
10406 struct dwarf2_cu *cu = per_cu->cu;
10407 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10408 struct objfile *objfile = dwarf2_per_objfile->objfile;
10409 struct compunit_symtab *cust;
10410 struct signatured_type *sig_type;
10411
10412 gdb_assert (per_cu->is_debug_types);
10413 sig_type = (struct signatured_type *) per_cu;
10414
10415 /* Clear the list here in case something was left over. */
10416 cu->method_list.clear ();
10417
10418 cu->language = pretend_language;
10419 cu->language_defn = language_def (cu->language);
10420
10421 /* The symbol tables are set up in read_type_unit_scope. */
10422 process_die (cu->dies, cu);
10423
10424 /* For now fudge the Go package. */
10425 if (cu->language == language_go)
10426 fixup_go_packaging (cu);
10427
10428 /* Now that we have processed all the DIEs in the CU, all the types
10429 should be complete, and it should now be safe to compute all of the
10430 physnames. */
10431 compute_delayed_physnames (cu);
10432
10433 if (cu->language == language_rust)
10434 rust_union_quirks (cu);
10435
10436 /* TUs share symbol tables.
10437 If this is the first TU to use this symtab, complete the construction
10438 of it with end_expandable_symtab. Otherwise, complete the addition of
10439 this TU's symbols to the existing symtab. */
10440 if (sig_type->type_unit_group->compunit_symtab == NULL)
10441 {
10442 buildsym_compunit *builder = cu->get_builder ();
10443 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10444 sig_type->type_unit_group->compunit_symtab = cust;
10445
10446 if (cust != NULL)
10447 {
10448 /* Set symtab language to language from DW_AT_language. If the
10449 compilation is from a C file generated by language preprocessors,
10450 do not set the language if it was already deduced by
10451 start_subfile. */
10452 if (!(cu->language == language_c
10453 && COMPUNIT_FILETABS (cust)->language != language_c))
10454 COMPUNIT_FILETABS (cust)->language = cu->language;
10455 }
10456 }
10457 else
10458 {
10459 cu->get_builder ()->augment_type_symtab ();
10460 cust = sig_type->type_unit_group->compunit_symtab;
10461 }
10462
10463 if (dwarf2_per_objfile->using_index)
10464 per_cu->v.quick->compunit_symtab = cust;
10465 else
10466 {
10467 struct partial_symtab *pst = per_cu->v.psymtab;
10468 pst->compunit_symtab = cust;
10469 pst->readin = 1;
10470 }
10471
10472 /* Not needed any more. */
10473 cu->reset_builder ();
10474 }
10475
10476 /* Process an imported unit DIE. */
10477
10478 static void
10479 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10480 {
10481 struct attribute *attr;
10482
10483 /* For now we don't handle imported units in type units. */
10484 if (cu->per_cu->is_debug_types)
10485 {
10486 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10487 " supported in type units [in module %s]"),
10488 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10489 }
10490
10491 attr = dwarf2_attr (die, DW_AT_import, cu);
10492 if (attr != NULL)
10493 {
10494 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10495 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10496 dwarf2_per_cu_data *per_cu
10497 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10498 cu->per_cu->dwarf2_per_objfile);
10499
10500 /* If necessary, add it to the queue and load its DIEs. */
10501 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10502 load_full_comp_unit (per_cu, false, cu->language);
10503
10504 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10505 per_cu);
10506 }
10507 }
10508
10509 /* RAII object that represents a process_die scope: i.e.,
10510 starts/finishes processing a DIE. */
10511 class process_die_scope
10512 {
10513 public:
10514 process_die_scope (die_info *die, dwarf2_cu *cu)
10515 : m_die (die), m_cu (cu)
10516 {
10517 /* We should only be processing DIEs not already in process. */
10518 gdb_assert (!m_die->in_process);
10519 m_die->in_process = true;
10520 }
10521
10522 ~process_die_scope ()
10523 {
10524 m_die->in_process = false;
10525
10526 /* If we're done processing the DIE for the CU that owns the line
10527 header, we don't need the line header anymore. */
10528 if (m_cu->line_header_die_owner == m_die)
10529 {
10530 delete m_cu->line_header;
10531 m_cu->line_header = NULL;
10532 m_cu->line_header_die_owner = NULL;
10533 }
10534 }
10535
10536 private:
10537 die_info *m_die;
10538 dwarf2_cu *m_cu;
10539 };
10540
10541 /* Process a die and its children. */
10542
10543 static void
10544 process_die (struct die_info *die, struct dwarf2_cu *cu)
10545 {
10546 process_die_scope scope (die, cu);
10547
10548 switch (die->tag)
10549 {
10550 case DW_TAG_padding:
10551 break;
10552 case DW_TAG_compile_unit:
10553 case DW_TAG_partial_unit:
10554 read_file_scope (die, cu);
10555 break;
10556 case DW_TAG_type_unit:
10557 read_type_unit_scope (die, cu);
10558 break;
10559 case DW_TAG_subprogram:
10560 case DW_TAG_inlined_subroutine:
10561 read_func_scope (die, cu);
10562 break;
10563 case DW_TAG_lexical_block:
10564 case DW_TAG_try_block:
10565 case DW_TAG_catch_block:
10566 read_lexical_block_scope (die, cu);
10567 break;
10568 case DW_TAG_call_site:
10569 case DW_TAG_GNU_call_site:
10570 read_call_site_scope (die, cu);
10571 break;
10572 case DW_TAG_class_type:
10573 case DW_TAG_interface_type:
10574 case DW_TAG_structure_type:
10575 case DW_TAG_union_type:
10576 process_structure_scope (die, cu);
10577 break;
10578 case DW_TAG_enumeration_type:
10579 process_enumeration_scope (die, cu);
10580 break;
10581
10582 /* These dies have a type, but processing them does not create
10583 a symbol or recurse to process the children. Therefore we can
10584 read them on-demand through read_type_die. */
10585 case DW_TAG_subroutine_type:
10586 case DW_TAG_set_type:
10587 case DW_TAG_array_type:
10588 case DW_TAG_pointer_type:
10589 case DW_TAG_ptr_to_member_type:
10590 case DW_TAG_reference_type:
10591 case DW_TAG_rvalue_reference_type:
10592 case DW_TAG_string_type:
10593 break;
10594
10595 case DW_TAG_base_type:
10596 case DW_TAG_subrange_type:
10597 case DW_TAG_typedef:
10598 /* Add a typedef symbol for the type definition, if it has a
10599 DW_AT_name. */
10600 new_symbol (die, read_type_die (die, cu), cu);
10601 break;
10602 case DW_TAG_common_block:
10603 read_common_block (die, cu);
10604 break;
10605 case DW_TAG_common_inclusion:
10606 break;
10607 case DW_TAG_namespace:
10608 cu->processing_has_namespace_info = true;
10609 read_namespace (die, cu);
10610 break;
10611 case DW_TAG_module:
10612 cu->processing_has_namespace_info = true;
10613 read_module (die, cu);
10614 break;
10615 case DW_TAG_imported_declaration:
10616 cu->processing_has_namespace_info = true;
10617 if (read_namespace_alias (die, cu))
10618 break;
10619 /* The declaration is not a global namespace alias. */
10620 /* Fall through. */
10621 case DW_TAG_imported_module:
10622 cu->processing_has_namespace_info = true;
10623 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10624 || cu->language != language_fortran))
10625 complaint (_("Tag '%s' has unexpected children"),
10626 dwarf_tag_name (die->tag));
10627 read_import_statement (die, cu);
10628 break;
10629
10630 case DW_TAG_imported_unit:
10631 process_imported_unit_die (die, cu);
10632 break;
10633
10634 case DW_TAG_variable:
10635 read_variable (die, cu);
10636 break;
10637
10638 default:
10639 new_symbol (die, NULL, cu);
10640 break;
10641 }
10642 }
10643 \f
10644 /* DWARF name computation. */
10645
10646 /* A helper function for dwarf2_compute_name which determines whether DIE
10647 needs to have the name of the scope prepended to the name listed in the
10648 die. */
10649
10650 static int
10651 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10652 {
10653 struct attribute *attr;
10654
10655 switch (die->tag)
10656 {
10657 case DW_TAG_namespace:
10658 case DW_TAG_typedef:
10659 case DW_TAG_class_type:
10660 case DW_TAG_interface_type:
10661 case DW_TAG_structure_type:
10662 case DW_TAG_union_type:
10663 case DW_TAG_enumeration_type:
10664 case DW_TAG_enumerator:
10665 case DW_TAG_subprogram:
10666 case DW_TAG_inlined_subroutine:
10667 case DW_TAG_member:
10668 case DW_TAG_imported_declaration:
10669 return 1;
10670
10671 case DW_TAG_variable:
10672 case DW_TAG_constant:
10673 /* We only need to prefix "globally" visible variables. These include
10674 any variable marked with DW_AT_external or any variable that
10675 lives in a namespace. [Variables in anonymous namespaces
10676 require prefixing, but they are not DW_AT_external.] */
10677
10678 if (dwarf2_attr (die, DW_AT_specification, cu))
10679 {
10680 struct dwarf2_cu *spec_cu = cu;
10681
10682 return die_needs_namespace (die_specification (die, &spec_cu),
10683 spec_cu);
10684 }
10685
10686 attr = dwarf2_attr (die, DW_AT_external, cu);
10687 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10688 && die->parent->tag != DW_TAG_module)
10689 return 0;
10690 /* A variable in a lexical block of some kind does not need a
10691 namespace, even though in C++ such variables may be external
10692 and have a mangled name. */
10693 if (die->parent->tag == DW_TAG_lexical_block
10694 || die->parent->tag == DW_TAG_try_block
10695 || die->parent->tag == DW_TAG_catch_block
10696 || die->parent->tag == DW_TAG_subprogram)
10697 return 0;
10698 return 1;
10699
10700 default:
10701 return 0;
10702 }
10703 }
10704
10705 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10706 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10707 defined for the given DIE. */
10708
10709 static struct attribute *
10710 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10711 {
10712 struct attribute *attr;
10713
10714 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10715 if (attr == NULL)
10716 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10717
10718 return attr;
10719 }
10720
10721 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10722 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10723 defined for the given DIE. */
10724
10725 static const char *
10726 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10727 {
10728 const char *linkage_name;
10729
10730 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10731 if (linkage_name == NULL)
10732 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10733
10734 return linkage_name;
10735 }
10736
10737 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10738 compute the physname for the object, which include a method's:
10739 - formal parameters (C++),
10740 - receiver type (Go),
10741
10742 The term "physname" is a bit confusing.
10743 For C++, for example, it is the demangled name.
10744 For Go, for example, it's the mangled name.
10745
10746 For Ada, return the DIE's linkage name rather than the fully qualified
10747 name. PHYSNAME is ignored..
10748
10749 The result is allocated on the objfile_obstack and canonicalized. */
10750
10751 static const char *
10752 dwarf2_compute_name (const char *name,
10753 struct die_info *die, struct dwarf2_cu *cu,
10754 int physname)
10755 {
10756 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10757
10758 if (name == NULL)
10759 name = dwarf2_name (die, cu);
10760
10761 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10762 but otherwise compute it by typename_concat inside GDB.
10763 FIXME: Actually this is not really true, or at least not always true.
10764 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10765 Fortran names because there is no mangling standard. So new_symbol
10766 will set the demangled name to the result of dwarf2_full_name, and it is
10767 the demangled name that GDB uses if it exists. */
10768 if (cu->language == language_ada
10769 || (cu->language == language_fortran && physname))
10770 {
10771 /* For Ada unit, we prefer the linkage name over the name, as
10772 the former contains the exported name, which the user expects
10773 to be able to reference. Ideally, we want the user to be able
10774 to reference this entity using either natural or linkage name,
10775 but we haven't started looking at this enhancement yet. */
10776 const char *linkage_name = dw2_linkage_name (die, cu);
10777
10778 if (linkage_name != NULL)
10779 return linkage_name;
10780 }
10781
10782 /* These are the only languages we know how to qualify names in. */
10783 if (name != NULL
10784 && (cu->language == language_cplus
10785 || cu->language == language_fortran || cu->language == language_d
10786 || cu->language == language_rust))
10787 {
10788 if (die_needs_namespace (die, cu))
10789 {
10790 const char *prefix;
10791 const char *canonical_name = NULL;
10792
10793 string_file buf;
10794
10795 prefix = determine_prefix (die, cu);
10796 if (*prefix != '\0')
10797 {
10798 char *prefixed_name = typename_concat (NULL, prefix, name,
10799 physname, cu);
10800
10801 buf.puts (prefixed_name);
10802 xfree (prefixed_name);
10803 }
10804 else
10805 buf.puts (name);
10806
10807 /* Template parameters may be specified in the DIE's DW_AT_name, or
10808 as children with DW_TAG_template_type_param or
10809 DW_TAG_value_type_param. If the latter, add them to the name
10810 here. If the name already has template parameters, then
10811 skip this step; some versions of GCC emit both, and
10812 it is more efficient to use the pre-computed name.
10813
10814 Something to keep in mind about this process: it is very
10815 unlikely, or in some cases downright impossible, to produce
10816 something that will match the mangled name of a function.
10817 If the definition of the function has the same debug info,
10818 we should be able to match up with it anyway. But fallbacks
10819 using the minimal symbol, for instance to find a method
10820 implemented in a stripped copy of libstdc++, will not work.
10821 If we do not have debug info for the definition, we will have to
10822 match them up some other way.
10823
10824 When we do name matching there is a related problem with function
10825 templates; two instantiated function templates are allowed to
10826 differ only by their return types, which we do not add here. */
10827
10828 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10829 {
10830 struct attribute *attr;
10831 struct die_info *child;
10832 int first = 1;
10833
10834 die->building_fullname = 1;
10835
10836 for (child = die->child; child != NULL; child = child->sibling)
10837 {
10838 struct type *type;
10839 LONGEST value;
10840 const gdb_byte *bytes;
10841 struct dwarf2_locexpr_baton *baton;
10842 struct value *v;
10843
10844 if (child->tag != DW_TAG_template_type_param
10845 && child->tag != DW_TAG_template_value_param)
10846 continue;
10847
10848 if (first)
10849 {
10850 buf.puts ("<");
10851 first = 0;
10852 }
10853 else
10854 buf.puts (", ");
10855
10856 attr = dwarf2_attr (child, DW_AT_type, cu);
10857 if (attr == NULL)
10858 {
10859 complaint (_("template parameter missing DW_AT_type"));
10860 buf.puts ("UNKNOWN_TYPE");
10861 continue;
10862 }
10863 type = die_type (child, cu);
10864
10865 if (child->tag == DW_TAG_template_type_param)
10866 {
10867 c_print_type (type, "", &buf, -1, 0, cu->language,
10868 &type_print_raw_options);
10869 continue;
10870 }
10871
10872 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10873 if (attr == NULL)
10874 {
10875 complaint (_("template parameter missing "
10876 "DW_AT_const_value"));
10877 buf.puts ("UNKNOWN_VALUE");
10878 continue;
10879 }
10880
10881 dwarf2_const_value_attr (attr, type, name,
10882 &cu->comp_unit_obstack, cu,
10883 &value, &bytes, &baton);
10884
10885 if (TYPE_NOSIGN (type))
10886 /* GDB prints characters as NUMBER 'CHAR'. If that's
10887 changed, this can use value_print instead. */
10888 c_printchar (value, type, &buf);
10889 else
10890 {
10891 struct value_print_options opts;
10892
10893 if (baton != NULL)
10894 v = dwarf2_evaluate_loc_desc (type, NULL,
10895 baton->data,
10896 baton->size,
10897 baton->per_cu);
10898 else if (bytes != NULL)
10899 {
10900 v = allocate_value (type);
10901 memcpy (value_contents_writeable (v), bytes,
10902 TYPE_LENGTH (type));
10903 }
10904 else
10905 v = value_from_longest (type, value);
10906
10907 /* Specify decimal so that we do not depend on
10908 the radix. */
10909 get_formatted_print_options (&opts, 'd');
10910 opts.raw = 1;
10911 value_print (v, &buf, &opts);
10912 release_value (v);
10913 }
10914 }
10915
10916 die->building_fullname = 0;
10917
10918 if (!first)
10919 {
10920 /* Close the argument list, with a space if necessary
10921 (nested templates). */
10922 if (!buf.empty () && buf.string ().back () == '>')
10923 buf.puts (" >");
10924 else
10925 buf.puts (">");
10926 }
10927 }
10928
10929 /* For C++ methods, append formal parameter type
10930 information, if PHYSNAME. */
10931
10932 if (physname && die->tag == DW_TAG_subprogram
10933 && cu->language == language_cplus)
10934 {
10935 struct type *type = read_type_die (die, cu);
10936
10937 c_type_print_args (type, &buf, 1, cu->language,
10938 &type_print_raw_options);
10939
10940 if (cu->language == language_cplus)
10941 {
10942 /* Assume that an artificial first parameter is
10943 "this", but do not crash if it is not. RealView
10944 marks unnamed (and thus unused) parameters as
10945 artificial; there is no way to differentiate
10946 the two cases. */
10947 if (TYPE_NFIELDS (type) > 0
10948 && TYPE_FIELD_ARTIFICIAL (type, 0)
10949 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10950 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10951 0))))
10952 buf.puts (" const");
10953 }
10954 }
10955
10956 const std::string &intermediate_name = buf.string ();
10957
10958 if (cu->language == language_cplus)
10959 canonical_name
10960 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10961 &objfile->per_bfd->storage_obstack);
10962
10963 /* If we only computed INTERMEDIATE_NAME, or if
10964 INTERMEDIATE_NAME is already canonical, then we need to
10965 copy it to the appropriate obstack. */
10966 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10967 name = ((const char *)
10968 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10969 intermediate_name.c_str (),
10970 intermediate_name.length ()));
10971 else
10972 name = canonical_name;
10973 }
10974 }
10975
10976 return name;
10977 }
10978
10979 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10980 If scope qualifiers are appropriate they will be added. The result
10981 will be allocated on the storage_obstack, or NULL if the DIE does
10982 not have a name. NAME may either be from a previous call to
10983 dwarf2_name or NULL.
10984
10985 The output string will be canonicalized (if C++). */
10986
10987 static const char *
10988 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10989 {
10990 return dwarf2_compute_name (name, die, cu, 0);
10991 }
10992
10993 /* Construct a physname for the given DIE in CU. NAME may either be
10994 from a previous call to dwarf2_name or NULL. The result will be
10995 allocated on the objfile_objstack or NULL if the DIE does not have a
10996 name.
10997
10998 The output string will be canonicalized (if C++). */
10999
11000 static const char *
11001 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11002 {
11003 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11004 const char *retval, *mangled = NULL, *canon = NULL;
11005 int need_copy = 1;
11006
11007 /* In this case dwarf2_compute_name is just a shortcut not building anything
11008 on its own. */
11009 if (!die_needs_namespace (die, cu))
11010 return dwarf2_compute_name (name, die, cu, 1);
11011
11012 mangled = dw2_linkage_name (die, cu);
11013
11014 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11015 See https://github.com/rust-lang/rust/issues/32925. */
11016 if (cu->language == language_rust && mangled != NULL
11017 && strchr (mangled, '{') != NULL)
11018 mangled = NULL;
11019
11020 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11021 has computed. */
11022 gdb::unique_xmalloc_ptr<char> demangled;
11023 if (mangled != NULL)
11024 {
11025
11026 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11027 {
11028 /* Do nothing (do not demangle the symbol name). */
11029 }
11030 else if (cu->language == language_go)
11031 {
11032 /* This is a lie, but we already lie to the caller new_symbol.
11033 new_symbol assumes we return the mangled name.
11034 This just undoes that lie until things are cleaned up. */
11035 }
11036 else
11037 {
11038 /* Use DMGL_RET_DROP for C++ template functions to suppress
11039 their return type. It is easier for GDB users to search
11040 for such functions as `name(params)' than `long name(params)'.
11041 In such case the minimal symbol names do not match the full
11042 symbol names but for template functions there is never a need
11043 to look up their definition from their declaration so
11044 the only disadvantage remains the minimal symbol variant
11045 `long name(params)' does not have the proper inferior type. */
11046 demangled.reset (gdb_demangle (mangled,
11047 (DMGL_PARAMS | DMGL_ANSI
11048 | DMGL_RET_DROP)));
11049 }
11050 if (demangled)
11051 canon = demangled.get ();
11052 else
11053 {
11054 canon = mangled;
11055 need_copy = 0;
11056 }
11057 }
11058
11059 if (canon == NULL || check_physname)
11060 {
11061 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11062
11063 if (canon != NULL && strcmp (physname, canon) != 0)
11064 {
11065 /* It may not mean a bug in GDB. The compiler could also
11066 compute DW_AT_linkage_name incorrectly. But in such case
11067 GDB would need to be bug-to-bug compatible. */
11068
11069 complaint (_("Computed physname <%s> does not match demangled <%s> "
11070 "(from linkage <%s>) - DIE at %s [in module %s]"),
11071 physname, canon, mangled, sect_offset_str (die->sect_off),
11072 objfile_name (objfile));
11073
11074 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11075 is available here - over computed PHYSNAME. It is safer
11076 against both buggy GDB and buggy compilers. */
11077
11078 retval = canon;
11079 }
11080 else
11081 {
11082 retval = physname;
11083 need_copy = 0;
11084 }
11085 }
11086 else
11087 retval = canon;
11088
11089 if (need_copy)
11090 retval = ((const char *)
11091 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11092 retval, strlen (retval)));
11093
11094 return retval;
11095 }
11096
11097 /* Inspect DIE in CU for a namespace alias. If one exists, record
11098 a new symbol for it.
11099
11100 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11101
11102 static int
11103 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11104 {
11105 struct attribute *attr;
11106
11107 /* If the die does not have a name, this is not a namespace
11108 alias. */
11109 attr = dwarf2_attr (die, DW_AT_name, cu);
11110 if (attr != NULL)
11111 {
11112 int num;
11113 struct die_info *d = die;
11114 struct dwarf2_cu *imported_cu = cu;
11115
11116 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11117 keep inspecting DIEs until we hit the underlying import. */
11118 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11119 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11120 {
11121 attr = dwarf2_attr (d, DW_AT_import, cu);
11122 if (attr == NULL)
11123 break;
11124
11125 d = follow_die_ref (d, attr, &imported_cu);
11126 if (d->tag != DW_TAG_imported_declaration)
11127 break;
11128 }
11129
11130 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11131 {
11132 complaint (_("DIE at %s has too many recursively imported "
11133 "declarations"), sect_offset_str (d->sect_off));
11134 return 0;
11135 }
11136
11137 if (attr != NULL)
11138 {
11139 struct type *type;
11140 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11141
11142 type = get_die_type_at_offset (sect_off, cu->per_cu);
11143 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11144 {
11145 /* This declaration is a global namespace alias. Add
11146 a symbol for it whose type is the aliased namespace. */
11147 new_symbol (die, type, cu);
11148 return 1;
11149 }
11150 }
11151 }
11152
11153 return 0;
11154 }
11155
11156 /* Return the using directives repository (global or local?) to use in the
11157 current context for CU.
11158
11159 For Ada, imported declarations can materialize renamings, which *may* be
11160 global. However it is impossible (for now?) in DWARF to distinguish
11161 "external" imported declarations and "static" ones. As all imported
11162 declarations seem to be static in all other languages, make them all CU-wide
11163 global only in Ada. */
11164
11165 static struct using_direct **
11166 using_directives (struct dwarf2_cu *cu)
11167 {
11168 if (cu->language == language_ada
11169 && cu->get_builder ()->outermost_context_p ())
11170 return cu->get_builder ()->get_global_using_directives ();
11171 else
11172 return cu->get_builder ()->get_local_using_directives ();
11173 }
11174
11175 /* Read the import statement specified by the given die and record it. */
11176
11177 static void
11178 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11179 {
11180 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11181 struct attribute *import_attr;
11182 struct die_info *imported_die, *child_die;
11183 struct dwarf2_cu *imported_cu;
11184 const char *imported_name;
11185 const char *imported_name_prefix;
11186 const char *canonical_name;
11187 const char *import_alias;
11188 const char *imported_declaration = NULL;
11189 const char *import_prefix;
11190 std::vector<const char *> excludes;
11191
11192 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11193 if (import_attr == NULL)
11194 {
11195 complaint (_("Tag '%s' has no DW_AT_import"),
11196 dwarf_tag_name (die->tag));
11197 return;
11198 }
11199
11200 imported_cu = cu;
11201 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11202 imported_name = dwarf2_name (imported_die, imported_cu);
11203 if (imported_name == NULL)
11204 {
11205 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11206
11207 The import in the following code:
11208 namespace A
11209 {
11210 typedef int B;
11211 }
11212
11213 int main ()
11214 {
11215 using A::B;
11216 B b;
11217 return b;
11218 }
11219
11220 ...
11221 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11222 <52> DW_AT_decl_file : 1
11223 <53> DW_AT_decl_line : 6
11224 <54> DW_AT_import : <0x75>
11225 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11226 <59> DW_AT_name : B
11227 <5b> DW_AT_decl_file : 1
11228 <5c> DW_AT_decl_line : 2
11229 <5d> DW_AT_type : <0x6e>
11230 ...
11231 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11232 <76> DW_AT_byte_size : 4
11233 <77> DW_AT_encoding : 5 (signed)
11234
11235 imports the wrong die ( 0x75 instead of 0x58 ).
11236 This case will be ignored until the gcc bug is fixed. */
11237 return;
11238 }
11239
11240 /* Figure out the local name after import. */
11241 import_alias = dwarf2_name (die, cu);
11242
11243 /* Figure out where the statement is being imported to. */
11244 import_prefix = determine_prefix (die, cu);
11245
11246 /* Figure out what the scope of the imported die is and prepend it
11247 to the name of the imported die. */
11248 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11249
11250 if (imported_die->tag != DW_TAG_namespace
11251 && imported_die->tag != DW_TAG_module)
11252 {
11253 imported_declaration = imported_name;
11254 canonical_name = imported_name_prefix;
11255 }
11256 else if (strlen (imported_name_prefix) > 0)
11257 canonical_name = obconcat (&objfile->objfile_obstack,
11258 imported_name_prefix,
11259 (cu->language == language_d ? "." : "::"),
11260 imported_name, (char *) NULL);
11261 else
11262 canonical_name = imported_name;
11263
11264 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11265 for (child_die = die->child; child_die && child_die->tag;
11266 child_die = sibling_die (child_die))
11267 {
11268 /* DWARF-4: A Fortran use statement with a “rename list” may be
11269 represented by an imported module entry with an import attribute
11270 referring to the module and owned entries corresponding to those
11271 entities that are renamed as part of being imported. */
11272
11273 if (child_die->tag != DW_TAG_imported_declaration)
11274 {
11275 complaint (_("child DW_TAG_imported_declaration expected "
11276 "- DIE at %s [in module %s]"),
11277 sect_offset_str (child_die->sect_off),
11278 objfile_name (objfile));
11279 continue;
11280 }
11281
11282 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11283 if (import_attr == NULL)
11284 {
11285 complaint (_("Tag '%s' has no DW_AT_import"),
11286 dwarf_tag_name (child_die->tag));
11287 continue;
11288 }
11289
11290 imported_cu = cu;
11291 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11292 &imported_cu);
11293 imported_name = dwarf2_name (imported_die, imported_cu);
11294 if (imported_name == NULL)
11295 {
11296 complaint (_("child DW_TAG_imported_declaration has unknown "
11297 "imported name - DIE at %s [in module %s]"),
11298 sect_offset_str (child_die->sect_off),
11299 objfile_name (objfile));
11300 continue;
11301 }
11302
11303 excludes.push_back (imported_name);
11304
11305 process_die (child_die, cu);
11306 }
11307
11308 add_using_directive (using_directives (cu),
11309 import_prefix,
11310 canonical_name,
11311 import_alias,
11312 imported_declaration,
11313 excludes,
11314 0,
11315 &objfile->objfile_obstack);
11316 }
11317
11318 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11319 types, but gives them a size of zero. Starting with version 14,
11320 ICC is compatible with GCC. */
11321
11322 static bool
11323 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11324 {
11325 if (!cu->checked_producer)
11326 check_producer (cu);
11327
11328 return cu->producer_is_icc_lt_14;
11329 }
11330
11331 /* ICC generates a DW_AT_type for C void functions. This was observed on
11332 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11333 which says that void functions should not have a DW_AT_type. */
11334
11335 static bool
11336 producer_is_icc (struct dwarf2_cu *cu)
11337 {
11338 if (!cu->checked_producer)
11339 check_producer (cu);
11340
11341 return cu->producer_is_icc;
11342 }
11343
11344 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11345 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11346 this, it was first present in GCC release 4.3.0. */
11347
11348 static bool
11349 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11350 {
11351 if (!cu->checked_producer)
11352 check_producer (cu);
11353
11354 return cu->producer_is_gcc_lt_4_3;
11355 }
11356
11357 static file_and_directory
11358 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11359 {
11360 file_and_directory res;
11361
11362 /* Find the filename. Do not use dwarf2_name here, since the filename
11363 is not a source language identifier. */
11364 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11365 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11366
11367 if (res.comp_dir == NULL
11368 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11369 && IS_ABSOLUTE_PATH (res.name))
11370 {
11371 res.comp_dir_storage = ldirname (res.name);
11372 if (!res.comp_dir_storage.empty ())
11373 res.comp_dir = res.comp_dir_storage.c_str ();
11374 }
11375 if (res.comp_dir != NULL)
11376 {
11377 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11378 directory, get rid of it. */
11379 const char *cp = strchr (res.comp_dir, ':');
11380
11381 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11382 res.comp_dir = cp + 1;
11383 }
11384
11385 if (res.name == NULL)
11386 res.name = "<unknown>";
11387
11388 return res;
11389 }
11390
11391 /* Handle DW_AT_stmt_list for a compilation unit.
11392 DIE is the DW_TAG_compile_unit die for CU.
11393 COMP_DIR is the compilation directory. LOWPC is passed to
11394 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11395
11396 static void
11397 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11398 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11399 {
11400 struct dwarf2_per_objfile *dwarf2_per_objfile
11401 = cu->per_cu->dwarf2_per_objfile;
11402 struct objfile *objfile = dwarf2_per_objfile->objfile;
11403 struct attribute *attr;
11404 struct line_header line_header_local;
11405 hashval_t line_header_local_hash;
11406 void **slot;
11407 int decode_mapping;
11408
11409 gdb_assert (! cu->per_cu->is_debug_types);
11410
11411 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11412 if (attr == NULL)
11413 return;
11414
11415 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11416
11417 /* The line header hash table is only created if needed (it exists to
11418 prevent redundant reading of the line table for partial_units).
11419 If we're given a partial_unit, we'll need it. If we're given a
11420 compile_unit, then use the line header hash table if it's already
11421 created, but don't create one just yet. */
11422
11423 if (dwarf2_per_objfile->line_header_hash == NULL
11424 && die->tag == DW_TAG_partial_unit)
11425 {
11426 dwarf2_per_objfile->line_header_hash
11427 = htab_create_alloc_ex (127, line_header_hash_voidp,
11428 line_header_eq_voidp,
11429 free_line_header_voidp,
11430 &objfile->objfile_obstack,
11431 hashtab_obstack_allocate,
11432 dummy_obstack_deallocate);
11433 }
11434
11435 line_header_local.sect_off = line_offset;
11436 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11437 line_header_local_hash = line_header_hash (&line_header_local);
11438 if (dwarf2_per_objfile->line_header_hash != NULL)
11439 {
11440 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11441 &line_header_local,
11442 line_header_local_hash, NO_INSERT);
11443
11444 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11445 is not present in *SLOT (since if there is something in *SLOT then
11446 it will be for a partial_unit). */
11447 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11448 {
11449 gdb_assert (*slot != NULL);
11450 cu->line_header = (struct line_header *) *slot;
11451 return;
11452 }
11453 }
11454
11455 /* dwarf_decode_line_header does not yet provide sufficient information.
11456 We always have to call also dwarf_decode_lines for it. */
11457 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11458 if (lh == NULL)
11459 return;
11460
11461 cu->line_header = lh.release ();
11462 cu->line_header_die_owner = die;
11463
11464 if (dwarf2_per_objfile->line_header_hash == NULL)
11465 slot = NULL;
11466 else
11467 {
11468 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11469 &line_header_local,
11470 line_header_local_hash, INSERT);
11471 gdb_assert (slot != NULL);
11472 }
11473 if (slot != NULL && *slot == NULL)
11474 {
11475 /* This newly decoded line number information unit will be owned
11476 by line_header_hash hash table. */
11477 *slot = cu->line_header;
11478 cu->line_header_die_owner = NULL;
11479 }
11480 else
11481 {
11482 /* We cannot free any current entry in (*slot) as that struct line_header
11483 may be already used by multiple CUs. Create only temporary decoded
11484 line_header for this CU - it may happen at most once for each line
11485 number information unit. And if we're not using line_header_hash
11486 then this is what we want as well. */
11487 gdb_assert (die->tag != DW_TAG_partial_unit);
11488 }
11489 decode_mapping = (die->tag != DW_TAG_partial_unit);
11490 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11491 decode_mapping);
11492
11493 }
11494
11495 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11496
11497 static void
11498 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11499 {
11500 struct dwarf2_per_objfile *dwarf2_per_objfile
11501 = cu->per_cu->dwarf2_per_objfile;
11502 struct objfile *objfile = dwarf2_per_objfile->objfile;
11503 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11504 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11505 CORE_ADDR highpc = ((CORE_ADDR) 0);
11506 struct attribute *attr;
11507 struct die_info *child_die;
11508 CORE_ADDR baseaddr;
11509
11510 prepare_one_comp_unit (cu, die, cu->language);
11511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11512
11513 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11514
11515 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11516 from finish_block. */
11517 if (lowpc == ((CORE_ADDR) -1))
11518 lowpc = highpc;
11519 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11520
11521 file_and_directory fnd = find_file_and_directory (die, cu);
11522
11523 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11524 standardised yet. As a workaround for the language detection we fall
11525 back to the DW_AT_producer string. */
11526 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11527 cu->language = language_opencl;
11528
11529 /* Similar hack for Go. */
11530 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11531 set_cu_language (DW_LANG_Go, cu);
11532
11533 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11534
11535 /* Decode line number information if present. We do this before
11536 processing child DIEs, so that the line header table is available
11537 for DW_AT_decl_file. */
11538 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11539
11540 /* Process all dies in compilation unit. */
11541 if (die->child != NULL)
11542 {
11543 child_die = die->child;
11544 while (child_die && child_die->tag)
11545 {
11546 process_die (child_die, cu);
11547 child_die = sibling_die (child_die);
11548 }
11549 }
11550
11551 /* Decode macro information, if present. Dwarf 2 macro information
11552 refers to information in the line number info statement program
11553 header, so we can only read it if we've read the header
11554 successfully. */
11555 attr = dwarf2_attr (die, DW_AT_macros, cu);
11556 if (attr == NULL)
11557 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11558 if (attr && cu->line_header)
11559 {
11560 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11561 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11562
11563 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11564 }
11565 else
11566 {
11567 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11568 if (attr && cu->line_header)
11569 {
11570 unsigned int macro_offset = DW_UNSND (attr);
11571
11572 dwarf_decode_macros (cu, macro_offset, 0);
11573 }
11574 }
11575 }
11576
11577 void
11578 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11579 {
11580 struct type_unit_group *tu_group;
11581 int first_time;
11582 struct attribute *attr;
11583 unsigned int i;
11584 struct signatured_type *sig_type;
11585
11586 gdb_assert (per_cu->is_debug_types);
11587 sig_type = (struct signatured_type *) per_cu;
11588
11589 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11590
11591 /* If we're using .gdb_index (includes -readnow) then
11592 per_cu->type_unit_group may not have been set up yet. */
11593 if (sig_type->type_unit_group == NULL)
11594 sig_type->type_unit_group = get_type_unit_group (this, attr);
11595 tu_group = sig_type->type_unit_group;
11596
11597 /* If we've already processed this stmt_list there's no real need to
11598 do it again, we could fake it and just recreate the part we need
11599 (file name,index -> symtab mapping). If data shows this optimization
11600 is useful we can do it then. */
11601 first_time = tu_group->compunit_symtab == NULL;
11602
11603 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11604 debug info. */
11605 line_header_up lh;
11606 if (attr != NULL)
11607 {
11608 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11609 lh = dwarf_decode_line_header (line_offset, this);
11610 }
11611 if (lh == NULL)
11612 {
11613 if (first_time)
11614 start_symtab ("", NULL, 0);
11615 else
11616 {
11617 gdb_assert (tu_group->symtabs == NULL);
11618 gdb_assert (m_builder == nullptr);
11619 struct compunit_symtab *cust = tu_group->compunit_symtab;
11620 m_builder.reset (new struct buildsym_compunit
11621 (COMPUNIT_OBJFILE (cust), "",
11622 COMPUNIT_DIRNAME (cust),
11623 compunit_language (cust),
11624 0, cust));
11625 }
11626 return;
11627 }
11628
11629 line_header = lh.release ();
11630 line_header_die_owner = die;
11631
11632 if (first_time)
11633 {
11634 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11635
11636 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11637 still initializing it, and our caller (a few levels up)
11638 process_full_type_unit still needs to know if this is the first
11639 time. */
11640
11641 tu_group->num_symtabs = line_header->file_names.size ();
11642 tu_group->symtabs = XNEWVEC (struct symtab *,
11643 line_header->file_names.size ());
11644
11645 for (i = 0; i < line_header->file_names.size (); ++i)
11646 {
11647 file_entry &fe = line_header->file_names[i];
11648
11649 dwarf2_start_subfile (this, fe.name,
11650 fe.include_dir (line_header));
11651 buildsym_compunit *b = get_builder ();
11652 if (b->get_current_subfile ()->symtab == NULL)
11653 {
11654 /* NOTE: start_subfile will recognize when it's been
11655 passed a file it has already seen. So we can't
11656 assume there's a simple mapping from
11657 cu->line_header->file_names to subfiles, plus
11658 cu->line_header->file_names may contain dups. */
11659 b->get_current_subfile ()->symtab
11660 = allocate_symtab (cust, b->get_current_subfile ()->name);
11661 }
11662
11663 fe.symtab = b->get_current_subfile ()->symtab;
11664 tu_group->symtabs[i] = fe.symtab;
11665 }
11666 }
11667 else
11668 {
11669 gdb_assert (m_builder == nullptr);
11670 struct compunit_symtab *cust = tu_group->compunit_symtab;
11671 m_builder.reset (new struct buildsym_compunit
11672 (COMPUNIT_OBJFILE (cust), "",
11673 COMPUNIT_DIRNAME (cust),
11674 compunit_language (cust),
11675 0, cust));
11676
11677 for (i = 0; i < line_header->file_names.size (); ++i)
11678 {
11679 file_entry &fe = line_header->file_names[i];
11680
11681 fe.symtab = tu_group->symtabs[i];
11682 }
11683 }
11684
11685 /* The main symtab is allocated last. Type units don't have DW_AT_name
11686 so they don't have a "real" (so to speak) symtab anyway.
11687 There is later code that will assign the main symtab to all symbols
11688 that don't have one. We need to handle the case of a symbol with a
11689 missing symtab (DW_AT_decl_file) anyway. */
11690 }
11691
11692 /* Process DW_TAG_type_unit.
11693 For TUs we want to skip the first top level sibling if it's not the
11694 actual type being defined by this TU. In this case the first top
11695 level sibling is there to provide context only. */
11696
11697 static void
11698 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11699 {
11700 struct die_info *child_die;
11701
11702 prepare_one_comp_unit (cu, die, language_minimal);
11703
11704 /* Initialize (or reinitialize) the machinery for building symtabs.
11705 We do this before processing child DIEs, so that the line header table
11706 is available for DW_AT_decl_file. */
11707 cu->setup_type_unit_groups (die);
11708
11709 if (die->child != NULL)
11710 {
11711 child_die = die->child;
11712 while (child_die && child_die->tag)
11713 {
11714 process_die (child_die, cu);
11715 child_die = sibling_die (child_die);
11716 }
11717 }
11718 }
11719 \f
11720 /* DWO/DWP files.
11721
11722 http://gcc.gnu.org/wiki/DebugFission
11723 http://gcc.gnu.org/wiki/DebugFissionDWP
11724
11725 To simplify handling of both DWO files ("object" files with the DWARF info)
11726 and DWP files (a file with the DWOs packaged up into one file), we treat
11727 DWP files as having a collection of virtual DWO files. */
11728
11729 static hashval_t
11730 hash_dwo_file (const void *item)
11731 {
11732 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11733 hashval_t hash;
11734
11735 hash = htab_hash_string (dwo_file->dwo_name);
11736 if (dwo_file->comp_dir != NULL)
11737 hash += htab_hash_string (dwo_file->comp_dir);
11738 return hash;
11739 }
11740
11741 static int
11742 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11743 {
11744 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11745 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11746
11747 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11748 return 0;
11749 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11750 return lhs->comp_dir == rhs->comp_dir;
11751 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11752 }
11753
11754 /* Allocate a hash table for DWO files. */
11755
11756 static htab_up
11757 allocate_dwo_file_hash_table (struct objfile *objfile)
11758 {
11759 auto delete_dwo_file = [] (void *item)
11760 {
11761 struct dwo_file *dwo_file = (struct dwo_file *) item;
11762
11763 delete dwo_file;
11764 };
11765
11766 return htab_up (htab_create_alloc_ex (41,
11767 hash_dwo_file,
11768 eq_dwo_file,
11769 delete_dwo_file,
11770 &objfile->objfile_obstack,
11771 hashtab_obstack_allocate,
11772 dummy_obstack_deallocate));
11773 }
11774
11775 /* Lookup DWO file DWO_NAME. */
11776
11777 static void **
11778 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11779 const char *dwo_name,
11780 const char *comp_dir)
11781 {
11782 struct dwo_file find_entry;
11783 void **slot;
11784
11785 if (dwarf2_per_objfile->dwo_files == NULL)
11786 dwarf2_per_objfile->dwo_files
11787 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11788
11789 find_entry.dwo_name = dwo_name;
11790 find_entry.comp_dir = comp_dir;
11791 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11792 INSERT);
11793
11794 return slot;
11795 }
11796
11797 static hashval_t
11798 hash_dwo_unit (const void *item)
11799 {
11800 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11801
11802 /* This drops the top 32 bits of the id, but is ok for a hash. */
11803 return dwo_unit->signature;
11804 }
11805
11806 static int
11807 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11808 {
11809 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11810 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11811
11812 /* The signature is assumed to be unique within the DWO file.
11813 So while object file CU dwo_id's always have the value zero,
11814 that's OK, assuming each object file DWO file has only one CU,
11815 and that's the rule for now. */
11816 return lhs->signature == rhs->signature;
11817 }
11818
11819 /* Allocate a hash table for DWO CUs,TUs.
11820 There is one of these tables for each of CUs,TUs for each DWO file. */
11821
11822 static htab_t
11823 allocate_dwo_unit_table (struct objfile *objfile)
11824 {
11825 /* Start out with a pretty small number.
11826 Generally DWO files contain only one CU and maybe some TUs. */
11827 return htab_create_alloc_ex (3,
11828 hash_dwo_unit,
11829 eq_dwo_unit,
11830 NULL,
11831 &objfile->objfile_obstack,
11832 hashtab_obstack_allocate,
11833 dummy_obstack_deallocate);
11834 }
11835
11836 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11837
11838 struct create_dwo_cu_data
11839 {
11840 struct dwo_file *dwo_file;
11841 struct dwo_unit dwo_unit;
11842 };
11843
11844 /* die_reader_func for create_dwo_cu. */
11845
11846 static void
11847 create_dwo_cu_reader (const struct die_reader_specs *reader,
11848 const gdb_byte *info_ptr,
11849 struct die_info *comp_unit_die,
11850 int has_children,
11851 void *datap)
11852 {
11853 struct dwarf2_cu *cu = reader->cu;
11854 sect_offset sect_off = cu->per_cu->sect_off;
11855 struct dwarf2_section_info *section = cu->per_cu->section;
11856 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11857 struct dwo_file *dwo_file = data->dwo_file;
11858 struct dwo_unit *dwo_unit = &data->dwo_unit;
11859 struct attribute *attr;
11860
11861 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11862 if (attr == NULL)
11863 {
11864 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11865 " its dwo_id [in module %s]"),
11866 sect_offset_str (sect_off), dwo_file->dwo_name);
11867 return;
11868 }
11869
11870 dwo_unit->dwo_file = dwo_file;
11871 dwo_unit->signature = DW_UNSND (attr);
11872 dwo_unit->section = section;
11873 dwo_unit->sect_off = sect_off;
11874 dwo_unit->length = cu->per_cu->length;
11875
11876 if (dwarf_read_debug)
11877 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11878 sect_offset_str (sect_off),
11879 hex_string (dwo_unit->signature));
11880 }
11881
11882 /* Create the dwo_units for the CUs in a DWO_FILE.
11883 Note: This function processes DWO files only, not DWP files. */
11884
11885 static void
11886 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11887 struct dwo_file &dwo_file, dwarf2_section_info &section,
11888 htab_t &cus_htab)
11889 {
11890 struct objfile *objfile = dwarf2_per_objfile->objfile;
11891 const gdb_byte *info_ptr, *end_ptr;
11892
11893 dwarf2_read_section (objfile, &section);
11894 info_ptr = section.buffer;
11895
11896 if (info_ptr == NULL)
11897 return;
11898
11899 if (dwarf_read_debug)
11900 {
11901 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11902 get_section_name (&section),
11903 get_section_file_name (&section));
11904 }
11905
11906 end_ptr = info_ptr + section.size;
11907 while (info_ptr < end_ptr)
11908 {
11909 struct dwarf2_per_cu_data per_cu;
11910 struct create_dwo_cu_data create_dwo_cu_data;
11911 struct dwo_unit *dwo_unit;
11912 void **slot;
11913 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11914
11915 memset (&create_dwo_cu_data.dwo_unit, 0,
11916 sizeof (create_dwo_cu_data.dwo_unit));
11917 memset (&per_cu, 0, sizeof (per_cu));
11918 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11919 per_cu.is_debug_types = 0;
11920 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11921 per_cu.section = &section;
11922 create_dwo_cu_data.dwo_file = &dwo_file;
11923
11924 init_cutu_and_read_dies_no_follow (
11925 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11926 info_ptr += per_cu.length;
11927
11928 // If the unit could not be parsed, skip it.
11929 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11930 continue;
11931
11932 if (cus_htab == NULL)
11933 cus_htab = allocate_dwo_unit_table (objfile);
11934
11935 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11936 *dwo_unit = create_dwo_cu_data.dwo_unit;
11937 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11938 gdb_assert (slot != NULL);
11939 if (*slot != NULL)
11940 {
11941 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11942 sect_offset dup_sect_off = dup_cu->sect_off;
11943
11944 complaint (_("debug cu entry at offset %s is duplicate to"
11945 " the entry at offset %s, signature %s"),
11946 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11947 hex_string (dwo_unit->signature));
11948 }
11949 *slot = (void *)dwo_unit;
11950 }
11951 }
11952
11953 /* DWP file .debug_{cu,tu}_index section format:
11954 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11955
11956 DWP Version 1:
11957
11958 Both index sections have the same format, and serve to map a 64-bit
11959 signature to a set of section numbers. Each section begins with a header,
11960 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11961 indexes, and a pool of 32-bit section numbers. The index sections will be
11962 aligned at 8-byte boundaries in the file.
11963
11964 The index section header consists of:
11965
11966 V, 32 bit version number
11967 -, 32 bits unused
11968 N, 32 bit number of compilation units or type units in the index
11969 M, 32 bit number of slots in the hash table
11970
11971 Numbers are recorded using the byte order of the application binary.
11972
11973 The hash table begins at offset 16 in the section, and consists of an array
11974 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11975 order of the application binary). Unused slots in the hash table are 0.
11976 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11977
11978 The parallel table begins immediately after the hash table
11979 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11980 array of 32-bit indexes (using the byte order of the application binary),
11981 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11982 table contains a 32-bit index into the pool of section numbers. For unused
11983 hash table slots, the corresponding entry in the parallel table will be 0.
11984
11985 The pool of section numbers begins immediately following the hash table
11986 (at offset 16 + 12 * M from the beginning of the section). The pool of
11987 section numbers consists of an array of 32-bit words (using the byte order
11988 of the application binary). Each item in the array is indexed starting
11989 from 0. The hash table entry provides the index of the first section
11990 number in the set. Additional section numbers in the set follow, and the
11991 set is terminated by a 0 entry (section number 0 is not used in ELF).
11992
11993 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11994 section must be the first entry in the set, and the .debug_abbrev.dwo must
11995 be the second entry. Other members of the set may follow in any order.
11996
11997 ---
11998
11999 DWP Version 2:
12000
12001 DWP Version 2 combines all the .debug_info, etc. sections into one,
12002 and the entries in the index tables are now offsets into these sections.
12003 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12004 section.
12005
12006 Index Section Contents:
12007 Header
12008 Hash Table of Signatures dwp_hash_table.hash_table
12009 Parallel Table of Indices dwp_hash_table.unit_table
12010 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12011 Table of Section Sizes dwp_hash_table.v2.sizes
12012
12013 The index section header consists of:
12014
12015 V, 32 bit version number
12016 L, 32 bit number of columns in the table of section offsets
12017 N, 32 bit number of compilation units or type units in the index
12018 M, 32 bit number of slots in the hash table
12019
12020 Numbers are recorded using the byte order of the application binary.
12021
12022 The hash table has the same format as version 1.
12023 The parallel table of indices has the same format as version 1,
12024 except that the entries are origin-1 indices into the table of sections
12025 offsets and the table of section sizes.
12026
12027 The table of offsets begins immediately following the parallel table
12028 (at offset 16 + 12 * M from the beginning of the section). The table is
12029 a two-dimensional array of 32-bit words (using the byte order of the
12030 application binary), with L columns and N+1 rows, in row-major order.
12031 Each row in the array is indexed starting from 0. The first row provides
12032 a key to the remaining rows: each column in this row provides an identifier
12033 for a debug section, and the offsets in the same column of subsequent rows
12034 refer to that section. The section identifiers are:
12035
12036 DW_SECT_INFO 1 .debug_info.dwo
12037 DW_SECT_TYPES 2 .debug_types.dwo
12038 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12039 DW_SECT_LINE 4 .debug_line.dwo
12040 DW_SECT_LOC 5 .debug_loc.dwo
12041 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12042 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12043 DW_SECT_MACRO 8 .debug_macro.dwo
12044
12045 The offsets provided by the CU and TU index sections are the base offsets
12046 for the contributions made by each CU or TU to the corresponding section
12047 in the package file. Each CU and TU header contains an abbrev_offset
12048 field, used to find the abbreviations table for that CU or TU within the
12049 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12050 be interpreted as relative to the base offset given in the index section.
12051 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12052 should be interpreted as relative to the base offset for .debug_line.dwo,
12053 and offsets into other debug sections obtained from DWARF attributes should
12054 also be interpreted as relative to the corresponding base offset.
12055
12056 The table of sizes begins immediately following the table of offsets.
12057 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12058 with L columns and N rows, in row-major order. Each row in the array is
12059 indexed starting from 1 (row 0 is shared by the two tables).
12060
12061 ---
12062
12063 Hash table lookup is handled the same in version 1 and 2:
12064
12065 We assume that N and M will not exceed 2^32 - 1.
12066 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12067
12068 Given a 64-bit compilation unit signature or a type signature S, an entry
12069 in the hash table is located as follows:
12070
12071 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12072 the low-order k bits all set to 1.
12073
12074 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12075
12076 3) If the hash table entry at index H matches the signature, use that
12077 entry. If the hash table entry at index H is unused (all zeroes),
12078 terminate the search: the signature is not present in the table.
12079
12080 4) Let H = (H + H') modulo M. Repeat at Step 3.
12081
12082 Because M > N and H' and M are relatively prime, the search is guaranteed
12083 to stop at an unused slot or find the match. */
12084
12085 /* Create a hash table to map DWO IDs to their CU/TU entry in
12086 .debug_{info,types}.dwo in DWP_FILE.
12087 Returns NULL if there isn't one.
12088 Note: This function processes DWP files only, not DWO files. */
12089
12090 static struct dwp_hash_table *
12091 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12092 struct dwp_file *dwp_file, int is_debug_types)
12093 {
12094 struct objfile *objfile = dwarf2_per_objfile->objfile;
12095 bfd *dbfd = dwp_file->dbfd.get ();
12096 const gdb_byte *index_ptr, *index_end;
12097 struct dwarf2_section_info *index;
12098 uint32_t version, nr_columns, nr_units, nr_slots;
12099 struct dwp_hash_table *htab;
12100
12101 if (is_debug_types)
12102 index = &dwp_file->sections.tu_index;
12103 else
12104 index = &dwp_file->sections.cu_index;
12105
12106 if (dwarf2_section_empty_p (index))
12107 return NULL;
12108 dwarf2_read_section (objfile, index);
12109
12110 index_ptr = index->buffer;
12111 index_end = index_ptr + index->size;
12112
12113 version = read_4_bytes (dbfd, index_ptr);
12114 index_ptr += 4;
12115 if (version == 2)
12116 nr_columns = read_4_bytes (dbfd, index_ptr);
12117 else
12118 nr_columns = 0;
12119 index_ptr += 4;
12120 nr_units = read_4_bytes (dbfd, index_ptr);
12121 index_ptr += 4;
12122 nr_slots = read_4_bytes (dbfd, index_ptr);
12123 index_ptr += 4;
12124
12125 if (version != 1 && version != 2)
12126 {
12127 error (_("Dwarf Error: unsupported DWP file version (%s)"
12128 " [in module %s]"),
12129 pulongest (version), dwp_file->name);
12130 }
12131 if (nr_slots != (nr_slots & -nr_slots))
12132 {
12133 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12134 " is not power of 2 [in module %s]"),
12135 pulongest (nr_slots), dwp_file->name);
12136 }
12137
12138 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12139 htab->version = version;
12140 htab->nr_columns = nr_columns;
12141 htab->nr_units = nr_units;
12142 htab->nr_slots = nr_slots;
12143 htab->hash_table = index_ptr;
12144 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12145
12146 /* Exit early if the table is empty. */
12147 if (nr_slots == 0 || nr_units == 0
12148 || (version == 2 && nr_columns == 0))
12149 {
12150 /* All must be zero. */
12151 if (nr_slots != 0 || nr_units != 0
12152 || (version == 2 && nr_columns != 0))
12153 {
12154 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12155 " all zero [in modules %s]"),
12156 dwp_file->name);
12157 }
12158 return htab;
12159 }
12160
12161 if (version == 1)
12162 {
12163 htab->section_pool.v1.indices =
12164 htab->unit_table + sizeof (uint32_t) * nr_slots;
12165 /* It's harder to decide whether the section is too small in v1.
12166 V1 is deprecated anyway so we punt. */
12167 }
12168 else
12169 {
12170 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12171 int *ids = htab->section_pool.v2.section_ids;
12172 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12173 /* Reverse map for error checking. */
12174 int ids_seen[DW_SECT_MAX + 1];
12175 int i;
12176
12177 if (nr_columns < 2)
12178 {
12179 error (_("Dwarf Error: bad DWP hash table, too few columns"
12180 " in section table [in module %s]"),
12181 dwp_file->name);
12182 }
12183 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12184 {
12185 error (_("Dwarf Error: bad DWP hash table, too many columns"
12186 " in section table [in module %s]"),
12187 dwp_file->name);
12188 }
12189 memset (ids, 255, sizeof_ids);
12190 memset (ids_seen, 255, sizeof (ids_seen));
12191 for (i = 0; i < nr_columns; ++i)
12192 {
12193 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12194
12195 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12196 {
12197 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12198 " in section table [in module %s]"),
12199 id, dwp_file->name);
12200 }
12201 if (ids_seen[id] != -1)
12202 {
12203 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12204 " id %d in section table [in module %s]"),
12205 id, dwp_file->name);
12206 }
12207 ids_seen[id] = i;
12208 ids[i] = id;
12209 }
12210 /* Must have exactly one info or types section. */
12211 if (((ids_seen[DW_SECT_INFO] != -1)
12212 + (ids_seen[DW_SECT_TYPES] != -1))
12213 != 1)
12214 {
12215 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12216 " DWO info/types section [in module %s]"),
12217 dwp_file->name);
12218 }
12219 /* Must have an abbrev section. */
12220 if (ids_seen[DW_SECT_ABBREV] == -1)
12221 {
12222 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12223 " section [in module %s]"),
12224 dwp_file->name);
12225 }
12226 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12227 htab->section_pool.v2.sizes =
12228 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12229 * nr_units * nr_columns);
12230 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12231 * nr_units * nr_columns))
12232 > index_end)
12233 {
12234 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12235 " [in module %s]"),
12236 dwp_file->name);
12237 }
12238 }
12239
12240 return htab;
12241 }
12242
12243 /* Update SECTIONS with the data from SECTP.
12244
12245 This function is like the other "locate" section routines that are
12246 passed to bfd_map_over_sections, but in this context the sections to
12247 read comes from the DWP V1 hash table, not the full ELF section table.
