DWARF 5 support: Handle dwo_id
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376
377 /* 64-bit signature of this unit. For type units, it denotes the signature of
378 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
379 Also used in DWARF 5, to denote the dwo id when the unit type is
380 DW_UT_skeleton or DW_UT_split_compile. */
381 ULONGEST signature;
382
383 /* For types, offset in the type's DIE of the type defined by this TU. */
384 cu_offset type_cu_offset_in_tu;
385 };
386
387 /* Type used for delaying computation of method physnames.
388 See comments for compute_delayed_physnames. */
389 struct delayed_method_info
390 {
391 /* The type to which the method is attached, i.e., its parent class. */
392 struct type *type;
393
394 /* The index of the method in the type's function fieldlists. */
395 int fnfield_index;
396
397 /* The index of the method in the fieldlist. */
398 int index;
399
400 /* The name of the DIE. */
401 const char *name;
402
403 /* The DIE associated with this method. */
404 struct die_info *die;
405 };
406
407 /* Internal state when decoding a particular compilation unit. */
408 struct dwarf2_cu
409 {
410 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
411 ~dwarf2_cu ();
412
413 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
414
415 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
416 Create the set of symtabs used by this TU, or if this TU is sharing
417 symtabs with another TU and the symtabs have already been created
418 then restore those symtabs in the line header.
419 We don't need the pc/line-number mapping for type units. */
420 void setup_type_unit_groups (struct die_info *die);
421
422 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
423 buildsym_compunit constructor. */
424 struct compunit_symtab *start_symtab (const char *name,
425 const char *comp_dir,
426 CORE_ADDR low_pc);
427
428 /* Reset the builder. */
429 void reset_builder () { m_builder.reset (); }
430
431 /* The header of the compilation unit. */
432 struct comp_unit_head header {};
433
434 /* Base address of this compilation unit. */
435 CORE_ADDR base_address = 0;
436
437 /* Non-zero if base_address has been set. */
438 int base_known = 0;
439
440 /* The language we are debugging. */
441 enum language language = language_unknown;
442 const struct language_defn *language_defn = nullptr;
443
444 const char *producer = nullptr;
445
446 private:
447 /* The symtab builder for this CU. This is only non-NULL when full
448 symbols are being read. */
449 std::unique_ptr<buildsym_compunit> m_builder;
450
451 public:
452 /* The generic symbol table building routines have separate lists for
453 file scope symbols and all all other scopes (local scopes). So
454 we need to select the right one to pass to add_symbol_to_list().
455 We do it by keeping a pointer to the correct list in list_in_scope.
456
457 FIXME: The original dwarf code just treated the file scope as the
458 first local scope, and all other local scopes as nested local
459 scopes, and worked fine. Check to see if we really need to
460 distinguish these in buildsym.c. */
461 struct pending **list_in_scope = nullptr;
462
463 /* Hash table holding all the loaded partial DIEs
464 with partial_die->offset.SECT_OFF as hash. */
465 htab_t partial_dies = nullptr;
466
467 /* Storage for things with the same lifetime as this read-in compilation
468 unit, including partial DIEs. */
469 auto_obstack comp_unit_obstack;
470
471 /* When multiple dwarf2_cu structures are living in memory, this field
472 chains them all together, so that they can be released efficiently.
473 We will probably also want a generation counter so that most-recently-used
474 compilation units are cached... */
475 struct dwarf2_per_cu_data *read_in_chain = nullptr;
476
477 /* Backlink to our per_cu entry. */
478 struct dwarf2_per_cu_data *per_cu;
479
480 /* How many compilation units ago was this CU last referenced? */
481 int last_used = 0;
482
483 /* A hash table of DIE cu_offset for following references with
484 die_info->offset.sect_off as hash. */
485 htab_t die_hash = nullptr;
486
487 /* Full DIEs if read in. */
488 struct die_info *dies = nullptr;
489
490 /* A set of pointers to dwarf2_per_cu_data objects for compilation
491 units referenced by this one. Only set during full symbol processing;
492 partial symbol tables do not have dependencies. */
493 htab_t dependencies = nullptr;
494
495 /* Header data from the line table, during full symbol processing. */
496 struct line_header *line_header = nullptr;
497 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
498 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
499 this is the DW_TAG_compile_unit die for this CU. We'll hold on
500 to the line header as long as this DIE is being processed. See
501 process_die_scope. */
502 die_info *line_header_die_owner = nullptr;
503
504 /* A list of methods which need to have physnames computed
505 after all type information has been read. */
506 std::vector<delayed_method_info> method_list;
507
508 /* To be copied to symtab->call_site_htab. */
509 htab_t call_site_htab = nullptr;
510
511 /* Non-NULL if this CU came from a DWO file.
512 There is an invariant here that is important to remember:
513 Except for attributes copied from the top level DIE in the "main"
514 (or "stub") file in preparation for reading the DWO file
515 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
516 Either there isn't a DWO file (in which case this is NULL and the point
517 is moot), or there is and either we're not going to read it (in which
518 case this is NULL) or there is and we are reading it (in which case this
519 is non-NULL). */
520 struct dwo_unit *dwo_unit = nullptr;
521
522 /* The DW_AT_addr_base attribute if present, zero otherwise
523 (zero is a valid value though).
524 Note this value comes from the Fission stub CU/TU's DIE. */
525 ULONGEST addr_base = 0;
526
527 /* The DW_AT_ranges_base attribute if present, zero otherwise
528 (zero is a valid value though).
529 Note this value comes from the Fission stub CU/TU's DIE.
530 Also note that the value is zero in the non-DWO case so this value can
531 be used without needing to know whether DWO files are in use or not.
532 N.B. This does not apply to DW_AT_ranges appearing in
533 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
534 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
535 DW_AT_ranges_base *would* have to be applied, and we'd have to care
536 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
537 ULONGEST ranges_base = 0;
538
539 /* When reading debug info generated by older versions of rustc, we
540 have to rewrite some union types to be struct types with a
541 variant part. This rewriting must be done after the CU is fully
542 read in, because otherwise at the point of rewriting some struct
543 type might not have been fully processed. So, we keep a list of
544 all such types here and process them after expansion. */
545 std::vector<struct type *> rust_unions;
546
547 /* Mark used when releasing cached dies. */
548 bool mark : 1;
549
550 /* This CU references .debug_loc. See the symtab->locations_valid field.
551 This test is imperfect as there may exist optimized debug code not using
552 any location list and still facing inlining issues if handled as
553 unoptimized code. For a future better test see GCC PR other/32998. */
554 bool has_loclist : 1;
555
556 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
557 if all the producer_is_* fields are valid. This information is cached
558 because profiling CU expansion showed excessive time spent in
559 producer_is_gxx_lt_4_6. */
560 bool checked_producer : 1;
561 bool producer_is_gxx_lt_4_6 : 1;
562 bool producer_is_gcc_lt_4_3 : 1;
563 bool producer_is_icc : 1;
564 bool producer_is_icc_lt_14 : 1;
565 bool producer_is_codewarrior : 1;
566
567 /* When true, the file that we're processing is known to have
568 debugging info for C++ namespaces. GCC 3.3.x did not produce
569 this information, but later versions do. */
570
571 bool processing_has_namespace_info : 1;
572
573 struct partial_die_info *find_partial_die (sect_offset sect_off);
574
575 /* If this CU was inherited by another CU (via specification,
576 abstract_origin, etc), this is the ancestor CU. */
577 dwarf2_cu *ancestor;
578
579 /* Get the buildsym_compunit for this CU. */
580 buildsym_compunit *get_builder ()
581 {
582 /* If this CU has a builder associated with it, use that. */
583 if (m_builder != nullptr)
584 return m_builder.get ();
585
586 /* Otherwise, search ancestors for a valid builder. */
587 if (ancestor != nullptr)
588 return ancestor->get_builder ();
589
590 return nullptr;
591 }
592 };
593
594 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
595 This includes type_unit_group and quick_file_names. */
596
597 struct stmt_list_hash
598 {
599 /* The DWO unit this table is from or NULL if there is none. */
600 struct dwo_unit *dwo_unit;
601
602 /* Offset in .debug_line or .debug_line.dwo. */
603 sect_offset line_sect_off;
604 };
605
606 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
607 an object of this type. */
608
609 struct type_unit_group
610 {
611 /* dwarf2read.c's main "handle" on a TU symtab.
612 To simplify things we create an artificial CU that "includes" all the
613 type units using this stmt_list so that the rest of the code still has
614 a "per_cu" handle on the symtab.
615 This PER_CU is recognized by having no section. */
616 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
617 struct dwarf2_per_cu_data per_cu;
618
619 /* The TUs that share this DW_AT_stmt_list entry.
620 This is added to while parsing type units to build partial symtabs,
621 and is deleted afterwards and not used again. */
622 VEC (sig_type_ptr) *tus;
623
624 /* The compunit symtab.
625 Type units in a group needn't all be defined in the same source file,
626 so we create an essentially anonymous symtab as the compunit symtab. */
627 struct compunit_symtab *compunit_symtab;
628
629 /* The data used to construct the hash key. */
630 struct stmt_list_hash hash;
631
632 /* The number of symtabs from the line header.
633 The value here must match line_header.num_file_names. */
634 unsigned int num_symtabs;
635
636 /* The symbol tables for this TU (obtained from the files listed in
637 DW_AT_stmt_list).
638 WARNING: The order of entries here must match the order of entries
639 in the line header. After the first TU using this type_unit_group, the
640 line header for the subsequent TUs is recreated from this. This is done
641 because we need to use the same symtabs for each TU using the same
642 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
643 there's no guarantee the line header doesn't have duplicate entries. */
644 struct symtab **symtabs;
645 };
646
647 /* These sections are what may appear in a (real or virtual) DWO file. */
648
649 struct dwo_sections
650 {
651 struct dwarf2_section_info abbrev;
652 struct dwarf2_section_info line;
653 struct dwarf2_section_info loc;
654 struct dwarf2_section_info loclists;
655 struct dwarf2_section_info macinfo;
656 struct dwarf2_section_info macro;
657 struct dwarf2_section_info str;
658 struct dwarf2_section_info str_offsets;
659 /* In the case of a virtual DWO file, these two are unused. */
660 struct dwarf2_section_info info;
661 std::vector<dwarf2_section_info> types;
662 };
663
664 /* CUs/TUs in DWP/DWO files. */
665
666 struct dwo_unit
667 {
668 /* Backlink to the containing struct dwo_file. */
669 struct dwo_file *dwo_file;
670
671 /* The "id" that distinguishes this CU/TU.
672 .debug_info calls this "dwo_id", .debug_types calls this "signature".
673 Since signatures came first, we stick with it for consistency. */
674 ULONGEST signature;
675
676 /* The section this CU/TU lives in, in the DWO file. */
677 struct dwarf2_section_info *section;
678
679 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
680 sect_offset sect_off;
681 unsigned int length;
682
683 /* For types, offset in the type's DIE of the type defined by this TU. */
684 cu_offset type_offset_in_tu;
685 };
686
687 /* include/dwarf2.h defines the DWP section codes.
688 It defines a max value but it doesn't define a min value, which we
689 use for error checking, so provide one. */
690
691 enum dwp_v2_section_ids
692 {
693 DW_SECT_MIN = 1
694 };
695
696 /* Data for one DWO file.
697
698 This includes virtual DWO files (a virtual DWO file is a DWO file as it
699 appears in a DWP file). DWP files don't really have DWO files per se -
700 comdat folding of types "loses" the DWO file they came from, and from
701 a high level view DWP files appear to contain a mass of random types.
702 However, to maintain consistency with the non-DWP case we pretend DWP
703 files contain virtual DWO files, and we assign each TU with one virtual
704 DWO file (generally based on the line and abbrev section offsets -
705 a heuristic that seems to work in practice). */
706
707 struct dwo_file
708 {
709 dwo_file () = default;
710 DISABLE_COPY_AND_ASSIGN (dwo_file);
711
712 /* The DW_AT_GNU_dwo_name attribute.
713 For virtual DWO files the name is constructed from the section offsets
714 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
715 from related CU+TUs. */
716 const char *dwo_name = nullptr;
717
718 /* The DW_AT_comp_dir attribute. */
719 const char *comp_dir = nullptr;
720
721 /* The bfd, when the file is open. Otherwise this is NULL.
722 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
723 gdb_bfd_ref_ptr dbfd;
724
725 /* The sections that make up this DWO file.
726 Remember that for virtual DWO files in DWP V2, these are virtual
727 sections (for lack of a better name). */
728 struct dwo_sections sections {};
729
730 /* The CUs in the file.
731 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
732 an extension to handle LLVM's Link Time Optimization output (where
733 multiple source files may be compiled into a single object/dwo pair). */
734 htab_t cus {};
735
736 /* Table of TUs in the file.
737 Each element is a struct dwo_unit. */
738 htab_t tus {};
739 };
740
741 /* These sections are what may appear in a DWP file. */
742
743 struct dwp_sections
744 {
745 /* These are used by both DWP version 1 and 2. */
746 struct dwarf2_section_info str;
747 struct dwarf2_section_info cu_index;
748 struct dwarf2_section_info tu_index;
749
750 /* These are only used by DWP version 2 files.
751 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
752 sections are referenced by section number, and are not recorded here.
753 In DWP version 2 there is at most one copy of all these sections, each
754 section being (effectively) comprised of the concatenation of all of the
755 individual sections that exist in the version 1 format.
756 To keep the code simple we treat each of these concatenated pieces as a
757 section itself (a virtual section?). */
758 struct dwarf2_section_info abbrev;
759 struct dwarf2_section_info info;
760 struct dwarf2_section_info line;
761 struct dwarf2_section_info loc;
762 struct dwarf2_section_info macinfo;
763 struct dwarf2_section_info macro;
764 struct dwarf2_section_info str_offsets;
765 struct dwarf2_section_info types;
766 };
767
768 /* These sections are what may appear in a virtual DWO file in DWP version 1.
769 A virtual DWO file is a DWO file as it appears in a DWP file. */
770
771 struct virtual_v1_dwo_sections
772 {
773 struct dwarf2_section_info abbrev;
774 struct dwarf2_section_info line;
775 struct dwarf2_section_info loc;
776 struct dwarf2_section_info macinfo;
777 struct dwarf2_section_info macro;
778 struct dwarf2_section_info str_offsets;
779 /* Each DWP hash table entry records one CU or one TU.
780 That is recorded here, and copied to dwo_unit.section. */
781 struct dwarf2_section_info info_or_types;
782 };
783
784 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
785 In version 2, the sections of the DWO files are concatenated together
786 and stored in one section of that name. Thus each ELF section contains
787 several "virtual" sections. */
788
789 struct virtual_v2_dwo_sections
790 {
791 bfd_size_type abbrev_offset;
792 bfd_size_type abbrev_size;
793
794 bfd_size_type line_offset;
795 bfd_size_type line_size;
796
797 bfd_size_type loc_offset;
798 bfd_size_type loc_size;
799
800 bfd_size_type macinfo_offset;
801 bfd_size_type macinfo_size;
802
803 bfd_size_type macro_offset;
804 bfd_size_type macro_size;
805
806 bfd_size_type str_offsets_offset;
807 bfd_size_type str_offsets_size;
808
809 /* Each DWP hash table entry records one CU or one TU.
810 That is recorded here, and copied to dwo_unit.section. */
811 bfd_size_type info_or_types_offset;
812 bfd_size_type info_or_types_size;
813 };
814
815 /* Contents of DWP hash tables. */
816
817 struct dwp_hash_table
818 {
819 uint32_t version, nr_columns;
820 uint32_t nr_units, nr_slots;
821 const gdb_byte *hash_table, *unit_table;
822 union
823 {
824 struct
825 {
826 const gdb_byte *indices;
827 } v1;
828 struct
829 {
830 /* This is indexed by column number and gives the id of the section
831 in that column. */
832 #define MAX_NR_V2_DWO_SECTIONS \
833 (1 /* .debug_info or .debug_types */ \
834 + 1 /* .debug_abbrev */ \
835 + 1 /* .debug_line */ \
836 + 1 /* .debug_loc */ \
837 + 1 /* .debug_str_offsets */ \
838 + 1 /* .debug_macro or .debug_macinfo */)
839 int section_ids[MAX_NR_V2_DWO_SECTIONS];
840 const gdb_byte *offsets;
841 const gdb_byte *sizes;
842 } v2;
843 } section_pool;
844 };
845
846 /* Data for one DWP file. */
847
848 struct dwp_file
849 {
850 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
851 : name (name_),
852 dbfd (std::move (abfd))
853 {
854 }
855
856 /* Name of the file. */
857 const char *name;
858
859 /* File format version. */
860 int version = 0;
861
862 /* The bfd. */
863 gdb_bfd_ref_ptr dbfd;
864
865 /* Section info for this file. */
866 struct dwp_sections sections {};
867
868 /* Table of CUs in the file. */
869 const struct dwp_hash_table *cus = nullptr;
870
871 /* Table of TUs in the file. */
872 const struct dwp_hash_table *tus = nullptr;
873
874 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
875 htab_t loaded_cus {};
876 htab_t loaded_tus {};
877
878 /* Table to map ELF section numbers to their sections.
879 This is only needed for the DWP V1 file format. */
880 unsigned int num_sections = 0;
881 asection **elf_sections = nullptr;
882 };
883
884 /* Struct used to pass misc. parameters to read_die_and_children, et
885 al. which are used for both .debug_info and .debug_types dies.
886 All parameters here are unchanging for the life of the call. This
887 struct exists to abstract away the constant parameters of die reading. */
888
889 struct die_reader_specs
890 {
891 /* The bfd of die_section. */
892 bfd* abfd;
893
894 /* The CU of the DIE we are parsing. */
895 struct dwarf2_cu *cu;
896
897 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
898 struct dwo_file *dwo_file;
899
900 /* The section the die comes from.
901 This is either .debug_info or .debug_types, or the .dwo variants. */
902 struct dwarf2_section_info *die_section;
903
904 /* die_section->buffer. */
905 const gdb_byte *buffer;
906
907 /* The end of the buffer. */
908 const gdb_byte *buffer_end;
909
910 /* The value of the DW_AT_comp_dir attribute. */
911 const char *comp_dir;
912
913 /* The abbreviation table to use when reading the DIEs. */
914 struct abbrev_table *abbrev_table;
915 };
916
917 /* Type of function passed to init_cutu_and_read_dies, et.al. */
918 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
919 const gdb_byte *info_ptr,
920 struct die_info *comp_unit_die,
921 int has_children,
922 void *data);
923
924 /* A 1-based directory index. This is a strong typedef to prevent
925 accidentally using a directory index as a 0-based index into an
926 array/vector. */
927 enum class dir_index : unsigned int {};
928
929 /* Likewise, a 1-based file name index. */
930 enum class file_name_index : unsigned int {};
931
932 struct file_entry
933 {
934 file_entry () = default;
935
936 file_entry (const char *name_, dir_index d_index_,
937 unsigned int mod_time_, unsigned int length_)
938 : name (name_),
939 d_index (d_index_),
940 mod_time (mod_time_),
941 length (length_)
942 {}
943
944 /* Return the include directory at D_INDEX stored in LH. Returns
945 NULL if D_INDEX is out of bounds. */
946 const char *include_dir (const line_header *lh) const;
947
948 /* The file name. Note this is an observing pointer. The memory is
949 owned by debug_line_buffer. */
950 const char *name {};
951
952 /* The directory index (1-based). */
953 dir_index d_index {};
954
955 unsigned int mod_time {};
956
957 unsigned int length {};
958
959 /* True if referenced by the Line Number Program. */
960 bool included_p {};
961
962 /* The associated symbol table, if any. */
963 struct symtab *symtab {};
964 };
965
966 /* The line number information for a compilation unit (found in the
967 .debug_line section) begins with a "statement program header",
968 which contains the following information. */
969 struct line_header
970 {
971 line_header ()
972 : offset_in_dwz {}
973 {}
974
975 /* Add an entry to the include directory table. */
976 void add_include_dir (const char *include_dir);
977
978 /* Add an entry to the file name table. */
979 void add_file_name (const char *name, dir_index d_index,
980 unsigned int mod_time, unsigned int length);
981
982 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
983 is out of bounds. */
984 const char *include_dir_at (dir_index index) const
985 {
986 /* Convert directory index number (1-based) to vector index
987 (0-based). */
988 size_t vec_index = to_underlying (index) - 1;
989
990 if (vec_index >= include_dirs.size ())
991 return NULL;
992 return include_dirs[vec_index];
993 }
994
995 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
996 is out of bounds. */
997 file_entry *file_name_at (file_name_index index)
998 {
999 /* Convert file name index number (1-based) to vector index
1000 (0-based). */
1001 size_t vec_index = to_underlying (index) - 1;
1002
1003 if (vec_index >= file_names.size ())
1004 return NULL;
1005 return &file_names[vec_index];
1006 }
1007
1008 /* Offset of line number information in .debug_line section. */
1009 sect_offset sect_off {};
1010
1011 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1012 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1013
1014 unsigned int total_length {};
1015 unsigned short version {};
1016 unsigned int header_length {};
1017 unsigned char minimum_instruction_length {};
1018 unsigned char maximum_ops_per_instruction {};
1019 unsigned char default_is_stmt {};
1020 int line_base {};
1021 unsigned char line_range {};
1022 unsigned char opcode_base {};
1023
1024 /* standard_opcode_lengths[i] is the number of operands for the
1025 standard opcode whose value is i. This means that
1026 standard_opcode_lengths[0] is unused, and the last meaningful
1027 element is standard_opcode_lengths[opcode_base - 1]. */
1028 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1029
1030 /* The include_directories table. Note these are observing
1031 pointers. The memory is owned by debug_line_buffer. */
1032 std::vector<const char *> include_dirs;
1033
1034 /* The file_names table. */
1035 std::vector<file_entry> file_names;
1036
1037 /* The start and end of the statement program following this
1038 header. These point into dwarf2_per_objfile->line_buffer. */
1039 const gdb_byte *statement_program_start {}, *statement_program_end {};
1040 };
1041
1042 typedef std::unique_ptr<line_header> line_header_up;
1043
1044 const char *
1045 file_entry::include_dir (const line_header *lh) const
1046 {
1047 return lh->include_dir_at (d_index);
1048 }
1049
1050 /* When we construct a partial symbol table entry we only
1051 need this much information. */
1052 struct partial_die_info : public allocate_on_obstack
1053 {
1054 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1055
1056 /* Disable assign but still keep copy ctor, which is needed
1057 load_partial_dies. */
1058 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1059
1060 /* Adjust the partial die before generating a symbol for it. This
1061 function may set the is_external flag or change the DIE's
1062 name. */
1063 void fixup (struct dwarf2_cu *cu);
1064
1065 /* Read a minimal amount of information into the minimal die
1066 structure. */
1067 const gdb_byte *read (const struct die_reader_specs *reader,
1068 const struct abbrev_info &abbrev,
1069 const gdb_byte *info_ptr);
1070
1071 /* Offset of this DIE. */
1072 const sect_offset sect_off;
1073
1074 /* DWARF-2 tag for this DIE. */
1075 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1076
1077 /* Assorted flags describing the data found in this DIE. */
1078 const unsigned int has_children : 1;
1079
1080 unsigned int is_external : 1;
1081 unsigned int is_declaration : 1;
1082 unsigned int has_type : 1;
1083 unsigned int has_specification : 1;
1084 unsigned int has_pc_info : 1;
1085 unsigned int may_be_inlined : 1;
1086
1087 /* This DIE has been marked DW_AT_main_subprogram. */
1088 unsigned int main_subprogram : 1;
1089
1090 /* Flag set if the SCOPE field of this structure has been
1091 computed. */
1092 unsigned int scope_set : 1;
1093
1094 /* Flag set if the DIE has a byte_size attribute. */
1095 unsigned int has_byte_size : 1;
1096
1097 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1098 unsigned int has_const_value : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name = nullptr;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name = nullptr;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope = nullptr;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset sect_off;
1132 } d {};
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc = 0;
1136 CORE_ADDR highpc = 0;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1141 could return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling = nullptr;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset {};
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent = nullptr;
1152 struct partial_die_info *die_child = nullptr;
1153 struct partial_die_info *die_sibling = nullptr;
1154
1155 friend struct partial_die_info *
1156 dwarf2_cu::find_partial_die (sect_offset sect_off);
1157
1158 private:
1159 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1160 partial_die_info (sect_offset sect_off)
1161 : partial_die_info (sect_off, DW_TAG_padding, 0)
1162 {
1163 }
1164
1165 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1166 int has_children_)
1167 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1168 {
1169 is_external = 0;
1170 is_declaration = 0;
1171 has_type = 0;
1172 has_specification = 0;
1173 has_pc_info = 0;
1174 may_be_inlined = 0;
1175 main_subprogram = 0;
1176 scope_set = 0;
1177 has_byte_size = 0;
1178 has_const_value = 0;
1179 has_template_arguments = 0;
1180 fixup_called = 0;
1181 is_dwz = 0;
1182 spec_is_dwz = 0;
1183 }
1184 };
1185
1186 /* This data structure holds the information of an abbrev. */
1187 struct abbrev_info
1188 {
1189 unsigned int number; /* number identifying abbrev */
1190 enum dwarf_tag tag; /* dwarf tag */
1191 unsigned short has_children; /* boolean */
1192 unsigned short num_attrs; /* number of attributes */
1193 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1194 struct abbrev_info *next; /* next in chain */
1195 };
1196
1197 struct attr_abbrev
1198 {
1199 ENUM_BITFIELD(dwarf_attribute) name : 16;
1200 ENUM_BITFIELD(dwarf_form) form : 16;
1201
1202 /* It is valid only if FORM is DW_FORM_implicit_const. */
1203 LONGEST implicit_const;
1204 };
1205
1206 /* Size of abbrev_table.abbrev_hash_table. */
1207 #define ABBREV_HASH_SIZE 121
1208
1209 /* Top level data structure to contain an abbreviation table. */
1210
1211 struct abbrev_table
1212 {
1213 explicit abbrev_table (sect_offset off)
1214 : sect_off (off)
1215 {
1216 m_abbrevs =
1217 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1218 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1219 }
1220
1221 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1222
1223 /* Allocate space for a struct abbrev_info object in
1224 ABBREV_TABLE. */
1225 struct abbrev_info *alloc_abbrev ();
1226
1227 /* Add an abbreviation to the table. */
1228 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1229
1230 /* Look up an abbrev in the table.
1231 Returns NULL if the abbrev is not found. */
1232
1233 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1234
1235
1236 /* Where the abbrev table came from.
1237 This is used as a sanity check when the table is used. */
1238 const sect_offset sect_off;
1239
1240 /* Storage for the abbrev table. */
1241 auto_obstack abbrev_obstack;
1242
1243 private:
1244
1245 /* Hash table of abbrevs.
1246 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1247 It could be statically allocated, but the previous code didn't so we
1248 don't either. */
1249 struct abbrev_info **m_abbrevs;
1250 };
1251
1252 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1253
1254 /* Attributes have a name and a value. */
1255 struct attribute
1256 {
1257 ENUM_BITFIELD(dwarf_attribute) name : 16;
1258 ENUM_BITFIELD(dwarf_form) form : 15;
1259
1260 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1261 field should be in u.str (existing only for DW_STRING) but it is kept
1262 here for better struct attribute alignment. */
1263 unsigned int string_is_canonical : 1;
1264
1265 union
1266 {
1267 const char *str;
1268 struct dwarf_block *blk;
1269 ULONGEST unsnd;
1270 LONGEST snd;
1271 CORE_ADDR addr;
1272 ULONGEST signature;
1273 }
1274 u;
1275 };
1276
1277 /* This data structure holds a complete die structure. */
1278 struct die_info
1279 {
1280 /* DWARF-2 tag for this DIE. */
1281 ENUM_BITFIELD(dwarf_tag) tag : 16;
1282
1283 /* Number of attributes */
1284 unsigned char num_attrs;
1285
1286 /* True if we're presently building the full type name for the
1287 type derived from this DIE. */
1288 unsigned char building_fullname : 1;
1289
1290 /* True if this die is in process. PR 16581. */
1291 unsigned char in_process : 1;
1292
1293 /* Abbrev number */
1294 unsigned int abbrev;
1295
1296 /* Offset in .debug_info or .debug_types section. */
1297 sect_offset sect_off;
1298
1299 /* The dies in a compilation unit form an n-ary tree. PARENT
1300 points to this die's parent; CHILD points to the first child of
1301 this node; and all the children of a given node are chained
1302 together via their SIBLING fields. */
1303 struct die_info *child; /* Its first child, if any. */
1304 struct die_info *sibling; /* Its next sibling, if any. */
1305 struct die_info *parent; /* Its parent, if any. */
1306
1307 /* An array of attributes, with NUM_ATTRS elements. There may be
1308 zero, but it's not common and zero-sized arrays are not
1309 sufficiently portable C. */
1310 struct attribute attrs[1];
1311 };
1312
1313 /* Get at parts of an attribute structure. */
1314
1315 #define DW_STRING(attr) ((attr)->u.str)
1316 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1317 #define DW_UNSND(attr) ((attr)->u.unsnd)
1318 #define DW_BLOCK(attr) ((attr)->u.blk)
1319 #define DW_SND(attr) ((attr)->u.snd)
1320 #define DW_ADDR(attr) ((attr)->u.addr)
1321 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1322
1323 /* Blocks are a bunch of untyped bytes. */
1324 struct dwarf_block
1325 {
1326 size_t size;
1327
1328 /* Valid only if SIZE is not zero. */
1329 const gdb_byte *data;
1330 };
1331
1332 #ifndef ATTR_ALLOC_CHUNK
1333 #define ATTR_ALLOC_CHUNK 4
1334 #endif
1335
1336 /* Allocate fields for structs, unions and enums in this size. */
1337 #ifndef DW_FIELD_ALLOC_CHUNK
1338 #define DW_FIELD_ALLOC_CHUNK 4
1339 #endif
1340
1341 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1342 but this would require a corresponding change in unpack_field_as_long
1343 and friends. */
1344 static int bits_per_byte = 8;
1345
1346 /* When reading a variant or variant part, we track a bit more
1347 information about the field, and store it in an object of this
1348 type. */
1349
1350 struct variant_field
1351 {
1352 /* If we see a DW_TAG_variant, then this will be the discriminant
1353 value. */
1354 ULONGEST discriminant_value;
1355 /* If we see a DW_TAG_variant, then this will be set if this is the
1356 default branch. */
1357 bool default_branch;
1358 /* While reading a DW_TAG_variant_part, this will be set if this
1359 field is the discriminant. */
1360 bool is_discriminant;
1361 };
1362
1363 struct nextfield
1364 {
1365 int accessibility = 0;
1366 int virtuality = 0;
1367 /* Extra information to describe a variant or variant part. */
1368 struct variant_field variant {};
1369 struct field field {};
1370 };
1371
1372 struct fnfieldlist
1373 {
1374 const char *name = nullptr;
1375 std::vector<struct fn_field> fnfields;
1376 };
1377
1378 /* The routines that read and process dies for a C struct or C++ class
1379 pass lists of data member fields and lists of member function fields
1380 in an instance of a field_info structure, as defined below. */
1381 struct field_info
1382 {
1383 /* List of data member and baseclasses fields. */
1384 std::vector<struct nextfield> fields;
1385 std::vector<struct nextfield> baseclasses;
1386
1387 /* Number of fields (including baseclasses). */
1388 int nfields = 0;
1389
1390 /* Set if the accesibility of one of the fields is not public. */
1391 int non_public_fields = 0;
1392
1393 /* Member function fieldlist array, contains name of possibly overloaded
1394 member function, number of overloaded member functions and a pointer
1395 to the head of the member function field chain. */
1396 std::vector<struct fnfieldlist> fnfieldlists;
1397
1398 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1399 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1400 std::vector<struct decl_field> typedef_field_list;
1401
1402 /* Nested types defined by this class and the number of elements in this
1403 list. */
1404 std::vector<struct decl_field> nested_types_list;
1405 };
1406
1407 /* One item on the queue of compilation units to read in full symbols
1408 for. */
1409 struct dwarf2_queue_item
1410 {
1411 struct dwarf2_per_cu_data *per_cu;
1412 enum language pretend_language;
1413 struct dwarf2_queue_item *next;
1414 };
1415
1416 /* The current queue. */
1417 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1418
1419 /* Loaded secondary compilation units are kept in memory until they
1420 have not been referenced for the processing of this many
1421 compilation units. Set this to zero to disable caching. Cache
1422 sizes of up to at least twenty will improve startup time for
1423 typical inter-CU-reference binaries, at an obvious memory cost. */
1424 static int dwarf_max_cache_age = 5;
1425 static void
1426 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1427 struct cmd_list_element *c, const char *value)
1428 {
1429 fprintf_filtered (file, _("The upper bound on the age of cached "
1430 "DWARF compilation units is %s.\n"),
1431 value);
1432 }
1433 \f
1434 /* local function prototypes */
1435
1436 static const char *get_section_name (const struct dwarf2_section_info *);
1437
1438 static const char *get_section_file_name (const struct dwarf2_section_info *);
1439
1440 static void dwarf2_find_base_address (struct die_info *die,
1441 struct dwarf2_cu *cu);
1442
1443 static struct partial_symtab *create_partial_symtab
1444 (struct dwarf2_per_cu_data *per_cu, const char *name);
1445
1446 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1447 const gdb_byte *info_ptr,
1448 struct die_info *type_unit_die,
1449 int has_children, void *data);
1450
1451 static void dwarf2_build_psymtabs_hard
1452 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1453
1454 static void scan_partial_symbols (struct partial_die_info *,
1455 CORE_ADDR *, CORE_ADDR *,
1456 int, struct dwarf2_cu *);
1457
1458 static void add_partial_symbol (struct partial_die_info *,
1459 struct dwarf2_cu *);
1460
1461 static void add_partial_namespace (struct partial_die_info *pdi,
1462 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1463 int set_addrmap, struct dwarf2_cu *cu);
1464
1465 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1466 CORE_ADDR *highpc, int set_addrmap,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1470 struct dwarf2_cu *cu);
1471
1472 static void add_partial_subprogram (struct partial_die_info *pdi,
1473 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1474 int need_pc, struct dwarf2_cu *cu);
1475
1476 static void dwarf2_read_symtab (struct partial_symtab *,
1477 struct objfile *);
1478
1479 static void psymtab_to_symtab_1 (struct partial_symtab *);
1480
1481 static abbrev_table_up abbrev_table_read_table
1482 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1483 sect_offset);
1484
1485 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1486
1487 static struct partial_die_info *load_partial_dies
1488 (const struct die_reader_specs *, const gdb_byte *, int);
1489
1490 /* A pair of partial_die_info and compilation unit. */
1491 struct cu_partial_die_info
1492 {
1493 /* The compilation unit of the partial_die_info. */
1494 struct dwarf2_cu *cu;
1495 /* A partial_die_info. */
1496 struct partial_die_info *pdi;
1497
1498 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1499 : cu (cu),
1500 pdi (pdi)
1501 { /* Nothhing. */ }
1502
1503 private:
1504 cu_partial_die_info () = delete;
1505 };
1506
1507 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1508 struct dwarf2_cu *);
1509
1510 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1511 struct attribute *, struct attr_abbrev *,
1512 const gdb_byte *);
1513
1514 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1515
1516 static int read_1_signed_byte (bfd *, const gdb_byte *);
1517
1518 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1519
1520 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1521 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1522
1523 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1524
1525 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1526
1527 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1528 unsigned int *);
1529
1530 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1531
1532 static LONGEST read_checked_initial_length_and_offset
1533 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1534 unsigned int *, unsigned int *);
1535
1536 static LONGEST read_offset (bfd *, const gdb_byte *,
1537 const struct comp_unit_head *,
1538 unsigned int *);
1539
1540 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1541
1542 static sect_offset read_abbrev_offset
1543 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1544 struct dwarf2_section_info *, sect_offset);
1545
1546 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1547
1548 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1549
1550 static const char *read_indirect_string
1551 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1552 const struct comp_unit_head *, unsigned int *);
1553
1554 static const char *read_indirect_line_string
1555 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1556 const struct comp_unit_head *, unsigned int *);
1557
1558 static const char *read_indirect_string_at_offset
1559 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1560 LONGEST str_offset);
1561
1562 static const char *read_indirect_string_from_dwz
1563 (struct objfile *objfile, struct dwz_file *, LONGEST);
1564
1565 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1566
1567 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1568 const gdb_byte *,
1569 unsigned int *);
1570
1571 static const char *read_str_index (const struct die_reader_specs *reader,
1572 ULONGEST str_index);
1573
1574 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1577 struct dwarf2_cu *);
1578
1579 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1580 unsigned int);
1581
1582 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1583 struct dwarf2_cu *cu);
1584
1585 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1586
1587 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1588 struct dwarf2_cu *cu);
1589
1590 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1591
1592 static struct die_info *die_specification (struct die_info *die,
1593 struct dwarf2_cu **);
1594
1595 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1596 struct dwarf2_cu *cu);
1597
1598 static void dwarf_decode_lines (struct line_header *, const char *,
1599 struct dwarf2_cu *, struct partial_symtab *,
1600 CORE_ADDR, int decode_mapping);
1601
1602 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1603 const char *);
1604
1605 static struct symbol *new_symbol (struct die_info *, struct type *,
1606 struct dwarf2_cu *, struct symbol * = NULL);
1607
1608 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1609 struct dwarf2_cu *);
1610
1611 static void dwarf2_const_value_attr (const struct attribute *attr,
1612 struct type *type,
1613 const char *name,
1614 struct obstack *obstack,
1615 struct dwarf2_cu *cu, LONGEST *value,
1616 const gdb_byte **bytes,
1617 struct dwarf2_locexpr_baton **baton);
1618
1619 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1620
1621 static int need_gnat_info (struct dwarf2_cu *);
1622
1623 static struct type *die_descriptive_type (struct die_info *,
1624 struct dwarf2_cu *);
1625
1626 static void set_descriptive_type (struct type *, struct die_info *,
1627 struct dwarf2_cu *);
1628
1629 static struct type *die_containing_type (struct die_info *,
1630 struct dwarf2_cu *);
1631
1632 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1633 struct dwarf2_cu *);
1634
1635 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1636
1637 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1638
1639 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1640
1641 static char *typename_concat (struct obstack *obs, const char *prefix,
1642 const char *suffix, int physname,
1643 struct dwarf2_cu *cu);
1644
1645 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1646
1647 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1648
1649 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1650
1651 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1652
1653 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1654
1655 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1656
1657 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1658 struct dwarf2_cu *, struct partial_symtab *);
1659
1660 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1661 values. Keep the items ordered with increasing constraints compliance. */
1662 enum pc_bounds_kind
1663 {
1664 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1665 PC_BOUNDS_NOT_PRESENT,
1666
1667 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1668 were present but they do not form a valid range of PC addresses. */
1669 PC_BOUNDS_INVALID,
1670
1671 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1672 PC_BOUNDS_RANGES,
1673
1674 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1675 PC_BOUNDS_HIGH_LOW,
1676 };
1677
1678 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *,
1681 struct partial_symtab *);
1682
1683 static void get_scope_pc_bounds (struct die_info *,
1684 CORE_ADDR *, CORE_ADDR *,
1685 struct dwarf2_cu *);
1686
1687 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1688 CORE_ADDR, struct dwarf2_cu *);
1689
1690 static void dwarf2_add_field (struct field_info *, struct die_info *,
1691 struct dwarf2_cu *);
1692
1693 static void dwarf2_attach_fields_to_type (struct field_info *,
1694 struct type *, struct dwarf2_cu *);
1695
1696 static void dwarf2_add_member_fn (struct field_info *,
1697 struct die_info *, struct type *,
1698 struct dwarf2_cu *);
1699
1700 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1701 struct type *,
1702 struct dwarf2_cu *);
1703
1704 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1705
1706 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1707
1708 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1709
1710 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1711
1712 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1713
1714 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1715
1716 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1717
1718 static struct type *read_module_type (struct die_info *die,
1719 struct dwarf2_cu *cu);
1720
1721 static const char *namespace_name (struct die_info *die,
1722 int *is_anonymous, struct dwarf2_cu *);
1723
1724 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1725
1726 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1727
1728 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1729 struct dwarf2_cu *);
1730
1731 static struct die_info *read_die_and_siblings_1
1732 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1733 struct die_info *);
1734
1735 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1736 const gdb_byte *info_ptr,
1737 const gdb_byte **new_info_ptr,
1738 struct die_info *parent);
1739
1740 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1741 struct die_info **, const gdb_byte *,
1742 int *, int);
1743
1744 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1745 struct die_info **, const gdb_byte *,
1746 int *);
1747
1748 static void process_die (struct die_info *, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1751 struct obstack *);
1752
1753 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1754
1755 static const char *dwarf2_full_name (const char *name,
1756 struct die_info *die,
1757 struct dwarf2_cu *cu);
1758
1759 static const char *dwarf2_physname (const char *name, struct die_info *die,
1760 struct dwarf2_cu *cu);
1761
1762 static struct die_info *dwarf2_extension (struct die_info *die,
1763 struct dwarf2_cu **);
1764
1765 static const char *dwarf_tag_name (unsigned int);
1766
1767 static const char *dwarf_attr_name (unsigned int);
1768
1769 static const char *dwarf_unit_type_name (int unit_type);
1770
1771 static const char *dwarf_form_name (unsigned int);
1772
1773 static const char *dwarf_bool_name (unsigned int);
1774
1775 static const char *dwarf_type_encoding_name (unsigned int);
1776
1777 static struct die_info *sibling_die (struct die_info *);
1778
1779 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1780
1781 static void dump_die_for_error (struct die_info *);
1782
1783 static void dump_die_1 (struct ui_file *, int level, int max_level,
1784 struct die_info *);
1785
1786 /*static*/ void dump_die (struct die_info *, int max_level);
1787
1788 static void store_in_ref_table (struct die_info *,
1789 struct dwarf2_cu *);
1790
1791 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1792
1793 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1794
1795 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1796 const struct attribute *,
1797 struct dwarf2_cu **);
1798
1799 static struct die_info *follow_die_ref (struct die_info *,
1800 const struct attribute *,
1801 struct dwarf2_cu **);
1802
1803 static struct die_info *follow_die_sig (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu **);
1806
1807 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1808 struct dwarf2_cu *);
1809
1810 static struct type *get_DW_AT_signature_type (struct die_info *,
1811 const struct attribute *,
1812 struct dwarf2_cu *);
1813
1814 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1815
1816 static void read_signatured_type (struct signatured_type *);
1817
1818 static int attr_to_dynamic_prop (const struct attribute *attr,
1819 struct die_info *die, struct dwarf2_cu *cu,
1820 struct dynamic_prop *prop, struct type *type);
1821
1822 /* memory allocation interface */
1823
1824 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1825
1826 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1827
1828 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1829
1830 static int attr_form_is_block (const struct attribute *);
1831
1832 static int attr_form_is_section_offset (const struct attribute *);
1833
1834 static int attr_form_is_constant (const struct attribute *);
1835
1836 static int attr_form_is_ref (const struct attribute *);
1837
1838 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1839 struct dwarf2_loclist_baton *baton,
1840 const struct attribute *attr);
1841
1842 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1843 struct symbol *sym,
1844 struct dwarf2_cu *cu,
1845 int is_block);
1846
1847 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1848 const gdb_byte *info_ptr,
1849 struct abbrev_info *abbrev);
1850
1851 static hashval_t partial_die_hash (const void *item);
1852
1853 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1854
1855 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1856 (sect_offset sect_off, unsigned int offset_in_dwz,
1857 struct dwarf2_per_objfile *dwarf2_per_objfile);
1858
1859 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1860 struct die_info *comp_unit_die,
1861 enum language pretend_language);
1862
1863 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1866
1867 static struct type *set_die_type (struct die_info *, struct type *,
1868 struct dwarf2_cu *);
1869
1870 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1871
1872 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1873
1874 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1875 enum language);
1876
1877 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1878 enum language);
1879
1880 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1881 enum language);
1882
1883 static void dwarf2_add_dependence (struct dwarf2_cu *,
1884 struct dwarf2_per_cu_data *);
1885
1886 static void dwarf2_mark (struct dwarf2_cu *);
1887
1888 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1889
1890 static struct type *get_die_type_at_offset (sect_offset,
1891 struct dwarf2_per_cu_data *);
1892
1893 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1894
1895 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1896 enum language pretend_language);
1897
1898 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1899
1900 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1901 static struct type *dwarf2_per_cu_addr_sized_int_type
1902 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1903
1904 /* Class, the destructor of which frees all allocated queue entries. This
1905 will only have work to do if an error was thrown while processing the
1906 dwarf. If no error was thrown then the queue entries should have all
1907 been processed, and freed, as we went along. */
1908
1909 class dwarf2_queue_guard
1910 {
1911 public:
1912 dwarf2_queue_guard () = default;
1913
1914 /* Free any entries remaining on the queue. There should only be
1915 entries left if we hit an error while processing the dwarf. */
1916 ~dwarf2_queue_guard ()
1917 {
1918 struct dwarf2_queue_item *item, *last;
1919
1920 item = dwarf2_queue;
1921 while (item)
1922 {
1923 /* Anything still marked queued is likely to be in an
1924 inconsistent state, so discard it. */
1925 if (item->per_cu->queued)
1926 {
1927 if (item->per_cu->cu != NULL)
1928 free_one_cached_comp_unit (item->per_cu);
1929 item->per_cu->queued = 0;
1930 }
1931
1932 last = item;
1933 item = item->next;
1934 xfree (last);
1935 }
1936
1937 dwarf2_queue = dwarf2_queue_tail = NULL;
1938 }
1939 };
1940
1941 /* The return type of find_file_and_directory. Note, the enclosed
1942 string pointers are only valid while this object is valid. */
1943
1944 struct file_and_directory
1945 {
1946 /* The filename. This is never NULL. */
1947 const char *name;
1948
1949 /* The compilation directory. NULL if not known. If we needed to
1950 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1951 points directly to the DW_AT_comp_dir string attribute owned by
1952 the obstack that owns the DIE. */
1953 const char *comp_dir;
1954
1955 /* If we needed to build a new string for comp_dir, this is what
1956 owns the storage. */
1957 std::string comp_dir_storage;
1958 };
1959
1960 static file_and_directory find_file_and_directory (struct die_info *die,
1961 struct dwarf2_cu *cu);
1962
1963 static char *file_full_name (int file, struct line_header *lh,
1964 const char *comp_dir);
1965
1966 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1967 enum class rcuh_kind { COMPILE, TYPE };
1968
1969 static const gdb_byte *read_and_check_comp_unit_head
1970 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1971 struct comp_unit_head *header,
1972 struct dwarf2_section_info *section,
1973 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1974 rcuh_kind section_kind);
1975
1976 static void init_cutu_and_read_dies
1977 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1978 int use_existing_cu, int keep, bool skip_partial,
1979 die_reader_func_ftype *die_reader_func, void *data);
1980
1981 static void init_cutu_and_read_dies_simple
1982 (struct dwarf2_per_cu_data *this_cu,
1983 die_reader_func_ftype *die_reader_func, void *data);
1984
1985 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1986
1987 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1988
1989 static struct dwo_unit *lookup_dwo_unit_in_dwp
1990 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1991 struct dwp_file *dwp_file, const char *comp_dir,
1992 ULONGEST signature, int is_debug_types);
1993
1994 static struct dwp_file *get_dwp_file
1995 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1996
1997 static struct dwo_unit *lookup_dwo_comp_unit
1998 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1999
2000 static struct dwo_unit *lookup_dwo_type_unit
2001 (struct signatured_type *, const char *, const char *);
2002
2003 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2004
2005 /* A unique pointer to a dwo_file. */
2006
2007 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2008
2009 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2010
2011 static void check_producer (struct dwarf2_cu *cu);
2012
2013 static void free_line_header_voidp (void *arg);
2014 \f
2015 /* Various complaints about symbol reading that don't abort the process. */
2016
2017 static void
2018 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2019 {
2020 complaint (_("statement list doesn't fit in .debug_line section"));
2021 }
2022
2023 static void
2024 dwarf2_debug_line_missing_file_complaint (void)
2025 {
2026 complaint (_(".debug_line section has line data without a file"));
2027 }
2028
2029 static void
2030 dwarf2_debug_line_missing_end_sequence_complaint (void)
2031 {
2032 complaint (_(".debug_line section has line "
2033 "program sequence without an end"));
2034 }
2035
2036 static void
2037 dwarf2_complex_location_expr_complaint (void)
2038 {
2039 complaint (_("location expression too complex"));
2040 }
2041
2042 static void
2043 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2044 int arg3)
2045 {
2046 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2047 arg1, arg2, arg3);
2048 }
2049
2050 static void
2051 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2052 {
2053 complaint (_("debug info runs off end of %s section"
2054 " [in module %s]"),
2055 get_section_name (section),
2056 get_section_file_name (section));
2057 }
2058
2059 static void
2060 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2061 {
2062 complaint (_("macro debug info contains a "
2063 "malformed macro definition:\n`%s'"),
2064 arg1);
2065 }
2066
2067 static void
2068 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2069 {
2070 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2071 arg1, arg2);
2072 }
2073
2074 /* Hash function for line_header_hash. */
2075
2076 static hashval_t
2077 line_header_hash (const struct line_header *ofs)
2078 {
2079 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2080 }
2081
2082 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2083
2084 static hashval_t
2085 line_header_hash_voidp (const void *item)
2086 {
2087 const struct line_header *ofs = (const struct line_header *) item;
2088
2089 return line_header_hash (ofs);
2090 }
2091
2092 /* Equality function for line_header_hash. */
2093
2094 static int
2095 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2096 {
2097 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2098 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2099
2100 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2101 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2102 }
2103
2104 \f
2105
2106 /* Read the given attribute value as an address, taking the attribute's
2107 form into account. */
2108
2109 static CORE_ADDR
2110 attr_value_as_address (struct attribute *attr)
2111 {
2112 CORE_ADDR addr;
2113
2114 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2115 && attr->form != DW_FORM_GNU_addr_index)
2116 {
2117 /* Aside from a few clearly defined exceptions, attributes that
2118 contain an address must always be in DW_FORM_addr form.
2119 Unfortunately, some compilers happen to be violating this
2120 requirement by encoding addresses using other forms, such
2121 as DW_FORM_data4 for example. For those broken compilers,
2122 we try to do our best, without any guarantee of success,
2123 to interpret the address correctly. It would also be nice
2124 to generate a complaint, but that would require us to maintain
2125 a list of legitimate cases where a non-address form is allowed,
2126 as well as update callers to pass in at least the CU's DWARF
2127 version. This is more overhead than what we're willing to
2128 expand for a pretty rare case. */
2129 addr = DW_UNSND (attr);
2130 }
2131 else
2132 addr = DW_ADDR (attr);
2133
2134 return addr;
2135 }
2136
2137 /* See declaration. */
2138
2139 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2140 const dwarf2_debug_sections *names)
2141 : objfile (objfile_)
2142 {
2143 if (names == NULL)
2144 names = &dwarf2_elf_names;
2145
2146 bfd *obfd = objfile->obfd;
2147
2148 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2149 locate_sections (obfd, sec, *names);
2150 }
2151
2152 dwarf2_per_objfile::~dwarf2_per_objfile ()
2153 {
2154 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2155 free_cached_comp_units ();
2156
2157 if (quick_file_names_table)
2158 htab_delete (quick_file_names_table);
2159
2160 if (line_header_hash)
2161 htab_delete (line_header_hash);
2162
2163 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2164 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2165
2166 for (signatured_type *sig_type : all_type_units)
2167 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2168
2169 /* Everything else should be on the objfile obstack. */
2170 }
2171
2172 /* See declaration. */
2173
2174 void
2175 dwarf2_per_objfile::free_cached_comp_units ()
2176 {
2177 dwarf2_per_cu_data *per_cu = read_in_chain;
2178 dwarf2_per_cu_data **last_chain = &read_in_chain;
2179 while (per_cu != NULL)
2180 {
2181 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2182
2183 delete per_cu->cu;
2184 *last_chain = next_cu;
2185 per_cu = next_cu;
2186 }
2187 }
2188
2189 /* A helper class that calls free_cached_comp_units on
2190 destruction. */
2191
2192 class free_cached_comp_units
2193 {
2194 public:
2195
2196 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2197 : m_per_objfile (per_objfile)
2198 {
2199 }
2200
2201 ~free_cached_comp_units ()
2202 {
2203 m_per_objfile->free_cached_comp_units ();
2204 }
2205
2206 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2207
2208 private:
2209
2210 dwarf2_per_objfile *m_per_objfile;
2211 };
2212
2213 /* Try to locate the sections we need for DWARF 2 debugging
2214 information and return true if we have enough to do something.
2215 NAMES points to the dwarf2 section names, or is NULL if the standard
2216 ELF names are used. */
2217
2218 int
2219 dwarf2_has_info (struct objfile *objfile,
2220 const struct dwarf2_debug_sections *names)
2221 {
2222 if (objfile->flags & OBJF_READNEVER)
2223 return 0;
2224
2225 struct dwarf2_per_objfile *dwarf2_per_objfile
2226 = get_dwarf2_per_objfile (objfile);
2227
2228 if (dwarf2_per_objfile == NULL)
2229 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2230 names);
2231
2232 return (!dwarf2_per_objfile->info.is_virtual
2233 && dwarf2_per_objfile->info.s.section != NULL
2234 && !dwarf2_per_objfile->abbrev.is_virtual
2235 && dwarf2_per_objfile->abbrev.s.section != NULL);
2236 }
2237
2238 /* Return the containing section of virtual section SECTION. */
2239
2240 static struct dwarf2_section_info *
2241 get_containing_section (const struct dwarf2_section_info *section)
2242 {
2243 gdb_assert (section->is_virtual);
2244 return section->s.containing_section;
2245 }
2246
2247 /* Return the bfd owner of SECTION. */
2248
2249 static struct bfd *
2250 get_section_bfd_owner (const struct dwarf2_section_info *section)
2251 {
2252 if (section->is_virtual)
2253 {
2254 section = get_containing_section (section);
2255 gdb_assert (!section->is_virtual);
2256 }
2257 return section->s.section->owner;
2258 }
2259
2260 /* Return the bfd section of SECTION.
2261 Returns NULL if the section is not present. */
2262
2263 static asection *
2264 get_section_bfd_section (const struct dwarf2_section_info *section)
2265 {
2266 if (section->is_virtual)
2267 {
2268 section = get_containing_section (section);
2269 gdb_assert (!section->is_virtual);
2270 }
2271 return section->s.section;
2272 }
2273
2274 /* Return the name of SECTION. */
2275
2276 static const char *
2277 get_section_name (const struct dwarf2_section_info *section)
2278 {
2279 asection *sectp = get_section_bfd_section (section);
2280
2281 gdb_assert (sectp != NULL);
2282 return bfd_section_name (get_section_bfd_owner (section), sectp);
2283 }
2284
2285 /* Return the name of the file SECTION is in. */
2286
2287 static const char *
2288 get_section_file_name (const struct dwarf2_section_info *section)
2289 {
2290 bfd *abfd = get_section_bfd_owner (section);
2291
2292 return bfd_get_filename (abfd);
2293 }
2294
2295 /* Return the id of SECTION.
2296 Returns 0 if SECTION doesn't exist. */
2297
2298 static int
2299 get_section_id (const struct dwarf2_section_info *section)
2300 {
2301 asection *sectp = get_section_bfd_section (section);
2302
2303 if (sectp == NULL)
2304 return 0;
2305 return sectp->id;
2306 }
2307
2308 /* Return the flags of SECTION.
2309 SECTION (or containing section if this is a virtual section) must exist. */
2310
2311 static int
2312 get_section_flags (const struct dwarf2_section_info *section)
2313 {
2314 asection *sectp = get_section_bfd_section (section);
2315
2316 gdb_assert (sectp != NULL);
2317 return bfd_get_section_flags (sectp->owner, sectp);
2318 }
2319
2320 /* When loading sections, we look either for uncompressed section or for
2321 compressed section names. */
2322
2323 static int
2324 section_is_p (const char *section_name,
2325 const struct dwarf2_section_names *names)
2326 {
2327 if (names->normal != NULL
2328 && strcmp (section_name, names->normal) == 0)
2329 return 1;
2330 if (names->compressed != NULL
2331 && strcmp (section_name, names->compressed) == 0)
2332 return 1;
2333 return 0;
2334 }
2335
2336 /* See declaration. */
2337
2338 void
2339 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2340 const dwarf2_debug_sections &names)
2341 {
2342 flagword aflag = bfd_get_section_flags (abfd, sectp);
2343
2344 if ((aflag & SEC_HAS_CONTENTS) == 0)
2345 {
2346 }
2347 else if (section_is_p (sectp->name, &names.info))
2348 {
2349 this->info.s.section = sectp;
2350 this->info.size = bfd_get_section_size (sectp);
2351 }
2352 else if (section_is_p (sectp->name, &names.abbrev))
2353 {
2354 this->abbrev.s.section = sectp;
2355 this->abbrev.size = bfd_get_section_size (sectp);
2356 }
2357 else if (section_is_p (sectp->name, &names.line))
2358 {
2359 this->line.s.section = sectp;
2360 this->line.size = bfd_get_section_size (sectp);
2361 }
2362 else if (section_is_p (sectp->name, &names.loc))
2363 {
2364 this->loc.s.section = sectp;
2365 this->loc.size = bfd_get_section_size (sectp);
2366 }
2367 else if (section_is_p (sectp->name, &names.loclists))
2368 {
2369 this->loclists.s.section = sectp;
2370 this->loclists.size = bfd_get_section_size (sectp);
2371 }
2372 else if (section_is_p (sectp->name, &names.macinfo))
2373 {
2374 this->macinfo.s.section = sectp;
2375 this->macinfo.size = bfd_get_section_size (sectp);
2376 }
2377 else if (section_is_p (sectp->name, &names.macro))
2378 {
2379 this->macro.s.section = sectp;
2380 this->macro.size = bfd_get_section_size (sectp);
2381 }
2382 else if (section_is_p (sectp->name, &names.str))
2383 {
2384 this->str.s.section = sectp;
2385 this->str.size = bfd_get_section_size (sectp);
2386 }
2387 else if (section_is_p (sectp->name, &names.line_str))
2388 {
2389 this->line_str.s.section = sectp;
2390 this->line_str.size = bfd_get_section_size (sectp);
2391 }
2392 else if (section_is_p (sectp->name, &names.addr))
2393 {
2394 this->addr.s.section = sectp;
2395 this->addr.size = bfd_get_section_size (sectp);
2396 }
2397 else if (section_is_p (sectp->name, &names.frame))
2398 {
2399 this->frame.s.section = sectp;
2400 this->frame.size = bfd_get_section_size (sectp);
2401 }
2402 else if (section_is_p (sectp->name, &names.eh_frame))
2403 {
2404 this->eh_frame.s.section = sectp;
2405 this->eh_frame.size = bfd_get_section_size (sectp);
2406 }
2407 else if (section_is_p (sectp->name, &names.ranges))
2408 {
2409 this->ranges.s.section = sectp;
2410 this->ranges.size = bfd_get_section_size (sectp);
2411 }
2412 else if (section_is_p (sectp->name, &names.rnglists))
2413 {
2414 this->rnglists.s.section = sectp;
2415 this->rnglists.size = bfd_get_section_size (sectp);
2416 }
2417 else if (section_is_p (sectp->name, &names.types))
2418 {
2419 struct dwarf2_section_info type_section;
2420
2421 memset (&type_section, 0, sizeof (type_section));
2422 type_section.s.section = sectp;
2423 type_section.size = bfd_get_section_size (sectp);
2424
2425 this->types.push_back (type_section);
2426 }
2427 else if (section_is_p (sectp->name, &names.gdb_index))
2428 {
2429 this->gdb_index.s.section = sectp;
2430 this->gdb_index.size = bfd_get_section_size (sectp);
2431 }
2432 else if (section_is_p (sectp->name, &names.debug_names))
2433 {
2434 this->debug_names.s.section = sectp;
2435 this->debug_names.size = bfd_get_section_size (sectp);
2436 }
2437 else if (section_is_p (sectp->name, &names.debug_aranges))
2438 {
2439 this->debug_aranges.s.section = sectp;
2440 this->debug_aranges.size = bfd_get_section_size (sectp);
2441 }
2442
2443 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2444 && bfd_section_vma (abfd, sectp) == 0)
2445 this->has_section_at_zero = true;
2446 }
2447
2448 /* A helper function that decides whether a section is empty,
2449 or not present. */
2450
2451 static int
2452 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2453 {
2454 if (section->is_virtual)
2455 return section->size == 0;
2456 return section->s.section == NULL || section->size == 0;
2457 }
2458
2459 /* See dwarf2read.h. */
2460
2461 void
2462 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2463 {
2464 asection *sectp;
2465 bfd *abfd;
2466 gdb_byte *buf, *retbuf;
2467
2468 if (info->readin)
2469 return;
2470 info->buffer = NULL;
2471 info->readin = true;
2472
2473 if (dwarf2_section_empty_p (info))
2474 return;
2475
2476 sectp = get_section_bfd_section (info);
2477
2478 /* If this is a virtual section we need to read in the real one first. */
2479 if (info->is_virtual)
2480 {
2481 struct dwarf2_section_info *containing_section =
2482 get_containing_section (info);
2483
2484 gdb_assert (sectp != NULL);
2485 if ((sectp->flags & SEC_RELOC) != 0)
2486 {
2487 error (_("Dwarf Error: DWP format V2 with relocations is not"
2488 " supported in section %s [in module %s]"),
2489 get_section_name (info), get_section_file_name (info));
2490 }
2491 dwarf2_read_section (objfile, containing_section);
2492 /* Other code should have already caught virtual sections that don't
2493 fit. */
2494 gdb_assert (info->virtual_offset + info->size
2495 <= containing_section->size);
2496 /* If the real section is empty or there was a problem reading the
2497 section we shouldn't get here. */
2498 gdb_assert (containing_section->buffer != NULL);
2499 info->buffer = containing_section->buffer + info->virtual_offset;
2500 return;
2501 }
2502
2503 /* If the section has relocations, we must read it ourselves.
2504 Otherwise we attach it to the BFD. */
2505 if ((sectp->flags & SEC_RELOC) == 0)
2506 {
2507 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2508 return;
2509 }
2510
2511 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2512 info->buffer = buf;
2513
2514 /* When debugging .o files, we may need to apply relocations; see
2515 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2516 We never compress sections in .o files, so we only need to
2517 try this when the section is not compressed. */
2518 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2519 if (retbuf != NULL)
2520 {
2521 info->buffer = retbuf;
2522 return;
2523 }
2524
2525 abfd = get_section_bfd_owner (info);
2526 gdb_assert (abfd != NULL);
2527
2528 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2529 || bfd_bread (buf, info->size, abfd) != info->size)
2530 {
2531 error (_("Dwarf Error: Can't read DWARF data"
2532 " in section %s [in module %s]"),
2533 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2534 }
2535 }
2536
2537 /* A helper function that returns the size of a section in a safe way.
2538 If you are positive that the section has been read before using the
2539 size, then it is safe to refer to the dwarf2_section_info object's
2540 "size" field directly. In other cases, you must call this
2541 function, because for compressed sections the size field is not set
2542 correctly until the section has been read. */
2543
2544 static bfd_size_type
2545 dwarf2_section_size (struct objfile *objfile,
2546 struct dwarf2_section_info *info)
2547 {
2548 if (!info->readin)
2549 dwarf2_read_section (objfile, info);
2550 return info->size;
2551 }
2552
2553 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2554 SECTION_NAME. */
2555
2556 void
2557 dwarf2_get_section_info (struct objfile *objfile,
2558 enum dwarf2_section_enum sect,
2559 asection **sectp, const gdb_byte **bufp,
2560 bfd_size_type *sizep)
2561 {
2562 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2563 struct dwarf2_section_info *info;
2564
2565 /* We may see an objfile without any DWARF, in which case we just
2566 return nothing. */
2567 if (data == NULL)
2568 {
2569 *sectp = NULL;
2570 *bufp = NULL;
2571 *sizep = 0;
2572 return;
2573 }
2574 switch (sect)
2575 {
2576 case DWARF2_DEBUG_FRAME:
2577 info = &data->frame;
2578 break;
2579 case DWARF2_EH_FRAME:
2580 info = &data->eh_frame;
2581 break;
2582 default:
2583 gdb_assert_not_reached ("unexpected section");
2584 }
2585
2586 dwarf2_read_section (objfile, info);
2587
2588 *sectp = get_section_bfd_section (info);
2589 *bufp = info->buffer;
2590 *sizep = info->size;
2591 }
2592
2593 /* A helper function to find the sections for a .dwz file. */
2594
2595 static void
2596 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2597 {
2598 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2599
2600 /* Note that we only support the standard ELF names, because .dwz
2601 is ELF-only (at the time of writing). */
2602 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2603 {
2604 dwz_file->abbrev.s.section = sectp;
2605 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2606 }
2607 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2608 {
2609 dwz_file->info.s.section = sectp;
2610 dwz_file->info.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2613 {
2614 dwz_file->str.s.section = sectp;
2615 dwz_file->str.size = bfd_get_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2618 {
2619 dwz_file->line.s.section = sectp;
2620 dwz_file->line.size = bfd_get_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2623 {
2624 dwz_file->macro.s.section = sectp;
2625 dwz_file->macro.size = bfd_get_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2628 {
2629 dwz_file->gdb_index.s.section = sectp;
2630 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2633 {
2634 dwz_file->debug_names.s.section = sectp;
2635 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2636 }
2637 }
2638
2639 /* See dwarf2read.h. */
2640
2641 struct dwz_file *
2642 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2643 {
2644 const char *filename;
2645 bfd_size_type buildid_len_arg;
2646 size_t buildid_len;
2647 bfd_byte *buildid;
2648
2649 if (dwarf2_per_objfile->dwz_file != NULL)
2650 return dwarf2_per_objfile->dwz_file.get ();
2651
2652 bfd_set_error (bfd_error_no_error);
2653 gdb::unique_xmalloc_ptr<char> data
2654 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2655 &buildid_len_arg, &buildid));
2656 if (data == NULL)
2657 {
2658 if (bfd_get_error () == bfd_error_no_error)
2659 return NULL;
2660 error (_("could not read '.gnu_debugaltlink' section: %s"),
2661 bfd_errmsg (bfd_get_error ()));
2662 }
2663
2664 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2665
2666 buildid_len = (size_t) buildid_len_arg;
2667
2668 filename = data.get ();
2669
2670 std::string abs_storage;
2671 if (!IS_ABSOLUTE_PATH (filename))
2672 {
2673 gdb::unique_xmalloc_ptr<char> abs
2674 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2675
2676 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2677 filename = abs_storage.c_str ();
2678 }
2679
2680 /* First try the file name given in the section. If that doesn't
2681 work, try to use the build-id instead. */
2682 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2683 if (dwz_bfd != NULL)
2684 {
2685 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2686 dwz_bfd.reset (nullptr);
2687 }
2688
2689 if (dwz_bfd == NULL)
2690 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2691
2692 if (dwz_bfd == NULL)
2693 error (_("could not find '.gnu_debugaltlink' file for %s"),
2694 objfile_name (dwarf2_per_objfile->objfile));
2695
2696 std::unique_ptr<struct dwz_file> result
2697 (new struct dwz_file (std::move (dwz_bfd)));
2698
2699 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2700 result.get ());
2701
2702 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2703 result->dwz_bfd.get ());
2704 dwarf2_per_objfile->dwz_file = std::move (result);
2705 return dwarf2_per_objfile->dwz_file.get ();
2706 }
2707 \f
2708 /* DWARF quick_symbols_functions support. */
2709
2710 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2711 unique line tables, so we maintain a separate table of all .debug_line
2712 derived entries to support the sharing.
2713 All the quick functions need is the list of file names. We discard the
2714 line_header when we're done and don't need to record it here. */
2715 struct quick_file_names
2716 {
2717 /* The data used to construct the hash key. */
2718 struct stmt_list_hash hash;
2719
2720 /* The number of entries in file_names, real_names. */
2721 unsigned int num_file_names;
2722
2723 /* The file names from the line table, after being run through
2724 file_full_name. */
2725 const char **file_names;
2726
2727 /* The file names from the line table after being run through
2728 gdb_realpath. These are computed lazily. */
2729 const char **real_names;
2730 };
2731
2732 /* When using the index (and thus not using psymtabs), each CU has an
2733 object of this type. This is used to hold information needed by
2734 the various "quick" methods. */
2735 struct dwarf2_per_cu_quick_data
2736 {
2737 /* The file table. This can be NULL if there was no file table
2738 or it's currently not read in.
2739 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2740 struct quick_file_names *file_names;
2741
2742 /* The corresponding symbol table. This is NULL if symbols for this
2743 CU have not yet been read. */
2744 struct compunit_symtab *compunit_symtab;
2745
2746 /* A temporary mark bit used when iterating over all CUs in
2747 expand_symtabs_matching. */
2748 unsigned int mark : 1;
2749
2750 /* True if we've tried to read the file table and found there isn't one.
2751 There will be no point in trying to read it again next time. */
2752 unsigned int no_file_data : 1;
2753 };
2754
2755 /* Utility hash function for a stmt_list_hash. */
2756
2757 static hashval_t
2758 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2759 {
2760 hashval_t v = 0;
2761
2762 if (stmt_list_hash->dwo_unit != NULL)
2763 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2764 v += to_underlying (stmt_list_hash->line_sect_off);
2765 return v;
2766 }
2767
2768 /* Utility equality function for a stmt_list_hash. */
2769
2770 static int
2771 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2772 const struct stmt_list_hash *rhs)
2773 {
2774 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2775 return 0;
2776 if (lhs->dwo_unit != NULL
2777 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2778 return 0;
2779
2780 return lhs->line_sect_off == rhs->line_sect_off;
2781 }
2782
2783 /* Hash function for a quick_file_names. */
2784
2785 static hashval_t
2786 hash_file_name_entry (const void *e)
2787 {
2788 const struct quick_file_names *file_data
2789 = (const struct quick_file_names *) e;
2790
2791 return hash_stmt_list_entry (&file_data->hash);
2792 }
2793
2794 /* Equality function for a quick_file_names. */
2795
2796 static int
2797 eq_file_name_entry (const void *a, const void *b)
2798 {
2799 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2800 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2801
2802 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2803 }
2804
2805 /* Delete function for a quick_file_names. */
2806
2807 static void
2808 delete_file_name_entry (void *e)
2809 {
2810 struct quick_file_names *file_data = (struct quick_file_names *) e;
2811 int i;
2812
2813 for (i = 0; i < file_data->num_file_names; ++i)
2814 {
2815 xfree ((void*) file_data->file_names[i]);
2816 if (file_data->real_names)
2817 xfree ((void*) file_data->real_names[i]);
2818 }
2819
2820 /* The space for the struct itself lives on objfile_obstack,
2821 so we don't free it here. */
2822 }
2823
2824 /* Create a quick_file_names hash table. */
2825
2826 static htab_t
2827 create_quick_file_names_table (unsigned int nr_initial_entries)
2828 {
2829 return htab_create_alloc (nr_initial_entries,
2830 hash_file_name_entry, eq_file_name_entry,
2831 delete_file_name_entry, xcalloc, xfree);
2832 }
2833
2834 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2835 have to be created afterwards. You should call age_cached_comp_units after
2836 processing PER_CU->CU. dw2_setup must have been already called. */
2837
2838 static void
2839 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2840 {
2841 if (per_cu->is_debug_types)
2842 load_full_type_unit (per_cu);
2843 else
2844 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2845
2846 if (per_cu->cu == NULL)
2847 return; /* Dummy CU. */
2848
2849 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2850 }
2851
2852 /* Read in the symbols for PER_CU. */
2853
2854 static void
2855 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2856 {
2857 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2858
2859 /* Skip type_unit_groups, reading the type units they contain
2860 is handled elsewhere. */
2861 if (IS_TYPE_UNIT_GROUP (per_cu))
2862 return;
2863
2864 /* The destructor of dwarf2_queue_guard frees any entries left on
2865 the queue. After this point we're guaranteed to leave this function
2866 with the dwarf queue empty. */
2867 dwarf2_queue_guard q_guard;
2868
2869 if (dwarf2_per_objfile->using_index
2870 ? per_cu->v.quick->compunit_symtab == NULL
2871 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2872 {
2873 queue_comp_unit (per_cu, language_minimal);
2874 load_cu (per_cu, skip_partial);
2875
2876 /* If we just loaded a CU from a DWO, and we're working with an index
2877 that may badly handle TUs, load all the TUs in that DWO as well.
2878 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2879 if (!per_cu->is_debug_types
2880 && per_cu->cu != NULL
2881 && per_cu->cu->dwo_unit != NULL
2882 && dwarf2_per_objfile->index_table != NULL
2883 && dwarf2_per_objfile->index_table->version <= 7
2884 /* DWP files aren't supported yet. */
2885 && get_dwp_file (dwarf2_per_objfile) == NULL)
2886 queue_and_load_all_dwo_tus (per_cu);
2887 }
2888
2889 process_queue (dwarf2_per_objfile);
2890
2891 /* Age the cache, releasing compilation units that have not
2892 been used recently. */
2893 age_cached_comp_units (dwarf2_per_objfile);
2894 }
2895
2896 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2897 the objfile from which this CU came. Returns the resulting symbol
2898 table. */
2899
2900 static struct compunit_symtab *
2901 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2902 {
2903 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2904
2905 gdb_assert (dwarf2_per_objfile->using_index);
2906 if (!per_cu->v.quick->compunit_symtab)
2907 {
2908 free_cached_comp_units freer (dwarf2_per_objfile);
2909 scoped_restore decrementer = increment_reading_symtab ();
2910 dw2_do_instantiate_symtab (per_cu, skip_partial);
2911 process_cu_includes (dwarf2_per_objfile);
2912 }
2913
2914 return per_cu->v.quick->compunit_symtab;
2915 }
2916
2917 /* See declaration. */
2918
2919 dwarf2_per_cu_data *
2920 dwarf2_per_objfile::get_cutu (int index)
2921 {
2922 if (index >= this->all_comp_units.size ())
2923 {
2924 index -= this->all_comp_units.size ();
2925 gdb_assert (index < this->all_type_units.size ());
2926 return &this->all_type_units[index]->per_cu;
2927 }
2928
2929 return this->all_comp_units[index];
2930 }
2931
2932 /* See declaration. */
2933
2934 dwarf2_per_cu_data *
2935 dwarf2_per_objfile::get_cu (int index)
2936 {
2937 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2938
2939 return this->all_comp_units[index];
2940 }
2941
2942 /* See declaration. */
2943
2944 signatured_type *
2945 dwarf2_per_objfile::get_tu (int index)
2946 {
2947 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2948
2949 return this->all_type_units[index];
2950 }
2951
2952 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2953 objfile_obstack, and constructed with the specified field
2954 values. */
2955
2956 static dwarf2_per_cu_data *
2957 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2958 struct dwarf2_section_info *section,
2959 int is_dwz,
2960 sect_offset sect_off, ULONGEST length)
2961 {
2962 struct objfile *objfile = dwarf2_per_objfile->objfile;
2963 dwarf2_per_cu_data *the_cu
2964 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2965 struct dwarf2_per_cu_data);
2966 the_cu->sect_off = sect_off;
2967 the_cu->length = length;
2968 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2969 the_cu->section = section;
2970 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2971 struct dwarf2_per_cu_quick_data);
2972 the_cu->is_dwz = is_dwz;
2973 return the_cu;
2974 }
2975
2976 /* A helper for create_cus_from_index that handles a given list of
2977 CUs. */
2978
2979 static void
2980 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2981 const gdb_byte *cu_list, offset_type n_elements,
2982 struct dwarf2_section_info *section,
2983 int is_dwz)
2984 {
2985 for (offset_type i = 0; i < n_elements; i += 2)
2986 {
2987 gdb_static_assert (sizeof (ULONGEST) >= 8);
2988
2989 sect_offset sect_off
2990 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2991 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2992 cu_list += 2 * 8;
2993
2994 dwarf2_per_cu_data *per_cu
2995 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2996 sect_off, length);
2997 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2998 }
2999 }
3000
3001 /* Read the CU list from the mapped index, and use it to create all
3002 the CU objects for this objfile. */
3003
3004 static void
3005 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3006 const gdb_byte *cu_list, offset_type cu_list_elements,
3007 const gdb_byte *dwz_list, offset_type dwz_elements)
3008 {
3009 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3010 dwarf2_per_objfile->all_comp_units.reserve
3011 ((cu_list_elements + dwz_elements) / 2);
3012
3013 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3014 &dwarf2_per_objfile->info, 0);
3015
3016 if (dwz_elements == 0)
3017 return;
3018
3019 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3020 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3021 &dwz->info, 1);
3022 }
3023
3024 /* Create the signatured type hash table from the index. */
3025
3026 static void
3027 create_signatured_type_table_from_index
3028 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3029 struct dwarf2_section_info *section,
3030 const gdb_byte *bytes,
3031 offset_type elements)
3032 {
3033 struct objfile *objfile = dwarf2_per_objfile->objfile;
3034
3035 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3036 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3037
3038 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3039
3040 for (offset_type i = 0; i < elements; i += 3)
3041 {
3042 struct signatured_type *sig_type;
3043 ULONGEST signature;
3044 void **slot;
3045 cu_offset type_offset_in_tu;
3046
3047 gdb_static_assert (sizeof (ULONGEST) >= 8);
3048 sect_offset sect_off
3049 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3050 type_offset_in_tu
3051 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3052 BFD_ENDIAN_LITTLE);
3053 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3054 bytes += 3 * 8;
3055
3056 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3057 struct signatured_type);
3058 sig_type->signature = signature;
3059 sig_type->type_offset_in_tu = type_offset_in_tu;
3060 sig_type->per_cu.is_debug_types = 1;
3061 sig_type->per_cu.section = section;
3062 sig_type->per_cu.sect_off = sect_off;
3063 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3064 sig_type->per_cu.v.quick
3065 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3066 struct dwarf2_per_cu_quick_data);
3067
3068 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3069 *slot = sig_type;
3070
3071 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3072 }
3073
3074 dwarf2_per_objfile->signatured_types = sig_types_hash;
3075 }
3076
3077 /* Create the signatured type hash table from .debug_names. */
3078
3079 static void
3080 create_signatured_type_table_from_debug_names
3081 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3082 const mapped_debug_names &map,
3083 struct dwarf2_section_info *section,
3084 struct dwarf2_section_info *abbrev_section)
3085 {
3086 struct objfile *objfile = dwarf2_per_objfile->objfile;
3087
3088 dwarf2_read_section (objfile, section);
3089 dwarf2_read_section (objfile, abbrev_section);
3090
3091 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3092 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3093
3094 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3095
3096 for (uint32_t i = 0; i < map.tu_count; ++i)
3097 {
3098 struct signatured_type *sig_type;
3099 void **slot;
3100
3101 sect_offset sect_off
3102 = (sect_offset) (extract_unsigned_integer
3103 (map.tu_table_reordered + i * map.offset_size,
3104 map.offset_size,
3105 map.dwarf5_byte_order));
3106
3107 comp_unit_head cu_header;
3108 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3109 abbrev_section,
3110 section->buffer + to_underlying (sect_off),
3111 rcuh_kind::TYPE);
3112
3113 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3114 struct signatured_type);
3115 sig_type->signature = cu_header.signature;
3116 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3117 sig_type->per_cu.is_debug_types = 1;
3118 sig_type->per_cu.section = section;
3119 sig_type->per_cu.sect_off = sect_off;
3120 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3121 sig_type->per_cu.v.quick
3122 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3123 struct dwarf2_per_cu_quick_data);
3124
3125 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3126 *slot = sig_type;
3127
3128 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3129 }
3130
3131 dwarf2_per_objfile->signatured_types = sig_types_hash;
3132 }
3133
3134 /* Read the address map data from the mapped index, and use it to
3135 populate the objfile's psymtabs_addrmap. */
3136
3137 static void
3138 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3139 struct mapped_index *index)
3140 {
3141 struct objfile *objfile = dwarf2_per_objfile->objfile;
3142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3143 const gdb_byte *iter, *end;
3144 struct addrmap *mutable_map;
3145 CORE_ADDR baseaddr;
3146
3147 auto_obstack temp_obstack;
3148
3149 mutable_map = addrmap_create_mutable (&temp_obstack);
3150
3151 iter = index->address_table.data ();
3152 end = iter + index->address_table.size ();
3153
3154 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3155
3156 while (iter < end)
3157 {
3158 ULONGEST hi, lo, cu_index;
3159 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3160 iter += 8;
3161 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3162 iter += 8;
3163 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3164 iter += 4;
3165
3166 if (lo > hi)
3167 {
3168 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3169 hex_string (lo), hex_string (hi));
3170 continue;
3171 }
3172
3173 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3174 {
3175 complaint (_(".gdb_index address table has invalid CU number %u"),
3176 (unsigned) cu_index);
3177 continue;
3178 }
3179
3180 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3181 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3182 addrmap_set_empty (mutable_map, lo, hi - 1,
3183 dwarf2_per_objfile->get_cu (cu_index));
3184 }
3185
3186 objfile->partial_symtabs->psymtabs_addrmap
3187 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3188 }
3189
3190 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3191 populate the objfile's psymtabs_addrmap. */
3192
3193 static void
3194 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3195 struct dwarf2_section_info *section)
3196 {
3197 struct objfile *objfile = dwarf2_per_objfile->objfile;
3198 bfd *abfd = objfile->obfd;
3199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3200 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3201 SECT_OFF_TEXT (objfile));
3202
3203 auto_obstack temp_obstack;
3204 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3205
3206 std::unordered_map<sect_offset,
3207 dwarf2_per_cu_data *,
3208 gdb::hash_enum<sect_offset>>
3209 debug_info_offset_to_per_cu;
3210 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3211 {
3212 const auto insertpair
3213 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3214 if (!insertpair.second)
3215 {
3216 warning (_("Section .debug_aranges in %s has duplicate "
3217 "debug_info_offset %s, ignoring .debug_aranges."),
3218 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3219 return;
3220 }
3221 }
3222
3223 dwarf2_read_section (objfile, section);
3224
3225 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3226
3227 const gdb_byte *addr = section->buffer;
3228
3229 while (addr < section->buffer + section->size)
3230 {
3231 const gdb_byte *const entry_addr = addr;
3232 unsigned int bytes_read;
3233
3234 const LONGEST entry_length = read_initial_length (abfd, addr,
3235 &bytes_read);
3236 addr += bytes_read;
3237
3238 const gdb_byte *const entry_end = addr + entry_length;
3239 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3240 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3241 if (addr + entry_length > section->buffer + section->size)
3242 {
3243 warning (_("Section .debug_aranges in %s entry at offset %s "
3244 "length %s exceeds section length %s, "
3245 "ignoring .debug_aranges."),
3246 objfile_name (objfile),
3247 plongest (entry_addr - section->buffer),
3248 plongest (bytes_read + entry_length),
3249 pulongest (section->size));
3250 return;
3251 }
3252
3253 /* The version number. */
3254 const uint16_t version = read_2_bytes (abfd, addr);
3255 addr += 2;
3256 if (version != 2)
3257 {
3258 warning (_("Section .debug_aranges in %s entry at offset %s "
3259 "has unsupported version %d, ignoring .debug_aranges."),
3260 objfile_name (objfile),
3261 plongest (entry_addr - section->buffer), version);
3262 return;
3263 }
3264
3265 const uint64_t debug_info_offset
3266 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3267 addr += offset_size;
3268 const auto per_cu_it
3269 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3270 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3271 {
3272 warning (_("Section .debug_aranges in %s entry at offset %s "
3273 "debug_info_offset %s does not exists, "
3274 "ignoring .debug_aranges."),
3275 objfile_name (objfile),
3276 plongest (entry_addr - section->buffer),
3277 pulongest (debug_info_offset));
3278 return;
3279 }
3280 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3281
3282 const uint8_t address_size = *addr++;
3283 if (address_size < 1 || address_size > 8)
3284 {
3285 warning (_("Section .debug_aranges in %s entry at offset %s "
3286 "address_size %u is invalid, ignoring .debug_aranges."),
3287 objfile_name (objfile),
3288 plongest (entry_addr - section->buffer), address_size);
3289 return;
3290 }
3291
3292 const uint8_t segment_selector_size = *addr++;
3293 if (segment_selector_size != 0)
3294 {
3295 warning (_("Section .debug_aranges in %s entry at offset %s "
3296 "segment_selector_size %u is not supported, "
3297 "ignoring .debug_aranges."),
3298 objfile_name (objfile),
3299 plongest (entry_addr - section->buffer),
3300 segment_selector_size);
3301 return;
3302 }
3303
3304 /* Must pad to an alignment boundary that is twice the address
3305 size. It is undocumented by the DWARF standard but GCC does
3306 use it. */
3307 for (size_t padding = ((-(addr - section->buffer))
3308 & (2 * address_size - 1));
3309 padding > 0; padding--)
3310 if (*addr++ != 0)
3311 {
3312 warning (_("Section .debug_aranges in %s entry at offset %s "
3313 "padding is not zero, ignoring .debug_aranges."),
3314 objfile_name (objfile),
3315 plongest (entry_addr - section->buffer));
3316 return;
3317 }
3318
3319 for (;;)
3320 {
3321 if (addr + 2 * address_size > entry_end)
3322 {
3323 warning (_("Section .debug_aranges in %s entry at offset %s "
3324 "address list is not properly terminated, "
3325 "ignoring .debug_aranges."),
3326 objfile_name (objfile),
3327 plongest (entry_addr - section->buffer));
3328 return;
3329 }
3330 ULONGEST start = extract_unsigned_integer (addr, address_size,
3331 dwarf5_byte_order);
3332 addr += address_size;
3333 ULONGEST length = extract_unsigned_integer (addr, address_size,
3334 dwarf5_byte_order);
3335 addr += address_size;
3336 if (start == 0 && length == 0)
3337 break;
3338 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3339 {
3340 /* Symbol was eliminated due to a COMDAT group. */
3341 continue;
3342 }
3343 ULONGEST end = start + length;
3344 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3345 - baseaddr);
3346 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3347 - baseaddr);
3348 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3349 }
3350 }
3351
3352 objfile->partial_symtabs->psymtabs_addrmap
3353 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3354 }
3355
3356 /* Find a slot in the mapped index INDEX for the object named NAME.
3357 If NAME is found, set *VEC_OUT to point to the CU vector in the
3358 constant pool and return true. If NAME cannot be found, return
3359 false. */
3360
3361 static bool
3362 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3363 offset_type **vec_out)
3364 {
3365 offset_type hash;
3366 offset_type slot, step;
3367 int (*cmp) (const char *, const char *);
3368
3369 gdb::unique_xmalloc_ptr<char> without_params;
3370 if (current_language->la_language == language_cplus
3371 || current_language->la_language == language_fortran
3372 || current_language->la_language == language_d)
3373 {
3374 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3375 not contain any. */
3376
3377 if (strchr (name, '(') != NULL)
3378 {
3379 without_params = cp_remove_params (name);
3380
3381 if (without_params != NULL)
3382 name = without_params.get ();
3383 }
3384 }
3385
3386 /* Index version 4 did not support case insensitive searches. But the
3387 indices for case insensitive languages are built in lowercase, therefore
3388 simulate our NAME being searched is also lowercased. */
3389 hash = mapped_index_string_hash ((index->version == 4
3390 && case_sensitivity == case_sensitive_off
3391 ? 5 : index->version),
3392 name);
3393
3394 slot = hash & (index->symbol_table.size () - 1);
3395 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3396 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3397
3398 for (;;)
3399 {
3400 const char *str;
3401
3402 const auto &bucket = index->symbol_table[slot];
3403 if (bucket.name == 0 && bucket.vec == 0)
3404 return false;
3405
3406 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3407 if (!cmp (name, str))
3408 {
3409 *vec_out = (offset_type *) (index->constant_pool
3410 + MAYBE_SWAP (bucket.vec));
3411 return true;
3412 }
3413
3414 slot = (slot + step) & (index->symbol_table.size () - 1);
3415 }
3416 }
3417
3418 /* A helper function that reads the .gdb_index from BUFFER and fills
3419 in MAP. FILENAME is the name of the file containing the data;
3420 it is used for error reporting. DEPRECATED_OK is true if it is
3421 ok to use deprecated sections.
3422
3423 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3424 out parameters that are filled in with information about the CU and
3425 TU lists in the section.
3426
3427 Returns true if all went well, false otherwise. */
3428
3429 static bool
3430 read_gdb_index_from_buffer (struct objfile *objfile,
3431 const char *filename,
3432 bool deprecated_ok,
3433 gdb::array_view<const gdb_byte> buffer,
3434 struct mapped_index *map,
3435 const gdb_byte **cu_list,
3436 offset_type *cu_list_elements,
3437 const gdb_byte **types_list,
3438 offset_type *types_list_elements)
3439 {
3440 const gdb_byte *addr = &buffer[0];
3441
3442 /* Version check. */
3443 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3444 /* Versions earlier than 3 emitted every copy of a psymbol. This
3445 causes the index to behave very poorly for certain requests. Version 3
3446 contained incomplete addrmap. So, it seems better to just ignore such
3447 indices. */
3448 if (version < 4)
3449 {
3450 static int warning_printed = 0;
3451 if (!warning_printed)
3452 {
3453 warning (_("Skipping obsolete .gdb_index section in %s."),
3454 filename);
3455 warning_printed = 1;
3456 }
3457 return 0;
3458 }
3459 /* Index version 4 uses a different hash function than index version
3460 5 and later.
3461
3462 Versions earlier than 6 did not emit psymbols for inlined
3463 functions. Using these files will cause GDB not to be able to
3464 set breakpoints on inlined functions by name, so we ignore these
3465 indices unless the user has done
3466 "set use-deprecated-index-sections on". */
3467 if (version < 6 && !deprecated_ok)
3468 {
3469 static int warning_printed = 0;
3470 if (!warning_printed)
3471 {
3472 warning (_("\
3473 Skipping deprecated .gdb_index section in %s.\n\
3474 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3475 to use the section anyway."),
3476 filename);
3477 warning_printed = 1;
3478 }
3479 return 0;
3480 }
3481 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3482 of the TU (for symbols coming from TUs),
3483 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3484 Plus gold-generated indices can have duplicate entries for global symbols,
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3486 These are just performance bugs, and we can't distinguish gdb-generated
3487 indices from gold-generated ones, so issue no warning here. */
3488
3489 /* Indexes with higher version than the one supported by GDB may be no
3490 longer backward compatible. */
3491 if (version > 8)
3492 return 0;
3493
3494 map->version = version;
3495
3496 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3497
3498 int i = 0;
3499 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3500 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3501 / 8);
3502 ++i;
3503
3504 *types_list = addr + MAYBE_SWAP (metadata[i]);
3505 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3506 - MAYBE_SWAP (metadata[i]))
3507 / 8);
3508 ++i;
3509
3510 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3511 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3512 map->address_table
3513 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3514 ++i;
3515
3516 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3517 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3518 map->symbol_table
3519 = gdb::array_view<mapped_index::symbol_table_slot>
3520 ((mapped_index::symbol_table_slot *) symbol_table,
3521 (mapped_index::symbol_table_slot *) symbol_table_end);
3522
3523 ++i;
3524 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3525
3526 return 1;
3527 }
3528
3529 /* Callback types for dwarf2_read_gdb_index. */
3530
3531 typedef gdb::function_view
3532 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3533 get_gdb_index_contents_ftype;
3534 typedef gdb::function_view
3535 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3536 get_gdb_index_contents_dwz_ftype;
3537
3538 /* Read .gdb_index. If everything went ok, initialize the "quick"
3539 elements of all the CUs and return 1. Otherwise, return 0. */
3540
3541 static int
3542 dwarf2_read_gdb_index
3543 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3544 get_gdb_index_contents_ftype get_gdb_index_contents,
3545 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3546 {
3547 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3548 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3549 struct dwz_file *dwz;
3550 struct objfile *objfile = dwarf2_per_objfile->objfile;
3551
3552 gdb::array_view<const gdb_byte> main_index_contents
3553 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3554
3555 if (main_index_contents.empty ())
3556 return 0;
3557
3558 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3559 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3560 use_deprecated_index_sections,
3561 main_index_contents, map.get (), &cu_list,
3562 &cu_list_elements, &types_list,
3563 &types_list_elements))
3564 return 0;
3565
3566 /* Don't use the index if it's empty. */
3567 if (map->symbol_table.empty ())
3568 return 0;
3569
3570 /* If there is a .dwz file, read it so we can get its CU list as
3571 well. */
3572 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3573 if (dwz != NULL)
3574 {
3575 struct mapped_index dwz_map;
3576 const gdb_byte *dwz_types_ignore;
3577 offset_type dwz_types_elements_ignore;
3578
3579 gdb::array_view<const gdb_byte> dwz_index_content
3580 = get_gdb_index_contents_dwz (objfile, dwz);
3581
3582 if (dwz_index_content.empty ())
3583 return 0;
3584
3585 if (!read_gdb_index_from_buffer (objfile,
3586 bfd_get_filename (dwz->dwz_bfd), 1,
3587 dwz_index_content, &dwz_map,
3588 &dwz_list, &dwz_list_elements,
3589 &dwz_types_ignore,
3590 &dwz_types_elements_ignore))
3591 {
3592 warning (_("could not read '.gdb_index' section from %s; skipping"),
3593 bfd_get_filename (dwz->dwz_bfd));
3594 return 0;
3595 }
3596 }
3597
3598 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3599 dwz_list, dwz_list_elements);
3600
3601 if (types_list_elements)
3602 {
3603 /* We can only handle a single .debug_types when we have an
3604 index. */
3605 if (dwarf2_per_objfile->types.size () != 1)
3606 return 0;
3607
3608 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3609
3610 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3611 types_list, types_list_elements);
3612 }
3613
3614 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3615
3616 dwarf2_per_objfile->index_table = std::move (map);
3617 dwarf2_per_objfile->using_index = 1;
3618 dwarf2_per_objfile->quick_file_names_table =
3619 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3620
3621 return 1;
3622 }
3623
3624 /* die_reader_func for dw2_get_file_names. */
3625
3626 static void
3627 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3628 const gdb_byte *info_ptr,
3629 struct die_info *comp_unit_die,
3630 int has_children,
3631 void *data)
3632 {
3633 struct dwarf2_cu *cu = reader->cu;
3634 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3635 struct dwarf2_per_objfile *dwarf2_per_objfile
3636 = cu->per_cu->dwarf2_per_objfile;
3637 struct objfile *objfile = dwarf2_per_objfile->objfile;
3638 struct dwarf2_per_cu_data *lh_cu;
3639 struct attribute *attr;
3640 int i;
3641 void **slot;
3642 struct quick_file_names *qfn;
3643
3644 gdb_assert (! this_cu->is_debug_types);
3645
3646 /* Our callers never want to match partial units -- instead they
3647 will match the enclosing full CU. */
3648 if (comp_unit_die->tag == DW_TAG_partial_unit)
3649 {
3650 this_cu->v.quick->no_file_data = 1;
3651 return;
3652 }
3653
3654 lh_cu = this_cu;
3655 slot = NULL;
3656
3657 line_header_up lh;
3658 sect_offset line_offset {};
3659
3660 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3661 if (attr)
3662 {
3663 struct quick_file_names find_entry;
3664
3665 line_offset = (sect_offset) DW_UNSND (attr);
3666
3667 /* We may have already read in this line header (TU line header sharing).
