Remove some unneeded psymtab initializations
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* The header of the compilation unit. */
425 struct comp_unit_head header {};
426
427 /* Base address of this compilation unit. */
428 CORE_ADDR base_address = 0;
429
430 /* Non-zero if base_address has been set. */
431 int base_known = 0;
432
433 /* The language we are debugging. */
434 enum language language = language_unknown;
435 const struct language_defn *language_defn = nullptr;
436
437 const char *producer = nullptr;
438
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> builder;
442
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope = nullptr;
453
454 /* Hash table holding all the loaded partial DIEs
455 with partial_die->offset.SECT_OFF as hash. */
456 htab_t partial_dies = nullptr;
457
458 /* Storage for things with the same lifetime as this read-in compilation
459 unit, including partial DIEs. */
460 auto_obstack comp_unit_obstack;
461
462 /* When multiple dwarf2_cu structures are living in memory, this field
463 chains them all together, so that they can be released efficiently.
464 We will probably also want a generation counter so that most-recently-used
465 compilation units are cached... */
466 struct dwarf2_per_cu_data *read_in_chain = nullptr;
467
468 /* Backlink to our per_cu entry. */
469 struct dwarf2_per_cu_data *per_cu;
470
471 /* How many compilation units ago was this CU last referenced? */
472 int last_used = 0;
473
474 /* A hash table of DIE cu_offset for following references with
475 die_info->offset.sect_off as hash. */
476 htab_t die_hash = nullptr;
477
478 /* Full DIEs if read in. */
479 struct die_info *dies = nullptr;
480
481 /* A set of pointers to dwarf2_per_cu_data objects for compilation
482 units referenced by this one. Only set during full symbol processing;
483 partial symbol tables do not have dependencies. */
484 htab_t dependencies = nullptr;
485
486 /* Header data from the line table, during full symbol processing. */
487 struct line_header *line_header = nullptr;
488 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
489 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
490 this is the DW_TAG_compile_unit die for this CU. We'll hold on
491 to the line header as long as this DIE is being processed. See
492 process_die_scope. */
493 die_info *line_header_die_owner = nullptr;
494
495 /* A list of methods which need to have physnames computed
496 after all type information has been read. */
497 std::vector<delayed_method_info> method_list;
498
499 /* To be copied to symtab->call_site_htab. */
500 htab_t call_site_htab = nullptr;
501
502 /* Non-NULL if this CU came from a DWO file.
503 There is an invariant here that is important to remember:
504 Except for attributes copied from the top level DIE in the "main"
505 (or "stub") file in preparation for reading the DWO file
506 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
507 Either there isn't a DWO file (in which case this is NULL and the point
508 is moot), or there is and either we're not going to read it (in which
509 case this is NULL) or there is and we are reading it (in which case this
510 is non-NULL). */
511 struct dwo_unit *dwo_unit = nullptr;
512
513 /* The DW_AT_addr_base attribute if present, zero otherwise
514 (zero is a valid value though).
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 ULONGEST addr_base = 0;
517
518 /* The DW_AT_ranges_base attribute if present, zero otherwise
519 (zero is a valid value though).
520 Note this value comes from the Fission stub CU/TU's DIE.
521 Also note that the value is zero in the non-DWO case so this value can
522 be used without needing to know whether DWO files are in use or not.
523 N.B. This does not apply to DW_AT_ranges appearing in
524 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
525 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
526 DW_AT_ranges_base *would* have to be applied, and we'd have to care
527 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
528 ULONGEST ranges_base = 0;
529
530 /* When reading debug info generated by older versions of rustc, we
531 have to rewrite some union types to be struct types with a
532 variant part. This rewriting must be done after the CU is fully
533 read in, because otherwise at the point of rewriting some struct
534 type might not have been fully processed. So, we keep a list of
535 all such types here and process them after expansion. */
536 std::vector<struct type *> rust_unions;
537
538 /* Mark used when releasing cached dies. */
539 bool mark : 1;
540
541 /* This CU references .debug_loc. See the symtab->locations_valid field.
542 This test is imperfect as there may exist optimized debug code not using
543 any location list and still facing inlining issues if handled as
544 unoptimized code. For a future better test see GCC PR other/32998. */
545 bool has_loclist : 1;
546
547 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
548 if all the producer_is_* fields are valid. This information is cached
549 because profiling CU expansion showed excessive time spent in
550 producer_is_gxx_lt_4_6. */
551 bool checked_producer : 1;
552 bool producer_is_gxx_lt_4_6 : 1;
553 bool producer_is_gcc_lt_4_3 : 1;
554 bool producer_is_icc : 1;
555 bool producer_is_icc_lt_14 : 1;
556 bool producer_is_codewarrior : 1;
557
558 /* When true, the file that we're processing is known to have
559 debugging info for C++ namespaces. GCC 3.3.x did not produce
560 this information, but later versions do. */
561
562 bool processing_has_namespace_info : 1;
563
564 struct partial_die_info *find_partial_die (sect_offset sect_off);
565 };
566
567 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
568 This includes type_unit_group and quick_file_names. */
569
570 struct stmt_list_hash
571 {
572 /* The DWO unit this table is from or NULL if there is none. */
573 struct dwo_unit *dwo_unit;
574
575 /* Offset in .debug_line or .debug_line.dwo. */
576 sect_offset line_sect_off;
577 };
578
579 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
580 an object of this type. */
581
582 struct type_unit_group
583 {
584 /* dwarf2read.c's main "handle" on a TU symtab.
585 To simplify things we create an artificial CU that "includes" all the
586 type units using this stmt_list so that the rest of the code still has
587 a "per_cu" handle on the symtab.
588 This PER_CU is recognized by having no section. */
589 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
590 struct dwarf2_per_cu_data per_cu;
591
592 /* The TUs that share this DW_AT_stmt_list entry.
593 This is added to while parsing type units to build partial symtabs,
594 and is deleted afterwards and not used again. */
595 VEC (sig_type_ptr) *tus;
596
597 /* The compunit symtab.
598 Type units in a group needn't all be defined in the same source file,
599 so we create an essentially anonymous symtab as the compunit symtab. */
600 struct compunit_symtab *compunit_symtab;
601
602 /* The data used to construct the hash key. */
603 struct stmt_list_hash hash;
604
605 /* The number of symtabs from the line header.
606 The value here must match line_header.num_file_names. */
607 unsigned int num_symtabs;
608
609 /* The symbol tables for this TU (obtained from the files listed in
610 DW_AT_stmt_list).
611 WARNING: The order of entries here must match the order of entries
612 in the line header. After the first TU using this type_unit_group, the
613 line header for the subsequent TUs is recreated from this. This is done
614 because we need to use the same symtabs for each TU using the same
615 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
616 there's no guarantee the line header doesn't have duplicate entries. */
617 struct symtab **symtabs;
618 };
619
620 /* These sections are what may appear in a (real or virtual) DWO file. */
621
622 struct dwo_sections
623 {
624 struct dwarf2_section_info abbrev;
625 struct dwarf2_section_info line;
626 struct dwarf2_section_info loc;
627 struct dwarf2_section_info loclists;
628 struct dwarf2_section_info macinfo;
629 struct dwarf2_section_info macro;
630 struct dwarf2_section_info str;
631 struct dwarf2_section_info str_offsets;
632 /* In the case of a virtual DWO file, these two are unused. */
633 struct dwarf2_section_info info;
634 VEC (dwarf2_section_info_def) *types;
635 };
636
637 /* CUs/TUs in DWP/DWO files. */
638
639 struct dwo_unit
640 {
641 /* Backlink to the containing struct dwo_file. */
642 struct dwo_file *dwo_file;
643
644 /* The "id" that distinguishes this CU/TU.
645 .debug_info calls this "dwo_id", .debug_types calls this "signature".
646 Since signatures came first, we stick with it for consistency. */
647 ULONGEST signature;
648
649 /* The section this CU/TU lives in, in the DWO file. */
650 struct dwarf2_section_info *section;
651
652 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
653 sect_offset sect_off;
654 unsigned int length;
655
656 /* For types, offset in the type's DIE of the type defined by this TU. */
657 cu_offset type_offset_in_tu;
658 };
659
660 /* include/dwarf2.h defines the DWP section codes.
661 It defines a max value but it doesn't define a min value, which we
662 use for error checking, so provide one. */
663
664 enum dwp_v2_section_ids
665 {
666 DW_SECT_MIN = 1
667 };
668
669 /* Data for one DWO file.
670
671 This includes virtual DWO files (a virtual DWO file is a DWO file as it
672 appears in a DWP file). DWP files don't really have DWO files per se -
673 comdat folding of types "loses" the DWO file they came from, and from
674 a high level view DWP files appear to contain a mass of random types.
675 However, to maintain consistency with the non-DWP case we pretend DWP
676 files contain virtual DWO files, and we assign each TU with one virtual
677 DWO file (generally based on the line and abbrev section offsets -
678 a heuristic that seems to work in practice). */
679
680 struct dwo_file
681 {
682 /* The DW_AT_GNU_dwo_name attribute.
683 For virtual DWO files the name is constructed from the section offsets
684 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
685 from related CU+TUs. */
686 const char *dwo_name;
687
688 /* The DW_AT_comp_dir attribute. */
689 const char *comp_dir;
690
691 /* The bfd, when the file is open. Otherwise this is NULL.
692 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
693 bfd *dbfd;
694
695 /* The sections that make up this DWO file.
696 Remember that for virtual DWO files in DWP V2, these are virtual
697 sections (for lack of a better name). */
698 struct dwo_sections sections;
699
700 /* The CUs in the file.
701 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
702 an extension to handle LLVM's Link Time Optimization output (where
703 multiple source files may be compiled into a single object/dwo pair). */
704 htab_t cus;
705
706 /* Table of TUs in the file.
707 Each element is a struct dwo_unit. */
708 htab_t tus;
709 };
710
711 /* These sections are what may appear in a DWP file. */
712
713 struct dwp_sections
714 {
715 /* These are used by both DWP version 1 and 2. */
716 struct dwarf2_section_info str;
717 struct dwarf2_section_info cu_index;
718 struct dwarf2_section_info tu_index;
719
720 /* These are only used by DWP version 2 files.
721 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
722 sections are referenced by section number, and are not recorded here.
723 In DWP version 2 there is at most one copy of all these sections, each
724 section being (effectively) comprised of the concatenation of all of the
725 individual sections that exist in the version 1 format.
726 To keep the code simple we treat each of these concatenated pieces as a
727 section itself (a virtual section?). */
728 struct dwarf2_section_info abbrev;
729 struct dwarf2_section_info info;
730 struct dwarf2_section_info line;
731 struct dwarf2_section_info loc;
732 struct dwarf2_section_info macinfo;
733 struct dwarf2_section_info macro;
734 struct dwarf2_section_info str_offsets;
735 struct dwarf2_section_info types;
736 };
737
738 /* These sections are what may appear in a virtual DWO file in DWP version 1.
739 A virtual DWO file is a DWO file as it appears in a DWP file. */
740
741 struct virtual_v1_dwo_sections
742 {
743 struct dwarf2_section_info abbrev;
744 struct dwarf2_section_info line;
745 struct dwarf2_section_info loc;
746 struct dwarf2_section_info macinfo;
747 struct dwarf2_section_info macro;
748 struct dwarf2_section_info str_offsets;
749 /* Each DWP hash table entry records one CU or one TU.
750 That is recorded here, and copied to dwo_unit.section. */
751 struct dwarf2_section_info info_or_types;
752 };
753
754 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
755 In version 2, the sections of the DWO files are concatenated together
756 and stored in one section of that name. Thus each ELF section contains
757 several "virtual" sections. */
758
759 struct virtual_v2_dwo_sections
760 {
761 bfd_size_type abbrev_offset;
762 bfd_size_type abbrev_size;
763
764 bfd_size_type line_offset;
765 bfd_size_type line_size;
766
767 bfd_size_type loc_offset;
768 bfd_size_type loc_size;
769
770 bfd_size_type macinfo_offset;
771 bfd_size_type macinfo_size;
772
773 bfd_size_type macro_offset;
774 bfd_size_type macro_size;
775
776 bfd_size_type str_offsets_offset;
777 bfd_size_type str_offsets_size;
778
779 /* Each DWP hash table entry records one CU or one TU.
780 That is recorded here, and copied to dwo_unit.section. */
781 bfd_size_type info_or_types_offset;
782 bfd_size_type info_or_types_size;
783 };
784
785 /* Contents of DWP hash tables. */
786
787 struct dwp_hash_table
788 {
789 uint32_t version, nr_columns;
790 uint32_t nr_units, nr_slots;
791 const gdb_byte *hash_table, *unit_table;
792 union
793 {
794 struct
795 {
796 const gdb_byte *indices;
797 } v1;
798 struct
799 {
800 /* This is indexed by column number and gives the id of the section
801 in that column. */
802 #define MAX_NR_V2_DWO_SECTIONS \
803 (1 /* .debug_info or .debug_types */ \
804 + 1 /* .debug_abbrev */ \
805 + 1 /* .debug_line */ \
806 + 1 /* .debug_loc */ \
807 + 1 /* .debug_str_offsets */ \
808 + 1 /* .debug_macro or .debug_macinfo */)
809 int section_ids[MAX_NR_V2_DWO_SECTIONS];
810 const gdb_byte *offsets;
811 const gdb_byte *sizes;
812 } v2;
813 } section_pool;
814 };
815
816 /* Data for one DWP file. */
817
818 struct dwp_file
819 {
820 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
821 : name (name_),
822 dbfd (std::move (abfd))
823 {
824 }
825
826 /* Name of the file. */
827 const char *name;
828
829 /* File format version. */
830 int version = 0;
831
832 /* The bfd. */
833 gdb_bfd_ref_ptr dbfd;
834
835 /* Section info for this file. */
836 struct dwp_sections sections {};
837
838 /* Table of CUs in the file. */
839 const struct dwp_hash_table *cus = nullptr;
840
841 /* Table of TUs in the file. */
842 const struct dwp_hash_table *tus = nullptr;
843
844 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
845 htab_t loaded_cus {};
846 htab_t loaded_tus {};
847
848 /* Table to map ELF section numbers to their sections.
849 This is only needed for the DWP V1 file format. */
850 unsigned int num_sections = 0;
851 asection **elf_sections = nullptr;
852 };
853
854 /* This represents a '.dwz' file. */
855
856 struct dwz_file
857 {
858 dwz_file (gdb_bfd_ref_ptr &&bfd)
859 : dwz_bfd (std::move (bfd))
860 {
861 }
862
863 /* A dwz file can only contain a few sections. */
864 struct dwarf2_section_info abbrev {};
865 struct dwarf2_section_info info {};
866 struct dwarf2_section_info str {};
867 struct dwarf2_section_info line {};
868 struct dwarf2_section_info macro {};
869 struct dwarf2_section_info gdb_index {};
870 struct dwarf2_section_info debug_names {};
871
872 /* The dwz's BFD. */
873 gdb_bfd_ref_ptr dwz_bfd;
874
875 /* If we loaded the index from an external file, this contains the
876 resources associated to the open file, memory mapping, etc. */
877 std::unique_ptr<index_cache_resource> index_cache_res;
878 };
879
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
884
885 struct die_reader_specs
886 {
887 /* The bfd of die_section. */
888 bfd* abfd;
889
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
892
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
895
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
899
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
902
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
905
906 /* The value of the DW_AT_comp_dir attribute. */
907 const char *comp_dir;
908
909 /* The abbreviation table to use when reading the DIEs. */
910 struct abbrev_table *abbrev_table;
911 };
912
913 /* Type of function passed to init_cutu_and_read_dies, et.al. */
914 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
915 const gdb_byte *info_ptr,
916 struct die_info *comp_unit_die,
917 int has_children,
918 void *data);
919
920 /* A 1-based directory index. This is a strong typedef to prevent
921 accidentally using a directory index as a 0-based index into an
922 array/vector. */
923 enum class dir_index : unsigned int {};
924
925 /* Likewise, a 1-based file name index. */
926 enum class file_name_index : unsigned int {};
927
928 struct file_entry
929 {
930 file_entry () = default;
931
932 file_entry (const char *name_, dir_index d_index_,
933 unsigned int mod_time_, unsigned int length_)
934 : name (name_),
935 d_index (d_index_),
936 mod_time (mod_time_),
937 length (length_)
938 {}
939
940 /* Return the include directory at D_INDEX stored in LH. Returns
941 NULL if D_INDEX is out of bounds. */
942 const char *include_dir (const line_header *lh) const;
943
944 /* The file name. Note this is an observing pointer. The memory is
945 owned by debug_line_buffer. */
946 const char *name {};
947
948 /* The directory index (1-based). */
949 dir_index d_index {};
950
951 unsigned int mod_time {};
952
953 unsigned int length {};
954
955 /* True if referenced by the Line Number Program. */
956 bool included_p {};
957
958 /* The associated symbol table, if any. */
959 struct symtab *symtab {};
960 };
961
962 /* The line number information for a compilation unit (found in the
963 .debug_line section) begins with a "statement program header",
964 which contains the following information. */
965 struct line_header
966 {
967 line_header ()
968 : offset_in_dwz {}
969 {}
970
971 /* Add an entry to the include directory table. */
972 void add_include_dir (const char *include_dir);
973
974 /* Add an entry to the file name table. */
975 void add_file_name (const char *name, dir_index d_index,
976 unsigned int mod_time, unsigned int length);
977
978 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
979 is out of bounds. */
980 const char *include_dir_at (dir_index index) const
981 {
982 /* Convert directory index number (1-based) to vector index
983 (0-based). */
984 size_t vec_index = to_underlying (index) - 1;
985
986 if (vec_index >= include_dirs.size ())
987 return NULL;
988 return include_dirs[vec_index];
989 }
990
991 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
992 is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 /* Convert file name index number (1-based) to vector index
996 (0-based). */
997 size_t vec_index = to_underlying (index) - 1;
998
999 if (vec_index >= file_names.size ())
1000 return NULL;
1001 return &file_names[vec_index];
1002 }
1003
1004 /* Const version of the above. */
1005 const file_entry *file_name_at (unsigned int index) const
1006 {
1007 if (index >= file_names.size ())
1008 return NULL;
1009 return &file_names[index];
1010 }
1011
1012 /* Offset of line number information in .debug_line section. */
1013 sect_offset sect_off {};
1014
1015 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1016 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1017
1018 unsigned int total_length {};
1019 unsigned short version {};
1020 unsigned int header_length {};
1021 unsigned char minimum_instruction_length {};
1022 unsigned char maximum_ops_per_instruction {};
1023 unsigned char default_is_stmt {};
1024 int line_base {};
1025 unsigned char line_range {};
1026 unsigned char opcode_base {};
1027
1028 /* standard_opcode_lengths[i] is the number of operands for the
1029 standard opcode whose value is i. This means that
1030 standard_opcode_lengths[0] is unused, and the last meaningful
1031 element is standard_opcode_lengths[opcode_base - 1]. */
1032 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1033
1034 /* The include_directories table. Note these are observing
1035 pointers. The memory is owned by debug_line_buffer. */
1036 std::vector<const char *> include_dirs;
1037
1038 /* The file_names table. */
1039 std::vector<file_entry> file_names;
1040
1041 /* The start and end of the statement program following this
1042 header. These point into dwarf2_per_objfile->line_buffer. */
1043 const gdb_byte *statement_program_start {}, *statement_program_end {};
1044 };
1045
1046 typedef std::unique_ptr<line_header> line_header_up;
1047
1048 const char *
1049 file_entry::include_dir (const line_header *lh) const
1050 {
1051 return lh->include_dir_at (d_index);
1052 }
1053
1054 /* When we construct a partial symbol table entry we only
1055 need this much information. */
1056 struct partial_die_info : public allocate_on_obstack
1057 {
1058 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1059
1060 /* Disable assign but still keep copy ctor, which is needed
1061 load_partial_dies. */
1062 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1063
1064 /* Adjust the partial die before generating a symbol for it. This
1065 function may set the is_external flag or change the DIE's
1066 name. */
1067 void fixup (struct dwarf2_cu *cu);
1068
1069 /* Read a minimal amount of information into the minimal die
1070 structure. */
1071 const gdb_byte *read (const struct die_reader_specs *reader,
1072 const struct abbrev_info &abbrev,
1073 const gdb_byte *info_ptr);
1074
1075 /* Offset of this DIE. */
1076 const sect_offset sect_off;
1077
1078 /* DWARF-2 tag for this DIE. */
1079 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1080
1081 /* Assorted flags describing the data found in this DIE. */
1082 const unsigned int has_children : 1;
1083
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
1089 unsigned int may_be_inlined : 1;
1090
1091 /* This DIE has been marked DW_AT_main_subprogram. */
1092 unsigned int main_subprogram : 1;
1093
1094 /* Flag set if the SCOPE field of this structure has been
1095 computed. */
1096 unsigned int scope_set : 1;
1097
1098 /* Flag set if the DIE has a byte_size attribute. */
1099 unsigned int has_byte_size : 1;
1100
1101 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1102 unsigned int has_const_value : 1;
1103
1104 /* Flag set if any of the DIE's children are template arguments. */
1105 unsigned int has_template_arguments : 1;
1106
1107 /* Flag set if fixup has been called on this die. */
1108 unsigned int fixup_called : 1;
1109
1110 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1111 unsigned int is_dwz : 1;
1112
1113 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1114 unsigned int spec_is_dwz : 1;
1115
1116 /* The name of this DIE. Normally the value of DW_AT_name, but
1117 sometimes a default name for unnamed DIEs. */
1118 const char *name = nullptr;
1119
1120 /* The linkage name, if present. */
1121 const char *linkage_name = nullptr;
1122
1123 /* The scope to prepend to our children. This is generally
1124 allocated on the comp_unit_obstack, so will disappear
1125 when this compilation unit leaves the cache. */
1126 const char *scope = nullptr;
1127
1128 /* Some data associated with the partial DIE. The tag determines
1129 which field is live. */
1130 union
1131 {
1132 /* The location description associated with this DIE, if any. */
1133 struct dwarf_block *locdesc;
1134 /* The offset of an import, for DW_TAG_imported_unit. */
1135 sect_offset sect_off;
1136 } d {};
1137
1138 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1139 CORE_ADDR lowpc = 0;
1140 CORE_ADDR highpc = 0;
1141
1142 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1143 DW_AT_sibling, if any. */
1144 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1145 could return DW_AT_sibling values to its caller load_partial_dies. */
1146 const gdb_byte *sibling = nullptr;
1147
1148 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1149 DW_AT_specification (or DW_AT_abstract_origin or
1150 DW_AT_extension). */
1151 sect_offset spec_offset {};
1152
1153 /* Pointers to this DIE's parent, first child, and next sibling,
1154 if any. */
1155 struct partial_die_info *die_parent = nullptr;
1156 struct partial_die_info *die_child = nullptr;
1157 struct partial_die_info *die_sibling = nullptr;
1158
1159 friend struct partial_die_info *
1160 dwarf2_cu::find_partial_die (sect_offset sect_off);
1161
1162 private:
1163 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1164 partial_die_info (sect_offset sect_off)
1165 : partial_die_info (sect_off, DW_TAG_padding, 0)
1166 {
1167 }
1168
1169 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1170 int has_children_)
1171 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1172 {
1173 is_external = 0;
1174 is_declaration = 0;
1175 has_type = 0;
1176 has_specification = 0;
1177 has_pc_info = 0;
1178 may_be_inlined = 0;
1179 main_subprogram = 0;
1180 scope_set = 0;
1181 has_byte_size = 0;
1182 has_const_value = 0;
1183 has_template_arguments = 0;
1184 fixup_called = 0;
1185 is_dwz = 0;
1186 spec_is_dwz = 0;
1187 }
1188 };
1189
1190 /* This data structure holds the information of an abbrev. */
1191 struct abbrev_info
1192 {
1193 unsigned int number; /* number identifying abbrev */
1194 enum dwarf_tag tag; /* dwarf tag */
1195 unsigned short has_children; /* boolean */
1196 unsigned short num_attrs; /* number of attributes */
1197 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1198 struct abbrev_info *next; /* next in chain */
1199 };
1200
1201 struct attr_abbrev
1202 {
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 16;
1205
1206 /* It is valid only if FORM is DW_FORM_implicit_const. */
1207 LONGEST implicit_const;
1208 };
1209
1210 /* Size of abbrev_table.abbrev_hash_table. */
1211 #define ABBREV_HASH_SIZE 121
1212
1213 /* Top level data structure to contain an abbreviation table. */
1214
1215 struct abbrev_table
1216 {
1217 explicit abbrev_table (sect_offset off)
1218 : sect_off (off)
1219 {
1220 m_abbrevs =
1221 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1222 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1223 }
1224
1225 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1226
1227 /* Allocate space for a struct abbrev_info object in
1228 ABBREV_TABLE. */
1229 struct abbrev_info *alloc_abbrev ();
1230
1231 /* Add an abbreviation to the table. */
1232 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1233
1234 /* Look up an abbrev in the table.
1235 Returns NULL if the abbrev is not found. */
1236
1237 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1238
1239
1240 /* Where the abbrev table came from.
1241 This is used as a sanity check when the table is used. */
1242 const sect_offset sect_off;
1243
1244 /* Storage for the abbrev table. */
1245 auto_obstack abbrev_obstack;
1246
1247 private:
1248
1249 /* Hash table of abbrevs.
1250 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1251 It could be statically allocated, but the previous code didn't so we
1252 don't either. */
1253 struct abbrev_info **m_abbrevs;
1254 };
1255
1256 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1257
1258 /* Attributes have a name and a value. */
1259 struct attribute
1260 {
1261 ENUM_BITFIELD(dwarf_attribute) name : 16;
1262 ENUM_BITFIELD(dwarf_form) form : 15;
1263
1264 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1265 field should be in u.str (existing only for DW_STRING) but it is kept
1266 here for better struct attribute alignment. */
1267 unsigned int string_is_canonical : 1;
1268
1269 union
1270 {
1271 const char *str;
1272 struct dwarf_block *blk;
1273 ULONGEST unsnd;
1274 LONGEST snd;
1275 CORE_ADDR addr;
1276 ULONGEST signature;
1277 }
1278 u;
1279 };
1280
1281 /* This data structure holds a complete die structure. */
1282 struct die_info
1283 {
1284 /* DWARF-2 tag for this DIE. */
1285 ENUM_BITFIELD(dwarf_tag) tag : 16;
1286
1287 /* Number of attributes */
1288 unsigned char num_attrs;
1289
1290 /* True if we're presently building the full type name for the
1291 type derived from this DIE. */
1292 unsigned char building_fullname : 1;
1293
1294 /* True if this die is in process. PR 16581. */
1295 unsigned char in_process : 1;
1296
1297 /* Abbrev number */
1298 unsigned int abbrev;
1299
1300 /* Offset in .debug_info or .debug_types section. */
1301 sect_offset sect_off;
1302
1303 /* The dies in a compilation unit form an n-ary tree. PARENT
1304 points to this die's parent; CHILD points to the first child of
1305 this node; and all the children of a given node are chained
1306 together via their SIBLING fields. */
1307 struct die_info *child; /* Its first child, if any. */
1308 struct die_info *sibling; /* Its next sibling, if any. */
1309 struct die_info *parent; /* Its parent, if any. */
1310
1311 /* An array of attributes, with NUM_ATTRS elements. There may be
1312 zero, but it's not common and zero-sized arrays are not
1313 sufficiently portable C. */
1314 struct attribute attrs[1];
1315 };
1316
1317 /* Get at parts of an attribute structure. */
1318
1319 #define DW_STRING(attr) ((attr)->u.str)
1320 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1321 #define DW_UNSND(attr) ((attr)->u.unsnd)
1322 #define DW_BLOCK(attr) ((attr)->u.blk)
1323 #define DW_SND(attr) ((attr)->u.snd)
1324 #define DW_ADDR(attr) ((attr)->u.addr)
1325 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1326
1327 /* Blocks are a bunch of untyped bytes. */
1328 struct dwarf_block
1329 {
1330 size_t size;
1331
1332 /* Valid only if SIZE is not zero. */
1333 const gdb_byte *data;
1334 };
1335
1336 #ifndef ATTR_ALLOC_CHUNK
1337 #define ATTR_ALLOC_CHUNK 4
1338 #endif
1339
1340 /* Allocate fields for structs, unions and enums in this size. */
1341 #ifndef DW_FIELD_ALLOC_CHUNK
1342 #define DW_FIELD_ALLOC_CHUNK 4
1343 #endif
1344
1345 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1346 but this would require a corresponding change in unpack_field_as_long
1347 and friends. */
1348 static int bits_per_byte = 8;
1349
1350 /* When reading a variant or variant part, we track a bit more
1351 information about the field, and store it in an object of this
1352 type. */
1353
1354 struct variant_field
1355 {
1356 /* If we see a DW_TAG_variant, then this will be the discriminant
1357 value. */
1358 ULONGEST discriminant_value;
1359 /* If we see a DW_TAG_variant, then this will be set if this is the
1360 default branch. */
1361 bool default_branch;
1362 /* While reading a DW_TAG_variant_part, this will be set if this
1363 field is the discriminant. */
1364 bool is_discriminant;
1365 };
1366
1367 struct nextfield
1368 {
1369 int accessibility = 0;
1370 int virtuality = 0;
1371 /* Extra information to describe a variant or variant part. */
1372 struct variant_field variant {};
1373 struct field field {};
1374 };
1375
1376 struct fnfieldlist
1377 {
1378 const char *name = nullptr;
1379 std::vector<struct fn_field> fnfields;
1380 };
1381
1382 /* The routines that read and process dies for a C struct or C++ class
1383 pass lists of data member fields and lists of member function fields
1384 in an instance of a field_info structure, as defined below. */
1385 struct field_info
1386 {
1387 /* List of data member and baseclasses fields. */
1388 std::vector<struct nextfield> fields;
1389 std::vector<struct nextfield> baseclasses;
1390
1391 /* Number of fields (including baseclasses). */
1392 int nfields = 0;
1393
1394 /* Set if the accesibility of one of the fields is not public. */
1395 int non_public_fields = 0;
1396
1397 /* Member function fieldlist array, contains name of possibly overloaded
1398 member function, number of overloaded member functions and a pointer
1399 to the head of the member function field chain. */
1400 std::vector<struct fnfieldlist> fnfieldlists;
1401
1402 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1403 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1404 std::vector<struct decl_field> typedef_field_list;
1405
1406 /* Nested types defined by this class and the number of elements in this
1407 list. */
1408 std::vector<struct decl_field> nested_types_list;
1409 };
1410
1411 /* One item on the queue of compilation units to read in full symbols
1412 for. */
1413 struct dwarf2_queue_item
1414 {
1415 struct dwarf2_per_cu_data *per_cu;
1416 enum language pretend_language;
1417 struct dwarf2_queue_item *next;
1418 };
1419
1420 /* The current queue. */
1421 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1422
1423 /* Loaded secondary compilation units are kept in memory until they
1424 have not been referenced for the processing of this many
1425 compilation units. Set this to zero to disable caching. Cache
1426 sizes of up to at least twenty will improve startup time for
1427 typical inter-CU-reference binaries, at an obvious memory cost. */
1428 static int dwarf_max_cache_age = 5;
1429 static void
1430 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1431 struct cmd_list_element *c, const char *value)
1432 {
1433 fprintf_filtered (file, _("The upper bound on the age of cached "
1434 "DWARF compilation units is %s.\n"),
1435 value);
1436 }
1437 \f
1438 /* local function prototypes */
1439
1440 static const char *get_section_name (const struct dwarf2_section_info *);
1441
1442 static const char *get_section_file_name (const struct dwarf2_section_info *);
1443
1444 static void dwarf2_find_base_address (struct die_info *die,
1445 struct dwarf2_cu *cu);
1446
1447 static struct partial_symtab *create_partial_symtab
1448 (struct dwarf2_per_cu_data *per_cu, const char *name);
1449
1450 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1451 const gdb_byte *info_ptr,
1452 struct die_info *type_unit_die,
1453 int has_children, void *data);
1454
1455 static void dwarf2_build_psymtabs_hard
1456 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1457
1458 static void scan_partial_symbols (struct partial_die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
1460 int, struct dwarf2_cu *);
1461
1462 static void add_partial_symbol (struct partial_die_info *,
1463 struct dwarf2_cu *);
1464
1465 static void add_partial_namespace (struct partial_die_info *pdi,
1466 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1467 int set_addrmap, struct dwarf2_cu *cu);
1468
1469 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1470 CORE_ADDR *highpc, int set_addrmap,
1471 struct dwarf2_cu *cu);
1472
1473 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1474 struct dwarf2_cu *cu);
1475
1476 static void add_partial_subprogram (struct partial_die_info *pdi,
1477 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1478 int need_pc, struct dwarf2_cu *cu);
1479
1480 static void dwarf2_read_symtab (struct partial_symtab *,
1481 struct objfile *);
1482
1483 static void psymtab_to_symtab_1 (struct partial_symtab *);
1484
1485 static abbrev_table_up abbrev_table_read_table
1486 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1487 sect_offset);
1488
1489 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1490
1491 static struct partial_die_info *load_partial_dies
1492 (const struct die_reader_specs *, const gdb_byte *, int);
1493
1494 static struct partial_die_info *find_partial_die (sect_offset, int,
1495 struct dwarf2_cu *);
1496
1497 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1498 struct attribute *, struct attr_abbrev *,
1499 const gdb_byte *);
1500
1501 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1502
1503 static int read_1_signed_byte (bfd *, const gdb_byte *);
1504
1505 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1506
1507 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1508
1509 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1510
1511 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1512 unsigned int *);
1513
1514 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1515
1516 static LONGEST read_checked_initial_length_and_offset
1517 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1518 unsigned int *, unsigned int *);
1519
1520 static LONGEST read_offset (bfd *, const gdb_byte *,
1521 const struct comp_unit_head *,
1522 unsigned int *);
1523
1524 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1525
1526 static sect_offset read_abbrev_offset
1527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1528 struct dwarf2_section_info *, sect_offset);
1529
1530 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1531
1532 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1533
1534 static const char *read_indirect_string
1535 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1536 const struct comp_unit_head *, unsigned int *);
1537
1538 static const char *read_indirect_line_string
1539 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1540 const struct comp_unit_head *, unsigned int *);
1541
1542 static const char *read_indirect_string_at_offset
1543 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1544 LONGEST str_offset);
1545
1546 static const char *read_indirect_string_from_dwz
1547 (struct objfile *objfile, struct dwz_file *, LONGEST);
1548
1549 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1550
1551 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1552 const gdb_byte *,
1553 unsigned int *);
1554
1555 static const char *read_str_index (const struct die_reader_specs *reader,
1556 ULONGEST str_index);
1557
1558 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1559
1560 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1561 struct dwarf2_cu *);
1562
1563 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1564 unsigned int);
1565
1566 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1567 struct dwarf2_cu *cu);
1568
1569 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1570 struct dwarf2_cu *cu);
1571
1572 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1573
1574 static struct die_info *die_specification (struct die_info *die,
1575 struct dwarf2_cu **);
1576
1577 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1578 struct dwarf2_cu *cu);
1579
1580 static void dwarf_decode_lines (struct line_header *, const char *,
1581 struct dwarf2_cu *, struct partial_symtab *,
1582 CORE_ADDR, int decode_mapping);
1583
1584 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1585 const char *);
1586
1587 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1588 const char *, const char *,
1589 CORE_ADDR);
1590
1591 static struct symbol *new_symbol (struct die_info *, struct type *,
1592 struct dwarf2_cu *, struct symbol * = NULL);
1593
1594 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_const_value_attr (const struct attribute *attr,
1598 struct type *type,
1599 const char *name,
1600 struct obstack *obstack,
1601 struct dwarf2_cu *cu, LONGEST *value,