12248
12249 The result is non-zero for success, or zero if an error was found. */
12250
12251 static int
12252 locate_v1_virtual_dwo_sections (asection *sectp,
12253 struct virtual_v1_dwo_sections *sections)
12254 {
12255 const struct dwop_section_names *names = &dwop_section_names;
12256
12257 if (section_is_p (sectp->name, &names->abbrev_dwo))
12258 {
12259 /* There can be only one. */
12260 if (sections->abbrev.s.section != NULL)
12261 return 0;
12262 sections->abbrev.s.section = sectp;
12263 sections->abbrev.size = bfd_get_section_size (sectp);
12264 }
12265 else if (section_is_p (sectp->name, &names->info_dwo)
12266 || section_is_p (sectp->name, &names->types_dwo))
12267 {
12268 /* There can be only one. */
12269 if (sections->info_or_types.s.section != NULL)
12270 return 0;
12271 sections->info_or_types.s.section = sectp;
12272 sections->info_or_types.size = bfd_get_section_size (sectp);
12273 }
12274 else if (section_is_p (sectp->name, &names->line_dwo))
12275 {
12276 /* There can be only one. */
12277 if (sections->line.s.section != NULL)
12278 return 0;
12279 sections->line.s.section = sectp;
12280 sections->line.size = bfd_get_section_size (sectp);
12281 }
12282 else if (section_is_p (sectp->name, &names->loc_dwo))
12283 {
12284 /* There can be only one. */
12285 if (sections->loc.s.section != NULL)
12286 return 0;
12287 sections->loc.s.section = sectp;
12288 sections->loc.size = bfd_get_section_size (sectp);
12289 }
12290 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12291 {
12292 /* There can be only one. */
12293 if (sections->macinfo.s.section != NULL)
12294 return 0;
12295 sections->macinfo.s.section = sectp;
12296 sections->macinfo.size = bfd_get_section_size (sectp);
12297 }
12298 else if (section_is_p (sectp->name, &names->macro_dwo))
12299 {
12300 /* There can be only one. */
12301 if (sections->macro.s.section != NULL)
12302 return 0;
12303 sections->macro.s.section = sectp;
12304 sections->macro.size = bfd_get_section_size (sectp);
12305 }
12306 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12307 {
12308 /* There can be only one. */
12309 if (sections->str_offsets.s.section != NULL)
12310 return 0;
12311 sections->str_offsets.s.section = sectp;
12312 sections->str_offsets.size = bfd_get_section_size (sectp);
12313 }
12314 else
12315 {
12316 /* No other kind of section is valid. */
12317 return 0;
12318 }
12319
12320 return 1;
12321 }
12322
12323 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12324 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12325 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12326 This is for DWP version 1 files. */
12327
12328 static struct dwo_unit *
12329 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12330 struct dwp_file *dwp_file,
12331 uint32_t unit_index,
12332 const char *comp_dir,
12333 ULONGEST signature, int is_debug_types)
12334 {
12335 struct objfile *objfile = dwarf2_per_objfile->objfile;
12336 const struct dwp_hash_table *dwp_htab =
12337 is_debug_types ? dwp_file->tus : dwp_file->cus;
12338 bfd *dbfd = dwp_file->dbfd.get ();
12339 const char *kind = is_debug_types ? "TU" : "CU";
12340 struct dwo_file *dwo_file;
12341 struct dwo_unit *dwo_unit;
12342 struct virtual_v1_dwo_sections sections;
12343 void **dwo_file_slot;
12344 int i;
12345
12346 gdb_assert (dwp_file->version == 1);
12347
12348 if (dwarf_read_debug)
12349 {
12350 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12351 kind,
12352 pulongest (unit_index), hex_string (signature),
12353 dwp_file->name);
12354 }
12355
12356 /* Fetch the sections of this DWO unit.
12357 Put a limit on the number of sections we look for so that bad data
12358 doesn't cause us to loop forever. */
12359
12360 #define MAX_NR_V1_DWO_SECTIONS \
12361 (1 /* .debug_info or .debug_types */ \
12362 + 1 /* .debug_abbrev */ \
12363 + 1 /* .debug_line */ \
12364 + 1 /* .debug_loc */ \
12365 + 1 /* .debug_str_offsets */ \
12366 + 1 /* .debug_macro or .debug_macinfo */ \
12367 + 1 /* trailing zero */)
12368
12369 memset (&sections, 0, sizeof (sections));
12370
12371 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12372 {
12373 asection *sectp;
12374 uint32_t section_nr =
12375 read_4_bytes (dbfd,
12376 dwp_htab->section_pool.v1.indices
12377 + (unit_index + i) * sizeof (uint32_t));
12378
12379 if (section_nr == 0)
12380 break;
12381 if (section_nr >= dwp_file->num_sections)
12382 {
12383 error (_("Dwarf Error: bad DWP hash table, section number too large"
12384 " [in module %s]"),
12385 dwp_file->name);
12386 }
12387
12388 sectp = dwp_file->elf_sections[section_nr];
12389 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12390 {
12391 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12392 " [in module %s]"),
12393 dwp_file->name);
12394 }
12395 }
12396
12397 if (i < 2
12398 || dwarf2_section_empty_p (&sections.info_or_types)
12399 || dwarf2_section_empty_p (&sections.abbrev))
12400 {
12401 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12402 " [in module %s]"),
12403 dwp_file->name);
12404 }
12405 if (i == MAX_NR_V1_DWO_SECTIONS)
12406 {
12407 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12408 " [in module %s]"),
12409 dwp_file->name);
12410 }
12411
12412 /* It's easier for the rest of the code if we fake a struct dwo_file and
12413 have dwo_unit "live" in that. At least for now.
12414
12415 The DWP file can be made up of a random collection of CUs and TUs.
12416 However, for each CU + set of TUs that came from the same original DWO
12417 file, we can combine them back into a virtual DWO file to save space
12418 (fewer struct dwo_file objects to allocate). Remember that for really
12419 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12420
12421 std::string virtual_dwo_name =
12422 string_printf ("virtual-dwo/%d-%d-%d-%d",
12423 get_section_id (&sections.abbrev),
12424 get_section_id (&sections.line),
12425 get_section_id (&sections.loc),
12426 get_section_id (&sections.str_offsets));
12427 /* Can we use an existing virtual DWO file? */
12428 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12429 virtual_dwo_name.c_str (),
12430 comp_dir);
12431 /* Create one if necessary. */
12432 if (*dwo_file_slot == NULL)
12433 {
12434 if (dwarf_read_debug)
12435 {
12436 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12437 virtual_dwo_name.c_str ());
12438 }
12439 dwo_file = new struct dwo_file;
12440 dwo_file->dwo_name
12441 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12442 virtual_dwo_name.c_str (),
12443 virtual_dwo_name.size ());
12444 dwo_file->comp_dir = comp_dir;
12445 dwo_file->sections.abbrev = sections.abbrev;
12446 dwo_file->sections.line = sections.line;
12447 dwo_file->sections.loc = sections.loc;
12448 dwo_file->sections.macinfo = sections.macinfo;
12449 dwo_file->sections.macro = sections.macro;
12450 dwo_file->sections.str_offsets = sections.str_offsets;
12451 /* The "str" section is global to the entire DWP file. */
12452 dwo_file->sections.str = dwp_file->sections.str;
12453 /* The info or types section is assigned below to dwo_unit,
12454 there's no need to record it in dwo_file.
12455 Also, we can't simply record type sections in dwo_file because
12456 we record a pointer into the vector in dwo_unit. As we collect more
12457 types we'll grow the vector and eventually have to reallocate space
12458 for it, invalidating all copies of pointers into the previous
12459 contents. */
12460 *dwo_file_slot = dwo_file;
12461 }
12462 else
12463 {
12464 if (dwarf_read_debug)
12465 {
12466 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12467 virtual_dwo_name.c_str ());
12468 }
12469 dwo_file = (struct dwo_file *) *dwo_file_slot;
12470 }
12471
12472 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12473 dwo_unit->dwo_file = dwo_file;
12474 dwo_unit->signature = signature;
12475 dwo_unit->section =
12476 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12477 *dwo_unit->section = sections.info_or_types;
12478 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12479
12480 return dwo_unit;
12481 }
12482
12483 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12484 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12485 piece within that section used by a TU/CU, return a virtual section
12486 of just that piece. */
12487
12488 static struct dwarf2_section_info
12489 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12490 struct dwarf2_section_info *section,
12491 bfd_size_type offset, bfd_size_type size)
12492 {
12493 struct dwarf2_section_info result;
12494 asection *sectp;
12495
12496 gdb_assert (section != NULL);
12497 gdb_assert (!section->is_virtual);
12498
12499 memset (&result, 0, sizeof (result));
12500 result.s.containing_section = section;
12501 result.is_virtual = true;
12502
12503 if (size == 0)
12504 return result;
12505
12506 sectp = get_section_bfd_section (section);
12507
12508 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12509 bounds of the real section. This is a pretty-rare event, so just
12510 flag an error (easier) instead of a warning and trying to cope. */
12511 if (sectp == NULL
12512 || offset + size > bfd_get_section_size (sectp))
12513 {
12514 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12515 " in section %s [in module %s]"),
12516 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12517 objfile_name (dwarf2_per_objfile->objfile));
12518 }
12519
12520 result.virtual_offset = offset;
12521 result.size = size;
12522 return result;
12523 }
12524
12525 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12526 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12527 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12528 This is for DWP version 2 files. */
12529
12530 static struct dwo_unit *
12531 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12532 struct dwp_file *dwp_file,
12533 uint32_t unit_index,
12534 const char *comp_dir,
12535 ULONGEST signature, int is_debug_types)
12536 {
12537 struct objfile *objfile = dwarf2_per_objfile->objfile;
12538 const struct dwp_hash_table *dwp_htab =
12539 is_debug_types ? dwp_file->tus : dwp_file->cus;
12540 bfd *dbfd = dwp_file->dbfd.get ();
12541 const char *kind = is_debug_types ? "TU" : "CU";
12542 struct dwo_file *dwo_file;
12543 struct dwo_unit *dwo_unit;
12544 struct virtual_v2_dwo_sections sections;
12545 void **dwo_file_slot;
12546 int i;
12547
12548 gdb_assert (dwp_file->version == 2);
12549
12550 if (dwarf_read_debug)
12551 {
12552 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12553 kind,
12554 pulongest (unit_index), hex_string (signature),
12555 dwp_file->name);
12556 }
12557
12558 /* Fetch the section offsets of this DWO unit. */
12559
12560 memset (&sections, 0, sizeof (sections));
12561
12562 for (i = 0; i < dwp_htab->nr_columns; ++i)
12563 {
12564 uint32_t offset = read_4_bytes (dbfd,
12565 dwp_htab->section_pool.v2.offsets
12566 + (((unit_index - 1) * dwp_htab->nr_columns
12567 + i)
12568 * sizeof (uint32_t)));
12569 uint32_t size = read_4_bytes (dbfd,
12570 dwp_htab->section_pool.v2.sizes
12571 + (((unit_index - 1) * dwp_htab->nr_columns
12572 + i)
12573 * sizeof (uint32_t)));
12574
12575 switch (dwp_htab->section_pool.v2.section_ids[i])
12576 {
12577 case DW_SECT_INFO:
12578 case DW_SECT_TYPES:
12579 sections.info_or_types_offset = offset;
12580 sections.info_or_types_size = size;
12581 break;
12582 case DW_SECT_ABBREV:
12583 sections.abbrev_offset = offset;
12584 sections.abbrev_size = size;
12585 break;
12586 case DW_SECT_LINE:
12587 sections.line_offset = offset;
12588 sections.line_size = size;
12589 break;
12590 case DW_SECT_LOC:
12591 sections.loc_offset = offset;
12592 sections.loc_size = size;
12593 break;
12594 case DW_SECT_STR_OFFSETS:
12595 sections.str_offsets_offset = offset;
12596 sections.str_offsets_size = size;
12597 break;
12598 case DW_SECT_MACINFO:
12599 sections.macinfo_offset = offset;
12600 sections.macinfo_size = size;
12601 break;
12602 case DW_SECT_MACRO:
12603 sections.macro_offset = offset;
12604 sections.macro_size = size;
12605 break;
12606 }
12607 }
12608
12609 /* It's easier for the rest of the code if we fake a struct dwo_file and
12610 have dwo_unit "live" in that. At least for now.
12611
12612 The DWP file can be made up of a random collection of CUs and TUs.
12613 However, for each CU + set of TUs that came from the same original DWO
12614 file, we can combine them back into a virtual DWO file to save space
12615 (fewer struct dwo_file objects to allocate). Remember that for really
12616 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12617
12618 std::string virtual_dwo_name =
12619 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12620 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12621 (long) (sections.line_size ? sections.line_offset : 0),
12622 (long) (sections.loc_size ? sections.loc_offset : 0),
12623 (long) (sections.str_offsets_size
12624 ? sections.str_offsets_offset : 0));
12625 /* Can we use an existing virtual DWO file? */
12626 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12627 virtual_dwo_name.c_str (),
12628 comp_dir);
12629 /* Create one if necessary. */
12630 if (*dwo_file_slot == NULL)
12631 {
12632 if (dwarf_read_debug)
12633 {
12634 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12635 virtual_dwo_name.c_str ());
12636 }
12637 dwo_file = new struct dwo_file;
12638 dwo_file->dwo_name
12639 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12640 virtual_dwo_name.c_str (),
12641 virtual_dwo_name.size ());
12642 dwo_file->comp_dir = comp_dir;
12643 dwo_file->sections.abbrev =
12644 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12645 sections.abbrev_offset, sections.abbrev_size);
12646 dwo_file->sections.line =
12647 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12648 sections.line_offset, sections.line_size);
12649 dwo_file->sections.loc =
12650 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12651 sections.loc_offset, sections.loc_size);
12652 dwo_file->sections.macinfo =
12653 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12654 sections.macinfo_offset, sections.macinfo_size);
12655 dwo_file->sections.macro =
12656 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12657 sections.macro_offset, sections.macro_size);
12658 dwo_file->sections.str_offsets =
12659 create_dwp_v2_section (dwarf2_per_objfile,
12660 &dwp_file->sections.str_offsets,
12661 sections.str_offsets_offset,
12662 sections.str_offsets_size);
12663 /* The "str" section is global to the entire DWP file. */
12664 dwo_file->sections.str = dwp_file->sections.str;
12665 /* The info or types section is assigned below to dwo_unit,
12666 there's no need to record it in dwo_file.
12667 Also, we can't simply record type sections in dwo_file because
12668 we record a pointer into the vector in dwo_unit. As we collect more
12669 types we'll grow the vector and eventually have to reallocate space
12670 for it, invalidating all copies of pointers into the previous
12671 contents. */
12672 *dwo_file_slot = dwo_file;
12673 }
12674 else
12675 {
12676 if (dwarf_read_debug)
12677 {
12678 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12679 virtual_dwo_name.c_str ());
12680 }
12681 dwo_file = (struct dwo_file *) *dwo_file_slot;
12682 }
12683
12684 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12685 dwo_unit->dwo_file = dwo_file;
12686 dwo_unit->signature = signature;
12687 dwo_unit->section =
12688 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12689 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12690 is_debug_types
12691 ? &dwp_file->sections.types
12692 : &dwp_file->sections.info,
12693 sections.info_or_types_offset,
12694 sections.info_or_types_size);
12695 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12696
12697 return dwo_unit;
12698 }
12699
12700 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12701 Returns NULL if the signature isn't found. */
12702
12703 static struct dwo_unit *
12704 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12705 struct dwp_file *dwp_file, const char *comp_dir,
12706 ULONGEST signature, int is_debug_types)
12707 {
12708 const struct dwp_hash_table *dwp_htab =
12709 is_debug_types ? dwp_file->tus : dwp_file->cus;
12710 bfd *dbfd = dwp_file->dbfd.get ();
12711 uint32_t mask = dwp_htab->nr_slots - 1;
12712 uint32_t hash = signature & mask;
12713 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12714 unsigned int i;
12715 void **slot;
12716 struct dwo_unit find_dwo_cu;
12717
12718 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12719 find_dwo_cu.signature = signature;
12720 slot = htab_find_slot (is_debug_types
12721 ? dwp_file->loaded_tus
12722 : dwp_file->loaded_cus,
12723 &find_dwo_cu, INSERT);
12724
12725 if (*slot != NULL)
12726 return (struct dwo_unit *) *slot;
12727
12728 /* Use a for loop so that we don't loop forever on bad debug info. */
12729 for (i = 0; i < dwp_htab->nr_slots; ++i)
12730 {
12731 ULONGEST signature_in_table;
12732
12733 signature_in_table =
12734 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12735 if (signature_in_table == signature)
12736 {
12737 uint32_t unit_index =
12738 read_4_bytes (dbfd,
12739 dwp_htab->unit_table + hash * sizeof (uint32_t));
12740
12741 if (dwp_file->version == 1)
12742 {
12743 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12744 dwp_file, unit_index,
12745 comp_dir, signature,
12746 is_debug_types);
12747 }
12748 else
12749 {
12750 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12751 dwp_file, unit_index,
12752 comp_dir, signature,
12753 is_debug_types);
12754 }
12755 return (struct dwo_unit *) *slot;
12756 }
12757 if (signature_in_table == 0)
12758 return NULL;
12759 hash = (hash + hash2) & mask;
12760 }
12761
12762 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12763 " [in module %s]"),
12764 dwp_file->name);
12765 }
12766
12767 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12768 Open the file specified by FILE_NAME and hand it off to BFD for
12769 preliminary analysis. Return a newly initialized bfd *, which
12770 includes a canonicalized copy of FILE_NAME.
12771 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12772 SEARCH_CWD is true if the current directory is to be searched.
12773 It will be searched before debug-file-directory.
12774 If successful, the file is added to the bfd include table of the
12775 objfile's bfd (see gdb_bfd_record_inclusion).
12776 If unable to find/open the file, return NULL.
12777 NOTE: This function is derived from symfile_bfd_open. */
12778
12779 static gdb_bfd_ref_ptr
12780 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12781 const char *file_name, int is_dwp, int search_cwd)
12782 {
12783 int desc;
12784 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12785 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12786 to debug_file_directory. */
12787 const char *search_path;
12788 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12789
12790 gdb::unique_xmalloc_ptr<char> search_path_holder;
12791 if (search_cwd)
12792 {
12793 if (*debug_file_directory != '\0')
12794 {
12795 search_path_holder.reset (concat (".", dirname_separator_string,
12796 debug_file_directory,
12797 (char *) NULL));
12798 search_path = search_path_holder.get ();
12799 }
12800 else
12801 search_path = ".";
12802 }
12803 else
12804 search_path = debug_file_directory;
12805
12806 openp_flags flags = OPF_RETURN_REALPATH;
12807 if (is_dwp)
12808 flags |= OPF_SEARCH_IN_PATH;
12809
12810 gdb::unique_xmalloc_ptr<char> absolute_name;
12811 desc = openp (search_path, flags, file_name,
12812 O_RDONLY | O_BINARY, &absolute_name);
12813 if (desc < 0)
12814 return NULL;
12815
12816 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12817 gnutarget, desc));
12818 if (sym_bfd == NULL)
12819 return NULL;
12820 bfd_set_cacheable (sym_bfd.get (), 1);
12821
12822 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12823 return NULL;
12824
12825 /* Success. Record the bfd as having been included by the objfile's bfd.
12826 This is important because things like demangled_names_hash lives in the
12827 objfile's per_bfd space and may have references to things like symbol
12828 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12829 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12830
12831 return sym_bfd;
12832 }
12833
12834 /* Try to open DWO file FILE_NAME.
12835 COMP_DIR is the DW_AT_comp_dir attribute.
12836 The result is the bfd handle of the file.
12837 If there is a problem finding or opening the file, return NULL.
12838 Upon success, the canonicalized path of the file is stored in the bfd,
12839 same as symfile_bfd_open. */
12840
12841 static gdb_bfd_ref_ptr
12842 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12843 const char *file_name, const char *comp_dir)
12844 {
12845 if (IS_ABSOLUTE_PATH (file_name))
12846 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12847 0 /*is_dwp*/, 0 /*search_cwd*/);
12848
12849 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12850
12851 if (comp_dir != NULL)
12852 {
12853 char *path_to_try = concat (comp_dir, SLASH_STRING,
12854 file_name, (char *) NULL);
12855
12856 /* NOTE: If comp_dir is a relative path, this will also try the
12857 search path, which seems useful. */
12858 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12859 path_to_try,
12860 0 /*is_dwp*/,
12861 1 /*search_cwd*/));
12862 xfree (path_to_try);
12863 if (abfd != NULL)
12864 return abfd;
12865 }
12866
12867 /* That didn't work, try debug-file-directory, which, despite its name,
12868 is a list of paths. */
12869
12870 if (*debug_file_directory == '\0')
12871 return NULL;
12872
12873 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12874 0 /*is_dwp*/, 1 /*search_cwd*/);
12875 }
12876
12877 /* This function is mapped across the sections and remembers the offset and
12878 size of each of the DWO debugging sections we are interested in. */
12879
12880 static void
12881 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12882 {
12883 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12884 const struct dwop_section_names *names = &dwop_section_names;
12885
12886 if (section_is_p (sectp->name, &names->abbrev_dwo))
12887 {
12888 dwo_sections->abbrev.s.section = sectp;
12889 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12890 }
12891 else if (section_is_p (sectp->name, &names->info_dwo))
12892 {
12893 dwo_sections->info.s.section = sectp;
12894 dwo_sections->info.size = bfd_get_section_size (sectp);
12895 }
12896 else if (section_is_p (sectp->name, &names->line_dwo))
12897 {
12898 dwo_sections->line.s.section = sectp;
12899 dwo_sections->line.size = bfd_get_section_size (sectp);
12900 }
12901 else if (section_is_p (sectp->name, &names->loc_dwo))
12902 {
12903 dwo_sections->loc.s.section = sectp;
12904 dwo_sections->loc.size = bfd_get_section_size (sectp);
12905 }
12906 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12907 {
12908 dwo_sections->macinfo.s.section = sectp;
12909 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12910 }
12911 else if (section_is_p (sectp->name, &names->macro_dwo))
12912 {
12913 dwo_sections->macro.s.section = sectp;
12914 dwo_sections->macro.size = bfd_get_section_size (sectp);
12915 }
12916 else if (section_is_p (sectp->name, &names->str_dwo))
12917 {
12918 dwo_sections->str.s.section = sectp;
12919 dwo_sections->str.size = bfd_get_section_size (sectp);
12920 }
12921 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12922 {
12923 dwo_sections->str_offsets.s.section = sectp;
12924 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12925 }
12926 else if (section_is_p (sectp->name, &names->types_dwo))
12927 {
12928 struct dwarf2_section_info type_section;
12929
12930 memset (&type_section, 0, sizeof (type_section));
12931 type_section.s.section = sectp;
12932 type_section.size = bfd_get_section_size (sectp);
12933 dwo_sections->types.push_back (type_section);
12934 }
12935 }
12936
12937 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12938 by PER_CU. This is for the non-DWP case.
12939 The result is NULL if DWO_NAME can't be found. */
12940
12941 static struct dwo_file *
12942 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12943 const char *dwo_name, const char *comp_dir)
12944 {
12945 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12946
12947 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12948 if (dbfd == NULL)
12949 {
12950 if (dwarf_read_debug)
12951 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12952 return NULL;
12953 }
12954
12955 dwo_file_up dwo_file (new struct dwo_file);
12956 dwo_file->dwo_name = dwo_name;
12957 dwo_file->comp_dir = comp_dir;
12958 dwo_file->dbfd = std::move (dbfd);
12959
12960 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12961 &dwo_file->sections);
12962
12963 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12964 dwo_file->cus);
12965
12966 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12967 dwo_file->sections.types, dwo_file->tus);
12968
12969 if (dwarf_read_debug)
12970 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12971
12972 return dwo_file.release ();
12973 }
12974
12975 /* This function is mapped across the sections and remembers the offset and
12976 size of each of the DWP debugging sections common to version 1 and 2 that
12977 we are interested in. */
12978
12979 static void
12980 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12981 void *dwp_file_ptr)
12982 {
12983 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12984 const struct dwop_section_names *names = &dwop_section_names;
12985 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12986
12987 /* Record the ELF section number for later lookup: this is what the
12988 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12989 gdb_assert (elf_section_nr < dwp_file->num_sections);
12990 dwp_file->elf_sections[elf_section_nr] = sectp;
12991
12992 /* Look for specific sections that we need. */
12993 if (section_is_p (sectp->name, &names->str_dwo))
12994 {
12995 dwp_file->sections.str.s.section = sectp;
12996 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12997 }
12998 else if (section_is_p (sectp->name, &names->cu_index))
12999 {
13000 dwp_file->sections.cu_index.s.section = sectp;
13001 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13002 }
13003 else if (section_is_p (sectp->name, &names->tu_index))
13004 {
13005 dwp_file->sections.tu_index.s.section = sectp;
13006 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13007 }
13008 }
13009
13010 /* This function is mapped across the sections and remembers the offset and
13011 size of each of the DWP version 2 debugging sections that we are interested
13012 in. This is split into a separate function because we don't know if we
13013 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13014
13015 static void
13016 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13017 {
13018 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13019 const struct dwop_section_names *names = &dwop_section_names;
13020 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13021
13022 /* Record the ELF section number for later lookup: this is what the
13023 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13024 gdb_assert (elf_section_nr < dwp_file->num_sections);
13025 dwp_file->elf_sections[elf_section_nr] = sectp;
13026
13027 /* Look for specific sections that we need. */
13028 if (section_is_p (sectp->name, &names->abbrev_dwo))
13029 {
13030 dwp_file->sections.abbrev.s.section = sectp;
13031 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13032 }
13033 else if (section_is_p (sectp->name, &names->info_dwo))
13034 {
13035 dwp_file->sections.info.s.section = sectp;
13036 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13037 }
13038 else if (section_is_p (sectp->name, &names->line_dwo))
13039 {
13040 dwp_file->sections.line.s.section = sectp;
13041 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13042 }
13043 else if (section_is_p (sectp->name, &names->loc_dwo))
13044 {
13045 dwp_file->sections.loc.s.section = sectp;
13046 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13047 }
13048 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13049 {
13050 dwp_file->sections.macinfo.s.section = sectp;
13051 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13052 }
13053 else if (section_is_p (sectp->name, &names->macro_dwo))
13054 {
13055 dwp_file->sections.macro.s.section = sectp;
13056 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13057 }
13058 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13059 {
13060 dwp_file->sections.str_offsets.s.section = sectp;
13061 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13062 }
13063 else if (section_is_p (sectp->name, &names->types_dwo))
13064 {
13065 dwp_file->sections.types.s.section = sectp;
13066 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13067 }
13068 }
13069
13070 /* Hash function for dwp_file loaded CUs/TUs. */
13071
13072 static hashval_t
13073 hash_dwp_loaded_cutus (const void *item)
13074 {
13075 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13076
13077 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13078 return dwo_unit->signature;
13079 }
13080
13081 /* Equality function for dwp_file loaded CUs/TUs. */
13082
13083 static int
13084 eq_dwp_loaded_cutus (const void *a, const void *b)
13085 {
13086 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13087 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13088
13089 return dua->signature == dub->signature;
13090 }
13091
13092 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13093
13094 static htab_t
13095 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13096 {
13097 return htab_create_alloc_ex (3,
13098 hash_dwp_loaded_cutus,
13099 eq_dwp_loaded_cutus,
13100 NULL,
13101 &objfile->objfile_obstack,
13102 hashtab_obstack_allocate,
13103 dummy_obstack_deallocate);
13104 }
13105
13106 /* Try to open DWP file FILE_NAME.
13107 The result is the bfd handle of the file.
13108 If there is a problem finding or opening the file, return NULL.
13109 Upon success, the canonicalized path of the file is stored in the bfd,
13110 same as symfile_bfd_open. */
13111
13112 static gdb_bfd_ref_ptr
13113 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13114 const char *file_name)
13115 {
13116 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13117 1 /*is_dwp*/,
13118 1 /*search_cwd*/));
13119 if (abfd != NULL)
13120 return abfd;
13121
13122 /* Work around upstream bug 15652.
13123 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13124 [Whether that's a "bug" is debatable, but it is getting in our way.]
13125 We have no real idea where the dwp file is, because gdb's realpath-ing
13126 of the executable's path may have discarded the needed info.
13127 [IWBN if the dwp file name was recorded in the executable, akin to
13128 .gnu_debuglink, but that doesn't exist yet.]
13129 Strip the directory from FILE_NAME and search again. */
13130 if (*debug_file_directory != '\0')
13131 {
13132 /* Don't implicitly search the current directory here.
13133 If the user wants to search "." to handle this case,
13134 it must be added to debug-file-directory. */
13135 return try_open_dwop_file (dwarf2_per_objfile,
13136 lbasename (file_name), 1 /*is_dwp*/,
13137 0 /*search_cwd*/);
13138 }
13139
13140 return NULL;
13141 }
13142
13143 /* Initialize the use of the DWP file for the current objfile.
13144 By convention the name of the DWP file is ${objfile}.dwp.
13145 The result is NULL if it can't be found. */
13146
13147 static std::unique_ptr<struct dwp_file>
13148 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13149 {
13150 struct objfile *objfile = dwarf2_per_objfile->objfile;
13151
13152 /* Try to find first .dwp for the binary file before any symbolic links
13153 resolving. */
13154
13155 /* If the objfile is a debug file, find the name of the real binary
13156 file and get the name of dwp file from there. */
13157 std::string dwp_name;
13158 if (objfile->separate_debug_objfile_backlink != NULL)
13159 {
13160 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13161 const char *backlink_basename = lbasename (backlink->original_name);
13162
13163 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13164 }
13165 else
13166 dwp_name = objfile->original_name;
13167
13168 dwp_name += ".dwp";
13169
13170 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13171 if (dbfd == NULL
13172 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13173 {
13174 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13175 dwp_name = objfile_name (objfile);
13176 dwp_name += ".dwp";
13177 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13178 }
13179
13180 if (dbfd == NULL)
13181 {
13182 if (dwarf_read_debug)
13183 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13184 return std::unique_ptr<dwp_file> ();
13185 }
13186
13187 const char *name = bfd_get_filename (dbfd.get ());
13188 std::unique_ptr<struct dwp_file> dwp_file
13189 (new struct dwp_file (name, std::move (dbfd)));
13190
13191 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13192 dwp_file->elf_sections =
13193 OBSTACK_CALLOC (&objfile->objfile_obstack,
13194 dwp_file->num_sections, asection *);
13195
13196 bfd_map_over_sections (dwp_file->dbfd.get (),
13197 dwarf2_locate_common_dwp_sections,
13198 dwp_file.get ());
13199
13200 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13201 0);
13202
13203 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13204 1);
13205
13206 /* The DWP file version is stored in the hash table. Oh well. */
13207 if (dwp_file->cus && dwp_file->tus
13208 && dwp_file->cus->version != dwp_file->tus->version)
13209 {
13210 /* Technically speaking, we should try to limp along, but this is
13211 pretty bizarre. We use pulongest here because that's the established
13212 portability solution (e.g, we cannot use %u for uint32_t). */
13213 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13214 " TU version %s [in DWP file %s]"),
13215 pulongest (dwp_file->cus->version),
13216 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13217 }
13218
13219 if (dwp_file->cus)
13220 dwp_file->version = dwp_file->cus->version;
13221 else if (dwp_file->tus)
13222 dwp_file->version = dwp_file->tus->version;
13223 else
13224 dwp_file->version = 2;
13225
13226 if (dwp_file->version == 2)
13227 bfd_map_over_sections (dwp_file->dbfd.get (),
13228 dwarf2_locate_v2_dwp_sections,
13229 dwp_file.get ());
13230
13231 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13232 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13233
13234 if (dwarf_read_debug)
13235 {
13236 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13237 fprintf_unfiltered (gdb_stdlog,
13238 " %s CUs, %s TUs\n",
13239 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13240 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13241 }
13242
13243 return dwp_file;
13244 }
13245
13246 /* Wrapper around open_and_init_dwp_file, only open it once. */
13247
13248 static struct dwp_file *
13249 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13250 {
13251 if (! dwarf2_per_objfile->dwp_checked)
13252 {
13253 dwarf2_per_objfile->dwp_file
13254 = open_and_init_dwp_file (dwarf2_per_objfile);
13255 dwarf2_per_objfile->dwp_checked = 1;
13256 }
13257 return dwarf2_per_objfile->dwp_file.get ();
13258 }
13259
13260 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13261 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13262 or in the DWP file for the objfile, referenced by THIS_UNIT.
13263 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13264 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13265
13266 This is called, for example, when wanting to read a variable with a
13267 complex location. Therefore we don't want to do file i/o for every call.
13268 Therefore we don't want to look for a DWO file on every call.
13269 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13270 then we check if we've already seen DWO_NAME, and only THEN do we check
13271 for a DWO file.
13272
13273 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13274 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13275
13276 static struct dwo_unit *
13277 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13278 const char *dwo_name, const char *comp_dir,
13279 ULONGEST signature, int is_debug_types)
13280 {
13281 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13282 struct objfile *objfile = dwarf2_per_objfile->objfile;
13283 const char *kind = is_debug_types ? "TU" : "CU";
13284 void **dwo_file_slot;
13285 struct dwo_file *dwo_file;
13286 struct dwp_file *dwp_file;
13287
13288 /* First see if there's a DWP file.
13289 If we have a DWP file but didn't find the DWO inside it, don't
13290 look for the original DWO file. It makes gdb behave differently
13291 depending on whether one is debugging in the build tree. */
13292
13293 dwp_file = get_dwp_file (dwarf2_per_objfile);
13294 if (dwp_file != NULL)
13295 {
13296 const struct dwp_hash_table *dwp_htab =
13297 is_debug_types ? dwp_file->tus : dwp_file->cus;
13298
13299 if (dwp_htab != NULL)
13300 {
13301 struct dwo_unit *dwo_cutu =
13302 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13303 signature, is_debug_types);
13304
13305 if (dwo_cutu != NULL)
13306 {
13307 if (dwarf_read_debug)
13308 {
13309 fprintf_unfiltered (gdb_stdlog,
13310 "Virtual DWO %s %s found: @%s\n",
13311 kind, hex_string (signature),
13312 host_address_to_string (dwo_cutu));
13313 }
13314 return dwo_cutu;
13315 }
13316 }
13317 }
13318 else
13319 {
13320 /* No DWP file, look for the DWO file. */
13321
13322 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13323 dwo_name, comp_dir);
13324 if (*dwo_file_slot == NULL)
13325 {
13326 /* Read in the file and build a table of the CUs/TUs it contains. */
13327 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13328 }
13329 /* NOTE: This will be NULL if unable to open the file. */
13330 dwo_file = (struct dwo_file *) *dwo_file_slot;
13331
13332 if (dwo_file != NULL)
13333 {
13334 struct dwo_unit *dwo_cutu = NULL;
13335
13336 if (is_debug_types && dwo_file->tus)
13337 {
13338 struct dwo_unit find_dwo_cutu;
13339
13340 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13341 find_dwo_cutu.signature = signature;
13342 dwo_cutu
13343 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13344 }
13345 else if (!is_debug_types && dwo_file->cus)
13346 {
13347 struct dwo_unit find_dwo_cutu;
13348
13349 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13350 find_dwo_cutu.signature = signature;
13351 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13352 &find_dwo_cutu);
13353 }
13354
13355 if (dwo_cutu != NULL)
13356 {
13357 if (dwarf_read_debug)
13358 {
13359 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13360 kind, dwo_name, hex_string (signature),
13361 host_address_to_string (dwo_cutu));
13362 }
13363 return dwo_cutu;
13364 }
13365 }
13366 }
13367
13368 /* We didn't find it. This could mean a dwo_id mismatch, or
13369 someone deleted the DWO/DWP file, or the search path isn't set up
13370 correctly to find the file. */
13371
13372 if (dwarf_read_debug)
13373 {
13374 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13375 kind, dwo_name, hex_string (signature));
13376 }
13377
13378 /* This is a warning and not a complaint because it can be caused by
13379 pilot error (e.g., user accidentally deleting the DWO). */
13380 {
13381 /* Print the name of the DWP file if we looked there, helps the user
13382 better diagnose the problem. */
13383 std::string dwp_text;
13384
13385 if (dwp_file != NULL)
13386 dwp_text = string_printf (" [in DWP file %s]",
13387 lbasename (dwp_file->name));
13388
13389 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13390 " [in module %s]"),
13391 kind, dwo_name, hex_string (signature),
13392 dwp_text.c_str (),
13393 this_unit->is_debug_types ? "TU" : "CU",
13394 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13395 }
13396 return NULL;
13397 }
13398
13399 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13400 See lookup_dwo_cutu_unit for details. */
13401
13402 static struct dwo_unit *
13403 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13404 const char *dwo_name, const char *comp_dir,
13405 ULONGEST signature)
13406 {
13407 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13408 }
13409
13410 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13411 See lookup_dwo_cutu_unit for details. */
13412
13413 static struct dwo_unit *
13414 lookup_dwo_type_unit (struct signatured_type *this_tu,
13415 const char *dwo_name, const char *comp_dir)
13416 {
13417 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13418 }
13419
13420 /* Traversal function for queue_and_load_all_dwo_tus. */
13421
13422 static int
13423 queue_and_load_dwo_tu (void **slot, void *info)
13424 {
13425 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13426 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13427 ULONGEST signature = dwo_unit->signature;
13428 struct signatured_type *sig_type =
13429 lookup_dwo_signatured_type (per_cu->cu, signature);
13430
13431 if (sig_type != NULL)
13432 {
13433 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13434
13435 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13436 a real dependency of PER_CU on SIG_TYPE. That is detected later
13437 while processing PER_CU. */
13438 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13439 load_full_type_unit (sig_cu);
13440 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13441 }
13442
13443 return 1;
13444 }
13445
13446 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13447 The DWO may have the only definition of the type, though it may not be
13448 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13449 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13450
13451 static void
13452 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13453 {
13454 struct dwo_unit *dwo_unit;
13455 struct dwo_file *dwo_file;
13456
13457 gdb_assert (!per_cu->is_debug_types);
13458 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13459 gdb_assert (per_cu->cu != NULL);
13460
13461 dwo_unit = per_cu->cu->dwo_unit;
13462 gdb_assert (dwo_unit != NULL);
13463
13464 dwo_file = dwo_unit->dwo_file;
13465 if (dwo_file->tus != NULL)
13466 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13467 }
13468
13469 /* Read in various DIEs. */
13470
13471 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13472 Inherit only the children of the DW_AT_abstract_origin DIE not being
13473 already referenced by DW_AT_abstract_origin from the children of the
13474 current DIE. */
13475
13476 static void
13477 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13478 {
13479 struct die_info *child_die;
13480 sect_offset *offsetp;
13481 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13482 struct die_info *origin_die;
13483 /* Iterator of the ORIGIN_DIE children. */
13484 struct die_info *origin_child_die;
13485 struct attribute *attr;
13486 struct dwarf2_cu *origin_cu;
13487 struct pending **origin_previous_list_in_scope;
13488
13489 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13490 if (!attr)
13491 return;
13492
13493 /* Note that following die references may follow to a die in a
13494 different cu. */
13495
13496 origin_cu = cu;
13497 origin_die = follow_die_ref (die, attr, &origin_cu);
13498
13499 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13500 symbols in. */
13501 origin_previous_list_in_scope = origin_cu->list_in_scope;
13502 origin_cu->list_in_scope = cu->list_in_scope;
13503
13504 if (die->tag != origin_die->tag
13505 && !(die->tag == DW_TAG_inlined_subroutine
13506 && origin_die->tag == DW_TAG_subprogram))
13507 complaint (_("DIE %s and its abstract origin %s have different tags"),
13508 sect_offset_str (die->sect_off),
13509 sect_offset_str (origin_die->sect_off));
13510
13511 std::vector<sect_offset> offsets;
13512
13513 for (child_die = die->child;
13514 child_die && child_die->tag;
13515 child_die = sibling_die (child_die))
13516 {
13517 struct die_info *child_origin_die;
13518 struct dwarf2_cu *child_origin_cu;
13519
13520 /* We are trying to process concrete instance entries:
13521 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13522 it's not relevant to our analysis here. i.e. detecting DIEs that are
13523 present in the abstract instance but not referenced in the concrete
13524 one. */
13525 if (child_die->tag == DW_TAG_call_site
13526 || child_die->tag == DW_TAG_GNU_call_site)
13527 continue;
13528
13529 /* For each CHILD_DIE, find the corresponding child of
13530 ORIGIN_DIE. If there is more than one layer of
13531 DW_AT_abstract_origin, follow them all; there shouldn't be,
13532 but GCC versions at least through 4.4 generate this (GCC PR
13533 40573). */
13534 child_origin_die = child_die;
13535 child_origin_cu = cu;
13536 while (1)
13537 {
13538 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13539 child_origin_cu);
13540 if (attr == NULL)
13541 break;
13542 child_origin_die = follow_die_ref (child_origin_die, attr,
13543 &child_origin_cu);
13544 }
13545
13546 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13547 counterpart may exist. */
13548 if (child_origin_die != child_die)
13549 {
13550 if (child_die->tag != child_origin_die->tag
13551 && !(child_die->tag == DW_TAG_inlined_subroutine
13552 && child_origin_die->tag == DW_TAG_subprogram))
13553 complaint (_("Child DIE %s and its abstract origin %s have "
13554 "different tags"),
13555 sect_offset_str (child_die->sect_off),
13556 sect_offset_str (child_origin_die->sect_off));
13557 if (child_origin_die->parent != origin_die)
13558 complaint (_("Child DIE %s and its abstract origin %s have "
13559 "different parents"),
13560 sect_offset_str (child_die->sect_off),
13561 sect_offset_str (child_origin_die->sect_off));
13562 else
13563 offsets.push_back (child_origin_die->sect_off);
13564 }
13565 }
13566 std::sort (offsets.begin (), offsets.end ());
13567 sect_offset *offsets_end = offsets.data () + offsets.size ();
13568 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13569 if (offsetp[-1] == *offsetp)
13570 complaint (_("Multiple children of DIE %s refer "
13571 "to DIE %s as their abstract origin"),
13572 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13573
13574 offsetp = offsets.data ();
13575 origin_child_die = origin_die->child;
13576 while (origin_child_die && origin_child_die->tag)
13577 {
13578 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13579 while (offsetp < offsets_end
13580 && *offsetp < origin_child_die->sect_off)
13581 offsetp++;
13582 if (offsetp >= offsets_end
13583 || *offsetp > origin_child_die->sect_off)
13584 {
13585 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13586 Check whether we're already processing ORIGIN_CHILD_DIE.
13587 This can happen with mutually referenced abstract_origins.
13588 PR 16581. */
13589 if (!origin_child_die->in_process)
13590 process_die (origin_child_die, origin_cu);
13591 }
13592 origin_child_die = sibling_die (origin_child_die);
13593 }
13594 origin_cu->list_in_scope = origin_previous_list_in_scope;
13595 }
13596
13597 static void
13598 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13599 {
13600 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13601 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13602 struct context_stack *newobj;
13603 CORE_ADDR lowpc;
13604 CORE_ADDR highpc;
13605 struct die_info *child_die;
13606 struct attribute *attr, *call_line, *call_file;
13607 const char *name;
13608 CORE_ADDR baseaddr;
13609 struct block *block;
13610 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13611 std::vector<struct symbol *> template_args;
13612 struct template_symbol *templ_func = NULL;
13613
13614 if (inlined_func)
13615 {
13616 /* If we do not have call site information, we can't show the
13617 caller of this inlined function. That's too confusing, so
13618 only use the scope for local variables. */
13619 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13620 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13621 if (call_line == NULL || call_file == NULL)
13622 {
13623 read_lexical_block_scope (die, cu);
13624 return;
13625 }
13626 }
13627
13628 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13629
13630 name = dwarf2_name (die, cu);
13631
13632 /* Ignore functions with missing or empty names. These are actually
13633 illegal according to the DWARF standard. */
13634 if (name == NULL)
13635 {
13636 complaint (_("missing name for subprogram DIE at %s"),
13637 sect_offset_str (die->sect_off));
13638 return;
13639 }
13640
13641 /* Ignore functions with missing or invalid low and high pc attributes. */
13642 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13643 <= PC_BOUNDS_INVALID)
13644 {
13645 attr = dwarf2_attr (die, DW_AT_external, cu);
13646 if (!attr || !DW_UNSND (attr))
13647 complaint (_("cannot get low and high bounds "
13648 "for subprogram DIE at %s"),
13649 sect_offset_str (die->sect_off));
13650 return;
13651 }
13652
13653 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13654 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13655
13656 /* If we have any template arguments, then we must allocate a
13657 different sort of symbol. */
13658 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13659 {
13660 if (child_die->tag == DW_TAG_template_type_param
13661 || child_die->tag == DW_TAG_template_value_param)
13662 {
13663 templ_func = allocate_template_symbol (objfile);
13664 templ_func->subclass = SYMBOL_TEMPLATE;
13665 break;
13666 }
13667 }
13668
13669 newobj = cu->get_builder ()->push_context (0, lowpc);
13670 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13671 (struct symbol *) templ_func);
13672
13673 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13674 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13675 cu->language);
13676
13677 /* If there is a location expression for DW_AT_frame_base, record
13678 it. */
13679 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13680 if (attr)
13681 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13682
13683 /* If there is a location for the static link, record it. */
13684 newobj->static_link = NULL;
13685 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13686 if (attr)
13687 {
13688 newobj->static_link
13689 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13690 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13691 dwarf2_per_cu_addr_type (cu->per_cu));
13692 }
13693
13694 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13695
13696 if (die->child != NULL)
13697 {
13698 child_die = die->child;
13699 while (child_die && child_die->tag)
13700 {
13701 if (child_die->tag == DW_TAG_template_type_param
13702 || child_die->tag == DW_TAG_template_value_param)
13703 {
13704 struct symbol *arg = new_symbol (child_die, NULL, cu);
13705
13706 if (arg != NULL)
13707 template_args.push_back (arg);
13708 }
13709 else
13710 process_die (child_die, cu);
13711 child_die = sibling_die (child_die);
13712 }
13713 }
13714
13715 inherit_abstract_dies (die, cu);
13716
13717 /* If we have a DW_AT_specification, we might need to import using
13718 directives from the context of the specification DIE. See the
13719 comment in determine_prefix. */
13720 if (cu->language == language_cplus
13721 && dwarf2_attr (die, DW_AT_specification, cu))
13722 {
13723 struct dwarf2_cu *spec_cu = cu;
13724 struct die_info *spec_die = die_specification (die, &spec_cu);
13725
13726 while (spec_die)
13727 {
13728 child_die = spec_die->child;
13729 while (child_die && child_die->tag)
13730 {
13731 if (child_die->tag == DW_TAG_imported_module)
13732 process_die (child_die, spec_cu);
13733 child_die = sibling_die (child_die);
13734 }
13735
13736 /* In some cases, GCC generates specification DIEs that
13737 themselves contain DW_AT_specification attributes. */
13738 spec_die = die_specification (spec_die, &spec_cu);
13739 }
13740 }
13741
13742 struct context_stack cstk = cu->get_builder ()->pop_context ();
13743 /* Make a block for the local symbols within. */
13744 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13745 cstk.static_link, lowpc, highpc);
13746
13747 /* For C++, set the block's scope. */
13748 if ((cu->language == language_cplus
13749 || cu->language == language_fortran
13750 || cu->language == language_d
13751 || cu->language == language_rust)
13752 && cu->processing_has_namespace_info)
13753 block_set_scope (block, determine_prefix (die, cu),
13754 &objfile->objfile_obstack);
13755
13756 /* If we have address ranges, record them. */
13757 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13758
13759 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13760
13761 /* Attach template arguments to function. */
13762 if (!template_args.empty ())
13763 {
13764 gdb_assert (templ_func != NULL);
13765
13766 templ_func->n_template_arguments = template_args.size ();
13767 templ_func->template_arguments
13768 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13769 templ_func->n_template_arguments);
13770 memcpy (templ_func->template_arguments,
13771 template_args.data (),
13772 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13773
13774 /* Make sure that the symtab is set on the new symbols. Even
13775 though they don't appear in this symtab directly, other parts
13776 of gdb assume that symbols do, and this is reasonably
13777 true. */
13778 for (symbol *sym : template_args)
13779 symbol_set_symtab (sym, symbol_symtab (templ_func));
13780 }
13781
13782 /* In C++, we can have functions nested inside functions (e.g., when
13783 a function declares a class that has methods). This means that
13784 when we finish processing a function scope, we may need to go
13785 back to building a containing block's symbol lists. */
13786 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13787 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13788
13789 /* If we've finished processing a top-level function, subsequent
13790 symbols go in the file symbol list. */
13791 if (cu->get_builder ()->outermost_context_p ())
13792 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13793 }
13794
13795 /* Process all the DIES contained within a lexical block scope. Start
13796 a new scope, process the dies, and then close the scope. */
13797
13798 static void
13799 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13800 {
13801 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13802 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13803 CORE_ADDR lowpc, highpc;
13804 struct die_info *child_die;
13805 CORE_ADDR baseaddr;
13806
13807 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13808
13809 /* Ignore blocks with missing or invalid low and high pc attributes. */
13810 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13811 as multiple lexical blocks? Handling children in a sane way would
13812 be nasty. Might be easier to properly extend generic blocks to
13813 describe ranges. */
13814 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13815 {
13816 case PC_BOUNDS_NOT_PRESENT:
13817 /* DW_TAG_lexical_block has no attributes, process its children as if
13818 there was no wrapping by that DW_TAG_lexical_block.
13819 GCC does no longer produces such DWARF since GCC r224161. */
13820 for (child_die = die->child;
13821 child_die != NULL && child_die->tag;
13822 child_die = sibling_die (child_die))
13823 process_die (child_die, cu);
13824 return;
13825 case PC_BOUNDS_INVALID:
13826 return;
13827 }
13828 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13829 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13830
13831 cu->get_builder ()->push_context (0, lowpc);
13832 if (die->child != NULL)
13833 {
13834 child_die = die->child;
13835 while (child_die && child_die->tag)
13836 {
13837 process_die (child_die, cu);
13838 child_die = sibling_die (child_die);
13839 }
13840 }
13841 inherit_abstract_dies (die, cu);
13842 struct context_stack cstk = cu->get_builder ()->pop_context ();
13843
13844 if (*cu->get_builder ()->get_local_symbols () != NULL
13845 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13846 {
13847 struct block *block
13848 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13849 cstk.start_addr, highpc);
13850
13851 /* Note that recording ranges after traversing children, as we
13852 do here, means that recording a parent's ranges entails
13853 walking across all its children's ranges as they appear in
13854 the address map, which is quadratic behavior.
13855
13856 It would be nicer to record the parent's ranges before
13857 traversing its children, simply overriding whatever you find
13858 there. But since we don't even decide whether to create a
13859 block until after we've traversed its children, that's hard
13860 to do. */
13861 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13862 }
13863 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13864 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13865 }
13866
13867 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13868
13869 static void
13870 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13871 {
13872 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13873 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13874 CORE_ADDR pc, baseaddr;
13875 struct attribute *attr;
13876 struct call_site *call_site, call_site_local;
13877 void **slot;
13878 int nparams;
13879 struct die_info *child_die;
13880
13881 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13882
13883 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13884 if (attr == NULL)
13885 {
13886 /* This was a pre-DWARF-5 GNU extension alias
13887 for DW_AT_call_return_pc. */
13888 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13889 }
13890 if (!attr)
13891 {
13892 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13893 "DIE %s [in module %s]"),
13894 sect_offset_str (die->sect_off), objfile_name (objfile));
13895 return;
13896 }
13897 pc = attr_value_as_address (attr) + baseaddr;
13898 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13899
13900 if (cu->call_site_htab == NULL)
13901 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13902 NULL, &objfile->objfile_obstack,
13903 hashtab_obstack_allocate, NULL);
13904 call_site_local.pc = pc;
13905 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13906 if (*slot != NULL)
13907 {
13908 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13909 "DIE %s [in module %s]"),
13910 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13911 objfile_name (objfile));
13912 return;
13913 }
13914
13915 /* Count parameters at the caller. */
13916
13917 nparams = 0;
13918 for (child_die = die->child; child_die && child_die->tag;
13919 child_die = sibling_die (child_die))
13920 {
13921 if (child_die->tag != DW_TAG_call_site_parameter
13922 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13923 {
13924 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13925 "DW_TAG_call_site child DIE %s [in module %s]"),
13926 child_die->tag, sect_offset_str (child_die->sect_off),
13927 objfile_name (objfile));
13928 continue;
13929 }
13930
13931 nparams++;
13932 }
13933
13934 call_site
13935 = ((struct call_site *)
13936 obstack_alloc (&objfile->objfile_obstack,
13937 sizeof (*call_site)
13938 + (sizeof (*call_site->parameter) * (nparams - 1))));
13939 *slot = call_site;
13940 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13941 call_site->pc = pc;
13942
13943 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13944 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13945 {
13946 struct die_info *func_die;
13947
13948 /* Skip also over DW_TAG_inlined_subroutine. */
13949 for (func_die = die->parent;
13950 func_die && func_die->tag != DW_TAG_subprogram
13951 && func_die->tag != DW_TAG_subroutine_type;
13952 func_die = func_die->parent);
13953
13954 /* DW_AT_call_all_calls is a superset
13955 of DW_AT_call_all_tail_calls. */
13956 if (func_die
13957 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13958 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13959 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13960 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13961 {
13962 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13963 not complete. But keep CALL_SITE for look ups via call_site_htab,
13964 both the initial caller containing the real return address PC and
13965 the final callee containing the current PC of a chain of tail
13966 calls do not need to have the tail call list complete. But any
13967 function candidate for a virtual tail call frame searched via
13968 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13969 determined unambiguously. */
13970 }
13971 else
13972 {
13973 struct type *func_type = NULL;
13974
13975 if (func_die)
13976 func_type = get_die_type (func_die, cu);
13977 if (func_type != NULL)
13978 {
13979 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13980
13981 /* Enlist this call site to the function. */
13982 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13983 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13984 }
13985 else
13986 complaint (_("Cannot find function owning DW_TAG_call_site "
13987 "DIE %s [in module %s]"),
13988 sect_offset_str (die->sect_off), objfile_name (objfile));
13989 }
13990 }
13991
13992 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13993 if (attr == NULL)
13994 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13995 if (attr == NULL)
13996 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13997 if (attr == NULL)
13998 {
13999 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14000 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14001 }
14002 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14003 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14004 /* Keep NULL DWARF_BLOCK. */;
14005 else if (attr_form_is_block (attr))
14006 {
14007 struct dwarf2_locexpr_baton *dlbaton;
14008
14009 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14010 dlbaton->data = DW_BLOCK (attr)->data;
14011 dlbaton->size = DW_BLOCK (attr)->size;
14012 dlbaton->per_cu = cu->per_cu;
14013
14014 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14015 }
14016 else if (attr_form_is_ref (attr))
14017 {
14018 struct dwarf2_cu *target_cu = cu;
14019 struct die_info *target_die;
14020
14021 target_die = follow_die_ref (die, attr, &target_cu);
14022 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14023 if (die_is_declaration (target_die, target_cu))
14024 {
14025 const char *target_physname;
14026
14027 /* Prefer the mangled name; otherwise compute the demangled one. */
14028 target_physname = dw2_linkage_name (target_die, target_cu);
14029 if (target_physname == NULL)
14030 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14031 if (target_physname == NULL)
14032 complaint (_("DW_AT_call_target target DIE has invalid "
14033 "physname, for referencing DIE %s [in module %s]"),
14034 sect_offset_str (die->sect_off), objfile_name (objfile));
14035 else
14036 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14037 }
14038 else
14039 {
14040 CORE_ADDR lowpc;
14041
14042 /* DW_AT_entry_pc should be preferred. */
14043 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14044 <= PC_BOUNDS_INVALID)
14045 complaint (_("DW_AT_call_target target DIE has invalid "
14046 "low pc, for referencing DIE %s [in module %s]"),
14047 sect_offset_str (die->sect_off), objfile_name (objfile));
14048 else
14049 {
14050 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14051 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14052 }
14053 }
14054 }
14055 else
14056 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14057 "block nor reference, for DIE %s [in module %s]"),
14058 sect_offset_str (die->sect_off), objfile_name (objfile));
14059
14060 call_site->per_cu = cu->per_cu;
14061
14062 for (child_die = die->child;
14063 child_die && child_die->tag;
14064 child_die = sibling_die (child_die))
14065 {
14066 struct call_site_parameter *parameter;
14067 struct attribute *loc, *origin;
14068
14069 if (child_die->tag != DW_TAG_call_site_parameter
14070 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14071 {
14072 /* Already printed the complaint above. */
14073 continue;
14074 }
14075
14076 gdb_assert (call_site->parameter_count < nparams);
14077 parameter = &call_site->parameter[call_site->parameter_count];
14078
14079 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14080 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14081 register is contained in DW_AT_call_value. */
14082
14083 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14084 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14085 if (origin == NULL)
14086 {
14087 /* This was a pre-DWARF-5 GNU extension alias
14088 for DW_AT_call_parameter. */
14089 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14090 }
14091 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14092 {
14093 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14094
14095 sect_offset sect_off
14096 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14097 if (!offset_in_cu_p (&cu->header, sect_off))
14098 {
14099 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14100 binding can be done only inside one CU. Such referenced DIE
14101 therefore cannot be even moved to DW_TAG_partial_unit. */
14102 complaint (_("DW_AT_call_parameter offset is not in CU for "
14103 "DW_TAG_call_site child DIE %s [in module %s]"),
14104 sect_offset_str (child_die->sect_off),
14105 objfile_name (objfile));
14106 continue;
14107 }
14108 parameter->u.param_cu_off
14109 = (cu_offset) (sect_off - cu->header.sect_off);
14110 }
14111 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14112 {
14113 complaint (_("No DW_FORM_block* DW_AT_location for "
14114 "DW_TAG_call_site child DIE %s [in module %s]"),
14115 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14116 continue;
14117 }
14118 else
14119 {
14120 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14121 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14122 if (parameter->u.dwarf_reg != -1)
14123 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14124 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14125 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14126 &parameter->u.fb_offset))
14127 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14128 else
14129 {
14130 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14131 "for DW_FORM_block* DW_AT_location is supported for "
14132 "DW_TAG_call_site child DIE %s "
14133 "[in module %s]"),
14134 sect_offset_str (child_die->sect_off),
14135 objfile_name (objfile));
14136 continue;
14137 }
14138 }
14139
14140 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14141 if (attr == NULL)
14142 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14143 if (!attr_form_is_block (attr))
14144 {
14145 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14146 "DW_TAG_call_site child DIE %s [in module %s]"),
14147 sect_offset_str (child_die->sect_off),
14148 objfile_name (objfile));
14149 continue;
14150 }
14151 parameter->value = DW_BLOCK (attr)->data;
14152 parameter->value_size = DW_BLOCK (attr)->size;
14153
14154 /* Parameters are not pre-cleared by memset above. */
14155 parameter->data_value = NULL;
14156 parameter->data_value_size = 0;
14157 call_site->parameter_count++;
14158
14159 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14160 if (attr == NULL)
14161 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14162 if (attr)
14163 {
14164 if (!attr_form_is_block (attr))
14165 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14166 "DW_TAG_call_site child DIE %s [in module %s]"),
14167 sect_offset_str (child_die->sect_off),
14168 objfile_name (objfile));
14169 else
14170 {
14171 parameter->data_value = DW_BLOCK (attr)->data;
14172 parameter->data_value_size = DW_BLOCK (attr)->size;
14173 }
14174 }
14175 }
14176 }
14177
14178 /* Helper function for read_variable. If DIE represents a virtual
14179 table, then return the type of the concrete object that is
14180 associated with the virtual table. Otherwise, return NULL. */
14181
14182 static struct type *
14183 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14184 {
14185 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14186 if (attr == NULL)
14187 return NULL;
14188
14189 /* Find the type DIE. */
14190 struct die_info *type_die = NULL;
14191 struct dwarf2_cu *type_cu = cu;
14192
14193 if (attr_form_is_ref (attr))
14194 type_die = follow_die_ref (die, attr, &type_cu);
14195 if (type_die == NULL)
14196 return NULL;
14197
14198 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14199 return NULL;
14200 return die_containing_type (type_die, type_cu);
14201 }
14202
14203 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14204
14205 static void
14206 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14207 {
14208 struct rust_vtable_symbol *storage = NULL;
14209
14210 if (cu->language == language_rust)
14211 {
14212 struct type *containing_type = rust_containing_type (die, cu);
14213
14214 if (containing_type != NULL)
14215 {
14216 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14217
14218 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14219 struct rust_vtable_symbol);
14220 initialize_objfile_symbol (storage);
14221 storage->concrete_type = containing_type;
14222 storage->subclass = SYMBOL_RUST_VTABLE;
14223 }
14224 }
14225
14226 struct symbol *res = new_symbol (die, NULL, cu, storage);
14227 struct attribute *abstract_origin
14228 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14229 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14230 if (res == NULL && loc && abstract_origin)
14231 {
14232 /* We have a variable without a name, but with a location and an abstract
14233 origin. This may be a concrete instance of an abstract variable
14234 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14235 later. */
14236 struct dwarf2_cu *origin_cu = cu;
14237 struct die_info *origin_die
14238 = follow_die_ref (die, abstract_origin, &origin_cu);
14239 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14240 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14241 }
14242 }
14243
14244 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14245 reading .debug_rnglists.