3668 If we have we're done. */
3669 find_entry.hash.dwo_unit = cu->dwo_unit;
3670 find_entry.hash.line_sect_off = line_offset;
3671 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3672 &find_entry, INSERT);
3673 if (*slot != NULL)
3674 {
3675 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3676 return;
3677 }
3678
3679 lh = dwarf_decode_line_header (line_offset, cu);
3680 }
3681 if (lh == NULL)
3682 {
3683 lh_cu->v.quick->no_file_data = 1;
3684 return;
3685 }
3686
3687 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3688 qfn->hash.dwo_unit = cu->dwo_unit;
3689 qfn->hash.line_sect_off = line_offset;
3690 gdb_assert (slot != NULL);
3691 *slot = qfn;
3692
3693 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3694
3695 qfn->num_file_names = lh->file_names.size ();
3696 qfn->file_names =
3697 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3698 for (i = 0; i < lh->file_names.size (); ++i)
3699 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3700 qfn->real_names = NULL;
3701
3702 lh_cu->v.quick->file_names = qfn;
3703 }
3704
3705 /* A helper for the "quick" functions which attempts to read the line
3706 table for THIS_CU. */
3707
3708 static struct quick_file_names *
3709 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3710 {
3711 /* This should never be called for TUs. */
3712 gdb_assert (! this_cu->is_debug_types);
3713 /* Nor type unit groups. */
3714 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3715
3716 if (this_cu->v.quick->file_names != NULL)
3717 return this_cu->v.quick->file_names;
3718 /* If we know there is no line data, no point in looking again. */
3719 if (this_cu->v.quick->no_file_data)
3720 return NULL;
3721
3722 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3723
3724 if (this_cu->v.quick->no_file_data)
3725 return NULL;
3726 return this_cu->v.quick->file_names;
3727 }
3728
3729 /* A helper for the "quick" functions which computes and caches the
3730 real path for a given file name from the line table. */
3731
3732 static const char *
3733 dw2_get_real_path (struct objfile *objfile,
3734 struct quick_file_names *qfn, int index)
3735 {
3736 if (qfn->real_names == NULL)
3737 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3738 qfn->num_file_names, const char *);
3739
3740 if (qfn->real_names[index] == NULL)
3741 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3742
3743 return qfn->real_names[index];
3744 }
3745
3746 static struct symtab *
3747 dw2_find_last_source_symtab (struct objfile *objfile)
3748 {
3749 struct dwarf2_per_objfile *dwarf2_per_objfile
3750 = get_dwarf2_per_objfile (objfile);
3751 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3752 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3753
3754 if (cust == NULL)
3755 return NULL;
3756
3757 return compunit_primary_filetab (cust);
3758 }
3759
3760 /* Traversal function for dw2_forget_cached_source_info. */
3761
3762 static int
3763 dw2_free_cached_file_names (void **slot, void *info)
3764 {
3765 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3766
3767 if (file_data->real_names)
3768 {
3769 int i;
3770
3771 for (i = 0; i < file_data->num_file_names; ++i)
3772 {
3773 xfree ((void*) file_data->real_names[i]);
3774 file_data->real_names[i] = NULL;
3775 }
3776 }
3777
3778 return 1;
3779 }
3780
3781 static void
3782 dw2_forget_cached_source_info (struct objfile *objfile)
3783 {
3784 struct dwarf2_per_objfile *dwarf2_per_objfile
3785 = get_dwarf2_per_objfile (objfile);
3786
3787 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3788 dw2_free_cached_file_names, NULL);
3789 }
3790
3791 /* Helper function for dw2_map_symtabs_matching_filename that expands
3792 the symtabs and calls the iterator. */
3793
3794 static int
3795 dw2_map_expand_apply (struct objfile *objfile,
3796 struct dwarf2_per_cu_data *per_cu,
3797 const char *name, const char *real_path,
3798 gdb::function_view<bool (symtab *)> callback)
3799 {
3800 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3801
3802 /* Don't visit already-expanded CUs. */
3803 if (per_cu->v.quick->compunit_symtab)
3804 return 0;
3805
3806 /* This may expand more than one symtab, and we want to iterate over
3807 all of them. */
3808 dw2_instantiate_symtab (per_cu, false);
3809
3810 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3811 last_made, callback);
3812 }
3813
3814 /* Implementation of the map_symtabs_matching_filename method. */
3815
3816 static bool
3817 dw2_map_symtabs_matching_filename
3818 (struct objfile *objfile, const char *name, const char *real_path,
3819 gdb::function_view<bool (symtab *)> callback)
3820 {
3821 const char *name_basename = lbasename (name);
3822 struct dwarf2_per_objfile *dwarf2_per_objfile
3823 = get_dwarf2_per_objfile (objfile);
3824
3825 /* The rule is CUs specify all the files, including those used by
3826 any TU, so there's no need to scan TUs here. */
3827
3828 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3829 {
3830 /* We only need to look at symtabs not already expanded. */
3831 if (per_cu->v.quick->compunit_symtab)
3832 continue;
3833
3834 quick_file_names *file_data = dw2_get_file_names (per_cu);
3835 if (file_data == NULL)
3836 continue;
3837
3838 for (int j = 0; j < file_data->num_file_names; ++j)
3839 {
3840 const char *this_name = file_data->file_names[j];
3841 const char *this_real_name;
3842
3843 if (compare_filenames_for_search (this_name, name))
3844 {
3845 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3846 callback))
3847 return true;
3848 continue;
3849 }
3850
3851 /* Before we invoke realpath, which can get expensive when many
3852 files are involved, do a quick comparison of the basenames. */
3853 if (! basenames_may_differ
3854 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3855 continue;
3856
3857 this_real_name = dw2_get_real_path (objfile, file_data, j);
3858 if (compare_filenames_for_search (this_real_name, name))
3859 {
3860 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3861 callback))
3862 return true;
3863 continue;
3864 }
3865
3866 if (real_path != NULL)
3867 {
3868 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3869 gdb_assert (IS_ABSOLUTE_PATH (name));
3870 if (this_real_name != NULL
3871 && FILENAME_CMP (real_path, this_real_name) == 0)
3872 {
3873 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3874 callback))
3875 return true;
3876 continue;
3877 }
3878 }
3879 }
3880 }
3881
3882 return false;
3883 }
3884
3885 /* Struct used to manage iterating over all CUs looking for a symbol. */
3886
3887 struct dw2_symtab_iterator
3888 {
3889 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3890 struct dwarf2_per_objfile *dwarf2_per_objfile;
3891 /* If set, only look for symbols that match that block. Valid values are
3892 GLOBAL_BLOCK and STATIC_BLOCK. */
3893 gdb::optional<block_enum> block_index;
3894 /* The kind of symbol we're looking for. */
3895 domain_enum domain;
3896 /* The list of CUs from the index entry of the symbol,
3897 or NULL if not found. */
3898 offset_type *vec;
3899 /* The next element in VEC to look at. */
3900 int next;
3901 /* The number of elements in VEC, or zero if there is no match. */
3902 int length;
3903 /* Have we seen a global version of the symbol?
3904 If so we can ignore all further global instances.
3905 This is to work around gold/15646, inefficient gold-generated
3906 indices. */
3907 int global_seen;
3908 };
3909
3910 /* Initialize the index symtab iterator ITER. */
3911
3912 static void
3913 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3914 struct dwarf2_per_objfile *dwarf2_per_objfile,
3915 gdb::optional<block_enum> block_index,
3916 domain_enum domain,
3917 const char *name)
3918 {
3919 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3920 iter->block_index = block_index;
3921 iter->domain = domain;
3922 iter->next = 0;
3923 iter->global_seen = 0;
3924
3925 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3926
3927 /* index is NULL if OBJF_READNOW. */
3928 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3929 iter->length = MAYBE_SWAP (*iter->vec);
3930 else
3931 {
3932 iter->vec = NULL;
3933 iter->length = 0;
3934 }
3935 }
3936
3937 /* Return the next matching CU or NULL if there are no more. */
3938
3939 static struct dwarf2_per_cu_data *
3940 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3941 {
3942 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3943
3944 for ( ; iter->next < iter->length; ++iter->next)
3945 {
3946 offset_type cu_index_and_attrs =
3947 MAYBE_SWAP (iter->vec[iter->next + 1]);
3948 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3949 gdb_index_symbol_kind symbol_kind =
3950 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3951 /* Only check the symbol attributes if they're present.
3952 Indices prior to version 7 don't record them,
3953 and indices >= 7 may elide them for certain symbols
3954 (gold does this). */
3955 int attrs_valid =
3956 (dwarf2_per_objfile->index_table->version >= 7
3957 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3958
3959 /* Don't crash on bad data. */
3960 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3961 + dwarf2_per_objfile->all_type_units.size ()))
3962 {
3963 complaint (_(".gdb_index entry has bad CU index"
3964 " [in module %s]"),
3965 objfile_name (dwarf2_per_objfile->objfile));
3966 continue;
3967 }
3968
3969 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3970
3971 /* Skip if already read in. */
3972 if (per_cu->v.quick->compunit_symtab)
3973 continue;
3974
3975 /* Check static vs global. */
3976 if (attrs_valid)
3977 {
3978 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3979
3980 if (iter->block_index.has_value ())
3981 {
3982 bool want_static = *iter->block_index == STATIC_BLOCK;
3983
3984 if (is_static != want_static)
3985 continue;
3986 }
3987
3988 /* Work around gold/15646. */
3989 if (!is_static && iter->global_seen)
3990 continue;
3991 if (!is_static)
3992 iter->global_seen = 1;
3993 }
3994
3995 /* Only check the symbol's kind if it has one. */
3996 if (attrs_valid)
3997 {
3998 switch (iter->domain)
3999 {
4000 case VAR_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4002 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4003 /* Some types are also in VAR_DOMAIN. */
4004 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4005 continue;
4006 break;
4007 case STRUCT_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4009 continue;
4010 break;
4011 case LABEL_DOMAIN:
4012 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4013 continue;
4014 break;
4015 default:
4016 break;
4017 }
4018 }
4019
4020 ++iter->next;
4021 return per_cu;
4022 }
4023
4024 return NULL;
4025 }
4026
4027 static struct compunit_symtab *
4028 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
4029 const char *name, domain_enum domain)
4030 {
4031 struct compunit_symtab *stab_best = NULL;
4032 struct dwarf2_per_objfile *dwarf2_per_objfile
4033 = get_dwarf2_per_objfile (objfile);
4034
4035 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4036
4037 struct dw2_symtab_iterator iter;
4038 struct dwarf2_per_cu_data *per_cu;
4039
4040 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4041
4042 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4043 {
4044 struct symbol *sym, *with_opaque = NULL;
4045 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4046 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4047 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4048
4049 sym = block_find_symbol (block, name, domain,
4050 block_find_non_opaque_type_preferred,
4051 &with_opaque);
4052
4053 /* Some caution must be observed with overloaded functions
4054 and methods, since the index will not contain any overload
4055 information (but NAME might contain it). */
4056
4057 if (sym != NULL
4058 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4059 return stab;
4060 if (with_opaque != NULL
4061 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4062 stab_best = stab;
4063
4064 /* Keep looking through other CUs. */
4065 }
4066
4067 return stab_best;
4068 }
4069
4070 static void
4071 dw2_print_stats (struct objfile *objfile)
4072 {
4073 struct dwarf2_per_objfile *dwarf2_per_objfile
4074 = get_dwarf2_per_objfile (objfile);
4075 int total = (dwarf2_per_objfile->all_comp_units.size ()
4076 + dwarf2_per_objfile->all_type_units.size ());
4077 int count = 0;
4078
4079 for (int i = 0; i < total; ++i)
4080 {
4081 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4082
4083 if (!per_cu->v.quick->compunit_symtab)
4084 ++count;
4085 }
4086 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4087 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4088 }
4089
4090 /* This dumps minimal information about the index.
4091 It is called via "mt print objfiles".
4092 One use is to verify .gdb_index has been loaded by the
4093 gdb.dwarf2/gdb-index.exp testcase. */
4094
4095 static void
4096 dw2_dump (struct objfile *objfile)
4097 {
4098 struct dwarf2_per_objfile *dwarf2_per_objfile
4099 = get_dwarf2_per_objfile (objfile);
4100
4101 gdb_assert (dwarf2_per_objfile->using_index);
4102 printf_filtered (".gdb_index:");
4103 if (dwarf2_per_objfile->index_table != NULL)
4104 {
4105 printf_filtered (" version %d\n",
4106 dwarf2_per_objfile->index_table->version);
4107 }
4108 else
4109 printf_filtered (" faked for \"readnow\"\n");
4110 printf_filtered ("\n");
4111 }
4112
4113 static void
4114 dw2_expand_symtabs_for_function (struct objfile *objfile,
4115 const char *func_name)
4116 {
4117 struct dwarf2_per_objfile *dwarf2_per_objfile
4118 = get_dwarf2_per_objfile (objfile);
4119
4120 struct dw2_symtab_iterator iter;
4121 struct dwarf2_per_cu_data *per_cu;
4122
4123 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4124
4125 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4126 dw2_instantiate_symtab (per_cu, false);
4127
4128 }
4129
4130 static void
4131 dw2_expand_all_symtabs (struct objfile *objfile)
4132 {
4133 struct dwarf2_per_objfile *dwarf2_per_objfile
4134 = get_dwarf2_per_objfile (objfile);
4135 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4136 + dwarf2_per_objfile->all_type_units.size ());
4137
4138 for (int i = 0; i < total_units; ++i)
4139 {
4140 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4141
4142 /* We don't want to directly expand a partial CU, because if we
4143 read it with the wrong language, then assertion failures can
4144 be triggered later on. See PR symtab/23010. So, tell
4145 dw2_instantiate_symtab to skip partial CUs -- any important
4146 partial CU will be read via DW_TAG_imported_unit anyway. */
4147 dw2_instantiate_symtab (per_cu, true);
4148 }
4149 }
4150
4151 static void
4152 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4153 const char *fullname)
4154 {
4155 struct dwarf2_per_objfile *dwarf2_per_objfile
4156 = get_dwarf2_per_objfile (objfile);
4157
4158 /* We don't need to consider type units here.
4159 This is only called for examining code, e.g. expand_line_sal.
4160 There can be an order of magnitude (or more) more type units
4161 than comp units, and we avoid them if we can. */
4162
4163 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4164 {
4165 /* We only need to look at symtabs not already expanded. */
4166 if (per_cu->v.quick->compunit_symtab)
4167 continue;
4168
4169 quick_file_names *file_data = dw2_get_file_names (per_cu);
4170 if (file_data == NULL)
4171 continue;
4172
4173 for (int j = 0; j < file_data->num_file_names; ++j)
4174 {
4175 const char *this_fullname = file_data->file_names[j];
4176
4177 if (filename_cmp (this_fullname, fullname) == 0)
4178 {
4179 dw2_instantiate_symtab (per_cu, false);
4180 break;
4181 }
4182 }
4183 }
4184 }
4185
4186 static void
4187 dw2_map_matching_symbols (struct objfile *objfile,
4188 const char * name, domain_enum domain,
4189 int global,
4190 int (*callback) (const struct block *,
4191 struct symbol *, void *),
4192 void *data, symbol_name_match_type match,
4193 symbol_compare_ftype *ordered_compare)
4194 {
4195 /* Currently unimplemented; used for Ada. The function can be called if the
4196 current language is Ada for a non-Ada objfile using GNU index. As Ada
4197 does not look for non-Ada symbols this function should just return. */
4198 }
4199
4200 /* Symbol name matcher for .gdb_index names.
4201
4202 Symbol names in .gdb_index have a few particularities:
4203
4204 - There's no indication of which is the language of each symbol.
4205
4206 Since each language has its own symbol name matching algorithm,
4207 and we don't know which language is the right one, we must match
4208 each symbol against all languages. This would be a potential
4209 performance problem if it were not mitigated by the
4210 mapped_index::name_components lookup table, which significantly
4211 reduces the number of times we need to call into this matcher,
4212 making it a non-issue.
4213
4214 - Symbol names in the index have no overload (parameter)
4215 information. I.e., in C++, "foo(int)" and "foo(long)" both
4216 appear as "foo" in the index, for example.
4217
4218 This means that the lookup names passed to the symbol name
4219 matcher functions must have no parameter information either
4220 because (e.g.) symbol search name "foo" does not match
4221 lookup-name "foo(int)" [while swapping search name for lookup
4222 name would match].
4223 */
4224 class gdb_index_symbol_name_matcher
4225 {
4226 public:
4227 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4228 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4229
4230 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4231 Returns true if any matcher matches. */
4232 bool matches (const char *symbol_name);
4233
4234 private:
4235 /* A reference to the lookup name we're matching against. */
4236 const lookup_name_info &m_lookup_name;
4237
4238 /* A vector holding all the different symbol name matchers, for all
4239 languages. */
4240 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4241 };
4242
4243 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4244 (const lookup_name_info &lookup_name)
4245 : m_lookup_name (lookup_name)
4246 {
4247 /* Prepare the vector of comparison functions upfront, to avoid
4248 doing the same work for each symbol. Care is taken to avoid
4249 matching with the same matcher more than once if/when multiple
4250 languages use the same matcher function. */
4251 auto &matchers = m_symbol_name_matcher_funcs;
4252 matchers.reserve (nr_languages);
4253
4254 matchers.push_back (default_symbol_name_matcher);
4255
4256 for (int i = 0; i < nr_languages; i++)
4257 {
4258 const language_defn *lang = language_def ((enum language) i);
4259 symbol_name_matcher_ftype *name_matcher
4260 = get_symbol_name_matcher (lang, m_lookup_name);
4261
4262 /* Don't insert the same comparison routine more than once.
4263 Note that we do this linear walk instead of a seemingly
4264 cheaper sorted insert, or use a std::set or something like
4265 that, because relative order of function addresses is not
4266 stable. This is not a problem in practice because the number
4267 of supported languages is low, and the cost here is tiny
4268 compared to the number of searches we'll do afterwards using
4269 this object. */
4270 if (name_matcher != default_symbol_name_matcher
4271 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4272 == matchers.end ()))
4273 matchers.push_back (name_matcher);
4274 }
4275 }
4276
4277 bool
4278 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4279 {
4280 for (auto matches_name : m_symbol_name_matcher_funcs)
4281 if (matches_name (symbol_name, m_lookup_name, NULL))
4282 return true;
4283
4284 return false;
4285 }
4286
4287 /* Starting from a search name, return the string that finds the upper
4288 bound of all strings that start with SEARCH_NAME in a sorted name
4289 list. Returns the empty string to indicate that the upper bound is
4290 the end of the list. */
4291
4292 static std::string
4293 make_sort_after_prefix_name (const char *search_name)
4294 {
4295 /* When looking to complete "func", we find the upper bound of all
4296 symbols that start with "func" by looking for where we'd insert
4297 the closest string that would follow "func" in lexicographical
4298 order. Usually, that's "func"-with-last-character-incremented,
4299 i.e. "fund". Mind non-ASCII characters, though. Usually those
4300 will be UTF-8 multi-byte sequences, but we can't be certain.
4301 Especially mind the 0xff character, which is a valid character in
4302 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4303 rule out compilers allowing it in identifiers. Note that
4304 conveniently, strcmp/strcasecmp are specified to compare
4305 characters interpreted as unsigned char. So what we do is treat
4306 the whole string as a base 256 number composed of a sequence of
4307 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4308 to 0, and carries 1 to the following more-significant position.
4309 If the very first character in SEARCH_NAME ends up incremented
4310 and carries/overflows, then the upper bound is the end of the
4311 list. The string after the empty string is also the empty
4312 string.
4313
4314 Some examples of this operation:
4315
4316 SEARCH_NAME => "+1" RESULT
4317
4318 "abc" => "abd"
4319 "ab\xff" => "ac"
4320 "\xff" "a" "\xff" => "\xff" "b"
4321 "\xff" => ""
4322 "\xff\xff" => ""
4323 "" => ""
4324
4325 Then, with these symbols for example:
4326
4327 func
4328 func1
4329 fund
4330
4331 completing "func" looks for symbols between "func" and
4332 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4333 which finds "func" and "func1", but not "fund".
4334
4335 And with:
4336
4337 funcÿ (Latin1 'ÿ' [0xff])
4338 funcÿ1
4339 fund
4340
4341 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4342 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4343
4344 And with:
4345
4346 ÿÿ (Latin1 'ÿ' [0xff])
4347 ÿÿ1
4348
4349 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4350 the end of the list.
4351 */
4352 std::string after = search_name;
4353 while (!after.empty () && (unsigned char) after.back () == 0xff)
4354 after.pop_back ();
4355 if (!after.empty ())
4356 after.back () = (unsigned char) after.back () + 1;
4357 return after;
4358 }
4359
4360 /* See declaration. */
4361
4362 std::pair<std::vector<name_component>::const_iterator,
4363 std::vector<name_component>::const_iterator>
4364 mapped_index_base::find_name_components_bounds
4365 (const lookup_name_info &lookup_name_without_params) const
4366 {
4367 auto *name_cmp
4368 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4369
4370 const char *cplus
4371 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4372
4373 /* Comparison function object for lower_bound that matches against a
4374 given symbol name. */
4375 auto lookup_compare_lower = [&] (const name_component &elem,
4376 const char *name)
4377 {
4378 const char *elem_qualified = this->symbol_name_at (elem.idx);
4379 const char *elem_name = elem_qualified + elem.name_offset;
4380 return name_cmp (elem_name, name) < 0;
4381 };
4382
4383 /* Comparison function object for upper_bound that matches against a
4384 given symbol name. */
4385 auto lookup_compare_upper = [&] (const char *name,
4386 const name_component &elem)
4387 {
4388 const char *elem_qualified = this->symbol_name_at (elem.idx);
4389 const char *elem_name = elem_qualified + elem.name_offset;
4390 return name_cmp (name, elem_name) < 0;
4391 };
4392
4393 auto begin = this->name_components.begin ();
4394 auto end = this->name_components.end ();
4395
4396 /* Find the lower bound. */
4397 auto lower = [&] ()
4398 {
4399 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4400 return begin;
4401 else
4402 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4403 } ();
4404
4405 /* Find the upper bound. */
4406 auto upper = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode ())
4409 {
4410 /* In completion mode, we want UPPER to point past all
4411 symbols names that have the same prefix. I.e., with
4412 these symbols, and completing "func":
4413
4414 function << lower bound
4415 function1
4416 other_function << upper bound
4417
4418 We find the upper bound by looking for the insertion
4419 point of "func"-with-last-character-incremented,
4420 i.e. "fund". */
4421 std::string after = make_sort_after_prefix_name (cplus);
4422 if (after.empty ())
4423 return end;
4424 return std::lower_bound (lower, end, after.c_str (),
4425 lookup_compare_lower);
4426 }
4427 else
4428 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4429 } ();
4430
4431 return {lower, upper};
4432 }
4433
4434 /* See declaration. */
4435
4436 void
4437 mapped_index_base::build_name_components ()
4438 {
4439 if (!this->name_components.empty ())
4440 return;
4441
4442 this->name_components_casing = case_sensitivity;
4443 auto *name_cmp
4444 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4445
4446 /* The code below only knows how to break apart components of C++
4447 symbol names (and other languages that use '::' as
4448 namespace/module separator). If we add support for wild matching
4449 to some language that uses some other operator (E.g., Ada, Go and
4450 D use '.'), then we'll need to try splitting the symbol name
4451 according to that language too. Note that Ada does support wild
4452 matching, but doesn't currently support .gdb_index. */
4453 auto count = this->symbol_name_count ();
4454 for (offset_type idx = 0; idx < count; idx++)
4455 {
4456 if (this->symbol_name_slot_invalid (idx))
4457 continue;
4458
4459 const char *name = this->symbol_name_at (idx);
4460
4461 /* Add each name component to the name component table. */
4462 unsigned int previous_len = 0;
4463 for (unsigned int current_len = cp_find_first_component (name);
4464 name[current_len] != '\0';
4465 current_len += cp_find_first_component (name + current_len))
4466 {
4467 gdb_assert (name[current_len] == ':');
4468 this->name_components.push_back ({previous_len, idx});
4469 /* Skip the '::'. */
4470 current_len += 2;
4471 previous_len = current_len;
4472 }
4473 this->name_components.push_back ({previous_len, idx});
4474 }
4475
4476 /* Sort name_components elements by name. */
4477 auto name_comp_compare = [&] (const name_component &left,
4478 const name_component &right)
4479 {
4480 const char *left_qualified = this->symbol_name_at (left.idx);
4481 const char *right_qualified = this->symbol_name_at (right.idx);
4482
4483 const char *left_name = left_qualified + left.name_offset;
4484 const char *right_name = right_qualified + right.name_offset;
4485
4486 return name_cmp (left_name, right_name) < 0;
4487 };
4488
4489 std::sort (this->name_components.begin (),
4490 this->name_components.end (),
4491 name_comp_compare);
4492 }
4493
4494 /* Helper for dw2_expand_symtabs_matching that works with a
4495 mapped_index_base instead of the containing objfile. This is split
4496 to a separate function in order to be able to unit test the
4497 name_components matching using a mock mapped_index_base. For each
4498 symbol name that matches, calls MATCH_CALLBACK, passing it the
4499 symbol's index in the mapped_index_base symbol table. */
4500
4501 static void
4502 dw2_expand_symtabs_matching_symbol
4503 (mapped_index_base &index,
4504 const lookup_name_info &lookup_name_in,
4505 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4506 enum search_domain kind,
4507 gdb::function_view<void (offset_type)> match_callback)
4508 {
4509 lookup_name_info lookup_name_without_params
4510 = lookup_name_in.make_ignore_params ();
4511 gdb_index_symbol_name_matcher lookup_name_matcher
4512 (lookup_name_without_params);
4513
4514 /* Build the symbol name component sorted vector, if we haven't
4515 yet. */
4516 index.build_name_components ();
4517
4518 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4519
4520 /* Now for each symbol name in range, check to see if we have a name
4521 match, and if so, call the MATCH_CALLBACK callback. */
4522
4523 /* The same symbol may appear more than once in the range though.
4524 E.g., if we're looking for symbols that complete "w", and we have
4525 a symbol named "w1::w2", we'll find the two name components for
4526 that same symbol in the range. To be sure we only call the
4527 callback once per symbol, we first collect the symbol name
4528 indexes that matched in a temporary vector and ignore
4529 duplicates. */
4530 std::vector<offset_type> matches;
4531 matches.reserve (std::distance (bounds.first, bounds.second));
4532
4533 for (; bounds.first != bounds.second; ++bounds.first)
4534 {
4535 const char *qualified = index.symbol_name_at (bounds.first->idx);
4536
4537 if (!lookup_name_matcher.matches (qualified)
4538 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4539 continue;
4540
4541 matches.push_back (bounds.first->idx);
4542 }
4543
4544 std::sort (matches.begin (), matches.end ());
4545
4546 /* Finally call the callback, once per match. */
4547 ULONGEST prev = -1;
4548 for (offset_type idx : matches)
4549 {
4550 if (prev != idx)
4551 {
4552 match_callback (idx);
4553 prev = idx;
4554 }
4555 }
4556
4557 /* Above we use a type wider than idx's for 'prev', since 0 and
4558 (offset_type)-1 are both possible values. */
4559 static_assert (sizeof (prev) > sizeof (offset_type), "");
4560 }
4561
4562 #if GDB_SELF_TEST
4563
4564 namespace selftests { namespace dw2_expand_symtabs_matching {
4565
4566 /* A mock .gdb_index/.debug_names-like name index table, enough to
4567 exercise dw2_expand_symtabs_matching_symbol, which works with the
4568 mapped_index_base interface. Builds an index from the symbol list
4569 passed as parameter to the constructor. */
4570 class mock_mapped_index : public mapped_index_base
4571 {
4572 public:
4573 mock_mapped_index (gdb::array_view<const char *> symbols)
4574 : m_symbol_table (symbols)
4575 {}
4576
4577 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4578
4579 /* Return the number of names in the symbol table. */
4580 size_t symbol_name_count () const override
4581 {
4582 return m_symbol_table.size ();
4583 }
4584
4585 /* Get the name of the symbol at IDX in the symbol table. */
4586 const char *symbol_name_at (offset_type idx) const override
4587 {
4588 return m_symbol_table[idx];
4589 }
4590
4591 private:
4592 gdb::array_view<const char *> m_symbol_table;
4593 };
4594
4595 /* Convenience function that converts a NULL pointer to a "<null>"
4596 string, to pass to print routines. */
4597
4598 static const char *
4599 string_or_null (const char *str)
4600 {
4601 return str != NULL ? str : "<null>";
4602 }
4603
4604 /* Check if a lookup_name_info built from
4605 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4606 index. EXPECTED_LIST is the list of expected matches, in expected
4607 matching order. If no match expected, then an empty list is
4608 specified. Returns true on success. On failure prints a warning
4609 indicating the file:line that failed, and returns false. */
4610
4611 static bool
4612 check_match (const char *file, int line,
4613 mock_mapped_index &mock_index,
4614 const char *name, symbol_name_match_type match_type,
4615 bool completion_mode,
4616 std::initializer_list<const char *> expected_list)
4617 {
4618 lookup_name_info lookup_name (name, match_type, completion_mode);
4619
4620 bool matched = true;
4621
4622 auto mismatch = [&] (const char *expected_str,
4623 const char *got)
4624 {
4625 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4626 "expected=\"%s\", got=\"%s\"\n"),
4627 file, line,
4628 (match_type == symbol_name_match_type::FULL
4629 ? "FULL" : "WILD"),
4630 name, string_or_null (expected_str), string_or_null (got));
4631 matched = false;
4632 };
4633
4634 auto expected_it = expected_list.begin ();
4635 auto expected_end = expected_list.end ();
4636
4637 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4638 NULL, ALL_DOMAIN,
4639 [&] (offset_type idx)
4640 {
4641 const char *matched_name = mock_index.symbol_name_at (idx);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644
4645 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4646 mismatch (expected_str, matched_name);
4647 });
4648
4649 const char *expected_str
4650 = expected_it == expected_end ? NULL : *expected_it++;
4651 if (expected_str != NULL)
4652 mismatch (expected_str, NULL);
4653
4654 return matched;
4655 }
4656
4657 /* The symbols added to the mock mapped_index for testing (in
4658 canonical form). */
4659 static const char *test_symbols[] = {
4660 "function",
4661 "std::bar",
4662 "std::zfunction",
4663 "std::zfunction2",
4664 "w1::w2",
4665 "ns::foo<char*>",
4666 "ns::foo<int>",
4667 "ns::foo<long>",
4668 "ns2::tmpl<int>::foo2",
4669 "(anonymous namespace)::A::B::C",
4670
4671 /* These are used to check that the increment-last-char in the
4672 matching algorithm for completion doesn't match "t1_fund" when
4673 completing "t1_func". */
4674 "t1_func",
4675 "t1_func1",
4676 "t1_fund",
4677 "t1_fund1",
4678
4679 /* A UTF-8 name with multi-byte sequences to make sure that
4680 cp-name-parser understands this as a single identifier ("função"
4681 is "function" in PT). */
4682 u8"u8função",
4683
4684 /* \377 (0xff) is Latin1 'ÿ'. */
4685 "yfunc\377",
4686
4687 /* \377 (0xff) is Latin1 'ÿ'. */
4688 "\377",
4689 "\377\377123",
4690
4691 /* A name with all sorts of complications. Starts with "z" to make
4692 it easier for the completion tests below. */
4693 #define Z_SYM_NAME \
4694 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4695 "::tuple<(anonymous namespace)::ui*, " \
4696 "std::default_delete<(anonymous namespace)::ui>, void>"
4697
4698 Z_SYM_NAME
4699 };
4700
4701 /* Returns true if the mapped_index_base::find_name_component_bounds
4702 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4703 in completion mode. */
4704
4705 static bool
4706 check_find_bounds_finds (mapped_index_base &index,
4707 const char *search_name,
4708 gdb::array_view<const char *> expected_syms)
4709 {
4710 lookup_name_info lookup_name (search_name,
4711 symbol_name_match_type::FULL, true);
4712
4713 auto bounds = index.find_name_components_bounds (lookup_name);
4714
4715 size_t distance = std::distance (bounds.first, bounds.second);
4716 if (distance != expected_syms.size ())
4717 return false;
4718
4719 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4720 {
4721 auto nc_elem = bounds.first + exp_elem;
4722 const char *qualified = index.symbol_name_at (nc_elem->idx);
4723 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4724 return false;
4725 }
4726
4727 return true;
4728 }
4729
4730 /* Test the lower-level mapped_index::find_name_component_bounds
4731 method. */
4732
4733 static void
4734 test_mapped_index_find_name_component_bounds ()
4735 {
4736 mock_mapped_index mock_index (test_symbols);
4737
4738 mock_index.build_name_components ();
4739
4740 /* Test the lower-level mapped_index::find_name_component_bounds
4741 method in completion mode. */
4742 {
4743 static const char *expected_syms[] = {
4744 "t1_func",
4745 "t1_func1",
4746 };
4747
4748 SELF_CHECK (check_find_bounds_finds (mock_index,
4749 "t1_func", expected_syms));
4750 }
4751
4752 /* Check that the increment-last-char in the name matching algorithm
4753 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4754 {
4755 static const char *expected_syms1[] = {
4756 "\377",
4757 "\377\377123",
4758 };
4759 SELF_CHECK (check_find_bounds_finds (mock_index,
4760 "\377", expected_syms1));
4761
4762 static const char *expected_syms2[] = {
4763 "\377\377123",
4764 };
4765 SELF_CHECK (check_find_bounds_finds (mock_index,
4766 "\377\377", expected_syms2));
4767 }
4768 }
4769
4770 /* Test dw2_expand_symtabs_matching_symbol. */
4771
4772 static void
4773 test_dw2_expand_symtabs_matching_symbol ()
4774 {
4775 mock_mapped_index mock_index (test_symbols);
4776
4777 /* We let all tests run until the end even if some fails, for debug
4778 convenience. */
4779 bool any_mismatch = false;
4780
4781 /* Create the expected symbols list (an initializer_list). Needed
4782 because lists have commas, and we need to pass them to CHECK,
4783 which is a macro. */
4784 #define EXPECT(...) { __VA_ARGS__ }
4785
4786 /* Wrapper for check_match that passes down the current
4787 __FILE__/__LINE__. */
4788 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4789 any_mismatch |= !check_match (__FILE__, __LINE__, \
4790 mock_index, \
4791 NAME, MATCH_TYPE, COMPLETION_MODE, \
4792 EXPECTED_LIST)
4793
4794 /* Identity checks. */
4795 for (const char *sym : test_symbols)
4796 {
4797 /* Should be able to match all existing symbols. */
4798 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4799 EXPECT (sym));
4800
4801 /* Should be able to match all existing symbols with
4802 parameters. */
4803 std::string with_params = std::string (sym) + "(int)";
4804 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4805 EXPECT (sym));
4806
4807 /* Should be able to match all existing symbols with
4808 parameters and qualifiers. */
4809 with_params = std::string (sym) + " ( int ) const";
4810 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4811 EXPECT (sym));
4812
4813 /* This should really find sym, but cp-name-parser.y doesn't
4814 know about lvalue/rvalue qualifiers yet. */
4815 with_params = std::string (sym) + " ( int ) &&";
4816 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4817 {});
4818 }
4819
4820 /* Check that the name matching algorithm for completion doesn't get
4821 confused with Latin1 'ÿ' / 0xff. */
4822 {
4823 static const char str[] = "\377";
4824 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4825 EXPECT ("\377", "\377\377123"));
4826 }
4827
4828 /* Check that the increment-last-char in the matching algorithm for
4829 completion doesn't match "t1_fund" when completing "t1_func". */
4830 {
4831 static const char str[] = "t1_func";
4832 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4833 EXPECT ("t1_func", "t1_func1"));
4834 }
4835
4836 /* Check that completion mode works at each prefix of the expected
4837 symbol name. */
4838 {
4839 static const char str[] = "function(int)";
4840 size_t len = strlen (str);
4841 std::string lookup;
4842
4843 for (size_t i = 1; i < len; i++)
4844 {
4845 lookup.assign (str, i);
4846 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4847 EXPECT ("function"));
4848 }
4849 }
4850
4851 /* While "w" is a prefix of both components, the match function
4852 should still only be called once. */
4853 {
4854 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4855 EXPECT ("w1::w2"));
4856 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4857 EXPECT ("w1::w2"));
4858 }
4859
4860 /* Same, with a "complicated" symbol. */
4861 {
4862 static const char str[] = Z_SYM_NAME;
4863 size_t len = strlen (str);
4864 std::string lookup;
4865
4866 for (size_t i = 1; i < len; i++)
4867 {
4868 lookup.assign (str, i);
4869 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4870 EXPECT (Z_SYM_NAME));
4871 }
4872 }
4873
4874 /* In FULL mode, an incomplete symbol doesn't match. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4877 {});
4878 }
4879
4880 /* A complete symbol with parameters matches any overload, since the
4881 index has no overload info. */
4882 {
4883 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4884 EXPECT ("std::zfunction", "std::zfunction2"));
4885 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4888 EXPECT ("std::zfunction", "std::zfunction2"));
4889 }
4890
4891 /* Check that whitespace is ignored appropriately. A symbol with a
4892 template argument list. */
4893 {
4894 static const char expected[] = "ns::foo<int>";
4895 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4896 EXPECT (expected));
4897 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4898 EXPECT (expected));
4899 }
4900
4901 /* Check that whitespace is ignored appropriately. A symbol with a
4902 template argument list that includes a pointer. */
4903 {
4904 static const char expected[] = "ns::foo<char*>";
4905 /* Try both completion and non-completion modes. */
4906 static const bool completion_mode[2] = {false, true};
4907 for (size_t i = 0; i < 2; i++)
4908 {
4909 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4910 completion_mode[i], EXPECT (expected));
4911 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4912 completion_mode[i], EXPECT (expected));
4913
4914 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4915 completion_mode[i], EXPECT (expected));
4916 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4917 completion_mode[i], EXPECT (expected));
4918 }
4919 }
4920
4921 {
4922 /* Check method qualifiers are ignored. */
4923 static const char expected[] = "ns::foo<char*>";
4924 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4925 symbol_name_match_type::FULL, true, EXPECT (expected));
4926 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4927 symbol_name_match_type::FULL, true, EXPECT (expected));
4928 CHECK_MATCH ("foo < char * > ( int ) const",
4929 symbol_name_match_type::WILD, true, EXPECT (expected));
4930 CHECK_MATCH ("foo < char * > ( int ) &&",
4931 symbol_name_match_type::WILD, true, EXPECT (expected));
4932 }
4933
4934 /* Test lookup names that don't match anything. */
4935 {
4936 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4937 {});
4938
4939 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4940 {});
4941 }
4942
4943 /* Some wild matching tests, exercising "(anonymous namespace)",
4944 which should not be confused with a parameter list. */
4945 {
4946 static const char *syms[] = {
4947 "A::B::C",
4948 "B::C",
4949 "C",
4950 "A :: B :: C ( int )",
4951 "B :: C ( int )",
4952 "C ( int )",
4953 };
4954
4955 for (const char *s : syms)
4956 {
4957 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4958 EXPECT ("(anonymous namespace)::A::B::C"));
4959 }
4960 }
4961
4962 {
4963 static const char expected[] = "ns2::tmpl<int>::foo2";
4964 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4965 EXPECT (expected));
4966 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4967 EXPECT (expected));
4968 }
4969
4970 SELF_CHECK (!any_mismatch);
4971
4972 #undef EXPECT
4973 #undef CHECK_MATCH
4974 }
4975
4976 static void
4977 run_test ()
4978 {
4979 test_mapped_index_find_name_component_bounds ();
4980 test_dw2_expand_symtabs_matching_symbol ();
4981 }
4982
4983 }} // namespace selftests::dw2_expand_symtabs_matching
4984
4985 #endif /* GDB_SELF_TEST */
4986
4987 /* If FILE_MATCHER is NULL or if PER_CU has
4988 dwarf2_per_cu_quick_data::MARK set (see
4989 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4990 EXPANSION_NOTIFY on it. */
4991
4992 static void
4993 dw2_expand_symtabs_matching_one
4994 (struct dwarf2_per_cu_data *per_cu,
4995 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4996 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4997 {
4998 if (file_matcher == NULL || per_cu->v.quick->mark)
4999 {
5000 bool symtab_was_null
5001 = (per_cu->v.quick->compunit_symtab == NULL);
5002
5003 dw2_instantiate_symtab (per_cu, false);
5004
5005 if (expansion_notify != NULL
5006 && symtab_was_null
5007 && per_cu->v.quick->compunit_symtab != NULL)
5008 expansion_notify (per_cu->v.quick->compunit_symtab);
5009 }
5010 }
5011
5012 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5013 matched, to expand corresponding CUs that were marked. IDX is the
5014 index of the symbol name that matched. */
5015
5016 static void
5017 dw2_expand_marked_cus
5018 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5019 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5020 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5021 search_domain kind)
5022 {
5023 offset_type *vec, vec_len, vec_idx;
5024 bool global_seen = false;
5025 mapped_index &index = *dwarf2_per_objfile->index_table;
5026
5027 vec = (offset_type *) (index.constant_pool
5028 + MAYBE_SWAP (index.symbol_table[idx].vec));
5029 vec_len = MAYBE_SWAP (vec[0]);
5030 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5031 {
5032 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5033 /* This value is only valid for index versions >= 7. */
5034 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5035 gdb_index_symbol_kind symbol_kind =
5036 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5037 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5038 /* Only check the symbol attributes if they're present.
5039 Indices prior to version 7 don't record them,
5040 and indices >= 7 may elide them for certain symbols
5041 (gold does this). */
5042 int attrs_valid =
5043 (index.version >= 7
5044 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5045
5046 /* Work around gold/15646. */
5047 if (attrs_valid)
5048 {
5049 if (!is_static && global_seen)
5050 continue;
5051 if (!is_static)
5052 global_seen = true;
5053 }
5054
5055 /* Only check the symbol's kind if it has one. */
5056 if (attrs_valid)
5057 {
5058 switch (kind)
5059 {
5060 case VARIABLES_DOMAIN:
5061 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5062 continue;
5063 break;
5064 case FUNCTIONS_DOMAIN:
5065 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5066 continue;
5067 break;
5068 case TYPES_DOMAIN:
5069 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5070 continue;
5071 break;
5072 default:
5073 break;
5074 }
5075 }
5076
5077 /* Don't crash on bad data. */
5078 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5079 + dwarf2_per_objfile->all_type_units.size ()))
5080 {
5081 complaint (_(".gdb_index entry has bad CU index"
5082 " [in module %s]"),
5083 objfile_name (dwarf2_per_objfile->objfile));
5084 continue;
5085 }
5086
5087 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5088 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5089 expansion_notify);
5090 }
5091 }
5092
5093 /* If FILE_MATCHER is non-NULL, set all the
5094 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5095 that match FILE_MATCHER. */
5096
5097 static void
5098 dw_expand_symtabs_matching_file_matcher
5099 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5100 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5101 {
5102 if (file_matcher == NULL)
5103 return;
5104
5105 objfile *const objfile = dwarf2_per_objfile->objfile;
5106
5107 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5108 htab_eq_pointer,
5109 NULL, xcalloc, xfree));
5110 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5111 htab_eq_pointer,
5112 NULL, xcalloc, xfree));
5113
5114 /* The rule is CUs specify all the files, including those used by
5115 any TU, so there's no need to scan TUs here. */
5116
5117 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5118 {
5119 QUIT;
5120
5121 per_cu->v.quick->mark = 0;
5122
5123 /* We only need to look at symtabs not already expanded. */
5124 if (per_cu->v.quick->compunit_symtab)
5125 continue;
5126
5127 quick_file_names *file_data = dw2_get_file_names (per_cu);
5128 if (file_data == NULL)
5129 continue;
5130
5131 if (htab_find (visited_not_found.get (), file_data) != NULL)
5132 continue;
5133 else if (htab_find (visited_found.get (), file_data) != NULL)
5134 {
5135 per_cu->v.quick->mark = 1;
5136 continue;
5137 }
5138
5139 for (int j = 0; j < file_data->num_file_names; ++j)
5140 {
5141 const char *this_real_name;
5142
5143 if (file_matcher (file_data->file_names[j], false))
5144 {
5145 per_cu->v.quick->mark = 1;
5146 break;
5147 }
5148
5149 /* Before we invoke realpath, which can get expensive when many
5150 files are involved, do a quick comparison of the basenames. */
5151 if (!basenames_may_differ
5152 && !file_matcher (lbasename (file_data->file_names[j]),
5153 true))
5154 continue;
5155
5156 this_real_name = dw2_get_real_path (objfile, file_data, j);
5157 if (file_matcher (this_real_name, false))
5158 {
5159 per_cu->v.quick->mark = 1;
5160 break;
5161 }
5162 }
5163
5164 void **slot = htab_find_slot (per_cu->v.quick->mark
5165 ? visited_found.get ()
5166 : visited_not_found.get (),
5167 file_data, INSERT);
5168 *slot = file_data;
5169 }
5170 }
5171
5172 static void
5173 dw2_expand_symtabs_matching
5174 (struct objfile *objfile,
5175 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5176 const lookup_name_info &lookup_name,
5177 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5178 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5179 enum search_domain kind)
5180 {
5181 struct dwarf2_per_objfile *dwarf2_per_objfile
5182 = get_dwarf2_per_objfile (objfile);
5183
5184 /* index_table is NULL if OBJF_READNOW. */
5185 if (!dwarf2_per_objfile->index_table)
5186 return;
5187
5188 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5189
5190 mapped_index &index = *dwarf2_per_objfile->index_table;
5191
5192 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5193 symbol_matcher,
5194 kind, [&] (offset_type idx)
5195 {
5196 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5197 expansion_notify, kind);
5198 });
5199 }
5200
5201 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5202 symtab. */
5203
5204 static struct compunit_symtab *
5205 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5206 CORE_ADDR pc)
5207 {
5208 int i;
5209
5210 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5211 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5212 return cust;
5213
5214 if (cust->includes == NULL)
5215 return NULL;
5216
5217 for (i = 0; cust->includes[i]; ++i)
5218 {
5219 struct compunit_symtab *s = cust->includes[i];
5220
5221 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5222 if (s != NULL)
5223 return s;
5224 }
5225
5226 return NULL;
5227 }
5228
5229 static struct compunit_symtab *
5230 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5231 struct bound_minimal_symbol msymbol,
5232 CORE_ADDR pc,
5233 struct obj_section *section,
5234 int warn_if_readin)
5235 {
5236 struct dwarf2_per_cu_data *data;
5237 struct compunit_symtab *result;
5238
5239 if (!objfile->partial_symtabs->psymtabs_addrmap)
5240 return NULL;
5241
5242 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5243 SECT_OFF_TEXT (objfile));
5244 data = (struct dwarf2_per_cu_data *) addrmap_find
5245 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5246 if (!data)
5247 return NULL;
5248
5249 if (warn_if_readin && data->v.quick->compunit_symtab)
5250 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5251 paddress (get_objfile_arch (objfile), pc));
5252
5253 result
5254 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5255 false),
5256 pc);
5257 gdb_assert (result != NULL);
5258 return result;
5259 }
5260
5261 static void
5262 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5263 void *data, int need_fullname)
5264 {
5265 struct dwarf2_per_objfile *dwarf2_per_objfile
5266 = get_dwarf2_per_objfile (objfile);
5267
5268 if (!dwarf2_per_objfile->filenames_cache)
5269 {
5270 dwarf2_per_objfile->filenames_cache.emplace ();
5271
5272 htab_up visited (htab_create_alloc (10,
5273 htab_hash_pointer, htab_eq_pointer,
5274 NULL, xcalloc, xfree));
5275
5276 /* The rule is CUs specify all the files, including those used
5277 by any TU, so there's no need to scan TUs here. We can
5278 ignore file names coming from already-expanded CUs. */
5279
5280 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5281 {
5282 if (per_cu->v.quick->compunit_symtab)
5283 {
5284 void **slot = htab_find_slot (visited.get (),
5285 per_cu->v.quick->file_names,
5286 INSERT);
5287
5288 *slot = per_cu->v.quick->file_names;
5289 }
5290 }
5291
5292 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5293 {
5294 /* We only need to look at symtabs not already expanded. */
5295 if (per_cu->v.quick->compunit_symtab)
5296 continue;
5297
5298 quick_file_names *file_data = dw2_get_file_names (per_cu);
5299 if (file_data == NULL)
5300 continue;
5301
5302 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5303 if (*slot)
5304 {
5305 /* Already visited. */
5306 continue;
5307 }
5308 *slot = file_data;
5309
5310 for (int j = 0; j < file_data->num_file_names; ++j)
5311 {
5312 const char *filename = file_data->file_names[j];
5313 dwarf2_per_objfile->filenames_cache->seen (filename);
5314 }
5315 }
5316 }
5317
5318 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5319 {
5320 gdb::unique_xmalloc_ptr<char> this_real_name;
5321
5322 if (need_fullname)
5323 this_real_name = gdb_realpath (filename);
5324 (*fun) (filename, this_real_name.get (), data);
5325 });
5326 }
5327
5328 static int
5329 dw2_has_symbols (struct objfile *objfile)
5330 {
5331 return 1;
5332 }
5333
5334 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5335 {
5336 dw2_has_symbols,
5337 dw2_find_last_source_symtab,
5338 dw2_forget_cached_source_info,
5339 dw2_map_symtabs_matching_filename,
5340 dw2_lookup_symbol,
5341 dw2_print_stats,
5342 dw2_dump,
5343 dw2_expand_symtabs_for_function,
5344 dw2_expand_all_symtabs,
5345 dw2_expand_symtabs_with_fullname,
5346 dw2_map_matching_symbols,
5347 dw2_expand_symtabs_matching,
5348 dw2_find_pc_sect_compunit_symtab,
5349 NULL,
5350 dw2_map_symbol_filenames
5351 };
5352
5353 /* DWARF-5 debug_names reader. */
5354
5355 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5356 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5357
5358 /* A helper function that reads the .debug_names section in SECTION
5359 and fills in MAP. FILENAME is the name of the file containing the
5360 section; it is used for error reporting.
5361
5362 Returns true if all went well, false otherwise. */
5363
5364 static bool
5365 read_debug_names_from_section (struct objfile *objfile,
5366 const char *filename,
5367 struct dwarf2_section_info *section,
5368 mapped_debug_names &map)
5369 {
5370 if (dwarf2_section_empty_p (section))
5371 return false;
5372
5373 /* Older elfutils strip versions could keep the section in the main
5374 executable while splitting it for the separate debug info file. */
5375 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5376 return false;
5377
5378 dwarf2_read_section (objfile, section);
5379
5380 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5381
5382 const gdb_byte *addr = section->buffer;
5383
5384 bfd *const abfd = get_section_bfd_owner (section);
5385
5386 unsigned int bytes_read;
5387 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5388 addr += bytes_read;
5389
5390 map.dwarf5_is_dwarf64 = bytes_read != 4;
5391 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5392 if (bytes_read + length != section->size)
5393 {
5394 /* There may be multiple per-CU indices. */
5395 warning (_("Section .debug_names in %s length %s does not match "
5396 "section length %s, ignoring .debug_names."),
5397 filename, plongest (bytes_read + length),
5398 pulongest (section->size));
5399 return false;
5400 }
5401
5402 /* The version number. */
5403 uint16_t version = read_2_bytes (abfd, addr);
5404 addr += 2;
5405 if (version != 5)
5406 {
5407 warning (_("Section .debug_names in %s has unsupported version %d, "
5408 "ignoring .debug_names."),
5409 filename, version);
5410 return false;
5411 }
5412
5413 /* Padding. */
5414 uint16_t padding = read_2_bytes (abfd, addr);
5415 addr += 2;
5416 if (padding != 0)
5417 {
5418 warning (_("Section .debug_names in %s has unsupported padding %d, "
5419 "ignoring .debug_names."),
5420 filename, padding);
5421 return false;
5422 }
5423
5424 /* comp_unit_count - The number of CUs in the CU list. */
5425 map.cu_count = read_4_bytes (abfd, addr);
5426 addr += 4;
5427
5428 /* local_type_unit_count - The number of TUs in the local TU
5429 list. */
5430 map.tu_count = read_4_bytes (abfd, addr);
5431 addr += 4;
5432
5433 /* foreign_type_unit_count - The number of TUs in the foreign TU
5434 list. */
5435 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5436 addr += 4;
5437 if (foreign_tu_count != 0)
5438 {
5439 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5440 "ignoring .debug_names."),
5441 filename, static_cast<unsigned long> (foreign_tu_count));
5442 return false;
5443 }
5444
5445 /* bucket_count - The number of hash buckets in the hash lookup
5446 table. */
5447 map.bucket_count = read_4_bytes (abfd, addr);
5448 addr += 4;
5449
5450 /* name_count - The number of unique names in the index. */
5451 map.name_count = read_4_bytes (abfd, addr);
5452 addr += 4;
5453
5454 /* abbrev_table_size - The size in bytes of the abbreviations
5455 table. */
5456 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* augmentation_string_size - The size in bytes of the augmentation
5460 string. This value is rounded up to a multiple of 4. */
5461 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5462 addr += 4;
5463 map.augmentation_is_gdb = ((augmentation_string_size
5464 == sizeof (dwarf5_augmentation))
5465 && memcmp (addr, dwarf5_augmentation,
5466 sizeof (dwarf5_augmentation)) == 0);
5467 augmentation_string_size += (-augmentation_string_size) & 3;
5468 addr += augmentation_string_size;
5469
5470 /* List of CUs */
5471 map.cu_table_reordered = addr;
5472 addr += map.cu_count * map.offset_size;
5473
5474 /* List of Local TUs */
5475 map.tu_table_reordered = addr;
5476 addr += map.tu_count * map.offset_size;
5477
5478 /* Hash Lookup Table */
5479 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5480 addr += map.bucket_count * 4;
5481 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5482 addr += map.name_count * 4;
5483
5484 /* Name Table */
5485 map.name_table_string_offs_reordered = addr;
5486 addr += map.name_count * map.offset_size;
5487 map.name_table_entry_offs_reordered = addr;
5488 addr += map.name_count * map.offset_size;
5489
5490 const gdb_byte *abbrev_table_start = addr;
5491 for (;;)
5492 {
5493 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5494 addr += bytes_read;
5495 if (index_num == 0)
5496 break;
5497
5498 const auto insertpair
5499 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5500 if (!insertpair.second)
5501 {
5502 warning (_("Section .debug_names in %s has duplicate index %s, "
5503 "ignoring .debug_names."),
5504 filename, pulongest (index_num));
5505 return false;
5506 }
5507 mapped_debug_names::index_val &indexval = insertpair.first->second;
5508 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5509 addr += bytes_read;
5510
5511 for (;;)
5512 {
5513 mapped_debug_names::index_val::attr attr;
5514 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5515 addr += bytes_read;
5516 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5517 addr += bytes_read;
5518 if (attr.form == DW_FORM_implicit_const)
5519 {
5520 attr.implicit_const = read_signed_leb128 (abfd, addr,
5521 &bytes_read);
5522 addr += bytes_read;
5523 }
5524 if (attr.dw_idx == 0 && attr.form == 0)
5525 break;
5526 indexval.attr_vec.push_back (std::move (attr));
5527 }
5528 }
5529 if (addr != abbrev_table_start + abbrev_table_size)
5530 {
5531 warning (_("Section .debug_names in %s has abbreviation_table "
5532 "of size %s vs. written as %u, ignoring .debug_names."),
5533 filename, plongest (addr - abbrev_table_start),
5534 abbrev_table_size);
5535 return false;
5536 }
5537 map.entry_pool = addr;
5538
5539 return true;
5540 }
5541
5542 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5543 list. */
5544
5545 static void
5546 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5547 const mapped_debug_names &map,
5548 dwarf2_section_info &section,
5549 bool is_dwz)
5550 {
5551 sect_offset sect_off_prev;
5552 for (uint32_t i = 0; i <= map.cu_count; ++i)
5553 {
5554 sect_offset sect_off_next;
5555 if (i < map.cu_count)
5556 {
5557 sect_off_next
5558 = (sect_offset) (extract_unsigned_integer
5559 (map.cu_table_reordered + i * map.offset_size,
5560 map.offset_size,
5561 map.dwarf5_byte_order));
5562 }
5563 else
5564 sect_off_next = (sect_offset) section.size;
5565 if (i >= 1)
5566 {
5567 const ULONGEST length = sect_off_next - sect_off_prev;
5568 dwarf2_per_cu_data *per_cu
5569 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5570 sect_off_prev, length);
5571 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5572 }
5573 sect_off_prev = sect_off_next;
5574 }
5575 }
5576
5577 /* Read the CU list from the mapped index, and use it to create all
5578 the CU objects for this dwarf2_per_objfile. */
5579
5580 static void
5581 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5582 const mapped_debug_names &map,
5583 const mapped_debug_names &dwz_map)
5584 {
5585 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5586 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5587
5588 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5589 dwarf2_per_objfile->info,
5590 false /* is_dwz */);
5591
5592 if (dwz_map.cu_count == 0)
5593 return;
5594
5595 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5596 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5597 true /* is_dwz */);
5598 }
5599
5600 /* Read .debug_names. If everything went ok, initialize the "quick"
5601 elements of all the CUs and return true. Otherwise, return false. */
5602
5603 static bool
5604 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5605 {
5606 std::unique_ptr<mapped_debug_names> map
5607 (new mapped_debug_names (dwarf2_per_objfile));
5608 mapped_debug_names dwz_map (dwarf2_per_objfile);
5609 struct objfile *objfile = dwarf2_per_objfile->objfile;
5610
5611 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5612 &dwarf2_per_objfile->debug_names,
5613 *map))
5614 return false;
5615
5616 /* Don't use the index if it's empty. */
5617 if (map->name_count == 0)
5618 return false;
5619
5620 /* If there is a .dwz file, read it so we can get its CU list as
5621 well. */
5622 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5623 if (dwz != NULL)
5624 {
5625 if (!read_debug_names_from_section (objfile,
5626 bfd_get_filename (dwz->dwz_bfd),
5627 &dwz->debug_names, dwz_map))
5628 {
5629 warning (_("could not read '.debug_names' section from %s; skipping"),
5630 bfd_get_filename (dwz->dwz_bfd));
5631 return false;
5632 }
5633 }
5634
5635 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5636
5637 if (map->tu_count != 0)
5638 {
5639 /* We can only handle a single .debug_types when we have an
5640 index. */
5641 if (dwarf2_per_objfile->types.size () != 1)
5642 return false;
5643
5644 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5645
5646 create_signatured_type_table_from_debug_names
5647 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5648 }
5649
5650 create_addrmap_from_aranges (dwarf2_per_objfile,
5651 &dwarf2_per_objfile->debug_aranges);
5652
5653 dwarf2_per_objfile->debug_names_table = std::move (map);
5654 dwarf2_per_objfile->using_index = 1;
5655 dwarf2_per_objfile->quick_file_names_table =
5656 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5657
5658 return true;
5659 }
5660
5661 /* Type used to manage iterating over all CUs looking for a symbol for
5662 .debug_names. */
5663
5664 class dw2_debug_names_iterator
5665 {
5666 public:
5667 dw2_debug_names_iterator (const mapped_debug_names &map,
5668 gdb::optional<block_enum> block_index,
5669 domain_enum domain,
5670 const char *name)
5671 : m_map (map), m_block_index (block_index), m_domain (domain),
5672 m_addr (find_vec_in_debug_names (map, name))
5673 {}
5674
5675 dw2_debug_names_iterator (const mapped_debug_names &map,
5676 search_domain search, uint32_t namei)
5677 : m_map (map),
5678 m_search (search),
5679 m_addr (find_vec_in_debug_names (map, namei))
5680 {}
5681
5682 /* Return the next matching CU or NULL if there are no more. */
5683 dwarf2_per_cu_data *next ();
5684
5685 private:
5686 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5687 const char *name);
5688 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5689 uint32_t namei);
5690
5691 /* The internalized form of .debug_names. */
5692 const mapped_debug_names &m_map;
5693
5694 /* If set, only look for symbols that match that block. Valid values are
5695 GLOBAL_BLOCK and STATIC_BLOCK. */
5696 const gdb::optional<block_enum> m_block_index;
5697
5698 /* The kind of symbol we're looking for. */
5699 const domain_enum m_domain = UNDEF_DOMAIN;
5700 const search_domain m_search = ALL_DOMAIN;
5701
5702 /* The list of CUs from the index entry of the symbol, or NULL if
5703 not found. */
5704 const gdb_byte *m_addr;
5705 };
5706
5707 const char *
5708 mapped_debug_names::namei_to_name (uint32_t namei) const
5709 {
5710 const ULONGEST namei_string_offs
5711 = extract_unsigned_integer ((name_table_string_offs_reordered
5712 + namei * offset_size),
5713 offset_size,
5714 dwarf5_byte_order);
5715 return read_indirect_string_at_offset
5716 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5717 }
5718
5719 /* Find a slot in .debug_names for the object named NAME. If NAME is
5720 found, return pointer to its pool data. If NAME cannot be found,
5721 return NULL. */
5722
5723 const gdb_byte *
5724 dw2_debug_names_iterator::find_vec_in_debug_names
5725 (const mapped_debug_names &map, const char *name)
5726 {
5727 int (*cmp) (const char *, const char *);
5728
5729 gdb::unique_xmalloc_ptr<char> without_params;
5730 if (current_language->la_language == language_cplus
5731 || current_language->la_language == language_fortran
5732 || current_language->la_language == language_d)
5733 {
5734 /* NAME is already canonical. Drop any qualifiers as
5735 .debug_names does not contain any. */
5736
5737 if (strchr (name, '(') != NULL)
5738 {
5739 without_params = cp_remove_params (name);
5740 if (without_params != NULL)
5741 name = without_params.get ();
5742 }
5743 }
5744
5745 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5746
5747 const uint32_t full_hash = dwarf5_djb_hash (name);
5748 uint32_t namei
5749 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5750 (map.bucket_table_reordered
5751 + (full_hash % map.bucket_count)), 4,
5752 map.dwarf5_byte_order);
5753 if (namei == 0)
5754 return NULL;
5755 --namei;
5756 if (namei >= map.name_count)
5757 {
5758 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5759 "[in module %s]"),
5760 namei, map.name_count,
5761 objfile_name (map.dwarf2_per_objfile->objfile));
5762 return NULL;
5763 }
5764
5765 for (;;)
5766 {
5767 const uint32_t namei_full_hash
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.hash_table_reordered + namei), 4,
5770 map.dwarf5_byte_order);
5771 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5772 return NULL;
5773
5774 if (full_hash == namei_full_hash)
5775 {
5776 const char *const namei_string = map.namei_to_name (namei);
5777
5778 #if 0 /* An expensive sanity check. */
5779 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5780 {
5781 complaint (_("Wrong .debug_names hash for string at index %u "
5782 "[in module %s]"),
5783 namei, objfile_name (dwarf2_per_objfile->objfile));
5784 return NULL;
5785 }
5786 #endif
5787
5788 if (cmp (namei_string, name) == 0)
5789 {
5790 const ULONGEST namei_entry_offs
5791 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5792 + namei * map.offset_size),
5793 map.offset_size, map.dwarf5_byte_order);
5794 return map.entry_pool + namei_entry_offs;
5795 }
5796 }
5797
5798 ++namei;
5799 if (namei >= map.name_count)
5800 return NULL;
5801 }
5802 }
5803
5804 const gdb_byte *
5805 dw2_debug_names_iterator::find_vec_in_debug_names
5806 (const mapped_debug_names &map, uint32_t namei)
5807 {
5808 if (namei >= map.name_count)
5809 {
5810 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5811 "[in module %s]"),
5812 namei, map.name_count,
5813 objfile_name (map.dwarf2_per_objfile->objfile));
5814 return NULL;
5815 }
5816
5817 const ULONGEST namei_entry_offs
5818 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5819 + namei * map.offset_size),
5820 map.offset_size, map.dwarf5_byte_order);
5821 return map.entry_pool + namei_entry_offs;
5822 }
5823
5824 /* See dw2_debug_names_iterator. */
5825
5826 dwarf2_per_cu_data *
5827 dw2_debug_names_iterator::next ()
5828 {
5829 if (m_addr == NULL)
5830 return NULL;
5831
5832 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5833 struct objfile *objfile = dwarf2_per_objfile->objfile;
5834 bfd *const abfd = objfile->obfd;
5835
5836 again:
5837
5838 unsigned int bytes_read;
5839 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5840 m_addr += bytes_read;
5841 if (abbrev == 0)
5842 return NULL;
5843
5844 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5845 if (indexval_it == m_map.abbrev_map.cend ())
5846 {
5847 complaint (_("Wrong .debug_names undefined abbrev code %s "
5848 "[in module %s]"),
5849 pulongest (abbrev), objfile_name (objfile));
5850 return NULL;
5851 }
5852 const mapped_debug_names::index_val &indexval = indexval_it->second;
5853 enum class symbol_linkage {
5854 unknown,
5855 static_,
5856 extern_,
5857 } symbol_linkage_ = symbol_linkage::unknown;
5858 dwarf2_per_cu_data *per_cu = NULL;
5859 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5860 {
5861 ULONGEST ull;
5862 switch (attr.form)
5863 {
5864 case DW_FORM_implicit_const:
5865 ull = attr.implicit_const;
5866 break;
5867 case DW_FORM_flag_present:
5868 ull = 1;
5869 break;
5870 case DW_FORM_udata:
5871 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5872 m_addr += bytes_read;
5873 break;
5874 default:
5875 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5876 dwarf_form_name (attr.form),
5877 objfile_name (objfile));
5878 return NULL;
5879 }
5880 switch (attr.dw_idx)
5881 {
5882 case DW_IDX_compile_unit:
5883 /* Don't crash on bad data. */
5884 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5885 {
5886 complaint (_(".debug_names entry has bad CU index %s"
5887 " [in module %s]"),
5888 pulongest (ull),
5889 objfile_name (dwarf2_per_objfile->objfile));
5890 continue;
5891 }
5892 per_cu = dwarf2_per_objfile->get_cutu (ull);
5893 break;
5894 case DW_IDX_type_unit:
5895 /* Don't crash on bad data. */
5896 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5897 {
5898 complaint (_(".debug_names entry has bad TU index %s"
5899 " [in module %s]"),
5900 pulongest (ull),
5901 objfile_name (dwarf2_per_objfile->objfile));
5902 continue;
5903 }
5904 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5905 break;
5906 case DW_IDX_GNU_internal:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 symbol_linkage_ = symbol_linkage::static_;
5910 break;
5911 case DW_IDX_GNU_external:
5912 if (!m_map.augmentation_is_gdb)
5913 break;
5914 symbol_linkage_ = symbol_linkage::extern_;
5915 break;
5916 }
5917 }
5918
5919 /* Skip if already read in. */
5920 if (per_cu->v.quick->compunit_symtab)
5921 goto again;
5922
5923 /* Check static vs global. */
5924 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5925 {
5926 const bool want_static = *m_block_index == STATIC_BLOCK;
5927 const bool symbol_is_static =
5928 symbol_linkage_ == symbol_linkage::static_;
5929 if (want_static != symbol_is_static)
5930 goto again;
5931 }
5932
5933 /* Match dw2_symtab_iter_next, symbol_kind
5934 and debug_names::psymbol_tag. */
5935 switch (m_domain)
5936 {
5937 case VAR_DOMAIN:
5938 switch (indexval.dwarf_tag)
5939 {
5940 case DW_TAG_variable:
5941 case DW_TAG_subprogram:
5942 /* Some types are also in VAR_DOMAIN. */
5943 case DW_TAG_typedef:
5944 case DW_TAG_structure_type:
5945 break;
5946 default:
5947 goto again;
5948 }
5949 break;
5950 case STRUCT_DOMAIN:
5951 switch (indexval.dwarf_tag)
5952 {
5953 case DW_TAG_typedef:
5954 case DW_TAG_structure_type:
5955 break;
5956 default:
5957 goto again;
5958 }
5959 break;
5960 case LABEL_DOMAIN:
5961 switch (indexval.dwarf_tag)
5962 {
5963 case 0:
5964 case DW_TAG_variable:
5965 break;
5966 default:
5967 goto again;
5968 }
5969 break;
5970 default:
5971 break;
5972 }
5973
5974 /* Match dw2_expand_symtabs_matching, symbol_kind and
5975 debug_names::psymbol_tag. */
5976 switch (m_search)
5977 {
5978 case VARIABLES_DOMAIN:
5979 switch (indexval.dwarf_tag)
5980 {
5981 case DW_TAG_variable:
5982 break;
5983 default:
5984 goto again;
5985 }
5986 break;
5987 case FUNCTIONS_DOMAIN:
5988 switch (indexval.dwarf_tag)
5989 {
5990 case DW_TAG_subprogram:
5991 break;
5992 default:
5993 goto again;
5994 }
5995 break;
5996 case TYPES_DOMAIN:
5997 switch (indexval.dwarf_tag)
5998 {
5999 case DW_TAG_typedef:
6000 case DW_TAG_structure_type:
6001 break;
6002 default:
6003 goto again;
6004 }
6005 break;
6006 default:
6007 break;
6008 }
6009
6010 return per_cu;
6011 }
6012
6013 static struct compunit_symtab *
6014 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
6015 const char *name, domain_enum domain)
6016 {
6017 struct dwarf2_per_objfile *dwarf2_per_objfile
6018 = get_dwarf2_per_objfile (objfile);
6019
6020 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6021 if (!mapp)
6022 {
6023 /* index is NULL if OBJF_READNOW. */
6024 return NULL;
6025 }
6026 const auto &map = *mapp;
6027
6028 dw2_debug_names_iterator iter (map, block_index, domain, name);
6029
6030 struct compunit_symtab *stab_best = NULL;
6031 struct dwarf2_per_cu_data *per_cu;
6032 while ((per_cu = iter.next ()) != NULL)
6033 {
6034 struct symbol *sym, *with_opaque = NULL;
6035 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6036 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6037 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6038
6039 sym = block_find_symbol (block, name, domain,
6040 block_find_non_opaque_type_preferred,
6041 &with_opaque);
6042
6043 /* Some caution must be observed with overloaded functions and
6044 methods, since the index will not contain any overload
6045 information (but NAME might contain it). */
6046
6047 if (sym != NULL
6048 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6049 return stab;
6050 if (with_opaque != NULL
6051 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6052 stab_best = stab;
6053
6054 /* Keep looking through other CUs. */
6055 }
6056
6057 return stab_best;
6058 }
6059
6060 /* This dumps minimal information about .debug_names. It is called
6061 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6062 uses this to verify that .debug_names has been loaded. */
6063
6064 static void
6065 dw2_debug_names_dump (struct objfile *objfile)
6066 {
6067 struct dwarf2_per_objfile *dwarf2_per_objfile
6068 = get_dwarf2_per_objfile (objfile);
6069
6070 gdb_assert (dwarf2_per_objfile->using_index);
6071 printf_filtered (".debug_names:");
6072 if (dwarf2_per_objfile->debug_names_table)
6073 printf_filtered (" exists\n");
6074 else
6075 printf_filtered (" faked for \"readnow\"\n");
6076 printf_filtered ("\n");
6077 }
6078
6079 static void
6080 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6081 const char *func_name)
6082 {
6083 struct dwarf2_per_objfile *dwarf2_per_objfile
6084 = get_dwarf2_per_objfile (objfile);
6085
6086 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6087 if (dwarf2_per_objfile->debug_names_table)
6088 {
6089 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6090
6091 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6092
6093 struct dwarf2_per_cu_data *per_cu;
6094 while ((per_cu = iter.next ()) != NULL)
6095 dw2_instantiate_symtab (per_cu, false);
6096 }
6097 }
6098
6099 static void
6100 dw2_debug_names_expand_symtabs_matching
6101 (struct objfile *objfile,
6102 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6103 const lookup_name_info &lookup_name,
6104 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6105 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6106 enum search_domain kind)
6107 {
6108 struct dwarf2_per_objfile *dwarf2_per_objfile
6109 = get_dwarf2_per_objfile (objfile);
6110
6111 /* debug_names_table is NULL if OBJF_READNOW. */
6112 if (!dwarf2_per_objfile->debug_names_table)
6113 return;
6114
6115 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6116
6117 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6118
6119 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6120 symbol_matcher,
6121 kind, [&] (offset_type namei)
6122 {
6123 /* The name was matched, now expand corresponding CUs that were
6124 marked. */
6125 dw2_debug_names_iterator iter (map, kind, namei);
6126
6127 struct dwarf2_per_cu_data *per_cu;
6128 while ((per_cu = iter.next ()) != NULL)
6129 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6130 expansion_notify);
6131 });
6132 }
6133
6134 const struct quick_symbol_functions dwarf2_debug_names_functions =
6135 {
6136 dw2_has_symbols,
6137 dw2_find_last_source_symtab,
6138 dw2_forget_cached_source_info,
6139 dw2_map_symtabs_matching_filename,
6140 dw2_debug_names_lookup_symbol,
6141 dw2_print_stats,
6142 dw2_debug_names_dump,
6143 dw2_debug_names_expand_symtabs_for_function,
6144 dw2_expand_all_symtabs,
6145 dw2_expand_symtabs_with_fullname,
6146 dw2_map_matching_symbols,
6147 dw2_debug_names_expand_symtabs_matching,
6148 dw2_find_pc_sect_compunit_symtab,
6149 NULL,
6150 dw2_map_symbol_filenames
6151 };
6152
6153 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6154 to either a dwarf2_per_objfile or dwz_file object. */
6155
6156 template <typename T>
6157 static gdb::array_view<const gdb_byte>
6158 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6159 {
6160 dwarf2_section_info *section = &section_owner->gdb_index;
6161
6162 if (dwarf2_section_empty_p (section))
6163 return {};
6164
6165 /* Older elfutils strip versions could keep the section in the main
6166 executable while splitting it for the separate debug info file. */
6167 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6168 return {};
6169
6170 dwarf2_read_section (obj, section);
6171
6172 /* dwarf2_section_info::size is a bfd_size_type, while
6173 gdb::array_view works with size_t. On 32-bit hosts, with
6174 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6175 is 32-bit. So we need an explicit narrowing conversion here.
6176 This is fine, because it's impossible to allocate or mmap an
6177 array/buffer larger than what size_t can represent. */
6178 return gdb::make_array_view (section->buffer, section->size);
6179 }
6180
6181 /* Lookup the index cache for the contents of the index associated to
6182 DWARF2_OBJ. */
6183
6184 static gdb::array_view<const gdb_byte>
6185 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6186 {
6187 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6188 if (build_id == nullptr)
6189 return {};
6190
6191 return global_index_cache.lookup_gdb_index (build_id,
6192 &dwarf2_obj->index_cache_res);
6193 }
6194
6195 /* Same as the above, but for DWZ. */
6196
6197 static gdb::array_view<const gdb_byte>
6198 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6199 {
6200 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6201 if (build_id == nullptr)
6202 return {};
6203
6204 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6205 }
6206
6207 /* See symfile.h. */
6208
6209 bool
6210 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6211 {
6212 struct dwarf2_per_objfile *dwarf2_per_objfile
6213 = get_dwarf2_per_objfile (objfile);
6214
6215 /* If we're about to read full symbols, don't bother with the
6216 indices. In this case we also don't care if some other debug
6217 format is making psymtabs, because they are all about to be
6218 expanded anyway. */
6219 if ((objfile->flags & OBJF_READNOW))
6220 {
6221 dwarf2_per_objfile->using_index = 1;
6222 create_all_comp_units (dwarf2_per_objfile);
6223 create_all_type_units (dwarf2_per_objfile);
6224 dwarf2_per_objfile->quick_file_names_table
6225 = create_quick_file_names_table
6226 (dwarf2_per_objfile->all_comp_units.size ());
6227
6228 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6229 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6230 {
6231 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6232
6233 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6234 struct dwarf2_per_cu_quick_data);
6235 }
6236
6237 /* Return 1 so that gdb sees the "quick" functions. However,
6238 these functions will be no-ops because we will have expanded
6239 all symtabs. */
6240 *index_kind = dw_index_kind::GDB_INDEX;
6241 return true;
6242 }
6243
6244 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6245 {
6246 *index_kind = dw_index_kind::DEBUG_NAMES;
6247 return true;
6248 }
6249
6250 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6251 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6252 get_gdb_index_contents_from_section<dwz_file>))
6253 {
6254 *index_kind = dw_index_kind::GDB_INDEX;
6255 return true;
6256 }
6257
6258 /* ... otherwise, try to find the index in the index cache. */
6259 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6260 get_gdb_index_contents_from_cache,
6261 get_gdb_index_contents_from_cache_dwz))
6262 {
6263 global_index_cache.hit ();
6264 *index_kind = dw_index_kind::GDB_INDEX;
6265 return true;
6266 }
6267
6268 global_index_cache.miss ();
6269 return false;
6270 }
6271
6272 \f
6273
6274 /* Build a partial symbol table. */
6275
6276 void
6277 dwarf2_build_psymtabs (struct objfile *objfile)
6278 {
6279 struct dwarf2_per_objfile *dwarf2_per_objfile
6280 = get_dwarf2_per_objfile (objfile);
6281
6282 init_psymbol_list (objfile, 1024);
6283
6284 try
6285 {
6286 /* This isn't really ideal: all the data we allocate on the
6287 objfile's obstack is still uselessly kept around. However,
6288 freeing it seems unsafe. */
6289 psymtab_discarder psymtabs (objfile);
6290 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6291 psymtabs.keep ();
6292
6293 /* (maybe) store an index in the cache. */
6294 global_index_cache.store (dwarf2_per_objfile);
6295 }
6296 catch (const gdb_exception_error &except)
6297 {
6298 exception_print (gdb_stderr, except);
6299 }
6300 }
6301
6302 /* Return the total length of the CU described by HEADER. */
6303
6304 static unsigned int
6305 get_cu_length (const struct comp_unit_head *header)
6306 {
6307 return header->initial_length_size + header->length;
6308 }
6309
6310 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6311
6312 static inline bool
6313 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6314 {
6315 sect_offset bottom = cu_header->sect_off;
6316 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6317
6318 return sect_off >= bottom && sect_off < top;
6319 }
6320
6321 /* Find the base address of the compilation unit for range lists and
6322 location lists. It will normally be specified by DW_AT_low_pc.
6323 In DWARF-3 draft 4, the base address could be overridden by
6324 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6325 compilation units with discontinuous ranges. */
6326
6327 static void
6328 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6329 {
6330 struct attribute *attr;
6331
6332 cu->base_known = 0;
6333 cu->base_address = 0;
6334
6335 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6336 if (attr)
6337 {
6338 cu->base_address = attr_value_as_address (attr);
6339 cu->base_known = 1;
6340 }
6341 else
6342 {
6343 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6344 if (attr)
6345 {
6346 cu->base_address = attr_value_as_address (attr);
6347 cu->base_known = 1;
6348 }
6349 }
6350 }
6351
6352 /* Read in the comp unit header information from the debug_info at info_ptr.
6353 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6354 NOTE: This leaves members offset, first_die_offset to be filled in
6355 by the caller. */
6356
6357 static const gdb_byte *
6358 read_comp_unit_head (struct comp_unit_head *cu_header,
6359 const gdb_byte *info_ptr,
6360 struct dwarf2_section_info *section,
6361 rcuh_kind section_kind)
6362 {
6363 int signed_addr;
6364 unsigned int bytes_read;
6365 const char *filename = get_section_file_name (section);
6366 bfd *abfd = get_section_bfd_owner (section);
6367
6368 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6369 cu_header->initial_length_size = bytes_read;
6370 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6371 info_ptr += bytes_read;
6372 cu_header->version = read_2_bytes (abfd, info_ptr);
6373 if (cu_header->version < 2 || cu_header->version > 5)
6374 error (_("Dwarf Error: wrong version in compilation unit header "
6375 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6376 cu_header->version, filename);
6377 info_ptr += 2;
6378 if (cu_header->version < 5)
6379 switch (section_kind)
6380 {
6381 case rcuh_kind::COMPILE:
6382 cu_header->unit_type = DW_UT_compile;
6383 break;
6384 case rcuh_kind::TYPE:
6385 cu_header->unit_type = DW_UT_type;
6386 break;
6387 default:
6388 internal_error (__FILE__, __LINE__,
6389 _("read_comp_unit_head: invalid section_kind"));
6390 }
6391 else
6392 {
6393 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6394 (read_1_byte (abfd, info_ptr));
6395 info_ptr += 1;
6396 switch (cu_header->unit_type)
6397 {
6398 case DW_UT_compile:
6399 case DW_UT_partial:
6400 case DW_UT_skeleton:
6401 case DW_UT_split_compile:
6402 if (section_kind != rcuh_kind::COMPILE)
6403 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6404 "(is %s, should be %s) [in module %s]"),
6405 dwarf_unit_type_name (cu_header->unit_type),
6406 dwarf_unit_type_name (DW_UT_type), filename);
6407 break;
6408 case DW_UT_type:
6409 case DW_UT_split_type:
6410 section_kind = rcuh_kind::TYPE;
6411 break;
6412 default:
6413 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6414 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6415 "[in module %s]"), cu_header->unit_type,
6416 dwarf_unit_type_name (DW_UT_compile),
6417 dwarf_unit_type_name (DW_UT_skeleton),
6418 dwarf_unit_type_name (DW_UT_split_compile),
6419 dwarf_unit_type_name (DW_UT_type),
6420 dwarf_unit_type_name (DW_UT_split_type), filename);
6421 }
6422
6423 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6424 info_ptr += 1;
6425 }
6426 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6427 cu_header,
6428 &bytes_read);
6429 info_ptr += bytes_read;
6430 if (cu_header->version < 5)
6431 {
6432 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6433 info_ptr += 1;
6434 }
6435 signed_addr = bfd_get_sign_extend_vma (abfd);
6436 if (signed_addr < 0)
6437 internal_error (__FILE__, __LINE__,
6438 _("read_comp_unit_head: dwarf from non elf file"));
6439 cu_header->signed_addr_p = signed_addr;
6440
6441 bool header_has_signature = section_kind == rcuh_kind::TYPE
6442 || cu_header->unit_type == DW_UT_skeleton
6443 || cu_header->unit_type == DW_UT_split_compile;
6444
6445 if (header_has_signature)
6446 {
6447 cu_header->signature = read_8_bytes (abfd, info_ptr);
6448 info_ptr += 8;
6449 }
6450
6451 if (section_kind == rcuh_kind::TYPE)
6452 {
6453 LONGEST type_offset;
6454 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6455 info_ptr += bytes_read;
6456 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6457 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6458 error (_("Dwarf Error: Too big type_offset in compilation unit "
6459 "header (is %s) [in module %s]"), plongest (type_offset),
6460 filename);
6461 }
6462
6463 return info_ptr;
6464 }
6465
6466 /* Helper function that returns the proper abbrev section for
6467 THIS_CU. */
6468
6469 static struct dwarf2_section_info *
6470 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6471 {
6472 struct dwarf2_section_info *abbrev;
6473 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6474
6475 if (this_cu->is_dwz)
6476 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6477 else
6478 abbrev = &dwarf2_per_objfile->abbrev;
6479
6480 return abbrev;
6481 }
6482
6483 /* Subroutine of read_and_check_comp_unit_head and
6484 read_and_check_type_unit_head to simplify them.
6485 Perform various error checking on the header. */
6486
6487 static void
6488 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6489 struct comp_unit_head *header,
6490 struct dwarf2_section_info *section,
6491 struct dwarf2_section_info *abbrev_section)
6492 {
6493 const char *filename = get_section_file_name (section);
6494
6495 if (to_underlying (header->abbrev_sect_off)
6496 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6497 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6498 "(offset %s + 6) [in module %s]"),
6499 sect_offset_str (header->abbrev_sect_off),
6500 sect_offset_str (header->sect_off),
6501 filename);
6502
6503 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6504 avoid potential 32-bit overflow. */
6505 if (((ULONGEST) header->sect_off + get_cu_length (header))
6506 > section->size)
6507 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6508 "(offset %s + 0) [in module %s]"),
6509 header->length, sect_offset_str (header->sect_off),
6510 filename);
6511 }
6512
6513 /* Read in a CU/TU header and perform some basic error checking.
6514 The contents of the header are stored in HEADER.
6515 The result is a pointer to the start of the first DIE. */
6516
6517 static const gdb_byte *
6518 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6519 struct comp_unit_head *header,
6520 struct dwarf2_section_info *section,
6521 struct dwarf2_section_info *abbrev_section,
6522 const gdb_byte *info_ptr,
6523 rcuh_kind section_kind)
6524 {
6525 const gdb_byte *beg_of_comp_unit = info_ptr;
6526
6527 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6528
6529 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6530
6531 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6532
6533 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6534 abbrev_section);
6535
6536 return info_ptr;
6537 }
6538
6539 /* Fetch the abbreviation table offset from a comp or type unit header. */
6540
6541 static sect_offset
6542 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6543 struct dwarf2_section_info *section,
6544 sect_offset sect_off)
6545 {
6546 bfd *abfd = get_section_bfd_owner (section);
6547 const gdb_byte *info_ptr;
6548 unsigned int initial_length_size, offset_size;
6549 uint16_t version;
6550
6551 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6552 info_ptr = section->buffer + to_underlying (sect_off);
6553 read_initial_length (abfd, info_ptr, &initial_length_size);
6554 offset_size = initial_length_size == 4 ? 4 : 8;
6555 info_ptr += initial_length_size;
6556
6557 version = read_2_bytes (abfd, info_ptr);
6558 info_ptr += 2;
6559 if (version >= 5)
6560 {
6561 /* Skip unit type and address size. */
6562 info_ptr += 2;
6563 }
6564
6565 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6566 }
6567
6568 /* Allocate a new partial symtab for file named NAME and mark this new
6569 partial symtab as being an include of PST. */
6570
6571 static void
6572 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6573 struct objfile *objfile)
6574 {
6575 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6576
6577 if (!IS_ABSOLUTE_PATH (subpst->filename))
6578 {
6579 /* It shares objfile->objfile_obstack. */
6580 subpst->dirname = pst->dirname;
6581 }
6582
6583 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6584 subpst->dependencies[0] = pst;
6585 subpst->number_of_dependencies = 1;
6586
6587 subpst->read_symtab = pst->read_symtab;
6588
6589 /* No private part is necessary for include psymtabs. This property
6590 can be used to differentiate between such include psymtabs and
6591 the regular ones. */
6592 subpst->read_symtab_private = NULL;
6593 }
6594
6595 /* Read the Line Number Program data and extract the list of files
6596 included by the source file represented by PST. Build an include
6597 partial symtab for each of these included files. */
6598
6599 static void
6600 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6601 struct die_info *die,
6602 struct partial_symtab *pst)
6603 {
6604 line_header_up lh;
6605 struct attribute *attr;
6606
6607 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6608 if (attr)
6609 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6610 if (lh == NULL)
6611 return; /* No linetable, so no includes. */
6612
6613 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6614 that we pass in the raw text_low here; that is ok because we're
6615 only decoding the line table to make include partial symtabs, and
6616 so the addresses aren't really used. */
6617 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6618 pst->raw_text_low (), 1);
6619 }
6620
6621 static hashval_t
6622 hash_signatured_type (const void *item)
6623 {
6624 const struct signatured_type *sig_type
6625 = (const struct signatured_type *) item;
6626
6627 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6628 return sig_type->signature;
6629 }
6630
6631 static int
6632 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6633 {
6634 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6635 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6636
6637 return lhs->signature == rhs->signature;
6638 }
6639
6640 /* Allocate a hash table for signatured types. */
6641
6642 static htab_t
6643 allocate_signatured_type_table (struct objfile *objfile)
6644 {
6645 return htab_create_alloc_ex (41,
6646 hash_signatured_type,
6647 eq_signatured_type,
6648 NULL,
6649 &objfile->objfile_obstack,
6650 hashtab_obstack_allocate,
6651 dummy_obstack_deallocate);
6652 }
6653
6654 /* A helper function to add a signatured type CU to a table. */
6655
6656 static int
6657 add_signatured_type_cu_to_table (void **slot, void *datum)
6658 {
6659 struct signatured_type *sigt = (struct signatured_type *) *slot;
6660 std::vector<signatured_type *> *all_type_units
6661 = (std::vector<signatured_type *> *) datum;
6662
6663 all_type_units->push_back (sigt);
6664
6665 return 1;
6666 }
6667
6668 /* A helper for create_debug_types_hash_table. Read types from SECTION
6669 and fill them into TYPES_HTAB. It will process only type units,
6670 therefore DW_UT_type. */
6671
6672 static void
6673 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6674 struct dwo_file *dwo_file,
6675 dwarf2_section_info *section, htab_t &types_htab,
6676 rcuh_kind section_kind)
6677 {
6678 struct objfile *objfile = dwarf2_per_objfile->objfile;
6679 struct dwarf2_section_info *abbrev_section;
6680 bfd *abfd;
6681 const gdb_byte *info_ptr, *end_ptr;
6682
6683 abbrev_section = (dwo_file != NULL
6684 ? &dwo_file->sections.abbrev
6685 : &dwarf2_per_objfile->abbrev);
6686
6687 if (dwarf_read_debug)
6688 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6689 get_section_name (section),
6690 get_section_file_name (abbrev_section));
6691
6692 dwarf2_read_section (objfile, section);
6693 info_ptr = section->buffer;
6694
6695 if (info_ptr == NULL)
6696 return;
6697
6698 /* We can't set abfd until now because the section may be empty or
6699 not present, in which case the bfd is unknown. */
6700 abfd = get_section_bfd_owner (section);
6701
6702 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6703 because we don't need to read any dies: the signature is in the
6704 header. */
6705
6706 end_ptr = info_ptr + section->size;
6707 while (info_ptr < end_ptr)
6708 {
6709 struct signatured_type *sig_type;
6710 struct dwo_unit *dwo_tu;
6711 void **slot;
6712 const gdb_byte *ptr = info_ptr;
6713 struct comp_unit_head header;
6714 unsigned int length;
6715
6716 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6717
6718 /* Initialize it due to a false compiler warning. */
6719 header.signature = -1;
6720 header.type_cu_offset_in_tu = (cu_offset) -1;
6721
6722 /* We need to read the type's signature in order to build the hash
6723 table, but we don't need anything else just yet. */
6724
6725 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6726 abbrev_section, ptr, section_kind);
6727
6728 length = get_cu_length (&header);
6729
6730 /* Skip dummy type units. */
6731 if (ptr >= info_ptr + length
6732 || peek_abbrev_code (abfd, ptr) == 0
6733 || header.unit_type != DW_UT_type)
6734 {
6735 info_ptr += length;
6736 continue;
6737 }
6738
6739 if (types_htab == NULL)
6740 {
6741 if (dwo_file)
6742 types_htab = allocate_dwo_unit_table (objfile);
6743 else
6744 types_htab = allocate_signatured_type_table (objfile);
6745 }
6746
6747 if (dwo_file)
6748 {
6749 sig_type = NULL;
6750 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6751 struct dwo_unit);
6752 dwo_tu->dwo_file = dwo_file;
6753 dwo_tu->signature = header.signature;
6754 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6755 dwo_tu->section = section;
6756 dwo_tu->sect_off = sect_off;
6757 dwo_tu->length = length;
6758 }
6759 else
6760 {
6761 /* N.B.: type_offset is not usable if this type uses a DWO file.
6762 The real type_offset is in the DWO file. */
6763 dwo_tu = NULL;
6764 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6765 struct signatured_type);
6766 sig_type->signature = header.signature;
6767 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6768 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6769 sig_type->per_cu.is_debug_types = 1;
6770 sig_type->per_cu.section = section;
6771 sig_type->per_cu.sect_off = sect_off;
6772 sig_type->per_cu.length = length;
6773 }
6774
6775 slot = htab_find_slot (types_htab,
6776 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6777 INSERT);
6778 gdb_assert (slot != NULL);
6779 if (*slot != NULL)
6780 {
6781 sect_offset dup_sect_off;
6782
6783 if (dwo_file)
6784 {
6785 const struct dwo_unit *dup_tu
6786 = (const struct dwo_unit *) *slot;
6787
6788 dup_sect_off = dup_tu->sect_off;
6789 }
6790 else
6791 {
6792 const struct signatured_type *dup_tu
6793 = (const struct signatured_type *) *slot;
6794
6795 dup_sect_off = dup_tu->per_cu.sect_off;
6796 }
6797
6798 complaint (_("debug type entry at offset %s is duplicate to"
6799 " the entry at offset %s, signature %s"),
6800 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6801 hex_string (header.signature));
6802 }
6803 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6804
6805 if (dwarf_read_debug > 1)
6806 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6807 sect_offset_str (sect_off),
6808 hex_string (header.signature));
6809
6810 info_ptr += length;
6811 }
6812 }
6813
6814 /* Create the hash table of all entries in the .debug_types
6815 (or .debug_types.dwo) section(s).
6816 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6817 otherwise it is NULL.
6818
6819 The result is a pointer to the hash table or NULL if there are no types.
6820
6821 Note: This function processes DWO files only, not DWP files. */
6822
6823 static void
6824 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6825 struct dwo_file *dwo_file,
6826 gdb::array_view<dwarf2_section_info> type_sections,
6827 htab_t &types_htab)
6828 {
6829 for (dwarf2_section_info &section : type_sections)
6830 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6831 types_htab, rcuh_kind::TYPE);
6832 }
6833
6834 /* Create the hash table of all entries in the .debug_types section,
6835 and initialize all_type_units.
6836 The result is zero if there is an error (e.g. missing .debug_types section),
6837 otherwise non-zero. */
6838
6839 static int
6840 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6841 {
6842 htab_t types_htab = NULL;
6843
6844 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6845 &dwarf2_per_objfile->info, types_htab,
6846 rcuh_kind::COMPILE);
6847 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6848 dwarf2_per_objfile->types, types_htab);
6849 if (types_htab == NULL)
6850 {
6851 dwarf2_per_objfile->signatured_types = NULL;
6852 return 0;
6853 }
6854
6855 dwarf2_per_objfile->signatured_types = types_htab;
6856
6857 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6858 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6859
6860 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6861 &dwarf2_per_objfile->all_type_units);
6862
6863 return 1;
6864 }
6865
6866 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6867 If SLOT is non-NULL, it is the entry to use in the hash table.