1602 const gdb_byte **bytes,
1603 struct dwarf2_locexpr_baton **baton);
1604
1605 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1606
1607 static int need_gnat_info (struct dwarf2_cu *);
1608
1609 static struct type *die_descriptive_type (struct die_info *,
1610 struct dwarf2_cu *);
1611
1612 static void set_descriptive_type (struct type *, struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static struct type *die_containing_type (struct die_info *,
1616 struct dwarf2_cu *);
1617
1618 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1619 struct dwarf2_cu *);
1620
1621 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1622
1623 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1624
1625 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1626
1627 static char *typename_concat (struct obstack *obs, const char *prefix,
1628 const char *suffix, int physname,
1629 struct dwarf2_cu *cu);
1630
1631 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1632
1633 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1634
1635 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1636
1637 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1638
1639 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1640
1641 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1642
1643 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1644 struct dwarf2_cu *, struct partial_symtab *);
1645
1646 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1647 values. Keep the items ordered with increasing constraints compliance. */
1648 enum pc_bounds_kind
1649 {
1650 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1651 PC_BOUNDS_NOT_PRESENT,
1652
1653 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1654 were present but they do not form a valid range of PC addresses. */
1655 PC_BOUNDS_INVALID,
1656
1657 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1658 PC_BOUNDS_RANGES,
1659
1660 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1661 PC_BOUNDS_HIGH_LOW,
1662 };
1663
1664 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1665 CORE_ADDR *, CORE_ADDR *,
1666 struct dwarf2_cu *,
1667 struct partial_symtab *);
1668
1669 static void get_scope_pc_bounds (struct die_info *,
1670 CORE_ADDR *, CORE_ADDR *,
1671 struct dwarf2_cu *);
1672
1673 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1674 CORE_ADDR, struct dwarf2_cu *);
1675
1676 static void dwarf2_add_field (struct field_info *, struct die_info *,
1677 struct dwarf2_cu *);
1678
1679 static void dwarf2_attach_fields_to_type (struct field_info *,
1680 struct type *, struct dwarf2_cu *);
1681
1682 static void dwarf2_add_member_fn (struct field_info *,
1683 struct die_info *, struct type *,
1684 struct dwarf2_cu *);
1685
1686 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1687 struct type *,
1688 struct dwarf2_cu *);
1689
1690 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1691
1692 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1693
1694 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1695
1696 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1697
1698 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1699
1700 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1701
1702 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1703
1704 static struct type *read_module_type (struct die_info *die,
1705 struct dwarf2_cu *cu);
1706
1707 static const char *namespace_name (struct die_info *die,
1708 int *is_anonymous, struct dwarf2_cu *);
1709
1710 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1711
1712 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1713
1714 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1715 struct dwarf2_cu *);
1716
1717 static struct die_info *read_die_and_siblings_1
1718 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1719 struct die_info *);
1720
1721 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1722 const gdb_byte *info_ptr,
1723 const gdb_byte **new_info_ptr,
1724 struct die_info *parent);
1725
1726 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1727 struct die_info **, const gdb_byte *,
1728 int *, int);
1729
1730 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1731 struct die_info **, const gdb_byte *,
1732 int *);
1733
1734 static void process_die (struct die_info *, struct dwarf2_cu *);
1735
1736 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1737 struct obstack *);
1738
1739 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1740
1741 static const char *dwarf2_full_name (const char *name,
1742 struct die_info *die,
1743 struct dwarf2_cu *cu);
1744
1745 static const char *dwarf2_physname (const char *name, struct die_info *die,
1746 struct dwarf2_cu *cu);
1747
1748 static struct die_info *dwarf2_extension (struct die_info *die,
1749 struct dwarf2_cu **);
1750
1751 static const char *dwarf_tag_name (unsigned int);
1752
1753 static const char *dwarf_attr_name (unsigned int);
1754
1755 static const char *dwarf_form_name (unsigned int);
1756
1757 static const char *dwarf_bool_name (unsigned int);
1758
1759 static const char *dwarf_type_encoding_name (unsigned int);
1760
1761 static struct die_info *sibling_die (struct die_info *);
1762
1763 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1764
1765 static void dump_die_for_error (struct die_info *);
1766
1767 static void dump_die_1 (struct ui_file *, int level, int max_level,
1768 struct die_info *);
1769
1770 /*static*/ void dump_die (struct die_info *, int max_level);
1771
1772 static void store_in_ref_table (struct die_info *,
1773 struct dwarf2_cu *);
1774
1775 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1776
1777 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1778
1779 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1780 const struct attribute *,
1781 struct dwarf2_cu **);
1782
1783 static struct die_info *follow_die_ref (struct die_info *,
1784 const struct attribute *,
1785 struct dwarf2_cu **);
1786
1787 static struct die_info *follow_die_sig (struct die_info *,
1788 const struct attribute *,
1789 struct dwarf2_cu **);
1790
1791 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1792 struct dwarf2_cu *);
1793
1794 static struct type *get_DW_AT_signature_type (struct die_info *,
1795 const struct attribute *,
1796 struct dwarf2_cu *);
1797
1798 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1799
1800 static void read_signatured_type (struct signatured_type *);
1801
1802 static int attr_to_dynamic_prop (const struct attribute *attr,
1803 struct die_info *die, struct dwarf2_cu *cu,
1804 struct dynamic_prop *prop);
1805
1806 /* memory allocation interface */
1807
1808 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1809
1810 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1811
1812 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1813
1814 static int attr_form_is_block (const struct attribute *);
1815
1816 static int attr_form_is_section_offset (const struct attribute *);
1817
1818 static int attr_form_is_constant (const struct attribute *);
1819
1820 static int attr_form_is_ref (const struct attribute *);
1821
1822 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1823 struct dwarf2_loclist_baton *baton,
1824 const struct attribute *attr);
1825
1826 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1827 struct symbol *sym,
1828 struct dwarf2_cu *cu,
1829 int is_block);
1830
1831 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1832 const gdb_byte *info_ptr,
1833 struct abbrev_info *abbrev);
1834
1835 static hashval_t partial_die_hash (const void *item);
1836
1837 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1838
1839 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1840 (sect_offset sect_off, unsigned int offset_in_dwz,
1841 struct dwarf2_per_objfile *dwarf2_per_objfile);
1842
1843 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1844 struct die_info *comp_unit_die,
1845 enum language pretend_language);
1846
1847 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1848
1849 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1850
1851 static struct type *set_die_type (struct die_info *, struct type *,
1852 struct dwarf2_cu *);
1853
1854 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1855
1856 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1859 enum language);
1860
1861 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1862 enum language);
1863
1864 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1865 enum language);
1866
1867 static void dwarf2_add_dependence (struct dwarf2_cu *,
1868 struct dwarf2_per_cu_data *);
1869
1870 static void dwarf2_mark (struct dwarf2_cu *);
1871
1872 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1873
1874 static struct type *get_die_type_at_offset (sect_offset,
1875 struct dwarf2_per_cu_data *);
1876
1877 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1878
1879 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1880 enum language pretend_language);
1881
1882 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 /* Class, the destructor of which frees all allocated queue entries. This
1885 will only have work to do if an error was thrown while processing the
1886 dwarf. If no error was thrown then the queue entries should have all
1887 been processed, and freed, as we went along. */
1888
1889 class dwarf2_queue_guard
1890 {
1891 public:
1892 dwarf2_queue_guard () = default;
1893
1894 /* Free any entries remaining on the queue. There should only be
1895 entries left if we hit an error while processing the dwarf. */
1896 ~dwarf2_queue_guard ()
1897 {
1898 struct dwarf2_queue_item *item, *last;
1899
1900 item = dwarf2_queue;
1901 while (item)
1902 {
1903 /* Anything still marked queued is likely to be in an
1904 inconsistent state, so discard it. */
1905 if (item->per_cu->queued)
1906 {
1907 if (item->per_cu->cu != NULL)
1908 free_one_cached_comp_unit (item->per_cu);
1909 item->per_cu->queued = 0;
1910 }
1911
1912 last = item;
1913 item = item->next;
1914 xfree (last);
1915 }
1916
1917 dwarf2_queue = dwarf2_queue_tail = NULL;
1918 }
1919 };
1920
1921 /* The return type of find_file_and_directory. Note, the enclosed
1922 string pointers are only valid while this object is valid. */
1923
1924 struct file_and_directory
1925 {
1926 /* The filename. This is never NULL. */
1927 const char *name;
1928
1929 /* The compilation directory. NULL if not known. If we needed to
1930 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1931 points directly to the DW_AT_comp_dir string attribute owned by
1932 the obstack that owns the DIE. */
1933 const char *comp_dir;
1934
1935 /* If we needed to build a new string for comp_dir, this is what
1936 owns the storage. */
1937 std::string comp_dir_storage;
1938 };
1939
1940 static file_and_directory find_file_and_directory (struct die_info *die,
1941 struct dwarf2_cu *cu);
1942
1943 static char *file_full_name (int file, struct line_header *lh,
1944 const char *comp_dir);
1945
1946 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1947 enum class rcuh_kind { COMPILE, TYPE };
1948
1949 static const gdb_byte *read_and_check_comp_unit_head
1950 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1951 struct comp_unit_head *header,
1952 struct dwarf2_section_info *section,
1953 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1954 rcuh_kind section_kind);
1955
1956 static void init_cutu_and_read_dies
1957 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1958 int use_existing_cu, int keep, bool skip_partial,
1959 die_reader_func_ftype *die_reader_func, void *data);
1960
1961 static void init_cutu_and_read_dies_simple
1962 (struct dwarf2_per_cu_data *this_cu,
1963 die_reader_func_ftype *die_reader_func, void *data);
1964
1965 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1966
1967 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1968
1969 static struct dwo_unit *lookup_dwo_unit_in_dwp
1970 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1971 struct dwp_file *dwp_file, const char *comp_dir,
1972 ULONGEST signature, int is_debug_types);
1973
1974 static struct dwp_file *get_dwp_file
1975 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1976
1977 static struct dwo_unit *lookup_dwo_comp_unit
1978 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1979
1980 static struct dwo_unit *lookup_dwo_type_unit
1981 (struct signatured_type *, const char *, const char *);
1982
1983 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1984
1985 static void free_dwo_file (struct dwo_file *);
1986
1987 /* A unique_ptr helper to free a dwo_file. */
1988
1989 struct dwo_file_deleter
1990 {
1991 void operator() (struct dwo_file *df) const
1992 {
1993 free_dwo_file (df);
1994 }
1995 };
1996
1997 /* A unique pointer to a dwo_file. */
1998
1999 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2000
2001 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2002
2003 static void check_producer (struct dwarf2_cu *cu);
2004
2005 static void free_line_header_voidp (void *arg);
2006 \f
2007 /* Various complaints about symbol reading that don't abort the process. */
2008
2009 static void
2010 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2011 {
2012 complaint (_("statement list doesn't fit in .debug_line section"));
2013 }
2014
2015 static void
2016 dwarf2_debug_line_missing_file_complaint (void)
2017 {
2018 complaint (_(".debug_line section has line data without a file"));
2019 }
2020
2021 static void
2022 dwarf2_debug_line_missing_end_sequence_complaint (void)
2023 {
2024 complaint (_(".debug_line section has line "
2025 "program sequence without an end"));
2026 }
2027
2028 static void
2029 dwarf2_complex_location_expr_complaint (void)
2030 {
2031 complaint (_("location expression too complex"));
2032 }
2033
2034 static void
2035 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2036 int arg3)
2037 {
2038 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2039 arg1, arg2, arg3);
2040 }
2041
2042 static void
2043 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2044 {
2045 complaint (_("debug info runs off end of %s section"
2046 " [in module %s]"),
2047 get_section_name (section),
2048 get_section_file_name (section));
2049 }
2050
2051 static void
2052 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2053 {
2054 complaint (_("macro debug info contains a "
2055 "malformed macro definition:\n`%s'"),
2056 arg1);
2057 }
2058
2059 static void
2060 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2061 {
2062 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2063 arg1, arg2);
2064 }
2065
2066 /* Hash function for line_header_hash. */
2067
2068 static hashval_t
2069 line_header_hash (const struct line_header *ofs)
2070 {
2071 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2072 }
2073
2074 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2075
2076 static hashval_t
2077 line_header_hash_voidp (const void *item)
2078 {
2079 const struct line_header *ofs = (const struct line_header *) item;
2080
2081 return line_header_hash (ofs);
2082 }
2083
2084 /* Equality function for line_header_hash. */
2085
2086 static int
2087 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2088 {
2089 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2090 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2091
2092 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2093 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2094 }
2095
2096 \f
2097
2098 /* Read the given attribute value as an address, taking the attribute's
2099 form into account. */
2100
2101 static CORE_ADDR
2102 attr_value_as_address (struct attribute *attr)
2103 {
2104 CORE_ADDR addr;
2105
2106 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2107 {
2108 /* Aside from a few clearly defined exceptions, attributes that
2109 contain an address must always be in DW_FORM_addr form.
2110 Unfortunately, some compilers happen to be violating this
2111 requirement by encoding addresses using other forms, such
2112 as DW_FORM_data4 for example. For those broken compilers,
2113 we try to do our best, without any guarantee of success,
2114 to interpret the address correctly. It would also be nice
2115 to generate a complaint, but that would require us to maintain
2116 a list of legitimate cases where a non-address form is allowed,
2117 as well as update callers to pass in at least the CU's DWARF
2118 version. This is more overhead than what we're willing to
2119 expand for a pretty rare case. */
2120 addr = DW_UNSND (attr);
2121 }
2122 else
2123 addr = DW_ADDR (attr);
2124
2125 return addr;
2126 }
2127
2128 /* See declaration. */
2129
2130 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2131 const dwarf2_debug_sections *names)
2132 : objfile (objfile_)
2133 {
2134 if (names == NULL)
2135 names = &dwarf2_elf_names;
2136
2137 bfd *obfd = objfile->obfd;
2138
2139 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2140 locate_sections (obfd, sec, *names);
2141 }
2142
2143 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 VEC_free (dwarf2_section_info_def, types);
2163
2164 if (dwo_files != NULL)
2165 free_dwo_files (dwo_files, objfile);
2166
2167 /* Everything else should be on the objfile obstack. */
2168 }
2169
2170 /* See declaration. */
2171
2172 void
2173 dwarf2_per_objfile::free_cached_comp_units ()
2174 {
2175 dwarf2_per_cu_data *per_cu = read_in_chain;
2176 dwarf2_per_cu_data **last_chain = &read_in_chain;
2177 while (per_cu != NULL)
2178 {
2179 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2180
2181 delete per_cu->cu;
2182 *last_chain = next_cu;
2183 per_cu = next_cu;
2184 }
2185 }
2186
2187 /* A helper class that calls free_cached_comp_units on
2188 destruction. */
2189
2190 class free_cached_comp_units
2191 {
2192 public:
2193
2194 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2195 : m_per_objfile (per_objfile)
2196 {
2197 }
2198
2199 ~free_cached_comp_units ()
2200 {
2201 m_per_objfile->free_cached_comp_units ();
2202 }
2203
2204 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2205
2206 private:
2207
2208 dwarf2_per_objfile *m_per_objfile;
2209 };
2210
2211 /* Try to locate the sections we need for DWARF 2 debugging
2212 information and return true if we have enough to do something.
2213 NAMES points to the dwarf2 section names, or is NULL if the standard
2214 ELF names are used. */
2215
2216 int
2217 dwarf2_has_info (struct objfile *objfile,
2218 const struct dwarf2_debug_sections *names)
2219 {
2220 if (objfile->flags & OBJF_READNEVER)
2221 return 0;
2222
2223 struct dwarf2_per_objfile *dwarf2_per_objfile
2224 = get_dwarf2_per_objfile (objfile);
2225
2226 if (dwarf2_per_objfile == NULL)
2227 {
2228 /* Initialize per-objfile state. */
2229 dwarf2_per_objfile
2230 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2231 names);
2232 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2233 }
2234 return (!dwarf2_per_objfile->info.is_virtual
2235 && dwarf2_per_objfile->info.s.section != NULL
2236 && !dwarf2_per_objfile->abbrev.is_virtual
2237 && dwarf2_per_objfile->abbrev.s.section != NULL);
2238 }
2239
2240 /* Return the containing section of virtual section SECTION. */
2241
2242 static struct dwarf2_section_info *
2243 get_containing_section (const struct dwarf2_section_info *section)
2244 {
2245 gdb_assert (section->is_virtual);
2246 return section->s.containing_section;
2247 }
2248
2249 /* Return the bfd owner of SECTION. */
2250
2251 static struct bfd *
2252 get_section_bfd_owner (const struct dwarf2_section_info *section)
2253 {
2254 if (section->is_virtual)
2255 {
2256 section = get_containing_section (section);
2257 gdb_assert (!section->is_virtual);
2258 }
2259 return section->s.section->owner;
2260 }
2261
2262 /* Return the bfd section of SECTION.
2263 Returns NULL if the section is not present. */
2264
2265 static asection *
2266 get_section_bfd_section (const struct dwarf2_section_info *section)
2267 {
2268 if (section->is_virtual)
2269 {
2270 section = get_containing_section (section);
2271 gdb_assert (!section->is_virtual);
2272 }
2273 return section->s.section;
2274 }
2275
2276 /* Return the name of SECTION. */
2277
2278 static const char *
2279 get_section_name (const struct dwarf2_section_info *section)
2280 {
2281 asection *sectp = get_section_bfd_section (section);
2282
2283 gdb_assert (sectp != NULL);
2284 return bfd_section_name (get_section_bfd_owner (section), sectp);
2285 }
2286
2287 /* Return the name of the file SECTION is in. */
2288
2289 static const char *
2290 get_section_file_name (const struct dwarf2_section_info *section)
2291 {
2292 bfd *abfd = get_section_bfd_owner (section);
2293
2294 return bfd_get_filename (abfd);
2295 }
2296
2297 /* Return the id of SECTION.
2298 Returns 0 if SECTION doesn't exist. */
2299
2300 static int
2301 get_section_id (const struct dwarf2_section_info *section)
2302 {
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 if (sectp == NULL)
2306 return 0;
2307 return sectp->id;
2308 }
2309
2310 /* Return the flags of SECTION.
2311 SECTION (or containing section if this is a virtual section) must exist. */
2312
2313 static int
2314 get_section_flags (const struct dwarf2_section_info *section)
2315 {
2316 asection *sectp = get_section_bfd_section (section);
2317
2318 gdb_assert (sectp != NULL);
2319 return bfd_get_section_flags (sectp->owner, sectp);
2320 }
2321
2322 /* When loading sections, we look either for uncompressed section or for
2323 compressed section names. */
2324
2325 static int
2326 section_is_p (const char *section_name,
2327 const struct dwarf2_section_names *names)
2328 {
2329 if (names->normal != NULL
2330 && strcmp (section_name, names->normal) == 0)
2331 return 1;
2332 if (names->compressed != NULL
2333 && strcmp (section_name, names->compressed) == 0)
2334 return 1;
2335 return 0;
2336 }
2337
2338 /* See declaration. */
2339
2340 void
2341 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2342 const dwarf2_debug_sections &names)
2343 {
2344 flagword aflag = bfd_get_section_flags (abfd, sectp);
2345
2346 if ((aflag & SEC_HAS_CONTENTS) == 0)
2347 {
2348 }
2349 else if (section_is_p (sectp->name, &names.info))
2350 {
2351 this->info.s.section = sectp;
2352 this->info.size = bfd_get_section_size (sectp);
2353 }
2354 else if (section_is_p (sectp->name, &names.abbrev))
2355 {
2356 this->abbrev.s.section = sectp;
2357 this->abbrev.size = bfd_get_section_size (sectp);
2358 }
2359 else if (section_is_p (sectp->name, &names.line))
2360 {
2361 this->line.s.section = sectp;
2362 this->line.size = bfd_get_section_size (sectp);
2363 }
2364 else if (section_is_p (sectp->name, &names.loc))
2365 {
2366 this->loc.s.section = sectp;
2367 this->loc.size = bfd_get_section_size (sectp);
2368 }
2369 else if (section_is_p (sectp->name, &names.loclists))
2370 {
2371 this->loclists.s.section = sectp;
2372 this->loclists.size = bfd_get_section_size (sectp);
2373 }
2374 else if (section_is_p (sectp->name, &names.macinfo))
2375 {
2376 this->macinfo.s.section = sectp;
2377 this->macinfo.size = bfd_get_section_size (sectp);
2378 }
2379 else if (section_is_p (sectp->name, &names.macro))
2380 {
2381 this->macro.s.section = sectp;
2382 this->macro.size = bfd_get_section_size (sectp);
2383 }
2384 else if (section_is_p (sectp->name, &names.str))
2385 {
2386 this->str.s.section = sectp;
2387 this->str.size = bfd_get_section_size (sectp);
2388 }
2389 else if (section_is_p (sectp->name, &names.line_str))
2390 {
2391 this->line_str.s.section = sectp;
2392 this->line_str.size = bfd_get_section_size (sectp);
2393 }
2394 else if (section_is_p (sectp->name, &names.addr))
2395 {
2396 this->addr.s.section = sectp;
2397 this->addr.size = bfd_get_section_size (sectp);
2398 }
2399 else if (section_is_p (sectp->name, &names.frame))
2400 {
2401 this->frame.s.section = sectp;
2402 this->frame.size = bfd_get_section_size (sectp);
2403 }
2404 else if (section_is_p (sectp->name, &names.eh_frame))
2405 {
2406 this->eh_frame.s.section = sectp;
2407 this->eh_frame.size = bfd_get_section_size (sectp);
2408 }
2409 else if (section_is_p (sectp->name, &names.ranges))
2410 {
2411 this->ranges.s.section = sectp;
2412 this->ranges.size = bfd_get_section_size (sectp);
2413 }
2414 else if (section_is_p (sectp->name, &names.rnglists))
2415 {
2416 this->rnglists.s.section = sectp;
2417 this->rnglists.size = bfd_get_section_size (sectp);
2418 }
2419 else if (section_is_p (sectp->name, &names.types))
2420 {
2421 struct dwarf2_section_info type_section;
2422
2423 memset (&type_section, 0, sizeof (type_section));
2424 type_section.s.section = sectp;
2425 type_section.size = bfd_get_section_size (sectp);
2426
2427 VEC_safe_push (dwarf2_section_info_def, this->types,
2428 &type_section);
2429 }
2430 else if (section_is_p (sectp->name, &names.gdb_index))
2431 {
2432 this->gdb_index.s.section = sectp;
2433 this->gdb_index.size = bfd_get_section_size (sectp);
2434 }
2435 else if (section_is_p (sectp->name, &names.debug_names))
2436 {
2437 this->debug_names.s.section = sectp;
2438 this->debug_names.size = bfd_get_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.debug_aranges))
2441 {
2442 this->debug_aranges.s.section = sectp;
2443 this->debug_aranges.size = bfd_get_section_size (sectp);
2444 }
2445
2446 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2447 && bfd_section_vma (abfd, sectp) == 0)
2448 this->has_section_at_zero = true;
2449 }
2450
2451 /* A helper function that decides whether a section is empty,
2452 or not present. */
2453
2454 static int
2455 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2456 {
2457 if (section->is_virtual)
2458 return section->size == 0;
2459 return section->s.section == NULL || section->size == 0;
2460 }
2461
2462 /* See dwarf2read.h. */
2463
2464 void
2465 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2466 {
2467 asection *sectp;
2468 bfd *abfd;
2469 gdb_byte *buf, *retbuf;
2470
2471 if (info->readin)
2472 return;
2473 info->buffer = NULL;
2474 info->readin = 1;
2475
2476 if (dwarf2_section_empty_p (info))
2477 return;
2478
2479 sectp = get_section_bfd_section (info);
2480
2481 /* If this is a virtual section we need to read in the real one first. */
2482 if (info->is_virtual)
2483 {
2484 struct dwarf2_section_info *containing_section =
2485 get_containing_section (info);
2486
2487 gdb_assert (sectp != NULL);
2488 if ((sectp->flags & SEC_RELOC) != 0)
2489 {
2490 error (_("Dwarf Error: DWP format V2 with relocations is not"
2491 " supported in section %s [in module %s]"),
2492 get_section_name (info), get_section_file_name (info));
2493 }
2494 dwarf2_read_section (objfile, containing_section);
2495 /* Other code should have already caught virtual sections that don't
2496 fit. */
2497 gdb_assert (info->virtual_offset + info->size
2498 <= containing_section->size);
2499 /* If the real section is empty or there was a problem reading the
2500 section we shouldn't get here. */
2501 gdb_assert (containing_section->buffer != NULL);
2502 info->buffer = containing_section->buffer + info->virtual_offset;
2503 return;
2504 }
2505
2506 /* If the section has relocations, we must read it ourselves.
2507 Otherwise we attach it to the BFD. */
2508 if ((sectp->flags & SEC_RELOC) == 0)
2509 {
2510 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2511 return;
2512 }
2513
2514 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2515 info->buffer = buf;
2516
2517 /* When debugging .o files, we may need to apply relocations; see
2518 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2519 We never compress sections in .o files, so we only need to
2520 try this when the section is not compressed. */
2521 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2522 if (retbuf != NULL)
2523 {
2524 info->buffer = retbuf;
2525 return;
2526 }
2527
2528 abfd = get_section_bfd_owner (info);
2529 gdb_assert (abfd != NULL);
2530
2531 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2532 || bfd_bread (buf, info->size, abfd) != info->size)
2533 {
2534 error (_("Dwarf Error: Can't read DWARF data"
2535 " in section %s [in module %s]"),
2536 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2537 }
2538 }
2539
2540 /* A helper function that returns the size of a section in a safe way.
2541 If you are positive that the section has been read before using the
2542 size, then it is safe to refer to the dwarf2_section_info object's
2543 "size" field directly. In other cases, you must call this
2544 function, because for compressed sections the size field is not set
2545 correctly until the section has been read. */
2546
2547 static bfd_size_type
2548 dwarf2_section_size (struct objfile *objfile,
2549 struct dwarf2_section_info *info)
2550 {
2551 if (!info->readin)
2552 dwarf2_read_section (objfile, info);
2553 return info->size;
2554 }
2555
2556 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2557 SECTION_NAME. */
2558
2559 void
2560 dwarf2_get_section_info (struct objfile *objfile,
2561 enum dwarf2_section_enum sect,
2562 asection **sectp, const gdb_byte **bufp,
2563 bfd_size_type *sizep)
2564 {
2565 struct dwarf2_per_objfile *data
2566 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2567 dwarf2_objfile_data_key);
2568 struct dwarf2_section_info *info;
2569
2570 /* We may see an objfile without any DWARF, in which case we just
2571 return nothing. */
2572 if (data == NULL)
2573 {
2574 *sectp = NULL;
2575 *bufp = NULL;
2576 *sizep = 0;
2577 return;
2578 }
2579 switch (sect)
2580 {
2581 case DWARF2_DEBUG_FRAME:
2582 info = &data->frame;
2583 break;
2584 case DWARF2_EH_FRAME:
2585 info = &data->eh_frame;
2586 break;
2587 default:
2588 gdb_assert_not_reached ("unexpected section");
2589 }
2590
2591 dwarf2_read_section (objfile, info);
2592
2593 *sectp = get_section_bfd_section (info);
2594 *bufp = info->buffer;
2595 *sizep = info->size;
2596 }
2597
2598 /* A helper function to find the sections for a .dwz file. */
2599
2600 static void
2601 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2602 {
2603 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2604
2605 /* Note that we only support the standard ELF names, because .dwz
2606 is ELF-only (at the time of writing). */
2607 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2608 {
2609 dwz_file->abbrev.s.section = sectp;
2610 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2611 }
2612 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2613 {
2614 dwz_file->info.s.section = sectp;
2615 dwz_file->info.size = bfd_get_section_size (sectp);
2616 }
2617 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2618 {
2619 dwz_file->str.s.section = sectp;
2620 dwz_file->str.size = bfd_get_section_size (sectp);
2621 }
2622 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2623 {
2624 dwz_file->line.s.section = sectp;
2625 dwz_file->line.size = bfd_get_section_size (sectp);
2626 }
2627 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2628 {
2629 dwz_file->macro.s.section = sectp;
2630 dwz_file->macro.size = bfd_get_section_size (sectp);
2631 }
2632 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2633 {
2634 dwz_file->gdb_index.s.section = sectp;
2635 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2636 }
2637 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2638 {
2639 dwz_file->debug_names.s.section = sectp;
2640 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2641 }
2642 }
2643
2644 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2645 there is no .gnu_debugaltlink section in the file. Error if there
2646 is such a section but the file cannot be found. */
2647
2648 static struct dwz_file *
2649 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2650 {
2651 const char *filename;
2652 bfd_size_type buildid_len_arg;
2653 size_t buildid_len;
2654 bfd_byte *buildid;
2655
2656 if (dwarf2_per_objfile->dwz_file != NULL)
2657 return dwarf2_per_objfile->dwz_file.get ();
2658
2659 bfd_set_error (bfd_error_no_error);
2660 gdb::unique_xmalloc_ptr<char> data
2661 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2662 &buildid_len_arg, &buildid));
2663 if (data == NULL)
2664 {
2665 if (bfd_get_error () == bfd_error_no_error)
2666 return NULL;
2667 error (_("could not read '.gnu_debugaltlink' section: %s"),
2668 bfd_errmsg (bfd_get_error ()));
2669 }
2670
2671 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2672
2673 buildid_len = (size_t) buildid_len_arg;
2674
2675 filename = data.get ();
2676
2677 std::string abs_storage;
2678 if (!IS_ABSOLUTE_PATH (filename))
2679 {
2680 gdb::unique_xmalloc_ptr<char> abs
2681 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2682
2683 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2684 filename = abs_storage.c_str ();
2685 }
2686
2687 /* First try the file name given in the section. If that doesn't
2688 work, try to use the build-id instead. */
2689 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2690 if (dwz_bfd != NULL)
2691 {
2692 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2693 dwz_bfd.release ();
2694 }
2695
2696 if (dwz_bfd == NULL)
2697 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2698
2699 if (dwz_bfd == NULL)
2700 error (_("could not find '.gnu_debugaltlink' file for %s"),
2701 objfile_name (dwarf2_per_objfile->objfile));
2702
2703 std::unique_ptr<struct dwz_file> result
2704 (new struct dwz_file (std::move (dwz_bfd)));
2705
2706 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2707 result.get ());
2708
2709 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2710 result->dwz_bfd.get ());
2711 dwarf2_per_objfile->dwz_file = std::move (result);
2712 return dwarf2_per_objfile->dwz_file.get ();
2713 }
2714 \f
2715 /* DWARF quick_symbols_functions support. */
2716
2717 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2718 unique line tables, so we maintain a separate table of all .debug_line
2719 derived entries to support the sharing.
2720 All the quick functions need is the list of file names. We discard the
2721 line_header when we're done and don't need to record it here. */
2722 struct quick_file_names
2723 {
2724 /* The data used to construct the hash key. */
2725 struct stmt_list_hash hash;
2726
2727 /* The number of entries in file_names, real_names. */
2728 unsigned int num_file_names;
2729
2730 /* The file names from the line table, after being run through
2731 file_full_name. */
2732 const char **file_names;
2733
2734 /* The file names from the line table after being run through
2735 gdb_realpath. These are computed lazily. */
2736 const char **real_names;
2737 };
2738
2739 /* When using the index (and thus not using psymtabs), each CU has an
2740 object of this type. This is used to hold information needed by
2741 the various "quick" methods. */
2742 struct dwarf2_per_cu_quick_data
2743 {
2744 /* The file table. This can be NULL if there was no file table
2745 or it's currently not read in.
2746 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2747 struct quick_file_names *file_names;
2748
2749 /* The corresponding symbol table. This is NULL if symbols for this
2750 CU have not yet been read. */
2751 struct compunit_symtab *compunit_symtab;
2752
2753 /* A temporary mark bit used when iterating over all CUs in
2754 expand_symtabs_matching. */
2755 unsigned int mark : 1;
2756
2757 /* True if we've tried to read the file table and found there isn't one.
2758 There will be no point in trying to read it again next time. */
2759 unsigned int no_file_data : 1;
2760 };
2761
2762 /* Utility hash function for a stmt_list_hash. */
2763
2764 static hashval_t
2765 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2766 {
2767 hashval_t v = 0;
2768
2769 if (stmt_list_hash->dwo_unit != NULL)
2770 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2771 v += to_underlying (stmt_list_hash->line_sect_off);
2772 return v;
2773 }
2774
2775 /* Utility equality function for a stmt_list_hash. */
2776
2777 static int
2778 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2779 const struct stmt_list_hash *rhs)
2780 {
2781 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2782 return 0;
2783 if (lhs->dwo_unit != NULL
2784 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2785 return 0;
2786
2787 return lhs->line_sect_off == rhs->line_sect_off;
2788 }
2789
2790 /* Hash function for a quick_file_names. */
2791
2792 static hashval_t
2793 hash_file_name_entry (const void *e)
2794 {
2795 const struct quick_file_names *file_data
2796 = (const struct quick_file_names *) e;
2797
2798 return hash_stmt_list_entry (&file_data->hash);
2799 }
2800
2801 /* Equality function for a quick_file_names. */
2802
2803 static int
2804 eq_file_name_entry (const void *a, const void *b)
2805 {
2806 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2807 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2808
2809 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2810 }
2811
2812 /* Delete function for a quick_file_names. */
2813
2814 static void
2815 delete_file_name_entry (void *e)
2816 {
2817 struct quick_file_names *file_data = (struct quick_file_names *) e;
2818 int i;
2819
2820 for (i = 0; i < file_data->num_file_names; ++i)
2821 {
2822 xfree ((void*) file_data->file_names[i]);
2823 if (file_data->real_names)
2824 xfree ((void*) file_data->real_names[i]);
2825 }
2826
2827 /* The space for the struct itself lives on objfile_obstack,
2828 so we don't free it here. */
2829 }
2830
2831 /* Create a quick_file_names hash table. */
2832
2833 static htab_t
2834 create_quick_file_names_table (unsigned int nr_initial_entries)
2835 {
2836 return htab_create_alloc (nr_initial_entries,
2837 hash_file_name_entry, eq_file_name_entry,
2838 delete_file_name_entry, xcalloc, xfree);
2839 }
2840
2841 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2842 have to be created afterwards. You should call age_cached_comp_units after
2843 processing PER_CU->CU. dw2_setup must have been already called. */
2844
2845 static void
2846 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2847 {
2848 if (per_cu->is_debug_types)
2849 load_full_type_unit (per_cu);
2850 else
2851 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2852
2853 if (per_cu->cu == NULL)
2854 return; /* Dummy CU. */
2855
2856 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2857 }
2858
2859 /* Read in the symbols for PER_CU. */
2860
2861 static void
2862 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2863 {
2864 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2865
2866 /* Skip type_unit_groups, reading the type units they contain
2867 is handled elsewhere. */
2868 if (IS_TYPE_UNIT_GROUP (per_cu))
2869 return;
2870
2871 /* The destructor of dwarf2_queue_guard frees any entries left on
2872 the queue. After this point we're guaranteed to leave this function
2873 with the dwarf queue empty. */
2874 dwarf2_queue_guard q_guard;
2875
2876 if (dwarf2_per_objfile->using_index
2877 ? per_cu->v.quick->compunit_symtab == NULL
2878 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2879 {
2880 queue_comp_unit (per_cu, language_minimal);
2881 load_cu (per_cu, skip_partial);
2882
2883 /* If we just loaded a CU from a DWO, and we're working with an index
2884 that may badly handle TUs, load all the TUs in that DWO as well.