14246 Callback's type should be:
14247 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14248 Return true if the attributes are present and valid, otherwise,
14249 return false. */
14250
14251 template <typename Callback>
14252 static bool
14253 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14254 Callback &&callback)
14255 {
14256 struct dwarf2_per_objfile *dwarf2_per_objfile
14257 = cu->per_cu->dwarf2_per_objfile;
14258 struct objfile *objfile = dwarf2_per_objfile->objfile;
14259 bfd *obfd = objfile->obfd;
14260 /* Base address selection entry. */
14261 CORE_ADDR base;
14262 int found_base;
14263 const gdb_byte *buffer;
14264 CORE_ADDR baseaddr;
14265 bool overflow = false;
14266
14267 found_base = cu->base_known;
14268 base = cu->base_address;
14269
14270 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14271 if (offset >= dwarf2_per_objfile->rnglists.size)
14272 {
14273 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14274 offset);
14275 return false;
14276 }
14277 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14278
14279 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14280
14281 while (1)
14282 {
14283 /* Initialize it due to a false compiler warning. */
14284 CORE_ADDR range_beginning = 0, range_end = 0;
14285 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14286 + dwarf2_per_objfile->rnglists.size);
14287 unsigned int bytes_read;
14288
14289 if (buffer == buf_end)
14290 {
14291 overflow = true;
14292 break;
14293 }
14294 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14295 switch (rlet)
14296 {
14297 case DW_RLE_end_of_list:
14298 break;
14299 case DW_RLE_base_address:
14300 if (buffer + cu->header.addr_size > buf_end)
14301 {
14302 overflow = true;
14303 break;
14304 }
14305 base = read_address (obfd, buffer, cu, &bytes_read);
14306 found_base = 1;
14307 buffer += bytes_read;
14308 break;
14309 case DW_RLE_start_length:
14310 if (buffer + cu->header.addr_size > buf_end)
14311 {
14312 overflow = true;
14313 break;
14314 }
14315 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14316 buffer += bytes_read;
14317 range_end = (range_beginning
14318 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14319 buffer += bytes_read;
14320 if (buffer > buf_end)
14321 {
14322 overflow = true;
14323 break;
14324 }
14325 break;
14326 case DW_RLE_offset_pair:
14327 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14328 buffer += bytes_read;
14329 if (buffer > buf_end)
14330 {
14331 overflow = true;
14332 break;
14333 }
14334 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14335 buffer += bytes_read;
14336 if (buffer > buf_end)
14337 {
14338 overflow = true;
14339 break;
14340 }
14341 break;
14342 case DW_RLE_start_end:
14343 if (buffer + 2 * cu->header.addr_size > buf_end)
14344 {
14345 overflow = true;
14346 break;
14347 }
14348 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14349 buffer += bytes_read;
14350 range_end = read_address (obfd, buffer, cu, &bytes_read);
14351 buffer += bytes_read;
14352 break;
14353 default:
14354 complaint (_("Invalid .debug_rnglists data (no base address)"));
14355 return false;
14356 }
14357 if (rlet == DW_RLE_end_of_list || overflow)
14358 break;
14359 if (rlet == DW_RLE_base_address)
14360 continue;
14361
14362 if (!found_base)
14363 {
14364 /* We have no valid base address for the ranges
14365 data. */
14366 complaint (_("Invalid .debug_rnglists data (no base address)"));
14367 return false;
14368 }
14369
14370 if (range_beginning > range_end)
14371 {
14372 /* Inverted range entries are invalid. */
14373 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14374 return false;
14375 }
14376
14377 /* Empty range entries have no effect. */
14378 if (range_beginning == range_end)
14379 continue;
14380
14381 range_beginning += base;
14382 range_end += base;
14383
14384 /* A not-uncommon case of bad debug info.
14385 Don't pollute the addrmap with bad data. */
14386 if (range_beginning + baseaddr == 0
14387 && !dwarf2_per_objfile->has_section_at_zero)
14388 {
14389 complaint (_(".debug_rnglists entry has start address of zero"
14390 " [in module %s]"), objfile_name (objfile));
14391 continue;
14392 }
14393
14394 callback (range_beginning, range_end);
14395 }
14396
14397 if (overflow)
14398 {
14399 complaint (_("Offset %d is not terminated "
14400 "for DW_AT_ranges attribute"),
14401 offset);
14402 return false;
14403 }
14404
14405 return true;
14406 }
14407
14408 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14409 Callback's type should be:
14410 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14411 Return 1 if the attributes are present and valid, otherwise, return 0. */
14412
14413 template <typename Callback>
14414 static int
14415 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14416 Callback &&callback)
14417 {
14418 struct dwarf2_per_objfile *dwarf2_per_objfile
14419 = cu->per_cu->dwarf2_per_objfile;
14420 struct objfile *objfile = dwarf2_per_objfile->objfile;
14421 struct comp_unit_head *cu_header = &cu->header;
14422 bfd *obfd = objfile->obfd;
14423 unsigned int addr_size = cu_header->addr_size;
14424 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14425 /* Base address selection entry. */
14426 CORE_ADDR base;
14427 int found_base;
14428 unsigned int dummy;
14429 const gdb_byte *buffer;
14430 CORE_ADDR baseaddr;
14431
14432 if (cu_header->version >= 5)
14433 return dwarf2_rnglists_process (offset, cu, callback);
14434
14435 found_base = cu->base_known;
14436 base = cu->base_address;
14437
14438 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14439 if (offset >= dwarf2_per_objfile->ranges.size)
14440 {
14441 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14442 offset);
14443 return 0;
14444 }
14445 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14446
14447 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14448
14449 while (1)
14450 {
14451 CORE_ADDR range_beginning, range_end;
14452
14453 range_beginning = read_address (obfd, buffer, cu, &dummy);
14454 buffer += addr_size;
14455 range_end = read_address (obfd, buffer, cu, &dummy);
14456 buffer += addr_size;
14457 offset += 2 * addr_size;
14458
14459 /* An end of list marker is a pair of zero addresses. */
14460 if (range_beginning == 0 && range_end == 0)
14461 /* Found the end of list entry. */
14462 break;
14463
14464 /* Each base address selection entry is a pair of 2 values.
14465 The first is the largest possible address, the second is
14466 the base address. Check for a base address here. */
14467 if ((range_beginning & mask) == mask)
14468 {
14469 /* If we found the largest possible address, then we already
14470 have the base address in range_end. */
14471 base = range_end;
14472 found_base = 1;
14473 continue;
14474 }
14475
14476 if (!found_base)
14477 {
14478 /* We have no valid base address for the ranges
14479 data. */
14480 complaint (_("Invalid .debug_ranges data (no base address)"));
14481 return 0;
14482 }
14483
14484 if (range_beginning > range_end)
14485 {
14486 /* Inverted range entries are invalid. */
14487 complaint (_("Invalid .debug_ranges data (inverted range)"));
14488 return 0;
14489 }
14490
14491 /* Empty range entries have no effect. */
14492 if (range_beginning == range_end)
14493 continue;
14494
14495 range_beginning += base;
14496 range_end += base;
14497
14498 /* A not-uncommon case of bad debug info.
14499 Don't pollute the addrmap with bad data. */
14500 if (range_beginning + baseaddr == 0
14501 && !dwarf2_per_objfile->has_section_at_zero)
14502 {
14503 complaint (_(".debug_ranges entry has start address of zero"
14504 " [in module %s]"), objfile_name (objfile));
14505 continue;
14506 }
14507
14508 callback (range_beginning, range_end);
14509 }
14510
14511 return 1;
14512 }
14513
14514 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14515 Return 1 if the attributes are present and valid, otherwise, return 0.
14516 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14517
14518 static int
14519 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14520 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14521 struct partial_symtab *ranges_pst)
14522 {
14523 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14524 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14525 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14526 SECT_OFF_TEXT (objfile));
14527 int low_set = 0;
14528 CORE_ADDR low = 0;
14529 CORE_ADDR high = 0;
14530 int retval;
14531
14532 retval = dwarf2_ranges_process (offset, cu,
14533 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14534 {
14535 if (ranges_pst != NULL)
14536 {
14537 CORE_ADDR lowpc;
14538 CORE_ADDR highpc;
14539
14540 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14541 range_beginning + baseaddr)
14542 - baseaddr);
14543 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14544 range_end + baseaddr)
14545 - baseaddr);
14546 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14547 lowpc, highpc - 1, ranges_pst);
14548 }
14549
14550 /* FIXME: This is recording everything as a low-high
14551 segment of consecutive addresses. We should have a
14552 data structure for discontiguous block ranges
14553 instead. */
14554 if (! low_set)
14555 {
14556 low = range_beginning;
14557 high = range_end;
14558 low_set = 1;
14559 }
14560 else
14561 {
14562 if (range_beginning < low)
14563 low = range_beginning;
14564 if (range_end > high)
14565 high = range_end;
14566 }
14567 });
14568 if (!retval)
14569 return 0;
14570
14571 if (! low_set)
14572 /* If the first entry is an end-of-list marker, the range
14573 describes an empty scope, i.e. no instructions. */
14574 return 0;
14575
14576 if (low_return)
14577 *low_return = low;
14578 if (high_return)
14579 *high_return = high;
14580 return 1;
14581 }
14582
14583 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14584 definition for the return value. *LOWPC and *HIGHPC are set iff
14585 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14586
14587 static enum pc_bounds_kind
14588 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14589 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14590 struct partial_symtab *pst)
14591 {
14592 struct dwarf2_per_objfile *dwarf2_per_objfile
14593 = cu->per_cu->dwarf2_per_objfile;
14594 struct attribute *attr;
14595 struct attribute *attr_high;
14596 CORE_ADDR low = 0;
14597 CORE_ADDR high = 0;
14598 enum pc_bounds_kind ret;
14599
14600 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14601 if (attr_high)
14602 {
14603 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14604 if (attr)
14605 {
14606 low = attr_value_as_address (attr);
14607 high = attr_value_as_address (attr_high);
14608 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14609 high += low;
14610 }
14611 else
14612 /* Found high w/o low attribute. */
14613 return PC_BOUNDS_INVALID;
14614
14615 /* Found consecutive range of addresses. */
14616 ret = PC_BOUNDS_HIGH_LOW;
14617 }
14618 else
14619 {
14620 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14621 if (attr != NULL)
14622 {
14623 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14624 We take advantage of the fact that DW_AT_ranges does not appear
14625 in DW_TAG_compile_unit of DWO files. */
14626 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14627 unsigned int ranges_offset = (DW_UNSND (attr)
14628 + (need_ranges_base
14629 ? cu->ranges_base
14630 : 0));
14631
14632 /* Value of the DW_AT_ranges attribute is the offset in the
14633 .debug_ranges section. */
14634 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14635 return PC_BOUNDS_INVALID;
14636 /* Found discontinuous range of addresses. */
14637 ret = PC_BOUNDS_RANGES;
14638 }
14639 else
14640 return PC_BOUNDS_NOT_PRESENT;
14641 }
14642
14643 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14644 if (high <= low)
14645 return PC_BOUNDS_INVALID;
14646
14647 /* When using the GNU linker, .gnu.linkonce. sections are used to
14648 eliminate duplicate copies of functions and vtables and such.
14649 The linker will arbitrarily choose one and discard the others.
14650 The AT_*_pc values for such functions refer to local labels in
14651 these sections. If the section from that file was discarded, the
14652 labels are not in the output, so the relocs get a value of 0.
14653 If this is a discarded function, mark the pc bounds as invalid,
14654 so that GDB will ignore it. */
14655 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14656 return PC_BOUNDS_INVALID;
14657
14658 *lowpc = low;
14659 if (highpc)
14660 *highpc = high;
14661 return ret;
14662 }
14663
14664 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14665 its low and high PC addresses. Do nothing if these addresses could not
14666 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14667 and HIGHPC to the high address if greater than HIGHPC. */
14668
14669 static void
14670 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14671 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14672 struct dwarf2_cu *cu)
14673 {
14674 CORE_ADDR low, high;
14675 struct die_info *child = die->child;
14676
14677 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14678 {
14679 *lowpc = std::min (*lowpc, low);
14680 *highpc = std::max (*highpc, high);
14681 }
14682
14683 /* If the language does not allow nested subprograms (either inside
14684 subprograms or lexical blocks), we're done. */
14685 if (cu->language != language_ada)
14686 return;
14687
14688 /* Check all the children of the given DIE. If it contains nested
14689 subprograms, then check their pc bounds. Likewise, we need to
14690 check lexical blocks as well, as they may also contain subprogram
14691 definitions. */
14692 while (child && child->tag)
14693 {
14694 if (child->tag == DW_TAG_subprogram
14695 || child->tag == DW_TAG_lexical_block)
14696 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14697 child = sibling_die (child);
14698 }
14699 }
14700
14701 /* Get the low and high pc's represented by the scope DIE, and store
14702 them in *LOWPC and *HIGHPC. If the correct values can't be
14703 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14704
14705 static void
14706 get_scope_pc_bounds (struct die_info *die,
14707 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14708 struct dwarf2_cu *cu)
14709 {
14710 CORE_ADDR best_low = (CORE_ADDR) -1;
14711 CORE_ADDR best_high = (CORE_ADDR) 0;
14712 CORE_ADDR current_low, current_high;
14713
14714 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14715 >= PC_BOUNDS_RANGES)
14716 {
14717 best_low = current_low;
14718 best_high = current_high;
14719 }
14720 else
14721 {
14722 struct die_info *child = die->child;
14723
14724 while (child && child->tag)
14725 {
14726 switch (child->tag) {
14727 case DW_TAG_subprogram:
14728 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14729 break;
14730 case DW_TAG_namespace:
14731 case DW_TAG_module:
14732 /* FIXME: carlton/2004-01-16: Should we do this for
14733 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14734 that current GCC's always emit the DIEs corresponding
14735 to definitions of methods of classes as children of a
14736 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14737 the DIEs giving the declarations, which could be
14738 anywhere). But I don't see any reason why the
14739 standards says that they have to be there. */
14740 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14741
14742 if (current_low != ((CORE_ADDR) -1))
14743 {
14744 best_low = std::min (best_low, current_low);
14745 best_high = std::max (best_high, current_high);
14746 }
14747 break;
14748 default:
14749 /* Ignore. */
14750 break;
14751 }
14752
14753 child = sibling_die (child);
14754 }
14755 }
14756
14757 *lowpc = best_low;
14758 *highpc = best_high;
14759 }
14760
14761 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14762 in DIE. */
14763
14764 static void
14765 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14766 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14767 {
14768 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14769 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14770 struct attribute *attr;
14771 struct attribute *attr_high;
14772
14773 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14774 if (attr_high)
14775 {
14776 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14777 if (attr)
14778 {
14779 CORE_ADDR low = attr_value_as_address (attr);
14780 CORE_ADDR high = attr_value_as_address (attr_high);
14781
14782 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14783 high += low;
14784
14785 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14786 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14787 cu->get_builder ()->record_block_range (block, low, high - 1);
14788 }
14789 }
14790
14791 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14792 if (attr)
14793 {
14794 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14795 We take advantage of the fact that DW_AT_ranges does not appear
14796 in DW_TAG_compile_unit of DWO files. */
14797 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14798
14799 /* The value of the DW_AT_ranges attribute is the offset of the
14800 address range list in the .debug_ranges section. */
14801 unsigned long offset = (DW_UNSND (attr)
14802 + (need_ranges_base ? cu->ranges_base : 0));
14803
14804 std::vector<blockrange> blockvec;
14805 dwarf2_ranges_process (offset, cu,
14806 [&] (CORE_ADDR start, CORE_ADDR end)
14807 {
14808 start += baseaddr;
14809 end += baseaddr;
14810 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14811 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14812 cu->get_builder ()->record_block_range (block, start, end - 1);
14813 blockvec.emplace_back (start, end);
14814 });
14815
14816 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14817 }
14818 }
14819
14820 /* Check whether the producer field indicates either of GCC < 4.6, or the
14821 Intel C/C++ compiler, and cache the result in CU. */
14822
14823 static void
14824 check_producer (struct dwarf2_cu *cu)
14825 {
14826 int major, minor;
14827
14828 if (cu->producer == NULL)
14829 {
14830 /* For unknown compilers expect their behavior is DWARF version
14831 compliant.
14832
14833 GCC started to support .debug_types sections by -gdwarf-4 since
14834 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14835 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14836 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14837 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14838 }
14839 else if (producer_is_gcc (cu->producer, &major, &minor))
14840 {
14841 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14842 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14843 }
14844 else if (producer_is_icc (cu->producer, &major, &minor))
14845 {
14846 cu->producer_is_icc = true;
14847 cu->producer_is_icc_lt_14 = major < 14;
14848 }
14849 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14850 cu->producer_is_codewarrior = true;
14851 else
14852 {
14853 /* For other non-GCC compilers, expect their behavior is DWARF version
14854 compliant. */
14855 }
14856
14857 cu->checked_producer = true;
14858 }
14859
14860 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14861 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14862 during 4.6.0 experimental. */
14863
14864 static bool
14865 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14866 {
14867 if (!cu->checked_producer)
14868 check_producer (cu);
14869
14870 return cu->producer_is_gxx_lt_4_6;
14871 }
14872
14873
14874 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14875 with incorrect is_stmt attributes. */
14876
14877 static bool
14878 producer_is_codewarrior (struct dwarf2_cu *cu)
14879 {
14880 if (!cu->checked_producer)
14881 check_producer (cu);
14882
14883 return cu->producer_is_codewarrior;
14884 }
14885
14886 /* Return the default accessibility type if it is not overriden by
14887 DW_AT_accessibility. */
14888
14889 static enum dwarf_access_attribute
14890 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14891 {
14892 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14893 {
14894 /* The default DWARF 2 accessibility for members is public, the default
14895 accessibility for inheritance is private. */
14896
14897 if (die->tag != DW_TAG_inheritance)
14898 return DW_ACCESS_public;
14899 else
14900 return DW_ACCESS_private;
14901 }
14902 else
14903 {
14904 /* DWARF 3+ defines the default accessibility a different way. The same
14905 rules apply now for DW_TAG_inheritance as for the members and it only
14906 depends on the container kind. */
14907
14908 if (die->parent->tag == DW_TAG_class_type)
14909 return DW_ACCESS_private;
14910 else
14911 return DW_ACCESS_public;
14912 }
14913 }
14914
14915 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14916 offset. If the attribute was not found return 0, otherwise return
14917 1. If it was found but could not properly be handled, set *OFFSET
14918 to 0. */
14919
14920 static int
14921 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14922 LONGEST *offset)
14923 {
14924 struct attribute *attr;
14925
14926 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14927 if (attr != NULL)
14928 {
14929 *offset = 0;
14930
14931 /* Note that we do not check for a section offset first here.
14932 This is because DW_AT_data_member_location is new in DWARF 4,
14933 so if we see it, we can assume that a constant form is really
14934 a constant and not a section offset. */
14935 if (attr_form_is_constant (attr))
14936 *offset = dwarf2_get_attr_constant_value (attr, 0);
14937 else if (attr_form_is_section_offset (attr))
14938 dwarf2_complex_location_expr_complaint ();
14939 else if (attr_form_is_block (attr))
14940 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14941 else
14942 dwarf2_complex_location_expr_complaint ();
14943
14944 return 1;
14945 }
14946
14947 return 0;
14948 }
14949
14950 /* Add an aggregate field to the field list. */
14951
14952 static void
14953 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14954 struct dwarf2_cu *cu)
14955 {
14956 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14957 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14958 struct nextfield *new_field;
14959 struct attribute *attr;
14960 struct field *fp;
14961 const char *fieldname = "";
14962
14963 if (die->tag == DW_TAG_inheritance)
14964 {
14965 fip->baseclasses.emplace_back ();
14966 new_field = &fip->baseclasses.back ();
14967 }
14968 else
14969 {
14970 fip->fields.emplace_back ();
14971 new_field = &fip->fields.back ();
14972 }
14973
14974 fip->nfields++;
14975
14976 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14977 if (attr)
14978 new_field->accessibility = DW_UNSND (attr);
14979 else
14980 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14981 if (new_field->accessibility != DW_ACCESS_public)
14982 fip->non_public_fields = 1;
14983
14984 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14985 if (attr)
14986 new_field->virtuality = DW_UNSND (attr);
14987 else
14988 new_field->virtuality = DW_VIRTUALITY_none;
14989
14990 fp = &new_field->field;
14991
14992 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14993 {
14994 LONGEST offset;
14995
14996 /* Data member other than a C++ static data member. */
14997
14998 /* Get type of field. */
14999 fp->type = die_type (die, cu);
15000
15001 SET_FIELD_BITPOS (*fp, 0);
15002
15003 /* Get bit size of field (zero if none). */
15004 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15005 if (attr)
15006 {
15007 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15008 }
15009 else
15010 {
15011 FIELD_BITSIZE (*fp) = 0;
15012 }
15013
15014 /* Get bit offset of field. */
15015 if (handle_data_member_location (die, cu, &offset))
15016 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15017 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15018 if (attr)
15019 {
15020 if (gdbarch_bits_big_endian (gdbarch))
15021 {
15022 /* For big endian bits, the DW_AT_bit_offset gives the
15023 additional bit offset from the MSB of the containing
15024 anonymous object to the MSB of the field. We don't
15025 have to do anything special since we don't need to
15026 know the size of the anonymous object. */
15027 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15028 }
15029 else
15030 {
15031 /* For little endian bits, compute the bit offset to the
15032 MSB of the anonymous object, subtract off the number of
15033 bits from the MSB of the field to the MSB of the
15034 object, and then subtract off the number of bits of
15035 the field itself. The result is the bit offset of
15036 the LSB of the field. */
15037 int anonymous_size;
15038 int bit_offset = DW_UNSND (attr);
15039
15040 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15041 if (attr)
15042 {
15043 /* The size of the anonymous object containing
15044 the bit field is explicit, so use the
15045 indicated size (in bytes). */
15046 anonymous_size = DW_UNSND (attr);
15047 }
15048 else
15049 {
15050 /* The size of the anonymous object containing
15051 the bit field must be inferred from the type
15052 attribute of the data member containing the
15053 bit field. */
15054 anonymous_size = TYPE_LENGTH (fp->type);
15055 }
15056 SET_FIELD_BITPOS (*fp,
15057 (FIELD_BITPOS (*fp)
15058 + anonymous_size * bits_per_byte
15059 - bit_offset - FIELD_BITSIZE (*fp)));
15060 }
15061 }
15062 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15063 if (attr != NULL)
15064 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15065 + dwarf2_get_attr_constant_value (attr, 0)));
15066
15067 /* Get name of field. */
15068 fieldname = dwarf2_name (die, cu);
15069 if (fieldname == NULL)
15070 fieldname = "";
15071
15072 /* The name is already allocated along with this objfile, so we don't
15073 need to duplicate it for the type. */
15074 fp->name = fieldname;
15075
15076 /* Change accessibility for artificial fields (e.g. virtual table
15077 pointer or virtual base class pointer) to private. */
15078 if (dwarf2_attr (die, DW_AT_artificial, cu))
15079 {
15080 FIELD_ARTIFICIAL (*fp) = 1;
15081 new_field->accessibility = DW_ACCESS_private;
15082 fip->non_public_fields = 1;
15083 }
15084 }
15085 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15086 {
15087 /* C++ static member. */
15088
15089 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15090 is a declaration, but all versions of G++ as of this writing
15091 (so through at least 3.2.1) incorrectly generate
15092 DW_TAG_variable tags. */
15093
15094 const char *physname;
15095
15096 /* Get name of field. */
15097 fieldname = dwarf2_name (die, cu);
15098 if (fieldname == NULL)
15099 return;
15100
15101 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15102 if (attr
15103 /* Only create a symbol if this is an external value.
15104 new_symbol checks this and puts the value in the global symbol
15105 table, which we want. If it is not external, new_symbol
15106 will try to put the value in cu->list_in_scope which is wrong. */
15107 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15108 {
15109 /* A static const member, not much different than an enum as far as
15110 we're concerned, except that we can support more types. */
15111 new_symbol (die, NULL, cu);
15112 }
15113
15114 /* Get physical name. */
15115 physname = dwarf2_physname (fieldname, die, cu);
15116
15117 /* The name is already allocated along with this objfile, so we don't
15118 need to duplicate it for the type. */
15119 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15120 FIELD_TYPE (*fp) = die_type (die, cu);
15121 FIELD_NAME (*fp) = fieldname;
15122 }
15123 else if (die->tag == DW_TAG_inheritance)
15124 {
15125 LONGEST offset;
15126
15127 /* C++ base class field. */
15128 if (handle_data_member_location (die, cu, &offset))
15129 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15130 FIELD_BITSIZE (*fp) = 0;
15131 FIELD_TYPE (*fp) = die_type (die, cu);
15132 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15133 }
15134 else if (die->tag == DW_TAG_variant_part)
15135 {
15136 /* process_structure_scope will treat this DIE as a union. */
15137 process_structure_scope (die, cu);
15138
15139 /* The variant part is relative to the start of the enclosing
15140 structure. */
15141 SET_FIELD_BITPOS (*fp, 0);
15142 fp->type = get_die_type (die, cu);
15143 fp->artificial = 1;
15144 fp->name = "<<variant>>";
15145
15146 /* Normally a DW_TAG_variant_part won't have a size, but our
15147 representation requires one, so set it to the maximum of the
15148 child sizes. */
15149 if (TYPE_LENGTH (fp->type) == 0)
15150 {
15151 unsigned max = 0;
15152 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15153 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15154 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15155 TYPE_LENGTH (fp->type) = max;
15156 }
15157 }
15158 else
15159 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15160 }
15161
15162 /* Can the type given by DIE define another type? */
15163
15164 static bool
15165 type_can_define_types (const struct die_info *die)
15166 {
15167 switch (die->tag)
15168 {
15169 case DW_TAG_typedef:
15170 case DW_TAG_class_type:
15171 case DW_TAG_structure_type:
15172 case DW_TAG_union_type:
15173 case DW_TAG_enumeration_type:
15174 return true;
15175
15176 default:
15177 return false;
15178 }
15179 }
15180
15181 /* Add a type definition defined in the scope of the FIP's class. */
15182
15183 static void
15184 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15185 struct dwarf2_cu *cu)
15186 {
15187 struct decl_field fp;
15188 memset (&fp, 0, sizeof (fp));
15189
15190 gdb_assert (type_can_define_types (die));
15191
15192 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15193 fp.name = dwarf2_name (die, cu);
15194 fp.type = read_type_die (die, cu);
15195
15196 /* Save accessibility. */
15197 enum dwarf_access_attribute accessibility;
15198 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15199 if (attr != NULL)
15200 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15201 else
15202 accessibility = dwarf2_default_access_attribute (die, cu);
15203 switch (accessibility)
15204 {
15205 case DW_ACCESS_public:
15206 /* The assumed value if neither private nor protected. */
15207 break;
15208 case DW_ACCESS_private:
15209 fp.is_private = 1;
15210 break;
15211 case DW_ACCESS_protected:
15212 fp.is_protected = 1;
15213 break;
15214 default:
15215 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15216 }
15217
15218 if (die->tag == DW_TAG_typedef)
15219 fip->typedef_field_list.push_back (fp);
15220 else
15221 fip->nested_types_list.push_back (fp);
15222 }
15223
15224 /* Create the vector of fields, and attach it to the type. */
15225
15226 static void
15227 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15228 struct dwarf2_cu *cu)
15229 {
15230 int nfields = fip->nfields;
15231
15232 /* Record the field count, allocate space for the array of fields,
15233 and create blank accessibility bitfields if necessary. */
15234 TYPE_NFIELDS (type) = nfields;
15235 TYPE_FIELDS (type) = (struct field *)
15236 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15237
15238 if (fip->non_public_fields && cu->language != language_ada)
15239 {
15240 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15241
15242 TYPE_FIELD_PRIVATE_BITS (type) =
15243 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15244 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15245
15246 TYPE_FIELD_PROTECTED_BITS (type) =
15247 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15248 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15249
15250 TYPE_FIELD_IGNORE_BITS (type) =
15251 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15252 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15253 }
15254
15255 /* If the type has baseclasses, allocate and clear a bit vector for
15256 TYPE_FIELD_VIRTUAL_BITS. */
15257 if (!fip->baseclasses.empty () && cu->language != language_ada)
15258 {
15259 int num_bytes = B_BYTES (fip->baseclasses.size ());
15260 unsigned char *pointer;
15261
15262 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15263 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15264 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15265 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15266 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15267 }
15268
15269 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15270 {
15271 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15272
15273 for (int index = 0; index < nfields; ++index)
15274 {
15275 struct nextfield &field = fip->fields[index];
15276
15277 if (field.variant.is_discriminant)
15278 di->discriminant_index = index;
15279 else if (field.variant.default_branch)
15280 di->default_index = index;
15281 else
15282 di->discriminants[index] = field.variant.discriminant_value;
15283 }
15284 }
15285
15286 /* Copy the saved-up fields into the field vector. */
15287 for (int i = 0; i < nfields; ++i)
15288 {
15289 struct nextfield &field
15290 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15291 : fip->fields[i - fip->baseclasses.size ()]);
15292
15293 TYPE_FIELD (type, i) = field.field;
15294 switch (field.accessibility)
15295 {
15296 case DW_ACCESS_private:
15297 if (cu->language != language_ada)
15298 SET_TYPE_FIELD_PRIVATE (type, i);
15299 break;
15300
15301 case DW_ACCESS_protected:
15302 if (cu->language != language_ada)
15303 SET_TYPE_FIELD_PROTECTED (type, i);
15304 break;
15305
15306 case DW_ACCESS_public:
15307 break;
15308
15309 default:
15310 /* Unknown accessibility. Complain and treat it as public. */
15311 {
15312 complaint (_("unsupported accessibility %d"),
15313 field.accessibility);
15314 }
15315 break;
15316 }
15317 if (i < fip->baseclasses.size ())
15318 {
15319 switch (field.virtuality)
15320 {
15321 case DW_VIRTUALITY_virtual:
15322 case DW_VIRTUALITY_pure_virtual:
15323 if (cu->language == language_ada)
15324 error (_("unexpected virtuality in component of Ada type"));
15325 SET_TYPE_FIELD_VIRTUAL (type, i);
15326 break;
15327 }
15328 }
15329 }
15330 }
15331
15332 /* Return true if this member function is a constructor, false
15333 otherwise. */
15334
15335 static int
15336 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15337 {
15338 const char *fieldname;
15339 const char *type_name;
15340 int len;
15341
15342 if (die->parent == NULL)
15343 return 0;
15344
15345 if (die->parent->tag != DW_TAG_structure_type
15346 && die->parent->tag != DW_TAG_union_type
15347 && die->parent->tag != DW_TAG_class_type)
15348 return 0;
15349
15350 fieldname = dwarf2_name (die, cu);
15351 type_name = dwarf2_name (die->parent, cu);
15352 if (fieldname == NULL || type_name == NULL)
15353 return 0;
15354
15355 len = strlen (fieldname);
15356 return (strncmp (fieldname, type_name, len) == 0
15357 && (type_name[len] == '\0' || type_name[len] == '<'));
15358 }
15359
15360 /* Add a member function to the proper fieldlist. */
15361
15362 static void
15363 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15364 struct type *type, struct dwarf2_cu *cu)
15365 {
15366 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15367 struct attribute *attr;
15368 int i;
15369 struct fnfieldlist *flp = nullptr;
15370 struct fn_field *fnp;
15371 const char *fieldname;
15372 struct type *this_type;
15373 enum dwarf_access_attribute accessibility;
15374
15375 if (cu->language == language_ada)
15376 error (_("unexpected member function in Ada type"));
15377
15378 /* Get name of member function. */
15379 fieldname = dwarf2_name (die, cu);
15380 if (fieldname == NULL)
15381 return;
15382
15383 /* Look up member function name in fieldlist. */
15384 for (i = 0; i < fip->fnfieldlists.size (); i++)
15385 {
15386 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15387 {
15388 flp = &fip->fnfieldlists[i];
15389 break;
15390 }
15391 }
15392
15393 /* Create a new fnfieldlist if necessary. */
15394 if (flp == nullptr)
15395 {
15396 fip->fnfieldlists.emplace_back ();
15397 flp = &fip->fnfieldlists.back ();
15398 flp->name = fieldname;
15399 i = fip->fnfieldlists.size () - 1;
15400 }
15401
15402 /* Create a new member function field and add it to the vector of
15403 fnfieldlists. */
15404 flp->fnfields.emplace_back ();
15405 fnp = &flp->fnfields.back ();
15406
15407 /* Delay processing of the physname until later. */
15408 if (cu->language == language_cplus)
15409 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15410 die, cu);
15411 else
15412 {
15413 const char *physname = dwarf2_physname (fieldname, die, cu);
15414 fnp->physname = physname ? physname : "";
15415 }
15416
15417 fnp->type = alloc_type (objfile);
15418 this_type = read_type_die (die, cu);
15419 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15420 {
15421 int nparams = TYPE_NFIELDS (this_type);
15422
15423 /* TYPE is the domain of this method, and THIS_TYPE is the type
15424 of the method itself (TYPE_CODE_METHOD). */
15425 smash_to_method_type (fnp->type, type,
15426 TYPE_TARGET_TYPE (this_type),
15427 TYPE_FIELDS (this_type),
15428 TYPE_NFIELDS (this_type),
15429 TYPE_VARARGS (this_type));
15430
15431 /* Handle static member functions.
15432 Dwarf2 has no clean way to discern C++ static and non-static
15433 member functions. G++ helps GDB by marking the first
15434 parameter for non-static member functions (which is the this
15435 pointer) as artificial. We obtain this information from
15436 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15437 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15438 fnp->voffset = VOFFSET_STATIC;
15439 }
15440 else
15441 complaint (_("member function type missing for '%s'"),
15442 dwarf2_full_name (fieldname, die, cu));
15443
15444 /* Get fcontext from DW_AT_containing_type if present. */
15445 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15446 fnp->fcontext = die_containing_type (die, cu);
15447
15448 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15449 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15450
15451 /* Get accessibility. */
15452 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15453 if (attr)
15454 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15455 else
15456 accessibility = dwarf2_default_access_attribute (die, cu);
15457 switch (accessibility)
15458 {
15459 case DW_ACCESS_private:
15460 fnp->is_private = 1;
15461 break;
15462 case DW_ACCESS_protected:
15463 fnp->is_protected = 1;
15464 break;
15465 }
15466
15467 /* Check for artificial methods. */
15468 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15469 if (attr && DW_UNSND (attr) != 0)
15470 fnp->is_artificial = 1;
15471
15472 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15473
15474 /* Get index in virtual function table if it is a virtual member
15475 function. For older versions of GCC, this is an offset in the
15476 appropriate virtual table, as specified by DW_AT_containing_type.
15477 For everyone else, it is an expression to be evaluated relative
15478 to the object address. */
15479
15480 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15481 if (attr)
15482 {
15483 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15484 {
15485 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15486 {
15487 /* Old-style GCC. */
15488 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15489 }
15490 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15491 || (DW_BLOCK (attr)->size > 1
15492 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15493 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15494 {
15495 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15496 if ((fnp->voffset % cu->header.addr_size) != 0)
15497 dwarf2_complex_location_expr_complaint ();
15498 else
15499 fnp->voffset /= cu->header.addr_size;
15500 fnp->voffset += 2;
15501 }
15502 else
15503 dwarf2_complex_location_expr_complaint ();
15504
15505 if (!fnp->fcontext)
15506 {
15507 /* If there is no `this' field and no DW_AT_containing_type,
15508 we cannot actually find a base class context for the
15509 vtable! */
15510 if (TYPE_NFIELDS (this_type) == 0
15511 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15512 {
15513 complaint (_("cannot determine context for virtual member "
15514 "function \"%s\" (offset %s)"),
15515 fieldname, sect_offset_str (die->sect_off));
15516 }
15517 else
15518 {
15519 fnp->fcontext
15520 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15521 }
15522 }
15523 }
15524 else if (attr_form_is_section_offset (attr))
15525 {
15526 dwarf2_complex_location_expr_complaint ();
15527 }
15528 else
15529 {
15530 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15531 fieldname);
15532 }
15533 }
15534 else
15535 {
15536 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15537 if (attr && DW_UNSND (attr))
15538 {
15539 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15540 complaint (_("Member function \"%s\" (offset %s) is virtual "
15541 "but the vtable offset is not specified"),
15542 fieldname, sect_offset_str (die->sect_off));
15543 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15544 TYPE_CPLUS_DYNAMIC (type) = 1;
15545 }
15546 }
15547 }
15548
15549 /* Create the vector of member function fields, and attach it to the type. */
15550
15551 static void
15552 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15553 struct dwarf2_cu *cu)
15554 {
15555 if (cu->language == language_ada)
15556 error (_("unexpected member functions in Ada type"));
15557
15558 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15559 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15560 TYPE_ALLOC (type,
15561 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15562
15563 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15564 {
15565 struct fnfieldlist &nf = fip->fnfieldlists[i];
15566 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15567
15568 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15569 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15570 fn_flp->fn_fields = (struct fn_field *)
15571 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15572
15573 for (int k = 0; k < nf.fnfields.size (); ++k)
15574 fn_flp->fn_fields[k] = nf.fnfields[k];
15575 }
15576
15577 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15578 }
15579
15580 /* Returns non-zero if NAME is the name of a vtable member in CU's
15581 language, zero otherwise. */
15582 static int
15583 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15584 {
15585 static const char vptr[] = "_vptr";
15586
15587 /* Look for the C++ form of the vtable. */
15588 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15589 return 1;
15590
15591 return 0;
15592 }
15593
15594 /* GCC outputs unnamed structures that are really pointers to member
15595 functions, with the ABI-specified layout. If TYPE describes
15596 such a structure, smash it into a member function type.
15597
15598 GCC shouldn't do this; it should just output pointer to member DIEs.
15599 This is GCC PR debug/28767. */
15600
15601 static void
15602 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15603 {
15604 struct type *pfn_type, *self_type, *new_type;
15605
15606 /* Check for a structure with no name and two children. */
15607 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15608 return;
15609
15610 /* Check for __pfn and __delta members. */
15611 if (TYPE_FIELD_NAME (type, 0) == NULL
15612 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15613 || TYPE_FIELD_NAME (type, 1) == NULL
15614 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15615 return;
15616
15617 /* Find the type of the method. */
15618 pfn_type = TYPE_FIELD_TYPE (type, 0);
15619 if (pfn_type == NULL
15620 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15621 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15622 return;
15623
15624 /* Look for the "this" argument. */
15625 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15626 if (TYPE_NFIELDS (pfn_type) == 0
15627 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15628 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15629 return;
15630
15631 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15632 new_type = alloc_type (objfile);
15633 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15634 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15635 TYPE_VARARGS (pfn_type));
15636 smash_to_methodptr_type (type, new_type);
15637 }
15638
15639 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15640 appropriate error checking and issuing complaints if there is a
15641 problem. */
15642
15643 static ULONGEST
15644 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15645 {
15646 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15647
15648 if (attr == nullptr)
15649 return 0;
15650
15651 if (!attr_form_is_constant (attr))
15652 {
15653 complaint (_("DW_AT_alignment must have constant form"
15654 " - DIE at %s [in module %s]"),
15655 sect_offset_str (die->sect_off),
15656 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15657 return 0;
15658 }
15659
15660 ULONGEST align;
15661 if (attr->form == DW_FORM_sdata)
15662 {
15663 LONGEST val = DW_SND (attr);
15664 if (val < 0)
15665 {
15666 complaint (_("DW_AT_alignment value must not be negative"
15667 " - DIE at %s [in module %s]"),
15668 sect_offset_str (die->sect_off),
15669 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15670 return 0;
15671 }
15672 align = val;
15673 }
15674 else
15675 align = DW_UNSND (attr);
15676
15677 if (align == 0)
15678 {
15679 complaint (_("DW_AT_alignment value must not be zero"
15680 " - DIE at %s [in module %s]"),
15681 sect_offset_str (die->sect_off),
15682 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15683 return 0;
15684 }
15685 if ((align & (align - 1)) != 0)
15686 {
15687 complaint (_("DW_AT_alignment value must be a power of 2"
15688 " - DIE at %s [in module %s]"),
15689 sect_offset_str (die->sect_off),
15690 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15691 return 0;
15692 }
15693
15694 return align;
15695 }
15696
15697 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15698 the alignment for TYPE. */
15699
15700 static void
15701 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15702 struct type *type)
15703 {
15704 if (!set_type_align (type, get_alignment (cu, die)))
15705 complaint (_("DW_AT_alignment value too large"
15706 " - DIE at %s [in module %s]"),
15707 sect_offset_str (die->sect_off),
15708 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15709 }
15710
15711 /* Called when we find the DIE that starts a structure or union scope
15712 (definition) to create a type for the structure or union. Fill in
15713 the type's name and general properties; the members will not be
15714 processed until process_structure_scope. A symbol table entry for
15715 the type will also not be done until process_structure_scope (assuming
15716 the type has a name).
15717
15718 NOTE: we need to call these functions regardless of whether or not the
15719 DIE has a DW_AT_name attribute, since it might be an anonymous
15720 structure or union. This gets the type entered into our set of
15721 user defined types. */
15722
15723 static struct type *
15724 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15725 {
15726 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15727 struct type *type;
15728 struct attribute *attr;
15729 const char *name;
15730
15731 /* If the definition of this type lives in .debug_types, read that type.
15732 Don't follow DW_AT_specification though, that will take us back up
15733 the chain and we want to go down. */
15734 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15735 if (attr)
15736 {
15737 type = get_DW_AT_signature_type (die, attr, cu);
15738
15739 /* The type's CU may not be the same as CU.
15740 Ensure TYPE is recorded with CU in die_type_hash. */
15741 return set_die_type (die, type, cu);
15742 }
15743
15744 type = alloc_type (objfile);
15745 INIT_CPLUS_SPECIFIC (type);
15746
15747 name = dwarf2_name (die, cu);
15748 if (name != NULL)
15749 {
15750 if (cu->language == language_cplus
15751 || cu->language == language_d
15752 || cu->language == language_rust)
15753 {
15754 const char *full_name = dwarf2_full_name (name, die, cu);
15755
15756 /* dwarf2_full_name might have already finished building the DIE's
15757 type. If so, there is no need to continue. */
15758 if (get_die_type (die, cu) != NULL)
15759 return get_die_type (die, cu);
15760
15761 TYPE_NAME (type) = full_name;
15762 }
15763 else
15764 {
15765 /* The name is already allocated along with this objfile, so
15766 we don't need to duplicate it for the type. */
15767 TYPE_NAME (type) = name;
15768 }
15769 }
15770
15771 if (die->tag == DW_TAG_structure_type)
15772 {
15773 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15774 }
15775 else if (die->tag == DW_TAG_union_type)
15776 {
15777 TYPE_CODE (type) = TYPE_CODE_UNION;
15778 }
15779 else if (die->tag == DW_TAG_variant_part)
15780 {
15781 TYPE_CODE (type) = TYPE_CODE_UNION;
15782 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15783 }
15784 else
15785 {
15786 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15787 }
15788
15789 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15790 TYPE_DECLARED_CLASS (type) = 1;
15791
15792 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15793 if (attr)
15794 {
15795 if (attr_form_is_constant (attr))
15796 TYPE_LENGTH (type) = DW_UNSND (attr);
15797 else
15798 {
15799 /* For the moment, dynamic type sizes are not supported
15800 by GDB's struct type. The actual size is determined
15801 on-demand when resolving the type of a given object,
15802 so set the type's length to zero for now. Otherwise,
15803 we record an expression as the length, and that expression
15804 could lead to a very large value, which could eventually
15805 lead to us trying to allocate that much memory when creating
15806 a value of that type. */
15807 TYPE_LENGTH (type) = 0;
15808 }
15809 }
15810 else
15811 {
15812 TYPE_LENGTH (type) = 0;
15813 }
15814
15815 maybe_set_alignment (cu, die, type);
15816
15817 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15818 {
15819 /* ICC<14 does not output the required DW_AT_declaration on
15820 incomplete types, but gives them a size of zero. */
15821 TYPE_STUB (type) = 1;
15822 }
15823 else
15824 TYPE_STUB_SUPPORTED (type) = 1;
15825
15826 if (die_is_declaration (die, cu))
15827 TYPE_STUB (type) = 1;
15828 else if (attr == NULL && die->child == NULL
15829 && producer_is_realview (cu->producer))
15830 /* RealView does not output the required DW_AT_declaration
15831 on incomplete types. */
15832 TYPE_STUB (type) = 1;
15833
15834 /* We need to add the type field to the die immediately so we don't
15835 infinitely recurse when dealing with pointers to the structure
15836 type within the structure itself. */
15837 set_die_type (die, type, cu);
15838
15839 /* set_die_type should be already done. */
15840 set_descriptive_type (type, die, cu);
15841
15842 return type;
15843 }
15844
15845 /* A helper for process_structure_scope that handles a single member
15846 DIE. */
15847
15848 static void
15849 handle_struct_member_die (struct die_info *child_die, struct type *type,
15850 struct field_info *fi,
15851 std::vector<struct symbol *> *template_args,
15852 struct dwarf2_cu *cu)
15853 {
15854 if (child_die->tag == DW_TAG_member
15855 || child_die->tag == DW_TAG_variable
15856 || child_die->tag == DW_TAG_variant_part)
15857 {
15858 /* NOTE: carlton/2002-11-05: A C++ static data member
15859 should be a DW_TAG_member that is a declaration, but
15860 all versions of G++ as of this writing (so through at
15861 least 3.2.1) incorrectly generate DW_TAG_variable
15862 tags for them instead. */
15863 dwarf2_add_field (fi, child_die, cu);
15864 }
15865 else if (child_die->tag == DW_TAG_subprogram)
15866 {
15867 /* Rust doesn't have member functions in the C++ sense.
15868 However, it does emit ordinary functions as children
15869 of a struct DIE. */
15870 if (cu->language == language_rust)
15871 read_func_scope (child_die, cu);
15872 else
15873 {
15874 /* C++ member function. */
15875 dwarf2_add_member_fn (fi, child_die, type, cu);
15876 }
15877 }
15878 else if (child_die->tag == DW_TAG_inheritance)
15879 {
15880 /* C++ base class field. */
15881 dwarf2_add_field (fi, child_die, cu);
15882 }
15883 else if (type_can_define_types (child_die))
15884 dwarf2_add_type_defn (fi, child_die, cu);
15885 else if (child_die->tag == DW_TAG_template_type_param
15886 || child_die->tag == DW_TAG_template_value_param)
15887 {
15888 struct symbol *arg = new_symbol (child_die, NULL, cu);
15889
15890 if (arg != NULL)
15891 template_args->push_back (arg);
15892 }
15893 else if (child_die->tag == DW_TAG_variant)
15894 {
15895 /* In a variant we want to get the discriminant and also add a
15896 field for our sole member child. */
15897 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15898
15899 for (die_info *variant_child = child_die->child;
15900 variant_child != NULL;
15901 variant_child = sibling_die (variant_child))
15902 {
15903 if (variant_child->tag == DW_TAG_member)
15904 {
15905 handle_struct_member_die (variant_child, type, fi,
15906 template_args, cu);
15907 /* Only handle the one. */
15908 break;
15909 }
15910 }
15911
15912 /* We don't handle this but we might as well report it if we see
15913 it. */
15914 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15915 complaint (_("DW_AT_discr_list is not supported yet"
15916 " - DIE at %s [in module %s]"),
15917 sect_offset_str (child_die->sect_off),
15918 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15919
15920 /* The first field was just added, so we can stash the
15921 discriminant there. */
15922 gdb_assert (!fi->fields.empty ());
15923 if (discr == NULL)
15924 fi->fields.back ().variant.default_branch = true;
15925 else
15926 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15927 }
15928 }
15929
15930 /* Finish creating a structure or union type, including filling in
15931 its members and creating a symbol for it. */
15932
15933 static void
15934 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15935 {
15936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15937 struct die_info *child_die;
15938 struct type *type;
15939
15940 type = get_die_type (die, cu);
15941 if (type == NULL)
15942 type = read_structure_type (die, cu);
15943
15944 /* When reading a DW_TAG_variant_part, we need to notice when we
15945 read the discriminant member, so we can record it later in the
15946 discriminant_info. */
15947 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15948 sect_offset discr_offset;
15949 bool has_template_parameters = false;
15950
15951 if (is_variant_part)
15952 {
15953 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15954 if (discr == NULL)
15955 {
15956 /* Maybe it's a univariant form, an extension we support.
15957 In this case arrange not to check the offset. */
15958 is_variant_part = false;
15959 }
15960 else if (attr_form_is_ref (discr))
15961 {
15962 struct dwarf2_cu *target_cu = cu;
15963 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15964
15965 discr_offset = target_die->sect_off;
15966 }
15967 else
15968 {
15969 complaint (_("DW_AT_discr does not have DIE reference form"
15970 " - DIE at %s [in module %s]"),
15971 sect_offset_str (die->sect_off),
15972 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15973 is_variant_part = false;
15974 }
15975 }
15976
15977 if (die->child != NULL && ! die_is_declaration (die, cu))
15978 {
15979 struct field_info fi;
15980 std::vector<struct symbol *> template_args;
15981
15982 child_die = die->child;
15983
15984 while (child_die && child_die->tag)
15985 {
15986 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15987
15988 if (is_variant_part && discr_offset == child_die->sect_off)
15989 fi.fields.back ().variant.is_discriminant = true;
15990
15991 child_die = sibling_die (child_die);
15992 }
15993
15994 /* Attach template arguments to type. */
15995 if (!template_args.empty ())
15996 {
15997 has_template_parameters = true;
15998 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15999 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16000 TYPE_TEMPLATE_ARGUMENTS (type)
16001 = XOBNEWVEC (&objfile->objfile_obstack,
16002 struct symbol *,
16003 TYPE_N_TEMPLATE_ARGUMENTS (type));
16004 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16005 template_args.data (),
16006 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16007 * sizeof (struct symbol *)));
16008 }
16009
16010 /* Attach fields and member functions to the type. */
16011 if (fi.nfields)
16012 dwarf2_attach_fields_to_type (&fi, type, cu);
16013 if (!fi.fnfieldlists.empty ())
16014 {
16015 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16016
16017 /* Get the type which refers to the base class (possibly this
16018 class itself) which contains the vtable pointer for the current
16019 class from the DW_AT_containing_type attribute. This use of
16020 DW_AT_containing_type is a GNU extension. */
16021
16022 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16023 {
16024 struct type *t = die_containing_type (die, cu);
16025
16026 set_type_vptr_basetype (type, t);
16027 if (type == t)
16028 {
16029 int i;
16030
16031 /* Our own class provides vtbl ptr. */
16032 for (i = TYPE_NFIELDS (t) - 1;
16033 i >= TYPE_N_BASECLASSES (t);
16034 --i)
16035 {
16036 const char *fieldname = TYPE_FIELD_NAME (t, i);
16037
16038 if (is_vtable_name (fieldname, cu))
16039 {
16040 set_type_vptr_fieldno (type, i);
16041 break;
16042 }
16043 }
16044
16045 /* Complain if virtual function table field not found. */
16046 if (i < TYPE_N_BASECLASSES (t))
16047 complaint (_("virtual function table pointer "
16048 "not found when defining class '%s'"),
16049 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16050 }
16051 else
16052 {
16053 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16054 }
16055 }
16056 else if (cu->producer
16057 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16058 {
16059 /* The IBM XLC compiler does not provide direct indication
16060 of the containing type, but the vtable pointer is
16061 always named __vfp. */
16062
16063 int i;
16064
16065 for (i = TYPE_NFIELDS (type) - 1;
16066 i >= TYPE_N_BASECLASSES (type);
16067 --i)
16068 {
16069 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16070 {
16071 set_type_vptr_fieldno (type, i);
16072 set_type_vptr_basetype (type, type);
16073 break;
16074 }
16075 }
16076 }
16077 }
16078
16079 /* Copy fi.typedef_field_list linked list elements content into the
16080 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16081 if (!fi.typedef_field_list.empty ())
16082 {
16083 int count = fi.typedef_field_list.size ();
16084
16085 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16086 TYPE_TYPEDEF_FIELD_ARRAY (type)
16087 = ((struct decl_field *)
16088 TYPE_ALLOC (type,
16089 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16090 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16091
16092 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16093 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16094 }
16095
16096 /* Copy fi.nested_types_list linked list elements content into the
16097 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16098 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16099 {
16100 int count = fi.nested_types_list.size ();
16101
16102 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16103 TYPE_NESTED_TYPES_ARRAY (type)
16104 = ((struct decl_field *)
16105 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16106 TYPE_NESTED_TYPES_COUNT (type) = count;
16107
16108 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16109 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16110 }
16111 }
16112
16113 quirk_gcc_member_function_pointer (type, objfile);
16114 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16115 cu->rust_unions.push_back (type);
16116
16117 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16118 snapshots) has been known to create a die giving a declaration
16119 for a class that has, as a child, a die giving a definition for a
16120 nested class. So we have to process our children even if the
16121 current die is a declaration. Normally, of course, a declaration
16122 won't have any children at all. */
16123
16124 child_die = die->child;
16125
16126 while (child_die != NULL && child_die->tag)
16127 {
16128 if (child_die->tag == DW_TAG_member
16129 || child_die->tag == DW_TAG_variable
16130 || child_die->tag == DW_TAG_inheritance
16131 || child_die->tag == DW_TAG_template_value_param
16132 || child_die->tag == DW_TAG_template_type_param)
16133 {
16134 /* Do nothing. */
16135 }
16136 else
16137 process_die (child_die, cu);
16138
16139 child_die = sibling_die (child_die);
16140 }
16141
16142 /* Do not consider external references. According to the DWARF standard,
16143 these DIEs are identified by the fact that they have no byte_size
16144 attribute, and a declaration attribute. */
16145 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16146 || !die_is_declaration (die, cu))
16147 {
16148 struct symbol *sym = new_symbol (die, type, cu);
16149
16150 if (has_template_parameters)
16151 {
16152 struct symtab *symtab;
16153 if (sym != nullptr)
16154 symtab = symbol_symtab (sym);
16155 else if (cu->line_header != nullptr)
16156 {
16157 /* Any related symtab will do. */
16158 symtab
16159 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16160 }
16161 else
16162 {
16163 symtab = nullptr;
16164 complaint (_("could not find suitable "
16165 "symtab for template parameter"
16166 " - DIE at %s [in module %s]"),
16167 sect_offset_str (die->sect_off),
16168 objfile_name (objfile));
16169 }
16170
16171 if (symtab != nullptr)
16172 {
16173 /* Make sure that the symtab is set on the new symbols.