6868 Otherwise we find one. */
6869
6870 static struct signatured_type *
6871 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6872 void **slot)
6873 {
6874 struct objfile *objfile = dwarf2_per_objfile->objfile;
6875
6876 if (dwarf2_per_objfile->all_type_units.size ()
6877 == dwarf2_per_objfile->all_type_units.capacity ())
6878 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6879
6880 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6881 struct signatured_type);
6882
6883 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6884 sig_type->signature = sig;
6885 sig_type->per_cu.is_debug_types = 1;
6886 if (dwarf2_per_objfile->using_index)
6887 {
6888 sig_type->per_cu.v.quick =
6889 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6890 struct dwarf2_per_cu_quick_data);
6891 }
6892
6893 if (slot == NULL)
6894 {
6895 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6896 sig_type, INSERT);
6897 }
6898 gdb_assert (*slot == NULL);
6899 *slot = sig_type;
6900 /* The rest of sig_type must be filled in by the caller. */
6901 return sig_type;
6902 }
6903
6904 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6905 Fill in SIG_ENTRY with DWO_ENTRY. */
6906
6907 static void
6908 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6909 struct signatured_type *sig_entry,
6910 struct dwo_unit *dwo_entry)
6911 {
6912 /* Make sure we're not clobbering something we don't expect to. */
6913 gdb_assert (! sig_entry->per_cu.queued);
6914 gdb_assert (sig_entry->per_cu.cu == NULL);
6915 if (dwarf2_per_objfile->using_index)
6916 {
6917 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6918 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6919 }
6920 else
6921 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6922 gdb_assert (sig_entry->signature == dwo_entry->signature);
6923 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6924 gdb_assert (sig_entry->type_unit_group == NULL);
6925 gdb_assert (sig_entry->dwo_unit == NULL);
6926
6927 sig_entry->per_cu.section = dwo_entry->section;
6928 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6929 sig_entry->per_cu.length = dwo_entry->length;
6930 sig_entry->per_cu.reading_dwo_directly = 1;
6931 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6932 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6933 sig_entry->dwo_unit = dwo_entry;
6934 }
6935
6936 /* Subroutine of lookup_signatured_type.
6937 If we haven't read the TU yet, create the signatured_type data structure
6938 for a TU to be read in directly from a DWO file, bypassing the stub.
6939 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6940 using .gdb_index, then when reading a CU we want to stay in the DWO file
6941 containing that CU. Otherwise we could end up reading several other DWO
6942 files (due to comdat folding) to process the transitive closure of all the
6943 mentioned TUs, and that can be slow. The current DWO file will have every
6944 type signature that it needs.
6945 We only do this for .gdb_index because in the psymtab case we already have
6946 to read all the DWOs to build the type unit groups. */
6947
6948 static struct signatured_type *
6949 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6950 {
6951 struct dwarf2_per_objfile *dwarf2_per_objfile
6952 = cu->per_cu->dwarf2_per_objfile;
6953 struct objfile *objfile = dwarf2_per_objfile->objfile;
6954 struct dwo_file *dwo_file;
6955 struct dwo_unit find_dwo_entry, *dwo_entry;
6956 struct signatured_type find_sig_entry, *sig_entry;
6957 void **slot;
6958
6959 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6960
6961 /* If TU skeletons have been removed then we may not have read in any
6962 TUs yet. */
6963 if (dwarf2_per_objfile->signatured_types == NULL)
6964 {
6965 dwarf2_per_objfile->signatured_types
6966 = allocate_signatured_type_table (objfile);
6967 }
6968
6969 /* We only ever need to read in one copy of a signatured type.
6970 Use the global signatured_types array to do our own comdat-folding
6971 of types. If this is the first time we're reading this TU, and
6972 the TU has an entry in .gdb_index, replace the recorded data from
6973 .gdb_index with this TU. */
6974
6975 find_sig_entry.signature = sig;
6976 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6977 &find_sig_entry, INSERT);
6978 sig_entry = (struct signatured_type *) *slot;
6979
6980 /* We can get here with the TU already read, *or* in the process of being
6981 read. Don't reassign the global entry to point to this DWO if that's
6982 the case. Also note that if the TU is already being read, it may not
6983 have come from a DWO, the program may be a mix of Fission-compiled
6984 code and non-Fission-compiled code. */
6985
6986 /* Have we already tried to read this TU?
6987 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6988 needn't exist in the global table yet). */
6989 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6990 return sig_entry;
6991
6992 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6993 dwo_unit of the TU itself. */
6994 dwo_file = cu->dwo_unit->dwo_file;
6995
6996 /* Ok, this is the first time we're reading this TU. */
6997 if (dwo_file->tus == NULL)
6998 return NULL;
6999 find_dwo_entry.signature = sig;
7000 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7001 if (dwo_entry == NULL)
7002 return NULL;
7003
7004 /* If the global table doesn't have an entry for this TU, add one. */
7005 if (sig_entry == NULL)
7006 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7007
7008 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7009 sig_entry->per_cu.tu_read = 1;
7010 return sig_entry;
7011 }
7012
7013 /* Subroutine of lookup_signatured_type.
7014 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7015 then try the DWP file. If the TU stub (skeleton) has been removed then
7016 it won't be in .gdb_index. */
7017
7018 static struct signatured_type *
7019 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7020 {
7021 struct dwarf2_per_objfile *dwarf2_per_objfile
7022 = cu->per_cu->dwarf2_per_objfile;
7023 struct objfile *objfile = dwarf2_per_objfile->objfile;
7024 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7025 struct dwo_unit *dwo_entry;
7026 struct signatured_type find_sig_entry, *sig_entry;
7027 void **slot;
7028
7029 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7030 gdb_assert (dwp_file != NULL);
7031
7032 /* If TU skeletons have been removed then we may not have read in any
7033 TUs yet. */
7034 if (dwarf2_per_objfile->signatured_types == NULL)
7035 {
7036 dwarf2_per_objfile->signatured_types
7037 = allocate_signatured_type_table (objfile);
7038 }
7039
7040 find_sig_entry.signature = sig;
7041 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7042 &find_sig_entry, INSERT);
7043 sig_entry = (struct signatured_type *) *slot;
7044
7045 /* Have we already tried to read this TU?
7046 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7047 needn't exist in the global table yet). */
7048 if (sig_entry != NULL)
7049 return sig_entry;
7050
7051 if (dwp_file->tus == NULL)
7052 return NULL;
7053 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7054 sig, 1 /* is_debug_types */);
7055 if (dwo_entry == NULL)
7056 return NULL;
7057
7058 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7059 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7060
7061 return sig_entry;
7062 }
7063
7064 /* Lookup a signature based type for DW_FORM_ref_sig8.
7065 Returns NULL if signature SIG is not present in the table.
7066 It is up to the caller to complain about this. */
7067
7068 static struct signatured_type *
7069 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7070 {
7071 struct dwarf2_per_objfile *dwarf2_per_objfile
7072 = cu->per_cu->dwarf2_per_objfile;
7073
7074 if (cu->dwo_unit
7075 && dwarf2_per_objfile->using_index)
7076 {
7077 /* We're in a DWO/DWP file, and we're using .gdb_index.
7078 These cases require special processing. */
7079 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7080 return lookup_dwo_signatured_type (cu, sig);
7081 else
7082 return lookup_dwp_signatured_type (cu, sig);
7083 }
7084 else
7085 {
7086 struct signatured_type find_entry, *entry;
7087
7088 if (dwarf2_per_objfile->signatured_types == NULL)
7089 return NULL;
7090 find_entry.signature = sig;
7091 entry = ((struct signatured_type *)
7092 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7093 return entry;
7094 }
7095 }
7096 \f
7097 /* Low level DIE reading support. */
7098
7099 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7100
7101 static void
7102 init_cu_die_reader (struct die_reader_specs *reader,
7103 struct dwarf2_cu *cu,
7104 struct dwarf2_section_info *section,
7105 struct dwo_file *dwo_file,
7106 struct abbrev_table *abbrev_table)
7107 {
7108 gdb_assert (section->readin && section->buffer != NULL);
7109 reader->abfd = get_section_bfd_owner (section);
7110 reader->cu = cu;
7111 reader->dwo_file = dwo_file;
7112 reader->die_section = section;
7113 reader->buffer = section->buffer;
7114 reader->buffer_end = section->buffer + section->size;
7115 reader->comp_dir = NULL;
7116 reader->abbrev_table = abbrev_table;
7117 }
7118
7119 /* Subroutine of init_cutu_and_read_dies to simplify it.
7120 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7121 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7122 already.
7123
7124 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7125 from it to the DIE in the DWO. If NULL we are skipping the stub.
7126 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7127 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7128 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7129 STUB_COMP_DIR may be non-NULL.
7130 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7131 are filled in with the info of the DIE from the DWO file.
7132 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7133 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7134 kept around for at least as long as *RESULT_READER.
7135
7136 The result is non-zero if a valid (non-dummy) DIE was found. */
7137
7138 static int
7139 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7140 struct dwo_unit *dwo_unit,
7141 struct die_info *stub_comp_unit_die,
7142 const char *stub_comp_dir,
7143 struct die_reader_specs *result_reader,
7144 const gdb_byte **result_info_ptr,
7145 struct die_info **result_comp_unit_die,
7146 int *result_has_children,
7147 abbrev_table_up *result_dwo_abbrev_table)
7148 {
7149 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7150 struct objfile *objfile = dwarf2_per_objfile->objfile;
7151 struct dwarf2_cu *cu = this_cu->cu;
7152 bfd *abfd;
7153 const gdb_byte *begin_info_ptr, *info_ptr;
7154 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7155 int i,num_extra_attrs;
7156 struct dwarf2_section_info *dwo_abbrev_section;
7157 struct attribute *attr;
7158 struct die_info *comp_unit_die;
7159
7160 /* At most one of these may be provided. */
7161 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7162
7163 /* These attributes aren't processed until later:
7164 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7165 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7166 referenced later. However, these attributes are found in the stub
7167 which we won't have later. In order to not impose this complication
7168 on the rest of the code, we read them here and copy them to the
7169 DWO CU/TU die. */
7170
7171 stmt_list = NULL;
7172 low_pc = NULL;
7173 high_pc = NULL;
7174 ranges = NULL;
7175 comp_dir = NULL;
7176
7177 if (stub_comp_unit_die != NULL)
7178 {
7179 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7180 DWO file. */
7181 if (! this_cu->is_debug_types)
7182 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7183 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7184 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7185 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7186 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7187
7188 /* There should be a DW_AT_addr_base attribute here (if needed).
7189 We need the value before we can process DW_FORM_GNU_addr_index
7190 or DW_FORM_addrx. */
7191 cu->addr_base = 0;
7192 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7193 if (attr)
7194 cu->addr_base = DW_UNSND (attr);
7195
7196 /* There should be a DW_AT_ranges_base attribute here (if needed).
7197 We need the value before we can process DW_AT_ranges. */
7198 cu->ranges_base = 0;
7199 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7200 if (attr)
7201 cu->ranges_base = DW_UNSND (attr);
7202 }
7203 else if (stub_comp_dir != NULL)
7204 {
7205 /* Reconstruct the comp_dir attribute to simplify the code below. */
7206 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7207 comp_dir->name = DW_AT_comp_dir;
7208 comp_dir->form = DW_FORM_string;
7209 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7210 DW_STRING (comp_dir) = stub_comp_dir;
7211 }
7212
7213 /* Set up for reading the DWO CU/TU. */
7214 cu->dwo_unit = dwo_unit;
7215 dwarf2_section_info *section = dwo_unit->section;
7216 dwarf2_read_section (objfile, section);
7217 abfd = get_section_bfd_owner (section);
7218 begin_info_ptr = info_ptr = (section->buffer
7219 + to_underlying (dwo_unit->sect_off));
7220 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7221
7222 if (this_cu->is_debug_types)
7223 {
7224 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7225
7226 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7227 &cu->header, section,
7228 dwo_abbrev_section,
7229 info_ptr, rcuh_kind::TYPE);
7230 /* This is not an assert because it can be caused by bad debug info. */
7231 if (sig_type->signature != cu->header.signature)
7232 {
7233 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7234 " TU at offset %s [in module %s]"),
7235 hex_string (sig_type->signature),
7236 hex_string (cu->header.signature),
7237 sect_offset_str (dwo_unit->sect_off),
7238 bfd_get_filename (abfd));
7239 }
7240 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7241 /* For DWOs coming from DWP files, we don't know the CU length
7242 nor the type's offset in the TU until now. */
7243 dwo_unit->length = get_cu_length (&cu->header);
7244 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7245
7246 /* Establish the type offset that can be used to lookup the type.
7247 For DWO files, we don't know it until now. */
7248 sig_type->type_offset_in_section
7249 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7250 }
7251 else
7252 {
7253 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7254 &cu->header, section,
7255 dwo_abbrev_section,
7256 info_ptr, rcuh_kind::COMPILE);
7257 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7258 /* For DWOs coming from DWP files, we don't know the CU length
7259 until now. */
7260 dwo_unit->length = get_cu_length (&cu->header);
7261 }
7262
7263 *result_dwo_abbrev_table
7264 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7265 cu->header.abbrev_sect_off);
7266 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7267 result_dwo_abbrev_table->get ());
7268
7269 /* Read in the die, but leave space to copy over the attributes
7270 from the stub. This has the benefit of simplifying the rest of
7271 the code - all the work to maintain the illusion of a single
7272 DW_TAG_{compile,type}_unit DIE is done here. */
7273 num_extra_attrs = ((stmt_list != NULL)
7274 + (low_pc != NULL)
7275 + (high_pc != NULL)
7276 + (ranges != NULL)
7277 + (comp_dir != NULL));
7278 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7279 result_has_children, num_extra_attrs);
7280
7281 /* Copy over the attributes from the stub to the DIE we just read in. */
7282 comp_unit_die = *result_comp_unit_die;
7283 i = comp_unit_die->num_attrs;
7284 if (stmt_list != NULL)
7285 comp_unit_die->attrs[i++] = *stmt_list;
7286 if (low_pc != NULL)
7287 comp_unit_die->attrs[i++] = *low_pc;
7288 if (high_pc != NULL)
7289 comp_unit_die->attrs[i++] = *high_pc;
7290 if (ranges != NULL)
7291 comp_unit_die->attrs[i++] = *ranges;
7292 if (comp_dir != NULL)
7293 comp_unit_die->attrs[i++] = *comp_dir;
7294 comp_unit_die->num_attrs += num_extra_attrs;
7295
7296 if (dwarf_die_debug)
7297 {
7298 fprintf_unfiltered (gdb_stdlog,
7299 "Read die from %s@0x%x of %s:\n",
7300 get_section_name (section),
7301 (unsigned) (begin_info_ptr - section->buffer),
7302 bfd_get_filename (abfd));
7303 dump_die (comp_unit_die, dwarf_die_debug);
7304 }
7305
7306 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7307 TUs by skipping the stub and going directly to the entry in the DWO file.
7308 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7309 to get it via circuitous means. Blech. */
7310 if (comp_dir != NULL)
7311 result_reader->comp_dir = DW_STRING (comp_dir);
7312
7313 /* Skip dummy compilation units. */
7314 if (info_ptr >= begin_info_ptr + dwo_unit->length
7315 || peek_abbrev_code (abfd, info_ptr) == 0)
7316 return 0;
7317
7318 *result_info_ptr = info_ptr;
7319 return 1;
7320 }
7321
7322 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7323 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7324 signature is part of the header. */
7325 static gdb::optional<ULONGEST>
7326 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7327 {
7328 if (cu->header.version >= 5)
7329 return cu->header.signature;
7330 struct attribute *attr;
7331 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7332 if (attr == nullptr)
7333 return gdb::optional<ULONGEST> ();
7334 return DW_UNSND (attr);
7335 }
7336
7337 /* Subroutine of init_cutu_and_read_dies to simplify it.
7338 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7339 Returns NULL if the specified DWO unit cannot be found. */
7340
7341 static struct dwo_unit *
7342 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7343 struct die_info *comp_unit_die)
7344 {
7345 struct dwarf2_cu *cu = this_cu->cu;
7346 struct dwo_unit *dwo_unit;
7347 const char *comp_dir, *dwo_name;
7348
7349 gdb_assert (cu != NULL);
7350
7351 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7352 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7353 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7354
7355 if (this_cu->is_debug_types)
7356 {
7357 struct signatured_type *sig_type;
7358
7359 /* Since this_cu is the first member of struct signatured_type,
7360 we can go from a pointer to one to a pointer to the other. */
7361 sig_type = (struct signatured_type *) this_cu;
7362 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7363 }
7364 else
7365 {
7366 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7367 if (!signature.has_value ())
7368 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7369 " [in module %s]"),
7370 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7371 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7372 *signature);
7373 }
7374
7375 return dwo_unit;
7376 }
7377
7378 /* Subroutine of init_cutu_and_read_dies to simplify it.
7379 See it for a description of the parameters.
7380 Read a TU directly from a DWO file, bypassing the stub. */
7381
7382 static void
7383 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7384 int use_existing_cu, int keep,
7385 die_reader_func_ftype *die_reader_func,
7386 void *data)
7387 {
7388 std::unique_ptr<dwarf2_cu> new_cu;
7389 struct signatured_type *sig_type;
7390 struct die_reader_specs reader;
7391 const gdb_byte *info_ptr;
7392 struct die_info *comp_unit_die;
7393 int has_children;
7394 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7395
7396 /* Verify we can do the following downcast, and that we have the
7397 data we need. */
7398 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7399 sig_type = (struct signatured_type *) this_cu;
7400 gdb_assert (sig_type->dwo_unit != NULL);
7401
7402 if (use_existing_cu && this_cu->cu != NULL)
7403 {
7404 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7405 /* There's no need to do the rereading_dwo_cu handling that
7406 init_cutu_and_read_dies does since we don't read the stub. */
7407 }
7408 else
7409 {
7410 /* If !use_existing_cu, this_cu->cu must be NULL. */
7411 gdb_assert (this_cu->cu == NULL);
7412 new_cu.reset (new dwarf2_cu (this_cu));
7413 }
7414
7415 /* A future optimization, if needed, would be to use an existing
7416 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7417 could share abbrev tables. */
7418
7419 /* The abbreviation table used by READER, this must live at least as long as
7420 READER. */
7421 abbrev_table_up dwo_abbrev_table;
7422
7423 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7424 NULL /* stub_comp_unit_die */,
7425 sig_type->dwo_unit->dwo_file->comp_dir,
7426 &reader, &info_ptr,
7427 &comp_unit_die, &has_children,
7428 &dwo_abbrev_table) == 0)
7429 {
7430 /* Dummy die. */
7431 return;
7432 }
7433
7434 /* All the "real" work is done here. */
7435 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7436
7437 /* This duplicates the code in init_cutu_and_read_dies,
7438 but the alternative is making the latter more complex.
7439 This function is only for the special case of using DWO files directly:
7440 no point in overly complicating the general case just to handle this. */
7441 if (new_cu != NULL && keep)
7442 {
7443 /* Link this CU into read_in_chain. */
7444 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7445 dwarf2_per_objfile->read_in_chain = this_cu;
7446 /* The chain owns it now. */
7447 new_cu.release ();
7448 }
7449 }
7450
7451 /* Initialize a CU (or TU) and read its DIEs.
7452 If the CU defers to a DWO file, read the DWO file as well.
7453
7454 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7455 Otherwise the table specified in the comp unit header is read in and used.
7456 This is an optimization for when we already have the abbrev table.
7457
7458 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7459 Otherwise, a new CU is allocated with xmalloc.
7460
7461 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7462 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7463
7464 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7465 linker) then DIE_READER_FUNC will not get called. */
7466
7467 static void
7468 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7469 struct abbrev_table *abbrev_table,
7470 int use_existing_cu, int keep,
7471 bool skip_partial,
7472 die_reader_func_ftype *die_reader_func,
7473 void *data)
7474 {
7475 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7476 struct objfile *objfile = dwarf2_per_objfile->objfile;
7477 struct dwarf2_section_info *section = this_cu->section;
7478 bfd *abfd = get_section_bfd_owner (section);
7479 struct dwarf2_cu *cu;
7480 const gdb_byte *begin_info_ptr, *info_ptr;
7481 struct die_reader_specs reader;
7482 struct die_info *comp_unit_die;
7483 int has_children;
7484 struct signatured_type *sig_type = NULL;
7485 struct dwarf2_section_info *abbrev_section;
7486 /* Non-zero if CU currently points to a DWO file and we need to
7487 reread it. When this happens we need to reread the skeleton die
7488 before we can reread the DWO file (this only applies to CUs, not TUs). */
7489 int rereading_dwo_cu = 0;
7490
7491 if (dwarf_die_debug)
7492 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7493 this_cu->is_debug_types ? "type" : "comp",
7494 sect_offset_str (this_cu->sect_off));
7495
7496 if (use_existing_cu)
7497 gdb_assert (keep);
7498
7499 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7500 file (instead of going through the stub), short-circuit all of this. */
7501 if (this_cu->reading_dwo_directly)
7502 {
7503 /* Narrow down the scope of possibilities to have to understand. */
7504 gdb_assert (this_cu->is_debug_types);
7505 gdb_assert (abbrev_table == NULL);
7506 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7507 die_reader_func, data);
7508 return;
7509 }
7510
7511 /* This is cheap if the section is already read in. */
7512 dwarf2_read_section (objfile, section);
7513
7514 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7515
7516 abbrev_section = get_abbrev_section_for_cu (this_cu);
7517
7518 std::unique_ptr<dwarf2_cu> new_cu;
7519 if (use_existing_cu && this_cu->cu != NULL)
7520 {
7521 cu = this_cu->cu;
7522 /* If this CU is from a DWO file we need to start over, we need to
7523 refetch the attributes from the skeleton CU.
7524 This could be optimized by retrieving those attributes from when we
7525 were here the first time: the previous comp_unit_die was stored in
7526 comp_unit_obstack. But there's no data yet that we need this
7527 optimization. */
7528 if (cu->dwo_unit != NULL)
7529 rereading_dwo_cu = 1;
7530 }
7531 else
7532 {
7533 /* If !use_existing_cu, this_cu->cu must be NULL. */
7534 gdb_assert (this_cu->cu == NULL);
7535 new_cu.reset (new dwarf2_cu (this_cu));
7536 cu = new_cu.get ();
7537 }
7538
7539 /* Get the header. */
7540 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7541 {
7542 /* We already have the header, there's no need to read it in again. */
7543 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7544 }
7545 else
7546 {
7547 if (this_cu->is_debug_types)
7548 {
7549 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7550 &cu->header, section,
7551 abbrev_section, info_ptr,
7552 rcuh_kind::TYPE);
7553
7554 /* Since per_cu is the first member of struct signatured_type,
7555 we can go from a pointer to one to a pointer to the other. */
7556 sig_type = (struct signatured_type *) this_cu;
7557 gdb_assert (sig_type->signature == cu->header.signature);
7558 gdb_assert (sig_type->type_offset_in_tu
7559 == cu->header.type_cu_offset_in_tu);
7560 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7561
7562 /* LENGTH has not been set yet for type units if we're
7563 using .gdb_index. */
7564 this_cu->length = get_cu_length (&cu->header);
7565
7566 /* Establish the type offset that can be used to lookup the type. */
7567 sig_type->type_offset_in_section =
7568 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7569
7570 this_cu->dwarf_version = cu->header.version;
7571 }
7572 else
7573 {
7574 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7575 &cu->header, section,
7576 abbrev_section,
7577 info_ptr,
7578 rcuh_kind::COMPILE);
7579
7580 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7581 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7582 this_cu->dwarf_version = cu->header.version;
7583 }
7584 }
7585
7586 /* Skip dummy compilation units. */
7587 if (info_ptr >= begin_info_ptr + this_cu->length
7588 || peek_abbrev_code (abfd, info_ptr) == 0)
7589 return;
7590
7591 /* If we don't have them yet, read the abbrevs for this compilation unit.
7592 And if we need to read them now, make sure they're freed when we're
7593 done (own the table through ABBREV_TABLE_HOLDER). */
7594 abbrev_table_up abbrev_table_holder;
7595 if (abbrev_table != NULL)
7596 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7597 else
7598 {
7599 abbrev_table_holder
7600 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7601 cu->header.abbrev_sect_off);
7602 abbrev_table = abbrev_table_holder.get ();
7603 }
7604
7605 /* Read the top level CU/TU die. */
7606 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7607 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7608
7609 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7610 return;
7611
7612 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7613 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7614 table from the DWO file and pass the ownership over to us. It will be
7615 referenced from READER, so we must make sure to free it after we're done
7616 with READER.
7617
7618 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7619 DWO CU, that this test will fail (the attribute will not be present). */
7620 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7621 abbrev_table_up dwo_abbrev_table;
7622 if (dwo_name != nullptr)
7623 {
7624 struct dwo_unit *dwo_unit;
7625 struct die_info *dwo_comp_unit_die;
7626
7627 if (has_children)
7628 {
7629 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7630 " has children (offset %s) [in module %s]"),
7631 sect_offset_str (this_cu->sect_off),
7632 bfd_get_filename (abfd));
7633 }
7634 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7635 if (dwo_unit != NULL)
7636 {
7637 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7638 comp_unit_die, NULL,
7639 &reader, &info_ptr,
7640 &dwo_comp_unit_die, &has_children,
7641 &dwo_abbrev_table) == 0)
7642 {
7643 /* Dummy die. */
7644 return;
7645 }
7646 comp_unit_die = dwo_comp_unit_die;
7647 }
7648 else
7649 {
7650 /* Yikes, we couldn't find the rest of the DIE, we only have
7651 the stub. A complaint has already been logged. There's
7652 not much more we can do except pass on the stub DIE to
7653 die_reader_func. We don't want to throw an error on bad
7654 debug info. */
7655 }
7656 }
7657
7658 /* All of the above is setup for this call. Yikes. */
7659 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7660
7661 /* Done, clean up. */
7662 if (new_cu != NULL && keep)
7663 {
7664 /* Link this CU into read_in_chain. */
7665 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7666 dwarf2_per_objfile->read_in_chain = this_cu;
7667 /* The chain owns it now. */
7668 new_cu.release ();
7669 }
7670 }
7671
7672 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7673 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7674 to have already done the lookup to find the DWO file).
7675
7676 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7677 THIS_CU->is_debug_types, but nothing else.
7678
7679 We fill in THIS_CU->length.
7680
7681 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7682 linker) then DIE_READER_FUNC will not get called.
7683
7684 THIS_CU->cu is always freed when done.
7685 This is done in order to not leave THIS_CU->cu in a state where we have
7686 to care whether it refers to the "main" CU or the DWO CU. */
7687
7688 static void
7689 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7690 struct dwo_file *dwo_file,
7691 die_reader_func_ftype *die_reader_func,
7692 void *data)
7693 {
7694 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7695 struct objfile *objfile = dwarf2_per_objfile->objfile;
7696 struct dwarf2_section_info *section = this_cu->section;
7697 bfd *abfd = get_section_bfd_owner (section);
7698 struct dwarf2_section_info *abbrev_section;
7699 const gdb_byte *begin_info_ptr, *info_ptr;
7700 struct die_reader_specs reader;
7701 struct die_info *comp_unit_die;
7702 int has_children;
7703
7704 if (dwarf_die_debug)
7705 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7706 this_cu->is_debug_types ? "type" : "comp",
7707 sect_offset_str (this_cu->sect_off));
7708
7709 gdb_assert (this_cu->cu == NULL);
7710
7711 abbrev_section = (dwo_file != NULL
7712 ? &dwo_file->sections.abbrev
7713 : get_abbrev_section_for_cu (this_cu));
7714
7715 /* This is cheap if the section is already read in. */
7716 dwarf2_read_section (objfile, section);
7717
7718 struct dwarf2_cu cu (this_cu);
7719
7720 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7721 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7722 &cu.header, section,
7723 abbrev_section, info_ptr,
7724 (this_cu->is_debug_types
7725 ? rcuh_kind::TYPE
7726 : rcuh_kind::COMPILE));
7727
7728 this_cu->length = get_cu_length (&cu.header);
7729
7730 /* Skip dummy compilation units. */
7731 if (info_ptr >= begin_info_ptr + this_cu->length
7732 || peek_abbrev_code (abfd, info_ptr) == 0)
7733 return;
7734
7735 abbrev_table_up abbrev_table
7736 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7737 cu.header.abbrev_sect_off);
7738
7739 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7740 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7741
7742 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7743 }
7744
7745 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7746 does not lookup the specified DWO file.
7747 This cannot be used to read DWO files.
7748
7749 THIS_CU->cu is always freed when done.
7750 This is done in order to not leave THIS_CU->cu in a state where we have
7751 to care whether it refers to the "main" CU or the DWO CU.
7752 We can revisit this if the data shows there's a performance issue. */
7753
7754 static void
7755 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7756 die_reader_func_ftype *die_reader_func,
7757 void *data)
7758 {
7759 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7760 }
7761 \f
7762 /* Type Unit Groups.
7763
7764 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7765 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7766 so that all types coming from the same compilation (.o file) are grouped
7767 together. A future step could be to put the types in the same symtab as
7768 the CU the types ultimately came from. */
7769
7770 static hashval_t
7771 hash_type_unit_group (const void *item)
7772 {
7773 const struct type_unit_group *tu_group
7774 = (const struct type_unit_group *) item;
7775
7776 return hash_stmt_list_entry (&tu_group->hash);
7777 }
7778
7779 static int
7780 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7781 {
7782 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7783 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7784
7785 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7786 }
7787
7788 /* Allocate a hash table for type unit groups. */
7789
7790 static htab_t
7791 allocate_type_unit_groups_table (struct objfile *objfile)
7792 {
7793 return htab_create_alloc_ex (3,
7794 hash_type_unit_group,
7795 eq_type_unit_group,
7796 NULL,
7797 &objfile->objfile_obstack,
7798 hashtab_obstack_allocate,
7799 dummy_obstack_deallocate);
7800 }
7801
7802 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7803 partial symtabs. We combine several TUs per psymtab to not let the size
7804 of any one psymtab grow too big. */
7805 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7806 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7807
7808 /* Helper routine for get_type_unit_group.
7809 Create the type_unit_group object used to hold one or more TUs. */
7810
7811 static struct type_unit_group *
7812 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7813 {
7814 struct dwarf2_per_objfile *dwarf2_per_objfile
7815 = cu->per_cu->dwarf2_per_objfile;
7816 struct objfile *objfile = dwarf2_per_objfile->objfile;
7817 struct dwarf2_per_cu_data *per_cu;
7818 struct type_unit_group *tu_group;
7819
7820 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7821 struct type_unit_group);
7822 per_cu = &tu_group->per_cu;
7823 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7824
7825 if (dwarf2_per_objfile->using_index)
7826 {
7827 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7828 struct dwarf2_per_cu_quick_data);
7829 }
7830 else
7831 {
7832 unsigned int line_offset = to_underlying (line_offset_struct);
7833 struct partial_symtab *pst;
7834 std::string name;
7835
7836 /* Give the symtab a useful name for debug purposes. */
7837 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7838 name = string_printf ("<type_units_%d>",
7839 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7840 else
7841 name = string_printf ("<type_units_at_0x%x>", line_offset);
7842
7843 pst = create_partial_symtab (per_cu, name.c_str ());
7844 pst->anonymous = 1;
7845 }
7846
7847 tu_group->hash.dwo_unit = cu->dwo_unit;
7848 tu_group->hash.line_sect_off = line_offset_struct;
7849
7850 return tu_group;
7851 }
7852
7853 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7854 STMT_LIST is a DW_AT_stmt_list attribute. */
7855
7856 static struct type_unit_group *
7857 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7858 {
7859 struct dwarf2_per_objfile *dwarf2_per_objfile
7860 = cu->per_cu->dwarf2_per_objfile;
7861 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7862 struct type_unit_group *tu_group;
7863 void **slot;
7864 unsigned int line_offset;
7865 struct type_unit_group type_unit_group_for_lookup;
7866
7867 if (dwarf2_per_objfile->type_unit_groups == NULL)
7868 {
7869 dwarf2_per_objfile->type_unit_groups =
7870 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7871 }
7872
7873 /* Do we need to create a new group, or can we use an existing one? */
7874
7875 if (stmt_list)
7876 {
7877 line_offset = DW_UNSND (stmt_list);
7878 ++tu_stats->nr_symtab_sharers;
7879 }
7880 else
7881 {
7882 /* Ugh, no stmt_list. Rare, but we have to handle it.
7883 We can do various things here like create one group per TU or
7884 spread them over multiple groups to split up the expansion work.
7885 To avoid worst case scenarios (too many groups or too large groups)
7886 we, umm, group them in bunches. */
7887 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7888 | (tu_stats->nr_stmt_less_type_units
7889 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7890 ++tu_stats->nr_stmt_less_type_units;
7891 }
7892
7893 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7894 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7895 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7896 &type_unit_group_for_lookup, INSERT);
7897 if (*slot != NULL)
7898 {
7899 tu_group = (struct type_unit_group *) *slot;
7900 gdb_assert (tu_group != NULL);
7901 }
7902 else
7903 {
7904 sect_offset line_offset_struct = (sect_offset) line_offset;
7905 tu_group = create_type_unit_group (cu, line_offset_struct);
7906 *slot = tu_group;
7907 ++tu_stats->nr_symtabs;
7908 }
7909
7910 return tu_group;
7911 }
7912 \f
7913 /* Partial symbol tables. */
7914
7915 /* Create a psymtab named NAME and assign it to PER_CU.
7916
7917 The caller must fill in the following details:
7918 dirname, textlow, texthigh. */
7919
7920 static struct partial_symtab *
7921 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7922 {
7923 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7924 struct partial_symtab *pst;
7925
7926 pst = start_psymtab_common (objfile, name, 0);
7927
7928 pst->psymtabs_addrmap_supported = 1;
7929
7930 /* This is the glue that links PST into GDB's symbol API. */
7931 pst->read_symtab_private = per_cu;
7932 pst->read_symtab = dwarf2_read_symtab;
7933 per_cu->v.psymtab = pst;
7934
7935 return pst;
7936 }
7937
7938 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7939 type. */
7940
7941 struct process_psymtab_comp_unit_data
7942 {
7943 /* True if we are reading a DW_TAG_partial_unit. */
7944
7945 int want_partial_unit;
7946
7947 /* The "pretend" language that is used if the CU doesn't declare a
7948 language. */
7949
7950 enum language pretend_language;
7951 };
7952
7953 /* die_reader_func for process_psymtab_comp_unit. */
7954
7955 static void
7956 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7957 const gdb_byte *info_ptr,
7958 struct die_info *comp_unit_die,
7959 int has_children,
7960 void *data)
7961 {
7962 struct dwarf2_cu *cu = reader->cu;
7963 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7965 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7966 CORE_ADDR baseaddr;
7967 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7968 struct partial_symtab *pst;
7969 enum pc_bounds_kind cu_bounds_kind;
7970 const char *filename;
7971 struct process_psymtab_comp_unit_data *info
7972 = (struct process_psymtab_comp_unit_data *) data;
7973
7974 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7975 return;
7976
7977 gdb_assert (! per_cu->is_debug_types);
7978
7979 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7980
7981 /* Allocate a new partial symbol table structure. */
7982 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7983 if (filename == NULL)
7984 filename = "";
7985
7986 pst = create_partial_symtab (per_cu, filename);
7987
7988 /* This must be done before calling dwarf2_build_include_psymtabs. */
7989 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7990
7991 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7992
7993 dwarf2_find_base_address (comp_unit_die, cu);
7994
7995 /* Possibly set the default values of LOWPC and HIGHPC from
7996 `DW_AT_ranges'. */
7997 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7998 &best_highpc, cu, pst);
7999 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8000 {
8001 CORE_ADDR low
8002 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8003 - baseaddr);
8004 CORE_ADDR high
8005 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8006 - baseaddr - 1);
8007 /* Store the contiguous range if it is not empty; it can be
8008 empty for CUs with no code. */
8009 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8010 low, high, pst);
8011 }
8012
8013 /* Check if comp unit has_children.
8014 If so, read the rest of the partial symbols from this comp unit.
8015 If not, there's no more debug_info for this comp unit. */
8016 if (has_children)
8017 {
8018 struct partial_die_info *first_die;
8019 CORE_ADDR lowpc, highpc;
8020
8021 lowpc = ((CORE_ADDR) -1);
8022 highpc = ((CORE_ADDR) 0);
8023
8024 first_die = load_partial_dies (reader, info_ptr, 1);
8025
8026 scan_partial_symbols (first_die, &lowpc, &highpc,
8027 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8028
8029 /* If we didn't find a lowpc, set it to highpc to avoid
8030 complaints from `maint check'. */
8031 if (lowpc == ((CORE_ADDR) -1))
8032 lowpc = highpc;
8033
8034 /* If the compilation unit didn't have an explicit address range,
8035 then use the information extracted from its child dies. */
8036 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8037 {
8038 best_lowpc = lowpc;
8039 best_highpc = highpc;
8040 }
8041 }
8042 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8043 best_lowpc + baseaddr)
8044 - baseaddr);
8045 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8046 best_highpc + baseaddr)
8047 - baseaddr);
8048
8049 end_psymtab_common (objfile, pst);
8050
8051 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8052 {
8053 int i;
8054 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8055 struct dwarf2_per_cu_data *iter;
8056
8057 /* Fill in 'dependencies' here; we fill in 'users' in a
8058 post-pass. */
8059 pst->number_of_dependencies = len;
8060 pst->dependencies
8061 = objfile->partial_symtabs->allocate_dependencies (len);
8062 for (i = 0;
8063 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8064 i, iter);
8065 ++i)
8066 pst->dependencies[i] = iter->v.psymtab;
8067
8068 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8069 }
8070
8071 /* Get the list of files included in the current compilation unit,
8072 and build a psymtab for each of them. */
8073 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8074
8075 if (dwarf_read_debug)
8076 fprintf_unfiltered (gdb_stdlog,
8077 "Psymtab for %s unit @%s: %s - %s"
8078 ", %d global, %d static syms\n",
8079 per_cu->is_debug_types ? "type" : "comp",
8080 sect_offset_str (per_cu->sect_off),
8081 paddress (gdbarch, pst->text_low (objfile)),
8082 paddress (gdbarch, pst->text_high (objfile)),
8083 pst->n_global_syms, pst->n_static_syms);
8084 }
8085
8086 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8087 Process compilation unit THIS_CU for a psymtab. */
8088
8089 static void
8090 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8091 int want_partial_unit,
8092 enum language pretend_language)
8093 {
8094 /* If this compilation unit was already read in, free the
8095 cached copy in order to read it in again. This is
8096 necessary because we skipped some symbols when we first
8097 read in the compilation unit (see load_partial_dies).
8098 This problem could be avoided, but the benefit is unclear. */
8099 if (this_cu->cu != NULL)
8100 free_one_cached_comp_unit (this_cu);
8101
8102 if (this_cu->is_debug_types)
8103 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8104 build_type_psymtabs_reader, NULL);
8105 else
8106 {
8107 process_psymtab_comp_unit_data info;
8108 info.want_partial_unit = want_partial_unit;
8109 info.pretend_language = pretend_language;
8110 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8111 process_psymtab_comp_unit_reader, &info);
8112 }
8113
8114 /* Age out any secondary CUs. */
8115 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8116 }
8117
8118 /* Reader function for build_type_psymtabs. */
8119
8120 static void
8121 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8122 const gdb_byte *info_ptr,
8123 struct die_info *type_unit_die,
8124 int has_children,
8125 void *data)
8126 {
8127 struct dwarf2_per_objfile *dwarf2_per_objfile
8128 = reader->cu->per_cu->dwarf2_per_objfile;
8129 struct objfile *objfile = dwarf2_per_objfile->objfile;
8130 struct dwarf2_cu *cu = reader->cu;
8131 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8132 struct signatured_type *sig_type;
8133 struct type_unit_group *tu_group;
8134 struct attribute *attr;
8135 struct partial_die_info *first_die;
8136 CORE_ADDR lowpc, highpc;
8137 struct partial_symtab *pst;
8138
8139 gdb_assert (data == NULL);
8140 gdb_assert (per_cu->is_debug_types);
8141 sig_type = (struct signatured_type *) per_cu;
8142
8143 if (! has_children)
8144 return;
8145
8146 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8147 tu_group = get_type_unit_group (cu, attr);
8148
8149 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8150
8151 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8152 pst = create_partial_symtab (per_cu, "");
8153 pst->anonymous = 1;
8154
8155 first_die = load_partial_dies (reader, info_ptr, 1);
8156
8157 lowpc = (CORE_ADDR) -1;
8158 highpc = (CORE_ADDR) 0;
8159 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8160
8161 end_psymtab_common (objfile, pst);
8162 }
8163
8164 /* Struct used to sort TUs by their abbreviation table offset. */
8165
8166 struct tu_abbrev_offset
8167 {
8168 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8169 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8170 {}
8171
8172 signatured_type *sig_type;
8173 sect_offset abbrev_offset;
8174 };
8175
8176 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8177
8178 static bool
8179 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8180 const struct tu_abbrev_offset &b)
8181 {
8182 return a.abbrev_offset < b.abbrev_offset;
8183 }
8184
8185 /* Efficiently read all the type units.
8186 This does the bulk of the work for build_type_psymtabs.
8187
8188 The efficiency is because we sort TUs by the abbrev table they use and
8189 only read each abbrev table once. In one program there are 200K TUs
8190 sharing 8K abbrev tables.
8191
8192 The main purpose of this function is to support building the
8193 dwarf2_per_objfile->type_unit_groups table.
8194 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8195 can collapse the search space by grouping them by stmt_list.
8196 The savings can be significant, in the same program from above the 200K TUs
8197 share 8K stmt_list tables.
8198
8199 FUNC is expected to call get_type_unit_group, which will create the
8200 struct type_unit_group if necessary and add it to
8201 dwarf2_per_objfile->type_unit_groups. */
8202
8203 static void
8204 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8205 {
8206 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8207 abbrev_table_up abbrev_table;
8208 sect_offset abbrev_offset;
8209
8210 /* It's up to the caller to not call us multiple times. */
8211 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8212
8213 if (dwarf2_per_objfile->all_type_units.empty ())
8214 return;
8215
8216 /* TUs typically share abbrev tables, and there can be way more TUs than
8217 abbrev tables. Sort by abbrev table to reduce the number of times we
8218 read each abbrev table in.
8219 Alternatives are to punt or to maintain a cache of abbrev tables.
8220 This is simpler and efficient enough for now.
8221
8222 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8223 symtab to use). Typically TUs with the same abbrev offset have the same
8224 stmt_list value too so in practice this should work well.
8225
8226 The basic algorithm here is:
8227
8228 sort TUs by abbrev table
8229 for each TU with same abbrev table:
8230 read abbrev table if first user
8231 read TU top level DIE
8232 [IWBN if DWO skeletons had DW_AT_stmt_list]
8233 call FUNC */
8234
8235 if (dwarf_read_debug)
8236 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8237
8238 /* Sort in a separate table to maintain the order of all_type_units
8239 for .gdb_index: TU indices directly index all_type_units. */
8240 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8241 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8242
8243 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8244 sorted_by_abbrev.emplace_back
8245 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8246 sig_type->per_cu.section,
8247 sig_type->per_cu.sect_off));
8248
8249 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8250 sort_tu_by_abbrev_offset);
8251
8252 abbrev_offset = (sect_offset) ~(unsigned) 0;
8253
8254 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8255 {
8256 /* Switch to the next abbrev table if necessary. */
8257 if (abbrev_table == NULL
8258 || tu.abbrev_offset != abbrev_offset)
8259 {
8260 abbrev_offset = tu.abbrev_offset;
8261 abbrev_table =
8262 abbrev_table_read_table (dwarf2_per_objfile,
8263 &dwarf2_per_objfile->abbrev,
8264 abbrev_offset);
8265 ++tu_stats->nr_uniq_abbrev_tables;
8266 }
8267
8268 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8269 0, 0, false, build_type_psymtabs_reader, NULL);
8270 }
8271 }
8272
8273 /* Print collected type unit statistics. */
8274
8275 static void
8276 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8277 {
8278 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8279
8280 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8281 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8282 dwarf2_per_objfile->all_type_units.size ());
8283 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8284 tu_stats->nr_uniq_abbrev_tables);
8285 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8286 tu_stats->nr_symtabs);
8287 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8288 tu_stats->nr_symtab_sharers);
8289 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8290 tu_stats->nr_stmt_less_type_units);
8291 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8292 tu_stats->nr_all_type_units_reallocs);
8293 }
8294
8295 /* Traversal function for build_type_psymtabs. */
8296
8297 static int
8298 build_type_psymtab_dependencies (void **slot, void *info)
8299 {
8300 struct dwarf2_per_objfile *dwarf2_per_objfile
8301 = (struct dwarf2_per_objfile *) info;
8302 struct objfile *objfile = dwarf2_per_objfile->objfile;
8303 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8304 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8305 struct partial_symtab *pst = per_cu->v.psymtab;
8306 int len = VEC_length (sig_type_ptr, tu_group->tus);
8307 struct signatured_type *iter;
8308 int i;
8309
8310 gdb_assert (len > 0);
8311 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8312
8313 pst->number_of_dependencies = len;
8314 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8315 for (i = 0;
8316 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8317 ++i)
8318 {
8319 gdb_assert (iter->per_cu.is_debug_types);
8320 pst->dependencies[i] = iter->per_cu.v.psymtab;
8321 iter->type_unit_group = tu_group;
8322 }
8323
8324 VEC_free (sig_type_ptr, tu_group->tus);
8325
8326 return 1;
8327 }
8328
8329 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8330 Build partial symbol tables for the .debug_types comp-units. */
8331
8332 static void
8333 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8334 {
8335 if (! create_all_type_units (dwarf2_per_objfile))
8336 return;
8337
8338 build_type_psymtabs_1 (dwarf2_per_objfile);
8339 }
8340
8341 /* Traversal function for process_skeletonless_type_unit.
8342 Read a TU in a DWO file and build partial symbols for it. */
8343
8344 static int
8345 process_skeletonless_type_unit (void **slot, void *info)
8346 {
8347 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8348 struct dwarf2_per_objfile *dwarf2_per_objfile
8349 = (struct dwarf2_per_objfile *) info;
8350 struct signatured_type find_entry, *entry;
8351
8352 /* If this TU doesn't exist in the global table, add it and read it in. */
8353
8354 if (dwarf2_per_objfile->signatured_types == NULL)
8355 {
8356 dwarf2_per_objfile->signatured_types
8357 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8358 }
8359
8360 find_entry.signature = dwo_unit->signature;
8361 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8362 INSERT);
8363 /* If we've already seen this type there's nothing to do. What's happening
8364 is we're doing our own version of comdat-folding here. */
8365 if (*slot != NULL)
8366 return 1;
8367
8368 /* This does the job that create_all_type_units would have done for
8369 this TU. */
8370 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8371 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8372 *slot = entry;
8373
8374 /* This does the job that build_type_psymtabs_1 would have done. */
8375 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8376 build_type_psymtabs_reader, NULL);
8377
8378 return 1;
8379 }
8380
8381 /* Traversal function for process_skeletonless_type_units. */
8382
8383 static int
8384 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8385 {
8386 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8387
8388 if (dwo_file->tus != NULL)
8389 {
8390 htab_traverse_noresize (dwo_file->tus,
8391 process_skeletonless_type_unit, info);
8392 }
8393
8394 return 1;
8395 }
8396
8397 /* Scan all TUs of DWO files, verifying we've processed them.
8398 This is needed in case a TU was emitted without its skeleton.
8399 Note: This can't be done until we know what all the DWO files are. */
8400
8401 static void
8402 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8403 {
8404 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8405 if (get_dwp_file (dwarf2_per_objfile) == NULL
8406 && dwarf2_per_objfile->dwo_files != NULL)
8407 {
8408 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8409 process_dwo_file_for_skeletonless_type_units,
8410 dwarf2_per_objfile);
8411 }
8412 }
8413
8414 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8415
8416 static void
8417 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8418 {
8419 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8420 {
8421 struct partial_symtab *pst = per_cu->v.psymtab;
8422
8423 if (pst == NULL)
8424 continue;
8425
8426 for (int j = 0; j < pst->number_of_dependencies; ++j)
8427 {
8428 /* Set the 'user' field only if it is not already set. */
8429 if (pst->dependencies[j]->user == NULL)
8430 pst->dependencies[j]->user = pst;
8431 }
8432 }
8433 }
8434
8435 /* Build the partial symbol table by doing a quick pass through the
8436 .debug_info and .debug_abbrev sections. */
8437
8438 static void
8439 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8440 {
8441 struct objfile *objfile = dwarf2_per_objfile->objfile;
8442
8443 if (dwarf_read_debug)
8444 {
8445 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8446 objfile_name (objfile));
8447 }
8448
8449 dwarf2_per_objfile->reading_partial_symbols = 1;
8450
8451 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8452
8453 /* Any cached compilation units will be linked by the per-objfile
8454 read_in_chain. Make sure to free them when we're done. */
8455 free_cached_comp_units freer (dwarf2_per_objfile);
8456
8457 build_type_psymtabs (dwarf2_per_objfile);
8458
8459 create_all_comp_units (dwarf2_per_objfile);
8460
8461 /* Create a temporary address map on a temporary obstack. We later
8462 copy this to the final obstack. */
8463 auto_obstack temp_obstack;
8464
8465 scoped_restore save_psymtabs_addrmap
8466 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8467 addrmap_create_mutable (&temp_obstack));
8468
8469 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8470 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8471
8472 /* This has to wait until we read the CUs, we need the list of DWOs. */
8473 process_skeletonless_type_units (dwarf2_per_objfile);
8474
8475 /* Now that all TUs have been processed we can fill in the dependencies. */
8476 if (dwarf2_per_objfile->type_unit_groups != NULL)
8477 {
8478 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8479 build_type_psymtab_dependencies, dwarf2_per_objfile);
8480 }
8481
8482 if (dwarf_read_debug)
8483 print_tu_stats (dwarf2_per_objfile);
8484
8485 set_partial_user (dwarf2_per_objfile);
8486
8487 objfile->partial_symtabs->psymtabs_addrmap
8488 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8489 objfile->partial_symtabs->obstack ());
8490 /* At this point we want to keep the address map. */
8491 save_psymtabs_addrmap.release ();
8492
8493 if (dwarf_read_debug)
8494 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8495 objfile_name (objfile));
8496 }
8497
8498 /* die_reader_func for load_partial_comp_unit. */
8499
8500 static void
8501 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8502 const gdb_byte *info_ptr,
8503 struct die_info *comp_unit_die,
8504 int has_children,
8505 void *data)
8506 {
8507 struct dwarf2_cu *cu = reader->cu;
8508
8509 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8510
8511 /* Check if comp unit has_children.
8512 If so, read the rest of the partial symbols from this comp unit.
8513 If not, there's no more debug_info for this comp unit. */
8514 if (has_children)
8515 load_partial_dies (reader, info_ptr, 0);
8516 }
8517
8518 /* Load the partial DIEs for a secondary CU into memory.
8519 This is also used when rereading a primary CU with load_all_dies. */
8520
8521 static void
8522 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8523 {
8524 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8525 load_partial_comp_unit_reader, NULL);
8526 }
8527
8528 static void
8529 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8530 struct dwarf2_section_info *section,
8531 struct dwarf2_section_info *abbrev_section,
8532 unsigned int is_dwz)
8533 {
8534 const gdb_byte *info_ptr;
8535 struct objfile *objfile = dwarf2_per_objfile->objfile;
8536
8537 if (dwarf_read_debug)
8538 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8539 get_section_name (section),
8540 get_section_file_name (section));
8541
8542 dwarf2_read_section (objfile, section);
8543
8544 info_ptr = section->buffer;
8545
8546 while (info_ptr < section->buffer + section->size)
8547 {
8548 struct dwarf2_per_cu_data *this_cu;
8549
8550 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8551
8552 comp_unit_head cu_header;
8553 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8554 abbrev_section, info_ptr,
8555 rcuh_kind::COMPILE);
8556
8557 /* Save the compilation unit for later lookup. */
8558 if (cu_header.unit_type != DW_UT_type)
8559 {
8560 this_cu = XOBNEW (&objfile->objfile_obstack,
8561 struct dwarf2_per_cu_data);
8562 memset (this_cu, 0, sizeof (*this_cu));
8563 }
8564 else
8565 {
8566 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8567 struct signatured_type);
8568 memset (sig_type, 0, sizeof (*sig_type));
8569 sig_type->signature = cu_header.signature;
8570 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8571 this_cu = &sig_type->per_cu;
8572 }
8573 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8574 this_cu->sect_off = sect_off;
8575 this_cu->length = cu_header.length + cu_header.initial_length_size;
8576 this_cu->is_dwz = is_dwz;
8577 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8578 this_cu->section = section;
8579
8580 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8581
8582 info_ptr = info_ptr + this_cu->length;
8583 }
8584 }
8585
8586 /* Create a list of all compilation units in OBJFILE.
8587 This is only done for -readnow and building partial symtabs. */
8588
8589 static void
8590 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8591 {
8592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8593 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8594 &dwarf2_per_objfile->abbrev, 0);
8595
8596 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8597 if (dwz != NULL)
8598 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8599 1);
8600 }
8601
8602 /* Process all loaded DIEs for compilation unit CU, starting at
8603 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8604 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8605 DW_AT_ranges). See the comments of add_partial_subprogram on how
8606 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8607
8608 static void
8609 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8610 CORE_ADDR *highpc, int set_addrmap,
8611 struct dwarf2_cu *cu)
8612 {
8613 struct partial_die_info *pdi;
8614
8615 /* Now, march along the PDI's, descending into ones which have
8616 interesting children but skipping the children of the other ones,
8617 until we reach the end of the compilation unit. */
8618
8619 pdi = first_die;
8620
8621 while (pdi != NULL)
8622 {
8623 pdi->fixup (cu);
8624
8625 /* Anonymous namespaces or modules have no name but have interesting
8626 children, so we need to look at them. Ditto for anonymous
8627 enums. */
8628
8629 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8630 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8631 || pdi->tag == DW_TAG_imported_unit
8632 || pdi->tag == DW_TAG_inlined_subroutine)
8633 {
8634 switch (pdi->tag)
8635 {
8636 case DW_TAG_subprogram:
8637 case DW_TAG_inlined_subroutine:
8638 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8639 break;
8640 case DW_TAG_constant:
8641 case DW_TAG_variable:
8642 case DW_TAG_typedef:
8643 case DW_TAG_union_type:
8644 if (!pdi->is_declaration)
8645 {
8646 add_partial_symbol (pdi, cu);
8647 }
8648 break;
8649 case DW_TAG_class_type:
8650 case DW_TAG_interface_type:
8651 case DW_TAG_structure_type:
8652 if (!pdi->is_declaration)
8653 {
8654 add_partial_symbol (pdi, cu);
8655 }
8656 if ((cu->language == language_rust
8657 || cu->language == language_cplus) && pdi->has_children)
8658 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8659 set_addrmap, cu);
8660 break;
8661 case DW_TAG_enumeration_type:
8662 if (!pdi->is_declaration)
8663 add_partial_enumeration (pdi, cu);
8664 break;
8665 case DW_TAG_base_type:
8666 case DW_TAG_subrange_type:
8667 /* File scope base type definitions are added to the partial
8668 symbol table. */
8669 add_partial_symbol (pdi, cu);
8670 break;
8671 case DW_TAG_namespace:
8672 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8673 break;
8674 case DW_TAG_module:
8675 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8676 break;
8677 case DW_TAG_imported_unit:
8678 {
8679 struct dwarf2_per_cu_data *per_cu;
8680
8681 /* For now we don't handle imported units in type units. */
8682 if (cu->per_cu->is_debug_types)
8683 {
8684 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8685 " supported in type units [in module %s]"),
8686 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8687 }
8688
8689 per_cu = dwarf2_find_containing_comp_unit
8690 (pdi->d.sect_off, pdi->is_dwz,
8691 cu->per_cu->dwarf2_per_objfile);
8692
8693 /* Go read the partial unit, if needed. */
8694 if (per_cu->v.psymtab == NULL)
8695 process_psymtab_comp_unit (per_cu, 1, cu->language);
8696
8697 VEC_safe_push (dwarf2_per_cu_ptr,
8698 cu->per_cu->imported_symtabs, per_cu);
8699 }
8700 break;
8701 case DW_TAG_imported_declaration:
8702 add_partial_symbol (pdi, cu);
8703 break;
8704 default:
8705 break;
8706 }
8707 }
8708
8709 /* If the die has a sibling, skip to the sibling. */
8710
8711 pdi = pdi->die_sibling;
8712 }
8713 }
8714
8715 /* Functions used to compute the fully scoped name of a partial DIE.
8716
8717 Normally, this is simple. For C++, the parent DIE's fully scoped
8718 name is concatenated with "::" and the partial DIE's name.
8719 Enumerators are an exception; they use the scope of their parent
8720 enumeration type, i.e. the name of the enumeration type is not
8721 prepended to the enumerator.
8722
8723 There are two complexities. One is DW_AT_specification; in this
8724 case "parent" means the parent of the target of the specification,
8725 instead of the direct parent of the DIE. The other is compilers
8726 which do not emit DW_TAG_namespace; in this case we try to guess
8727 the fully qualified name of structure types from their members'
8728 linkage names. This must be done using the DIE's children rather
8729 than the children of any DW_AT_specification target. We only need
8730 to do this for structures at the top level, i.e. if the target of
8731 any DW_AT_specification (if any; otherwise the DIE itself) does not
8732 have a parent. */
8733
8734 /* Compute the scope prefix associated with PDI's parent, in
8735 compilation unit CU. The result will be allocated on CU's
8736 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8737 field. NULL is returned if no prefix is necessary. */
8738 static const char *
8739 partial_die_parent_scope (struct partial_die_info *pdi,
8740 struct dwarf2_cu *cu)
8741 {
8742 const char *grandparent_scope;
8743 struct partial_die_info *parent, *real_pdi;
8744
8745 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8746 then this means the parent of the specification DIE. */
8747
8748 real_pdi = pdi;
8749 while (real_pdi->has_specification)
8750 {
8751 auto res = find_partial_die (real_pdi->spec_offset,
8752 real_pdi->spec_is_dwz, cu);
8753 real_pdi = res.pdi;
8754 cu = res.cu;
8755 }
8756
8757 parent = real_pdi->die_parent;
8758 if (parent == NULL)
8759 return NULL;
8760
8761 if (parent->scope_set)
8762 return parent->scope;
8763
8764 parent->fixup (cu);
8765
8766 grandparent_scope = partial_die_parent_scope (parent, cu);
8767
8768 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8769 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8770 Work around this problem here. */
8771 if (cu->language == language_cplus
8772 && parent->tag == DW_TAG_namespace
8773 && strcmp (parent->name, "::") == 0
8774 && grandparent_scope == NULL)
8775 {
8776 parent->scope = NULL;
8777 parent->scope_set = 1;
8778 return NULL;
8779 }
8780
8781 if (pdi->tag == DW_TAG_enumerator)
8782 /* Enumerators should not get the name of the enumeration as a prefix. */
8783 parent->scope = grandparent_scope;
8784 else if (parent->tag == DW_TAG_namespace
8785 || parent->tag == DW_TAG_module
8786 || parent->tag == DW_TAG_structure_type
8787 || parent->tag == DW_TAG_class_type
8788 || parent->tag == DW_TAG_interface_type
8789 || parent->tag == DW_TAG_union_type
8790 || parent->tag == DW_TAG_enumeration_type)
8791 {
8792 if (grandparent_scope == NULL)
8793 parent->scope = parent->name;
8794 else
8795 parent->scope = typename_concat (&cu->comp_unit_obstack,
8796 grandparent_scope,
8797 parent->name, 0, cu);
8798 }
8799 else
8800 {
8801 /* FIXME drow/2004-04-01: What should we be doing with
8802 function-local names? For partial symbols, we should probably be
8803 ignoring them. */
8804 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8805 dwarf_tag_name (parent->tag),
8806 sect_offset_str (pdi->sect_off));
8807 parent->scope = grandparent_scope;
8808 }
8809
8810 parent->scope_set = 1;
8811 return parent->scope;
8812 }
8813
8814 /* Return the fully scoped name associated with PDI, from compilation unit
8815 CU. The result will be allocated with malloc. */
8816
8817 static char *
8818 partial_die_full_name (struct partial_die_info *pdi,
8819 struct dwarf2_cu *cu)
8820 {
8821 const char *parent_scope;
8822
8823 /* If this is a template instantiation, we can not work out the
8824 template arguments from partial DIEs. So, unfortunately, we have
8825 to go through the full DIEs. At least any work we do building
8826 types here will be reused if full symbols are loaded later. */
8827 if (pdi->has_template_arguments)
8828 {
8829 pdi->fixup (cu);
8830
8831 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8832 {
8833 struct die_info *die;
8834 struct attribute attr;
8835 struct dwarf2_cu *ref_cu = cu;
8836
8837 /* DW_FORM_ref_addr is using section offset. */
8838 attr.name = (enum dwarf_attribute) 0;
8839 attr.form = DW_FORM_ref_addr;
8840 attr.u.unsnd = to_underlying (pdi->sect_off);
8841 die = follow_die_ref (NULL, &attr, &ref_cu);
8842
8843 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8844 }
8845 }
8846
8847 parent_scope = partial_die_parent_scope (pdi, cu);
8848 if (parent_scope == NULL)
8849 return NULL;
8850 else
8851 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8852 }
8853
8854 static void
8855 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8856 {
8857 struct dwarf2_per_objfile *dwarf2_per_objfile
8858 = cu->per_cu->dwarf2_per_objfile;
8859 struct objfile *objfile = dwarf2_per_objfile->objfile;
8860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8861 CORE_ADDR addr = 0;
8862 const char *actual_name = NULL;
8863 CORE_ADDR baseaddr;
8864 char *built_actual_name;
8865
8866 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8867
8868 built_actual_name = partial_die_full_name (pdi, cu);
8869 if (built_actual_name != NULL)
8870 actual_name = built_actual_name;
8871
8872 if (actual_name == NULL)
8873 actual_name = pdi->name;
8874
8875 switch (pdi->tag)
8876 {
8877 case DW_TAG_inlined_subroutine:
8878 case DW_TAG_subprogram:
8879 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8880 - baseaddr);
8881 if (pdi->is_external || cu->language == language_ada)
8882 {
8883 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8884 of the global scope. But in Ada, we want to be able to access
8885 nested procedures globally. So all Ada subprograms are stored
8886 in the global scope. */
8887 add_psymbol_to_list (actual_name, strlen (actual_name),
8888 built_actual_name != NULL,
8889 VAR_DOMAIN, LOC_BLOCK,
8890 SECT_OFF_TEXT (objfile),
8891 psymbol_placement::GLOBAL,
8892 addr,
8893 cu->language, objfile);
8894 }
8895 else
8896 {
8897 add_psymbol_to_list (actual_name, strlen (actual_name),
8898 built_actual_name != NULL,
8899 VAR_DOMAIN, LOC_BLOCK,
8900 SECT_OFF_TEXT (objfile),
8901 psymbol_placement::STATIC,
8902 addr, cu->language, objfile);
8903 }
8904
8905 if (pdi->main_subprogram && actual_name != NULL)
8906 set_objfile_main_name (objfile, actual_name, cu->language);
8907 break;
8908 case DW_TAG_constant:
8909 add_psymbol_to_list (actual_name, strlen (actual_name),
8910 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8911 -1, (pdi->is_external
8912 ? psymbol_placement::GLOBAL
8913 : psymbol_placement::STATIC),
8914 0, cu->language, objfile);
8915 break;
8916 case DW_TAG_variable:
8917 if (pdi->d.locdesc)
8918 addr = decode_locdesc (pdi->d.locdesc, cu);
8919
8920 if (pdi->d.locdesc
8921 && addr == 0
8922 && !dwarf2_per_objfile->has_section_at_zero)
8923 {
8924 /* A global or static variable may also have been stripped
8925 out by the linker if unused, in which case its address
8926 will be nullified; do not add such variables into partial
8927 symbol table then. */
8928 }
8929 else if (pdi->is_external)
8930 {
8931 /* Global Variable.
8932 Don't enter into the minimal symbol tables as there is
8933 a minimal symbol table entry from the ELF symbols already.
8934 Enter into partial symbol table if it has a location
8935 descriptor or a type.
8936 If the location descriptor is missing, new_symbol will create
8937 a LOC_UNRESOLVED symbol, the address of the variable will then
8938 be determined from the minimal symbol table whenever the variable
8939 is referenced.
8940 The address for the partial symbol table entry is not
8941 used by GDB, but it comes in handy for debugging partial symbol
8942 table building. */
8943
8944 if (pdi->d.locdesc || pdi->has_type)
8945 add_psymbol_to_list (actual_name, strlen (actual_name),
8946 built_actual_name != NULL,
8947 VAR_DOMAIN, LOC_STATIC,
8948 SECT_OFF_TEXT (objfile),
8949 psymbol_placement::GLOBAL,
8950 addr, cu->language, objfile);
8951 }
8952 else
8953 {
8954 int has_loc = pdi->d.locdesc != NULL;
8955
8956 /* Static Variable. Skip symbols whose value we cannot know (those
8957 without location descriptors or constant values). */
8958 if (!has_loc && !pdi->has_const_value)
8959 {
8960 xfree (built_actual_name);
8961 return;
8962 }
8963
8964 add_psymbol_to_list (actual_name, strlen (actual_name),
8965 built_actual_name != NULL,
8966 VAR_DOMAIN, LOC_STATIC,
8967 SECT_OFF_TEXT (objfile),
8968 psymbol_placement::STATIC,
8969 has_loc ? addr : 0,
8970 cu->language, objfile);
8971 }
8972 break;
8973 case DW_TAG_typedef:
8974 case DW_TAG_base_type:
8975 case DW_TAG_subrange_type:
8976 add_psymbol_to_list (actual_name, strlen (actual_name),
8977 built_actual_name != NULL,
8978 VAR_DOMAIN, LOC_TYPEDEF, -1,
8979 psymbol_placement::STATIC,
8980 0, cu->language, objfile);
8981 break;
8982 case DW_TAG_imported_declaration:
8983 case DW_TAG_namespace:
8984 add_psymbol_to_list (actual_name, strlen (actual_name),
8985 built_actual_name != NULL,
8986 VAR_DOMAIN, LOC_TYPEDEF, -1,
8987 psymbol_placement::GLOBAL,
8988 0, cu->language, objfile);
8989 break;
8990 case DW_TAG_module:
8991 /* With Fortran 77 there might be a "BLOCK DATA" module
8992 available without any name. If so, we skip the module as it
8993 doesn't bring any value. */
8994 if (actual_name != nullptr)
8995 add_psymbol_to_list (actual_name, strlen (actual_name),
8996 built_actual_name != NULL,
8997 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8998 psymbol_placement::GLOBAL,
8999 0, cu->language, objfile);
9000 break;
9001 case DW_TAG_class_type:
9002 case DW_TAG_interface_type:
9003 case DW_TAG_structure_type:
9004 case DW_TAG_union_type:
9005 case DW_TAG_enumeration_type:
9006 /* Skip external references. The DWARF standard says in the section
9007 about "Structure, Union, and Class Type Entries": "An incomplete
9008 structure, union or class type is represented by a structure,
9009 union or class entry that does not have a byte size attribute
9010 and that has a DW_AT_declaration attribute." */
9011 if (!pdi->has_byte_size && pdi->is_declaration)
9012 {
9013 xfree (built_actual_name);
9014 return;
9015 }
9016
9017 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9018 static vs. global. */
9019 add_psymbol_to_list (actual_name, strlen (actual_name),
9020 built_actual_name != NULL,
9021 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9022 cu->language == language_cplus
9023 ? psymbol_placement::GLOBAL
9024 : psymbol_placement::STATIC,
9025 0, cu->language, objfile);
9026
9027 break;
9028 case DW_TAG_enumerator:
9029 add_psymbol_to_list (actual_name, strlen (actual_name),
9030 built_actual_name != NULL,
9031 VAR_DOMAIN, LOC_CONST, -1,
9032 cu->language == language_cplus
9033 ? psymbol_placement::GLOBAL
9034 : psymbol_placement::STATIC,
9035 0, cu->language, objfile);
9036 break;
9037 default:
9038 break;
9039 }
9040
9041 xfree (built_actual_name);
9042 }
9043
9044 /* Read a partial die corresponding to a namespace; also, add a symbol
9045 corresponding to that namespace to the symbol table. NAMESPACE is
9046 the name of the enclosing namespace. */
9047
9048 static void
9049 add_partial_namespace (struct partial_die_info *pdi,
9050 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9051 int set_addrmap, struct dwarf2_cu *cu)
9052 {
9053 /* Add a symbol for the namespace. */
9054
9055 add_partial_symbol (pdi, cu);
9056
9057 /* Now scan partial symbols in that namespace. */
9058
9059 if (pdi->has_children)
9060 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9061 }
9062
9063 /* Read a partial die corresponding to a Fortran module. */
9064
9065 static void
9066 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9067 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9068 {
9069 /* Add a symbol for the namespace. */
9070
9071 add_partial_symbol (pdi, cu);
9072
9073 /* Now scan partial symbols in that module. */
9074
9075 if (pdi->has_children)
9076 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9077 }
9078
9079 /* Read a partial die corresponding to a subprogram or an inlined
9080 subprogram and create a partial symbol for that subprogram.
9081 When the CU language allows it, this routine also defines a partial
9082 symbol for each nested subprogram that this subprogram contains.
9083 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9084 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9085
9086 PDI may also be a lexical block, in which case we simply search
9087 recursively for subprograms defined inside that lexical block.
9088 Again, this is only performed when the CU language allows this
9089 type of definitions. */
9090
9091 static void
9092 add_partial_subprogram (struct partial_die_info *pdi,
9093 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9094 int set_addrmap, struct dwarf2_cu *cu)
9095 {
9096 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9097 {
9098 if (pdi->has_pc_info)
9099 {
9100 if (pdi->lowpc < *lowpc)
9101 *lowpc = pdi->lowpc;
9102 if (pdi->highpc > *highpc)
9103 *highpc = pdi->highpc;
9104 if (set_addrmap)
9105 {
9106 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9107 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9108 CORE_ADDR baseaddr;
9109 CORE_ADDR this_highpc;
9110 CORE_ADDR this_lowpc;
9111
9112 baseaddr = ANOFFSET (objfile->section_offsets,
9113 SECT_OFF_TEXT (objfile));
9114 this_lowpc
9115 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9116 pdi->lowpc + baseaddr)
9117 - baseaddr);
9118 this_highpc
9119 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9120 pdi->highpc + baseaddr)
9121 - baseaddr);
9122 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9123 this_lowpc, this_highpc - 1,
9124 cu->per_cu->v.psymtab);
9125 }
9126 }
9127
9128 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9129 {
9130 if (!pdi->is_declaration)
9131 /* Ignore subprogram DIEs that do not have a name, they are
9132 illegal. Do not emit a complaint at this point, we will
9133 do so when we convert this psymtab into a symtab. */
9134 if (pdi->name)
9135 add_partial_symbol (pdi, cu);
9136 }
9137 }
9138
9139 if (! pdi->has_children)
9140 return;
9141
9142 if (cu->language == language_ada)
9143 {
9144 pdi = pdi->die_child;
9145 while (pdi != NULL)
9146 {
9147 pdi->fixup (cu);
9148 if (pdi->tag == DW_TAG_subprogram
9149 || pdi->tag == DW_TAG_inlined_subroutine
9150 || pdi->tag == DW_TAG_lexical_block)
9151 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9152 pdi = pdi->die_sibling;
9153 }
9154 }
9155 }
9156
9157 /* Read a partial die corresponding to an enumeration type. */
9158
9159 static void
9160 add_partial_enumeration (struct partial_die_info *enum_pdi,
9161 struct dwarf2_cu *cu)
9162 {
9163 struct partial_die_info *pdi;
9164
9165 if (enum_pdi->name != NULL)
9166 add_partial_symbol (enum_pdi, cu);
9167
9168 pdi = enum_pdi->die_child;
9169 while (pdi)
9170 {
9171 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9172 complaint (_("malformed enumerator DIE ignored"));
9173 else
9174 add_partial_symbol (pdi, cu);
9175 pdi = pdi->die_sibling;
9176 }
9177 }
9178
9179 /* Return the initial uleb128 in the die at INFO_PTR. */
9180
9181 static unsigned int
9182 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9183 {
9184 unsigned int bytes_read;
9185
9186 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9187 }
9188
9189 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9190 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9191
9192 Return the corresponding abbrev, or NULL if the number is zero (indicating
9193 an empty DIE). In either case *BYTES_READ will be set to the length of
9194 the initial number. */
9195
9196 static struct abbrev_info *
9197 peek_die_abbrev (const die_reader_specs &reader,
9198 const gdb_byte *info_ptr, unsigned int *bytes_read)
9199 {
9200 dwarf2_cu *cu = reader.cu;
9201 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9202 unsigned int abbrev_number
9203 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9204
9205 if (abbrev_number == 0)
9206 return NULL;
9207
9208 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9209 if (!abbrev)
9210 {
9211 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9212 " at offset %s [in module %s]"),
9213 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9214 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9215 }
9216
9217 return abbrev;
9218 }
9219
9220 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9221 Returns a pointer to the end of a series of DIEs, terminated by an empty
9222 DIE. Any children of the skipped DIEs will also be skipped. */
9223
9224 static const gdb_byte *
9225 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9226 {
9227 while (1)
9228 {
9229 unsigned int bytes_read;
9230 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9231
9232 if (abbrev == NULL)
9233 return info_ptr + bytes_read;
9234 else
9235 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9236 }
9237 }
9238
9239 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9240 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9241 abbrev corresponding to that skipped uleb128 should be passed in
9242 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9243 children. */
9244
9245 static const gdb_byte *
9246 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9247 struct abbrev_info *abbrev)
9248 {
9249 unsigned int bytes_read;
9250 struct attribute attr;
9251 bfd *abfd = reader->abfd;
9252 struct dwarf2_cu *cu = reader->cu;
9253 const gdb_byte *buffer = reader->buffer;
9254 const gdb_byte *buffer_end = reader->buffer_end;
9255 unsigned int form, i;
9256
9257 for (i = 0; i < abbrev->num_attrs; i++)
9258 {
9259 /* The only abbrev we care about is DW_AT_sibling. */
9260 if (abbrev->attrs[i].name == DW_AT_sibling)
9261 {
9262 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9263 if (attr.form == DW_FORM_ref_addr)
9264 complaint (_("ignoring absolute DW_AT_sibling"));
9265 else
9266 {
9267 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9268 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9269
9270 if (sibling_ptr < info_ptr)
9271 complaint (_("DW_AT_sibling points backwards"));
9272 else if (sibling_ptr > reader->buffer_end)
9273 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9274 else
9275 return sibling_ptr;
9276 }
9277 }
9278
9279 /* If it isn't DW_AT_sibling, skip this attribute. */
9280 form = abbrev->attrs[i].form;
9281 skip_attribute:
9282 switch (form)
9283 {
9284 case DW_FORM_ref_addr:
9285 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9286 and later it is offset sized. */
9287 if (cu->header.version == 2)
9288 info_ptr += cu->header.addr_size;
9289 else
9290 info_ptr += cu->header.offset_size;
9291 break;
9292 case DW_FORM_GNU_ref_alt:
9293 info_ptr += cu->header.offset_size;
9294 break;
9295 case DW_FORM_addr:
9296 info_ptr += cu->header.addr_size;
9297 break;
9298 case DW_FORM_data1:
9299 case DW_FORM_ref1:
9300 case DW_FORM_flag:
9301 info_ptr += 1;
9302 break;
9303 case DW_FORM_flag_present:
9304 case DW_FORM_implicit_const:
9305 break;
9306 case DW_FORM_data2:
9307 case DW_FORM_ref2:
9308 info_ptr += 2;
9309 break;
9310 case DW_FORM_data4:
9311 case DW_FORM_ref4:
9312 info_ptr += 4;
9313 break;
9314 case DW_FORM_data8:
9315 case DW_FORM_ref8:
9316 case DW_FORM_ref_sig8:
9317 info_ptr += 8;
9318 break;
9319 case DW_FORM_data16:
9320 info_ptr += 16;
9321 break;
9322 case DW_FORM_string:
9323 read_direct_string (abfd, info_ptr, &bytes_read);
9324 info_ptr += bytes_read;
9325 break;
9326 case DW_FORM_sec_offset:
9327 case DW_FORM_strp:
9328 case DW_FORM_GNU_strp_alt:
9329 info_ptr += cu->header.offset_size;
9330 break;
9331 case DW_FORM_exprloc:
9332 case DW_FORM_block:
9333 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9334 info_ptr += bytes_read;
9335 break;
9336 case DW_FORM_block1:
9337 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9338 break;
9339 case DW_FORM_block2:
9340 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9341 break;
9342 case DW_FORM_block4:
9343 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9344 break;
9345 case DW_FORM_addrx:
9346 case DW_FORM_strx:
9347 case DW_FORM_sdata:
9348 case DW_FORM_udata:
9349 case DW_FORM_ref_udata:
9350 case DW_FORM_GNU_addr_index:
9351 case DW_FORM_GNU_str_index:
9352 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9353 break;
9354 case DW_FORM_indirect:
9355 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9356 info_ptr += bytes_read;
9357 /* We need to continue parsing from here, so just go back to
9358 the top. */
9359 goto skip_attribute;
9360
9361 default:
9362 error (_("Dwarf Error: Cannot handle %s "
9363 "in DWARF reader [in module %s]"),
9364 dwarf_form_name (form),
9365 bfd_get_filename (abfd));
9366 }
9367 }
9368
9369 if (abbrev->has_children)
9370 return skip_children (reader, info_ptr);
9371 else
9372 return info_ptr;
9373 }
9374
9375 /* Locate ORIG_PDI's sibling.
9376 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9377
9378 static const gdb_byte *
9379 locate_pdi_sibling (const struct die_reader_specs *reader,
9380 struct partial_die_info *orig_pdi,
9381 const gdb_byte *info_ptr)
9382 {
9383 /* Do we know the sibling already? */
9384
9385 if (orig_pdi->sibling)
9386 return orig_pdi->sibling;
9387
9388 /* Are there any children to deal with? */
9389
9390 if (!orig_pdi->has_children)
9391 return info_ptr;
9392
9393 /* Skip the children the long way. */
9394
9395 return skip_children (reader, info_ptr);
9396 }
9397
9398 /* Expand this partial symbol table into a full symbol table. SELF is
9399 not NULL. */
9400
9401 static void
9402 dwarf2_read_symtab (struct partial_symtab *self,
9403 struct objfile *objfile)
9404 {
9405 struct dwarf2_per_objfile *dwarf2_per_objfile
9406 = get_dwarf2_per_objfile (objfile);
9407
9408 if (self->readin)
9409 {
9410 warning (_("bug: psymtab for %s is already read in."),
9411 self->filename);
9412 }
9413 else
9414 {
9415 if (info_verbose)
9416 {
9417 printf_filtered (_("Reading in symbols for %s..."),
9418 self->filename);
9419 gdb_flush (gdb_stdout);
9420 }
9421
9422 /* If this psymtab is constructed from a debug-only objfile, the
9423 has_section_at_zero flag will not necessarily be correct. We
9424 can get the correct value for this flag by looking at the data
9425 associated with the (presumably stripped) associated objfile. */
9426 if (objfile->separate_debug_objfile_backlink)
9427 {
9428 struct dwarf2_per_objfile *dpo_backlink
9429 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9430
9431 dwarf2_per_objfile->has_section_at_zero
9432 = dpo_backlink->has_section_at_zero;
9433 }
9434
9435 dwarf2_per_objfile->reading_partial_symbols = 0;
9436
9437 psymtab_to_symtab_1 (self);
9438
9439 /* Finish up the debug error message. */
9440 if (info_verbose)
9441 printf_filtered (_("done.\n"));
9442 }
9443
9444 process_cu_includes (dwarf2_per_objfile);
9445 }
9446 \f
9447 /* Reading in full CUs. */
9448
9449 /* Add PER_CU to the queue. */
9450
9451 static void
9452 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9453 enum language pretend_language)
9454 {
9455 struct dwarf2_queue_item *item;
9456
9457 per_cu->queued = 1;
9458 item = XNEW (struct dwarf2_queue_item);
9459 item->per_cu = per_cu;
9460 item->pretend_language = pretend_language;
9461 item->next = NULL;
9462
9463 if (dwarf2_queue == NULL)
9464 dwarf2_queue = item;
9465 else
9466 dwarf2_queue_tail->next = item;
9467
9468 dwarf2_queue_tail = item;
9469 }
9470
9471 /* If PER_CU is not yet queued, add it to the queue.
9472 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9473 dependency.
9474 The result is non-zero if PER_CU was queued, otherwise the result is zero
9475 meaning either PER_CU is already queued or it is already loaded.
9476
9477 N.B. There is an invariant here that if a CU is queued then it is loaded.
9478 The caller is required to load PER_CU if we return non-zero. */
9479
9480 static int
9481 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9482 struct dwarf2_per_cu_data *per_cu,
9483 enum language pretend_language)
9484 {
9485 /* We may arrive here during partial symbol reading, if we need full
9486 DIEs to process an unusual case (e.g. template arguments). Do
9487 not queue PER_CU, just tell our caller to load its DIEs. */
9488 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9489 {
9490 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9491 return 1;
9492 return 0;
9493 }
9494
9495 /* Mark the dependence relation so that we don't flush PER_CU
9496 too early. */
9497 if (dependent_cu != NULL)
9498 dwarf2_add_dependence (dependent_cu, per_cu);
9499
9500 /* If it's already on the queue, we have nothing to do. */
9501 if (per_cu->queued)
9502 return 0;
9503
9504 /* If the compilation unit is already loaded, just mark it as
9505 used. */
9506 if (per_cu->cu != NULL)
9507 {
9508 per_cu->cu->last_used = 0;
9509 return 0;
9510 }
9511
9512 /* Add it to the queue. */
9513 queue_comp_unit (per_cu, pretend_language);
9514
9515 return 1;
9516 }
9517
9518 /* Process the queue. */
9519
9520 static void
9521 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9522 {
9523 struct dwarf2_queue_item *item, *next_item;
9524
9525 if (dwarf_read_debug)
9526 {
9527 fprintf_unfiltered (gdb_stdlog,
9528 "Expanding one or more symtabs of objfile %s ...\n",
9529 objfile_name (dwarf2_per_objfile->objfile));
9530 }
9531
9532 /* The queue starts out with one item, but following a DIE reference
9533 may load a new CU, adding it to the end of the queue. */
9534 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9535 {
9536 if ((dwarf2_per_objfile->using_index
9537 ? !item->per_cu->v.quick->compunit_symtab
9538 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9539 /* Skip dummy CUs. */
9540 && item->per_cu->cu != NULL)
9541 {
9542 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9543 unsigned int debug_print_threshold;
9544 char buf[100];
9545
9546 if (per_cu->is_debug_types)
9547 {
9548 struct signatured_type *sig_type =
9549 (struct signatured_type *) per_cu;
9550
9551 sprintf (buf, "TU %s at offset %s",
9552 hex_string (sig_type->signature),
9553 sect_offset_str (per_cu->sect_off));
9554 /* There can be 100s of TUs.
9555 Only print them in verbose mode. */
9556 debug_print_threshold = 2;
9557 }
9558 else
9559 {
9560 sprintf (buf, "CU at offset %s",
9561 sect_offset_str (per_cu->sect_off));
9562 debug_print_threshold = 1;
9563 }
9564
9565 if (dwarf_read_debug >= debug_print_threshold)
9566 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9567
9568 if (per_cu->is_debug_types)
9569 process_full_type_unit (per_cu, item->pretend_language);
9570 else
9571 process_full_comp_unit (per_cu, item->pretend_language);
9572
9573 if (dwarf_read_debug >= debug_print_threshold)
9574 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9575 }
9576
9577 item->per_cu->queued = 0;
9578 next_item = item->next;
9579 xfree (item);
9580 }
9581
9582 dwarf2_queue_tail = NULL;
9583
9584 if (dwarf_read_debug)
9585 {
9586 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9587 objfile_name (dwarf2_per_objfile->objfile));
9588 }
9589 }
9590
9591 /* Read in full symbols for PST, and anything it depends on. */
9592
9593 static void
9594 psymtab_to_symtab_1 (struct partial_symtab *pst)
9595 {
9596 struct dwarf2_per_cu_data *per_cu;
9597 int i;
9598
9599 if (pst->readin)
9600 return;
9601
9602 for (i = 0; i < pst->number_of_dependencies; i++)
9603 if (!pst->dependencies[i]->readin
9604 && pst->dependencies[i]->user == NULL)
9605 {
9606 /* Inform about additional files that need to be read in. */
9607 if (info_verbose)
9608 {
9609 /* FIXME: i18n: Need to make this a single string. */
9610 fputs_filtered (" ", gdb_stdout);
9611 wrap_here ("");
9612 fputs_filtered ("and ", gdb_stdout);
9613 wrap_here ("");
9614 printf_filtered ("%s...", pst->dependencies[i]->filename);
9615 wrap_here (""); /* Flush output. */
9616 gdb_flush (gdb_stdout);
9617 }
9618 psymtab_to_symtab_1 (pst->dependencies[i]);
9619 }
9620
9621 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9622
9623 if (per_cu == NULL)
9624 {
9625 /* It's an include file, no symbols to read for it.
9626 Everything is in the parent symtab. */
9627 pst->readin = 1;
9628 return;
9629 }
9630
9631 dw2_do_instantiate_symtab (per_cu, false);
9632 }
9633
9634 /* Trivial hash function for die_info: the hash value of a DIE
9635 is its offset in .debug_info for this objfile. */
9636
9637 static hashval_t
9638 die_hash (const void *item)
9639 {
9640 const struct die_info *die = (const struct die_info *) item;
9641
9642 return to_underlying (die->sect_off);
9643 }
9644
9645 /* Trivial comparison function for die_info structures: two DIEs
9646 are equal if they have the same offset. */
9647
9648 static int
9649 die_eq (const void *item_lhs, const void *item_rhs)
9650 {
9651 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9652 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9653
9654 return die_lhs->sect_off == die_rhs->sect_off;
9655 }
9656
9657 /* die_reader_func for load_full_comp_unit.
9658 This is identical to read_signatured_type_reader,
9659 but is kept separate for now. */
9660
9661 static void
9662 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9663 const gdb_byte *info_ptr,
9664 struct die_info *comp_unit_die,
9665 int has_children,
9666 void *data)
9667 {
9668 struct dwarf2_cu *cu = reader->cu;
9669 enum language *language_ptr = (enum language *) data;
9670
9671 gdb_assert (cu->die_hash == NULL);
9672 cu->die_hash =
9673 htab_create_alloc_ex (cu->header.length / 12,
9674 die_hash,
9675 die_eq,
9676 NULL,
9677 &cu->comp_unit_obstack,
9678 hashtab_obstack_allocate,
9679 dummy_obstack_deallocate);
9680
9681 if (has_children)
9682 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9683 &info_ptr, comp_unit_die);
9684 cu->dies = comp_unit_die;
9685 /* comp_unit_die is not stored in die_hash, no need. */
9686
9687 /* We try not to read any attributes in this function, because not
9688 all CUs needed for references have been loaded yet, and symbol
9689 table processing isn't initialized. But we have to set the CU language,
9690 or we won't be able to build types correctly.
9691 Similarly, if we do not read the producer, we can not apply
9692 producer-specific interpretation. */
9693 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9694 }
9695
9696 /* Load the DIEs associated with PER_CU into memory. */
9697
9698 static void
9699 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9700 bool skip_partial,
9701 enum language pretend_language)
9702 {
9703 gdb_assert (! this_cu->is_debug_types);
9704
9705 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9706 load_full_comp_unit_reader, &pretend_language);
9707 }
9708
9709 /* Add a DIE to the delayed physname list. */
9710
9711 static void
9712 add_to_method_list (struct type *type, int fnfield_index, int index,
9713 const char *name, struct die_info *die,
9714 struct dwarf2_cu *cu)
9715 {
9716 struct delayed_method_info mi;
9717 mi.type = type;
9718 mi.fnfield_index = fnfield_index;
9719 mi.index = index;
9720 mi.name = name;
9721 mi.die = die;
9722 cu->method_list.push_back (mi);
9723 }
9724
9725 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9726 "const" / "volatile". If so, decrements LEN by the length of the
9727 modifier and return true. Otherwise return false. */
9728
9729 template<size_t N>
9730 static bool
9731 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9732 {
9733 size_t mod_len = sizeof (mod) - 1;
9734 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9735 {
9736 len -= mod_len;
9737 return true;
9738 }
9739 return false;
9740 }
9741
9742 /* Compute the physnames of any methods on the CU's method list.
9743
9744 The computation of method physnames is delayed in order to avoid the
9745 (bad) condition that one of the method's formal parameters is of an as yet
9746 incomplete type. */
9747
9748 static void
9749 compute_delayed_physnames (struct dwarf2_cu *cu)
9750 {
9751 /* Only C++ delays computing physnames. */
9752 if (cu->method_list.empty ())
9753 return;
9754 gdb_assert (cu->language == language_cplus);
9755
9756 for (const delayed_method_info &mi : cu->method_list)
9757 {
9758 const char *physname;
9759 struct fn_fieldlist *fn_flp
9760 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9761 physname = dwarf2_physname (mi.name, mi.die, cu);
9762 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9763 = physname ? physname : "";
9764
9765 /* Since there's no tag to indicate whether a method is a
9766 const/volatile overload, extract that information out of the
9767 demangled name. */
9768 if (physname != NULL)
9769 {
9770 size_t len = strlen (physname);
9771
9772 while (1)
9773 {
9774 if (physname[len] == ')') /* shortcut */
9775 break;
9776 else if (check_modifier (physname, len, " const"))
9777 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9778 else if (check_modifier (physname, len, " volatile"))
9779 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9780 else
9781 break;
9782 }
9783 }
9784 }
9785
9786 /* The list is no longer needed. */
9787 cu->method_list.clear ();
9788 }
9789
9790 /* Go objects should be embedded in a DW_TAG_module DIE,
9791 and it's not clear if/how imported objects will appear.
9792 To keep Go support simple until that's worked out,
9793 go back through what we've read and create something usable.
9794 We could do this while processing each DIE, and feels kinda cleaner,
9795 but that way is more invasive.
9796 This is to, for example, allow the user to type "p var" or "b main"
9797 without having to specify the package name, and allow lookups
9798 of module.object to work in contexts that use the expression
9799 parser. */
9800
9801 static void
9802 fixup_go_packaging (struct dwarf2_cu *cu)
9803 {
9804 char *package_name = NULL;
9805 struct pending *list;
9806 int i;
9807
9808 for (list = *cu->get_builder ()->get_global_symbols ();
9809 list != NULL;
9810 list = list->next)
9811 {
9812 for (i = 0; i < list->nsyms; ++i)
9813 {
9814 struct symbol *sym = list->symbol[i];
9815
9816 if (SYMBOL_LANGUAGE (sym) == language_go
9817 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9818 {
9819 char *this_package_name = go_symbol_package_name (sym);
9820
9821 if (this_package_name == NULL)
9822 continue;
9823 if (package_name == NULL)
9824 package_name = this_package_name;
9825 else
9826 {
9827 struct objfile *objfile
9828 = cu->per_cu->dwarf2_per_objfile->objfile;
9829 if (strcmp (package_name, this_package_name) != 0)
9830 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9831 (symbol_symtab (sym) != NULL
9832 ? symtab_to_filename_for_display
9833 (symbol_symtab (sym))
9834 : objfile_name (objfile)),
9835 this_package_name, package_name);
9836 xfree (this_package_name);
9837 }
9838 }
9839 }
9840 }
9841
9842 if (package_name != NULL)
9843 {
9844 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9845 const char *saved_package_name
9846 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9847 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9848 saved_package_name);
9849 struct symbol *sym;
9850
9851 sym = allocate_symbol (objfile);
9852 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9853 SYMBOL_SET_NAMES (sym, saved_package_name,
9854 strlen (saved_package_name), 0, objfile);
9855 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9856 e.g., "main" finds the "main" module and not C's main(). */
9857 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9858 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9859 SYMBOL_TYPE (sym) = type;
9860
9861 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9862
9863 xfree (package_name);
9864 }
9865 }
9866
9867 /* Allocate a fully-qualified name consisting of the two parts on the
9868 obstack. */
9869
9870 static const char *
9871 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9872 {
9873 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9874 }
9875
9876 /* A helper that allocates a struct discriminant_info to attach to a
9877 union type. */
9878
9879 static struct discriminant_info *
9880 alloc_discriminant_info (struct type *type, int discriminant_index,
9881 int default_index)
9882 {
9883 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9884 gdb_assert (discriminant_index == -1
9885 || (discriminant_index >= 0
9886 && discriminant_index < TYPE_NFIELDS (type)));
9887 gdb_assert (default_index == -1
9888 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9889
9890 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9891
9892 struct discriminant_info *disc
9893 = ((struct discriminant_info *)
9894 TYPE_ZALLOC (type,
9895 offsetof (struct discriminant_info, discriminants)
9896 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9897 disc->default_index = default_index;
9898 disc->discriminant_index = discriminant_index;
9899
9900 struct dynamic_prop prop;
9901 prop.kind = PROP_UNDEFINED;
9902 prop.data.baton = disc;
9903
9904 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9905
9906 return disc;
9907 }
9908
9909 /* Some versions of rustc emitted enums in an unusual way.
9910
9911 Ordinary enums were emitted as unions. The first element of each
9912 structure in the union was named "RUST$ENUM$DISR". This element
9913 held the discriminant.
9914
9915 These versions of Rust also implemented the "non-zero"
9916 optimization. When the enum had two values, and one is empty and
9917 the other holds a pointer that cannot be zero, the pointer is used
9918 as the discriminant, with a zero value meaning the empty variant.
9919 Here, the union's first member is of the form
9920 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9921 where the fieldnos are the indices of the fields that should be
9922 traversed in order to find the field (which may be several fields deep)
9923 and the variantname is the name of the variant of the case when the
9924 field is zero.