2885 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2886 if (!per_cu->is_debug_types
2887 && per_cu->cu != NULL
2888 && per_cu->cu->dwo_unit != NULL
2889 && dwarf2_per_objfile->index_table != NULL
2890 && dwarf2_per_objfile->index_table->version <= 7
2891 /* DWP files aren't supported yet. */
2892 && get_dwp_file (dwarf2_per_objfile) == NULL)
2893 queue_and_load_all_dwo_tus (per_cu);
2894 }
2895
2896 process_queue (dwarf2_per_objfile);
2897
2898 /* Age the cache, releasing compilation units that have not
2899 been used recently. */
2900 age_cached_comp_units (dwarf2_per_objfile);
2901 }
2902
2903 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2904 the objfile from which this CU came. Returns the resulting symbol
2905 table. */
2906
2907 static struct compunit_symtab *
2908 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2909 {
2910 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2911
2912 gdb_assert (dwarf2_per_objfile->using_index);
2913 if (!per_cu->v.quick->compunit_symtab)
2914 {
2915 free_cached_comp_units freer (dwarf2_per_objfile);
2916 scoped_restore decrementer = increment_reading_symtab ();
2917 dw2_do_instantiate_symtab (per_cu, skip_partial);
2918 process_cu_includes (dwarf2_per_objfile);
2919 }
2920
2921 return per_cu->v.quick->compunit_symtab;
2922 }
2923
2924 /* See declaration. */
2925
2926 dwarf2_per_cu_data *
2927 dwarf2_per_objfile::get_cutu (int index)
2928 {
2929 if (index >= this->all_comp_units.size ())
2930 {
2931 index -= this->all_comp_units.size ();
2932 gdb_assert (index < this->all_type_units.size ());
2933 return &this->all_type_units[index]->per_cu;
2934 }
2935
2936 return this->all_comp_units[index];
2937 }
2938
2939 /* See declaration. */
2940
2941 dwarf2_per_cu_data *
2942 dwarf2_per_objfile::get_cu (int index)
2943 {
2944 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2945
2946 return this->all_comp_units[index];
2947 }
2948
2949 /* See declaration. */
2950
2951 signatured_type *
2952 dwarf2_per_objfile::get_tu (int index)
2953 {
2954 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2955
2956 return this->all_type_units[index];
2957 }
2958
2959 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2960 objfile_obstack, and constructed with the specified field
2961 values. */
2962
2963 static dwarf2_per_cu_data *
2964 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2965 struct dwarf2_section_info *section,
2966 int is_dwz,
2967 sect_offset sect_off, ULONGEST length)
2968 {
2969 struct objfile *objfile = dwarf2_per_objfile->objfile;
2970 dwarf2_per_cu_data *the_cu
2971 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2972 struct dwarf2_per_cu_data);
2973 the_cu->sect_off = sect_off;
2974 the_cu->length = length;
2975 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2976 the_cu->section = section;
2977 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2978 struct dwarf2_per_cu_quick_data);
2979 the_cu->is_dwz = is_dwz;
2980 return the_cu;
2981 }
2982
2983 /* A helper for create_cus_from_index that handles a given list of
2984 CUs. */
2985
2986 static void
2987 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2988 const gdb_byte *cu_list, offset_type n_elements,
2989 struct dwarf2_section_info *section,
2990 int is_dwz)
2991 {
2992 for (offset_type i = 0; i < n_elements; i += 2)
2993 {
2994 gdb_static_assert (sizeof (ULONGEST) >= 8);
2995
2996 sect_offset sect_off
2997 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2998 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2999 cu_list += 2 * 8;
3000
3001 dwarf2_per_cu_data *per_cu
3002 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3003 sect_off, length);
3004 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3005 }
3006 }
3007
3008 /* Read the CU list from the mapped index, and use it to create all
3009 the CU objects for this objfile. */
3010
3011 static void
3012 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3013 const gdb_byte *cu_list, offset_type cu_list_elements,
3014 const gdb_byte *dwz_list, offset_type dwz_elements)
3015 {
3016 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3017 dwarf2_per_objfile->all_comp_units.reserve
3018 ((cu_list_elements + dwz_elements) / 2);
3019
3020 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3021 &dwarf2_per_objfile->info, 0);
3022
3023 if (dwz_elements == 0)
3024 return;
3025
3026 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3027 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3028 &dwz->info, 1);
3029 }
3030
3031 /* Create the signatured type hash table from the index. */
3032
3033 static void
3034 create_signatured_type_table_from_index
3035 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3036 struct dwarf2_section_info *section,
3037 const gdb_byte *bytes,
3038 offset_type elements)
3039 {
3040 struct objfile *objfile = dwarf2_per_objfile->objfile;
3041
3042 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3043 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3044
3045 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3046
3047 for (offset_type i = 0; i < elements; i += 3)
3048 {
3049 struct signatured_type *sig_type;
3050 ULONGEST signature;
3051 void **slot;
3052 cu_offset type_offset_in_tu;
3053
3054 gdb_static_assert (sizeof (ULONGEST) >= 8);
3055 sect_offset sect_off
3056 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3057 type_offset_in_tu
3058 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3059 BFD_ENDIAN_LITTLE);
3060 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3061 bytes += 3 * 8;
3062
3063 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3064 struct signatured_type);
3065 sig_type->signature = signature;
3066 sig_type->type_offset_in_tu = type_offset_in_tu;
3067 sig_type->per_cu.is_debug_types = 1;
3068 sig_type->per_cu.section = section;
3069 sig_type->per_cu.sect_off = sect_off;
3070 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3071 sig_type->per_cu.v.quick
3072 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3073 struct dwarf2_per_cu_quick_data);
3074
3075 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3076 *slot = sig_type;
3077
3078 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3079 }
3080
3081 dwarf2_per_objfile->signatured_types = sig_types_hash;
3082 }
3083
3084 /* Create the signatured type hash table from .debug_names. */
3085
3086 static void
3087 create_signatured_type_table_from_debug_names
3088 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3089 const mapped_debug_names &map,
3090 struct dwarf2_section_info *section,
3091 struct dwarf2_section_info *abbrev_section)
3092 {
3093 struct objfile *objfile = dwarf2_per_objfile->objfile;
3094
3095 dwarf2_read_section (objfile, section);
3096 dwarf2_read_section (objfile, abbrev_section);
3097
3098 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3099 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3100
3101 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3102
3103 for (uint32_t i = 0; i < map.tu_count; ++i)
3104 {
3105 struct signatured_type *sig_type;
3106 void **slot;
3107
3108 sect_offset sect_off
3109 = (sect_offset) (extract_unsigned_integer
3110 (map.tu_table_reordered + i * map.offset_size,
3111 map.offset_size,
3112 map.dwarf5_byte_order));
3113
3114 comp_unit_head cu_header;
3115 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3116 abbrev_section,
3117 section->buffer + to_underlying (sect_off),
3118 rcuh_kind::TYPE);
3119
3120 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3121 struct signatured_type);
3122 sig_type->signature = cu_header.signature;
3123 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3124 sig_type->per_cu.is_debug_types = 1;
3125 sig_type->per_cu.section = section;
3126 sig_type->per_cu.sect_off = sect_off;
3127 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3128 sig_type->per_cu.v.quick
3129 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3130 struct dwarf2_per_cu_quick_data);
3131
3132 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3133 *slot = sig_type;
3134
3135 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3136 }
3137
3138 dwarf2_per_objfile->signatured_types = sig_types_hash;
3139 }
3140
3141 /* Read the address map data from the mapped index, and use it to
3142 populate the objfile's psymtabs_addrmap. */
3143
3144 static void
3145 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3146 struct mapped_index *index)
3147 {
3148 struct objfile *objfile = dwarf2_per_objfile->objfile;
3149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3150 const gdb_byte *iter, *end;
3151 struct addrmap *mutable_map;
3152 CORE_ADDR baseaddr;
3153
3154 auto_obstack temp_obstack;
3155
3156 mutable_map = addrmap_create_mutable (&temp_obstack);
3157
3158 iter = index->address_table.data ();
3159 end = iter + index->address_table.size ();
3160
3161 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3162
3163 while (iter < end)
3164 {
3165 ULONGEST hi, lo, cu_index;
3166 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3167 iter += 8;
3168 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3169 iter += 8;
3170 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3171 iter += 4;
3172
3173 if (lo > hi)
3174 {
3175 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3176 hex_string (lo), hex_string (hi));
3177 continue;
3178 }
3179
3180 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3181 {
3182 complaint (_(".gdb_index address table has invalid CU number %u"),
3183 (unsigned) cu_index);
3184 continue;
3185 }
3186
3187 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3188 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3189 addrmap_set_empty (mutable_map, lo, hi - 1,
3190 dwarf2_per_objfile->get_cu (cu_index));
3191 }
3192
3193 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3194 &objfile->objfile_obstack);
3195 }
3196
3197 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3198 populate the objfile's psymtabs_addrmap. */
3199
3200 static void
3201 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3202 struct dwarf2_section_info *section)
3203 {
3204 struct objfile *objfile = dwarf2_per_objfile->objfile;
3205 bfd *abfd = objfile->obfd;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3208 SECT_OFF_TEXT (objfile));
3209
3210 auto_obstack temp_obstack;
3211 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3212
3213 std::unordered_map<sect_offset,
3214 dwarf2_per_cu_data *,
3215 gdb::hash_enum<sect_offset>>
3216 debug_info_offset_to_per_cu;
3217 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3218 {
3219 const auto insertpair
3220 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3221 if (!insertpair.second)
3222 {
3223 warning (_("Section .debug_aranges in %s has duplicate "
3224 "debug_info_offset %s, ignoring .debug_aranges."),
3225 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3226 return;
3227 }
3228 }
3229
3230 dwarf2_read_section (objfile, section);
3231
3232 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3233
3234 const gdb_byte *addr = section->buffer;
3235
3236 while (addr < section->buffer + section->size)
3237 {
3238 const gdb_byte *const entry_addr = addr;
3239 unsigned int bytes_read;
3240
3241 const LONGEST entry_length = read_initial_length (abfd, addr,
3242 &bytes_read);
3243 addr += bytes_read;
3244
3245 const gdb_byte *const entry_end = addr + entry_length;
3246 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3247 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3248 if (addr + entry_length > section->buffer + section->size)
3249 {
3250 warning (_("Section .debug_aranges in %s entry at offset %zu "
3251 "length %s exceeds section length %s, "
3252 "ignoring .debug_aranges."),
3253 objfile_name (objfile), entry_addr - section->buffer,
3254 plongest (bytes_read + entry_length),
3255 pulongest (section->size));
3256 return;
3257 }
3258
3259 /* The version number. */
3260 const uint16_t version = read_2_bytes (abfd, addr);
3261 addr += 2;
3262 if (version != 2)
3263 {
3264 warning (_("Section .debug_aranges in %s entry at offset %zu "
3265 "has unsupported version %d, ignoring .debug_aranges."),
3266 objfile_name (objfile), entry_addr - section->buffer,
3267 version);
3268 return;
3269 }
3270
3271 const uint64_t debug_info_offset
3272 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3273 addr += offset_size;
3274 const auto per_cu_it
3275 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3276 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %zu "
3279 "debug_info_offset %s does not exists, "
3280 "ignoring .debug_aranges."),
3281 objfile_name (objfile), entry_addr - section->buffer,
3282 pulongest (debug_info_offset));
3283 return;
3284 }
3285 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3286
3287 const uint8_t address_size = *addr++;
3288 if (address_size < 1 || address_size > 8)
3289 {
3290 warning (_("Section .debug_aranges in %s entry at offset %zu "
3291 "address_size %u is invalid, ignoring .debug_aranges."),
3292 objfile_name (objfile), entry_addr - section->buffer,
3293 address_size);
3294 return;
3295 }
3296
3297 const uint8_t segment_selector_size = *addr++;
3298 if (segment_selector_size != 0)
3299 {
3300 warning (_("Section .debug_aranges in %s entry at offset %zu "
3301 "segment_selector_size %u is not supported, "
3302 "ignoring .debug_aranges."),
3303 objfile_name (objfile), entry_addr - section->buffer,
3304 segment_selector_size);
3305 return;
3306 }
3307
3308 /* Must pad to an alignment boundary that is twice the address
3309 size. It is undocumented by the DWARF standard but GCC does
3310 use it. */
3311 for (size_t padding = ((-(addr - section->buffer))
3312 & (2 * address_size - 1));
3313 padding > 0; padding--)
3314 if (*addr++ != 0)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %zu "
3317 "padding is not zero, ignoring .debug_aranges."),
3318 objfile_name (objfile), entry_addr - section->buffer);
3319 return;
3320 }
3321
3322 for (;;)
3323 {
3324 if (addr + 2 * address_size > entry_end)
3325 {
3326 warning (_("Section .debug_aranges in %s entry at offset %zu "
3327 "address list is not properly terminated, "
3328 "ignoring .debug_aranges."),
3329 objfile_name (objfile), entry_addr - section->buffer);
3330 return;
3331 }
3332 ULONGEST start = extract_unsigned_integer (addr, address_size,
3333 dwarf5_byte_order);
3334 addr += address_size;
3335 ULONGEST length = extract_unsigned_integer (addr, address_size,
3336 dwarf5_byte_order);
3337 addr += address_size;
3338 if (start == 0 && length == 0)
3339 break;
3340 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3341 {
3342 /* Symbol was eliminated due to a COMDAT group. */
3343 continue;
3344 }
3345 ULONGEST end = start + length;
3346 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3347 - baseaddr);
3348 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3349 - baseaddr);
3350 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3351 }
3352 }
3353
3354 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3355 &objfile->objfile_obstack);
3356 }
3357
3358 /* Find a slot in the mapped index INDEX for the object named NAME.
3359 If NAME is found, set *VEC_OUT to point to the CU vector in the
3360 constant pool and return true. If NAME cannot be found, return
3361 false. */
3362
3363 static bool
3364 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3365 offset_type **vec_out)
3366 {
3367 offset_type hash;
3368 offset_type slot, step;
3369 int (*cmp) (const char *, const char *);
3370
3371 gdb::unique_xmalloc_ptr<char> without_params;
3372 if (current_language->la_language == language_cplus
3373 || current_language->la_language == language_fortran
3374 || current_language->la_language == language_d)
3375 {
3376 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3377 not contain any. */
3378
3379 if (strchr (name, '(') != NULL)
3380 {
3381 without_params = cp_remove_params (name);
3382
3383 if (without_params != NULL)
3384 name = without_params.get ();
3385 }
3386 }
3387
3388 /* Index version 4 did not support case insensitive searches. But the
3389 indices for case insensitive languages are built in lowercase, therefore
3390 simulate our NAME being searched is also lowercased. */
3391 hash = mapped_index_string_hash ((index->version == 4
3392 && case_sensitivity == case_sensitive_off
3393 ? 5 : index->version),
3394 name);
3395
3396 slot = hash & (index->symbol_table.size () - 1);
3397 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3398 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3399
3400 for (;;)
3401 {
3402 const char *str;
3403
3404 const auto &bucket = index->symbol_table[slot];
3405 if (bucket.name == 0 && bucket.vec == 0)
3406 return false;
3407
3408 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3409 if (!cmp (name, str))
3410 {
3411 *vec_out = (offset_type *) (index->constant_pool
3412 + MAYBE_SWAP (bucket.vec));
3413 return true;
3414 }
3415
3416 slot = (slot + step) & (index->symbol_table.size () - 1);
3417 }
3418 }
3419
3420 /* A helper function that reads the .gdb_index from BUFFER and fills
3421 in MAP. FILENAME is the name of the file containing the data;
3422 it is used for error reporting. DEPRECATED_OK is true if it is
3423 ok to use deprecated sections.
3424
3425 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3426 out parameters that are filled in with information about the CU and
3427 TU lists in the section.
3428
3429 Returns true if all went well, false otherwise. */
3430
3431 static bool
3432 read_gdb_index_from_buffer (struct objfile *objfile,
3433 const char *filename,
3434 bool deprecated_ok,
3435 gdb::array_view<const gdb_byte> buffer,
3436 struct mapped_index *map,
3437 const gdb_byte **cu_list,
3438 offset_type *cu_list_elements,
3439 const gdb_byte **types_list,
3440 offset_type *types_list_elements)
3441 {
3442 const gdb_byte *addr = &buffer[0];
3443
3444 /* Version check. */
3445 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3446 /* Versions earlier than 3 emitted every copy of a psymbol. This
3447 causes the index to behave very poorly for certain requests. Version 3
3448 contained incomplete addrmap. So, it seems better to just ignore such
3449 indices. */
3450 if (version < 4)
3451 {
3452 static int warning_printed = 0;
3453 if (!warning_printed)
3454 {
3455 warning (_("Skipping obsolete .gdb_index section in %s."),
3456 filename);
3457 warning_printed = 1;
3458 }
3459 return 0;
3460 }
3461 /* Index version 4 uses a different hash function than index version
3462 5 and later.
3463
3464 Versions earlier than 6 did not emit psymbols for inlined
3465 functions. Using these files will cause GDB not to be able to
3466 set breakpoints on inlined functions by name, so we ignore these
3467 indices unless the user has done
3468 "set use-deprecated-index-sections on". */
3469 if (version < 6 && !deprecated_ok)
3470 {
3471 static int warning_printed = 0;
3472 if (!warning_printed)
3473 {
3474 warning (_("\
3475 Skipping deprecated .gdb_index section in %s.\n\
3476 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3477 to use the section anyway."),
3478 filename);
3479 warning_printed = 1;
3480 }
3481 return 0;
3482 }
3483 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3484 of the TU (for symbols coming from TUs),
3485 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3486 Plus gold-generated indices can have duplicate entries for global symbols,
3487 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3488 These are just performance bugs, and we can't distinguish gdb-generated
3489 indices from gold-generated ones, so issue no warning here. */
3490
3491 /* Indexes with higher version than the one supported by GDB may be no
3492 longer backward compatible. */
3493 if (version > 8)
3494 return 0;
3495
3496 map->version = version;
3497
3498 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3499
3500 int i = 0;
3501 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3502 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3503 / 8);
3504 ++i;
3505
3506 *types_list = addr + MAYBE_SWAP (metadata[i]);
3507 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3508 - MAYBE_SWAP (metadata[i]))
3509 / 8);
3510 ++i;
3511
3512 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3513 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3514 map->address_table
3515 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3516 ++i;
3517
3518 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3519 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3520 map->symbol_table
3521 = gdb::array_view<mapped_index::symbol_table_slot>
3522 ((mapped_index::symbol_table_slot *) symbol_table,
3523 (mapped_index::symbol_table_slot *) symbol_table_end);
3524
3525 ++i;
3526 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3527
3528 return 1;
3529 }
3530
3531 /* Callback types for dwarf2_read_gdb_index. */
3532
3533 typedef gdb::function_view
3534 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3535 get_gdb_index_contents_ftype;
3536 typedef gdb::function_view
3537 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3538 get_gdb_index_contents_dwz_ftype;
3539
3540 /* Read .gdb_index. If everything went ok, initialize the "quick"
3541 elements of all the CUs and return 1. Otherwise, return 0. */
3542
3543 static int
3544 dwarf2_read_gdb_index
3545 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 get_gdb_index_contents_ftype get_gdb_index_contents,
3547 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3548 {
3549 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3550 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3551 struct dwz_file *dwz;
3552 struct objfile *objfile = dwarf2_per_objfile->objfile;
3553
3554 gdb::array_view<const gdb_byte> main_index_contents
3555 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3556
3557 if (main_index_contents.empty ())
3558 return 0;
3559
3560 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3561 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3562 use_deprecated_index_sections,
3563 main_index_contents, map.get (), &cu_list,
3564 &cu_list_elements, &types_list,
3565 &types_list_elements))
3566 return 0;
3567
3568 /* Don't use the index if it's empty. */
3569 if (map->symbol_table.empty ())
3570 return 0;
3571
3572 /* If there is a .dwz file, read it so we can get its CU list as
3573 well. */
3574 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3575 if (dwz != NULL)
3576 {
3577 struct mapped_index dwz_map;
3578 const gdb_byte *dwz_types_ignore;
3579 offset_type dwz_types_elements_ignore;
3580
3581 gdb::array_view<const gdb_byte> dwz_index_content
3582 = get_gdb_index_contents_dwz (objfile, dwz);
3583
3584 if (dwz_index_content.empty ())
3585 return 0;
3586
3587 if (!read_gdb_index_from_buffer (objfile,
3588 bfd_get_filename (dwz->dwz_bfd), 1,
3589 dwz_index_content, &dwz_map,
3590 &dwz_list, &dwz_list_elements,
3591 &dwz_types_ignore,
3592 &dwz_types_elements_ignore))
3593 {
3594 warning (_("could not read '.gdb_index' section from %s; skipping"),
3595 bfd_get_filename (dwz->dwz_bfd));
3596 return 0;
3597 }
3598 }
3599
3600 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3601 dwz_list, dwz_list_elements);
3602
3603 if (types_list_elements)
3604 {
3605 struct dwarf2_section_info *section;
3606
3607 /* We can only handle a single .debug_types when we have an
3608 index. */
3609 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3610 return 0;
3611
3612 section = VEC_index (dwarf2_section_info_def,
3613 dwarf2_per_objfile->types, 0);
3614
3615 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3616 types_list, types_list_elements);
3617 }
3618
3619 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3620
3621 dwarf2_per_objfile->index_table = std::move (map);
3622 dwarf2_per_objfile->using_index = 1;
3623 dwarf2_per_objfile->quick_file_names_table =
3624 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3625
3626 return 1;
3627 }
3628
3629 /* die_reader_func for dw2_get_file_names. */
3630
3631 static void
3632 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3633 const gdb_byte *info_ptr,
3634 struct die_info *comp_unit_die,
3635 int has_children,
3636 void *data)
3637 {
3638 struct dwarf2_cu *cu = reader->cu;
3639 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3640 struct dwarf2_per_objfile *dwarf2_per_objfile
3641 = cu->per_cu->dwarf2_per_objfile;
3642 struct objfile *objfile = dwarf2_per_objfile->objfile;
3643 struct dwarf2_per_cu_data *lh_cu;
3644 struct attribute *attr;
3645 int i;
3646 void **slot;
3647 struct quick_file_names *qfn;
3648
3649 gdb_assert (! this_cu->is_debug_types);
3650
3651 /* Our callers never want to match partial units -- instead they
3652 will match the enclosing full CU. */
3653 if (comp_unit_die->tag == DW_TAG_partial_unit)
3654 {
3655 this_cu->v.quick->no_file_data = 1;
3656 return;
3657 }
3658
3659 lh_cu = this_cu;
3660 slot = NULL;
3661
3662 line_header_up lh;
3663 sect_offset line_offset {};
3664
3665 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3666 if (attr)
3667 {
3668 struct quick_file_names find_entry;
3669
3670 line_offset = (sect_offset) DW_UNSND (attr);
3671
3672 /* We may have already read in this line header (TU line header sharing).
3673 If we have we're done. */
3674 find_entry.hash.dwo_unit = cu->dwo_unit;
3675 find_entry.hash.line_sect_off = line_offset;
3676 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3677 &find_entry, INSERT);
3678 if (*slot != NULL)
3679 {
3680 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3681 return;
3682 }
3683
3684 lh = dwarf_decode_line_header (line_offset, cu);
3685 }
3686 if (lh == NULL)
3687 {
3688 lh_cu->v.quick->no_file_data = 1;
3689 return;
3690 }
3691
3692 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3693 qfn->hash.dwo_unit = cu->dwo_unit;
3694 qfn->hash.line_sect_off = line_offset;
3695 gdb_assert (slot != NULL);
3696 *slot = qfn;
3697
3698 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3699
3700 qfn->num_file_names = lh->file_names.size ();
3701 qfn->file_names =
3702 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3703 for (i = 0; i < lh->file_names.size (); ++i)
3704 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3705 qfn->real_names = NULL;
3706
3707 lh_cu->v.quick->file_names = qfn;
3708 }
3709
3710 /* A helper for the "quick" functions which attempts to read the line
3711 table for THIS_CU. */
3712
3713 static struct quick_file_names *
3714 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3715 {
3716 /* This should never be called for TUs. */
3717 gdb_assert (! this_cu->is_debug_types);
3718 /* Nor type unit groups. */
3719 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3720
3721 if (this_cu->v.quick->file_names != NULL)
3722 return this_cu->v.quick->file_names;
3723 /* If we know there is no line data, no point in looking again. */
3724 if (this_cu->v.quick->no_file_data)
3725 return NULL;
3726
3727 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3728
3729 if (this_cu->v.quick->no_file_data)
3730 return NULL;
3731 return this_cu->v.quick->file_names;
3732 }
3733
3734 /* A helper for the "quick" functions which computes and caches the
3735 real path for a given file name from the line table. */
3736
3737 static const char *
3738 dw2_get_real_path (struct objfile *objfile,
3739 struct quick_file_names *qfn, int index)
3740 {
3741 if (qfn->real_names == NULL)
3742 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3743 qfn->num_file_names, const char *);
3744
3745 if (qfn->real_names[index] == NULL)
3746 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3747
3748 return qfn->real_names[index];
3749 }
3750
3751 static struct symtab *
3752 dw2_find_last_source_symtab (struct objfile *objfile)
3753 {
3754 struct dwarf2_per_objfile *dwarf2_per_objfile
3755 = get_dwarf2_per_objfile (objfile);
3756 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3757 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3758
3759 if (cust == NULL)
3760 return NULL;
3761
3762 return compunit_primary_filetab (cust);
3763 }
3764
3765 /* Traversal function for dw2_forget_cached_source_info. */
3766
3767 static int
3768 dw2_free_cached_file_names (void **slot, void *info)
3769 {
3770 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3771
3772 if (file_data->real_names)
3773 {
3774 int i;
3775
3776 for (i = 0; i < file_data->num_file_names; ++i)
3777 {
3778 xfree ((void*) file_data->real_names[i]);
3779 file_data->real_names[i] = NULL;
3780 }
3781 }
3782
3783 return 1;
3784 }
3785
3786 static void
3787 dw2_forget_cached_source_info (struct objfile *objfile)
3788 {
3789 struct dwarf2_per_objfile *dwarf2_per_objfile
3790 = get_dwarf2_per_objfile (objfile);
3791
3792 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3793 dw2_free_cached_file_names, NULL);
3794 }
3795
3796 /* Helper function for dw2_map_symtabs_matching_filename that expands
3797 the symtabs and calls the iterator. */
3798
3799 static int
3800 dw2_map_expand_apply (struct objfile *objfile,
3801 struct dwarf2_per_cu_data *per_cu,
3802 const char *name, const char *real_path,
3803 gdb::function_view<bool (symtab *)> callback)
3804 {
3805 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3806
3807 /* Don't visit already-expanded CUs. */
3808 if (per_cu->v.quick->compunit_symtab)
3809 return 0;
3810
3811 /* This may expand more than one symtab, and we want to iterate over
3812 all of them. */
3813 dw2_instantiate_symtab (per_cu, false);
3814
3815 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3816 last_made, callback);
3817 }
3818
3819 /* Implementation of the map_symtabs_matching_filename method. */
3820
3821 static bool
3822 dw2_map_symtabs_matching_filename
3823 (struct objfile *objfile, const char *name, const char *real_path,
3824 gdb::function_view<bool (symtab *)> callback)
3825 {
3826 const char *name_basename = lbasename (name);
3827 struct dwarf2_per_objfile *dwarf2_per_objfile
3828 = get_dwarf2_per_objfile (objfile);
3829
3830 /* The rule is CUs specify all the files, including those used by
3831 any TU, so there's no need to scan TUs here. */
3832
3833 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3834 {
3835 /* We only need to look at symtabs not already expanded. */
3836 if (per_cu->v.quick->compunit_symtab)
3837 continue;
3838
3839 quick_file_names *file_data = dw2_get_file_names (per_cu);
3840 if (file_data == NULL)
3841 continue;
3842
3843 for (int j = 0; j < file_data->num_file_names; ++j)
3844 {
3845 const char *this_name = file_data->file_names[j];
3846 const char *this_real_name;
3847
3848 if (compare_filenames_for_search (this_name, name))
3849 {
3850 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3851 callback))
3852 return true;
3853 continue;
3854 }
3855
3856 /* Before we invoke realpath, which can get expensive when many
3857 files are involved, do a quick comparison of the basenames. */
3858 if (! basenames_may_differ
3859 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3860 continue;
3861
3862 this_real_name = dw2_get_real_path (objfile, file_data, j);
3863 if (compare_filenames_for_search (this_real_name, name))
3864 {
3865 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3866 callback))
3867 return true;
3868 continue;
3869 }
3870
3871 if (real_path != NULL)
3872 {
3873 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3874 gdb_assert (IS_ABSOLUTE_PATH (name));
3875 if (this_real_name != NULL
3876 && FILENAME_CMP (real_path, this_real_name) == 0)
3877 {
3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3879 callback))
3880 return true;
3881 continue;
3882 }
3883 }
3884 }
3885 }
3886
3887 return false;
3888 }
3889
3890 /* Struct used to manage iterating over all CUs looking for a symbol. */
3891
3892 struct dw2_symtab_iterator
3893 {
3894 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3895 struct dwarf2_per_objfile *dwarf2_per_objfile;
3896 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3897 int want_specific_block;
3898 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3899 Unused if !WANT_SPECIFIC_BLOCK. */
3900 int block_index;
3901 /* The kind of symbol we're looking for. */
3902 domain_enum domain;
3903 /* The list of CUs from the index entry of the symbol,
3904 or NULL if not found. */
3905 offset_type *vec;
3906 /* The next element in VEC to look at. */
3907 int next;
3908 /* The number of elements in VEC, or zero if there is no match. */
3909 int length;
3910 /* Have we seen a global version of the symbol?
3911 If so we can ignore all further global instances.
3912 This is to work around gold/15646, inefficient gold-generated
3913 indices. */
3914 int global_seen;
3915 };
3916
3917 /* Initialize the index symtab iterator ITER.
3918 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3919 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3920
3921 static void
3922 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3923 struct dwarf2_per_objfile *dwarf2_per_objfile,
3924 int want_specific_block,
3925 int block_index,
3926 domain_enum domain,
3927 const char *name)
3928 {
3929 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3930 iter->want_specific_block = want_specific_block;
3931 iter->block_index = block_index;
3932 iter->domain = domain;
3933 iter->next = 0;
3934 iter->global_seen = 0;
3935
3936 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3937
3938 /* index is NULL if OBJF_READNOW. */
3939 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3940 iter->length = MAYBE_SWAP (*iter->vec);
3941 else
3942 {
3943 iter->vec = NULL;
3944 iter->length = 0;
3945 }
3946 }
3947
3948 /* Return the next matching CU or NULL if there are no more. */
3949
3950 static struct dwarf2_per_cu_data *
3951 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3952 {
3953 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3954
3955 for ( ; iter->next < iter->length; ++iter->next)
3956 {
3957 offset_type cu_index_and_attrs =
3958 MAYBE_SWAP (iter->vec[iter->next + 1]);
3959 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3960 int want_static = iter->block_index != GLOBAL_BLOCK;
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 /* Only check the symbol attributes if they're present.
3966 Indices prior to version 7 don't record them,
3967 and indices >= 7 may elide them for certain symbols
3968 (gold does this). */
3969 int attrs_valid =
3970 (dwarf2_per_objfile->index_table->version >= 7
3971 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3972
3973 /* Don't crash on bad data. */
3974 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3975 + dwarf2_per_objfile->all_type_units.size ()))
3976 {
3977 complaint (_(".gdb_index entry has bad CU index"
3978 " [in module %s]"),
3979 objfile_name (dwarf2_per_objfile->objfile));
3980 continue;
3981 }
3982
3983 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3984
3985 /* Skip if already read in. */
3986 if (per_cu->v.quick->compunit_symtab)
3987 continue;
3988
3989 /* Check static vs global. */
3990 if (attrs_valid)
3991 {
3992 if (iter->want_specific_block
3993 && want_static != is_static)
3994 continue;
3995 /* Work around gold/15646. */
3996 if (!is_static && iter->global_seen)
3997 continue;
3998 if (!is_static)
3999 iter->global_seen = 1;
4000 }
4001
4002 /* Only check the symbol's kind if it has one. */
4003 if (attrs_valid)
4004 {
4005 switch (iter->domain)
4006 {
4007 case VAR_DOMAIN:
4008 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4009 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4010 /* Some types are also in VAR_DOMAIN. */
4011 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4012 continue;
4013 break;
4014 case STRUCT_DOMAIN:
4015 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4016 continue;
4017 break;
4018 case LABEL_DOMAIN:
4019 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4020 continue;
4021 break;
4022 default:
4023 break;
4024 }
4025 }
4026
4027 ++iter->next;
4028 return per_cu;
4029 }
4030
4031 return NULL;
4032 }
4033
4034 static struct compunit_symtab *
4035 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4036 const char *name, domain_enum domain)
4037 {
4038 struct compunit_symtab *stab_best = NULL;
4039 struct dwarf2_per_objfile *dwarf2_per_objfile
4040 = get_dwarf2_per_objfile (objfile);
4041
4042 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4043
4044 struct dw2_symtab_iterator iter;
4045 struct dwarf2_per_cu_data *per_cu;
4046
4047 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4048
4049 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4050 {
4051 struct symbol *sym, *with_opaque = NULL;
4052 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4053 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4054 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4055
4056 sym = block_find_symbol (block, name, domain,
4057 block_find_non_opaque_type_preferred,
4058 &with_opaque);
4059
4060 /* Some caution must be observed with overloaded functions
4061 and methods, since the index will not contain any overload
4062 information (but NAME might contain it). */
4063
4064 if (sym != NULL
4065 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4066 return stab;
4067 if (with_opaque != NULL
4068 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4069 stab_best = stab;
4070
4071 /* Keep looking through other CUs. */
4072 }
4073
4074 return stab_best;
4075 }
4076
4077 static void
4078 dw2_print_stats (struct objfile *objfile)
4079 {
4080 struct dwarf2_per_objfile *dwarf2_per_objfile
4081 = get_dwarf2_per_objfile (objfile);
4082 int total = (dwarf2_per_objfile->all_comp_units.size ()
4083 + dwarf2_per_objfile->all_type_units.size ());
4084 int count = 0;
4085
4086 for (int i = 0; i < total; ++i)
4087 {
4088 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4089
4090 if (!per_cu->v.quick->compunit_symtab)
4091 ++count;
4092 }
4093 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4094 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4095 }
4096
4097 /* This dumps minimal information about the index.
4098 It is called via "mt print objfiles".
4099 One use is to verify .gdb_index has been loaded by the
4100 gdb.dwarf2/gdb-index.exp testcase. */
4101
4102 static void
4103 dw2_dump (struct objfile *objfile)
4104 {
4105 struct dwarf2_per_objfile *dwarf2_per_objfile
4106 = get_dwarf2_per_objfile (objfile);
4107
4108 gdb_assert (dwarf2_per_objfile->using_index);
4109 printf_filtered (".gdb_index:");
4110 if (dwarf2_per_objfile->index_table != NULL)
4111 {
4112 printf_filtered (" version %d\n",
4113 dwarf2_per_objfile->index_table->version);
4114 }
4115 else
4116 printf_filtered (" faked for \"readnow\"\n");
4117 printf_filtered ("\n");
4118 }
4119
4120 static void
4121 dw2_expand_symtabs_for_function (struct objfile *objfile,
4122 const char *func_name)
4123 {
4124 struct dwarf2_per_objfile *dwarf2_per_objfile
4125 = get_dwarf2_per_objfile (objfile);
4126
4127 struct dw2_symtab_iterator iter;
4128 struct dwarf2_per_cu_data *per_cu;
4129
4130 /* Note: It doesn't matter what we pass for block_index here. */
4131 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4132 func_name);
4133
4134 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4135 dw2_instantiate_symtab (per_cu, false);
4136
4137 }
4138
4139 static void
4140 dw2_expand_all_symtabs (struct objfile *objfile)
4141 {
4142 struct dwarf2_per_objfile *dwarf2_per_objfile
4143 = get_dwarf2_per_objfile (objfile);
4144 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4145 + dwarf2_per_objfile->all_type_units.size ());
4146
4147 for (int i = 0; i < total_units; ++i)
4148 {
4149 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4150
4151 /* We don't want to directly expand a partial CU, because if we
4152 read it with the wrong language, then assertion failures can
4153 be triggered later on. See PR symtab/23010. So, tell
4154 dw2_instantiate_symtab to skip partial CUs -- any important
4155 partial CU will be read via DW_TAG_imported_unit anyway. */
4156 dw2_instantiate_symtab (per_cu, true);
4157 }
4158 }
4159
4160 static void
4161 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4162 const char *fullname)
4163 {
4164 struct dwarf2_per_objfile *dwarf2_per_objfile
4165 = get_dwarf2_per_objfile (objfile);
4166
4167 /* We don't need to consider type units here.
4168 This is only called for examining code, e.g. expand_line_sal.
4169 There can be an order of magnitude (or more) more type units
4170 than comp units, and we avoid them if we can. */
4171
4172 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4173 {
4174 /* We only need to look at symtabs not already expanded. */
4175 if (per_cu->v.quick->compunit_symtab)
4176 continue;
4177
4178 quick_file_names *file_data = dw2_get_file_names (per_cu);
4179 if (file_data == NULL)
4180 continue;
4181
4182 for (int j = 0; j < file_data->num_file_names; ++j)
4183 {
4184 const char *this_fullname = file_data->file_names[j];
4185
4186 if (filename_cmp (this_fullname, fullname) == 0)
4187 {
4188 dw2_instantiate_symtab (per_cu, false);
4189 break;
4190 }
4191 }
4192 }
4193 }
4194
4195 static void
4196 dw2_map_matching_symbols (struct objfile *objfile,
4197 const char * name, domain_enum domain,
4198 int global,
4199 int (*callback) (struct block *,
4200 struct symbol *, void *),
4201 void *data, symbol_name_match_type match,
4202 symbol_compare_ftype *ordered_compare)
4203 {
4204 /* Currently unimplemented; used for Ada. The function can be called if the
4205 current language is Ada for a non-Ada objfile using GNU index. As Ada
4206 does not look for non-Ada symbols this function should just return. */
4207 }
4208
4209 /* Symbol name matcher for .gdb_index names.