16174 Even though they don't appear in this symtab directly,
16175 other parts of gdb assume that symbols do, and this is
16176 reasonably true. */
16177 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16178 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16179 }
16180 }
16181 }
16182 }
16183
16184 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16185 update TYPE using some information only available in DIE's children. */
16186
16187 static void
16188 update_enumeration_type_from_children (struct die_info *die,
16189 struct type *type,
16190 struct dwarf2_cu *cu)
16191 {
16192 struct die_info *child_die;
16193 int unsigned_enum = 1;
16194 int flag_enum = 1;
16195 ULONGEST mask = 0;
16196
16197 auto_obstack obstack;
16198
16199 for (child_die = die->child;
16200 child_die != NULL && child_die->tag;
16201 child_die = sibling_die (child_die))
16202 {
16203 struct attribute *attr;
16204 LONGEST value;
16205 const gdb_byte *bytes;
16206 struct dwarf2_locexpr_baton *baton;
16207 const char *name;
16208
16209 if (child_die->tag != DW_TAG_enumerator)
16210 continue;
16211
16212 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16213 if (attr == NULL)
16214 continue;
16215
16216 name = dwarf2_name (child_die, cu);
16217 if (name == NULL)
16218 name = "<anonymous enumerator>";
16219
16220 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16221 &value, &bytes, &baton);
16222 if (value < 0)
16223 {
16224 unsigned_enum = 0;
16225 flag_enum = 0;
16226 }
16227 else if ((mask & value) != 0)
16228 flag_enum = 0;
16229 else
16230 mask |= value;
16231
16232 /* If we already know that the enum type is neither unsigned, nor
16233 a flag type, no need to look at the rest of the enumerates. */
16234 if (!unsigned_enum && !flag_enum)
16235 break;
16236 }
16237
16238 if (unsigned_enum)
16239 TYPE_UNSIGNED (type) = 1;
16240 if (flag_enum)
16241 TYPE_FLAG_ENUM (type) = 1;
16242 }
16243
16244 /* Given a DW_AT_enumeration_type die, set its type. We do not
16245 complete the type's fields yet, or create any symbols. */
16246
16247 static struct type *
16248 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16249 {
16250 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16251 struct type *type;
16252 struct attribute *attr;
16253 const char *name;
16254
16255 /* If the definition of this type lives in .debug_types, read that type.
16256 Don't follow DW_AT_specification though, that will take us back up
16257 the chain and we want to go down. */
16258 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16259 if (attr)
16260 {
16261 type = get_DW_AT_signature_type (die, attr, cu);
16262
16263 /* The type's CU may not be the same as CU.
16264 Ensure TYPE is recorded with CU in die_type_hash. */
16265 return set_die_type (die, type, cu);
16266 }
16267
16268 type = alloc_type (objfile);
16269
16270 TYPE_CODE (type) = TYPE_CODE_ENUM;
16271 name = dwarf2_full_name (NULL, die, cu);
16272 if (name != NULL)
16273 TYPE_NAME (type) = name;
16274
16275 attr = dwarf2_attr (die, DW_AT_type, cu);
16276 if (attr != NULL)
16277 {
16278 struct type *underlying_type = die_type (die, cu);
16279
16280 TYPE_TARGET_TYPE (type) = underlying_type;
16281 }
16282
16283 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16284 if (attr)
16285 {
16286 TYPE_LENGTH (type) = DW_UNSND (attr);
16287 }
16288 else
16289 {
16290 TYPE_LENGTH (type) = 0;
16291 }
16292
16293 maybe_set_alignment (cu, die, type);
16294
16295 /* The enumeration DIE can be incomplete. In Ada, any type can be
16296 declared as private in the package spec, and then defined only
16297 inside the package body. Such types are known as Taft Amendment
16298 Types. When another package uses such a type, an incomplete DIE
16299 may be generated by the compiler. */
16300 if (die_is_declaration (die, cu))
16301 TYPE_STUB (type) = 1;
16302
16303 /* Finish the creation of this type by using the enum's children.
16304 We must call this even when the underlying type has been provided
16305 so that we can determine if we're looking at a "flag" enum. */
16306 update_enumeration_type_from_children (die, type, cu);
16307
16308 /* If this type has an underlying type that is not a stub, then we
16309 may use its attributes. We always use the "unsigned" attribute
16310 in this situation, because ordinarily we guess whether the type
16311 is unsigned -- but the guess can be wrong and the underlying type
16312 can tell us the reality. However, we defer to a local size
16313 attribute if one exists, because this lets the compiler override
16314 the underlying type if needed. */
16315 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16316 {
16317 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16318 if (TYPE_LENGTH (type) == 0)
16319 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16320 if (TYPE_RAW_ALIGN (type) == 0
16321 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16322 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16323 }
16324
16325 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16326
16327 return set_die_type (die, type, cu);
16328 }
16329
16330 /* Given a pointer to a die which begins an enumeration, process all
16331 the dies that define the members of the enumeration, and create the
16332 symbol for the enumeration type.
16333
16334 NOTE: We reverse the order of the element list. */
16335
16336 static void
16337 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16338 {
16339 struct type *this_type;
16340
16341 this_type = get_die_type (die, cu);
16342 if (this_type == NULL)
16343 this_type = read_enumeration_type (die, cu);
16344
16345 if (die->child != NULL)
16346 {
16347 struct die_info *child_die;
16348 struct symbol *sym;
16349 struct field *fields = NULL;
16350 int num_fields = 0;
16351 const char *name;
16352
16353 child_die = die->child;
16354 while (child_die && child_die->tag)
16355 {
16356 if (child_die->tag != DW_TAG_enumerator)
16357 {
16358 process_die (child_die, cu);
16359 }
16360 else
16361 {
16362 name = dwarf2_name (child_die, cu);
16363 if (name)
16364 {
16365 sym = new_symbol (child_die, this_type, cu);
16366
16367 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16368 {
16369 fields = (struct field *)
16370 xrealloc (fields,
16371 (num_fields + DW_FIELD_ALLOC_CHUNK)
16372 * sizeof (struct field));
16373 }
16374
16375 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16376 FIELD_TYPE (fields[num_fields]) = NULL;
16377 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16378 FIELD_BITSIZE (fields[num_fields]) = 0;
16379
16380 num_fields++;
16381 }
16382 }
16383
16384 child_die = sibling_die (child_die);
16385 }
16386
16387 if (num_fields)
16388 {
16389 TYPE_NFIELDS (this_type) = num_fields;
16390 TYPE_FIELDS (this_type) = (struct field *)
16391 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16392 memcpy (TYPE_FIELDS (this_type), fields,
16393 sizeof (struct field) * num_fields);
16394 xfree (fields);
16395 }
16396 }
16397
16398 /* If we are reading an enum from a .debug_types unit, and the enum
16399 is a declaration, and the enum is not the signatured type in the
16400 unit, then we do not want to add a symbol for it. Adding a
16401 symbol would in some cases obscure the true definition of the
16402 enum, giving users an incomplete type when the definition is
16403 actually available. Note that we do not want to do this for all
16404 enums which are just declarations, because C++0x allows forward
16405 enum declarations. */
16406 if (cu->per_cu->is_debug_types
16407 && die_is_declaration (die, cu))
16408 {
16409 struct signatured_type *sig_type;
16410
16411 sig_type = (struct signatured_type *) cu->per_cu;
16412 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16413 if (sig_type->type_offset_in_section != die->sect_off)
16414 return;
16415 }
16416
16417 new_symbol (die, this_type, cu);
16418 }
16419
16420 /* Extract all information from a DW_TAG_array_type DIE and put it in
16421 the DIE's type field. For now, this only handles one dimensional
16422 arrays. */
16423
16424 static struct type *
16425 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16426 {
16427 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16428 struct die_info *child_die;
16429 struct type *type;
16430 struct type *element_type, *range_type, *index_type;
16431 struct attribute *attr;
16432 const char *name;
16433 struct dynamic_prop *byte_stride_prop = NULL;
16434 unsigned int bit_stride = 0;
16435
16436 element_type = die_type (die, cu);
16437
16438 /* The die_type call above may have already set the type for this DIE. */
16439 type = get_die_type (die, cu);
16440 if (type)
16441 return type;
16442
16443 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16444 if (attr != NULL)
16445 {
16446 int stride_ok;
16447 struct type *prop_type
16448 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16449
16450 byte_stride_prop
16451 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16452 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16453 prop_type);
16454 if (!stride_ok)
16455 {
16456 complaint (_("unable to read array DW_AT_byte_stride "
16457 " - DIE at %s [in module %s]"),
16458 sect_offset_str (die->sect_off),
16459 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16460 /* Ignore this attribute. We will likely not be able to print
16461 arrays of this type correctly, but there is little we can do
16462 to help if we cannot read the attribute's value. */
16463 byte_stride_prop = NULL;
16464 }
16465 }
16466
16467 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16468 if (attr != NULL)
16469 bit_stride = DW_UNSND (attr);
16470
16471 /* Irix 6.2 native cc creates array types without children for
16472 arrays with unspecified length. */
16473 if (die->child == NULL)
16474 {
16475 index_type = objfile_type (objfile)->builtin_int;
16476 range_type = create_static_range_type (NULL, index_type, 0, -1);
16477 type = create_array_type_with_stride (NULL, element_type, range_type,
16478 byte_stride_prop, bit_stride);
16479 return set_die_type (die, type, cu);
16480 }
16481
16482 std::vector<struct type *> range_types;
16483 child_die = die->child;
16484 while (child_die && child_die->tag)
16485 {
16486 if (child_die->tag == DW_TAG_subrange_type)
16487 {
16488 struct type *child_type = read_type_die (child_die, cu);
16489
16490 if (child_type != NULL)
16491 {
16492 /* The range type was succesfully read. Save it for the
16493 array type creation. */
16494 range_types.push_back (child_type);
16495 }
16496 }
16497 child_die = sibling_die (child_die);
16498 }
16499
16500 /* Dwarf2 dimensions are output from left to right, create the
16501 necessary array types in backwards order. */
16502
16503 type = element_type;
16504
16505 if (read_array_order (die, cu) == DW_ORD_col_major)
16506 {
16507 int i = 0;
16508
16509 while (i < range_types.size ())
16510 type = create_array_type_with_stride (NULL, type, range_types[i++],
16511 byte_stride_prop, bit_stride);
16512 }
16513 else
16514 {
16515 size_t ndim = range_types.size ();
16516 while (ndim-- > 0)
16517 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16518 byte_stride_prop, bit_stride);
16519 }
16520
16521 /* Understand Dwarf2 support for vector types (like they occur on
16522 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16523 array type. This is not part of the Dwarf2/3 standard yet, but a
16524 custom vendor extension. The main difference between a regular
16525 array and the vector variant is that vectors are passed by value
16526 to functions. */
16527 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16528 if (attr)
16529 make_vector_type (type);
16530
16531 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16532 implementation may choose to implement triple vectors using this
16533 attribute. */
16534 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16535 if (attr)
16536 {
16537 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16538 TYPE_LENGTH (type) = DW_UNSND (attr);
16539 else
16540 complaint (_("DW_AT_byte_size for array type smaller "
16541 "than the total size of elements"));
16542 }
16543
16544 name = dwarf2_name (die, cu);
16545 if (name)
16546 TYPE_NAME (type) = name;
16547
16548 maybe_set_alignment (cu, die, type);
16549
16550 /* Install the type in the die. */
16551 set_die_type (die, type, cu);
16552
16553 /* set_die_type should be already done. */
16554 set_descriptive_type (type, die, cu);
16555
16556 return type;
16557 }
16558
16559 static enum dwarf_array_dim_ordering
16560 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16561 {
16562 struct attribute *attr;
16563
16564 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16565
16566 if (attr)
16567 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16568
16569 /* GNU F77 is a special case, as at 08/2004 array type info is the
16570 opposite order to the dwarf2 specification, but data is still
16571 laid out as per normal fortran.
16572
16573 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16574 version checking. */
16575
16576 if (cu->language == language_fortran
16577 && cu->producer && strstr (cu->producer, "GNU F77"))
16578 {
16579 return DW_ORD_row_major;
16580 }
16581
16582 switch (cu->language_defn->la_array_ordering)
16583 {
16584 case array_column_major:
16585 return DW_ORD_col_major;
16586 case array_row_major:
16587 default:
16588 return DW_ORD_row_major;
16589 };
16590 }
16591
16592 /* Extract all information from a DW_TAG_set_type DIE and put it in
16593 the DIE's type field. */
16594
16595 static struct type *
16596 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16597 {
16598 struct type *domain_type, *set_type;
16599 struct attribute *attr;
16600
16601 domain_type = die_type (die, cu);
16602
16603 /* The die_type call above may have already set the type for this DIE. */
16604 set_type = get_die_type (die, cu);
16605 if (set_type)
16606 return set_type;
16607
16608 set_type = create_set_type (NULL, domain_type);
16609
16610 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16611 if (attr)
16612 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16613
16614 maybe_set_alignment (cu, die, set_type);
16615
16616 return set_die_type (die, set_type, cu);
16617 }
16618
16619 /* A helper for read_common_block that creates a locexpr baton.
16620 SYM is the symbol which we are marking as computed.
16621 COMMON_DIE is the DIE for the common block.
16622 COMMON_LOC is the location expression attribute for the common
16623 block itself.
16624 MEMBER_LOC is the location expression attribute for the particular
16625 member of the common block that we are processing.
16626 CU is the CU from which the above come. */
16627
16628 static void
16629 mark_common_block_symbol_computed (struct symbol *sym,
16630 struct die_info *common_die,
16631 struct attribute *common_loc,
16632 struct attribute *member_loc,
16633 struct dwarf2_cu *cu)
16634 {
16635 struct dwarf2_per_objfile *dwarf2_per_objfile
16636 = cu->per_cu->dwarf2_per_objfile;
16637 struct objfile *objfile = dwarf2_per_objfile->objfile;
16638 struct dwarf2_locexpr_baton *baton;
16639 gdb_byte *ptr;
16640 unsigned int cu_off;
16641 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16642 LONGEST offset = 0;
16643
16644 gdb_assert (common_loc && member_loc);
16645 gdb_assert (attr_form_is_block (common_loc));
16646 gdb_assert (attr_form_is_block (member_loc)
16647 || attr_form_is_constant (member_loc));
16648
16649 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16650 baton->per_cu = cu->per_cu;
16651 gdb_assert (baton->per_cu);
16652
16653 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16654
16655 if (attr_form_is_constant (member_loc))
16656 {
16657 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16658 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16659 }
16660 else
16661 baton->size += DW_BLOCK (member_loc)->size;
16662
16663 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16664 baton->data = ptr;
16665
16666 *ptr++ = DW_OP_call4;
16667 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16668 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16669 ptr += 4;
16670
16671 if (attr_form_is_constant (member_loc))
16672 {
16673 *ptr++ = DW_OP_addr;
16674 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16675 ptr += cu->header.addr_size;
16676 }
16677 else
16678 {
16679 /* We have to copy the data here, because DW_OP_call4 will only
16680 use a DW_AT_location attribute. */
16681 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16682 ptr += DW_BLOCK (member_loc)->size;
16683 }
16684
16685 *ptr++ = DW_OP_plus;
16686 gdb_assert (ptr - baton->data == baton->size);
16687
16688 SYMBOL_LOCATION_BATON (sym) = baton;
16689 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16690 }
16691
16692 /* Create appropriate locally-scoped variables for all the
16693 DW_TAG_common_block entries. Also create a struct common_block
16694 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16695 is used to sepate the common blocks name namespace from regular
16696 variable names. */
16697
16698 static void
16699 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16700 {
16701 struct attribute *attr;
16702
16703 attr = dwarf2_attr (die, DW_AT_location, cu);
16704 if (attr)
16705 {
16706 /* Support the .debug_loc offsets. */
16707 if (attr_form_is_block (attr))
16708 {
16709 /* Ok. */
16710 }
16711 else if (attr_form_is_section_offset (attr))
16712 {
16713 dwarf2_complex_location_expr_complaint ();
16714 attr = NULL;
16715 }
16716 else
16717 {
16718 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16719 "common block member");
16720 attr = NULL;
16721 }
16722 }
16723
16724 if (die->child != NULL)
16725 {
16726 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16727 struct die_info *child_die;
16728 size_t n_entries = 0, size;
16729 struct common_block *common_block;
16730 struct symbol *sym;
16731
16732 for (child_die = die->child;
16733 child_die && child_die->tag;
16734 child_die = sibling_die (child_die))
16735 ++n_entries;
16736
16737 size = (sizeof (struct common_block)
16738 + (n_entries - 1) * sizeof (struct symbol *));
16739 common_block
16740 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16741 size);
16742 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16743 common_block->n_entries = 0;
16744
16745 for (child_die = die->child;
16746 child_die && child_die->tag;
16747 child_die = sibling_die (child_die))
16748 {
16749 /* Create the symbol in the DW_TAG_common_block block in the current
16750 symbol scope. */
16751 sym = new_symbol (child_die, NULL, cu);
16752 if (sym != NULL)
16753 {
16754 struct attribute *member_loc;
16755
16756 common_block->contents[common_block->n_entries++] = sym;
16757
16758 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16759 cu);
16760 if (member_loc)
16761 {
16762 /* GDB has handled this for a long time, but it is
16763 not specified by DWARF. It seems to have been
16764 emitted by gfortran at least as recently as:
16765 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16766 complaint (_("Variable in common block has "
16767 "DW_AT_data_member_location "
16768 "- DIE at %s [in module %s]"),
16769 sect_offset_str (child_die->sect_off),
16770 objfile_name (objfile));
16771
16772 if (attr_form_is_section_offset (member_loc))
16773 dwarf2_complex_location_expr_complaint ();
16774 else if (attr_form_is_constant (member_loc)
16775 || attr_form_is_block (member_loc))
16776 {
16777 if (attr)
16778 mark_common_block_symbol_computed (sym, die, attr,
16779 member_loc, cu);
16780 }
16781 else
16782 dwarf2_complex_location_expr_complaint ();
16783 }
16784 }
16785 }
16786
16787 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16788 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16789 }
16790 }
16791
16792 /* Create a type for a C++ namespace. */
16793
16794 static struct type *
16795 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16796 {
16797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16798 const char *previous_prefix, *name;
16799 int is_anonymous;
16800 struct type *type;
16801
16802 /* For extensions, reuse the type of the original namespace. */
16803 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16804 {
16805 struct die_info *ext_die;
16806 struct dwarf2_cu *ext_cu = cu;
16807
16808 ext_die = dwarf2_extension (die, &ext_cu);
16809 type = read_type_die (ext_die, ext_cu);
16810
16811 /* EXT_CU may not be the same as CU.
16812 Ensure TYPE is recorded with CU in die_type_hash. */
16813 return set_die_type (die, type, cu);
16814 }
16815
16816 name = namespace_name (die, &is_anonymous, cu);
16817
16818 /* Now build the name of the current namespace. */
16819
16820 previous_prefix = determine_prefix (die, cu);
16821 if (previous_prefix[0] != '\0')
16822 name = typename_concat (&objfile->objfile_obstack,
16823 previous_prefix, name, 0, cu);
16824
16825 /* Create the type. */
16826 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16827
16828 return set_die_type (die, type, cu);
16829 }
16830
16831 /* Read a namespace scope. */
16832
16833 static void
16834 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16835 {
16836 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16837 int is_anonymous;
16838
16839 /* Add a symbol associated to this if we haven't seen the namespace
16840 before. Also, add a using directive if it's an anonymous
16841 namespace. */
16842
16843 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16844 {
16845 struct type *type;
16846
16847 type = read_type_die (die, cu);
16848 new_symbol (die, type, cu);
16849
16850 namespace_name (die, &is_anonymous, cu);
16851 if (is_anonymous)
16852 {
16853 const char *previous_prefix = determine_prefix (die, cu);
16854
16855 std::vector<const char *> excludes;
16856 add_using_directive (using_directives (cu),
16857 previous_prefix, TYPE_NAME (type), NULL,
16858 NULL, excludes, 0, &objfile->objfile_obstack);
16859 }
16860 }
16861
16862 if (die->child != NULL)
16863 {
16864 struct die_info *child_die = die->child;
16865
16866 while (child_die && child_die->tag)
16867 {
16868 process_die (child_die, cu);
16869 child_die = sibling_die (child_die);
16870 }
16871 }
16872 }
16873
16874 /* Read a Fortran module as type. This DIE can be only a declaration used for
16875 imported module. Still we need that type as local Fortran "use ... only"
16876 declaration imports depend on the created type in determine_prefix. */
16877
16878 static struct type *
16879 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16880 {
16881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16882 const char *module_name;
16883 struct type *type;
16884
16885 module_name = dwarf2_name (die, cu);
16886 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16887
16888 return set_die_type (die, type, cu);
16889 }
16890
16891 /* Read a Fortran module. */
16892
16893 static void
16894 read_module (struct die_info *die, struct dwarf2_cu *cu)
16895 {
16896 struct die_info *child_die = die->child;
16897 struct type *type;
16898
16899 type = read_type_die (die, cu);
16900 new_symbol (die, type, cu);
16901
16902 while (child_die && child_die->tag)
16903 {
16904 process_die (child_die, cu);
16905 child_die = sibling_die (child_die);
16906 }
16907 }
16908
16909 /* Return the name of the namespace represented by DIE. Set
16910 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16911 namespace. */
16912
16913 static const char *
16914 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16915 {
16916 struct die_info *current_die;
16917 const char *name = NULL;
16918
16919 /* Loop through the extensions until we find a name. */
16920
16921 for (current_die = die;
16922 current_die != NULL;
16923 current_die = dwarf2_extension (die, &cu))
16924 {
16925 /* We don't use dwarf2_name here so that we can detect the absence
16926 of a name -> anonymous namespace. */
16927 name = dwarf2_string_attr (die, DW_AT_name, cu);
16928
16929 if (name != NULL)
16930 break;
16931 }
16932
16933 /* Is it an anonymous namespace? */
16934
16935 *is_anonymous = (name == NULL);
16936 if (*is_anonymous)
16937 name = CP_ANONYMOUS_NAMESPACE_STR;
16938
16939 return name;
16940 }
16941
16942 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16943 the user defined type vector. */
16944
16945 static struct type *
16946 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16947 {
16948 struct gdbarch *gdbarch
16949 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16950 struct comp_unit_head *cu_header = &cu->header;
16951 struct type *type;
16952 struct attribute *attr_byte_size;
16953 struct attribute *attr_address_class;
16954 int byte_size, addr_class;
16955 struct type *target_type;
16956
16957 target_type = die_type (die, cu);
16958
16959 /* The die_type call above may have already set the type for this DIE. */
16960 type = get_die_type (die, cu);
16961 if (type)
16962 return type;
16963
16964 type = lookup_pointer_type (target_type);
16965
16966 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16967 if (attr_byte_size)
16968 byte_size = DW_UNSND (attr_byte_size);
16969 else
16970 byte_size = cu_header->addr_size;
16971
16972 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16973 if (attr_address_class)
16974 addr_class = DW_UNSND (attr_address_class);
16975 else
16976 addr_class = DW_ADDR_none;
16977
16978 ULONGEST alignment = get_alignment (cu, die);
16979
16980 /* If the pointer size, alignment, or address class is different
16981 than the default, create a type variant marked as such and set
16982 the length accordingly. */
16983 if (TYPE_LENGTH (type) != byte_size
16984 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16985 && alignment != TYPE_RAW_ALIGN (type))
16986 || addr_class != DW_ADDR_none)
16987 {
16988 if (gdbarch_address_class_type_flags_p (gdbarch))
16989 {
16990 int type_flags;
16991
16992 type_flags = gdbarch_address_class_type_flags
16993 (gdbarch, byte_size, addr_class);
16994 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16995 == 0);
16996 type = make_type_with_address_space (type, type_flags);
16997 }
16998 else if (TYPE_LENGTH (type) != byte_size)
16999 {
17000 complaint (_("invalid pointer size %d"), byte_size);
17001 }
17002 else if (TYPE_RAW_ALIGN (type) != alignment)
17003 {
17004 complaint (_("Invalid DW_AT_alignment"
17005 " - DIE at %s [in module %s]"),
17006 sect_offset_str (die->sect_off),
17007 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17008 }
17009 else
17010 {
17011 /* Should we also complain about unhandled address classes? */
17012 }
17013 }
17014
17015 TYPE_LENGTH (type) = byte_size;
17016 set_type_align (type, alignment);
17017 return set_die_type (die, type, cu);
17018 }
17019
17020 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17021 the user defined type vector. */
17022
17023 static struct type *
17024 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17025 {
17026 struct type *type;
17027 struct type *to_type;
17028 struct type *domain;
17029
17030 to_type = die_type (die, cu);
17031 domain = die_containing_type (die, cu);
17032
17033 /* The calls above may have already set the type for this DIE. */
17034 type = get_die_type (die, cu);
17035 if (type)
17036 return type;
17037
17038 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17039 type = lookup_methodptr_type (to_type);
17040 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17041 {
17042 struct type *new_type
17043 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17044
17045 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17046 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17047 TYPE_VARARGS (to_type));
17048 type = lookup_methodptr_type (new_type);
17049 }
17050 else
17051 type = lookup_memberptr_type (to_type, domain);
17052
17053 return set_die_type (die, type, cu);
17054 }
17055
17056 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17057 the user defined type vector. */
17058
17059 static struct type *
17060 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17061 enum type_code refcode)
17062 {
17063 struct comp_unit_head *cu_header = &cu->header;
17064 struct type *type, *target_type;
17065 struct attribute *attr;
17066
17067 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17068
17069 target_type = die_type (die, cu);
17070
17071 /* The die_type call above may have already set the type for this DIE. */
17072 type = get_die_type (die, cu);
17073 if (type)
17074 return type;
17075
17076 type = lookup_reference_type (target_type, refcode);
17077 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17078 if (attr)
17079 {
17080 TYPE_LENGTH (type) = DW_UNSND (attr);
17081 }
17082 else
17083 {
17084 TYPE_LENGTH (type) = cu_header->addr_size;
17085 }
17086 maybe_set_alignment (cu, die, type);
17087 return set_die_type (die, type, cu);
17088 }
17089
17090 /* Add the given cv-qualifiers to the element type of the array. GCC
17091 outputs DWARF type qualifiers that apply to an array, not the
17092 element type. But GDB relies on the array element type to carry
17093 the cv-qualifiers. This mimics section 6.7.3 of the C99
17094 specification. */
17095
17096 static struct type *
17097 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17098 struct type *base_type, int cnst, int voltl)
17099 {
17100 struct type *el_type, *inner_array;
17101
17102 base_type = copy_type (base_type);
17103 inner_array = base_type;
17104
17105 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17106 {
17107 TYPE_TARGET_TYPE (inner_array) =
17108 copy_type (TYPE_TARGET_TYPE (inner_array));
17109 inner_array = TYPE_TARGET_TYPE (inner_array);
17110 }
17111
17112 el_type = TYPE_TARGET_TYPE (inner_array);
17113 cnst |= TYPE_CONST (el_type);
17114 voltl |= TYPE_VOLATILE (el_type);
17115 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17116
17117 return set_die_type (die, base_type, cu);
17118 }
17119
17120 static struct type *
17121 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17122 {
17123 struct type *base_type, *cv_type;
17124
17125 base_type = die_type (die, cu);
17126
17127 /* The die_type call above may have already set the type for this DIE. */
17128 cv_type = get_die_type (die, cu);
17129 if (cv_type)
17130 return cv_type;
17131
17132 /* In case the const qualifier is applied to an array type, the element type
17133 is so qualified, not the array type (section 6.7.3 of C99). */
17134 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17135 return add_array_cv_type (die, cu, base_type, 1, 0);
17136
17137 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17138 return set_die_type (die, cv_type, cu);
17139 }
17140
17141 static struct type *
17142 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17143 {
17144 struct type *base_type, *cv_type;
17145
17146 base_type = die_type (die, cu);
17147
17148 /* The die_type call above may have already set the type for this DIE. */
17149 cv_type = get_die_type (die, cu);
17150 if (cv_type)
17151 return cv_type;
17152
17153 /* In case the volatile qualifier is applied to an array type, the
17154 element type is so qualified, not the array type (section 6.7.3
17155 of C99). */
17156 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17157 return add_array_cv_type (die, cu, base_type, 0, 1);
17158
17159 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17160 return set_die_type (die, cv_type, cu);
17161 }
17162
17163 /* Handle DW_TAG_restrict_type. */
17164
17165 static struct type *
17166 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17167 {
17168 struct type *base_type, *cv_type;
17169
17170 base_type = die_type (die, cu);
17171
17172 /* The die_type call above may have already set the type for this DIE. */
17173 cv_type = get_die_type (die, cu);
17174 if (cv_type)
17175 return cv_type;
17176
17177 cv_type = make_restrict_type (base_type);
17178 return set_die_type (die, cv_type, cu);
17179 }
17180
17181 /* Handle DW_TAG_atomic_type. */
17182
17183 static struct type *
17184 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17185 {
17186 struct type *base_type, *cv_type;
17187
17188 base_type = die_type (die, cu);
17189
17190 /* The die_type call above may have already set the type for this DIE. */
17191 cv_type = get_die_type (die, cu);
17192 if (cv_type)
17193 return cv_type;
17194
17195 cv_type = make_atomic_type (base_type);
17196 return set_die_type (die, cv_type, cu);
17197 }
17198
17199 /* Extract all information from a DW_TAG_string_type DIE and add to
17200 the user defined type vector. It isn't really a user defined type,
17201 but it behaves like one, with other DIE's using an AT_user_def_type
17202 attribute to reference it. */
17203
17204 static struct type *
17205 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17206 {
17207 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17208 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17209 struct type *type, *range_type, *index_type, *char_type;
17210 struct attribute *attr;
17211 unsigned int length;
17212
17213 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17214 if (attr)
17215 {
17216 length = DW_UNSND (attr);
17217 }
17218 else
17219 {
17220 /* Check for the DW_AT_byte_size attribute. */
17221 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17222 if (attr)
17223 {
17224 length = DW_UNSND (attr);
17225 }
17226 else
17227 {
17228 length = 1;
17229 }
17230 }
17231
17232 index_type = objfile_type (objfile)->builtin_int;
17233 range_type = create_static_range_type (NULL, index_type, 1, length);
17234 char_type = language_string_char_type (cu->language_defn, gdbarch);
17235 type = create_string_type (NULL, char_type, range_type);
17236
17237 return set_die_type (die, type, cu);
17238 }
17239
17240 /* Assuming that DIE corresponds to a function, returns nonzero
17241 if the function is prototyped. */
17242
17243 static int
17244 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17245 {
17246 struct attribute *attr;
17247
17248 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17249 if (attr && (DW_UNSND (attr) != 0))
17250 return 1;
17251
17252 /* The DWARF standard implies that the DW_AT_prototyped attribute
17253 is only meaninful for C, but the concept also extends to other
17254 languages that allow unprototyped functions (Eg: Objective C).
17255 For all other languages, assume that functions are always
17256 prototyped. */
17257 if (cu->language != language_c
17258 && cu->language != language_objc
17259 && cu->language != language_opencl)
17260 return 1;
17261
17262 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17263 prototyped and unprototyped functions; default to prototyped,
17264 since that is more common in modern code (and RealView warns
17265 about unprototyped functions). */
17266 if (producer_is_realview (cu->producer))
17267 return 1;
17268
17269 return 0;
17270 }
17271
17272 /* Handle DIES due to C code like:
17273
17274 struct foo
17275 {
17276 int (*funcp)(int a, long l);
17277 int b;
17278 };
17279
17280 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17281
17282 static struct type *
17283 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17284 {
17285 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17286 struct type *type; /* Type that this function returns. */
17287 struct type *ftype; /* Function that returns above type. */
17288 struct attribute *attr;
17289
17290 type = die_type (die, cu);
17291
17292 /* The die_type call above may have already set the type for this DIE. */
17293 ftype = get_die_type (die, cu);
17294 if (ftype)
17295 return ftype;
17296
17297 ftype = lookup_function_type (type);
17298
17299 if (prototyped_function_p (die, cu))
17300 TYPE_PROTOTYPED (ftype) = 1;
17301
17302 /* Store the calling convention in the type if it's available in
17303 the subroutine die. Otherwise set the calling convention to
17304 the default value DW_CC_normal. */
17305 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17306 if (attr)
17307 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17308 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17309 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17310 else
17311 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17312
17313 /* Record whether the function returns normally to its caller or not
17314 if the DWARF producer set that information. */
17315 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17316 if (attr && (DW_UNSND (attr) != 0))
17317 TYPE_NO_RETURN (ftype) = 1;
17318
17319 /* We need to add the subroutine type to the die immediately so
17320 we don't infinitely recurse when dealing with parameters
17321 declared as the same subroutine type. */
17322 set_die_type (die, ftype, cu);
17323
17324 if (die->child != NULL)
17325 {
17326 struct type *void_type = objfile_type (objfile)->builtin_void;
17327 struct die_info *child_die;
17328 int nparams, iparams;
17329
17330 /* Count the number of parameters.
17331 FIXME: GDB currently ignores vararg functions, but knows about
17332 vararg member functions. */
17333 nparams = 0;
17334 child_die = die->child;
17335 while (child_die && child_die->tag)
17336 {
17337 if (child_die->tag == DW_TAG_formal_parameter)
17338 nparams++;
17339 else if (child_die->tag == DW_TAG_unspecified_parameters)
17340 TYPE_VARARGS (ftype) = 1;
17341 child_die = sibling_die (child_die);
17342 }
17343
17344 /* Allocate storage for parameters and fill them in. */
17345 TYPE_NFIELDS (ftype) = nparams;
17346 TYPE_FIELDS (ftype) = (struct field *)
17347 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17348
17349 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17350 even if we error out during the parameters reading below. */
17351 for (iparams = 0; iparams < nparams; iparams++)
17352 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17353
17354 iparams = 0;
17355 child_die = die->child;
17356 while (child_die && child_die->tag)
17357 {
17358 if (child_die->tag == DW_TAG_formal_parameter)
17359 {
17360 struct type *arg_type;
17361
17362 /* DWARF version 2 has no clean way to discern C++
17363 static and non-static member functions. G++ helps
17364 GDB by marking the first parameter for non-static
17365 member functions (which is the this pointer) as
17366 artificial. We pass this information to
17367 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17368
17369 DWARF version 3 added DW_AT_object_pointer, which GCC
17370 4.5 does not yet generate. */
17371 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17372 if (attr)
17373 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17374 else
17375 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17376 arg_type = die_type (child_die, cu);
17377
17378 /* RealView does not mark THIS as const, which the testsuite
17379 expects. GCC marks THIS as const in method definitions,
17380 but not in the class specifications (GCC PR 43053). */
17381 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17382 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17383 {
17384 int is_this = 0;
17385 struct dwarf2_cu *arg_cu = cu;
17386 const char *name = dwarf2_name (child_die, cu);
17387
17388 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17389 if (attr)
17390 {
17391 /* If the compiler emits this, use it. */
17392 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17393 is_this = 1;
17394 }
17395 else if (name && strcmp (name, "this") == 0)
17396 /* Function definitions will have the argument names. */
17397 is_this = 1;
17398 else if (name == NULL && iparams == 0)
17399 /* Declarations may not have the names, so like
17400 elsewhere in GDB, assume an artificial first
17401 argument is "this". */
17402 is_this = 1;
17403
17404 if (is_this)
17405 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17406 arg_type, 0);
17407 }
17408
17409 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17410 iparams++;
17411 }
17412 child_die = sibling_die (child_die);
17413 }
17414 }
17415
17416 return ftype;
17417 }
17418
17419 static struct type *
17420 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17421 {
17422 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17423 const char *name = NULL;
17424 struct type *this_type, *target_type;
17425
17426 name = dwarf2_full_name (NULL, die, cu);
17427 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17428 TYPE_TARGET_STUB (this_type) = 1;
17429 set_die_type (die, this_type, cu);
17430 target_type = die_type (die, cu);
17431 if (target_type != this_type)
17432 TYPE_TARGET_TYPE (this_type) = target_type;
17433 else
17434 {
17435 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17436 spec and cause infinite loops in GDB. */
17437 complaint (_("Self-referential DW_TAG_typedef "
17438 "- DIE at %s [in module %s]"),
17439 sect_offset_str (die->sect_off), objfile_name (objfile));
17440 TYPE_TARGET_TYPE (this_type) = NULL;
17441 }
17442 return this_type;
17443 }
17444
17445 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17446 (which may be different from NAME) to the architecture back-end to allow
17447 it to guess the correct format if necessary. */
17448
17449 static struct type *
17450 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17451 const char *name_hint)
17452 {
17453 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17454 const struct floatformat **format;
17455 struct type *type;
17456
17457 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17458 if (format)
17459 type = init_float_type (objfile, bits, name, format);
17460 else
17461 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17462
17463 return type;
17464 }
17465
17466 /* Allocate an integer type of size BITS and name NAME. */
17467
17468 static struct type *
17469 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17470 int bits, int unsigned_p, const char *name)
17471 {
17472 struct type *type;
17473
17474 /* Versions of Intel's C Compiler generate an integer type called "void"
17475 instead of using DW_TAG_unspecified_type. This has been seen on
17476 at least versions 14, 17, and 18. */
17477 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17478 && strcmp (name, "void") == 0)
17479 type = objfile_type (objfile)->builtin_void;
17480 else
17481 type = init_integer_type (objfile, bits, unsigned_p, name);
17482
17483 return type;
17484 }
17485
17486 /* Initialise and return a floating point type of size BITS suitable for
17487 use as a component of a complex number. The NAME_HINT is passed through
17488 when initialising the floating point type and is the name of the complex
17489 type.
17490
17491 As DWARF doesn't currently provide an explicit name for the components
17492 of a complex number, but it can be helpful to have these components
17493 named, we try to select a suitable name based on the size of the
17494 component. */
17495 static struct type *
17496 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17497 struct objfile *objfile,
17498 int bits, const char *name_hint)
17499 {
17500 gdbarch *gdbarch = get_objfile_arch (objfile);
17501 struct type *tt = nullptr;
17502
17503 /* Try to find a suitable floating point builtin type of size BITS.
17504 We're going to use the name of this type as the name for the complex
17505 target type that we are about to create. */
17506 switch (cu->language)
17507 {
17508 case language_fortran:
17509 switch (bits)
17510 {
17511 case 32:
17512 tt = builtin_f_type (gdbarch)->builtin_real;
17513 break;
17514 case 64:
17515 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17516 break;
17517 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17518 case 128:
17519 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17520 break;
17521 }
17522 break;
17523 default:
17524 switch (bits)
17525 {
17526 case 32:
17527 tt = builtin_type (gdbarch)->builtin_float;
17528 break;
17529 case 64:
17530 tt = builtin_type (gdbarch)->builtin_double;
17531 break;
17532 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17533 case 128:
17534 tt = builtin_type (gdbarch)->builtin_long_double;
17535 break;
17536 }
17537 break;
17538 }
17539
17540 /* If the type we found doesn't match the size we were looking for, then
17541 pretend we didn't find a type at all, the complex target type we
17542 create will then be nameless. */
17543 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17544 tt = nullptr;
17545
17546 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17547 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17548 }
17549
17550 /* Find a representation of a given base type and install
17551 it in the TYPE field of the die. */
17552
17553 static struct type *
17554 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17555 {
17556 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17557 struct type *type;
17558 struct attribute *attr;
17559 int encoding = 0, bits = 0;
17560 const char *name;
17561
17562 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17563 if (attr)
17564 {
17565 encoding = DW_UNSND (attr);
17566 }
17567 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17568 if (attr)
17569 {
17570 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17571 }
17572 name = dwarf2_name (die, cu);
17573 if (!name)
17574 {
17575 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17576 }
17577
17578 switch (encoding)
17579 {
17580 case DW_ATE_address:
17581 /* Turn DW_ATE_address into a void * pointer. */
17582 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17583 type = init_pointer_type (objfile, bits, name, type);
17584 break;
17585 case DW_ATE_boolean:
17586 type = init_boolean_type (objfile, bits, 1, name);
17587 break;
17588 case DW_ATE_complex_float:
17589 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17590 type = init_complex_type (objfile, name, type);
17591 break;
17592 case DW_ATE_decimal_float:
17593 type = init_decfloat_type (objfile, bits, name);
17594 break;
17595 case DW_ATE_float:
17596 type = dwarf2_init_float_type (objfile, bits, name, name);
17597 break;
17598 case DW_ATE_signed:
17599 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17600 break;
17601 case DW_ATE_unsigned:
17602 if (cu->language == language_fortran
17603 && name
17604 && startswith (name, "character("))
17605 type = init_character_type (objfile, bits, 1, name);
17606 else
17607 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17608 break;
17609 case DW_ATE_signed_char:
17610 if (cu->language == language_ada || cu->language == language_m2
17611 || cu->language == language_pascal
17612 || cu->language == language_fortran)
17613 type = init_character_type (objfile, bits, 0, name);
17614 else
17615 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17616 break;
17617 case DW_ATE_unsigned_char:
17618 if (cu->language == language_ada || cu->language == language_m2
17619 || cu->language == language_pascal
17620 || cu->language == language_fortran
17621 || cu->language == language_rust)
17622 type = init_character_type (objfile, bits, 1, name);
17623 else
17624 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17625 break;
17626 case DW_ATE_UTF:
17627 {
17628 gdbarch *arch = get_objfile_arch (objfile);
17629
17630 if (bits == 16)
17631 type = builtin_type (arch)->builtin_char16;
17632 else if (bits == 32)
17633 type = builtin_type (arch)->builtin_char32;
17634 else
17635 {
17636 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17637 bits);
17638 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17639 }
17640 return set_die_type (die, type, cu);
17641 }
17642 break;
17643
17644 default:
17645 complaint (_("unsupported DW_AT_encoding: '%s'"),
17646 dwarf_type_encoding_name (encoding));
17647 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17648 break;
17649 }
17650
17651 if (name && strcmp (name, "char") == 0)
17652 TYPE_NOSIGN (type) = 1;
17653
17654 maybe_set_alignment (cu, die, type);
17655
17656 return set_die_type (die, type, cu);
17657 }
17658
17659 /* Parse dwarf attribute if it's a block, reference or constant and put the
17660 resulting value of the attribute into struct bound_prop.
17661 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17662
17663 static int
17664 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17665 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17666 struct type *default_type)
17667 {
17668 struct dwarf2_property_baton *baton;
17669 struct obstack *obstack
17670 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17671
17672 gdb_assert (default_type != NULL);
17673
17674 if (attr == NULL || prop == NULL)
17675 return 0;
17676
17677 if (attr_form_is_block (attr))
17678 {
17679 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17680 baton->property_type = default_type;
17681 baton->locexpr.per_cu = cu->per_cu;
17682 baton->locexpr.size = DW_BLOCK (attr)->size;
17683 baton->locexpr.data = DW_BLOCK (attr)->data;
17684 baton->locexpr.is_reference = false;
17685 prop->data.baton = baton;
17686 prop->kind = PROP_LOCEXPR;
17687 gdb_assert (prop->data.baton != NULL);
17688 }
17689 else if (attr_form_is_ref (attr))
17690 {
17691 struct dwarf2_cu *target_cu = cu;
17692 struct die_info *target_die;
17693 struct attribute *target_attr;
17694
17695 target_die = follow_die_ref (die, attr, &target_cu);
17696 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17697 if (target_attr == NULL)
17698 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17699 target_cu);
17700 if (target_attr == NULL)
17701 return 0;
17702
17703 switch (target_attr->name)
17704 {
17705 case DW_AT_location:
17706 if (attr_form_is_section_offset (target_attr))
17707 {
17708 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17709 baton->property_type = die_type (target_die, target_cu);
17710 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17711 prop->data.baton = baton;
17712 prop->kind = PROP_LOCLIST;
17713 gdb_assert (prop->data.baton != NULL);
17714 }
17715 else if (attr_form_is_block (target_attr))
17716 {
17717 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17718 baton->property_type = die_type (target_die, target_cu);
17719 baton->locexpr.per_cu = cu->per_cu;
17720 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17721 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17722 baton->locexpr.is_reference = true;
17723 prop->data.baton = baton;
17724 prop->kind = PROP_LOCEXPR;
17725 gdb_assert (prop->data.baton != NULL);
17726 }
17727 else
17728 {
17729 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17730 "dynamic property");
17731 return 0;
17732 }
17733 break;
17734 case DW_AT_data_member_location:
17735 {
17736 LONGEST offset;
17737
17738 if (!handle_data_member_location (target_die, target_cu,
17739 &offset))
17740 return 0;
17741
17742 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17743 baton->property_type = read_type_die (target_die->parent,
17744 target_cu);
17745 baton->offset_info.offset = offset;
17746 baton->offset_info.type = die_type (target_die, target_cu);
17747 prop->data.baton = baton;
17748 prop->kind = PROP_ADDR_OFFSET;
17749 break;
17750 }
17751 }
17752 }
17753 else if (attr_form_is_constant (attr))
17754 {
17755 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17756 prop->kind = PROP_CONST;
17757 }
17758 else
17759 {
17760 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17761 dwarf2_name (die, cu));
17762 return 0;
17763 }
17764
17765 return 1;
17766 }
17767
17768 /* Find an integer type the same size as the address size given in the
17769 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17770 is unsigned or not. */
17771
17772 static struct type *
17773 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17774 bool unsigned_p)
17775 {
17776 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17777 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17778 struct type *int_type;
17779
17780 /* Helper macro to examine the various builtin types. */
17781 #define TRY_TYPE(F) \
17782 int_type = (unsigned_p \
17783 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17784 : objfile_type (objfile)->builtin_ ## F); \
17785 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17786 return int_type
17787
17788 TRY_TYPE (char);
17789 TRY_TYPE (short);
17790 TRY_TYPE (int);
17791 TRY_TYPE (long);
17792 TRY_TYPE (long_long);
17793
17794 #undef TRY_TYPE
17795
17796 gdb_assert_not_reached ("unable to find suitable integer type");
17797 }
17798
17799 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17800 present (which is valid) then compute the default type based on the
17801 compilation units address size. */
17802
17803 static struct type *
17804 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17805 {
17806 struct type *index_type = die_type (die, cu);
17807
17808 /* Dwarf-2 specifications explicitly allows to create subrange types
17809 without specifying a base type.
17810 In that case, the base type must be set to the type of
17811 the lower bound, upper bound or count, in that order, if any of these
17812 three attributes references an object that has a type.
17813 If no base type is found, the Dwarf-2 specifications say that
17814 a signed integer type of size equal to the size of an address should
17815 be used.
17816 For the following C code: `extern char gdb_int [];'
17817 GCC produces an empty range DIE.
17818 FIXME: muller/2010-05-28: Possible references to object for low bound,
17819 high bound or count are not yet handled by this code. */
17820 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17821 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17822
17823 return index_type;
17824 }
17825
17826 /* Read the given DW_AT_subrange DIE. */
17827
17828 static struct type *
17829 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17830 {
17831 struct type *base_type, *orig_base_type;
17832 struct type *range_type;
17833 struct attribute *attr;
17834 struct dynamic_prop low, high;
17835 int low_default_is_valid;
17836 int high_bound_is_count = 0;
17837 const char *name;
17838 ULONGEST negative_mask;
17839
17840 orig_base_type = read_subrange_index_type (die, cu);
17841
17842 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17843 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17844 creating the range type, but we use the result of check_typedef
17845 when examining properties of the type. */
17846 base_type = check_typedef (orig_base_type);
17847
17848 /* The die_type call above may have already set the type for this DIE. */
17849 range_type = get_die_type (die, cu);
17850 if (range_type)
17851 return range_type;
17852
17853 low.kind = PROP_CONST;
17854 high.kind = PROP_CONST;
17855 high.data.const_val = 0;
17856
17857 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17858 omitting DW_AT_lower_bound. */
17859 switch (cu->language)
17860 {
17861 case language_c:
17862 case language_cplus:
17863 low.data.const_val = 0;
17864 low_default_is_valid = 1;
17865 break;
17866 case language_fortran:
17867 low.data.const_val = 1;
17868 low_default_is_valid = 1;
17869 break;
17870 case language_d:
17871 case language_objc:
17872 case language_rust:
17873 low.data.const_val = 0;
17874 low_default_is_valid = (cu->header.version >= 4);
17875 break;
17876 case language_ada:
17877 case language_m2:
17878 case language_pascal:
17879 low.data.const_val = 1;
17880 low_default_is_valid = (cu->header.version >= 4);
17881 break;
17882 default:
17883 low.data.const_val = 0;
17884 low_default_is_valid = 0;
17885 break;
17886 }
17887
17888 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17889 if (attr)
17890 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17891 else if (!low_default_is_valid)
17892 complaint (_("Missing DW_AT_lower_bound "
17893 "- DIE at %s [in module %s]"),
17894 sect_offset_str (die->sect_off),
17895 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17896
17897 struct attribute *attr_ub, *attr_count;
17898 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17899 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17900 {
17901 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17902 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17903 {
17904 /* If bounds are constant do the final calculation here. */
17905 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17906 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17907 else
17908 high_bound_is_count = 1;
17909 }
17910 else
17911 {
17912 if (attr_ub != NULL)
17913 complaint (_("Unresolved DW_AT_upper_bound "
17914 "- DIE at %s [in module %s]"),
17915 sect_offset_str (die->sect_off),
17916 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17917 if (attr_count != NULL)
17918 complaint (_("Unresolved DW_AT_count "
17919 "- DIE at %s [in module %s]"),
17920 sect_offset_str (die->sect_off),
17921 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17922 }
17923 }
17924
17925 /* Normally, the DWARF producers are expected to use a signed
17926 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17927 But this is unfortunately not always the case, as witnessed
17928 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17929 is used instead. To work around that ambiguity, we treat
17930 the bounds as signed, and thus sign-extend their values, when
17931 the base type is signed. */
17932 negative_mask =
17933 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17934 if (low.kind == PROP_CONST
17935 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17936 low.data.const_val |= negative_mask;
17937 if (high.kind == PROP_CONST
17938 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17939 high.data.const_val |= negative_mask;
17940
17941 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17942
17943 if (high_bound_is_count)
17944 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17945
17946 /* Ada expects an empty array on no boundary attributes. */
17947 if (attr == NULL && cu->language != language_ada)
17948 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17949
17950 name = dwarf2_name (die, cu);
17951 if (name)
17952 TYPE_NAME (range_type) = name;
17953
17954 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17955 if (attr)
17956 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17957
17958 maybe_set_alignment (cu, die, range_type);
17959
17960 set_die_type (die, range_type, cu);
17961
17962 /* set_die_type should be already done. */
17963 set_descriptive_type (range_type, die, cu);
17964
17965 return range_type;
17966 }
17967
17968 static struct type *
17969 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17970 {
17971 struct type *type;
17972
17973 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17974 NULL);
17975 TYPE_NAME (type) = dwarf2_name (die, cu);
17976
17977 /* In Ada, an unspecified type is typically used when the description
17978 of the type is defered to a different unit. When encountering
17979 such a type, we treat it as a stub, and try to resolve it later on,
17980 when needed. */
17981 if (cu->language == language_ada)
17982 TYPE_STUB (type) = 1;
17983
17984 return set_die_type (die, type, cu);
17985 }
17986
17987 /* Read a single die and all its descendents. Set the die's sibling
17988 field to NULL; set other fields in the die correctly, and set all
17989 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17990 location of the info_ptr after reading all of those dies. PARENT
17991 is the parent of the die in question. */
17992
17993 static struct die_info *
17994 read_die_and_children (const struct die_reader_specs *reader,
17995 const gdb_byte *info_ptr,
17996 const gdb_byte **new_info_ptr,
17997 struct die_info *parent)
17998 {
17999 struct die_info *die;
18000 const gdb_byte *cur_ptr;
18001 int has_children;
18002
18003 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18004 if (die == NULL)
18005 {
18006 *new_info_ptr = cur_ptr;
18007 return NULL;
18008 }
18009 store_in_ref_table (die, reader->cu);
18010
18011 if (has_children)
18012 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18013 else
18014 {
18015 die->child = NULL;
18016 *new_info_ptr = cur_ptr;
18017 }
18018
18019 die->sibling = NULL;
18020 die->parent = parent;
18021 return die;
18022 }
18023
18024 /* Read a die, all of its descendents, and all of its siblings; set
18025 all of the fields of all of the dies correctly. Arguments are as
18026 in read_die_and_children. */
18027
18028 static struct die_info *
18029 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18030 const gdb_byte *info_ptr,
18031 const gdb_byte **new_info_ptr,
18032 struct die_info *parent)
18033 {
18034 struct die_info *first_die, *last_sibling;
18035 const gdb_byte *cur_ptr;
18036
18037 cur_ptr = info_ptr;
18038 first_die = last_sibling = NULL;
18039
18040 while (1)
18041 {
18042 struct die_info *die
18043 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18044
18045 if (die == NULL)
18046 {
18047 *new_info_ptr = cur_ptr;
18048 return first_die;
18049 }
18050
18051 if (!first_die)
18052 first_die = die;
18053 else
18054 last_sibling->sibling = die;
18055
18056 last_sibling = die;
18057 }
18058 }
18059
18060 /* Read a die, all of its descendents, and all of its siblings; set
18061 all of the fields of all of the dies correctly. Arguments are as
18062 in read_die_and_children.
18063 This the main entry point for reading a DIE and all its children. */
18064
18065 static struct die_info *
18066 read_die_and_siblings (const struct die_reader_specs *reader,
18067 const gdb_byte *info_ptr,
18068 const gdb_byte **new_info_ptr,
18069 struct die_info *parent)
18070 {
18071 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18072 new_info_ptr, parent);
18073
18074 if (dwarf_die_debug)
18075 {
18076 fprintf_unfiltered (gdb_stdlog,
18077 "Read die from %s@0x%x of %s:\n",
18078 get_section_name (reader->die_section),
18079 (unsigned) (info_ptr - reader->die_section->buffer),
18080 bfd_get_filename (reader->abfd));
18081 dump_die (die, dwarf_die_debug);
18082 }
18083
18084 return die;
18085 }
18086
18087 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18088 attributes.
18089 The caller is responsible for filling in the extra attributes
18090 and updating (*DIEP)->num_attrs.
18091 Set DIEP to point to a newly allocated die with its information,
18092 except for its child, sibling, and parent fields.
18093 Set HAS_CHILDREN to tell whether the die has children or not. */
18094
18095 static const gdb_byte *
18096 read_full_die_1 (const struct die_reader_specs *reader,
18097 struct die_info **diep, const gdb_byte *info_ptr,
18098 int *has_children, int num_extra_attrs)
18099 {
18100 unsigned int abbrev_number, bytes_read, i;
18101 struct abbrev_info *abbrev;
18102 struct die_info *die;
18103 struct dwarf2_cu *cu = reader->cu;
18104 bfd *abfd = reader->abfd;
18105
18106 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18107 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18108 info_ptr += bytes_read;
18109 if (!abbrev_number)
18110 {
18111 *diep = NULL;
18112 *has_children = 0;
18113 return info_ptr;
18114 }
18115
18116 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18117 if (!abbrev)
18118 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18119 abbrev_number,
18120 bfd_get_filename (abfd));
18121
18122 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18123 die->sect_off = sect_off;
18124 die->tag = abbrev->tag;
18125 die->abbrev = abbrev_number;
18126
18127 /* Make the result usable.
18128 The caller needs to update num_attrs after adding the extra
18129 attributes. */
18130 die->num_attrs = abbrev->num_attrs;
18131
18132 for (i = 0; i < abbrev->num_attrs; ++i)
18133 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18134 info_ptr);
18135
18136 *diep = die;
18137 *has_children = abbrev->has_children;
18138 return info_ptr;
18139 }
18140
18141 /* Read a die and all its attributes.
18142 Set DIEP to point to a newly allocated die with its information,
18143 except for its child, sibling, and parent fields.
18144 Set HAS_CHILDREN to tell whether the die has children or not. */
18145
18146 static const gdb_byte *
18147 read_full_die (const struct die_reader_specs *reader,
18148 struct die_info **diep, const gdb_byte *info_ptr,
18149 int *has_children)
18150 {
18151 const gdb_byte *result;
18152
18153 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18154
18155 if (dwarf_die_debug)
18156 {
18157 fprintf_unfiltered (gdb_stdlog,
18158 "Read die from %s@0x%x of %s:\n",
18159 get_section_name (reader->die_section),
18160 (unsigned) (info_ptr - reader->die_section->buffer),
18161 bfd_get_filename (reader->abfd));
18162 dump_die (*diep, dwarf_die_debug);
18163 }
18164
18165 return result;
18166 }
18167 \f
18168 /* Abbreviation tables.
18169
18170 In DWARF version 2, the description of the debugging information is
18171 stored in a separate .debug_abbrev section. Before we read any
18172 dies from a section we read in all abbreviations and install them
18173 in a hash table. */
18174
18175 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18176
18177 struct abbrev_info *
18178 abbrev_table::alloc_abbrev ()
18179 {
18180 struct abbrev_info *abbrev;
18181
18182 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18183 memset (abbrev, 0, sizeof (struct abbrev_info));
18184
18185 return abbrev;
18186 }
18187
18188 /* Add an abbreviation to the table. */
18189
18190 void
18191 abbrev_table::add_abbrev (unsigned int abbrev_number,
18192 struct abbrev_info *abbrev)
18193 {
18194 unsigned int hash_number;
18195
18196 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18197 abbrev->next = m_abbrevs[hash_number];
18198 m_abbrevs[hash_number] = abbrev;
18199 }
18200
18201 /* Look up an abbrev in the table.