9925
9926 This function recognizes whether TYPE is of one of these forms,
9927 and, if so, smashes it to be a variant type. */
9928
9929 static void
9930 quirk_rust_enum (struct type *type, struct objfile *objfile)
9931 {
9932 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9933
9934 /* We don't need to deal with empty enums. */
9935 if (TYPE_NFIELDS (type) == 0)
9936 return;
9937
9938 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9939 if (TYPE_NFIELDS (type) == 1
9940 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9941 {
9942 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9943
9944 /* Decode the field name to find the offset of the
9945 discriminant. */
9946 ULONGEST bit_offset = 0;
9947 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9948 while (name[0] >= '0' && name[0] <= '9')
9949 {
9950 char *tail;
9951 unsigned long index = strtoul (name, &tail, 10);
9952 name = tail;
9953 if (*name != '$'
9954 || index >= TYPE_NFIELDS (field_type)
9955 || (TYPE_FIELD_LOC_KIND (field_type, index)
9956 != FIELD_LOC_KIND_BITPOS))
9957 {
9958 complaint (_("Could not parse Rust enum encoding string \"%s\""
9959 "[in module %s]"),
9960 TYPE_FIELD_NAME (type, 0),
9961 objfile_name (objfile));
9962 return;
9963 }
9964 ++name;
9965
9966 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9967 field_type = TYPE_FIELD_TYPE (field_type, index);
9968 }
9969
9970 /* Make a union to hold the variants. */
9971 struct type *union_type = alloc_type (objfile);
9972 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9973 TYPE_NFIELDS (union_type) = 3;
9974 TYPE_FIELDS (union_type)
9975 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9976 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9977 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9978
9979 /* Put the discriminant must at index 0. */
9980 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9981 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9982 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9983 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9984
9985 /* The order of fields doesn't really matter, so put the real
9986 field at index 1 and the data-less field at index 2. */
9987 struct discriminant_info *disc
9988 = alloc_discriminant_info (union_type, 0, 1);
9989 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9990 TYPE_FIELD_NAME (union_type, 1)
9991 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9992 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9993 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9994 TYPE_FIELD_NAME (union_type, 1));
9995
9996 const char *dataless_name
9997 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9998 name);
9999 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10000 dataless_name);
10001 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10002 /* NAME points into the original discriminant name, which
10003 already has the correct lifetime. */
10004 TYPE_FIELD_NAME (union_type, 2) = name;
10005 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10006 disc->discriminants[2] = 0;
10007
10008 /* Smash this type to be a structure type. We have to do this
10009 because the type has already been recorded. */
10010 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10011 TYPE_NFIELDS (type) = 1;
10012 TYPE_FIELDS (type)
10013 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10014
10015 /* Install the variant part. */
10016 TYPE_FIELD_TYPE (type, 0) = union_type;
10017 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10018 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10019 }
10020 else if (TYPE_NFIELDS (type) == 1)
10021 {
10022 /* We assume that a union with a single field is a univariant
10023 enum. */
10024 /* Smash this type to be a structure type. We have to do this
10025 because the type has already been recorded. */
10026 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10027
10028 /* Make a union to hold the variants. */
10029 struct type *union_type = alloc_type (objfile);
10030 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10031 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10032 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10033 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10034 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10035
10036 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10037 const char *variant_name
10038 = rust_last_path_segment (TYPE_NAME (field_type));
10039 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10040 TYPE_NAME (field_type)
10041 = rust_fully_qualify (&objfile->objfile_obstack,
10042 TYPE_NAME (type), variant_name);
10043
10044 /* Install the union in the outer struct type. */
10045 TYPE_NFIELDS (type) = 1;
10046 TYPE_FIELDS (type)
10047 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10048 TYPE_FIELD_TYPE (type, 0) = union_type;
10049 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10050 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10051
10052 alloc_discriminant_info (union_type, -1, 0);
10053 }
10054 else
10055 {
10056 struct type *disr_type = nullptr;
10057 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10058 {
10059 disr_type = TYPE_FIELD_TYPE (type, i);
10060
10061 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10062 {
10063 /* All fields of a true enum will be structs. */
10064 return;
10065 }
10066 else if (TYPE_NFIELDS (disr_type) == 0)
10067 {
10068 /* Could be data-less variant, so keep going. */
10069 disr_type = nullptr;
10070 }
10071 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10072 "RUST$ENUM$DISR") != 0)
10073 {
10074 /* Not a Rust enum. */
10075 return;
10076 }
10077 else
10078 {
10079 /* Found one. */
10080 break;
10081 }
10082 }
10083
10084 /* If we got here without a discriminant, then it's probably
10085 just a union. */
10086 if (disr_type == nullptr)
10087 return;
10088
10089 /* Smash this type to be a structure type. We have to do this
10090 because the type has already been recorded. */
10091 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10092
10093 /* Make a union to hold the variants. */
10094 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10095 struct type *union_type = alloc_type (objfile);
10096 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10097 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10098 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10099 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10100 TYPE_FIELDS (union_type)
10101 = (struct field *) TYPE_ZALLOC (union_type,
10102 (TYPE_NFIELDS (union_type)
10103 * sizeof (struct field)));
10104
10105 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10106 TYPE_NFIELDS (type) * sizeof (struct field));
10107
10108 /* Install the discriminant at index 0 in the union. */
10109 TYPE_FIELD (union_type, 0) = *disr_field;
10110 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10111 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10112
10113 /* Install the union in the outer struct type. */
10114 TYPE_FIELD_TYPE (type, 0) = union_type;
10115 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10116 TYPE_NFIELDS (type) = 1;
10117
10118 /* Set the size and offset of the union type. */
10119 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10120
10121 /* We need a way to find the correct discriminant given a
10122 variant name. For convenience we build a map here. */
10123 struct type *enum_type = FIELD_TYPE (*disr_field);
10124 std::unordered_map<std::string, ULONGEST> discriminant_map;
10125 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10126 {
10127 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10128 {
10129 const char *name
10130 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10131 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10132 }
10133 }
10134
10135 int n_fields = TYPE_NFIELDS (union_type);
10136 struct discriminant_info *disc
10137 = alloc_discriminant_info (union_type, 0, -1);
10138 /* Skip the discriminant here. */
10139 for (int i = 1; i < n_fields; ++i)
10140 {
10141 /* Find the final word in the name of this variant's type.
10142 That name can be used to look up the correct
10143 discriminant. */
10144 const char *variant_name
10145 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10146 i)));
10147
10148 auto iter = discriminant_map.find (variant_name);
10149 if (iter != discriminant_map.end ())
10150 disc->discriminants[i] = iter->second;
10151
10152 /* Remove the discriminant field, if it exists. */
10153 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10154 if (TYPE_NFIELDS (sub_type) > 0)
10155 {
10156 --TYPE_NFIELDS (sub_type);
10157 ++TYPE_FIELDS (sub_type);
10158 }
10159 TYPE_FIELD_NAME (union_type, i) = variant_name;
10160 TYPE_NAME (sub_type)
10161 = rust_fully_qualify (&objfile->objfile_obstack,
10162 TYPE_NAME (type), variant_name);
10163 }
10164 }
10165 }
10166
10167 /* Rewrite some Rust unions to be structures with variants parts. */
10168
10169 static void
10170 rust_union_quirks (struct dwarf2_cu *cu)
10171 {
10172 gdb_assert (cu->language == language_rust);
10173 for (type *type_ : cu->rust_unions)
10174 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10175 /* We don't need this any more. */
10176 cu->rust_unions.clear ();
10177 }
10178
10179 /* Return the symtab for PER_CU. This works properly regardless of
10180 whether we're using the index or psymtabs. */
10181
10182 static struct compunit_symtab *
10183 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10184 {
10185 return (per_cu->dwarf2_per_objfile->using_index
10186 ? per_cu->v.quick->compunit_symtab
10187 : per_cu->v.psymtab->compunit_symtab);
10188 }
10189
10190 /* A helper function for computing the list of all symbol tables
10191 included by PER_CU. */
10192
10193 static void
10194 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10195 htab_t all_children, htab_t all_type_symtabs,
10196 struct dwarf2_per_cu_data *per_cu,
10197 struct compunit_symtab *immediate_parent)
10198 {
10199 void **slot;
10200 int ix;
10201 struct compunit_symtab *cust;
10202 struct dwarf2_per_cu_data *iter;
10203
10204 slot = htab_find_slot (all_children, per_cu, INSERT);
10205 if (*slot != NULL)
10206 {
10207 /* This inclusion and its children have been processed. */
10208 return;
10209 }
10210
10211 *slot = per_cu;
10212 /* Only add a CU if it has a symbol table. */
10213 cust = get_compunit_symtab (per_cu);
10214 if (cust != NULL)
10215 {
10216 /* If this is a type unit only add its symbol table if we haven't
10217 seen it yet (type unit per_cu's can share symtabs). */
10218 if (per_cu->is_debug_types)
10219 {
10220 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10221 if (*slot == NULL)
10222 {
10223 *slot = cust;
10224 result->push_back (cust);
10225 if (cust->user == NULL)
10226 cust->user = immediate_parent;
10227 }
10228 }
10229 else
10230 {
10231 result->push_back (cust);
10232 if (cust->user == NULL)
10233 cust->user = immediate_parent;
10234 }
10235 }
10236
10237 for (ix = 0;
10238 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10239 ++ix)
10240 {
10241 recursively_compute_inclusions (result, all_children,
10242 all_type_symtabs, iter, cust);
10243 }
10244 }
10245
10246 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10247 PER_CU. */
10248
10249 static void
10250 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10251 {
10252 gdb_assert (! per_cu->is_debug_types);
10253
10254 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10255 {
10256 int ix, len;
10257 struct dwarf2_per_cu_data *per_cu_iter;
10258 std::vector<compunit_symtab *> result_symtabs;
10259 htab_t all_children, all_type_symtabs;
10260 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10261
10262 /* If we don't have a symtab, we can just skip this case. */
10263 if (cust == NULL)
10264 return;
10265
10266 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10267 NULL, xcalloc, xfree);
10268 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10269 NULL, xcalloc, xfree);
10270
10271 for (ix = 0;
10272 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10273 ix, per_cu_iter);
10274 ++ix)
10275 {
10276 recursively_compute_inclusions (&result_symtabs, all_children,
10277 all_type_symtabs, per_cu_iter,
10278 cust);
10279 }
10280
10281 /* Now we have a transitive closure of all the included symtabs. */
10282 len = result_symtabs.size ();
10283 cust->includes
10284 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10285 struct compunit_symtab *, len + 1);
10286 memcpy (cust->includes, result_symtabs.data (),
10287 len * sizeof (compunit_symtab *));
10288 cust->includes[len] = NULL;
10289
10290 htab_delete (all_children);
10291 htab_delete (all_type_symtabs);
10292 }
10293 }
10294
10295 /* Compute the 'includes' field for the symtabs of all the CUs we just
10296 read. */
10297
10298 static void
10299 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10300 {
10301 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10302 {
10303 if (! iter->is_debug_types)
10304 compute_compunit_symtab_includes (iter);
10305 }
10306
10307 dwarf2_per_objfile->just_read_cus.clear ();
10308 }
10309
10310 /* Generate full symbol information for PER_CU, whose DIEs have
10311 already been loaded into memory. */
10312
10313 static void
10314 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10315 enum language pretend_language)
10316 {
10317 struct dwarf2_cu *cu = per_cu->cu;
10318 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10319 struct objfile *objfile = dwarf2_per_objfile->objfile;
10320 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10321 CORE_ADDR lowpc, highpc;
10322 struct compunit_symtab *cust;
10323 CORE_ADDR baseaddr;
10324 struct block *static_block;
10325 CORE_ADDR addr;
10326
10327 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10328
10329 /* Clear the list here in case something was left over. */
10330 cu->method_list.clear ();
10331
10332 cu->language = pretend_language;
10333 cu->language_defn = language_def (cu->language);
10334
10335 /* Do line number decoding in read_file_scope () */
10336 process_die (cu->dies, cu);
10337
10338 /* For now fudge the Go package. */
10339 if (cu->language == language_go)
10340 fixup_go_packaging (cu);
10341
10342 /* Now that we have processed all the DIEs in the CU, all the types
10343 should be complete, and it should now be safe to compute all of the
10344 physnames. */
10345 compute_delayed_physnames (cu);
10346
10347 if (cu->language == language_rust)
10348 rust_union_quirks (cu);
10349
10350 /* Some compilers don't define a DW_AT_high_pc attribute for the
10351 compilation unit. If the DW_AT_high_pc is missing, synthesize
10352 it, by scanning the DIE's below the compilation unit. */
10353 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10354
10355 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10356 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10357
10358 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10359 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10360 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10361 addrmap to help ensure it has an accurate map of pc values belonging to
10362 this comp unit. */
10363 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10364
10365 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10366 SECT_OFF_TEXT (objfile),
10367 0);
10368
10369 if (cust != NULL)
10370 {
10371 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10372
10373 /* Set symtab language to language from DW_AT_language. If the
10374 compilation is from a C file generated by language preprocessors, do
10375 not set the language if it was already deduced by start_subfile. */
10376 if (!(cu->language == language_c
10377 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10378 COMPUNIT_FILETABS (cust)->language = cu->language;
10379
10380 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10381 produce DW_AT_location with location lists but it can be possibly
10382 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10383 there were bugs in prologue debug info, fixed later in GCC-4.5
10384 by "unwind info for epilogues" patch (which is not directly related).
10385
10386 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10387 needed, it would be wrong due to missing DW_AT_producer there.
10388
10389 Still one can confuse GDB by using non-standard GCC compilation
10390 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10391 */
10392 if (cu->has_loclist && gcc_4_minor >= 5)
10393 cust->locations_valid = 1;
10394
10395 if (gcc_4_minor >= 5)
10396 cust->epilogue_unwind_valid = 1;
10397
10398 cust->call_site_htab = cu->call_site_htab;
10399 }
10400
10401 if (dwarf2_per_objfile->using_index)
10402 per_cu->v.quick->compunit_symtab = cust;
10403 else
10404 {
10405 struct partial_symtab *pst = per_cu->v.psymtab;
10406 pst->compunit_symtab = cust;
10407 pst->readin = 1;
10408 }
10409
10410 /* Push it for inclusion processing later. */
10411 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10412
10413 /* Not needed any more. */
10414 cu->reset_builder ();
10415 }
10416
10417 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10418 already been loaded into memory. */
10419
10420 static void
10421 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10422 enum language pretend_language)
10423 {
10424 struct dwarf2_cu *cu = per_cu->cu;
10425 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10426 struct objfile *objfile = dwarf2_per_objfile->objfile;
10427 struct compunit_symtab *cust;
10428 struct signatured_type *sig_type;
10429
10430 gdb_assert (per_cu->is_debug_types);
10431 sig_type = (struct signatured_type *) per_cu;
10432
10433 /* Clear the list here in case something was left over. */
10434 cu->method_list.clear ();
10435
10436 cu->language = pretend_language;
10437 cu->language_defn = language_def (cu->language);
10438
10439 /* The symbol tables are set up in read_type_unit_scope. */
10440 process_die (cu->dies, cu);
10441
10442 /* For now fudge the Go package. */
10443 if (cu->language == language_go)
10444 fixup_go_packaging (cu);
10445
10446 /* Now that we have processed all the DIEs in the CU, all the types
10447 should be complete, and it should now be safe to compute all of the
10448 physnames. */
10449 compute_delayed_physnames (cu);
10450
10451 if (cu->language == language_rust)
10452 rust_union_quirks (cu);
10453
10454 /* TUs share symbol tables.
10455 If this is the first TU to use this symtab, complete the construction
10456 of it with end_expandable_symtab. Otherwise, complete the addition of
10457 this TU's symbols to the existing symtab. */
10458 if (sig_type->type_unit_group->compunit_symtab == NULL)
10459 {
10460 buildsym_compunit *builder = cu->get_builder ();
10461 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10462 sig_type->type_unit_group->compunit_symtab = cust;
10463
10464 if (cust != NULL)
10465 {
10466 /* Set symtab language to language from DW_AT_language. If the
10467 compilation is from a C file generated by language preprocessors,
10468 do not set the language if it was already deduced by
10469 start_subfile. */
10470 if (!(cu->language == language_c
10471 && COMPUNIT_FILETABS (cust)->language != language_c))
10472 COMPUNIT_FILETABS (cust)->language = cu->language;
10473 }
10474 }
10475 else
10476 {
10477 cu->get_builder ()->augment_type_symtab ();
10478 cust = sig_type->type_unit_group->compunit_symtab;
10479 }
10480
10481 if (dwarf2_per_objfile->using_index)
10482 per_cu->v.quick->compunit_symtab = cust;
10483 else
10484 {
10485 struct partial_symtab *pst = per_cu->v.psymtab;
10486 pst->compunit_symtab = cust;
10487 pst->readin = 1;
10488 }
10489
10490 /* Not needed any more. */
10491 cu->reset_builder ();
10492 }
10493
10494 /* Process an imported unit DIE. */
10495
10496 static void
10497 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10498 {
10499 struct attribute *attr;
10500
10501 /* For now we don't handle imported units in type units. */
10502 if (cu->per_cu->is_debug_types)
10503 {
10504 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10505 " supported in type units [in module %s]"),
10506 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10507 }
10508
10509 attr = dwarf2_attr (die, DW_AT_import, cu);
10510 if (attr != NULL)
10511 {
10512 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10513 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10514 dwarf2_per_cu_data *per_cu
10515 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10516 cu->per_cu->dwarf2_per_objfile);
10517
10518 /* If necessary, add it to the queue and load its DIEs. */
10519 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10520 load_full_comp_unit (per_cu, false, cu->language);
10521
10522 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10523 per_cu);
10524 }
10525 }
10526
10527 /* RAII object that represents a process_die scope: i.e.,
10528 starts/finishes processing a DIE. */
10529 class process_die_scope
10530 {
10531 public:
10532 process_die_scope (die_info *die, dwarf2_cu *cu)
10533 : m_die (die), m_cu (cu)
10534 {
10535 /* We should only be processing DIEs not already in process. */
10536 gdb_assert (!m_die->in_process);
10537 m_die->in_process = true;
10538 }
10539
10540 ~process_die_scope ()
10541 {
10542 m_die->in_process = false;
10543
10544 /* If we're done processing the DIE for the CU that owns the line
10545 header, we don't need the line header anymore. */
10546 if (m_cu->line_header_die_owner == m_die)
10547 {
10548 delete m_cu->line_header;
10549 m_cu->line_header = NULL;
10550 m_cu->line_header_die_owner = NULL;
10551 }
10552 }
10553
10554 private:
10555 die_info *m_die;
10556 dwarf2_cu *m_cu;
10557 };
10558
10559 /* Process a die and its children. */
10560
10561 static void
10562 process_die (struct die_info *die, struct dwarf2_cu *cu)
10563 {
10564 process_die_scope scope (die, cu);
10565
10566 switch (die->tag)
10567 {
10568 case DW_TAG_padding:
10569 break;
10570 case DW_TAG_compile_unit:
10571 case DW_TAG_partial_unit:
10572 read_file_scope (die, cu);
10573 break;
10574 case DW_TAG_type_unit:
10575 read_type_unit_scope (die, cu);
10576 break;
10577 case DW_TAG_subprogram:
10578 case DW_TAG_inlined_subroutine:
10579 read_func_scope (die, cu);
10580 break;
10581 case DW_TAG_lexical_block:
10582 case DW_TAG_try_block:
10583 case DW_TAG_catch_block:
10584 read_lexical_block_scope (die, cu);
10585 break;
10586 case DW_TAG_call_site:
10587 case DW_TAG_GNU_call_site:
10588 read_call_site_scope (die, cu);
10589 break;
10590 case DW_TAG_class_type:
10591 case DW_TAG_interface_type:
10592 case DW_TAG_structure_type:
10593 case DW_TAG_union_type:
10594 process_structure_scope (die, cu);
10595 break;
10596 case DW_TAG_enumeration_type:
10597 process_enumeration_scope (die, cu);
10598 break;
10599
10600 /* These dies have a type, but processing them does not create
10601 a symbol or recurse to process the children. Therefore we can
10602 read them on-demand through read_type_die. */
10603 case DW_TAG_subroutine_type:
10604 case DW_TAG_set_type:
10605 case DW_TAG_array_type:
10606 case DW_TAG_pointer_type:
10607 case DW_TAG_ptr_to_member_type:
10608 case DW_TAG_reference_type:
10609 case DW_TAG_rvalue_reference_type:
10610 case DW_TAG_string_type:
10611 break;
10612
10613 case DW_TAG_base_type:
10614 case DW_TAG_subrange_type:
10615 case DW_TAG_typedef:
10616 /* Add a typedef symbol for the type definition, if it has a
10617 DW_AT_name. */
10618 new_symbol (die, read_type_die (die, cu), cu);
10619 break;
10620 case DW_TAG_common_block:
10621 read_common_block (die, cu);
10622 break;
10623 case DW_TAG_common_inclusion:
10624 break;
10625 case DW_TAG_namespace:
10626 cu->processing_has_namespace_info = true;
10627 read_namespace (die, cu);
10628 break;
10629 case DW_TAG_module:
10630 cu->processing_has_namespace_info = true;
10631 read_module (die, cu);
10632 break;
10633 case DW_TAG_imported_declaration:
10634 cu->processing_has_namespace_info = true;
10635 if (read_namespace_alias (die, cu))
10636 break;
10637 /* The declaration is not a global namespace alias. */
10638 /* Fall through. */
10639 case DW_TAG_imported_module:
10640 cu->processing_has_namespace_info = true;
10641 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10642 || cu->language != language_fortran))
10643 complaint (_("Tag '%s' has unexpected children"),
10644 dwarf_tag_name (die->tag));
10645 read_import_statement (die, cu);
10646 break;
10647
10648 case DW_TAG_imported_unit:
10649 process_imported_unit_die (die, cu);
10650 break;
10651
10652 case DW_TAG_variable:
10653 read_variable (die, cu);
10654 break;
10655
10656 default:
10657 new_symbol (die, NULL, cu);
10658 break;
10659 }
10660 }
10661 \f
10662 /* DWARF name computation. */
10663
10664 /* A helper function for dwarf2_compute_name which determines whether DIE
10665 needs to have the name of the scope prepended to the name listed in the
10666 die. */
10667
10668 static int
10669 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10670 {
10671 struct attribute *attr;
10672
10673 switch (die->tag)
10674 {
10675 case DW_TAG_namespace:
10676 case DW_TAG_typedef:
10677 case DW_TAG_class_type:
10678 case DW_TAG_interface_type:
10679 case DW_TAG_structure_type:
10680 case DW_TAG_union_type:
10681 case DW_TAG_enumeration_type:
10682 case DW_TAG_enumerator:
10683 case DW_TAG_subprogram:
10684 case DW_TAG_inlined_subroutine:
10685 case DW_TAG_member:
10686 case DW_TAG_imported_declaration:
10687 return 1;
10688
10689 case DW_TAG_variable:
10690 case DW_TAG_constant:
10691 /* We only need to prefix "globally" visible variables. These include
10692 any variable marked with DW_AT_external or any variable that
10693 lives in a namespace. [Variables in anonymous namespaces
10694 require prefixing, but they are not DW_AT_external.] */
10695
10696 if (dwarf2_attr (die, DW_AT_specification, cu))
10697 {
10698 struct dwarf2_cu *spec_cu = cu;
10699
10700 return die_needs_namespace (die_specification (die, &spec_cu),
10701 spec_cu);
10702 }
10703
10704 attr = dwarf2_attr (die, DW_AT_external, cu);
10705 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10706 && die->parent->tag != DW_TAG_module)
10707 return 0;
10708 /* A variable in a lexical block of some kind does not need a
10709 namespace, even though in C++ such variables may be external
10710 and have a mangled name. */
10711 if (die->parent->tag == DW_TAG_lexical_block
10712 || die->parent->tag == DW_TAG_try_block
10713 || die->parent->tag == DW_TAG_catch_block
10714 || die->parent->tag == DW_TAG_subprogram)
10715 return 0;
10716 return 1;
10717
10718 default:
10719 return 0;
10720 }
10721 }
10722
10723 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10724 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10725 defined for the given DIE. */
10726
10727 static struct attribute *
10728 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10729 {
10730 struct attribute *attr;
10731
10732 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10733 if (attr == NULL)
10734 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10735
10736 return attr;
10737 }
10738
10739 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10740 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10741 defined for the given DIE. */
10742
10743 static const char *
10744 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10745 {
10746 const char *linkage_name;
10747
10748 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10749 if (linkage_name == NULL)
10750 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10751
10752 return linkage_name;
10753 }
10754
10755 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10756 compute the physname for the object, which include a method's:
10757 - formal parameters (C++),
10758 - receiver type (Go),
10759
10760 The term "physname" is a bit confusing.
10761 For C++, for example, it is the demangled name.
10762 For Go, for example, it's the mangled name.
10763
10764 For Ada, return the DIE's linkage name rather than the fully qualified
10765 name. PHYSNAME is ignored..
10766
10767 The result is allocated on the objfile_obstack and canonicalized. */
10768
10769 static const char *
10770 dwarf2_compute_name (const char *name,
10771 struct die_info *die, struct dwarf2_cu *cu,
10772 int physname)
10773 {
10774 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10775
10776 if (name == NULL)
10777 name = dwarf2_name (die, cu);
10778
10779 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10780 but otherwise compute it by typename_concat inside GDB.
10781 FIXME: Actually this is not really true, or at least not always true.
10782 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10783 Fortran names because there is no mangling standard. So new_symbol
10784 will set the demangled name to the result of dwarf2_full_name, and it is
10785 the demangled name that GDB uses if it exists. */
10786 if (cu->language == language_ada
10787 || (cu->language == language_fortran && physname))
10788 {
10789 /* For Ada unit, we prefer the linkage name over the name, as
10790 the former contains the exported name, which the user expects
10791 to be able to reference. Ideally, we want the user to be able
10792 to reference this entity using either natural or linkage name,
10793 but we haven't started looking at this enhancement yet. */
10794 const char *linkage_name = dw2_linkage_name (die, cu);
10795
10796 if (linkage_name != NULL)
10797 return linkage_name;
10798 }
10799
10800 /* These are the only languages we know how to qualify names in. */
10801 if (name != NULL
10802 && (cu->language == language_cplus
10803 || cu->language == language_fortran || cu->language == language_d
10804 || cu->language == language_rust))
10805 {
10806 if (die_needs_namespace (die, cu))
10807 {
10808 const char *prefix;
10809 const char *canonical_name = NULL;
10810
10811 string_file buf;
10812
10813 prefix = determine_prefix (die, cu);
10814 if (*prefix != '\0')
10815 {
10816 char *prefixed_name = typename_concat (NULL, prefix, name,
10817 physname, cu);
10818
10819 buf.puts (prefixed_name);
10820 xfree (prefixed_name);
10821 }
10822 else
10823 buf.puts (name);
10824
10825 /* Template parameters may be specified in the DIE's DW_AT_name, or
10826 as children with DW_TAG_template_type_param or
10827 DW_TAG_value_type_param. If the latter, add them to the name
10828 here. If the name already has template parameters, then
10829 skip this step; some versions of GCC emit both, and
10830 it is more efficient to use the pre-computed name.
10831
10832 Something to keep in mind about this process: it is very
10833 unlikely, or in some cases downright impossible, to produce
10834 something that will match the mangled name of a function.
10835 If the definition of the function has the same debug info,
10836 we should be able to match up with it anyway. But fallbacks
10837 using the minimal symbol, for instance to find a method
10838 implemented in a stripped copy of libstdc++, will not work.
10839 If we do not have debug info for the definition, we will have to
10840 match them up some other way.
10841
10842 When we do name matching there is a related problem with function
10843 templates; two instantiated function templates are allowed to
10844 differ only by their return types, which we do not add here. */
10845
10846 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10847 {
10848 struct attribute *attr;
10849 struct die_info *child;
10850 int first = 1;
10851
10852 die->building_fullname = 1;
10853
10854 for (child = die->child; child != NULL; child = child->sibling)
10855 {
10856 struct type *type;
10857 LONGEST value;
10858 const gdb_byte *bytes;
10859 struct dwarf2_locexpr_baton *baton;
10860 struct value *v;
10861
10862 if (child->tag != DW_TAG_template_type_param
10863 && child->tag != DW_TAG_template_value_param)
10864 continue;
10865
10866 if (first)
10867 {
10868 buf.puts ("<");
10869 first = 0;
10870 }
10871 else
10872 buf.puts (", ");
10873
10874 attr = dwarf2_attr (child, DW_AT_type, cu);
10875 if (attr == NULL)
10876 {
10877 complaint (_("template parameter missing DW_AT_type"));
10878 buf.puts ("UNKNOWN_TYPE");
10879 continue;
10880 }
10881 type = die_type (child, cu);
10882
10883 if (child->tag == DW_TAG_template_type_param)
10884 {
10885 c_print_type (type, "", &buf, -1, 0, cu->language,
10886 &type_print_raw_options);
10887 continue;
10888 }
10889
10890 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10891 if (attr == NULL)
10892 {
10893 complaint (_("template parameter missing "
10894 "DW_AT_const_value"));
10895 buf.puts ("UNKNOWN_VALUE");
10896 continue;
10897 }
10898
10899 dwarf2_const_value_attr (attr, type, name,
10900 &cu->comp_unit_obstack, cu,
10901 &value, &bytes, &baton);
10902
10903 if (TYPE_NOSIGN (type))
10904 /* GDB prints characters as NUMBER 'CHAR'. If that's
10905 changed, this can use value_print instead. */
10906 c_printchar (value, type, &buf);
10907 else
10908 {
10909 struct value_print_options opts;
10910
10911 if (baton != NULL)
10912 v = dwarf2_evaluate_loc_desc (type, NULL,
10913 baton->data,
10914 baton->size,
10915 baton->per_cu);
10916 else if (bytes != NULL)
10917 {
10918 v = allocate_value (type);
10919 memcpy (value_contents_writeable (v), bytes,
10920 TYPE_LENGTH (type));
10921 }
10922 else
10923 v = value_from_longest (type, value);
10924
10925 /* Specify decimal so that we do not depend on
10926 the radix. */
10927 get_formatted_print_options (&opts, 'd');
10928 opts.raw = 1;
10929 value_print (v, &buf, &opts);
10930 release_value (v);
10931 }
10932 }
10933
10934 die->building_fullname = 0;
10935
10936 if (!first)
10937 {
10938 /* Close the argument list, with a space if necessary
10939 (nested templates). */
10940 if (!buf.empty () && buf.string ().back () == '>')
10941 buf.puts (" >");
10942 else
10943 buf.puts (">");
10944 }
10945 }
10946
10947 /* For C++ methods, append formal parameter type
10948 information, if PHYSNAME. */
10949
10950 if (physname && die->tag == DW_TAG_subprogram
10951 && cu->language == language_cplus)
10952 {
10953 struct type *type = read_type_die (die, cu);
10954
10955 c_type_print_args (type, &buf, 1, cu->language,
10956 &type_print_raw_options);
10957
10958 if (cu->language == language_cplus)
10959 {
10960 /* Assume that an artificial first parameter is
10961 "this", but do not crash if it is not. RealView
10962 marks unnamed (and thus unused) parameters as
10963 artificial; there is no way to differentiate
10964 the two cases. */
10965 if (TYPE_NFIELDS (type) > 0
10966 && TYPE_FIELD_ARTIFICIAL (type, 0)
10967 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10968 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10969 0))))
10970 buf.puts (" const");
10971 }
10972 }
10973
10974 const std::string &intermediate_name = buf.string ();
10975
10976 if (cu->language == language_cplus)
10977 canonical_name
10978 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10979 &objfile->per_bfd->storage_obstack);
10980
10981 /* If we only computed INTERMEDIATE_NAME, or if
10982 INTERMEDIATE_NAME is already canonical, then we need to
10983 copy it to the appropriate obstack. */
10984 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10985 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10986 intermediate_name);
10987 else
10988 name = canonical_name;
10989 }
10990 }
10991
10992 return name;
10993 }
10994
10995 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10996 If scope qualifiers are appropriate they will be added. The result
10997 will be allocated on the storage_obstack, or NULL if the DIE does
10998 not have a name. NAME may either be from a previous call to
10999 dwarf2_name or NULL.
11000
11001 The output string will be canonicalized (if C++). */
11002
11003 static const char *
11004 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11005 {
11006 return dwarf2_compute_name (name, die, cu, 0);
11007 }
11008
11009 /* Construct a physname for the given DIE in CU. NAME may either be
11010 from a previous call to dwarf2_name or NULL. The result will be
11011 allocated on the objfile_objstack or NULL if the DIE does not have a
11012 name.
11013
11014 The output string will be canonicalized (if C++). */
11015
11016 static const char *
11017 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11018 {
11019 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11020 const char *retval, *mangled = NULL, *canon = NULL;
11021 int need_copy = 1;
11022
11023 /* In this case dwarf2_compute_name is just a shortcut not building anything
11024 on its own. */
11025 if (!die_needs_namespace (die, cu))
11026 return dwarf2_compute_name (name, die, cu, 1);
11027
11028 mangled = dw2_linkage_name (die, cu);
11029
11030 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11031 See https://github.com/rust-lang/rust/issues/32925. */
11032 if (cu->language == language_rust && mangled != NULL
11033 && strchr (mangled, '{') != NULL)
11034 mangled = NULL;
11035
11036 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11037 has computed. */
11038 gdb::unique_xmalloc_ptr<char> demangled;
11039 if (mangled != NULL)
11040 {
11041
11042 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11043 {
11044 /* Do nothing (do not demangle the symbol name). */
11045 }
11046 else if (cu->language == language_go)
11047 {
11048 /* This is a lie, but we already lie to the caller new_symbol.
11049 new_symbol assumes we return the mangled name.
11050 This just undoes that lie until things are cleaned up. */
11051 }
11052 else
11053 {
11054 /* Use DMGL_RET_DROP for C++ template functions to suppress
11055 their return type. It is easier for GDB users to search
11056 for such functions as `name(params)' than `long name(params)'.
11057 In such case the minimal symbol names do not match the full
11058 symbol names but for template functions there is never a need
11059 to look up their definition from their declaration so
11060 the only disadvantage remains the minimal symbol variant
11061 `long name(params)' does not have the proper inferior type. */
11062 demangled.reset (gdb_demangle (mangled,
11063 (DMGL_PARAMS | DMGL_ANSI
11064 | DMGL_RET_DROP)));
11065 }
11066 if (demangled)
11067 canon = demangled.get ();
11068 else
11069 {
11070 canon = mangled;
11071 need_copy = 0;
11072 }
11073 }
11074
11075 if (canon == NULL || check_physname)
11076 {
11077 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11078
11079 if (canon != NULL && strcmp (physname, canon) != 0)
11080 {
11081 /* It may not mean a bug in GDB. The compiler could also
11082 compute DW_AT_linkage_name incorrectly. But in such case
11083 GDB would need to be bug-to-bug compatible. */
11084
11085 complaint (_("Computed physname <%s> does not match demangled <%s> "
11086 "(from linkage <%s>) - DIE at %s [in module %s]"),
11087 physname, canon, mangled, sect_offset_str (die->sect_off),
11088 objfile_name (objfile));
11089
11090 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11091 is available here - over computed PHYSNAME. It is safer
11092 against both buggy GDB and buggy compilers. */
11093
11094 retval = canon;
11095 }
11096 else
11097 {
11098 retval = physname;
11099 need_copy = 0;
11100 }
11101 }
11102 else
11103 retval = canon;
11104
11105 if (need_copy)
11106 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11107
11108 return retval;
11109 }
11110
11111 /* Inspect DIE in CU for a namespace alias. If one exists, record
11112 a new symbol for it.
11113
11114 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11115
11116 static int
11117 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11118 {
11119 struct attribute *attr;
11120
11121 /* If the die does not have a name, this is not a namespace
11122 alias. */
11123 attr = dwarf2_attr (die, DW_AT_name, cu);
11124 if (attr != NULL)
11125 {
11126 int num;
11127 struct die_info *d = die;
11128 struct dwarf2_cu *imported_cu = cu;
11129
11130 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11131 keep inspecting DIEs until we hit the underlying import. */
11132 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11133 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11134 {
11135 attr = dwarf2_attr (d, DW_AT_import, cu);
11136 if (attr == NULL)
11137 break;
11138
11139 d = follow_die_ref (d, attr, &imported_cu);
11140 if (d->tag != DW_TAG_imported_declaration)
11141 break;
11142 }
11143
11144 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11145 {
11146 complaint (_("DIE at %s has too many recursively imported "
11147 "declarations"), sect_offset_str (d->sect_off));
11148 return 0;
11149 }
11150
11151 if (attr != NULL)
11152 {
11153 struct type *type;
11154 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11155
11156 type = get_die_type_at_offset (sect_off, cu->per_cu);
11157 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11158 {
11159 /* This declaration is a global namespace alias. Add
11160 a symbol for it whose type is the aliased namespace. */
11161 new_symbol (die, type, cu);
11162 return 1;
11163 }
11164 }
11165 }
11166
11167 return 0;
11168 }
11169
11170 /* Return the using directives repository (global or local?) to use in the
11171 current context for CU.
11172
11173 For Ada, imported declarations can materialize renamings, which *may* be
11174 global. However it is impossible (for now?) in DWARF to distinguish
11175 "external" imported declarations and "static" ones. As all imported
11176 declarations seem to be static in all other languages, make them all CU-wide
11177 global only in Ada. */
11178
11179 static struct using_direct **
11180 using_directives (struct dwarf2_cu *cu)
11181 {
11182 if (cu->language == language_ada
11183 && cu->get_builder ()->outermost_context_p ())
11184 return cu->get_builder ()->get_global_using_directives ();
11185 else
11186 return cu->get_builder ()->get_local_using_directives ();
11187 }
11188
11189 /* Read the import statement specified by the given die and record it. */
11190
11191 static void
11192 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11193 {
11194 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11195 struct attribute *import_attr;
11196 struct die_info *imported_die, *child_die;
11197 struct dwarf2_cu *imported_cu;
11198 const char *imported_name;
11199 const char *imported_name_prefix;
11200 const char *canonical_name;
11201 const char *import_alias;
11202 const char *imported_declaration = NULL;
11203 const char *import_prefix;
11204 std::vector<const char *> excludes;
11205
11206 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11207 if (import_attr == NULL)
11208 {
11209 complaint (_("Tag '%s' has no DW_AT_import"),
11210 dwarf_tag_name (die->tag));
11211 return;
11212 }
11213
11214 imported_cu = cu;
11215 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11216 imported_name = dwarf2_name (imported_die, imported_cu);
11217 if (imported_name == NULL)
11218 {
11219 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11220
11221 The import in the following code:
11222 namespace A
11223 {
11224 typedef int B;
11225 }
11226
11227 int main ()
11228 {
11229 using A::B;
11230 B b;
11231 return b;
11232 }
11233
11234 ...
11235 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11236 <52> DW_AT_decl_file : 1
11237 <53> DW_AT_decl_line : 6
11238 <54> DW_AT_import : <0x75>
11239 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11240 <59> DW_AT_name : B
11241 <5b> DW_AT_decl_file : 1
11242 <5c> DW_AT_decl_line : 2
11243 <5d> DW_AT_type : <0x6e>
11244 ...
11245 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11246 <76> DW_AT_byte_size : 4
11247 <77> DW_AT_encoding : 5 (signed)
11248
11249 imports the wrong die ( 0x75 instead of 0x58 ).
11250 This case will be ignored until the gcc bug is fixed. */
11251 return;
11252 }
11253
11254 /* Figure out the local name after import. */
11255 import_alias = dwarf2_name (die, cu);
11256
11257 /* Figure out where the statement is being imported to. */
11258 import_prefix = determine_prefix (die, cu);
11259
11260 /* Figure out what the scope of the imported die is and prepend it
11261 to the name of the imported die. */
11262 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11263
11264 if (imported_die->tag != DW_TAG_namespace
11265 && imported_die->tag != DW_TAG_module)
11266 {
11267 imported_declaration = imported_name;
11268 canonical_name = imported_name_prefix;
11269 }
11270 else if (strlen (imported_name_prefix) > 0)
11271 canonical_name = obconcat (&objfile->objfile_obstack,
11272 imported_name_prefix,
11273 (cu->language == language_d ? "." : "::"),
11274 imported_name, (char *) NULL);
11275 else
11276 canonical_name = imported_name;
11277
11278 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11279 for (child_die = die->child; child_die && child_die->tag;
11280 child_die = sibling_die (child_die))
11281 {
11282 /* DWARF-4: A Fortran use statement with a “rename list” may be
11283 represented by an imported module entry with an import attribute
11284 referring to the module and owned entries corresponding to those
11285 entities that are renamed as part of being imported. */
11286
11287 if (child_die->tag != DW_TAG_imported_declaration)
11288 {
11289 complaint (_("child DW_TAG_imported_declaration expected "
11290 "- DIE at %s [in module %s]"),
11291 sect_offset_str (child_die->sect_off),
11292 objfile_name (objfile));
11293 continue;
11294 }
11295
11296 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11297 if (import_attr == NULL)
11298 {
11299 complaint (_("Tag '%s' has no DW_AT_import"),
11300 dwarf_tag_name (child_die->tag));
11301 continue;
11302 }
11303
11304 imported_cu = cu;
11305 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11306 &imported_cu);
11307 imported_name = dwarf2_name (imported_die, imported_cu);
11308 if (imported_name == NULL)
11309 {
11310 complaint (_("child DW_TAG_imported_declaration has unknown "
11311 "imported name - DIE at %s [in module %s]"),
11312 sect_offset_str (child_die->sect_off),
11313 objfile_name (objfile));
11314 continue;
11315 }
11316
11317 excludes.push_back (imported_name);
11318
11319 process_die (child_die, cu);
11320 }
11321
11322 add_using_directive (using_directives (cu),
11323 import_prefix,
11324 canonical_name,
11325 import_alias,
11326 imported_declaration,
11327 excludes,
11328 0,
11329 &objfile->objfile_obstack);
11330 }
11331
11332 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11333 types, but gives them a size of zero. Starting with version 14,
11334 ICC is compatible with GCC. */
11335
11336 static bool
11337 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11338 {
11339 if (!cu->checked_producer)
11340 check_producer (cu);
11341
11342 return cu->producer_is_icc_lt_14;
11343 }
11344
11345 /* ICC generates a DW_AT_type for C void functions. This was observed on
11346 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11347 which says that void functions should not have a DW_AT_type. */
11348
11349 static bool
11350 producer_is_icc (struct dwarf2_cu *cu)
11351 {
11352 if (!cu->checked_producer)
11353 check_producer (cu);
11354
11355 return cu->producer_is_icc;
11356 }
11357
11358 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11359 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11360 this, it was first present in GCC release 4.3.0. */
11361
11362 static bool
11363 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11364 {
11365 if (!cu->checked_producer)
11366 check_producer (cu);
11367
11368 return cu->producer_is_gcc_lt_4_3;
11369 }
11370
11371 static file_and_directory
11372 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11373 {
11374 file_and_directory res;
11375
11376 /* Find the filename. Do not use dwarf2_name here, since the filename
11377 is not a source language identifier. */
11378 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11379 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11380
11381 if (res.comp_dir == NULL
11382 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11383 && IS_ABSOLUTE_PATH (res.name))
11384 {
11385 res.comp_dir_storage = ldirname (res.name);
11386 if (!res.comp_dir_storage.empty ())
11387 res.comp_dir = res.comp_dir_storage.c_str ();
11388 }
11389 if (res.comp_dir != NULL)
11390 {
11391 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11392 directory, get rid of it. */
11393 const char *cp = strchr (res.comp_dir, ':');
11394
11395 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11396 res.comp_dir = cp + 1;
11397 }
11398
11399 if (res.name == NULL)
11400 res.name = "<unknown>";
11401
11402 return res;
11403 }
11404
11405 /* Handle DW_AT_stmt_list for a compilation unit.
11406 DIE is the DW_TAG_compile_unit die for CU.
11407 COMP_DIR is the compilation directory. LOWPC is passed to
11408 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11409
11410 static void
11411 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11412 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11413 {
11414 struct dwarf2_per_objfile *dwarf2_per_objfile
11415 = cu->per_cu->dwarf2_per_objfile;
11416 struct objfile *objfile = dwarf2_per_objfile->objfile;
11417 struct attribute *attr;
11418 struct line_header line_header_local;
11419 hashval_t line_header_local_hash;
11420 void **slot;
11421 int decode_mapping;
11422
11423 gdb_assert (! cu->per_cu->is_debug_types);
11424
11425 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11426 if (attr == NULL)
11427 return;
11428
11429 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11430
11431 /* The line header hash table is only created if needed (it exists to
11432 prevent redundant reading of the line table for partial_units).
11433 If we're given a partial_unit, we'll need it. If we're given a
11434 compile_unit, then use the line header hash table if it's already
11435 created, but don't create one just yet. */
11436
11437 if (dwarf2_per_objfile->line_header_hash == NULL
11438 && die->tag == DW_TAG_partial_unit)
11439 {
11440 dwarf2_per_objfile->line_header_hash
11441 = htab_create_alloc_ex (127, line_header_hash_voidp,
11442 line_header_eq_voidp,
11443 free_line_header_voidp,
11444 &objfile->objfile_obstack,
11445 hashtab_obstack_allocate,
11446 dummy_obstack_deallocate);
11447 }
11448
11449 line_header_local.sect_off = line_offset;
11450 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11451 line_header_local_hash = line_header_hash (&line_header_local);
11452 if (dwarf2_per_objfile->line_header_hash != NULL)
11453 {
11454 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11455 &line_header_local,
11456 line_header_local_hash, NO_INSERT);
11457
11458 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11459 is not present in *SLOT (since if there is something in *SLOT then
11460 it will be for a partial_unit). */
11461 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11462 {
11463 gdb_assert (*slot != NULL);
11464 cu->line_header = (struct line_header *) *slot;
11465 return;
11466 }
11467 }
11468
11469 /* dwarf_decode_line_header does not yet provide sufficient information.
11470 We always have to call also dwarf_decode_lines for it. */
11471 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11472 if (lh == NULL)
11473 return;
11474
11475 cu->line_header = lh.release ();
11476 cu->line_header_die_owner = die;
11477
11478 if (dwarf2_per_objfile->line_header_hash == NULL)
11479 slot = NULL;
11480 else
11481 {
11482 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11483 &line_header_local,
11484 line_header_local_hash, INSERT);
11485 gdb_assert (slot != NULL);
11486 }
11487 if (slot != NULL && *slot == NULL)
11488 {
11489 /* This newly decoded line number information unit will be owned
11490 by line_header_hash hash table. */
11491 *slot = cu->line_header;
11492 cu->line_header_die_owner = NULL;
11493 }
11494 else
11495 {
11496 /* We cannot free any current entry in (*slot) as that struct line_header
11497 may be already used by multiple CUs. Create only temporary decoded
11498 line_header for this CU - it may happen at most once for each line
11499 number information unit. And if we're not using line_header_hash
11500 then this is what we want as well. */
11501 gdb_assert (die->tag != DW_TAG_partial_unit);
11502 }
11503 decode_mapping = (die->tag != DW_TAG_partial_unit);
11504 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11505 decode_mapping);
11506
11507 }
11508
11509 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11510
11511 static void
11512 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11513 {
11514 struct dwarf2_per_objfile *dwarf2_per_objfile
11515 = cu->per_cu->dwarf2_per_objfile;
11516 struct objfile *objfile = dwarf2_per_objfile->objfile;
11517 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11518 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11519 CORE_ADDR highpc = ((CORE_ADDR) 0);
11520 struct attribute *attr;
11521 struct die_info *child_die;
11522 CORE_ADDR baseaddr;
11523
11524 prepare_one_comp_unit (cu, die, cu->language);
11525 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11526
11527 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11528
11529 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11530 from finish_block. */
11531 if (lowpc == ((CORE_ADDR) -1))
11532 lowpc = highpc;
11533 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11534
11535 file_and_directory fnd = find_file_and_directory (die, cu);
11536
11537 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11538 standardised yet. As a workaround for the language detection we fall
11539 back to the DW_AT_producer string. */
11540 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11541 cu->language = language_opencl;
11542
11543 /* Similar hack for Go. */
11544 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11545 set_cu_language (DW_LANG_Go, cu);
11546
11547 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11548
11549 /* Decode line number information if present. We do this before
11550 processing child DIEs, so that the line header table is available
11551 for DW_AT_decl_file. */
11552 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11553
11554 /* Process all dies in compilation unit. */
11555 if (die->child != NULL)
11556 {
11557 child_die = die->child;
11558 while (child_die && child_die->tag)
11559 {
11560 process_die (child_die, cu);
11561 child_die = sibling_die (child_die);
11562 }
11563 }
11564
11565 /* Decode macro information, if present. Dwarf 2 macro information
11566 refers to information in the line number info statement program
11567 header, so we can only read it if we've read the header
11568 successfully. */
11569 attr = dwarf2_attr (die, DW_AT_macros, cu);
11570 if (attr == NULL)
11571 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11572 if (attr && cu->line_header)
11573 {
11574 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11575 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11576
11577 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11578 }
11579 else
11580 {
11581 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11582 if (attr && cu->line_header)
11583 {
11584 unsigned int macro_offset = DW_UNSND (attr);
11585
11586 dwarf_decode_macros (cu, macro_offset, 0);
11587 }
11588 }
11589 }
11590
11591 void
11592 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11593 {
11594 struct type_unit_group *tu_group;
11595 int first_time;
11596 struct attribute *attr;
11597 unsigned int i;
11598 struct signatured_type *sig_type;
11599
11600 gdb_assert (per_cu->is_debug_types);
11601 sig_type = (struct signatured_type *) per_cu;
11602
11603 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11604
11605 /* If we're using .gdb_index (includes -readnow) then
11606 per_cu->type_unit_group may not have been set up yet. */
11607 if (sig_type->type_unit_group == NULL)
11608 sig_type->type_unit_group = get_type_unit_group (this, attr);
11609 tu_group = sig_type->type_unit_group;
11610
11611 /* If we've already processed this stmt_list there's no real need to
11612 do it again, we could fake it and just recreate the part we need
11613 (file name,index -> symtab mapping). If data shows this optimization
11614 is useful we can do it then. */
11615 first_time = tu_group->compunit_symtab == NULL;
11616
11617 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11618 debug info. */
11619 line_header_up lh;
11620 if (attr != NULL)
11621 {
11622 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11623 lh = dwarf_decode_line_header (line_offset, this);
11624 }
11625 if (lh == NULL)
11626 {
11627 if (first_time)
11628 start_symtab ("", NULL, 0);
11629 else
11630 {
11631 gdb_assert (tu_group->symtabs == NULL);
11632 gdb_assert (m_builder == nullptr);
11633 struct compunit_symtab *cust = tu_group->compunit_symtab;
11634 m_builder.reset (new struct buildsym_compunit
11635 (COMPUNIT_OBJFILE (cust), "",
11636 COMPUNIT_DIRNAME (cust),
11637 compunit_language (cust),
11638 0, cust));
11639 }
11640 return;
11641 }
11642
11643 line_header = lh.release ();
11644 line_header_die_owner = die;
11645
11646 if (first_time)
11647 {
11648 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11649
11650 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11651 still initializing it, and our caller (a few levels up)
11652 process_full_type_unit still needs to know if this is the first
11653 time. */
11654
11655 tu_group->num_symtabs = line_header->file_names.size ();
11656 tu_group->symtabs = XNEWVEC (struct symtab *,
11657 line_header->file_names.size ());
11658
11659 for (i = 0; i < line_header->file_names.size (); ++i)
11660 {
11661 file_entry &fe = line_header->file_names[i];
11662
11663 dwarf2_start_subfile (this, fe.name,
11664 fe.include_dir (line_header));
11665 buildsym_compunit *b = get_builder ();
11666 if (b->get_current_subfile ()->symtab == NULL)
11667 {
11668 /* NOTE: start_subfile will recognize when it's been
11669 passed a file it has already seen. So we can't
11670 assume there's a simple mapping from
11671 cu->line_header->file_names to subfiles, plus
11672 cu->line_header->file_names may contain dups. */
11673 b->get_current_subfile ()->symtab
11674 = allocate_symtab (cust, b->get_current_subfile ()->name);
11675 }
11676
11677 fe.symtab = b->get_current_subfile ()->symtab;
11678 tu_group->symtabs[i] = fe.symtab;
11679 }
11680 }
11681 else
11682 {
11683 gdb_assert (m_builder == nullptr);
11684 struct compunit_symtab *cust = tu_group->compunit_symtab;
11685 m_builder.reset (new struct buildsym_compunit
11686 (COMPUNIT_OBJFILE (cust), "",
11687 COMPUNIT_DIRNAME (cust),
11688 compunit_language (cust),
11689 0, cust));
11690
11691 for (i = 0; i < line_header->file_names.size (); ++i)
11692 {
11693 file_entry &fe = line_header->file_names[i];
11694
11695 fe.symtab = tu_group->symtabs[i];
11696 }
11697 }
11698
11699 /* The main symtab is allocated last. Type units don't have DW_AT_name
11700 so they don't have a "real" (so to speak) symtab anyway.
11701 There is later code that will assign the main symtab to all symbols
11702 that don't have one. We need to handle the case of a symbol with a
11703 missing symtab (DW_AT_decl_file) anyway. */
11704 }
11705
11706 /* Process DW_TAG_type_unit.
11707 For TUs we want to skip the first top level sibling if it's not the
11708 actual type being defined by this TU. In this case the first top
11709 level sibling is there to provide context only. */
11710
11711 static void
11712 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11713 {
11714 struct die_info *child_die;
11715
11716 prepare_one_comp_unit (cu, die, language_minimal);
11717
11718 /* Initialize (or reinitialize) the machinery for building symtabs.
11719 We do this before processing child DIEs, so that the line header table
11720 is available for DW_AT_decl_file. */
11721 cu->setup_type_unit_groups (die);
11722
11723 if (die->child != NULL)
11724 {
11725 child_die = die->child;
11726 while (child_die && child_die->tag)
11727 {
11728 process_die (child_die, cu);
11729 child_die = sibling_die (child_die);
11730 }
11731 }
11732 }
11733 \f
11734 /* DWO/DWP files.
11735
11736 http://gcc.gnu.org/wiki/DebugFission
11737 http://gcc.gnu.org/wiki/DebugFissionDWP
11738
11739 To simplify handling of both DWO files ("object" files with the DWARF info)
11740 and DWP files (a file with the DWOs packaged up into one file), we treat
11741 DWP files as having a collection of virtual DWO files. */
11742
11743 static hashval_t
11744 hash_dwo_file (const void *item)
11745 {
11746 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11747 hashval_t hash;
11748
11749 hash = htab_hash_string (dwo_file->dwo_name);
11750 if (dwo_file->comp_dir != NULL)
11751 hash += htab_hash_string (dwo_file->comp_dir);
11752 return hash;
11753 }
11754
11755 static int
11756 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11757 {
11758 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11759 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11760
11761 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11762 return 0;
11763 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11764 return lhs->comp_dir == rhs->comp_dir;
11765 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11766 }
11767
11768 /* Allocate a hash table for DWO files. */
11769
11770 static htab_up
11771 allocate_dwo_file_hash_table (struct objfile *objfile)
11772 {
11773 auto delete_dwo_file = [] (void *item)
11774 {
11775 struct dwo_file *dwo_file = (struct dwo_file *) item;
11776
11777 delete dwo_file;
11778 };
11779
11780 return htab_up (htab_create_alloc_ex (41,
11781 hash_dwo_file,
11782 eq_dwo_file,
11783 delete_dwo_file,
11784 &objfile->objfile_obstack,
11785 hashtab_obstack_allocate,
11786 dummy_obstack_deallocate));
11787 }
11788
11789 /* Lookup DWO file DWO_NAME. */
11790
11791 static void **
11792 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11793 const char *dwo_name,
11794 const char *comp_dir)
11795 {
11796 struct dwo_file find_entry;
11797 void **slot;
11798
11799 if (dwarf2_per_objfile->dwo_files == NULL)
11800 dwarf2_per_objfile->dwo_files
11801 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11802
11803 find_entry.dwo_name = dwo_name;
11804 find_entry.comp_dir = comp_dir;
11805 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11806 INSERT);
11807
11808 return slot;
11809 }
11810
11811 static hashval_t
11812 hash_dwo_unit (const void *item)
11813 {
11814 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11815
11816 /* This drops the top 32 bits of the id, but is ok for a hash. */
11817 return dwo_unit->signature;
11818 }
11819
11820 static int
11821 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11822 {
11823 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11824 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11825
11826 /* The signature is assumed to be unique within the DWO file.
11827 So while object file CU dwo_id's always have the value zero,
11828 that's OK, assuming each object file DWO file has only one CU,
11829 and that's the rule for now. */
11830 return lhs->signature == rhs->signature;
11831 }
11832
11833 /* Allocate a hash table for DWO CUs,TUs.
11834 There is one of these tables for each of CUs,TUs for each DWO file. */
11835
11836 static htab_t
11837 allocate_dwo_unit_table (struct objfile *objfile)
11838 {
11839 /* Start out with a pretty small number.
11840 Generally DWO files contain only one CU and maybe some TUs. */
11841 return htab_create_alloc_ex (3,
11842 hash_dwo_unit,
11843 eq_dwo_unit,
11844 NULL,
11845 &objfile->objfile_obstack,
11846 hashtab_obstack_allocate,
11847 dummy_obstack_deallocate);
11848 }
11849
11850 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11851
11852 struct create_dwo_cu_data
11853 {
11854 struct dwo_file *dwo_file;
11855 struct dwo_unit dwo_unit;
11856 };
11857
11858 /* die_reader_func for create_dwo_cu. */
11859
11860 static void
11861 create_dwo_cu_reader (const struct die_reader_specs *reader,
11862 const gdb_byte *info_ptr,
11863 struct die_info *comp_unit_die,
11864 int has_children,
11865 void *datap)
11866 {
11867 struct dwarf2_cu *cu = reader->cu;
11868 sect_offset sect_off = cu->per_cu->sect_off;
11869 struct dwarf2_section_info *section = cu->per_cu->section;
11870 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11871 struct dwo_file *dwo_file = data->dwo_file;
11872 struct dwo_unit *dwo_unit = &data->dwo_unit;
11873
11874 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11875 if (!signature.has_value ())
11876 {
11877 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11878 " its dwo_id [in module %s]"),
11879 sect_offset_str (sect_off), dwo_file->dwo_name);
11880 return;
11881 }
11882
11883 dwo_unit->dwo_file = dwo_file;
11884 dwo_unit->signature = *signature;
11885 dwo_unit->section = section;
11886 dwo_unit->sect_off = sect_off;
11887 dwo_unit->length = cu->per_cu->length;
11888
11889 if (dwarf_read_debug)
11890 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11891 sect_offset_str (sect_off),
11892 hex_string (dwo_unit->signature));
11893 }
11894
11895 /* Create the dwo_units for the CUs in a DWO_FILE.
11896 Note: This function processes DWO files only, not DWP files. */
11897
11898 static void
11899 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11900 struct dwo_file &dwo_file, dwarf2_section_info &section,
11901 htab_t &cus_htab)
11902 {
11903 struct objfile *objfile = dwarf2_per_objfile->objfile;
11904 const gdb_byte *info_ptr, *end_ptr;
11905
11906 dwarf2_read_section (objfile, &section);
11907 info_ptr = section.buffer;
11908
11909 if (info_ptr == NULL)
11910 return;
11911
11912 if (dwarf_read_debug)
11913 {
11914 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11915 get_section_name (&section),
11916 get_section_file_name (&section));
11917 }
11918
11919 end_ptr = info_ptr + section.size;
11920 while (info_ptr < end_ptr)
11921 {
11922 struct dwarf2_per_cu_data per_cu;
11923 struct create_dwo_cu_data create_dwo_cu_data;
11924 struct dwo_unit *dwo_unit;
11925 void **slot;
11926 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11927
11928 memset (&create_dwo_cu_data.dwo_unit, 0,
11929 sizeof (create_dwo_cu_data.dwo_unit));
11930 memset (&per_cu, 0, sizeof (per_cu));
11931 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11932 per_cu.is_debug_types = 0;
11933 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11934 per_cu.section = &section;
11935 create_dwo_cu_data.dwo_file = &dwo_file;
11936
11937 init_cutu_and_read_dies_no_follow (
11938 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11939 info_ptr += per_cu.length;
11940
11941 // If the unit could not be parsed, skip it.
11942 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11943 continue;
11944
11945 if (cus_htab == NULL)
11946 cus_htab = allocate_dwo_unit_table (objfile);
11947
11948 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11949 *dwo_unit = create_dwo_cu_data.dwo_unit;
11950 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11951 gdb_assert (slot != NULL);
11952 if (*slot != NULL)
11953 {
11954 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11955 sect_offset dup_sect_off = dup_cu->sect_off;
11956
11957 complaint (_("debug cu entry at offset %s is duplicate to"
11958 " the entry at offset %s, signature %s"),
11959 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11960 hex_string (dwo_unit->signature));
11961 }
11962 *slot = (void *)dwo_unit;
11963 }
11964 }
11965
11966 /* DWP file .debug_{cu,tu}_index section format:
11967 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11968
11969 DWP Version 1:
11970
11971 Both index sections have the same format, and serve to map a 64-bit
11972 signature to a set of section numbers. Each section begins with a header,
11973 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11974 indexes, and a pool of 32-bit section numbers. The index sections will be
11975 aligned at 8-byte boundaries in the file.
11976
11977 The index section header consists of:
11978
11979 V, 32 bit version number
11980 -, 32 bits unused
11981 N, 32 bit number of compilation units or type units in the index
11982 M, 32 bit number of slots in the hash table
11983
11984 Numbers are recorded using the byte order of the application binary.
11985
11986 The hash table begins at offset 16 in the section, and consists of an array
11987 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11988 order of the application binary). Unused slots in the hash table are 0.
11989 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11990
11991 The parallel table begins immediately after the hash table
11992 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11993 array of 32-bit indexes (using the byte order of the application binary),
11994 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11995 table contains a 32-bit index into the pool of section numbers. For unused
11996 hash table slots, the corresponding entry in the parallel table will be 0.
11997
11998 The pool of section numbers begins immediately following the hash table
11999 (at offset 16 + 12 * M from the beginning of the section). The pool of
12000 section numbers consists of an array of 32-bit words (using the byte order
12001 of the application binary). Each item in the array is indexed starting
12002 from 0. The hash table entry provides the index of the first section
12003 number in the set. Additional section numbers in the set follow, and the
12004 set is terminated by a 0 entry (section number 0 is not used in ELF).
12005
12006 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12007 section must be the first entry in the set, and the .debug_abbrev.dwo must
12008 be the second entry. Other members of the set may follow in any order.
12009
12010 ---
12011
12012 DWP Version 2:
12013
12014 DWP Version 2 combines all the .debug_info, etc. sections into one,
12015 and the entries in the index tables are now offsets into these sections.
12016 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12017 section.
12018
12019 Index Section Contents:
12020 Header
12021 Hash Table of Signatures dwp_hash_table.hash_table
12022 Parallel Table of Indices dwp_hash_table.unit_table
12023 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12024 Table of Section Sizes dwp_hash_table.v2.sizes
12025
12026 The index section header consists of:
12027
12028 V, 32 bit version number
12029 L, 32 bit number of columns in the table of section offsets
12030 N, 32 bit number of compilation units or type units in the index
12031 M, 32 bit number of slots in the hash table
12032
12033 Numbers are recorded using the byte order of the application binary.
12034
12035 The hash table has the same format as version 1.
12036 The parallel table of indices has the same format as version 1,
12037 except that the entries are origin-1 indices into the table of sections
12038 offsets and the table of section sizes.
12039
12040 The table of offsets begins immediately following the parallel table
12041 (at offset 16 + 12 * M from the beginning of the section). The table is
12042 a two-dimensional array of 32-bit words (using the byte order of the
12043 application binary), with L columns and N+1 rows, in row-major order.
12044 Each row in the array is indexed starting from 0. The first row provides
12045 a key to the remaining rows: each column in this row provides an identifier
12046 for a debug section, and the offsets in the same column of subsequent rows
12047 refer to that section. The section identifiers are:
12048
12049 DW_SECT_INFO 1 .debug_info.dwo
12050 DW_SECT_TYPES 2 .debug_types.dwo
12051 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12052 DW_SECT_LINE 4 .debug_line.dwo
12053 DW_SECT_LOC 5 .debug_loc.dwo
12054 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12055 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12056 DW_SECT_MACRO 8 .debug_macro.dwo
12057
12058 The offsets provided by the CU and TU index sections are the base offsets
12059 for the contributions made by each CU or TU to the corresponding section
12060 in the package file. Each CU and TU header contains an abbrev_offset
12061 field, used to find the abbreviations table for that CU or TU within the
12062 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12063 be interpreted as relative to the base offset given in the index section.
12064 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12065 should be interpreted as relative to the base offset for .debug_line.dwo,
12066 and offsets into other debug sections obtained from DWARF attributes should
12067 also be interpreted as relative to the corresponding base offset.
12068
12069 The table of sizes begins immediately following the table of offsets.
12070 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12071 with L columns and N rows, in row-major order. Each row in the array is
12072 indexed starting from 1 (row 0 is shared by the two tables).
12073
12074 ---
12075
12076 Hash table lookup is handled the same in version 1 and 2:
12077
12078 We assume that N and M will not exceed 2^32 - 1.
12079 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12080
12081 Given a 64-bit compilation unit signature or a type signature S, an entry
12082 in the hash table is located as follows:
12083
12084 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12085 the low-order k bits all set to 1.
12086
12087 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12088
12089 3) If the hash table entry at index H matches the signature, use that
12090 entry. If the hash table entry at index H is unused (all zeroes),
12091 terminate the search: the signature is not present in the table.
12092
12093 4) Let H = (H + H') modulo M. Repeat at Step 3.
12094
12095 Because M > N and H' and M are relatively prime, the search is guaranteed
12096 to stop at an unused slot or find the match. */
12097
12098 /* Create a hash table to map DWO IDs to their CU/TU entry in
12099 .debug_{info,types}.dwo in DWP_FILE.
12100 Returns NULL if there isn't one.
12101 Note: This function processes DWP files only, not DWO files. */
12102
12103 static struct dwp_hash_table *
12104 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12105 struct dwp_file *dwp_file, int is_debug_types)
12106 {
12107 struct objfile *objfile = dwarf2_per_objfile->objfile;
12108 bfd *dbfd = dwp_file->dbfd.get ();
12109 const gdb_byte *index_ptr, *index_end;
12110 struct dwarf2_section_info *index;
12111 uint32_t version, nr_columns, nr_units, nr_slots;
12112 struct dwp_hash_table *htab;
12113
12114 if (is_debug_types)
12115 index = &dwp_file->sections.tu_index;
12116 else
12117 index = &dwp_file->sections.cu_index;
12118
12119 if (dwarf2_section_empty_p (index))
12120 return NULL;
12121 dwarf2_read_section (objfile, index);
12122
12123 index_ptr = index->buffer;
12124 index_end = index_ptr + index->size;
12125
12126 version = read_4_bytes (dbfd, index_ptr);
12127 index_ptr += 4;
12128 if (version == 2)
12129 nr_columns = read_4_bytes (dbfd, index_ptr);
12130 else
12131 nr_columns = 0;
12132 index_ptr += 4;
12133 nr_units = read_4_bytes (dbfd, index_ptr);
12134 index_ptr += 4;
12135 nr_slots = read_4_bytes (dbfd, index_ptr);
12136 index_ptr += 4;
12137
12138 if (version != 1 && version != 2)
12139 {
12140 error (_("Dwarf Error: unsupported DWP file version (%s)"
12141 " [in module %s]"),
12142 pulongest (version), dwp_file->name);
12143 }
12144 if (nr_slots != (nr_slots & -nr_slots))
12145 {
12146 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12147 " is not power of 2 [in module %s]"),
12148 pulongest (nr_slots), dwp_file->name);
12149 }
12150
12151 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12152 htab->version = version;
12153 htab->nr_columns = nr_columns;
12154 htab->nr_units = nr_units;
12155 htab->nr_slots = nr_slots;
12156 htab->hash_table = index_ptr;
12157 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12158
12159 /* Exit early if the table is empty. */
12160 if (nr_slots == 0 || nr_units == 0
12161 || (version == 2 && nr_columns == 0))
12162 {
12163 /* All must be zero. */
12164 if (nr_slots != 0 || nr_units != 0
12165 || (version == 2 && nr_columns != 0))
12166 {
12167 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12168 " all zero [in modules %s]"),
12169 dwp_file->name);
12170 }
12171 return htab;
12172 }
12173
12174 if (version == 1)
12175 {
12176 htab->section_pool.v1.indices =
12177 htab->unit_table + sizeof (uint32_t) * nr_slots;
12178 /* It's harder to decide whether the section is too small in v1.
12179 V1 is deprecated anyway so we punt. */
12180 }
12181 else
12182 {
12183 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12184 int *ids = htab->section_pool.v2.section_ids;
12185 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12186 /* Reverse map for error checking. */
12187 int ids_seen[DW_SECT_MAX + 1];
12188 int i;
12189
12190 if (nr_columns < 2)
12191 {
12192 error (_("Dwarf Error: bad DWP hash table, too few columns"
12193 " in section table [in module %s]"),
12194 dwp_file->name);
12195 }
12196 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12197 {
12198 error (_("Dwarf Error: bad DWP hash table, too many columns"
12199 " in section table [in module %s]"),
12200 dwp_file->name);
12201 }
12202 memset (ids, 255, sizeof_ids);
12203 memset (ids_seen, 255, sizeof (ids_seen));
12204 for (i = 0; i < nr_columns; ++i)
12205 {
12206 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12207
12208 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12209 {
12210 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12211 " in section table [in module %s]"),
12212 id, dwp_file->name);
12213 }
12214 if (ids_seen[id] != -1)
12215 {
12216 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12217 " id %d in section table [in module %s]"),
12218 id, dwp_file->name);
12219 }
12220 ids_seen[id] = i;
12221 ids[i] = id;
12222 }
12223 /* Must have exactly one info or types section. */
12224 if (((ids_seen[DW_SECT_INFO] != -1)
12225 + (ids_seen[DW_SECT_TYPES] != -1))
12226 != 1)
12227 {
12228 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12229 " DWO info/types section [in module %s]"),
12230 dwp_file->name);
12231 }
12232 /* Must have an abbrev section. */
12233 if (ids_seen[DW_SECT_ABBREV] == -1)
12234 {
12235 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12236 " section [in module %s]"),
12237 dwp_file->name);
12238 }
12239 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12240 htab->section_pool.v2.sizes =
12241 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12242 * nr_units * nr_columns);
12243 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12244 * nr_units * nr_columns))
12245 > index_end)
12246 {
12247 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12248 " [in module %s]"),
12249 dwp_file->name);
12250 }
12251 }
12252
12253 return htab;
12254 }
12255
12256 /* Update SECTIONS with the data from SECTP.
12257
12258 This function is like the other "locate" section routines that are
12259 passed to bfd_map_over_sections, but in this context the sections to
12260 read comes from the DWP V1 hash table, not the full ELF section table.
12261
12262 The result is non-zero for success, or zero if an error was found. */
12263
12264 static int
12265 locate_v1_virtual_dwo_sections (asection *sectp,
12266 struct virtual_v1_dwo_sections *sections)
12267 {
12268 const struct dwop_section_names *names = &dwop_section_names;
12269
12270 if (section_is_p (sectp->name, &names->abbrev_dwo))
12271 {
12272 /* There can be only one. */
12273 if (sections->abbrev.s.section != NULL)
12274 return 0;
12275 sections->abbrev.s.section = sectp;
12276 sections->abbrev.size = bfd_get_section_size (sectp);
12277 }
12278 else if (section_is_p (sectp->name, &names->info_dwo)
12279 || section_is_p (sectp->name, &names->types_dwo))
12280 {
12281 /* There can be only one. */
12282 if (sections->info_or_types.s.section != NULL)
12283 return 0;
12284 sections->info_or_types.s.section = sectp;
12285 sections->info_or_types.size = bfd_get_section_size (sectp);
12286 }
12287 else if (section_is_p (sectp->name, &names->line_dwo))
12288 {
12289 /* There can be only one. */
12290 if (sections->line.s.section != NULL)
12291 return 0;
12292 sections->line.s.section = sectp;
12293 sections->line.size = bfd_get_section_size (sectp);
12294 }
12295 else if (section_is_p (sectp->name, &names->loc_dwo))
12296 {
12297 /* There can be only one. */
12298 if (sections->loc.s.section != NULL)
12299 return 0;
12300 sections->loc.s.section = sectp;
12301 sections->loc.size = bfd_get_section_size (sectp);
12302 }
12303 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12304 {
12305 /* There can be only one. */
12306 if (sections->macinfo.s.section != NULL)
12307 return 0;
12308 sections->macinfo.s.section = sectp;
12309 sections->macinfo.size = bfd_get_section_size (sectp);
12310 }
12311 else if (section_is_p (sectp->name, &names->macro_dwo))
12312 {
12313 /* There can be only one. */
12314 if (sections->macro.s.section != NULL)
12315 return 0;
12316 sections->macro.s.section = sectp;
12317 sections->macro.size = bfd_get_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12320 {
12321 /* There can be only one. */
12322 if (sections->str_offsets.s.section != NULL)
12323 return 0;
12324 sections->str_offsets.s.section = sectp;
12325 sections->str_offsets.size = bfd_get_section_size (sectp);
12326 }
12327 else
12328 {
12329 /* No other kind of section is valid. */
12330 return 0;
12331 }
12332
12333 return 1;
12334 }
12335
12336 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12337 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12338 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12339 This is for DWP version 1 files. */
12340
12341 static struct dwo_unit *
12342 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12343 struct dwp_file *dwp_file,
12344 uint32_t unit_index,
12345 const char *comp_dir,
12346 ULONGEST signature, int is_debug_types)
12347 {
12348 struct objfile *objfile = dwarf2_per_objfile->objfile;
12349 const struct dwp_hash_table *dwp_htab =
12350 is_debug_types ? dwp_file->tus : dwp_file->cus;
12351 bfd *dbfd = dwp_file->dbfd.get ();
12352 const char *kind = is_debug_types ? "TU" : "CU";
12353 struct dwo_file *dwo_file;
12354 struct dwo_unit *dwo_unit;
12355 struct virtual_v1_dwo_sections sections;
12356 void **dwo_file_slot;
12357 int i;
12358
12359 gdb_assert (dwp_file->version == 1);
12360
12361 if (dwarf_read_debug)
12362 {
12363 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12364 kind,
12365 pulongest (unit_index), hex_string (signature),
12366 dwp_file->name);
12367 }
12368
12369 /* Fetch the sections of this DWO unit.
12370 Put a limit on the number of sections we look for so that bad data
12371 doesn't cause us to loop forever. */
12372
12373 #define MAX_NR_V1_DWO_SECTIONS \
12374 (1 /* .debug_info or .debug_types */ \
12375 + 1 /* .debug_abbrev */ \
12376 + 1 /* .debug_line */ \
12377 + 1 /* .debug_loc */ \
12378 + 1 /* .debug_str_offsets */ \
12379 + 1 /* .debug_macro or .debug_macinfo */ \
12380 + 1 /* trailing zero */)
12381
12382 memset (&sections, 0, sizeof (sections));
12383
12384 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12385 {
12386 asection *sectp;
12387 uint32_t section_nr =
12388 read_4_bytes (dbfd,
12389 dwp_htab->section_pool.v1.indices
12390 + (unit_index + i) * sizeof (uint32_t));
12391
12392 if (section_nr == 0)
12393 break;
12394 if (section_nr >= dwp_file->num_sections)
12395 {
12396 error (_("Dwarf Error: bad DWP hash table, section number too large"
12397 " [in module %s]"),
12398 dwp_file->name);
12399 }
12400
12401 sectp = dwp_file->elf_sections[section_nr];
12402 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12403 {
12404 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12405 " [in module %s]"),
12406 dwp_file->name);
12407 }
12408 }
12409
12410 if (i < 2
12411 || dwarf2_section_empty_p (&sections.info_or_types)
12412 || dwarf2_section_empty_p (&sections.abbrev))
12413 {
12414 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12415 " [in module %s]"),
12416 dwp_file->name);
12417 }
12418 if (i == MAX_NR_V1_DWO_SECTIONS)
12419 {
12420 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12421 " [in module %s]"),
12422 dwp_file->name);
12423 }
12424
12425 /* It's easier for the rest of the code if we fake a struct dwo_file and
12426 have dwo_unit "live" in that. At least for now.
12427
12428 The DWP file can be made up of a random collection of CUs and TUs.
12429 However, for each CU + set of TUs that came from the same original DWO
12430 file, we can combine them back into a virtual DWO file to save space
12431 (fewer struct dwo_file objects to allocate). Remember that for really
12432 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12433
12434 std::string virtual_dwo_name =
12435 string_printf ("virtual-dwo/%d-%d-%d-%d",
12436 get_section_id (&sections.abbrev),
12437 get_section_id (&sections.line),
12438 get_section_id (&sections.loc),
12439 get_section_id (&sections.str_offsets));
12440 /* Can we use an existing virtual DWO file? */
12441 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12442 virtual_dwo_name.c_str (),
12443 comp_dir);
12444 /* Create one if necessary. */
12445 if (*dwo_file_slot == NULL)
12446 {
12447 if (dwarf_read_debug)
12448 {
12449 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12450 virtual_dwo_name.c_str ());
12451 }
12452 dwo_file = new struct dwo_file;
12453 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12454 virtual_dwo_name);
12455 dwo_file->comp_dir = comp_dir;
12456 dwo_file->sections.abbrev = sections.abbrev;
12457 dwo_file->sections.line = sections.line;
12458 dwo_file->sections.loc = sections.loc;
12459 dwo_file->sections.macinfo = sections.macinfo;
12460 dwo_file->sections.macro = sections.macro;
12461 dwo_file->sections.str_offsets = sections.str_offsets;
12462 /* The "str" section is global to the entire DWP file. */
12463 dwo_file->sections.str = dwp_file->sections.str;
12464 /* The info or types section is assigned below to dwo_unit,
12465 there's no need to record it in dwo_file.
12466 Also, we can't simply record type sections in dwo_file because
12467 we record a pointer into the vector in dwo_unit. As we collect more
12468 types we'll grow the vector and eventually have to reallocate space
12469 for it, invalidating all copies of pointers into the previous
12470 contents. */
12471 *dwo_file_slot = dwo_file;
12472 }
12473 else
12474 {
12475 if (dwarf_read_debug)
12476 {
12477 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12478 virtual_dwo_name.c_str ());
12479 }
12480 dwo_file = (struct dwo_file *) *dwo_file_slot;
12481 }
12482
12483 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12484 dwo_unit->dwo_file = dwo_file;
12485 dwo_unit->signature = signature;
12486 dwo_unit->section =
12487 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12488 *dwo_unit->section = sections.info_or_types;
12489 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12490
12491 return dwo_unit;
12492 }
12493
12494 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12495 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12496 piece within that section used by a TU/CU, return a virtual section
12497 of just that piece. */
12498
12499 static struct dwarf2_section_info
12500 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12501 struct dwarf2_section_info *section,
12502 bfd_size_type offset, bfd_size_type size)
12503 {
12504 struct dwarf2_section_info result;
12505 asection *sectp;
12506
12507 gdb_assert (section != NULL);
12508 gdb_assert (!section->is_virtual);
12509
12510 memset (&result, 0, sizeof (result));
12511 result.s.containing_section = section;
12512 result.is_virtual = true;
12513
12514 if (size == 0)
12515 return result;
12516
12517 sectp = get_section_bfd_section (section);
12518
12519 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12520 bounds of the real section. This is a pretty-rare event, so just
12521 flag an error (easier) instead of a warning and trying to cope. */
12522 if (sectp == NULL
12523 || offset + size > bfd_get_section_size (sectp))
12524 {
12525 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12526 " in section %s [in module %s]"),
12527 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12528 objfile_name (dwarf2_per_objfile->objfile));
12529 }
12530
12531 result.virtual_offset = offset;
12532 result.size = size;
12533 return result;
12534 }
12535
12536 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12537 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12538 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12539 This is for DWP version 2 files. */
12540
12541 static struct dwo_unit *
12542 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12543 struct dwp_file *dwp_file,
12544 uint32_t unit_index,
12545 const char *comp_dir,
12546 ULONGEST signature, int is_debug_types)
12547 {
12548 struct objfile *objfile = dwarf2_per_objfile->objfile;
12549 const struct dwp_hash_table *dwp_htab =
12550 is_debug_types ? dwp_file->tus : dwp_file->cus;
12551 bfd *dbfd = dwp_file->dbfd.get ();
12552 const char *kind = is_debug_types ? "TU" : "CU";
12553 struct dwo_file *dwo_file;
12554 struct dwo_unit *dwo_unit;
12555 struct virtual_v2_dwo_sections sections;
12556 void **dwo_file_slot;
12557 int i;
12558
12559 gdb_assert (dwp_file->version == 2);
12560
12561 if (dwarf_read_debug)
12562 {
12563 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12564 kind,
12565 pulongest (unit_index), hex_string (signature),
12566 dwp_file->name);
12567 }
12568
12569 /* Fetch the section offsets of this DWO unit. */
12570
12571 memset (&sections, 0, sizeof (sections));
12572
12573 for (i = 0; i < dwp_htab->nr_columns; ++i)
12574 {
12575 uint32_t offset = read_4_bytes (dbfd,
12576 dwp_htab->section_pool.v2.offsets
12577 + (((unit_index - 1) * dwp_htab->nr_columns
12578 + i)
12579 * sizeof (uint32_t)));
12580 uint32_t size = read_4_bytes (dbfd,
12581 dwp_htab->section_pool.v2.sizes
12582 + (((unit_index - 1) * dwp_htab->nr_columns
12583 + i)
12584 * sizeof (uint32_t)));
12585
12586 switch (dwp_htab->section_pool.v2.section_ids[i])
12587 {
12588 case DW_SECT_INFO:
12589 case DW_SECT_TYPES:
12590 sections.info_or_types_offset = offset;
12591 sections.info_or_types_size = size;
12592 break;
12593 case DW_SECT_ABBREV:
12594 sections.abbrev_offset = offset;
12595 sections.abbrev_size = size;
12596 break;
12597 case DW_SECT_LINE:
12598 sections.line_offset = offset;
12599 sections.line_size = size;
12600 break;
12601 case DW_SECT_LOC:
12602 sections.loc_offset = offset;
12603 sections.loc_size = size;
12604 break;
12605 case DW_SECT_STR_OFFSETS:
12606 sections.str_offsets_offset = offset;
12607 sections.str_offsets_size = size;
12608 break;
12609 case DW_SECT_MACINFO:
12610 sections.macinfo_offset = offset;
12611 sections.macinfo_size = size;
12612 break;
12613 case DW_SECT_MACRO:
12614 sections.macro_offset = offset;
12615 sections.macro_size = size;
12616 break;
12617 }
12618 }
12619
12620 /* It's easier for the rest of the code if we fake a struct dwo_file and
12621 have dwo_unit "live" in that. At least for now.
12622
12623 The DWP file can be made up of a random collection of CUs and TUs.
12624 However, for each CU + set of TUs that came from the same original DWO
12625 file, we can combine them back into a virtual DWO file to save space
12626 (fewer struct dwo_file objects to allocate). Remember that for really
12627 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12628
12629 std::string virtual_dwo_name =
12630 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12631 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12632 (long) (sections.line_size ? sections.line_offset : 0),
12633 (long) (sections.loc_size ? sections.loc_offset : 0),
12634 (long) (sections.str_offsets_size
12635 ? sections.str_offsets_offset : 0));
12636 /* Can we use an existing virtual DWO file? */
12637 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12638 virtual_dwo_name.c_str (),
12639 comp_dir);
12640 /* Create one if necessary. */
12641 if (*dwo_file_slot == NULL)
12642 {
12643 if (dwarf_read_debug)
12644 {
12645 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12646 virtual_dwo_name.c_str ());
12647 }
12648 dwo_file = new struct dwo_file;
12649 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12650 virtual_dwo_name);
12651 dwo_file->comp_dir = comp_dir;
12652 dwo_file->sections.abbrev =
12653 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12654 sections.abbrev_offset, sections.abbrev_size);
12655 dwo_file->sections.line =
12656 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12657 sections.line_offset, sections.line_size);
12658 dwo_file->sections.loc =
12659 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12660 sections.loc_offset, sections.loc_size);
12661 dwo_file->sections.macinfo =
12662 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12663 sections.macinfo_offset, sections.macinfo_size);
12664 dwo_file->sections.macro =
12665 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12666 sections.macro_offset, sections.macro_size);
12667 dwo_file->sections.str_offsets =
12668 create_dwp_v2_section (dwarf2_per_objfile,
12669 &dwp_file->sections.str_offsets,
12670 sections.str_offsets_offset,
12671 sections.str_offsets_size);
12672 /* The "str" section is global to the entire DWP file. */
12673 dwo_file->sections.str = dwp_file->sections.str;
12674 /* The info or types section is assigned below to dwo_unit,
12675 there's no need to record it in dwo_file.
12676 Also, we can't simply record type sections in dwo_file because
12677 we record a pointer into the vector in dwo_unit. As we collect more
12678 types we'll grow the vector and eventually have to reallocate space
12679 for it, invalidating all copies of pointers into the previous
12680 contents. */
12681 *dwo_file_slot = dwo_file;
12682 }
12683 else
12684 {
12685 if (dwarf_read_debug)
12686 {
12687 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12688 virtual_dwo_name.c_str ());
12689 }
12690 dwo_file = (struct dwo_file *) *dwo_file_slot;
12691 }
12692
12693 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12694 dwo_unit->dwo_file = dwo_file;
12695 dwo_unit->signature = signature;
12696 dwo_unit->section =
12697 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12698 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12699 is_debug_types
12700 ? &dwp_file->sections.types
12701 : &dwp_file->sections.info,
12702 sections.info_or_types_offset,
12703 sections.info_or_types_size);
12704 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12705
12706 return dwo_unit;
12707 }
12708
12709 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12710 Returns NULL if the signature isn't found. */
12711
12712 static struct dwo_unit *
12713 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12714 struct dwp_file *dwp_file, const char *comp_dir,
12715 ULONGEST signature, int is_debug_types)
12716 {
12717 const struct dwp_hash_table *dwp_htab =
12718 is_debug_types ? dwp_file->tus : dwp_file->cus;
12719 bfd *dbfd = dwp_file->dbfd.get ();
12720 uint32_t mask = dwp_htab->nr_slots - 1;
12721 uint32_t hash = signature & mask;
12722 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12723 unsigned int i;
12724 void **slot;
12725 struct dwo_unit find_dwo_cu;
12726
12727 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12728 find_dwo_cu.signature = signature;
12729 slot = htab_find_slot (is_debug_types
12730 ? dwp_file->loaded_tus
12731 : dwp_file->loaded_cus,
12732 &find_dwo_cu, INSERT);
12733
12734 if (*slot != NULL)
12735 return (struct dwo_unit *) *slot;
12736
12737 /* Use a for loop so that we don't loop forever on bad debug info. */
12738 for (i = 0; i < dwp_htab->nr_slots; ++i)
12739 {
12740 ULONGEST signature_in_table;
12741
12742 signature_in_table =
12743 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12744 if (signature_in_table == signature)
12745 {
12746 uint32_t unit_index =
12747 read_4_bytes (dbfd,
12748 dwp_htab->unit_table + hash * sizeof (uint32_t));
12749
12750 if (dwp_file->version == 1)
12751 {
12752 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12753 dwp_file, unit_index,
12754 comp_dir, signature,
12755 is_debug_types);
12756 }
12757 else
12758 {
12759 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12760 dwp_file, unit_index,
12761 comp_dir, signature,
12762 is_debug_types);
12763 }
12764 return (struct dwo_unit *) *slot;
12765 }
12766 if (signature_in_table == 0)
12767 return NULL;
12768 hash = (hash + hash2) & mask;
12769 }
12770
12771 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12772 " [in module %s]"),
12773 dwp_file->name);
12774 }
12775
12776 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12777 Open the file specified by FILE_NAME and hand it off to BFD for
12778 preliminary analysis. Return a newly initialized bfd *, which
12779 includes a canonicalized copy of FILE_NAME.
12780 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12781 SEARCH_CWD is true if the current directory is to be searched.
12782 It will be searched before debug-file-directory.
12783 If successful, the file is added to the bfd include table of the
12784 objfile's bfd (see gdb_bfd_record_inclusion).
12785 If unable to find/open the file, return NULL.
12786 NOTE: This function is derived from symfile_bfd_open. */
12787
12788 static gdb_bfd_ref_ptr
12789 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12790 const char *file_name, int is_dwp, int search_cwd)
12791 {
12792 int desc;
12793 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12794 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12795 to debug_file_directory. */
12796 const char *search_path;
12797 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12798
12799 gdb::unique_xmalloc_ptr<char> search_path_holder;
12800 if (search_cwd)
12801 {
12802 if (*debug_file_directory != '\0')
12803 {
12804 search_path_holder.reset (concat (".", dirname_separator_string,
12805 debug_file_directory,
12806 (char *) NULL));
12807 search_path = search_path_holder.get ();
12808 }
12809 else
12810 search_path = ".";
12811 }
12812 else
12813 search_path = debug_file_directory;
12814
12815 openp_flags flags = OPF_RETURN_REALPATH;
12816 if (is_dwp)
12817 flags |= OPF_SEARCH_IN_PATH;
12818
12819 gdb::unique_xmalloc_ptr<char> absolute_name;
12820 desc = openp (search_path, flags, file_name,
12821 O_RDONLY | O_BINARY, &absolute_name);
12822 if (desc < 0)
12823 return NULL;
12824
12825 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12826 gnutarget, desc));
12827 if (sym_bfd == NULL)
12828 return NULL;
12829 bfd_set_cacheable (sym_bfd.get (), 1);
12830
12831 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12832 return NULL;
12833
12834 /* Success. Record the bfd as having been included by the objfile's bfd.
12835 This is important because things like demangled_names_hash lives in the
12836 objfile's per_bfd space and may have references to things like symbol
12837 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12838 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12839
12840 return sym_bfd;
12841 }
12842
12843 /* Try to open DWO file FILE_NAME.
12844 COMP_DIR is the DW_AT_comp_dir attribute.
12845 The result is the bfd handle of the file.
12846 If there is a problem finding or opening the file, return NULL.
12847 Upon success, the canonicalized path of the file is stored in the bfd,
12848 same as symfile_bfd_open. */
12849
12850 static gdb_bfd_ref_ptr
12851 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12852 const char *file_name, const char *comp_dir)
12853 {
12854 if (IS_ABSOLUTE_PATH (file_name))
12855 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12856 0 /*is_dwp*/, 0 /*search_cwd*/);
12857
12858 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12859
12860 if (comp_dir != NULL)
12861 {
12862 char *path_to_try = concat (comp_dir, SLASH_STRING,
12863 file_name, (char *) NULL);
12864
12865 /* NOTE: If comp_dir is a relative path, this will also try the
12866 search path, which seems useful. */
12867 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12868 path_to_try,
12869 0 /*is_dwp*/,
12870 1 /*search_cwd*/));
12871 xfree (path_to_try);
12872 if (abfd != NULL)
12873 return abfd;
12874 }
12875
12876 /* That didn't work, try debug-file-directory, which, despite its name,
12877 is a list of paths. */
12878
12879 if (*debug_file_directory == '\0')
12880 return NULL;
12881
12882 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12883 0 /*is_dwp*/, 1 /*search_cwd*/);
12884 }
12885
12886 /* This function is mapped across the sections and remembers the offset and
12887 size of each of the DWO debugging sections we are interested in. */
12888
12889 static void
12890 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12891 {
12892 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12893 const struct dwop_section_names *names = &dwop_section_names;
12894
12895 if (section_is_p (sectp->name, &names->abbrev_dwo))
12896 {
12897 dwo_sections->abbrev.s.section = sectp;
12898 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12899 }
12900 else if (section_is_p (sectp->name, &names->info_dwo))
12901 {
12902 dwo_sections->info.s.section = sectp;
12903 dwo_sections->info.size = bfd_get_section_size (sectp);
12904 }
12905 else if (section_is_p (sectp->name, &names->line_dwo))
12906 {
12907 dwo_sections->line.s.section = sectp;
12908 dwo_sections->line.size = bfd_get_section_size (sectp);
12909 }
12910 else if (section_is_p (sectp->name, &names->loc_dwo))
12911 {
12912 dwo_sections->loc.s.section = sectp;
12913 dwo_sections->loc.size = bfd_get_section_size (sectp);
12914 }
12915 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12916 {
12917 dwo_sections->macinfo.s.section = sectp;
12918 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12919 }
12920 else if (section_is_p (sectp->name, &names->macro_dwo))
12921 {
12922 dwo_sections->macro.s.section = sectp;
12923 dwo_sections->macro.size = bfd_get_section_size (sectp);
12924 }
12925 else if (section_is_p (sectp->name, &names->str_dwo))
12926 {
12927 dwo_sections->str.s.section = sectp;
12928 dwo_sections->str.size = bfd_get_section_size (sectp);
12929 }
12930 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12931 {
12932 dwo_sections->str_offsets.s.section = sectp;
12933 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12934 }
12935 else if (section_is_p (sectp->name, &names->types_dwo))
12936 {
12937 struct dwarf2_section_info type_section;
12938
12939 memset (&type_section, 0, sizeof (type_section));
12940 type_section.s.section = sectp;
12941 type_section.size = bfd_get_section_size (sectp);
12942 dwo_sections->types.push_back (type_section);
12943 }
12944 }
12945
12946 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12947 by PER_CU. This is for the non-DWP case.
12948 The result is NULL if DWO_NAME can't be found. */
12949
12950 static struct dwo_file *
12951 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12952 const char *dwo_name, const char *comp_dir)
12953 {
12954 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12955
12956 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12957 if (dbfd == NULL)
12958 {
12959 if (dwarf_read_debug)
12960 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12961 return NULL;
12962 }
12963
12964 dwo_file_up dwo_file (new struct dwo_file);
12965 dwo_file->dwo_name = dwo_name;
12966 dwo_file->comp_dir = comp_dir;
12967 dwo_file->dbfd = std::move (dbfd);
12968
12969 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12970 &dwo_file->sections);
12971
12972 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12973 dwo_file->cus);
12974
12975 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12976 dwo_file->sections.types, dwo_file->tus);
12977
12978 if (dwarf_read_debug)
12979 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12980
12981 return dwo_file.release ();
12982 }
12983
12984 /* This function is mapped across the sections and remembers the offset and
12985 size of each of the DWP debugging sections common to version 1 and 2 that
12986 we are interested in. */
12987
12988 static void
12989 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12990 void *dwp_file_ptr)
12991 {
12992 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12993 const struct dwop_section_names *names = &dwop_section_names;
12994 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12995
12996 /* Record the ELF section number for later lookup: this is what the
12997 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12998 gdb_assert (elf_section_nr < dwp_file->num_sections);
12999 dwp_file->elf_sections[elf_section_nr] = sectp;
13000
13001 /* Look for specific sections that we need. */
13002 if (section_is_p (sectp->name, &names->str_dwo))
13003 {
13004 dwp_file->sections.str.s.section = sectp;
13005 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13006 }
13007 else if (section_is_p (sectp->name, &names->cu_index))
13008 {
13009 dwp_file->sections.cu_index.s.section = sectp;
13010 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13011 }
13012 else if (section_is_p (sectp->name, &names->tu_index))
13013 {
13014 dwp_file->sections.tu_index.s.section = sectp;
13015 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13016 }
13017 }
13018
13019 /* This function is mapped across the sections and remembers the offset and
13020 size of each of the DWP version 2 debugging sections that we are interested
13021 in. This is split into a separate function because we don't know if we
13022 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13023
13024 static void
13025 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13026 {
13027 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13028 const struct dwop_section_names *names = &dwop_section_names;
13029 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13030
13031 /* Record the ELF section number for later lookup: this is what the
13032 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13033 gdb_assert (elf_section_nr < dwp_file->num_sections);
13034 dwp_file->elf_sections[elf_section_nr] = sectp;
13035
13036 /* Look for specific sections that we need. */
13037 if (section_is_p (sectp->name, &names->abbrev_dwo))
13038 {
13039 dwp_file->sections.abbrev.s.section = sectp;
13040 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->info_dwo))
13043 {
13044 dwp_file->sections.info.s.section = sectp;
13045 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13046 }
13047 else if (section_is_p (sectp->name, &names->line_dwo))
13048 {
13049 dwp_file->sections.line.s.section = sectp;
13050 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13051 }
13052 else if (section_is_p (sectp->name, &names->loc_dwo))
13053 {
13054 dwp_file->sections.loc.s.section = sectp;
13055 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13056 }
13057 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13058 {
13059 dwp_file->sections.macinfo.s.section = sectp;
13060 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13061 }
13062 else if (section_is_p (sectp->name, &names->macro_dwo))
13063 {
13064 dwp_file->sections.macro.s.section = sectp;
13065 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13066 }
13067 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13068 {
13069 dwp_file->sections.str_offsets.s.section = sectp;
13070 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13071 }
13072 else if (section_is_p (sectp->name, &names->types_dwo))
13073 {
13074 dwp_file->sections.types.s.section = sectp;
13075 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13076 }
13077 }
13078
13079 /* Hash function for dwp_file loaded CUs/TUs. */
13080
13081 static hashval_t
13082 hash_dwp_loaded_cutus (const void *item)
13083 {
13084 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13085
13086 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13087 return dwo_unit->signature;
13088 }
13089
13090 /* Equality function for dwp_file loaded CUs/TUs. */
13091
13092 static int
13093 eq_dwp_loaded_cutus (const void *a, const void *b)
13094 {
13095 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13096 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13097
13098 return dua->signature == dub->signature;
13099 }
13100
13101 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13102
13103 static htab_t
13104 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13105 {
13106 return htab_create_alloc_ex (3,
13107 hash_dwp_loaded_cutus,
13108 eq_dwp_loaded_cutus,
13109 NULL,
13110 &objfile->objfile_obstack,
13111 hashtab_obstack_allocate,
13112 dummy_obstack_deallocate);
13113 }
13114
13115 /* Try to open DWP file FILE_NAME.