4210
4211 Symbol names in .gdb_index have a few particularities:
4212
4213 - There's no indication of which is the language of each symbol.
4214
4215 Since each language has its own symbol name matching algorithm,
4216 and we don't know which language is the right one, we must match
4217 each symbol against all languages. This would be a potential
4218 performance problem if it were not mitigated by the
4219 mapped_index::name_components lookup table, which significantly
4220 reduces the number of times we need to call into this matcher,
4221 making it a non-issue.
4222
4223 - Symbol names in the index have no overload (parameter)
4224 information. I.e., in C++, "foo(int)" and "foo(long)" both
4225 appear as "foo" in the index, for example.
4226
4227 This means that the lookup names passed to the symbol name
4228 matcher functions must have no parameter information either
4229 because (e.g.) symbol search name "foo" does not match
4230 lookup-name "foo(int)" [while swapping search name for lookup
4231 name would match].
4232 */
4233 class gdb_index_symbol_name_matcher
4234 {
4235 public:
4236 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4237 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4238
4239 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4240 Returns true if any matcher matches. */
4241 bool matches (const char *symbol_name);
4242
4243 private:
4244 /* A reference to the lookup name we're matching against. */
4245 const lookup_name_info &m_lookup_name;
4246
4247 /* A vector holding all the different symbol name matchers, for all
4248 languages. */
4249 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4250 };
4251
4252 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4253 (const lookup_name_info &lookup_name)
4254 : m_lookup_name (lookup_name)
4255 {
4256 /* Prepare the vector of comparison functions upfront, to avoid
4257 doing the same work for each symbol. Care is taken to avoid
4258 matching with the same matcher more than once if/when multiple
4259 languages use the same matcher function. */
4260 auto &matchers = m_symbol_name_matcher_funcs;
4261 matchers.reserve (nr_languages);
4262
4263 matchers.push_back (default_symbol_name_matcher);
4264
4265 for (int i = 0; i < nr_languages; i++)
4266 {
4267 const language_defn *lang = language_def ((enum language) i);
4268 symbol_name_matcher_ftype *name_matcher
4269 = get_symbol_name_matcher (lang, m_lookup_name);
4270
4271 /* Don't insert the same comparison routine more than once.
4272 Note that we do this linear walk instead of a seemingly
4273 cheaper sorted insert, or use a std::set or something like
4274 that, because relative order of function addresses is not
4275 stable. This is not a problem in practice because the number
4276 of supported languages is low, and the cost here is tiny
4277 compared to the number of searches we'll do afterwards using
4278 this object. */
4279 if (name_matcher != default_symbol_name_matcher
4280 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4281 == matchers.end ()))
4282 matchers.push_back (name_matcher);
4283 }
4284 }
4285
4286 bool
4287 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4288 {
4289 for (auto matches_name : m_symbol_name_matcher_funcs)
4290 if (matches_name (symbol_name, m_lookup_name, NULL))
4291 return true;
4292
4293 return false;
4294 }
4295
4296 /* Starting from a search name, return the string that finds the upper
4297 bound of all strings that start with SEARCH_NAME in a sorted name
4298 list. Returns the empty string to indicate that the upper bound is
4299 the end of the list. */
4300
4301 static std::string
4302 make_sort_after_prefix_name (const char *search_name)
4303 {
4304 /* When looking to complete "func", we find the upper bound of all
4305 symbols that start with "func" by looking for where we'd insert
4306 the closest string that would follow "func" in lexicographical
4307 order. Usually, that's "func"-with-last-character-incremented,
4308 i.e. "fund". Mind non-ASCII characters, though. Usually those
4309 will be UTF-8 multi-byte sequences, but we can't be certain.
4310 Especially mind the 0xff character, which is a valid character in
4311 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4312 rule out compilers allowing it in identifiers. Note that
4313 conveniently, strcmp/strcasecmp are specified to compare
4314 characters interpreted as unsigned char. So what we do is treat
4315 the whole string as a base 256 number composed of a sequence of
4316 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4317 to 0, and carries 1 to the following more-significant position.
4318 If the very first character in SEARCH_NAME ends up incremented
4319 and carries/overflows, then the upper bound is the end of the
4320 list. The string after the empty string is also the empty
4321 string.
4322
4323 Some examples of this operation:
4324
4325 SEARCH_NAME => "+1" RESULT
4326
4327 "abc" => "abd"
4328 "ab\xff" => "ac"
4329 "\xff" "a" "\xff" => "\xff" "b"
4330 "\xff" => ""
4331 "\xff\xff" => ""
4332 "" => ""
4333
4334 Then, with these symbols for example:
4335
4336 func
4337 func1
4338 fund
4339
4340 completing "func" looks for symbols between "func" and
4341 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4342 which finds "func" and "func1", but not "fund".
4343
4344 And with:
4345
4346 funcÿ (Latin1 'ÿ' [0xff])
4347 funcÿ1
4348 fund
4349
4350 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4351 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4352
4353 And with:
4354
4355 ÿÿ (Latin1 'ÿ' [0xff])
4356 ÿÿ1
4357
4358 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4359 the end of the list.
4360 */
4361 std::string after = search_name;
4362 while (!after.empty () && (unsigned char) after.back () == 0xff)
4363 after.pop_back ();
4364 if (!after.empty ())
4365 after.back () = (unsigned char) after.back () + 1;
4366 return after;
4367 }
4368
4369 /* See declaration. */
4370
4371 std::pair<std::vector<name_component>::const_iterator,
4372 std::vector<name_component>::const_iterator>
4373 mapped_index_base::find_name_components_bounds
4374 (const lookup_name_info &lookup_name_without_params) const
4375 {
4376 auto *name_cmp
4377 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4378
4379 const char *cplus
4380 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4381
4382 /* Comparison function object for lower_bound that matches against a
4383 given symbol name. */
4384 auto lookup_compare_lower = [&] (const name_component &elem,
4385 const char *name)
4386 {
4387 const char *elem_qualified = this->symbol_name_at (elem.idx);
4388 const char *elem_name = elem_qualified + elem.name_offset;
4389 return name_cmp (elem_name, name) < 0;
4390 };
4391
4392 /* Comparison function object for upper_bound that matches against a
4393 given symbol name. */
4394 auto lookup_compare_upper = [&] (const char *name,
4395 const name_component &elem)
4396 {
4397 const char *elem_qualified = this->symbol_name_at (elem.idx);
4398 const char *elem_name = elem_qualified + elem.name_offset;
4399 return name_cmp (name, elem_name) < 0;
4400 };
4401
4402 auto begin = this->name_components.begin ();
4403 auto end = this->name_components.end ();
4404
4405 /* Find the lower bound. */
4406 auto lower = [&] ()
4407 {
4408 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4409 return begin;
4410 else
4411 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4412 } ();
4413
4414 /* Find the upper bound. */
4415 auto upper = [&] ()
4416 {
4417 if (lookup_name_without_params.completion_mode ())
4418 {
4419 /* In completion mode, we want UPPER to point past all
4420 symbols names that have the same prefix. I.e., with
4421 these symbols, and completing "func":
4422
4423 function << lower bound
4424 function1
4425 other_function << upper bound
4426
4427 We find the upper bound by looking for the insertion
4428 point of "func"-with-last-character-incremented,
4429 i.e. "fund". */
4430 std::string after = make_sort_after_prefix_name (cplus);
4431 if (after.empty ())
4432 return end;
4433 return std::lower_bound (lower, end, after.c_str (),
4434 lookup_compare_lower);
4435 }
4436 else
4437 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4438 } ();
4439
4440 return {lower, upper};
4441 }
4442
4443 /* See declaration. */
4444
4445 void
4446 mapped_index_base::build_name_components ()
4447 {
4448 if (!this->name_components.empty ())
4449 return;
4450
4451 this->name_components_casing = case_sensitivity;
4452 auto *name_cmp
4453 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4454
4455 /* The code below only knows how to break apart components of C++
4456 symbol names (and other languages that use '::' as
4457 namespace/module separator). If we add support for wild matching
4458 to some language that uses some other operator (E.g., Ada, Go and
4459 D use '.'), then we'll need to try splitting the symbol name
4460 according to that language too. Note that Ada does support wild
4461 matching, but doesn't currently support .gdb_index. */
4462 auto count = this->symbol_name_count ();
4463 for (offset_type idx = 0; idx < count; idx++)
4464 {
4465 if (this->symbol_name_slot_invalid (idx))
4466 continue;
4467
4468 const char *name = this->symbol_name_at (idx);
4469
4470 /* Add each name component to the name component table. */
4471 unsigned int previous_len = 0;
4472 for (unsigned int current_len = cp_find_first_component (name);
4473 name[current_len] != '\0';
4474 current_len += cp_find_first_component (name + current_len))
4475 {
4476 gdb_assert (name[current_len] == ':');
4477 this->name_components.push_back ({previous_len, idx});
4478 /* Skip the '::'. */
4479 current_len += 2;
4480 previous_len = current_len;
4481 }
4482 this->name_components.push_back ({previous_len, idx});
4483 }
4484
4485 /* Sort name_components elements by name. */
4486 auto name_comp_compare = [&] (const name_component &left,
4487 const name_component &right)
4488 {
4489 const char *left_qualified = this->symbol_name_at (left.idx);
4490 const char *right_qualified = this->symbol_name_at (right.idx);
4491
4492 const char *left_name = left_qualified + left.name_offset;
4493 const char *right_name = right_qualified + right.name_offset;
4494
4495 return name_cmp (left_name, right_name) < 0;
4496 };
4497
4498 std::sort (this->name_components.begin (),
4499 this->name_components.end (),
4500 name_comp_compare);
4501 }
4502
4503 /* Helper for dw2_expand_symtabs_matching that works with a
4504 mapped_index_base instead of the containing objfile. This is split
4505 to a separate function in order to be able to unit test the
4506 name_components matching using a mock mapped_index_base. For each
4507 symbol name that matches, calls MATCH_CALLBACK, passing it the
4508 symbol's index in the mapped_index_base symbol table. */
4509
4510 static void
4511 dw2_expand_symtabs_matching_symbol
4512 (mapped_index_base &index,
4513 const lookup_name_info &lookup_name_in,
4514 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4515 enum search_domain kind,
4516 gdb::function_view<void (offset_type)> match_callback)
4517 {
4518 lookup_name_info lookup_name_without_params
4519 = lookup_name_in.make_ignore_params ();
4520 gdb_index_symbol_name_matcher lookup_name_matcher
4521 (lookup_name_without_params);
4522
4523 /* Build the symbol name component sorted vector, if we haven't
4524 yet. */
4525 index.build_name_components ();
4526
4527 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4528
4529 /* Now for each symbol name in range, check to see if we have a name
4530 match, and if so, call the MATCH_CALLBACK callback. */
4531
4532 /* The same symbol may appear more than once in the range though.
4533 E.g., if we're looking for symbols that complete "w", and we have
4534 a symbol named "w1::w2", we'll find the two name components for
4535 that same symbol in the range. To be sure we only call the
4536 callback once per symbol, we first collect the symbol name
4537 indexes that matched in a temporary vector and ignore
4538 duplicates. */
4539 std::vector<offset_type> matches;
4540 matches.reserve (std::distance (bounds.first, bounds.second));
4541
4542 for (; bounds.first != bounds.second; ++bounds.first)
4543 {
4544 const char *qualified = index.symbol_name_at (bounds.first->idx);
4545
4546 if (!lookup_name_matcher.matches (qualified)
4547 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4548 continue;
4549
4550 matches.push_back (bounds.first->idx);
4551 }
4552
4553 std::sort (matches.begin (), matches.end ());
4554
4555 /* Finally call the callback, once per match. */
4556 ULONGEST prev = -1;
4557 for (offset_type idx : matches)
4558 {
4559 if (prev != idx)
4560 {
4561 match_callback (idx);
4562 prev = idx;
4563 }
4564 }
4565
4566 /* Above we use a type wider than idx's for 'prev', since 0 and
4567 (offset_type)-1 are both possible values. */
4568 static_assert (sizeof (prev) > sizeof (offset_type), "");
4569 }
4570
4571 #if GDB_SELF_TEST
4572
4573 namespace selftests { namespace dw2_expand_symtabs_matching {
4574
4575 /* A mock .gdb_index/.debug_names-like name index table, enough to
4576 exercise dw2_expand_symtabs_matching_symbol, which works with the
4577 mapped_index_base interface. Builds an index from the symbol list
4578 passed as parameter to the constructor. */
4579 class mock_mapped_index : public mapped_index_base
4580 {
4581 public:
4582 mock_mapped_index (gdb::array_view<const char *> symbols)
4583 : m_symbol_table (symbols)
4584 {}
4585
4586 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4587
4588 /* Return the number of names in the symbol table. */
4589 size_t symbol_name_count () const override
4590 {
4591 return m_symbol_table.size ();
4592 }
4593
4594 /* Get the name of the symbol at IDX in the symbol table. */
4595 const char *symbol_name_at (offset_type idx) const override
4596 {
4597 return m_symbol_table[idx];
4598 }
4599
4600 private:
4601 gdb::array_view<const char *> m_symbol_table;
4602 };
4603
4604 /* Convenience function that converts a NULL pointer to a "<null>"
4605 string, to pass to print routines. */
4606
4607 static const char *
4608 string_or_null (const char *str)
4609 {
4610 return str != NULL ? str : "<null>";
4611 }
4612
4613 /* Check if a lookup_name_info built from
4614 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4615 index. EXPECTED_LIST is the list of expected matches, in expected
4616 matching order. If no match expected, then an empty list is
4617 specified. Returns true on success. On failure prints a warning
4618 indicating the file:line that failed, and returns false. */
4619
4620 static bool
4621 check_match (const char *file, int line,
4622 mock_mapped_index &mock_index,
4623 const char *name, symbol_name_match_type match_type,
4624 bool completion_mode,
4625 std::initializer_list<const char *> expected_list)
4626 {
4627 lookup_name_info lookup_name (name, match_type, completion_mode);
4628
4629 bool matched = true;
4630
4631 auto mismatch = [&] (const char *expected_str,
4632 const char *got)
4633 {
4634 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4635 "expected=\"%s\", got=\"%s\"\n"),
4636 file, line,
4637 (match_type == symbol_name_match_type::FULL
4638 ? "FULL" : "WILD"),
4639 name, string_or_null (expected_str), string_or_null (got));
4640 matched = false;
4641 };
4642
4643 auto expected_it = expected_list.begin ();
4644 auto expected_end = expected_list.end ();
4645
4646 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4647 NULL, ALL_DOMAIN,
4648 [&] (offset_type idx)
4649 {
4650 const char *matched_name = mock_index.symbol_name_at (idx);
4651 const char *expected_str
4652 = expected_it == expected_end ? NULL : *expected_it++;
4653
4654 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4655 mismatch (expected_str, matched_name);
4656 });
4657
4658 const char *expected_str
4659 = expected_it == expected_end ? NULL : *expected_it++;
4660 if (expected_str != NULL)
4661 mismatch (expected_str, NULL);
4662
4663 return matched;
4664 }
4665
4666 /* The symbols added to the mock mapped_index for testing (in
4667 canonical form). */
4668 static const char *test_symbols[] = {
4669 "function",
4670 "std::bar",
4671 "std::zfunction",
4672 "std::zfunction2",
4673 "w1::w2",
4674 "ns::foo<char*>",
4675 "ns::foo<int>",
4676 "ns::foo<long>",
4677 "ns2::tmpl<int>::foo2",
4678 "(anonymous namespace)::A::B::C",
4679
4680 /* These are used to check that the increment-last-char in the
4681 matching algorithm for completion doesn't match "t1_fund" when
4682 completing "t1_func". */
4683 "t1_func",
4684 "t1_func1",
4685 "t1_fund",
4686 "t1_fund1",
4687
4688 /* A UTF-8 name with multi-byte sequences to make sure that
4689 cp-name-parser understands this as a single identifier ("função"
4690 is "function" in PT). */
4691 u8"u8função",
4692
4693 /* \377 (0xff) is Latin1 'ÿ'. */
4694 "yfunc\377",
4695
4696 /* \377 (0xff) is Latin1 'ÿ'. */
4697 "\377",
4698 "\377\377123",
4699
4700 /* A name with all sorts of complications. Starts with "z" to make
4701 it easier for the completion tests below. */
4702 #define Z_SYM_NAME \
4703 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4704 "::tuple<(anonymous namespace)::ui*, " \
4705 "std::default_delete<(anonymous namespace)::ui>, void>"
4706
4707 Z_SYM_NAME
4708 };
4709
4710 /* Returns true if the mapped_index_base::find_name_component_bounds
4711 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4712 in completion mode. */
4713
4714 static bool
4715 check_find_bounds_finds (mapped_index_base &index,
4716 const char *search_name,
4717 gdb::array_view<const char *> expected_syms)
4718 {
4719 lookup_name_info lookup_name (search_name,
4720 symbol_name_match_type::FULL, true);
4721
4722 auto bounds = index.find_name_components_bounds (lookup_name);
4723
4724 size_t distance = std::distance (bounds.first, bounds.second);
4725 if (distance != expected_syms.size ())
4726 return false;
4727
4728 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4729 {
4730 auto nc_elem = bounds.first + exp_elem;
4731 const char *qualified = index.symbol_name_at (nc_elem->idx);
4732 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4733 return false;
4734 }
4735
4736 return true;
4737 }
4738
4739 /* Test the lower-level mapped_index::find_name_component_bounds
4740 method. */
4741
4742 static void
4743 test_mapped_index_find_name_component_bounds ()
4744 {
4745 mock_mapped_index mock_index (test_symbols);
4746
4747 mock_index.build_name_components ();
4748
4749 /* Test the lower-level mapped_index::find_name_component_bounds
4750 method in completion mode. */
4751 {
4752 static const char *expected_syms[] = {
4753 "t1_func",
4754 "t1_func1",
4755 };
4756
4757 SELF_CHECK (check_find_bounds_finds (mock_index,
4758 "t1_func", expected_syms));
4759 }
4760
4761 /* Check that the increment-last-char in the name matching algorithm
4762 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4763 {
4764 static const char *expected_syms1[] = {
4765 "\377",
4766 "\377\377123",
4767 };
4768 SELF_CHECK (check_find_bounds_finds (mock_index,
4769 "\377", expected_syms1));
4770
4771 static const char *expected_syms2[] = {
4772 "\377\377123",
4773 };
4774 SELF_CHECK (check_find_bounds_finds (mock_index,
4775 "\377\377", expected_syms2));
4776 }
4777 }
4778
4779 /* Test dw2_expand_symtabs_matching_symbol. */
4780
4781 static void
4782 test_dw2_expand_symtabs_matching_symbol ()
4783 {
4784 mock_mapped_index mock_index (test_symbols);
4785
4786 /* We let all tests run until the end even if some fails, for debug
4787 convenience. */
4788 bool any_mismatch = false;
4789
4790 /* Create the expected symbols list (an initializer_list). Needed
4791 because lists have commas, and we need to pass them to CHECK,
4792 which is a macro. */
4793 #define EXPECT(...) { __VA_ARGS__ }
4794
4795 /* Wrapper for check_match that passes down the current
4796 __FILE__/__LINE__. */
4797 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4798 any_mismatch |= !check_match (__FILE__, __LINE__, \
4799 mock_index, \
4800 NAME, MATCH_TYPE, COMPLETION_MODE, \
4801 EXPECTED_LIST)
4802
4803 /* Identity checks. */
4804 for (const char *sym : test_symbols)
4805 {
4806 /* Should be able to match all existing symbols. */
4807 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4808 EXPECT (sym));
4809
4810 /* Should be able to match all existing symbols with
4811 parameters. */
4812 std::string with_params = std::string (sym) + "(int)";
4813 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4814 EXPECT (sym));
4815
4816 /* Should be able to match all existing symbols with
4817 parameters and qualifiers. */
4818 with_params = std::string (sym) + " ( int ) const";
4819 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4820 EXPECT (sym));
4821
4822 /* This should really find sym, but cp-name-parser.y doesn't
4823 know about lvalue/rvalue qualifiers yet. */
4824 with_params = std::string (sym) + " ( int ) &&";
4825 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4826 {});
4827 }
4828
4829 /* Check that the name matching algorithm for completion doesn't get
4830 confused with Latin1 'ÿ' / 0xff. */
4831 {
4832 static const char str[] = "\377";
4833 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4834 EXPECT ("\377", "\377\377123"));
4835 }
4836
4837 /* Check that the increment-last-char in the matching algorithm for
4838 completion doesn't match "t1_fund" when completing "t1_func". */
4839 {
4840 static const char str[] = "t1_func";
4841 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4842 EXPECT ("t1_func", "t1_func1"));
4843 }
4844
4845 /* Check that completion mode works at each prefix of the expected
4846 symbol name. */
4847 {
4848 static const char str[] = "function(int)";
4849 size_t len = strlen (str);
4850 std::string lookup;
4851
4852 for (size_t i = 1; i < len; i++)
4853 {
4854 lookup.assign (str, i);
4855 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4856 EXPECT ("function"));
4857 }
4858 }
4859
4860 /* While "w" is a prefix of both components, the match function
4861 should still only be called once. */
4862 {
4863 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4864 EXPECT ("w1::w2"));
4865 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4866 EXPECT ("w1::w2"));
4867 }
4868
4869 /* Same, with a "complicated" symbol. */
4870 {
4871 static const char str[] = Z_SYM_NAME;
4872 size_t len = strlen (str);
4873 std::string lookup;
4874
4875 for (size_t i = 1; i < len; i++)
4876 {
4877 lookup.assign (str, i);
4878 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4879 EXPECT (Z_SYM_NAME));
4880 }
4881 }
4882
4883 /* In FULL mode, an incomplete symbol doesn't match. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4886 {});
4887 }
4888
4889 /* A complete symbol with parameters matches any overload, since the
4890 index has no overload info. */
4891 {
4892 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4893 EXPECT ("std::zfunction", "std::zfunction2"));
4894 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4895 EXPECT ("std::zfunction", "std::zfunction2"));
4896 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4897 EXPECT ("std::zfunction", "std::zfunction2"));
4898 }
4899
4900 /* Check that whitespace is ignored appropriately. A symbol with a
4901 template argument list. */
4902 {
4903 static const char expected[] = "ns::foo<int>";
4904 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4905 EXPECT (expected));
4906 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4907 EXPECT (expected));
4908 }
4909
4910 /* Check that whitespace is ignored appropriately. A symbol with a
4911 template argument list that includes a pointer. */
4912 {
4913 static const char expected[] = "ns::foo<char*>";
4914 /* Try both completion and non-completion modes. */
4915 static const bool completion_mode[2] = {false, true};
4916 for (size_t i = 0; i < 2; i++)
4917 {
4918 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4919 completion_mode[i], EXPECT (expected));
4920 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4921 completion_mode[i], EXPECT (expected));
4922
4923 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4924 completion_mode[i], EXPECT (expected));
4925 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4926 completion_mode[i], EXPECT (expected));
4927 }
4928 }
4929
4930 {
4931 /* Check method qualifiers are ignored. */
4932 static const char expected[] = "ns::foo<char*>";
4933 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4934 symbol_name_match_type::FULL, true, EXPECT (expected));
4935 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4936 symbol_name_match_type::FULL, true, EXPECT (expected));
4937 CHECK_MATCH ("foo < char * > ( int ) const",
4938 symbol_name_match_type::WILD, true, EXPECT (expected));
4939 CHECK_MATCH ("foo < char * > ( int ) &&",
4940 symbol_name_match_type::WILD, true, EXPECT (expected));
4941 }
4942
4943 /* Test lookup names that don't match anything. */
4944 {
4945 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4946 {});
4947
4948 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4949 {});
4950 }
4951
4952 /* Some wild matching tests, exercising "(anonymous namespace)",
4953 which should not be confused with a parameter list. */
4954 {
4955 static const char *syms[] = {
4956 "A::B::C",
4957 "B::C",
4958 "C",
4959 "A :: B :: C ( int )",
4960 "B :: C ( int )",
4961 "C ( int )",
4962 };
4963
4964 for (const char *s : syms)
4965 {
4966 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4967 EXPECT ("(anonymous namespace)::A::B::C"));
4968 }
4969 }
4970
4971 {
4972 static const char expected[] = "ns2::tmpl<int>::foo2";
4973 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4974 EXPECT (expected));
4975 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4976 EXPECT (expected));
4977 }
4978
4979 SELF_CHECK (!any_mismatch);
4980
4981 #undef EXPECT
4982 #undef CHECK_MATCH
4983 }
4984
4985 static void
4986 run_test ()
4987 {
4988 test_mapped_index_find_name_component_bounds ();
4989 test_dw2_expand_symtabs_matching_symbol ();
4990 }
4991
4992 }} // namespace selftests::dw2_expand_symtabs_matching
4993
4994 #endif /* GDB_SELF_TEST */
4995
4996 /* If FILE_MATCHER is NULL or if PER_CU has
4997 dwarf2_per_cu_quick_data::MARK set (see
4998 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4999 EXPANSION_NOTIFY on it. */
5000
5001 static void
5002 dw2_expand_symtabs_matching_one
5003 (struct dwarf2_per_cu_data *per_cu,
5004 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5005 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5006 {
5007 if (file_matcher == NULL || per_cu->v.quick->mark)
5008 {
5009 bool symtab_was_null
5010 = (per_cu->v.quick->compunit_symtab == NULL);
5011
5012 dw2_instantiate_symtab (per_cu, false);
5013
5014 if (expansion_notify != NULL
5015 && symtab_was_null
5016 && per_cu->v.quick->compunit_symtab != NULL)
5017 expansion_notify (per_cu->v.quick->compunit_symtab);
5018 }
5019 }
5020
5021 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5022 matched, to expand corresponding CUs that were marked. IDX is the
5023 index of the symbol name that matched. */
5024
5025 static void
5026 dw2_expand_marked_cus
5027 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5028 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5029 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5030 search_domain kind)
5031 {
5032 offset_type *vec, vec_len, vec_idx;
5033 bool global_seen = false;
5034 mapped_index &index = *dwarf2_per_objfile->index_table;
5035
5036 vec = (offset_type *) (index.constant_pool
5037 + MAYBE_SWAP (index.symbol_table[idx].vec));
5038 vec_len = MAYBE_SWAP (vec[0]);
5039 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5040 {
5041 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5042 /* This value is only valid for index versions >= 7. */
5043 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5044 gdb_index_symbol_kind symbol_kind =
5045 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5046 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5047 /* Only check the symbol attributes if they're present.
5048 Indices prior to version 7 don't record them,
5049 and indices >= 7 may elide them for certain symbols
5050 (gold does this). */
5051 int attrs_valid =
5052 (index.version >= 7
5053 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5054
5055 /* Work around gold/15646. */
5056 if (attrs_valid)
5057 {
5058 if (!is_static && global_seen)
5059 continue;
5060 if (!is_static)
5061 global_seen = true;
5062 }
5063
5064 /* Only check the symbol's kind if it has one. */
5065 if (attrs_valid)
5066 {
5067 switch (kind)
5068 {
5069 case VARIABLES_DOMAIN:
5070 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5071 continue;
5072 break;
5073 case FUNCTIONS_DOMAIN:
5074 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5075 continue;
5076 break;
5077 case TYPES_DOMAIN:
5078 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5079 continue;
5080 break;
5081 default:
5082 break;
5083 }
5084 }
5085
5086 /* Don't crash on bad data. */
5087 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5088 + dwarf2_per_objfile->all_type_units.size ()))
5089 {
5090 complaint (_(".gdb_index entry has bad CU index"
5091 " [in module %s]"),
5092 objfile_name (dwarf2_per_objfile->objfile));
5093 continue;
5094 }
5095
5096 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5097 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5098 expansion_notify);
5099 }
5100 }
5101
5102 /* If FILE_MATCHER is non-NULL, set all the
5103 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5104 that match FILE_MATCHER. */
5105
5106 static void
5107 dw_expand_symtabs_matching_file_matcher
5108 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5109 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5110 {
5111 if (file_matcher == NULL)
5112 return;
5113
5114 objfile *const objfile = dwarf2_per_objfile->objfile;
5115
5116 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5120 htab_eq_pointer,
5121 NULL, xcalloc, xfree));
5122
5123 /* The rule is CUs specify all the files, including those used by
5124 any TU, so there's no need to scan TUs here. */
5125
5126 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5127 {
5128 QUIT;
5129
5130 per_cu->v.quick->mark = 0;
5131
5132 /* We only need to look at symtabs not already expanded. */
5133 if (per_cu->v.quick->compunit_symtab)
5134 continue;
5135
5136 quick_file_names *file_data = dw2_get_file_names (per_cu);
5137 if (file_data == NULL)
5138 continue;
5139
5140 if (htab_find (visited_not_found.get (), file_data) != NULL)
5141 continue;
5142 else if (htab_find (visited_found.get (), file_data) != NULL)
5143 {
5144 per_cu->v.quick->mark = 1;
5145 continue;
5146 }
5147
5148 for (int j = 0; j < file_data->num_file_names; ++j)
5149 {
5150 const char *this_real_name;
5151
5152 if (file_matcher (file_data->file_names[j], false))
5153 {
5154 per_cu->v.quick->mark = 1;
5155 break;
5156 }
5157
5158 /* Before we invoke realpath, which can get expensive when many
5159 files are involved, do a quick comparison of the basenames. */
5160 if (!basenames_may_differ
5161 && !file_matcher (lbasename (file_data->file_names[j]),
5162 true))
5163 continue;
5164
5165 this_real_name = dw2_get_real_path (objfile, file_data, j);
5166 if (file_matcher (this_real_name, false))
5167 {
5168 per_cu->v.quick->mark = 1;
5169 break;
5170 }
5171 }
5172
5173 void **slot = htab_find_slot (per_cu->v.quick->mark
5174 ? visited_found.get ()
5175 : visited_not_found.get (),
5176 file_data, INSERT);
5177 *slot = file_data;
5178 }
5179 }
5180
5181 static void
5182 dw2_expand_symtabs_matching
5183 (struct objfile *objfile,
5184 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5185 const lookup_name_info &lookup_name,
5186 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5187 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5188 enum search_domain kind)
5189 {
5190 struct dwarf2_per_objfile *dwarf2_per_objfile
5191 = get_dwarf2_per_objfile (objfile);
5192
5193 /* index_table is NULL if OBJF_READNOW. */
5194 if (!dwarf2_per_objfile->index_table)
5195 return;
5196
5197 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5198
5199 mapped_index &index = *dwarf2_per_objfile->index_table;
5200
5201 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5202 symbol_matcher,
5203 kind, [&] (offset_type idx)
5204 {
5205 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5206 expansion_notify, kind);
5207 });
5208 }
5209
5210 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5211 symtab. */
5212
5213 static struct compunit_symtab *
5214 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5215 CORE_ADDR pc)
5216 {
5217 int i;
5218
5219 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5220 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5221 return cust;
5222
5223 if (cust->includes == NULL)
5224 return NULL;
5225
5226 for (i = 0; cust->includes[i]; ++i)
5227 {
5228 struct compunit_symtab *s = cust->includes[i];
5229
5230 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5231 if (s != NULL)
5232 return s;
5233 }
5234
5235 return NULL;
5236 }
5237
5238 static struct compunit_symtab *
5239 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5240 struct bound_minimal_symbol msymbol,
5241 CORE_ADDR pc,
5242 struct obj_section *section,
5243 int warn_if_readin)
5244 {
5245 struct dwarf2_per_cu_data *data;
5246 struct compunit_symtab *result;
5247
5248 if (!objfile->psymtabs_addrmap)
5249 return NULL;
5250
5251 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5252 SECT_OFF_TEXT (objfile));
5253 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5254 pc - baseaddr);
5255 if (!data)
5256 return NULL;
5257
5258 if (warn_if_readin && data->v.quick->compunit_symtab)
5259 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5260 paddress (get_objfile_arch (objfile), pc));
5261
5262 result
5263 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5264 false),
5265 pc);
5266 gdb_assert (result != NULL);
5267 return result;
5268 }
5269
5270 static void
5271 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5272 void *data, int need_fullname)
5273 {
5274 struct dwarf2_per_objfile *dwarf2_per_objfile
5275 = get_dwarf2_per_objfile (objfile);
5276
5277 if (!dwarf2_per_objfile->filenames_cache)
5278 {
5279 dwarf2_per_objfile->filenames_cache.emplace ();
5280
5281 htab_up visited (htab_create_alloc (10,
5282 htab_hash_pointer, htab_eq_pointer,
5283 NULL, xcalloc, xfree));
5284
5285 /* The rule is CUs specify all the files, including those used
5286 by any TU, so there's no need to scan TUs here. We can
5287 ignore file names coming from already-expanded CUs. */
5288
5289 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5290 {
5291 if (per_cu->v.quick->compunit_symtab)
5292 {
5293 void **slot = htab_find_slot (visited.get (),
5294 per_cu->v.quick->file_names,
5295 INSERT);
5296
5297 *slot = per_cu->v.quick->file_names;
5298 }
5299 }
5300
5301 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5302 {
5303 /* We only need to look at symtabs not already expanded. */
5304 if (per_cu->v.quick->compunit_symtab)
5305 continue;
5306
5307 quick_file_names *file_data = dw2_get_file_names (per_cu);
5308 if (file_data == NULL)
5309 continue;
5310
5311 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5312 if (*slot)
5313 {
5314 /* Already visited. */
5315 continue;
5316 }
5317 *slot = file_data;
5318
5319 for (int j = 0; j < file_data->num_file_names; ++j)
5320 {
5321 const char *filename = file_data->file_names[j];
5322 dwarf2_per_objfile->filenames_cache->seen (filename);
5323 }
5324 }
5325 }
5326
5327 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5328 {
5329 gdb::unique_xmalloc_ptr<char> this_real_name;
5330
5331 if (need_fullname)
5332 this_real_name = gdb_realpath (filename);
5333 (*fun) (filename, this_real_name.get (), data);
5334 });
5335 }
5336
5337 static int
5338 dw2_has_symbols (struct objfile *objfile)
5339 {
5340 return 1;
5341 }
5342
5343 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5344 {
5345 dw2_has_symbols,
5346 dw2_find_last_source_symtab,
5347 dw2_forget_cached_source_info,
5348 dw2_map_symtabs_matching_filename,
5349 dw2_lookup_symbol,
5350 dw2_print_stats,
5351 dw2_dump,
5352 dw2_expand_symtabs_for_function,
5353 dw2_expand_all_symtabs,
5354 dw2_expand_symtabs_with_fullname,
5355 dw2_map_matching_symbols,
5356 dw2_expand_symtabs_matching,
5357 dw2_find_pc_sect_compunit_symtab,
5358 NULL,
5359 dw2_map_symbol_filenames
5360 };
5361
5362 /* DWARF-5 debug_names reader. */
5363
5364 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5365 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5366
5367 /* A helper function that reads the .debug_names section in SECTION
5368 and fills in MAP. FILENAME is the name of the file containing the
5369 section; it is used for error reporting.