18202 Returns NULL if the abbrev is not found. */
18203
18204 struct abbrev_info *
18205 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18206 {
18207 unsigned int hash_number;
18208 struct abbrev_info *abbrev;
18209
18210 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18211 abbrev = m_abbrevs[hash_number];
18212
18213 while (abbrev)
18214 {
18215 if (abbrev->number == abbrev_number)
18216 return abbrev;
18217 abbrev = abbrev->next;
18218 }
18219 return NULL;
18220 }
18221
18222 /* Read in an abbrev table. */
18223
18224 static abbrev_table_up
18225 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18226 struct dwarf2_section_info *section,
18227 sect_offset sect_off)
18228 {
18229 struct objfile *objfile = dwarf2_per_objfile->objfile;
18230 bfd *abfd = get_section_bfd_owner (section);
18231 const gdb_byte *abbrev_ptr;
18232 struct abbrev_info *cur_abbrev;
18233 unsigned int abbrev_number, bytes_read, abbrev_name;
18234 unsigned int abbrev_form;
18235 struct attr_abbrev *cur_attrs;
18236 unsigned int allocated_attrs;
18237
18238 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18239
18240 dwarf2_read_section (objfile, section);
18241 abbrev_ptr = section->buffer + to_underlying (sect_off);
18242 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18243 abbrev_ptr += bytes_read;
18244
18245 allocated_attrs = ATTR_ALLOC_CHUNK;
18246 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18247
18248 /* Loop until we reach an abbrev number of 0. */
18249 while (abbrev_number)
18250 {
18251 cur_abbrev = abbrev_table->alloc_abbrev ();
18252
18253 /* read in abbrev header */
18254 cur_abbrev->number = abbrev_number;
18255 cur_abbrev->tag
18256 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18257 abbrev_ptr += bytes_read;
18258 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18259 abbrev_ptr += 1;
18260
18261 /* now read in declarations */
18262 for (;;)
18263 {
18264 LONGEST implicit_const;
18265
18266 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18267 abbrev_ptr += bytes_read;
18268 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18269 abbrev_ptr += bytes_read;
18270 if (abbrev_form == DW_FORM_implicit_const)
18271 {
18272 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18273 &bytes_read);
18274 abbrev_ptr += bytes_read;
18275 }
18276 else
18277 {
18278 /* Initialize it due to a false compiler warning. */
18279 implicit_const = -1;
18280 }
18281
18282 if (abbrev_name == 0)
18283 break;
18284
18285 if (cur_abbrev->num_attrs == allocated_attrs)
18286 {
18287 allocated_attrs += ATTR_ALLOC_CHUNK;
18288 cur_attrs
18289 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18290 }
18291
18292 cur_attrs[cur_abbrev->num_attrs].name
18293 = (enum dwarf_attribute) abbrev_name;
18294 cur_attrs[cur_abbrev->num_attrs].form
18295 = (enum dwarf_form) abbrev_form;
18296 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18297 ++cur_abbrev->num_attrs;
18298 }
18299
18300 cur_abbrev->attrs =
18301 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18302 cur_abbrev->num_attrs);
18303 memcpy (cur_abbrev->attrs, cur_attrs,
18304 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18305
18306 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18307
18308 /* Get next abbreviation.
18309 Under Irix6 the abbreviations for a compilation unit are not
18310 always properly terminated with an abbrev number of 0.
18311 Exit loop if we encounter an abbreviation which we have
18312 already read (which means we are about to read the abbreviations
18313 for the next compile unit) or if the end of the abbreviation
18314 table is reached. */
18315 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18316 break;
18317 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18318 abbrev_ptr += bytes_read;
18319 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18320 break;
18321 }
18322
18323 xfree (cur_attrs);
18324 return abbrev_table;
18325 }
18326
18327 /* Returns nonzero if TAG represents a type that we might generate a partial
18328 symbol for. */
18329
18330 static int
18331 is_type_tag_for_partial (int tag)
18332 {
18333 switch (tag)
18334 {
18335 #if 0
18336 /* Some types that would be reasonable to generate partial symbols for,
18337 that we don't at present. */
18338 case DW_TAG_array_type:
18339 case DW_TAG_file_type:
18340 case DW_TAG_ptr_to_member_type:
18341 case DW_TAG_set_type:
18342 case DW_TAG_string_type:
18343 case DW_TAG_subroutine_type:
18344 #endif
18345 case DW_TAG_base_type:
18346 case DW_TAG_class_type:
18347 case DW_TAG_interface_type:
18348 case DW_TAG_enumeration_type:
18349 case DW_TAG_structure_type:
18350 case DW_TAG_subrange_type:
18351 case DW_TAG_typedef:
18352 case DW_TAG_union_type:
18353 return 1;
18354 default:
18355 return 0;
18356 }
18357 }
18358
18359 /* Load all DIEs that are interesting for partial symbols into memory. */
18360
18361 static struct partial_die_info *
18362 load_partial_dies (const struct die_reader_specs *reader,
18363 const gdb_byte *info_ptr, int building_psymtab)
18364 {
18365 struct dwarf2_cu *cu = reader->cu;
18366 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18367 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18368 unsigned int bytes_read;
18369 unsigned int load_all = 0;
18370 int nesting_level = 1;
18371
18372 parent_die = NULL;
18373 last_die = NULL;
18374
18375 gdb_assert (cu->per_cu != NULL);
18376 if (cu->per_cu->load_all_dies)
18377 load_all = 1;
18378
18379 cu->partial_dies
18380 = htab_create_alloc_ex (cu->header.length / 12,
18381 partial_die_hash,
18382 partial_die_eq,
18383 NULL,
18384 &cu->comp_unit_obstack,
18385 hashtab_obstack_allocate,
18386 dummy_obstack_deallocate);
18387
18388 while (1)
18389 {
18390 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18391
18392 /* A NULL abbrev means the end of a series of children. */
18393 if (abbrev == NULL)
18394 {
18395 if (--nesting_level == 0)
18396 return first_die;
18397
18398 info_ptr += bytes_read;
18399 last_die = parent_die;
18400 parent_die = parent_die->die_parent;
18401 continue;
18402 }
18403
18404 /* Check for template arguments. We never save these; if
18405 they're seen, we just mark the parent, and go on our way. */
18406 if (parent_die != NULL
18407 && cu->language == language_cplus
18408 && (abbrev->tag == DW_TAG_template_type_param
18409 || abbrev->tag == DW_TAG_template_value_param))
18410 {
18411 parent_die->has_template_arguments = 1;
18412
18413 if (!load_all)
18414 {
18415 /* We don't need a partial DIE for the template argument. */
18416 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18417 continue;
18418 }
18419 }
18420
18421 /* We only recurse into c++ subprograms looking for template arguments.
18422 Skip their other children. */
18423 if (!load_all
18424 && cu->language == language_cplus
18425 && parent_die != NULL
18426 && parent_die->tag == DW_TAG_subprogram)
18427 {
18428 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18429 continue;
18430 }
18431
18432 /* Check whether this DIE is interesting enough to save. Normally
18433 we would not be interested in members here, but there may be
18434 later variables referencing them via DW_AT_specification (for
18435 static members). */
18436 if (!load_all
18437 && !is_type_tag_for_partial (abbrev->tag)
18438 && abbrev->tag != DW_TAG_constant
18439 && abbrev->tag != DW_TAG_enumerator
18440 && abbrev->tag != DW_TAG_subprogram
18441 && abbrev->tag != DW_TAG_inlined_subroutine
18442 && abbrev->tag != DW_TAG_lexical_block
18443 && abbrev->tag != DW_TAG_variable
18444 && abbrev->tag != DW_TAG_namespace
18445 && abbrev->tag != DW_TAG_module
18446 && abbrev->tag != DW_TAG_member
18447 && abbrev->tag != DW_TAG_imported_unit
18448 && abbrev->tag != DW_TAG_imported_declaration)
18449 {
18450 /* Otherwise we skip to the next sibling, if any. */
18451 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18452 continue;
18453 }
18454
18455 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18456 abbrev);
18457
18458 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18459
18460 /* This two-pass algorithm for processing partial symbols has a
18461 high cost in cache pressure. Thus, handle some simple cases
18462 here which cover the majority of C partial symbols. DIEs
18463 which neither have specification tags in them, nor could have
18464 specification tags elsewhere pointing at them, can simply be
18465 processed and discarded.
18466
18467 This segment is also optional; scan_partial_symbols and
18468 add_partial_symbol will handle these DIEs if we chain
18469 them in normally. When compilers which do not emit large
18470 quantities of duplicate debug information are more common,
18471 this code can probably be removed. */
18472
18473 /* Any complete simple types at the top level (pretty much all
18474 of them, for a language without namespaces), can be processed
18475 directly. */
18476 if (parent_die == NULL
18477 && pdi.has_specification == 0
18478 && pdi.is_declaration == 0
18479 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18480 || pdi.tag == DW_TAG_base_type
18481 || pdi.tag == DW_TAG_subrange_type))
18482 {
18483 if (building_psymtab && pdi.name != NULL)
18484 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18485 VAR_DOMAIN, LOC_TYPEDEF, -1,
18486 psymbol_placement::STATIC,
18487 0, cu->language, objfile);
18488 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18489 continue;
18490 }
18491
18492 /* The exception for DW_TAG_typedef with has_children above is
18493 a workaround of GCC PR debug/47510. In the case of this complaint
18494 type_name_or_error will error on such types later.
18495
18496 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18497 it could not find the child DIEs referenced later, this is checked
18498 above. In correct DWARF DW_TAG_typedef should have no children. */
18499
18500 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18501 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18502 "- DIE at %s [in module %s]"),
18503 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18504
18505 /* If we're at the second level, and we're an enumerator, and
18506 our parent has no specification (meaning possibly lives in a
18507 namespace elsewhere), then we can add the partial symbol now
18508 instead of queueing it. */
18509 if (pdi.tag == DW_TAG_enumerator
18510 && parent_die != NULL
18511 && parent_die->die_parent == NULL
18512 && parent_die->tag == DW_TAG_enumeration_type
18513 && parent_die->has_specification == 0)
18514 {
18515 if (pdi.name == NULL)
18516 complaint (_("malformed enumerator DIE ignored"));
18517 else if (building_psymtab)
18518 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18519 VAR_DOMAIN, LOC_CONST, -1,
18520 cu->language == language_cplus
18521 ? psymbol_placement::GLOBAL
18522 : psymbol_placement::STATIC,
18523 0, cu->language, objfile);
18524
18525 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18526 continue;
18527 }
18528
18529 struct partial_die_info *part_die
18530 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18531
18532 /* We'll save this DIE so link it in. */
18533 part_die->die_parent = parent_die;
18534 part_die->die_sibling = NULL;
18535 part_die->die_child = NULL;
18536
18537 if (last_die && last_die == parent_die)
18538 last_die->die_child = part_die;
18539 else if (last_die)
18540 last_die->die_sibling = part_die;
18541
18542 last_die = part_die;
18543
18544 if (first_die == NULL)
18545 first_die = part_die;
18546
18547 /* Maybe add the DIE to the hash table. Not all DIEs that we
18548 find interesting need to be in the hash table, because we
18549 also have the parent/sibling/child chains; only those that we
18550 might refer to by offset later during partial symbol reading.
18551
18552 For now this means things that might have be the target of a
18553 DW_AT_specification, DW_AT_abstract_origin, or
18554 DW_AT_extension. DW_AT_extension will refer only to
18555 namespaces; DW_AT_abstract_origin refers to functions (and
18556 many things under the function DIE, but we do not recurse
18557 into function DIEs during partial symbol reading) and
18558 possibly variables as well; DW_AT_specification refers to
18559 declarations. Declarations ought to have the DW_AT_declaration
18560 flag. It happens that GCC forgets to put it in sometimes, but
18561 only for functions, not for types.
18562
18563 Adding more things than necessary to the hash table is harmless
18564 except for the performance cost. Adding too few will result in
18565 wasted time in find_partial_die, when we reread the compilation
18566 unit with load_all_dies set. */
18567
18568 if (load_all
18569 || abbrev->tag == DW_TAG_constant
18570 || abbrev->tag == DW_TAG_subprogram
18571 || abbrev->tag == DW_TAG_variable
18572 || abbrev->tag == DW_TAG_namespace
18573 || part_die->is_declaration)
18574 {
18575 void **slot;
18576
18577 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18578 to_underlying (part_die->sect_off),
18579 INSERT);
18580 *slot = part_die;
18581 }
18582
18583 /* For some DIEs we want to follow their children (if any). For C
18584 we have no reason to follow the children of structures; for other
18585 languages we have to, so that we can get at method physnames
18586 to infer fully qualified class names, for DW_AT_specification,
18587 and for C++ template arguments. For C++, we also look one level
18588 inside functions to find template arguments (if the name of the
18589 function does not already contain the template arguments).
18590
18591 For Ada, we need to scan the children of subprograms and lexical
18592 blocks as well because Ada allows the definition of nested
18593 entities that could be interesting for the debugger, such as
18594 nested subprograms for instance. */
18595 if (last_die->has_children
18596 && (load_all
18597 || last_die->tag == DW_TAG_namespace
18598 || last_die->tag == DW_TAG_module
18599 || last_die->tag == DW_TAG_enumeration_type
18600 || (cu->language == language_cplus
18601 && last_die->tag == DW_TAG_subprogram
18602 && (last_die->name == NULL
18603 || strchr (last_die->name, '<') == NULL))
18604 || (cu->language != language_c
18605 && (last_die->tag == DW_TAG_class_type
18606 || last_die->tag == DW_TAG_interface_type
18607 || last_die->tag == DW_TAG_structure_type
18608 || last_die->tag == DW_TAG_union_type))
18609 || (cu->language == language_ada
18610 && (last_die->tag == DW_TAG_subprogram
18611 || last_die->tag == DW_TAG_lexical_block))))
18612 {
18613 nesting_level++;
18614 parent_die = last_die;
18615 continue;
18616 }
18617
18618 /* Otherwise we skip to the next sibling, if any. */
18619 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18620
18621 /* Back to the top, do it again. */
18622 }
18623 }
18624
18625 partial_die_info::partial_die_info (sect_offset sect_off_,
18626 struct abbrev_info *abbrev)
18627 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18628 {
18629 }
18630
18631 /* Read a minimal amount of information into the minimal die structure.
18632 INFO_PTR should point just after the initial uleb128 of a DIE. */
18633
18634 const gdb_byte *
18635 partial_die_info::read (const struct die_reader_specs *reader,
18636 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18637 {
18638 struct dwarf2_cu *cu = reader->cu;
18639 struct dwarf2_per_objfile *dwarf2_per_objfile
18640 = cu->per_cu->dwarf2_per_objfile;
18641 unsigned int i;
18642 int has_low_pc_attr = 0;
18643 int has_high_pc_attr = 0;
18644 int high_pc_relative = 0;
18645
18646 for (i = 0; i < abbrev.num_attrs; ++i)
18647 {
18648 struct attribute attr;
18649
18650 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18651
18652 /* Store the data if it is of an attribute we want to keep in a
18653 partial symbol table. */
18654 switch (attr.name)
18655 {
18656 case DW_AT_name:
18657 switch (tag)
18658 {
18659 case DW_TAG_compile_unit:
18660 case DW_TAG_partial_unit:
18661 case DW_TAG_type_unit:
18662 /* Compilation units have a DW_AT_name that is a filename, not
18663 a source language identifier. */
18664 case DW_TAG_enumeration_type:
18665 case DW_TAG_enumerator:
18666 /* These tags always have simple identifiers already; no need
18667 to canonicalize them. */
18668 name = DW_STRING (&attr);
18669 break;
18670 default:
18671 {
18672 struct objfile *objfile = dwarf2_per_objfile->objfile;
18673
18674 name
18675 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18676 &objfile->per_bfd->storage_obstack);
18677 }
18678 break;
18679 }
18680 break;
18681 case DW_AT_linkage_name:
18682 case DW_AT_MIPS_linkage_name:
18683 /* Note that both forms of linkage name might appear. We
18684 assume they will be the same, and we only store the last
18685 one we see. */
18686 linkage_name = DW_STRING (&attr);
18687 break;
18688 case DW_AT_low_pc:
18689 has_low_pc_attr = 1;
18690 lowpc = attr_value_as_address (&attr);
18691 break;
18692 case DW_AT_high_pc:
18693 has_high_pc_attr = 1;
18694 highpc = attr_value_as_address (&attr);
18695 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18696 high_pc_relative = 1;
18697 break;
18698 case DW_AT_location:
18699 /* Support the .debug_loc offsets. */
18700 if (attr_form_is_block (&attr))
18701 {
18702 d.locdesc = DW_BLOCK (&attr);
18703 }
18704 else if (attr_form_is_section_offset (&attr))
18705 {
18706 dwarf2_complex_location_expr_complaint ();
18707 }
18708 else
18709 {
18710 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18711 "partial symbol information");
18712 }
18713 break;
18714 case DW_AT_external:
18715 is_external = DW_UNSND (&attr);
18716 break;
18717 case DW_AT_declaration:
18718 is_declaration = DW_UNSND (&attr);
18719 break;
18720 case DW_AT_type:
18721 has_type = 1;
18722 break;
18723 case DW_AT_abstract_origin:
18724 case DW_AT_specification:
18725 case DW_AT_extension:
18726 has_specification = 1;
18727 spec_offset = dwarf2_get_ref_die_offset (&attr);
18728 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18729 || cu->per_cu->is_dwz);
18730 break;
18731 case DW_AT_sibling:
18732 /* Ignore absolute siblings, they might point outside of
18733 the current compile unit. */
18734 if (attr.form == DW_FORM_ref_addr)
18735 complaint (_("ignoring absolute DW_AT_sibling"));
18736 else
18737 {
18738 const gdb_byte *buffer = reader->buffer;
18739 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18740 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18741
18742 if (sibling_ptr < info_ptr)
18743 complaint (_("DW_AT_sibling points backwards"));
18744 else if (sibling_ptr > reader->buffer_end)
18745 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18746 else
18747 sibling = sibling_ptr;
18748 }
18749 break;
18750 case DW_AT_byte_size:
18751 has_byte_size = 1;
18752 break;
18753 case DW_AT_const_value:
18754 has_const_value = 1;
18755 break;
18756 case DW_AT_calling_convention:
18757 /* DWARF doesn't provide a way to identify a program's source-level
18758 entry point. DW_AT_calling_convention attributes are only meant
18759 to describe functions' calling conventions.
18760
18761 However, because it's a necessary piece of information in
18762 Fortran, and before DWARF 4 DW_CC_program was the only
18763 piece of debugging information whose definition refers to
18764 a 'main program' at all, several compilers marked Fortran
18765 main programs with DW_CC_program --- even when those
18766 functions use the standard calling conventions.
18767
18768 Although DWARF now specifies a way to provide this
18769 information, we support this practice for backward
18770 compatibility. */
18771 if (DW_UNSND (&attr) == DW_CC_program
18772 && cu->language == language_fortran)
18773 main_subprogram = 1;
18774 break;
18775 case DW_AT_inline:
18776 if (DW_UNSND (&attr) == DW_INL_inlined
18777 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18778 may_be_inlined = 1;
18779 break;
18780
18781 case DW_AT_import:
18782 if (tag == DW_TAG_imported_unit)
18783 {
18784 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18785 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18786 || cu->per_cu->is_dwz);
18787 }
18788 break;
18789
18790 case DW_AT_main_subprogram:
18791 main_subprogram = DW_UNSND (&attr);
18792 break;
18793
18794 case DW_AT_ranges:
18795 {
18796 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18797 but that requires a full DIE, so instead we just
18798 reimplement it. */
18799 int need_ranges_base = tag != DW_TAG_compile_unit;
18800 unsigned int ranges_offset = (DW_UNSND (&attr)
18801 + (need_ranges_base
18802 ? cu->ranges_base
18803 : 0));
18804
18805 /* Value of the DW_AT_ranges attribute is the offset in the
18806 .debug_ranges section. */
18807 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18808 nullptr))
18809 has_pc_info = 1;
18810 }
18811 break;
18812
18813 default:
18814 break;
18815 }
18816 }
18817
18818 /* For Ada, if both the name and the linkage name appear, we prefer
18819 the latter. This lets "catch exception" work better, regardless
18820 of the order in which the name and linkage name were emitted.
18821 Really, though, this is just a workaround for the fact that gdb
18822 doesn't store both the name and the linkage name. */
18823 if (cu->language == language_ada && linkage_name != nullptr)
18824 name = linkage_name;
18825
18826 if (high_pc_relative)
18827 highpc += lowpc;
18828
18829 if (has_low_pc_attr && has_high_pc_attr)
18830 {
18831 /* When using the GNU linker, .gnu.linkonce. sections are used to
18832 eliminate duplicate copies of functions and vtables and such.
18833 The linker will arbitrarily choose one and discard the others.
18834 The AT_*_pc values for such functions refer to local labels in
18835 these sections. If the section from that file was discarded, the
18836 labels are not in the output, so the relocs get a value of 0.
18837 If this is a discarded function, mark the pc bounds as invalid,
18838 so that GDB will ignore it. */
18839 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18840 {
18841 struct objfile *objfile = dwarf2_per_objfile->objfile;
18842 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18843
18844 complaint (_("DW_AT_low_pc %s is zero "
18845 "for DIE at %s [in module %s]"),
18846 paddress (gdbarch, lowpc),
18847 sect_offset_str (sect_off),
18848 objfile_name (objfile));
18849 }
18850 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18851 else if (lowpc >= highpc)
18852 {
18853 struct objfile *objfile = dwarf2_per_objfile->objfile;
18854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18855
18856 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18857 "for DIE at %s [in module %s]"),
18858 paddress (gdbarch, lowpc),
18859 paddress (gdbarch, highpc),
18860 sect_offset_str (sect_off),
18861 objfile_name (objfile));
18862 }
18863 else
18864 has_pc_info = 1;
18865 }
18866
18867 return info_ptr;
18868 }
18869
18870 /* Find a cached partial DIE at OFFSET in CU. */
18871
18872 struct partial_die_info *
18873 dwarf2_cu::find_partial_die (sect_offset sect_off)
18874 {
18875 struct partial_die_info *lookup_die = NULL;
18876 struct partial_die_info part_die (sect_off);
18877
18878 lookup_die = ((struct partial_die_info *)
18879 htab_find_with_hash (partial_dies, &part_die,
18880 to_underlying (sect_off)));
18881
18882 return lookup_die;
18883 }
18884
18885 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18886 except in the case of .debug_types DIEs which do not reference
18887 outside their CU (they do however referencing other types via
18888 DW_FORM_ref_sig8). */
18889
18890 static const struct cu_partial_die_info
18891 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18892 {
18893 struct dwarf2_per_objfile *dwarf2_per_objfile
18894 = cu->per_cu->dwarf2_per_objfile;
18895 struct objfile *objfile = dwarf2_per_objfile->objfile;
18896 struct dwarf2_per_cu_data *per_cu = NULL;
18897 struct partial_die_info *pd = NULL;
18898
18899 if (offset_in_dwz == cu->per_cu->is_dwz
18900 && offset_in_cu_p (&cu->header, sect_off))
18901 {
18902 pd = cu->find_partial_die (sect_off);
18903 if (pd != NULL)
18904 return { cu, pd };
18905 /* We missed recording what we needed.
18906 Load all dies and try again. */
18907 per_cu = cu->per_cu;
18908 }
18909 else
18910 {
18911 /* TUs don't reference other CUs/TUs (except via type signatures). */
18912 if (cu->per_cu->is_debug_types)
18913 {
18914 error (_("Dwarf Error: Type Unit at offset %s contains"
18915 " external reference to offset %s [in module %s].\n"),
18916 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18917 bfd_get_filename (objfile->obfd));
18918 }
18919 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18920 dwarf2_per_objfile);
18921
18922 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18923 load_partial_comp_unit (per_cu);
18924
18925 per_cu->cu->last_used = 0;
18926 pd = per_cu->cu->find_partial_die (sect_off);
18927 }
18928
18929 /* If we didn't find it, and not all dies have been loaded,
18930 load them all and try again. */
18931
18932 if (pd == NULL && per_cu->load_all_dies == 0)
18933 {
18934 per_cu->load_all_dies = 1;
18935
18936 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18937 THIS_CU->cu may already be in use. So we can't just free it and
18938 replace its DIEs with the ones we read in. Instead, we leave those
18939 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18940 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18941 set. */
18942 load_partial_comp_unit (per_cu);
18943
18944 pd = per_cu->cu->find_partial_die (sect_off);
18945 }
18946
18947 if (pd == NULL)
18948 internal_error (__FILE__, __LINE__,
18949 _("could not find partial DIE %s "
18950 "in cache [from module %s]\n"),
18951 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18952 return { per_cu->cu, pd };
18953 }
18954
18955 /* See if we can figure out if the class lives in a namespace. We do
18956 this by looking for a member function; its demangled name will
18957 contain namespace info, if there is any. */
18958
18959 static void
18960 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18961 struct dwarf2_cu *cu)
18962 {
18963 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18964 what template types look like, because the demangler
18965 frequently doesn't give the same name as the debug info. We
18966 could fix this by only using the demangled name to get the
18967 prefix (but see comment in read_structure_type). */
18968
18969 struct partial_die_info *real_pdi;
18970 struct partial_die_info *child_pdi;
18971
18972 /* If this DIE (this DIE's specification, if any) has a parent, then
18973 we should not do this. We'll prepend the parent's fully qualified
18974 name when we create the partial symbol. */
18975
18976 real_pdi = struct_pdi;
18977 while (real_pdi->has_specification)
18978 {
18979 auto res = find_partial_die (real_pdi->spec_offset,
18980 real_pdi->spec_is_dwz, cu);
18981 real_pdi = res.pdi;
18982 cu = res.cu;
18983 }
18984
18985 if (real_pdi->die_parent != NULL)
18986 return;
18987
18988 for (child_pdi = struct_pdi->die_child;
18989 child_pdi != NULL;
18990 child_pdi = child_pdi->die_sibling)
18991 {
18992 if (child_pdi->tag == DW_TAG_subprogram
18993 && child_pdi->linkage_name != NULL)
18994 {
18995 char *actual_class_name
18996 = language_class_name_from_physname (cu->language_defn,
18997 child_pdi->linkage_name);
18998 if (actual_class_name != NULL)
18999 {
19000 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19001 struct_pdi->name
19002 = ((const char *)
19003 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19004 actual_class_name,
19005 strlen (actual_class_name)));
19006 xfree (actual_class_name);
19007 }
19008 break;
19009 }
19010 }
19011 }
19012
19013 void
19014 partial_die_info::fixup (struct dwarf2_cu *cu)
19015 {
19016 /* Once we've fixed up a die, there's no point in doing so again.
19017 This also avoids a memory leak if we were to call
19018 guess_partial_die_structure_name multiple times. */
19019 if (fixup_called)
19020 return;
19021
19022 /* If we found a reference attribute and the DIE has no name, try
19023 to find a name in the referred to DIE. */
19024
19025 if (name == NULL && has_specification)
19026 {
19027 struct partial_die_info *spec_die;
19028
19029 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19030 spec_die = res.pdi;
19031 cu = res.cu;
19032
19033 spec_die->fixup (cu);
19034
19035 if (spec_die->name)
19036 {
19037 name = spec_die->name;
19038
19039 /* Copy DW_AT_external attribute if it is set. */
19040 if (spec_die->is_external)
19041 is_external = spec_die->is_external;
19042 }
19043 }
19044
19045 /* Set default names for some unnamed DIEs. */
19046
19047 if (name == NULL && tag == DW_TAG_namespace)
19048 name = CP_ANONYMOUS_NAMESPACE_STR;
19049
19050 /* If there is no parent die to provide a namespace, and there are
19051 children, see if we can determine the namespace from their linkage
19052 name. */
19053 if (cu->language == language_cplus
19054 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19055 && die_parent == NULL
19056 && has_children
19057 && (tag == DW_TAG_class_type
19058 || tag == DW_TAG_structure_type
19059 || tag == DW_TAG_union_type))
19060 guess_partial_die_structure_name (this, cu);
19061
19062 /* GCC might emit a nameless struct or union that has a linkage
19063 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19064 if (name == NULL
19065 && (tag == DW_TAG_class_type
19066 || tag == DW_TAG_interface_type
19067 || tag == DW_TAG_structure_type
19068 || tag == DW_TAG_union_type)
19069 && linkage_name != NULL)
19070 {
19071 char *demangled;
19072
19073 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19074 if (demangled)
19075 {
19076 const char *base;
19077
19078 /* Strip any leading namespaces/classes, keep only the base name.
19079 DW_AT_name for named DIEs does not contain the prefixes. */
19080 base = strrchr (demangled, ':');
19081 if (base && base > demangled && base[-1] == ':')
19082 base++;
19083 else
19084 base = demangled;
19085
19086 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19087 name
19088 = ((const char *)
19089 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19090 base, strlen (base)));
19091 xfree (demangled);
19092 }
19093 }
19094
19095 fixup_called = 1;
19096 }
19097
19098 /* Read an attribute value described by an attribute form. */
19099
19100 static const gdb_byte *
19101 read_attribute_value (const struct die_reader_specs *reader,
19102 struct attribute *attr, unsigned form,
19103 LONGEST implicit_const, const gdb_byte *info_ptr)
19104 {
19105 struct dwarf2_cu *cu = reader->cu;
19106 struct dwarf2_per_objfile *dwarf2_per_objfile
19107 = cu->per_cu->dwarf2_per_objfile;
19108 struct objfile *objfile = dwarf2_per_objfile->objfile;
19109 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19110 bfd *abfd = reader->abfd;
19111 struct comp_unit_head *cu_header = &cu->header;
19112 unsigned int bytes_read;
19113 struct dwarf_block *blk;
19114
19115 attr->form = (enum dwarf_form) form;
19116 switch (form)
19117 {
19118 case DW_FORM_ref_addr:
19119 if (cu->header.version == 2)
19120 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19121 else
19122 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19123 &cu->header, &bytes_read);
19124 info_ptr += bytes_read;
19125 break;
19126 case DW_FORM_GNU_ref_alt:
19127 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19128 info_ptr += bytes_read;
19129 break;
19130 case DW_FORM_addr:
19131 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19132 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19133 info_ptr += bytes_read;
19134 break;
19135 case DW_FORM_block2:
19136 blk = dwarf_alloc_block (cu);
19137 blk->size = read_2_bytes (abfd, info_ptr);
19138 info_ptr += 2;
19139 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19140 info_ptr += blk->size;
19141 DW_BLOCK (attr) = blk;
19142 break;
19143 case DW_FORM_block4:
19144 blk = dwarf_alloc_block (cu);
19145 blk->size = read_4_bytes (abfd, info_ptr);
19146 info_ptr += 4;
19147 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19148 info_ptr += blk->size;
19149 DW_BLOCK (attr) = blk;
19150 break;
19151 case DW_FORM_data2:
19152 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19153 info_ptr += 2;
19154 break;
19155 case DW_FORM_data4:
19156 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19157 info_ptr += 4;
19158 break;
19159 case DW_FORM_data8:
19160 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19161 info_ptr += 8;
19162 break;
19163 case DW_FORM_data16:
19164 blk = dwarf_alloc_block (cu);
19165 blk->size = 16;
19166 blk->data = read_n_bytes (abfd, info_ptr, 16);
19167 info_ptr += 16;
19168 DW_BLOCK (attr) = blk;
19169 break;
19170 case DW_FORM_sec_offset:
19171 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19172 info_ptr += bytes_read;
19173 break;
19174 case DW_FORM_string:
19175 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19176 DW_STRING_IS_CANONICAL (attr) = 0;
19177 info_ptr += bytes_read;
19178 break;
19179 case DW_FORM_strp:
19180 if (!cu->per_cu->is_dwz)
19181 {
19182 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19183 abfd, info_ptr, cu_header,
19184 &bytes_read);
19185 DW_STRING_IS_CANONICAL (attr) = 0;
19186 info_ptr += bytes_read;
19187 break;
19188 }
19189 /* FALLTHROUGH */
19190 case DW_FORM_line_strp:
19191 if (!cu->per_cu->is_dwz)
19192 {
19193 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19194 abfd, info_ptr,
19195 cu_header, &bytes_read);
19196 DW_STRING_IS_CANONICAL (attr) = 0;
19197 info_ptr += bytes_read;
19198 break;
19199 }
19200 /* FALLTHROUGH */
19201 case DW_FORM_GNU_strp_alt:
19202 {
19203 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19204 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19205 &bytes_read);
19206
19207 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19208 dwz, str_offset);
19209 DW_STRING_IS_CANONICAL (attr) = 0;
19210 info_ptr += bytes_read;
19211 }
19212 break;
19213 case DW_FORM_exprloc:
19214 case DW_FORM_block:
19215 blk = dwarf_alloc_block (cu);
19216 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19217 info_ptr += bytes_read;
19218 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19219 info_ptr += blk->size;
19220 DW_BLOCK (attr) = blk;
19221 break;
19222 case DW_FORM_block1:
19223 blk = dwarf_alloc_block (cu);
19224 blk->size = read_1_byte (abfd, info_ptr);
19225 info_ptr += 1;
19226 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19227 info_ptr += blk->size;
19228 DW_BLOCK (attr) = blk;
19229 break;
19230 case DW_FORM_data1:
19231 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19232 info_ptr += 1;
19233 break;
19234 case DW_FORM_flag:
19235 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19236 info_ptr += 1;
19237 break;
19238 case DW_FORM_flag_present:
19239 DW_UNSND (attr) = 1;
19240 break;
19241 case DW_FORM_sdata:
19242 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19243 info_ptr += bytes_read;
19244 break;
19245 case DW_FORM_udata:
19246 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19247 info_ptr += bytes_read;
19248 break;
19249 case DW_FORM_ref1:
19250 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19251 + read_1_byte (abfd, info_ptr));
19252 info_ptr += 1;
19253 break;
19254 case DW_FORM_ref2:
19255 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19256 + read_2_bytes (abfd, info_ptr));
19257 info_ptr += 2;
19258 break;
19259 case DW_FORM_ref4:
19260 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19261 + read_4_bytes (abfd, info_ptr));
19262 info_ptr += 4;
19263 break;
19264 case DW_FORM_ref8:
19265 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19266 + read_8_bytes (abfd, info_ptr));
19267 info_ptr += 8;
19268 break;
19269 case DW_FORM_ref_sig8:
19270 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19271 info_ptr += 8;
19272 break;
19273 case DW_FORM_ref_udata:
19274 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19275 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19276 info_ptr += bytes_read;
19277 break;
19278 case DW_FORM_indirect:
19279 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19280 info_ptr += bytes_read;
19281 if (form == DW_FORM_implicit_const)
19282 {
19283 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19284 info_ptr += bytes_read;
19285 }
19286 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19287 info_ptr);
19288 break;
19289 case DW_FORM_implicit_const:
19290 DW_SND (attr) = implicit_const;
19291 break;
19292 case DW_FORM_addrx:
19293 case DW_FORM_GNU_addr_index:
19294 if (reader->dwo_file == NULL)
19295 {
19296 /* For now flag a hard error.
19297 Later we can turn this into a complaint. */
19298 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19299 dwarf_form_name (form),
19300 bfd_get_filename (abfd));
19301 }
19302 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19303 info_ptr += bytes_read;
19304 break;
19305 case DW_FORM_strx:
19306 case DW_FORM_strx1:
19307 case DW_FORM_strx2:
19308 case DW_FORM_strx3:
19309 case DW_FORM_strx4:
19310 case DW_FORM_GNU_str_index:
19311 if (reader->dwo_file == NULL)
19312 {
19313 /* For now flag a hard error.
19314 Later we can turn this into a complaint if warranted. */
19315 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19316 dwarf_form_name (form),
19317 bfd_get_filename (abfd));
19318 }
19319 {
19320 ULONGEST str_index;
19321 if (form == DW_FORM_strx1)
19322 {
19323 str_index = read_1_byte (abfd, info_ptr);
19324 info_ptr += 1;
19325 }
19326 else if (form == DW_FORM_strx2)
19327 {
19328 str_index = read_2_bytes (abfd, info_ptr);
19329 info_ptr += 2;
19330 }
19331 else if (form == DW_FORM_strx3)
19332 {
19333 str_index = read_3_bytes (abfd, info_ptr);
19334 info_ptr += 3;
19335 }
19336 else if (form == DW_FORM_strx4)
19337 {
19338 str_index = read_4_bytes (abfd, info_ptr);
19339 info_ptr += 4;
19340 }
19341 else
19342 {
19343 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19344 info_ptr += bytes_read;
19345 }
19346 DW_STRING (attr) = read_str_index (reader, str_index);
19347 DW_STRING_IS_CANONICAL (attr) = 0;
19348 }
19349 break;
19350 default:
19351 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19352 dwarf_form_name (form),
19353 bfd_get_filename (abfd));
19354 }
19355
19356 /* Super hack. */
19357 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19358 attr->form = DW_FORM_GNU_ref_alt;
19359
19360 /* We have seen instances where the compiler tried to emit a byte
19361 size attribute of -1 which ended up being encoded as an unsigned
19362 0xffffffff. Although 0xffffffff is technically a valid size value,
19363 an object of this size seems pretty unlikely so we can relatively
19364 safely treat these cases as if the size attribute was invalid and
19365 treat them as zero by default. */
19366 if (attr->name == DW_AT_byte_size
19367 && form == DW_FORM_data4
19368 && DW_UNSND (attr) >= 0xffffffff)
19369 {
19370 complaint
19371 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19372 hex_string (DW_UNSND (attr)));
19373 DW_UNSND (attr) = 0;
19374 }
19375
19376 return info_ptr;
19377 }
19378
19379 /* Read an attribute described by an abbreviated attribute. */
19380
19381 static const gdb_byte *
19382 read_attribute (const struct die_reader_specs *reader,
19383 struct attribute *attr, struct attr_abbrev *abbrev,
19384 const gdb_byte *info_ptr)
19385 {
19386 attr->name = abbrev->name;
19387 return read_attribute_value (reader, attr, abbrev->form,
19388 abbrev->implicit_const, info_ptr);
19389 }
19390
19391 /* Read dwarf information from a buffer. */
19392
19393 static unsigned int
19394 read_1_byte (bfd *abfd, const gdb_byte *buf)
19395 {
19396 return bfd_get_8 (abfd, buf);
19397 }
19398
19399 static int
19400 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19401 {
19402 return bfd_get_signed_8 (abfd, buf);
19403 }
19404
19405 static unsigned int
19406 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19407 {
19408 return bfd_get_16 (abfd, buf);
19409 }
19410
19411 static int
19412 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19413 {
19414 return bfd_get_signed_16 (abfd, buf);
19415 }
19416
19417 static unsigned int
19418 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19419 {
19420 unsigned int result = 0;
19421 for (int i = 0; i < 3; ++i)
19422 {
19423 unsigned char byte = bfd_get_8 (abfd, buf);
19424 buf++;
19425 result |= ((unsigned int) byte << (i * 8));
19426 }
19427 return result;
19428 }
19429
19430 static unsigned int
19431 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19432 {
19433 return bfd_get_32 (abfd, buf);
19434 }
19435
19436 static int
19437 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19438 {
19439 return bfd_get_signed_32 (abfd, buf);
19440 }
19441
19442 static ULONGEST
19443 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19444 {
19445 return bfd_get_64 (abfd, buf);
19446 }
19447
19448 static CORE_ADDR
19449 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19450 unsigned int *bytes_read)
19451 {
19452 struct comp_unit_head *cu_header = &cu->header;
19453 CORE_ADDR retval = 0;
19454
19455 if (cu_header->signed_addr_p)
19456 {
19457 switch (cu_header->addr_size)
19458 {
19459 case 2:
19460 retval = bfd_get_signed_16 (abfd, buf);
19461 break;
19462 case 4:
19463 retval = bfd_get_signed_32 (abfd, buf);
19464 break;
19465 case 8:
19466 retval = bfd_get_signed_64 (abfd, buf);
19467 break;
19468 default:
19469 internal_error (__FILE__, __LINE__,
19470 _("read_address: bad switch, signed [in module %s]"),
19471 bfd_get_filename (abfd));
19472 }
19473 }
19474 else
19475 {
19476 switch (cu_header->addr_size)
19477 {
19478 case 2:
19479 retval = bfd_get_16 (abfd, buf);
19480 break;
19481 case 4:
19482 retval = bfd_get_32 (abfd, buf);
19483 break;
19484 case 8:
19485 retval = bfd_get_64 (abfd, buf);
19486 break;
19487 default:
19488 internal_error (__FILE__, __LINE__,
19489 _("read_address: bad switch, "
19490 "unsigned [in module %s]"),
19491 bfd_get_filename (abfd));
19492 }
19493 }
19494
19495 *bytes_read = cu_header->addr_size;
19496 return retval;
19497 }
19498
19499 /* Read the initial length from a section. The (draft) DWARF 3
19500 specification allows the initial length to take up either 4 bytes
19501 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19502 bytes describe the length and all offsets will be 8 bytes in length
19503 instead of 4.
19504
19505 An older, non-standard 64-bit format is also handled by this
19506 function. The older format in question stores the initial length
19507 as an 8-byte quantity without an escape value. Lengths greater
19508 than 2^32 aren't very common which means that the initial 4 bytes
19509 is almost always zero. Since a length value of zero doesn't make
19510 sense for the 32-bit format, this initial zero can be considered to
19511 be an escape value which indicates the presence of the older 64-bit
19512 format. As written, the code can't detect (old format) lengths
19513 greater than 4GB. If it becomes necessary to handle lengths
19514 somewhat larger than 4GB, we could allow other small values (such
19515 as the non-sensical values of 1, 2, and 3) to also be used as
19516 escape values indicating the presence of the old format.
19517
19518 The value returned via bytes_read should be used to increment the
19519 relevant pointer after calling read_initial_length().
19520
19521 [ Note: read_initial_length() and read_offset() are based on the
19522 document entitled "DWARF Debugging Information Format", revision
19523 3, draft 8, dated November 19, 2001. This document was obtained
19524 from:
19525
19526 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19527
19528 This document is only a draft and is subject to change. (So beware.)
19529
19530 Details regarding the older, non-standard 64-bit format were
19531 determined empirically by examining 64-bit ELF files produced by
19532 the SGI toolchain on an IRIX 6.5 machine.
19533
19534 - Kevin, July 16, 2002
19535 ] */
19536
19537 static LONGEST
19538 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19539 {
19540 LONGEST length = bfd_get_32 (abfd, buf);
19541
19542 if (length == 0xffffffff)
19543 {
19544 length = bfd_get_64 (abfd, buf + 4);
19545 *bytes_read = 12;
19546 }
19547 else if (length == 0)
19548 {
19549 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19550 length = bfd_get_64 (abfd, buf);
19551 *bytes_read = 8;
19552 }
19553 else
19554 {
19555 *bytes_read = 4;
19556 }
19557
19558 return length;
19559 }
19560
19561 /* Cover function for read_initial_length.
19562 Returns the length of the object at BUF, and stores the size of the
19563 initial length in *BYTES_READ and stores the size that offsets will be in
19564 *OFFSET_SIZE.
19565 If the initial length size is not equivalent to that specified in
19566 CU_HEADER then issue a complaint.
19567 This is useful when reading non-comp-unit headers. */
19568
19569 static LONGEST
19570 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19571 const struct comp_unit_head *cu_header,
19572 unsigned int *bytes_read,
19573 unsigned int *offset_size)
19574 {
19575 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19576
19577 gdb_assert (cu_header->initial_length_size == 4
19578 || cu_header->initial_length_size == 8
19579 || cu_header->initial_length_size == 12);
19580
19581 if (cu_header->initial_length_size != *bytes_read)
19582 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19583
19584 *offset_size = (*bytes_read == 4) ? 4 : 8;
19585 return length;
19586 }
19587
19588 /* Read an offset from the data stream. The size of the offset is
19589 given by cu_header->offset_size. */
19590
19591 static LONGEST
19592 read_offset (bfd *abfd, const gdb_byte *buf,
19593 const struct comp_unit_head *cu_header,
19594 unsigned int *bytes_read)
19595 {
19596 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19597
19598 *bytes_read = cu_header->offset_size;
19599 return offset;
19600 }
19601
19602 /* Read an offset from the data stream. */
19603
19604 static LONGEST
19605 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19606 {
19607 LONGEST retval = 0;
19608
19609 switch (offset_size)
19610 {
19611 case 4:
19612 retval = bfd_get_32 (abfd, buf);
19613 break;
19614 case 8:
19615 retval = bfd_get_64 (abfd, buf);
19616 break;
19617 default:
19618 internal_error (__FILE__, __LINE__,
19619 _("read_offset_1: bad switch [in module %s]"),
19620 bfd_get_filename (abfd));
19621 }
19622
19623 return retval;
19624 }
19625
19626 static const gdb_byte *
19627 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19628 {
19629 /* If the size of a host char is 8 bits, we can return a pointer
19630 to the buffer, otherwise we have to copy the data to a buffer
19631 allocated on the temporary obstack. */
19632 gdb_assert (HOST_CHAR_BIT == 8);
19633 return buf;
19634 }
19635
19636 static const char *
19637 read_direct_string (bfd *abfd, const gdb_byte *buf,
19638 unsigned int *bytes_read_ptr)
19639 {
19640 /* If the size of a host char is 8 bits, we can return a pointer
19641 to the string, otherwise we have to copy the string to a buffer
19642 allocated on the temporary obstack. */
19643 gdb_assert (HOST_CHAR_BIT == 8);
19644 if (*buf == '\0')
19645 {
19646 *bytes_read_ptr = 1;
19647 return NULL;
19648 }
19649 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19650 return (const char *) buf;
19651 }
19652
19653 /* Return pointer to string at section SECT offset STR_OFFSET with error
19654 reporting strings FORM_NAME and SECT_NAME. */
19655
19656 static const char *
19657 read_indirect_string_at_offset_from (struct objfile *objfile,
19658 bfd *abfd, LONGEST str_offset,
19659 struct dwarf2_section_info *sect,
19660 const char *form_name,
19661 const char *sect_name)
19662 {
19663 dwarf2_read_section (objfile, sect);
19664 if (sect->buffer == NULL)
19665 error (_("%s used without %s section [in module %s]"),
19666 form_name, sect_name, bfd_get_filename (abfd));
19667 if (str_offset >= sect->size)
19668 error (_("%s pointing outside of %s section [in module %s]"),
19669 form_name, sect_name, bfd_get_filename (abfd));
19670 gdb_assert (HOST_CHAR_BIT == 8);
19671 if (sect->buffer[str_offset] == '\0')
19672 return NULL;
19673 return (const char *) (sect->buffer + str_offset);
19674 }
19675
19676 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19677
19678 static const char *
19679 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19680 bfd *abfd, LONGEST str_offset)
19681 {
19682 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19683 abfd, str_offset,
19684 &dwarf2_per_objfile->str,
19685 "DW_FORM_strp", ".debug_str");
19686 }
19687
19688 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19689
19690 static const char *
19691 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19692 bfd *abfd, LONGEST str_offset)
19693 {
19694 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19695 abfd, str_offset,
19696 &dwarf2_per_objfile->line_str,
19697 "DW_FORM_line_strp",
19698 ".debug_line_str");
19699 }
19700
19701 /* Read a string at offset STR_OFFSET in the .debug_str section from
19702 the .dwz file DWZ. Throw an error if the offset is too large. If
19703 the string consists of a single NUL byte, return NULL; otherwise
19704 return a pointer to the string. */
19705
19706 static const char *
19707 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19708 LONGEST str_offset)
19709 {
19710 dwarf2_read_section (objfile, &dwz->str);
19711
19712 if (dwz->str.buffer == NULL)
19713 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19714 "section [in module %s]"),
19715 bfd_get_filename (dwz->dwz_bfd));
19716 if (str_offset >= dwz->str.size)
19717 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19718 ".debug_str section [in module %s]"),
19719 bfd_get_filename (dwz->dwz_bfd));
19720 gdb_assert (HOST_CHAR_BIT == 8);
19721 if (dwz->str.buffer[str_offset] == '\0')
19722 return NULL;
19723 return (const char *) (dwz->str.buffer + str_offset);
19724 }
19725
19726 /* Return pointer to string at .debug_str offset as read from BUF.
19727 BUF is assumed to be in a compilation unit described by CU_HEADER.
19728 Return *BYTES_READ_PTR count of bytes read from BUF. */
19729
19730 static const char *
19731 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19732 const gdb_byte *buf,
19733 const struct comp_unit_head *cu_header,
19734 unsigned int *bytes_read_ptr)
19735 {
19736 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19737
19738 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19739 }
19740
19741 /* Return pointer to string at .debug_line_str offset as read from BUF.
19742 BUF is assumed to be in a compilation unit described by CU_HEADER.
19743 Return *BYTES_READ_PTR count of bytes read from BUF. */
19744
19745 static const char *
19746 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19747 bfd *abfd, const gdb_byte *buf,
19748 const struct comp_unit_head *cu_header,
19749 unsigned int *bytes_read_ptr)
19750 {
19751 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19752
19753 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19754 str_offset);
19755 }
19756
19757 ULONGEST
19758 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19759 unsigned int *bytes_read_ptr)
19760 {
19761 ULONGEST result;
19762 unsigned int num_read;
19763 int shift;
19764 unsigned char byte;
19765
19766 result = 0;
19767 shift = 0;
19768 num_read = 0;
19769 while (1)
19770 {
19771 byte = bfd_get_8 (abfd, buf);
19772 buf++;
19773 num_read++;
19774 result |= ((ULONGEST) (byte & 127) << shift);
19775 if ((byte & 128) == 0)
19776 {
19777 break;
19778 }
19779 shift += 7;
19780 }
19781 *bytes_read_ptr = num_read;
19782 return result;
19783 }
19784
19785 static LONGEST
19786 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19787 unsigned int *bytes_read_ptr)
19788 {
19789 ULONGEST result;
19790 int shift, num_read;
19791 unsigned char byte;
19792
19793 result = 0;
19794 shift = 0;
19795 num_read = 0;
19796 while (1)
19797 {
19798 byte = bfd_get_8 (abfd, buf);
19799 buf++;
19800 num_read++;
19801 result |= ((ULONGEST) (byte & 127) << shift);
19802 shift += 7;
19803 if ((byte & 128) == 0)
19804 {
19805 break;
19806 }
19807 }
19808 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19809 result |= -(((ULONGEST) 1) << shift);
19810 *bytes_read_ptr = num_read;
19811 return result;
19812 }
19813
19814 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19815 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19816 ADDR_SIZE is the size of addresses from the CU header. */
19817
19818 static CORE_ADDR
19819 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19820 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19821 {
19822 struct objfile *objfile = dwarf2_per_objfile->objfile;
19823 bfd *abfd = objfile->obfd;
19824 const gdb_byte *info_ptr;
19825
19826 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19827 if (dwarf2_per_objfile->addr.buffer == NULL)
19828 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19829 objfile_name (objfile));
19830 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19831 error (_("DW_FORM_addr_index pointing outside of "
19832 ".debug_addr section [in module %s]"),
19833 objfile_name (objfile));
19834 info_ptr = (dwarf2_per_objfile->addr.buffer
19835 + addr_base + addr_index * addr_size);
19836 if (addr_size == 4)
19837 return bfd_get_32 (abfd, info_ptr);
19838 else
19839 return bfd_get_64 (abfd, info_ptr);
19840 }
19841
19842 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19843
19844 static CORE_ADDR
19845 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19846 {
19847 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19848 cu->addr_base, cu->header.addr_size);
19849 }
19850
19851 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19852
19853 static CORE_ADDR
19854 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19855 unsigned int *bytes_read)
19856 {
19857 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19858 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19859
19860 return read_addr_index (cu, addr_index);
19861 }
19862
19863 /* Data structure to pass results from dwarf2_read_addr_index_reader
19864 back to dwarf2_read_addr_index. */
19865
19866 struct dwarf2_read_addr_index_data
19867 {
19868 ULONGEST addr_base;
19869 int addr_size;
19870 };
19871
19872 /* die_reader_func for dwarf2_read_addr_index. */
19873
19874 static void
19875 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19876 const gdb_byte *info_ptr,
19877 struct die_info *comp_unit_die,
19878 int has_children,
19879 void *data)
19880 {
19881 struct dwarf2_cu *cu = reader->cu;
19882 struct dwarf2_read_addr_index_data *aidata =
19883 (struct dwarf2_read_addr_index_data *) data;
19884
19885 aidata->addr_base = cu->addr_base;
19886 aidata->addr_size = cu->header.addr_size;
19887 }
19888
19889 /* Given an index in .debug_addr, fetch the value.
19890 NOTE: This can be called during dwarf expression evaluation,
19891 long after the debug information has been read, and thus per_cu->cu
19892 may no longer exist. */
19893
19894 CORE_ADDR
19895 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19896 unsigned int addr_index)
19897 {
19898 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19899 struct dwarf2_cu *cu = per_cu->cu;
19900 ULONGEST addr_base;
19901 int addr_size;
19902
19903 /* We need addr_base and addr_size.
19904 If we don't have PER_CU->cu, we have to get it.
19905 Nasty, but the alternative is storing the needed info in PER_CU,
19906 which at this point doesn't seem justified: it's not clear how frequently
19907 it would get used and it would increase the size of every PER_CU.
19908 Entry points like dwarf2_per_cu_addr_size do a similar thing
19909 so we're not in uncharted territory here.
19910 Alas we need to be a bit more complicated as addr_base is contained
19911 in the DIE.
19912
19913 We don't need to read the entire CU(/TU).
19914 We just need the header and top level die.
19915
19916 IWBN to use the aging mechanism to let us lazily later discard the CU.
19917 For now we skip this optimization. */
19918
19919 if (cu != NULL)
19920 {
19921 addr_base = cu->addr_base;
19922 addr_size = cu->header.addr_size;
19923 }
19924 else
19925 {
19926 struct dwarf2_read_addr_index_data aidata;
19927
19928 /* Note: We can't use init_cutu_and_read_dies_simple here,
19929 we need addr_base. */
19930 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19931 dwarf2_read_addr_index_reader, &aidata);
19932 addr_base = aidata.addr_base;
19933 addr_size = aidata.addr_size;
19934 }
19935
19936 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19937 addr_size);
19938 }
19939
19940 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19941 This is only used by the Fission support. */
19942
19943 static const char *
19944 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19945 {
19946 struct dwarf2_cu *cu = reader->cu;
19947 struct dwarf2_per_objfile *dwarf2_per_objfile
19948 = cu->per_cu->dwarf2_per_objfile;
19949 struct objfile *objfile = dwarf2_per_objfile->objfile;
19950 const char *objf_name = objfile_name (objfile);
19951 bfd *abfd = objfile->obfd;
19952 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19953 struct dwarf2_section_info *str_offsets_section =
19954 &reader->dwo_file->sections.str_offsets;
19955 const gdb_byte *info_ptr;
19956 ULONGEST str_offset;
19957 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19958
19959 dwarf2_read_section (objfile, str_section);
19960 dwarf2_read_section (objfile, str_offsets_section);
19961 if (str_section->buffer == NULL)
19962 error (_("%s used without .debug_str.dwo section"
19963 " in CU at offset %s [in module %s]"),
19964 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19965 if (str_offsets_section->buffer == NULL)
19966 error (_("%s used without .debug_str_offsets.dwo section"
19967 " in CU at offset %s [in module %s]"),
19968 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19969 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19970 error (_("%s pointing outside of .debug_str_offsets.dwo"
19971 " section in CU at offset %s [in module %s]"),
19972 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19973 info_ptr = (str_offsets_section->buffer
19974 + str_index * cu->header.offset_size);
19975 if (cu->header.offset_size == 4)
19976 str_offset = bfd_get_32 (abfd, info_ptr);
19977 else
19978 str_offset = bfd_get_64 (abfd, info_ptr);
19979 if (str_offset >= str_section->size)
19980 error (_("Offset from %s pointing outside of"
19981 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19982 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19983 return (const char *) (str_section->buffer + str_offset);
19984 }
19985
19986 /* Return the length of an LEB128 number in BUF. */
19987
19988 static int
19989 leb128_size (const gdb_byte *buf)
19990 {
19991 const gdb_byte *begin = buf;
19992 gdb_byte byte;
19993
19994 while (1)
19995 {
19996 byte = *buf++;
19997 if ((byte & 128) == 0)
19998 return buf - begin;
19999 }
20000 }
20001
20002 static void
20003 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20004 {
20005 switch (lang)
20006 {
20007 case DW_LANG_C89:
20008 case DW_LANG_C99:
20009 case DW_LANG_C11:
20010 case DW_LANG_C:
20011 case DW_LANG_UPC:
20012 cu->language = language_c;
20013 break;
20014 case DW_LANG_Java:
20015 case DW_LANG_C_plus_plus:
20016 case DW_LANG_C_plus_plus_11:
20017 case DW_LANG_C_plus_plus_14:
20018 cu->language = language_cplus;
20019 break;
20020 case DW_LANG_D:
20021 cu->language = language_d;
20022 break;
20023 case DW_LANG_Fortran77:
20024 case DW_LANG_Fortran90:
20025 case DW_LANG_Fortran95:
20026 case DW_LANG_Fortran03:
20027 case DW_LANG_Fortran08:
20028 cu->language = language_fortran;
20029 break;
20030 case DW_LANG_Go:
20031 cu->language = language_go;
20032 break;
20033 case DW_LANG_Mips_Assembler:
20034 cu->language = language_asm;
20035 break;
20036 case DW_LANG_Ada83:
20037 case DW_LANG_Ada95:
20038 cu->language = language_ada;
20039 break;
20040 case DW_LANG_Modula2:
20041 cu->language = language_m2;
20042 break;
20043 case DW_LANG_Pascal83:
20044 cu->language = language_pascal;
20045 break;
20046 case DW_LANG_ObjC:
20047 cu->language = language_objc;
20048 break;
20049 case DW_LANG_Rust:
20050 case DW_LANG_Rust_old:
20051 cu->language = language_rust;
20052 break;
20053 case DW_LANG_Cobol74:
20054 case DW_LANG_Cobol85:
20055 default:
20056 cu->language = language_minimal;
20057 break;
20058 }
20059 cu->language_defn = language_def (cu->language);
20060 }
20061
20062 /* Return the named attribute or NULL if not there. */
20063
20064 static struct attribute *
20065 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20066 {
20067 for (;;)
20068 {
20069 unsigned int i;
20070 struct attribute *spec = NULL;
20071
20072 for (i = 0; i < die->num_attrs; ++i)
20073 {
20074 if (die->attrs[i].name == name)
20075 return &die->attrs[i];
20076 if (die->attrs[i].name == DW_AT_specification
20077 || die->attrs[i].name == DW_AT_abstract_origin)
20078 spec = &die->attrs[i];
20079 }
20080
20081 if (!spec)
20082 break;
20083
20084 die = follow_die_ref (die, spec, &cu);
20085 }
20086
20087 return NULL;
20088 }
20089
20090 /* Return the named attribute or NULL if not there,
20091 but do not follow DW_AT_specification, etc.