13116 The result is the bfd handle of the file.
13117 If there is a problem finding or opening the file, return NULL.
13118 Upon success, the canonicalized path of the file is stored in the bfd,
13119 same as symfile_bfd_open. */
13120
13121 static gdb_bfd_ref_ptr
13122 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13123 const char *file_name)
13124 {
13125 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13126 1 /*is_dwp*/,
13127 1 /*search_cwd*/));
13128 if (abfd != NULL)
13129 return abfd;
13130
13131 /* Work around upstream bug 15652.
13132 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13133 [Whether that's a "bug" is debatable, but it is getting in our way.]
13134 We have no real idea where the dwp file is, because gdb's realpath-ing
13135 of the executable's path may have discarded the needed info.
13136 [IWBN if the dwp file name was recorded in the executable, akin to
13137 .gnu_debuglink, but that doesn't exist yet.]
13138 Strip the directory from FILE_NAME and search again. */
13139 if (*debug_file_directory != '\0')
13140 {
13141 /* Don't implicitly search the current directory here.
13142 If the user wants to search "." to handle this case,
13143 it must be added to debug-file-directory. */
13144 return try_open_dwop_file (dwarf2_per_objfile,
13145 lbasename (file_name), 1 /*is_dwp*/,
13146 0 /*search_cwd*/);
13147 }
13148
13149 return NULL;
13150 }
13151
13152 /* Initialize the use of the DWP file for the current objfile.
13153 By convention the name of the DWP file is ${objfile}.dwp.
13154 The result is NULL if it can't be found. */
13155
13156 static std::unique_ptr<struct dwp_file>
13157 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13158 {
13159 struct objfile *objfile = dwarf2_per_objfile->objfile;
13160
13161 /* Try to find first .dwp for the binary file before any symbolic links
13162 resolving. */
13163
13164 /* If the objfile is a debug file, find the name of the real binary
13165 file and get the name of dwp file from there. */
13166 std::string dwp_name;
13167 if (objfile->separate_debug_objfile_backlink != NULL)
13168 {
13169 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13170 const char *backlink_basename = lbasename (backlink->original_name);
13171
13172 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13173 }
13174 else
13175 dwp_name = objfile->original_name;
13176
13177 dwp_name += ".dwp";
13178
13179 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13180 if (dbfd == NULL
13181 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13182 {
13183 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13184 dwp_name = objfile_name (objfile);
13185 dwp_name += ".dwp";
13186 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13187 }
13188
13189 if (dbfd == NULL)
13190 {
13191 if (dwarf_read_debug)
13192 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13193 return std::unique_ptr<dwp_file> ();
13194 }
13195
13196 const char *name = bfd_get_filename (dbfd.get ());
13197 std::unique_ptr<struct dwp_file> dwp_file
13198 (new struct dwp_file (name, std::move (dbfd)));
13199
13200 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13201 dwp_file->elf_sections =
13202 OBSTACK_CALLOC (&objfile->objfile_obstack,
13203 dwp_file->num_sections, asection *);
13204
13205 bfd_map_over_sections (dwp_file->dbfd.get (),
13206 dwarf2_locate_common_dwp_sections,
13207 dwp_file.get ());
13208
13209 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13210 0);
13211
13212 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13213 1);
13214
13215 /* The DWP file version is stored in the hash table. Oh well. */
13216 if (dwp_file->cus && dwp_file->tus
13217 && dwp_file->cus->version != dwp_file->tus->version)
13218 {
13219 /* Technically speaking, we should try to limp along, but this is
13220 pretty bizarre. We use pulongest here because that's the established
13221 portability solution (e.g, we cannot use %u for uint32_t). */
13222 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13223 " TU version %s [in DWP file %s]"),
13224 pulongest (dwp_file->cus->version),
13225 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13226 }
13227
13228 if (dwp_file->cus)
13229 dwp_file->version = dwp_file->cus->version;
13230 else if (dwp_file->tus)
13231 dwp_file->version = dwp_file->tus->version;
13232 else
13233 dwp_file->version = 2;
13234
13235 if (dwp_file->version == 2)
13236 bfd_map_over_sections (dwp_file->dbfd.get (),
13237 dwarf2_locate_v2_dwp_sections,
13238 dwp_file.get ());
13239
13240 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13241 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13242
13243 if (dwarf_read_debug)
13244 {
13245 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13246 fprintf_unfiltered (gdb_stdlog,
13247 " %s CUs, %s TUs\n",
13248 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13249 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13250 }
13251
13252 return dwp_file;
13253 }
13254
13255 /* Wrapper around open_and_init_dwp_file, only open it once. */
13256
13257 static struct dwp_file *
13258 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13259 {
13260 if (! dwarf2_per_objfile->dwp_checked)
13261 {
13262 dwarf2_per_objfile->dwp_file
13263 = open_and_init_dwp_file (dwarf2_per_objfile);
13264 dwarf2_per_objfile->dwp_checked = 1;
13265 }
13266 return dwarf2_per_objfile->dwp_file.get ();
13267 }
13268
13269 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13270 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13271 or in the DWP file for the objfile, referenced by THIS_UNIT.
13272 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13273 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13274
13275 This is called, for example, when wanting to read a variable with a
13276 complex location. Therefore we don't want to do file i/o for every call.
13277 Therefore we don't want to look for a DWO file on every call.
13278 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13279 then we check if we've already seen DWO_NAME, and only THEN do we check
13280 for a DWO file.
13281
13282 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13283 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13284
13285 static struct dwo_unit *
13286 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13287 const char *dwo_name, const char *comp_dir,
13288 ULONGEST signature, int is_debug_types)
13289 {
13290 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13291 struct objfile *objfile = dwarf2_per_objfile->objfile;
13292 const char *kind = is_debug_types ? "TU" : "CU";
13293 void **dwo_file_slot;
13294 struct dwo_file *dwo_file;
13295 struct dwp_file *dwp_file;
13296
13297 /* First see if there's a DWP file.
13298 If we have a DWP file but didn't find the DWO inside it, don't
13299 look for the original DWO file. It makes gdb behave differently
13300 depending on whether one is debugging in the build tree. */
13301
13302 dwp_file = get_dwp_file (dwarf2_per_objfile);
13303 if (dwp_file != NULL)
13304 {
13305 const struct dwp_hash_table *dwp_htab =
13306 is_debug_types ? dwp_file->tus : dwp_file->cus;
13307
13308 if (dwp_htab != NULL)
13309 {
13310 struct dwo_unit *dwo_cutu =
13311 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13312 signature, is_debug_types);
13313
13314 if (dwo_cutu != NULL)
13315 {
13316 if (dwarf_read_debug)
13317 {
13318 fprintf_unfiltered (gdb_stdlog,
13319 "Virtual DWO %s %s found: @%s\n",
13320 kind, hex_string (signature),
13321 host_address_to_string (dwo_cutu));
13322 }
13323 return dwo_cutu;
13324 }
13325 }
13326 }
13327 else
13328 {
13329 /* No DWP file, look for the DWO file. */
13330
13331 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13332 dwo_name, comp_dir);
13333 if (*dwo_file_slot == NULL)
13334 {
13335 /* Read in the file and build a table of the CUs/TUs it contains. */
13336 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13337 }
13338 /* NOTE: This will be NULL if unable to open the file. */
13339 dwo_file = (struct dwo_file *) *dwo_file_slot;
13340
13341 if (dwo_file != NULL)
13342 {
13343 struct dwo_unit *dwo_cutu = NULL;
13344
13345 if (is_debug_types && dwo_file->tus)
13346 {
13347 struct dwo_unit find_dwo_cutu;
13348
13349 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13350 find_dwo_cutu.signature = signature;
13351 dwo_cutu
13352 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13353 }
13354 else if (!is_debug_types && dwo_file->cus)
13355 {
13356 struct dwo_unit find_dwo_cutu;
13357
13358 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13359 find_dwo_cutu.signature = signature;
13360 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13361 &find_dwo_cutu);
13362 }
13363
13364 if (dwo_cutu != NULL)
13365 {
13366 if (dwarf_read_debug)
13367 {
13368 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13369 kind, dwo_name, hex_string (signature),
13370 host_address_to_string (dwo_cutu));
13371 }
13372 return dwo_cutu;
13373 }
13374 }
13375 }
13376
13377 /* We didn't find it. This could mean a dwo_id mismatch, or
13378 someone deleted the DWO/DWP file, or the search path isn't set up
13379 correctly to find the file. */
13380
13381 if (dwarf_read_debug)
13382 {
13383 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13384 kind, dwo_name, hex_string (signature));
13385 }
13386
13387 /* This is a warning and not a complaint because it can be caused by
13388 pilot error (e.g., user accidentally deleting the DWO). */
13389 {
13390 /* Print the name of the DWP file if we looked there, helps the user
13391 better diagnose the problem. */
13392 std::string dwp_text;
13393
13394 if (dwp_file != NULL)
13395 dwp_text = string_printf (" [in DWP file %s]",
13396 lbasename (dwp_file->name));
13397
13398 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13399 " [in module %s]"),
13400 kind, dwo_name, hex_string (signature),
13401 dwp_text.c_str (),
13402 this_unit->is_debug_types ? "TU" : "CU",
13403 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13404 }
13405 return NULL;
13406 }
13407
13408 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13409 See lookup_dwo_cutu_unit for details. */
13410
13411 static struct dwo_unit *
13412 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13413 const char *dwo_name, const char *comp_dir,
13414 ULONGEST signature)
13415 {
13416 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13417 }
13418
13419 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13420 See lookup_dwo_cutu_unit for details. */
13421
13422 static struct dwo_unit *
13423 lookup_dwo_type_unit (struct signatured_type *this_tu,
13424 const char *dwo_name, const char *comp_dir)
13425 {
13426 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13427 }
13428
13429 /* Traversal function for queue_and_load_all_dwo_tus. */
13430
13431 static int
13432 queue_and_load_dwo_tu (void **slot, void *info)
13433 {
13434 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13435 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13436 ULONGEST signature = dwo_unit->signature;
13437 struct signatured_type *sig_type =
13438 lookup_dwo_signatured_type (per_cu->cu, signature);
13439
13440 if (sig_type != NULL)
13441 {
13442 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13443
13444 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13445 a real dependency of PER_CU on SIG_TYPE. That is detected later
13446 while processing PER_CU. */
13447 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13448 load_full_type_unit (sig_cu);
13449 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13450 }
13451
13452 return 1;
13453 }
13454
13455 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13456 The DWO may have the only definition of the type, though it may not be
13457 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13458 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13459
13460 static void
13461 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13462 {
13463 struct dwo_unit *dwo_unit;
13464 struct dwo_file *dwo_file;
13465
13466 gdb_assert (!per_cu->is_debug_types);
13467 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13468 gdb_assert (per_cu->cu != NULL);
13469
13470 dwo_unit = per_cu->cu->dwo_unit;
13471 gdb_assert (dwo_unit != NULL);
13472
13473 dwo_file = dwo_unit->dwo_file;
13474 if (dwo_file->tus != NULL)
13475 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13476 }
13477
13478 /* Read in various DIEs. */
13479
13480 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13481 Inherit only the children of the DW_AT_abstract_origin DIE not being
13482 already referenced by DW_AT_abstract_origin from the children of the
13483 current DIE. */
13484
13485 static void
13486 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13487 {
13488 struct die_info *child_die;
13489 sect_offset *offsetp;
13490 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13491 struct die_info *origin_die;
13492 /* Iterator of the ORIGIN_DIE children. */
13493 struct die_info *origin_child_die;
13494 struct attribute *attr;
13495 struct dwarf2_cu *origin_cu;
13496 struct pending **origin_previous_list_in_scope;
13497
13498 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13499 if (!attr)
13500 return;
13501
13502 /* Note that following die references may follow to a die in a
13503 different cu. */
13504
13505 origin_cu = cu;
13506 origin_die = follow_die_ref (die, attr, &origin_cu);
13507
13508 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13509 symbols in. */
13510 origin_previous_list_in_scope = origin_cu->list_in_scope;
13511 origin_cu->list_in_scope = cu->list_in_scope;
13512
13513 if (die->tag != origin_die->tag
13514 && !(die->tag == DW_TAG_inlined_subroutine
13515 && origin_die->tag == DW_TAG_subprogram))
13516 complaint (_("DIE %s and its abstract origin %s have different tags"),
13517 sect_offset_str (die->sect_off),
13518 sect_offset_str (origin_die->sect_off));
13519
13520 std::vector<sect_offset> offsets;
13521
13522 for (child_die = die->child;
13523 child_die && child_die->tag;
13524 child_die = sibling_die (child_die))
13525 {
13526 struct die_info *child_origin_die;
13527 struct dwarf2_cu *child_origin_cu;
13528
13529 /* We are trying to process concrete instance entries:
13530 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13531 it's not relevant to our analysis here. i.e. detecting DIEs that are
13532 present in the abstract instance but not referenced in the concrete
13533 one. */
13534 if (child_die->tag == DW_TAG_call_site
13535 || child_die->tag == DW_TAG_GNU_call_site)
13536 continue;
13537
13538 /* For each CHILD_DIE, find the corresponding child of
13539 ORIGIN_DIE. If there is more than one layer of
13540 DW_AT_abstract_origin, follow them all; there shouldn't be,
13541 but GCC versions at least through 4.4 generate this (GCC PR
13542 40573). */
13543 child_origin_die = child_die;
13544 child_origin_cu = cu;
13545 while (1)
13546 {
13547 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13548 child_origin_cu);
13549 if (attr == NULL)
13550 break;
13551 child_origin_die = follow_die_ref (child_origin_die, attr,
13552 &child_origin_cu);
13553 }
13554
13555 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13556 counterpart may exist. */
13557 if (child_origin_die != child_die)
13558 {
13559 if (child_die->tag != child_origin_die->tag
13560 && !(child_die->tag == DW_TAG_inlined_subroutine
13561 && child_origin_die->tag == DW_TAG_subprogram))
13562 complaint (_("Child DIE %s and its abstract origin %s have "
13563 "different tags"),
13564 sect_offset_str (child_die->sect_off),
13565 sect_offset_str (child_origin_die->sect_off));
13566 if (child_origin_die->parent != origin_die)
13567 complaint (_("Child DIE %s and its abstract origin %s have "
13568 "different parents"),
13569 sect_offset_str (child_die->sect_off),
13570 sect_offset_str (child_origin_die->sect_off));
13571 else
13572 offsets.push_back (child_origin_die->sect_off);
13573 }
13574 }
13575 std::sort (offsets.begin (), offsets.end ());
13576 sect_offset *offsets_end = offsets.data () + offsets.size ();
13577 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13578 if (offsetp[-1] == *offsetp)
13579 complaint (_("Multiple children of DIE %s refer "
13580 "to DIE %s as their abstract origin"),
13581 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13582
13583 offsetp = offsets.data ();
13584 origin_child_die = origin_die->child;
13585 while (origin_child_die && origin_child_die->tag)
13586 {
13587 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13588 while (offsetp < offsets_end
13589 && *offsetp < origin_child_die->sect_off)
13590 offsetp++;
13591 if (offsetp >= offsets_end
13592 || *offsetp > origin_child_die->sect_off)
13593 {
13594 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13595 Check whether we're already processing ORIGIN_CHILD_DIE.
13596 This can happen with mutually referenced abstract_origins.
13597 PR 16581. */
13598 if (!origin_child_die->in_process)
13599 process_die (origin_child_die, origin_cu);
13600 }
13601 origin_child_die = sibling_die (origin_child_die);
13602 }
13603 origin_cu->list_in_scope = origin_previous_list_in_scope;
13604 }
13605
13606 static void
13607 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13608 {
13609 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13610 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13611 struct context_stack *newobj;
13612 CORE_ADDR lowpc;
13613 CORE_ADDR highpc;
13614 struct die_info *child_die;
13615 struct attribute *attr, *call_line, *call_file;
13616 const char *name;
13617 CORE_ADDR baseaddr;
13618 struct block *block;
13619 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13620 std::vector<struct symbol *> template_args;
13621 struct template_symbol *templ_func = NULL;
13622
13623 if (inlined_func)
13624 {
13625 /* If we do not have call site information, we can't show the
13626 caller of this inlined function. That's too confusing, so
13627 only use the scope for local variables. */
13628 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13629 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13630 if (call_line == NULL || call_file == NULL)
13631 {
13632 read_lexical_block_scope (die, cu);
13633 return;
13634 }
13635 }
13636
13637 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13638
13639 name = dwarf2_name (die, cu);
13640
13641 /* Ignore functions with missing or empty names. These are actually
13642 illegal according to the DWARF standard. */
13643 if (name == NULL)
13644 {
13645 complaint (_("missing name for subprogram DIE at %s"),
13646 sect_offset_str (die->sect_off));
13647 return;
13648 }
13649
13650 /* Ignore functions with missing or invalid low and high pc attributes. */
13651 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13652 <= PC_BOUNDS_INVALID)
13653 {
13654 attr = dwarf2_attr (die, DW_AT_external, cu);
13655 if (!attr || !DW_UNSND (attr))
13656 complaint (_("cannot get low and high bounds "
13657 "for subprogram DIE at %s"),
13658 sect_offset_str (die->sect_off));
13659 return;
13660 }
13661
13662 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13663 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13664
13665 /* If we have any template arguments, then we must allocate a
13666 different sort of symbol. */
13667 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13668 {
13669 if (child_die->tag == DW_TAG_template_type_param
13670 || child_die->tag == DW_TAG_template_value_param)
13671 {
13672 templ_func = allocate_template_symbol (objfile);
13673 templ_func->subclass = SYMBOL_TEMPLATE;
13674 break;
13675 }
13676 }
13677
13678 newobj = cu->get_builder ()->push_context (0, lowpc);
13679 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13680 (struct symbol *) templ_func);
13681
13682 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13683 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13684 cu->language);
13685
13686 /* If there is a location expression for DW_AT_frame_base, record
13687 it. */
13688 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13689 if (attr)
13690 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13691
13692 /* If there is a location for the static link, record it. */
13693 newobj->static_link = NULL;
13694 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13695 if (attr)
13696 {
13697 newobj->static_link
13698 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13699 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13700 dwarf2_per_cu_addr_type (cu->per_cu));
13701 }
13702
13703 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13704
13705 if (die->child != NULL)
13706 {
13707 child_die = die->child;
13708 while (child_die && child_die->tag)
13709 {
13710 if (child_die->tag == DW_TAG_template_type_param
13711 || child_die->tag == DW_TAG_template_value_param)
13712 {
13713 struct symbol *arg = new_symbol (child_die, NULL, cu);
13714
13715 if (arg != NULL)
13716 template_args.push_back (arg);
13717 }
13718 else
13719 process_die (child_die, cu);
13720 child_die = sibling_die (child_die);
13721 }
13722 }
13723
13724 inherit_abstract_dies (die, cu);
13725
13726 /* If we have a DW_AT_specification, we might need to import using
13727 directives from the context of the specification DIE. See the
13728 comment in determine_prefix. */
13729 if (cu->language == language_cplus
13730 && dwarf2_attr (die, DW_AT_specification, cu))
13731 {
13732 struct dwarf2_cu *spec_cu = cu;
13733 struct die_info *spec_die = die_specification (die, &spec_cu);
13734
13735 while (spec_die)
13736 {
13737 child_die = spec_die->child;
13738 while (child_die && child_die->tag)
13739 {
13740 if (child_die->tag == DW_TAG_imported_module)
13741 process_die (child_die, spec_cu);
13742 child_die = sibling_die (child_die);
13743 }
13744
13745 /* In some cases, GCC generates specification DIEs that
13746 themselves contain DW_AT_specification attributes. */
13747 spec_die = die_specification (spec_die, &spec_cu);
13748 }
13749 }
13750
13751 struct context_stack cstk = cu->get_builder ()->pop_context ();
13752 /* Make a block for the local symbols within. */
13753 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13754 cstk.static_link, lowpc, highpc);
13755
13756 /* For C++, set the block's scope. */
13757 if ((cu->language == language_cplus
13758 || cu->language == language_fortran
13759 || cu->language == language_d
13760 || cu->language == language_rust)
13761 && cu->processing_has_namespace_info)
13762 block_set_scope (block, determine_prefix (die, cu),
13763 &objfile->objfile_obstack);
13764
13765 /* If we have address ranges, record them. */
13766 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13767
13768 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13769
13770 /* Attach template arguments to function. */
13771 if (!template_args.empty ())
13772 {
13773 gdb_assert (templ_func != NULL);
13774
13775 templ_func->n_template_arguments = template_args.size ();
13776 templ_func->template_arguments
13777 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13778 templ_func->n_template_arguments);
13779 memcpy (templ_func->template_arguments,
13780 template_args.data (),
13781 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13782
13783 /* Make sure that the symtab is set on the new symbols. Even
13784 though they don't appear in this symtab directly, other parts
13785 of gdb assume that symbols do, and this is reasonably
13786 true. */
13787 for (symbol *sym : template_args)
13788 symbol_set_symtab (sym, symbol_symtab (templ_func));
13789 }
13790
13791 /* In C++, we can have functions nested inside functions (e.g., when
13792 a function declares a class that has methods). This means that
13793 when we finish processing a function scope, we may need to go
13794 back to building a containing block's symbol lists. */
13795 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13796 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13797
13798 /* If we've finished processing a top-level function, subsequent
13799 symbols go in the file symbol list. */
13800 if (cu->get_builder ()->outermost_context_p ())
13801 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13802 }
13803
13804 /* Process all the DIES contained within a lexical block scope. Start
13805 a new scope, process the dies, and then close the scope. */
13806
13807 static void
13808 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13809 {
13810 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13811 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13812 CORE_ADDR lowpc, highpc;
13813 struct die_info *child_die;
13814 CORE_ADDR baseaddr;
13815
13816 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13817
13818 /* Ignore blocks with missing or invalid low and high pc attributes. */
13819 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13820 as multiple lexical blocks? Handling children in a sane way would
13821 be nasty. Might be easier to properly extend generic blocks to
13822 describe ranges. */
13823 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13824 {
13825 case PC_BOUNDS_NOT_PRESENT:
13826 /* DW_TAG_lexical_block has no attributes, process its children as if
13827 there was no wrapping by that DW_TAG_lexical_block.
13828 GCC does no longer produces such DWARF since GCC r224161. */
13829 for (child_die = die->child;
13830 child_die != NULL && child_die->tag;
13831 child_die = sibling_die (child_die))
13832 process_die (child_die, cu);
13833 return;
13834 case PC_BOUNDS_INVALID:
13835 return;
13836 }
13837 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13838 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13839
13840 cu->get_builder ()->push_context (0, lowpc);
13841 if (die->child != NULL)
13842 {
13843 child_die = die->child;
13844 while (child_die && child_die->tag)
13845 {
13846 process_die (child_die, cu);
13847 child_die = sibling_die (child_die);
13848 }
13849 }
13850 inherit_abstract_dies (die, cu);
13851 struct context_stack cstk = cu->get_builder ()->pop_context ();
13852
13853 if (*cu->get_builder ()->get_local_symbols () != NULL
13854 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13855 {
13856 struct block *block
13857 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13858 cstk.start_addr, highpc);
13859
13860 /* Note that recording ranges after traversing children, as we
13861 do here, means that recording a parent's ranges entails
13862 walking across all its children's ranges as they appear in
13863 the address map, which is quadratic behavior.
13864
13865 It would be nicer to record the parent's ranges before
13866 traversing its children, simply overriding whatever you find
13867 there. But since we don't even decide whether to create a
13868 block until after we've traversed its children, that's hard
13869 to do. */
13870 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13871 }
13872 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13873 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13874 }
13875
13876 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13877
13878 static void
13879 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13880 {
13881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13883 CORE_ADDR pc, baseaddr;
13884 struct attribute *attr;
13885 struct call_site *call_site, call_site_local;
13886 void **slot;
13887 int nparams;
13888 struct die_info *child_die;
13889
13890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13891
13892 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13893 if (attr == NULL)
13894 {
13895 /* This was a pre-DWARF-5 GNU extension alias
13896 for DW_AT_call_return_pc. */
13897 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13898 }
13899 if (!attr)
13900 {
13901 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13902 "DIE %s [in module %s]"),
13903 sect_offset_str (die->sect_off), objfile_name (objfile));
13904 return;
13905 }
13906 pc = attr_value_as_address (attr) + baseaddr;
13907 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13908
13909 if (cu->call_site_htab == NULL)
13910 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13911 NULL, &objfile->objfile_obstack,
13912 hashtab_obstack_allocate, NULL);
13913 call_site_local.pc = pc;
13914 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13915 if (*slot != NULL)
13916 {
13917 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13918 "DIE %s [in module %s]"),
13919 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13920 objfile_name (objfile));
13921 return;
13922 }
13923
13924 /* Count parameters at the caller. */
13925
13926 nparams = 0;
13927 for (child_die = die->child; child_die && child_die->tag;
13928 child_die = sibling_die (child_die))
13929 {
13930 if (child_die->tag != DW_TAG_call_site_parameter
13931 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13932 {
13933 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13934 "DW_TAG_call_site child DIE %s [in module %s]"),
13935 child_die->tag, sect_offset_str (child_die->sect_off),
13936 objfile_name (objfile));
13937 continue;
13938 }
13939
13940 nparams++;
13941 }
13942
13943 call_site
13944 = ((struct call_site *)
13945 obstack_alloc (&objfile->objfile_obstack,
13946 sizeof (*call_site)
13947 + (sizeof (*call_site->parameter) * (nparams - 1))));
13948 *slot = call_site;
13949 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13950 call_site->pc = pc;
13951
13952 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13953 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13954 {
13955 struct die_info *func_die;
13956
13957 /* Skip also over DW_TAG_inlined_subroutine. */
13958 for (func_die = die->parent;
13959 func_die && func_die->tag != DW_TAG_subprogram
13960 && func_die->tag != DW_TAG_subroutine_type;
13961 func_die = func_die->parent);
13962
13963 /* DW_AT_call_all_calls is a superset
13964 of DW_AT_call_all_tail_calls. */
13965 if (func_die
13966 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13967 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13968 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13969 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13970 {
13971 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13972 not complete. But keep CALL_SITE for look ups via call_site_htab,
13973 both the initial caller containing the real return address PC and
13974 the final callee containing the current PC of a chain of tail
13975 calls do not need to have the tail call list complete. But any
13976 function candidate for a virtual tail call frame searched via
13977 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13978 determined unambiguously. */
13979 }
13980 else
13981 {
13982 struct type *func_type = NULL;
13983
13984 if (func_die)
13985 func_type = get_die_type (func_die, cu);
13986 if (func_type != NULL)
13987 {
13988 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13989
13990 /* Enlist this call site to the function. */
13991 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13992 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13993 }
13994 else
13995 complaint (_("Cannot find function owning DW_TAG_call_site "
13996 "DIE %s [in module %s]"),
13997 sect_offset_str (die->sect_off), objfile_name (objfile));
13998 }
13999 }
14000
14001 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14002 if (attr == NULL)
14003 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14004 if (attr == NULL)
14005 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14006 if (attr == NULL)
14007 {
14008 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14009 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14010 }
14011 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14012 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14013 /* Keep NULL DWARF_BLOCK. */;
14014 else if (attr_form_is_block (attr))
14015 {
14016 struct dwarf2_locexpr_baton *dlbaton;
14017
14018 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14019 dlbaton->data = DW_BLOCK (attr)->data;
14020 dlbaton->size = DW_BLOCK (attr)->size;
14021 dlbaton->per_cu = cu->per_cu;
14022
14023 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14024 }
14025 else if (attr_form_is_ref (attr))
14026 {
14027 struct dwarf2_cu *target_cu = cu;
14028 struct die_info *target_die;
14029
14030 target_die = follow_die_ref (die, attr, &target_cu);
14031 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14032 if (die_is_declaration (target_die, target_cu))
14033 {
14034 const char *target_physname;
14035
14036 /* Prefer the mangled name; otherwise compute the demangled one. */
14037 target_physname = dw2_linkage_name (target_die, target_cu);
14038 if (target_physname == NULL)
14039 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14040 if (target_physname == NULL)
14041 complaint (_("DW_AT_call_target target DIE has invalid "
14042 "physname, for referencing DIE %s [in module %s]"),
14043 sect_offset_str (die->sect_off), objfile_name (objfile));
14044 else
14045 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14046 }
14047 else
14048 {
14049 CORE_ADDR lowpc;
14050
14051 /* DW_AT_entry_pc should be preferred. */
14052 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14053 <= PC_BOUNDS_INVALID)
14054 complaint (_("DW_AT_call_target target DIE has invalid "
14055 "low pc, for referencing DIE %s [in module %s]"),
14056 sect_offset_str (die->sect_off), objfile_name (objfile));
14057 else
14058 {
14059 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14060 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14061 }
14062 }
14063 }
14064 else
14065 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14066 "block nor reference, for DIE %s [in module %s]"),
14067 sect_offset_str (die->sect_off), objfile_name (objfile));
14068
14069 call_site->per_cu = cu->per_cu;
14070
14071 for (child_die = die->child;
14072 child_die && child_die->tag;
14073 child_die = sibling_die (child_die))
14074 {
14075 struct call_site_parameter *parameter;
14076 struct attribute *loc, *origin;
14077
14078 if (child_die->tag != DW_TAG_call_site_parameter
14079 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14080 {
14081 /* Already printed the complaint above. */
14082 continue;
14083 }
14084
14085 gdb_assert (call_site->parameter_count < nparams);
14086 parameter = &call_site->parameter[call_site->parameter_count];
14087
14088 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14089 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14090 register is contained in DW_AT_call_value. */
14091
14092 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14093 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14094 if (origin == NULL)
14095 {
14096 /* This was a pre-DWARF-5 GNU extension alias
14097 for DW_AT_call_parameter. */
14098 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14099 }
14100 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14101 {
14102 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14103
14104 sect_offset sect_off
14105 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14106 if (!offset_in_cu_p (&cu->header, sect_off))
14107 {
14108 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14109 binding can be done only inside one CU. Such referenced DIE
14110 therefore cannot be even moved to DW_TAG_partial_unit. */
14111 complaint (_("DW_AT_call_parameter offset is not in CU for "
14112 "DW_TAG_call_site child DIE %s [in module %s]"),
14113 sect_offset_str (child_die->sect_off),
14114 objfile_name (objfile));
14115 continue;
14116 }
14117 parameter->u.param_cu_off
14118 = (cu_offset) (sect_off - cu->header.sect_off);
14119 }
14120 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14121 {
14122 complaint (_("No DW_FORM_block* DW_AT_location for "
14123 "DW_TAG_call_site child DIE %s [in module %s]"),
14124 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14125 continue;
14126 }
14127 else
14128 {
14129 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14130 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14131 if (parameter->u.dwarf_reg != -1)
14132 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14133 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14134 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14135 &parameter->u.fb_offset))
14136 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14137 else
14138 {
14139 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14140 "for DW_FORM_block* DW_AT_location is supported for "
14141 "DW_TAG_call_site child DIE %s "
14142 "[in module %s]"),
14143 sect_offset_str (child_die->sect_off),
14144 objfile_name (objfile));
14145 continue;
14146 }
14147 }
14148
14149 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14150 if (attr == NULL)
14151 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14152 if (!attr_form_is_block (attr))
14153 {
14154 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14155 "DW_TAG_call_site child DIE %s [in module %s]"),
14156 sect_offset_str (child_die->sect_off),
14157 objfile_name (objfile));
14158 continue;
14159 }
14160 parameter->value = DW_BLOCK (attr)->data;
14161 parameter->value_size = DW_BLOCK (attr)->size;
14162
14163 /* Parameters are not pre-cleared by memset above. */
14164 parameter->data_value = NULL;
14165 parameter->data_value_size = 0;
14166 call_site->parameter_count++;
14167
14168 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14169 if (attr == NULL)
14170 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14171 if (attr)
14172 {
14173 if (!attr_form_is_block (attr))
14174 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14175 "DW_TAG_call_site child DIE %s [in module %s]"),
14176 sect_offset_str (child_die->sect_off),
14177 objfile_name (objfile));
14178 else
14179 {
14180 parameter->data_value = DW_BLOCK (attr)->data;
14181 parameter->data_value_size = DW_BLOCK (attr)->size;
14182 }
14183 }
14184 }
14185 }
14186
14187 /* Helper function for read_variable. If DIE represents a virtual
14188 table, then return the type of the concrete object that is
14189 associated with the virtual table. Otherwise, return NULL. */
14190
14191 static struct type *
14192 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14193 {
14194 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14195 if (attr == NULL)
14196 return NULL;
14197
14198 /* Find the type DIE. */
14199 struct die_info *type_die = NULL;
14200 struct dwarf2_cu *type_cu = cu;
14201
14202 if (attr_form_is_ref (attr))
14203 type_die = follow_die_ref (die, attr, &type_cu);
14204 if (type_die == NULL)
14205 return NULL;
14206
14207 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14208 return NULL;
14209 return die_containing_type (type_die, type_cu);
14210 }
14211
14212 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14213
14214 static void
14215 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14216 {
14217 struct rust_vtable_symbol *storage = NULL;
14218
14219 if (cu->language == language_rust)
14220 {
14221 struct type *containing_type = rust_containing_type (die, cu);
14222
14223 if (containing_type != NULL)
14224 {
14225 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14226
14227 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14228 struct rust_vtable_symbol);
14229 initialize_objfile_symbol (storage);
14230 storage->concrete_type = containing_type;
14231 storage->subclass = SYMBOL_RUST_VTABLE;
14232 }
14233 }
14234
14235 struct symbol *res = new_symbol (die, NULL, cu, storage);
14236 struct attribute *abstract_origin
14237 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14238 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14239 if (res == NULL && loc && abstract_origin)
14240 {
14241 /* We have a variable without a name, but with a location and an abstract
14242 origin. This may be a concrete instance of an abstract variable
14243 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14244 later. */
14245 struct dwarf2_cu *origin_cu = cu;
14246 struct die_info *origin_die
14247 = follow_die_ref (die, abstract_origin, &origin_cu);
14248 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14249 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14250 }
14251 }
14252
14253 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14254 reading .debug_rnglists.
14255 Callback's type should be:
14256 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14257 Return true if the attributes are present and valid, otherwise,
14258 return false. */
14259
14260 template <typename Callback>
14261 static bool
14262 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14263 Callback &&callback)
14264 {
14265 struct dwarf2_per_objfile *dwarf2_per_objfile
14266 = cu->per_cu->dwarf2_per_objfile;
14267 struct objfile *objfile = dwarf2_per_objfile->objfile;
14268 bfd *obfd = objfile->obfd;
14269 /* Base address selection entry. */
14270 CORE_ADDR base;
14271 int found_base;
14272 const gdb_byte *buffer;
14273 CORE_ADDR baseaddr;
14274 bool overflow = false;
14275
14276 found_base = cu->base_known;
14277 base = cu->base_address;
14278
14279 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14280 if (offset >= dwarf2_per_objfile->rnglists.size)
14281 {
14282 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14283 offset);
14284 return false;
14285 }
14286 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14287
14288 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14289
14290 while (1)
14291 {
14292 /* Initialize it due to a false compiler warning. */
14293 CORE_ADDR range_beginning = 0, range_end = 0;
14294 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14295 + dwarf2_per_objfile->rnglists.size);
14296 unsigned int bytes_read;
14297
14298 if (buffer == buf_end)
14299 {
14300 overflow = true;
14301 break;
14302 }
14303 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14304 switch (rlet)
14305 {
14306 case DW_RLE_end_of_list:
14307 break;
14308 case DW_RLE_base_address:
14309 if (buffer + cu->header.addr_size > buf_end)
14310 {
14311 overflow = true;
14312 break;
14313 }
14314 base = read_address (obfd, buffer, cu, &bytes_read);
14315 found_base = 1;
14316 buffer += bytes_read;
14317 break;
14318 case DW_RLE_start_length:
14319 if (buffer + cu->header.addr_size > buf_end)
14320 {
14321 overflow = true;
14322 break;
14323 }
14324 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14325 buffer += bytes_read;
14326 range_end = (range_beginning
14327 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14328 buffer += bytes_read;
14329 if (buffer > buf_end)
14330 {
14331 overflow = true;
14332 break;
14333 }
14334 break;
14335 case DW_RLE_offset_pair:
14336 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14337 buffer += bytes_read;
14338 if (buffer > buf_end)
14339 {
14340 overflow = true;
14341 break;
14342 }
14343 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14344 buffer += bytes_read;
14345 if (buffer > buf_end)
14346 {
14347 overflow = true;
14348 break;
14349 }
14350 break;
14351 case DW_RLE_start_end:
14352 if (buffer + 2 * cu->header.addr_size > buf_end)
14353 {
14354 overflow = true;
14355 break;
14356 }
14357 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14358 buffer += bytes_read;
14359 range_end = read_address (obfd, buffer, cu, &bytes_read);
14360 buffer += bytes_read;
14361 break;
14362 default:
14363 complaint (_("Invalid .debug_rnglists data (no base address)"));
14364 return false;
14365 }
14366 if (rlet == DW_RLE_end_of_list || overflow)
14367 break;
14368 if (rlet == DW_RLE_base_address)
14369 continue;
14370
14371 if (!found_base)
14372 {
14373 /* We have no valid base address for the ranges
14374 data. */
14375 complaint (_("Invalid .debug_rnglists data (no base address)"));
14376 return false;
14377 }
14378
14379 if (range_beginning > range_end)
14380 {
14381 /* Inverted range entries are invalid. */
14382 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14383 return false;
14384 }
14385
14386 /* Empty range entries have no effect. */
14387 if (range_beginning == range_end)
14388 continue;
14389
14390 range_beginning += base;
14391 range_end += base;
14392
14393 /* A not-uncommon case of bad debug info.
14394 Don't pollute the addrmap with bad data. */
14395 if (range_beginning + baseaddr == 0
14396 && !dwarf2_per_objfile->has_section_at_zero)
14397 {
14398 complaint (_(".debug_rnglists entry has start address of zero"
14399 " [in module %s]"), objfile_name (objfile));
14400 continue;
14401 }
14402
14403 callback (range_beginning, range_end);
14404 }
14405
14406 if (overflow)
14407 {
14408 complaint (_("Offset %d is not terminated "
14409 "for DW_AT_ranges attribute"),
14410 offset);
14411 return false;
14412 }
14413
14414 return true;
14415 }
14416
14417 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14418 Callback's type should be:
14419 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14420 Return 1 if the attributes are present and valid, otherwise, return 0. */
14421
14422 template <typename Callback>
14423 static int
14424 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14425 Callback &&callback)
14426 {
14427 struct dwarf2_per_objfile *dwarf2_per_objfile
14428 = cu->per_cu->dwarf2_per_objfile;
14429 struct objfile *objfile = dwarf2_per_objfile->objfile;
14430 struct comp_unit_head *cu_header = &cu->header;
14431 bfd *obfd = objfile->obfd;
14432 unsigned int addr_size = cu_header->addr_size;
14433 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14434 /* Base address selection entry. */
14435 CORE_ADDR base;
14436 int found_base;
14437 unsigned int dummy;
14438 const gdb_byte *buffer;
14439 CORE_ADDR baseaddr;
14440
14441 if (cu_header->version >= 5)
14442 return dwarf2_rnglists_process (offset, cu, callback);
14443
14444 found_base = cu->base_known;
14445 base = cu->base_address;
14446
14447 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14448 if (offset >= dwarf2_per_objfile->ranges.size)
14449 {
14450 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14451 offset);
14452 return 0;
14453 }
14454 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14455
14456 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14457
14458 while (1)
14459 {
14460 CORE_ADDR range_beginning, range_end;
14461
14462 range_beginning = read_address (obfd, buffer, cu, &dummy);
14463 buffer += addr_size;
14464 range_end = read_address (obfd, buffer, cu, &dummy);
14465 buffer += addr_size;
14466 offset += 2 * addr_size;
14467
14468 /* An end of list marker is a pair of zero addresses. */
14469 if (range_beginning == 0 && range_end == 0)
14470 /* Found the end of list entry. */
14471 break;
14472
14473 /* Each base address selection entry is a pair of 2 values.
14474 The first is the largest possible address, the second is
14475 the base address. Check for a base address here. */
14476 if ((range_beginning & mask) == mask)
14477 {
14478 /* If we found the largest possible address, then we already
14479 have the base address in range_end. */
14480 base = range_end;
14481 found_base = 1;
14482 continue;
14483 }
14484
14485 if (!found_base)
14486 {
14487 /* We have no valid base address for the ranges
14488 data. */
14489 complaint (_("Invalid .debug_ranges data (no base address)"));
14490 return 0;
14491 }
14492
14493 if (range_beginning > range_end)
14494 {
14495 /* Inverted range entries are invalid. */
14496 complaint (_("Invalid .debug_ranges data (inverted range)"));
14497 return 0;
14498 }
14499
14500 /* Empty range entries have no effect. */
14501 if (range_beginning == range_end)
14502 continue;
14503
14504 range_beginning += base;
14505 range_end += base;
14506
14507 /* A not-uncommon case of bad debug info.
14508 Don't pollute the addrmap with bad data. */
14509 if (range_beginning + baseaddr == 0
14510 && !dwarf2_per_objfile->has_section_at_zero)
14511 {
14512 complaint (_(".debug_ranges entry has start address of zero"
14513 " [in module %s]"), objfile_name (objfile));
14514 continue;
14515 }
14516
14517 callback (range_beginning, range_end);
14518 }
14519
14520 return 1;
14521 }
14522
14523 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14524 Return 1 if the attributes are present and valid, otherwise, return 0.
14525 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14526
14527 static int
14528 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14529 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14530 struct partial_symtab *ranges_pst)
14531 {
14532 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14533 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14534 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14535 SECT_OFF_TEXT (objfile));
14536 int low_set = 0;
14537 CORE_ADDR low = 0;
14538 CORE_ADDR high = 0;
14539 int retval;
14540
14541 retval = dwarf2_ranges_process (offset, cu,
14542 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14543 {
14544 if (ranges_pst != NULL)
14545 {
14546 CORE_ADDR lowpc;
14547 CORE_ADDR highpc;
14548
14549 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14550 range_beginning + baseaddr)
14551 - baseaddr);
14552 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14553 range_end + baseaddr)
14554 - baseaddr);
14555 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14556 lowpc, highpc - 1, ranges_pst);
14557 }
14558
14559 /* FIXME: This is recording everything as a low-high
14560 segment of consecutive addresses. We should have a
14561 data structure for discontiguous block ranges
14562 instead. */
14563 if (! low_set)
14564 {
14565 low = range_beginning;
14566 high = range_end;
14567 low_set = 1;
14568 }
14569 else
14570 {
14571 if (range_beginning < low)
14572 low = range_beginning;
14573 if (range_end > high)
14574 high = range_end;
14575 }
14576 });
14577 if (!retval)
14578 return 0;
14579
14580 if (! low_set)
14581 /* If the first entry is an end-of-list marker, the range
14582 describes an empty scope, i.e. no instructions. */
14583 return 0;
14584
14585 if (low_return)
14586 *low_return = low;
14587 if (high_return)
14588 *high_return = high;
14589 return 1;
14590 }
14591
14592 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14593 definition for the return value. *LOWPC and *HIGHPC are set iff
14594 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14595
14596 static enum pc_bounds_kind
14597 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14598 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14599 struct partial_symtab *pst)
14600 {
14601 struct dwarf2_per_objfile *dwarf2_per_objfile
14602 = cu->per_cu->dwarf2_per_objfile;
14603 struct attribute *attr;
14604 struct attribute *attr_high;
14605 CORE_ADDR low = 0;
14606 CORE_ADDR high = 0;
14607 enum pc_bounds_kind ret;
14608
14609 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14610 if (attr_high)
14611 {
14612 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14613 if (attr)
14614 {
14615 low = attr_value_as_address (attr);
14616 high = attr_value_as_address (attr_high);
14617 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14618 high += low;
14619 }
14620 else
14621 /* Found high w/o low attribute. */
14622 return PC_BOUNDS_INVALID;
14623
14624 /* Found consecutive range of addresses. */
14625 ret = PC_BOUNDS_HIGH_LOW;
14626 }
14627 else
14628 {
14629 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14630 if (attr != NULL)
14631 {
14632 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14633 We take advantage of the fact that DW_AT_ranges does not appear
14634 in DW_TAG_compile_unit of DWO files. */
14635 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14636 unsigned int ranges_offset = (DW_UNSND (attr)
14637 + (need_ranges_base
14638 ? cu->ranges_base
14639 : 0));
14640
14641 /* Value of the DW_AT_ranges attribute is the offset in the
14642 .debug_ranges section. */
14643 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14644 return PC_BOUNDS_INVALID;
14645 /* Found discontinuous range of addresses. */
14646 ret = PC_BOUNDS_RANGES;
14647 }
14648 else
14649 return PC_BOUNDS_NOT_PRESENT;
14650 }
14651
14652 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14653 if (high <= low)
14654 return PC_BOUNDS_INVALID;
14655
14656 /* When using the GNU linker, .gnu.linkonce. sections are used to
14657 eliminate duplicate copies of functions and vtables and such.
14658 The linker will arbitrarily choose one and discard the others.
14659 The AT_*_pc values for such functions refer to local labels in
14660 these sections. If the section from that file was discarded, the
14661 labels are not in the output, so the relocs get a value of 0.
14662 If this is a discarded function, mark the pc bounds as invalid,
14663 so that GDB will ignore it. */
14664 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14665 return PC_BOUNDS_INVALID;
14666
14667 *lowpc = low;
14668 if (highpc)
14669 *highpc = high;
14670 return ret;
14671 }
14672
14673 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14674 its low and high PC addresses. Do nothing if these addresses could not
14675 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14676 and HIGHPC to the high address if greater than HIGHPC. */
14677
14678 static void
14679 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14680 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14681 struct dwarf2_cu *cu)
14682 {
14683 CORE_ADDR low, high;
14684 struct die_info *child = die->child;
14685
14686 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14687 {
14688 *lowpc = std::min (*lowpc, low);
14689 *highpc = std::max (*highpc, high);
14690 }
14691
14692 /* If the language does not allow nested subprograms (either inside
14693 subprograms or lexical blocks), we're done. */
14694 if (cu->language != language_ada)
14695 return;
14696
14697 /* Check all the children of the given DIE. If it contains nested
14698 subprograms, then check their pc bounds. Likewise, we need to
14699 check lexical blocks as well, as they may also contain subprogram
14700 definitions. */
14701 while (child && child->tag)
14702 {
14703 if (child->tag == DW_TAG_subprogram
14704 || child->tag == DW_TAG_lexical_block)
14705 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14706 child = sibling_die (child);
14707 }
14708 }
14709
14710 /* Get the low and high pc's represented by the scope DIE, and store
14711 them in *LOWPC and *HIGHPC. If the correct values can't be
14712 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14713
14714 static void
14715 get_scope_pc_bounds (struct die_info *die,
14716 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14717 struct dwarf2_cu *cu)
14718 {
14719 CORE_ADDR best_low = (CORE_ADDR) -1;
14720 CORE_ADDR best_high = (CORE_ADDR) 0;
14721 CORE_ADDR current_low, current_high;
14722
14723 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14724 >= PC_BOUNDS_RANGES)
14725 {
14726 best_low = current_low;
14727 best_high = current_high;
14728 }
14729 else
14730 {
14731 struct die_info *child = die->child;
14732
14733 while (child && child->tag)
14734 {
14735 switch (child->tag) {
14736 case DW_TAG_subprogram:
14737 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14738 break;
14739 case DW_TAG_namespace:
14740 case DW_TAG_module:
14741 /* FIXME: carlton/2004-01-16: Should we do this for
14742 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14743 that current GCC's always emit the DIEs corresponding
14744 to definitions of methods of classes as children of a
14745 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14746 the DIEs giving the declarations, which could be
14747 anywhere). But I don't see any reason why the
14748 standards says that they have to be there. */
14749 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14750
14751 if (current_low != ((CORE_ADDR) -1))
14752 {
14753 best_low = std::min (best_low, current_low);
14754 best_high = std::max (best_high, current_high);
14755 }
14756 break;
14757 default:
14758 /* Ignore. */
14759 break;
14760 }
14761
14762 child = sibling_die (child);
14763 }
14764 }
14765
14766 *lowpc = best_low;
14767 *highpc = best_high;
14768 }
14769
14770 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14771 in DIE. */
14772
14773 static void
14774 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14775 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14776 {
14777 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14778 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14779 struct attribute *attr;
14780 struct attribute *attr_high;
14781
14782 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14783 if (attr_high)
14784 {
14785 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14786 if (attr)
14787 {
14788 CORE_ADDR low = attr_value_as_address (attr);
14789 CORE_ADDR high = attr_value_as_address (attr_high);
14790
14791 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14792 high += low;
14793
14794 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14795 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14796 cu->get_builder ()->record_block_range (block, low, high - 1);
14797 }
14798 }
14799
14800 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14801 if (attr)
14802 {
14803 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14804 We take advantage of the fact that DW_AT_ranges does not appear
14805 in DW_TAG_compile_unit of DWO files. */
14806 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14807
14808 /* The value of the DW_AT_ranges attribute is the offset of the
14809 address range list in the .debug_ranges section. */
14810 unsigned long offset = (DW_UNSND (attr)
14811 + (need_ranges_base ? cu->ranges_base : 0));
14812
14813 std::vector<blockrange> blockvec;
14814 dwarf2_ranges_process (offset, cu,
14815 [&] (CORE_ADDR start, CORE_ADDR end)
14816 {
14817 start += baseaddr;
14818 end += baseaddr;
14819 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14820 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14821 cu->get_builder ()->record_block_range (block, start, end - 1);
14822 blockvec.emplace_back (start, end);
14823 });
14824
14825 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14826 }
14827 }
14828
14829 /* Check whether the producer field indicates either of GCC < 4.6, or the
14830 Intel C/C++ compiler, and cache the result in CU. */
14831
14832 static void
14833 check_producer (struct dwarf2_cu *cu)
14834 {
14835 int major, minor;
14836
14837 if (cu->producer == NULL)
14838 {
14839 /* For unknown compilers expect their behavior is DWARF version
14840 compliant.
14841
14842 GCC started to support .debug_types sections by -gdwarf-4 since
14843 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14844 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14845 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14846 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14847 }
14848 else if (producer_is_gcc (cu->producer, &major, &minor))
14849 {
14850 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14851 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14852 }
14853 else if (producer_is_icc (cu->producer, &major, &minor))
14854 {
14855 cu->producer_is_icc = true;
14856 cu->producer_is_icc_lt_14 = major < 14;
14857 }
14858 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14859 cu->producer_is_codewarrior = true;
14860 else
14861 {
14862 /* For other non-GCC compilers, expect their behavior is DWARF version
14863 compliant. */
14864 }
14865
14866 cu->checked_producer = true;
14867 }
14868
14869 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14870 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14871 during 4.6.0 experimental. */
14872
14873 static bool
14874 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14875 {
14876 if (!cu->checked_producer)
14877 check_producer (cu);
14878
14879 return cu->producer_is_gxx_lt_4_6;
14880 }
14881
14882
14883 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14884 with incorrect is_stmt attributes. */
14885
14886 static bool
14887 producer_is_codewarrior (struct dwarf2_cu *cu)
14888 {
14889 if (!cu->checked_producer)
14890 check_producer (cu);
14891
14892 return cu->producer_is_codewarrior;
14893 }
14894
14895 /* Return the default accessibility type if it is not overriden by
14896 DW_AT_accessibility. */
14897
14898 static enum dwarf_access_attribute
14899 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14900 {
14901 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14902 {
14903 /* The default DWARF 2 accessibility for members is public, the default
14904 accessibility for inheritance is private. */
14905
14906 if (die->tag != DW_TAG_inheritance)
14907 return DW_ACCESS_public;
14908 else
14909 return DW_ACCESS_private;
14910 }
14911 else
14912 {
14913 /* DWARF 3+ defines the default accessibility a different way. The same
14914 rules apply now for DW_TAG_inheritance as for the members and it only
14915 depends on the container kind. */
14916
14917 if (die->parent->tag == DW_TAG_class_type)
14918 return DW_ACCESS_private;
14919 else
14920 return DW_ACCESS_public;
14921 }
14922 }
14923
14924 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14925 offset. If the attribute was not found return 0, otherwise return
14926 1. If it was found but could not properly be handled, set *OFFSET
14927 to 0. */
14928
14929 static int
14930 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14931 LONGEST *offset)
14932 {
14933 struct attribute *attr;
14934
14935 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14936 if (attr != NULL)
14937 {
14938 *offset = 0;
14939
14940 /* Note that we do not check for a section offset first here.
14941 This is because DW_AT_data_member_location is new in DWARF 4,
14942 so if we see it, we can assume that a constant form is really
14943 a constant and not a section offset. */
14944 if (attr_form_is_constant (attr))
14945 *offset = dwarf2_get_attr_constant_value (attr, 0);
14946 else if (attr_form_is_section_offset (attr))
14947 dwarf2_complex_location_expr_complaint ();
14948 else if (attr_form_is_block (attr))
14949 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14950 else
14951 dwarf2_complex_location_expr_complaint ();
14952
14953 return 1;
14954 }
14955
14956 return 0;
14957 }
14958
14959 /* Add an aggregate field to the field list. */
14960
14961 static void
14962 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14963 struct dwarf2_cu *cu)
14964 {
14965 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14967 struct nextfield *new_field;
14968 struct attribute *attr;
14969 struct field *fp;
14970 const char *fieldname = "";
14971
14972 if (die->tag == DW_TAG_inheritance)
14973 {
14974 fip->baseclasses.emplace_back ();
14975 new_field = &fip->baseclasses.back ();
14976 }
14977 else
14978 {
14979 fip->fields.emplace_back ();
14980 new_field = &fip->fields.back ();
14981 }
14982
14983 fip->nfields++;
14984
14985 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14986 if (attr)
14987 new_field->accessibility = DW_UNSND (attr);
14988 else
14989 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14990 if (new_field->accessibility != DW_ACCESS_public)
14991 fip->non_public_fields = 1;
14992
14993 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14994 if (attr)
14995 new_field->virtuality = DW_UNSND (attr);
14996 else
14997 new_field->virtuality = DW_VIRTUALITY_none;
14998
14999 fp = &new_field->field;
15000
15001 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15002 {
15003 LONGEST offset;
15004
15005 /* Data member other than a C++ static data member. */
15006
15007 /* Get type of field. */
15008 fp->type = die_type (die, cu);
15009
15010 SET_FIELD_BITPOS (*fp, 0);
15011
15012 /* Get bit size of field (zero if none). */
15013 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15014 if (attr)
15015 {
15016 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15017 }
15018 else
15019 {
15020 FIELD_BITSIZE (*fp) = 0;
15021 }
15022
15023 /* Get bit offset of field. */
15024 if (handle_data_member_location (die, cu, &offset))
15025 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15026 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15027 if (attr)
15028 {
15029 if (gdbarch_bits_big_endian (gdbarch))
15030 {
15031 /* For big endian bits, the DW_AT_bit_offset gives the
15032 additional bit offset from the MSB of the containing
15033 anonymous object to the MSB of the field. We don't
15034 have to do anything special since we don't need to
15035 know the size of the anonymous object. */
15036 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15037 }
15038 else
15039 {
15040 /* For little endian bits, compute the bit offset to the
15041 MSB of the anonymous object, subtract off the number of
15042 bits from the MSB of the field to the MSB of the
15043 object, and then subtract off the number of bits of
15044 the field itself. The result is the bit offset of
15045 the LSB of the field. */
15046 int anonymous_size;
15047 int bit_offset = DW_UNSND (attr);
15048
15049 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15050 if (attr)
15051 {
15052 /* The size of the anonymous object containing
15053 the bit field is explicit, so use the
15054 indicated size (in bytes). */
15055 anonymous_size = DW_UNSND (attr);
15056 }
15057 else
15058 {
15059 /* The size of the anonymous object containing
15060 the bit field must be inferred from the type
15061 attribute of the data member containing the
15062 bit field. */
15063 anonymous_size = TYPE_LENGTH (fp->type);
15064 }
15065 SET_FIELD_BITPOS (*fp,
15066 (FIELD_BITPOS (*fp)
15067 + anonymous_size * bits_per_byte
15068 - bit_offset - FIELD_BITSIZE (*fp)));
15069 }
15070 }
15071 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15072 if (attr != NULL)
15073 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15074 + dwarf2_get_attr_constant_value (attr, 0)));
15075
15076 /* Get name of field. */
15077 fieldname = dwarf2_name (die, cu);
15078 if (fieldname == NULL)
15079 fieldname = "";
15080
15081 /* The name is already allocated along with this objfile, so we don't
15082 need to duplicate it for the type. */
15083 fp->name = fieldname;
15084
15085 /* Change accessibility for artificial fields (e.g. virtual table
15086 pointer or virtual base class pointer) to private. */
15087 if (dwarf2_attr (die, DW_AT_artificial, cu))
15088 {
15089 FIELD_ARTIFICIAL (*fp) = 1;
15090 new_field->accessibility = DW_ACCESS_private;
15091 fip->non_public_fields = 1;
15092 }
15093 }
15094 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15095 {
15096 /* C++ static member. */
15097
15098 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15099 is a declaration, but all versions of G++ as of this writing
15100 (so through at least 3.2.1) incorrectly generate
15101 DW_TAG_variable tags. */
15102
15103 const char *physname;
15104
15105 /* Get name of field. */
15106 fieldname = dwarf2_name (die, cu);
15107 if (fieldname == NULL)
15108 return;
15109
15110 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15111 if (attr
15112 /* Only create a symbol if this is an external value.
15113 new_symbol checks this and puts the value in the global symbol
15114 table, which we want. If it is not external, new_symbol
15115 will try to put the value in cu->list_in_scope which is wrong. */
15116 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15117 {
15118 /* A static const member, not much different than an enum as far as
15119 we're concerned, except that we can support more types. */
15120 new_symbol (die, NULL, cu);
15121 }
15122
15123 /* Get physical name. */
15124 physname = dwarf2_physname (fieldname, die, cu);
15125
15126 /* The name is already allocated along with this objfile, so we don't
15127 need to duplicate it for the type. */
15128 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15129 FIELD_TYPE (*fp) = die_type (die, cu);
15130 FIELD_NAME (*fp) = fieldname;
15131 }
15132 else if (die->tag == DW_TAG_inheritance)
15133 {
15134 LONGEST offset;
15135
15136 /* C++ base class field. */
15137 if (handle_data_member_location (die, cu, &offset))
15138 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15139 FIELD_BITSIZE (*fp) = 0;
15140 FIELD_TYPE (*fp) = die_type (die, cu);
15141 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15142 }
15143 else if (die->tag == DW_TAG_variant_part)
15144 {
15145 /* process_structure_scope will treat this DIE as a union. */
15146 process_structure_scope (die, cu);
15147
15148 /* The variant part is relative to the start of the enclosing
15149 structure. */
15150 SET_FIELD_BITPOS (*fp, 0);
15151 fp->type = get_die_type (die, cu);
15152 fp->artificial = 1;
15153 fp->name = "<<variant>>";
15154
15155 /* Normally a DW_TAG_variant_part won't have a size, but our
15156 representation requires one, so set it to the maximum of the
15157 child sizes. */
15158 if (TYPE_LENGTH (fp->type) == 0)
15159 {
15160 unsigned max = 0;
15161 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15162 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15163 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15164 TYPE_LENGTH (fp->type) = max;
15165 }
15166 }
15167 else
15168 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15169 }
15170
15171 /* Can the type given by DIE define another type? */
15172
15173 static bool
15174 type_can_define_types (const struct die_info *die)
15175 {
15176 switch (die->tag)
15177 {
15178 case DW_TAG_typedef:
15179 case DW_TAG_class_type:
15180 case DW_TAG_structure_type:
15181 case DW_TAG_union_type:
15182 case DW_TAG_enumeration_type:
15183 return true;
15184
15185 default:
15186 return false;
15187 }
15188 }
15189
15190 /* Add a type definition defined in the scope of the FIP's class. */
15191
15192 static void
15193 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15194 struct dwarf2_cu *cu)
15195 {
15196 struct decl_field fp;
15197 memset (&fp, 0, sizeof (fp));
15198
15199 gdb_assert (type_can_define_types (die));
15200
15201 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15202 fp.name = dwarf2_name (die, cu);
15203 fp.type = read_type_die (die, cu);
15204
15205 /* Save accessibility. */
15206 enum dwarf_access_attribute accessibility;
15207 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15208 if (attr != NULL)
15209 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15210 else
15211 accessibility = dwarf2_default_access_attribute (die, cu);
15212 switch (accessibility)
15213 {
15214 case DW_ACCESS_public:
15215 /* The assumed value if neither private nor protected. */
15216 break;
15217 case DW_ACCESS_private:
15218 fp.is_private = 1;
15219 break;
15220 case DW_ACCESS_protected:
15221 fp.is_protected = 1;
15222 break;
15223 default:
15224 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15225 }
15226
15227 if (die->tag == DW_TAG_typedef)
15228 fip->typedef_field_list.push_back (fp);
15229 else
15230 fip->nested_types_list.push_back (fp);
15231 }
15232
15233 /* Create the vector of fields, and attach it to the type. */
15234
15235 static void
15236 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15237 struct dwarf2_cu *cu)
15238 {
15239 int nfields = fip->nfields;
15240
15241 /* Record the field count, allocate space for the array of fields,
15242 and create blank accessibility bitfields if necessary. */
15243 TYPE_NFIELDS (type) = nfields;
15244 TYPE_FIELDS (type) = (struct field *)
15245 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15246
15247 if (fip->non_public_fields && cu->language != language_ada)
15248 {
15249 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15250
15251 TYPE_FIELD_PRIVATE_BITS (type) =
15252 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15253 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15254
15255 TYPE_FIELD_PROTECTED_BITS (type) =
15256 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15257 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15258
15259 TYPE_FIELD_IGNORE_BITS (type) =
15260 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15261 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15262 }
15263
15264 /* If the type has baseclasses, allocate and clear a bit vector for
15265 TYPE_FIELD_VIRTUAL_BITS. */
15266 if (!fip->baseclasses.empty () && cu->language != language_ada)
15267 {
15268 int num_bytes = B_BYTES (fip->baseclasses.size ());
15269 unsigned char *pointer;
15270
15271 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15272 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15273 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15274 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15275 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15276 }
15277
15278 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15279 {
15280 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15281
15282 for (int index = 0; index < nfields; ++index)
15283 {
15284 struct nextfield &field = fip->fields[index];
15285
15286 if (field.variant.is_discriminant)
15287 di->discriminant_index = index;
15288 else if (field.variant.default_branch)
15289 di->default_index = index;
15290 else
15291 di->discriminants[index] = field.variant.discriminant_value;
15292 }
15293 }
15294
15295 /* Copy the saved-up fields into the field vector. */
15296 for (int i = 0; i < nfields; ++i)
15297 {
15298 struct nextfield &field
15299 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15300 : fip->fields[i - fip->baseclasses.size ()]);
15301
15302 TYPE_FIELD (type, i) = field.field;
15303 switch (field.accessibility)
15304 {
15305 case DW_ACCESS_private:
15306 if (cu->language != language_ada)
15307 SET_TYPE_FIELD_PRIVATE (type, i);
15308 break;
15309
15310 case DW_ACCESS_protected:
15311 if (cu->language != language_ada)
15312 SET_TYPE_FIELD_PROTECTED (type, i);
15313 break;
15314
15315 case DW_ACCESS_public:
15316 break;
15317
15318 default:
15319 /* Unknown accessibility. Complain and treat it as public. */
15320 {
15321 complaint (_("unsupported accessibility %d"),
15322 field.accessibility);
15323 }
15324 break;
15325 }
15326 if (i < fip->baseclasses.size ())
15327 {
15328 switch (field.virtuality)
15329 {
15330 case DW_VIRTUALITY_virtual:
15331 case DW_VIRTUALITY_pure_virtual:
15332 if (cu->language == language_ada)
15333 error (_("unexpected virtuality in component of Ada type"));
15334 SET_TYPE_FIELD_VIRTUAL (type, i);
15335 break;
15336 }
15337 }
15338 }
15339 }
15340
15341 /* Return true if this member function is a constructor, false
15342 otherwise. */
15343
15344 static int
15345 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15346 {
15347 const char *fieldname;
15348 const char *type_name;
15349 int len;
15350
15351 if (die->parent == NULL)
15352 return 0;
15353
15354 if (die->parent->tag != DW_TAG_structure_type
15355 && die->parent->tag != DW_TAG_union_type
15356 && die->parent->tag != DW_TAG_class_type)
15357 return 0;
15358
15359 fieldname = dwarf2_name (die, cu);
15360 type_name = dwarf2_name (die->parent, cu);
15361 if (fieldname == NULL || type_name == NULL)
15362 return 0;
15363
15364 len = strlen (fieldname);
15365 return (strncmp (fieldname, type_name, len) == 0
15366 && (type_name[len] == '\0' || type_name[len] == '<'));
15367 }
15368
15369 /* Add a member function to the proper fieldlist. */
15370
15371 static void
15372 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15373 struct type *type, struct dwarf2_cu *cu)
15374 {
15375 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15376 struct attribute *attr;
15377 int i;
15378 struct fnfieldlist *flp = nullptr;
15379 struct fn_field *fnp;
15380 const char *fieldname;
15381 struct type *this_type;
15382 enum dwarf_access_attribute accessibility;
15383
15384 if (cu->language == language_ada)
15385 error (_("unexpected member function in Ada type"));
15386
15387 /* Get name of member function. */
15388 fieldname = dwarf2_name (die, cu);
15389 if (fieldname == NULL)
15390 return;
15391
15392 /* Look up member function name in fieldlist. */
15393 for (i = 0; i < fip->fnfieldlists.size (); i++)
15394 {
15395 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15396 {
15397 flp = &fip->fnfieldlists[i];
15398 break;
15399 }
15400 }
15401
15402 /* Create a new fnfieldlist if necessary. */
15403 if (flp == nullptr)
15404 {
15405 fip->fnfieldlists.emplace_back ();
15406 flp = &fip->fnfieldlists.back ();
15407 flp->name = fieldname;
15408 i = fip->fnfieldlists.size () - 1;
15409 }
15410
15411 /* Create a new member function field and add it to the vector of
15412 fnfieldlists. */
15413 flp->fnfields.emplace_back ();
15414 fnp = &flp->fnfields.back ();
15415
15416 /* Delay processing of the physname until later. */
15417 if (cu->language == language_cplus)
15418 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15419 die, cu);
15420 else
15421 {
15422 const char *physname = dwarf2_physname (fieldname, die, cu);
15423 fnp->physname = physname ? physname : "";
15424 }
15425
15426 fnp->type = alloc_type (objfile);
15427 this_type = read_type_die (die, cu);
15428 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15429 {
15430 int nparams = TYPE_NFIELDS (this_type);
15431
15432 /* TYPE is the domain of this method, and THIS_TYPE is the type
15433 of the method itself (TYPE_CODE_METHOD). */
15434 smash_to_method_type (fnp->type, type,
15435 TYPE_TARGET_TYPE (this_type),
15436 TYPE_FIELDS (this_type),
15437 TYPE_NFIELDS (this_type),
15438 TYPE_VARARGS (this_type));
15439
15440 /* Handle static member functions.
15441 Dwarf2 has no clean way to discern C++ static and non-static
15442 member functions. G++ helps GDB by marking the first
15443 parameter for non-static member functions (which is the this
15444 pointer) as artificial. We obtain this information from
15445 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15446 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15447 fnp->voffset = VOFFSET_STATIC;
15448 }
15449 else
15450 complaint (_("member function type missing for '%s'"),
15451 dwarf2_full_name (fieldname, die, cu));
15452
15453 /* Get fcontext from DW_AT_containing_type if present. */
15454 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15455 fnp->fcontext = die_containing_type (die, cu);
15456
15457 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15458 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15459
15460 /* Get accessibility. */
15461 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15462 if (attr)
15463 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15464 else
15465 accessibility = dwarf2_default_access_attribute (die, cu);
15466 switch (accessibility)
15467 {
15468 case DW_ACCESS_private:
15469 fnp->is_private = 1;
15470 break;
15471 case DW_ACCESS_protected:
15472 fnp->is_protected = 1;
15473 break;
15474 }
15475
15476 /* Check for artificial methods. */
15477 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15478 if (attr && DW_UNSND (attr) != 0)
15479 fnp->is_artificial = 1;
15480
15481 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15482
15483 /* Get index in virtual function table if it is a virtual member
15484 function. For older versions of GCC, this is an offset in the
15485 appropriate virtual table, as specified by DW_AT_containing_type.
15486 For everyone else, it is an expression to be evaluated relative
15487 to the object address. */
15488
15489 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15490 if (attr)
15491 {
15492 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15493 {
15494 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15495 {
15496 /* Old-style GCC. */
15497 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15498 }
15499 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15500 || (DW_BLOCK (attr)->size > 1
15501 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15502 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15503 {
15504 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15505 if ((fnp->voffset % cu->header.addr_size) != 0)
15506 dwarf2_complex_location_expr_complaint ();
15507 else
15508 fnp->voffset /= cu->header.addr_size;
15509 fnp->voffset += 2;
15510 }
15511 else
15512 dwarf2_complex_location_expr_complaint ();
15513
15514 if (!fnp->fcontext)
15515 {
15516 /* If there is no `this' field and no DW_AT_containing_type,
15517 we cannot actually find a base class context for the
15518 vtable! */
15519 if (TYPE_NFIELDS (this_type) == 0
15520 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15521 {
15522 complaint (_("cannot determine context for virtual member "
15523 "function \"%s\" (offset %s)"),
15524 fieldname, sect_offset_str (die->sect_off));
15525 }
15526 else
15527 {
15528 fnp->fcontext
15529 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15530 }
15531 }
15532 }
15533 else if (attr_form_is_section_offset (attr))
15534 {
15535 dwarf2_complex_location_expr_complaint ();
15536 }
15537 else
15538 {
15539 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15540 fieldname);
15541 }
15542 }
15543 else
15544 {
15545 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15546 if (attr && DW_UNSND (attr))
15547 {
15548 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15549 complaint (_("Member function \"%s\" (offset %s) is virtual "
15550 "but the vtable offset is not specified"),
15551 fieldname, sect_offset_str (die->sect_off));
15552 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15553 TYPE_CPLUS_DYNAMIC (type) = 1;
15554 }
15555 }
15556 }
15557
15558 /* Create the vector of member function fields, and attach it to the type. */
15559
15560 static void
15561 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15562 struct dwarf2_cu *cu)
15563 {
15564 if (cu->language == language_ada)
15565 error (_("unexpected member functions in Ada type"));
15566
15567 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15568 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15569 TYPE_ALLOC (type,
15570 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15571
15572 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15573 {
15574 struct fnfieldlist &nf = fip->fnfieldlists[i];
15575 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15576
15577 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15578 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15579 fn_flp->fn_fields = (struct fn_field *)
15580 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15581
15582 for (int k = 0; k < nf.fnfields.size (); ++k)
15583 fn_flp->fn_fields[k] = nf.fnfields[k];
15584 }
15585
15586 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15587 }
15588
15589 /* Returns non-zero if NAME is the name of a vtable member in CU's
15590 language, zero otherwise. */
15591 static int
15592 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15593 {
15594 static const char vptr[] = "_vptr";
15595
15596 /* Look for the C++ form of the vtable. */
15597 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15598 return 1;
15599
15600 return 0;
15601 }
15602
15603 /* GCC outputs unnamed structures that are really pointers to member
15604 functions, with the ABI-specified layout. If TYPE describes
15605 such a structure, smash it into a member function type.
15606
15607 GCC shouldn't do this; it should just output pointer to member DIEs.
15608 This is GCC PR debug/28767. */
15609
15610 static void
15611 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15612 {
15613 struct type *pfn_type, *self_type, *new_type;
15614
15615 /* Check for a structure with no name and two children. */
15616 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15617 return;
15618
15619 /* Check for __pfn and __delta members. */
15620 if (TYPE_FIELD_NAME (type, 0) == NULL
15621 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15622 || TYPE_FIELD_NAME (type, 1) == NULL
15623 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15624 return;
15625
15626 /* Find the type of the method. */
15627 pfn_type = TYPE_FIELD_TYPE (type, 0);
15628 if (pfn_type == NULL
15629 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15630 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15631 return;
15632
15633 /* Look for the "this" argument. */
15634 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15635 if (TYPE_NFIELDS (pfn_type) == 0
15636 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15637 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15638 return;
15639
15640 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15641 new_type = alloc_type (objfile);
15642 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15643 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15644 TYPE_VARARGS (pfn_type));
15645 smash_to_methodptr_type (type, new_type);
15646 }
15647
15648 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15649 appropriate error checking and issuing complaints if there is a
15650 problem. */
15651
15652 static ULONGEST
15653 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15654 {
15655 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15656
15657 if (attr == nullptr)
15658 return 0;
15659
15660 if (!attr_form_is_constant (attr))
15661 {
15662 complaint (_("DW_AT_alignment must have constant form"
15663 " - DIE at %s [in module %s]"),
15664 sect_offset_str (die->sect_off),
15665 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15666 return 0;
15667 }
15668
15669 ULONGEST align;
15670 if (attr->form == DW_FORM_sdata)
15671 {
15672 LONGEST val = DW_SND (attr);
15673 if (val < 0)
15674 {
15675 complaint (_("DW_AT_alignment value must not be negative"
15676 " - DIE at %s [in module %s]"),
15677 sect_offset_str (die->sect_off),
15678 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15679 return 0;
15680 }
15681 align = val;
15682 }
15683 else
15684 align = DW_UNSND (attr);
15685
15686 if (align == 0)
15687 {
15688 complaint (_("DW_AT_alignment value must not be zero"
15689 " - DIE at %s [in module %s]"),
15690 sect_offset_str (die->sect_off),
15691 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15692 return 0;
15693 }
15694 if ((align & (align - 1)) != 0)
15695 {
15696 complaint (_("DW_AT_alignment value must be a power of 2"
15697 " - DIE at %s [in module %s]"),
15698 sect_offset_str (die->sect_off),
15699 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15700 return 0;
15701 }
15702
15703 return align;
15704 }
15705
15706 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15707 the alignment for TYPE. */
15708
15709 static void
15710 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15711 struct type *type)
15712 {
15713 if (!set_type_align (type, get_alignment (cu, die)))
15714 complaint (_("DW_AT_alignment value too large"
15715 " - DIE at %s [in module %s]"),
15716 sect_offset_str (die->sect_off),
15717 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15718 }
15719
15720 /* Called when we find the DIE that starts a structure or union scope
15721 (definition) to create a type for the structure or union. Fill in
15722 the type's name and general properties; the members will not be
15723 processed until process_structure_scope. A symbol table entry for
15724 the type will also not be done until process_structure_scope (assuming
15725 the type has a name).
15726
15727 NOTE: we need to call these functions regardless of whether or not the
15728 DIE has a DW_AT_name attribute, since it might be an anonymous
15729 structure or union. This gets the type entered into our set of
15730 user defined types. */
15731
15732 static struct type *
15733 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15734 {
15735 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15736 struct type *type;
15737 struct attribute *attr;
15738 const char *name;
15739
15740 /* If the definition of this type lives in .debug_types, read that type.
15741 Don't follow DW_AT_specification though, that will take us back up
15742 the chain and we want to go down. */
15743 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15744 if (attr)
15745 {
15746 type = get_DW_AT_signature_type (die, attr, cu);
15747
15748 /* The type's CU may not be the same as CU.
15749 Ensure TYPE is recorded with CU in die_type_hash. */
15750 return set_die_type (die, type, cu);
15751 }
15752
15753 type = alloc_type (objfile);
15754 INIT_CPLUS_SPECIFIC (type);
15755
15756 name = dwarf2_name (die, cu);
15757 if (name != NULL)
15758 {
15759 if (cu->language == language_cplus
15760 || cu->language == language_d
15761 || cu->language == language_rust)
15762 {
15763 const char *full_name = dwarf2_full_name (name, die, cu);
15764
15765 /* dwarf2_full_name might have already finished building the DIE's
15766 type. If so, there is no need to continue. */
15767 if (get_die_type (die, cu) != NULL)
15768 return get_die_type (die, cu);
15769
15770 TYPE_NAME (type) = full_name;
15771 }
15772 else
15773 {
15774 /* The name is already allocated along with this objfile, so
15775 we don't need to duplicate it for the type. */
15776 TYPE_NAME (type) = name;
15777 }
15778 }
15779
15780 if (die->tag == DW_TAG_structure_type)
15781 {
15782 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15783 }
15784 else if (die->tag == DW_TAG_union_type)
15785 {
15786 TYPE_CODE (type) = TYPE_CODE_UNION;
15787 }
15788 else if (die->tag == DW_TAG_variant_part)
15789 {
15790 TYPE_CODE (type) = TYPE_CODE_UNION;
15791 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15792 }
15793 else
15794 {
15795 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15796 }
15797
15798 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15799 TYPE_DECLARED_CLASS (type) = 1;
15800
15801 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15802 if (attr)
15803 {
15804 if (attr_form_is_constant (attr))
15805 TYPE_LENGTH (type) = DW_UNSND (attr);
15806 else
15807 {
15808 /* For the moment, dynamic type sizes are not supported
15809 by GDB's struct type. The actual size is determined
15810 on-demand when resolving the type of a given object,
15811 so set the type's length to zero for now. Otherwise,
15812 we record an expression as the length, and that expression
15813 could lead to a very large value, which could eventually
15814 lead to us trying to allocate that much memory when creating
15815 a value of that type. */
15816 TYPE_LENGTH (type) = 0;
15817 }
15818 }
15819 else
15820 {
15821 TYPE_LENGTH (type) = 0;
15822 }
15823
15824 maybe_set_alignment (cu, die, type);
15825
15826 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15827 {
15828 /* ICC<14 does not output the required DW_AT_declaration on
15829 incomplete types, but gives them a size of zero. */
15830 TYPE_STUB (type) = 1;
15831 }
15832 else
15833 TYPE_STUB_SUPPORTED (type) = 1;
15834
15835 if (die_is_declaration (die, cu))
15836 TYPE_STUB (type) = 1;
15837 else if (attr == NULL && die->child == NULL
15838 && producer_is_realview (cu->producer))
15839 /* RealView does not output the required DW_AT_declaration
15840 on incomplete types. */
15841 TYPE_STUB (type) = 1;
15842
15843 /* We need to add the type field to the die immediately so we don't
15844 infinitely recurse when dealing with pointers to the structure
15845 type within the structure itself. */
15846 set_die_type (die, type, cu);
15847
15848 /* set_die_type should be already done. */
15849 set_descriptive_type (type, die, cu);
15850
15851 return type;
15852 }
15853
15854 /* A helper for process_structure_scope that handles a single member
15855 DIE. */
15856
15857 static void
15858 handle_struct_member_die (struct die_info *child_die, struct type *type,
15859 struct field_info *fi,
15860 std::vector<struct symbol *> *template_args,
15861 struct dwarf2_cu *cu)
15862 {
15863 if (child_die->tag == DW_TAG_member
15864 || child_die->tag == DW_TAG_variable
15865 || child_die->tag == DW_TAG_variant_part)
15866 {
15867 /* NOTE: carlton/2002-11-05: A C++ static data member
15868 should be a DW_TAG_member that is a declaration, but
15869 all versions of G++ as of this writing (so through at
15870 least 3.2.1) incorrectly generate DW_TAG_variable
15871 tags for them instead. */
15872 dwarf2_add_field (fi, child_die, cu);
15873 }
15874 else if (child_die->tag == DW_TAG_subprogram)
15875 {
15876 /* Rust doesn't have member functions in the C++ sense.
15877 However, it does emit ordinary functions as children
15878 of a struct DIE. */
15879 if (cu->language == language_rust)
15880 read_func_scope (child_die, cu);
15881 else
15882 {
15883 /* C++ member function. */
15884 dwarf2_add_member_fn (fi, child_die, type, cu);
15885 }
15886 }
15887 else if (child_die->tag == DW_TAG_inheritance)
15888 {
15889 /* C++ base class field. */
15890 dwarf2_add_field (fi, child_die, cu);
15891 }
15892 else if (type_can_define_types (child_die))
15893 dwarf2_add_type_defn (fi, child_die, cu);
15894 else if (child_die->tag == DW_TAG_template_type_param
15895 || child_die->tag == DW_TAG_template_value_param)
15896 {
15897 struct symbol *arg = new_symbol (child_die, NULL, cu);
15898
15899 if (arg != NULL)
15900 template_args->push_back (arg);
15901 }
15902 else if (child_die->tag == DW_TAG_variant)
15903 {
15904 /* In a variant we want to get the discriminant and also add a
15905 field for our sole member child. */
15906 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15907
15908 for (die_info *variant_child = child_die->child;
15909 variant_child != NULL;
15910 variant_child = sibling_die (variant_child))
15911 {
15912 if (variant_child->tag == DW_TAG_member)
15913 {
15914 handle_struct_member_die (variant_child, type, fi,
15915 template_args, cu);
15916 /* Only handle the one. */
15917 break;
15918 }
15919 }
15920
15921 /* We don't handle this but we might as well report it if we see
15922 it. */
15923 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15924 complaint (_("DW_AT_discr_list is not supported yet"
15925 " - DIE at %s [in module %s]"),
15926 sect_offset_str (child_die->sect_off),
15927 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15928
15929 /* The first field was just added, so we can stash the
15930 discriminant there. */
15931 gdb_assert (!fi->fields.empty ());
15932 if (discr == NULL)
15933 fi->fields.back ().variant.default_branch = true;
15934 else
15935 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15936 }
15937 }
15938
15939 /* Finish creating a structure or union type, including filling in
15940 its members and creating a symbol for it. */
15941
15942 static void
15943 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15944 {
15945 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15946 struct die_info *child_die;
15947 struct type *type;
15948
15949 type = get_die_type (die, cu);
15950 if (type == NULL)
15951 type = read_structure_type (die, cu);
15952
15953 /* When reading a DW_TAG_variant_part, we need to notice when we
15954 read the discriminant member, so we can record it later in the
15955 discriminant_info. */
15956 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15957 sect_offset discr_offset;
15958 bool has_template_parameters = false;
15959
15960 if (is_variant_part)
15961 {
15962 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15963 if (discr == NULL)
15964 {
15965 /* Maybe it's a univariant form, an extension we support.
15966 In this case arrange not to check the offset. */
15967 is_variant_part = false;
15968 }
15969 else if (attr_form_is_ref (discr))
15970 {
15971 struct dwarf2_cu *target_cu = cu;
15972 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15973
15974 discr_offset = target_die->sect_off;
15975 }
15976 else
15977 {
15978 complaint (_("DW_AT_discr does not have DIE reference form"
15979 " - DIE at %s [in module %s]"),
15980 sect_offset_str (die->sect_off),
15981 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15982 is_variant_part = false;
15983 }
15984 }
15985
15986 if (die->child != NULL && ! die_is_declaration (die, cu))
15987 {
15988 struct field_info fi;
15989 std::vector<struct symbol *> template_args;
15990
15991 child_die = die->child;
15992
15993 while (child_die && child_die->tag)
15994 {
15995 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15996
15997 if (is_variant_part && discr_offset == child_die->sect_off)
15998 fi.fields.back ().variant.is_discriminant = true;
15999
16000 child_die = sibling_die (child_die);
16001 }
16002
16003 /* Attach template arguments to type. */
16004 if (!template_args.empty ())
16005 {
16006 has_template_parameters = true;
16007 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16008 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16009 TYPE_TEMPLATE_ARGUMENTS (type)
16010 = XOBNEWVEC (&objfile->objfile_obstack,
16011 struct symbol *,
16012 TYPE_N_TEMPLATE_ARGUMENTS (type));
16013 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16014 template_args.data (),
16015 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16016 * sizeof (struct symbol *)));
16017 }
16018
16019 /* Attach fields and member functions to the type. */
16020 if (fi.nfields)
16021 dwarf2_attach_fields_to_type (&fi, type, cu);
16022 if (!fi.fnfieldlists.empty ())
16023 {
16024 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16025
16026 /* Get the type which refers to the base class (possibly this
16027 class itself) which contains the vtable pointer for the current
16028 class from the DW_AT_containing_type attribute. This use of
16029 DW_AT_containing_type is a GNU extension. */
16030
16031 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16032 {
16033 struct type *t = die_containing_type (die, cu);
16034
16035 set_type_vptr_basetype (type, t);
16036 if (type == t)
16037 {
16038 int i;
16039
16040 /* Our own class provides vtbl ptr. */
16041 for (i = TYPE_NFIELDS (t) - 1;
16042 i >= TYPE_N_BASECLASSES (t);
16043 --i)
16044 {
16045 const char *fieldname = TYPE_FIELD_NAME (t, i);
16046
16047 if (is_vtable_name (fieldname, cu))
16048 {
16049 set_type_vptr_fieldno (type, i);
16050 break;
16051 }
16052 }
16053
16054 /* Complain if virtual function table field not found. */
16055 if (i < TYPE_N_BASECLASSES (t))
16056 complaint (_("virtual function table pointer "
16057 "not found when defining class '%s'"),
16058 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16059 }
16060 else
16061 {
16062 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16063 }
16064 }
16065 else if (cu->producer
16066 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16067 {
16068 /* The IBM XLC compiler does not provide direct indication
16069 of the containing type, but the vtable pointer is
16070 always named __vfp. */
16071
16072 int i;
16073
16074 for (i = TYPE_NFIELDS (type) - 1;
16075 i >= TYPE_N_BASECLASSES (type);
16076 --i)
16077 {
16078 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16079 {
16080 set_type_vptr_fieldno (type, i);
16081 set_type_vptr_basetype (type, type);
16082 break;
16083 }
16084 }
16085 }
16086 }
16087
16088 /* Copy fi.typedef_field_list linked list elements content into the
16089 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16090 if (!fi.typedef_field_list.empty ())
16091 {
16092 int count = fi.typedef_field_list.size ();
16093
16094 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16095 TYPE_TYPEDEF_FIELD_ARRAY (type)
16096 = ((struct decl_field *)
16097 TYPE_ALLOC (type,
16098 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16099 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16100
16101 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16102 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16103 }
16104
16105 /* Copy fi.nested_types_list linked list elements content into the
16106 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16107 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16108 {
16109 int count = fi.nested_types_list.size ();
16110
16111 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16112 TYPE_NESTED_TYPES_ARRAY (type)
16113 = ((struct decl_field *)
16114 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16115 TYPE_NESTED_TYPES_COUNT (type) = count;
16116
16117 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16118 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16119 }
16120 }
16121
16122 quirk_gcc_member_function_pointer (type, objfile);
16123 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16124 cu->rust_unions.push_back (type);
16125
16126 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16127 snapshots) has been known to create a die giving a declaration
16128 for a class that has, as a child, a die giving a definition for a
16129 nested class. So we have to process our children even if the
16130 current die is a declaration. Normally, of course, a declaration
16131 won't have any children at all. */
16132
16133 child_die = die->child;
16134
16135 while (child_die != NULL && child_die->tag)
16136 {
16137 if (child_die->tag == DW_TAG_member
16138 || child_die->tag == DW_TAG_variable
16139 || child_die->tag == DW_TAG_inheritance
16140 || child_die->tag == DW_TAG_template_value_param
16141 || child_die->tag == DW_TAG_template_type_param)
16142 {
16143 /* Do nothing. */
16144 }
16145 else
16146 process_die (child_die, cu);
16147
16148 child_die = sibling_die (child_die);
16149 }
16150
16151 /* Do not consider external references. According to the DWARF standard,
16152 these DIEs are identified by the fact that they have no byte_size
16153 attribute, and a declaration attribute. */
16154 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16155 || !die_is_declaration (die, cu))
16156 {
16157 struct symbol *sym = new_symbol (die, type, cu);
16158
16159 if (has_template_parameters)
16160 {
16161 struct symtab *symtab;
16162 if (sym != nullptr)
16163 symtab = symbol_symtab (sym);
16164 else if (cu->line_header != nullptr)
16165 {
16166 /* Any related symtab will do. */
16167 symtab
16168 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16169 }
16170 else
16171 {
16172 symtab = nullptr;
16173 complaint (_("could not find suitable "
16174 "symtab for template parameter"
16175 " - DIE at %s [in module %s]"),
16176 sect_offset_str (die->sect_off),
16177 objfile_name (objfile));
16178 }
16179
16180 if (symtab != nullptr)
16181 {
16182 /* Make sure that the symtab is set on the new symbols.
16183 Even though they don't appear in this symtab directly,
16184 other parts of gdb assume that symbols do, and this is
16185 reasonably true. */
16186 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16187 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16188 }
16189 }
16190 }
16191 }
16192
16193 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16194 update TYPE using some information only available in DIE's children. */
16195
16196 static void
16197 update_enumeration_type_from_children (struct die_info *die,
16198 struct type *type,
16199 struct dwarf2_cu *cu)
16200 {
16201 struct die_info *child_die;
16202 int unsigned_enum = 1;
16203 int flag_enum = 1;
16204 ULONGEST mask = 0;
16205
16206 auto_obstack obstack;
16207
16208 for (child_die = die->child;
16209 child_die != NULL && child_die->tag;
16210 child_die = sibling_die (child_die))
16211 {
16212 struct attribute *attr;
16213 LONGEST value;
16214 const gdb_byte *bytes;
16215 struct dwarf2_locexpr_baton *baton;
16216 const char *name;
16217
16218 if (child_die->tag != DW_TAG_enumerator)
16219 continue;
16220
16221 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16222 if (attr == NULL)
16223 continue;
16224
16225 name = dwarf2_name (child_die, cu);
16226 if (name == NULL)
16227 name = "<anonymous enumerator>";
16228
16229 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16230 &value, &bytes, &baton);
16231 if (value < 0)
16232 {
16233 unsigned_enum = 0;
16234 flag_enum = 0;
16235 }
16236 else if ((mask & value) != 0)
16237 flag_enum = 0;
16238 else
16239 mask |= value;
16240
16241 /* If we already know that the enum type is neither unsigned, nor
16242 a flag type, no need to look at the rest of the enumerates. */
16243 if (!unsigned_enum && !flag_enum)
16244 break;
16245 }
16246
16247 if (unsigned_enum)
16248 TYPE_UNSIGNED (type) = 1;
16249 if (flag_enum)
16250 TYPE_FLAG_ENUM (type) = 1;
16251 }
16252
16253 /* Given a DW_AT_enumeration_type die, set its type. We do not
16254 complete the type's fields yet, or create any symbols. */
16255
16256 static struct type *
16257 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16258 {
16259 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16260 struct type *type;
16261 struct attribute *attr;
16262 const char *name;
16263
16264 /* If the definition of this type lives in .debug_types, read that type.
16265 Don't follow DW_AT_specification though, that will take us back up
16266 the chain and we want to go down. */
16267 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16268 if (attr)
16269 {
16270 type = get_DW_AT_signature_type (die, attr, cu);
16271
16272 /* The type's CU may not be the same as CU.
16273 Ensure TYPE is recorded with CU in die_type_hash. */
16274 return set_die_type (die, type, cu);
16275 }
16276
16277 type = alloc_type (objfile);
16278
16279 TYPE_CODE (type) = TYPE_CODE_ENUM;
16280 name = dwarf2_full_name (NULL, die, cu);
16281 if (name != NULL)
16282 TYPE_NAME (type) = name;
16283
16284 attr = dwarf2_attr (die, DW_AT_type, cu);
16285 if (attr != NULL)
16286 {
16287 struct type *underlying_type = die_type (die, cu);
16288
16289 TYPE_TARGET_TYPE (type) = underlying_type;
16290 }
16291
16292 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16293 if (attr)
16294 {
16295 TYPE_LENGTH (type) = DW_UNSND (attr);
16296 }
16297 else
16298 {
16299 TYPE_LENGTH (type) = 0;
16300 }
16301
16302 maybe_set_alignment (cu, die, type);
16303
16304 /* The enumeration DIE can be incomplete. In Ada, any type can be
16305 declared as private in the package spec, and then defined only
16306 inside the package body. Such types are known as Taft Amendment
16307 Types. When another package uses such a type, an incomplete DIE
16308 may be generated by the compiler. */
16309 if (die_is_declaration (die, cu))
16310 TYPE_STUB (type) = 1;
16311
16312 /* Finish the creation of this type by using the enum's children.
16313 We must call this even when the underlying type has been provided
16314 so that we can determine if we're looking at a "flag" enum. */
16315 update_enumeration_type_from_children (die, type, cu);
16316
16317 /* If this type has an underlying type that is not a stub, then we
16318 may use its attributes. We always use the "unsigned" attribute
16319 in this situation, because ordinarily we guess whether the type
16320 is unsigned -- but the guess can be wrong and the underlying type
16321 can tell us the reality. However, we defer to a local size
16322 attribute if one exists, because this lets the compiler override
16323 the underlying type if needed. */
16324 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16325 {
16326 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16327 if (TYPE_LENGTH (type) == 0)
16328 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16329 if (TYPE_RAW_ALIGN (type) == 0
16330 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16331 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16332 }
16333
16334 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16335
16336 return set_die_type (die, type, cu);
16337 }
16338
16339 /* Given a pointer to a die which begins an enumeration, process all
16340 the dies that define the members of the enumeration, and create the
16341 symbol for the enumeration type.