5370
5371 Returns true if all went well, false otherwise. */
5372
5373 static bool
5374 read_debug_names_from_section (struct objfile *objfile,
5375 const char *filename,
5376 struct dwarf2_section_info *section,
5377 mapped_debug_names &map)
5378 {
5379 if (dwarf2_section_empty_p (section))
5380 return false;
5381
5382 /* Older elfutils strip versions could keep the section in the main
5383 executable while splitting it for the separate debug info file. */
5384 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5385 return false;
5386
5387 dwarf2_read_section (objfile, section);
5388
5389 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5390
5391 const gdb_byte *addr = section->buffer;
5392
5393 bfd *const abfd = get_section_bfd_owner (section);
5394
5395 unsigned int bytes_read;
5396 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5397 addr += bytes_read;
5398
5399 map.dwarf5_is_dwarf64 = bytes_read != 4;
5400 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5401 if (bytes_read + length != section->size)
5402 {
5403 /* There may be multiple per-CU indices. */
5404 warning (_("Section .debug_names in %s length %s does not match "
5405 "section length %s, ignoring .debug_names."),
5406 filename, plongest (bytes_read + length),
5407 pulongest (section->size));
5408 return false;
5409 }
5410
5411 /* The version number. */
5412 uint16_t version = read_2_bytes (abfd, addr);
5413 addr += 2;
5414 if (version != 5)
5415 {
5416 warning (_("Section .debug_names in %s has unsupported version %d, "
5417 "ignoring .debug_names."),
5418 filename, version);
5419 return false;
5420 }
5421
5422 /* Padding. */
5423 uint16_t padding = read_2_bytes (abfd, addr);
5424 addr += 2;
5425 if (padding != 0)
5426 {
5427 warning (_("Section .debug_names in %s has unsupported padding %d, "
5428 "ignoring .debug_names."),
5429 filename, padding);
5430 return false;
5431 }
5432
5433 /* comp_unit_count - The number of CUs in the CU list. */
5434 map.cu_count = read_4_bytes (abfd, addr);
5435 addr += 4;
5436
5437 /* local_type_unit_count - The number of TUs in the local TU
5438 list. */
5439 map.tu_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* foreign_type_unit_count - The number of TUs in the foreign TU
5443 list. */
5444 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446 if (foreign_tu_count != 0)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5449 "ignoring .debug_names."),
5450 filename, static_cast<unsigned long> (foreign_tu_count));
5451 return false;
5452 }
5453
5454 /* bucket_count - The number of hash buckets in the hash lookup
5455 table. */
5456 map.bucket_count = read_4_bytes (abfd, addr);
5457 addr += 4;
5458
5459 /* name_count - The number of unique names in the index. */
5460 map.name_count = read_4_bytes (abfd, addr);
5461 addr += 4;
5462
5463 /* abbrev_table_size - The size in bytes of the abbreviations
5464 table. */
5465 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5466 addr += 4;
5467
5468 /* augmentation_string_size - The size in bytes of the augmentation
5469 string. This value is rounded up to a multiple of 4. */
5470 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5471 addr += 4;
5472 map.augmentation_is_gdb = ((augmentation_string_size
5473 == sizeof (dwarf5_augmentation))
5474 && memcmp (addr, dwarf5_augmentation,
5475 sizeof (dwarf5_augmentation)) == 0);
5476 augmentation_string_size += (-augmentation_string_size) & 3;
5477 addr += augmentation_string_size;
5478
5479 /* List of CUs */
5480 map.cu_table_reordered = addr;
5481 addr += map.cu_count * map.offset_size;
5482
5483 /* List of Local TUs */
5484 map.tu_table_reordered = addr;
5485 addr += map.tu_count * map.offset_size;
5486
5487 /* Hash Lookup Table */
5488 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.bucket_count * 4;
5490 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5491 addr += map.name_count * 4;
5492
5493 /* Name Table */
5494 map.name_table_string_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496 map.name_table_entry_offs_reordered = addr;
5497 addr += map.name_count * map.offset_size;
5498
5499 const gdb_byte *abbrev_table_start = addr;
5500 for (;;)
5501 {
5502 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5503 addr += bytes_read;
5504 if (index_num == 0)
5505 break;
5506
5507 const auto insertpair
5508 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5509 if (!insertpair.second)
5510 {
5511 warning (_("Section .debug_names in %s has duplicate index %s, "
5512 "ignoring .debug_names."),
5513 filename, pulongest (index_num));
5514 return false;
5515 }
5516 mapped_debug_names::index_val &indexval = insertpair.first->second;
5517 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5518 addr += bytes_read;
5519
5520 for (;;)
5521 {
5522 mapped_debug_names::index_val::attr attr;
5523 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5526 addr += bytes_read;
5527 if (attr.form == DW_FORM_implicit_const)
5528 {
5529 attr.implicit_const = read_signed_leb128 (abfd, addr,
5530 &bytes_read);
5531 addr += bytes_read;
5532 }
5533 if (attr.dw_idx == 0 && attr.form == 0)
5534 break;
5535 indexval.attr_vec.push_back (std::move (attr));
5536 }
5537 }
5538 if (addr != abbrev_table_start + abbrev_table_size)
5539 {
5540 warning (_("Section .debug_names in %s has abbreviation_table "
5541 "of size %zu vs. written as %u, ignoring .debug_names."),
5542 filename, addr - abbrev_table_start, abbrev_table_size);
5543 return false;
5544 }
5545 map.entry_pool = addr;
5546
5547 return true;
5548 }
5549
5550 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5551 list. */
5552
5553 static void
5554 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5555 const mapped_debug_names &map,
5556 dwarf2_section_info &section,
5557 bool is_dwz)
5558 {
5559 sect_offset sect_off_prev;
5560 for (uint32_t i = 0; i <= map.cu_count; ++i)
5561 {
5562 sect_offset sect_off_next;
5563 if (i < map.cu_count)
5564 {
5565 sect_off_next
5566 = (sect_offset) (extract_unsigned_integer
5567 (map.cu_table_reordered + i * map.offset_size,
5568 map.offset_size,
5569 map.dwarf5_byte_order));
5570 }
5571 else
5572 sect_off_next = (sect_offset) section.size;
5573 if (i >= 1)
5574 {
5575 const ULONGEST length = sect_off_next - sect_off_prev;
5576 dwarf2_per_cu_data *per_cu
5577 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5578 sect_off_prev, length);
5579 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5580 }
5581 sect_off_prev = sect_off_next;
5582 }
5583 }
5584
5585 /* Read the CU list from the mapped index, and use it to create all
5586 the CU objects for this dwarf2_per_objfile. */
5587
5588 static void
5589 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5590 const mapped_debug_names &map,
5591 const mapped_debug_names &dwz_map)
5592 {
5593 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5594 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5595
5596 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5597 dwarf2_per_objfile->info,
5598 false /* is_dwz */);
5599
5600 if (dwz_map.cu_count == 0)
5601 return;
5602
5603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5604 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5605 true /* is_dwz */);
5606 }
5607
5608 /* Read .debug_names. If everything went ok, initialize the "quick"
5609 elements of all the CUs and return true. Otherwise, return false. */
5610
5611 static bool
5612 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5613 {
5614 std::unique_ptr<mapped_debug_names> map
5615 (new mapped_debug_names (dwarf2_per_objfile));
5616 mapped_debug_names dwz_map (dwarf2_per_objfile);
5617 struct objfile *objfile = dwarf2_per_objfile->objfile;
5618
5619 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5620 &dwarf2_per_objfile->debug_names,
5621 *map))
5622 return false;
5623
5624 /* Don't use the index if it's empty. */
5625 if (map->name_count == 0)
5626 return false;
5627
5628 /* If there is a .dwz file, read it so we can get its CU list as
5629 well. */
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 if (dwz != NULL)
5632 {
5633 if (!read_debug_names_from_section (objfile,
5634 bfd_get_filename (dwz->dwz_bfd),
5635 &dwz->debug_names, dwz_map))
5636 {
5637 warning (_("could not read '.debug_names' section from %s; skipping"),
5638 bfd_get_filename (dwz->dwz_bfd));
5639 return false;
5640 }
5641 }
5642
5643 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5644
5645 if (map->tu_count != 0)
5646 {
5647 /* We can only handle a single .debug_types when we have an
5648 index. */
5649 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5650 return false;
5651
5652 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5653 dwarf2_per_objfile->types, 0);
5654
5655 create_signatured_type_table_from_debug_names
5656 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5657 }
5658
5659 create_addrmap_from_aranges (dwarf2_per_objfile,
5660 &dwarf2_per_objfile->debug_aranges);
5661
5662 dwarf2_per_objfile->debug_names_table = std::move (map);
5663 dwarf2_per_objfile->using_index = 1;
5664 dwarf2_per_objfile->quick_file_names_table =
5665 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5666
5667 return true;
5668 }
5669
5670 /* Type used to manage iterating over all CUs looking for a symbol for
5671 .debug_names. */
5672
5673 class dw2_debug_names_iterator
5674 {
5675 public:
5676 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5677 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5678 dw2_debug_names_iterator (const mapped_debug_names &map,
5679 bool want_specific_block,
5680 block_enum block_index, domain_enum domain,
5681 const char *name)
5682 : m_map (map), m_want_specific_block (want_specific_block),
5683 m_block_index (block_index), m_domain (domain),
5684 m_addr (find_vec_in_debug_names (map, name))
5685 {}
5686
5687 dw2_debug_names_iterator (const mapped_debug_names &map,
5688 search_domain search, uint32_t namei)
5689 : m_map (map),
5690 m_search (search),
5691 m_addr (find_vec_in_debug_names (map, namei))
5692 {}
5693
5694 /* Return the next matching CU or NULL if there are no more. */
5695 dwarf2_per_cu_data *next ();
5696
5697 private:
5698 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5699 const char *name);
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 uint32_t namei);
5702
5703 /* The internalized form of .debug_names. */
5704 const mapped_debug_names &m_map;
5705
5706 /* If true, only look for symbols that match BLOCK_INDEX. */
5707 const bool m_want_specific_block = false;
5708
5709 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5710 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5711 value. */
5712 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5713
5714 /* The kind of symbol we're looking for. */
5715 const domain_enum m_domain = UNDEF_DOMAIN;
5716 const search_domain m_search = ALL_DOMAIN;
5717
5718 /* The list of CUs from the index entry of the symbol, or NULL if
5719 not found. */
5720 const gdb_byte *m_addr;
5721 };
5722
5723 const char *
5724 mapped_debug_names::namei_to_name (uint32_t namei) const
5725 {
5726 const ULONGEST namei_string_offs
5727 = extract_unsigned_integer ((name_table_string_offs_reordered
5728 + namei * offset_size),
5729 offset_size,
5730 dwarf5_byte_order);
5731 return read_indirect_string_at_offset
5732 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5733 }
5734
5735 /* Find a slot in .debug_names for the object named NAME. If NAME is
5736 found, return pointer to its pool data. If NAME cannot be found,
5737 return NULL. */
5738
5739 const gdb_byte *
5740 dw2_debug_names_iterator::find_vec_in_debug_names
5741 (const mapped_debug_names &map, const char *name)
5742 {
5743 int (*cmp) (const char *, const char *);
5744
5745 if (current_language->la_language == language_cplus
5746 || current_language->la_language == language_fortran
5747 || current_language->la_language == language_d)
5748 {
5749 /* NAME is already canonical. Drop any qualifiers as
5750 .debug_names does not contain any. */
5751
5752 if (strchr (name, '(') != NULL)
5753 {
5754 gdb::unique_xmalloc_ptr<char> without_params
5755 = cp_remove_params (name);
5756
5757 if (without_params != NULL)
5758 {
5759 name = without_params.get();
5760 }
5761 }
5762 }
5763
5764 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5765
5766 const uint32_t full_hash = dwarf5_djb_hash (name);
5767 uint32_t namei
5768 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5769 (map.bucket_table_reordered
5770 + (full_hash % map.bucket_count)), 4,
5771 map.dwarf5_byte_order);
5772 if (namei == 0)
5773 return NULL;
5774 --namei;
5775 if (namei >= map.name_count)
5776 {
5777 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5778 "[in module %s]"),
5779 namei, map.name_count,
5780 objfile_name (map.dwarf2_per_objfile->objfile));
5781 return NULL;
5782 }
5783
5784 for (;;)
5785 {
5786 const uint32_t namei_full_hash
5787 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5788 (map.hash_table_reordered + namei), 4,
5789 map.dwarf5_byte_order);
5790 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5791 return NULL;
5792
5793 if (full_hash == namei_full_hash)
5794 {
5795 const char *const namei_string = map.namei_to_name (namei);
5796
5797 #if 0 /* An expensive sanity check. */
5798 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5799 {
5800 complaint (_("Wrong .debug_names hash for string at index %u "
5801 "[in module %s]"),
5802 namei, objfile_name (dwarf2_per_objfile->objfile));
5803 return NULL;
5804 }
5805 #endif
5806
5807 if (cmp (namei_string, name) == 0)
5808 {
5809 const ULONGEST namei_entry_offs
5810 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5811 + namei * map.offset_size),
5812 map.offset_size, map.dwarf5_byte_order);
5813 return map.entry_pool + namei_entry_offs;
5814 }
5815 }
5816
5817 ++namei;
5818 if (namei >= map.name_count)
5819 return NULL;
5820 }
5821 }
5822
5823 const gdb_byte *
5824 dw2_debug_names_iterator::find_vec_in_debug_names
5825 (const mapped_debug_names &map, uint32_t namei)
5826 {
5827 if (namei >= map.name_count)
5828 {
5829 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5830 "[in module %s]"),
5831 namei, map.name_count,
5832 objfile_name (map.dwarf2_per_objfile->objfile));
5833 return NULL;
5834 }
5835
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842
5843 /* See dw2_debug_names_iterator. */
5844
5845 dwarf2_per_cu_data *
5846 dw2_debug_names_iterator::next ()
5847 {
5848 if (m_addr == NULL)
5849 return NULL;
5850
5851 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5852 struct objfile *objfile = dwarf2_per_objfile->objfile;
5853 bfd *const abfd = objfile->obfd;
5854
5855 again:
5856
5857 unsigned int bytes_read;
5858 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5859 m_addr += bytes_read;
5860 if (abbrev == 0)
5861 return NULL;
5862
5863 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5864 if (indexval_it == m_map.abbrev_map.cend ())
5865 {
5866 complaint (_("Wrong .debug_names undefined abbrev code %s "
5867 "[in module %s]"),
5868 pulongest (abbrev), objfile_name (objfile));
5869 return NULL;
5870 }
5871 const mapped_debug_names::index_val &indexval = indexval_it->second;
5872 bool have_is_static = false;
5873 bool is_static;
5874 dwarf2_per_cu_data *per_cu = NULL;
5875 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5876 {
5877 ULONGEST ull;
5878 switch (attr.form)
5879 {
5880 case DW_FORM_implicit_const:
5881 ull = attr.implicit_const;
5882 break;
5883 case DW_FORM_flag_present:
5884 ull = 1;
5885 break;
5886 case DW_FORM_udata:
5887 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5888 m_addr += bytes_read;
5889 break;
5890 default:
5891 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5892 dwarf_form_name (attr.form),
5893 objfile_name (objfile));
5894 return NULL;
5895 }
5896 switch (attr.dw_idx)
5897 {
5898 case DW_IDX_compile_unit:
5899 /* Don't crash on bad data. */
5900 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5901 {
5902 complaint (_(".debug_names entry has bad CU index %s"
5903 " [in module %s]"),
5904 pulongest (ull),
5905 objfile_name (dwarf2_per_objfile->objfile));
5906 continue;
5907 }
5908 per_cu = dwarf2_per_objfile->get_cutu (ull);
5909 break;
5910 case DW_IDX_type_unit:
5911 /* Don't crash on bad data. */
5912 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5913 {
5914 complaint (_(".debug_names entry has bad TU index %s"
5915 " [in module %s]"),
5916 pulongest (ull),
5917 objfile_name (dwarf2_per_objfile->objfile));
5918 continue;
5919 }
5920 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5921 break;
5922 case DW_IDX_GNU_internal:
5923 if (!m_map.augmentation_is_gdb)
5924 break;
5925 have_is_static = true;
5926 is_static = true;
5927 break;
5928 case DW_IDX_GNU_external:
5929 if (!m_map.augmentation_is_gdb)
5930 break;
5931 have_is_static = true;
5932 is_static = false;
5933 break;
5934 }
5935 }
5936
5937 /* Skip if already read in. */
5938 if (per_cu->v.quick->compunit_symtab)
5939 goto again;
5940
5941 /* Check static vs global. */
5942 if (have_is_static)
5943 {
5944 const bool want_static = m_block_index != GLOBAL_BLOCK;
5945 if (m_want_specific_block && want_static != is_static)
5946 goto again;
5947 }
5948
5949 /* Match dw2_symtab_iter_next, symbol_kind
5950 and debug_names::psymbol_tag. */
5951 switch (m_domain)
5952 {
5953 case VAR_DOMAIN:
5954 switch (indexval.dwarf_tag)
5955 {
5956 case DW_TAG_variable:
5957 case DW_TAG_subprogram:
5958 /* Some types are also in VAR_DOMAIN. */
5959 case DW_TAG_typedef:
5960 case DW_TAG_structure_type:
5961 break;
5962 default:
5963 goto again;
5964 }
5965 break;
5966 case STRUCT_DOMAIN:
5967 switch (indexval.dwarf_tag)
5968 {
5969 case DW_TAG_typedef:
5970 case DW_TAG_structure_type:
5971 break;
5972 default:
5973 goto again;
5974 }
5975 break;
5976 case LABEL_DOMAIN:
5977 switch (indexval.dwarf_tag)
5978 {
5979 case 0:
5980 case DW_TAG_variable:
5981 break;
5982 default:
5983 goto again;
5984 }
5985 break;
5986 default:
5987 break;
5988 }
5989
5990 /* Match dw2_expand_symtabs_matching, symbol_kind and
5991 debug_names::psymbol_tag. */
5992 switch (m_search)
5993 {
5994 case VARIABLES_DOMAIN:
5995 switch (indexval.dwarf_tag)
5996 {
5997 case DW_TAG_variable:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case FUNCTIONS_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case DW_TAG_subprogram:
6007 break;
6008 default:
6009 goto again;
6010 }
6011 break;
6012 case TYPES_DOMAIN:
6013 switch (indexval.dwarf_tag)
6014 {
6015 case DW_TAG_typedef:
6016 case DW_TAG_structure_type:
6017 break;
6018 default:
6019 goto again;
6020 }
6021 break;
6022 default:
6023 break;
6024 }
6025
6026 return per_cu;
6027 }
6028
6029 static struct compunit_symtab *
6030 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6031 const char *name, domain_enum domain)
6032 {
6033 const block_enum block_index = static_cast<block_enum> (block_index_int);
6034 struct dwarf2_per_objfile *dwarf2_per_objfile
6035 = get_dwarf2_per_objfile (objfile);
6036
6037 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6038 if (!mapp)
6039 {
6040 /* index is NULL if OBJF_READNOW. */
6041 return NULL;
6042 }
6043 const auto &map = *mapp;
6044
6045 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6046 block_index, domain, name);
6047
6048 struct compunit_symtab *stab_best = NULL;
6049 struct dwarf2_per_cu_data *per_cu;
6050 while ((per_cu = iter.next ()) != NULL)
6051 {
6052 struct symbol *sym, *with_opaque = NULL;
6053 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6055 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6056
6057 sym = block_find_symbol (block, name, domain,
6058 block_find_non_opaque_type_preferred,
6059 &with_opaque);
6060
6061 /* Some caution must be observed with overloaded functions and
6062 methods, since the index will not contain any overload
6063 information (but NAME might contain it). */
6064
6065 if (sym != NULL
6066 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6067 return stab;
6068 if (with_opaque != NULL
6069 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6070 stab_best = stab;
6071
6072 /* Keep looking through other CUs. */
6073 }
6074
6075 return stab_best;
6076 }
6077
6078 /* This dumps minimal information about .debug_names. It is called
6079 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6080 uses this to verify that .debug_names has been loaded. */
6081
6082 static void
6083 dw2_debug_names_dump (struct objfile *objfile)
6084 {
6085 struct dwarf2_per_objfile *dwarf2_per_objfile
6086 = get_dwarf2_per_objfile (objfile);
6087
6088 gdb_assert (dwarf2_per_objfile->using_index);
6089 printf_filtered (".debug_names:");
6090 if (dwarf2_per_objfile->debug_names_table)
6091 printf_filtered (" exists\n");
6092 else
6093 printf_filtered (" faked for \"readnow\"\n");
6094 printf_filtered ("\n");
6095 }
6096
6097 static void
6098 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6099 const char *func_name)
6100 {
6101 struct dwarf2_per_objfile *dwarf2_per_objfile
6102 = get_dwarf2_per_objfile (objfile);
6103
6104 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6105 if (dwarf2_per_objfile->debug_names_table)
6106 {
6107 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6108
6109 /* Note: It doesn't matter what we pass for block_index here. */
6110 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6111 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6112
6113 struct dwarf2_per_cu_data *per_cu;
6114 while ((per_cu = iter.next ()) != NULL)
6115 dw2_instantiate_symtab (per_cu, false);
6116 }
6117 }
6118
6119 static void
6120 dw2_debug_names_expand_symtabs_matching
6121 (struct objfile *objfile,
6122 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6123 const lookup_name_info &lookup_name,
6124 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6125 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6126 enum search_domain kind)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* debug_names_table is NULL if OBJF_READNOW. */
6132 if (!dwarf2_per_objfile->debug_names_table)
6133 return;
6134
6135 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6136
6137 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6138
6139 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6140 symbol_matcher,
6141 kind, [&] (offset_type namei)
6142 {
6143 /* The name was matched, now expand corresponding CUs that were
6144 marked. */
6145 dw2_debug_names_iterator iter (map, kind, namei);
6146
6147 struct dwarf2_per_cu_data *per_cu;
6148 while ((per_cu = iter.next ()) != NULL)
6149 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6150 expansion_notify);
6151 });
6152 }
6153
6154 const struct quick_symbol_functions dwarf2_debug_names_functions =
6155 {
6156 dw2_has_symbols,
6157 dw2_find_last_source_symtab,
6158 dw2_forget_cached_source_info,
6159 dw2_map_symtabs_matching_filename,
6160 dw2_debug_names_lookup_symbol,
6161 dw2_print_stats,
6162 dw2_debug_names_dump,
6163 dw2_debug_names_expand_symtabs_for_function,
6164 dw2_expand_all_symtabs,
6165 dw2_expand_symtabs_with_fullname,
6166 dw2_map_matching_symbols,
6167 dw2_debug_names_expand_symtabs_matching,
6168 dw2_find_pc_sect_compunit_symtab,
6169 NULL,
6170 dw2_map_symbol_filenames
6171 };
6172
6173 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6174 to either a dwarf2_per_objfile or dwz_file object. */
6175
6176 template <typename T>
6177 static gdb::array_view<const gdb_byte>
6178 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6179 {
6180 dwarf2_section_info *section = &section_owner->gdb_index;
6181
6182 if (dwarf2_section_empty_p (section))
6183 return {};
6184
6185 /* Older elfutils strip versions could keep the section in the main
6186 executable while splitting it for the separate debug info file. */
6187 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6188 return {};
6189
6190 dwarf2_read_section (obj, section);
6191
6192 /* dwarf2_section_info::size is a bfd_size_type, while
6193 gdb::array_view works with size_t. On 32-bit hosts, with
6194 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6195 is 32-bit. So we need an explicit narrowing conversion here.
6196 This is fine, because it's impossible to allocate or mmap an
6197 array/buffer larger than what size_t can represent. */
6198 return gdb::make_array_view (section->buffer, section->size);
6199 }
6200
6201 /* Lookup the index cache for the contents of the index associated to
6202 DWARF2_OBJ. */
6203
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6206 {
6207 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6208 if (build_id == nullptr)
6209 return {};
6210
6211 return global_index_cache.lookup_gdb_index (build_id,
6212 &dwarf2_obj->index_cache_res);
6213 }
6214
6215 /* Same as the above, but for DWZ. */
6216
6217 static gdb::array_view<const gdb_byte>
6218 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6219 {
6220 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6221 if (build_id == nullptr)
6222 return {};
6223
6224 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6225 }
6226
6227 /* See symfile.h. */
6228
6229 bool
6230 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6231 {
6232 struct dwarf2_per_objfile *dwarf2_per_objfile
6233 = get_dwarf2_per_objfile (objfile);
6234
6235 /* If we're about to read full symbols, don't bother with the
6236 indices. In this case we also don't care if some other debug
6237 format is making psymtabs, because they are all about to be
6238 expanded anyway. */
6239 if ((objfile->flags & OBJF_READNOW))
6240 {
6241 dwarf2_per_objfile->using_index = 1;
6242 create_all_comp_units (dwarf2_per_objfile);
6243 create_all_type_units (dwarf2_per_objfile);
6244 dwarf2_per_objfile->quick_file_names_table
6245 = create_quick_file_names_table
6246 (dwarf2_per_objfile->all_comp_units.size ());
6247
6248 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6249 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6250 {
6251 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6252
6253 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6254 struct dwarf2_per_cu_quick_data);
6255 }
6256
6257 /* Return 1 so that gdb sees the "quick" functions. However,
6258 these functions will be no-ops because we will have expanded
6259 all symtabs. */
6260 *index_kind = dw_index_kind::GDB_INDEX;
6261 return true;
6262 }
6263
6264 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6265 {
6266 *index_kind = dw_index_kind::DEBUG_NAMES;
6267 return true;
6268 }
6269
6270 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6271 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6272 get_gdb_index_contents_from_section<dwz_file>))
6273 {
6274 *index_kind = dw_index_kind::GDB_INDEX;
6275 return true;
6276 }
6277
6278 /* ... otherwise, try to find the index in the index cache. */
6279 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6280 get_gdb_index_contents_from_cache,
6281 get_gdb_index_contents_from_cache_dwz))
6282 {
6283 global_index_cache.hit ();
6284 *index_kind = dw_index_kind::GDB_INDEX;
6285 return true;
6286 }
6287
6288 global_index_cache.miss ();
6289 return false;
6290 }
6291
6292 \f
6293
6294 /* Build a partial symbol table. */
6295
6296 void
6297 dwarf2_build_psymtabs (struct objfile *objfile)
6298 {
6299 struct dwarf2_per_objfile *dwarf2_per_objfile
6300 = get_dwarf2_per_objfile (objfile);
6301
6302 if (objfile->global_psymbols.capacity () == 0
6303 && objfile->static_psymbols.capacity () == 0)
6304 init_psymbol_list (objfile, 1024);
6305
6306 TRY
6307 {
6308 /* This isn't really ideal: all the data we allocate on the
6309 objfile's obstack is still uselessly kept around. However,
6310 freeing it seems unsafe. */
6311 psymtab_discarder psymtabs (objfile);
6312 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6313 psymtabs.keep ();
6314
6315 /* (maybe) store an index in the cache. */
6316 global_index_cache.store (dwarf2_per_objfile);
6317 }
6318 CATCH (except, RETURN_MASK_ERROR)
6319 {
6320 exception_print (gdb_stderr, except);
6321 }
6322 END_CATCH
6323 }
6324
6325 /* Return the total length of the CU described by HEADER. */
6326
6327 static unsigned int
6328 get_cu_length (const struct comp_unit_head *header)
6329 {
6330 return header->initial_length_size + header->length;
6331 }
6332
6333 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6334
6335 static inline bool
6336 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6337 {
6338 sect_offset bottom = cu_header->sect_off;
6339 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6340
6341 return sect_off >= bottom && sect_off < top;
6342 }
6343
6344 /* Find the base address of the compilation unit for range lists and
6345 location lists. It will normally be specified by DW_AT_low_pc.
6346 In DWARF-3 draft 4, the base address could be overridden by
6347 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6348 compilation units with discontinuous ranges. */
6349
6350 static void
6351 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6352 {
6353 struct attribute *attr;
6354
6355 cu->base_known = 0;
6356 cu->base_address = 0;
6357
6358 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6359 if (attr)
6360 {
6361 cu->base_address = attr_value_as_address (attr);
6362 cu->base_known = 1;
6363 }
6364 else
6365 {
6366 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6367 if (attr)
6368 {
6369 cu->base_address = attr_value_as_address (attr);
6370 cu->base_known = 1;
6371 }
6372 }
6373 }
6374
6375 /* Read in the comp unit header information from the debug_info at info_ptr.
6376 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6377 NOTE: This leaves members offset, first_die_offset to be filled in
6378 by the caller. */
6379
6380 static const gdb_byte *
6381 read_comp_unit_head (struct comp_unit_head *cu_header,
6382 const gdb_byte *info_ptr,
6383 struct dwarf2_section_info *section,
6384 rcuh_kind section_kind)
6385 {
6386 int signed_addr;
6387 unsigned int bytes_read;
6388 const char *filename = get_section_file_name (section);
6389 bfd *abfd = get_section_bfd_owner (section);
6390
6391 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6392 cu_header->initial_length_size = bytes_read;
6393 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6394 info_ptr += bytes_read;
6395 cu_header->version = read_2_bytes (abfd, info_ptr);
6396 if (cu_header->version < 2 || cu_header->version > 5)
6397 error (_("Dwarf Error: wrong version in compilation unit header "
6398 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6399 cu_header->version, filename);
6400 info_ptr += 2;
6401 if (cu_header->version < 5)
6402 switch (section_kind)
6403 {
6404 case rcuh_kind::COMPILE:
6405 cu_header->unit_type = DW_UT_compile;
6406 break;
6407 case rcuh_kind::TYPE:
6408 cu_header->unit_type = DW_UT_type;
6409 break;
6410 default:
6411 internal_error (__FILE__, __LINE__,
6412 _("read_comp_unit_head: invalid section_kind"));
6413 }
6414 else
6415 {
6416 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6417 (read_1_byte (abfd, info_ptr));
6418 info_ptr += 1;
6419 switch (cu_header->unit_type)
6420 {
6421 case DW_UT_compile:
6422 if (section_kind != rcuh_kind::COMPILE)
6423 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6424 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6425 filename);
6426 break;
6427 case DW_UT_type:
6428 section_kind = rcuh_kind::TYPE;
6429 break;
6430 default:
6431 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6432 "(is %d, should be %d or %d) [in module %s]"),
6433 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6434 }
6435
6436 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6437 info_ptr += 1;
6438 }
6439 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6440 cu_header,
6441 &bytes_read);
6442 info_ptr += bytes_read;
6443 if (cu_header->version < 5)
6444 {
6445 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6446 info_ptr += 1;
6447 }
6448 signed_addr = bfd_get_sign_extend_vma (abfd);
6449 if (signed_addr < 0)
6450 internal_error (__FILE__, __LINE__,
6451 _("read_comp_unit_head: dwarf from non elf file"));
6452 cu_header->signed_addr_p = signed_addr;
6453
6454 if (section_kind == rcuh_kind::TYPE)
6455 {
6456 LONGEST type_offset;
6457
6458 cu_header->signature = read_8_bytes (abfd, info_ptr);
6459 info_ptr += 8;
6460
6461 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6462 info_ptr += bytes_read;
6463 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6464 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6465 error (_("Dwarf Error: Too big type_offset in compilation unit "
6466 "header (is %s) [in module %s]"), plongest (type_offset),
6467 filename);
6468 }
6469
6470 return info_ptr;
6471 }
6472
6473 /* Helper function that returns the proper abbrev section for
6474 THIS_CU. */
6475
6476 static struct dwarf2_section_info *
6477 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6478 {
6479 struct dwarf2_section_info *abbrev;
6480 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6481
6482 if (this_cu->is_dwz)
6483 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6484 else
6485 abbrev = &dwarf2_per_objfile->abbrev;
6486
6487 return abbrev;
6488 }
6489
6490 /* Subroutine of read_and_check_comp_unit_head and
6491 read_and_check_type_unit_head to simplify them.
6492 Perform various error checking on the header. */
6493
6494 static void
6495 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6496 struct comp_unit_head *header,
6497 struct dwarf2_section_info *section,
6498 struct dwarf2_section_info *abbrev_section)
6499 {
6500 const char *filename = get_section_file_name (section);
6501
6502 if (to_underlying (header->abbrev_sect_off)
6503 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6504 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6505 "(offset %s + 6) [in module %s]"),
6506 sect_offset_str (header->abbrev_sect_off),
6507 sect_offset_str (header->sect_off),
6508 filename);
6509
6510 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6511 avoid potential 32-bit overflow. */
6512 if (((ULONGEST) header->sect_off + get_cu_length (header))
6513 > section->size)
6514 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6515 "(offset %s + 0) [in module %s]"),
6516 header->length, sect_offset_str (header->sect_off),
6517 filename);
6518 }
6519
6520 /* Read in a CU/TU header and perform some basic error checking.
6521 The contents of the header are stored in HEADER.
6522 The result is a pointer to the start of the first DIE. */
6523
6524 static const gdb_byte *
6525 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6526 struct comp_unit_head *header,
6527 struct dwarf2_section_info *section,
6528 struct dwarf2_section_info *abbrev_section,
6529 const gdb_byte *info_ptr,
6530 rcuh_kind section_kind)
6531 {
6532 const gdb_byte *beg_of_comp_unit = info_ptr;
6533
6534 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6535
6536 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6537
6538 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6539
6540 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6541 abbrev_section);
6542
6543 return info_ptr;
6544 }
6545
6546 /* Fetch the abbreviation table offset from a comp or type unit header. */
6547
6548 static sect_offset
6549 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct dwarf2_section_info *section,
6551 sect_offset sect_off)
6552 {
6553 bfd *abfd = get_section_bfd_owner (section);
6554 const gdb_byte *info_ptr;
6555 unsigned int initial_length_size, offset_size;
6556 uint16_t version;
6557
6558 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6559 info_ptr = section->buffer + to_underlying (sect_off);
6560 read_initial_length (abfd, info_ptr, &initial_length_size);
6561 offset_size = initial_length_size == 4 ? 4 : 8;
6562 info_ptr += initial_length_size;
6563
6564 version = read_2_bytes (abfd, info_ptr);
6565 info_ptr += 2;
6566 if (version >= 5)
6567 {
6568 /* Skip unit type and address size. */
6569 info_ptr += 2;
6570 }
6571
6572 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6573 }
6574
6575 /* Allocate a new partial symtab for file named NAME and mark this new
6576 partial symtab as being an include of PST. */
6577
6578 static void
6579 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6580 struct objfile *objfile)
6581 {
6582 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6583
6584 if (!IS_ABSOLUTE_PATH (subpst->filename))
6585 {
6586 /* It shares objfile->objfile_obstack. */
6587 subpst->dirname = pst->dirname;
6588 }
6589
6590 subpst->dependencies
6591 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
6592 subpst->dependencies[0] = pst;
6593 subpst->number_of_dependencies = 1;
6594
6595 subpst->read_symtab = pst->read_symtab;
6596
6597 /* No private part is necessary for include psymtabs. This property
6598 can be used to differentiate between such include psymtabs and
6599 the regular ones. */
6600 subpst->read_symtab_private = NULL;
6601 }
6602
6603 /* Read the Line Number Program data and extract the list of files
6604 included by the source file represented by PST. Build an include
6605 partial symtab for each of these included files. */
6606
6607 static void
6608 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6609 struct die_info *die,
6610 struct partial_symtab *pst)
6611 {
6612 line_header_up lh;
6613 struct attribute *attr;
6614
6615 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6616 if (attr)
6617 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6618 if (lh == NULL)
6619 return; /* No linetable, so no includes. */
6620
6621 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6622 that we pass in the raw text_low here; that is ok because we're
6623 only decoding the line table to make include partial symtabs, and
6624 so the addresses aren't really used. */
6625 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6626 pst->raw_text_low (), 1);
6627 }
6628
6629 static hashval_t
6630 hash_signatured_type (const void *item)
6631 {
6632 const struct signatured_type *sig_type
6633 = (const struct signatured_type *) item;
6634
6635 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6636 return sig_type->signature;
6637 }
6638
6639 static int
6640 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6641 {
6642 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6643 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6644
6645 return lhs->signature == rhs->signature;
6646 }
6647
6648 /* Allocate a hash table for signatured types. */
6649
6650 static htab_t
6651 allocate_signatured_type_table (struct objfile *objfile)
6652 {
6653 return htab_create_alloc_ex (41,
6654 hash_signatured_type,
6655 eq_signatured_type,
6656 NULL,
6657 &objfile->objfile_obstack,
6658 hashtab_obstack_allocate,
6659 dummy_obstack_deallocate);
6660 }
6661
6662 /* A helper function to add a signatured type CU to a table. */
6663
6664 static int
6665 add_signatured_type_cu_to_table (void **slot, void *datum)
6666 {
6667 struct signatured_type *sigt = (struct signatured_type *) *slot;
6668 std::vector<signatured_type *> *all_type_units
6669 = (std::vector<signatured_type *> *) datum;
6670
6671 all_type_units->push_back (sigt);
6672
6673 return 1;
6674 }
6675
6676 /* A helper for create_debug_types_hash_table. Read types from SECTION
6677 and fill them into TYPES_HTAB. It will process only type units,
6678 therefore DW_UT_type. */
6679
6680 static void
6681 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6682 struct dwo_file *dwo_file,
6683 dwarf2_section_info *section, htab_t &types_htab,
6684 rcuh_kind section_kind)
6685 {
6686 struct objfile *objfile = dwarf2_per_objfile->objfile;
6687 struct dwarf2_section_info *abbrev_section;
6688 bfd *abfd;
6689 const gdb_byte *info_ptr, *end_ptr;
6690
6691 abbrev_section = (dwo_file != NULL
6692 ? &dwo_file->sections.abbrev
6693 : &dwarf2_per_objfile->abbrev);
6694
6695 if (dwarf_read_debug)
6696 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6697 get_section_name (section),
6698 get_section_file_name (abbrev_section));
6699
6700 dwarf2_read_section (objfile, section);
6701 info_ptr = section->buffer;
6702
6703 if (info_ptr == NULL)
6704 return;
6705
6706 /* We can't set abfd until now because the section may be empty or
6707 not present, in which case the bfd is unknown. */
6708 abfd = get_section_bfd_owner (section);
6709
6710 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6711 because we don't need to read any dies: the signature is in the
6712 header. */
6713
6714 end_ptr = info_ptr + section->size;
6715 while (info_ptr < end_ptr)
6716 {
6717 struct signatured_type *sig_type;
6718 struct dwo_unit *dwo_tu;
6719 void **slot;
6720 const gdb_byte *ptr = info_ptr;
6721 struct comp_unit_head header;
6722 unsigned int length;
6723
6724 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6725
6726 /* Initialize it due to a false compiler warning. */
6727 header.signature = -1;
6728 header.type_cu_offset_in_tu = (cu_offset) -1;
6729
6730 /* We need to read the type's signature in order to build the hash
6731 table, but we don't need anything else just yet. */
6732
6733 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6734 abbrev_section, ptr, section_kind);
6735
6736 length = get_cu_length (&header);
6737
6738 /* Skip dummy type units. */
6739 if (ptr >= info_ptr + length
6740 || peek_abbrev_code (abfd, ptr) == 0
6741 || header.unit_type != DW_UT_type)
6742 {
6743 info_ptr += length;
6744 continue;
6745 }
6746
6747 if (types_htab == NULL)
6748 {
6749 if (dwo_file)
6750 types_htab = allocate_dwo_unit_table (objfile);
6751 else
6752 types_htab = allocate_signatured_type_table (objfile);
6753 }
6754
6755 if (dwo_file)
6756 {
6757 sig_type = NULL;
6758 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6759 struct dwo_unit);
6760 dwo_tu->dwo_file = dwo_file;
6761 dwo_tu->signature = header.signature;
6762 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6763 dwo_tu->section = section;
6764 dwo_tu->sect_off = sect_off;
6765 dwo_tu->length = length;
6766 }
6767 else
6768 {
6769 /* N.B.: type_offset is not usable if this type uses a DWO file.