20092 This is for use in contexts where we're reading .debug_types dies.
20093 Following DW_AT_specification, DW_AT_abstract_origin will take us
20094 back up the chain, and we want to go down. */
20095
20096 static struct attribute *
20097 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20098 {
20099 unsigned int i;
20100
20101 for (i = 0; i < die->num_attrs; ++i)
20102 if (die->attrs[i].name == name)
20103 return &die->attrs[i];
20104
20105 return NULL;
20106 }
20107
20108 /* Return the string associated with a string-typed attribute, or NULL if it
20109 is either not found or is of an incorrect type. */
20110
20111 static const char *
20112 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20113 {
20114 struct attribute *attr;
20115 const char *str = NULL;
20116
20117 attr = dwarf2_attr (die, name, cu);
20118
20119 if (attr != NULL)
20120 {
20121 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20122 || attr->form == DW_FORM_string
20123 || attr->form == DW_FORM_strx
20124 || attr->form == DW_FORM_GNU_str_index
20125 || attr->form == DW_FORM_GNU_strp_alt)
20126 str = DW_STRING (attr);
20127 else
20128 complaint (_("string type expected for attribute %s for "
20129 "DIE at %s in module %s"),
20130 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20131 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20132 }
20133
20134 return str;
20135 }
20136
20137 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20138 and holds a non-zero value. This function should only be used for
20139 DW_FORM_flag or DW_FORM_flag_present attributes. */
20140
20141 static int
20142 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20143 {
20144 struct attribute *attr = dwarf2_attr (die, name, cu);
20145
20146 return (attr && DW_UNSND (attr));
20147 }
20148
20149 static int
20150 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20151 {
20152 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20153 which value is non-zero. However, we have to be careful with
20154 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20155 (via dwarf2_flag_true_p) follows this attribute. So we may
20156 end up accidently finding a declaration attribute that belongs
20157 to a different DIE referenced by the specification attribute,
20158 even though the given DIE does not have a declaration attribute. */
20159 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20160 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20161 }
20162
20163 /* Return the die giving the specification for DIE, if there is
20164 one. *SPEC_CU is the CU containing DIE on input, and the CU
20165 containing the return value on output. If there is no
20166 specification, but there is an abstract origin, that is
20167 returned. */
20168
20169 static struct die_info *
20170 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20171 {
20172 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20173 *spec_cu);
20174
20175 if (spec_attr == NULL)
20176 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20177
20178 if (spec_attr == NULL)
20179 return NULL;
20180 else
20181 return follow_die_ref (die, spec_attr, spec_cu);
20182 }
20183
20184 /* Stub for free_line_header to match void * callback types. */
20185
20186 static void
20187 free_line_header_voidp (void *arg)
20188 {
20189 struct line_header *lh = (struct line_header *) arg;
20190
20191 delete lh;
20192 }
20193
20194 void
20195 line_header::add_include_dir (const char *include_dir)
20196 {
20197 if (dwarf_line_debug >= 2)
20198 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20199 include_dirs.size () + 1, include_dir);
20200
20201 include_dirs.push_back (include_dir);
20202 }
20203
20204 void
20205 line_header::add_file_name (const char *name,
20206 dir_index d_index,
20207 unsigned int mod_time,
20208 unsigned int length)
20209 {
20210 if (dwarf_line_debug >= 2)
20211 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20212 (unsigned) file_names.size () + 1, name);
20213
20214 file_names.emplace_back (name, d_index, mod_time, length);
20215 }
20216
20217 /* A convenience function to find the proper .debug_line section for a CU. */
20218
20219 static struct dwarf2_section_info *
20220 get_debug_line_section (struct dwarf2_cu *cu)
20221 {
20222 struct dwarf2_section_info *section;
20223 struct dwarf2_per_objfile *dwarf2_per_objfile
20224 = cu->per_cu->dwarf2_per_objfile;
20225
20226 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20227 DWO file. */
20228 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20229 section = &cu->dwo_unit->dwo_file->sections.line;
20230 else if (cu->per_cu->is_dwz)
20231 {
20232 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20233
20234 section = &dwz->line;
20235 }
20236 else
20237 section = &dwarf2_per_objfile->line;
20238
20239 return section;
20240 }
20241
20242 /* Read directory or file name entry format, starting with byte of
20243 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20244 entries count and the entries themselves in the described entry
20245 format. */
20246
20247 static void
20248 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20249 bfd *abfd, const gdb_byte **bufp,
20250 struct line_header *lh,
20251 const struct comp_unit_head *cu_header,
20252 void (*callback) (struct line_header *lh,
20253 const char *name,
20254 dir_index d_index,
20255 unsigned int mod_time,
20256 unsigned int length))
20257 {
20258 gdb_byte format_count, formati;
20259 ULONGEST data_count, datai;
20260 const gdb_byte *buf = *bufp;
20261 const gdb_byte *format_header_data;
20262 unsigned int bytes_read;
20263
20264 format_count = read_1_byte (abfd, buf);
20265 buf += 1;
20266 format_header_data = buf;
20267 for (formati = 0; formati < format_count; formati++)
20268 {
20269 read_unsigned_leb128 (abfd, buf, &bytes_read);
20270 buf += bytes_read;
20271 read_unsigned_leb128 (abfd, buf, &bytes_read);
20272 buf += bytes_read;
20273 }
20274
20275 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20276 buf += bytes_read;
20277 for (datai = 0; datai < data_count; datai++)
20278 {
20279 const gdb_byte *format = format_header_data;
20280 struct file_entry fe;
20281
20282 for (formati = 0; formati < format_count; formati++)
20283 {
20284 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20285 format += bytes_read;
20286
20287 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20288 format += bytes_read;
20289
20290 gdb::optional<const char *> string;
20291 gdb::optional<unsigned int> uint;
20292
20293 switch (form)
20294 {
20295 case DW_FORM_string:
20296 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20297 buf += bytes_read;
20298 break;
20299
20300 case DW_FORM_line_strp:
20301 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20302 abfd, buf,
20303 cu_header,
20304 &bytes_read));
20305 buf += bytes_read;
20306 break;
20307
20308 case DW_FORM_data1:
20309 uint.emplace (read_1_byte (abfd, buf));
20310 buf += 1;
20311 break;
20312
20313 case DW_FORM_data2:
20314 uint.emplace (read_2_bytes (abfd, buf));
20315 buf += 2;
20316 break;
20317
20318 case DW_FORM_data4:
20319 uint.emplace (read_4_bytes (abfd, buf));
20320 buf += 4;
20321 break;
20322
20323 case DW_FORM_data8:
20324 uint.emplace (read_8_bytes (abfd, buf));
20325 buf += 8;
20326 break;
20327
20328 case DW_FORM_udata:
20329 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20330 buf += bytes_read;
20331 break;
20332
20333 case DW_FORM_block:
20334 /* It is valid only for DW_LNCT_timestamp which is ignored by
20335 current GDB. */
20336 break;
20337 }
20338
20339 switch (content_type)
20340 {
20341 case DW_LNCT_path:
20342 if (string.has_value ())
20343 fe.name = *string;
20344 break;
20345 case DW_LNCT_directory_index:
20346 if (uint.has_value ())
20347 fe.d_index = (dir_index) *uint;
20348 break;
20349 case DW_LNCT_timestamp:
20350 if (uint.has_value ())
20351 fe.mod_time = *uint;
20352 break;
20353 case DW_LNCT_size:
20354 if (uint.has_value ())
20355 fe.length = *uint;
20356 break;
20357 case DW_LNCT_MD5:
20358 break;
20359 default:
20360 complaint (_("Unknown format content type %s"),
20361 pulongest (content_type));
20362 }
20363 }
20364
20365 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20366 }
20367
20368 *bufp = buf;
20369 }
20370
20371 /* Read the statement program header starting at OFFSET in
20372 .debug_line, or .debug_line.dwo. Return a pointer
20373 to a struct line_header, allocated using xmalloc.
20374 Returns NULL if there is a problem reading the header, e.g., if it
20375 has a version we don't understand.
20376
20377 NOTE: the strings in the include directory and file name tables of
20378 the returned object point into the dwarf line section buffer,
20379 and must not be freed. */
20380
20381 static line_header_up
20382 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20383 {
20384 const gdb_byte *line_ptr;
20385 unsigned int bytes_read, offset_size;
20386 int i;
20387 const char *cur_dir, *cur_file;
20388 struct dwarf2_section_info *section;
20389 bfd *abfd;
20390 struct dwarf2_per_objfile *dwarf2_per_objfile
20391 = cu->per_cu->dwarf2_per_objfile;
20392
20393 section = get_debug_line_section (cu);
20394 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20395 if (section->buffer == NULL)
20396 {
20397 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20398 complaint (_("missing .debug_line.dwo section"));
20399 else
20400 complaint (_("missing .debug_line section"));
20401 return 0;
20402 }
20403
20404 /* We can't do this until we know the section is non-empty.
20405 Only then do we know we have such a section. */
20406 abfd = get_section_bfd_owner (section);
20407
20408 /* Make sure that at least there's room for the total_length field.
20409 That could be 12 bytes long, but we're just going to fudge that. */
20410 if (to_underlying (sect_off) + 4 >= section->size)
20411 {
20412 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20413 return 0;
20414 }
20415
20416 line_header_up lh (new line_header ());
20417
20418 lh->sect_off = sect_off;
20419 lh->offset_in_dwz = cu->per_cu->is_dwz;
20420
20421 line_ptr = section->buffer + to_underlying (sect_off);
20422
20423 /* Read in the header. */
20424 lh->total_length =
20425 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20426 &bytes_read, &offset_size);
20427 line_ptr += bytes_read;
20428 if (line_ptr + lh->total_length > (section->buffer + section->size))
20429 {
20430 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20431 return 0;
20432 }
20433 lh->statement_program_end = line_ptr + lh->total_length;
20434 lh->version = read_2_bytes (abfd, line_ptr);
20435 line_ptr += 2;
20436 if (lh->version > 5)
20437 {
20438 /* This is a version we don't understand. The format could have
20439 changed in ways we don't handle properly so just punt. */
20440 complaint (_("unsupported version in .debug_line section"));
20441 return NULL;
20442 }
20443 if (lh->version >= 5)
20444 {
20445 gdb_byte segment_selector_size;
20446
20447 /* Skip address size. */
20448 read_1_byte (abfd, line_ptr);
20449 line_ptr += 1;
20450
20451 segment_selector_size = read_1_byte (abfd, line_ptr);
20452 line_ptr += 1;
20453 if (segment_selector_size != 0)
20454 {
20455 complaint (_("unsupported segment selector size %u "
20456 "in .debug_line section"),
20457 segment_selector_size);
20458 return NULL;
20459 }
20460 }
20461 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20462 line_ptr += offset_size;
20463 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20464 line_ptr += 1;
20465 if (lh->version >= 4)
20466 {
20467 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20468 line_ptr += 1;
20469 }
20470 else
20471 lh->maximum_ops_per_instruction = 1;
20472
20473 if (lh->maximum_ops_per_instruction == 0)
20474 {
20475 lh->maximum_ops_per_instruction = 1;
20476 complaint (_("invalid maximum_ops_per_instruction "
20477 "in `.debug_line' section"));
20478 }
20479
20480 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20481 line_ptr += 1;
20482 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20483 line_ptr += 1;
20484 lh->line_range = read_1_byte (abfd, line_ptr);
20485 line_ptr += 1;
20486 lh->opcode_base = read_1_byte (abfd, line_ptr);
20487 line_ptr += 1;
20488 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20489
20490 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20491 for (i = 1; i < lh->opcode_base; ++i)
20492 {
20493 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20494 line_ptr += 1;
20495 }
20496
20497 if (lh->version >= 5)
20498 {
20499 /* Read directory table. */
20500 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20501 &cu->header,
20502 [] (struct line_header *header, const char *name,
20503 dir_index d_index, unsigned int mod_time,
20504 unsigned int length)
20505 {
20506 header->add_include_dir (name);
20507 });
20508
20509 /* Read file name table. */
20510 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20511 &cu->header,
20512 [] (struct line_header *header, const char *name,
20513 dir_index d_index, unsigned int mod_time,
20514 unsigned int length)
20515 {
20516 header->add_file_name (name, d_index, mod_time, length);
20517 });
20518 }
20519 else
20520 {
20521 /* Read directory table. */
20522 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20523 {
20524 line_ptr += bytes_read;
20525 lh->add_include_dir (cur_dir);
20526 }
20527 line_ptr += bytes_read;
20528
20529 /* Read file name table. */
20530 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20531 {
20532 unsigned int mod_time, length;
20533 dir_index d_index;
20534
20535 line_ptr += bytes_read;
20536 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20537 line_ptr += bytes_read;
20538 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20539 line_ptr += bytes_read;
20540 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20541 line_ptr += bytes_read;
20542
20543 lh->add_file_name (cur_file, d_index, mod_time, length);
20544 }
20545 line_ptr += bytes_read;
20546 }
20547 lh->statement_program_start = line_ptr;
20548
20549 if (line_ptr > (section->buffer + section->size))
20550 complaint (_("line number info header doesn't "
20551 "fit in `.debug_line' section"));
20552
20553 return lh;
20554 }
20555
20556 /* Subroutine of dwarf_decode_lines to simplify it.
20557 Return the file name of the psymtab for included file FILE_INDEX
20558 in line header LH of PST.
20559 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20560 If space for the result is malloc'd, *NAME_HOLDER will be set.
20561 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20562
20563 static const char *
20564 psymtab_include_file_name (const struct line_header *lh, int file_index,
20565 const struct partial_symtab *pst,
20566 const char *comp_dir,
20567 gdb::unique_xmalloc_ptr<char> *name_holder)
20568 {
20569 const file_entry &fe = lh->file_names[file_index];
20570 const char *include_name = fe.name;
20571 const char *include_name_to_compare = include_name;
20572 const char *pst_filename;
20573 int file_is_pst;
20574
20575 const char *dir_name = fe.include_dir (lh);
20576
20577 gdb::unique_xmalloc_ptr<char> hold_compare;
20578 if (!IS_ABSOLUTE_PATH (include_name)
20579 && (dir_name != NULL || comp_dir != NULL))
20580 {
20581 /* Avoid creating a duplicate psymtab for PST.
20582 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20583 Before we do the comparison, however, we need to account
20584 for DIR_NAME and COMP_DIR.
20585 First prepend dir_name (if non-NULL). If we still don't
20586 have an absolute path prepend comp_dir (if non-NULL).
20587 However, the directory we record in the include-file's
20588 psymtab does not contain COMP_DIR (to match the
20589 corresponding symtab(s)).
20590
20591 Example:
20592
20593 bash$ cd /tmp
20594 bash$ gcc -g ./hello.c
20595 include_name = "hello.c"
20596 dir_name = "."
20597 DW_AT_comp_dir = comp_dir = "/tmp"
20598 DW_AT_name = "./hello.c"
20599
20600 */
20601
20602 if (dir_name != NULL)
20603 {
20604 name_holder->reset (concat (dir_name, SLASH_STRING,
20605 include_name, (char *) NULL));
20606 include_name = name_holder->get ();
20607 include_name_to_compare = include_name;
20608 }
20609 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20610 {
20611 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20612 include_name, (char *) NULL));
20613 include_name_to_compare = hold_compare.get ();
20614 }
20615 }
20616
20617 pst_filename = pst->filename;
20618 gdb::unique_xmalloc_ptr<char> copied_name;
20619 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20620 {
20621 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20622 pst_filename, (char *) NULL));
20623 pst_filename = copied_name.get ();
20624 }
20625
20626 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20627
20628 if (file_is_pst)
20629 return NULL;
20630 return include_name;
20631 }
20632
20633 /* State machine to track the state of the line number program. */
20634
20635 class lnp_state_machine
20636 {
20637 public:
20638 /* Initialize a machine state for the start of a line number
20639 program. */
20640 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20641 bool record_lines_p);
20642
20643 file_entry *current_file ()
20644 {
20645 /* lh->file_names is 0-based, but the file name numbers in the
20646 statement program are 1-based. */
20647 return m_line_header->file_name_at (m_file);
20648 }
20649
20650 /* Record the line in the state machine. END_SEQUENCE is true if
20651 we're processing the end of a sequence. */
20652 void record_line (bool end_sequence);
20653
20654 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20655 nop-out rest of the lines in this sequence. */
20656 void check_line_address (struct dwarf2_cu *cu,
20657 const gdb_byte *line_ptr,
20658 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20659
20660 void handle_set_discriminator (unsigned int discriminator)
20661 {
20662 m_discriminator = discriminator;
20663 m_line_has_non_zero_discriminator |= discriminator != 0;
20664 }
20665
20666 /* Handle DW_LNE_set_address. */
20667 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20668 {
20669 m_op_index = 0;
20670 address += baseaddr;
20671 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20672 }
20673
20674 /* Handle DW_LNS_advance_pc. */
20675 void handle_advance_pc (CORE_ADDR adjust);
20676
20677 /* Handle a special opcode. */
20678 void handle_special_opcode (unsigned char op_code);
20679
20680 /* Handle DW_LNS_advance_line. */
20681 void handle_advance_line (int line_delta)
20682 {
20683 advance_line (line_delta);
20684 }
20685
20686 /* Handle DW_LNS_set_file. */
20687 void handle_set_file (file_name_index file);
20688
20689 /* Handle DW_LNS_negate_stmt. */
20690 void handle_negate_stmt ()
20691 {
20692 m_is_stmt = !m_is_stmt;
20693 }
20694
20695 /* Handle DW_LNS_const_add_pc. */
20696 void handle_const_add_pc ();
20697
20698 /* Handle DW_LNS_fixed_advance_pc. */
20699 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20700 {
20701 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20702 m_op_index = 0;
20703 }
20704
20705 /* Handle DW_LNS_copy. */
20706 void handle_copy ()
20707 {
20708 record_line (false);
20709 m_discriminator = 0;
20710 }
20711
20712 /* Handle DW_LNE_end_sequence. */
20713 void handle_end_sequence ()
20714 {
20715 m_currently_recording_lines = true;
20716 }
20717
20718 private:
20719 /* Advance the line by LINE_DELTA. */
20720 void advance_line (int line_delta)
20721 {
20722 m_line += line_delta;
20723
20724 if (line_delta != 0)
20725 m_line_has_non_zero_discriminator = m_discriminator != 0;
20726 }
20727
20728 struct dwarf2_cu *m_cu;
20729
20730 gdbarch *m_gdbarch;
20731
20732 /* True if we're recording lines.
20733 Otherwise we're building partial symtabs and are just interested in
20734 finding include files mentioned by the line number program. */
20735 bool m_record_lines_p;
20736
20737 /* The line number header. */
20738 line_header *m_line_header;
20739
20740 /* These are part of the standard DWARF line number state machine,
20741 and initialized according to the DWARF spec. */
20742
20743 unsigned char m_op_index = 0;
20744 /* The line table index (1-based) of the current file. */
20745 file_name_index m_file = (file_name_index) 1;
20746 unsigned int m_line = 1;
20747
20748 /* These are initialized in the constructor. */
20749
20750 CORE_ADDR m_address;
20751 bool m_is_stmt;
20752 unsigned int m_discriminator;
20753
20754 /* Additional bits of state we need to track. */
20755
20756 /* The last file that we called dwarf2_start_subfile for.
20757 This is only used for TLLs. */
20758 unsigned int m_last_file = 0;
20759 /* The last file a line number was recorded for. */
20760 struct subfile *m_last_subfile = NULL;
20761
20762 /* When true, record the lines we decode. */
20763 bool m_currently_recording_lines = false;
20764
20765 /* The last line number that was recorded, used to coalesce
20766 consecutive entries for the same line. This can happen, for
20767 example, when discriminators are present. PR 17276. */
20768 unsigned int m_last_line = 0;
20769 bool m_line_has_non_zero_discriminator = false;
20770 };
20771
20772 void
20773 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20774 {
20775 CORE_ADDR addr_adj = (((m_op_index + adjust)
20776 / m_line_header->maximum_ops_per_instruction)
20777 * m_line_header->minimum_instruction_length);
20778 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20779 m_op_index = ((m_op_index + adjust)
20780 % m_line_header->maximum_ops_per_instruction);
20781 }
20782
20783 void
20784 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20785 {
20786 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20787 CORE_ADDR addr_adj = (((m_op_index
20788 + (adj_opcode / m_line_header->line_range))
20789 / m_line_header->maximum_ops_per_instruction)
20790 * m_line_header->minimum_instruction_length);
20791 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20792 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20793 % m_line_header->maximum_ops_per_instruction);
20794
20795 int line_delta = (m_line_header->line_base
20796 + (adj_opcode % m_line_header->line_range));
20797 advance_line (line_delta);
20798 record_line (false);
20799 m_discriminator = 0;
20800 }
20801
20802 void
20803 lnp_state_machine::handle_set_file (file_name_index file)
20804 {
20805 m_file = file;
20806
20807 const file_entry *fe = current_file ();
20808 if (fe == NULL)
20809 dwarf2_debug_line_missing_file_complaint ();
20810 else if (m_record_lines_p)
20811 {
20812 const char *dir = fe->include_dir (m_line_header);
20813
20814 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20815 m_line_has_non_zero_discriminator = m_discriminator != 0;
20816 dwarf2_start_subfile (m_cu, fe->name, dir);
20817 }
20818 }
20819
20820 void
20821 lnp_state_machine::handle_const_add_pc ()
20822 {
20823 CORE_ADDR adjust
20824 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20825
20826 CORE_ADDR addr_adj
20827 = (((m_op_index + adjust)
20828 / m_line_header->maximum_ops_per_instruction)
20829 * m_line_header->minimum_instruction_length);
20830
20831 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20832 m_op_index = ((m_op_index + adjust)
20833 % m_line_header->maximum_ops_per_instruction);
20834 }
20835
20836 /* Return non-zero if we should add LINE to the line number table.
20837 LINE is the line to add, LAST_LINE is the last line that was added,
20838 LAST_SUBFILE is the subfile for LAST_LINE.
20839 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20840 had a non-zero discriminator.
20841
20842 We have to be careful in the presence of discriminators.
20843 E.g., for this line:
20844
20845 for (i = 0; i < 100000; i++);
20846
20847 clang can emit four line number entries for that one line,
20848 each with a different discriminator.
20849 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20850
20851 However, we want gdb to coalesce all four entries into one.
20852 Otherwise the user could stepi into the middle of the line and
20853 gdb would get confused about whether the pc really was in the
20854 middle of the line.
20855
20856 Things are further complicated by the fact that two consecutive
20857 line number entries for the same line is a heuristic used by gcc
20858 to denote the end of the prologue. So we can't just discard duplicate
20859 entries, we have to be selective about it. The heuristic we use is
20860 that we only collapse consecutive entries for the same line if at least
20861 one of those entries has a non-zero discriminator. PR 17276.
20862
20863 Note: Addresses in the line number state machine can never go backwards
20864 within one sequence, thus this coalescing is ok. */
20865
20866 static int
20867 dwarf_record_line_p (struct dwarf2_cu *cu,
20868 unsigned int line, unsigned int last_line,
20869 int line_has_non_zero_discriminator,
20870 struct subfile *last_subfile)
20871 {
20872 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20873 return 1;
20874 if (line != last_line)
20875 return 1;
20876 /* Same line for the same file that we've seen already.
20877 As a last check, for pr 17276, only record the line if the line
20878 has never had a non-zero discriminator. */
20879 if (!line_has_non_zero_discriminator)
20880 return 1;
20881 return 0;
20882 }
20883
20884 /* Use the CU's builder to record line number LINE beginning at
20885 address ADDRESS in the line table of subfile SUBFILE. */
20886
20887 static void
20888 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20889 unsigned int line, CORE_ADDR address,
20890 struct dwarf2_cu *cu)
20891 {
20892 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20893
20894 if (dwarf_line_debug)
20895 {
20896 fprintf_unfiltered (gdb_stdlog,
20897 "Recording line %u, file %s, address %s\n",
20898 line, lbasename (subfile->name),
20899 paddress (gdbarch, address));
20900 }
20901
20902 if (cu != nullptr)
20903 cu->get_builder ()->record_line (subfile, line, addr);
20904 }
20905
20906 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20907 Mark the end of a set of line number records.
20908 The arguments are the same as for dwarf_record_line_1.
20909 If SUBFILE is NULL the request is ignored. */
20910
20911 static void
20912 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20913 CORE_ADDR address, struct dwarf2_cu *cu)
20914 {
20915 if (subfile == NULL)
20916 return;
20917
20918 if (dwarf_line_debug)
20919 {
20920 fprintf_unfiltered (gdb_stdlog,
20921 "Finishing current line, file %s, address %s\n",
20922 lbasename (subfile->name),
20923 paddress (gdbarch, address));
20924 }
20925
20926 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20927 }
20928
20929 void
20930 lnp_state_machine::record_line (bool end_sequence)
20931 {
20932 if (dwarf_line_debug)
20933 {
20934 fprintf_unfiltered (gdb_stdlog,
20935 "Processing actual line %u: file %u,"
20936 " address %s, is_stmt %u, discrim %u\n",
20937 m_line, to_underlying (m_file),
20938 paddress (m_gdbarch, m_address),
20939 m_is_stmt, m_discriminator);
20940 }
20941
20942 file_entry *fe = current_file ();
20943
20944 if (fe == NULL)
20945 dwarf2_debug_line_missing_file_complaint ();
20946 /* For now we ignore lines not starting on an instruction boundary.
20947 But not when processing end_sequence for compatibility with the
20948 previous version of the code. */
20949 else if (m_op_index == 0 || end_sequence)
20950 {
20951 fe->included_p = 1;
20952 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20953 {
20954 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20955 || end_sequence)
20956 {
20957 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20958 m_currently_recording_lines ? m_cu : nullptr);
20959 }
20960
20961 if (!end_sequence)
20962 {
20963 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20964 m_line_has_non_zero_discriminator,
20965 m_last_subfile))
20966 {
20967 buildsym_compunit *builder = m_cu->get_builder ();
20968 dwarf_record_line_1 (m_gdbarch,
20969 builder->get_current_subfile (),
20970 m_line, m_address,
20971 m_currently_recording_lines ? m_cu : nullptr);
20972 }
20973 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20974 m_last_line = m_line;
20975 }
20976 }
20977 }
20978 }
20979
20980 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20981 line_header *lh, bool record_lines_p)
20982 {
20983 m_cu = cu;
20984 m_gdbarch = arch;
20985 m_record_lines_p = record_lines_p;
20986 m_line_header = lh;
20987
20988 m_currently_recording_lines = true;
20989
20990 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20991 was a line entry for it so that the backend has a chance to adjust it
20992 and also record it in case it needs it. This is currently used by MIPS
20993 code, cf. `mips_adjust_dwarf2_line'. */
20994 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20995 m_is_stmt = lh->default_is_stmt;
20996 m_discriminator = 0;
20997 }
20998
20999 void
21000 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21001 const gdb_byte *line_ptr,
21002 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21003 {
21004 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21005 the pc range of the CU. However, we restrict the test to only ADDRESS
21006 values of zero to preserve GDB's previous behaviour which is to handle
21007 the specific case of a function being GC'd by the linker. */
21008
21009 if (address == 0 && address < unrelocated_lowpc)
21010 {
21011 /* This line table is for a function which has been
21012 GCd by the linker. Ignore it. PR gdb/12528 */
21013
21014 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21015 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21016
21017 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21018 line_offset, objfile_name (objfile));
21019 m_currently_recording_lines = false;
21020 /* Note: m_currently_recording_lines is left as false until we see
21021 DW_LNE_end_sequence. */
21022 }
21023 }
21024
21025 /* Subroutine of dwarf_decode_lines to simplify it.
21026 Process the line number information in LH.
21027 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21028 program in order to set included_p for every referenced header. */
21029
21030 static void
21031 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21032 const int decode_for_pst_p, CORE_ADDR lowpc)
21033 {
21034 const gdb_byte *line_ptr, *extended_end;
21035 const gdb_byte *line_end;
21036 unsigned int bytes_read, extended_len;
21037 unsigned char op_code, extended_op;
21038 CORE_ADDR baseaddr;
21039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21040 bfd *abfd = objfile->obfd;
21041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21042 /* True if we're recording line info (as opposed to building partial
21043 symtabs and just interested in finding include files mentioned by
21044 the line number program). */
21045 bool record_lines_p = !decode_for_pst_p;
21046
21047 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21048
21049 line_ptr = lh->statement_program_start;
21050 line_end = lh->statement_program_end;
21051
21052 /* Read the statement sequences until there's nothing left. */
21053 while (line_ptr < line_end)
21054 {
21055 /* The DWARF line number program state machine. Reset the state
21056 machine at the start of each sequence. */
21057 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21058 bool end_sequence = false;
21059
21060 if (record_lines_p)
21061 {
21062 /* Start a subfile for the current file of the state
21063 machine. */
21064 const file_entry *fe = state_machine.current_file ();
21065
21066 if (fe != NULL)
21067 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21068 }
21069
21070 /* Decode the table. */
21071 while (line_ptr < line_end && !end_sequence)
21072 {
21073 op_code = read_1_byte (abfd, line_ptr);
21074 line_ptr += 1;
21075
21076 if (op_code >= lh->opcode_base)
21077 {
21078 /* Special opcode. */
21079 state_machine.handle_special_opcode (op_code);
21080 }
21081 else switch (op_code)
21082 {
21083 case DW_LNS_extended_op:
21084 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21085 &bytes_read);
21086 line_ptr += bytes_read;
21087 extended_end = line_ptr + extended_len;
21088 extended_op = read_1_byte (abfd, line_ptr);
21089 line_ptr += 1;
21090 switch (extended_op)
21091 {
21092 case DW_LNE_end_sequence:
21093 state_machine.handle_end_sequence ();
21094 end_sequence = true;
21095 break;
21096 case DW_LNE_set_address:
21097 {
21098 CORE_ADDR address
21099 = read_address (abfd, line_ptr, cu, &bytes_read);
21100 line_ptr += bytes_read;
21101
21102 state_machine.check_line_address (cu, line_ptr,
21103 lowpc - baseaddr, address);
21104 state_machine.handle_set_address (baseaddr, address);
21105 }
21106 break;
21107 case DW_LNE_define_file:
21108 {
21109 const char *cur_file;
21110 unsigned int mod_time, length;
21111 dir_index dindex;
21112
21113 cur_file = read_direct_string (abfd, line_ptr,
21114 &bytes_read);
21115 line_ptr += bytes_read;
21116 dindex = (dir_index)
21117 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21118 line_ptr += bytes_read;
21119 mod_time =
21120 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21121 line_ptr += bytes_read;
21122 length =
21123 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21124 line_ptr += bytes_read;
21125 lh->add_file_name (cur_file, dindex, mod_time, length);
21126 }
21127 break;
21128 case DW_LNE_set_discriminator:
21129 {
21130 /* The discriminator is not interesting to the
21131 debugger; just ignore it. We still need to
21132 check its value though:
21133 if there are consecutive entries for the same
21134 (non-prologue) line we want to coalesce them.
21135 PR 17276. */
21136 unsigned int discr
21137 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21138 line_ptr += bytes_read;
21139
21140 state_machine.handle_set_discriminator (discr);
21141 }
21142 break;
21143 default:
21144 complaint (_("mangled .debug_line section"));
21145 return;
21146 }
21147 /* Make sure that we parsed the extended op correctly. If e.g.
21148 we expected a different address size than the producer used,
21149 we may have read the wrong number of bytes. */
21150 if (line_ptr != extended_end)
21151 {
21152 complaint (_("mangled .debug_line section"));
21153 return;
21154 }
21155 break;
21156 case DW_LNS_copy:
21157 state_machine.handle_copy ();
21158 break;
21159 case DW_LNS_advance_pc:
21160 {
21161 CORE_ADDR adjust
21162 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21163 line_ptr += bytes_read;
21164
21165 state_machine.handle_advance_pc (adjust);
21166 }
21167 break;
21168 case DW_LNS_advance_line:
21169 {
21170 int line_delta
21171 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21172 line_ptr += bytes_read;
21173
21174 state_machine.handle_advance_line (line_delta);
21175 }
21176 break;
21177 case DW_LNS_set_file:
21178 {
21179 file_name_index file
21180 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21181 &bytes_read);
21182 line_ptr += bytes_read;
21183
21184 state_machine.handle_set_file (file);
21185 }
21186 break;
21187 case DW_LNS_set_column:
21188 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21189 line_ptr += bytes_read;
21190 break;
21191 case DW_LNS_negate_stmt:
21192 state_machine.handle_negate_stmt ();
21193 break;
21194 case DW_LNS_set_basic_block:
21195 break;
21196 /* Add to the address register of the state machine the
21197 address increment value corresponding to special opcode
21198 255. I.e., this value is scaled by the minimum
21199 instruction length since special opcode 255 would have
21200 scaled the increment. */
21201 case DW_LNS_const_add_pc:
21202 state_machine.handle_const_add_pc ();
21203 break;
21204 case DW_LNS_fixed_advance_pc:
21205 {
21206 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21207 line_ptr += 2;
21208
21209 state_machine.handle_fixed_advance_pc (addr_adj);
21210 }
21211 break;
21212 default:
21213 {
21214 /* Unknown standard opcode, ignore it. */
21215 int i;
21216
21217 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21218 {
21219 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21220 line_ptr += bytes_read;
21221 }
21222 }
21223 }
21224 }
21225
21226 if (!end_sequence)
21227 dwarf2_debug_line_missing_end_sequence_complaint ();
21228
21229 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21230 in which case we still finish recording the last line). */
21231 state_machine.record_line (true);
21232 }
21233 }
21234
21235 /* Decode the Line Number Program (LNP) for the given line_header
21236 structure and CU. The actual information extracted and the type
21237 of structures created from the LNP depends on the value of PST.
21238
21239 1. If PST is NULL, then this procedure uses the data from the program
21240 to create all necessary symbol tables, and their linetables.
21241
21242 2. If PST is not NULL, this procedure reads the program to determine
21243 the list of files included by the unit represented by PST, and
21244 builds all the associated partial symbol tables.
21245
21246 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21247 It is used for relative paths in the line table.
21248 NOTE: When processing partial symtabs (pst != NULL),
21249 comp_dir == pst->dirname.
21250
21251 NOTE: It is important that psymtabs have the same file name (via strcmp)
21252 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21253 symtab we don't use it in the name of the psymtabs we create.
21254 E.g. expand_line_sal requires this when finding psymtabs to expand.
21255 A good testcase for this is mb-inline.exp.
21256
21257 LOWPC is the lowest address in CU (or 0 if not known).
21258
21259 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21260 for its PC<->lines mapping information. Otherwise only the filename
21261 table is read in. */
21262
21263 static void
21264 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21265 struct dwarf2_cu *cu, struct partial_symtab *pst,
21266 CORE_ADDR lowpc, int decode_mapping)
21267 {
21268 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21269 const int decode_for_pst_p = (pst != NULL);
21270
21271 if (decode_mapping)
21272 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21273
21274 if (decode_for_pst_p)
21275 {
21276 int file_index;
21277
21278 /* Now that we're done scanning the Line Header Program, we can
21279 create the psymtab of each included file. */
21280 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21281 if (lh->file_names[file_index].included_p == 1)
21282 {
21283 gdb::unique_xmalloc_ptr<char> name_holder;
21284 const char *include_name =
21285 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21286 &name_holder);
21287 if (include_name != NULL)
21288 dwarf2_create_include_psymtab (include_name, pst, objfile);
21289 }
21290 }
21291 else
21292 {
21293 /* Make sure a symtab is created for every file, even files
21294 which contain only variables (i.e. no code with associated
21295 line numbers). */
21296 buildsym_compunit *builder = cu->get_builder ();
21297 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21298 int i;
21299
21300 for (i = 0; i < lh->file_names.size (); i++)
21301 {
21302 file_entry &fe = lh->file_names[i];
21303
21304 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21305
21306 if (builder->get_current_subfile ()->symtab == NULL)
21307 {
21308 builder->get_current_subfile ()->symtab
21309 = allocate_symtab (cust,
21310 builder->get_current_subfile ()->name);
21311 }
21312 fe.symtab = builder->get_current_subfile ()->symtab;
21313 }
21314 }
21315 }
21316
21317 /* Start a subfile for DWARF. FILENAME is the name of the file and
21318 DIRNAME the name of the source directory which contains FILENAME
21319 or NULL if not known.
21320 This routine tries to keep line numbers from identical absolute and
21321 relative file names in a common subfile.
21322
21323 Using the `list' example from the GDB testsuite, which resides in
21324 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21325 of /srcdir/list0.c yields the following debugging information for list0.c:
21326
21327 DW_AT_name: /srcdir/list0.c
21328 DW_AT_comp_dir: /compdir
21329 files.files[0].name: list0.h
21330 files.files[0].dir: /srcdir
21331 files.files[1].name: list0.c
21332 files.files[1].dir: /srcdir
21333
21334 The line number information for list0.c has to end up in a single
21335 subfile, so that `break /srcdir/list0.c:1' works as expected.
21336 start_subfile will ensure that this happens provided that we pass the
21337 concatenation of files.files[1].dir and files.files[1].name as the
21338 subfile's name. */
21339
21340 static void
21341 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21342 const char *dirname)
21343 {
21344 char *copy = NULL;
21345
21346 /* In order not to lose the line information directory,
21347 we concatenate it to the filename when it makes sense.
21348 Note that the Dwarf3 standard says (speaking of filenames in line
21349 information): ``The directory index is ignored for file names
21350 that represent full path names''. Thus ignoring dirname in the
21351 `else' branch below isn't an issue. */
21352
21353 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21354 {
21355 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21356 filename = copy;
21357 }
21358
21359 cu->get_builder ()->start_subfile (filename);
21360
21361 if (copy != NULL)
21362 xfree (copy);
21363 }
21364
21365 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21366 buildsym_compunit constructor. */
21367
21368 struct compunit_symtab *
21369 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21370 CORE_ADDR low_pc)
21371 {
21372 gdb_assert (m_builder == nullptr);
21373
21374 m_builder.reset (new struct buildsym_compunit
21375 (per_cu->dwarf2_per_objfile->objfile,
21376 name, comp_dir, language, low_pc));
21377
21378 list_in_scope = get_builder ()->get_file_symbols ();
21379
21380 get_builder ()->record_debugformat ("DWARF 2");
21381 get_builder ()->record_producer (producer);
21382
21383 processing_has_namespace_info = false;
21384
21385 return get_builder ()->get_compunit_symtab ();
21386 }
21387
21388 static void
21389 var_decode_location (struct attribute *attr, struct symbol *sym,
21390 struct dwarf2_cu *cu)
21391 {
21392 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21393 struct comp_unit_head *cu_header = &cu->header;
21394
21395 /* NOTE drow/2003-01-30: There used to be a comment and some special
21396 code here to turn a symbol with DW_AT_external and a
21397 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21398 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21399 with some versions of binutils) where shared libraries could have
21400 relocations against symbols in their debug information - the
21401 minimal symbol would have the right address, but the debug info
21402 would not. It's no longer necessary, because we will explicitly
21403 apply relocations when we read in the debug information now. */
21404
21405 /* A DW_AT_location attribute with no contents indicates that a
21406 variable has been optimized away. */
21407 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21408 {
21409 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21410 return;
21411 }
21412
21413 /* Handle one degenerate form of location expression specially, to
21414 preserve GDB's previous behavior when section offsets are
21415 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21416 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21417
21418 if (attr_form_is_block (attr)
21419 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21420 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21421 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21422 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21423 && (DW_BLOCK (attr)->size
21424 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21425 {
21426 unsigned int dummy;
21427
21428 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21429 SYMBOL_VALUE_ADDRESS (sym) =
21430 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21431 else
21432 SYMBOL_VALUE_ADDRESS (sym) =
21433 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21434 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21435 fixup_symbol_section (sym, objfile);
21436 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21437 SYMBOL_SECTION (sym));
21438 return;
21439 }
21440
21441 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21442 expression evaluator, and use LOC_COMPUTED only when necessary
21443 (i.e. when the value of a register or memory location is
21444 referenced, or a thread-local block, etc.). Then again, it might
21445 not be worthwhile. I'm assuming that it isn't unless performance
21446 or memory numbers show me otherwise. */
21447
21448 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21449
21450 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21451 cu->has_loclist = true;
21452 }
21453
21454 /* Given a pointer to a DWARF information entry, figure out if we need
21455 to make a symbol table entry for it, and if so, create a new entry
21456 and return a pointer to it.
21457 If TYPE is NULL, determine symbol type from the die, otherwise
21458 used the passed type.
21459 If SPACE is not NULL, use it to hold the new symbol. If it is
21460 NULL, allocate a new symbol on the objfile's obstack. */
21461
21462 static struct symbol *
21463 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21464 struct symbol *space)
21465 {
21466 struct dwarf2_per_objfile *dwarf2_per_objfile
21467 = cu->per_cu->dwarf2_per_objfile;
21468 struct objfile *objfile = dwarf2_per_objfile->objfile;
21469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21470 struct symbol *sym = NULL;
21471 const char *name;
21472 struct attribute *attr = NULL;
21473 struct attribute *attr2 = NULL;
21474 CORE_ADDR baseaddr;
21475 struct pending **list_to_add = NULL;
21476
21477 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21478
21479 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21480
21481 name = dwarf2_name (die, cu);
21482 if (name)
21483 {
21484 const char *linkagename;
21485 int suppress_add = 0;
21486
21487 if (space)
21488 sym = space;
21489 else
21490 sym = allocate_symbol (objfile);
21491 OBJSTAT (objfile, n_syms++);
21492
21493 /* Cache this symbol's name and the name's demangled form (if any). */
21494 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21495 linkagename = dwarf2_physname (name, die, cu);
21496 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21497
21498 /* Fortran does not have mangling standard and the mangling does differ
21499 between gfortran, iFort etc. */
21500 if (cu->language == language_fortran
21501 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21502 symbol_set_demangled_name (&(sym->ginfo),
21503 dwarf2_full_name (name, die, cu),
21504 NULL);
21505
21506 /* Default assumptions.
21507 Use the passed type or decode it from the die. */
21508 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21509 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21510 if (type != NULL)
21511 SYMBOL_TYPE (sym) = type;
21512 else
21513 SYMBOL_TYPE (sym) = die_type (die, cu);
21514 attr = dwarf2_attr (die,
21515 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21516 cu);
21517 if (attr)
21518 {
21519 SYMBOL_LINE (sym) = DW_UNSND (attr);
21520 }
21521
21522 attr = dwarf2_attr (die,
21523 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21524 cu);
21525 if (attr)
21526 {
21527 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21528 struct file_entry *fe;
21529
21530 if (cu->line_header != NULL)
21531 fe = cu->line_header->file_name_at (file_index);
21532 else
21533 fe = NULL;
21534
21535 if (fe == NULL)
21536 complaint (_("file index out of range"));
21537 else
21538 symbol_set_symtab (sym, fe->symtab);
21539 }
21540
21541 switch (die->tag)
21542 {
21543 case DW_TAG_label:
21544 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21545 if (attr)
21546 {
21547 CORE_ADDR addr;
21548
21549 addr = attr_value_as_address (attr);
21550 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21551 SYMBOL_VALUE_ADDRESS (sym) = addr;
21552 }
21553 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21554 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21555 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21556 add_symbol_to_list (sym, cu->list_in_scope);
21557 break;
21558 case DW_TAG_subprogram:
21559 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21560 finish_block. */
21561 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21562 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21563 if ((attr2 && (DW_UNSND (attr2) != 0))
21564 || cu->language == language_ada)
21565 {
21566 /* Subprograms marked external are stored as a global symbol.
21567 Ada subprograms, whether marked external or not, are always
21568 stored as a global symbol, because we want to be able to
21569 access them globally. For instance, we want to be able
21570 to break on a nested subprogram without having to
21571 specify the context. */
21572 list_to_add = cu->get_builder ()->get_global_symbols ();
21573 }
21574 else
21575 {
21576 list_to_add = cu->list_in_scope;
21577 }
21578 break;
21579 case DW_TAG_inlined_subroutine:
21580 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21581 finish_block. */
21582 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21583 SYMBOL_INLINED (sym) = 1;
21584 list_to_add = cu->list_in_scope;
21585 break;
21586 case DW_TAG_template_value_param:
21587 suppress_add = 1;
21588 /* Fall through. */
21589 case DW_TAG_constant:
21590 case DW_TAG_variable:
21591 case DW_TAG_member:
21592 /* Compilation with minimal debug info may result in
21593 variables with missing type entries. Change the
21594 misleading `void' type to something sensible. */
21595 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21596 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21597
21598 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21599 /* In the case of DW_TAG_member, we should only be called for
21600 static const members. */
21601 if (die->tag == DW_TAG_member)
21602 {
21603 /* dwarf2_add_field uses die_is_declaration,
21604 so we do the same. */
21605 gdb_assert (die_is_declaration (die, cu));
21606 gdb_assert (attr);
21607 }
21608 if (attr)
21609 {
21610 dwarf2_const_value (attr, sym, cu);
21611 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21612 if (!suppress_add)
21613 {
21614 if (attr2 && (DW_UNSND (attr2) != 0))
21615 list_to_add = cu->get_builder ()->get_global_symbols ();
21616 else
21617 list_to_add = cu->list_in_scope;
21618 }
21619 break;
21620 }
21621 attr = dwarf2_attr (die, DW_AT_location, cu);
21622 if (attr)
21623 {
21624 var_decode_location (attr, sym, cu);
21625 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21626
21627 /* Fortran explicitly imports any global symbols to the local
21628 scope by DW_TAG_common_block. */
21629 if (cu->language == language_fortran && die->parent
21630 && die->parent->tag == DW_TAG_common_block)
21631 attr2 = NULL;
21632
21633 if (SYMBOL_CLASS (sym) == LOC_STATIC
21634 && SYMBOL_VALUE_ADDRESS (sym) == 0
21635 && !dwarf2_per_objfile->has_section_at_zero)
21636 {
21637 /* When a static variable is eliminated by the linker,
21638 the corresponding debug information is not stripped
21639 out, but the variable address is set to null;
21640 do not add such variables into symbol table. */
21641 }
21642 else if (attr2 && (DW_UNSND (attr2) != 0))
21643 {
21644 /* Workaround gfortran PR debug/40040 - it uses
21645 DW_AT_location for variables in -fPIC libraries which may
21646 get overriden by other libraries/executable and get
21647 a different address. Resolve it by the minimal symbol
21648 which may come from inferior's executable using copy
21649 relocation. Make this workaround only for gfortran as for
21650 other compilers GDB cannot guess the minimal symbol
21651 Fortran mangling kind. */
21652 if (cu->language == language_fortran && die->parent
21653 && die->parent->tag == DW_TAG_module
21654 && cu->producer
21655 && startswith (cu->producer, "GNU Fortran"))
21656 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21657
21658 /* A variable with DW_AT_external is never static,
21659 but it may be block-scoped. */
21660 list_to_add
21661 = ((cu->list_in_scope
21662 == cu->get_builder ()->get_file_symbols ())
21663 ? cu->get_builder ()->get_global_symbols ()
21664 : cu->list_in_scope);
21665 }
21666 else
21667 list_to_add = cu->list_in_scope;
21668 }
21669 else
21670 {
21671 /* We do not know the address of this symbol.
21672 If it is an external symbol and we have type information
21673 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21674 The address of the variable will then be determined from
21675 the minimal symbol table whenever the variable is
21676 referenced. */
21677 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21678
21679 /* Fortran explicitly imports any global symbols to the local
21680 scope by DW_TAG_common_block. */
21681 if (cu->language == language_fortran && die->parent
21682 && die->parent->tag == DW_TAG_common_block)
21683 {
21684 /* SYMBOL_CLASS doesn't matter here because
21685 read_common_block is going to reset it. */
21686 if (!suppress_add)
21687 list_to_add = cu->list_in_scope;
21688 }
21689 else if (attr2 && (DW_UNSND (attr2) != 0)
21690 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21691 {
21692 /* A variable with DW_AT_external is never static, but it
21693 may be block-scoped. */
21694 list_to_add
21695 = ((cu->list_in_scope
21696 == cu->get_builder ()->get_file_symbols ())
21697 ? cu->get_builder ()->get_global_symbols ()
21698 : cu->list_in_scope);
21699
21700 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21701 }
21702 else if (!die_is_declaration (die, cu))
21703 {
21704 /* Use the default LOC_OPTIMIZED_OUT class. */
21705 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21706 if (!suppress_add)
21707 list_to_add = cu->list_in_scope;
21708 }
21709 }
21710 break;
21711 case DW_TAG_formal_parameter:
21712 {
21713 /* If we are inside a function, mark this as an argument. If
21714 not, we might be looking at an argument to an inlined function
21715 when we do not have enough information to show inlined frames;
21716 pretend it's a local variable in that case so that the user can
21717 still see it. */
21718 struct context_stack *curr
21719 = cu->get_builder ()->get_current_context_stack ();
21720 if (curr != nullptr && curr->name != nullptr)
21721 SYMBOL_IS_ARGUMENT (sym) = 1;
21722 attr = dwarf2_attr (die, DW_AT_location, cu);
21723 if (attr)
21724 {
21725 var_decode_location (attr, sym, cu);
21726 }
21727 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21728 if (attr)
21729 {
21730 dwarf2_const_value (attr, sym, cu);
21731 }
21732
21733 list_to_add = cu->list_in_scope;
21734 }
21735 break;
21736 case DW_TAG_unspecified_parameters:
21737 /* From varargs functions; gdb doesn't seem to have any
21738 interest in this information, so just ignore it for now.
21739 (FIXME?) */
21740 break;
21741 case DW_TAG_template_type_param:
21742 suppress_add = 1;
21743 /* Fall through. */
21744 case DW_TAG_class_type:
21745 case DW_TAG_interface_type:
21746 case DW_TAG_structure_type:
21747 case DW_TAG_union_type:
21748 case DW_TAG_set_type:
21749 case DW_TAG_enumeration_type:
21750 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21751 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21752
21753 {
21754 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21755 really ever be static objects: otherwise, if you try
21756 to, say, break of a class's method and you're in a file
21757 which doesn't mention that class, it won't work unless
21758 the check for all static symbols in lookup_symbol_aux
21759 saves you. See the OtherFileClass tests in
21760 gdb.c++/namespace.exp. */
21761
21762 if (!suppress_add)
21763 {
21764 buildsym_compunit *builder = cu->get_builder ();
21765 list_to_add
21766 = (cu->list_in_scope == builder->get_file_symbols ()
21767 && cu->language == language_cplus
21768 ? builder->get_global_symbols ()
21769 : cu->list_in_scope);
21770
21771 /* The semantics of C++ state that "struct foo {
21772 ... }" also defines a typedef for "foo". */
21773 if (cu->language == language_cplus
21774 || cu->language == language_ada
21775 || cu->language == language_d
21776 || cu->language == language_rust)
21777 {
21778 /* The symbol's name is already allocated along
21779 with this objfile, so we don't need to
21780 duplicate it for the type. */
21781 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21782 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21783 }
21784 }
21785 }
21786 break;
21787 case DW_TAG_typedef:
21788 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21789 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21790 list_to_add = cu->list_in_scope;
21791 break;
21792 case DW_TAG_base_type:
21793 case DW_TAG_subrange_type:
21794 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21795 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21796 list_to_add = cu->list_in_scope;
21797 break;
21798 case DW_TAG_enumerator:
21799 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21800 if (attr)
21801 {
21802 dwarf2_const_value (attr, sym, cu);
21803 }
21804 {
21805 /* NOTE: carlton/2003-11-10: See comment above in the
21806 DW_TAG_class_type, etc. block. */
21807
21808 list_to_add
21809 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21810 && cu->language == language_cplus
21811 ? cu->get_builder ()->get_global_symbols ()
21812 : cu->list_in_scope);
21813 }
21814 break;
21815 case DW_TAG_imported_declaration:
21816 case DW_TAG_namespace:
21817 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21818 list_to_add = cu->get_builder ()->get_global_symbols ();
21819 break;
21820 case DW_TAG_module:
21821 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21822 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21823 list_to_add = cu->get_builder ()->get_global_symbols ();
21824 break;
21825 case DW_TAG_common_block:
21826 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21827 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21828 add_symbol_to_list (sym, cu->list_in_scope);
21829 break;
21830 default:
21831 /* Not a tag we recognize. Hopefully we aren't processing
21832 trash data, but since we must specifically ignore things
21833 we don't recognize, there is nothing else we should do at
21834 this point. */
21835 complaint (_("unsupported tag: '%s'"),
21836 dwarf_tag_name (die->tag));
21837 break;
21838 }
21839
21840 if (suppress_add)
21841 {
21842 sym->hash_next = objfile->template_symbols;
21843 objfile->template_symbols = sym;
21844 list_to_add = NULL;
21845 }
21846
21847 if (list_to_add != NULL)
21848 add_symbol_to_list (sym, list_to_add);
21849
21850 /* For the benefit of old versions of GCC, check for anonymous
21851 namespaces based on the demangled name. */
21852 if (!cu->processing_has_namespace_info
21853 && cu->language == language_cplus)
21854 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21855 }
21856 return (sym);
21857 }
21858
21859 /* Given an attr with a DW_FORM_dataN value in host byte order,
21860 zero-extend it as appropriate for the symbol's type. The DWARF
21861 standard (v4) is not entirely clear about the meaning of using
21862 DW_FORM_dataN for a constant with a signed type, where the type is
21863 wider than the data. The conclusion of a discussion on the DWARF
21864 list was that this is unspecified. We choose to always zero-extend
21865 because that is the interpretation long in use by GCC. */
21866
21867 static gdb_byte *
21868 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21869 struct dwarf2_cu *cu, LONGEST *value, int bits)
21870 {
21871 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21872 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21873 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21874 LONGEST l = DW_UNSND (attr);
21875
21876 if (bits < sizeof (*value) * 8)
21877 {
21878 l &= ((LONGEST) 1 << bits) - 1;
21879 *value = l;
21880 }
21881 else if (bits == sizeof (*value) * 8)
21882 *value = l;
21883 else
21884 {
21885 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21886 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21887 return bytes;
21888 }
21889
21890 return NULL;
21891 }
21892
21893 /* Read a constant value from an attribute. Either set *VALUE, or if
21894 the value does not fit in *VALUE, set *BYTES - either already
21895 allocated on the objfile obstack, or newly allocated on OBSTACK,
21896 or, set *BATON, if we translated the constant to a location
21897 expression. */
21898
21899 static void
21900 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21901 const char *name, struct obstack *obstack,
21902 struct dwarf2_cu *cu,
21903 LONGEST *value, const gdb_byte **bytes,
21904 struct dwarf2_locexpr_baton **baton)
21905 {
21906 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21907 struct comp_unit_head *cu_header = &cu->header;
21908 struct dwarf_block *blk;
21909 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21910 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21911
21912 *value = 0;
21913 *bytes = NULL;
21914 *baton = NULL;
21915
21916 switch (attr->form)
21917 {
21918 case DW_FORM_addr:
21919 case DW_FORM_addrx:
21920 case DW_FORM_GNU_addr_index:
21921 {
21922 gdb_byte *data;
21923
21924 if (TYPE_LENGTH (type) != cu_header->addr_size)
21925 dwarf2_const_value_length_mismatch_complaint (name,
21926 cu_header->addr_size,
21927 TYPE_LENGTH (type));
21928 /* Symbols of this form are reasonably rare, so we just
21929 piggyback on the existing location code rather than writing
21930 a new implementation of symbol_computed_ops. */
21931 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21932 (*baton)->per_cu = cu->per_cu;
21933 gdb_assert ((*baton)->per_cu);
21934
21935 (*baton)->size = 2 + cu_header->addr_size;
21936 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21937 (*baton)->data = data;
21938
21939 data[0] = DW_OP_addr;
21940 store_unsigned_integer (&data[1], cu_header->addr_size,
21941 byte_order, DW_ADDR (attr));
21942 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21943 }
21944 break;
21945 case DW_FORM_string:
21946 case DW_FORM_strp:
21947 case DW_FORM_strx:
21948 case DW_FORM_GNU_str_index:
21949 case DW_FORM_GNU_strp_alt:
21950 /* DW_STRING is already allocated on the objfile obstack, point
21951 directly to it. */
21952 *bytes = (const gdb_byte *) DW_STRING (attr);
21953 break;
21954 case DW_FORM_block1:
21955 case DW_FORM_block2:
21956 case DW_FORM_block4:
21957 case DW_FORM_block:
21958 case DW_FORM_exprloc:
21959 case DW_FORM_data16:
21960 blk = DW_BLOCK (attr);
21961 if (TYPE_LENGTH (type) != blk->size)
21962 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21963 TYPE_LENGTH (type));
21964 *bytes = blk->data;
21965 break;
21966
21967 /* The DW_AT_const_value attributes are supposed to carry the
21968 symbol's value "represented as it would be on the target
21969 architecture." By the time we get here, it's already been
21970 converted to host endianness, so we just need to sign- or
21971 zero-extend it as appropriate. */
21972 case DW_FORM_data1:
21973 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21974 break;
21975 case DW_FORM_data2:
21976 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21977 break;
21978 case DW_FORM_data4:
21979 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21980 break;
21981 case DW_FORM_data8:
21982 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21983 break;
21984
21985 case DW_FORM_sdata:
21986 case DW_FORM_implicit_const:
21987 *value = DW_SND (attr);
21988 break;
21989
21990 case DW_FORM_udata:
21991 *value = DW_UNSND (attr);
21992 break;
21993
21994 default:
21995 complaint (_("unsupported const value attribute form: '%s'"),
21996 dwarf_form_name (attr->form));
21997 *value = 0;
21998 break;
21999 }
22000 }
22001
22002
22003 /* Copy constant value from an attribute to a symbol. */
22004
22005 static void
22006 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22007 struct dwarf2_cu *cu)
22008 {
22009 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22010 LONGEST value;
22011 const gdb_byte *bytes;
22012 struct dwarf2_locexpr_baton *baton;
22013
22014 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22015 SYMBOL_PRINT_NAME (sym),
22016 &objfile->objfile_obstack, cu,
22017 &value, &bytes, &baton);
22018
22019 if (baton != NULL)
22020 {
22021 SYMBOL_LOCATION_BATON (sym) = baton;
22022 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22023 }
22024 else if (bytes != NULL)
22025 {
22026 SYMBOL_VALUE_BYTES (sym) = bytes;
22027 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22028 }
22029 else
22030 {
22031 SYMBOL_VALUE (sym) = value;
22032 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22033 }
22034 }
22035
22036 /* Return the type of the die in question using its DW_AT_type attribute. */
22037
22038 static struct type *
22039 die_type (struct die_info *die, struct dwarf2_cu *cu)
22040 {
22041 struct attribute *type_attr;
22042
22043 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22044 if (!type_attr)
22045 {
22046 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22047 /* A missing DW_AT_type represents a void type. */
22048 return objfile_type (objfile)->builtin_void;
22049 }
22050
22051 return lookup_die_type (die, type_attr, cu);
22052 }
22053
22054 /* True iff CU's producer generates GNAT Ada auxiliary information
22055 that allows to find parallel types through that information instead
22056 of having to do expensive parallel lookups by type name. */
22057
22058 static int
22059 need_gnat_info (struct dwarf2_cu *cu)
22060 {
22061 /* Assume that the Ada compiler was GNAT, which always produces
22062 the auxiliary information. */
22063 return (cu->language == language_ada);
22064 }
22065
22066 /* Return the auxiliary type of the die in question using its
22067 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22068 attribute is not present. */
22069
22070 static struct type *
22071 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22072 {
22073 struct attribute *type_attr;
22074
22075 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22076 if (!type_attr)
22077 return NULL;
22078
22079 return lookup_die_type (die, type_attr, cu);
22080 }
22081
22082 /* If DIE has a descriptive_type attribute, then set the TYPE's
22083 descriptive type accordingly. */
22084
22085 static void
22086 set_descriptive_type (struct type *type, struct die_info *die,
22087 struct dwarf2_cu *cu)
22088 {
22089 struct type *descriptive_type = die_descriptive_type (die, cu);
22090
22091 if (descriptive_type)
22092 {
22093 ALLOCATE_GNAT_AUX_TYPE (type);
22094 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22095 }
22096 }
22097
22098 /* Return the containing type of the die in question using its
22099 DW_AT_containing_type attribute. */
22100
22101 static struct type *
22102 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22103 {
22104 struct attribute *type_attr;
22105 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22106
22107 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22108 if (!type_attr)
22109 error (_("Dwarf Error: Problem turning containing type into gdb type "
22110 "[in module %s]"), objfile_name (objfile));
22111
22112 return lookup_die_type (die, type_attr, cu);
22113 }
22114
22115 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22116
22117 static struct type *
22118 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22119 {
22120 struct dwarf2_per_objfile *dwarf2_per_objfile
22121 = cu->per_cu->dwarf2_per_objfile;
22122 struct objfile *objfile = dwarf2_per_objfile->objfile;
22123 char *saved;
22124
22125 std::string message
22126 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22127 objfile_name (objfile),
22128 sect_offset_str (cu->header.sect_off),
22129 sect_offset_str (die->sect_off));
22130 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22131 message.c_str (), message.length ());
22132
22133 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22134 }
22135
22136 /* Look up the type of DIE in CU using its type attribute ATTR.