16342
16343 NOTE: We reverse the order of the element list. */
16344
16345 static void
16346 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16347 {
16348 struct type *this_type;
16349
16350 this_type = get_die_type (die, cu);
16351 if (this_type == NULL)
16352 this_type = read_enumeration_type (die, cu);
16353
16354 if (die->child != NULL)
16355 {
16356 struct die_info *child_die;
16357 struct symbol *sym;
16358 struct field *fields = NULL;
16359 int num_fields = 0;
16360 const char *name;
16361
16362 child_die = die->child;
16363 while (child_die && child_die->tag)
16364 {
16365 if (child_die->tag != DW_TAG_enumerator)
16366 {
16367 process_die (child_die, cu);
16368 }
16369 else
16370 {
16371 name = dwarf2_name (child_die, cu);
16372 if (name)
16373 {
16374 sym = new_symbol (child_die, this_type, cu);
16375
16376 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16377 {
16378 fields = (struct field *)
16379 xrealloc (fields,
16380 (num_fields + DW_FIELD_ALLOC_CHUNK)
16381 * sizeof (struct field));
16382 }
16383
16384 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16385 FIELD_TYPE (fields[num_fields]) = NULL;
16386 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16387 FIELD_BITSIZE (fields[num_fields]) = 0;
16388
16389 num_fields++;
16390 }
16391 }
16392
16393 child_die = sibling_die (child_die);
16394 }
16395
16396 if (num_fields)
16397 {
16398 TYPE_NFIELDS (this_type) = num_fields;
16399 TYPE_FIELDS (this_type) = (struct field *)
16400 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16401 memcpy (TYPE_FIELDS (this_type), fields,
16402 sizeof (struct field) * num_fields);
16403 xfree (fields);
16404 }
16405 }
16406
16407 /* If we are reading an enum from a .debug_types unit, and the enum
16408 is a declaration, and the enum is not the signatured type in the
16409 unit, then we do not want to add a symbol for it. Adding a
16410 symbol would in some cases obscure the true definition of the
16411 enum, giving users an incomplete type when the definition is
16412 actually available. Note that we do not want to do this for all
16413 enums which are just declarations, because C++0x allows forward
16414 enum declarations. */
16415 if (cu->per_cu->is_debug_types
16416 && die_is_declaration (die, cu))
16417 {
16418 struct signatured_type *sig_type;
16419
16420 sig_type = (struct signatured_type *) cu->per_cu;
16421 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16422 if (sig_type->type_offset_in_section != die->sect_off)
16423 return;
16424 }
16425
16426 new_symbol (die, this_type, cu);
16427 }
16428
16429 /* Extract all information from a DW_TAG_array_type DIE and put it in
16430 the DIE's type field. For now, this only handles one dimensional
16431 arrays. */
16432
16433 static struct type *
16434 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16435 {
16436 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16437 struct die_info *child_die;
16438 struct type *type;
16439 struct type *element_type, *range_type, *index_type;
16440 struct attribute *attr;
16441 const char *name;
16442 struct dynamic_prop *byte_stride_prop = NULL;
16443 unsigned int bit_stride = 0;
16444
16445 element_type = die_type (die, cu);
16446
16447 /* The die_type call above may have already set the type for this DIE. */
16448 type = get_die_type (die, cu);
16449 if (type)
16450 return type;
16451
16452 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16453 if (attr != NULL)
16454 {
16455 int stride_ok;
16456 struct type *prop_type
16457 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16458
16459 byte_stride_prop
16460 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16461 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16462 prop_type);
16463 if (!stride_ok)
16464 {
16465 complaint (_("unable to read array DW_AT_byte_stride "
16466 " - DIE at %s [in module %s]"),
16467 sect_offset_str (die->sect_off),
16468 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16469 /* Ignore this attribute. We will likely not be able to print
16470 arrays of this type correctly, but there is little we can do
16471 to help if we cannot read the attribute's value. */
16472 byte_stride_prop = NULL;
16473 }
16474 }
16475
16476 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16477 if (attr != NULL)
16478 bit_stride = DW_UNSND (attr);
16479
16480 /* Irix 6.2 native cc creates array types without children for
16481 arrays with unspecified length. */
16482 if (die->child == NULL)
16483 {
16484 index_type = objfile_type (objfile)->builtin_int;
16485 range_type = create_static_range_type (NULL, index_type, 0, -1);
16486 type = create_array_type_with_stride (NULL, element_type, range_type,
16487 byte_stride_prop, bit_stride);
16488 return set_die_type (die, type, cu);
16489 }
16490
16491 std::vector<struct type *> range_types;
16492 child_die = die->child;
16493 while (child_die && child_die->tag)
16494 {
16495 if (child_die->tag == DW_TAG_subrange_type)
16496 {
16497 struct type *child_type = read_type_die (child_die, cu);
16498
16499 if (child_type != NULL)
16500 {
16501 /* The range type was succesfully read. Save it for the
16502 array type creation. */
16503 range_types.push_back (child_type);
16504 }
16505 }
16506 child_die = sibling_die (child_die);
16507 }
16508
16509 /* Dwarf2 dimensions are output from left to right, create the
16510 necessary array types in backwards order. */
16511
16512 type = element_type;
16513
16514 if (read_array_order (die, cu) == DW_ORD_col_major)
16515 {
16516 int i = 0;
16517
16518 while (i < range_types.size ())
16519 type = create_array_type_with_stride (NULL, type, range_types[i++],
16520 byte_stride_prop, bit_stride);
16521 }
16522 else
16523 {
16524 size_t ndim = range_types.size ();
16525 while (ndim-- > 0)
16526 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16527 byte_stride_prop, bit_stride);
16528 }
16529
16530 /* Understand Dwarf2 support for vector types (like they occur on
16531 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16532 array type. This is not part of the Dwarf2/3 standard yet, but a
16533 custom vendor extension. The main difference between a regular
16534 array and the vector variant is that vectors are passed by value
16535 to functions. */
16536 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16537 if (attr)
16538 make_vector_type (type);
16539
16540 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16541 implementation may choose to implement triple vectors using this
16542 attribute. */
16543 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16544 if (attr)
16545 {
16546 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16547 TYPE_LENGTH (type) = DW_UNSND (attr);
16548 else
16549 complaint (_("DW_AT_byte_size for array type smaller "
16550 "than the total size of elements"));
16551 }
16552
16553 name = dwarf2_name (die, cu);
16554 if (name)
16555 TYPE_NAME (type) = name;
16556
16557 maybe_set_alignment (cu, die, type);
16558
16559 /* Install the type in the die. */
16560 set_die_type (die, type, cu);
16561
16562 /* set_die_type should be already done. */
16563 set_descriptive_type (type, die, cu);
16564
16565 return type;
16566 }
16567
16568 static enum dwarf_array_dim_ordering
16569 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16570 {
16571 struct attribute *attr;
16572
16573 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16574
16575 if (attr)
16576 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16577
16578 /* GNU F77 is a special case, as at 08/2004 array type info is the
16579 opposite order to the dwarf2 specification, but data is still
16580 laid out as per normal fortran.
16581
16582 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16583 version checking. */
16584
16585 if (cu->language == language_fortran
16586 && cu->producer && strstr (cu->producer, "GNU F77"))
16587 {
16588 return DW_ORD_row_major;
16589 }
16590
16591 switch (cu->language_defn->la_array_ordering)
16592 {
16593 case array_column_major:
16594 return DW_ORD_col_major;
16595 case array_row_major:
16596 default:
16597 return DW_ORD_row_major;
16598 };
16599 }
16600
16601 /* Extract all information from a DW_TAG_set_type DIE and put it in
16602 the DIE's type field. */
16603
16604 static struct type *
16605 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16606 {
16607 struct type *domain_type, *set_type;
16608 struct attribute *attr;
16609
16610 domain_type = die_type (die, cu);
16611
16612 /* The die_type call above may have already set the type for this DIE. */
16613 set_type = get_die_type (die, cu);
16614 if (set_type)
16615 return set_type;
16616
16617 set_type = create_set_type (NULL, domain_type);
16618
16619 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16620 if (attr)
16621 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16622
16623 maybe_set_alignment (cu, die, set_type);
16624
16625 return set_die_type (die, set_type, cu);
16626 }
16627
16628 /* A helper for read_common_block that creates a locexpr baton.
16629 SYM is the symbol which we are marking as computed.
16630 COMMON_DIE is the DIE for the common block.
16631 COMMON_LOC is the location expression attribute for the common
16632 block itself.
16633 MEMBER_LOC is the location expression attribute for the particular
16634 member of the common block that we are processing.
16635 CU is the CU from which the above come. */
16636
16637 static void
16638 mark_common_block_symbol_computed (struct symbol *sym,
16639 struct die_info *common_die,
16640 struct attribute *common_loc,
16641 struct attribute *member_loc,
16642 struct dwarf2_cu *cu)
16643 {
16644 struct dwarf2_per_objfile *dwarf2_per_objfile
16645 = cu->per_cu->dwarf2_per_objfile;
16646 struct objfile *objfile = dwarf2_per_objfile->objfile;
16647 struct dwarf2_locexpr_baton *baton;
16648 gdb_byte *ptr;
16649 unsigned int cu_off;
16650 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16651 LONGEST offset = 0;
16652
16653 gdb_assert (common_loc && member_loc);
16654 gdb_assert (attr_form_is_block (common_loc));
16655 gdb_assert (attr_form_is_block (member_loc)
16656 || attr_form_is_constant (member_loc));
16657
16658 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16659 baton->per_cu = cu->per_cu;
16660 gdb_assert (baton->per_cu);
16661
16662 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16663
16664 if (attr_form_is_constant (member_loc))
16665 {
16666 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16667 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16668 }
16669 else
16670 baton->size += DW_BLOCK (member_loc)->size;
16671
16672 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16673 baton->data = ptr;
16674
16675 *ptr++ = DW_OP_call4;
16676 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16677 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16678 ptr += 4;
16679
16680 if (attr_form_is_constant (member_loc))
16681 {
16682 *ptr++ = DW_OP_addr;
16683 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16684 ptr += cu->header.addr_size;
16685 }
16686 else
16687 {
16688 /* We have to copy the data here, because DW_OP_call4 will only
16689 use a DW_AT_location attribute. */
16690 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16691 ptr += DW_BLOCK (member_loc)->size;
16692 }
16693
16694 *ptr++ = DW_OP_plus;
16695 gdb_assert (ptr - baton->data == baton->size);
16696
16697 SYMBOL_LOCATION_BATON (sym) = baton;
16698 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16699 }
16700
16701 /* Create appropriate locally-scoped variables for all the
16702 DW_TAG_common_block entries. Also create a struct common_block
16703 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16704 is used to sepate the common blocks name namespace from regular
16705 variable names. */
16706
16707 static void
16708 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16709 {
16710 struct attribute *attr;
16711
16712 attr = dwarf2_attr (die, DW_AT_location, cu);
16713 if (attr)
16714 {
16715 /* Support the .debug_loc offsets. */
16716 if (attr_form_is_block (attr))
16717 {
16718 /* Ok. */
16719 }
16720 else if (attr_form_is_section_offset (attr))
16721 {
16722 dwarf2_complex_location_expr_complaint ();
16723 attr = NULL;
16724 }
16725 else
16726 {
16727 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16728 "common block member");
16729 attr = NULL;
16730 }
16731 }
16732
16733 if (die->child != NULL)
16734 {
16735 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16736 struct die_info *child_die;
16737 size_t n_entries = 0, size;
16738 struct common_block *common_block;
16739 struct symbol *sym;
16740
16741 for (child_die = die->child;
16742 child_die && child_die->tag;
16743 child_die = sibling_die (child_die))
16744 ++n_entries;
16745
16746 size = (sizeof (struct common_block)
16747 + (n_entries - 1) * sizeof (struct symbol *));
16748 common_block
16749 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16750 size);
16751 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16752 common_block->n_entries = 0;
16753
16754 for (child_die = die->child;
16755 child_die && child_die->tag;
16756 child_die = sibling_die (child_die))
16757 {
16758 /* Create the symbol in the DW_TAG_common_block block in the current
16759 symbol scope. */
16760 sym = new_symbol (child_die, NULL, cu);
16761 if (sym != NULL)
16762 {
16763 struct attribute *member_loc;
16764
16765 common_block->contents[common_block->n_entries++] = sym;
16766
16767 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16768 cu);
16769 if (member_loc)
16770 {
16771 /* GDB has handled this for a long time, but it is
16772 not specified by DWARF. It seems to have been
16773 emitted by gfortran at least as recently as:
16774 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16775 complaint (_("Variable in common block has "
16776 "DW_AT_data_member_location "
16777 "- DIE at %s [in module %s]"),
16778 sect_offset_str (child_die->sect_off),
16779 objfile_name (objfile));
16780
16781 if (attr_form_is_section_offset (member_loc))
16782 dwarf2_complex_location_expr_complaint ();
16783 else if (attr_form_is_constant (member_loc)
16784 || attr_form_is_block (member_loc))
16785 {
16786 if (attr)
16787 mark_common_block_symbol_computed (sym, die, attr,
16788 member_loc, cu);
16789 }
16790 else
16791 dwarf2_complex_location_expr_complaint ();
16792 }
16793 }
16794 }
16795
16796 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16797 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16798 }
16799 }
16800
16801 /* Create a type for a C++ namespace. */
16802
16803 static struct type *
16804 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16805 {
16806 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16807 const char *previous_prefix, *name;
16808 int is_anonymous;
16809 struct type *type;
16810
16811 /* For extensions, reuse the type of the original namespace. */
16812 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16813 {
16814 struct die_info *ext_die;
16815 struct dwarf2_cu *ext_cu = cu;
16816
16817 ext_die = dwarf2_extension (die, &ext_cu);
16818 type = read_type_die (ext_die, ext_cu);
16819
16820 /* EXT_CU may not be the same as CU.
16821 Ensure TYPE is recorded with CU in die_type_hash. */
16822 return set_die_type (die, type, cu);
16823 }
16824
16825 name = namespace_name (die, &is_anonymous, cu);
16826
16827 /* Now build the name of the current namespace. */
16828
16829 previous_prefix = determine_prefix (die, cu);
16830 if (previous_prefix[0] != '\0')
16831 name = typename_concat (&objfile->objfile_obstack,
16832 previous_prefix, name, 0, cu);
16833
16834 /* Create the type. */
16835 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16836
16837 return set_die_type (die, type, cu);
16838 }
16839
16840 /* Read a namespace scope. */
16841
16842 static void
16843 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16844 {
16845 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16846 int is_anonymous;
16847
16848 /* Add a symbol associated to this if we haven't seen the namespace
16849 before. Also, add a using directive if it's an anonymous
16850 namespace. */
16851
16852 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16853 {
16854 struct type *type;
16855
16856 type = read_type_die (die, cu);
16857 new_symbol (die, type, cu);
16858
16859 namespace_name (die, &is_anonymous, cu);
16860 if (is_anonymous)
16861 {
16862 const char *previous_prefix = determine_prefix (die, cu);
16863
16864 std::vector<const char *> excludes;
16865 add_using_directive (using_directives (cu),
16866 previous_prefix, TYPE_NAME (type), NULL,
16867 NULL, excludes, 0, &objfile->objfile_obstack);
16868 }
16869 }
16870
16871 if (die->child != NULL)
16872 {
16873 struct die_info *child_die = die->child;
16874
16875 while (child_die && child_die->tag)
16876 {
16877 process_die (child_die, cu);
16878 child_die = sibling_die (child_die);
16879 }
16880 }
16881 }
16882
16883 /* Read a Fortran module as type. This DIE can be only a declaration used for
16884 imported module. Still we need that type as local Fortran "use ... only"
16885 declaration imports depend on the created type in determine_prefix. */
16886
16887 static struct type *
16888 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16889 {
16890 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16891 const char *module_name;
16892 struct type *type;
16893
16894 module_name = dwarf2_name (die, cu);
16895 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16896
16897 return set_die_type (die, type, cu);
16898 }
16899
16900 /* Read a Fortran module. */
16901
16902 static void
16903 read_module (struct die_info *die, struct dwarf2_cu *cu)
16904 {
16905 struct die_info *child_die = die->child;
16906 struct type *type;
16907
16908 type = read_type_die (die, cu);
16909 new_symbol (die, type, cu);
16910
16911 while (child_die && child_die->tag)
16912 {
16913 process_die (child_die, cu);
16914 child_die = sibling_die (child_die);
16915 }
16916 }
16917
16918 /* Return the name of the namespace represented by DIE. Set
16919 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16920 namespace. */
16921
16922 static const char *
16923 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16924 {
16925 struct die_info *current_die;
16926 const char *name = NULL;
16927
16928 /* Loop through the extensions until we find a name. */
16929
16930 for (current_die = die;
16931 current_die != NULL;
16932 current_die = dwarf2_extension (die, &cu))
16933 {
16934 /* We don't use dwarf2_name here so that we can detect the absence
16935 of a name -> anonymous namespace. */
16936 name = dwarf2_string_attr (die, DW_AT_name, cu);
16937
16938 if (name != NULL)
16939 break;
16940 }
16941
16942 /* Is it an anonymous namespace? */
16943
16944 *is_anonymous = (name == NULL);
16945 if (*is_anonymous)
16946 name = CP_ANONYMOUS_NAMESPACE_STR;
16947
16948 return name;
16949 }
16950
16951 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16952 the user defined type vector. */
16953
16954 static struct type *
16955 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16956 {
16957 struct gdbarch *gdbarch
16958 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16959 struct comp_unit_head *cu_header = &cu->header;
16960 struct type *type;
16961 struct attribute *attr_byte_size;
16962 struct attribute *attr_address_class;
16963 int byte_size, addr_class;
16964 struct type *target_type;
16965
16966 target_type = die_type (die, cu);
16967
16968 /* The die_type call above may have already set the type for this DIE. */
16969 type = get_die_type (die, cu);
16970 if (type)
16971 return type;
16972
16973 type = lookup_pointer_type (target_type);
16974
16975 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16976 if (attr_byte_size)
16977 byte_size = DW_UNSND (attr_byte_size);
16978 else
16979 byte_size = cu_header->addr_size;
16980
16981 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16982 if (attr_address_class)
16983 addr_class = DW_UNSND (attr_address_class);
16984 else
16985 addr_class = DW_ADDR_none;
16986
16987 ULONGEST alignment = get_alignment (cu, die);
16988
16989 /* If the pointer size, alignment, or address class is different
16990 than the default, create a type variant marked as such and set
16991 the length accordingly. */
16992 if (TYPE_LENGTH (type) != byte_size
16993 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16994 && alignment != TYPE_RAW_ALIGN (type))
16995 || addr_class != DW_ADDR_none)
16996 {
16997 if (gdbarch_address_class_type_flags_p (gdbarch))
16998 {
16999 int type_flags;
17000
17001 type_flags = gdbarch_address_class_type_flags
17002 (gdbarch, byte_size, addr_class);
17003 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17004 == 0);
17005 type = make_type_with_address_space (type, type_flags);
17006 }
17007 else if (TYPE_LENGTH (type) != byte_size)
17008 {
17009 complaint (_("invalid pointer size %d"), byte_size);
17010 }
17011 else if (TYPE_RAW_ALIGN (type) != alignment)
17012 {
17013 complaint (_("Invalid DW_AT_alignment"
17014 " - DIE at %s [in module %s]"),
17015 sect_offset_str (die->sect_off),
17016 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17017 }
17018 else
17019 {
17020 /* Should we also complain about unhandled address classes? */
17021 }
17022 }
17023
17024 TYPE_LENGTH (type) = byte_size;
17025 set_type_align (type, alignment);
17026 return set_die_type (die, type, cu);
17027 }
17028
17029 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17030 the user defined type vector. */
17031
17032 static struct type *
17033 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17034 {
17035 struct type *type;
17036 struct type *to_type;
17037 struct type *domain;
17038
17039 to_type = die_type (die, cu);
17040 domain = die_containing_type (die, cu);
17041
17042 /* The calls above may have already set the type for this DIE. */
17043 type = get_die_type (die, cu);
17044 if (type)
17045 return type;
17046
17047 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17048 type = lookup_methodptr_type (to_type);
17049 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17050 {
17051 struct type *new_type
17052 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17053
17054 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17055 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17056 TYPE_VARARGS (to_type));
17057 type = lookup_methodptr_type (new_type);
17058 }
17059 else
17060 type = lookup_memberptr_type (to_type, domain);
17061
17062 return set_die_type (die, type, cu);
17063 }
17064
17065 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17066 the user defined type vector. */
17067
17068 static struct type *
17069 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17070 enum type_code refcode)
17071 {
17072 struct comp_unit_head *cu_header = &cu->header;
17073 struct type *type, *target_type;
17074 struct attribute *attr;
17075
17076 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17077
17078 target_type = die_type (die, cu);
17079
17080 /* The die_type call above may have already set the type for this DIE. */
17081 type = get_die_type (die, cu);
17082 if (type)
17083 return type;
17084
17085 type = lookup_reference_type (target_type, refcode);
17086 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17087 if (attr)
17088 {
17089 TYPE_LENGTH (type) = DW_UNSND (attr);
17090 }
17091 else
17092 {
17093 TYPE_LENGTH (type) = cu_header->addr_size;
17094 }
17095 maybe_set_alignment (cu, die, type);
17096 return set_die_type (die, type, cu);
17097 }
17098
17099 /* Add the given cv-qualifiers to the element type of the array. GCC
17100 outputs DWARF type qualifiers that apply to an array, not the
17101 element type. But GDB relies on the array element type to carry
17102 the cv-qualifiers. This mimics section 6.7.3 of the C99
17103 specification. */
17104
17105 static struct type *
17106 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17107 struct type *base_type, int cnst, int voltl)
17108 {
17109 struct type *el_type, *inner_array;
17110
17111 base_type = copy_type (base_type);
17112 inner_array = base_type;
17113
17114 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17115 {
17116 TYPE_TARGET_TYPE (inner_array) =
17117 copy_type (TYPE_TARGET_TYPE (inner_array));
17118 inner_array = TYPE_TARGET_TYPE (inner_array);
17119 }
17120
17121 el_type = TYPE_TARGET_TYPE (inner_array);
17122 cnst |= TYPE_CONST (el_type);
17123 voltl |= TYPE_VOLATILE (el_type);
17124 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17125
17126 return set_die_type (die, base_type, cu);
17127 }
17128
17129 static struct type *
17130 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17131 {
17132 struct type *base_type, *cv_type;
17133
17134 base_type = die_type (die, cu);
17135
17136 /* The die_type call above may have already set the type for this DIE. */
17137 cv_type = get_die_type (die, cu);
17138 if (cv_type)
17139 return cv_type;
17140
17141 /* In case the const qualifier is applied to an array type, the element type
17142 is so qualified, not the array type (section 6.7.3 of C99). */
17143 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17144 return add_array_cv_type (die, cu, base_type, 1, 0);
17145
17146 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17147 return set_die_type (die, cv_type, cu);
17148 }
17149
17150 static struct type *
17151 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17152 {
17153 struct type *base_type, *cv_type;
17154
17155 base_type = die_type (die, cu);
17156
17157 /* The die_type call above may have already set the type for this DIE. */
17158 cv_type = get_die_type (die, cu);
17159 if (cv_type)
17160 return cv_type;
17161
17162 /* In case the volatile qualifier is applied to an array type, the
17163 element type is so qualified, not the array type (section 6.7.3
17164 of C99). */
17165 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17166 return add_array_cv_type (die, cu, base_type, 0, 1);
17167
17168 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17169 return set_die_type (die, cv_type, cu);
17170 }
17171
17172 /* Handle DW_TAG_restrict_type. */
17173
17174 static struct type *
17175 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17176 {
17177 struct type *base_type, *cv_type;
17178
17179 base_type = die_type (die, cu);
17180
17181 /* The die_type call above may have already set the type for this DIE. */
17182 cv_type = get_die_type (die, cu);
17183 if (cv_type)
17184 return cv_type;
17185
17186 cv_type = make_restrict_type (base_type);
17187 return set_die_type (die, cv_type, cu);
17188 }
17189
17190 /* Handle DW_TAG_atomic_type. */
17191
17192 static struct type *
17193 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17194 {
17195 struct type *base_type, *cv_type;
17196
17197 base_type = die_type (die, cu);
17198
17199 /* The die_type call above may have already set the type for this DIE. */
17200 cv_type = get_die_type (die, cu);
17201 if (cv_type)
17202 return cv_type;
17203
17204 cv_type = make_atomic_type (base_type);
17205 return set_die_type (die, cv_type, cu);
17206 }
17207
17208 /* Extract all information from a DW_TAG_string_type DIE and add to
17209 the user defined type vector. It isn't really a user defined type,
17210 but it behaves like one, with other DIE's using an AT_user_def_type
17211 attribute to reference it. */
17212
17213 static struct type *
17214 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17215 {
17216 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17218 struct type *type, *range_type, *index_type, *char_type;
17219 struct attribute *attr;
17220 unsigned int length;
17221
17222 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17223 if (attr)
17224 {
17225 length = DW_UNSND (attr);
17226 }
17227 else
17228 {
17229 /* Check for the DW_AT_byte_size attribute. */
17230 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17231 if (attr)
17232 {
17233 length = DW_UNSND (attr);
17234 }
17235 else
17236 {
17237 length = 1;
17238 }
17239 }
17240
17241 index_type = objfile_type (objfile)->builtin_int;
17242 range_type = create_static_range_type (NULL, index_type, 1, length);
17243 char_type = language_string_char_type (cu->language_defn, gdbarch);
17244 type = create_string_type (NULL, char_type, range_type);
17245
17246 return set_die_type (die, type, cu);
17247 }
17248
17249 /* Assuming that DIE corresponds to a function, returns nonzero
17250 if the function is prototyped. */
17251
17252 static int
17253 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17254 {
17255 struct attribute *attr;
17256
17257 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17258 if (attr && (DW_UNSND (attr) != 0))
17259 return 1;
17260
17261 /* The DWARF standard implies that the DW_AT_prototyped attribute
17262 is only meaninful for C, but the concept also extends to other
17263 languages that allow unprototyped functions (Eg: Objective C).
17264 For all other languages, assume that functions are always
17265 prototyped. */
17266 if (cu->language != language_c
17267 && cu->language != language_objc
17268 && cu->language != language_opencl)
17269 return 1;
17270
17271 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17272 prototyped and unprototyped functions; default to prototyped,
17273 since that is more common in modern code (and RealView warns
17274 about unprototyped functions). */
17275 if (producer_is_realview (cu->producer))
17276 return 1;
17277
17278 return 0;
17279 }
17280
17281 /* Handle DIES due to C code like:
17282
17283 struct foo
17284 {
17285 int (*funcp)(int a, long l);
17286 int b;
17287 };
17288
17289 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17290
17291 static struct type *
17292 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17293 {
17294 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17295 struct type *type; /* Type that this function returns. */
17296 struct type *ftype; /* Function that returns above type. */
17297 struct attribute *attr;
17298
17299 type = die_type (die, cu);
17300
17301 /* The die_type call above may have already set the type for this DIE. */
17302 ftype = get_die_type (die, cu);
17303 if (ftype)
17304 return ftype;
17305
17306 ftype = lookup_function_type (type);
17307
17308 if (prototyped_function_p (die, cu))
17309 TYPE_PROTOTYPED (ftype) = 1;
17310
17311 /* Store the calling convention in the type if it's available in
17312 the subroutine die. Otherwise set the calling convention to
17313 the default value DW_CC_normal. */
17314 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17315 if (attr)
17316 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17317 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17318 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17319 else
17320 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17321
17322 /* Record whether the function returns normally to its caller or not
17323 if the DWARF producer set that information. */
17324 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17325 if (attr && (DW_UNSND (attr) != 0))
17326 TYPE_NO_RETURN (ftype) = 1;
17327
17328 /* We need to add the subroutine type to the die immediately so
17329 we don't infinitely recurse when dealing with parameters
17330 declared as the same subroutine type. */
17331 set_die_type (die, ftype, cu);
17332
17333 if (die->child != NULL)
17334 {
17335 struct type *void_type = objfile_type (objfile)->builtin_void;
17336 struct die_info *child_die;
17337 int nparams, iparams;
17338
17339 /* Count the number of parameters.
17340 FIXME: GDB currently ignores vararg functions, but knows about
17341 vararg member functions. */
17342 nparams = 0;
17343 child_die = die->child;
17344 while (child_die && child_die->tag)
17345 {
17346 if (child_die->tag == DW_TAG_formal_parameter)
17347 nparams++;
17348 else if (child_die->tag == DW_TAG_unspecified_parameters)
17349 TYPE_VARARGS (ftype) = 1;
17350 child_die = sibling_die (child_die);
17351 }
17352
17353 /* Allocate storage for parameters and fill them in. */
17354 TYPE_NFIELDS (ftype) = nparams;
17355 TYPE_FIELDS (ftype) = (struct field *)
17356 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17357
17358 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17359 even if we error out during the parameters reading below. */
17360 for (iparams = 0; iparams < nparams; iparams++)
17361 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17362
17363 iparams = 0;
17364 child_die = die->child;
17365 while (child_die && child_die->tag)
17366 {
17367 if (child_die->tag == DW_TAG_formal_parameter)
17368 {
17369 struct type *arg_type;
17370
17371 /* DWARF version 2 has no clean way to discern C++
17372 static and non-static member functions. G++ helps
17373 GDB by marking the first parameter for non-static
17374 member functions (which is the this pointer) as
17375 artificial. We pass this information to
17376 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17377
17378 DWARF version 3 added DW_AT_object_pointer, which GCC
17379 4.5 does not yet generate. */
17380 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17381 if (attr)
17382 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17383 else
17384 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17385 arg_type = die_type (child_die, cu);
17386
17387 /* RealView does not mark THIS as const, which the testsuite
17388 expects. GCC marks THIS as const in method definitions,
17389 but not in the class specifications (GCC PR 43053). */
17390 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17391 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17392 {
17393 int is_this = 0;
17394 struct dwarf2_cu *arg_cu = cu;
17395 const char *name = dwarf2_name (child_die, cu);
17396
17397 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17398 if (attr)
17399 {
17400 /* If the compiler emits this, use it. */
17401 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17402 is_this = 1;
17403 }
17404 else if (name && strcmp (name, "this") == 0)
17405 /* Function definitions will have the argument names. */
17406 is_this = 1;
17407 else if (name == NULL && iparams == 0)
17408 /* Declarations may not have the names, so like
17409 elsewhere in GDB, assume an artificial first
17410 argument is "this". */
17411 is_this = 1;
17412
17413 if (is_this)
17414 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17415 arg_type, 0);
17416 }
17417
17418 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17419 iparams++;
17420 }
17421 child_die = sibling_die (child_die);
17422 }
17423 }
17424
17425 return ftype;
17426 }
17427
17428 static struct type *
17429 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17430 {
17431 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17432 const char *name = NULL;
17433 struct type *this_type, *target_type;
17434
17435 name = dwarf2_full_name (NULL, die, cu);
17436 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17437 TYPE_TARGET_STUB (this_type) = 1;
17438 set_die_type (die, this_type, cu);
17439 target_type = die_type (die, cu);
17440 if (target_type != this_type)
17441 TYPE_TARGET_TYPE (this_type) = target_type;
17442 else
17443 {
17444 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17445 spec and cause infinite loops in GDB. */
17446 complaint (_("Self-referential DW_TAG_typedef "
17447 "- DIE at %s [in module %s]"),
17448 sect_offset_str (die->sect_off), objfile_name (objfile));
17449 TYPE_TARGET_TYPE (this_type) = NULL;
17450 }
17451 return this_type;
17452 }
17453
17454 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17455 (which may be different from NAME) to the architecture back-end to allow
17456 it to guess the correct format if necessary. */
17457
17458 static struct type *
17459 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17460 const char *name_hint)
17461 {
17462 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17463 const struct floatformat **format;
17464 struct type *type;
17465
17466 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17467 if (format)
17468 type = init_float_type (objfile, bits, name, format);
17469 else
17470 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17471
17472 return type;
17473 }
17474
17475 /* Allocate an integer type of size BITS and name NAME. */
17476
17477 static struct type *
17478 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17479 int bits, int unsigned_p, const char *name)
17480 {
17481 struct type *type;
17482
17483 /* Versions of Intel's C Compiler generate an integer type called "void"
17484 instead of using DW_TAG_unspecified_type. This has been seen on
17485 at least versions 14, 17, and 18. */
17486 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17487 && strcmp (name, "void") == 0)
17488 type = objfile_type (objfile)->builtin_void;
17489 else
17490 type = init_integer_type (objfile, bits, unsigned_p, name);
17491
17492 return type;
17493 }
17494
17495 /* Initialise and return a floating point type of size BITS suitable for
17496 use as a component of a complex number. The NAME_HINT is passed through
17497 when initialising the floating point type and is the name of the complex
17498 type.
17499
17500 As DWARF doesn't currently provide an explicit name for the components
17501 of a complex number, but it can be helpful to have these components
17502 named, we try to select a suitable name based on the size of the
17503 component. */
17504 static struct type *
17505 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17506 struct objfile *objfile,
17507 int bits, const char *name_hint)
17508 {
17509 gdbarch *gdbarch = get_objfile_arch (objfile);
17510 struct type *tt = nullptr;
17511
17512 /* Try to find a suitable floating point builtin type of size BITS.
17513 We're going to use the name of this type as the name for the complex
17514 target type that we are about to create. */
17515 switch (cu->language)
17516 {
17517 case language_fortran:
17518 switch (bits)
17519 {
17520 case 32:
17521 tt = builtin_f_type (gdbarch)->builtin_real;
17522 break;
17523 case 64:
17524 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17525 break;
17526 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17527 case 128:
17528 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17529 break;
17530 }
17531 break;
17532 default:
17533 switch (bits)
17534 {
17535 case 32:
17536 tt = builtin_type (gdbarch)->builtin_float;
17537 break;
17538 case 64:
17539 tt = builtin_type (gdbarch)->builtin_double;
17540 break;
17541 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17542 case 128:
17543 tt = builtin_type (gdbarch)->builtin_long_double;
17544 break;
17545 }
17546 break;
17547 }
17548
17549 /* If the type we found doesn't match the size we were looking for, then
17550 pretend we didn't find a type at all, the complex target type we
17551 create will then be nameless. */
17552 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17553 tt = nullptr;
17554
17555 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17556 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17557 }
17558
17559 /* Find a representation of a given base type and install
17560 it in the TYPE field of the die. */
17561
17562 static struct type *
17563 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17564 {
17565 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17566 struct type *type;
17567 struct attribute *attr;
17568 int encoding = 0, bits = 0;
17569 const char *name;
17570
17571 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17572 if (attr)
17573 {
17574 encoding = DW_UNSND (attr);
17575 }
17576 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17577 if (attr)
17578 {
17579 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17580 }
17581 name = dwarf2_name (die, cu);
17582 if (!name)
17583 {
17584 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17585 }
17586
17587 switch (encoding)
17588 {
17589 case DW_ATE_address:
17590 /* Turn DW_ATE_address into a void * pointer. */
17591 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17592 type = init_pointer_type (objfile, bits, name, type);
17593 break;
17594 case DW_ATE_boolean:
17595 type = init_boolean_type (objfile, bits, 1, name);
17596 break;
17597 case DW_ATE_complex_float:
17598 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17599 type = init_complex_type (objfile, name, type);
17600 break;
17601 case DW_ATE_decimal_float:
17602 type = init_decfloat_type (objfile, bits, name);
17603 break;
17604 case DW_ATE_float:
17605 type = dwarf2_init_float_type (objfile, bits, name, name);
17606 break;
17607 case DW_ATE_signed:
17608 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17609 break;
17610 case DW_ATE_unsigned:
17611 if (cu->language == language_fortran
17612 && name
17613 && startswith (name, "character("))
17614 type = init_character_type (objfile, bits, 1, name);
17615 else
17616 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17617 break;
17618 case DW_ATE_signed_char:
17619 if (cu->language == language_ada || cu->language == language_m2
17620 || cu->language == language_pascal
17621 || cu->language == language_fortran)
17622 type = init_character_type (objfile, bits, 0, name);
17623 else
17624 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17625 break;
17626 case DW_ATE_unsigned_char:
17627 if (cu->language == language_ada || cu->language == language_m2
17628 || cu->language == language_pascal
17629 || cu->language == language_fortran
17630 || cu->language == language_rust)
17631 type = init_character_type (objfile, bits, 1, name);
17632 else
17633 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17634 break;
17635 case DW_ATE_UTF:
17636 {
17637 gdbarch *arch = get_objfile_arch (objfile);
17638
17639 if (bits == 16)
17640 type = builtin_type (arch)->builtin_char16;
17641 else if (bits == 32)
17642 type = builtin_type (arch)->builtin_char32;
17643 else
17644 {
17645 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17646 bits);
17647 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17648 }
17649 return set_die_type (die, type, cu);
17650 }
17651 break;
17652
17653 default:
17654 complaint (_("unsupported DW_AT_encoding: '%s'"),
17655 dwarf_type_encoding_name (encoding));
17656 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17657 break;
17658 }
17659
17660 if (name && strcmp (name, "char") == 0)
17661 TYPE_NOSIGN (type) = 1;
17662
17663 maybe_set_alignment (cu, die, type);
17664
17665 return set_die_type (die, type, cu);
17666 }
17667
17668 /* Parse dwarf attribute if it's a block, reference or constant and put the
17669 resulting value of the attribute into struct bound_prop.
17670 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17671
17672 static int
17673 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17674 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17675 struct type *default_type)
17676 {
17677 struct dwarf2_property_baton *baton;
17678 struct obstack *obstack
17679 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17680
17681 gdb_assert (default_type != NULL);
17682
17683 if (attr == NULL || prop == NULL)
17684 return 0;
17685
17686 if (attr_form_is_block (attr))
17687 {
17688 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17689 baton->property_type = default_type;
17690 baton->locexpr.per_cu = cu->per_cu;
17691 baton->locexpr.size = DW_BLOCK (attr)->size;
17692 baton->locexpr.data = DW_BLOCK (attr)->data;
17693 baton->locexpr.is_reference = false;
17694 prop->data.baton = baton;
17695 prop->kind = PROP_LOCEXPR;
17696 gdb_assert (prop->data.baton != NULL);
17697 }
17698 else if (attr_form_is_ref (attr))
17699 {
17700 struct dwarf2_cu *target_cu = cu;
17701 struct die_info *target_die;
17702 struct attribute *target_attr;
17703
17704 target_die = follow_die_ref (die, attr, &target_cu);
17705 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17706 if (target_attr == NULL)
17707 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17708 target_cu);
17709 if (target_attr == NULL)
17710 return 0;
17711
17712 switch (target_attr->name)
17713 {
17714 case DW_AT_location:
17715 if (attr_form_is_section_offset (target_attr))
17716 {
17717 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17718 baton->property_type = die_type (target_die, target_cu);
17719 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17720 prop->data.baton = baton;
17721 prop->kind = PROP_LOCLIST;
17722 gdb_assert (prop->data.baton != NULL);
17723 }
17724 else if (attr_form_is_block (target_attr))
17725 {
17726 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17727 baton->property_type = die_type (target_die, target_cu);
17728 baton->locexpr.per_cu = cu->per_cu;
17729 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17730 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17731 baton->locexpr.is_reference = true;
17732 prop->data.baton = baton;
17733 prop->kind = PROP_LOCEXPR;
17734 gdb_assert (prop->data.baton != NULL);
17735 }
17736 else
17737 {
17738 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17739 "dynamic property");
17740 return 0;
17741 }
17742 break;
17743 case DW_AT_data_member_location:
17744 {
17745 LONGEST offset;
17746
17747 if (!handle_data_member_location (target_die, target_cu,
17748 &offset))
17749 return 0;
17750
17751 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17752 baton->property_type = read_type_die (target_die->parent,
17753 target_cu);
17754 baton->offset_info.offset = offset;
17755 baton->offset_info.type = die_type (target_die, target_cu);
17756 prop->data.baton = baton;
17757 prop->kind = PROP_ADDR_OFFSET;
17758 break;
17759 }
17760 }
17761 }
17762 else if (attr_form_is_constant (attr))
17763 {
17764 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17765 prop->kind = PROP_CONST;
17766 }
17767 else
17768 {
17769 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17770 dwarf2_name (die, cu));
17771 return 0;
17772 }
17773
17774 return 1;
17775 }
17776
17777 /* Find an integer type the same size as the address size given in the
17778 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17779 is unsigned or not. */
17780
17781 static struct type *
17782 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17783 bool unsigned_p)
17784 {
17785 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17786 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17787 struct type *int_type;
17788
17789 /* Helper macro to examine the various builtin types. */
17790 #define TRY_TYPE(F) \
17791 int_type = (unsigned_p \
17792 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17793 : objfile_type (objfile)->builtin_ ## F); \
17794 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17795 return int_type
17796
17797 TRY_TYPE (char);
17798 TRY_TYPE (short);
17799 TRY_TYPE (int);
17800 TRY_TYPE (long);
17801 TRY_TYPE (long_long);
17802
17803 #undef TRY_TYPE
17804
17805 gdb_assert_not_reached ("unable to find suitable integer type");
17806 }
17807
17808 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17809 present (which is valid) then compute the default type based on the
17810 compilation units address size. */
17811
17812 static struct type *
17813 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17814 {
17815 struct type *index_type = die_type (die, cu);
17816
17817 /* Dwarf-2 specifications explicitly allows to create subrange types
17818 without specifying a base type.
17819 In that case, the base type must be set to the type of
17820 the lower bound, upper bound or count, in that order, if any of these
17821 three attributes references an object that has a type.
17822 If no base type is found, the Dwarf-2 specifications say that
17823 a signed integer type of size equal to the size of an address should
17824 be used.
17825 For the following C code: `extern char gdb_int [];'
17826 GCC produces an empty range DIE.
17827 FIXME: muller/2010-05-28: Possible references to object for low bound,
17828 high bound or count are not yet handled by this code. */
17829 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17830 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17831
17832 return index_type;
17833 }
17834
17835 /* Read the given DW_AT_subrange DIE. */
17836
17837 static struct type *
17838 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17839 {
17840 struct type *base_type, *orig_base_type;
17841 struct type *range_type;
17842 struct attribute *attr;
17843 struct dynamic_prop low, high;
17844 int low_default_is_valid;
17845 int high_bound_is_count = 0;
17846 const char *name;
17847 ULONGEST negative_mask;
17848
17849 orig_base_type = read_subrange_index_type (die, cu);
17850
17851 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17852 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17853 creating the range type, but we use the result of check_typedef
17854 when examining properties of the type. */
17855 base_type = check_typedef (orig_base_type);
17856
17857 /* The die_type call above may have already set the type for this DIE. */
17858 range_type = get_die_type (die, cu);
17859 if (range_type)
17860 return range_type;
17861
17862 low.kind = PROP_CONST;
17863 high.kind = PROP_CONST;
17864 high.data.const_val = 0;
17865
17866 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17867 omitting DW_AT_lower_bound. */
17868 switch (cu->language)
17869 {
17870 case language_c:
17871 case language_cplus:
17872 low.data.const_val = 0;
17873 low_default_is_valid = 1;
17874 break;
17875 case language_fortran:
17876 low.data.const_val = 1;
17877 low_default_is_valid = 1;
17878 break;
17879 case language_d:
17880 case language_objc:
17881 case language_rust:
17882 low.data.const_val = 0;
17883 low_default_is_valid = (cu->header.version >= 4);
17884 break;
17885 case language_ada:
17886 case language_m2:
17887 case language_pascal:
17888 low.data.const_val = 1;
17889 low_default_is_valid = (cu->header.version >= 4);
17890 break;
17891 default:
17892 low.data.const_val = 0;
17893 low_default_is_valid = 0;
17894 break;
17895 }
17896
17897 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17898 if (attr)
17899 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17900 else if (!low_default_is_valid)
17901 complaint (_("Missing DW_AT_lower_bound "
17902 "- DIE at %s [in module %s]"),
17903 sect_offset_str (die->sect_off),
17904 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17905
17906 struct attribute *attr_ub, *attr_count;
17907 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17908 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17909 {
17910 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17911 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17912 {
17913 /* If bounds are constant do the final calculation here. */
17914 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17915 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17916 else
17917 high_bound_is_count = 1;
17918 }
17919 else
17920 {
17921 if (attr_ub != NULL)
17922 complaint (_("Unresolved DW_AT_upper_bound "
17923 "- DIE at %s [in module %s]"),
17924 sect_offset_str (die->sect_off),
17925 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17926 if (attr_count != NULL)
17927 complaint (_("Unresolved DW_AT_count "
17928 "- DIE at %s [in module %s]"),
17929 sect_offset_str (die->sect_off),
17930 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17931 }
17932 }
17933
17934 LONGEST bias = 0;
17935 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17936 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
17937 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17938
17939 /* Normally, the DWARF producers are expected to use a signed
17940 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17941 But this is unfortunately not always the case, as witnessed
17942 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17943 is used instead. To work around that ambiguity, we treat
17944 the bounds as signed, and thus sign-extend their values, when
17945 the base type is signed. */
17946 negative_mask =
17947 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17948 if (low.kind == PROP_CONST
17949 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17950 low.data.const_val |= negative_mask;
17951 if (high.kind == PROP_CONST
17952 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17953 high.data.const_val |= negative_mask;
17954
17955 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17956
17957 if (high_bound_is_count)
17958 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17959
17960 /* Ada expects an empty array on no boundary attributes. */
17961 if (attr == NULL && cu->language != language_ada)
17962 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17963
17964 name = dwarf2_name (die, cu);
17965 if (name)
17966 TYPE_NAME (range_type) = name;
17967
17968 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17969 if (attr)
17970 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17971
17972 maybe_set_alignment (cu, die, range_type);
17973
17974 set_die_type (die, range_type, cu);
17975
17976 /* set_die_type should be already done. */
17977 set_descriptive_type (range_type, die, cu);
17978
17979 return range_type;
17980 }
17981
17982 static struct type *
17983 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17984 {
17985 struct type *type;
17986
17987 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17988 NULL);
17989 TYPE_NAME (type) = dwarf2_name (die, cu);
17990
17991 /* In Ada, an unspecified type is typically used when the description
17992 of the type is defered to a different unit. When encountering
17993 such a type, we treat it as a stub, and try to resolve it later on,
17994 when needed. */
17995 if (cu->language == language_ada)
17996 TYPE_STUB (type) = 1;
17997
17998 return set_die_type (die, type, cu);
17999 }
18000
18001 /* Read a single die and all its descendents. Set the die's sibling
18002 field to NULL; set other fields in the die correctly, and set all
18003 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18004 location of the info_ptr after reading all of those dies. PARENT
18005 is the parent of the die in question. */
18006
18007 static struct die_info *
18008 read_die_and_children (const struct die_reader_specs *reader,
18009 const gdb_byte *info_ptr,
18010 const gdb_byte **new_info_ptr,
18011 struct die_info *parent)
18012 {
18013 struct die_info *die;
18014 const gdb_byte *cur_ptr;
18015 int has_children;
18016
18017 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18018 if (die == NULL)
18019 {
18020 *new_info_ptr = cur_ptr;
18021 return NULL;
18022 }
18023 store_in_ref_table (die, reader->cu);
18024
18025 if (has_children)
18026 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18027 else
18028 {
18029 die->child = NULL;
18030 *new_info_ptr = cur_ptr;
18031 }
18032
18033 die->sibling = NULL;
18034 die->parent = parent;
18035 return die;
18036 }
18037
18038 /* Read a die, all of its descendents, and all of its siblings; set
18039 all of the fields of all of the dies correctly. Arguments are as
18040 in read_die_and_children. */
18041
18042 static struct die_info *
18043 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18044 const gdb_byte *info_ptr,
18045 const gdb_byte **new_info_ptr,
18046 struct die_info *parent)
18047 {
18048 struct die_info *first_die, *last_sibling;
18049 const gdb_byte *cur_ptr;
18050
18051 cur_ptr = info_ptr;
18052 first_die = last_sibling = NULL;
18053
18054 while (1)
18055 {
18056 struct die_info *die
18057 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18058
18059 if (die == NULL)
18060 {
18061 *new_info_ptr = cur_ptr;
18062 return first_die;
18063 }
18064
18065 if (!first_die)
18066 first_die = die;
18067 else
18068 last_sibling->sibling = die;
18069
18070 last_sibling = die;
18071 }
18072 }
18073
18074 /* Read a die, all of its descendents, and all of its siblings; set
18075 all of the fields of all of the dies correctly. Arguments are as
18076 in read_die_and_children.
18077 This the main entry point for reading a DIE and all its children. */
18078
18079 static struct die_info *
18080 read_die_and_siblings (const struct die_reader_specs *reader,
18081 const gdb_byte *info_ptr,
18082 const gdb_byte **new_info_ptr,
18083 struct die_info *parent)
18084 {
18085 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18086 new_info_ptr, parent);
18087
18088 if (dwarf_die_debug)
18089 {
18090 fprintf_unfiltered (gdb_stdlog,
18091 "Read die from %s@0x%x of %s:\n",
18092 get_section_name (reader->die_section),
18093 (unsigned) (info_ptr - reader->die_section->buffer),
18094 bfd_get_filename (reader->abfd));
18095 dump_die (die, dwarf_die_debug);
18096 }
18097
18098 return die;
18099 }
18100
18101 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18102 attributes.
18103 The caller is responsible for filling in the extra attributes
18104 and updating (*DIEP)->num_attrs.
18105 Set DIEP to point to a newly allocated die with its information,
18106 except for its child, sibling, and parent fields.
18107 Set HAS_CHILDREN to tell whether the die has children or not. */
18108
18109 static const gdb_byte *
18110 read_full_die_1 (const struct die_reader_specs *reader,
18111 struct die_info **diep, const gdb_byte *info_ptr,
18112 int *has_children, int num_extra_attrs)
18113 {
18114 unsigned int abbrev_number, bytes_read, i;
18115 struct abbrev_info *abbrev;
18116 struct die_info *die;
18117 struct dwarf2_cu *cu = reader->cu;
18118 bfd *abfd = reader->abfd;
18119
18120 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18121 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18122 info_ptr += bytes_read;
18123 if (!abbrev_number)
18124 {
18125 *diep = NULL;
18126 *has_children = 0;
18127 return info_ptr;
18128 }
18129
18130 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18131 if (!abbrev)
18132 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18133 abbrev_number,
18134 bfd_get_filename (abfd));
18135
18136 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18137 die->sect_off = sect_off;
18138 die->tag = abbrev->tag;
18139 die->abbrev = abbrev_number;
18140
18141 /* Make the result usable.
18142 The caller needs to update num_attrs after adding the extra
18143 attributes. */
18144 die->num_attrs = abbrev->num_attrs;
18145
18146 for (i = 0; i < abbrev->num_attrs; ++i)
18147 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18148 info_ptr);
18149
18150 *diep = die;
18151 *has_children = abbrev->has_children;
18152 return info_ptr;
18153 }
18154
18155 /* Read a die and all its attributes.
18156 Set DIEP to point to a newly allocated die with its information,
18157 except for its child, sibling, and parent fields.
18158 Set HAS_CHILDREN to tell whether the die has children or not. */
18159
18160 static const gdb_byte *
18161 read_full_die (const struct die_reader_specs *reader,
18162 struct die_info **diep, const gdb_byte *info_ptr,
18163 int *has_children)
18164 {
18165 const gdb_byte *result;
18166
18167 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18168
18169 if (dwarf_die_debug)
18170 {
18171 fprintf_unfiltered (gdb_stdlog,
18172 "Read die from %s@0x%x of %s:\n",
18173 get_section_name (reader->die_section),
18174 (unsigned) (info_ptr - reader->die_section->buffer),
18175 bfd_get_filename (reader->abfd));
18176 dump_die (*diep, dwarf_die_debug);
18177 }
18178
18179 return result;
18180 }
18181 \f
18182 /* Abbreviation tables.
18183
18184 In DWARF version 2, the description of the debugging information is
18185 stored in a separate .debug_abbrev section. Before we read any
18186 dies from a section we read in all abbreviations and install them
18187 in a hash table. */
18188
18189 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18190
18191 struct abbrev_info *
18192 abbrev_table::alloc_abbrev ()
18193 {
18194 struct abbrev_info *abbrev;
18195
18196 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18197 memset (abbrev, 0, sizeof (struct abbrev_info));
18198
18199 return abbrev;
18200 }
18201
18202 /* Add an abbreviation to the table. */
18203
18204 void
18205 abbrev_table::add_abbrev (unsigned int abbrev_number,
18206 struct abbrev_info *abbrev)
18207 {
18208 unsigned int hash_number;
18209
18210 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18211 abbrev->next = m_abbrevs[hash_number];
18212 m_abbrevs[hash_number] = abbrev;
18213 }
18214
18215 /* Look up an abbrev in the table.
18216 Returns NULL if the abbrev is not found. */
18217
18218 struct abbrev_info *
18219 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18220 {
18221 unsigned int hash_number;
18222 struct abbrev_info *abbrev;
18223
18224 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18225 abbrev = m_abbrevs[hash_number];
18226
18227 while (abbrev)
18228 {
18229 if (abbrev->number == abbrev_number)
18230 return abbrev;
18231 abbrev = abbrev->next;
18232 }
18233 return NULL;
18234 }
18235
18236 /* Read in an abbrev table. */
18237
18238 static abbrev_table_up
18239 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18240 struct dwarf2_section_info *section,
18241 sect_offset sect_off)
18242 {
18243 struct objfile *objfile = dwarf2_per_objfile->objfile;
18244 bfd *abfd = get_section_bfd_owner (section);
18245 const gdb_byte *abbrev_ptr;
18246 struct abbrev_info *cur_abbrev;
18247 unsigned int abbrev_number, bytes_read, abbrev_name;
18248 unsigned int abbrev_form;
18249 struct attr_abbrev *cur_attrs;
18250 unsigned int allocated_attrs;
18251
18252 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18253
18254 dwarf2_read_section (objfile, section);
18255 abbrev_ptr = section->buffer + to_underlying (sect_off);
18256 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18257 abbrev_ptr += bytes_read;
18258
18259 allocated_attrs = ATTR_ALLOC_CHUNK;
18260 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18261
18262 /* Loop until we reach an abbrev number of 0. */
18263 while (abbrev_number)
18264 {
18265 cur_abbrev = abbrev_table->alloc_abbrev ();
18266
18267 /* read in abbrev header */
18268 cur_abbrev->number = abbrev_number;
18269 cur_abbrev->tag
18270 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18271 abbrev_ptr += bytes_read;
18272 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18273 abbrev_ptr += 1;
18274
18275 /* now read in declarations */
18276 for (;;)
18277 {
18278 LONGEST implicit_const;
18279
18280 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18281 abbrev_ptr += bytes_read;
18282 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18283 abbrev_ptr += bytes_read;
18284 if (abbrev_form == DW_FORM_implicit_const)
18285 {
18286 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18287 &bytes_read);
18288 abbrev_ptr += bytes_read;
18289 }
18290 else
18291 {
18292 /* Initialize it due to a false compiler warning. */
18293 implicit_const = -1;
18294 }
18295
18296 if (abbrev_name == 0)
18297 break;
18298
18299 if (cur_abbrev->num_attrs == allocated_attrs)
18300 {
18301 allocated_attrs += ATTR_ALLOC_CHUNK;
18302 cur_attrs
18303 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18304 }
18305
18306 cur_attrs[cur_abbrev->num_attrs].name
18307 = (enum dwarf_attribute) abbrev_name;
18308 cur_attrs[cur_abbrev->num_attrs].form
18309 = (enum dwarf_form) abbrev_form;
18310 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18311 ++cur_abbrev->num_attrs;
18312 }
18313
18314 cur_abbrev->attrs =
18315 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18316 cur_abbrev->num_attrs);
18317 memcpy (cur_abbrev->attrs, cur_attrs,
18318 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18319
18320 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18321
18322 /* Get next abbreviation.
18323 Under Irix6 the abbreviations for a compilation unit are not
18324 always properly terminated with an abbrev number of 0.
18325 Exit loop if we encounter an abbreviation which we have
18326 already read (which means we are about to read the abbreviations
18327 for the next compile unit) or if the end of the abbreviation
18328 table is reached. */
18329 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18330 break;
18331 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18332 abbrev_ptr += bytes_read;
18333 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18334 break;
18335 }
18336
18337 xfree (cur_attrs);
18338 return abbrev_table;
18339 }
18340
18341 /* Returns nonzero if TAG represents a type that we might generate a partial
18342 symbol for. */
18343
18344 static int
18345 is_type_tag_for_partial (int tag)
18346 {
18347 switch (tag)
18348 {
18349 #if 0
18350 /* Some types that would be reasonable to generate partial symbols for,
18351 that we don't at present. */
18352 case DW_TAG_array_type:
18353 case DW_TAG_file_type:
18354 case DW_TAG_ptr_to_member_type:
18355 case DW_TAG_set_type:
18356 case DW_TAG_string_type:
18357 case DW_TAG_subroutine_type:
18358 #endif
18359 case DW_TAG_base_type:
18360 case DW_TAG_class_type:
18361 case DW_TAG_interface_type:
18362 case DW_TAG_enumeration_type:
18363 case DW_TAG_structure_type:
18364 case DW_TAG_subrange_type:
18365 case DW_TAG_typedef:
18366 case DW_TAG_union_type:
18367 return 1;
18368 default:
18369 return 0;
18370 }
18371 }
18372
18373 /* Load all DIEs that are interesting for partial symbols into memory. */
18374
18375 static struct partial_die_info *
18376 load_partial_dies (const struct die_reader_specs *reader,
18377 const gdb_byte *info_ptr, int building_psymtab)
18378 {
18379 struct dwarf2_cu *cu = reader->cu;
18380 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18381 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18382 unsigned int bytes_read;
18383 unsigned int load_all = 0;
18384 int nesting_level = 1;
18385
18386 parent_die = NULL;
18387 last_die = NULL;
18388
18389 gdb_assert (cu->per_cu != NULL);
18390 if (cu->per_cu->load_all_dies)
18391 load_all = 1;
18392
18393 cu->partial_dies
18394 = htab_create_alloc_ex (cu->header.length / 12,
18395 partial_die_hash,
18396 partial_die_eq,
18397 NULL,
18398 &cu->comp_unit_obstack,
18399 hashtab_obstack_allocate,
18400 dummy_obstack_deallocate);
18401
18402 while (1)
18403 {
18404 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18405
18406 /* A NULL abbrev means the end of a series of children. */
18407 if (abbrev == NULL)
18408 {
18409 if (--nesting_level == 0)
18410 return first_die;
18411
18412 info_ptr += bytes_read;
18413 last_die = parent_die;
18414 parent_die = parent_die->die_parent;
18415 continue;
18416 }
18417
18418 /* Check for template arguments. We never save these; if
18419 they're seen, we just mark the parent, and go on our way. */
18420 if (parent_die != NULL
18421 && cu->language == language_cplus
18422 && (abbrev->tag == DW_TAG_template_type_param
18423 || abbrev->tag == DW_TAG_template_value_param))
18424 {
18425 parent_die->has_template_arguments = 1;
18426
18427 if (!load_all)
18428 {
18429 /* We don't need a partial DIE for the template argument. */
18430 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18431 continue;
18432 }
18433 }
18434
18435 /* We only recurse into c++ subprograms looking for template arguments.
18436 Skip their other children. */
18437 if (!load_all
18438 && cu->language == language_cplus
18439 && parent_die != NULL
18440 && parent_die->tag == DW_TAG_subprogram)
18441 {
18442 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18443 continue;
18444 }
18445
18446 /* Check whether this DIE is interesting enough to save. Normally
18447 we would not be interested in members here, but there may be
18448 later variables referencing them via DW_AT_specification (for
18449 static members). */
18450 if (!load_all
18451 && !is_type_tag_for_partial (abbrev->tag)
18452 && abbrev->tag != DW_TAG_constant
18453 && abbrev->tag != DW_TAG_enumerator
18454 && abbrev->tag != DW_TAG_subprogram
18455 && abbrev->tag != DW_TAG_inlined_subroutine
18456 && abbrev->tag != DW_TAG_lexical_block
18457 && abbrev->tag != DW_TAG_variable
18458 && abbrev->tag != DW_TAG_namespace
18459 && abbrev->tag != DW_TAG_module
18460 && abbrev->tag != DW_TAG_member
18461 && abbrev->tag != DW_TAG_imported_unit
18462 && abbrev->tag != DW_TAG_imported_declaration)
18463 {
18464 /* Otherwise we skip to the next sibling, if any. */
18465 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18466 continue;
18467 }
18468
18469 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18470 abbrev);
18471
18472 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18473
18474 /* This two-pass algorithm for processing partial symbols has a
18475 high cost in cache pressure. Thus, handle some simple cases
18476 here which cover the majority of C partial symbols. DIEs
18477 which neither have specification tags in them, nor could have
18478 specification tags elsewhere pointing at them, can simply be
18479 processed and discarded.
18480
18481 This segment is also optional; scan_partial_symbols and
18482 add_partial_symbol will handle these DIEs if we chain
18483 them in normally. When compilers which do not emit large
18484 quantities of duplicate debug information are more common,
18485 this code can probably be removed. */
18486
18487 /* Any complete simple types at the top level (pretty much all
18488 of them, for a language without namespaces), can be processed
18489 directly. */
18490 if (parent_die == NULL
18491 && pdi.has_specification == 0
18492 && pdi.is_declaration == 0
18493 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18494 || pdi.tag == DW_TAG_base_type
18495 || pdi.tag == DW_TAG_subrange_type))
18496 {
18497 if (building_psymtab && pdi.name != NULL)
18498 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18499 VAR_DOMAIN, LOC_TYPEDEF, -1,
18500 psymbol_placement::STATIC,
18501 0, cu->language, objfile);
18502 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18503 continue;
18504 }
18505
18506 /* The exception for DW_TAG_typedef with has_children above is
18507 a workaround of GCC PR debug/47510. In the case of this complaint
18508 type_name_or_error will error on such types later.
18509
18510 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18511 it could not find the child DIEs referenced later, this is checked
18512 above. In correct DWARF DW_TAG_typedef should have no children. */
18513
18514 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18515 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18516 "- DIE at %s [in module %s]"),
18517 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18518
18519 /* If we're at the second level, and we're an enumerator, and
18520 our parent has no specification (meaning possibly lives in a
18521 namespace elsewhere), then we can add the partial symbol now
18522 instead of queueing it. */
18523 if (pdi.tag == DW_TAG_enumerator
18524 && parent_die != NULL
18525 && parent_die->die_parent == NULL
18526 && parent_die->tag == DW_TAG_enumeration_type
18527 && parent_die->has_specification == 0)
18528 {
18529 if (pdi.name == NULL)
18530 complaint (_("malformed enumerator DIE ignored"));
18531 else if (building_psymtab)
18532 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18533 VAR_DOMAIN, LOC_CONST, -1,
18534 cu->language == language_cplus
18535 ? psymbol_placement::GLOBAL
18536 : psymbol_placement::STATIC,
18537 0, cu->language, objfile);
18538
18539 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18540 continue;
18541 }
18542
18543 struct partial_die_info *part_die
18544 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18545
18546 /* We'll save this DIE so link it in. */
18547 part_die->die_parent = parent_die;
18548 part_die->die_sibling = NULL;
18549 part_die->die_child = NULL;
18550
18551 if (last_die && last_die == parent_die)
18552 last_die->die_child = part_die;
18553 else if (last_die)
18554 last_die->die_sibling = part_die;
18555
18556 last_die = part_die;
18557
18558 if (first_die == NULL)
18559 first_die = part_die;
18560
18561 /* Maybe add the DIE to the hash table. Not all DIEs that we
18562 find interesting need to be in the hash table, because we
18563 also have the parent/sibling/child chains; only those that we
18564 might refer to by offset later during partial symbol reading.
18565
18566 For now this means things that might have be the target of a
18567 DW_AT_specification, DW_AT_abstract_origin, or
18568 DW_AT_extension. DW_AT_extension will refer only to
18569 namespaces; DW_AT_abstract_origin refers to functions (and
18570 many things under the function DIE, but we do not recurse
18571 into function DIEs during partial symbol reading) and
18572 possibly variables as well; DW_AT_specification refers to
18573 declarations. Declarations ought to have the DW_AT_declaration
18574 flag. It happens that GCC forgets to put it in sometimes, but
18575 only for functions, not for types.
18576
18577 Adding more things than necessary to the hash table is harmless
18578 except for the performance cost. Adding too few will result in
18579 wasted time in find_partial_die, when we reread the compilation
18580 unit with load_all_dies set. */
18581
18582 if (load_all
18583 || abbrev->tag == DW_TAG_constant
18584 || abbrev->tag == DW_TAG_subprogram
18585 || abbrev->tag == DW_TAG_variable
18586 || abbrev->tag == DW_TAG_namespace
18587 || part_die->is_declaration)
18588 {
18589 void **slot;
18590
18591 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18592 to_underlying (part_die->sect_off),
18593 INSERT);
18594 *slot = part_die;
18595 }
18596
18597 /* For some DIEs we want to follow their children (if any). For C
18598 we have no reason to follow the children of structures; for other
18599 languages we have to, so that we can get at method physnames
18600 to infer fully qualified class names, for DW_AT_specification,
18601 and for C++ template arguments. For C++, we also look one level
18602 inside functions to find template arguments (if the name of the
18603 function does not already contain the template arguments).
18604
18605 For Ada, we need to scan the children of subprograms and lexical
18606 blocks as well because Ada allows the definition of nested
18607 entities that could be interesting for the debugger, such as
18608 nested subprograms for instance. */
18609 if (last_die->has_children
18610 && (load_all
18611 || last_die->tag == DW_TAG_namespace
18612 || last_die->tag == DW_TAG_module
18613 || last_die->tag == DW_TAG_enumeration_type
18614 || (cu->language == language_cplus
18615 && last_die->tag == DW_TAG_subprogram
18616 && (last_die->name == NULL
18617 || strchr (last_die->name, '<') == NULL))
18618 || (cu->language != language_c
18619 && (last_die->tag == DW_TAG_class_type
18620 || last_die->tag == DW_TAG_interface_type
18621 || last_die->tag == DW_TAG_structure_type
18622 || last_die->tag == DW_TAG_union_type))
18623 || (cu->language == language_ada
18624 && (last_die->tag == DW_TAG_subprogram
18625 || last_die->tag == DW_TAG_lexical_block))))
18626 {
18627 nesting_level++;
18628 parent_die = last_die;
18629 continue;
18630 }
18631
18632 /* Otherwise we skip to the next sibling, if any. */
18633 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18634
18635 /* Back to the top, do it again. */
18636 }
18637 }
18638
18639 partial_die_info::partial_die_info (sect_offset sect_off_,
18640 struct abbrev_info *abbrev)
18641 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18642 {
18643 }
18644
18645 /* Read a minimal amount of information into the minimal die structure.
18646 INFO_PTR should point just after the initial uleb128 of a DIE. */
18647
18648 const gdb_byte *
18649 partial_die_info::read (const struct die_reader_specs *reader,
18650 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18651 {
18652 struct dwarf2_cu *cu = reader->cu;
18653 struct dwarf2_per_objfile *dwarf2_per_objfile
18654 = cu->per_cu->dwarf2_per_objfile;
18655 unsigned int i;
18656 int has_low_pc_attr = 0;
18657 int has_high_pc_attr = 0;
18658 int high_pc_relative = 0;
18659
18660 for (i = 0; i < abbrev.num_attrs; ++i)
18661 {
18662 struct attribute attr;
18663
18664 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18665
18666 /* Store the data if it is of an attribute we want to keep in a
18667 partial symbol table. */
18668 switch (attr.name)
18669 {
18670 case DW_AT_name:
18671 switch (tag)
18672 {
18673 case DW_TAG_compile_unit:
18674 case DW_TAG_partial_unit:
18675 case DW_TAG_type_unit:
18676 /* Compilation units have a DW_AT_name that is a filename, not
18677 a source language identifier. */
18678 case DW_TAG_enumeration_type:
18679 case DW_TAG_enumerator:
18680 /* These tags always have simple identifiers already; no need
18681 to canonicalize them. */
18682 name = DW_STRING (&attr);
18683 break;
18684 default:
18685 {
18686 struct objfile *objfile = dwarf2_per_objfile->objfile;
18687
18688 name
18689 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18690 &objfile->per_bfd->storage_obstack);
18691 }
18692 break;
18693 }
18694 break;
18695 case DW_AT_linkage_name:
18696 case DW_AT_MIPS_linkage_name:
18697 /* Note that both forms of linkage name might appear. We
18698 assume they will be the same, and we only store the last
18699 one we see. */
18700 linkage_name = DW_STRING (&attr);
18701 break;
18702 case DW_AT_low_pc:
18703 has_low_pc_attr = 1;
18704 lowpc = attr_value_as_address (&attr);
18705 break;
18706 case DW_AT_high_pc:
18707 has_high_pc_attr = 1;
18708 highpc = attr_value_as_address (&attr);
18709 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18710 high_pc_relative = 1;
18711 break;
18712 case DW_AT_location:
18713 /* Support the .debug_loc offsets. */
18714 if (attr_form_is_block (&attr))
18715 {
18716 d.locdesc = DW_BLOCK (&attr);
18717 }
18718 else if (attr_form_is_section_offset (&attr))
18719 {
18720 dwarf2_complex_location_expr_complaint ();
18721 }
18722 else
18723 {
18724 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18725 "partial symbol information");
18726 }
18727 break;
18728 case DW_AT_external:
18729 is_external = DW_UNSND (&attr);
18730 break;
18731 case DW_AT_declaration:
18732 is_declaration = DW_UNSND (&attr);
18733 break;
18734 case DW_AT_type:
18735 has_type = 1;
18736 break;
18737 case DW_AT_abstract_origin:
18738 case DW_AT_specification:
18739 case DW_AT_extension:
18740 has_specification = 1;
18741 spec_offset = dwarf2_get_ref_die_offset (&attr);
18742 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18743 || cu->per_cu->is_dwz);
18744 break;
18745 case DW_AT_sibling:
18746 /* Ignore absolute siblings, they might point outside of
18747 the current compile unit. */
18748 if (attr.form == DW_FORM_ref_addr)
18749 complaint (_("ignoring absolute DW_AT_sibling"));
18750 else
18751 {
18752 const gdb_byte *buffer = reader->buffer;
18753 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18754 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18755
18756 if (sibling_ptr < info_ptr)
18757 complaint (_("DW_AT_sibling points backwards"));
18758 else if (sibling_ptr > reader->buffer_end)
18759 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18760 else
18761 sibling = sibling_ptr;
18762 }
18763 break;
18764 case DW_AT_byte_size:
18765 has_byte_size = 1;
18766 break;
18767 case DW_AT_const_value:
18768 has_const_value = 1;
18769 break;
18770 case DW_AT_calling_convention:
18771 /* DWARF doesn't provide a way to identify a program's source-level
18772 entry point. DW_AT_calling_convention attributes are only meant
18773 to describe functions' calling conventions.
18774
18775 However, because it's a necessary piece of information in
18776 Fortran, and before DWARF 4 DW_CC_program was the only
18777 piece of debugging information whose definition refers to
18778 a 'main program' at all, several compilers marked Fortran
18779 main programs with DW_CC_program --- even when those
18780 functions use the standard calling conventions.
18781
18782 Although DWARF now specifies a way to provide this
18783 information, we support this practice for backward
18784 compatibility. */
18785 if (DW_UNSND (&attr) == DW_CC_program
18786 && cu->language == language_fortran)
18787 main_subprogram = 1;
18788 break;
18789 case DW_AT_inline:
18790 if (DW_UNSND (&attr) == DW_INL_inlined
18791 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18792 may_be_inlined = 1;
18793 break;
18794
18795 case DW_AT_import:
18796 if (tag == DW_TAG_imported_unit)
18797 {
18798 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18799 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18800 || cu->per_cu->is_dwz);
18801 }
18802 break;
18803
18804 case DW_AT_main_subprogram:
18805 main_subprogram = DW_UNSND (&attr);
18806 break;
18807
18808 case DW_AT_ranges:
18809 {
18810 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18811 but that requires a full DIE, so instead we just
18812 reimplement it. */
18813 int need_ranges_base = tag != DW_TAG_compile_unit;
18814 unsigned int ranges_offset = (DW_UNSND (&attr)
18815 + (need_ranges_base
18816 ? cu->ranges_base
18817 : 0));
18818
18819 /* Value of the DW_AT_ranges attribute is the offset in the
18820 .debug_ranges section. */
18821 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18822 nullptr))
18823 has_pc_info = 1;
18824 }
18825 break;
18826
18827 default:
18828 break;
18829 }
18830 }
18831
18832 /* For Ada, if both the name and the linkage name appear, we prefer
18833 the latter. This lets "catch exception" work better, regardless
18834 of the order in which the name and linkage name were emitted.
18835 Really, though, this is just a workaround for the fact that gdb
18836 doesn't store both the name and the linkage name. */
18837 if (cu->language == language_ada && linkage_name != nullptr)
18838 name = linkage_name;
18839
18840 if (high_pc_relative)
18841 highpc += lowpc;
18842
18843 if (has_low_pc_attr && has_high_pc_attr)
18844 {
18845 /* When using the GNU linker, .gnu.linkonce. sections are used to
18846 eliminate duplicate copies of functions and vtables and such.
18847 The linker will arbitrarily choose one and discard the others.
18848 The AT_*_pc values for such functions refer to local labels in
18849 these sections. If the section from that file was discarded, the
18850 labels are not in the output, so the relocs get a value of 0.
18851 If this is a discarded function, mark the pc bounds as invalid,
18852 so that GDB will ignore it. */
18853 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18854 {
18855 struct objfile *objfile = dwarf2_per_objfile->objfile;
18856 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18857
18858 complaint (_("DW_AT_low_pc %s is zero "
18859 "for DIE at %s [in module %s]"),
18860 paddress (gdbarch, lowpc),
18861 sect_offset_str (sect_off),
18862 objfile_name (objfile));
18863 }
18864 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18865 else if (lowpc >= highpc)
18866 {
18867 struct objfile *objfile = dwarf2_per_objfile->objfile;
18868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18869
18870 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18871 "for DIE at %s [in module %s]"),
18872 paddress (gdbarch, lowpc),
18873 paddress (gdbarch, highpc),
18874 sect_offset_str (sect_off),
18875 objfile_name (objfile));
18876 }
18877 else
18878 has_pc_info = 1;
18879 }
18880
18881 return info_ptr;
18882 }
18883
18884 /* Find a cached partial DIE at OFFSET in CU. */
18885
18886 struct partial_die_info *
18887 dwarf2_cu::find_partial_die (sect_offset sect_off)
18888 {
18889 struct partial_die_info *lookup_die = NULL;
18890 struct partial_die_info part_die (sect_off);
18891
18892 lookup_die = ((struct partial_die_info *)
18893 htab_find_with_hash (partial_dies, &part_die,
18894 to_underlying (sect_off)));
18895
18896 return lookup_die;
18897 }
18898
18899 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18900 except in the case of .debug_types DIEs which do not reference
18901 outside their CU (they do however referencing other types via
18902 DW_FORM_ref_sig8). */
18903
18904 static const struct cu_partial_die_info
18905 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18906 {
18907 struct dwarf2_per_objfile *dwarf2_per_objfile
18908 = cu->per_cu->dwarf2_per_objfile;
18909 struct objfile *objfile = dwarf2_per_objfile->objfile;
18910 struct dwarf2_per_cu_data *per_cu = NULL;
18911 struct partial_die_info *pd = NULL;
18912
18913 if (offset_in_dwz == cu->per_cu->is_dwz
18914 && offset_in_cu_p (&cu->header, sect_off))
18915 {
18916 pd = cu->find_partial_die (sect_off);
18917 if (pd != NULL)
18918 return { cu, pd };
18919 /* We missed recording what we needed.
18920 Load all dies and try again. */
18921 per_cu = cu->per_cu;
18922 }
18923 else
18924 {
18925 /* TUs don't reference other CUs/TUs (except via type signatures). */
18926 if (cu->per_cu->is_debug_types)
18927 {
18928 error (_("Dwarf Error: Type Unit at offset %s contains"
18929 " external reference to offset %s [in module %s].\n"),
18930 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18931 bfd_get_filename (objfile->obfd));
18932 }
18933 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18934 dwarf2_per_objfile);
18935
18936 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18937 load_partial_comp_unit (per_cu);
18938
18939 per_cu->cu->last_used = 0;
18940 pd = per_cu->cu->find_partial_die (sect_off);
18941 }
18942
18943 /* If we didn't find it, and not all dies have been loaded,
18944 load them all and try again. */
18945
18946 if (pd == NULL && per_cu->load_all_dies == 0)
18947 {
18948 per_cu->load_all_dies = 1;
18949
18950 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18951 THIS_CU->cu may already be in use. So we can't just free it and
18952 replace its DIEs with the ones we read in. Instead, we leave those
18953 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18954 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18955 set. */
18956 load_partial_comp_unit (per_cu);
18957
18958 pd = per_cu->cu->find_partial_die (sect_off);
18959 }
18960
18961 if (pd == NULL)
18962 internal_error (__FILE__, __LINE__,
18963 _("could not find partial DIE %s "
18964 "in cache [from module %s]\n"),
18965 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18966 return { per_cu->cu, pd };
18967 }
18968
18969 /* See if we can figure out if the class lives in a namespace. We do
18970 this by looking for a member function; its demangled name will
18971 contain namespace info, if there is any. */
18972
18973 static void
18974 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18975 struct dwarf2_cu *cu)
18976 {
18977 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18978 what template types look like, because the demangler
18979 frequently doesn't give the same name as the debug info. We
18980 could fix this by only using the demangled name to get the
18981 prefix (but see comment in read_structure_type). */
18982
18983 struct partial_die_info *real_pdi;
18984 struct partial_die_info *child_pdi;
18985
18986 /* If this DIE (this DIE's specification, if any) has a parent, then
18987 we should not do this. We'll prepend the parent's fully qualified
18988 name when we create the partial symbol. */
18989
18990 real_pdi = struct_pdi;
18991 while (real_pdi->has_specification)
18992 {
18993 auto res = find_partial_die (real_pdi->spec_offset,
18994 real_pdi->spec_is_dwz, cu);
18995 real_pdi = res.pdi;
18996 cu = res.cu;
18997 }
18998
18999 if (real_pdi->die_parent != NULL)
19000 return;
19001
19002 for (child_pdi = struct_pdi->die_child;
19003 child_pdi != NULL;
19004 child_pdi = child_pdi->die_sibling)
19005 {
19006 if (child_pdi->tag == DW_TAG_subprogram
19007 && child_pdi->linkage_name != NULL)
19008 {
19009 char *actual_class_name
19010 = language_class_name_from_physname (cu->language_defn,
19011 child_pdi->linkage_name);
19012 if (actual_class_name != NULL)
19013 {
19014 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19015 struct_pdi->name
19016 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19017 actual_class_name);
19018 xfree (actual_class_name);
19019 }
19020 break;
19021 }
19022 }
19023 }
19024
19025 void
19026 partial_die_info::fixup (struct dwarf2_cu *cu)
19027 {
19028 /* Once we've fixed up a die, there's no point in doing so again.
19029 This also avoids a memory leak if we were to call
19030 guess_partial_die_structure_name multiple times. */
19031 if (fixup_called)
19032 return;
19033
19034 /* If we found a reference attribute and the DIE has no name, try
19035 to find a name in the referred to DIE. */
19036
19037 if (name == NULL && has_specification)
19038 {
19039 struct partial_die_info *spec_die;
19040
19041 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19042 spec_die = res.pdi;
19043 cu = res.cu;
19044
19045 spec_die->fixup (cu);
19046
19047 if (spec_die->name)
19048 {
19049 name = spec_die->name;
19050
19051 /* Copy DW_AT_external attribute if it is set. */
19052 if (spec_die->is_external)
19053 is_external = spec_die->is_external;
19054 }
19055 }
19056
19057 /* Set default names for some unnamed DIEs. */
19058
19059 if (name == NULL && tag == DW_TAG_namespace)
19060 name = CP_ANONYMOUS_NAMESPACE_STR;
19061
19062 /* If there is no parent die to provide a namespace, and there are
19063 children, see if we can determine the namespace from their linkage
19064 name. */
19065 if (cu->language == language_cplus
19066 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19067 && die_parent == NULL
19068 && has_children
19069 && (tag == DW_TAG_class_type
19070 || tag == DW_TAG_structure_type
19071 || tag == DW_TAG_union_type))
19072 guess_partial_die_structure_name (this, cu);
19073
19074 /* GCC might emit a nameless struct or union that has a linkage
19075 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19076 if (name == NULL
19077 && (tag == DW_TAG_class_type
19078 || tag == DW_TAG_interface_type
19079 || tag == DW_TAG_structure_type
19080 || tag == DW_TAG_union_type)
19081 && linkage_name != NULL)
19082 {
19083 char *demangled;
19084
19085 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19086 if (demangled)
19087 {
19088 const char *base;
19089
19090 /* Strip any leading namespaces/classes, keep only the base name.
19091 DW_AT_name for named DIEs does not contain the prefixes. */
19092 base = strrchr (demangled, ':');
19093 if (base && base > demangled && base[-1] == ':')
19094 base++;
19095 else
19096 base = demangled;
19097
19098 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19099 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19100 xfree (demangled);
19101 }
19102 }
19103
19104 fixup_called = 1;
19105 }
19106
19107 /* Read an attribute value described by an attribute form. */
19108
19109 static const gdb_byte *
19110 read_attribute_value (const struct die_reader_specs *reader,
19111 struct attribute *attr, unsigned form,
19112 LONGEST implicit_const, const gdb_byte *info_ptr)
19113 {
19114 struct dwarf2_cu *cu = reader->cu;
19115 struct dwarf2_per_objfile *dwarf2_per_objfile
19116 = cu->per_cu->dwarf2_per_objfile;
19117 struct objfile *objfile = dwarf2_per_objfile->objfile;
19118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19119 bfd *abfd = reader->abfd;
19120 struct comp_unit_head *cu_header = &cu->header;
19121 unsigned int bytes_read;
19122 struct dwarf_block *blk;
19123
19124 attr->form = (enum dwarf_form) form;
19125 switch (form)
19126 {
19127 case DW_FORM_ref_addr:
19128 if (cu->header.version == 2)
19129 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19130 else
19131 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19132 &cu->header, &bytes_read);
19133 info_ptr += bytes_read;
19134 break;
19135 case DW_FORM_GNU_ref_alt:
19136 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19137 info_ptr += bytes_read;
19138 break;
19139 case DW_FORM_addr:
19140 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19141 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19142 info_ptr += bytes_read;
19143 break;
19144 case DW_FORM_block2:
19145 blk = dwarf_alloc_block (cu);
19146 blk->size = read_2_bytes (abfd, info_ptr);
19147 info_ptr += 2;
19148 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19149 info_ptr += blk->size;
19150 DW_BLOCK (attr) = blk;
19151 break;
19152 case DW_FORM_block4:
19153 blk = dwarf_alloc_block (cu);
19154 blk->size = read_4_bytes (abfd, info_ptr);
19155 info_ptr += 4;
19156 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19157 info_ptr += blk->size;
19158 DW_BLOCK (attr) = blk;
19159 break;
19160 case DW_FORM_data2:
19161 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19162 info_ptr += 2;
19163 break;
19164 case DW_FORM_data4:
19165 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19166 info_ptr += 4;
19167 break;
19168 case DW_FORM_data8:
19169 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19170 info_ptr += 8;
19171 break;
19172 case DW_FORM_data16:
19173 blk = dwarf_alloc_block (cu);
19174 blk->size = 16;
19175 blk->data = read_n_bytes (abfd, info_ptr, 16);
19176 info_ptr += 16;
19177 DW_BLOCK (attr) = blk;
19178 break;
19179 case DW_FORM_sec_offset:
19180 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19181 info_ptr += bytes_read;
19182 break;
19183 case DW_FORM_string:
19184 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19185 DW_STRING_IS_CANONICAL (attr) = 0;
19186 info_ptr += bytes_read;
19187 break;
19188 case DW_FORM_strp:
19189 if (!cu->per_cu->is_dwz)
19190 {
19191 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19192 abfd, info_ptr, cu_header,
19193 &bytes_read);
19194 DW_STRING_IS_CANONICAL (attr) = 0;
19195 info_ptr += bytes_read;
19196 break;
19197 }
19198 /* FALLTHROUGH */
19199 case DW_FORM_line_strp:
19200 if (!cu->per_cu->is_dwz)
19201 {
19202 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19203 abfd, info_ptr,
19204 cu_header, &bytes_read);
19205 DW_STRING_IS_CANONICAL (attr) = 0;
19206 info_ptr += bytes_read;
19207 break;
19208 }
19209 /* FALLTHROUGH */
19210 case DW_FORM_GNU_strp_alt:
19211 {
19212 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19213 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19214 &bytes_read);
19215
19216 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19217 dwz, str_offset);
19218 DW_STRING_IS_CANONICAL (attr) = 0;
19219 info_ptr += bytes_read;
19220 }
19221 break;
19222 case DW_FORM_exprloc:
19223 case DW_FORM_block:
19224 blk = dwarf_alloc_block (cu);
19225 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19226 info_ptr += bytes_read;
19227 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19228 info_ptr += blk->size;
19229 DW_BLOCK (attr) = blk;
19230 break;
19231 case DW_FORM_block1:
19232 blk = dwarf_alloc_block (cu);
19233 blk->size = read_1_byte (abfd, info_ptr);
19234 info_ptr += 1;
19235 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19236 info_ptr += blk->size;
19237 DW_BLOCK (attr) = blk;
19238 break;
19239 case DW_FORM_data1:
19240 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19241 info_ptr += 1;
19242 break;
19243 case DW_FORM_flag:
19244 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19245 info_ptr += 1;
19246 break;
19247 case DW_FORM_flag_present:
19248 DW_UNSND (attr) = 1;
19249 break;
19250 case DW_FORM_sdata:
19251 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19252 info_ptr += bytes_read;
19253 break;
19254 case DW_FORM_udata:
19255 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19256 info_ptr += bytes_read;
19257 break;
19258 case DW_FORM_ref1:
19259 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19260 + read_1_byte (abfd, info_ptr));
19261 info_ptr += 1;
19262 break;
19263 case DW_FORM_ref2:
19264 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19265 + read_2_bytes (abfd, info_ptr));
19266 info_ptr += 2;
19267 break;
19268 case DW_FORM_ref4:
19269 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19270 + read_4_bytes (abfd, info_ptr));
19271 info_ptr += 4;
19272 break;
19273 case DW_FORM_ref8:
19274 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19275 + read_8_bytes (abfd, info_ptr));
19276 info_ptr += 8;
19277 break;
19278 case DW_FORM_ref_sig8:
19279 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19280 info_ptr += 8;
19281 break;
19282 case DW_FORM_ref_udata:
19283 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19284 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19285 info_ptr += bytes_read;
19286 break;
19287 case DW_FORM_indirect:
19288 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19289 info_ptr += bytes_read;
19290 if (form == DW_FORM_implicit_const)
19291 {
19292 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19293 info_ptr += bytes_read;
19294 }
19295 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19296 info_ptr);
19297 break;
19298 case DW_FORM_implicit_const:
19299 DW_SND (attr) = implicit_const;
19300 break;
19301 case DW_FORM_addrx:
19302 case DW_FORM_GNU_addr_index:
19303 if (reader->dwo_file == NULL)
19304 {
19305 /* For now flag a hard error.
19306 Later we can turn this into a complaint. */
19307 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19308 dwarf_form_name (form),
19309 bfd_get_filename (abfd));
19310 }
19311 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19312 info_ptr += bytes_read;
19313 break;
19314 case DW_FORM_strx:
19315 case DW_FORM_strx1:
19316 case DW_FORM_strx2:
19317 case DW_FORM_strx3:
19318 case DW_FORM_strx4:
19319 case DW_FORM_GNU_str_index:
19320 if (reader->dwo_file == NULL)
19321 {
19322 /* For now flag a hard error.
19323 Later we can turn this into a complaint if warranted. */
19324 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19325 dwarf_form_name (form),
19326 bfd_get_filename (abfd));
19327 }
19328 {
19329 ULONGEST str_index;
19330 if (form == DW_FORM_strx1)
19331 {
19332 str_index = read_1_byte (abfd, info_ptr);
19333 info_ptr += 1;
19334 }
19335 else if (form == DW_FORM_strx2)
19336 {
19337 str_index = read_2_bytes (abfd, info_ptr);
19338 info_ptr += 2;
19339 }
19340 else if (form == DW_FORM_strx3)
19341 {
19342 str_index = read_3_bytes (abfd, info_ptr);
19343 info_ptr += 3;
19344 }
19345 else if (form == DW_FORM_strx4)
19346 {
19347 str_index = read_4_bytes (abfd, info_ptr);
19348 info_ptr += 4;
19349 }
19350 else
19351 {
19352 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19353 info_ptr += bytes_read;
19354 }
19355 DW_STRING (attr) = read_str_index (reader, str_index);
19356 DW_STRING_IS_CANONICAL (attr) = 0;
19357 }
19358 break;
19359 default:
19360 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19361 dwarf_form_name (form),
19362 bfd_get_filename (abfd));
19363 }
19364
19365 /* Super hack. */
19366 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19367 attr->form = DW_FORM_GNU_ref_alt;
19368
19369 /* We have seen instances where the compiler tried to emit a byte
19370 size attribute of -1 which ended up being encoded as an unsigned
19371 0xffffffff. Although 0xffffffff is technically a valid size value,
19372 an object of this size seems pretty unlikely so we can relatively
19373 safely treat these cases as if the size attribute was invalid and
19374 treat them as zero by default. */
19375 if (attr->name == DW_AT_byte_size
19376 && form == DW_FORM_data4
19377 && DW_UNSND (attr) >= 0xffffffff)
19378 {
19379 complaint
19380 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19381 hex_string (DW_UNSND (attr)));
19382 DW_UNSND (attr) = 0;
19383 }
19384
19385 return info_ptr;
19386 }
19387
19388 /* Read an attribute described by an abbreviated attribute. */
19389
19390 static const gdb_byte *
19391 read_attribute (const struct die_reader_specs *reader,
19392 struct attribute *attr, struct attr_abbrev *abbrev,
19393 const gdb_byte *info_ptr)
19394 {
19395 attr->name = abbrev->name;
19396 return read_attribute_value (reader, attr, abbrev->form,
19397 abbrev->implicit_const, info_ptr);
19398 }
19399
19400 /* Read dwarf information from a buffer. */
19401
19402 static unsigned int
19403 read_1_byte (bfd *abfd, const gdb_byte *buf)
19404 {
19405 return bfd_get_8 (abfd, buf);
19406 }
19407
19408 static int
19409 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19410 {
19411 return bfd_get_signed_8 (abfd, buf);
19412 }
19413
19414 static unsigned int
19415 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19416 {
19417 return bfd_get_16 (abfd, buf);
19418 }
19419
19420 static int
19421 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19422 {
19423 return bfd_get_signed_16 (abfd, buf);
19424 }
19425
19426 static unsigned int
19427 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19428 {
19429 unsigned int result = 0;
19430 for (int i = 0; i < 3; ++i)
19431 {
19432 unsigned char byte = bfd_get_8 (abfd, buf);
19433 buf++;
19434 result |= ((unsigned int) byte << (i * 8));
19435 }
19436 return result;
19437 }
19438
19439 static unsigned int
19440 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19441 {
19442 return bfd_get_32 (abfd, buf);
19443 }
19444
19445 static int
19446 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19447 {
19448 return bfd_get_signed_32 (abfd, buf);
19449 }
19450
19451 static ULONGEST
19452 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19453 {
19454 return bfd_get_64 (abfd, buf);
19455 }
19456
19457 static CORE_ADDR
19458 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19459 unsigned int *bytes_read)
19460 {
19461 struct comp_unit_head *cu_header = &cu->header;
19462 CORE_ADDR retval = 0;
19463
19464 if (cu_header->signed_addr_p)
19465 {
19466 switch (cu_header->addr_size)
19467 {
19468 case 2:
19469 retval = bfd_get_signed_16 (abfd, buf);
19470 break;
19471 case 4:
19472 retval = bfd_get_signed_32 (abfd, buf);
19473 break;
19474 case 8:
19475 retval = bfd_get_signed_64 (abfd, buf);
19476 break;
19477 default:
19478 internal_error (__FILE__, __LINE__,
19479 _("read_address: bad switch, signed [in module %s]"),
19480 bfd_get_filename (abfd));
19481 }
19482 }
19483 else
19484 {
19485 switch (cu_header->addr_size)
19486 {
19487 case 2:
19488 retval = bfd_get_16 (abfd, buf);
19489 break;
19490 case 4:
19491 retval = bfd_get_32 (abfd, buf);
19492 break;
19493 case 8:
19494 retval = bfd_get_64 (abfd, buf);
19495 break;
19496 default:
19497 internal_error (__FILE__, __LINE__,
19498 _("read_address: bad switch, "
19499 "unsigned [in module %s]"),
19500 bfd_get_filename (abfd));
19501 }
19502 }
19503
19504 *bytes_read = cu_header->addr_size;
19505 return retval;
19506 }
19507
19508 /* Read the initial length from a section. The (draft) DWARF 3
19509 specification allows the initial length to take up either 4 bytes
19510 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19511 bytes describe the length and all offsets will be 8 bytes in length
19512 instead of 4.
19513
19514 An older, non-standard 64-bit format is also handled by this
19515 function. The older format in question stores the initial length
19516 as an 8-byte quantity without an escape value. Lengths greater
19517 than 2^32 aren't very common which means that the initial 4 bytes
19518 is almost always zero. Since a length value of zero doesn't make
19519 sense for the 32-bit format, this initial zero can be considered to
19520 be an escape value which indicates the presence of the older 64-bit
19521 format. As written, the code can't detect (old format) lengths
19522 greater than 4GB. If it becomes necessary to handle lengths
19523 somewhat larger than 4GB, we could allow other small values (such
19524 as the non-sensical values of 1, 2, and 3) to also be used as
19525 escape values indicating the presence of the old format.
19526
19527 The value returned via bytes_read should be used to increment the
19528 relevant pointer after calling read_initial_length().
19529
19530 [ Note: read_initial_length() and read_offset() are based on the
19531 document entitled "DWARF Debugging Information Format", revision
19532 3, draft 8, dated November 19, 2001. This document was obtained
19533 from:
19534
19535 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19536
19537 This document is only a draft and is subject to change. (So beware.)
19538
19539 Details regarding the older, non-standard 64-bit format were
19540 determined empirically by examining 64-bit ELF files produced by
19541 the SGI toolchain on an IRIX 6.5 machine.