6770 The real type_offset is in the DWO file. */
6771 dwo_tu = NULL;
6772 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6773 struct signatured_type);
6774 sig_type->signature = header.signature;
6775 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6776 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6777 sig_type->per_cu.is_debug_types = 1;
6778 sig_type->per_cu.section = section;
6779 sig_type->per_cu.sect_off = sect_off;
6780 sig_type->per_cu.length = length;
6781 }
6782
6783 slot = htab_find_slot (types_htab,
6784 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6785 INSERT);
6786 gdb_assert (slot != NULL);
6787 if (*slot != NULL)
6788 {
6789 sect_offset dup_sect_off;
6790
6791 if (dwo_file)
6792 {
6793 const struct dwo_unit *dup_tu
6794 = (const struct dwo_unit *) *slot;
6795
6796 dup_sect_off = dup_tu->sect_off;
6797 }
6798 else
6799 {
6800 const struct signatured_type *dup_tu
6801 = (const struct signatured_type *) *slot;
6802
6803 dup_sect_off = dup_tu->per_cu.sect_off;
6804 }
6805
6806 complaint (_("debug type entry at offset %s is duplicate to"
6807 " the entry at offset %s, signature %s"),
6808 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6809 hex_string (header.signature));
6810 }
6811 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6812
6813 if (dwarf_read_debug > 1)
6814 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6815 sect_offset_str (sect_off),
6816 hex_string (header.signature));
6817
6818 info_ptr += length;
6819 }
6820 }
6821
6822 /* Create the hash table of all entries in the .debug_types
6823 (or .debug_types.dwo) section(s).
6824 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6825 otherwise it is NULL.
6826
6827 The result is a pointer to the hash table or NULL if there are no types.
6828
6829 Note: This function processes DWO files only, not DWP files. */
6830
6831 static void
6832 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6833 struct dwo_file *dwo_file,
6834 VEC (dwarf2_section_info_def) *types,
6835 htab_t &types_htab)
6836 {
6837 int ix;
6838 struct dwarf2_section_info *section;
6839
6840 if (VEC_empty (dwarf2_section_info_def, types))
6841 return;
6842
6843 for (ix = 0;
6844 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6845 ++ix)
6846 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6847 types_htab, rcuh_kind::TYPE);
6848 }
6849
6850 /* Create the hash table of all entries in the .debug_types section,
6851 and initialize all_type_units.
6852 The result is zero if there is an error (e.g. missing .debug_types section),
6853 otherwise non-zero. */
6854
6855 static int
6856 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6857 {
6858 htab_t types_htab = NULL;
6859
6860 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6861 &dwarf2_per_objfile->info, types_htab,
6862 rcuh_kind::COMPILE);
6863 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6864 dwarf2_per_objfile->types, types_htab);
6865 if (types_htab == NULL)
6866 {
6867 dwarf2_per_objfile->signatured_types = NULL;
6868 return 0;
6869 }
6870
6871 dwarf2_per_objfile->signatured_types = types_htab;
6872
6873 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6874 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6875
6876 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6877 &dwarf2_per_objfile->all_type_units);
6878
6879 return 1;
6880 }
6881
6882 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6883 If SLOT is non-NULL, it is the entry to use in the hash table.
6884 Otherwise we find one. */
6885
6886 static struct signatured_type *
6887 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6888 void **slot)
6889 {
6890 struct objfile *objfile = dwarf2_per_objfile->objfile;
6891
6892 if (dwarf2_per_objfile->all_type_units.size ()
6893 == dwarf2_per_objfile->all_type_units.capacity ())
6894 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6895
6896 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6897 struct signatured_type);
6898
6899 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6900 sig_type->signature = sig;
6901 sig_type->per_cu.is_debug_types = 1;
6902 if (dwarf2_per_objfile->using_index)
6903 {
6904 sig_type->per_cu.v.quick =
6905 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6906 struct dwarf2_per_cu_quick_data);
6907 }
6908
6909 if (slot == NULL)
6910 {
6911 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6912 sig_type, INSERT);
6913 }
6914 gdb_assert (*slot == NULL);
6915 *slot = sig_type;
6916 /* The rest of sig_type must be filled in by the caller. */
6917 return sig_type;
6918 }
6919
6920 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6921 Fill in SIG_ENTRY with DWO_ENTRY. */
6922
6923 static void
6924 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6925 struct signatured_type *sig_entry,
6926 struct dwo_unit *dwo_entry)
6927 {
6928 /* Make sure we're not clobbering something we don't expect to. */
6929 gdb_assert (! sig_entry->per_cu.queued);
6930 gdb_assert (sig_entry->per_cu.cu == NULL);
6931 if (dwarf2_per_objfile->using_index)
6932 {
6933 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6934 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6935 }
6936 else
6937 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6938 gdb_assert (sig_entry->signature == dwo_entry->signature);
6939 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6940 gdb_assert (sig_entry->type_unit_group == NULL);
6941 gdb_assert (sig_entry->dwo_unit == NULL);
6942
6943 sig_entry->per_cu.section = dwo_entry->section;
6944 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6945 sig_entry->per_cu.length = dwo_entry->length;
6946 sig_entry->per_cu.reading_dwo_directly = 1;
6947 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6948 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6949 sig_entry->dwo_unit = dwo_entry;
6950 }
6951
6952 /* Subroutine of lookup_signatured_type.
6953 If we haven't read the TU yet, create the signatured_type data structure
6954 for a TU to be read in directly from a DWO file, bypassing the stub.
6955 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6956 using .gdb_index, then when reading a CU we want to stay in the DWO file
6957 containing that CU. Otherwise we could end up reading several other DWO
6958 files (due to comdat folding) to process the transitive closure of all the
6959 mentioned TUs, and that can be slow. The current DWO file will have every
6960 type signature that it needs.
6961 We only do this for .gdb_index because in the psymtab case we already have
6962 to read all the DWOs to build the type unit groups. */
6963
6964 static struct signatured_type *
6965 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6966 {
6967 struct dwarf2_per_objfile *dwarf2_per_objfile
6968 = cu->per_cu->dwarf2_per_objfile;
6969 struct objfile *objfile = dwarf2_per_objfile->objfile;
6970 struct dwo_file *dwo_file;
6971 struct dwo_unit find_dwo_entry, *dwo_entry;
6972 struct signatured_type find_sig_entry, *sig_entry;
6973 void **slot;
6974
6975 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6976
6977 /* If TU skeletons have been removed then we may not have read in any
6978 TUs yet. */
6979 if (dwarf2_per_objfile->signatured_types == NULL)
6980 {
6981 dwarf2_per_objfile->signatured_types
6982 = allocate_signatured_type_table (objfile);
6983 }
6984
6985 /* We only ever need to read in one copy of a signatured type.
6986 Use the global signatured_types array to do our own comdat-folding
6987 of types. If this is the first time we're reading this TU, and
6988 the TU has an entry in .gdb_index, replace the recorded data from
6989 .gdb_index with this TU. */
6990
6991 find_sig_entry.signature = sig;
6992 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6993 &find_sig_entry, INSERT);
6994 sig_entry = (struct signatured_type *) *slot;
6995
6996 /* We can get here with the TU already read, *or* in the process of being
6997 read. Don't reassign the global entry to point to this DWO if that's
6998 the case. Also note that if the TU is already being read, it may not
6999 have come from a DWO, the program may be a mix of Fission-compiled
7000 code and non-Fission-compiled code. */
7001
7002 /* Have we already tried to read this TU?
7003 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7004 needn't exist in the global table yet). */
7005 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7006 return sig_entry;
7007
7008 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7009 dwo_unit of the TU itself. */
7010 dwo_file = cu->dwo_unit->dwo_file;
7011
7012 /* Ok, this is the first time we're reading this TU. */
7013 if (dwo_file->tus == NULL)
7014 return NULL;
7015 find_dwo_entry.signature = sig;
7016 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7017 if (dwo_entry == NULL)
7018 return NULL;
7019
7020 /* If the global table doesn't have an entry for this TU, add one. */
7021 if (sig_entry == NULL)
7022 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7023
7024 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7025 sig_entry->per_cu.tu_read = 1;
7026 return sig_entry;
7027 }
7028
7029 /* Subroutine of lookup_signatured_type.
7030 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7031 then try the DWP file. If the TU stub (skeleton) has been removed then
7032 it won't be in .gdb_index. */
7033
7034 static struct signatured_type *
7035 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7036 {
7037 struct dwarf2_per_objfile *dwarf2_per_objfile
7038 = cu->per_cu->dwarf2_per_objfile;
7039 struct objfile *objfile = dwarf2_per_objfile->objfile;
7040 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7041 struct dwo_unit *dwo_entry;
7042 struct signatured_type find_sig_entry, *sig_entry;
7043 void **slot;
7044
7045 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7046 gdb_assert (dwp_file != NULL);
7047
7048 /* If TU skeletons have been removed then we may not have read in any
7049 TUs yet. */
7050 if (dwarf2_per_objfile->signatured_types == NULL)
7051 {
7052 dwarf2_per_objfile->signatured_types
7053 = allocate_signatured_type_table (objfile);
7054 }
7055
7056 find_sig_entry.signature = sig;
7057 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7058 &find_sig_entry, INSERT);
7059 sig_entry = (struct signatured_type *) *slot;
7060
7061 /* Have we already tried to read this TU?
7062 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7063 needn't exist in the global table yet). */
7064 if (sig_entry != NULL)
7065 return sig_entry;
7066
7067 if (dwp_file->tus == NULL)
7068 return NULL;
7069 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7070 sig, 1 /* is_debug_types */);
7071 if (dwo_entry == NULL)
7072 return NULL;
7073
7074 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7075 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7076
7077 return sig_entry;
7078 }
7079
7080 /* Lookup a signature based type for DW_FORM_ref_sig8.
7081 Returns NULL if signature SIG is not present in the table.
7082 It is up to the caller to complain about this. */
7083
7084 static struct signatured_type *
7085 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7086 {
7087 struct dwarf2_per_objfile *dwarf2_per_objfile
7088 = cu->per_cu->dwarf2_per_objfile;
7089
7090 if (cu->dwo_unit
7091 && dwarf2_per_objfile->using_index)
7092 {
7093 /* We're in a DWO/DWP file, and we're using .gdb_index.
7094 These cases require special processing. */
7095 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7096 return lookup_dwo_signatured_type (cu, sig);
7097 else
7098 return lookup_dwp_signatured_type (cu, sig);
7099 }
7100 else
7101 {
7102 struct signatured_type find_entry, *entry;
7103
7104 if (dwarf2_per_objfile->signatured_types == NULL)
7105 return NULL;
7106 find_entry.signature = sig;
7107 entry = ((struct signatured_type *)
7108 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7109 return entry;
7110 }
7111 }
7112 \f
7113 /* Low level DIE reading support. */
7114
7115 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7116
7117 static void
7118 init_cu_die_reader (struct die_reader_specs *reader,
7119 struct dwarf2_cu *cu,
7120 struct dwarf2_section_info *section,
7121 struct dwo_file *dwo_file,
7122 struct abbrev_table *abbrev_table)
7123 {
7124 gdb_assert (section->readin && section->buffer != NULL);
7125 reader->abfd = get_section_bfd_owner (section);
7126 reader->cu = cu;
7127 reader->dwo_file = dwo_file;
7128 reader->die_section = section;
7129 reader->buffer = section->buffer;
7130 reader->buffer_end = section->buffer + section->size;
7131 reader->comp_dir = NULL;
7132 reader->abbrev_table = abbrev_table;
7133 }
7134
7135 /* Subroutine of init_cutu_and_read_dies to simplify it.
7136 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7137 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7138 already.
7139
7140 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7141 from it to the DIE in the DWO. If NULL we are skipping the stub.
7142 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7143 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7144 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7145 STUB_COMP_DIR may be non-NULL.
7146 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7147 are filled in with the info of the DIE from the DWO file.
7148 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7149 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7150 kept around for at least as long as *RESULT_READER.
7151
7152 The result is non-zero if a valid (non-dummy) DIE was found. */
7153
7154 static int
7155 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7156 struct dwo_unit *dwo_unit,
7157 struct die_info *stub_comp_unit_die,
7158 const char *stub_comp_dir,
7159 struct die_reader_specs *result_reader,
7160 const gdb_byte **result_info_ptr,
7161 struct die_info **result_comp_unit_die,
7162 int *result_has_children,
7163 abbrev_table_up *result_dwo_abbrev_table)
7164 {
7165 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7166 struct objfile *objfile = dwarf2_per_objfile->objfile;
7167 struct dwarf2_cu *cu = this_cu->cu;
7168 bfd *abfd;
7169 const gdb_byte *begin_info_ptr, *info_ptr;
7170 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7171 int i,num_extra_attrs;
7172 struct dwarf2_section_info *dwo_abbrev_section;
7173 struct attribute *attr;
7174 struct die_info *comp_unit_die;
7175
7176 /* At most one of these may be provided. */
7177 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7178
7179 /* These attributes aren't processed until later:
7180 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7181 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7182 referenced later. However, these attributes are found in the stub
7183 which we won't have later. In order to not impose this complication
7184 on the rest of the code, we read them here and copy them to the
7185 DWO CU/TU die. */
7186
7187 stmt_list = NULL;
7188 low_pc = NULL;
7189 high_pc = NULL;
7190 ranges = NULL;
7191 comp_dir = NULL;
7192
7193 if (stub_comp_unit_die != NULL)
7194 {
7195 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7196 DWO file. */
7197 if (! this_cu->is_debug_types)
7198 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7199 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7200 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7201 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7202 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7203
7204 /* There should be a DW_AT_addr_base attribute here (if needed).
7205 We need the value before we can process DW_FORM_GNU_addr_index. */
7206 cu->addr_base = 0;
7207 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7208 if (attr)
7209 cu->addr_base = DW_UNSND (attr);
7210
7211 /* There should be a DW_AT_ranges_base attribute here (if needed).
7212 We need the value before we can process DW_AT_ranges. */
7213 cu->ranges_base = 0;
7214 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7215 if (attr)
7216 cu->ranges_base = DW_UNSND (attr);
7217 }
7218 else if (stub_comp_dir != NULL)
7219 {
7220 /* Reconstruct the comp_dir attribute to simplify the code below. */
7221 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7222 comp_dir->name = DW_AT_comp_dir;
7223 comp_dir->form = DW_FORM_string;
7224 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7225 DW_STRING (comp_dir) = stub_comp_dir;
7226 }
7227
7228 /* Set up for reading the DWO CU/TU. */
7229 cu->dwo_unit = dwo_unit;
7230 dwarf2_section_info *section = dwo_unit->section;
7231 dwarf2_read_section (objfile, section);
7232 abfd = get_section_bfd_owner (section);
7233 begin_info_ptr = info_ptr = (section->buffer
7234 + to_underlying (dwo_unit->sect_off));
7235 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7236
7237 if (this_cu->is_debug_types)
7238 {
7239 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7240
7241 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7242 &cu->header, section,
7243 dwo_abbrev_section,
7244 info_ptr, rcuh_kind::TYPE);
7245 /* This is not an assert because it can be caused by bad debug info. */
7246 if (sig_type->signature != cu->header.signature)
7247 {
7248 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7249 " TU at offset %s [in module %s]"),
7250 hex_string (sig_type->signature),
7251 hex_string (cu->header.signature),
7252 sect_offset_str (dwo_unit->sect_off),
7253 bfd_get_filename (abfd));
7254 }
7255 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7256 /* For DWOs coming from DWP files, we don't know the CU length
7257 nor the type's offset in the TU until now. */
7258 dwo_unit->length = get_cu_length (&cu->header);
7259 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7260
7261 /* Establish the type offset that can be used to lookup the type.
7262 For DWO files, we don't know it until now. */
7263 sig_type->type_offset_in_section
7264 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7265 }
7266 else
7267 {
7268 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7269 &cu->header, section,
7270 dwo_abbrev_section,
7271 info_ptr, rcuh_kind::COMPILE);
7272 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7273 /* For DWOs coming from DWP files, we don't know the CU length
7274 until now. */
7275 dwo_unit->length = get_cu_length (&cu->header);
7276 }
7277
7278 *result_dwo_abbrev_table
7279 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7280 cu->header.abbrev_sect_off);
7281 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7282 result_dwo_abbrev_table->get ());
7283
7284 /* Read in the die, but leave space to copy over the attributes
7285 from the stub. This has the benefit of simplifying the rest of
7286 the code - all the work to maintain the illusion of a single
7287 DW_TAG_{compile,type}_unit DIE is done here. */
7288 num_extra_attrs = ((stmt_list != NULL)
7289 + (low_pc != NULL)
7290 + (high_pc != NULL)
7291 + (ranges != NULL)
7292 + (comp_dir != NULL));
7293 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7294 result_has_children, num_extra_attrs);
7295
7296 /* Copy over the attributes from the stub to the DIE we just read in. */
7297 comp_unit_die = *result_comp_unit_die;
7298 i = comp_unit_die->num_attrs;
7299 if (stmt_list != NULL)
7300 comp_unit_die->attrs[i++] = *stmt_list;
7301 if (low_pc != NULL)
7302 comp_unit_die->attrs[i++] = *low_pc;
7303 if (high_pc != NULL)
7304 comp_unit_die->attrs[i++] = *high_pc;
7305 if (ranges != NULL)
7306 comp_unit_die->attrs[i++] = *ranges;
7307 if (comp_dir != NULL)
7308 comp_unit_die->attrs[i++] = *comp_dir;
7309 comp_unit_die->num_attrs += num_extra_attrs;
7310
7311 if (dwarf_die_debug)
7312 {
7313 fprintf_unfiltered (gdb_stdlog,
7314 "Read die from %s@0x%x of %s:\n",
7315 get_section_name (section),
7316 (unsigned) (begin_info_ptr - section->buffer),
7317 bfd_get_filename (abfd));
7318 dump_die (comp_unit_die, dwarf_die_debug);
7319 }
7320
7321 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7322 TUs by skipping the stub and going directly to the entry in the DWO file.
7323 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7324 to get it via circuitous means. Blech. */
7325 if (comp_dir != NULL)
7326 result_reader->comp_dir = DW_STRING (comp_dir);
7327
7328 /* Skip dummy compilation units. */
7329 if (info_ptr >= begin_info_ptr + dwo_unit->length
7330 || peek_abbrev_code (abfd, info_ptr) == 0)
7331 return 0;
7332
7333 *result_info_ptr = info_ptr;
7334 return 1;
7335 }
7336
7337 /* Subroutine of init_cutu_and_read_dies to simplify it.
7338 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7339 Returns NULL if the specified DWO unit cannot be found. */
7340
7341 static struct dwo_unit *
7342 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7343 struct die_info *comp_unit_die)
7344 {
7345 struct dwarf2_cu *cu = this_cu->cu;
7346 ULONGEST signature;
7347 struct dwo_unit *dwo_unit;
7348 const char *comp_dir, *dwo_name;
7349
7350 gdb_assert (cu != NULL);
7351
7352 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7353 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7354 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7355
7356 if (this_cu->is_debug_types)
7357 {
7358 struct signatured_type *sig_type;
7359
7360 /* Since this_cu is the first member of struct signatured_type,
7361 we can go from a pointer to one to a pointer to the other. */
7362 sig_type = (struct signatured_type *) this_cu;
7363 signature = sig_type->signature;
7364 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7365 }
7366 else
7367 {
7368 struct attribute *attr;
7369
7370 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7371 if (! attr)
7372 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7373 " [in module %s]"),
7374 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7375 signature = DW_UNSND (attr);
7376 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7377 signature);
7378 }
7379
7380 return dwo_unit;
7381 }
7382
7383 /* Subroutine of init_cutu_and_read_dies to simplify it.
7384 See it for a description of the parameters.
7385 Read a TU directly from a DWO file, bypassing the stub. */
7386
7387 static void
7388 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7389 int use_existing_cu, int keep,
7390 die_reader_func_ftype *die_reader_func,
7391 void *data)
7392 {
7393 std::unique_ptr<dwarf2_cu> new_cu;
7394 struct signatured_type *sig_type;
7395 struct die_reader_specs reader;
7396 const gdb_byte *info_ptr;
7397 struct die_info *comp_unit_die;
7398 int has_children;
7399 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7400
7401 /* Verify we can do the following downcast, and that we have the
7402 data we need. */
7403 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7404 sig_type = (struct signatured_type *) this_cu;
7405 gdb_assert (sig_type->dwo_unit != NULL);
7406
7407 if (use_existing_cu && this_cu->cu != NULL)
7408 {
7409 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7410 /* There's no need to do the rereading_dwo_cu handling that
7411 init_cutu_and_read_dies does since we don't read the stub. */
7412 }
7413 else
7414 {
7415 /* If !use_existing_cu, this_cu->cu must be NULL. */
7416 gdb_assert (this_cu->cu == NULL);
7417 new_cu.reset (new dwarf2_cu (this_cu));
7418 }
7419
7420 /* A future optimization, if needed, would be to use an existing
7421 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7422 could share abbrev tables. */
7423
7424 /* The abbreviation table used by READER, this must live at least as long as
7425 READER. */
7426 abbrev_table_up dwo_abbrev_table;
7427
7428 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7429 NULL /* stub_comp_unit_die */,
7430 sig_type->dwo_unit->dwo_file->comp_dir,
7431 &reader, &info_ptr,
7432 &comp_unit_die, &has_children,
7433 &dwo_abbrev_table) == 0)
7434 {
7435 /* Dummy die. */
7436 return;
7437 }
7438
7439 /* All the "real" work is done here. */
7440 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7441
7442 /* This duplicates the code in init_cutu_and_read_dies,
7443 but the alternative is making the latter more complex.
7444 This function is only for the special case of using DWO files directly:
7445 no point in overly complicating the general case just to handle this. */
7446 if (new_cu != NULL && keep)
7447 {
7448 /* Link this CU into read_in_chain. */
7449 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7450 dwarf2_per_objfile->read_in_chain = this_cu;
7451 /* The chain owns it now. */
7452 new_cu.release ();
7453 }
7454 }
7455
7456 /* Initialize a CU (or TU) and read its DIEs.
7457 If the CU defers to a DWO file, read the DWO file as well.
7458
7459 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7460 Otherwise the table specified in the comp unit header is read in and used.
7461 This is an optimization for when we already have the abbrev table.
7462
7463 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7464 Otherwise, a new CU is allocated with xmalloc.
7465
7466 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7467 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7468
7469 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7470 linker) then DIE_READER_FUNC will not get called. */
7471
7472 static void
7473 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7474 struct abbrev_table *abbrev_table,
7475 int use_existing_cu, int keep,
7476 bool skip_partial,
7477 die_reader_func_ftype *die_reader_func,
7478 void *data)
7479 {
7480 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7481 struct objfile *objfile = dwarf2_per_objfile->objfile;
7482 struct dwarf2_section_info *section = this_cu->section;
7483 bfd *abfd = get_section_bfd_owner (section);
7484 struct dwarf2_cu *cu;
7485 const gdb_byte *begin_info_ptr, *info_ptr;
7486 struct die_reader_specs reader;
7487 struct die_info *comp_unit_die;
7488 int has_children;
7489 struct attribute *attr;
7490 struct signatured_type *sig_type = NULL;
7491 struct dwarf2_section_info *abbrev_section;
7492 /* Non-zero if CU currently points to a DWO file and we need to
7493 reread it. When this happens we need to reread the skeleton die
7494 before we can reread the DWO file (this only applies to CUs, not TUs). */
7495 int rereading_dwo_cu = 0;
7496
7497 if (dwarf_die_debug)
7498 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7499 this_cu->is_debug_types ? "type" : "comp",
7500 sect_offset_str (this_cu->sect_off));
7501
7502 if (use_existing_cu)
7503 gdb_assert (keep);
7504
7505 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7506 file (instead of going through the stub), short-circuit all of this. */
7507 if (this_cu->reading_dwo_directly)
7508 {
7509 /* Narrow down the scope of possibilities to have to understand. */
7510 gdb_assert (this_cu->is_debug_types);
7511 gdb_assert (abbrev_table == NULL);
7512 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7513 die_reader_func, data);
7514 return;
7515 }
7516
7517 /* This is cheap if the section is already read in. */
7518 dwarf2_read_section (objfile, section);
7519
7520 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7521
7522 abbrev_section = get_abbrev_section_for_cu (this_cu);
7523
7524 std::unique_ptr<dwarf2_cu> new_cu;
7525 if (use_existing_cu && this_cu->cu != NULL)
7526 {
7527 cu = this_cu->cu;
7528 /* If this CU is from a DWO file we need to start over, we need to
7529 refetch the attributes from the skeleton CU.
7530 This could be optimized by retrieving those attributes from when we
7531 were here the first time: the previous comp_unit_die was stored in
7532 comp_unit_obstack. But there's no data yet that we need this
7533 optimization. */
7534 if (cu->dwo_unit != NULL)
7535 rereading_dwo_cu = 1;
7536 }
7537 else
7538 {
7539 /* If !use_existing_cu, this_cu->cu must be NULL. */
7540 gdb_assert (this_cu->cu == NULL);
7541 new_cu.reset (new dwarf2_cu (this_cu));
7542 cu = new_cu.get ();
7543 }
7544
7545 /* Get the header. */
7546 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7547 {
7548 /* We already have the header, there's no need to read it in again. */
7549 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7550 }
7551 else
7552 {
7553 if (this_cu->is_debug_types)
7554 {
7555 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7556 &cu->header, section,
7557 abbrev_section, info_ptr,
7558 rcuh_kind::TYPE);
7559
7560 /* Since per_cu is the first member of struct signatured_type,
7561 we can go from a pointer to one to a pointer to the other. */
7562 sig_type = (struct signatured_type *) this_cu;
7563 gdb_assert (sig_type->signature == cu->header.signature);
7564 gdb_assert (sig_type->type_offset_in_tu
7565 == cu->header.type_cu_offset_in_tu);
7566 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7567
7568 /* LENGTH has not been set yet for type units if we're
7569 using .gdb_index. */
7570 this_cu->length = get_cu_length (&cu->header);
7571
7572 /* Establish the type offset that can be used to lookup the type. */
7573 sig_type->type_offset_in_section =
7574 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7575
7576 this_cu->dwarf_version = cu->header.version;
7577 }
7578 else
7579 {
7580 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7581 &cu->header, section,
7582 abbrev_section,
7583 info_ptr,
7584 rcuh_kind::COMPILE);
7585
7586 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7587 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7588 this_cu->dwarf_version = cu->header.version;
7589 }
7590 }
7591
7592 /* Skip dummy compilation units. */
7593 if (info_ptr >= begin_info_ptr + this_cu->length
7594 || peek_abbrev_code (abfd, info_ptr) == 0)
7595 return;
7596
7597 /* If we don't have them yet, read the abbrevs for this compilation unit.
7598 And if we need to read them now, make sure they're freed when we're
7599 done (own the table through ABBREV_TABLE_HOLDER). */
7600 abbrev_table_up abbrev_table_holder;
7601 if (abbrev_table != NULL)
7602 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7603 else
7604 {
7605 abbrev_table_holder
7606 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7607 cu->header.abbrev_sect_off);
7608 abbrev_table = abbrev_table_holder.get ();
7609 }
7610
7611 /* Read the top level CU/TU die. */
7612 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7613 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7614
7615 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7616 return;
7617
7618 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7619 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7620 table from the DWO file and pass the ownership over to us. It will be
7621 referenced from READER, so we must make sure to free it after we're done
7622 with READER.
7623
7624 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7625 DWO CU, that this test will fail (the attribute will not be present). */
7626 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7627 abbrev_table_up dwo_abbrev_table;
7628 if (attr)
7629 {
7630 struct dwo_unit *dwo_unit;
7631 struct die_info *dwo_comp_unit_die;
7632
7633 if (has_children)
7634 {
7635 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7636 " has children (offset %s) [in module %s]"),
7637 sect_offset_str (this_cu->sect_off),
7638 bfd_get_filename (abfd));
7639 }
7640 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7641 if (dwo_unit != NULL)
7642 {
7643 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7644 comp_unit_die, NULL,
7645 &reader, &info_ptr,
7646 &dwo_comp_unit_die, &has_children,
7647 &dwo_abbrev_table) == 0)
7648 {
7649 /* Dummy die. */
7650 return;
7651 }
7652 comp_unit_die = dwo_comp_unit_die;
7653 }
7654 else
7655 {
7656 /* Yikes, we couldn't find the rest of the DIE, we only have
7657 the stub. A complaint has already been logged. There's
7658 not much more we can do except pass on the stub DIE to
7659 die_reader_func. We don't want to throw an error on bad
7660 debug info. */
7661 }
7662 }
7663
7664 /* All of the above is setup for this call. Yikes. */
7665 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7666
7667 /* Done, clean up. */
7668 if (new_cu != NULL && keep)
7669 {
7670 /* Link this CU into read_in_chain. */
7671 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7672 dwarf2_per_objfile->read_in_chain = this_cu;
7673 /* The chain owns it now. */
7674 new_cu.release ();
7675 }
7676 }
7677
7678 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7679 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7680 to have already done the lookup to find the DWO file).
7681
7682 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7683 THIS_CU->is_debug_types, but nothing else.
7684
7685 We fill in THIS_CU->length.
7686
7687 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7688 linker) then DIE_READER_FUNC will not get called.
7689
7690 THIS_CU->cu is always freed when done.
7691 This is done in order to not leave THIS_CU->cu in a state where we have
7692 to care whether it refers to the "main" CU or the DWO CU. */
7693
7694 static void
7695 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7696 struct dwo_file *dwo_file,
7697 die_reader_func_ftype *die_reader_func,
7698 void *data)
7699 {
7700 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7701 struct objfile *objfile = dwarf2_per_objfile->objfile;
7702 struct dwarf2_section_info *section = this_cu->section;
7703 bfd *abfd = get_section_bfd_owner (section);
7704 struct dwarf2_section_info *abbrev_section;
7705 const gdb_byte *begin_info_ptr, *info_ptr;
7706 struct die_reader_specs reader;
7707 struct die_info *comp_unit_die;
7708 int has_children;
7709
7710 if (dwarf_die_debug)
7711 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7712 this_cu->is_debug_types ? "type" : "comp",
7713 sect_offset_str (this_cu->sect_off));
7714
7715 gdb_assert (this_cu->cu == NULL);
7716
7717 abbrev_section = (dwo_file != NULL
7718 ? &dwo_file->sections.abbrev
7719 : get_abbrev_section_for_cu (this_cu));
7720
7721 /* This is cheap if the section is already read in. */
7722 dwarf2_read_section (objfile, section);
7723
7724 struct dwarf2_cu cu (this_cu);
7725
7726 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7727 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7728 &cu.header, section,
7729 abbrev_section, info_ptr,
7730 (this_cu->is_debug_types
7731 ? rcuh_kind::TYPE
7732 : rcuh_kind::COMPILE));
7733
7734 this_cu->length = get_cu_length (&cu.header);
7735
7736 /* Skip dummy compilation units. */
7737 if (info_ptr >= begin_info_ptr + this_cu->length
7738 || peek_abbrev_code (abfd, info_ptr) == 0)
7739 return;
7740
7741 abbrev_table_up abbrev_table
7742 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7743 cu.header.abbrev_sect_off);
7744
7745 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7746 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7747
7748 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7749 }
7750
7751 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7752 does not lookup the specified DWO file.
7753 This cannot be used to read DWO files.
7754
7755 THIS_CU->cu is always freed when done.
7756 This is done in order to not leave THIS_CU->cu in a state where we have
7757 to care whether it refers to the "main" CU or the DWO CU.
7758 We can revisit this if the data shows there's a performance issue. */
7759
7760 static void
7761 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7762 die_reader_func_ftype *die_reader_func,
7763 void *data)
7764 {
7765 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7766 }
7767 \f
7768 /* Type Unit Groups.
7769
7770 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7771 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7772 so that all types coming from the same compilation (.o file) are grouped
7773 together. A future step could be to put the types in the same symtab as
7774 the CU the types ultimately came from. */
7775
7776 static hashval_t
7777 hash_type_unit_group (const void *item)
7778 {
7779 const struct type_unit_group *tu_group
7780 = (const struct type_unit_group *) item;
7781
7782 return hash_stmt_list_entry (&tu_group->hash);
7783 }
7784
7785 static int
7786 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7787 {
7788 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7789 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7790
7791 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7792 }
7793
7794 /* Allocate a hash table for type unit groups. */
7795
7796 static htab_t
7797 allocate_type_unit_groups_table (struct objfile *objfile)
7798 {
7799 return htab_create_alloc_ex (3,
7800 hash_type_unit_group,
7801 eq_type_unit_group,
7802 NULL,
7803 &objfile->objfile_obstack,
7804 hashtab_obstack_allocate,
7805 dummy_obstack_deallocate);
7806 }
7807
7808 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7809 partial symtabs. We combine several TUs per psymtab to not let the size
7810 of any one psymtab grow too big. */
7811 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7812 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7813
7814 /* Helper routine for get_type_unit_group.