22137 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22138 DW_AT_containing_type.
22139 If there is no type substitute an error marker. */
22140
22141 static struct type *
22142 lookup_die_type (struct die_info *die, const struct attribute *attr,
22143 struct dwarf2_cu *cu)
22144 {
22145 struct dwarf2_per_objfile *dwarf2_per_objfile
22146 = cu->per_cu->dwarf2_per_objfile;
22147 struct objfile *objfile = dwarf2_per_objfile->objfile;
22148 struct type *this_type;
22149
22150 gdb_assert (attr->name == DW_AT_type
22151 || attr->name == DW_AT_GNAT_descriptive_type
22152 || attr->name == DW_AT_containing_type);
22153
22154 /* First see if we have it cached. */
22155
22156 if (attr->form == DW_FORM_GNU_ref_alt)
22157 {
22158 struct dwarf2_per_cu_data *per_cu;
22159 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22160
22161 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22162 dwarf2_per_objfile);
22163 this_type = get_die_type_at_offset (sect_off, per_cu);
22164 }
22165 else if (attr_form_is_ref (attr))
22166 {
22167 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22168
22169 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22170 }
22171 else if (attr->form == DW_FORM_ref_sig8)
22172 {
22173 ULONGEST signature = DW_SIGNATURE (attr);
22174
22175 return get_signatured_type (die, signature, cu);
22176 }
22177 else
22178 {
22179 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22180 " at %s [in module %s]"),
22181 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22182 objfile_name (objfile));
22183 return build_error_marker_type (cu, die);
22184 }
22185
22186 /* If not cached we need to read it in. */
22187
22188 if (this_type == NULL)
22189 {
22190 struct die_info *type_die = NULL;
22191 struct dwarf2_cu *type_cu = cu;
22192
22193 if (attr_form_is_ref (attr))
22194 type_die = follow_die_ref (die, attr, &type_cu);
22195 if (type_die == NULL)
22196 return build_error_marker_type (cu, die);
22197 /* If we find the type now, it's probably because the type came
22198 from an inter-CU reference and the type's CU got expanded before
22199 ours. */
22200 this_type = read_type_die (type_die, type_cu);
22201 }
22202
22203 /* If we still don't have a type use an error marker. */
22204
22205 if (this_type == NULL)
22206 return build_error_marker_type (cu, die);
22207
22208 return this_type;
22209 }
22210
22211 /* Return the type in DIE, CU.
22212 Returns NULL for invalid types.
22213
22214 This first does a lookup in die_type_hash,
22215 and only reads the die in if necessary.
22216
22217 NOTE: This can be called when reading in partial or full symbols. */
22218
22219 static struct type *
22220 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22221 {
22222 struct type *this_type;
22223
22224 this_type = get_die_type (die, cu);
22225 if (this_type)
22226 return this_type;
22227
22228 return read_type_die_1 (die, cu);
22229 }
22230
22231 /* Read the type in DIE, CU.
22232 Returns NULL for invalid types. */
22233
22234 static struct type *
22235 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22236 {
22237 struct type *this_type = NULL;
22238
22239 switch (die->tag)
22240 {
22241 case DW_TAG_class_type:
22242 case DW_TAG_interface_type:
22243 case DW_TAG_structure_type:
22244 case DW_TAG_union_type:
22245 this_type = read_structure_type (die, cu);
22246 break;
22247 case DW_TAG_enumeration_type:
22248 this_type = read_enumeration_type (die, cu);
22249 break;
22250 case DW_TAG_subprogram:
22251 case DW_TAG_subroutine_type:
22252 case DW_TAG_inlined_subroutine:
22253 this_type = read_subroutine_type (die, cu);
22254 break;
22255 case DW_TAG_array_type:
22256 this_type = read_array_type (die, cu);
22257 break;
22258 case DW_TAG_set_type:
22259 this_type = read_set_type (die, cu);
22260 break;
22261 case DW_TAG_pointer_type:
22262 this_type = read_tag_pointer_type (die, cu);
22263 break;
22264 case DW_TAG_ptr_to_member_type:
22265 this_type = read_tag_ptr_to_member_type (die, cu);
22266 break;
22267 case DW_TAG_reference_type:
22268 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22269 break;
22270 case DW_TAG_rvalue_reference_type:
22271 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22272 break;
22273 case DW_TAG_const_type:
22274 this_type = read_tag_const_type (die, cu);
22275 break;
22276 case DW_TAG_volatile_type:
22277 this_type = read_tag_volatile_type (die, cu);
22278 break;
22279 case DW_TAG_restrict_type:
22280 this_type = read_tag_restrict_type (die, cu);
22281 break;
22282 case DW_TAG_string_type:
22283 this_type = read_tag_string_type (die, cu);
22284 break;
22285 case DW_TAG_typedef:
22286 this_type = read_typedef (die, cu);
22287 break;
22288 case DW_TAG_subrange_type:
22289 this_type = read_subrange_type (die, cu);
22290 break;
22291 case DW_TAG_base_type:
22292 this_type = read_base_type (die, cu);
22293 break;
22294 case DW_TAG_unspecified_type:
22295 this_type = read_unspecified_type (die, cu);
22296 break;
22297 case DW_TAG_namespace:
22298 this_type = read_namespace_type (die, cu);
22299 break;
22300 case DW_TAG_module:
22301 this_type = read_module_type (die, cu);
22302 break;
22303 case DW_TAG_atomic_type:
22304 this_type = read_tag_atomic_type (die, cu);
22305 break;
22306 default:
22307 complaint (_("unexpected tag in read_type_die: '%s'"),
22308 dwarf_tag_name (die->tag));
22309 break;
22310 }
22311
22312 return this_type;
22313 }
22314
22315 /* See if we can figure out if the class lives in a namespace. We do
22316 this by looking for a member function; its demangled name will
22317 contain namespace info, if there is any.
22318 Return the computed name or NULL.
22319 Space for the result is allocated on the objfile's obstack.
22320 This is the full-die version of guess_partial_die_structure_name.
22321 In this case we know DIE has no useful parent. */
22322
22323 static char *
22324 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22325 {
22326 struct die_info *spec_die;
22327 struct dwarf2_cu *spec_cu;
22328 struct die_info *child;
22329 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22330
22331 spec_cu = cu;
22332 spec_die = die_specification (die, &spec_cu);
22333 if (spec_die != NULL)
22334 {
22335 die = spec_die;
22336 cu = spec_cu;
22337 }
22338
22339 for (child = die->child;
22340 child != NULL;
22341 child = child->sibling)
22342 {
22343 if (child->tag == DW_TAG_subprogram)
22344 {
22345 const char *linkage_name = dw2_linkage_name (child, cu);
22346
22347 if (linkage_name != NULL)
22348 {
22349 char *actual_name
22350 = language_class_name_from_physname (cu->language_defn,
22351 linkage_name);
22352 char *name = NULL;
22353
22354 if (actual_name != NULL)
22355 {
22356 const char *die_name = dwarf2_name (die, cu);
22357
22358 if (die_name != NULL
22359 && strcmp (die_name, actual_name) != 0)
22360 {
22361 /* Strip off the class name from the full name.
22362 We want the prefix. */
22363 int die_name_len = strlen (die_name);
22364 int actual_name_len = strlen (actual_name);
22365
22366 /* Test for '::' as a sanity check. */
22367 if (actual_name_len > die_name_len + 2
22368 && actual_name[actual_name_len
22369 - die_name_len - 1] == ':')
22370 name = (char *) obstack_copy0 (
22371 &objfile->per_bfd->storage_obstack,
22372 actual_name, actual_name_len - die_name_len - 2);
22373 }
22374 }
22375 xfree (actual_name);
22376 return name;
22377 }
22378 }
22379 }
22380
22381 return NULL;
22382 }
22383
22384 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22385 prefix part in such case. See
22386 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22387
22388 static const char *
22389 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22390 {
22391 struct attribute *attr;
22392 const char *base;
22393
22394 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22395 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22396 return NULL;
22397
22398 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22399 return NULL;
22400
22401 attr = dw2_linkage_name_attr (die, cu);
22402 if (attr == NULL || DW_STRING (attr) == NULL)
22403 return NULL;
22404
22405 /* dwarf2_name had to be already called. */
22406 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22407
22408 /* Strip the base name, keep any leading namespaces/classes. */
22409 base = strrchr (DW_STRING (attr), ':');
22410 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22411 return "";
22412
22413 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22414 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22415 DW_STRING (attr),
22416 &base[-1] - DW_STRING (attr));
22417 }
22418
22419 /* Return the name of the namespace/class that DIE is defined within,
22420 or "" if we can't tell. The caller should not xfree the result.
22421
22422 For example, if we're within the method foo() in the following
22423 code:
22424
22425 namespace N {
22426 class C {
22427 void foo () {
22428 }
22429 };
22430 }
22431
22432 then determine_prefix on foo's die will return "N::C". */
22433
22434 static const char *
22435 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22436 {
22437 struct dwarf2_per_objfile *dwarf2_per_objfile
22438 = cu->per_cu->dwarf2_per_objfile;
22439 struct die_info *parent, *spec_die;
22440 struct dwarf2_cu *spec_cu;
22441 struct type *parent_type;
22442 const char *retval;
22443
22444 if (cu->language != language_cplus
22445 && cu->language != language_fortran && cu->language != language_d
22446 && cu->language != language_rust)
22447 return "";
22448
22449 retval = anonymous_struct_prefix (die, cu);
22450 if (retval)
22451 return retval;
22452
22453 /* We have to be careful in the presence of DW_AT_specification.
22454 For example, with GCC 3.4, given the code
22455
22456 namespace N {
22457 void foo() {
22458 // Definition of N::foo.
22459 }
22460 }
22461
22462 then we'll have a tree of DIEs like this:
22463
22464 1: DW_TAG_compile_unit
22465 2: DW_TAG_namespace // N
22466 3: DW_TAG_subprogram // declaration of N::foo
22467 4: DW_TAG_subprogram // definition of N::foo
22468 DW_AT_specification // refers to die #3
22469
22470 Thus, when processing die #4, we have to pretend that we're in
22471 the context of its DW_AT_specification, namely the contex of die
22472 #3. */
22473 spec_cu = cu;
22474 spec_die = die_specification (die, &spec_cu);
22475 if (spec_die == NULL)
22476 parent = die->parent;
22477 else
22478 {
22479 parent = spec_die->parent;
22480 cu = spec_cu;
22481 }
22482
22483 if (parent == NULL)
22484 return "";
22485 else if (parent->building_fullname)
22486 {
22487 const char *name;
22488 const char *parent_name;
22489
22490 /* It has been seen on RealView 2.2 built binaries,
22491 DW_TAG_template_type_param types actually _defined_ as
22492 children of the parent class:
22493
22494 enum E {};
22495 template class <class Enum> Class{};
22496 Class<enum E> class_e;
22497
22498 1: DW_TAG_class_type (Class)
22499 2: DW_TAG_enumeration_type (E)
22500 3: DW_TAG_enumerator (enum1:0)
22501 3: DW_TAG_enumerator (enum2:1)
22502 ...
22503 2: DW_TAG_template_type_param
22504 DW_AT_type DW_FORM_ref_udata (E)
22505
22506 Besides being broken debug info, it can put GDB into an
22507 infinite loop. Consider:
22508
22509 When we're building the full name for Class<E>, we'll start
22510 at Class, and go look over its template type parameters,
22511 finding E. We'll then try to build the full name of E, and
22512 reach here. We're now trying to build the full name of E,
22513 and look over the parent DIE for containing scope. In the
22514 broken case, if we followed the parent DIE of E, we'd again
22515 find Class, and once again go look at its template type
22516 arguments, etc., etc. Simply don't consider such parent die
22517 as source-level parent of this die (it can't be, the language
22518 doesn't allow it), and break the loop here. */
22519 name = dwarf2_name (die, cu);
22520 parent_name = dwarf2_name (parent, cu);
22521 complaint (_("template param type '%s' defined within parent '%s'"),
22522 name ? name : "<unknown>",
22523 parent_name ? parent_name : "<unknown>");
22524 return "";
22525 }
22526 else
22527 switch (parent->tag)
22528 {
22529 case DW_TAG_namespace:
22530 parent_type = read_type_die (parent, cu);
22531 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22532 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22533 Work around this problem here. */
22534 if (cu->language == language_cplus
22535 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22536 return "";
22537 /* We give a name to even anonymous namespaces. */
22538 return TYPE_NAME (parent_type);
22539 case DW_TAG_class_type:
22540 case DW_TAG_interface_type:
22541 case DW_TAG_structure_type:
22542 case DW_TAG_union_type:
22543 case DW_TAG_module:
22544 parent_type = read_type_die (parent, cu);
22545 if (TYPE_NAME (parent_type) != NULL)
22546 return TYPE_NAME (parent_type);
22547 else
22548 /* An anonymous structure is only allowed non-static data
22549 members; no typedefs, no member functions, et cetera.
22550 So it does not need a prefix. */
22551 return "";
22552 case DW_TAG_compile_unit:
22553 case DW_TAG_partial_unit:
22554 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22555 if (cu->language == language_cplus
22556 && !dwarf2_per_objfile->types.empty ()
22557 && die->child != NULL
22558 && (die->tag == DW_TAG_class_type
22559 || die->tag == DW_TAG_structure_type
22560 || die->tag == DW_TAG_union_type))
22561 {
22562 char *name = guess_full_die_structure_name (die, cu);
22563 if (name != NULL)
22564 return name;
22565 }
22566 return "";
22567 case DW_TAG_enumeration_type:
22568 parent_type = read_type_die (parent, cu);
22569 if (TYPE_DECLARED_CLASS (parent_type))
22570 {
22571 if (TYPE_NAME (parent_type) != NULL)
22572 return TYPE_NAME (parent_type);
22573 return "";
22574 }
22575 /* Fall through. */
22576 default:
22577 return determine_prefix (parent, cu);
22578 }
22579 }
22580
22581 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22582 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22583 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22584 an obconcat, otherwise allocate storage for the result. The CU argument is
22585 used to determine the language and hence, the appropriate separator. */
22586
22587 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22588
22589 static char *
22590 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22591 int physname, struct dwarf2_cu *cu)
22592 {
22593 const char *lead = "";
22594 const char *sep;
22595
22596 if (suffix == NULL || suffix[0] == '\0'
22597 || prefix == NULL || prefix[0] == '\0')
22598 sep = "";
22599 else if (cu->language == language_d)
22600 {
22601 /* For D, the 'main' function could be defined in any module, but it
22602 should never be prefixed. */
22603 if (strcmp (suffix, "D main") == 0)
22604 {
22605 prefix = "";
22606 sep = "";
22607 }
22608 else
22609 sep = ".";
22610 }
22611 else if (cu->language == language_fortran && physname)
22612 {
22613 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22614 DW_AT_MIPS_linkage_name is preferred and used instead. */
22615
22616 lead = "__";
22617 sep = "_MOD_";
22618 }
22619 else
22620 sep = "::";
22621
22622 if (prefix == NULL)
22623 prefix = "";
22624 if (suffix == NULL)
22625 suffix = "";
22626
22627 if (obs == NULL)
22628 {
22629 char *retval
22630 = ((char *)
22631 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22632
22633 strcpy (retval, lead);
22634 strcat (retval, prefix);
22635 strcat (retval, sep);
22636 strcat (retval, suffix);
22637 return retval;
22638 }
22639 else
22640 {
22641 /* We have an obstack. */
22642 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22643 }
22644 }
22645
22646 /* Return sibling of die, NULL if no sibling. */
22647
22648 static struct die_info *
22649 sibling_die (struct die_info *die)
22650 {
22651 return die->sibling;
22652 }
22653
22654 /* Get name of a die, return NULL if not found. */
22655
22656 static const char *
22657 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22658 struct obstack *obstack)
22659 {
22660 if (name && cu->language == language_cplus)
22661 {
22662 std::string canon_name = cp_canonicalize_string (name);
22663
22664 if (!canon_name.empty ())
22665 {
22666 if (canon_name != name)
22667 name = (const char *) obstack_copy0 (obstack,
22668 canon_name.c_str (),
22669 canon_name.length ());
22670 }
22671 }
22672
22673 return name;
22674 }
22675
22676 /* Get name of a die, return NULL if not found.
22677 Anonymous namespaces are converted to their magic string. */
22678
22679 static const char *
22680 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22681 {
22682 struct attribute *attr;
22683 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22684
22685 attr = dwarf2_attr (die, DW_AT_name, cu);
22686 if ((!attr || !DW_STRING (attr))
22687 && die->tag != DW_TAG_namespace
22688 && die->tag != DW_TAG_class_type
22689 && die->tag != DW_TAG_interface_type
22690 && die->tag != DW_TAG_structure_type
22691 && die->tag != DW_TAG_union_type)
22692 return NULL;
22693
22694 switch (die->tag)
22695 {
22696 case DW_TAG_compile_unit:
22697 case DW_TAG_partial_unit:
22698 /* Compilation units have a DW_AT_name that is a filename, not
22699 a source language identifier. */
22700 case DW_TAG_enumeration_type:
22701 case DW_TAG_enumerator:
22702 /* These tags always have simple identifiers already; no need
22703 to canonicalize them. */
22704 return DW_STRING (attr);
22705
22706 case DW_TAG_namespace:
22707 if (attr != NULL && DW_STRING (attr) != NULL)
22708 return DW_STRING (attr);
22709 return CP_ANONYMOUS_NAMESPACE_STR;
22710
22711 case DW_TAG_class_type:
22712 case DW_TAG_interface_type:
22713 case DW_TAG_structure_type:
22714 case DW_TAG_union_type:
22715 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22716 structures or unions. These were of the form "._%d" in GCC 4.1,
22717 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22718 and GCC 4.4. We work around this problem by ignoring these. */
22719 if (attr && DW_STRING (attr)
22720 && (startswith (DW_STRING (attr), "._")
22721 || startswith (DW_STRING (attr), "<anonymous")))
22722 return NULL;
22723
22724 /* GCC might emit a nameless typedef that has a linkage name. See
22725 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22726 if (!attr || DW_STRING (attr) == NULL)
22727 {
22728 char *demangled = NULL;
22729
22730 attr = dw2_linkage_name_attr (die, cu);
22731 if (attr == NULL || DW_STRING (attr) == NULL)
22732 return NULL;
22733
22734 /* Avoid demangling DW_STRING (attr) the second time on a second
22735 call for the same DIE. */
22736 if (!DW_STRING_IS_CANONICAL (attr))
22737 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22738
22739 if (demangled)
22740 {
22741 const char *base;
22742
22743 /* FIXME: we already did this for the partial symbol... */
22744 DW_STRING (attr)
22745 = ((const char *)
22746 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22747 demangled, strlen (demangled)));
22748 DW_STRING_IS_CANONICAL (attr) = 1;
22749 xfree (demangled);
22750
22751 /* Strip any leading namespaces/classes, keep only the base name.
22752 DW_AT_name for named DIEs does not contain the prefixes. */
22753 base = strrchr (DW_STRING (attr), ':');
22754 if (base && base > DW_STRING (attr) && base[-1] == ':')
22755 return &base[1];
22756 else
22757 return DW_STRING (attr);
22758 }
22759 }
22760 break;
22761
22762 default:
22763 break;
22764 }
22765
22766 if (!DW_STRING_IS_CANONICAL (attr))
22767 {
22768 DW_STRING (attr)
22769 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22770 &objfile->per_bfd->storage_obstack);
22771 DW_STRING_IS_CANONICAL (attr) = 1;
22772 }
22773 return DW_STRING (attr);
22774 }
22775
22776 /* Return the die that this die in an extension of, or NULL if there
22777 is none. *EXT_CU is the CU containing DIE on input, and the CU
22778 containing the return value on output. */
22779
22780 static struct die_info *
22781 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22782 {
22783 struct attribute *attr;
22784
22785 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22786 if (attr == NULL)
22787 return NULL;
22788
22789 return follow_die_ref (die, attr, ext_cu);
22790 }
22791
22792 /* A convenience function that returns an "unknown" DWARF name,
22793 including the value of V. STR is the name of the entity being
22794 printed, e.g., "TAG". */
22795
22796 static const char *
22797 dwarf_unknown (const char *str, unsigned v)
22798 {
22799 char *cell = get_print_cell ();
22800 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22801 return cell;
22802 }
22803
22804 /* Convert a DIE tag into its string name. */
22805
22806 static const char *
22807 dwarf_tag_name (unsigned tag)
22808 {
22809 const char *name = get_DW_TAG_name (tag);
22810
22811 if (name == NULL)
22812 return dwarf_unknown ("TAG", tag);
22813
22814 return name;
22815 }
22816
22817 /* Convert a DWARF attribute code into its string name. */
22818
22819 static const char *
22820 dwarf_attr_name (unsigned attr)
22821 {
22822 const char *name;
22823
22824 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22825 if (attr == DW_AT_MIPS_fde)
22826 return "DW_AT_MIPS_fde";
22827 #else
22828 if (attr == DW_AT_HP_block_index)
22829 return "DW_AT_HP_block_index";
22830 #endif
22831
22832 name = get_DW_AT_name (attr);
22833
22834 if (name == NULL)
22835 return dwarf_unknown ("AT", attr);
22836
22837 return name;
22838 }
22839
22840 /* Convert a DWARF value form code into its string name. */
22841
22842 static const char *
22843 dwarf_form_name (unsigned form)
22844 {
22845 const char *name = get_DW_FORM_name (form);
22846
22847 if (name == NULL)
22848 return dwarf_unknown ("FORM", form);
22849
22850 return name;
22851 }
22852
22853 static const char *
22854 dwarf_bool_name (unsigned mybool)
22855 {
22856 if (mybool)
22857 return "TRUE";
22858 else
22859 return "FALSE";
22860 }
22861
22862 /* Convert a DWARF type code into its string name. */
22863
22864 static const char *
22865 dwarf_type_encoding_name (unsigned enc)
22866 {
22867 const char *name = get_DW_ATE_name (enc);
22868
22869 if (name == NULL)
22870 return dwarf_unknown ("ATE", enc);
22871
22872 return name;
22873 }
22874
22875 static void
22876 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22877 {
22878 unsigned int i;
22879
22880 print_spaces (indent, f);
22881 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22882 dwarf_tag_name (die->tag), die->abbrev,
22883 sect_offset_str (die->sect_off));
22884
22885 if (die->parent != NULL)
22886 {
22887 print_spaces (indent, f);
22888 fprintf_unfiltered (f, " parent at offset: %s\n",
22889 sect_offset_str (die->parent->sect_off));
22890 }
22891
22892 print_spaces (indent, f);
22893 fprintf_unfiltered (f, " has children: %s\n",
22894 dwarf_bool_name (die->child != NULL));
22895
22896 print_spaces (indent, f);
22897 fprintf_unfiltered (f, " attributes:\n");
22898
22899 for (i = 0; i < die->num_attrs; ++i)
22900 {
22901 print_spaces (indent, f);
22902 fprintf_unfiltered (f, " %s (%s) ",
22903 dwarf_attr_name (die->attrs[i].name),
22904 dwarf_form_name (die->attrs[i].form));
22905
22906 switch (die->attrs[i].form)
22907 {
22908 case DW_FORM_addr:
22909 case DW_FORM_addrx:
22910 case DW_FORM_GNU_addr_index:
22911 fprintf_unfiltered (f, "address: ");
22912 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22913 break;
22914 case DW_FORM_block2:
22915 case DW_FORM_block4:
22916 case DW_FORM_block:
22917 case DW_FORM_block1:
22918 fprintf_unfiltered (f, "block: size %s",
22919 pulongest (DW_BLOCK (&die->attrs[i])->size));
22920 break;
22921 case DW_FORM_exprloc:
22922 fprintf_unfiltered (f, "expression: size %s",
22923 pulongest (DW_BLOCK (&die->attrs[i])->size));
22924 break;
22925 case DW_FORM_data16:
22926 fprintf_unfiltered (f, "constant of 16 bytes");
22927 break;
22928 case DW_FORM_ref_addr:
22929 fprintf_unfiltered (f, "ref address: ");
22930 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22931 break;
22932 case DW_FORM_GNU_ref_alt:
22933 fprintf_unfiltered (f, "alt ref address: ");
22934 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22935 break;
22936 case DW_FORM_ref1:
22937 case DW_FORM_ref2:
22938 case DW_FORM_ref4:
22939 case DW_FORM_ref8:
22940 case DW_FORM_ref_udata:
22941 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22942 (long) (DW_UNSND (&die->attrs[i])));
22943 break;
22944 case DW_FORM_data1:
22945 case DW_FORM_data2:
22946 case DW_FORM_data4:
22947 case DW_FORM_data8:
22948 case DW_FORM_udata:
22949 case DW_FORM_sdata:
22950 fprintf_unfiltered (f, "constant: %s",
22951 pulongest (DW_UNSND (&die->attrs[i])));
22952 break;
22953 case DW_FORM_sec_offset:
22954 fprintf_unfiltered (f, "section offset: %s",
22955 pulongest (DW_UNSND (&die->attrs[i])));
22956 break;
22957 case DW_FORM_ref_sig8:
22958 fprintf_unfiltered (f, "signature: %s",
22959 hex_string (DW_SIGNATURE (&die->attrs[i])));
22960 break;
22961 case DW_FORM_string:
22962 case DW_FORM_strp:
22963 case DW_FORM_line_strp:
22964 case DW_FORM_strx:
22965 case DW_FORM_GNU_str_index:
22966 case DW_FORM_GNU_strp_alt:
22967 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22968 DW_STRING (&die->attrs[i])
22969 ? DW_STRING (&die->attrs[i]) : "",
22970 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22971 break;
22972 case DW_FORM_flag:
22973 if (DW_UNSND (&die->attrs[i]))
22974 fprintf_unfiltered (f, "flag: TRUE");
22975 else
22976 fprintf_unfiltered (f, "flag: FALSE");
22977 break;
22978 case DW_FORM_flag_present:
22979 fprintf_unfiltered (f, "flag: TRUE");
22980 break;
22981 case DW_FORM_indirect:
22982 /* The reader will have reduced the indirect form to
22983 the "base form" so this form should not occur. */
22984 fprintf_unfiltered (f,
22985 "unexpected attribute form: DW_FORM_indirect");
22986 break;
22987 case DW_FORM_implicit_const:
22988 fprintf_unfiltered (f, "constant: %s",
22989 plongest (DW_SND (&die->attrs[i])));
22990 break;
22991 default:
22992 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22993 die->attrs[i].form);
22994 break;
22995 }
22996 fprintf_unfiltered (f, "\n");
22997 }
22998 }
22999
23000 static void
23001 dump_die_for_error (struct die_info *die)
23002 {
23003 dump_die_shallow (gdb_stderr, 0, die);
23004 }
23005
23006 static void
23007 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23008 {
23009 int indent = level * 4;
23010
23011 gdb_assert (die != NULL);
23012
23013 if (level >= max_level)
23014 return;
23015
23016 dump_die_shallow (f, indent, die);
23017
23018 if (die->child != NULL)
23019 {
23020 print_spaces (indent, f);
23021 fprintf_unfiltered (f, " Children:");
23022 if (level + 1 < max_level)
23023 {
23024 fprintf_unfiltered (f, "\n");
23025 dump_die_1 (f, level + 1, max_level, die->child);
23026 }
23027 else
23028 {
23029 fprintf_unfiltered (f,
23030 " [not printed, max nesting level reached]\n");
23031 }
23032 }
23033
23034 if (die->sibling != NULL && level > 0)
23035 {
23036 dump_die_1 (f, level, max_level, die->sibling);
23037 }
23038 }
23039
23040 /* This is called from the pdie macro in gdbinit.in.
23041 It's not static so gcc will keep a copy callable from gdb. */
23042
23043 void
23044 dump_die (struct die_info *die, int max_level)
23045 {
23046 dump_die_1 (gdb_stdlog, 0, max_level, die);
23047 }
23048
23049 static void
23050 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23051 {
23052 void **slot;
23053
23054 slot = htab_find_slot_with_hash (cu->die_hash, die,
23055 to_underlying (die->sect_off),
23056 INSERT);
23057
23058 *slot = die;
23059 }
23060
23061 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23062 required kind. */
23063
23064 static sect_offset
23065 dwarf2_get_ref_die_offset (const struct attribute *attr)
23066 {
23067 if (attr_form_is_ref (attr))
23068 return (sect_offset) DW_UNSND (attr);
23069
23070 complaint (_("unsupported die ref attribute form: '%s'"),
23071 dwarf_form_name (attr->form));
23072 return {};
23073 }
23074
23075 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23076 * the value held by the attribute is not constant. */
23077
23078 static LONGEST
23079 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23080 {
23081 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23082 return DW_SND (attr);
23083 else if (attr->form == DW_FORM_udata
23084 || attr->form == DW_FORM_data1
23085 || attr->form == DW_FORM_data2
23086 || attr->form == DW_FORM_data4
23087 || attr->form == DW_FORM_data8)
23088 return DW_UNSND (attr);
23089 else
23090 {
23091 /* For DW_FORM_data16 see attr_form_is_constant. */
23092 complaint (_("Attribute value is not a constant (%s)"),
23093 dwarf_form_name (attr->form));
23094 return default_value;
23095 }
23096 }
23097
23098 /* Follow reference or signature attribute ATTR of SRC_DIE.
23099 On entry *REF_CU is the CU of SRC_DIE.
23100 On exit *REF_CU is the CU of the result. */
23101
23102 static struct die_info *
23103 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23104 struct dwarf2_cu **ref_cu)
23105 {
23106 struct die_info *die;
23107
23108 if (attr_form_is_ref (attr))
23109 die = follow_die_ref (src_die, attr, ref_cu);
23110 else if (attr->form == DW_FORM_ref_sig8)
23111 die = follow_die_sig (src_die, attr, ref_cu);
23112 else
23113 {
23114 dump_die_for_error (src_die);
23115 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23116 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23117 }
23118
23119 return die;
23120 }
23121
23122 /* Follow reference OFFSET.
23123 On entry *REF_CU is the CU of the source die referencing OFFSET.
23124 On exit *REF_CU is the CU of the result.
23125 Returns NULL if OFFSET is invalid. */
23126
23127 static struct die_info *
23128 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23129 struct dwarf2_cu **ref_cu)
23130 {
23131 struct die_info temp_die;
23132 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23133 struct dwarf2_per_objfile *dwarf2_per_objfile
23134 = cu->per_cu->dwarf2_per_objfile;
23135
23136 gdb_assert (cu->per_cu != NULL);
23137
23138 target_cu = cu;
23139
23140 if (cu->per_cu->is_debug_types)
23141 {
23142 /* .debug_types CUs cannot reference anything outside their CU.
23143 If they need to, they have to reference a signatured type via
23144 DW_FORM_ref_sig8. */
23145 if (!offset_in_cu_p (&cu->header, sect_off))
23146 return NULL;
23147 }
23148 else if (offset_in_dwz != cu->per_cu->is_dwz
23149 || !offset_in_cu_p (&cu->header, sect_off))
23150 {
23151 struct dwarf2_per_cu_data *per_cu;
23152
23153 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23154 dwarf2_per_objfile);
23155
23156 /* If necessary, add it to the queue and load its DIEs. */
23157 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23158 load_full_comp_unit (per_cu, false, cu->language);
23159
23160 target_cu = per_cu->cu;
23161 }
23162 else if (cu->dies == NULL)
23163 {
23164 /* We're loading full DIEs during partial symbol reading. */
23165 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23166 load_full_comp_unit (cu->per_cu, false, language_minimal);
23167 }
23168
23169 *ref_cu = target_cu;
23170 temp_die.sect_off = sect_off;
23171
23172 if (target_cu != cu)
23173 target_cu->ancestor = cu;
23174
23175 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23176 &temp_die,
23177 to_underlying (sect_off));
23178 }
23179
23180 /* Follow reference attribute ATTR of SRC_DIE.
23181 On entry *REF_CU is the CU of SRC_DIE.
23182 On exit *REF_CU is the CU of the result. */
23183
23184 static struct die_info *
23185 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23186 struct dwarf2_cu **ref_cu)
23187 {
23188 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23189 struct dwarf2_cu *cu = *ref_cu;
23190 struct die_info *die;
23191
23192 die = follow_die_offset (sect_off,
23193 (attr->form == DW_FORM_GNU_ref_alt
23194 || cu->per_cu->is_dwz),
23195 ref_cu);
23196 if (!die)
23197 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23198 "at %s [in module %s]"),
23199 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23200 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23201
23202 return die;
23203 }
23204
23205 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23206 Returned value is intended for DW_OP_call*. Returned
23207 dwarf2_locexpr_baton->data has lifetime of
23208 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23209
23210 struct dwarf2_locexpr_baton
23211 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23212 struct dwarf2_per_cu_data *per_cu,
23213 CORE_ADDR (*get_frame_pc) (void *baton),
23214 void *baton, bool resolve_abstract_p)
23215 {
23216 struct dwarf2_cu *cu;
23217 struct die_info *die;
23218 struct attribute *attr;
23219 struct dwarf2_locexpr_baton retval;
23220 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23221 struct objfile *objfile = dwarf2_per_objfile->objfile;
23222
23223 if (per_cu->cu == NULL)
23224 load_cu (per_cu, false);
23225 cu = per_cu->cu;
23226 if (cu == NULL)
23227 {
23228 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23229 Instead just throw an error, not much else we can do. */
23230 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23231 sect_offset_str (sect_off), objfile_name (objfile));
23232 }
23233
23234 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23235 if (!die)
23236 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23237 sect_offset_str (sect_off), objfile_name (objfile));
23238
23239 attr = dwarf2_attr (die, DW_AT_location, cu);
23240 if (!attr && resolve_abstract_p
23241 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23242 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23243 {
23244 CORE_ADDR pc = (*get_frame_pc) (baton);
23245
23246 for (const auto &cand_off
23247 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23248 {
23249 struct dwarf2_cu *cand_cu = cu;
23250 struct die_info *cand
23251 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23252 if (!cand
23253 || !cand->parent
23254 || cand->parent->tag != DW_TAG_subprogram)
23255 continue;
23256
23257 CORE_ADDR pc_low, pc_high;
23258 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23259 if (pc_low == ((CORE_ADDR) -1)
23260 || !(pc_low <= pc && pc < pc_high))
23261 continue;
23262
23263 die = cand;
23264 attr = dwarf2_attr (die, DW_AT_location, cu);
23265 break;
23266 }
23267 }
23268
23269 if (!attr)
23270 {
23271 /* DWARF: "If there is no such attribute, then there is no effect.".
23272 DATA is ignored if SIZE is 0. */
23273
23274 retval.data = NULL;
23275 retval.size = 0;
23276 }
23277 else if (attr_form_is_section_offset (attr))
23278 {
23279 struct dwarf2_loclist_baton loclist_baton;
23280 CORE_ADDR pc = (*get_frame_pc) (baton);
23281 size_t size;
23282
23283 fill_in_loclist_baton (cu, &loclist_baton, attr);
23284
23285 retval.data = dwarf2_find_location_expression (&loclist_baton,
23286 &size, pc);
23287 retval.size = size;
23288 }
23289 else
23290 {
23291 if (!attr_form_is_block (attr))
23292 error (_("Dwarf Error: DIE at %s referenced in module %s "
23293 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23294 sect_offset_str (sect_off), objfile_name (objfile));
23295
23296 retval.data = DW_BLOCK (attr)->data;
23297 retval.size = DW_BLOCK (attr)->size;
23298 }
23299 retval.per_cu = cu->per_cu;
23300
23301 age_cached_comp_units (dwarf2_per_objfile);
23302
23303 return retval;
23304 }
23305
23306 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23307 offset. */
23308
23309 struct dwarf2_locexpr_baton
23310 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23311 struct dwarf2_per_cu_data *per_cu,
23312 CORE_ADDR (*get_frame_pc) (void *baton),
23313 void *baton)
23314 {
23315 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23316
23317 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23318 }
23319
23320 /* Write a constant of a given type as target-ordered bytes into
23321 OBSTACK. */
23322
23323 static const gdb_byte *
23324 write_constant_as_bytes (struct obstack *obstack,
23325 enum bfd_endian byte_order,
23326 struct type *type,
23327 ULONGEST value,
23328 LONGEST *len)
23329 {
23330 gdb_byte *result;
23331
23332 *len = TYPE_LENGTH (type);
23333 result = (gdb_byte *) obstack_alloc (obstack, *len);
23334 store_unsigned_integer (result, *len, byte_order, value);
23335
23336 return result;
23337 }
23338
23339 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23340 pointer to the constant bytes and set LEN to the length of the
23341 data. If memory is needed, allocate it on OBSTACK. If the DIE
23342 does not have a DW_AT_const_value, return NULL. */
23343
23344 const gdb_byte *
23345 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23346 struct dwarf2_per_cu_data *per_cu,
23347 struct obstack *obstack,
23348 LONGEST *len)
23349 {
23350 struct dwarf2_cu *cu;
23351 struct die_info *die;
23352 struct attribute *attr;
23353 const gdb_byte *result = NULL;
23354 struct type *type;
23355 LONGEST value;
23356 enum bfd_endian byte_order;
23357 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23358
23359 if (per_cu->cu == NULL)
23360 load_cu (per_cu, false);
23361 cu = per_cu->cu;
23362 if (cu == NULL)
23363 {
23364 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23365 Instead just throw an error, not much else we can do. */
23366 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23367 sect_offset_str (sect_off), objfile_name (objfile));
23368 }
23369
23370 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23371 if (!die)
23372 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23373 sect_offset_str (sect_off), objfile_name (objfile));
23374
23375 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23376 if (attr == NULL)
23377 return NULL;
23378
23379 byte_order = (bfd_big_endian (objfile->obfd)
23380 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23381
23382 switch (attr->form)
23383 {
23384 case DW_FORM_addr:
23385 case DW_FORM_addrx:
23386 case DW_FORM_GNU_addr_index:
23387 {
23388 gdb_byte *tem;
23389
23390 *len = cu->header.addr_size;
23391 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23392 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23393 result = tem;
23394 }
23395 break;
23396 case DW_FORM_string:
23397 case DW_FORM_strp:
23398 case DW_FORM_strx:
23399 case DW_FORM_GNU_str_index:
23400 case DW_FORM_GNU_strp_alt:
23401 /* DW_STRING is already allocated on the objfile obstack, point
23402 directly to it. */
23403 result = (const gdb_byte *) DW_STRING (attr);
23404 *len = strlen (DW_STRING (attr));
23405 break;
23406 case DW_FORM_block1:
23407 case DW_FORM_block2:
23408 case DW_FORM_block4:
23409 case DW_FORM_block:
23410 case DW_FORM_exprloc:
23411 case DW_FORM_data16:
23412 result = DW_BLOCK (attr)->data;
23413 *len = DW_BLOCK (attr)->size;
23414 break;
23415
23416 /* The DW_AT_const_value attributes are supposed to carry the
23417 symbol's value "represented as it would be on the target
23418 architecture." By the time we get here, it's already been
23419 converted to host endianness, so we just need to sign- or
23420 zero-extend it as appropriate. */
23421 case DW_FORM_data1:
23422 type = die_type (die, cu);
23423 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23424 if (result == NULL)
23425 result = write_constant_as_bytes (obstack, byte_order,
23426 type, value, len);
23427 break;
23428 case DW_FORM_data2:
23429 type = die_type (die, cu);
23430 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23431 if (result == NULL)
23432 result = write_constant_as_bytes (obstack, byte_order,
23433 type, value, len);
23434 break;
23435 case DW_FORM_data4:
23436 type = die_type (die, cu);
23437 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23438 if (result == NULL)
23439 result = write_constant_as_bytes (obstack, byte_order,
23440 type, value, len);
23441 break;
23442 case DW_FORM_data8:
23443 type = die_type (die, cu);
23444 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23445 if (result == NULL)
23446 result = write_constant_as_bytes (obstack, byte_order,
23447 type, value, len);
23448 break;
23449
23450 case DW_FORM_sdata:
23451 case DW_FORM_implicit_const:
23452 type = die_type (die, cu);
23453 result = write_constant_as_bytes (obstack, byte_order,
23454 type, DW_SND (attr), len);
23455 break;
23456
23457 case DW_FORM_udata:
23458 type = die_type (die, cu);
23459 result = write_constant_as_bytes (obstack, byte_order,
23460 type, DW_UNSND (attr), len);
23461 break;
23462
23463 default:
23464 complaint (_("unsupported const value attribute form: '%s'"),
23465 dwarf_form_name (attr->form));
23466 break;
23467 }
23468
23469 return result;
23470 }
23471
23472 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23473 valid type for this die is found. */
23474
23475 struct type *
23476 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23477 struct dwarf2_per_cu_data *per_cu)
23478 {
23479 struct dwarf2_cu *cu;
23480 struct die_info *die;
23481
23482 if (per_cu->cu == NULL)
23483 load_cu (per_cu, false);
23484 cu = per_cu->cu;
23485 if (!cu)
23486 return NULL;
23487
23488 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23489 if (!die)
23490 return NULL;
23491
23492 return die_type (die, cu);
23493 }
23494
23495 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23496 PER_CU. */
23497
23498 struct type *
23499 dwarf2_get_die_type (cu_offset die_offset,
23500 struct dwarf2_per_cu_data *per_cu)
23501 {
23502 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23503 return get_die_type_at_offset (die_offset_sect, per_cu);
23504 }
23505
23506 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23507 On entry *REF_CU is the CU of SRC_DIE.
23508 On exit *REF_CU is the CU of the result.
23509 Returns NULL if the referenced DIE isn't found. */
23510
23511 static struct die_info *
23512 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23513 struct dwarf2_cu **ref_cu)
23514 {
23515 struct die_info temp_die;
23516 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23517 struct die_info *die;
23518
23519 /* While it might be nice to assert sig_type->type == NULL here,
23520 we can get here for DW_AT_imported_declaration where we need
23521 the DIE not the type. */
23522
23523 /* If necessary, add it to the queue and load its DIEs. */
23524
23525 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23526 read_signatured_type (sig_type);
23527
23528 sig_cu = sig_type->per_cu.cu;
23529 gdb_assert (sig_cu != NULL);
23530 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23531 temp_die.sect_off = sig_type->type_offset_in_section;
23532 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23533 to_underlying (temp_die.sect_off));
23534 if (die)
23535 {
23536 struct dwarf2_per_objfile *dwarf2_per_objfile
23537 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23538
23539 /* For .gdb_index version 7 keep track of included TUs.
23540 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23541 if (dwarf2_per_objfile->index_table != NULL
23542 && dwarf2_per_objfile->index_table->version <= 7)
23543 {
23544 VEC_safe_push (dwarf2_per_cu_ptr,
23545 (*ref_cu)->per_cu->imported_symtabs,
23546 sig_cu->per_cu);
23547 }
23548
23549 *ref_cu = sig_cu;
23550 if (sig_cu != cu)
23551 sig_cu->ancestor = cu;
23552
23553 return die;
23554 }
23555
23556 return NULL;
23557 }
23558
23559 /* Follow signatured type referenced by ATTR in SRC_DIE.
23560 On entry *REF_CU is the CU of SRC_DIE.
23561 On exit *REF_CU is the CU of the result.
23562 The result is the DIE of the type.
23563 If the referenced type cannot be found an error is thrown. */
23564
23565 static struct die_info *
23566 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23567 struct dwarf2_cu **ref_cu)
23568 {
23569 ULONGEST signature = DW_SIGNATURE (attr);
23570 struct signatured_type *sig_type;
23571 struct die_info *die;
23572
23573 gdb_assert (attr->form == DW_FORM_ref_sig8);
23574
23575 sig_type = lookup_signatured_type (*ref_cu, signature);
23576 /* sig_type will be NULL if the signatured type is missing from
23577 the debug info. */
23578 if (sig_type == NULL)
23579 {
23580 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23581 " from DIE at %s [in module %s]"),
23582 hex_string (signature), sect_offset_str (src_die->sect_off),
23583 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23584 }
23585
23586 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23587 if (die == NULL)
23588 {
23589 dump_die_for_error (src_die);
23590 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23591 " from DIE at %s [in module %s]"),
23592 hex_string (signature), sect_offset_str (src_die->sect_off),
23593 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23594 }
23595
23596 return die;
23597 }
23598
23599 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23600 reading in and processing the type unit if necessary. */
23601
23602 static struct type *
23603 get_signatured_type (struct die_info *die, ULONGEST signature,
23604 struct dwarf2_cu *cu)
23605 {
23606 struct dwarf2_per_objfile *dwarf2_per_objfile
23607 = cu->per_cu->dwarf2_per_objfile;
23608 struct signatured_type *sig_type;
23609 struct dwarf2_cu *type_cu;
23610 struct die_info *type_die;
23611 struct type *type;
23612
23613 sig_type = lookup_signatured_type (cu, signature);
23614 /* sig_type will be NULL if the signatured type is missing from
23615 the debug info. */
23616 if (sig_type == NULL)
23617 {
23618 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23619 " from DIE at %s [in module %s]"),
23620 hex_string (signature), sect_offset_str (die->sect_off),
23621 objfile_name (dwarf2_per_objfile->objfile));
23622 return build_error_marker_type (cu, die);
23623 }
23624
23625 /* If we already know the type we're done. */
23626 if (sig_type->type != NULL)
23627 return sig_type->type;
23628
23629 type_cu = cu;
23630 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23631 if (type_die != NULL)
23632 {
23633 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23634 is created. This is important, for example, because for c++ classes
23635 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23636 type = read_type_die (type_die, type_cu);
23637 if (type == NULL)
23638 {
23639 complaint (_("Dwarf Error: Cannot build signatured type %s"
23640 " referenced from DIE at %s [in module %s]"),
23641 hex_string (signature), sect_offset_str (die->sect_off),
23642 objfile_name (dwarf2_per_objfile->objfile));
23643 type = build_error_marker_type (cu, die);
23644 }
23645 }
23646 else
23647 {
23648 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23649 " from DIE at %s [in module %s]"),
23650 hex_string (signature), sect_offset_str (die->sect_off),
23651 objfile_name (dwarf2_per_objfile->objfile));
23652 type = build_error_marker_type (cu, die);
23653 }
23654 sig_type->type = type;
23655
23656 return type;
23657 }
23658
23659 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23660 reading in and processing the type unit if necessary. */
23661
23662 static struct type *
23663 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23664 struct dwarf2_cu *cu) /* ARI: editCase function */
23665 {
23666 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23667 if (attr_form_is_ref (attr))
23668 {
23669 struct dwarf2_cu *type_cu = cu;
23670 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23671
23672 return read_type_die (type_die, type_cu);
23673 }
23674 else if (attr->form == DW_FORM_ref_sig8)
23675 {
23676 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23677 }
23678 else
23679 {
23680 struct dwarf2_per_objfile *dwarf2_per_objfile
23681 = cu->per_cu->dwarf2_per_objfile;
23682
23683 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23684 " at %s [in module %s]"),
23685 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23686 objfile_name (dwarf2_per_objfile->objfile));
23687 return build_error_marker_type (cu, die);
23688 }
23689 }
23690
23691 /* Load the DIEs associated with type unit PER_CU into memory. */
23692
23693 static void
23694 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23695 {
23696 struct signatured_type *sig_type;
23697
23698 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23699 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23700
23701 /* We have the per_cu, but we need the signatured_type.
23702 Fortunately this is an easy translation. */
23703 gdb_assert (per_cu->is_debug_types);
23704 sig_type = (struct signatured_type *) per_cu;
23705
23706 gdb_assert (per_cu->cu == NULL);
23707
23708 read_signatured_type (sig_type);
23709
23710 gdb_assert (per_cu->cu != NULL);
23711 }
23712
23713 /* die_reader_func for read_signatured_type.
23714 This is identical to load_full_comp_unit_reader,
23715 but is kept separate for now. */
23716
23717 static void
23718 read_signatured_type_reader (const struct die_reader_specs *reader,
23719 const gdb_byte *info_ptr,
23720 struct die_info *comp_unit_die,
23721 int has_children,
23722 void *data)
23723 {
23724 struct dwarf2_cu *cu = reader->cu;
23725
23726 gdb_assert (cu->die_hash == NULL);
23727 cu->die_hash =
23728 htab_create_alloc_ex (cu->header.length / 12,
23729 die_hash,
23730 die_eq,
23731 NULL,
23732 &cu->comp_unit_obstack,
23733 hashtab_obstack_allocate,
23734 dummy_obstack_deallocate);
23735
23736 if (has_children)
23737 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23738 &info_ptr, comp_unit_die);
23739 cu->dies = comp_unit_die;
23740 /* comp_unit_die is not stored in die_hash, no need. */
23741
23742 /* We try not to read any attributes in this function, because not
23743 all CUs needed for references have been loaded yet, and symbol
23744 table processing isn't initialized. But we have to set the CU language,
23745 or we won't be able to build types correctly.
23746 Similarly, if we do not read the producer, we can not apply
23747 producer-specific interpretation. */
23748 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23749 }
23750
23751 /* Read in a signatured type and build its CU and DIEs.
23752 If the type is a stub for the real type in a DWO file,
23753 read in the real type from the DWO file as well. */
23754
23755 static void
23756 read_signatured_type (struct signatured_type *sig_type)
23757 {
23758 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23759
23760 gdb_assert (per_cu->is_debug_types);
23761 gdb_assert (per_cu->cu == NULL);
23762
23763 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23764 read_signatured_type_reader, NULL);
23765 sig_type->per_cu.tu_read = 1;
23766 }
23767
23768 /* Decode simple location descriptions.
23769 Given a pointer to a dwarf block that defines a location, compute
23770 the location and return the value.
23771
23772 NOTE drow/2003-11-18: This function is called in two situations
23773 now: for the address of static or global variables (partial symbols
23774 only) and for offsets into structures which are expected to be
23775 (more or less) constant. The partial symbol case should go away,
23776 and only the constant case should remain. That will let this
23777 function complain more accurately. A few special modes are allowed
23778 without complaint for global variables (for instance, global
23779 register values and thread-local values).
23780
23781 A location description containing no operations indicates that the
23782 object is optimized out. The return value is 0 for that case.
23783 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23784 callers will only want a very basic result and this can become a
23785 complaint.