19542
19543 - Kevin, July 16, 2002
19544 ] */
19545
19546 static LONGEST
19547 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19548 {
19549 LONGEST length = bfd_get_32 (abfd, buf);
19550
19551 if (length == 0xffffffff)
19552 {
19553 length = bfd_get_64 (abfd, buf + 4);
19554 *bytes_read = 12;
19555 }
19556 else if (length == 0)
19557 {
19558 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19559 length = bfd_get_64 (abfd, buf);
19560 *bytes_read = 8;
19561 }
19562 else
19563 {
19564 *bytes_read = 4;
19565 }
19566
19567 return length;
19568 }
19569
19570 /* Cover function for read_initial_length.
19571 Returns the length of the object at BUF, and stores the size of the
19572 initial length in *BYTES_READ and stores the size that offsets will be in
19573 *OFFSET_SIZE.
19574 If the initial length size is not equivalent to that specified in
19575 CU_HEADER then issue a complaint.
19576 This is useful when reading non-comp-unit headers. */
19577
19578 static LONGEST
19579 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19580 const struct comp_unit_head *cu_header,
19581 unsigned int *bytes_read,
19582 unsigned int *offset_size)
19583 {
19584 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19585
19586 gdb_assert (cu_header->initial_length_size == 4
19587 || cu_header->initial_length_size == 8
19588 || cu_header->initial_length_size == 12);
19589
19590 if (cu_header->initial_length_size != *bytes_read)
19591 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19592
19593 *offset_size = (*bytes_read == 4) ? 4 : 8;
19594 return length;
19595 }
19596
19597 /* Read an offset from the data stream. The size of the offset is
19598 given by cu_header->offset_size. */
19599
19600 static LONGEST
19601 read_offset (bfd *abfd, const gdb_byte *buf,
19602 const struct comp_unit_head *cu_header,
19603 unsigned int *bytes_read)
19604 {
19605 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19606
19607 *bytes_read = cu_header->offset_size;
19608 return offset;
19609 }
19610
19611 /* Read an offset from the data stream. */
19612
19613 static LONGEST
19614 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19615 {
19616 LONGEST retval = 0;
19617
19618 switch (offset_size)
19619 {
19620 case 4:
19621 retval = bfd_get_32 (abfd, buf);
19622 break;
19623 case 8:
19624 retval = bfd_get_64 (abfd, buf);
19625 break;
19626 default:
19627 internal_error (__FILE__, __LINE__,
19628 _("read_offset_1: bad switch [in module %s]"),
19629 bfd_get_filename (abfd));
19630 }
19631
19632 return retval;
19633 }
19634
19635 static const gdb_byte *
19636 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19637 {
19638 /* If the size of a host char is 8 bits, we can return a pointer
19639 to the buffer, otherwise we have to copy the data to a buffer
19640 allocated on the temporary obstack. */
19641 gdb_assert (HOST_CHAR_BIT == 8);
19642 return buf;
19643 }
19644
19645 static const char *
19646 read_direct_string (bfd *abfd, const gdb_byte *buf,
19647 unsigned int *bytes_read_ptr)
19648 {
19649 /* If the size of a host char is 8 bits, we can return a pointer
19650 to the string, otherwise we have to copy the string to a buffer
19651 allocated on the temporary obstack. */
19652 gdb_assert (HOST_CHAR_BIT == 8);
19653 if (*buf == '\0')
19654 {
19655 *bytes_read_ptr = 1;
19656 return NULL;
19657 }
19658 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19659 return (const char *) buf;
19660 }
19661
19662 /* Return pointer to string at section SECT offset STR_OFFSET with error
19663 reporting strings FORM_NAME and SECT_NAME. */
19664
19665 static const char *
19666 read_indirect_string_at_offset_from (struct objfile *objfile,
19667 bfd *abfd, LONGEST str_offset,
19668 struct dwarf2_section_info *sect,
19669 const char *form_name,
19670 const char *sect_name)
19671 {
19672 dwarf2_read_section (objfile, sect);
19673 if (sect->buffer == NULL)
19674 error (_("%s used without %s section [in module %s]"),
19675 form_name, sect_name, bfd_get_filename (abfd));
19676 if (str_offset >= sect->size)
19677 error (_("%s pointing outside of %s section [in module %s]"),
19678 form_name, sect_name, bfd_get_filename (abfd));
19679 gdb_assert (HOST_CHAR_BIT == 8);
19680 if (sect->buffer[str_offset] == '\0')
19681 return NULL;
19682 return (const char *) (sect->buffer + str_offset);
19683 }
19684
19685 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19686
19687 static const char *
19688 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19689 bfd *abfd, LONGEST str_offset)
19690 {
19691 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19692 abfd, str_offset,
19693 &dwarf2_per_objfile->str,
19694 "DW_FORM_strp", ".debug_str");
19695 }
19696
19697 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19698
19699 static const char *
19700 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19701 bfd *abfd, LONGEST str_offset)
19702 {
19703 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19704 abfd, str_offset,
19705 &dwarf2_per_objfile->line_str,
19706 "DW_FORM_line_strp",
19707 ".debug_line_str");
19708 }
19709
19710 /* Read a string at offset STR_OFFSET in the .debug_str section from
19711 the .dwz file DWZ. Throw an error if the offset is too large. If
19712 the string consists of a single NUL byte, return NULL; otherwise
19713 return a pointer to the string. */
19714
19715 static const char *
19716 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19717 LONGEST str_offset)
19718 {
19719 dwarf2_read_section (objfile, &dwz->str);
19720
19721 if (dwz->str.buffer == NULL)
19722 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19723 "section [in module %s]"),
19724 bfd_get_filename (dwz->dwz_bfd));
19725 if (str_offset >= dwz->str.size)
19726 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19727 ".debug_str section [in module %s]"),
19728 bfd_get_filename (dwz->dwz_bfd));
19729 gdb_assert (HOST_CHAR_BIT == 8);
19730 if (dwz->str.buffer[str_offset] == '\0')
19731 return NULL;
19732 return (const char *) (dwz->str.buffer + str_offset);
19733 }
19734
19735 /* Return pointer to string at .debug_str offset as read from BUF.
19736 BUF is assumed to be in a compilation unit described by CU_HEADER.
19737 Return *BYTES_READ_PTR count of bytes read from BUF. */
19738
19739 static const char *
19740 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19741 const gdb_byte *buf,
19742 const struct comp_unit_head *cu_header,
19743 unsigned int *bytes_read_ptr)
19744 {
19745 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19746
19747 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19748 }
19749
19750 /* Return pointer to string at .debug_line_str offset as read from BUF.
19751 BUF is assumed to be in a compilation unit described by CU_HEADER.
19752 Return *BYTES_READ_PTR count of bytes read from BUF. */
19753
19754 static const char *
19755 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19756 bfd *abfd, const gdb_byte *buf,
19757 const struct comp_unit_head *cu_header,
19758 unsigned int *bytes_read_ptr)
19759 {
19760 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19761
19762 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19763 str_offset);
19764 }
19765
19766 ULONGEST
19767 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19768 unsigned int *bytes_read_ptr)
19769 {
19770 ULONGEST result;
19771 unsigned int num_read;
19772 int shift;
19773 unsigned char byte;
19774
19775 result = 0;
19776 shift = 0;
19777 num_read = 0;
19778 while (1)
19779 {
19780 byte = bfd_get_8 (abfd, buf);
19781 buf++;
19782 num_read++;
19783 result |= ((ULONGEST) (byte & 127) << shift);
19784 if ((byte & 128) == 0)
19785 {
19786 break;
19787 }
19788 shift += 7;
19789 }
19790 *bytes_read_ptr = num_read;
19791 return result;
19792 }
19793
19794 static LONGEST
19795 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19796 unsigned int *bytes_read_ptr)
19797 {
19798 ULONGEST result;
19799 int shift, num_read;
19800 unsigned char byte;
19801
19802 result = 0;
19803 shift = 0;
19804 num_read = 0;
19805 while (1)
19806 {
19807 byte = bfd_get_8 (abfd, buf);
19808 buf++;
19809 num_read++;
19810 result |= ((ULONGEST) (byte & 127) << shift);
19811 shift += 7;
19812 if ((byte & 128) == 0)
19813 {
19814 break;
19815 }
19816 }
19817 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19818 result |= -(((ULONGEST) 1) << shift);
19819 *bytes_read_ptr = num_read;
19820 return result;
19821 }
19822
19823 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19824 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19825 ADDR_SIZE is the size of addresses from the CU header. */
19826
19827 static CORE_ADDR
19828 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19829 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19830 {
19831 struct objfile *objfile = dwarf2_per_objfile->objfile;
19832 bfd *abfd = objfile->obfd;
19833 const gdb_byte *info_ptr;
19834
19835 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19836 if (dwarf2_per_objfile->addr.buffer == NULL)
19837 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19838 objfile_name (objfile));
19839 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19840 error (_("DW_FORM_addr_index pointing outside of "
19841 ".debug_addr section [in module %s]"),
19842 objfile_name (objfile));
19843 info_ptr = (dwarf2_per_objfile->addr.buffer
19844 + addr_base + addr_index * addr_size);
19845 if (addr_size == 4)
19846 return bfd_get_32 (abfd, info_ptr);
19847 else
19848 return bfd_get_64 (abfd, info_ptr);
19849 }
19850
19851 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19852
19853 static CORE_ADDR
19854 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19855 {
19856 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19857 cu->addr_base, cu->header.addr_size);
19858 }
19859
19860 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19861
19862 static CORE_ADDR
19863 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19864 unsigned int *bytes_read)
19865 {
19866 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19867 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19868
19869 return read_addr_index (cu, addr_index);
19870 }
19871
19872 /* Data structure to pass results from dwarf2_read_addr_index_reader
19873 back to dwarf2_read_addr_index. */
19874
19875 struct dwarf2_read_addr_index_data
19876 {
19877 ULONGEST addr_base;
19878 int addr_size;
19879 };
19880
19881 /* die_reader_func for dwarf2_read_addr_index. */
19882
19883 static void
19884 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19885 const gdb_byte *info_ptr,
19886 struct die_info *comp_unit_die,
19887 int has_children,
19888 void *data)
19889 {
19890 struct dwarf2_cu *cu = reader->cu;
19891 struct dwarf2_read_addr_index_data *aidata =
19892 (struct dwarf2_read_addr_index_data *) data;
19893
19894 aidata->addr_base = cu->addr_base;
19895 aidata->addr_size = cu->header.addr_size;
19896 }
19897
19898 /* Given an index in .debug_addr, fetch the value.
19899 NOTE: This can be called during dwarf expression evaluation,
19900 long after the debug information has been read, and thus per_cu->cu
19901 may no longer exist. */
19902
19903 CORE_ADDR
19904 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19905 unsigned int addr_index)
19906 {
19907 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19908 struct dwarf2_cu *cu = per_cu->cu;
19909 ULONGEST addr_base;
19910 int addr_size;
19911
19912 /* We need addr_base and addr_size.
19913 If we don't have PER_CU->cu, we have to get it.
19914 Nasty, but the alternative is storing the needed info in PER_CU,
19915 which at this point doesn't seem justified: it's not clear how frequently
19916 it would get used and it would increase the size of every PER_CU.
19917 Entry points like dwarf2_per_cu_addr_size do a similar thing
19918 so we're not in uncharted territory here.
19919 Alas we need to be a bit more complicated as addr_base is contained
19920 in the DIE.
19921
19922 We don't need to read the entire CU(/TU).
19923 We just need the header and top level die.
19924
19925 IWBN to use the aging mechanism to let us lazily later discard the CU.
19926 For now we skip this optimization. */
19927
19928 if (cu != NULL)
19929 {
19930 addr_base = cu->addr_base;
19931 addr_size = cu->header.addr_size;
19932 }
19933 else
19934 {
19935 struct dwarf2_read_addr_index_data aidata;
19936
19937 /* Note: We can't use init_cutu_and_read_dies_simple here,
19938 we need addr_base. */
19939 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19940 dwarf2_read_addr_index_reader, &aidata);
19941 addr_base = aidata.addr_base;
19942 addr_size = aidata.addr_size;
19943 }
19944
19945 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19946 addr_size);
19947 }
19948
19949 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19950 This is only used by the Fission support. */
19951
19952 static const char *
19953 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19954 {
19955 struct dwarf2_cu *cu = reader->cu;
19956 struct dwarf2_per_objfile *dwarf2_per_objfile
19957 = cu->per_cu->dwarf2_per_objfile;
19958 struct objfile *objfile = dwarf2_per_objfile->objfile;
19959 const char *objf_name = objfile_name (objfile);
19960 bfd *abfd = objfile->obfd;
19961 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19962 struct dwarf2_section_info *str_offsets_section =
19963 &reader->dwo_file->sections.str_offsets;
19964 const gdb_byte *info_ptr;
19965 ULONGEST str_offset;
19966 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19967
19968 dwarf2_read_section (objfile, str_section);
19969 dwarf2_read_section (objfile, str_offsets_section);
19970 if (str_section->buffer == NULL)
19971 error (_("%s used without .debug_str.dwo section"
19972 " in CU at offset %s [in module %s]"),
19973 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19974 if (str_offsets_section->buffer == NULL)
19975 error (_("%s used without .debug_str_offsets.dwo section"
19976 " in CU at offset %s [in module %s]"),
19977 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19978 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19979 error (_("%s pointing outside of .debug_str_offsets.dwo"
19980 " section in CU at offset %s [in module %s]"),
19981 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19982 info_ptr = (str_offsets_section->buffer
19983 + str_index * cu->header.offset_size);
19984 if (cu->header.offset_size == 4)
19985 str_offset = bfd_get_32 (abfd, info_ptr);
19986 else
19987 str_offset = bfd_get_64 (abfd, info_ptr);
19988 if (str_offset >= str_section->size)
19989 error (_("Offset from %s pointing outside of"
19990 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19991 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19992 return (const char *) (str_section->buffer + str_offset);
19993 }
19994
19995 /* Return the length of an LEB128 number in BUF. */
19996
19997 static int
19998 leb128_size (const gdb_byte *buf)
19999 {
20000 const gdb_byte *begin = buf;
20001 gdb_byte byte;
20002
20003 while (1)
20004 {
20005 byte = *buf++;
20006 if ((byte & 128) == 0)
20007 return buf - begin;
20008 }
20009 }
20010
20011 static void
20012 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20013 {
20014 switch (lang)
20015 {
20016 case DW_LANG_C89:
20017 case DW_LANG_C99:
20018 case DW_LANG_C11:
20019 case DW_LANG_C:
20020 case DW_LANG_UPC:
20021 cu->language = language_c;
20022 break;
20023 case DW_LANG_Java:
20024 case DW_LANG_C_plus_plus:
20025 case DW_LANG_C_plus_plus_11:
20026 case DW_LANG_C_plus_plus_14:
20027 cu->language = language_cplus;
20028 break;
20029 case DW_LANG_D:
20030 cu->language = language_d;
20031 break;
20032 case DW_LANG_Fortran77:
20033 case DW_LANG_Fortran90:
20034 case DW_LANG_Fortran95:
20035 case DW_LANG_Fortran03:
20036 case DW_LANG_Fortran08:
20037 cu->language = language_fortran;
20038 break;
20039 case DW_LANG_Go:
20040 cu->language = language_go;
20041 break;
20042 case DW_LANG_Mips_Assembler:
20043 cu->language = language_asm;
20044 break;
20045 case DW_LANG_Ada83:
20046 case DW_LANG_Ada95:
20047 cu->language = language_ada;
20048 break;
20049 case DW_LANG_Modula2:
20050 cu->language = language_m2;
20051 break;
20052 case DW_LANG_Pascal83:
20053 cu->language = language_pascal;
20054 break;
20055 case DW_LANG_ObjC:
20056 cu->language = language_objc;
20057 break;
20058 case DW_LANG_Rust:
20059 case DW_LANG_Rust_old:
20060 cu->language = language_rust;
20061 break;
20062 case DW_LANG_Cobol74:
20063 case DW_LANG_Cobol85:
20064 default:
20065 cu->language = language_minimal;
20066 break;
20067 }
20068 cu->language_defn = language_def (cu->language);
20069 }
20070
20071 /* Return the named attribute or NULL if not there. */
20072
20073 static struct attribute *
20074 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20075 {
20076 for (;;)
20077 {
20078 unsigned int i;
20079 struct attribute *spec = NULL;
20080
20081 for (i = 0; i < die->num_attrs; ++i)
20082 {
20083 if (die->attrs[i].name == name)
20084 return &die->attrs[i];
20085 if (die->attrs[i].name == DW_AT_specification
20086 || die->attrs[i].name == DW_AT_abstract_origin)
20087 spec = &die->attrs[i];
20088 }
20089
20090 if (!spec)
20091 break;
20092
20093 die = follow_die_ref (die, spec, &cu);
20094 }
20095
20096 return NULL;
20097 }
20098
20099 /* Return the named attribute or NULL if not there,
20100 but do not follow DW_AT_specification, etc.
20101 This is for use in contexts where we're reading .debug_types dies.
20102 Following DW_AT_specification, DW_AT_abstract_origin will take us
20103 back up the chain, and we want to go down. */
20104
20105 static struct attribute *
20106 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20107 {
20108 unsigned int i;
20109
20110 for (i = 0; i < die->num_attrs; ++i)
20111 if (die->attrs[i].name == name)
20112 return &die->attrs[i];
20113
20114 return NULL;
20115 }
20116
20117 /* Return the string associated with a string-typed attribute, or NULL if it
20118 is either not found or is of an incorrect type. */
20119
20120 static const char *
20121 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20122 {
20123 struct attribute *attr;
20124 const char *str = NULL;
20125
20126 attr = dwarf2_attr (die, name, cu);
20127
20128 if (attr != NULL)
20129 {
20130 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20131 || attr->form == DW_FORM_string
20132 || attr->form == DW_FORM_strx
20133 || attr->form == DW_FORM_GNU_str_index
20134 || attr->form == DW_FORM_GNU_strp_alt)
20135 str = DW_STRING (attr);
20136 else
20137 complaint (_("string type expected for attribute %s for "
20138 "DIE at %s in module %s"),
20139 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20140 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20141 }
20142
20143 return str;
20144 }
20145
20146 /* Return the dwo name or NULL if not present. If present, it is in either
20147 DW_AT_GNU_dwo_name or DW_AT_dwo_name atrribute. */
20148 static const char *
20149 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20150 {
20151 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20152 if (dwo_name == nullptr)
20153 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20154 return dwo_name;
20155 }
20156
20157 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20158 and holds a non-zero value. This function should only be used for
20159 DW_FORM_flag or DW_FORM_flag_present attributes. */
20160
20161 static int
20162 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20163 {
20164 struct attribute *attr = dwarf2_attr (die, name, cu);
20165
20166 return (attr && DW_UNSND (attr));
20167 }
20168
20169 static int
20170 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20171 {
20172 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20173 which value is non-zero. However, we have to be careful with
20174 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20175 (via dwarf2_flag_true_p) follows this attribute. So we may
20176 end up accidently finding a declaration attribute that belongs
20177 to a different DIE referenced by the specification attribute,
20178 even though the given DIE does not have a declaration attribute. */
20179 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20180 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20181 }
20182
20183 /* Return the die giving the specification for DIE, if there is
20184 one. *SPEC_CU is the CU containing DIE on input, and the CU
20185 containing the return value on output. If there is no
20186 specification, but there is an abstract origin, that is
20187 returned. */
20188
20189 static struct die_info *
20190 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20191 {
20192 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20193 *spec_cu);
20194
20195 if (spec_attr == NULL)
20196 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20197
20198 if (spec_attr == NULL)
20199 return NULL;
20200 else
20201 return follow_die_ref (die, spec_attr, spec_cu);
20202 }
20203
20204 /* Stub for free_line_header to match void * callback types. */
20205
20206 static void
20207 free_line_header_voidp (void *arg)
20208 {
20209 struct line_header *lh = (struct line_header *) arg;
20210
20211 delete lh;
20212 }
20213
20214 void
20215 line_header::add_include_dir (const char *include_dir)
20216 {
20217 if (dwarf_line_debug >= 2)
20218 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20219 include_dirs.size () + 1, include_dir);
20220
20221 include_dirs.push_back (include_dir);
20222 }
20223
20224 void
20225 line_header::add_file_name (const char *name,
20226 dir_index d_index,
20227 unsigned int mod_time,
20228 unsigned int length)
20229 {
20230 if (dwarf_line_debug >= 2)
20231 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20232 (unsigned) file_names.size () + 1, name);
20233
20234 file_names.emplace_back (name, d_index, mod_time, length);
20235 }
20236
20237 /* A convenience function to find the proper .debug_line section for a CU. */
20238
20239 static struct dwarf2_section_info *
20240 get_debug_line_section (struct dwarf2_cu *cu)
20241 {
20242 struct dwarf2_section_info *section;
20243 struct dwarf2_per_objfile *dwarf2_per_objfile
20244 = cu->per_cu->dwarf2_per_objfile;
20245
20246 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20247 DWO file. */
20248 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20249 section = &cu->dwo_unit->dwo_file->sections.line;
20250 else if (cu->per_cu->is_dwz)
20251 {
20252 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20253
20254 section = &dwz->line;
20255 }
20256 else
20257 section = &dwarf2_per_objfile->line;
20258
20259 return section;
20260 }
20261
20262 /* Read directory or file name entry format, starting with byte of
20263 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20264 entries count and the entries themselves in the described entry
20265 format. */
20266
20267 static void
20268 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20269 bfd *abfd, const gdb_byte **bufp,
20270 struct line_header *lh,
20271 const struct comp_unit_head *cu_header,
20272 void (*callback) (struct line_header *lh,
20273 const char *name,
20274 dir_index d_index,
20275 unsigned int mod_time,
20276 unsigned int length))
20277 {
20278 gdb_byte format_count, formati;
20279 ULONGEST data_count, datai;
20280 const gdb_byte *buf = *bufp;
20281 const gdb_byte *format_header_data;
20282 unsigned int bytes_read;
20283
20284 format_count = read_1_byte (abfd, buf);
20285 buf += 1;
20286 format_header_data = buf;
20287 for (formati = 0; formati < format_count; formati++)
20288 {
20289 read_unsigned_leb128 (abfd, buf, &bytes_read);
20290 buf += bytes_read;
20291 read_unsigned_leb128 (abfd, buf, &bytes_read);
20292 buf += bytes_read;
20293 }
20294
20295 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20296 buf += bytes_read;
20297 for (datai = 0; datai < data_count; datai++)
20298 {
20299 const gdb_byte *format = format_header_data;
20300 struct file_entry fe;
20301
20302 for (formati = 0; formati < format_count; formati++)
20303 {
20304 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20305 format += bytes_read;
20306
20307 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20308 format += bytes_read;
20309
20310 gdb::optional<const char *> string;
20311 gdb::optional<unsigned int> uint;
20312
20313 switch (form)
20314 {
20315 case DW_FORM_string:
20316 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20317 buf += bytes_read;
20318 break;
20319
20320 case DW_FORM_line_strp:
20321 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20322 abfd, buf,
20323 cu_header,
20324 &bytes_read));
20325 buf += bytes_read;
20326 break;
20327
20328 case DW_FORM_data1:
20329 uint.emplace (read_1_byte (abfd, buf));
20330 buf += 1;
20331 break;
20332
20333 case DW_FORM_data2:
20334 uint.emplace (read_2_bytes (abfd, buf));
20335 buf += 2;
20336 break;
20337
20338 case DW_FORM_data4:
20339 uint.emplace (read_4_bytes (abfd, buf));
20340 buf += 4;
20341 break;
20342
20343 case DW_FORM_data8:
20344 uint.emplace (read_8_bytes (abfd, buf));
20345 buf += 8;
20346 break;
20347
20348 case DW_FORM_udata:
20349 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20350 buf += bytes_read;
20351 break;
20352
20353 case DW_FORM_block:
20354 /* It is valid only for DW_LNCT_timestamp which is ignored by
20355 current GDB. */
20356 break;
20357 }
20358
20359 switch (content_type)
20360 {
20361 case DW_LNCT_path:
20362 if (string.has_value ())
20363 fe.name = *string;
20364 break;
20365 case DW_LNCT_directory_index:
20366 if (uint.has_value ())
20367 fe.d_index = (dir_index) *uint;
20368 break;
20369 case DW_LNCT_timestamp:
20370 if (uint.has_value ())
20371 fe.mod_time = *uint;
20372 break;
20373 case DW_LNCT_size:
20374 if (uint.has_value ())
20375 fe.length = *uint;
20376 break;
20377 case DW_LNCT_MD5:
20378 break;
20379 default:
20380 complaint (_("Unknown format content type %s"),
20381 pulongest (content_type));
20382 }
20383 }
20384
20385 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20386 }
20387
20388 *bufp = buf;
20389 }
20390
20391 /* Read the statement program header starting at OFFSET in
20392 .debug_line, or .debug_line.dwo. Return a pointer
20393 to a struct line_header, allocated using xmalloc.
20394 Returns NULL if there is a problem reading the header, e.g., if it
20395 has a version we don't understand.
20396
20397 NOTE: the strings in the include directory and file name tables of
20398 the returned object point into the dwarf line section buffer,
20399 and must not be freed. */
20400
20401 static line_header_up
20402 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20403 {
20404 const gdb_byte *line_ptr;
20405 unsigned int bytes_read, offset_size;
20406 int i;
20407 const char *cur_dir, *cur_file;
20408 struct dwarf2_section_info *section;
20409 bfd *abfd;
20410 struct dwarf2_per_objfile *dwarf2_per_objfile
20411 = cu->per_cu->dwarf2_per_objfile;
20412
20413 section = get_debug_line_section (cu);
20414 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20415 if (section->buffer == NULL)
20416 {
20417 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20418 complaint (_("missing .debug_line.dwo section"));
20419 else
20420 complaint (_("missing .debug_line section"));
20421 return 0;
20422 }
20423
20424 /* We can't do this until we know the section is non-empty.
20425 Only then do we know we have such a section. */
20426 abfd = get_section_bfd_owner (section);
20427
20428 /* Make sure that at least there's room for the total_length field.
20429 That could be 12 bytes long, but we're just going to fudge that. */
20430 if (to_underlying (sect_off) + 4 >= section->size)
20431 {
20432 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20433 return 0;
20434 }
20435
20436 line_header_up lh (new line_header ());
20437
20438 lh->sect_off = sect_off;
20439 lh->offset_in_dwz = cu->per_cu->is_dwz;
20440
20441 line_ptr = section->buffer + to_underlying (sect_off);
20442
20443 /* Read in the header. */
20444 lh->total_length =
20445 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20446 &bytes_read, &offset_size);
20447 line_ptr += bytes_read;
20448 if (line_ptr + lh->total_length > (section->buffer + section->size))
20449 {
20450 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20451 return 0;
20452 }
20453 lh->statement_program_end = line_ptr + lh->total_length;
20454 lh->version = read_2_bytes (abfd, line_ptr);
20455 line_ptr += 2;
20456 if (lh->version > 5)
20457 {
20458 /* This is a version we don't understand. The format could have
20459 changed in ways we don't handle properly so just punt. */
20460 complaint (_("unsupported version in .debug_line section"));
20461 return NULL;
20462 }
20463 if (lh->version >= 5)
20464 {
20465 gdb_byte segment_selector_size;
20466
20467 /* Skip address size. */
20468 read_1_byte (abfd, line_ptr);
20469 line_ptr += 1;
20470
20471 segment_selector_size = read_1_byte (abfd, line_ptr);
20472 line_ptr += 1;
20473 if (segment_selector_size != 0)
20474 {
20475 complaint (_("unsupported segment selector size %u "
20476 "in .debug_line section"),
20477 segment_selector_size);
20478 return NULL;
20479 }
20480 }
20481 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20482 line_ptr += offset_size;
20483 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20484 line_ptr += 1;
20485 if (lh->version >= 4)
20486 {
20487 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20488 line_ptr += 1;
20489 }
20490 else
20491 lh->maximum_ops_per_instruction = 1;
20492
20493 if (lh->maximum_ops_per_instruction == 0)
20494 {
20495 lh->maximum_ops_per_instruction = 1;
20496 complaint (_("invalid maximum_ops_per_instruction "
20497 "in `.debug_line' section"));
20498 }
20499
20500 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20501 line_ptr += 1;
20502 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20503 line_ptr += 1;
20504 lh->line_range = read_1_byte (abfd, line_ptr);
20505 line_ptr += 1;
20506 lh->opcode_base = read_1_byte (abfd, line_ptr);
20507 line_ptr += 1;
20508 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20509
20510 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20511 for (i = 1; i < lh->opcode_base; ++i)
20512 {
20513 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20514 line_ptr += 1;
20515 }
20516
20517 if (lh->version >= 5)
20518 {
20519 /* Read directory table. */
20520 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20521 &cu->header,
20522 [] (struct line_header *header, const char *name,
20523 dir_index d_index, unsigned int mod_time,
20524 unsigned int length)
20525 {
20526 header->add_include_dir (name);
20527 });
20528
20529 /* Read file name table. */
20530 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20531 &cu->header,
20532 [] (struct line_header *header, const char *name,
20533 dir_index d_index, unsigned int mod_time,
20534 unsigned int length)
20535 {
20536 header->add_file_name (name, d_index, mod_time, length);
20537 });
20538 }
20539 else
20540 {
20541 /* Read directory table. */
20542 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20543 {
20544 line_ptr += bytes_read;
20545 lh->add_include_dir (cur_dir);
20546 }
20547 line_ptr += bytes_read;
20548
20549 /* Read file name table. */
20550 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20551 {
20552 unsigned int mod_time, length;
20553 dir_index d_index;
20554
20555 line_ptr += bytes_read;
20556 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20557 line_ptr += bytes_read;
20558 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20559 line_ptr += bytes_read;
20560 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20561 line_ptr += bytes_read;
20562
20563 lh->add_file_name (cur_file, d_index, mod_time, length);
20564 }
20565 line_ptr += bytes_read;
20566 }
20567 lh->statement_program_start = line_ptr;
20568
20569 if (line_ptr > (section->buffer + section->size))
20570 complaint (_("line number info header doesn't "
20571 "fit in `.debug_line' section"));
20572
20573 return lh;
20574 }
20575
20576 /* Subroutine of dwarf_decode_lines to simplify it.
20577 Return the file name of the psymtab for included file FILE_INDEX
20578 in line header LH of PST.
20579 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20580 If space for the result is malloc'd, *NAME_HOLDER will be set.
20581 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20582
20583 static const char *
20584 psymtab_include_file_name (const struct line_header *lh, int file_index,
20585 const struct partial_symtab *pst,
20586 const char *comp_dir,
20587 gdb::unique_xmalloc_ptr<char> *name_holder)
20588 {
20589 const file_entry &fe = lh->file_names[file_index];
20590 const char *include_name = fe.name;
20591 const char *include_name_to_compare = include_name;
20592 const char *pst_filename;
20593 int file_is_pst;
20594
20595 const char *dir_name = fe.include_dir (lh);
20596
20597 gdb::unique_xmalloc_ptr<char> hold_compare;
20598 if (!IS_ABSOLUTE_PATH (include_name)
20599 && (dir_name != NULL || comp_dir != NULL))
20600 {
20601 /* Avoid creating a duplicate psymtab for PST.
20602 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20603 Before we do the comparison, however, we need to account
20604 for DIR_NAME and COMP_DIR.
20605 First prepend dir_name (if non-NULL). If we still don't
20606 have an absolute path prepend comp_dir (if non-NULL).
20607 However, the directory we record in the include-file's
20608 psymtab does not contain COMP_DIR (to match the
20609 corresponding symtab(s)).
20610
20611 Example:
20612
20613 bash$ cd /tmp
20614 bash$ gcc -g ./hello.c
20615 include_name = "hello.c"
20616 dir_name = "."
20617 DW_AT_comp_dir = comp_dir = "/tmp"
20618 DW_AT_name = "./hello.c"
20619
20620 */
20621
20622 if (dir_name != NULL)
20623 {
20624 name_holder->reset (concat (dir_name, SLASH_STRING,
20625 include_name, (char *) NULL));
20626 include_name = name_holder->get ();
20627 include_name_to_compare = include_name;
20628 }
20629 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20630 {
20631 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20632 include_name, (char *) NULL));
20633 include_name_to_compare = hold_compare.get ();
20634 }
20635 }
20636
20637 pst_filename = pst->filename;
20638 gdb::unique_xmalloc_ptr<char> copied_name;
20639 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20640 {
20641 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20642 pst_filename, (char *) NULL));
20643 pst_filename = copied_name.get ();
20644 }
20645
20646 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20647
20648 if (file_is_pst)
20649 return NULL;
20650 return include_name;
20651 }
20652
20653 /* State machine to track the state of the line number program. */
20654
20655 class lnp_state_machine
20656 {
20657 public:
20658 /* Initialize a machine state for the start of a line number
20659 program. */
20660 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20661 bool record_lines_p);
20662
20663 file_entry *current_file ()
20664 {
20665 /* lh->file_names is 0-based, but the file name numbers in the
20666 statement program are 1-based. */
20667 return m_line_header->file_name_at (m_file);
20668 }
20669
20670 /* Record the line in the state machine. END_SEQUENCE is true if
20671 we're processing the end of a sequence. */
20672 void record_line (bool end_sequence);
20673
20674 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20675 nop-out rest of the lines in this sequence. */
20676 void check_line_address (struct dwarf2_cu *cu,
20677 const gdb_byte *line_ptr,
20678 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20679
20680 void handle_set_discriminator (unsigned int discriminator)
20681 {
20682 m_discriminator = discriminator;
20683 m_line_has_non_zero_discriminator |= discriminator != 0;
20684 }
20685
20686 /* Handle DW_LNE_set_address. */
20687 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20688 {
20689 m_op_index = 0;
20690 address += baseaddr;
20691 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20692 }
20693
20694 /* Handle DW_LNS_advance_pc. */
20695 void handle_advance_pc (CORE_ADDR adjust);
20696
20697 /* Handle a special opcode. */
20698 void handle_special_opcode (unsigned char op_code);
20699
20700 /* Handle DW_LNS_advance_line. */
20701 void handle_advance_line (int line_delta)
20702 {
20703 advance_line (line_delta);
20704 }
20705
20706 /* Handle DW_LNS_set_file. */
20707 void handle_set_file (file_name_index file);
20708
20709 /* Handle DW_LNS_negate_stmt. */
20710 void handle_negate_stmt ()
20711 {
20712 m_is_stmt = !m_is_stmt;
20713 }
20714
20715 /* Handle DW_LNS_const_add_pc. */
20716 void handle_const_add_pc ();
20717
20718 /* Handle DW_LNS_fixed_advance_pc. */
20719 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20720 {
20721 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20722 m_op_index = 0;
20723 }
20724
20725 /* Handle DW_LNS_copy. */
20726 void handle_copy ()
20727 {
20728 record_line (false);
20729 m_discriminator = 0;
20730 }
20731
20732 /* Handle DW_LNE_end_sequence. */
20733 void handle_end_sequence ()
20734 {
20735 m_currently_recording_lines = true;
20736 }
20737
20738 private:
20739 /* Advance the line by LINE_DELTA. */
20740 void advance_line (int line_delta)
20741 {
20742 m_line += line_delta;
20743
20744 if (line_delta != 0)
20745 m_line_has_non_zero_discriminator = m_discriminator != 0;
20746 }
20747
20748 struct dwarf2_cu *m_cu;
20749
20750 gdbarch *m_gdbarch;
20751
20752 /* True if we're recording lines.
20753 Otherwise we're building partial symtabs and are just interested in
20754 finding include files mentioned by the line number program. */
20755 bool m_record_lines_p;
20756
20757 /* The line number header. */
20758 line_header *m_line_header;
20759
20760 /* These are part of the standard DWARF line number state machine,
20761 and initialized according to the DWARF spec. */
20762
20763 unsigned char m_op_index = 0;
20764 /* The line table index (1-based) of the current file. */
20765 file_name_index m_file = (file_name_index) 1;
20766 unsigned int m_line = 1;
20767
20768 /* These are initialized in the constructor. */
20769
20770 CORE_ADDR m_address;
20771 bool m_is_stmt;
20772 unsigned int m_discriminator;
20773
20774 /* Additional bits of state we need to track. */
20775
20776 /* The last file that we called dwarf2_start_subfile for.
20777 This is only used for TLLs. */
20778 unsigned int m_last_file = 0;
20779 /* The last file a line number was recorded for. */
20780 struct subfile *m_last_subfile = NULL;
20781
20782 /* When true, record the lines we decode. */
20783 bool m_currently_recording_lines = false;
20784
20785 /* The last line number that was recorded, used to coalesce
20786 consecutive entries for the same line. This can happen, for
20787 example, when discriminators are present. PR 17276. */
20788 unsigned int m_last_line = 0;
20789 bool m_line_has_non_zero_discriminator = false;
20790 };
20791
20792 void
20793 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20794 {
20795 CORE_ADDR addr_adj = (((m_op_index + adjust)
20796 / m_line_header->maximum_ops_per_instruction)
20797 * m_line_header->minimum_instruction_length);
20798 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20799 m_op_index = ((m_op_index + adjust)
20800 % m_line_header->maximum_ops_per_instruction);
20801 }
20802
20803 void
20804 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20805 {
20806 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20807 CORE_ADDR addr_adj = (((m_op_index
20808 + (adj_opcode / m_line_header->line_range))
20809 / m_line_header->maximum_ops_per_instruction)
20810 * m_line_header->minimum_instruction_length);
20811 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20812 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20813 % m_line_header->maximum_ops_per_instruction);
20814
20815 int line_delta = (m_line_header->line_base
20816 + (adj_opcode % m_line_header->line_range));
20817 advance_line (line_delta);
20818 record_line (false);
20819 m_discriminator = 0;
20820 }
20821
20822 void
20823 lnp_state_machine::handle_set_file (file_name_index file)
20824 {
20825 m_file = file;
20826
20827 const file_entry *fe = current_file ();
20828 if (fe == NULL)
20829 dwarf2_debug_line_missing_file_complaint ();
20830 else if (m_record_lines_p)
20831 {
20832 const char *dir = fe->include_dir (m_line_header);
20833
20834 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20835 m_line_has_non_zero_discriminator = m_discriminator != 0;
20836 dwarf2_start_subfile (m_cu, fe->name, dir);
20837 }
20838 }
20839
20840 void
20841 lnp_state_machine::handle_const_add_pc ()
20842 {
20843 CORE_ADDR adjust
20844 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20845
20846 CORE_ADDR addr_adj
20847 = (((m_op_index + adjust)
20848 / m_line_header->maximum_ops_per_instruction)
20849 * m_line_header->minimum_instruction_length);
20850
20851 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20852 m_op_index = ((m_op_index + adjust)
20853 % m_line_header->maximum_ops_per_instruction);
20854 }
20855
20856 /* Return non-zero if we should add LINE to the line number table.
20857 LINE is the line to add, LAST_LINE is the last line that was added,
20858 LAST_SUBFILE is the subfile for LAST_LINE.
20859 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20860 had a non-zero discriminator.
20861
20862 We have to be careful in the presence of discriminators.
20863 E.g., for this line:
20864
20865 for (i = 0; i < 100000; i++);
20866
20867 clang can emit four line number entries for that one line,
20868 each with a different discriminator.
20869 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20870
20871 However, we want gdb to coalesce all four entries into one.
20872 Otherwise the user could stepi into the middle of the line and
20873 gdb would get confused about whether the pc really was in the
20874 middle of the line.
20875
20876 Things are further complicated by the fact that two consecutive
20877 line number entries for the same line is a heuristic used by gcc
20878 to denote the end of the prologue. So we can't just discard duplicate
20879 entries, we have to be selective about it. The heuristic we use is
20880 that we only collapse consecutive entries for the same line if at least
20881 one of those entries has a non-zero discriminator. PR 17276.
20882
20883 Note: Addresses in the line number state machine can never go backwards
20884 within one sequence, thus this coalescing is ok. */
20885
20886 static int
20887 dwarf_record_line_p (struct dwarf2_cu *cu,
20888 unsigned int line, unsigned int last_line,
20889 int line_has_non_zero_discriminator,
20890 struct subfile *last_subfile)
20891 {
20892 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20893 return 1;
20894 if (line != last_line)
20895 return 1;
20896 /* Same line for the same file that we've seen already.
20897 As a last check, for pr 17276, only record the line if the line
20898 has never had a non-zero discriminator. */
20899 if (!line_has_non_zero_discriminator)
20900 return 1;
20901 return 0;
20902 }
20903
20904 /* Use the CU's builder to record line number LINE beginning at
20905 address ADDRESS in the line table of subfile SUBFILE. */
20906
20907 static void
20908 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20909 unsigned int line, CORE_ADDR address,
20910 struct dwarf2_cu *cu)
20911 {
20912 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20913
20914 if (dwarf_line_debug)
20915 {
20916 fprintf_unfiltered (gdb_stdlog,
20917 "Recording line %u, file %s, address %s\n",
20918 line, lbasename (subfile->name),
20919 paddress (gdbarch, address));
20920 }
20921
20922 if (cu != nullptr)
20923 cu->get_builder ()->record_line (subfile, line, addr);
20924 }
20925
20926 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20927 Mark the end of a set of line number records.
20928 The arguments are the same as for dwarf_record_line_1.
20929 If SUBFILE is NULL the request is ignored. */
20930
20931 static void
20932 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20933 CORE_ADDR address, struct dwarf2_cu *cu)
20934 {
20935 if (subfile == NULL)
20936 return;
20937
20938 if (dwarf_line_debug)
20939 {
20940 fprintf_unfiltered (gdb_stdlog,
20941 "Finishing current line, file %s, address %s\n",
20942 lbasename (subfile->name),
20943 paddress (gdbarch, address));
20944 }
20945
20946 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20947 }
20948
20949 void
20950 lnp_state_machine::record_line (bool end_sequence)
20951 {
20952 if (dwarf_line_debug)
20953 {
20954 fprintf_unfiltered (gdb_stdlog,
20955 "Processing actual line %u: file %u,"
20956 " address %s, is_stmt %u, discrim %u\n",
20957 m_line, to_underlying (m_file),
20958 paddress (m_gdbarch, m_address),
20959 m_is_stmt, m_discriminator);
20960 }
20961
20962 file_entry *fe = current_file ();
20963
20964 if (fe == NULL)
20965 dwarf2_debug_line_missing_file_complaint ();
20966 /* For now we ignore lines not starting on an instruction boundary.
20967 But not when processing end_sequence for compatibility with the
20968 previous version of the code. */
20969 else if (m_op_index == 0 || end_sequence)
20970 {
20971 fe->included_p = 1;
20972 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20973 {
20974 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20975 || end_sequence)
20976 {
20977 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20978 m_currently_recording_lines ? m_cu : nullptr);
20979 }
20980
20981 if (!end_sequence)
20982 {
20983 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20984 m_line_has_non_zero_discriminator,
20985 m_last_subfile))
20986 {
20987 buildsym_compunit *builder = m_cu->get_builder ();
20988 dwarf_record_line_1 (m_gdbarch,
20989 builder->get_current_subfile (),
20990 m_line, m_address,
20991 m_currently_recording_lines ? m_cu : nullptr);
20992 }
20993 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20994 m_last_line = m_line;
20995 }
20996 }
20997 }
20998 }
20999
21000 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21001 line_header *lh, bool record_lines_p)
21002 {
21003 m_cu = cu;
21004 m_gdbarch = arch;
21005 m_record_lines_p = record_lines_p;
21006 m_line_header = lh;
21007
21008 m_currently_recording_lines = true;
21009
21010 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21011 was a line entry for it so that the backend has a chance to adjust it
21012 and also record it in case it needs it. This is currently used by MIPS
21013 code, cf. `mips_adjust_dwarf2_line'. */
21014 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21015 m_is_stmt = lh->default_is_stmt;
21016 m_discriminator = 0;
21017 }
21018
21019 void
21020 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21021 const gdb_byte *line_ptr,
21022 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21023 {
21024 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21025 the pc range of the CU. However, we restrict the test to only ADDRESS
21026 values of zero to preserve GDB's previous behaviour which is to handle
21027 the specific case of a function being GC'd by the linker. */
21028
21029 if (address == 0 && address < unrelocated_lowpc)
21030 {
21031 /* This line table is for a function which has been
21032 GCd by the linker. Ignore it. PR gdb/12528 */
21033
21034 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21035 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21036
21037 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21038 line_offset, objfile_name (objfile));
21039 m_currently_recording_lines = false;
21040 /* Note: m_currently_recording_lines is left as false until we see
21041 DW_LNE_end_sequence. */
21042 }
21043 }
21044
21045 /* Subroutine of dwarf_decode_lines to simplify it.
21046 Process the line number information in LH.
21047 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21048 program in order to set included_p for every referenced header. */
21049
21050 static void
21051 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21052 const int decode_for_pst_p, CORE_ADDR lowpc)
21053 {
21054 const gdb_byte *line_ptr, *extended_end;
21055 const gdb_byte *line_end;
21056 unsigned int bytes_read, extended_len;
21057 unsigned char op_code, extended_op;
21058 CORE_ADDR baseaddr;
21059 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21060 bfd *abfd = objfile->obfd;
21061 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21062 /* True if we're recording line info (as opposed to building partial
21063 symtabs and just interested in finding include files mentioned by
21064 the line number program). */
21065 bool record_lines_p = !decode_for_pst_p;
21066
21067 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21068
21069 line_ptr = lh->statement_program_start;
21070 line_end = lh->statement_program_end;
21071
21072 /* Read the statement sequences until there's nothing left. */
21073 while (line_ptr < line_end)
21074 {
21075 /* The DWARF line number program state machine. Reset the state
21076 machine at the start of each sequence. */
21077 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21078 bool end_sequence = false;
21079
21080 if (record_lines_p)
21081 {
21082 /* Start a subfile for the current file of the state
21083 machine. */
21084 const file_entry *fe = state_machine.current_file ();
21085
21086 if (fe != NULL)
21087 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21088 }
21089
21090 /* Decode the table. */
21091 while (line_ptr < line_end && !end_sequence)
21092 {
21093 op_code = read_1_byte (abfd, line_ptr);
21094 line_ptr += 1;
21095
21096 if (op_code >= lh->opcode_base)
21097 {
21098 /* Special opcode. */
21099 state_machine.handle_special_opcode (op_code);
21100 }
21101 else switch (op_code)
21102 {
21103 case DW_LNS_extended_op:
21104 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21105 &bytes_read);
21106 line_ptr += bytes_read;
21107 extended_end = line_ptr + extended_len;
21108 extended_op = read_1_byte (abfd, line_ptr);
21109 line_ptr += 1;
21110 switch (extended_op)
21111 {
21112 case DW_LNE_end_sequence:
21113 state_machine.handle_end_sequence ();
21114 end_sequence = true;
21115 break;
21116 case DW_LNE_set_address:
21117 {
21118 CORE_ADDR address
21119 = read_address (abfd, line_ptr, cu, &bytes_read);
21120 line_ptr += bytes_read;
21121
21122 state_machine.check_line_address (cu, line_ptr,
21123 lowpc - baseaddr, address);
21124 state_machine.handle_set_address (baseaddr, address);
21125 }
21126 break;
21127 case DW_LNE_define_file:
21128 {
21129 const char *cur_file;
21130 unsigned int mod_time, length;
21131 dir_index dindex;
21132
21133 cur_file = read_direct_string (abfd, line_ptr,
21134 &bytes_read);
21135 line_ptr += bytes_read;
21136 dindex = (dir_index)
21137 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21138 line_ptr += bytes_read;
21139 mod_time =
21140 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21141 line_ptr += bytes_read;
21142 length =
21143 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21144 line_ptr += bytes_read;
21145 lh->add_file_name (cur_file, dindex, mod_time, length);
21146 }
21147 break;
21148 case DW_LNE_set_discriminator:
21149 {
21150 /* The discriminator is not interesting to the
21151 debugger; just ignore it. We still need to
21152 check its value though:
21153 if there are consecutive entries for the same
21154 (non-prologue) line we want to coalesce them.
21155 PR 17276. */
21156 unsigned int discr
21157 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21158 line_ptr += bytes_read;
21159
21160 state_machine.handle_set_discriminator (discr);
21161 }
21162 break;
21163 default:
21164 complaint (_("mangled .debug_line section"));
21165 return;
21166 }
21167 /* Make sure that we parsed the extended op correctly. If e.g.
21168 we expected a different address size than the producer used,
21169 we may have read the wrong number of bytes. */
21170 if (line_ptr != extended_end)
21171 {
21172 complaint (_("mangled .debug_line section"));
21173 return;
21174 }
21175 break;
21176 case DW_LNS_copy:
21177 state_machine.handle_copy ();
21178 break;
21179 case DW_LNS_advance_pc:
21180 {
21181 CORE_ADDR adjust
21182 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21183 line_ptr += bytes_read;
21184
21185 state_machine.handle_advance_pc (adjust);
21186 }
21187 break;
21188 case DW_LNS_advance_line:
21189 {
21190 int line_delta
21191 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21192 line_ptr += bytes_read;
21193
21194 state_machine.handle_advance_line (line_delta);
21195 }
21196 break;
21197 case DW_LNS_set_file:
21198 {
21199 file_name_index file
21200 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21201 &bytes_read);
21202 line_ptr += bytes_read;
21203
21204 state_machine.handle_set_file (file);
21205 }
21206 break;
21207 case DW_LNS_set_column:
21208 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21209 line_ptr += bytes_read;
21210 break;
21211 case DW_LNS_negate_stmt:
21212 state_machine.handle_negate_stmt ();
21213 break;
21214 case DW_LNS_set_basic_block:
21215 break;
21216 /* Add to the address register of the state machine the
21217 address increment value corresponding to special opcode
21218 255. I.e., this value is scaled by the minimum
21219 instruction length since special opcode 255 would have
21220 scaled the increment. */
21221 case DW_LNS_const_add_pc:
21222 state_machine.handle_const_add_pc ();
21223 break;
21224 case DW_LNS_fixed_advance_pc:
21225 {
21226 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21227 line_ptr += 2;
21228
21229 state_machine.handle_fixed_advance_pc (addr_adj);
21230 }
21231 break;
21232 default:
21233 {
21234 /* Unknown standard opcode, ignore it. */
21235 int i;
21236
21237 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21238 {
21239 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21240 line_ptr += bytes_read;
21241 }
21242 }
21243 }
21244 }
21245
21246 if (!end_sequence)
21247 dwarf2_debug_line_missing_end_sequence_complaint ();
21248
21249 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21250 in which case we still finish recording the last line). */
21251 state_machine.record_line (true);
21252 }
21253 }
21254
21255 /* Decode the Line Number Program (LNP) for the given line_header
21256 structure and CU. The actual information extracted and the type
21257 of structures created from the LNP depends on the value of PST.
21258
21259 1. If PST is NULL, then this procedure uses the data from the program
21260 to create all necessary symbol tables, and their linetables.
21261
21262 2. If PST is not NULL, this procedure reads the program to determine
21263 the list of files included by the unit represented by PST, and
21264 builds all the associated partial symbol tables.
21265
21266 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21267 It is used for relative paths in the line table.
21268 NOTE: When processing partial symtabs (pst != NULL),
21269 comp_dir == pst->dirname.
21270
21271 NOTE: It is important that psymtabs have the same file name (via strcmp)
21272 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21273 symtab we don't use it in the name of the psymtabs we create.
21274 E.g. expand_line_sal requires this when finding psymtabs to expand.
21275 A good testcase for this is mb-inline.exp.
21276
21277 LOWPC is the lowest address in CU (or 0 if not known).
21278
21279 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21280 for its PC<->lines mapping information. Otherwise only the filename
21281 table is read in. */
21282
21283 static void
21284 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21285 struct dwarf2_cu *cu, struct partial_symtab *pst,
21286 CORE_ADDR lowpc, int decode_mapping)
21287 {
21288 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21289 const int decode_for_pst_p = (pst != NULL);
21290
21291 if (decode_mapping)
21292 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21293
21294 if (decode_for_pst_p)
21295 {
21296 int file_index;
21297
21298 /* Now that we're done scanning the Line Header Program, we can
21299 create the psymtab of each included file. */
21300 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21301 if (lh->file_names[file_index].included_p == 1)
21302 {
21303 gdb::unique_xmalloc_ptr<char> name_holder;
21304 const char *include_name =
21305 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21306 &name_holder);
21307 if (include_name != NULL)
21308 dwarf2_create_include_psymtab (include_name, pst, objfile);
21309 }
21310 }
21311 else
21312 {
21313 /* Make sure a symtab is created for every file, even files
21314 which contain only variables (i.e. no code with associated
21315 line numbers). */
21316 buildsym_compunit *builder = cu->get_builder ();
21317 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21318 int i;
21319
21320 for (i = 0; i < lh->file_names.size (); i++)
21321 {
21322 file_entry &fe = lh->file_names[i];
21323
21324 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21325
21326 if (builder->get_current_subfile ()->symtab == NULL)
21327 {
21328 builder->get_current_subfile ()->symtab
21329 = allocate_symtab (cust,
21330 builder->get_current_subfile ()->name);
21331 }
21332 fe.symtab = builder->get_current_subfile ()->symtab;
21333 }
21334 }
21335 }
21336
21337 /* Start a subfile for DWARF. FILENAME is the name of the file and
21338 DIRNAME the name of the source directory which contains FILENAME
21339 or NULL if not known.
21340 This routine tries to keep line numbers from identical absolute and
21341 relative file names in a common subfile.
21342
21343 Using the `list' example from the GDB testsuite, which resides in
21344 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21345 of /srcdir/list0.c yields the following debugging information for list0.c:
21346
21347 DW_AT_name: /srcdir/list0.c
21348 DW_AT_comp_dir: /compdir
21349 files.files[0].name: list0.h
21350 files.files[0].dir: /srcdir
21351 files.files[1].name: list0.c
21352 files.files[1].dir: /srcdir
21353
21354 The line number information for list0.c has to end up in a single
21355 subfile, so that `break /srcdir/list0.c:1' works as expected.
21356 start_subfile will ensure that this happens provided that we pass the
21357 concatenation of files.files[1].dir and files.files[1].name as the
21358 subfile's name. */
21359
21360 static void
21361 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21362 const char *dirname)
21363 {
21364 char *copy = NULL;
21365
21366 /* In order not to lose the line information directory,
21367 we concatenate it to the filename when it makes sense.
21368 Note that the Dwarf3 standard says (speaking of filenames in line
21369 information): ``The directory index is ignored for file names
21370 that represent full path names''. Thus ignoring dirname in the
21371 `else' branch below isn't an issue. */
21372
21373 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21374 {
21375 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21376 filename = copy;
21377 }
21378
21379 cu->get_builder ()->start_subfile (filename);
21380
21381 if (copy != NULL)
21382 xfree (copy);
21383 }
21384
21385 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21386 buildsym_compunit constructor. */
21387
21388 struct compunit_symtab *
21389 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21390 CORE_ADDR low_pc)
21391 {
21392 gdb_assert (m_builder == nullptr);
21393
21394 m_builder.reset (new struct buildsym_compunit
21395 (per_cu->dwarf2_per_objfile->objfile,
21396 name, comp_dir, language, low_pc));
21397
21398 list_in_scope = get_builder ()->get_file_symbols ();
21399
21400 get_builder ()->record_debugformat ("DWARF 2");
21401 get_builder ()->record_producer (producer);
21402
21403 processing_has_namespace_info = false;
21404
21405 return get_builder ()->get_compunit_symtab ();
21406 }
21407
21408 static void
21409 var_decode_location (struct attribute *attr, struct symbol *sym,
21410 struct dwarf2_cu *cu)
21411 {
21412 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21413 struct comp_unit_head *cu_header = &cu->header;
21414
21415 /* NOTE drow/2003-01-30: There used to be a comment and some special
21416 code here to turn a symbol with DW_AT_external and a
21417 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21418 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21419 with some versions of binutils) where shared libraries could have
21420 relocations against symbols in their debug information - the
21421 minimal symbol would have the right address, but the debug info
21422 would not. It's no longer necessary, because we will explicitly
21423 apply relocations when we read in the debug information now. */
21424
21425 /* A DW_AT_location attribute with no contents indicates that a
21426 variable has been optimized away. */
21427 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21428 {
21429 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21430 return;
21431 }
21432
21433 /* Handle one degenerate form of location expression specially, to
21434 preserve GDB's previous behavior when section offsets are
21435 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21436 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21437
21438 if (attr_form_is_block (attr)
21439 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21440 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21441 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21442 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21443 && (DW_BLOCK (attr)->size
21444 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21445 {
21446 unsigned int dummy;
21447
21448 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21449 SYMBOL_VALUE_ADDRESS (sym) =
21450 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21451 else
21452 SYMBOL_VALUE_ADDRESS (sym) =
21453 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21454 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21455 fixup_symbol_section (sym, objfile);
21456 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21457 SYMBOL_SECTION (sym));
21458 return;
21459 }
21460
21461 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21462 expression evaluator, and use LOC_COMPUTED only when necessary
21463 (i.e. when the value of a register or memory location is
21464 referenced, or a thread-local block, etc.). Then again, it might
21465 not be worthwhile. I'm assuming that it isn't unless performance
21466 or memory numbers show me otherwise. */
21467
21468 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21469
21470 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21471 cu->has_loclist = true;
21472 }
21473
21474 /* Given a pointer to a DWARF information entry, figure out if we need
21475 to make a symbol table entry for it, and if so, create a new entry
21476 and return a pointer to it.
21477 If TYPE is NULL, determine symbol type from the die, otherwise
21478 used the passed type.
21479 If SPACE is not NULL, use it to hold the new symbol. If it is
21480 NULL, allocate a new symbol on the objfile's obstack. */
21481
21482 static struct symbol *
21483 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21484 struct symbol *space)
21485 {
21486 struct dwarf2_per_objfile *dwarf2_per_objfile
21487 = cu->per_cu->dwarf2_per_objfile;
21488 struct objfile *objfile = dwarf2_per_objfile->objfile;
21489 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21490 struct symbol *sym = NULL;
21491 const char *name;
21492 struct attribute *attr = NULL;
21493 struct attribute *attr2 = NULL;
21494 CORE_ADDR baseaddr;
21495 struct pending **list_to_add = NULL;
21496
21497 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21498
21499 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21500
21501 name = dwarf2_name (die, cu);
21502 if (name)
21503 {
21504 const char *linkagename;
21505 int suppress_add = 0;
21506
21507 if (space)
21508 sym = space;
21509 else
21510 sym = allocate_symbol (objfile);
21511 OBJSTAT (objfile, n_syms++);
21512
21513 /* Cache this symbol's name and the name's demangled form (if any). */
21514 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21515 linkagename = dwarf2_physname (name, die, cu);
21516 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21517
21518 /* Fortran does not have mangling standard and the mangling does differ
21519 between gfortran, iFort etc. */
21520 if (cu->language == language_fortran
21521 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21522 symbol_set_demangled_name (&(sym->ginfo),
21523 dwarf2_full_name (name, die, cu),
21524 NULL);
21525
21526 /* Default assumptions.
21527 Use the passed type or decode it from the die. */
21528 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21529 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21530 if (type != NULL)
21531 SYMBOL_TYPE (sym) = type;
21532 else
21533 SYMBOL_TYPE (sym) = die_type (die, cu);
21534 attr = dwarf2_attr (die,
21535 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21536 cu);
21537 if (attr)
21538 {
21539 SYMBOL_LINE (sym) = DW_UNSND (attr);
21540 }
21541
21542 attr = dwarf2_attr (die,
21543 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21544 cu);
21545 if (attr)
21546 {
21547 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21548 struct file_entry *fe;
21549
21550 if (cu->line_header != NULL)
21551 fe = cu->line_header->file_name_at (file_index);
21552 else
21553 fe = NULL;
21554
21555 if (fe == NULL)
21556 complaint (_("file index out of range"));
21557 else
21558 symbol_set_symtab (sym, fe->symtab);
21559 }
21560
21561 switch (die->tag)
21562 {
21563 case DW_TAG_label:
21564 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21565 if (attr)
21566 {
21567 CORE_ADDR addr;
21568
21569 addr = attr_value_as_address (attr);
21570 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21571 SYMBOL_VALUE_ADDRESS (sym) = addr;
21572 }
21573 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21574 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21575 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21576 add_symbol_to_list (sym, cu->list_in_scope);
21577 break;
21578 case DW_TAG_subprogram:
21579 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21580 finish_block. */
21581 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21582 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21583 if ((attr2 && (DW_UNSND (attr2) != 0))
21584 || cu->language == language_ada)
21585 {
21586 /* Subprograms marked external are stored as a global symbol.
21587 Ada subprograms, whether marked external or not, are always
21588 stored as a global symbol, because we want to be able to
21589 access them globally. For instance, we want to be able
21590 to break on a nested subprogram without having to
21591 specify the context. */
21592 list_to_add = cu->get_builder ()->get_global_symbols ();
21593 }
21594 else
21595 {
21596 list_to_add = cu->list_in_scope;
21597 }
21598 break;
21599 case DW_TAG_inlined_subroutine:
21600 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21601 finish_block. */
21602 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21603 SYMBOL_INLINED (sym) = 1;
21604 list_to_add = cu->list_in_scope;
21605 break;
21606 case DW_TAG_template_value_param:
21607 suppress_add = 1;
21608 /* Fall through. */
21609 case DW_TAG_constant:
21610 case DW_TAG_variable:
21611 case DW_TAG_member:
21612 /* Compilation with minimal debug info may result in
21613 variables with missing type entries. Change the
21614 misleading `void' type to something sensible. */
21615 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21616 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21617
21618 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21619 /* In the case of DW_TAG_member, we should only be called for
21620 static const members. */
21621 if (die->tag == DW_TAG_member)
21622 {
21623 /* dwarf2_add_field uses die_is_declaration,
21624 so we do the same. */
21625 gdb_assert (die_is_declaration (die, cu));
21626 gdb_assert (attr);
21627 }
21628 if (attr)
21629 {
21630 dwarf2_const_value (attr, sym, cu);
21631 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21632 if (!suppress_add)
21633 {
21634 if (attr2 && (DW_UNSND (attr2) != 0))
21635 list_to_add = cu->get_builder ()->get_global_symbols ();
21636 else
21637 list_to_add = cu->list_in_scope;
21638 }
21639 break;
21640 }
21641 attr = dwarf2_attr (die, DW_AT_location, cu);
21642 if (attr)
21643 {
21644 var_decode_location (attr, sym, cu);
21645 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21646
21647 /* Fortran explicitly imports any global symbols to the local
21648 scope by DW_TAG_common_block. */
21649 if (cu->language == language_fortran && die->parent
21650 && die->parent->tag == DW_TAG_common_block)
21651 attr2 = NULL;
21652
21653 if (SYMBOL_CLASS (sym) == LOC_STATIC
21654 && SYMBOL_VALUE_ADDRESS (sym) == 0
21655 && !dwarf2_per_objfile->has_section_at_zero)
21656 {
21657 /* When a static variable is eliminated by the linker,
21658 the corresponding debug information is not stripped
21659 out, but the variable address is set to null;
21660 do not add such variables into symbol table. */
21661 }
21662 else if (attr2 && (DW_UNSND (attr2) != 0))
21663 {
21664 /* Workaround gfortran PR debug/40040 - it uses
21665 DW_AT_location for variables in -fPIC libraries which may
21666 get overriden by other libraries/executable and get
21667 a different address. Resolve it by the minimal symbol
21668 which may come from inferior's executable using copy
21669 relocation. Make this workaround only for gfortran as for
21670 other compilers GDB cannot guess the minimal symbol
21671 Fortran mangling kind. */
21672 if (cu->language == language_fortran && die->parent
21673 && die->parent->tag == DW_TAG_module
21674 && cu->producer
21675 && startswith (cu->producer, "GNU Fortran"))
21676 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21677
21678 /* A variable with DW_AT_external is never static,
21679 but it may be block-scoped. */
21680 list_to_add
21681 = ((cu->list_in_scope
21682 == cu->get_builder ()->get_file_symbols ())
21683 ? cu->get_builder ()->get_global_symbols ()
21684 : cu->list_in_scope);
21685 }
21686 else
21687 list_to_add = cu->list_in_scope;
21688 }
21689 else
21690 {
21691 /* We do not know the address of this symbol.
21692 If it is an external symbol and we have type information
21693 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21694 The address of the variable will then be determined from
21695 the minimal symbol table whenever the variable is
21696 referenced. */
21697 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21698
21699 /* Fortran explicitly imports any global symbols to the local
21700 scope by DW_TAG_common_block. */
21701 if (cu->language == language_fortran && die->parent
21702 && die->parent->tag == DW_TAG_common_block)
21703 {
21704 /* SYMBOL_CLASS doesn't matter here because
21705 read_common_block is going to reset it. */
21706 if (!suppress_add)
21707 list_to_add = cu->list_in_scope;
21708 }
21709 else if (attr2 && (DW_UNSND (attr2) != 0)
21710 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21711 {
21712 /* A variable with DW_AT_external is never static, but it
21713 may be block-scoped. */
21714 list_to_add
21715 = ((cu->list_in_scope
21716 == cu->get_builder ()->get_file_symbols ())
21717 ? cu->get_builder ()->get_global_symbols ()
21718 : cu->list_in_scope);
21719
21720 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21721 }
21722 else if (!die_is_declaration (die, cu))
21723 {
21724 /* Use the default LOC_OPTIMIZED_OUT class. */
21725 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21726 if (!suppress_add)
21727 list_to_add = cu->list_in_scope;
21728 }
21729 }
21730 break;
21731 case DW_TAG_formal_parameter:
21732 {
21733 /* If we are inside a function, mark this as an argument. If
21734 not, we might be looking at an argument to an inlined function
21735 when we do not have enough information to show inlined frames;
21736 pretend it's a local variable in that case so that the user can
21737 still see it. */
21738 struct context_stack *curr
21739 = cu->get_builder ()->get_current_context_stack ();
21740 if (curr != nullptr && curr->name != nullptr)
21741 SYMBOL_IS_ARGUMENT (sym) = 1;
21742 attr = dwarf2_attr (die, DW_AT_location, cu);
21743 if (attr)
21744 {
21745 var_decode_location (attr, sym, cu);
21746 }
21747 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21748 if (attr)
21749 {
21750 dwarf2_const_value (attr, sym, cu);
21751 }
21752
21753 list_to_add = cu->list_in_scope;
21754 }
21755 break;
21756 case DW_TAG_unspecified_parameters:
21757 /* From varargs functions; gdb doesn't seem to have any
21758 interest in this information, so just ignore it for now.
21759 (FIXME?) */
21760 break;
21761 case DW_TAG_template_type_param:
21762 suppress_add = 1;
21763 /* Fall through. */
21764 case DW_TAG_class_type:
21765 case DW_TAG_interface_type:
21766 case DW_TAG_structure_type:
21767 case DW_TAG_union_type:
21768 case DW_TAG_set_type:
21769 case DW_TAG_enumeration_type:
21770 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21771 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21772
21773 {
21774 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21775 really ever be static objects: otherwise, if you try
21776 to, say, break of a class's method and you're in a file
21777 which doesn't mention that class, it won't work unless
21778 the check for all static symbols in lookup_symbol_aux
21779 saves you. See the OtherFileClass tests in
21780 gdb.c++/namespace.exp. */
21781
21782 if (!suppress_add)
21783 {
21784 buildsym_compunit *builder = cu->get_builder ();
21785 list_to_add
21786 = (cu->list_in_scope == builder->get_file_symbols ()
21787 && cu->language == language_cplus
21788 ? builder->get_global_symbols ()
21789 : cu->list_in_scope);
21790
21791 /* The semantics of C++ state that "struct foo {
21792 ... }" also defines a typedef for "foo". */
21793 if (cu->language == language_cplus
21794 || cu->language == language_ada
21795 || cu->language == language_d
21796 || cu->language == language_rust)
21797 {
21798 /* The symbol's name is already allocated along
21799 with this objfile, so we don't need to
21800 duplicate it for the type. */
21801 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21802 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21803 }
21804 }
21805 }
21806 break;
21807 case DW_TAG_typedef:
21808 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21809 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21810 list_to_add = cu->list_in_scope;
21811 break;
21812 case DW_TAG_base_type:
21813 case DW_TAG_subrange_type:
21814 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21815 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21816 list_to_add = cu->list_in_scope;
21817 break;
21818 case DW_TAG_enumerator:
21819 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21820 if (attr)
21821 {
21822 dwarf2_const_value (attr, sym, cu);
21823 }
21824 {
21825 /* NOTE: carlton/2003-11-10: See comment above in the
21826 DW_TAG_class_type, etc. block. */
21827
21828 list_to_add
21829 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21830 && cu->language == language_cplus
21831 ? cu->get_builder ()->get_global_symbols ()
21832 : cu->list_in_scope);
21833 }
21834 break;
21835 case DW_TAG_imported_declaration:
21836 case DW_TAG_namespace:
21837 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21838 list_to_add = cu->get_builder ()->get_global_symbols ();
21839 break;
21840 case DW_TAG_module:
21841 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21842 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21843 list_to_add = cu->get_builder ()->get_global_symbols ();
21844 break;
21845 case DW_TAG_common_block:
21846 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21847 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21848 add_symbol_to_list (sym, cu->list_in_scope);
21849 break;
21850 default:
21851 /* Not a tag we recognize. Hopefully we aren't processing
21852 trash data, but since we must specifically ignore things
21853 we don't recognize, there is nothing else we should do at
21854 this point. */
21855 complaint (_("unsupported tag: '%s'"),
21856 dwarf_tag_name (die->tag));
21857 break;
21858 }
21859
21860 if (suppress_add)
21861 {
21862 sym->hash_next = objfile->template_symbols;
21863 objfile->template_symbols = sym;
21864 list_to_add = NULL;
21865 }
21866
21867 if (list_to_add != NULL)
21868 add_symbol_to_list (sym, list_to_add);
21869
21870 /* For the benefit of old versions of GCC, check for anonymous
21871 namespaces based on the demangled name. */
21872 if (!cu->processing_has_namespace_info
21873 && cu->language == language_cplus)
21874 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21875 }
21876 return (sym);
21877 }
21878
21879 /* Given an attr with a DW_FORM_dataN value in host byte order,
21880 zero-extend it as appropriate for the symbol's type. The DWARF
21881 standard (v4) is not entirely clear about the meaning of using
21882 DW_FORM_dataN for a constant with a signed type, where the type is
21883 wider than the data. The conclusion of a discussion on the DWARF
21884 list was that this is unspecified. We choose to always zero-extend
21885 because that is the interpretation long in use by GCC. */
21886
21887 static gdb_byte *
21888 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21889 struct dwarf2_cu *cu, LONGEST *value, int bits)
21890 {
21891 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21892 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21893 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21894 LONGEST l = DW_UNSND (attr);
21895
21896 if (bits < sizeof (*value) * 8)
21897 {
21898 l &= ((LONGEST) 1 << bits) - 1;
21899 *value = l;
21900 }
21901 else if (bits == sizeof (*value) * 8)
21902 *value = l;
21903 else
21904 {
21905 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21906 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21907 return bytes;
21908 }
21909
21910 return NULL;
21911 }
21912
21913 /* Read a constant value from an attribute. Either set *VALUE, or if
21914 the value does not fit in *VALUE, set *BYTES - either already
21915 allocated on the objfile obstack, or newly allocated on OBSTACK,
21916 or, set *BATON, if we translated the constant to a location
21917 expression. */
21918
21919 static void
21920 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21921 const char *name, struct obstack *obstack,
21922 struct dwarf2_cu *cu,
21923 LONGEST *value, const gdb_byte **bytes,
21924 struct dwarf2_locexpr_baton **baton)
21925 {
21926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21927 struct comp_unit_head *cu_header = &cu->header;
21928 struct dwarf_block *blk;
21929 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21930 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21931
21932 *value = 0;
21933 *bytes = NULL;
21934 *baton = NULL;
21935
21936 switch (attr->form)
21937 {
21938 case DW_FORM_addr:
21939 case DW_FORM_addrx:
21940 case DW_FORM_GNU_addr_index:
21941 {
21942 gdb_byte *data;
21943
21944 if (TYPE_LENGTH (type) != cu_header->addr_size)
21945 dwarf2_const_value_length_mismatch_complaint (name,
21946 cu_header->addr_size,
21947 TYPE_LENGTH (type));
21948 /* Symbols of this form are reasonably rare, so we just
21949 piggyback on the existing location code rather than writing
21950 a new implementation of symbol_computed_ops. */
21951 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21952 (*baton)->per_cu = cu->per_cu;
21953 gdb_assert ((*baton)->per_cu);
21954
21955 (*baton)->size = 2 + cu_header->addr_size;
21956 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21957 (*baton)->data = data;
21958
21959 data[0] = DW_OP_addr;
21960 store_unsigned_integer (&data[1], cu_header->addr_size,
21961 byte_order, DW_ADDR (attr));
21962 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21963 }
21964 break;
21965 case DW_FORM_string:
21966 case DW_FORM_strp:
21967 case DW_FORM_strx:
21968 case DW_FORM_GNU_str_index:
21969 case DW_FORM_GNU_strp_alt:
21970 /* DW_STRING is already allocated on the objfile obstack, point
21971 directly to it. */
21972 *bytes = (const gdb_byte *) DW_STRING (attr);
21973 break;
21974 case DW_FORM_block1:
21975 case DW_FORM_block2:
21976 case DW_FORM_block4:
21977 case DW_FORM_block:
21978 case DW_FORM_exprloc:
21979 case DW_FORM_data16:
21980 blk = DW_BLOCK (attr);
21981 if (TYPE_LENGTH (type) != blk->size)
21982 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21983 TYPE_LENGTH (type));
21984 *bytes = blk->data;
21985 break;
21986
21987 /* The DW_AT_const_value attributes are supposed to carry the
21988 symbol's value "represented as it would be on the target
21989 architecture." By the time we get here, it's already been
21990 converted to host endianness, so we just need to sign- or
21991 zero-extend it as appropriate. */
21992 case DW_FORM_data1:
21993 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21994 break;
21995 case DW_FORM_data2:
21996 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21997 break;
21998 case DW_FORM_data4:
21999 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22000 break;
22001 case DW_FORM_data8:
22002 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22003 break;
22004
22005 case DW_FORM_sdata:
22006 case DW_FORM_implicit_const:
22007 *value = DW_SND (attr);
22008 break;
22009
22010 case DW_FORM_udata:
22011 *value = DW_UNSND (attr);
22012 break;
22013
22014 default:
22015 complaint (_("unsupported const value attribute form: '%s'"),
22016 dwarf_form_name (attr->form));
22017 *value = 0;
22018 break;
22019 }
22020 }
22021
22022
22023 /* Copy constant value from an attribute to a symbol. */
22024
22025 static void
22026 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22027 struct dwarf2_cu *cu)
22028 {
22029 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22030 LONGEST value;
22031 const gdb_byte *bytes;
22032 struct dwarf2_locexpr_baton *baton;
22033
22034 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22035 SYMBOL_PRINT_NAME (sym),
22036 &objfile->objfile_obstack, cu,
22037 &value, &bytes, &baton);
22038
22039 if (baton != NULL)
22040 {
22041 SYMBOL_LOCATION_BATON (sym) = baton;
22042 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22043 }
22044 else if (bytes != NULL)
22045 {
22046 SYMBOL_VALUE_BYTES (sym) = bytes;
22047 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22048 }
22049 else
22050 {
22051 SYMBOL_VALUE (sym) = value;
22052 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22053 }
22054 }
22055
22056 /* Return the type of the die in question using its DW_AT_type attribute. */
22057
22058 static struct type *
22059 die_type (struct die_info *die, struct dwarf2_cu *cu)
22060 {
22061 struct attribute *type_attr;
22062
22063 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22064 if (!type_attr)
22065 {
22066 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22067 /* A missing DW_AT_type represents a void type. */
22068 return objfile_type (objfile)->builtin_void;
22069 }
22070
22071 return lookup_die_type (die, type_attr, cu);
22072 }
22073
22074 /* True iff CU's producer generates GNAT Ada auxiliary information
22075 that allows to find parallel types through that information instead
22076 of having to do expensive parallel lookups by type name. */
22077
22078 static int
22079 need_gnat_info (struct dwarf2_cu *cu)
22080 {
22081 /* Assume that the Ada compiler was GNAT, which always produces
22082 the auxiliary information. */
22083 return (cu->language == language_ada);
22084 }
22085
22086 /* Return the auxiliary type of the die in question using its
22087 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22088 attribute is not present. */
22089
22090 static struct type *
22091 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22092 {
22093 struct attribute *type_attr;
22094
22095 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22096 if (!type_attr)
22097 return NULL;
22098
22099 return lookup_die_type (die, type_attr, cu);
22100 }
22101
22102 /* If DIE has a descriptive_type attribute, then set the TYPE's
22103 descriptive type accordingly. */
22104
22105 static void
22106 set_descriptive_type (struct type *type, struct die_info *die,
22107 struct dwarf2_cu *cu)
22108 {
22109 struct type *descriptive_type = die_descriptive_type (die, cu);
22110
22111 if (descriptive_type)
22112 {
22113 ALLOCATE_GNAT_AUX_TYPE (type);
22114 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22115 }
22116 }
22117
22118 /* Return the containing type of the die in question using its
22119 DW_AT_containing_type attribute. */
22120
22121 static struct type *
22122 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22123 {
22124 struct attribute *type_attr;
22125 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22126
22127 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22128 if (!type_attr)
22129 error (_("Dwarf Error: Problem turning containing type into gdb type "
22130 "[in module %s]"), objfile_name (objfile));
22131
22132 return lookup_die_type (die, type_attr, cu);
22133 }
22134
22135 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22136
22137 static struct type *
22138 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22139 {
22140 struct dwarf2_per_objfile *dwarf2_per_objfile
22141 = cu->per_cu->dwarf2_per_objfile;
22142 struct objfile *objfile = dwarf2_per_objfile->objfile;
22143 char *saved;
22144
22145 std::string message
22146 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22147 objfile_name (objfile),
22148 sect_offset_str (cu->header.sect_off),
22149 sect_offset_str (die->sect_off));
22150 saved = obstack_strdup (&objfile->objfile_obstack, message);
22151
22152 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22153 }
22154
22155 /* Look up the type of DIE in CU using its type attribute ATTR.
22156 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22157 DW_AT_containing_type.
22158 If there is no type substitute an error marker. */
22159
22160 static struct type *
22161 lookup_die_type (struct die_info *die, const struct attribute *attr,
22162 struct dwarf2_cu *cu)
22163 {
22164 struct dwarf2_per_objfile *dwarf2_per_objfile
22165 = cu->per_cu->dwarf2_per_objfile;
22166 struct objfile *objfile = dwarf2_per_objfile->objfile;
22167 struct type *this_type;
22168
22169 gdb_assert (attr->name == DW_AT_type
22170 || attr->name == DW_AT_GNAT_descriptive_type
22171 || attr->name == DW_AT_containing_type);
22172
22173 /* First see if we have it cached. */
22174
22175 if (attr->form == DW_FORM_GNU_ref_alt)
22176 {
22177 struct dwarf2_per_cu_data *per_cu;
22178 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22179
22180 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22181 dwarf2_per_objfile);
22182 this_type = get_die_type_at_offset (sect_off, per_cu);
22183 }
22184 else if (attr_form_is_ref (attr))
22185 {
22186 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22187
22188 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22189 }
22190 else if (attr->form == DW_FORM_ref_sig8)
22191 {
22192 ULONGEST signature = DW_SIGNATURE (attr);
22193
22194 return get_signatured_type (die, signature, cu);
22195 }
22196 else
22197 {
22198 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22199 " at %s [in module %s]"),
22200 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22201 objfile_name (objfile));
22202 return build_error_marker_type (cu, die);
22203 }
22204
22205 /* If not cached we need to read it in. */
22206
22207 if (this_type == NULL)
22208 {
22209 struct die_info *type_die = NULL;
22210 struct dwarf2_cu *type_cu = cu;
22211
22212 if (attr_form_is_ref (attr))
22213 type_die = follow_die_ref (die, attr, &type_cu);
22214 if (type_die == NULL)
22215 return build_error_marker_type (cu, die);
22216 /* If we find the type now, it's probably because the type came
22217 from an inter-CU reference and the type's CU got expanded before
22218 ours. */
22219 this_type = read_type_die (type_die, type_cu);
22220 }
22221
22222 /* If we still don't have a type use an error marker. */
22223
22224 if (this_type == NULL)
22225 return build_error_marker_type (cu, die);
22226
22227 return this_type;
22228 }
22229
22230 /* Return the type in DIE, CU.
22231 Returns NULL for invalid types.
22232
22233 This first does a lookup in die_type_hash,
22234 and only reads the die in if necessary.
22235
22236 NOTE: This can be called when reading in partial or full symbols. */
22237
22238 static struct type *
22239 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22240 {
22241 struct type *this_type;
22242
22243 this_type = get_die_type (die, cu);
22244 if (this_type)
22245 return this_type;
22246
22247 return read_type_die_1 (die, cu);
22248 }
22249
22250 /* Read the type in DIE, CU.
22251 Returns NULL for invalid types. */
22252
22253 static struct type *
22254 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22255 {
22256 struct type *this_type = NULL;
22257
22258 switch (die->tag)
22259 {
22260 case DW_TAG_class_type:
22261 case DW_TAG_interface_type:
22262 case DW_TAG_structure_type:
22263 case DW_TAG_union_type:
22264 this_type = read_structure_type (die, cu);
22265 break;
22266 case DW_TAG_enumeration_type:
22267 this_type = read_enumeration_type (die, cu);
22268 break;
22269 case DW_TAG_subprogram:
22270 case DW_TAG_subroutine_type:
22271 case DW_TAG_inlined_subroutine:
22272 this_type = read_subroutine_type (die, cu);
22273 break;
22274 case DW_TAG_array_type:
22275 this_type = read_array_type (die, cu);
22276 break;
22277 case DW_TAG_set_type:
22278 this_type = read_set_type (die, cu);
22279 break;
22280 case DW_TAG_pointer_type:
22281 this_type = read_tag_pointer_type (die, cu);
22282 break;
22283 case DW_TAG_ptr_to_member_type:
22284 this_type = read_tag_ptr_to_member_type (die, cu);
22285 break;
22286 case DW_TAG_reference_type:
22287 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22288 break;
22289 case DW_TAG_rvalue_reference_type:
22290 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22291 break;
22292 case DW_TAG_const_type:
22293 this_type = read_tag_const_type (die, cu);
22294 break;
22295 case DW_TAG_volatile_type:
22296 this_type = read_tag_volatile_type (die, cu);
22297 break;
22298 case DW_TAG_restrict_type:
22299 this_type = read_tag_restrict_type (die, cu);
22300 break;
22301 case DW_TAG_string_type:
22302 this_type = read_tag_string_type (die, cu);
22303 break;
22304 case DW_TAG_typedef:
22305 this_type = read_typedef (die, cu);
22306 break;
22307 case DW_TAG_subrange_type:
22308 this_type = read_subrange_type (die, cu);
22309 break;
22310 case DW_TAG_base_type:
22311 this_type = read_base_type (die, cu);
22312 break;
22313 case DW_TAG_unspecified_type:
22314 this_type = read_unspecified_type (die, cu);
22315 break;
22316 case DW_TAG_namespace:
22317 this_type = read_namespace_type (die, cu);
22318 break;
22319 case DW_TAG_module:
22320 this_type = read_module_type (die, cu);
22321 break;
22322 case DW_TAG_atomic_type:
22323 this_type = read_tag_atomic_type (die, cu);
22324 break;
22325 default:
22326 complaint (_("unexpected tag in read_type_die: '%s'"),
22327 dwarf_tag_name (die->tag));
22328 break;
22329 }
22330
22331 return this_type;
22332 }
22333
22334 /* See if we can figure out if the class lives in a namespace. We do
22335 this by looking for a member function; its demangled name will
22336 contain namespace info, if there is any.
22337 Return the computed name or NULL.
22338 Space for the result is allocated on the objfile's obstack.
22339 This is the full-die version of guess_partial_die_structure_name.
22340 In this case we know DIE has no useful parent. */
22341
22342 static char *
22343 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22344 {
22345 struct die_info *spec_die;
22346 struct dwarf2_cu *spec_cu;
22347 struct die_info *child;
22348 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22349
22350 spec_cu = cu;
22351 spec_die = die_specification (die, &spec_cu);
22352 if (spec_die != NULL)
22353 {
22354 die = spec_die;
22355 cu = spec_cu;
22356 }
22357
22358 for (child = die->child;
22359 child != NULL;
22360 child = child->sibling)
22361 {
22362 if (child->tag == DW_TAG_subprogram)
22363 {
22364 const char *linkage_name = dw2_linkage_name (child, cu);
22365
22366 if (linkage_name != NULL)
22367 {
22368 char *actual_name
22369 = language_class_name_from_physname (cu->language_defn,
22370 linkage_name);
22371 char *name = NULL;
22372
22373 if (actual_name != NULL)
22374 {
22375 const char *die_name = dwarf2_name (die, cu);
22376
22377 if (die_name != NULL
22378 && strcmp (die_name, actual_name) != 0)
22379 {
22380 /* Strip off the class name from the full name.
22381 We want the prefix. */
22382 int die_name_len = strlen (die_name);
22383 int actual_name_len = strlen (actual_name);
22384
22385 /* Test for '::' as a sanity check. */
22386 if (actual_name_len > die_name_len + 2
22387 && actual_name[actual_name_len
22388 - die_name_len - 1] == ':')
22389 name = obstack_strndup (
22390 &objfile->per_bfd->storage_obstack,
22391 actual_name, actual_name_len - die_name_len - 2);
22392 }
22393 }
22394 xfree (actual_name);
22395 return name;
22396 }
22397 }
22398 }
22399
22400 return NULL;
22401 }
22402
22403 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22404 prefix part in such case. See
22405 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22406
22407 static const char *
22408 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22409 {
22410 struct attribute *attr;
22411 const char *base;
22412
22413 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22414 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22415 return NULL;
22416
22417 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22418 return NULL;
22419
22420 attr = dw2_linkage_name_attr (die, cu);
22421 if (attr == NULL || DW_STRING (attr) == NULL)
22422 return NULL;
22423
22424 /* dwarf2_name had to be already called. */
22425 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22426
22427 /* Strip the base name, keep any leading namespaces/classes. */
22428 base = strrchr (DW_STRING (attr), ':');
22429 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22430 return "";
22431
22432 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22433 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22434 DW_STRING (attr),
22435 &base[-1] - DW_STRING (attr));
22436 }
22437
22438 /* Return the name of the namespace/class that DIE is defined within,
22439 or "" if we can't tell. The caller should not xfree the result.
22440
22441 For example, if we're within the method foo() in the following
22442 code:
22443
22444 namespace N {
22445 class C {
22446 void foo () {
22447 }
22448 };
22449 }
22450
22451 then determine_prefix on foo's die will return "N::C". */
22452
22453 static const char *
22454 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22455 {
22456 struct dwarf2_per_objfile *dwarf2_per_objfile
22457 = cu->per_cu->dwarf2_per_objfile;
22458 struct die_info *parent, *spec_die;
22459 struct dwarf2_cu *spec_cu;
22460 struct type *parent_type;
22461 const char *retval;
22462
22463 if (cu->language != language_cplus
22464 && cu->language != language_fortran && cu->language != language_d
22465 && cu->language != language_rust)
22466 return "";
22467
22468 retval = anonymous_struct_prefix (die, cu);
22469 if (retval)
22470 return retval;
22471
22472 /* We have to be careful in the presence of DW_AT_specification.
22473 For example, with GCC 3.4, given the code
22474
22475 namespace N {
22476 void foo() {
22477 // Definition of N::foo.
22478 }
22479 }
22480
22481 then we'll have a tree of DIEs like this:
22482
22483 1: DW_TAG_compile_unit
22484 2: DW_TAG_namespace // N
22485 3: DW_TAG_subprogram // declaration of N::foo
22486 4: DW_TAG_subprogram // definition of N::foo
22487 DW_AT_specification // refers to die #3
22488
22489 Thus, when processing die #4, we have to pretend that we're in
22490 the context of its DW_AT_specification, namely the contex of die
22491 #3. */
22492 spec_cu = cu;
22493 spec_die = die_specification (die, &spec_cu);
22494 if (spec_die == NULL)
22495 parent = die->parent;
22496 else
22497 {
22498 parent = spec_die->parent;
22499 cu = spec_cu;
22500 }
22501
22502 if (parent == NULL)
22503 return "";
22504 else if (parent->building_fullname)
22505 {
22506 const char *name;
22507 const char *parent_name;
22508
22509 /* It has been seen on RealView 2.2 built binaries,
22510 DW_TAG_template_type_param types actually _defined_ as
22511 children of the parent class:
22512
22513 enum E {};
22514 template class <class Enum> Class{};
22515 Class<enum E> class_e;
22516
22517 1: DW_TAG_class_type (Class)
22518 2: DW_TAG_enumeration_type (E)
22519 3: DW_TAG_enumerator (enum1:0)
22520 3: DW_TAG_enumerator (enum2:1)
22521 ...
22522 2: DW_TAG_template_type_param
22523 DW_AT_type DW_FORM_ref_udata (E)
22524
22525 Besides being broken debug info, it can put GDB into an
22526 infinite loop. Consider:
22527
22528 When we're building the full name for Class<E>, we'll start
22529 at Class, and go look over its template type parameters,
22530 finding E. We'll then try to build the full name of E, and
22531 reach here. We're now trying to build the full name of E,
22532 and look over the parent DIE for containing scope. In the
22533 broken case, if we followed the parent DIE of E, we'd again
22534 find Class, and once again go look at its template type
22535 arguments, etc., etc. Simply don't consider such parent die
22536 as source-level parent of this die (it can't be, the language
22537 doesn't allow it), and break the loop here. */
22538 name = dwarf2_name (die, cu);
22539 parent_name = dwarf2_name (parent, cu);
22540 complaint (_("template param type '%s' defined within parent '%s'"),
22541 name ? name : "<unknown>",
22542 parent_name ? parent_name : "<unknown>");
22543 return "";
22544 }
22545 else
22546 switch (parent->tag)
22547 {
22548 case DW_TAG_namespace:
22549 parent_type = read_type_die (parent, cu);
22550 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22551 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22552 Work around this problem here. */
22553 if (cu->language == language_cplus
22554 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22555 return "";
22556 /* We give a name to even anonymous namespaces. */
22557 return TYPE_NAME (parent_type);
22558 case DW_TAG_class_type:
22559 case DW_TAG_interface_type:
22560 case DW_TAG_structure_type:
22561 case DW_TAG_union_type:
22562 case DW_TAG_module:
22563 parent_type = read_type_die (parent, cu);
22564 if (TYPE_NAME (parent_type) != NULL)
22565 return TYPE_NAME (parent_type);
22566 else
22567 /* An anonymous structure is only allowed non-static data
22568 members; no typedefs, no member functions, et cetera.
22569 So it does not need a prefix. */
22570 return "";
22571 case DW_TAG_compile_unit:
22572 case DW_TAG_partial_unit:
22573 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22574 if (cu->language == language_cplus
22575 && !dwarf2_per_objfile->types.empty ()
22576 && die->child != NULL
22577 && (die->tag == DW_TAG_class_type
22578 || die->tag == DW_TAG_structure_type
22579 || die->tag == DW_TAG_union_type))
22580 {
22581 char *name = guess_full_die_structure_name (die, cu);
22582 if (name != NULL)
22583 return name;
22584 }
22585 return "";
22586 case DW_TAG_enumeration_type:
22587 parent_type = read_type_die (parent, cu);
22588 if (TYPE_DECLARED_CLASS (parent_type))
22589 {
22590 if (TYPE_NAME (parent_type) != NULL)
22591 return TYPE_NAME (parent_type);
22592 return "";
22593 }
22594 /* Fall through. */
22595 default:
22596 return determine_prefix (parent, cu);
22597 }
22598 }
22599
22600 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22601 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22602 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22603 an obconcat, otherwise allocate storage for the result. The CU argument is
22604 used to determine the language and hence, the appropriate separator. */
22605
22606 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22607
22608 static char *
22609 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22610 int physname, struct dwarf2_cu *cu)
22611 {
22612 const char *lead = "";
22613 const char *sep;
22614
22615 if (suffix == NULL || suffix[0] == '\0'
22616 || prefix == NULL || prefix[0] == '\0')
22617 sep = "";
22618 else if (cu->language == language_d)
22619 {
22620 /* For D, the 'main' function could be defined in any module, but it
22621 should never be prefixed. */
22622 if (strcmp (suffix, "D main") == 0)
22623 {
22624 prefix = "";
22625 sep = "";
22626 }
22627 else
22628 sep = ".";
22629 }
22630 else if (cu->language == language_fortran && physname)
22631 {
22632 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22633 DW_AT_MIPS_linkage_name is preferred and used instead. */
22634
22635 lead = "__";
22636 sep = "_MOD_";
22637 }
22638 else
22639 sep = "::";
22640
22641 if (prefix == NULL)
22642 prefix = "";
22643 if (suffix == NULL)
22644 suffix = "";
22645
22646 if (obs == NULL)
22647 {
22648 char *retval
22649 = ((char *)
22650 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22651
22652 strcpy (retval, lead);
22653 strcat (retval, prefix);
22654 strcat (retval, sep);
22655 strcat (retval, suffix);
22656 return retval;
22657 }
22658 else
22659 {
22660 /* We have an obstack. */
22661 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22662 }
22663 }
22664
22665 /* Return sibling of die, NULL if no sibling. */
22666
22667 static struct die_info *
22668 sibling_die (struct die_info *die)
22669 {
22670 return die->sibling;
22671 }
22672
22673 /* Get name of a die, return NULL if not found. */
22674
22675 static const char *
22676 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22677 struct obstack *obstack)
22678 {
22679 if (name && cu->language == language_cplus)
22680 {
22681 std::string canon_name = cp_canonicalize_string (name);
22682
22683 if (!canon_name.empty ())
22684 {
22685 if (canon_name != name)
22686 name = obstack_strdup (obstack, canon_name);
22687 }
22688 }
22689
22690 return name;
22691 }
22692
22693 /* Get name of a die, return NULL if not found.