7815 Create the type_unit_group object used to hold one or more TUs. */
7816
7817 static struct type_unit_group *
7818 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7819 {
7820 struct dwarf2_per_objfile *dwarf2_per_objfile
7821 = cu->per_cu->dwarf2_per_objfile;
7822 struct objfile *objfile = dwarf2_per_objfile->objfile;
7823 struct dwarf2_per_cu_data *per_cu;
7824 struct type_unit_group *tu_group;
7825
7826 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7827 struct type_unit_group);
7828 per_cu = &tu_group->per_cu;
7829 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7830
7831 if (dwarf2_per_objfile->using_index)
7832 {
7833 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7834 struct dwarf2_per_cu_quick_data);
7835 }
7836 else
7837 {
7838 unsigned int line_offset = to_underlying (line_offset_struct);
7839 struct partial_symtab *pst;
7840 std::string name;
7841
7842 /* Give the symtab a useful name for debug purposes. */
7843 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7844 name = string_printf ("<type_units_%d>",
7845 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7846 else
7847 name = string_printf ("<type_units_at_0x%x>", line_offset);
7848
7849 pst = create_partial_symtab (per_cu, name.c_str ());
7850 pst->anonymous = 1;
7851 }
7852
7853 tu_group->hash.dwo_unit = cu->dwo_unit;
7854 tu_group->hash.line_sect_off = line_offset_struct;
7855
7856 return tu_group;
7857 }
7858
7859 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7860 STMT_LIST is a DW_AT_stmt_list attribute. */
7861
7862 static struct type_unit_group *
7863 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7864 {
7865 struct dwarf2_per_objfile *dwarf2_per_objfile
7866 = cu->per_cu->dwarf2_per_objfile;
7867 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7868 struct type_unit_group *tu_group;
7869 void **slot;
7870 unsigned int line_offset;
7871 struct type_unit_group type_unit_group_for_lookup;
7872
7873 if (dwarf2_per_objfile->type_unit_groups == NULL)
7874 {
7875 dwarf2_per_objfile->type_unit_groups =
7876 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7877 }
7878
7879 /* Do we need to create a new group, or can we use an existing one? */
7880
7881 if (stmt_list)
7882 {
7883 line_offset = DW_UNSND (stmt_list);
7884 ++tu_stats->nr_symtab_sharers;
7885 }
7886 else
7887 {
7888 /* Ugh, no stmt_list. Rare, but we have to handle it.
7889 We can do various things here like create one group per TU or
7890 spread them over multiple groups to split up the expansion work.
7891 To avoid worst case scenarios (too many groups or too large groups)
7892 we, umm, group them in bunches. */
7893 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7894 | (tu_stats->nr_stmt_less_type_units
7895 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7896 ++tu_stats->nr_stmt_less_type_units;
7897 }
7898
7899 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7900 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7901 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7902 &type_unit_group_for_lookup, INSERT);
7903 if (*slot != NULL)
7904 {
7905 tu_group = (struct type_unit_group *) *slot;
7906 gdb_assert (tu_group != NULL);
7907 }
7908 else
7909 {
7910 sect_offset line_offset_struct = (sect_offset) line_offset;
7911 tu_group = create_type_unit_group (cu, line_offset_struct);
7912 *slot = tu_group;
7913 ++tu_stats->nr_symtabs;
7914 }
7915
7916 return tu_group;
7917 }
7918 \f
7919 /* Partial symbol tables. */
7920
7921 /* Create a psymtab named NAME and assign it to PER_CU.
7922
7923 The caller must fill in the following details:
7924 dirname, textlow, texthigh. */
7925
7926 static struct partial_symtab *
7927 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7928 {
7929 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7930 struct partial_symtab *pst;
7931
7932 pst = start_psymtab_common (objfile, name, 0,
7933 objfile->global_psymbols,
7934 objfile->static_psymbols);
7935
7936 pst->psymtabs_addrmap_supported = 1;
7937
7938 /* This is the glue that links PST into GDB's symbol API. */
7939 pst->read_symtab_private = per_cu;
7940 pst->read_symtab = dwarf2_read_symtab;
7941 per_cu->v.psymtab = pst;
7942
7943 return pst;
7944 }
7945
7946 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7947 type. */
7948
7949 struct process_psymtab_comp_unit_data
7950 {
7951 /* True if we are reading a DW_TAG_partial_unit. */
7952
7953 int want_partial_unit;
7954
7955 /* The "pretend" language that is used if the CU doesn't declare a
7956 language. */
7957
7958 enum language pretend_language;
7959 };
7960
7961 /* die_reader_func for process_psymtab_comp_unit. */
7962
7963 static void
7964 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7965 const gdb_byte *info_ptr,
7966 struct die_info *comp_unit_die,
7967 int has_children,
7968 void *data)
7969 {
7970 struct dwarf2_cu *cu = reader->cu;
7971 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7972 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7973 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7974 CORE_ADDR baseaddr;
7975 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7976 struct partial_symtab *pst;
7977 enum pc_bounds_kind cu_bounds_kind;
7978 const char *filename;
7979 struct process_psymtab_comp_unit_data *info
7980 = (struct process_psymtab_comp_unit_data *) data;
7981
7982 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7983 return;
7984
7985 gdb_assert (! per_cu->is_debug_types);
7986
7987 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7988
7989 /* Allocate a new partial symbol table structure. */
7990 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7991 if (filename == NULL)
7992 filename = "";
7993
7994 pst = create_partial_symtab (per_cu, filename);
7995
7996 /* This must be done before calling dwarf2_build_include_psymtabs. */
7997 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7998
7999 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8000
8001 dwarf2_find_base_address (comp_unit_die, cu);
8002
8003 /* Possibly set the default values of LOWPC and HIGHPC from
8004 `DW_AT_ranges'. */
8005 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8006 &best_highpc, cu, pst);
8007 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8008 {
8009 CORE_ADDR low
8010 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8011 - baseaddr);
8012 CORE_ADDR high
8013 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8014 - baseaddr - 1);
8015 /* Store the contiguous range if it is not empty; it can be
8016 empty for CUs with no code. */
8017 addrmap_set_empty (objfile->psymtabs_addrmap, low, high, pst);
8018 }
8019
8020 /* Check if comp unit has_children.
8021 If so, read the rest of the partial symbols from this comp unit.
8022 If not, there's no more debug_info for this comp unit. */
8023 if (has_children)
8024 {
8025 struct partial_die_info *first_die;
8026 CORE_ADDR lowpc, highpc;
8027
8028 lowpc = ((CORE_ADDR) -1);
8029 highpc = ((CORE_ADDR) 0);
8030
8031 first_die = load_partial_dies (reader, info_ptr, 1);
8032
8033 scan_partial_symbols (first_die, &lowpc, &highpc,
8034 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8035
8036 /* If we didn't find a lowpc, set it to highpc to avoid
8037 complaints from `maint check'. */
8038 if (lowpc == ((CORE_ADDR) -1))
8039 lowpc = highpc;
8040
8041 /* If the compilation unit didn't have an explicit address range,
8042 then use the information extracted from its child dies. */
8043 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8044 {
8045 best_lowpc = lowpc;
8046 best_highpc = highpc;
8047 }
8048 }
8049 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8050 best_lowpc + baseaddr)
8051 - baseaddr);
8052 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8053 best_highpc + baseaddr)
8054 - baseaddr);
8055
8056 end_psymtab_common (objfile, pst);
8057
8058 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8059 {
8060 int i;
8061 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8062 struct dwarf2_per_cu_data *iter;
8063
8064 /* Fill in 'dependencies' here; we fill in 'users' in a
8065 post-pass. */
8066 pst->number_of_dependencies = len;
8067 pst->dependencies =
8068 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8069 for (i = 0;
8070 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8071 i, iter);
8072 ++i)
8073 pst->dependencies[i] = iter->v.psymtab;
8074
8075 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8076 }
8077
8078 /* Get the list of files included in the current compilation unit,
8079 and build a psymtab for each of them. */
8080 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8081
8082 if (dwarf_read_debug)
8083 fprintf_unfiltered (gdb_stdlog,
8084 "Psymtab for %s unit @%s: %s - %s"
8085 ", %d global, %d static syms\n",
8086 per_cu->is_debug_types ? "type" : "comp",
8087 sect_offset_str (per_cu->sect_off),
8088 paddress (gdbarch, pst->text_low (objfile)),
8089 paddress (gdbarch, pst->text_high (objfile)),
8090 pst->n_global_syms, pst->n_static_syms);
8091 }
8092
8093 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8094 Process compilation unit THIS_CU for a psymtab. */
8095
8096 static void
8097 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8098 int want_partial_unit,
8099 enum language pretend_language)
8100 {
8101 /* If this compilation unit was already read in, free the
8102 cached copy in order to read it in again. This is
8103 necessary because we skipped some symbols when we first
8104 read in the compilation unit (see load_partial_dies).
8105 This problem could be avoided, but the benefit is unclear. */
8106 if (this_cu->cu != NULL)
8107 free_one_cached_comp_unit (this_cu);
8108
8109 if (this_cu->is_debug_types)
8110 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8111 build_type_psymtabs_reader, NULL);
8112 else
8113 {
8114 process_psymtab_comp_unit_data info;
8115 info.want_partial_unit = want_partial_unit;
8116 info.pretend_language = pretend_language;
8117 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8118 process_psymtab_comp_unit_reader, &info);
8119 }
8120
8121 /* Age out any secondary CUs. */
8122 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8123 }
8124
8125 /* Reader function for build_type_psymtabs. */
8126
8127 static void
8128 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8129 const gdb_byte *info_ptr,
8130 struct die_info *type_unit_die,
8131 int has_children,
8132 void *data)
8133 {
8134 struct dwarf2_per_objfile *dwarf2_per_objfile
8135 = reader->cu->per_cu->dwarf2_per_objfile;
8136 struct objfile *objfile = dwarf2_per_objfile->objfile;
8137 struct dwarf2_cu *cu = reader->cu;
8138 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8139 struct signatured_type *sig_type;
8140 struct type_unit_group *tu_group;
8141 struct attribute *attr;
8142 struct partial_die_info *first_die;
8143 CORE_ADDR lowpc, highpc;
8144 struct partial_symtab *pst;
8145
8146 gdb_assert (data == NULL);
8147 gdb_assert (per_cu->is_debug_types);
8148 sig_type = (struct signatured_type *) per_cu;
8149
8150 if (! has_children)
8151 return;
8152
8153 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8154 tu_group = get_type_unit_group (cu, attr);
8155
8156 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8157
8158 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8159 pst = create_partial_symtab (per_cu, "");
8160 pst->anonymous = 1;
8161
8162 first_die = load_partial_dies (reader, info_ptr, 1);
8163
8164 lowpc = (CORE_ADDR) -1;
8165 highpc = (CORE_ADDR) 0;
8166 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8167
8168 end_psymtab_common (objfile, pst);
8169 }
8170
8171 /* Struct used to sort TUs by their abbreviation table offset. */
8172
8173 struct tu_abbrev_offset
8174 {
8175 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8176 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8177 {}
8178
8179 signatured_type *sig_type;
8180 sect_offset abbrev_offset;
8181 };
8182
8183 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8184
8185 static bool
8186 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8187 const struct tu_abbrev_offset &b)
8188 {
8189 return a.abbrev_offset < b.abbrev_offset;
8190 }
8191
8192 /* Efficiently read all the type units.
8193 This does the bulk of the work for build_type_psymtabs.
8194
8195 The efficiency is because we sort TUs by the abbrev table they use and
8196 only read each abbrev table once. In one program there are 200K TUs
8197 sharing 8K abbrev tables.
8198
8199 The main purpose of this function is to support building the
8200 dwarf2_per_objfile->type_unit_groups table.
8201 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8202 can collapse the search space by grouping them by stmt_list.
8203 The savings can be significant, in the same program from above the 200K TUs
8204 share 8K stmt_list tables.
8205
8206 FUNC is expected to call get_type_unit_group, which will create the
8207 struct type_unit_group if necessary and add it to
8208 dwarf2_per_objfile->type_unit_groups. */
8209
8210 static void
8211 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8212 {
8213 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8214 abbrev_table_up abbrev_table;
8215 sect_offset abbrev_offset;
8216
8217 /* It's up to the caller to not call us multiple times. */
8218 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8219
8220 if (dwarf2_per_objfile->all_type_units.empty ())
8221 return;
8222
8223 /* TUs typically share abbrev tables, and there can be way more TUs than
8224 abbrev tables. Sort by abbrev table to reduce the number of times we
8225 read each abbrev table in.
8226 Alternatives are to punt or to maintain a cache of abbrev tables.
8227 This is simpler and efficient enough for now.
8228
8229 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8230 symtab to use). Typically TUs with the same abbrev offset have the same
8231 stmt_list value too so in practice this should work well.
8232
8233 The basic algorithm here is:
8234
8235 sort TUs by abbrev table
8236 for each TU with same abbrev table:
8237 read abbrev table if first user
8238 read TU top level DIE
8239 [IWBN if DWO skeletons had DW_AT_stmt_list]
8240 call FUNC */
8241
8242 if (dwarf_read_debug)
8243 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8244
8245 /* Sort in a separate table to maintain the order of all_type_units
8246 for .gdb_index: TU indices directly index all_type_units. */
8247 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8248 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8249
8250 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8251 sorted_by_abbrev.emplace_back
8252 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8253 sig_type->per_cu.section,
8254 sig_type->per_cu.sect_off));
8255
8256 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8257 sort_tu_by_abbrev_offset);
8258
8259 abbrev_offset = (sect_offset) ~(unsigned) 0;
8260
8261 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8262 {
8263 /* Switch to the next abbrev table if necessary. */
8264 if (abbrev_table == NULL
8265 || tu.abbrev_offset != abbrev_offset)
8266 {
8267 abbrev_offset = tu.abbrev_offset;
8268 abbrev_table =
8269 abbrev_table_read_table (dwarf2_per_objfile,
8270 &dwarf2_per_objfile->abbrev,
8271 abbrev_offset);
8272 ++tu_stats->nr_uniq_abbrev_tables;
8273 }
8274
8275 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8276 0, 0, false, build_type_psymtabs_reader, NULL);
8277 }
8278 }
8279
8280 /* Print collected type unit statistics. */
8281
8282 static void
8283 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8284 {
8285 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8286
8287 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8288 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8289 dwarf2_per_objfile->all_type_units.size ());
8290 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8291 tu_stats->nr_uniq_abbrev_tables);
8292 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8293 tu_stats->nr_symtabs);
8294 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8295 tu_stats->nr_symtab_sharers);
8296 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8297 tu_stats->nr_stmt_less_type_units);
8298 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8299 tu_stats->nr_all_type_units_reallocs);
8300 }
8301
8302 /* Traversal function for build_type_psymtabs. */
8303
8304 static int
8305 build_type_psymtab_dependencies (void **slot, void *info)
8306 {
8307 struct dwarf2_per_objfile *dwarf2_per_objfile
8308 = (struct dwarf2_per_objfile *) info;
8309 struct objfile *objfile = dwarf2_per_objfile->objfile;
8310 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8311 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8312 struct partial_symtab *pst = per_cu->v.psymtab;
8313 int len = VEC_length (sig_type_ptr, tu_group->tus);
8314 struct signatured_type *iter;
8315 int i;
8316
8317 gdb_assert (len > 0);
8318 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8319
8320 pst->number_of_dependencies = len;
8321 pst->dependencies =
8322 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8323 for (i = 0;
8324 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8325 ++i)
8326 {
8327 gdb_assert (iter->per_cu.is_debug_types);
8328 pst->dependencies[i] = iter->per_cu.v.psymtab;
8329 iter->type_unit_group = tu_group;
8330 }
8331
8332 VEC_free (sig_type_ptr, tu_group->tus);
8333
8334 return 1;
8335 }
8336
8337 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8338 Build partial symbol tables for the .debug_types comp-units. */
8339
8340 static void
8341 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8342 {
8343 if (! create_all_type_units (dwarf2_per_objfile))
8344 return;
8345
8346 build_type_psymtabs_1 (dwarf2_per_objfile);
8347 }
8348
8349 /* Traversal function for process_skeletonless_type_unit.
8350 Read a TU in a DWO file and build partial symbols for it. */
8351
8352 static int
8353 process_skeletonless_type_unit (void **slot, void *info)
8354 {
8355 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8356 struct dwarf2_per_objfile *dwarf2_per_objfile
8357 = (struct dwarf2_per_objfile *) info;
8358 struct signatured_type find_entry, *entry;
8359
8360 /* If this TU doesn't exist in the global table, add it and read it in. */
8361
8362 if (dwarf2_per_objfile->signatured_types == NULL)
8363 {
8364 dwarf2_per_objfile->signatured_types
8365 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8366 }
8367
8368 find_entry.signature = dwo_unit->signature;
8369 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8370 INSERT);
8371 /* If we've already seen this type there's nothing to do. What's happening
8372 is we're doing our own version of comdat-folding here. */
8373 if (*slot != NULL)
8374 return 1;
8375
8376 /* This does the job that create_all_type_units would have done for
8377 this TU. */
8378 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8379 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8380 *slot = entry;
8381
8382 /* This does the job that build_type_psymtabs_1 would have done. */
8383 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8384 build_type_psymtabs_reader, NULL);
8385
8386 return 1;
8387 }
8388
8389 /* Traversal function for process_skeletonless_type_units. */
8390
8391 static int
8392 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8393 {
8394 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8395
8396 if (dwo_file->tus != NULL)
8397 {
8398 htab_traverse_noresize (dwo_file->tus,
8399 process_skeletonless_type_unit, info);
8400 }
8401
8402 return 1;
8403 }
8404
8405 /* Scan all TUs of DWO files, verifying we've processed them.
8406 This is needed in case a TU was emitted without its skeleton.
8407 Note: This can't be done until we know what all the DWO files are. */
8408
8409 static void
8410 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8411 {
8412 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8413 if (get_dwp_file (dwarf2_per_objfile) == NULL
8414 && dwarf2_per_objfile->dwo_files != NULL)
8415 {
8416 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8417 process_dwo_file_for_skeletonless_type_units,
8418 dwarf2_per_objfile);
8419 }
8420 }
8421
8422 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8423
8424 static void
8425 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8426 {
8427 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8428 {
8429 struct partial_symtab *pst = per_cu->v.psymtab;
8430
8431 if (pst == NULL)
8432 continue;
8433
8434 for (int j = 0; j < pst->number_of_dependencies; ++j)
8435 {
8436 /* Set the 'user' field only if it is not already set. */
8437 if (pst->dependencies[j]->user == NULL)
8438 pst->dependencies[j]->user = pst;
8439 }
8440 }
8441 }
8442
8443 /* Build the partial symbol table by doing a quick pass through the
8444 .debug_info and .debug_abbrev sections. */
8445
8446 static void
8447 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8448 {
8449 struct objfile *objfile = dwarf2_per_objfile->objfile;
8450
8451 if (dwarf_read_debug)
8452 {
8453 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8454 objfile_name (objfile));
8455 }
8456
8457 dwarf2_per_objfile->reading_partial_symbols = 1;
8458
8459 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8460
8461 /* Any cached compilation units will be linked by the per-objfile
8462 read_in_chain. Make sure to free them when we're done. */
8463 free_cached_comp_units freer (dwarf2_per_objfile);
8464
8465 build_type_psymtabs (dwarf2_per_objfile);
8466
8467 create_all_comp_units (dwarf2_per_objfile);
8468
8469 /* Create a temporary address map on a temporary obstack. We later
8470 copy this to the final obstack. */
8471 auto_obstack temp_obstack;
8472
8473 scoped_restore save_psymtabs_addrmap
8474 = make_scoped_restore (&objfile->psymtabs_addrmap,
8475 addrmap_create_mutable (&temp_obstack));
8476
8477 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8478 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8479
8480 /* This has to wait until we read the CUs, we need the list of DWOs. */
8481 process_skeletonless_type_units (dwarf2_per_objfile);
8482
8483 /* Now that all TUs have been processed we can fill in the dependencies. */
8484 if (dwarf2_per_objfile->type_unit_groups != NULL)
8485 {
8486 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8487 build_type_psymtab_dependencies, dwarf2_per_objfile);
8488 }
8489
8490 if (dwarf_read_debug)
8491 print_tu_stats (dwarf2_per_objfile);
8492
8493 set_partial_user (dwarf2_per_objfile);
8494
8495 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8496 &objfile->objfile_obstack);
8497 /* At this point we want to keep the address map. */
8498 save_psymtabs_addrmap.release ();
8499
8500 if (dwarf_read_debug)
8501 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8502 objfile_name (objfile));
8503 }
8504
8505 /* die_reader_func for load_partial_comp_unit. */
8506
8507 static void
8508 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8509 const gdb_byte *info_ptr,
8510 struct die_info *comp_unit_die,
8511 int has_children,
8512 void *data)
8513 {
8514 struct dwarf2_cu *cu = reader->cu;
8515
8516 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8517
8518 /* Check if comp unit has_children.
8519 If so, read the rest of the partial symbols from this comp unit.
8520 If not, there's no more debug_info for this comp unit. */
8521 if (has_children)
8522 load_partial_dies (reader, info_ptr, 0);
8523 }
8524
8525 /* Load the partial DIEs for a secondary CU into memory.
8526 This is also used when rereading a primary CU with load_all_dies. */
8527
8528 static void
8529 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8530 {
8531 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8532 load_partial_comp_unit_reader, NULL);
8533 }
8534
8535 static void
8536 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8537 struct dwarf2_section_info *section,
8538 struct dwarf2_section_info *abbrev_section,
8539 unsigned int is_dwz)
8540 {
8541 const gdb_byte *info_ptr;
8542 struct objfile *objfile = dwarf2_per_objfile->objfile;
8543
8544 if (dwarf_read_debug)
8545 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8546 get_section_name (section),
8547 get_section_file_name (section));
8548
8549 dwarf2_read_section (objfile, section);
8550
8551 info_ptr = section->buffer;
8552
8553 while (info_ptr < section->buffer + section->size)
8554 {
8555 struct dwarf2_per_cu_data *this_cu;
8556
8557 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8558
8559 comp_unit_head cu_header;
8560 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8561 abbrev_section, info_ptr,
8562 rcuh_kind::COMPILE);
8563
8564 /* Save the compilation unit for later lookup. */
8565 if (cu_header.unit_type != DW_UT_type)
8566 {
8567 this_cu = XOBNEW (&objfile->objfile_obstack,
8568 struct dwarf2_per_cu_data);
8569 memset (this_cu, 0, sizeof (*this_cu));
8570 }
8571 else
8572 {
8573 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8574 struct signatured_type);
8575 memset (sig_type, 0, sizeof (*sig_type));
8576 sig_type->signature = cu_header.signature;
8577 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8578 this_cu = &sig_type->per_cu;
8579 }
8580 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8581 this_cu->sect_off = sect_off;
8582 this_cu->length = cu_header.length + cu_header.initial_length_size;
8583 this_cu->is_dwz = is_dwz;
8584 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8585 this_cu->section = section;
8586
8587 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8588
8589 info_ptr = info_ptr + this_cu->length;
8590 }
8591 }
8592
8593 /* Create a list of all compilation units in OBJFILE.
8594 This is only done for -readnow and building partial symtabs. */
8595
8596 static void
8597 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8598 {
8599 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8600 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8601 &dwarf2_per_objfile->abbrev, 0);
8602
8603 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8604 if (dwz != NULL)
8605 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8606 1);
8607 }
8608
8609 /* Process all loaded DIEs for compilation unit CU, starting at
8610 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8611 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8612 DW_AT_ranges). See the comments of add_partial_subprogram on how
8613 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8614
8615 static void
8616 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8617 CORE_ADDR *highpc, int set_addrmap,
8618 struct dwarf2_cu *cu)
8619 {
8620 struct partial_die_info *pdi;
8621
8622 /* Now, march along the PDI's, descending into ones which have
8623 interesting children but skipping the children of the other ones,
8624 until we reach the end of the compilation unit. */
8625
8626 pdi = first_die;
8627
8628 while (pdi != NULL)
8629 {
8630 pdi->fixup (cu);
8631
8632 /* Anonymous namespaces or modules have no name but have interesting
8633 children, so we need to look at them. Ditto for anonymous
8634 enums. */
8635
8636 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8637 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8638 || pdi->tag == DW_TAG_imported_unit
8639 || pdi->tag == DW_TAG_inlined_subroutine)
8640 {
8641 switch (pdi->tag)
8642 {
8643 case DW_TAG_subprogram:
8644 case DW_TAG_inlined_subroutine:
8645 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8646 break;
8647 case DW_TAG_constant:
8648 case DW_TAG_variable:
8649 case DW_TAG_typedef:
8650 case DW_TAG_union_type:
8651 if (!pdi->is_declaration)
8652 {
8653 add_partial_symbol (pdi, cu);
8654 }
8655 break;
8656 case DW_TAG_class_type:
8657 case DW_TAG_interface_type:
8658 case DW_TAG_structure_type:
8659 if (!pdi->is_declaration)
8660 {
8661 add_partial_symbol (pdi, cu);
8662 }
8663 if ((cu->language == language_rust
8664 || cu->language == language_cplus) && pdi->has_children)
8665 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8666 set_addrmap, cu);
8667 break;
8668 case DW_TAG_enumeration_type:
8669 if (!pdi->is_declaration)
8670 add_partial_enumeration (pdi, cu);
8671 break;
8672 case DW_TAG_base_type:
8673 case DW_TAG_subrange_type:
8674 /* File scope base type definitions are added to the partial
8675 symbol table. */
8676 add_partial_symbol (pdi, cu);
8677 break;
8678 case DW_TAG_namespace:
8679 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8680 break;
8681 case DW_TAG_module:
8682 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8683 break;
8684 case DW_TAG_imported_unit:
8685 {
8686 struct dwarf2_per_cu_data *per_cu;
8687
8688 /* For now we don't handle imported units in type units. */
8689 if (cu->per_cu->is_debug_types)
8690 {
8691 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8692 " supported in type units [in module %s]"),
8693 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8694 }
8695
8696 per_cu = dwarf2_find_containing_comp_unit
8697 (pdi->d.sect_off, pdi->is_dwz,
8698 cu->per_cu->dwarf2_per_objfile);
8699
8700 /* Go read the partial unit, if needed. */
8701 if (per_cu->v.psymtab == NULL)
8702 process_psymtab_comp_unit (per_cu, 1, cu->language);
8703
8704 VEC_safe_push (dwarf2_per_cu_ptr,
8705 cu->per_cu->imported_symtabs, per_cu);
8706 }
8707 break;
8708 case DW_TAG_imported_declaration:
8709 add_partial_symbol (pdi, cu);
8710 break;
8711 default:
8712 break;
8713 }
8714 }
8715
8716 /* If the die has a sibling, skip to the sibling. */
8717
8718 pdi = pdi->die_sibling;
8719 }
8720 }
8721
8722 /* Functions used to compute the fully scoped name of a partial DIE.
8723
8724 Normally, this is simple. For C++, the parent DIE's fully scoped
8725 name is concatenated with "::" and the partial DIE's name.
8726 Enumerators are an exception; they use the scope of their parent
8727 enumeration type, i.e. the name of the enumeration type is not
8728 prepended to the enumerator.
8729
8730 There are two complexities. One is DW_AT_specification; in this
8731 case "parent" means the parent of the target of the specification,
8732 instead of the direct parent of the DIE. The other is compilers
8733 which do not emit DW_TAG_namespace; in this case we try to guess
8734 the fully qualified name of structure types from their members'
8735 linkage names. This must be done using the DIE's children rather
8736 than the children of any DW_AT_specification target. We only need
8737 to do this for structures at the top level, i.e. if the target of
8738 any DW_AT_specification (if any; otherwise the DIE itself) does not
8739 have a parent. */
8740
8741 /* Compute the scope prefix associated with PDI's parent, in
8742 compilation unit CU. The result will be allocated on CU's
8743 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8744 field. NULL is returned if no prefix is necessary. */
8745 static const char *
8746 partial_die_parent_scope (struct partial_die_info *pdi,
8747 struct dwarf2_cu *cu)
8748 {
8749 const char *grandparent_scope;
8750 struct partial_die_info *parent, *real_pdi;
8751
8752 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8753 then this means the parent of the specification DIE. */
8754
8755 real_pdi = pdi;
8756 while (real_pdi->has_specification)
8757 real_pdi = find_partial_die (real_pdi->spec_offset,
8758 real_pdi->spec_is_dwz, cu);
8759
8760 parent = real_pdi->die_parent;
8761 if (parent == NULL)
8762 return NULL;
8763
8764 if (parent->scope_set)
8765 return parent->scope;
8766
8767 parent->fixup (cu);
8768
8769 grandparent_scope = partial_die_parent_scope (parent, cu);
8770
8771 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8772 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8773 Work around this problem here. */
8774 if (cu->language == language_cplus
8775 && parent->tag == DW_TAG_namespace
8776 && strcmp (parent->name, "::") == 0
8777 && grandparent_scope == NULL)
8778 {
8779 parent->scope = NULL;
8780 parent->scope_set = 1;
8781 return NULL;
8782 }
8783
8784 if (pdi->tag == DW_TAG_enumerator)
8785 /* Enumerators should not get the name of the enumeration as a prefix. */
8786 parent->scope = grandparent_scope;
8787 else if (parent->tag == DW_TAG_namespace
8788 || parent->tag == DW_TAG_module
8789 || parent->tag == DW_TAG_structure_type
8790 || parent->tag == DW_TAG_class_type
8791 || parent->tag == DW_TAG_interface_type
8792 || parent->tag == DW_TAG_union_type
8793 || parent->tag == DW_TAG_enumeration_type)
8794 {
8795 if (grandparent_scope == NULL)
8796 parent->scope = parent->name;
8797 else
8798 parent->scope = typename_concat (&cu->comp_unit_obstack,
8799 grandparent_scope,
8800 parent->name, 0, cu);
8801 }
8802 else
8803 {
8804 /* FIXME drow/2004-04-01: What should we be doing with
8805 function-local names? For partial symbols, we should probably be
8806 ignoring them. */
8807 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8808 parent->tag, sect_offset_str (pdi->sect_off));
8809 parent->scope = grandparent_scope;
8810 }
8811
8812 parent->scope_set = 1;
8813 return parent->scope;
8814 }
8815
8816 /* Return the fully scoped name associated with PDI, from compilation unit
8817 CU. The result will be allocated with malloc. */
8818
8819 static char *
8820 partial_die_full_name (struct partial_die_info *pdi,
8821 struct dwarf2_cu *cu)
8822 {
8823 const char *parent_scope;
8824
8825 /* If this is a template instantiation, we can not work out the
8826 template arguments from partial DIEs. So, unfortunately, we have
8827 to go through the full DIEs. At least any work we do building
8828 types here will be reused if full symbols are loaded later. */
8829 if (pdi->has_template_arguments)
8830 {
8831 pdi->fixup (cu);
8832
8833 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8834 {
8835 struct die_info *die;
8836 struct attribute attr;
8837 struct dwarf2_cu *ref_cu = cu;
8838
8839 /* DW_FORM_ref_addr is using section offset. */
8840 attr.name = (enum dwarf_attribute) 0;
8841 attr.form = DW_FORM_ref_addr;
8842 attr.u.unsnd = to_underlying (pdi->sect_off);
8843 die = follow_die_ref (NULL, &attr, &ref_cu);
8844
8845 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8846 }
8847 }
8848
8849 parent_scope = partial_die_parent_scope (pdi, cu);
8850 if (parent_scope == NULL)
8851 return NULL;
8852 else
8853 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8854 }
8855
8856 static void
8857 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8858 {
8859 struct dwarf2_per_objfile *dwarf2_per_objfile
8860 = cu->per_cu->dwarf2_per_objfile;
8861 struct objfile *objfile = dwarf2_per_objfile->objfile;
8862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8863 CORE_ADDR addr = 0;
8864 const char *actual_name = NULL;
8865 CORE_ADDR baseaddr;
8866 char *built_actual_name;
8867
8868 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8869
8870 built_actual_name = partial_die_full_name (pdi, cu);
8871 if (built_actual_name != NULL)
8872 actual_name = built_actual_name;
8873
8874 if (actual_name == NULL)
8875 actual_name = pdi->name;
8876
8877 switch (pdi->tag)
8878 {
8879 case DW_TAG_inlined_subroutine:
8880 case DW_TAG_subprogram:
8881 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8882 - baseaddr);
8883 if (pdi->is_external || cu->language == language_ada)
8884 {
8885 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8886 of the global scope. But in Ada, we want to be able to access
8887 nested procedures globally. So all Ada subprograms are stored
8888 in the global scope. */
8889 add_psymbol_to_list (actual_name, strlen (actual_name),
8890 built_actual_name != NULL,
8891 VAR_DOMAIN, LOC_BLOCK,
8892 SECT_OFF_TEXT (objfile),
8893 &objfile->global_psymbols,
8894 addr,
8895 cu->language, objfile);
8896 }
8897 else
8898 {
8899 add_psymbol_to_list (actual_name, strlen (actual_name),
8900 built_actual_name != NULL,
8901 VAR_DOMAIN, LOC_BLOCK,
8902 SECT_OFF_TEXT (objfile),
8903 &objfile->static_psymbols,
8904 addr, cu->language, objfile);
8905 }
8906
8907 if (pdi->main_subprogram && actual_name != NULL)
8908 set_objfile_main_name (objfile, actual_name, cu->language);
8909 break;
8910 case DW_TAG_constant:
8911 {
8912 std::vector<partial_symbol *> *list;
8913
8914 if (pdi->is_external)
8915 list = &objfile->global_psymbols;
8916 else
8917 list = &objfile->static_psymbols;
8918 add_psymbol_to_list (actual_name, strlen (actual_name),
8919 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8920 -1, list, 0, cu->language, objfile);
8921 }
8922 break;
8923 case DW_TAG_variable:
8924 if (pdi->d.locdesc)
8925 addr = decode_locdesc (pdi->d.locdesc, cu);
8926
8927 if (pdi->d.locdesc
8928 && addr == 0
8929 && !dwarf2_per_objfile->has_section_at_zero)
8930 {
8931 /* A global or static variable may also have been stripped
8932 out by the linker if unused, in which case its address
8933 will be nullified; do not add such variables into partial
8934 symbol table then. */
8935 }
8936 else if (pdi->is_external)
8937 {
8938 /* Global Variable.
8939 Don't enter into the minimal symbol tables as there is
8940 a minimal symbol table entry from the ELF symbols already.
8941 Enter into partial symbol table if it has a location
8942 descriptor or a type.
8943 If the location descriptor is missing, new_symbol will create
8944 a LOC_UNRESOLVED symbol, the address of the variable will then
8945 be determined from the minimal symbol table whenever the variable
8946 is referenced.