23786
23787 Note that stack[0] is unused except as a default error return. */
23788
23789 static CORE_ADDR
23790 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23791 {
23792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23793 size_t i;
23794 size_t size = blk->size;
23795 const gdb_byte *data = blk->data;
23796 CORE_ADDR stack[64];
23797 int stacki;
23798 unsigned int bytes_read, unsnd;
23799 gdb_byte op;
23800
23801 i = 0;
23802 stacki = 0;
23803 stack[stacki] = 0;
23804 stack[++stacki] = 0;
23805
23806 while (i < size)
23807 {
23808 op = data[i++];
23809 switch (op)
23810 {
23811 case DW_OP_lit0:
23812 case DW_OP_lit1:
23813 case DW_OP_lit2:
23814 case DW_OP_lit3:
23815 case DW_OP_lit4:
23816 case DW_OP_lit5:
23817 case DW_OP_lit6:
23818 case DW_OP_lit7:
23819 case DW_OP_lit8:
23820 case DW_OP_lit9:
23821 case DW_OP_lit10:
23822 case DW_OP_lit11:
23823 case DW_OP_lit12:
23824 case DW_OP_lit13:
23825 case DW_OP_lit14:
23826 case DW_OP_lit15:
23827 case DW_OP_lit16:
23828 case DW_OP_lit17:
23829 case DW_OP_lit18:
23830 case DW_OP_lit19:
23831 case DW_OP_lit20:
23832 case DW_OP_lit21:
23833 case DW_OP_lit22:
23834 case DW_OP_lit23:
23835 case DW_OP_lit24:
23836 case DW_OP_lit25:
23837 case DW_OP_lit26:
23838 case DW_OP_lit27:
23839 case DW_OP_lit28:
23840 case DW_OP_lit29:
23841 case DW_OP_lit30:
23842 case DW_OP_lit31:
23843 stack[++stacki] = op - DW_OP_lit0;
23844 break;
23845
23846 case DW_OP_reg0:
23847 case DW_OP_reg1:
23848 case DW_OP_reg2:
23849 case DW_OP_reg3:
23850 case DW_OP_reg4:
23851 case DW_OP_reg5:
23852 case DW_OP_reg6:
23853 case DW_OP_reg7:
23854 case DW_OP_reg8:
23855 case DW_OP_reg9:
23856 case DW_OP_reg10:
23857 case DW_OP_reg11:
23858 case DW_OP_reg12:
23859 case DW_OP_reg13:
23860 case DW_OP_reg14:
23861 case DW_OP_reg15:
23862 case DW_OP_reg16:
23863 case DW_OP_reg17:
23864 case DW_OP_reg18:
23865 case DW_OP_reg19:
23866 case DW_OP_reg20:
23867 case DW_OP_reg21:
23868 case DW_OP_reg22:
23869 case DW_OP_reg23:
23870 case DW_OP_reg24:
23871 case DW_OP_reg25:
23872 case DW_OP_reg26:
23873 case DW_OP_reg27:
23874 case DW_OP_reg28:
23875 case DW_OP_reg29:
23876 case DW_OP_reg30:
23877 case DW_OP_reg31:
23878 stack[++stacki] = op - DW_OP_reg0;
23879 if (i < size)
23880 dwarf2_complex_location_expr_complaint ();
23881 break;
23882
23883 case DW_OP_regx:
23884 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23885 i += bytes_read;
23886 stack[++stacki] = unsnd;
23887 if (i < size)
23888 dwarf2_complex_location_expr_complaint ();
23889 break;
23890
23891 case DW_OP_addr:
23892 stack[++stacki] = read_address (objfile->obfd, &data[i],
23893 cu, &bytes_read);
23894 i += bytes_read;
23895 break;
23896
23897 case DW_OP_const1u:
23898 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23899 i += 1;
23900 break;
23901
23902 case DW_OP_const1s:
23903 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23904 i += 1;
23905 break;
23906
23907 case DW_OP_const2u:
23908 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23909 i += 2;
23910 break;
23911
23912 case DW_OP_const2s:
23913 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23914 i += 2;
23915 break;
23916
23917 case DW_OP_const4u:
23918 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23919 i += 4;
23920 break;
23921
23922 case DW_OP_const4s:
23923 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23924 i += 4;
23925 break;
23926
23927 case DW_OP_const8u:
23928 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23929 i += 8;
23930 break;
23931
23932 case DW_OP_constu:
23933 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23934 &bytes_read);
23935 i += bytes_read;
23936 break;
23937
23938 case DW_OP_consts:
23939 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23940 i += bytes_read;
23941 break;
23942
23943 case DW_OP_dup:
23944 stack[stacki + 1] = stack[stacki];
23945 stacki++;
23946 break;
23947
23948 case DW_OP_plus:
23949 stack[stacki - 1] += stack[stacki];
23950 stacki--;
23951 break;
23952
23953 case DW_OP_plus_uconst:
23954 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23955 &bytes_read);
23956 i += bytes_read;
23957 break;
23958
23959 case DW_OP_minus:
23960 stack[stacki - 1] -= stack[stacki];
23961 stacki--;
23962 break;
23963
23964 case DW_OP_deref:
23965 /* If we're not the last op, then we definitely can't encode
23966 this using GDB's address_class enum. This is valid for partial
23967 global symbols, although the variable's address will be bogus
23968 in the psymtab. */
23969 if (i < size)
23970 dwarf2_complex_location_expr_complaint ();
23971 break;
23972
23973 case DW_OP_GNU_push_tls_address:
23974 case DW_OP_form_tls_address:
23975 /* The top of the stack has the offset from the beginning
23976 of the thread control block at which the variable is located. */
23977 /* Nothing should follow this operator, so the top of stack would
23978 be returned. */
23979 /* This is valid for partial global symbols, but the variable's
23980 address will be bogus in the psymtab. Make it always at least
23981 non-zero to not look as a variable garbage collected by linker
23982 which have DW_OP_addr 0. */
23983 if (i < size)
23984 dwarf2_complex_location_expr_complaint ();
23985 stack[stacki]++;
23986 break;
23987
23988 case DW_OP_GNU_uninit:
23989 break;
23990
23991 case DW_OP_addrx:
23992 case DW_OP_GNU_addr_index:
23993 case DW_OP_GNU_const_index:
23994 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23995 &bytes_read);
23996 i += bytes_read;
23997 break;
23998
23999 default:
24000 {
24001 const char *name = get_DW_OP_name (op);
24002
24003 if (name)
24004 complaint (_("unsupported stack op: '%s'"),
24005 name);
24006 else
24007 complaint (_("unsupported stack op: '%02x'"),
24008 op);
24009 }
24010
24011 return (stack[stacki]);
24012 }
24013
24014 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24015 outside of the allocated space. Also enforce minimum>0. */
24016 if (stacki >= ARRAY_SIZE (stack) - 1)
24017 {
24018 complaint (_("location description stack overflow"));
24019 return 0;
24020 }
24021
24022 if (stacki <= 0)
24023 {
24024 complaint (_("location description stack underflow"));
24025 return 0;
24026 }
24027 }
24028 return (stack[stacki]);
24029 }
24030
24031 /* memory allocation interface */
24032
24033 static struct dwarf_block *
24034 dwarf_alloc_block (struct dwarf2_cu *cu)
24035 {
24036 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24037 }
24038
24039 static struct die_info *
24040 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24041 {
24042 struct die_info *die;
24043 size_t size = sizeof (struct die_info);
24044
24045 if (num_attrs > 1)
24046 size += (num_attrs - 1) * sizeof (struct attribute);
24047
24048 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24049 memset (die, 0, sizeof (struct die_info));
24050 return (die);
24051 }
24052
24053 \f
24054 /* Macro support. */
24055
24056 /* Return file name relative to the compilation directory of file number I in
24057 *LH's file name table. The result is allocated using xmalloc; the caller is
24058 responsible for freeing it. */
24059
24060 static char *
24061 file_file_name (int file, struct line_header *lh)
24062 {
24063 /* Is the file number a valid index into the line header's file name
24064 table? Remember that file numbers start with one, not zero. */
24065 if (1 <= file && file <= lh->file_names.size ())
24066 {
24067 const file_entry &fe = lh->file_names[file - 1];
24068
24069 if (!IS_ABSOLUTE_PATH (fe.name))
24070 {
24071 const char *dir = fe.include_dir (lh);
24072 if (dir != NULL)
24073 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24074 }
24075 return xstrdup (fe.name);
24076 }
24077 else
24078 {
24079 /* The compiler produced a bogus file number. We can at least
24080 record the macro definitions made in the file, even if we
24081 won't be able to find the file by name. */
24082 char fake_name[80];
24083
24084 xsnprintf (fake_name, sizeof (fake_name),
24085 "<bad macro file number %d>", file);
24086
24087 complaint (_("bad file number in macro information (%d)"),
24088 file);
24089
24090 return xstrdup (fake_name);
24091 }
24092 }
24093
24094 /* Return the full name of file number I in *LH's file name table.
24095 Use COMP_DIR as the name of the current directory of the
24096 compilation. The result is allocated using xmalloc; the caller is
24097 responsible for freeing it. */
24098 static char *
24099 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24100 {
24101 /* Is the file number a valid index into the line header's file name
24102 table? Remember that file numbers start with one, not zero. */
24103 if (1 <= file && file <= lh->file_names.size ())
24104 {
24105 char *relative = file_file_name (file, lh);
24106
24107 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24108 return relative;
24109 return reconcat (relative, comp_dir, SLASH_STRING,
24110 relative, (char *) NULL);
24111 }
24112 else
24113 return file_file_name (file, lh);
24114 }
24115
24116
24117 static struct macro_source_file *
24118 macro_start_file (struct dwarf2_cu *cu,
24119 int file, int line,
24120 struct macro_source_file *current_file,
24121 struct line_header *lh)
24122 {
24123 /* File name relative to the compilation directory of this source file. */
24124 char *file_name = file_file_name (file, lh);
24125
24126 if (! current_file)
24127 {
24128 /* Note: We don't create a macro table for this compilation unit
24129 at all until we actually get a filename. */
24130 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24131
24132 /* If we have no current file, then this must be the start_file
24133 directive for the compilation unit's main source file. */
24134 current_file = macro_set_main (macro_table, file_name);
24135 macro_define_special (macro_table);
24136 }
24137 else
24138 current_file = macro_include (current_file, line, file_name);
24139
24140 xfree (file_name);
24141
24142 return current_file;
24143 }
24144
24145 static const char *
24146 consume_improper_spaces (const char *p, const char *body)
24147 {
24148 if (*p == ' ')
24149 {
24150 complaint (_("macro definition contains spaces "
24151 "in formal argument list:\n`%s'"),
24152 body);
24153
24154 while (*p == ' ')
24155 p++;
24156 }
24157
24158 return p;
24159 }
24160
24161
24162 static void
24163 parse_macro_definition (struct macro_source_file *file, int line,
24164 const char *body)
24165 {
24166 const char *p;
24167
24168 /* The body string takes one of two forms. For object-like macro
24169 definitions, it should be:
24170
24171 <macro name> " " <definition>
24172
24173 For function-like macro definitions, it should be:
24174
24175 <macro name> "() " <definition>
24176 or
24177 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24178
24179 Spaces may appear only where explicitly indicated, and in the
24180 <definition>.
24181
24182 The Dwarf 2 spec says that an object-like macro's name is always
24183 followed by a space, but versions of GCC around March 2002 omit
24184 the space when the macro's definition is the empty string.
24185
24186 The Dwarf 2 spec says that there should be no spaces between the
24187 formal arguments in a function-like macro's formal argument list,
24188 but versions of GCC around March 2002 include spaces after the
24189 commas. */
24190
24191
24192 /* Find the extent of the macro name. The macro name is terminated
24193 by either a space or null character (for an object-like macro) or
24194 an opening paren (for a function-like macro). */
24195 for (p = body; *p; p++)
24196 if (*p == ' ' || *p == '(')
24197 break;
24198
24199 if (*p == ' ' || *p == '\0')
24200 {
24201 /* It's an object-like macro. */
24202 int name_len = p - body;
24203 char *name = savestring (body, name_len);
24204 const char *replacement;
24205
24206 if (*p == ' ')
24207 replacement = body + name_len + 1;
24208 else
24209 {
24210 dwarf2_macro_malformed_definition_complaint (body);
24211 replacement = body + name_len;
24212 }
24213
24214 macro_define_object (file, line, name, replacement);
24215
24216 xfree (name);
24217 }
24218 else if (*p == '(')
24219 {
24220 /* It's a function-like macro. */
24221 char *name = savestring (body, p - body);
24222 int argc = 0;
24223 int argv_size = 1;
24224 char **argv = XNEWVEC (char *, argv_size);
24225
24226 p++;
24227
24228 p = consume_improper_spaces (p, body);
24229
24230 /* Parse the formal argument list. */
24231 while (*p && *p != ')')
24232 {
24233 /* Find the extent of the current argument name. */
24234 const char *arg_start = p;
24235
24236 while (*p && *p != ',' && *p != ')' && *p != ' ')
24237 p++;
24238
24239 if (! *p || p == arg_start)
24240 dwarf2_macro_malformed_definition_complaint (body);
24241 else
24242 {
24243 /* Make sure argv has room for the new argument. */
24244 if (argc >= argv_size)
24245 {
24246 argv_size *= 2;
24247 argv = XRESIZEVEC (char *, argv, argv_size);
24248 }
24249
24250 argv[argc++] = savestring (arg_start, p - arg_start);
24251 }
24252
24253 p = consume_improper_spaces (p, body);
24254
24255 /* Consume the comma, if present. */
24256 if (*p == ',')
24257 {
24258 p++;
24259
24260 p = consume_improper_spaces (p, body);
24261 }
24262 }
24263
24264 if (*p == ')')
24265 {
24266 p++;
24267
24268 if (*p == ' ')
24269 /* Perfectly formed definition, no complaints. */
24270 macro_define_function (file, line, name,
24271 argc, (const char **) argv,
24272 p + 1);
24273 else if (*p == '\0')
24274 {
24275 /* Complain, but do define it. */
24276 dwarf2_macro_malformed_definition_complaint (body);
24277 macro_define_function (file, line, name,
24278 argc, (const char **) argv,
24279 p);
24280 }
24281 else
24282 /* Just complain. */
24283 dwarf2_macro_malformed_definition_complaint (body);
24284 }
24285 else
24286 /* Just complain. */
24287 dwarf2_macro_malformed_definition_complaint (body);
24288
24289 xfree (name);
24290 {
24291 int i;
24292
24293 for (i = 0; i < argc; i++)
24294 xfree (argv[i]);
24295 }
24296 xfree (argv);
24297 }
24298 else
24299 dwarf2_macro_malformed_definition_complaint (body);
24300 }
24301
24302 /* Skip some bytes from BYTES according to the form given in FORM.
24303 Returns the new pointer. */
24304
24305 static const gdb_byte *
24306 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24307 enum dwarf_form form,
24308 unsigned int offset_size,
24309 struct dwarf2_section_info *section)
24310 {
24311 unsigned int bytes_read;
24312
24313 switch (form)
24314 {
24315 case DW_FORM_data1:
24316 case DW_FORM_flag:
24317 ++bytes;
24318 break;
24319
24320 case DW_FORM_data2:
24321 bytes += 2;
24322 break;
24323
24324 case DW_FORM_data4:
24325 bytes += 4;
24326 break;
24327
24328 case DW_FORM_data8:
24329 bytes += 8;
24330 break;
24331
24332 case DW_FORM_data16:
24333 bytes += 16;
24334 break;
24335
24336 case DW_FORM_string:
24337 read_direct_string (abfd, bytes, &bytes_read);
24338 bytes += bytes_read;
24339 break;
24340
24341 case DW_FORM_sec_offset:
24342 case DW_FORM_strp:
24343 case DW_FORM_GNU_strp_alt:
24344 bytes += offset_size;
24345 break;
24346
24347 case DW_FORM_block:
24348 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24349 bytes += bytes_read;
24350 break;
24351
24352 case DW_FORM_block1:
24353 bytes += 1 + read_1_byte (abfd, bytes);
24354 break;
24355 case DW_FORM_block2:
24356 bytes += 2 + read_2_bytes (abfd, bytes);
24357 break;
24358 case DW_FORM_block4:
24359 bytes += 4 + read_4_bytes (abfd, bytes);
24360 break;
24361
24362 case DW_FORM_addrx:
24363 case DW_FORM_sdata:
24364 case DW_FORM_strx:
24365 case DW_FORM_udata:
24366 case DW_FORM_GNU_addr_index:
24367 case DW_FORM_GNU_str_index:
24368 bytes = gdb_skip_leb128 (bytes, buffer_end);
24369 if (bytes == NULL)
24370 {
24371 dwarf2_section_buffer_overflow_complaint (section);
24372 return NULL;
24373 }
24374 break;
24375
24376 case DW_FORM_implicit_const:
24377 break;
24378
24379 default:
24380 {
24381 complaint (_("invalid form 0x%x in `%s'"),
24382 form, get_section_name (section));
24383 return NULL;
24384 }
24385 }
24386
24387 return bytes;
24388 }
24389
24390 /* A helper for dwarf_decode_macros that handles skipping an unknown
24391 opcode. Returns an updated pointer to the macro data buffer; or,
24392 on error, issues a complaint and returns NULL. */
24393
24394 static const gdb_byte *
24395 skip_unknown_opcode (unsigned int opcode,
24396 const gdb_byte **opcode_definitions,
24397 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24398 bfd *abfd,
24399 unsigned int offset_size,
24400 struct dwarf2_section_info *section)
24401 {
24402 unsigned int bytes_read, i;
24403 unsigned long arg;
24404 const gdb_byte *defn;
24405
24406 if (opcode_definitions[opcode] == NULL)
24407 {
24408 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24409 opcode);
24410 return NULL;
24411 }
24412
24413 defn = opcode_definitions[opcode];
24414 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24415 defn += bytes_read;
24416
24417 for (i = 0; i < arg; ++i)
24418 {
24419 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24420 (enum dwarf_form) defn[i], offset_size,
24421 section);
24422 if (mac_ptr == NULL)
24423 {
24424 /* skip_form_bytes already issued the complaint. */
24425 return NULL;
24426 }
24427 }
24428
24429 return mac_ptr;
24430 }
24431
24432 /* A helper function which parses the header of a macro section.
24433 If the macro section is the extended (for now called "GNU") type,
24434 then this updates *OFFSET_SIZE. Returns a pointer to just after
24435 the header, or issues a complaint and returns NULL on error. */
24436
24437 static const gdb_byte *
24438 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24439 bfd *abfd,
24440 const gdb_byte *mac_ptr,
24441 unsigned int *offset_size,
24442 int section_is_gnu)
24443 {
24444 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24445
24446 if (section_is_gnu)
24447 {
24448 unsigned int version, flags;
24449
24450 version = read_2_bytes (abfd, mac_ptr);
24451 if (version != 4 && version != 5)
24452 {
24453 complaint (_("unrecognized version `%d' in .debug_macro section"),
24454 version);
24455 return NULL;
24456 }
24457 mac_ptr += 2;
24458
24459 flags = read_1_byte (abfd, mac_ptr);
24460 ++mac_ptr;
24461 *offset_size = (flags & 1) ? 8 : 4;
24462
24463 if ((flags & 2) != 0)
24464 /* We don't need the line table offset. */
24465 mac_ptr += *offset_size;
24466
24467 /* Vendor opcode descriptions. */
24468 if ((flags & 4) != 0)
24469 {
24470 unsigned int i, count;
24471
24472 count = read_1_byte (abfd, mac_ptr);
24473 ++mac_ptr;
24474 for (i = 0; i < count; ++i)
24475 {
24476 unsigned int opcode, bytes_read;
24477 unsigned long arg;
24478
24479 opcode = read_1_byte (abfd, mac_ptr);
24480 ++mac_ptr;
24481 opcode_definitions[opcode] = mac_ptr;
24482 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24483 mac_ptr += bytes_read;
24484 mac_ptr += arg;
24485 }
24486 }
24487 }
24488
24489 return mac_ptr;
24490 }
24491
24492 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24493 including DW_MACRO_import. */
24494
24495 static void
24496 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24497 bfd *abfd,
24498 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24499 struct macro_source_file *current_file,
24500 struct line_header *lh,
24501 struct dwarf2_section_info *section,
24502 int section_is_gnu, int section_is_dwz,
24503 unsigned int offset_size,
24504 htab_t include_hash)
24505 {
24506 struct dwarf2_per_objfile *dwarf2_per_objfile
24507 = cu->per_cu->dwarf2_per_objfile;
24508 struct objfile *objfile = dwarf2_per_objfile->objfile;
24509 enum dwarf_macro_record_type macinfo_type;
24510 int at_commandline;
24511 const gdb_byte *opcode_definitions[256];
24512
24513 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24514 &offset_size, section_is_gnu);
24515 if (mac_ptr == NULL)
24516 {
24517 /* We already issued a complaint. */
24518 return;
24519 }
24520
24521 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24522 GDB is still reading the definitions from command line. First
24523 DW_MACINFO_start_file will need to be ignored as it was already executed
24524 to create CURRENT_FILE for the main source holding also the command line
24525 definitions. On first met DW_MACINFO_start_file this flag is reset to
24526 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24527
24528 at_commandline = 1;
24529
24530 do
24531 {
24532 /* Do we at least have room for a macinfo type byte? */
24533 if (mac_ptr >= mac_end)
24534 {
24535 dwarf2_section_buffer_overflow_complaint (section);
24536 break;
24537 }
24538
24539 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24540 mac_ptr++;
24541
24542 /* Note that we rely on the fact that the corresponding GNU and
24543 DWARF constants are the same. */
24544 DIAGNOSTIC_PUSH
24545 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24546 switch (macinfo_type)
24547 {
24548 /* A zero macinfo type indicates the end of the macro
24549 information. */
24550 case 0:
24551 break;
24552
24553 case DW_MACRO_define:
24554 case DW_MACRO_undef:
24555 case DW_MACRO_define_strp:
24556 case DW_MACRO_undef_strp:
24557 case DW_MACRO_define_sup:
24558 case DW_MACRO_undef_sup:
24559 {
24560 unsigned int bytes_read;
24561 int line;
24562 const char *body;
24563 int is_define;
24564
24565 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24566 mac_ptr += bytes_read;
24567
24568 if (macinfo_type == DW_MACRO_define
24569 || macinfo_type == DW_MACRO_undef)
24570 {
24571 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24572 mac_ptr += bytes_read;
24573 }
24574 else
24575 {
24576 LONGEST str_offset;
24577
24578 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24579 mac_ptr += offset_size;
24580
24581 if (macinfo_type == DW_MACRO_define_sup
24582 || macinfo_type == DW_MACRO_undef_sup
24583 || section_is_dwz)
24584 {
24585 struct dwz_file *dwz
24586 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24587
24588 body = read_indirect_string_from_dwz (objfile,
24589 dwz, str_offset);
24590 }
24591 else
24592 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24593 abfd, str_offset);
24594 }
24595
24596 is_define = (macinfo_type == DW_MACRO_define
24597 || macinfo_type == DW_MACRO_define_strp
24598 || macinfo_type == DW_MACRO_define_sup);
24599 if (! current_file)
24600 {
24601 /* DWARF violation as no main source is present. */
24602 complaint (_("debug info with no main source gives macro %s "
24603 "on line %d: %s"),
24604 is_define ? _("definition") : _("undefinition"),
24605 line, body);
24606 break;
24607 }
24608 if ((line == 0 && !at_commandline)
24609 || (line != 0 && at_commandline))
24610 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24611 at_commandline ? _("command-line") : _("in-file"),
24612 is_define ? _("definition") : _("undefinition"),
24613 line == 0 ? _("zero") : _("non-zero"), line, body);
24614
24615 if (body == NULL)
24616 {
24617 /* Fedora's rpm-build's "debugedit" binary
24618 corrupted .debug_macro sections.
24619
24620 For more info, see
24621 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24622 complaint (_("debug info gives %s invalid macro %s "
24623 "without body (corrupted?) at line %d "
24624 "on file %s"),
24625 at_commandline ? _("command-line") : _("in-file"),
24626 is_define ? _("definition") : _("undefinition"),
24627 line, current_file->filename);
24628 }
24629 else if (is_define)
24630 parse_macro_definition (current_file, line, body);
24631 else
24632 {
24633 gdb_assert (macinfo_type == DW_MACRO_undef
24634 || macinfo_type == DW_MACRO_undef_strp
24635 || macinfo_type == DW_MACRO_undef_sup);
24636 macro_undef (current_file, line, body);
24637 }
24638 }
24639 break;
24640
24641 case DW_MACRO_start_file:
24642 {
24643 unsigned int bytes_read;
24644 int line, file;
24645
24646 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24647 mac_ptr += bytes_read;
24648 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24649 mac_ptr += bytes_read;
24650
24651 if ((line == 0 && !at_commandline)
24652 || (line != 0 && at_commandline))
24653 complaint (_("debug info gives source %d included "
24654 "from %s at %s line %d"),
24655 file, at_commandline ? _("command-line") : _("file"),
24656 line == 0 ? _("zero") : _("non-zero"), line);
24657
24658 if (at_commandline)
24659 {
24660 /* This DW_MACRO_start_file was executed in the
24661 pass one. */
24662 at_commandline = 0;
24663 }
24664 else
24665 current_file = macro_start_file (cu, file, line, current_file,
24666 lh);
24667 }
24668 break;
24669
24670 case DW_MACRO_end_file:
24671 if (! current_file)
24672 complaint (_("macro debug info has an unmatched "
24673 "`close_file' directive"));
24674 else
24675 {
24676 current_file = current_file->included_by;
24677 if (! current_file)
24678 {
24679 enum dwarf_macro_record_type next_type;
24680
24681 /* GCC circa March 2002 doesn't produce the zero
24682 type byte marking the end of the compilation
24683 unit. Complain if it's not there, but exit no
24684 matter what. */
24685
24686 /* Do we at least have room for a macinfo type byte? */
24687 if (mac_ptr >= mac_end)
24688 {
24689 dwarf2_section_buffer_overflow_complaint (section);
24690 return;
24691 }
24692
24693 /* We don't increment mac_ptr here, so this is just
24694 a look-ahead. */
24695 next_type
24696 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24697 mac_ptr);
24698 if (next_type != 0)
24699 complaint (_("no terminating 0-type entry for "
24700 "macros in `.debug_macinfo' section"));
24701
24702 return;
24703 }
24704 }
24705 break;
24706
24707 case DW_MACRO_import:
24708 case DW_MACRO_import_sup:
24709 {
24710 LONGEST offset;
24711 void **slot;
24712 bfd *include_bfd = abfd;
24713 struct dwarf2_section_info *include_section = section;
24714 const gdb_byte *include_mac_end = mac_end;
24715 int is_dwz = section_is_dwz;
24716 const gdb_byte *new_mac_ptr;
24717
24718 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24719 mac_ptr += offset_size;
24720
24721 if (macinfo_type == DW_MACRO_import_sup)
24722 {
24723 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24724
24725 dwarf2_read_section (objfile, &dwz->macro);
24726
24727 include_section = &dwz->macro;
24728 include_bfd = get_section_bfd_owner (include_section);
24729 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24730 is_dwz = 1;
24731 }
24732
24733 new_mac_ptr = include_section->buffer + offset;
24734 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24735
24736 if (*slot != NULL)
24737 {
24738 /* This has actually happened; see
24739 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24740 complaint (_("recursive DW_MACRO_import in "
24741 ".debug_macro section"));
24742 }
24743 else
24744 {
24745 *slot = (void *) new_mac_ptr;
24746
24747 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24748 include_mac_end, current_file, lh,
24749 section, section_is_gnu, is_dwz,
24750 offset_size, include_hash);
24751
24752 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24753 }
24754 }
24755 break;
24756
24757 case DW_MACINFO_vendor_ext:
24758 if (!section_is_gnu)
24759 {
24760 unsigned int bytes_read;
24761
24762 /* This reads the constant, but since we don't recognize
24763 any vendor extensions, we ignore it. */
24764 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24765 mac_ptr += bytes_read;
24766 read_direct_string (abfd, mac_ptr, &bytes_read);
24767 mac_ptr += bytes_read;
24768
24769 /* We don't recognize any vendor extensions. */
24770 break;
24771 }
24772 /* FALLTHROUGH */
24773
24774 default:
24775 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24776 mac_ptr, mac_end, abfd, offset_size,
24777 section);
24778 if (mac_ptr == NULL)
24779 return;
24780 break;
24781 }
24782 DIAGNOSTIC_POP
24783 } while (macinfo_type != 0);
24784 }
24785
24786 static void
24787 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24788 int section_is_gnu)
24789 {
24790 struct dwarf2_per_objfile *dwarf2_per_objfile
24791 = cu->per_cu->dwarf2_per_objfile;
24792 struct objfile *objfile = dwarf2_per_objfile->objfile;
24793 struct line_header *lh = cu->line_header;
24794 bfd *abfd;
24795 const gdb_byte *mac_ptr, *mac_end;
24796 struct macro_source_file *current_file = 0;
24797 enum dwarf_macro_record_type macinfo_type;
24798 unsigned int offset_size = cu->header.offset_size;
24799 const gdb_byte *opcode_definitions[256];
24800 void **slot;
24801 struct dwarf2_section_info *section;
24802 const char *section_name;
24803
24804 if (cu->dwo_unit != NULL)
24805 {
24806 if (section_is_gnu)
24807 {
24808 section = &cu->dwo_unit->dwo_file->sections.macro;
24809 section_name = ".debug_macro.dwo";
24810 }
24811 else
24812 {
24813 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24814 section_name = ".debug_macinfo.dwo";
24815 }
24816 }
24817 else
24818 {
24819 if (section_is_gnu)
24820 {
24821 section = &dwarf2_per_objfile->macro;
24822 section_name = ".debug_macro";
24823 }
24824 else
24825 {
24826 section = &dwarf2_per_objfile->macinfo;
24827 section_name = ".debug_macinfo";
24828 }
24829 }
24830
24831 dwarf2_read_section (objfile, section);
24832 if (section->buffer == NULL)
24833 {
24834 complaint (_("missing %s section"), section_name);
24835 return;
24836 }
24837 abfd = get_section_bfd_owner (section);
24838
24839 /* First pass: Find the name of the base filename.
24840 This filename is needed in order to process all macros whose definition
24841 (or undefinition) comes from the command line. These macros are defined
24842 before the first DW_MACINFO_start_file entry, and yet still need to be
24843 associated to the base file.
24844
24845 To determine the base file name, we scan the macro definitions until we
24846 reach the first DW_MACINFO_start_file entry. We then initialize
24847 CURRENT_FILE accordingly so that any macro definition found before the
24848 first DW_MACINFO_start_file can still be associated to the base file. */
24849
24850 mac_ptr = section->buffer + offset;
24851 mac_end = section->buffer + section->size;
24852
24853 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24854 &offset_size, section_is_gnu);
24855 if (mac_ptr == NULL)
24856 {
24857 /* We already issued a complaint. */
24858 return;
24859 }
24860
24861 do
24862 {
24863 /* Do we at least have room for a macinfo type byte? */
24864 if (mac_ptr >= mac_end)
24865 {
24866 /* Complaint is printed during the second pass as GDB will probably
24867 stop the first pass earlier upon finding
24868 DW_MACINFO_start_file. */
24869 break;
24870 }
24871
24872 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24873 mac_ptr++;
24874
24875 /* Note that we rely on the fact that the corresponding GNU and
24876 DWARF constants are the same. */
24877 DIAGNOSTIC_PUSH
24878 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24879 switch (macinfo_type)
24880 {
24881 /* A zero macinfo type indicates the end of the macro
24882 information. */
24883 case 0:
24884 break;
24885
24886 case DW_MACRO_define:
24887 case DW_MACRO_undef:
24888 /* Only skip the data by MAC_PTR. */
24889 {
24890 unsigned int bytes_read;
24891
24892 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24893 mac_ptr += bytes_read;
24894 read_direct_string (abfd, mac_ptr, &bytes_read);
24895 mac_ptr += bytes_read;
24896 }
24897 break;
24898
24899 case DW_MACRO_start_file:
24900 {
24901 unsigned int bytes_read;
24902 int line, file;
24903
24904 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24905 mac_ptr += bytes_read;
24906 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24907 mac_ptr += bytes_read;
24908
24909 current_file = macro_start_file (cu, file, line, current_file, lh);
24910 }
24911 break;
24912
24913 case DW_MACRO_end_file:
24914 /* No data to skip by MAC_PTR. */
24915 break;
24916
24917 case DW_MACRO_define_strp:
24918 case DW_MACRO_undef_strp:
24919 case DW_MACRO_define_sup:
24920 case DW_MACRO_undef_sup:
24921 {
24922 unsigned int bytes_read;
24923
24924 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24925 mac_ptr += bytes_read;
24926 mac_ptr += offset_size;
24927 }
24928 break;
24929
24930 case DW_MACRO_import:
24931 case DW_MACRO_import_sup:
24932 /* Note that, according to the spec, a transparent include
24933 chain cannot call DW_MACRO_start_file. So, we can just
24934 skip this opcode. */
24935 mac_ptr += offset_size;
24936 break;
24937
24938 case DW_MACINFO_vendor_ext:
24939 /* Only skip the data by MAC_PTR. */
24940 if (!section_is_gnu)
24941 {
24942 unsigned int bytes_read;
24943
24944 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24945 mac_ptr += bytes_read;
24946 read_direct_string (abfd, mac_ptr, &bytes_read);
24947 mac_ptr += bytes_read;
24948 }
24949 /* FALLTHROUGH */
24950
24951 default:
24952 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24953 mac_ptr, mac_end, abfd, offset_size,
24954 section);
24955 if (mac_ptr == NULL)
24956 return;
24957 break;
24958 }
24959 DIAGNOSTIC_POP
24960 } while (macinfo_type != 0 && current_file == NULL);
24961
24962 /* Second pass: Process all entries.
24963
24964 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24965 command-line macro definitions/undefinitions. This flag is unset when we
24966 reach the first DW_MACINFO_start_file entry. */
24967
24968 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24969 htab_eq_pointer,
24970 NULL, xcalloc, xfree));
24971 mac_ptr = section->buffer + offset;
24972 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24973 *slot = (void *) mac_ptr;
24974 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24975 current_file, lh, section,
24976 section_is_gnu, 0, offset_size,
24977 include_hash.get ());
24978 }
24979
24980 /* Check if the attribute's form is a DW_FORM_block*
24981 if so return true else false. */
24982
24983 static int
24984 attr_form_is_block (const struct attribute *attr)
24985 {
24986 return (attr == NULL ? 0 :
24987 attr->form == DW_FORM_block1
24988 || attr->form == DW_FORM_block2
24989 || attr->form == DW_FORM_block4
24990 || attr->form == DW_FORM_block
24991 || attr->form == DW_FORM_exprloc);
24992 }
24993
24994 /* Return non-zero if ATTR's value is a section offset --- classes
24995 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24996 You may use DW_UNSND (attr) to retrieve such offsets.
24997
24998 Section 7.5.4, "Attribute Encodings", explains that no attribute
24999 may have a value that belongs to more than one of these classes; it
25000 would be ambiguous if we did, because we use the same forms for all
25001 of them. */
25002
25003 static int
25004 attr_form_is_section_offset (const struct attribute *attr)
25005 {
25006 return (attr->form == DW_FORM_data4
25007 || attr->form == DW_FORM_data8
25008 || attr->form == DW_FORM_sec_offset);
25009 }
25010
25011 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25012 zero otherwise. When this function returns true, you can apply
25013 dwarf2_get_attr_constant_value to it.
25014
25015 However, note that for some attributes you must check
25016 attr_form_is_section_offset before using this test. DW_FORM_data4
25017 and DW_FORM_data8 are members of both the constant class, and of
25018 the classes that contain offsets into other debug sections
25019 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25020 that, if an attribute's can be either a constant or one of the
25021 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25022 taken as section offsets, not constants.
25023
25024 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25025 cannot handle that. */
25026
25027 static int
25028 attr_form_is_constant (const struct attribute *attr)
25029 {
25030 switch (attr->form)
25031 {
25032 case DW_FORM_sdata:
25033 case DW_FORM_udata:
25034 case DW_FORM_data1:
25035 case DW_FORM_data2:
25036 case DW_FORM_data4:
25037 case DW_FORM_data8:
25038 case DW_FORM_implicit_const:
25039 return 1;
25040 default:
25041 return 0;
25042 }
25043 }
25044
25045
25046 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25047 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25048
25049 static int
25050 attr_form_is_ref (const struct attribute *attr)
25051 {
25052 switch (attr->form)
25053 {
25054 case DW_FORM_ref_addr:
25055 case DW_FORM_ref1:
25056 case DW_FORM_ref2:
25057 case DW_FORM_ref4:
25058 case DW_FORM_ref8:
25059 case DW_FORM_ref_udata:
25060 case DW_FORM_GNU_ref_alt:
25061 return 1;
25062 default:
25063 return 0;
25064 }
25065 }
25066
25067 /* Return the .debug_loc section to use for CU.
25068 For DWO files use .debug_loc.dwo. */
25069
25070 static struct dwarf2_section_info *
25071 cu_debug_loc_section (struct dwarf2_cu *cu)
25072 {
25073 struct dwarf2_per_objfile *dwarf2_per_objfile
25074 = cu->per_cu->dwarf2_per_objfile;
25075
25076 if (cu->dwo_unit)
25077 {
25078 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25079
25080 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25081 }
25082 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25083 : &dwarf2_per_objfile->loc);
25084 }
25085
25086 /* A helper function that fills in a dwarf2_loclist_baton. */
25087
25088 static void
25089 fill_in_loclist_baton (struct dwarf2_cu *cu,
25090 struct dwarf2_loclist_baton *baton,
25091 const struct attribute *attr)
25092 {
25093 struct dwarf2_per_objfile *dwarf2_per_objfile
25094 = cu->per_cu->dwarf2_per_objfile;
25095 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25096
25097 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25098
25099 baton->per_cu = cu->per_cu;
25100 gdb_assert (baton->per_cu);
25101 /* We don't know how long the location list is, but make sure we
25102 don't run off the edge of the section. */
25103 baton->size = section->size - DW_UNSND (attr);
25104 baton->data = section->buffer + DW_UNSND (attr);
25105 baton->base_address = cu->base_address;
25106 baton->from_dwo = cu->dwo_unit != NULL;
25107 }
25108
25109 static void
25110 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25111 struct dwarf2_cu *cu, int is_block)
25112 {
25113 struct dwarf2_per_objfile *dwarf2_per_objfile
25114 = cu->per_cu->dwarf2_per_objfile;
25115 struct objfile *objfile = dwarf2_per_objfile->objfile;
25116 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25117
25118 if (attr_form_is_section_offset (attr)
25119 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25120 the section. If so, fall through to the complaint in the
25121 other branch. */
25122 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25123 {
25124 struct dwarf2_loclist_baton *baton;
25125
25126 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25127
25128 fill_in_loclist_baton (cu, baton, attr);
25129
25130 if (cu->base_known == 0)
25131 complaint (_("Location list used without "
25132 "specifying the CU base address."));
25133
25134 SYMBOL_ACLASS_INDEX (sym) = (is_block
25135 ? dwarf2_loclist_block_index
25136 : dwarf2_loclist_index);
25137 SYMBOL_LOCATION_BATON (sym) = baton;
25138 }
25139 else
25140 {
25141 struct dwarf2_locexpr_baton *baton;
25142
25143 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25144 baton->per_cu = cu->per_cu;
25145 gdb_assert (baton->per_cu);
25146
25147 if (attr_form_is_block (attr))
25148 {
25149 /* Note that we're just copying the block's data pointer
25150 here, not the actual data. We're still pointing into the
25151 info_buffer for SYM's objfile; right now we never release
25152 that buffer, but when we do clean up properly this may
25153 need to change. */
25154 baton->size = DW_BLOCK (attr)->size;
25155 baton->data = DW_BLOCK (attr)->data;
25156 }
25157 else
25158 {
25159 dwarf2_invalid_attrib_class_complaint ("location description",
25160 SYMBOL_NATURAL_NAME (sym));
25161 baton->size = 0;
25162 }
25163
25164 SYMBOL_ACLASS_INDEX (sym) = (is_block
25165 ? dwarf2_locexpr_block_index
25166 : dwarf2_locexpr_index);
25167 SYMBOL_LOCATION_BATON (sym) = baton;
25168 }
25169 }
25170
25171 /* Return the OBJFILE associated with the compilation unit CU. If CU
25172 came from a separate debuginfo file, then the master objfile is
25173 returned. */
25174
25175 struct objfile *
25176 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25177 {
25178 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25179
25180 /* Return the master objfile, so that we can report and look up the
25181 correct file containing this variable. */
25182 if (objfile->separate_debug_objfile_backlink)
25183 objfile = objfile->separate_debug_objfile_backlink;
25184
25185 return objfile;
25186 }
25187
25188 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25189 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25190 CU_HEADERP first. */
25191
25192 static const struct comp_unit_head *
25193 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25194 struct dwarf2_per_cu_data *per_cu)
25195 {
25196 const gdb_byte *info_ptr;
25197
25198 if (per_cu->cu)
25199 return &per_cu->cu->header;
25200
25201 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25202
25203 memset (cu_headerp, 0, sizeof (*cu_headerp));
25204 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25205 rcuh_kind::COMPILE);
25206
25207 return cu_headerp;
25208 }
25209
25210 /* Return the address size given in the compilation unit header for CU. */
25211
25212 int
25213 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25214 {
25215 struct comp_unit_head cu_header_local;
25216 const struct comp_unit_head *cu_headerp;
25217
25218 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25219
25220 return cu_headerp->addr_size;
25221 }
25222
25223 /* Return the offset size given in the compilation unit header for CU. */
25224
25225 int
25226 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25227 {
25228 struct comp_unit_head cu_header_local;
25229 const struct comp_unit_head *cu_headerp;
25230
25231 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25232
25233 return cu_headerp->offset_size;
25234 }
25235
25236 /* See its dwarf2loc.h declaration. */
25237
25238 int
25239 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25240 {
25241 struct comp_unit_head cu_header_local;
25242 const struct comp_unit_head *cu_headerp;
25243
25244 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25245
25246 if (cu_headerp->version == 2)
25247 return cu_headerp->addr_size;
25248 else
25249 return cu_headerp->offset_size;
25250 }
25251
25252 /* Return the text offset of the CU. The returned offset comes from
25253 this CU's objfile. If this objfile came from a separate debuginfo
25254 file, then the offset may be different from the corresponding
25255 offset in the parent objfile. */
25256
25257 CORE_ADDR
25258 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25259 {
25260 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25261
25262 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25263 }
25264
25265 /* Return a type that is a generic pointer type, the size of which matches
25266 the address size given in the compilation unit header for PER_CU. */
25267 static struct type *
25268 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25269 {
25270 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25271 struct type *void_type = objfile_type (objfile)->builtin_void;
25272 struct type *addr_type = lookup_pointer_type (void_type);
25273 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25274
25275 if (TYPE_LENGTH (addr_type) == addr_size)
25276 return addr_type;
25277
25278 addr_type
25279 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25280 return addr_type;
25281 }
25282
25283 /* Return DWARF version number of PER_CU. */
25284
25285 short
25286 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25287 {
25288 return per_cu->dwarf_version;
25289 }
25290
25291 /* Locate the .debug_info compilation unit from CU's objfile which contains
25292 the DIE at OFFSET. Raises an error on failure. */
25293
25294 static struct dwarf2_per_cu_data *
25295 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25296 unsigned int offset_in_dwz,
25297 struct dwarf2_per_objfile *dwarf2_per_objfile)
25298 {
25299 struct dwarf2_per_cu_data *this_cu;
25300 int low, high;
25301
25302 low = 0;
25303 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25304 while (high > low)
25305 {
25306 struct dwarf2_per_cu_data *mid_cu;
25307 int mid = low + (high - low) / 2;
25308
25309 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25310 if (mid_cu->is_dwz > offset_in_dwz
25311 || (mid_cu->is_dwz == offset_in_dwz
25312 && mid_cu->sect_off + mid_cu->length >= sect_off))
25313 high = mid;
25314 else
25315 low = mid + 1;
25316 }
25317 gdb_assert (low == high);
25318 this_cu = dwarf2_per_objfile->all_comp_units[low];
25319 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25320 {
25321 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25322 error (_("Dwarf Error: could not find partial DIE containing "
25323 "offset %s [in module %s]"),
25324 sect_offset_str (sect_off),
25325 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25326
25327 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25328 <= sect_off);
25329 return dwarf2_per_objfile->all_comp_units[low-1];
25330 }
25331 else
25332 {
25333 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25334 && sect_off >= this_cu->sect_off + this_cu->length)
25335 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25336 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25337 return this_cu;
25338 }
25339 }
25340
25341 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25342
25343 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25344 : per_cu (per_cu_),
25345 mark (false),
25346 has_loclist (false),
25347 checked_producer (false),
25348 producer_is_gxx_lt_4_6 (false),
25349 producer_is_gcc_lt_4_3 (false),
25350 producer_is_icc (false),
25351 producer_is_icc_lt_14 (false),
25352 producer_is_codewarrior (false),
25353 processing_has_namespace_info (false)
25354 {
25355 per_cu->cu = this;
25356 }
25357
25358 /* Destroy a dwarf2_cu. */
25359
25360 dwarf2_cu::~dwarf2_cu ()
25361 {
25362 per_cu->cu = NULL;
25363 }
25364
25365 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25366
25367 static void
25368 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25369 enum language pretend_language)
25370 {
25371 struct attribute *attr;
25372
25373 /* Set the language we're debugging. */
25374 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25375 if (attr)
25376 set_cu_language (DW_UNSND (attr), cu);
25377 else
25378 {
25379 cu->language = pretend_language;
25380 cu->language_defn = language_def (cu->language);
25381 }
25382
25383 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25384 }
25385
25386 /* Increase the age counter on each cached compilation unit, and free
25387 any that are too old. */
25388
25389 static void
25390 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25391 {
25392 struct dwarf2_per_cu_data *per_cu, **last_chain;
25393
25394 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25395 per_cu = dwarf2_per_objfile->read_in_chain;
25396 while (per_cu != NULL)
25397 {
25398 per_cu->cu->last_used ++;
25399 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25400 dwarf2_mark (per_cu->cu);
25401 per_cu = per_cu->cu->read_in_chain;
25402 }
25403
25404 per_cu = dwarf2_per_objfile->read_in_chain;
25405 last_chain = &dwarf2_per_objfile->read_in_chain;
25406 while (per_cu != NULL)
25407 {
25408 struct dwarf2_per_cu_data *next_cu;
25409
25410 next_cu = per_cu->cu->read_in_chain;
25411
25412 if (!per_cu->cu->mark)
25413 {
25414 delete per_cu->cu;
25415 *last_chain = next_cu;
25416 }
25417 else
25418 last_chain = &per_cu->cu->read_in_chain;
25419
25420 per_cu = next_cu;
25421 }
25422 }
25423
25424 /* Remove a single compilation unit from the cache. */
25425
25426 static void
25427 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25428 {
25429 struct dwarf2_per_cu_data *per_cu, **last_chain;
25430 struct dwarf2_per_objfile *dwarf2_per_objfile
25431 = target_per_cu->dwarf2_per_objfile;
25432
25433 per_cu = dwarf2_per_objfile->read_in_chain;
25434 last_chain = &dwarf2_per_objfile->read_in_chain;
25435 while (per_cu != NULL)
25436 {
25437 struct dwarf2_per_cu_data *next_cu;
25438
25439 next_cu = per_cu->cu->read_in_chain;
25440
25441 if (per_cu == target_per_cu)
25442 {
25443 delete per_cu->cu;
25444 per_cu->cu = NULL;
25445 *last_chain = next_cu;
25446 break;
25447 }
25448 else
25449 last_chain = &per_cu->cu->read_in_chain;
25450
25451 per_cu = next_cu;
25452 }
25453 }
25454
25455 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25456 We store these in a hash table separate from the DIEs, and preserve them
25457 when the DIEs are flushed out of cache.
25458
25459 The CU "per_cu" pointer is needed because offset alone is not enough to
25460 uniquely identify the type. A file may have multiple .debug_types sections,
25461 or the type may come from a DWO file. Furthermore, while it's more logical
25462 to use per_cu->section+offset, with Fission the section with the data is in
25463 the DWO file but we don't know that section at the point we need it.
25464 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25465 because we can enter the lookup routine, get_die_type_at_offset, from
25466 outside this file, and thus won't necessarily have PER_CU->cu.
25467 Fortunately, PER_CU is stable for the life of the objfile. */
25468
25469 struct dwarf2_per_cu_offset_and_type
25470 {
25471 const struct dwarf2_per_cu_data *per_cu;
25472 sect_offset sect_off;
25473 struct type *type;
25474 };
25475
25476 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25477
25478 static hashval_t
25479 per_cu_offset_and_type_hash (const void *item)
25480 {
25481 const struct dwarf2_per_cu_offset_and_type *ofs
25482 = (const struct dwarf2_per_cu_offset_and_type *) item;
25483
25484 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25485 }
25486
25487 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25488
25489 static int
25490 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25491 {
25492 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25493 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25494 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25495 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25496
25497 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25498 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25499 }
25500
25501 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25502 table if necessary. For convenience, return TYPE.
25503
25504 The DIEs reading must have careful ordering to:
25505 * Not cause infite loops trying to read in DIEs as a prerequisite for
25506 reading current DIE.
25507 * Not trying to dereference contents of still incompletely read in types
25508 while reading in other DIEs.
25509 * Enable referencing still incompletely read in types just by a pointer to
25510 the type without accessing its fields.
25511
25512 Therefore caller should follow these rules:
25513 * Try to fetch any prerequisite types we may need to build this DIE type
25514 before building the type and calling set_die_type.
25515 * After building type call set_die_type for current DIE as soon as
25516 possible before fetching more types to complete the current type.
25517 * Make the type as complete as possible before fetching more types. */
25518
25519 static struct type *
25520 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25521 {
25522 struct dwarf2_per_objfile *dwarf2_per_objfile
25523 = cu->per_cu->dwarf2_per_objfile;
25524 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25525 struct objfile *objfile = dwarf2_per_objfile->objfile;
25526 struct attribute *attr;
25527 struct dynamic_prop prop;
25528
25529 /* For Ada types, make sure that the gnat-specific data is always
25530 initialized (if not already set). There are a few types where
25531 we should not be doing so, because the type-specific area is
25532 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25533 where the type-specific area is used to store the floatformat).
25534 But this is not a problem, because the gnat-specific information
25535 is actually not needed for these types. */
25536 if (need_gnat_info (cu)
25537 && TYPE_CODE (type) != TYPE_CODE_FUNC
25538 && TYPE_CODE (type) != TYPE_CODE_FLT
25539 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25540 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25541 && TYPE_CODE (type) != TYPE_CODE_METHOD
25542 && !HAVE_GNAT_AUX_INFO (type))
25543 INIT_GNAT_SPECIFIC (type);
25544
25545 /* Read DW_AT_allocated and set in type. */
25546 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25547 if (attr_form_is_block (attr))
25548 {
25549 struct type *prop_type
25550 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25551 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25552 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25553 }
25554 else if (attr != NULL)
25555 {
25556 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25557 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25558 sect_offset_str (die->sect_off));
25559 }
25560
25561 /* Read DW_AT_associated and set in type. */
25562 attr = dwarf2_attr (die, DW_AT_associated, cu);
25563 if (attr_form_is_block (attr))
25564 {
25565 struct type *prop_type
25566 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25567 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25568 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25569 }
25570 else if (attr != NULL)
25571 {
25572 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25573 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25574 sect_offset_str (die->sect_off));
25575 }
25576
25577 /* Read DW_AT_data_location and set in type. */
25578 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25579 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25580 dwarf2_per_cu_addr_type (cu->per_cu)))
25581 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25582
25583 if (dwarf2_per_objfile->die_type_hash == NULL)
25584 {
25585 dwarf2_per_objfile->die_type_hash =
25586 htab_create_alloc_ex (127,
25587 per_cu_offset_and_type_hash,
25588 per_cu_offset_and_type_eq,
25589 NULL,
25590 &objfile->objfile_obstack,
25591 hashtab_obstack_allocate,
25592 dummy_obstack_deallocate);
25593 }
25594
25595 ofs.per_cu = cu->per_cu;
25596 ofs.sect_off = die->sect_off;
25597 ofs.type = type;
25598 slot = (struct dwarf2_per_cu_offset_and_type **)
25599 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25600 if (*slot)
25601 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25602 sect_offset_str (die->sect_off));
25603 *slot = XOBNEW (&objfile->objfile_obstack,
25604 struct dwarf2_per_cu_offset_and_type);
25605 **slot = ofs;
25606 return type;
25607 }
25608
25609 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25610 or return NULL if the die does not have a saved type. */
25611
25612 static struct type *
25613 get_die_type_at_offset (sect_offset sect_off,
25614 struct dwarf2_per_cu_data *per_cu)
25615 {
25616 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25617 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25618
25619 if (dwarf2_per_objfile->die_type_hash == NULL)
25620 return NULL;
25621
25622 ofs.per_cu = per_cu;
25623 ofs.sect_off = sect_off;
25624 slot = ((struct dwarf2_per_cu_offset_and_type *)
25625 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25626 if (slot)
25627 return slot->type;
25628 else
25629 return NULL;
25630 }
25631
25632 /* Look up the type for DIE in CU in die_type_hash,
25633 or return NULL if DIE does not have a saved type. */
25634
25635 static struct type *
25636 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25637 {
25638 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25639 }
25640
25641 /* Add a dependence relationship from CU to REF_PER_CU. */
25642
25643 static void
25644 dwarf2_add_dependence (struct dwarf2_cu *cu,
25645 struct dwarf2_per_cu_data *ref_per_cu)
25646 {
25647 void **slot;
25648
25649 if (cu->dependencies == NULL)
25650 cu->dependencies
25651 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25652 NULL, &cu->comp_unit_obstack,
25653 hashtab_obstack_allocate,
25654 dummy_obstack_deallocate);
25655
25656 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25657 if (*slot == NULL)
25658 *slot = ref_per_cu;
25659 }
25660
25661 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25662 Set the mark field in every compilation unit in the
25663 cache that we must keep because we are keeping CU. */
25664
25665 static int
25666 dwarf2_mark_helper (void **slot, void *data)
25667 {
25668 struct dwarf2_per_cu_data *per_cu;
25669
25670 per_cu = (struct dwarf2_per_cu_data *) *slot;
25671
25672 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25673 reading of the chain. As such dependencies remain valid it is not much
25674 useful to track and undo them during QUIT cleanups. */
25675 if (per_cu->cu == NULL)
25676 return 1;
25677
25678 if (per_cu->cu->mark)
25679 return 1;
25680 per_cu->cu->mark = true;
25681
25682 if (per_cu->cu->dependencies != NULL)
25683 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25684
25685 return 1;
25686 }
25687
25688 /* Set the mark field in CU and in every other compilation unit in the
25689 cache that we must keep because we are keeping CU. */
25690
25691 static void
25692 dwarf2_mark (struct dwarf2_cu *cu)
25693 {
25694 if (cu->mark)
25695 return;
25696 cu->mark = true;
25697 if (cu->dependencies != NULL)
25698 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25699 }
25700
25701 static void
25702 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25703 {
25704 while (per_cu)
25705 {
25706 per_cu->cu->mark = false;
25707 per_cu = per_cu->cu->read_in_chain;
25708 }
25709 }
25710
25711 /* Trivial hash function for partial_die_info: the hash value of a DIE
25712 is its offset in .debug_info for this objfile. */
25713
25714 static hashval_t
25715 partial_die_hash (const void *item)
25716 {
25717 const struct partial_die_info *part_die
25718 = (const struct partial_die_info *) item;
25719
25720 return to_underlying (part_die->sect_off);
25721 }
25722
25723 /* Trivial comparison function for partial_die_info structures: two DIEs
25724 are equal if they have the same offset. */
25725
25726 static int
25727 partial_die_eq (const void *item_lhs, const void *item_rhs)
25728 {
25729 const struct partial_die_info *part_die_lhs
25730 = (const struct partial_die_info *) item_lhs;
25731 const struct partial_die_info *part_die_rhs
25732 = (const struct partial_die_info *) item_rhs;
25733
25734 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25735 }
25736
25737 struct cmd_list_element *set_dwarf_cmdlist;
25738 struct cmd_list_element *show_dwarf_cmdlist;
25739
25740 static void
25741 set_dwarf_cmd (const char *args, int from_tty)
25742 {
25743 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25744 gdb_stdout);
25745 }
25746
25747 static void
25748 show_dwarf_cmd (const char *args, int from_tty)
25749 {
25750 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25751 }
25752
25753 int dwarf_always_disassemble;
25754
25755 static void
25756 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25757 struct cmd_list_element *c, const char *value)
25758 {
25759 fprintf_filtered (file,
25760 _("Whether to always disassemble "
25761 "DWARF expressions is %s.\n"),
25762 value);
25763 }
25764
25765 static void
25766 show_check_physname (struct ui_file *file, int from_tty,
25767 struct cmd_list_element *c, const char *value)
25768 {
25769 fprintf_filtered (file,
25770 _("Whether to check \"physname\" is %s.\n"),
25771 value);
25772 }
25773
25774 void
25775 _initialize_dwarf2_read (void)
25776 {
25777 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25778 Set DWARF specific variables.\n\
25779 Configure DWARF variables such as the cache size"),
25780 &set_dwarf_cmdlist, "maintenance set dwarf ",
25781 0/*allow-unknown*/, &maintenance_set_cmdlist);
25782
25783 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25784 Show DWARF specific variables\n\
25785 Show DWARF variables such as the cache size"),
25786 &show_dwarf_cmdlist, "maintenance show dwarf ",
25787 0/*allow-unknown*/, &maintenance_show_cmdlist);
25788
25789 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25790 &dwarf_max_cache_age, _("\
25791 Set the upper bound on the age of cached DWARF compilation units."), _("\
25792 Show the upper bound on the age of cached DWARF compilation units."), _("\
25793 A higher limit means that cached compilation units will be stored\n\
25794 in memory longer, and more total memory will be used. Zero disables\n\
25795 caching, which can slow down startup."),
25796 NULL,
25797 show_dwarf_max_cache_age,
25798 &set_dwarf_cmdlist,
25799 &show_dwarf_cmdlist);
25800
25801 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25802 &dwarf_always_disassemble, _("\
25803 Set whether `info address' always disassembles DWARF expressions."), _("\
25804 Show whether `info address' always disassembles DWARF expressions."), _("\
25805 When enabled, DWARF expressions are always printed in an assembly-like\n\
25806 syntax. When disabled, expressions will be printed in a more\n\
25807 conversational style, when possible."),
25808 NULL,
25809 show_dwarf_always_disassemble,
25810 &set_dwarf_cmdlist,
25811 &show_dwarf_cmdlist);
25812
25813 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25814 Set debugging of the DWARF reader."), _("\
25815 Show debugging of the DWARF reader."), _("\
25816 When enabled (non-zero), debugging messages are printed during DWARF\n\
25817 reading and symtab expansion. A value of 1 (one) provides basic\n\
25818 information. A value greater than 1 provides more verbose information."),
25819 NULL,
25820 NULL,
25821 &setdebuglist, &showdebuglist);
25822
25823 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25824 Set debugging of the DWARF DIE reader."), _("\
25825 Show debugging of the DWARF DIE reader."), _("\
25826 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25827 The value is the maximum depth to print."),
25828 NULL,
25829 NULL,
25830 &setdebuglist, &showdebuglist);
25831
25832 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25833 Set debugging of the dwarf line reader."), _("\
25834 Show debugging of the dwarf line reader."), _("\
25835 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25836 A value of 1 (one) provides basic information.\n\
25837 A value greater than 1 provides more verbose information."),
25838 NULL,
25839 NULL,
25840 &setdebuglist, &showdebuglist);
25841
25842 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25843 Set cross-checking of \"physname\" code against demangler."), _("\
25844 Show cross-checking of \"physname\" code against demangler."), _("\
25845 When enabled, GDB's internal \"physname\" code is checked against\n\
25846 the demangler."),
25847 NULL, show_check_physname,
25848 &setdebuglist, &showdebuglist);
25849
25850 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25851 no_class, &use_deprecated_index_sections, _("\
25852 Set whether to use deprecated gdb_index sections."), _("\
25853 Show whether to use deprecated gdb_index sections."), _("\
25854 When enabled, deprecated .gdb_index sections are used anyway.\n\
25855 Normally they are ignored either because of a missing feature or\n\
25856 performance issue.\n\
25857 Warning: This option must be enabled before gdb reads the file."),
25858 NULL,
25859 NULL,
25860 &setlist, &showlist);
25861
25862 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25863 &dwarf2_locexpr_funcs);
25864 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25865 &dwarf2_loclist_funcs);
25866
25867 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25868 &dwarf2_block_frame_base_locexpr_funcs);
25869 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25870 &dwarf2_block_frame_base_loclist_funcs);
25871
25872 #if GDB_SELF_TEST
25873 selftests::register_test ("dw2_expand_symtabs_matching",
25874 selftests::dw2_expand_symtabs_matching::run_test);
25875 #endif
25876 }
This page took 0.570346 seconds and 5 git commands to generate.