22694 Anonymous namespaces are converted to their magic string. */
22695
22696 static const char *
22697 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22698 {
22699 struct attribute *attr;
22700 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22701
22702 attr = dwarf2_attr (die, DW_AT_name, cu);
22703 if ((!attr || !DW_STRING (attr))
22704 && die->tag != DW_TAG_namespace
22705 && die->tag != DW_TAG_class_type
22706 && die->tag != DW_TAG_interface_type
22707 && die->tag != DW_TAG_structure_type
22708 && die->tag != DW_TAG_union_type)
22709 return NULL;
22710
22711 switch (die->tag)
22712 {
22713 case DW_TAG_compile_unit:
22714 case DW_TAG_partial_unit:
22715 /* Compilation units have a DW_AT_name that is a filename, not
22716 a source language identifier. */
22717 case DW_TAG_enumeration_type:
22718 case DW_TAG_enumerator:
22719 /* These tags always have simple identifiers already; no need
22720 to canonicalize them. */
22721 return DW_STRING (attr);
22722
22723 case DW_TAG_namespace:
22724 if (attr != NULL && DW_STRING (attr) != NULL)
22725 return DW_STRING (attr);
22726 return CP_ANONYMOUS_NAMESPACE_STR;
22727
22728 case DW_TAG_class_type:
22729 case DW_TAG_interface_type:
22730 case DW_TAG_structure_type:
22731 case DW_TAG_union_type:
22732 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22733 structures or unions. These were of the form "._%d" in GCC 4.1,
22734 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22735 and GCC 4.4. We work around this problem by ignoring these. */
22736 if (attr && DW_STRING (attr)
22737 && (startswith (DW_STRING (attr), "._")
22738 || startswith (DW_STRING (attr), "<anonymous")))
22739 return NULL;
22740
22741 /* GCC might emit a nameless typedef that has a linkage name. See
22742 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22743 if (!attr || DW_STRING (attr) == NULL)
22744 {
22745 char *demangled = NULL;
22746
22747 attr = dw2_linkage_name_attr (die, cu);
22748 if (attr == NULL || DW_STRING (attr) == NULL)
22749 return NULL;
22750
22751 /* Avoid demangling DW_STRING (attr) the second time on a second
22752 call for the same DIE. */
22753 if (!DW_STRING_IS_CANONICAL (attr))
22754 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22755
22756 if (demangled)
22757 {
22758 const char *base;
22759
22760 /* FIXME: we already did this for the partial symbol... */
22761 DW_STRING (attr)
22762 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22763 demangled);
22764 DW_STRING_IS_CANONICAL (attr) = 1;
22765 xfree (demangled);
22766
22767 /* Strip any leading namespaces/classes, keep only the base name.
22768 DW_AT_name for named DIEs does not contain the prefixes. */
22769 base = strrchr (DW_STRING (attr), ':');
22770 if (base && base > DW_STRING (attr) && base[-1] == ':')
22771 return &base[1];
22772 else
22773 return DW_STRING (attr);
22774 }
22775 }
22776 break;
22777
22778 default:
22779 break;
22780 }
22781
22782 if (!DW_STRING_IS_CANONICAL (attr))
22783 {
22784 DW_STRING (attr)
22785 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22786 &objfile->per_bfd->storage_obstack);
22787 DW_STRING_IS_CANONICAL (attr) = 1;
22788 }
22789 return DW_STRING (attr);
22790 }
22791
22792 /* Return the die that this die in an extension of, or NULL if there
22793 is none. *EXT_CU is the CU containing DIE on input, and the CU
22794 containing the return value on output. */
22795
22796 static struct die_info *
22797 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22798 {
22799 struct attribute *attr;
22800
22801 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22802 if (attr == NULL)
22803 return NULL;
22804
22805 return follow_die_ref (die, attr, ext_cu);
22806 }
22807
22808 /* A convenience function that returns an "unknown" DWARF name,
22809 including the value of V. STR is the name of the entity being
22810 printed, e.g., "TAG". */
22811
22812 static const char *
22813 dwarf_unknown (const char *str, unsigned v)
22814 {
22815 char *cell = get_print_cell ();
22816 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22817 return cell;
22818 }
22819
22820 /* Convert a DIE tag into its string name. */
22821
22822 static const char *
22823 dwarf_tag_name (unsigned tag)
22824 {
22825 const char *name = get_DW_TAG_name (tag);
22826
22827 if (name == NULL)
22828 return dwarf_unknown ("TAG", tag);
22829
22830 return name;
22831 }
22832
22833 /* Convert a DWARF attribute code into its string name. */
22834
22835 static const char *
22836 dwarf_attr_name (unsigned attr)
22837 {
22838 const char *name;
22839
22840 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22841 if (attr == DW_AT_MIPS_fde)
22842 return "DW_AT_MIPS_fde";
22843 #else
22844 if (attr == DW_AT_HP_block_index)
22845 return "DW_AT_HP_block_index";
22846 #endif
22847
22848 name = get_DW_AT_name (attr);
22849
22850 if (name == NULL)
22851 return dwarf_unknown ("AT", attr);
22852
22853 return name;
22854 }
22855
22856 /* Convert a unit type to corresponding DW_UT name. */
22857
22858 static const char *
22859 dwarf_unit_type_name (int unit_type) {
22860 switch (unit_type)
22861 {
22862 case 0x01:
22863 return "DW_UT_compile (0x01)";
22864 case 0x02:
22865 return "DW_UT_type (0x02)";
22866 case 0x03:
22867 return "DW_UT_partial (0x03)";
22868 case 0x04:
22869 return "DW_UT_skeleton (0x04)";
22870 case 0x05:
22871 return "DW_UT_split_compile (0x05)";
22872 case 0x06:
22873 return "DW_UT_split_type (0x06)";
22874 case 0x80:
22875 return "DW_UT_lo_user (0x80)";
22876 case 0xff:
22877 return "DW_UT_hi_user (0xff)";
22878 default:
22879 return nullptr;
22880 }
22881 }
22882
22883 /* Convert a DWARF value form code into its string name. */
22884
22885 static const char *
22886 dwarf_form_name (unsigned form)
22887 {
22888 const char *name = get_DW_FORM_name (form);
22889
22890 if (name == NULL)
22891 return dwarf_unknown ("FORM", form);
22892
22893 return name;
22894 }
22895
22896 static const char *
22897 dwarf_bool_name (unsigned mybool)
22898 {
22899 if (mybool)
22900 return "TRUE";
22901 else
22902 return "FALSE";
22903 }
22904
22905 /* Convert a DWARF type code into its string name. */
22906
22907 static const char *
22908 dwarf_type_encoding_name (unsigned enc)
22909 {
22910 const char *name = get_DW_ATE_name (enc);
22911
22912 if (name == NULL)
22913 return dwarf_unknown ("ATE", enc);
22914
22915 return name;
22916 }
22917
22918 static void
22919 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22920 {
22921 unsigned int i;
22922
22923 print_spaces (indent, f);
22924 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22925 dwarf_tag_name (die->tag), die->abbrev,
22926 sect_offset_str (die->sect_off));
22927
22928 if (die->parent != NULL)
22929 {
22930 print_spaces (indent, f);
22931 fprintf_unfiltered (f, " parent at offset: %s\n",
22932 sect_offset_str (die->parent->sect_off));
22933 }
22934
22935 print_spaces (indent, f);
22936 fprintf_unfiltered (f, " has children: %s\n",
22937 dwarf_bool_name (die->child != NULL));
22938
22939 print_spaces (indent, f);
22940 fprintf_unfiltered (f, " attributes:\n");
22941
22942 for (i = 0; i < die->num_attrs; ++i)
22943 {
22944 print_spaces (indent, f);
22945 fprintf_unfiltered (f, " %s (%s) ",
22946 dwarf_attr_name (die->attrs[i].name),
22947 dwarf_form_name (die->attrs[i].form));
22948
22949 switch (die->attrs[i].form)
22950 {
22951 case DW_FORM_addr:
22952 case DW_FORM_addrx:
22953 case DW_FORM_GNU_addr_index:
22954 fprintf_unfiltered (f, "address: ");
22955 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22956 break;
22957 case DW_FORM_block2:
22958 case DW_FORM_block4:
22959 case DW_FORM_block:
22960 case DW_FORM_block1:
22961 fprintf_unfiltered (f, "block: size %s",
22962 pulongest (DW_BLOCK (&die->attrs[i])->size));
22963 break;
22964 case DW_FORM_exprloc:
22965 fprintf_unfiltered (f, "expression: size %s",
22966 pulongest (DW_BLOCK (&die->attrs[i])->size));
22967 break;
22968 case DW_FORM_data16:
22969 fprintf_unfiltered (f, "constant of 16 bytes");
22970 break;
22971 case DW_FORM_ref_addr:
22972 fprintf_unfiltered (f, "ref address: ");
22973 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22974 break;
22975 case DW_FORM_GNU_ref_alt:
22976 fprintf_unfiltered (f, "alt ref address: ");
22977 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22978 break;
22979 case DW_FORM_ref1:
22980 case DW_FORM_ref2:
22981 case DW_FORM_ref4:
22982 case DW_FORM_ref8:
22983 case DW_FORM_ref_udata:
22984 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22985 (long) (DW_UNSND (&die->attrs[i])));
22986 break;
22987 case DW_FORM_data1:
22988 case DW_FORM_data2:
22989 case DW_FORM_data4:
22990 case DW_FORM_data8:
22991 case DW_FORM_udata:
22992 case DW_FORM_sdata:
22993 fprintf_unfiltered (f, "constant: %s",
22994 pulongest (DW_UNSND (&die->attrs[i])));
22995 break;
22996 case DW_FORM_sec_offset:
22997 fprintf_unfiltered (f, "section offset: %s",
22998 pulongest (DW_UNSND (&die->attrs[i])));
22999 break;
23000 case DW_FORM_ref_sig8:
23001 fprintf_unfiltered (f, "signature: %s",
23002 hex_string (DW_SIGNATURE (&die->attrs[i])));
23003 break;
23004 case DW_FORM_string:
23005 case DW_FORM_strp:
23006 case DW_FORM_line_strp:
23007 case DW_FORM_strx:
23008 case DW_FORM_GNU_str_index:
23009 case DW_FORM_GNU_strp_alt:
23010 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23011 DW_STRING (&die->attrs[i])
23012 ? DW_STRING (&die->attrs[i]) : "",
23013 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23014 break;
23015 case DW_FORM_flag:
23016 if (DW_UNSND (&die->attrs[i]))
23017 fprintf_unfiltered (f, "flag: TRUE");
23018 else
23019 fprintf_unfiltered (f, "flag: FALSE");
23020 break;
23021 case DW_FORM_flag_present:
23022 fprintf_unfiltered (f, "flag: TRUE");
23023 break;
23024 case DW_FORM_indirect:
23025 /* The reader will have reduced the indirect form to
23026 the "base form" so this form should not occur. */
23027 fprintf_unfiltered (f,
23028 "unexpected attribute form: DW_FORM_indirect");
23029 break;
23030 case DW_FORM_implicit_const:
23031 fprintf_unfiltered (f, "constant: %s",
23032 plongest (DW_SND (&die->attrs[i])));
23033 break;
23034 default:
23035 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23036 die->attrs[i].form);
23037 break;
23038 }
23039 fprintf_unfiltered (f, "\n");
23040 }
23041 }
23042
23043 static void
23044 dump_die_for_error (struct die_info *die)
23045 {
23046 dump_die_shallow (gdb_stderr, 0, die);
23047 }
23048
23049 static void
23050 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23051 {
23052 int indent = level * 4;
23053
23054 gdb_assert (die != NULL);
23055
23056 if (level >= max_level)
23057 return;
23058
23059 dump_die_shallow (f, indent, die);
23060
23061 if (die->child != NULL)
23062 {
23063 print_spaces (indent, f);
23064 fprintf_unfiltered (f, " Children:");
23065 if (level + 1 < max_level)
23066 {
23067 fprintf_unfiltered (f, "\n");
23068 dump_die_1 (f, level + 1, max_level, die->child);
23069 }
23070 else
23071 {
23072 fprintf_unfiltered (f,
23073 " [not printed, max nesting level reached]\n");
23074 }
23075 }
23076
23077 if (die->sibling != NULL && level > 0)
23078 {
23079 dump_die_1 (f, level, max_level, die->sibling);
23080 }
23081 }
23082
23083 /* This is called from the pdie macro in gdbinit.in.
23084 It's not static so gcc will keep a copy callable from gdb. */
23085
23086 void
23087 dump_die (struct die_info *die, int max_level)
23088 {
23089 dump_die_1 (gdb_stdlog, 0, max_level, die);
23090 }
23091
23092 static void
23093 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23094 {
23095 void **slot;
23096
23097 slot = htab_find_slot_with_hash (cu->die_hash, die,
23098 to_underlying (die->sect_off),
23099 INSERT);
23100
23101 *slot = die;
23102 }
23103
23104 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23105 required kind. */
23106
23107 static sect_offset
23108 dwarf2_get_ref_die_offset (const struct attribute *attr)
23109 {
23110 if (attr_form_is_ref (attr))
23111 return (sect_offset) DW_UNSND (attr);
23112
23113 complaint (_("unsupported die ref attribute form: '%s'"),
23114 dwarf_form_name (attr->form));
23115 return {};
23116 }
23117
23118 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23119 * the value held by the attribute is not constant. */
23120
23121 static LONGEST
23122 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23123 {
23124 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23125 return DW_SND (attr);
23126 else if (attr->form == DW_FORM_udata
23127 || attr->form == DW_FORM_data1
23128 || attr->form == DW_FORM_data2
23129 || attr->form == DW_FORM_data4
23130 || attr->form == DW_FORM_data8)
23131 return DW_UNSND (attr);
23132 else
23133 {
23134 /* For DW_FORM_data16 see attr_form_is_constant. */
23135 complaint (_("Attribute value is not a constant (%s)"),
23136 dwarf_form_name (attr->form));
23137 return default_value;
23138 }
23139 }
23140
23141 /* Follow reference or signature attribute ATTR of SRC_DIE.
23142 On entry *REF_CU is the CU of SRC_DIE.
23143 On exit *REF_CU is the CU of the result. */
23144
23145 static struct die_info *
23146 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23147 struct dwarf2_cu **ref_cu)
23148 {
23149 struct die_info *die;
23150
23151 if (attr_form_is_ref (attr))
23152 die = follow_die_ref (src_die, attr, ref_cu);
23153 else if (attr->form == DW_FORM_ref_sig8)
23154 die = follow_die_sig (src_die, attr, ref_cu);
23155 else
23156 {
23157 dump_die_for_error (src_die);
23158 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23159 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23160 }
23161
23162 return die;
23163 }
23164
23165 /* Follow reference OFFSET.
23166 On entry *REF_CU is the CU of the source die referencing OFFSET.
23167 On exit *REF_CU is the CU of the result.
23168 Returns NULL if OFFSET is invalid. */
23169
23170 static struct die_info *
23171 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23172 struct dwarf2_cu **ref_cu)
23173 {
23174 struct die_info temp_die;
23175 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23176 struct dwarf2_per_objfile *dwarf2_per_objfile
23177 = cu->per_cu->dwarf2_per_objfile;
23178
23179 gdb_assert (cu->per_cu != NULL);
23180
23181 target_cu = cu;
23182
23183 if (cu->per_cu->is_debug_types)
23184 {
23185 /* .debug_types CUs cannot reference anything outside their CU.
23186 If they need to, they have to reference a signatured type via
23187 DW_FORM_ref_sig8. */
23188 if (!offset_in_cu_p (&cu->header, sect_off))
23189 return NULL;
23190 }
23191 else if (offset_in_dwz != cu->per_cu->is_dwz
23192 || !offset_in_cu_p (&cu->header, sect_off))
23193 {
23194 struct dwarf2_per_cu_data *per_cu;
23195
23196 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23197 dwarf2_per_objfile);
23198
23199 /* If necessary, add it to the queue and load its DIEs. */
23200 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23201 load_full_comp_unit (per_cu, false, cu->language);
23202
23203 target_cu = per_cu->cu;
23204 }
23205 else if (cu->dies == NULL)
23206 {
23207 /* We're loading full DIEs during partial symbol reading. */
23208 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23209 load_full_comp_unit (cu->per_cu, false, language_minimal);
23210 }
23211
23212 *ref_cu = target_cu;
23213 temp_die.sect_off = sect_off;
23214
23215 if (target_cu != cu)
23216 target_cu->ancestor = cu;
23217
23218 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23219 &temp_die,
23220 to_underlying (sect_off));
23221 }
23222
23223 /* Follow reference attribute ATTR of SRC_DIE.
23224 On entry *REF_CU is the CU of SRC_DIE.
23225 On exit *REF_CU is the CU of the result. */
23226
23227 static struct die_info *
23228 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23229 struct dwarf2_cu **ref_cu)
23230 {
23231 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23232 struct dwarf2_cu *cu = *ref_cu;
23233 struct die_info *die;
23234
23235 die = follow_die_offset (sect_off,
23236 (attr->form == DW_FORM_GNU_ref_alt
23237 || cu->per_cu->is_dwz),
23238 ref_cu);
23239 if (!die)
23240 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23241 "at %s [in module %s]"),
23242 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23243 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23244
23245 return die;
23246 }
23247
23248 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23249 Returned value is intended for DW_OP_call*. Returned
23250 dwarf2_locexpr_baton->data has lifetime of
23251 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23252
23253 struct dwarf2_locexpr_baton
23254 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23255 struct dwarf2_per_cu_data *per_cu,
23256 CORE_ADDR (*get_frame_pc) (void *baton),
23257 void *baton, bool resolve_abstract_p)
23258 {
23259 struct dwarf2_cu *cu;
23260 struct die_info *die;
23261 struct attribute *attr;
23262 struct dwarf2_locexpr_baton retval;
23263 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23264 struct objfile *objfile = dwarf2_per_objfile->objfile;
23265
23266 if (per_cu->cu == NULL)
23267 load_cu (per_cu, false);
23268 cu = per_cu->cu;
23269 if (cu == NULL)
23270 {
23271 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23272 Instead just throw an error, not much else we can do. */
23273 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23274 sect_offset_str (sect_off), objfile_name (objfile));
23275 }
23276
23277 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23278 if (!die)
23279 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23280 sect_offset_str (sect_off), objfile_name (objfile));
23281
23282 attr = dwarf2_attr (die, DW_AT_location, cu);
23283 if (!attr && resolve_abstract_p
23284 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23285 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23286 {
23287 CORE_ADDR pc = (*get_frame_pc) (baton);
23288 CORE_ADDR baseaddr
23289 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23290 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23291
23292 for (const auto &cand_off
23293 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23294 {
23295 struct dwarf2_cu *cand_cu = cu;
23296 struct die_info *cand
23297 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23298 if (!cand
23299 || !cand->parent
23300 || cand->parent->tag != DW_TAG_subprogram)
23301 continue;
23302
23303 CORE_ADDR pc_low, pc_high;
23304 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23305 if (pc_low == ((CORE_ADDR) -1))
23306 continue;
23307 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23308 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23309 if (!(pc_low <= pc && pc < pc_high))
23310 continue;
23311
23312 die = cand;
23313 attr = dwarf2_attr (die, DW_AT_location, cu);
23314 break;
23315 }
23316 }
23317
23318 if (!attr)
23319 {
23320 /* DWARF: "If there is no such attribute, then there is no effect.".
23321 DATA is ignored if SIZE is 0. */
23322
23323 retval.data = NULL;
23324 retval.size = 0;
23325 }
23326 else if (attr_form_is_section_offset (attr))
23327 {
23328 struct dwarf2_loclist_baton loclist_baton;
23329 CORE_ADDR pc = (*get_frame_pc) (baton);
23330 size_t size;
23331
23332 fill_in_loclist_baton (cu, &loclist_baton, attr);
23333
23334 retval.data = dwarf2_find_location_expression (&loclist_baton,
23335 &size, pc);
23336 retval.size = size;
23337 }
23338 else
23339 {
23340 if (!attr_form_is_block (attr))
23341 error (_("Dwarf Error: DIE at %s referenced in module %s "
23342 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23343 sect_offset_str (sect_off), objfile_name (objfile));
23344
23345 retval.data = DW_BLOCK (attr)->data;
23346 retval.size = DW_BLOCK (attr)->size;
23347 }
23348 retval.per_cu = cu->per_cu;
23349
23350 age_cached_comp_units (dwarf2_per_objfile);
23351
23352 return retval;
23353 }
23354
23355 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23356 offset. */
23357
23358 struct dwarf2_locexpr_baton
23359 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23360 struct dwarf2_per_cu_data *per_cu,
23361 CORE_ADDR (*get_frame_pc) (void *baton),
23362 void *baton)
23363 {
23364 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23365
23366 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23367 }
23368
23369 /* Write a constant of a given type as target-ordered bytes into
23370 OBSTACK. */
23371
23372 static const gdb_byte *
23373 write_constant_as_bytes (struct obstack *obstack,
23374 enum bfd_endian byte_order,
23375 struct type *type,
23376 ULONGEST value,
23377 LONGEST *len)
23378 {
23379 gdb_byte *result;
23380
23381 *len = TYPE_LENGTH (type);
23382 result = (gdb_byte *) obstack_alloc (obstack, *len);
23383 store_unsigned_integer (result, *len, byte_order, value);
23384
23385 return result;
23386 }
23387
23388 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23389 pointer to the constant bytes and set LEN to the length of the
23390 data. If memory is needed, allocate it on OBSTACK. If the DIE
23391 does not have a DW_AT_const_value, return NULL. */
23392
23393 const gdb_byte *
23394 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23395 struct dwarf2_per_cu_data *per_cu,
23396 struct obstack *obstack,
23397 LONGEST *len)
23398 {
23399 struct dwarf2_cu *cu;
23400 struct die_info *die;
23401 struct attribute *attr;
23402 const gdb_byte *result = NULL;
23403 struct type *type;
23404 LONGEST value;
23405 enum bfd_endian byte_order;
23406 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23407
23408 if (per_cu->cu == NULL)
23409 load_cu (per_cu, false);
23410 cu = per_cu->cu;
23411 if (cu == NULL)
23412 {
23413 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23414 Instead just throw an error, not much else we can do. */
23415 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23416 sect_offset_str (sect_off), objfile_name (objfile));
23417 }
23418
23419 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23420 if (!die)
23421 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23422 sect_offset_str (sect_off), objfile_name (objfile));
23423
23424 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23425 if (attr == NULL)
23426 return NULL;
23427
23428 byte_order = (bfd_big_endian (objfile->obfd)
23429 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23430
23431 switch (attr->form)
23432 {
23433 case DW_FORM_addr:
23434 case DW_FORM_addrx:
23435 case DW_FORM_GNU_addr_index:
23436 {
23437 gdb_byte *tem;
23438
23439 *len = cu->header.addr_size;
23440 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23441 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23442 result = tem;
23443 }
23444 break;
23445 case DW_FORM_string:
23446 case DW_FORM_strp:
23447 case DW_FORM_strx:
23448 case DW_FORM_GNU_str_index:
23449 case DW_FORM_GNU_strp_alt:
23450 /* DW_STRING is already allocated on the objfile obstack, point
23451 directly to it. */
23452 result = (const gdb_byte *) DW_STRING (attr);
23453 *len = strlen (DW_STRING (attr));
23454 break;
23455 case DW_FORM_block1:
23456 case DW_FORM_block2:
23457 case DW_FORM_block4:
23458 case DW_FORM_block:
23459 case DW_FORM_exprloc:
23460 case DW_FORM_data16:
23461 result = DW_BLOCK (attr)->data;
23462 *len = DW_BLOCK (attr)->size;
23463 break;
23464
23465 /* The DW_AT_const_value attributes are supposed to carry the
23466 symbol's value "represented as it would be on the target
23467 architecture." By the time we get here, it's already been
23468 converted to host endianness, so we just need to sign- or
23469 zero-extend it as appropriate. */
23470 case DW_FORM_data1:
23471 type = die_type (die, cu);
23472 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23473 if (result == NULL)
23474 result = write_constant_as_bytes (obstack, byte_order,
23475 type, value, len);
23476 break;
23477 case DW_FORM_data2:
23478 type = die_type (die, cu);
23479 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23480 if (result == NULL)
23481 result = write_constant_as_bytes (obstack, byte_order,
23482 type, value, len);
23483 break;
23484 case DW_FORM_data4:
23485 type = die_type (die, cu);
23486 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23487 if (result == NULL)
23488 result = write_constant_as_bytes (obstack, byte_order,
23489 type, value, len);
23490 break;
23491 case DW_FORM_data8:
23492 type = die_type (die, cu);
23493 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23494 if (result == NULL)
23495 result = write_constant_as_bytes (obstack, byte_order,
23496 type, value, len);
23497 break;
23498
23499 case DW_FORM_sdata:
23500 case DW_FORM_implicit_const:
23501 type = die_type (die, cu);
23502 result = write_constant_as_bytes (obstack, byte_order,
23503 type, DW_SND (attr), len);
23504 break;
23505
23506 case DW_FORM_udata:
23507 type = die_type (die, cu);
23508 result = write_constant_as_bytes (obstack, byte_order,
23509 type, DW_UNSND (attr), len);
23510 break;
23511
23512 default:
23513 complaint (_("unsupported const value attribute form: '%s'"),
23514 dwarf_form_name (attr->form));
23515 break;
23516 }
23517
23518 return result;
23519 }
23520
23521 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23522 valid type for this die is found. */
23523
23524 struct type *
23525 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23526 struct dwarf2_per_cu_data *per_cu)
23527 {
23528 struct dwarf2_cu *cu;
23529 struct die_info *die;
23530
23531 if (per_cu->cu == NULL)
23532 load_cu (per_cu, false);
23533 cu = per_cu->cu;
23534 if (!cu)
23535 return NULL;
23536
23537 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23538 if (!die)
23539 return NULL;
23540
23541 return die_type (die, cu);
23542 }
23543
23544 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23545 PER_CU. */
23546
23547 struct type *
23548 dwarf2_get_die_type (cu_offset die_offset,
23549 struct dwarf2_per_cu_data *per_cu)
23550 {
23551 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23552 return get_die_type_at_offset (die_offset_sect, per_cu);
23553 }
23554
23555 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23556 On entry *REF_CU is the CU of SRC_DIE.
23557 On exit *REF_CU is the CU of the result.
23558 Returns NULL if the referenced DIE isn't found. */
23559
23560 static struct die_info *
23561 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23562 struct dwarf2_cu **ref_cu)
23563 {
23564 struct die_info temp_die;
23565 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23566 struct die_info *die;
23567
23568 /* While it might be nice to assert sig_type->type == NULL here,
23569 we can get here for DW_AT_imported_declaration where we need
23570 the DIE not the type. */
23571
23572 /* If necessary, add it to the queue and load its DIEs. */
23573
23574 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23575 read_signatured_type (sig_type);
23576
23577 sig_cu = sig_type->per_cu.cu;
23578 gdb_assert (sig_cu != NULL);
23579 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23580 temp_die.sect_off = sig_type->type_offset_in_section;
23581 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23582 to_underlying (temp_die.sect_off));
23583 if (die)
23584 {
23585 struct dwarf2_per_objfile *dwarf2_per_objfile
23586 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23587
23588 /* For .gdb_index version 7 keep track of included TUs.
23589 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23590 if (dwarf2_per_objfile->index_table != NULL
23591 && dwarf2_per_objfile->index_table->version <= 7)
23592 {
23593 VEC_safe_push (dwarf2_per_cu_ptr,
23594 (*ref_cu)->per_cu->imported_symtabs,
23595 sig_cu->per_cu);
23596 }
23597
23598 *ref_cu = sig_cu;
23599 if (sig_cu != cu)
23600 sig_cu->ancestor = cu;
23601
23602 return die;
23603 }
23604
23605 return NULL;
23606 }
23607
23608 /* Follow signatured type referenced by ATTR in SRC_DIE.
23609 On entry *REF_CU is the CU of SRC_DIE.
23610 On exit *REF_CU is the CU of the result.
23611 The result is the DIE of the type.
23612 If the referenced type cannot be found an error is thrown. */
23613
23614 static struct die_info *
23615 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23616 struct dwarf2_cu **ref_cu)
23617 {
23618 ULONGEST signature = DW_SIGNATURE (attr);
23619 struct signatured_type *sig_type;
23620 struct die_info *die;
23621
23622 gdb_assert (attr->form == DW_FORM_ref_sig8);
23623
23624 sig_type = lookup_signatured_type (*ref_cu, signature);
23625 /* sig_type will be NULL if the signatured type is missing from
23626 the debug info. */
23627 if (sig_type == NULL)
23628 {
23629 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23630 " from DIE at %s [in module %s]"),
23631 hex_string (signature), sect_offset_str (src_die->sect_off),
23632 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23633 }
23634
23635 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23636 if (die == NULL)
23637 {
23638 dump_die_for_error (src_die);
23639 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23640 " from DIE at %s [in module %s]"),
23641 hex_string (signature), sect_offset_str (src_die->sect_off),
23642 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23643 }
23644
23645 return die;
23646 }
23647
23648 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23649 reading in and processing the type unit if necessary. */
23650
23651 static struct type *
23652 get_signatured_type (struct die_info *die, ULONGEST signature,
23653 struct dwarf2_cu *cu)
23654 {
23655 struct dwarf2_per_objfile *dwarf2_per_objfile
23656 = cu->per_cu->dwarf2_per_objfile;
23657 struct signatured_type *sig_type;
23658 struct dwarf2_cu *type_cu;
23659 struct die_info *type_die;
23660 struct type *type;
23661
23662 sig_type = lookup_signatured_type (cu, signature);
23663 /* sig_type will be NULL if the signatured type is missing from
23664 the debug info. */
23665 if (sig_type == NULL)
23666 {
23667 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23668 " from DIE at %s [in module %s]"),
23669 hex_string (signature), sect_offset_str (die->sect_off),
23670 objfile_name (dwarf2_per_objfile->objfile));
23671 return build_error_marker_type (cu, die);
23672 }
23673
23674 /* If we already know the type we're done. */
23675 if (sig_type->type != NULL)
23676 return sig_type->type;
23677
23678 type_cu = cu;
23679 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23680 if (type_die != NULL)
23681 {
23682 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23683 is created. This is important, for example, because for c++ classes
23684 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23685 type = read_type_die (type_die, type_cu);
23686 if (type == NULL)
23687 {
23688 complaint (_("Dwarf Error: Cannot build signatured type %s"
23689 " referenced from DIE at %s [in module %s]"),
23690 hex_string (signature), sect_offset_str (die->sect_off),
23691 objfile_name (dwarf2_per_objfile->objfile));
23692 type = build_error_marker_type (cu, die);
23693 }
23694 }
23695 else
23696 {
23697 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23698 " from DIE at %s [in module %s]"),
23699 hex_string (signature), sect_offset_str (die->sect_off),
23700 objfile_name (dwarf2_per_objfile->objfile));
23701 type = build_error_marker_type (cu, die);
23702 }
23703 sig_type->type = type;
23704
23705 return type;
23706 }
23707
23708 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23709 reading in and processing the type unit if necessary. */
23710
23711 static struct type *
23712 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23713 struct dwarf2_cu *cu) /* ARI: editCase function */
23714 {
23715 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23716 if (attr_form_is_ref (attr))
23717 {
23718 struct dwarf2_cu *type_cu = cu;
23719 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23720
23721 return read_type_die (type_die, type_cu);
23722 }
23723 else if (attr->form == DW_FORM_ref_sig8)
23724 {
23725 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23726 }
23727 else
23728 {
23729 struct dwarf2_per_objfile *dwarf2_per_objfile
23730 = cu->per_cu->dwarf2_per_objfile;
23731
23732 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23733 " at %s [in module %s]"),
23734 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23735 objfile_name (dwarf2_per_objfile->objfile));
23736 return build_error_marker_type (cu, die);
23737 }
23738 }
23739
23740 /* Load the DIEs associated with type unit PER_CU into memory. */
23741
23742 static void
23743 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23744 {
23745 struct signatured_type *sig_type;
23746
23747 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23748 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23749
23750 /* We have the per_cu, but we need the signatured_type.
23751 Fortunately this is an easy translation. */
23752 gdb_assert (per_cu->is_debug_types);
23753 sig_type = (struct signatured_type *) per_cu;
23754
23755 gdb_assert (per_cu->cu == NULL);
23756
23757 read_signatured_type (sig_type);
23758
23759 gdb_assert (per_cu->cu != NULL);
23760 }
23761
23762 /* die_reader_func for read_signatured_type.
23763 This is identical to load_full_comp_unit_reader,
23764 but is kept separate for now. */
23765
23766 static void
23767 read_signatured_type_reader (const struct die_reader_specs *reader,
23768 const gdb_byte *info_ptr,
23769 struct die_info *comp_unit_die,
23770 int has_children,
23771 void *data)
23772 {
23773 struct dwarf2_cu *cu = reader->cu;
23774
23775 gdb_assert (cu->die_hash == NULL);
23776 cu->die_hash =
23777 htab_create_alloc_ex (cu->header.length / 12,
23778 die_hash,
23779 die_eq,
23780 NULL,
23781 &cu->comp_unit_obstack,
23782 hashtab_obstack_allocate,
23783 dummy_obstack_deallocate);
23784
23785 if (has_children)
23786 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23787 &info_ptr, comp_unit_die);
23788 cu->dies = comp_unit_die;
23789 /* comp_unit_die is not stored in die_hash, no need. */
23790
23791 /* We try not to read any attributes in this function, because not
23792 all CUs needed for references have been loaded yet, and symbol
23793 table processing isn't initialized. But we have to set the CU language,
23794 or we won't be able to build types correctly.
23795 Similarly, if we do not read the producer, we can not apply
23796 producer-specific interpretation. */
23797 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23798 }
23799
23800 /* Read in a signatured type and build its CU and DIEs.
23801 If the type is a stub for the real type in a DWO file,
23802 read in the real type from the DWO file as well. */
23803
23804 static void
23805 read_signatured_type (struct signatured_type *sig_type)
23806 {
23807 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23808
23809 gdb_assert (per_cu->is_debug_types);
23810 gdb_assert (per_cu->cu == NULL);
23811
23812 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23813 read_signatured_type_reader, NULL);
23814 sig_type->per_cu.tu_read = 1;
23815 }
23816
23817 /* Decode simple location descriptions.
23818 Given a pointer to a dwarf block that defines a location, compute
23819 the location and return the value.
23820
23821 NOTE drow/2003-11-18: This function is called in two situations
23822 now: for the address of static or global variables (partial symbols
23823 only) and for offsets into structures which are expected to be
23824 (more or less) constant. The partial symbol case should go away,
23825 and only the constant case should remain. That will let this
23826 function complain more accurately. A few special modes are allowed
23827 without complaint for global variables (for instance, global
23828 register values and thread-local values).
23829
23830 A location description containing no operations indicates that the
23831 object is optimized out. The return value is 0 for that case.
23832 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23833 callers will only want a very basic result and this can become a
23834 complaint.
23835
23836 Note that stack[0] is unused except as a default error return. */
23837
23838 static CORE_ADDR
23839 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23840 {
23841 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23842 size_t i;
23843 size_t size = blk->size;
23844 const gdb_byte *data = blk->data;
23845 CORE_ADDR stack[64];
23846 int stacki;
23847 unsigned int bytes_read, unsnd;
23848 gdb_byte op;
23849
23850 i = 0;
23851 stacki = 0;
23852 stack[stacki] = 0;
23853 stack[++stacki] = 0;
23854
23855 while (i < size)
23856 {
23857 op = data[i++];
23858 switch (op)
23859 {
23860 case DW_OP_lit0:
23861 case DW_OP_lit1:
23862 case DW_OP_lit2:
23863 case DW_OP_lit3:
23864 case DW_OP_lit4:
23865 case DW_OP_lit5:
23866 case DW_OP_lit6:
23867 case DW_OP_lit7:
23868 case DW_OP_lit8:
23869 case DW_OP_lit9:
23870 case DW_OP_lit10:
23871 case DW_OP_lit11:
23872 case DW_OP_lit12:
23873 case DW_OP_lit13:
23874 case DW_OP_lit14:
23875 case DW_OP_lit15:
23876 case DW_OP_lit16:
23877 case DW_OP_lit17:
23878 case DW_OP_lit18:
23879 case DW_OP_lit19:
23880 case DW_OP_lit20:
23881 case DW_OP_lit21:
23882 case DW_OP_lit22:
23883 case DW_OP_lit23:
23884 case DW_OP_lit24:
23885 case DW_OP_lit25:
23886 case DW_OP_lit26:
23887 case DW_OP_lit27:
23888 case DW_OP_lit28:
23889 case DW_OP_lit29:
23890 case DW_OP_lit30:
23891 case DW_OP_lit31:
23892 stack[++stacki] = op - DW_OP_lit0;
23893 break;
23894
23895 case DW_OP_reg0:
23896 case DW_OP_reg1:
23897 case DW_OP_reg2:
23898 case DW_OP_reg3:
23899 case DW_OP_reg4:
23900 case DW_OP_reg5:
23901 case DW_OP_reg6:
23902 case DW_OP_reg7:
23903 case DW_OP_reg8:
23904 case DW_OP_reg9:
23905 case DW_OP_reg10:
23906 case DW_OP_reg11:
23907 case DW_OP_reg12:
23908 case DW_OP_reg13:
23909 case DW_OP_reg14:
23910 case DW_OP_reg15:
23911 case DW_OP_reg16:
23912 case DW_OP_reg17:
23913 case DW_OP_reg18:
23914 case DW_OP_reg19:
23915 case DW_OP_reg20:
23916 case DW_OP_reg21:
23917 case DW_OP_reg22:
23918 case DW_OP_reg23:
23919 case DW_OP_reg24:
23920 case DW_OP_reg25:
23921 case DW_OP_reg26:
23922 case DW_OP_reg27:
23923 case DW_OP_reg28:
23924 case DW_OP_reg29:
23925 case DW_OP_reg30:
23926 case DW_OP_reg31:
23927 stack[++stacki] = op - DW_OP_reg0;
23928 if (i < size)
23929 dwarf2_complex_location_expr_complaint ();
23930 break;
23931
23932 case DW_OP_regx:
23933 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23934 i += bytes_read;
23935 stack[++stacki] = unsnd;
23936 if (i < size)
23937 dwarf2_complex_location_expr_complaint ();
23938 break;
23939
23940 case DW_OP_addr:
23941 stack[++stacki] = read_address (objfile->obfd, &data[i],
23942 cu, &bytes_read);
23943 i += bytes_read;
23944 break;
23945
23946 case DW_OP_const1u:
23947 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23948 i += 1;
23949 break;
23950
23951 case DW_OP_const1s:
23952 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23953 i += 1;
23954 break;
23955
23956 case DW_OP_const2u:
23957 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23958 i += 2;
23959 break;
23960
23961 case DW_OP_const2s:
23962 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23963 i += 2;
23964 break;
23965
23966 case DW_OP_const4u:
23967 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23968 i += 4;
23969 break;
23970
23971 case DW_OP_const4s:
23972 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23973 i += 4;
23974 break;
23975
23976 case DW_OP_const8u:
23977 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23978 i += 8;
23979 break;
23980
23981 case DW_OP_constu:
23982 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23983 &bytes_read);
23984 i += bytes_read;
23985 break;
23986
23987 case DW_OP_consts:
23988 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23989 i += bytes_read;
23990 break;
23991
23992 case DW_OP_dup:
23993 stack[stacki + 1] = stack[stacki];
23994 stacki++;
23995 break;
23996
23997 case DW_OP_plus:
23998 stack[stacki - 1] += stack[stacki];
23999 stacki--;
24000 break;
24001
24002 case DW_OP_plus_uconst:
24003 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24004 &bytes_read);
24005 i += bytes_read;
24006 break;
24007
24008 case DW_OP_minus:
24009 stack[stacki - 1] -= stack[stacki];
24010 stacki--;
24011 break;
24012
24013 case DW_OP_deref:
24014 /* If we're not the last op, then we definitely can't encode
24015 this using GDB's address_class enum. This is valid for partial
24016 global symbols, although the variable's address will be bogus
24017 in the psymtab. */
24018 if (i < size)
24019 dwarf2_complex_location_expr_complaint ();
24020 break;
24021
24022 case DW_OP_GNU_push_tls_address:
24023 case DW_OP_form_tls_address:
24024 /* The top of the stack has the offset from the beginning
24025 of the thread control block at which the variable is located. */
24026 /* Nothing should follow this operator, so the top of stack would
24027 be returned. */
24028 /* This is valid for partial global symbols, but the variable's
24029 address will be bogus in the psymtab. Make it always at least
24030 non-zero to not look as a variable garbage collected by linker
24031 which have DW_OP_addr 0. */
24032 if (i < size)
24033 dwarf2_complex_location_expr_complaint ();
24034 stack[stacki]++;
24035 break;
24036
24037 case DW_OP_GNU_uninit:
24038 break;
24039
24040 case DW_OP_addrx:
24041 case DW_OP_GNU_addr_index:
24042 case DW_OP_GNU_const_index:
24043 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24044 &bytes_read);
24045 i += bytes_read;
24046 break;
24047
24048 default:
24049 {
24050 const char *name = get_DW_OP_name (op);
24051
24052 if (name)
24053 complaint (_("unsupported stack op: '%s'"),
24054 name);
24055 else
24056 complaint (_("unsupported stack op: '%02x'"),
24057 op);
24058 }
24059
24060 return (stack[stacki]);
24061 }
24062
24063 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24064 outside of the allocated space. Also enforce minimum>0. */
24065 if (stacki >= ARRAY_SIZE (stack) - 1)
24066 {
24067 complaint (_("location description stack overflow"));
24068 return 0;
24069 }
24070
24071 if (stacki <= 0)
24072 {
24073 complaint (_("location description stack underflow"));
24074 return 0;
24075 }
24076 }
24077 return (stack[stacki]);
24078 }
24079
24080 /* memory allocation interface */
24081
24082 static struct dwarf_block *
24083 dwarf_alloc_block (struct dwarf2_cu *cu)
24084 {
24085 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24086 }
24087
24088 static struct die_info *
24089 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24090 {
24091 struct die_info *die;
24092 size_t size = sizeof (struct die_info);
24093
24094 if (num_attrs > 1)
24095 size += (num_attrs - 1) * sizeof (struct attribute);
24096
24097 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24098 memset (die, 0, sizeof (struct die_info));
24099 return (die);
24100 }
24101
24102 \f
24103 /* Macro support. */
24104
24105 /* Return file name relative to the compilation directory of file number I in
24106 *LH's file name table. The result is allocated using xmalloc; the caller is
24107 responsible for freeing it. */
24108
24109 static char *
24110 file_file_name (int file, struct line_header *lh)
24111 {
24112 /* Is the file number a valid index into the line header's file name
24113 table? Remember that file numbers start with one, not zero. */
24114 if (1 <= file && file <= lh->file_names.size ())
24115 {
24116 const file_entry &fe = lh->file_names[file - 1];
24117
24118 if (!IS_ABSOLUTE_PATH (fe.name))
24119 {
24120 const char *dir = fe.include_dir (lh);
24121 if (dir != NULL)
24122 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24123 }
24124 return xstrdup (fe.name);
24125 }
24126 else
24127 {
24128 /* The compiler produced a bogus file number. We can at least
24129 record the macro definitions made in the file, even if we
24130 won't be able to find the file by name. */
24131 char fake_name[80];
24132
24133 xsnprintf (fake_name, sizeof (fake_name),
24134 "<bad macro file number %d>", file);
24135
24136 complaint (_("bad file number in macro information (%d)"),
24137 file);
24138
24139 return xstrdup (fake_name);
24140 }
24141 }
24142
24143 /* Return the full name of file number I in *LH's file name table.
24144 Use COMP_DIR as the name of the current directory of the
24145 compilation. The result is allocated using xmalloc; the caller is
24146 responsible for freeing it. */
24147 static char *
24148 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24149 {
24150 /* Is the file number a valid index into the line header's file name
24151 table? Remember that file numbers start with one, not zero. */
24152 if (1 <= file && file <= lh->file_names.size ())
24153 {
24154 char *relative = file_file_name (file, lh);
24155
24156 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24157 return relative;
24158 return reconcat (relative, comp_dir, SLASH_STRING,
24159 relative, (char *) NULL);
24160 }
24161 else
24162 return file_file_name (file, lh);
24163 }
24164
24165
24166 static struct macro_source_file *
24167 macro_start_file (struct dwarf2_cu *cu,
24168 int file, int line,
24169 struct macro_source_file *current_file,
24170 struct line_header *lh)
24171 {
24172 /* File name relative to the compilation directory of this source file. */
24173 char *file_name = file_file_name (file, lh);
24174
24175 if (! current_file)
24176 {
24177 /* Note: We don't create a macro table for this compilation unit
24178 at all until we actually get a filename. */
24179 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24180
24181 /* If we have no current file, then this must be the start_file
24182 directive for the compilation unit's main source file. */
24183 current_file = macro_set_main (macro_table, file_name);
24184 macro_define_special (macro_table);
24185 }
24186 else
24187 current_file = macro_include (current_file, line, file_name);
24188
24189 xfree (file_name);
24190
24191 return current_file;
24192 }
24193
24194 static const char *
24195 consume_improper_spaces (const char *p, const char *body)
24196 {
24197 if (*p == ' ')
24198 {
24199 complaint (_("macro definition contains spaces "
24200 "in formal argument list:\n`%s'"),
24201 body);
24202
24203 while (*p == ' ')
24204 p++;
24205 }
24206
24207 return p;
24208 }
24209
24210
24211 static void
24212 parse_macro_definition (struct macro_source_file *file, int line,
24213 const char *body)
24214 {
24215 const char *p;
24216
24217 /* The body string takes one of two forms. For object-like macro
24218 definitions, it should be:
24219
24220 <macro name> " " <definition>
24221
24222 For function-like macro definitions, it should be:
24223
24224 <macro name> "() " <definition>
24225 or
24226 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24227
24228 Spaces may appear only where explicitly indicated, and in the
24229 <definition>.
24230
24231 The Dwarf 2 spec says that an object-like macro's name is always
24232 followed by a space, but versions of GCC around March 2002 omit
24233 the space when the macro's definition is the empty string.
24234
24235 The Dwarf 2 spec says that there should be no spaces between the
24236 formal arguments in a function-like macro's formal argument list,
24237 but versions of GCC around March 2002 include spaces after the
24238 commas. */
24239
24240
24241 /* Find the extent of the macro name. The macro name is terminated
24242 by either a space or null character (for an object-like macro) or
24243 an opening paren (for a function-like macro). */
24244 for (p = body; *p; p++)
24245 if (*p == ' ' || *p == '(')
24246 break;
24247
24248 if (*p == ' ' || *p == '\0')
24249 {
24250 /* It's an object-like macro. */
24251 int name_len = p - body;
24252 char *name = savestring (body, name_len);
24253 const char *replacement;
24254
24255 if (*p == ' ')
24256 replacement = body + name_len + 1;
24257 else
24258 {
24259 dwarf2_macro_malformed_definition_complaint (body);
24260 replacement = body + name_len;
24261 }
24262
24263 macro_define_object (file, line, name, replacement);
24264
24265 xfree (name);
24266 }
24267 else if (*p == '(')
24268 {
24269 /* It's a function-like macro. */
24270 char *name = savestring (body, p - body);
24271 int argc = 0;
24272 int argv_size = 1;
24273 char **argv = XNEWVEC (char *, argv_size);
24274
24275 p++;
24276
24277 p = consume_improper_spaces (p, body);
24278
24279 /* Parse the formal argument list. */
24280 while (*p && *p != ')')
24281 {
24282 /* Find the extent of the current argument name. */
24283 const char *arg_start = p;
24284
24285 while (*p && *p != ',' && *p != ')' && *p != ' ')
24286 p++;
24287
24288 if (! *p || p == arg_start)
24289 dwarf2_macro_malformed_definition_complaint (body);
24290 else
24291 {
24292 /* Make sure argv has room for the new argument. */
24293 if (argc >= argv_size)
24294 {
24295 argv_size *= 2;
24296 argv = XRESIZEVEC (char *, argv, argv_size);
24297 }
24298
24299 argv[argc++] = savestring (arg_start, p - arg_start);
24300 }
24301
24302 p = consume_improper_spaces (p, body);
24303
24304 /* Consume the comma, if present. */
24305 if (*p == ',')
24306 {
24307 p++;
24308
24309 p = consume_improper_spaces (p, body);
24310 }
24311 }
24312
24313 if (*p == ')')
24314 {
24315 p++;
24316
24317 if (*p == ' ')
24318 /* Perfectly formed definition, no complaints. */
24319 macro_define_function (file, line, name,
24320 argc, (const char **) argv,
24321 p + 1);
24322 else if (*p == '\0')
24323 {
24324 /* Complain, but do define it. */
24325 dwarf2_macro_malformed_definition_complaint (body);
24326 macro_define_function (file, line, name,
24327 argc, (const char **) argv,
24328 p);
24329 }
24330 else
24331 /* Just complain. */
24332 dwarf2_macro_malformed_definition_complaint (body);
24333 }
24334 else
24335 /* Just complain. */
24336 dwarf2_macro_malformed_definition_complaint (body);
24337
24338 xfree (name);
24339 {
24340 int i;
24341
24342 for (i = 0; i < argc; i++)
24343 xfree (argv[i]);
24344 }
24345 xfree (argv);
24346 }
24347 else
24348 dwarf2_macro_malformed_definition_complaint (body);
24349 }
24350
24351 /* Skip some bytes from BYTES according to the form given in FORM.
24352 Returns the new pointer. */
24353
24354 static const gdb_byte *
24355 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24356 enum dwarf_form form,
24357 unsigned int offset_size,
24358 struct dwarf2_section_info *section)
24359 {
24360 unsigned int bytes_read;
24361
24362 switch (form)
24363 {
24364 case DW_FORM_data1:
24365 case DW_FORM_flag:
24366 ++bytes;
24367 break;
24368
24369 case DW_FORM_data2:
24370 bytes += 2;
24371 break;
24372
24373 case DW_FORM_data4:
24374 bytes += 4;
24375 break;
24376
24377 case DW_FORM_data8:
24378 bytes += 8;
24379 break;
24380
24381 case DW_FORM_data16:
24382 bytes += 16;
24383 break;
24384
24385 case DW_FORM_string:
24386 read_direct_string (abfd, bytes, &bytes_read);
24387 bytes += bytes_read;
24388 break;
24389
24390 case DW_FORM_sec_offset:
24391 case DW_FORM_strp:
24392 case DW_FORM_GNU_strp_alt:
24393 bytes += offset_size;
24394 break;
24395
24396 case DW_FORM_block:
24397 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24398 bytes += bytes_read;
24399 break;
24400
24401 case DW_FORM_block1:
24402 bytes += 1 + read_1_byte (abfd, bytes);
24403 break;
24404 case DW_FORM_block2:
24405 bytes += 2 + read_2_bytes (abfd, bytes);
24406 break;
24407 case DW_FORM_block4:
24408 bytes += 4 + read_4_bytes (abfd, bytes);
24409 break;
24410
24411 case DW_FORM_addrx:
24412 case DW_FORM_sdata:
24413 case DW_FORM_strx:
24414 case DW_FORM_udata:
24415 case DW_FORM_GNU_addr_index:
24416 case DW_FORM_GNU_str_index:
24417 bytes = gdb_skip_leb128 (bytes, buffer_end);
24418 if (bytes == NULL)
24419 {
24420 dwarf2_section_buffer_overflow_complaint (section);
24421 return NULL;
24422 }
24423 break;
24424
24425 case DW_FORM_implicit_const:
24426 break;
24427
24428 default:
24429 {
24430 complaint (_("invalid form 0x%x in `%s'"),
24431 form, get_section_name (section));
24432 return NULL;
24433 }
24434 }
24435
24436 return bytes;
24437 }
24438
24439 /* A helper for dwarf_decode_macros that handles skipping an unknown
24440 opcode. Returns an updated pointer to the macro data buffer; or,
24441 on error, issues a complaint and returns NULL. */
24442
24443 static const gdb_byte *
24444 skip_unknown_opcode (unsigned int opcode,
24445 const gdb_byte **opcode_definitions,
24446 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24447 bfd *abfd,
24448 unsigned int offset_size,
24449 struct dwarf2_section_info *section)
24450 {
24451 unsigned int bytes_read, i;
24452 unsigned long arg;
24453 const gdb_byte *defn;
24454
24455 if (opcode_definitions[opcode] == NULL)
24456 {
24457 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24458 opcode);
24459 return NULL;
24460 }
24461
24462 defn = opcode_definitions[opcode];
24463 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24464 defn += bytes_read;
24465
24466 for (i = 0; i < arg; ++i)
24467 {
24468 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24469 (enum dwarf_form) defn[i], offset_size,
24470 section);
24471 if (mac_ptr == NULL)
24472 {
24473 /* skip_form_bytes already issued the complaint. */
24474 return NULL;
24475 }
24476 }
24477
24478 return mac_ptr;
24479 }
24480
24481 /* A helper function which parses the header of a macro section.
24482 If the macro section is the extended (for now called "GNU") type,
24483 then this updates *OFFSET_SIZE. Returns a pointer to just after
24484 the header, or issues a complaint and returns NULL on error. */
24485
24486 static const gdb_byte *
24487 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24488 bfd *abfd,
24489 const gdb_byte *mac_ptr,
24490 unsigned int *offset_size,
24491 int section_is_gnu)
24492 {
24493 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24494
24495 if (section_is_gnu)
24496 {
24497 unsigned int version, flags;
24498
24499 version = read_2_bytes (abfd, mac_ptr);
24500 if (version != 4 && version != 5)
24501 {
24502 complaint (_("unrecognized version `%d' in .debug_macro section"),
24503 version);
24504 return NULL;
24505 }
24506 mac_ptr += 2;
24507
24508 flags = read_1_byte (abfd, mac_ptr);
24509 ++mac_ptr;
24510 *offset_size = (flags & 1) ? 8 : 4;
24511
24512 if ((flags & 2) != 0)
24513 /* We don't need the line table offset. */
24514 mac_ptr += *offset_size;
24515
24516 /* Vendor opcode descriptions. */
24517 if ((flags & 4) != 0)
24518 {
24519 unsigned int i, count;
24520
24521 count = read_1_byte (abfd, mac_ptr);
24522 ++mac_ptr;
24523 for (i = 0; i < count; ++i)
24524 {
24525 unsigned int opcode, bytes_read;
24526 unsigned long arg;
24527
24528 opcode = read_1_byte (abfd, mac_ptr);
24529 ++mac_ptr;
24530 opcode_definitions[opcode] = mac_ptr;
24531 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24532 mac_ptr += bytes_read;
24533 mac_ptr += arg;
24534 }
24535 }
24536 }
24537
24538 return mac_ptr;
24539 }
24540
24541 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24542 including DW_MACRO_import. */
24543
24544 static void
24545 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24546 bfd *abfd,
24547 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24548 struct macro_source_file *current_file,
24549 struct line_header *lh,
24550 struct dwarf2_section_info *section,
24551 int section_is_gnu, int section_is_dwz,
24552 unsigned int offset_size,
24553 htab_t include_hash)
24554 {
24555 struct dwarf2_per_objfile *dwarf2_per_objfile
24556 = cu->per_cu->dwarf2_per_objfile;
24557 struct objfile *objfile = dwarf2_per_objfile->objfile;
24558 enum dwarf_macro_record_type macinfo_type;
24559 int at_commandline;
24560 const gdb_byte *opcode_definitions[256];
24561
24562 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24563 &offset_size, section_is_gnu);
24564 if (mac_ptr == NULL)
24565 {
24566 /* We already issued a complaint. */
24567 return;
24568 }
24569
24570 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24571 GDB is still reading the definitions from command line. First
24572 DW_MACINFO_start_file will need to be ignored as it was already executed
24573 to create CURRENT_FILE for the main source holding also the command line
24574 definitions. On first met DW_MACINFO_start_file this flag is reset to
24575 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24576
24577 at_commandline = 1;
24578
24579 do
24580 {
24581 /* Do we at least have room for a macinfo type byte? */
24582 if (mac_ptr >= mac_end)
24583 {
24584 dwarf2_section_buffer_overflow_complaint (section);
24585 break;
24586 }
24587
24588 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24589 mac_ptr++;
24590
24591 /* Note that we rely on the fact that the corresponding GNU and
24592 DWARF constants are the same. */
24593 DIAGNOSTIC_PUSH
24594 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24595 switch (macinfo_type)
24596 {
24597 /* A zero macinfo type indicates the end of the macro
24598 information. */
24599 case 0:
24600 break;
24601
24602 case DW_MACRO_define:
24603 case DW_MACRO_undef:
24604 case DW_MACRO_define_strp:
24605 case DW_MACRO_undef_strp:
24606 case DW_MACRO_define_sup:
24607 case DW_MACRO_undef_sup:
24608 {
24609 unsigned int bytes_read;
24610 int line;
24611 const char *body;
24612 int is_define;
24613
24614 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24615 mac_ptr += bytes_read;
24616
24617 if (macinfo_type == DW_MACRO_define
24618 || macinfo_type == DW_MACRO_undef)
24619 {
24620 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24621 mac_ptr += bytes_read;
24622 }
24623 else
24624 {
24625 LONGEST str_offset;
24626
24627 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24628 mac_ptr += offset_size;
24629
24630 if (macinfo_type == DW_MACRO_define_sup
24631 || macinfo_type == DW_MACRO_undef_sup
24632 || section_is_dwz)
24633 {
24634 struct dwz_file *dwz
24635 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24636
24637 body = read_indirect_string_from_dwz (objfile,
24638 dwz, str_offset);
24639 }
24640 else
24641 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24642 abfd, str_offset);
24643 }
24644
24645 is_define = (macinfo_type == DW_MACRO_define
24646 || macinfo_type == DW_MACRO_define_strp
24647 || macinfo_type == DW_MACRO_define_sup);
24648 if (! current_file)
24649 {
24650 /* DWARF violation as no main source is present. */
24651 complaint (_("debug info with no main source gives macro %s "
24652 "on line %d: %s"),
24653 is_define ? _("definition") : _("undefinition"),
24654 line, body);
24655 break;
24656 }
24657 if ((line == 0 && !at_commandline)
24658 || (line != 0 && at_commandline))
24659 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24660 at_commandline ? _("command-line") : _("in-file"),
24661 is_define ? _("definition") : _("undefinition"),
24662 line == 0 ? _("zero") : _("non-zero"), line, body);
24663
24664 if (body == NULL)
24665 {
24666 /* Fedora's rpm-build's "debugedit" binary
24667 corrupted .debug_macro sections.
24668
24669 For more info, see
24670 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24671 complaint (_("debug info gives %s invalid macro %s "
24672 "without body (corrupted?) at line %d "
24673 "on file %s"),
24674 at_commandline ? _("command-line") : _("in-file"),
24675 is_define ? _("definition") : _("undefinition"),
24676 line, current_file->filename);
24677 }
24678 else if (is_define)
24679 parse_macro_definition (current_file, line, body);
24680 else
24681 {
24682 gdb_assert (macinfo_type == DW_MACRO_undef
24683 || macinfo_type == DW_MACRO_undef_strp
24684 || macinfo_type == DW_MACRO_undef_sup);
24685 macro_undef (current_file, line, body);
24686 }
24687 }
24688 break;
24689
24690 case DW_MACRO_start_file:
24691 {
24692 unsigned int bytes_read;
24693 int line, file;
24694
24695 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24696 mac_ptr += bytes_read;
24697 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24698 mac_ptr += bytes_read;
24699
24700 if ((line == 0 && !at_commandline)
24701 || (line != 0 && at_commandline))
24702 complaint (_("debug info gives source %d included "
24703 "from %s at %s line %d"),
24704 file, at_commandline ? _("command-line") : _("file"),
24705 line == 0 ? _("zero") : _("non-zero"), line);
24706
24707 if (at_commandline)
24708 {
24709 /* This DW_MACRO_start_file was executed in the
24710 pass one. */
24711 at_commandline = 0;
24712 }
24713 else
24714 current_file = macro_start_file (cu, file, line, current_file,
24715 lh);
24716 }
24717 break;
24718
24719 case DW_MACRO_end_file:
24720 if (! current_file)
24721 complaint (_("macro debug info has an unmatched "
24722 "`close_file' directive"));
24723 else
24724 {
24725 current_file = current_file->included_by;
24726 if (! current_file)
24727 {
24728 enum dwarf_macro_record_type next_type;
24729
24730 /* GCC circa March 2002 doesn't produce the zero
24731 type byte marking the end of the compilation
24732 unit. Complain if it's not there, but exit no
24733 matter what. */
24734
24735 /* Do we at least have room for a macinfo type byte? */
24736 if (mac_ptr >= mac_end)
24737 {
24738 dwarf2_section_buffer_overflow_complaint (section);
24739 return;
24740 }
24741
24742 /* We don't increment mac_ptr here, so this is just
24743 a look-ahead. */
24744 next_type
24745 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24746 mac_ptr);
24747 if (next_type != 0)
24748 complaint (_("no terminating 0-type entry for "
24749 "macros in `.debug_macinfo' section"));
24750
24751 return;
24752 }
24753 }
24754 break;
24755
24756 case DW_MACRO_import:
24757 case DW_MACRO_import_sup:
24758 {
24759 LONGEST offset;
24760 void **slot;
24761 bfd *include_bfd = abfd;
24762 struct dwarf2_section_info *include_section = section;
24763 const gdb_byte *include_mac_end = mac_end;
24764 int is_dwz = section_is_dwz;
24765 const gdb_byte *new_mac_ptr;
24766
24767 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24768 mac_ptr += offset_size;
24769
24770 if (macinfo_type == DW_MACRO_import_sup)
24771 {
24772 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24773
24774 dwarf2_read_section (objfile, &dwz->macro);
24775
24776 include_section = &dwz->macro;
24777 include_bfd = get_section_bfd_owner (include_section);
24778 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24779 is_dwz = 1;
24780 }
24781
24782 new_mac_ptr = include_section->buffer + offset;
24783 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24784
24785 if (*slot != NULL)
24786 {
24787 /* This has actually happened; see
24788 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24789 complaint (_("recursive DW_MACRO_import in "
24790 ".debug_macro section"));
24791 }
24792 else
24793 {
24794 *slot = (void *) new_mac_ptr;
24795
24796 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24797 include_mac_end, current_file, lh,
24798 section, section_is_gnu, is_dwz,
24799 offset_size, include_hash);
24800
24801 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24802 }
24803 }
24804 break;
24805
24806 case DW_MACINFO_vendor_ext:
24807 if (!section_is_gnu)
24808 {
24809 unsigned int bytes_read;
24810
24811 /* This reads the constant, but since we don't recognize
24812 any vendor extensions, we ignore it. */
24813 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24814 mac_ptr += bytes_read;
24815 read_direct_string (abfd, mac_ptr, &bytes_read);
24816 mac_ptr += bytes_read;
24817
24818 /* We don't recognize any vendor extensions. */
24819 break;
24820 }
24821 /* FALLTHROUGH */
24822
24823 default:
24824 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24825 mac_ptr, mac_end, abfd, offset_size,
24826 section);
24827 if (mac_ptr == NULL)
24828 return;
24829 break;
24830 }
24831 DIAGNOSTIC_POP
24832 } while (macinfo_type != 0);
24833 }
24834
24835 static void
24836 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24837 int section_is_gnu)
24838 {
24839 struct dwarf2_per_objfile *dwarf2_per_objfile
24840 = cu->per_cu->dwarf2_per_objfile;
24841 struct objfile *objfile = dwarf2_per_objfile->objfile;
24842 struct line_header *lh = cu->line_header;
24843 bfd *abfd;
24844 const gdb_byte *mac_ptr, *mac_end;
24845 struct macro_source_file *current_file = 0;
24846 enum dwarf_macro_record_type macinfo_type;
24847 unsigned int offset_size = cu->header.offset_size;
24848 const gdb_byte *opcode_definitions[256];
24849 void **slot;
24850 struct dwarf2_section_info *section;
24851 const char *section_name;
24852
24853 if (cu->dwo_unit != NULL)
24854 {
24855 if (section_is_gnu)
24856 {
24857 section = &cu->dwo_unit->dwo_file->sections.macro;
24858 section_name = ".debug_macro.dwo";
24859 }
24860 else
24861 {
24862 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24863 section_name = ".debug_macinfo.dwo";
24864 }
24865 }
24866 else
24867 {
24868 if (section_is_gnu)
24869 {
24870 section = &dwarf2_per_objfile->macro;
24871 section_name = ".debug_macro";
24872 }
24873 else
24874 {
24875 section = &dwarf2_per_objfile->macinfo;
24876 section_name = ".debug_macinfo";
24877 }
24878 }
24879
24880 dwarf2_read_section (objfile, section);
24881 if (section->buffer == NULL)
24882 {
24883 complaint (_("missing %s section"), section_name);
24884 return;
24885 }
24886 abfd = get_section_bfd_owner (section);
24887
24888 /* First pass: Find the name of the base filename.
24889 This filename is needed in order to process all macros whose definition
24890 (or undefinition) comes from the command line. These macros are defined
24891 before the first DW_MACINFO_start_file entry, and yet still need to be
24892 associated to the base file.
24893
24894 To determine the base file name, we scan the macro definitions until we
24895 reach the first DW_MACINFO_start_file entry. We then initialize
24896 CURRENT_FILE accordingly so that any macro definition found before the
24897 first DW_MACINFO_start_file can still be associated to the base file. */
24898
24899 mac_ptr = section->buffer + offset;
24900 mac_end = section->buffer + section->size;
24901
24902 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24903 &offset_size, section_is_gnu);
24904 if (mac_ptr == NULL)
24905 {
24906 /* We already issued a complaint. */
24907 return;
24908 }
24909
24910 do
24911 {
24912 /* Do we at least have room for a macinfo type byte? */
24913 if (mac_ptr >= mac_end)
24914 {
24915 /* Complaint is printed during the second pass as GDB will probably
24916 stop the first pass earlier upon finding
24917 DW_MACINFO_start_file. */
24918 break;
24919 }
24920
24921 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24922 mac_ptr++;
24923
24924 /* Note that we rely on the fact that the corresponding GNU and
24925 DWARF constants are the same. */
24926 DIAGNOSTIC_PUSH
24927 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24928 switch (macinfo_type)
24929 {
24930 /* A zero macinfo type indicates the end of the macro
24931 information. */
24932 case 0:
24933 break;
24934
24935 case DW_MACRO_define:
24936 case DW_MACRO_undef:
24937 /* Only skip the data by MAC_PTR. */
24938 {
24939 unsigned int bytes_read;
24940
24941 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24942 mac_ptr += bytes_read;
24943 read_direct_string (abfd, mac_ptr, &bytes_read);
24944 mac_ptr += bytes_read;
24945 }
24946 break;
24947
24948 case DW_MACRO_start_file:
24949 {
24950 unsigned int bytes_read;
24951 int line, file;
24952
24953 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24954 mac_ptr += bytes_read;
24955 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24956 mac_ptr += bytes_read;
24957
24958 current_file = macro_start_file (cu, file, line, current_file, lh);
24959 }
24960 break;
24961
24962 case DW_MACRO_end_file:
24963 /* No data to skip by MAC_PTR. */
24964 break;
24965
24966 case DW_MACRO_define_strp:
24967 case DW_MACRO_undef_strp:
24968 case DW_MACRO_define_sup:
24969 case DW_MACRO_undef_sup:
24970 {
24971 unsigned int bytes_read;
24972
24973 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24974 mac_ptr += bytes_read;
24975 mac_ptr += offset_size;
24976 }
24977 break;
24978
24979 case DW_MACRO_import:
24980 case DW_MACRO_import_sup:
24981 /* Note that, according to the spec, a transparent include
24982 chain cannot call DW_MACRO_start_file. So, we can just
24983 skip this opcode. */
24984 mac_ptr += offset_size;
24985 break;
24986
24987 case DW_MACINFO_vendor_ext:
24988 /* Only skip the data by MAC_PTR. */
24989 if (!section_is_gnu)
24990 {
24991 unsigned int bytes_read;
24992
24993 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24994 mac_ptr += bytes_read;
24995 read_direct_string (abfd, mac_ptr, &bytes_read);
24996 mac_ptr += bytes_read;
24997 }
24998 /* FALLTHROUGH */
24999
25000 default:
25001 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25002 mac_ptr, mac_end, abfd, offset_size,
25003 section);
25004 if (mac_ptr == NULL)
25005 return;
25006 break;
25007 }
25008 DIAGNOSTIC_POP
25009 } while (macinfo_type != 0 && current_file == NULL);
25010
25011 /* Second pass: Process all entries.
25012
25013 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25014 command-line macro definitions/undefinitions. This flag is unset when we
25015 reach the first DW_MACINFO_start_file entry. */
25016
25017 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25018 htab_eq_pointer,
25019 NULL, xcalloc, xfree));
25020 mac_ptr = section->buffer + offset;
25021 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25022 *slot = (void *) mac_ptr;
25023 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25024 current_file, lh, section,
25025 section_is_gnu, 0, offset_size,
25026 include_hash.get ());
25027 }
25028
25029 /* Check if the attribute's form is a DW_FORM_block*
25030 if so return true else false. */
25031
25032 static int
25033 attr_form_is_block (const struct attribute *attr)
25034 {
25035 return (attr == NULL ? 0 :
25036 attr->form == DW_FORM_block1
25037 || attr->form == DW_FORM_block2
25038 || attr->form == DW_FORM_block4
25039 || attr->form == DW_FORM_block
25040 || attr->form == DW_FORM_exprloc);
25041 }
25042
25043 /* Return non-zero if ATTR's value is a section offset --- classes
25044 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25045 You may use DW_UNSND (attr) to retrieve such offsets.
25046
25047 Section 7.5.4, "Attribute Encodings", explains that no attribute
25048 may have a value that belongs to more than one of these classes; it
25049 would be ambiguous if we did, because we use the same forms for all
25050 of them. */
25051
25052 static int
25053 attr_form_is_section_offset (const struct attribute *attr)
25054 {
25055 return (attr->form == DW_FORM_data4
25056 || attr->form == DW_FORM_data8
25057 || attr->form == DW_FORM_sec_offset);
25058 }
25059
25060 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25061 zero otherwise. When this function returns true, you can apply
25062 dwarf2_get_attr_constant_value to it.
25063
25064 However, note that for some attributes you must check
25065 attr_form_is_section_offset before using this test. DW_FORM_data4
25066 and DW_FORM_data8 are members of both the constant class, and of
25067 the classes that contain offsets into other debug sections
25068 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25069 that, if an attribute's can be either a constant or one of the
25070 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25071 taken as section offsets, not constants.
25072
25073 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25074 cannot handle that. */
25075
25076 static int
25077 attr_form_is_constant (const struct attribute *attr)
25078 {
25079 switch (attr->form)
25080 {
25081 case DW_FORM_sdata:
25082 case DW_FORM_udata:
25083 case DW_FORM_data1:
25084 case DW_FORM_data2:
25085 case DW_FORM_data4:
25086 case DW_FORM_data8:
25087 case DW_FORM_implicit_const:
25088 return 1;
25089 default:
25090 return 0;
25091 }
25092 }
25093
25094
25095 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25096 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25097
25098 static int
25099 attr_form_is_ref (const struct attribute *attr)
25100 {
25101 switch (attr->form)
25102 {
25103 case DW_FORM_ref_addr:
25104 case DW_FORM_ref1:
25105 case DW_FORM_ref2:
25106 case DW_FORM_ref4:
25107 case DW_FORM_ref8:
25108 case DW_FORM_ref_udata:
25109 case DW_FORM_GNU_ref_alt:
25110 return 1;
25111 default:
25112 return 0;
25113 }
25114 }
25115
25116 /* Return the .debug_loc section to use for CU.
25117 For DWO files use .debug_loc.dwo. */
25118
25119 static struct dwarf2_section_info *
25120 cu_debug_loc_section (struct dwarf2_cu *cu)
25121 {
25122 struct dwarf2_per_objfile *dwarf2_per_objfile
25123 = cu->per_cu->dwarf2_per_objfile;
25124
25125 if (cu->dwo_unit)
25126 {
25127 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25128
25129 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25130 }
25131 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25132 : &dwarf2_per_objfile->loc);
25133 }
25134
25135 /* A helper function that fills in a dwarf2_loclist_baton. */
25136
25137 static void
25138 fill_in_loclist_baton (struct dwarf2_cu *cu,
25139 struct dwarf2_loclist_baton *baton,
25140 const struct attribute *attr)
25141 {
25142 struct dwarf2_per_objfile *dwarf2_per_objfile
25143 = cu->per_cu->dwarf2_per_objfile;
25144 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25145
25146 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25147
25148 baton->per_cu = cu->per_cu;
25149 gdb_assert (baton->per_cu);
25150 /* We don't know how long the location list is, but make sure we
25151 don't run off the edge of the section. */
25152 baton->size = section->size - DW_UNSND (attr);
25153 baton->data = section->buffer + DW_UNSND (attr);
25154 baton->base_address = cu->base_address;
25155 baton->from_dwo = cu->dwo_unit != NULL;
25156 }
25157
25158 static void
25159 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25160 struct dwarf2_cu *cu, int is_block)
25161 {
25162 struct dwarf2_per_objfile *dwarf2_per_objfile
25163 = cu->per_cu->dwarf2_per_objfile;
25164 struct objfile *objfile = dwarf2_per_objfile->objfile;
25165 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25166
25167 if (attr_form_is_section_offset (attr)
25168 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25169 the section. If so, fall through to the complaint in the
25170 other branch. */
25171 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25172 {
25173 struct dwarf2_loclist_baton *baton;
25174
25175 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25176
25177 fill_in_loclist_baton (cu, baton, attr);
25178
25179 if (cu->base_known == 0)
25180 complaint (_("Location list used without "
25181 "specifying the CU base address."));
25182
25183 SYMBOL_ACLASS_INDEX (sym) = (is_block
25184 ? dwarf2_loclist_block_index
25185 : dwarf2_loclist_index);
25186 SYMBOL_LOCATION_BATON (sym) = baton;
25187 }
25188 else
25189 {
25190 struct dwarf2_locexpr_baton *baton;
25191
25192 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25193 baton->per_cu = cu->per_cu;
25194 gdb_assert (baton->per_cu);
25195
25196 if (attr_form_is_block (attr))
25197 {
25198 /* Note that we're just copying the block's data pointer
25199 here, not the actual data. We're still pointing into the
25200 info_buffer for SYM's objfile; right now we never release
25201 that buffer, but when we do clean up properly this may
25202 need to change. */
25203 baton->size = DW_BLOCK (attr)->size;
25204 baton->data = DW_BLOCK (attr)->data;
25205 }
25206 else
25207 {
25208 dwarf2_invalid_attrib_class_complaint ("location description",
25209 SYMBOL_NATURAL_NAME (sym));
25210 baton->size = 0;
25211 }
25212
25213 SYMBOL_ACLASS_INDEX (sym) = (is_block
25214 ? dwarf2_locexpr_block_index
25215 : dwarf2_locexpr_index);
25216 SYMBOL_LOCATION_BATON (sym) = baton;
25217 }
25218 }
25219
25220 /* Return the OBJFILE associated with the compilation unit CU. If CU
25221 came from a separate debuginfo file, then the master objfile is
25222 returned. */
25223
25224 struct objfile *
25225 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25226 {
25227 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25228
25229 /* Return the master objfile, so that we can report and look up the
25230 correct file containing this variable. */
25231 if (objfile->separate_debug_objfile_backlink)
25232 objfile = objfile->separate_debug_objfile_backlink;
25233
25234 return objfile;
25235 }
25236
25237 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25238 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25239 CU_HEADERP first. */
25240
25241 static const struct comp_unit_head *
25242 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25243 struct dwarf2_per_cu_data *per_cu)
25244 {
25245 const gdb_byte *info_ptr;
25246
25247 if (per_cu->cu)
25248 return &per_cu->cu->header;
25249
25250 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25251
25252 memset (cu_headerp, 0, sizeof (*cu_headerp));
25253 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25254 rcuh_kind::COMPILE);
25255
25256 return cu_headerp;
25257 }
25258
25259 /* Return the address size given in the compilation unit header for CU. */
25260
25261 int
25262 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25263 {
25264 struct comp_unit_head cu_header_local;
25265 const struct comp_unit_head *cu_headerp;
25266
25267 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25268
25269 return cu_headerp->addr_size;
25270 }
25271
25272 /* Return the offset size given in the compilation unit header for CU. */
25273
25274 int
25275 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25276 {
25277 struct comp_unit_head cu_header_local;
25278 const struct comp_unit_head *cu_headerp;
25279
25280 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25281
25282 return cu_headerp->offset_size;
25283 }
25284
25285 /* See its dwarf2loc.h declaration. */
25286
25287 int
25288 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25289 {
25290 struct comp_unit_head cu_header_local;
25291 const struct comp_unit_head *cu_headerp;
25292
25293 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25294
25295 if (cu_headerp->version == 2)
25296 return cu_headerp->addr_size;
25297 else
25298 return cu_headerp->offset_size;
25299 }
25300
25301 /* Return the text offset of the CU. The returned offset comes from
25302 this CU's objfile. If this objfile came from a separate debuginfo
25303 file, then the offset may be different from the corresponding
25304 offset in the parent objfile. */
25305
25306 CORE_ADDR
25307 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25308 {
25309 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25310
25311 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25312 }
25313
25314 /* Return a type that is a generic pointer type, the size of which matches
25315 the address size given in the compilation unit header for PER_CU. */
25316 static struct type *
25317 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25318 {
25319 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25320 struct type *void_type = objfile_type (objfile)->builtin_void;
25321 struct type *addr_type = lookup_pointer_type (void_type);
25322 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25323
25324 if (TYPE_LENGTH (addr_type) == addr_size)
25325 return addr_type;
25326
25327 addr_type
25328 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25329 return addr_type;
25330 }
25331
25332 /* Return DWARF version number of PER_CU. */
25333
25334 short
25335 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25336 {
25337 return per_cu->dwarf_version;
25338 }
25339
25340 /* Locate the .debug_info compilation unit from CU's objfile which contains
25341 the DIE at OFFSET. Raises an error on failure. */
25342
25343 static struct dwarf2_per_cu_data *
25344 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25345 unsigned int offset_in_dwz,
25346 struct dwarf2_per_objfile *dwarf2_per_objfile)
25347 {
25348 struct dwarf2_per_cu_data *this_cu;
25349 int low, high;
25350
25351 low = 0;
25352 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25353 while (high > low)
25354 {
25355 struct dwarf2_per_cu_data *mid_cu;
25356 int mid = low + (high - low) / 2;
25357
25358 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25359 if (mid_cu->is_dwz > offset_in_dwz
25360 || (mid_cu->is_dwz == offset_in_dwz
25361 && mid_cu->sect_off + mid_cu->length >= sect_off))
25362 high = mid;
25363 else
25364 low = mid + 1;
25365 }
25366 gdb_assert (low == high);
25367 this_cu = dwarf2_per_objfile->all_comp_units[low];
25368 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25369 {
25370 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25371 error (_("Dwarf Error: could not find partial DIE containing "
25372 "offset %s [in module %s]"),
25373 sect_offset_str (sect_off),
25374 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25375
25376 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25377 <= sect_off);
25378 return dwarf2_per_objfile->all_comp_units[low-1];
25379 }
25380 else
25381 {
25382 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25383 && sect_off >= this_cu->sect_off + this_cu->length)
25384 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25385 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25386 return this_cu;
25387 }
25388 }
25389
25390 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25391
25392 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25393 : per_cu (per_cu_),
25394 mark (false),
25395 has_loclist (false),
25396 checked_producer (false),
25397 producer_is_gxx_lt_4_6 (false),
25398 producer_is_gcc_lt_4_3 (false),
25399 producer_is_icc (false),
25400 producer_is_icc_lt_14 (false),
25401 producer_is_codewarrior (false),
25402 processing_has_namespace_info (false)
25403 {
25404 per_cu->cu = this;
25405 }
25406
25407 /* Destroy a dwarf2_cu. */
25408
25409 dwarf2_cu::~dwarf2_cu ()
25410 {
25411 per_cu->cu = NULL;
25412 }
25413
25414 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25415
25416 static void
25417 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25418 enum language pretend_language)
25419 {
25420 struct attribute *attr;
25421
25422 /* Set the language we're debugging. */
25423 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25424 if (attr)
25425 set_cu_language (DW_UNSND (attr), cu);
25426 else
25427 {
25428 cu->language = pretend_language;
25429 cu->language_defn = language_def (cu->language);
25430 }
25431
25432 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25433 }
25434
25435 /* Increase the age counter on each cached compilation unit, and free
25436 any that are too old. */
25437
25438 static void
25439 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25440 {
25441 struct dwarf2_per_cu_data *per_cu, **last_chain;
25442
25443 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25444 per_cu = dwarf2_per_objfile->read_in_chain;
25445 while (per_cu != NULL)
25446 {
25447 per_cu->cu->last_used ++;
25448 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25449 dwarf2_mark (per_cu->cu);
25450 per_cu = per_cu->cu->read_in_chain;
25451 }
25452
25453 per_cu = dwarf2_per_objfile->read_in_chain;
25454 last_chain = &dwarf2_per_objfile->read_in_chain;
25455 while (per_cu != NULL)
25456 {
25457 struct dwarf2_per_cu_data *next_cu;
25458
25459 next_cu = per_cu->cu->read_in_chain;
25460
25461 if (!per_cu->cu->mark)
25462 {
25463 delete per_cu->cu;
25464 *last_chain = next_cu;
25465 }
25466 else
25467 last_chain = &per_cu->cu->read_in_chain;
25468
25469 per_cu = next_cu;
25470 }
25471 }
25472
25473 /* Remove a single compilation unit from the cache. */
25474
25475 static void
25476 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25477 {
25478 struct dwarf2_per_cu_data *per_cu, **last_chain;
25479 struct dwarf2_per_objfile *dwarf2_per_objfile
25480 = target_per_cu->dwarf2_per_objfile;
25481
25482 per_cu = dwarf2_per_objfile->read_in_chain;
25483 last_chain = &dwarf2_per_objfile->read_in_chain;
25484 while (per_cu != NULL)
25485 {
25486 struct dwarf2_per_cu_data *next_cu;
25487
25488 next_cu = per_cu->cu->read_in_chain;
25489
25490 if (per_cu == target_per_cu)
25491 {
25492 delete per_cu->cu;
25493 per_cu->cu = NULL;
25494 *last_chain = next_cu;
25495 break;
25496 }
25497 else
25498 last_chain = &per_cu->cu->read_in_chain;
25499
25500 per_cu = next_cu;
25501 }
25502 }
25503
25504 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25505 We store these in a hash table separate from the DIEs, and preserve them
25506 when the DIEs are flushed out of cache.
25507
25508 The CU "per_cu" pointer is needed because offset alone is not enough to
25509 uniquely identify the type. A file may have multiple .debug_types sections,
25510 or the type may come from a DWO file. Furthermore, while it's more logical
25511 to use per_cu->section+offset, with Fission the section with the data is in
25512 the DWO file but we don't know that section at the point we need it.
25513 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25514 because we can enter the lookup routine, get_die_type_at_offset, from
25515 outside this file, and thus won't necessarily have PER_CU->cu.
25516 Fortunately, PER_CU is stable for the life of the objfile. */
25517
25518 struct dwarf2_per_cu_offset_and_type
25519 {
25520 const struct dwarf2_per_cu_data *per_cu;
25521 sect_offset sect_off;
25522 struct type *type;
25523 };
25524
25525 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25526
25527 static hashval_t
25528 per_cu_offset_and_type_hash (const void *item)
25529 {
25530 const struct dwarf2_per_cu_offset_and_type *ofs
25531 = (const struct dwarf2_per_cu_offset_and_type *) item;
25532
25533 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25534 }
25535
25536 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25537
25538 static int
25539 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25540 {
25541 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25542 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25543 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25544 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25545
25546 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25547 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25548 }
25549
25550 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25551 table if necessary. For convenience, return TYPE.
25552
25553 The DIEs reading must have careful ordering to:
25554 * Not cause infite loops trying to read in DIEs as a prerequisite for
25555 reading current DIE.
25556 * Not trying to dereference contents of still incompletely read in types
25557 while reading in other DIEs.
25558 * Enable referencing still incompletely read in types just by a pointer to
25559 the type without accessing its fields.
25560
25561 Therefore caller should follow these rules:
25562 * Try to fetch any prerequisite types we may need to build this DIE type
25563 before building the type and calling set_die_type.
25564 * After building type call set_die_type for current DIE as soon as
25565 possible before fetching more types to complete the current type.
25566 * Make the type as complete as possible before fetching more types. */
25567
25568 static struct type *
25569 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25570 {
25571 struct dwarf2_per_objfile *dwarf2_per_objfile
25572 = cu->per_cu->dwarf2_per_objfile;
25573 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25574 struct objfile *objfile = dwarf2_per_objfile->objfile;
25575 struct attribute *attr;
25576 struct dynamic_prop prop;
25577
25578 /* For Ada types, make sure that the gnat-specific data is always
25579 initialized (if not already set). There are a few types where
25580 we should not be doing so, because the type-specific area is
25581 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25582 where the type-specific area is used to store the floatformat).
25583 But this is not a problem, because the gnat-specific information
25584 is actually not needed for these types. */
25585 if (need_gnat_info (cu)
25586 && TYPE_CODE (type) != TYPE_CODE_FUNC
25587 && TYPE_CODE (type) != TYPE_CODE_FLT
25588 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25589 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25590 && TYPE_CODE (type) != TYPE_CODE_METHOD
25591 && !HAVE_GNAT_AUX_INFO (type))
25592 INIT_GNAT_SPECIFIC (type);
25593
25594 /* Read DW_AT_allocated and set in type. */
25595 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25596 if (attr_form_is_block (attr))
25597 {
25598 struct type *prop_type
25599 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25600 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25601 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25602 }
25603 else if (attr != NULL)
25604 {
25605 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25606 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25607 sect_offset_str (die->sect_off));
25608 }
25609
25610 /* Read DW_AT_associated and set in type. */
25611 attr = dwarf2_attr (die, DW_AT_associated, cu);
25612 if (attr_form_is_block (attr))
25613 {
25614 struct type *prop_type
25615 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25616 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25617 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25618 }
25619 else if (attr != NULL)
25620 {
25621 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25622 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25623 sect_offset_str (die->sect_off));
25624 }
25625
25626 /* Read DW_AT_data_location and set in type. */
25627 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25628 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25629 dwarf2_per_cu_addr_type (cu->per_cu)))
25630 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25631
25632 if (dwarf2_per_objfile->die_type_hash == NULL)
25633 {
25634 dwarf2_per_objfile->die_type_hash =
25635 htab_create_alloc_ex (127,
25636 per_cu_offset_and_type_hash,
25637 per_cu_offset_and_type_eq,
25638 NULL,
25639 &objfile->objfile_obstack,
25640 hashtab_obstack_allocate,
25641 dummy_obstack_deallocate);
25642 }
25643
25644 ofs.per_cu = cu->per_cu;
25645 ofs.sect_off = die->sect_off;
25646 ofs.type = type;
25647 slot = (struct dwarf2_per_cu_offset_and_type **)
25648 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25649 if (*slot)
25650 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25651 sect_offset_str (die->sect_off));
25652 *slot = XOBNEW (&objfile->objfile_obstack,
25653 struct dwarf2_per_cu_offset_and_type);
25654 **slot = ofs;
25655 return type;
25656 }
25657
25658 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25659 or return NULL if the die does not have a saved type. */
25660
25661 static struct type *
25662 get_die_type_at_offset (sect_offset sect_off,
25663 struct dwarf2_per_cu_data *per_cu)
25664 {
25665 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25666 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25667
25668 if (dwarf2_per_objfile->die_type_hash == NULL)
25669 return NULL;
25670
25671 ofs.per_cu = per_cu;
25672 ofs.sect_off = sect_off;
25673 slot = ((struct dwarf2_per_cu_offset_and_type *)
25674 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25675 if (slot)
25676 return slot->type;
25677 else
25678 return NULL;
25679 }
25680
25681 /* Look up the type for DIE in CU in die_type_hash,
25682 or return NULL if DIE does not have a saved type. */
25683
25684 static struct type *
25685 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25686 {
25687 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25688 }
25689
25690 /* Add a dependence relationship from CU to REF_PER_CU. */
25691
25692 static void
25693 dwarf2_add_dependence (struct dwarf2_cu *cu,
25694 struct dwarf2_per_cu_data *ref_per_cu)
25695 {
25696 void **slot;
25697
25698 if (cu->dependencies == NULL)
25699 cu->dependencies
25700 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25701 NULL, &cu->comp_unit_obstack,
25702 hashtab_obstack_allocate,
25703 dummy_obstack_deallocate);
25704
25705 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25706 if (*slot == NULL)
25707 *slot = ref_per_cu;
25708 }
25709
25710 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25711 Set the mark field in every compilation unit in the
25712 cache that we must keep because we are keeping CU. */
25713
25714 static int
25715 dwarf2_mark_helper (void **slot, void *data)
25716 {
25717 struct dwarf2_per_cu_data *per_cu;
25718
25719 per_cu = (struct dwarf2_per_cu_data *) *slot;
25720
25721 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25722 reading of the chain. As such dependencies remain valid it is not much
25723 useful to track and undo them during QUIT cleanups. */
25724 if (per_cu->cu == NULL)
25725 return 1;
25726
25727 if (per_cu->cu->mark)
25728 return 1;
25729 per_cu->cu->mark = true;
25730
25731 if (per_cu->cu->dependencies != NULL)
25732 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25733
25734 return 1;
25735 }
25736
25737 /* Set the mark field in CU and in every other compilation unit in the
25738 cache that we must keep because we are keeping CU. */
25739
25740 static void
25741 dwarf2_mark (struct dwarf2_cu *cu)
25742 {
25743 if (cu->mark)
25744 return;
25745 cu->mark = true;
25746 if (cu->dependencies != NULL)
25747 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25748 }
25749
25750 static void
25751 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25752 {
25753 while (per_cu)
25754 {
25755 per_cu->cu->mark = false;
25756 per_cu = per_cu->cu->read_in_chain;
25757 }
25758 }
25759
25760 /* Trivial hash function for partial_die_info: the hash value of a DIE
25761 is its offset in .debug_info for this objfile. */
25762
25763 static hashval_t
25764 partial_die_hash (const void *item)
25765 {
25766 const struct partial_die_info *part_die
25767 = (const struct partial_die_info *) item;
25768
25769 return to_underlying (part_die->sect_off);
25770 }
25771
25772 /* Trivial comparison function for partial_die_info structures: two DIEs
25773 are equal if they have the same offset. */
25774
25775 static int
25776 partial_die_eq (const void *item_lhs, const void *item_rhs)
25777 {
25778 const struct partial_die_info *part_die_lhs
25779 = (const struct partial_die_info *) item_lhs;
25780 const struct partial_die_info *part_die_rhs
25781 = (const struct partial_die_info *) item_rhs;
25782
25783 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25784 }
25785
25786 struct cmd_list_element *set_dwarf_cmdlist;
25787 struct cmd_list_element *show_dwarf_cmdlist;
25788
25789 static void
25790 set_dwarf_cmd (const char *args, int from_tty)
25791 {
25792 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25793 gdb_stdout);
25794 }
25795
25796 static void
25797 show_dwarf_cmd (const char *args, int from_tty)
25798 {
25799 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25800 }
25801
25802 int dwarf_always_disassemble;
25803
25804 static void
25805 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25806 struct cmd_list_element *c, const char *value)
25807 {
25808 fprintf_filtered (file,
25809 _("Whether to always disassemble "
25810 "DWARF expressions is %s.\n"),
25811 value);
25812 }
25813
25814 static void
25815 show_check_physname (struct ui_file *file, int from_tty,
25816 struct cmd_list_element *c, const char *value)
25817 {
25818 fprintf_filtered (file,
25819 _("Whether to check \"physname\" is %s.\n"),
25820 value);
25821 }
25822
25823 void
25824 _initialize_dwarf2_read (void)
25825 {
25826 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25827 Set DWARF specific variables.\n\
25828 Configure DWARF variables such as the cache size."),
25829 &set_dwarf_cmdlist, "maintenance set dwarf ",
25830 0/*allow-unknown*/, &maintenance_set_cmdlist);
25831
25832 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25833 Show DWARF specific variables.\n\
25834 Show DWARF variables such as the cache size."),
25835 &show_dwarf_cmdlist, "maintenance show dwarf ",
25836 0/*allow-unknown*/, &maintenance_show_cmdlist);
25837
25838 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25839 &dwarf_max_cache_age, _("\
25840 Set the upper bound on the age of cached DWARF compilation units."), _("\
25841 Show the upper bound on the age of cached DWARF compilation units."), _("\
25842 A higher limit means that cached compilation units will be stored\n\
25843 in memory longer, and more total memory will be used. Zero disables\n\
25844 caching, which can slow down startup."),
25845 NULL,
25846 show_dwarf_max_cache_age,
25847 &set_dwarf_cmdlist,
25848 &show_dwarf_cmdlist);
25849
25850 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25851 &dwarf_always_disassemble, _("\
25852 Set whether `info address' always disassembles DWARF expressions."), _("\
25853 Show whether `info address' always disassembles DWARF expressions."), _("\
25854 When enabled, DWARF expressions are always printed in an assembly-like\n\
25855 syntax. When disabled, expressions will be printed in a more\n\
25856 conversational style, when possible."),
25857 NULL,
25858 show_dwarf_always_disassemble,
25859 &set_dwarf_cmdlist,
25860 &show_dwarf_cmdlist);
25861
25862 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25863 Set debugging of the DWARF reader."), _("\
25864 Show debugging of the DWARF reader."), _("\
25865 When enabled (non-zero), debugging messages are printed during DWARF\n\
25866 reading and symtab expansion. A value of 1 (one) provides basic\n\
25867 information. A value greater than 1 provides more verbose information."),
25868 NULL,
25869 NULL,
25870 &setdebuglist, &showdebuglist);
25871
25872 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25873 Set debugging of the DWARF DIE reader."), _("\
25874 Show debugging of the DWARF DIE reader."), _("\
25875 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25876 The value is the maximum depth to print."),
25877 NULL,
25878 NULL,
25879 &setdebuglist, &showdebuglist);
25880
25881 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25882 Set debugging of the dwarf line reader."), _("\
25883 Show debugging of the dwarf line reader."), _("\
25884 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25885 A value of 1 (one) provides basic information.\n\
25886 A value greater than 1 provides more verbose information."),
25887 NULL,
25888 NULL,
25889 &setdebuglist, &showdebuglist);
25890
25891 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25892 Set cross-checking of \"physname\" code against demangler."), _("\
25893 Show cross-checking of \"physname\" code against demangler."), _("\
25894 When enabled, GDB's internal \"physname\" code is checked against\n\
25895 the demangler."),
25896 NULL, show_check_physname,
25897 &setdebuglist, &showdebuglist);
25898
25899 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25900 no_class, &use_deprecated_index_sections, _("\
25901 Set whether to use deprecated gdb_index sections."), _("\
25902 Show whether to use deprecated gdb_index sections."), _("\
25903 When enabled, deprecated .gdb_index sections are used anyway.\n\
25904 Normally they are ignored either because of a missing feature or\n\
25905 performance issue.\n\
25906 Warning: This option must be enabled before gdb reads the file."),
25907 NULL,
25908 NULL,
25909 &setlist, &showlist);
25910
25911 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25912 &dwarf2_locexpr_funcs);
25913 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25914 &dwarf2_loclist_funcs);
25915
25916 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25917 &dwarf2_block_frame_base_locexpr_funcs);
25918 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25919 &dwarf2_block_frame_base_loclist_funcs);
25920
25921 #if GDB_SELF_TEST
25922 selftests::register_test ("dw2_expand_symtabs_matching",
25923 selftests::dw2_expand_symtabs_matching::run_test);
25924 #endif
25925 }
This page took 0.5876 seconds and 5 git commands to generate.