8947 The address for the partial symbol table entry is not
8948 used by GDB, but it comes in handy for debugging partial symbol
8949 table building. */
8950
8951 if (pdi->d.locdesc || pdi->has_type)
8952 add_psymbol_to_list (actual_name, strlen (actual_name),
8953 built_actual_name != NULL,
8954 VAR_DOMAIN, LOC_STATIC,
8955 SECT_OFF_TEXT (objfile),
8956 &objfile->global_psymbols,
8957 addr, cu->language, objfile);
8958 }
8959 else
8960 {
8961 int has_loc = pdi->d.locdesc != NULL;
8962
8963 /* Static Variable. Skip symbols whose value we cannot know (those
8964 without location descriptors or constant values). */
8965 if (!has_loc && !pdi->has_const_value)
8966 {
8967 xfree (built_actual_name);
8968 return;
8969 }
8970
8971 add_psymbol_to_list (actual_name, strlen (actual_name),
8972 built_actual_name != NULL,
8973 VAR_DOMAIN, LOC_STATIC,
8974 SECT_OFF_TEXT (objfile),
8975 &objfile->static_psymbols,
8976 has_loc ? addr : 0,
8977 cu->language, objfile);
8978 }
8979 break;
8980 case DW_TAG_typedef:
8981 case DW_TAG_base_type:
8982 case DW_TAG_subrange_type:
8983 add_psymbol_to_list (actual_name, strlen (actual_name),
8984 built_actual_name != NULL,
8985 VAR_DOMAIN, LOC_TYPEDEF, -1,
8986 &objfile->static_psymbols,
8987 0, cu->language, objfile);
8988 break;
8989 case DW_TAG_imported_declaration:
8990 case DW_TAG_namespace:
8991 add_psymbol_to_list (actual_name, strlen (actual_name),
8992 built_actual_name != NULL,
8993 VAR_DOMAIN, LOC_TYPEDEF, -1,
8994 &objfile->global_psymbols,
8995 0, cu->language, objfile);
8996 break;
8997 case DW_TAG_module:
8998 add_psymbol_to_list (actual_name, strlen (actual_name),
8999 built_actual_name != NULL,
9000 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9001 &objfile->global_psymbols,
9002 0, cu->language, objfile);
9003 break;
9004 case DW_TAG_class_type:
9005 case DW_TAG_interface_type:
9006 case DW_TAG_structure_type:
9007 case DW_TAG_union_type:
9008 case DW_TAG_enumeration_type:
9009 /* Skip external references. The DWARF standard says in the section
9010 about "Structure, Union, and Class Type Entries": "An incomplete
9011 structure, union or class type is represented by a structure,
9012 union or class entry that does not have a byte size attribute
9013 and that has a DW_AT_declaration attribute." */
9014 if (!pdi->has_byte_size && pdi->is_declaration)
9015 {
9016 xfree (built_actual_name);
9017 return;
9018 }
9019
9020 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9021 static vs. global. */
9022 add_psymbol_to_list (actual_name, strlen (actual_name),
9023 built_actual_name != NULL,
9024 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9025 cu->language == language_cplus
9026 ? &objfile->global_psymbols
9027 : &objfile->static_psymbols,
9028 0, cu->language, objfile);
9029
9030 break;
9031 case DW_TAG_enumerator:
9032 add_psymbol_to_list (actual_name, strlen (actual_name),
9033 built_actual_name != NULL,
9034 VAR_DOMAIN, LOC_CONST, -1,
9035 cu->language == language_cplus
9036 ? &objfile->global_psymbols
9037 : &objfile->static_psymbols,
9038 0, cu->language, objfile);
9039 break;
9040 default:
9041 break;
9042 }
9043
9044 xfree (built_actual_name);
9045 }
9046
9047 /* Read a partial die corresponding to a namespace; also, add a symbol
9048 corresponding to that namespace to the symbol table. NAMESPACE is
9049 the name of the enclosing namespace. */
9050
9051 static void
9052 add_partial_namespace (struct partial_die_info *pdi,
9053 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9054 int set_addrmap, struct dwarf2_cu *cu)
9055 {
9056 /* Add a symbol for the namespace. */
9057
9058 add_partial_symbol (pdi, cu);
9059
9060 /* Now scan partial symbols in that namespace. */
9061
9062 if (pdi->has_children)
9063 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9064 }
9065
9066 /* Read a partial die corresponding to a Fortran module. */
9067
9068 static void
9069 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9070 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9071 {
9072 /* Add a symbol for the namespace. */
9073
9074 add_partial_symbol (pdi, cu);
9075
9076 /* Now scan partial symbols in that module. */
9077
9078 if (pdi->has_children)
9079 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9080 }
9081
9082 /* Read a partial die corresponding to a subprogram or an inlined
9083 subprogram and create a partial symbol for that subprogram.
9084 When the CU language allows it, this routine also defines a partial
9085 symbol for each nested subprogram that this subprogram contains.
9086 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9087 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9088
9089 PDI may also be a lexical block, in which case we simply search
9090 recursively for subprograms defined inside that lexical block.
9091 Again, this is only performed when the CU language allows this
9092 type of definitions. */
9093
9094 static void
9095 add_partial_subprogram (struct partial_die_info *pdi,
9096 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9097 int set_addrmap, struct dwarf2_cu *cu)
9098 {
9099 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9100 {
9101 if (pdi->has_pc_info)
9102 {
9103 if (pdi->lowpc < *lowpc)
9104 *lowpc = pdi->lowpc;
9105 if (pdi->highpc > *highpc)
9106 *highpc = pdi->highpc;
9107 if (set_addrmap)
9108 {
9109 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9110 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9111 CORE_ADDR baseaddr;
9112 CORE_ADDR this_highpc;
9113 CORE_ADDR this_lowpc;
9114
9115 baseaddr = ANOFFSET (objfile->section_offsets,
9116 SECT_OFF_TEXT (objfile));
9117 this_lowpc
9118 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9119 pdi->lowpc + baseaddr)
9120 - baseaddr);
9121 this_highpc
9122 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9123 pdi->highpc + baseaddr)
9124 - baseaddr);
9125 addrmap_set_empty (objfile->psymtabs_addrmap,
9126 this_lowpc, this_highpc - 1,
9127 cu->per_cu->v.psymtab);
9128 }
9129 }
9130
9131 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9132 {
9133 if (!pdi->is_declaration)
9134 /* Ignore subprogram DIEs that do not have a name, they are
9135 illegal. Do not emit a complaint at this point, we will
9136 do so when we convert this psymtab into a symtab. */
9137 if (pdi->name)
9138 add_partial_symbol (pdi, cu);
9139 }
9140 }
9141
9142 if (! pdi->has_children)
9143 return;
9144
9145 if (cu->language == language_ada)
9146 {
9147 pdi = pdi->die_child;
9148 while (pdi != NULL)
9149 {
9150 pdi->fixup (cu);
9151 if (pdi->tag == DW_TAG_subprogram
9152 || pdi->tag == DW_TAG_inlined_subroutine
9153 || pdi->tag == DW_TAG_lexical_block)
9154 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9155 pdi = pdi->die_sibling;
9156 }
9157 }
9158 }
9159
9160 /* Read a partial die corresponding to an enumeration type. */
9161
9162 static void
9163 add_partial_enumeration (struct partial_die_info *enum_pdi,
9164 struct dwarf2_cu *cu)
9165 {
9166 struct partial_die_info *pdi;
9167
9168 if (enum_pdi->name != NULL)
9169 add_partial_symbol (enum_pdi, cu);
9170
9171 pdi = enum_pdi->die_child;
9172 while (pdi)
9173 {
9174 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9175 complaint (_("malformed enumerator DIE ignored"));
9176 else
9177 add_partial_symbol (pdi, cu);
9178 pdi = pdi->die_sibling;
9179 }
9180 }
9181
9182 /* Return the initial uleb128 in the die at INFO_PTR. */
9183
9184 static unsigned int
9185 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9186 {
9187 unsigned int bytes_read;
9188
9189 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9190 }
9191
9192 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9193 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9194
9195 Return the corresponding abbrev, or NULL if the number is zero (indicating
9196 an empty DIE). In either case *BYTES_READ will be set to the length of
9197 the initial number. */
9198
9199 static struct abbrev_info *
9200 peek_die_abbrev (const die_reader_specs &reader,
9201 const gdb_byte *info_ptr, unsigned int *bytes_read)
9202 {
9203 dwarf2_cu *cu = reader.cu;
9204 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9205 unsigned int abbrev_number
9206 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9207
9208 if (abbrev_number == 0)
9209 return NULL;
9210
9211 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9212 if (!abbrev)
9213 {
9214 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9215 " at offset %s [in module %s]"),
9216 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9217 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9218 }
9219
9220 return abbrev;
9221 }
9222
9223 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9224 Returns a pointer to the end of a series of DIEs, terminated by an empty
9225 DIE. Any children of the skipped DIEs will also be skipped. */
9226
9227 static const gdb_byte *
9228 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9229 {
9230 while (1)
9231 {
9232 unsigned int bytes_read;
9233 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9234
9235 if (abbrev == NULL)
9236 return info_ptr + bytes_read;
9237 else
9238 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9239 }
9240 }
9241
9242 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9243 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9244 abbrev corresponding to that skipped uleb128 should be passed in
9245 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9246 children. */
9247
9248 static const gdb_byte *
9249 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9250 struct abbrev_info *abbrev)
9251 {
9252 unsigned int bytes_read;
9253 struct attribute attr;
9254 bfd *abfd = reader->abfd;
9255 struct dwarf2_cu *cu = reader->cu;
9256 const gdb_byte *buffer = reader->buffer;
9257 const gdb_byte *buffer_end = reader->buffer_end;
9258 unsigned int form, i;
9259
9260 for (i = 0; i < abbrev->num_attrs; i++)
9261 {
9262 /* The only abbrev we care about is DW_AT_sibling. */
9263 if (abbrev->attrs[i].name == DW_AT_sibling)
9264 {
9265 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9266 if (attr.form == DW_FORM_ref_addr)
9267 complaint (_("ignoring absolute DW_AT_sibling"));
9268 else
9269 {
9270 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9271 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9272
9273 if (sibling_ptr < info_ptr)
9274 complaint (_("DW_AT_sibling points backwards"));
9275 else if (sibling_ptr > reader->buffer_end)
9276 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9277 else
9278 return sibling_ptr;
9279 }
9280 }
9281
9282 /* If it isn't DW_AT_sibling, skip this attribute. */
9283 form = abbrev->attrs[i].form;
9284 skip_attribute:
9285 switch (form)
9286 {
9287 case DW_FORM_ref_addr:
9288 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9289 and later it is offset sized. */
9290 if (cu->header.version == 2)
9291 info_ptr += cu->header.addr_size;
9292 else
9293 info_ptr += cu->header.offset_size;
9294 break;
9295 case DW_FORM_GNU_ref_alt:
9296 info_ptr += cu->header.offset_size;
9297 break;
9298 case DW_FORM_addr:
9299 info_ptr += cu->header.addr_size;
9300 break;
9301 case DW_FORM_data1:
9302 case DW_FORM_ref1:
9303 case DW_FORM_flag:
9304 info_ptr += 1;
9305 break;
9306 case DW_FORM_flag_present:
9307 case DW_FORM_implicit_const:
9308 break;
9309 case DW_FORM_data2:
9310 case DW_FORM_ref2:
9311 info_ptr += 2;
9312 break;
9313 case DW_FORM_data4:
9314 case DW_FORM_ref4:
9315 info_ptr += 4;
9316 break;
9317 case DW_FORM_data8:
9318 case DW_FORM_ref8:
9319 case DW_FORM_ref_sig8:
9320 info_ptr += 8;
9321 break;
9322 case DW_FORM_data16:
9323 info_ptr += 16;
9324 break;
9325 case DW_FORM_string:
9326 read_direct_string (abfd, info_ptr, &bytes_read);
9327 info_ptr += bytes_read;
9328 break;
9329 case DW_FORM_sec_offset:
9330 case DW_FORM_strp:
9331 case DW_FORM_GNU_strp_alt:
9332 info_ptr += cu->header.offset_size;
9333 break;
9334 case DW_FORM_exprloc:
9335 case DW_FORM_block:
9336 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9337 info_ptr += bytes_read;
9338 break;
9339 case DW_FORM_block1:
9340 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9341 break;
9342 case DW_FORM_block2:
9343 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9344 break;
9345 case DW_FORM_block4:
9346 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9347 break;
9348 case DW_FORM_sdata:
9349 case DW_FORM_udata:
9350 case DW_FORM_ref_udata:
9351 case DW_FORM_GNU_addr_index:
9352 case DW_FORM_GNU_str_index:
9353 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9354 break;
9355 case DW_FORM_indirect:
9356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9357 info_ptr += bytes_read;
9358 /* We need to continue parsing from here, so just go back to
9359 the top. */
9360 goto skip_attribute;
9361
9362 default:
9363 error (_("Dwarf Error: Cannot handle %s "
9364 "in DWARF reader [in module %s]"),
9365 dwarf_form_name (form),
9366 bfd_get_filename (abfd));
9367 }
9368 }
9369
9370 if (abbrev->has_children)
9371 return skip_children (reader, info_ptr);
9372 else
9373 return info_ptr;
9374 }
9375
9376 /* Locate ORIG_PDI's sibling.
9377 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9378
9379 static const gdb_byte *
9380 locate_pdi_sibling (const struct die_reader_specs *reader,
9381 struct partial_die_info *orig_pdi,
9382 const gdb_byte *info_ptr)
9383 {
9384 /* Do we know the sibling already? */
9385
9386 if (orig_pdi->sibling)
9387 return orig_pdi->sibling;
9388
9389 /* Are there any children to deal with? */
9390
9391 if (!orig_pdi->has_children)
9392 return info_ptr;
9393
9394 /* Skip the children the long way. */
9395
9396 return skip_children (reader, info_ptr);
9397 }
9398
9399 /* Expand this partial symbol table into a full symbol table. SELF is
9400 not NULL. */
9401
9402 static void
9403 dwarf2_read_symtab (struct partial_symtab *self,
9404 struct objfile *objfile)
9405 {
9406 struct dwarf2_per_objfile *dwarf2_per_objfile
9407 = get_dwarf2_per_objfile (objfile);
9408
9409 if (self->readin)
9410 {
9411 warning (_("bug: psymtab for %s is already read in."),
9412 self->filename);
9413 }
9414 else
9415 {
9416 if (info_verbose)
9417 {
9418 printf_filtered (_("Reading in symbols for %s..."),
9419 self->filename);
9420 gdb_flush (gdb_stdout);
9421 }
9422
9423 /* If this psymtab is constructed from a debug-only objfile, the
9424 has_section_at_zero flag will not necessarily be correct. We
9425 can get the correct value for this flag by looking at the data
9426 associated with the (presumably stripped) associated objfile. */
9427 if (objfile->separate_debug_objfile_backlink)
9428 {
9429 struct dwarf2_per_objfile *dpo_backlink
9430 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9431
9432 dwarf2_per_objfile->has_section_at_zero
9433 = dpo_backlink->has_section_at_zero;
9434 }
9435
9436 dwarf2_per_objfile->reading_partial_symbols = 0;
9437
9438 psymtab_to_symtab_1 (self);
9439
9440 /* Finish up the debug error message. */
9441 if (info_verbose)
9442 printf_filtered (_("done.\n"));
9443 }
9444
9445 process_cu_includes (dwarf2_per_objfile);
9446 }
9447 \f
9448 /* Reading in full CUs. */
9449
9450 /* Add PER_CU to the queue. */
9451
9452 static void
9453 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9454 enum language pretend_language)
9455 {
9456 struct dwarf2_queue_item *item;
9457
9458 per_cu->queued = 1;
9459 item = XNEW (struct dwarf2_queue_item);
9460 item->per_cu = per_cu;
9461 item->pretend_language = pretend_language;
9462 item->next = NULL;
9463
9464 if (dwarf2_queue == NULL)
9465 dwarf2_queue = item;
9466 else
9467 dwarf2_queue_tail->next = item;
9468
9469 dwarf2_queue_tail = item;
9470 }
9471
9472 /* If PER_CU is not yet queued, add it to the queue.
9473 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9474 dependency.
9475 The result is non-zero if PER_CU was queued, otherwise the result is zero
9476 meaning either PER_CU is already queued or it is already loaded.
9477
9478 N.B. There is an invariant here that if a CU is queued then it is loaded.
9479 The caller is required to load PER_CU if we return non-zero. */
9480
9481 static int
9482 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9483 struct dwarf2_per_cu_data *per_cu,
9484 enum language pretend_language)
9485 {
9486 /* We may arrive here during partial symbol reading, if we need full
9487 DIEs to process an unusual case (e.g. template arguments). Do
9488 not queue PER_CU, just tell our caller to load its DIEs. */
9489 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9490 {
9491 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9492 return 1;
9493 return 0;
9494 }
9495
9496 /* Mark the dependence relation so that we don't flush PER_CU
9497 too early. */
9498 if (dependent_cu != NULL)
9499 dwarf2_add_dependence (dependent_cu, per_cu);
9500
9501 /* If it's already on the queue, we have nothing to do. */
9502 if (per_cu->queued)
9503 return 0;
9504
9505 /* If the compilation unit is already loaded, just mark it as
9506 used. */
9507 if (per_cu->cu != NULL)
9508 {
9509 per_cu->cu->last_used = 0;
9510 return 0;
9511 }
9512
9513 /* Add it to the queue. */
9514 queue_comp_unit (per_cu, pretend_language);
9515
9516 return 1;
9517 }
9518
9519 /* Process the queue. */
9520
9521 static void
9522 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9523 {
9524 struct dwarf2_queue_item *item, *next_item;
9525
9526 if (dwarf_read_debug)
9527 {
9528 fprintf_unfiltered (gdb_stdlog,
9529 "Expanding one or more symtabs of objfile %s ...\n",
9530 objfile_name (dwarf2_per_objfile->objfile));
9531 }
9532
9533 /* The queue starts out with one item, but following a DIE reference
9534 may load a new CU, adding it to the end of the queue. */
9535 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9536 {
9537 if ((dwarf2_per_objfile->using_index
9538 ? !item->per_cu->v.quick->compunit_symtab
9539 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9540 /* Skip dummy CUs. */
9541 && item->per_cu->cu != NULL)
9542 {
9543 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9544 unsigned int debug_print_threshold;
9545 char buf[100];
9546
9547 if (per_cu->is_debug_types)
9548 {
9549 struct signatured_type *sig_type =
9550 (struct signatured_type *) per_cu;
9551
9552 sprintf (buf, "TU %s at offset %s",
9553 hex_string (sig_type->signature),
9554 sect_offset_str (per_cu->sect_off));
9555 /* There can be 100s of TUs.
9556 Only print them in verbose mode. */
9557 debug_print_threshold = 2;
9558 }
9559 else
9560 {
9561 sprintf (buf, "CU at offset %s",
9562 sect_offset_str (per_cu->sect_off));
9563 debug_print_threshold = 1;
9564 }
9565
9566 if (dwarf_read_debug >= debug_print_threshold)
9567 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9568
9569 if (per_cu->is_debug_types)
9570 process_full_type_unit (per_cu, item->pretend_language);
9571 else
9572 process_full_comp_unit (per_cu, item->pretend_language);
9573
9574 if (dwarf_read_debug >= debug_print_threshold)
9575 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9576 }
9577
9578 item->per_cu->queued = 0;
9579 next_item = item->next;
9580 xfree (item);
9581 }
9582
9583 dwarf2_queue_tail = NULL;
9584
9585 if (dwarf_read_debug)
9586 {
9587 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9588 objfile_name (dwarf2_per_objfile->objfile));
9589 }
9590 }
9591
9592 /* Read in full symbols for PST, and anything it depends on. */
9593
9594 static void
9595 psymtab_to_symtab_1 (struct partial_symtab *pst)
9596 {
9597 struct dwarf2_per_cu_data *per_cu;
9598 int i;
9599
9600 if (pst->readin)
9601 return;
9602
9603 for (i = 0; i < pst->number_of_dependencies; i++)
9604 if (!pst->dependencies[i]->readin
9605 && pst->dependencies[i]->user == NULL)
9606 {
9607 /* Inform about additional files that need to be read in. */
9608 if (info_verbose)
9609 {
9610 /* FIXME: i18n: Need to make this a single string. */
9611 fputs_filtered (" ", gdb_stdout);
9612 wrap_here ("");
9613 fputs_filtered ("and ", gdb_stdout);
9614 wrap_here ("");
9615 printf_filtered ("%s...", pst->dependencies[i]->filename);
9616 wrap_here (""); /* Flush output. */
9617 gdb_flush (gdb_stdout);
9618 }
9619 psymtab_to_symtab_1 (pst->dependencies[i]);
9620 }
9621
9622 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9623
9624 if (per_cu == NULL)
9625 {
9626 /* It's an include file, no symbols to read for it.
9627 Everything is in the parent symtab. */
9628 pst->readin = 1;
9629 return;
9630 }
9631
9632 dw2_do_instantiate_symtab (per_cu, false);
9633 }
9634
9635 /* Trivial hash function for die_info: the hash value of a DIE
9636 is its offset in .debug_info for this objfile. */
9637
9638 static hashval_t
9639 die_hash (const void *item)
9640 {
9641 const struct die_info *die = (const struct die_info *) item;
9642
9643 return to_underlying (die->sect_off);
9644 }
9645
9646 /* Trivial comparison function for die_info structures: two DIEs
9647 are equal if they have the same offset. */
9648
9649 static int
9650 die_eq (const void *item_lhs, const void *item_rhs)
9651 {
9652 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9653 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9654
9655 return die_lhs->sect_off == die_rhs->sect_off;
9656 }
9657
9658 /* die_reader_func for load_full_comp_unit.
9659 This is identical to read_signatured_type_reader,
9660 but is kept separate for now. */
9661
9662 static void
9663 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9664 const gdb_byte *info_ptr,
9665 struct die_info *comp_unit_die,
9666 int has_children,
9667 void *data)
9668 {
9669 struct dwarf2_cu *cu = reader->cu;
9670 enum language *language_ptr = (enum language *) data;
9671
9672 gdb_assert (cu->die_hash == NULL);
9673 cu->die_hash =
9674 htab_create_alloc_ex (cu->header.length / 12,
9675 die_hash,
9676 die_eq,
9677 NULL,
9678 &cu->comp_unit_obstack,
9679 hashtab_obstack_allocate,
9680 dummy_obstack_deallocate);
9681
9682 if (has_children)
9683 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9684 &info_ptr, comp_unit_die);
9685 cu->dies = comp_unit_die;
9686 /* comp_unit_die is not stored in die_hash, no need. */
9687
9688 /* We try not to read any attributes in this function, because not
9689 all CUs needed for references have been loaded yet, and symbol
9690 table processing isn't initialized. But we have to set the CU language,
9691 or we won't be able to build types correctly.
9692 Similarly, if we do not read the producer, we can not apply
9693 producer-specific interpretation. */
9694 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9695 }
9696
9697 /* Load the DIEs associated with PER_CU into memory. */
9698
9699 static void
9700 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9701 bool skip_partial,
9702 enum language pretend_language)
9703 {
9704 gdb_assert (! this_cu->is_debug_types);
9705
9706 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9707 load_full_comp_unit_reader, &pretend_language);
9708 }
9709
9710 /* Add a DIE to the delayed physname list. */
9711
9712 static void
9713 add_to_method_list (struct type *type, int fnfield_index, int index,
9714 const char *name, struct die_info *die,
9715 struct dwarf2_cu *cu)
9716 {
9717 struct delayed_method_info mi;
9718 mi.type = type;
9719 mi.fnfield_index = fnfield_index;
9720 mi.index = index;
9721 mi.name = name;
9722 mi.die = die;
9723 cu->method_list.push_back (mi);
9724 }
9725
9726 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9727 "const" / "volatile". If so, decrements LEN by the length of the
9728 modifier and return true. Otherwise return false. */
9729
9730 template<size_t N>
9731 static bool
9732 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9733 {
9734 size_t mod_len = sizeof (mod) - 1;
9735 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9736 {
9737 len -= mod_len;
9738 return true;
9739 }
9740 return false;
9741 }
9742
9743 /* Compute the physnames of any methods on the CU's method list.
9744
9745 The computation of method physnames is delayed in order to avoid the
9746 (bad) condition that one of the method's formal parameters is of an as yet
9747 incomplete type. */
9748
9749 static void
9750 compute_delayed_physnames (struct dwarf2_cu *cu)
9751 {
9752 /* Only C++ delays computing physnames. */
9753 if (cu->method_list.empty ())
9754 return;
9755 gdb_assert (cu->language == language_cplus);
9756
9757 for (const delayed_method_info &mi : cu->method_list)
9758 {
9759 const char *physname;
9760 struct fn_fieldlist *fn_flp
9761 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9762 physname = dwarf2_physname (mi.name, mi.die, cu);
9763 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9764 = physname ? physname : "";
9765
9766 /* Since there's no tag to indicate whether a method is a
9767 const/volatile overload, extract that information out of the
9768 demangled name. */
9769 if (physname != NULL)
9770 {
9771 size_t len = strlen (physname);
9772
9773 while (1)
9774 {
9775 if (physname[len] == ')') /* shortcut */
9776 break;
9777 else if (check_modifier (physname, len, " const"))
9778 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9779 else if (check_modifier (physname, len, " volatile"))
9780 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9781 else
9782 break;
9783 }
9784 }
9785 }
9786
9787 /* The list is no longer needed. */
9788 cu->method_list.clear ();
9789 }
9790
9791 /* A wrapper for add_symbol_to_list to ensure that SYMBOL's language is
9792 the same as all other symbols in LISTHEAD. If a new symbol is added
9793 with a different language, this function asserts. */
9794
9795 static inline void
9796 dw2_add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
9797 {
9798 /* Only assert if LISTHEAD already contains symbols of a different
9799 language (dict_create_hashed/insert_symbol_hashed requires that all
9800 symbols in this list are of the same language). */
9801 gdb_assert ((*listhead) == NULL
9802 || (SYMBOL_LANGUAGE ((*listhead)->symbol[0])
9803 == SYMBOL_LANGUAGE (symbol)));
9804
9805 add_symbol_to_list (symbol, listhead);
9806 }
9807
9808 /* Go objects should be embedded in a DW_TAG_module DIE,
9809 and it's not clear if/how imported objects will appear.
9810 To keep Go support simple until that's worked out,
9811 go back through what we've read and create something usable.
9812 We could do this while processing each DIE, and feels kinda cleaner,
9813 but that way is more invasive.
9814 This is to, for example, allow the user to type "p var" or "b main"
9815 without having to specify the package name, and allow lookups
9816 of module.object to work in contexts that use the expression
9817 parser. */
9818
9819 static void
9820 fixup_go_packaging (struct dwarf2_cu *cu)
9821 {
9822 char *package_name = NULL;
9823 struct pending *list;
9824 int i;
9825
9826 for (list = *cu->builder->get_global_symbols ();
9827 list != NULL;
9828 list = list->next)
9829 {
9830 for (i = 0; i < list->nsyms; ++i)
9831 {
9832 struct symbol *sym = list->symbol[i];
9833
9834 if (SYMBOL_LANGUAGE (sym) == language_go
9835 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9836 {
9837 char *this_package_name = go_symbol_package_name (sym);
9838
9839 if (this_package_name == NULL)
9840 continue;
9841 if (package_name == NULL)
9842 package_name = this_package_name;
9843 else
9844 {
9845 struct objfile *objfile
9846 = cu->per_cu->dwarf2_per_objfile->objfile;
9847 if (strcmp (package_name, this_package_name) != 0)
9848 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9849 (symbol_symtab (sym) != NULL
9850 ? symtab_to_filename_for_display
9851 (symbol_symtab (sym))
9852 : objfile_name (objfile)),
9853 this_package_name, package_name);
9854 xfree (this_package_name);
9855 }
9856 }
9857 }
9858 }
9859
9860 if (package_name != NULL)
9861 {
9862 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9863 const char *saved_package_name
9864 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9865 package_name,
9866 strlen (package_name));
9867 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9868 saved_package_name);
9869 struct symbol *sym;
9870
9871 sym = allocate_symbol (objfile);
9872 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9873 SYMBOL_SET_NAMES (sym, saved_package_name,
9874 strlen (saved_package_name), 0, objfile);
9875 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9876 e.g., "main" finds the "main" module and not C's main(). */
9877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9878 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9879 SYMBOL_TYPE (sym) = type;
9880
9881 dw2_add_symbol_to_list (sym, cu->builder->get_global_symbols ());
9882
9883 xfree (package_name);
9884 }
9885 }
9886
9887 /* Allocate a fully-qualified name consisting of the two parts on the
9888 obstack. */
9889
9890 static const char *
9891 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9892 {
9893 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9894 }
9895
9896 /* A helper that allocates a struct discriminant_info to attach to a
9897 union type. */
9898
9899 static struct discriminant_info *
9900 alloc_discriminant_info (struct type *type, int discriminant_index,
9901 int default_index)
9902 {
9903 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9904 gdb_assert (discriminant_index == -1
9905 || (discriminant_index >= 0
9906 && discriminant_index < TYPE_NFIELDS (type)));
9907 gdb_assert (default_index == -1
9908 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9909
9910 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9911
9912 struct discriminant_info *disc
9913 = ((struct discriminant_info *)
9914 TYPE_ZALLOC (type,
9915 offsetof (struct discriminant_info, discriminants)
9916 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9917 disc->default_index = default_index;
9918 disc->discriminant_index = discriminant_index;
9919
9920 struct dynamic_prop prop;
9921 prop.kind = PROP_UNDEFINED;
9922 prop.data.baton = disc;
9923
9924 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9925
9926 return disc;
9927 }
9928
9929 /* Some versions of rustc emitted enums in an unusual way.
9930
9931 Ordinary enums were emitted as unions. The first element of each
9932 structure in the union was named "RUST$ENUM$DISR". This element
9933 held the discriminant.
9934
9935 These versions of Rust also implemented the "non-zero"
9936 optimization. When the enum had two values, and one is empty and
9937 the other holds a pointer that cannot be zero, the pointer is used
9938 as the discriminant, with a zero value meaning the empty variant.
9939 Here, the union's first member is of the form
9940 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9941 where the fieldnos are the indices of the fields that should be
9942 traversed in order to find the field (which may be several fields deep)
9943 and the variantname is the name of the variant of the case when the
9944 field is zero.
9945
9946 This function recognizes whether TYPE is of one of these forms,
9947 and, if so, smashes it to be a variant type. */
9948
9949 static void
9950 quirk_rust_enum (struct type *type, struct objfile *objfile)
9951 {
9952 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9953
9954 /* We don't need to deal with empty enums. */
9955 if (TYPE_NFIELDS (type) == 0)
9956 return;
9957
9958 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9959 if (TYPE_NFIELDS (type) == 1
9960 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9961 {
9962 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9963
9964 /* Decode the field name to find the offset of the
9965 discriminant. */
9966 ULONGEST bit_offset = 0;
9967 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9968 while (name[0] >= '0' && name[0] <= '9')
9969 {
9970 char *tail;
9971 unsigned long index = strtoul (name, &tail, 10);
9972 name = tail;
9973 if (*name != '$'
9974 || index >= TYPE_NFIELDS (field_type)
9975 || (TYPE_FIELD_LOC_KIND (field_type, index)
9976 != FIELD_LOC_KIND_BITPOS))
9977 {
9978 complaint (_("Could not parse Rust enum encoding string \"%s\""
9979 "[in module %s]"),
9980 TYPE_FIELD_NAME (type, 0),
9981 objfile_name (objfile));
9982 return;
9983 }
9984 ++name;
9985
9986 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9987 field_type = TYPE_FIELD_TYPE (field_type, index);
9988 }
9989
9990 /* Make a union to hold the variants. */
9991 struct type *union_type = alloc_type (objfile);
9992 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9993 TYPE_NFIELDS (union_type) = 3;
9994 TYPE_FIELDS (union_type)
9995 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9996 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9997 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9998
9999 /* Put the discriminant must at index 0. */
10000 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10001 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10002 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10003 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10004
10005 /* The order of fields doesn't really matter, so put the real
10006 field at index 1 and the data-less field at index 2. */
10007 struct discriminant_info *disc
10008 = alloc_discriminant_info (union_type, 0, 1);
10009 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10010 TYPE_FIELD_NAME (union_type, 1)
10011 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10012 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10013 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10014 TYPE_FIELD_NAME (union_type, 1));
10015
10016 const char *dataless_name
10017 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10018 name);
10019 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10020 dataless_name);
10021 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10022 /* NAME points into the original discriminant name, which
10023 already has the correct lifetime. */
10024 TYPE_FIELD_NAME (union_type, 2) = name;
10025 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10026 disc->discriminants[2] = 0;
10027
10028 /* Smash this type to be a structure type. We have to do this
10029 because the type has already been recorded. */
10030 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10031 TYPE_NFIELDS (type) = 1;
10032 TYPE_FIELDS (type)
10033 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10034
10035 /* Install the variant part. */
10036 TYPE_FIELD_TYPE (type, 0) = union_type;
10037 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10038 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10039 }
10040 else if (TYPE_NFIELDS (type) == 1)
10041 {
10042 /* We assume that a union with a single field is a univariant
10043 enum. */
10044 /* Smash this type to be a structure type. We have to do this
10045 because the type has already been recorded. */
10046 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10047
10048 /* Make a union to hold the variants. */
10049 struct type *union_type = alloc_type (objfile);
10050 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10051 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10052 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10053 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10054 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10055
10056 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10057 const char *variant_name
10058 = rust_last_path_segment (TYPE_NAME (field_type));
10059 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10060 TYPE_NAME (field_type)
10061 = rust_fully_qualify (&objfile->objfile_obstack,
10062 TYPE_NAME (type), variant_name);
10063
10064 /* Install the union in the outer struct type. */
10065 TYPE_NFIELDS (type) = 1;
10066 TYPE_FIELDS (type)
10067 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10068 TYPE_FIELD_TYPE (type, 0) = union_type;
10069 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10070 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10071
10072 alloc_discriminant_info (union_type, -1, 0);
10073 }
10074 else
10075 {
10076 struct type *disr_type = nullptr;
10077 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10078 {
10079 disr_type = TYPE_FIELD_TYPE (type, i);
10080
10081 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10082 {
10083 /* All fields of a true enum will be structs. */
10084 return;
10085 }
10086 else if (TYPE_NFIELDS (disr_type) == 0)
10087 {
10088 /* Could be data-less variant, so keep going. */
10089 disr_type = nullptr;
10090 }
10091 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10092 "RUST$ENUM$DISR") != 0)
10093 {
10094 /* Not a Rust enum. */
10095 return;
10096 }
10097 else
10098 {
10099 /* Found one. */
10100 break;
10101 }
10102 }
10103
10104 /* If we got here without a discriminant, then it's probably
10105 just a union. */
10106 if (disr_type == nullptr)
10107 return;
10108
10109 /* Smash this type to be a structure type. We have to do this
10110 because the type has already been recorded. */
10111 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10112
10113 /* Make a union to hold the variants. */
10114 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10115 struct type *union_type = alloc_type (objfile);
10116 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10117 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10118 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10119 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10120 TYPE_FIELDS (union_type)
10121 = (struct field *) TYPE_ZALLOC (union_type,
10122 (TYPE_NFIELDS (union_type)
10123 * sizeof (struct field)));
10124
10125 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10126 TYPE_NFIELDS (type) * sizeof (struct field));
10127
10128 /* Install the discriminant at index 0 in the union. */
10129 TYPE_FIELD (union_type, 0) = *disr_field;
10130 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10131 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10132
10133 /* Install the union in the outer struct type. */
10134 TYPE_FIELD_TYPE (type, 0) = union_type;
10135 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10136 TYPE_NFIELDS (type) = 1;
10137
10138 /* Set the size and offset of the union type. */
10139 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10140
10141 /* We need a way to find the correct discriminant given a
10142 variant name. For convenience we build a map here. */
10143 struct type *enum_type = FIELD_TYPE (*disr_field);
10144 std::unordered_map<std::string, ULONGEST> discriminant_map;
10145 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10146 {
10147 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10148 {
10149 const char *name
10150 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10151 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10152 }
10153 }
10154
10155 int n_fields = TYPE_NFIELDS (union_type);
10156 struct discriminant_info *disc
10157 = alloc_discriminant_info (union_type, 0, -1);
10158 /* Skip the discriminant here. */
10159 for (int i = 1; i < n_fields; ++i)
10160 {
10161 /* Find the final word in the name of this variant's type.
10162 That name can be used to look up the correct
10163 discriminant. */
10164 const char *variant_name
10165 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10166 i)));
10167
10168 auto iter = discriminant_map.find (variant_name);
10169 if (iter != discriminant_map.end ())
10170 disc->discriminants[i] = iter->second;
10171
10172 /* Remove the discriminant field, if it exists. */
10173 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10174 if (TYPE_NFIELDS (sub_type) > 0)
10175 {
10176 --TYPE_NFIELDS (sub_type);
10177 ++TYPE_FIELDS (sub_type);
10178 }
10179 TYPE_FIELD_NAME (union_type, i) = variant_name;
10180 TYPE_NAME (sub_type)
10181 = rust_fully_qualify (&objfile->objfile_obstack,
10182 TYPE_NAME (type), variant_name);
10183 }
10184 }
10185 }
10186
10187 /* Rewrite some Rust unions to be structures with variants parts. */
10188
10189 static void
10190 rust_union_quirks (struct dwarf2_cu *cu)
10191 {
10192 gdb_assert (cu->language == language_rust);
10193 for (type *type_ : cu->rust_unions)
10194 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10195 /* We don't need this any more. */
10196 cu->rust_unions.clear ();
10197 }
10198
10199 /* Return the symtab for PER_CU. This works properly regardless of
10200 whether we're using the index or psymtabs. */
10201
10202 static struct compunit_symtab *
10203 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10204 {
10205 return (per_cu->dwarf2_per_objfile->using_index
10206 ? per_cu->v.quick->compunit_symtab
10207 : per_cu->v.psymtab->compunit_symtab);
10208 }
10209
10210 /* A helper function for computing the list of all symbol tables
10211 included by PER_CU. */
10212
10213 static void
10214 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10215 htab_t all_children, htab_t all_type_symtabs,
10216 struct dwarf2_per_cu_data *per_cu,
10217 struct compunit_symtab *immediate_parent)
10218 {
10219 void **slot;
10220 int ix;
10221 struct compunit_symtab *cust;
10222 struct dwarf2_per_cu_data *iter;
10223
10224 slot = htab_find_slot (all_children, per_cu, INSERT);
10225 if (*slot != NULL)
10226 {
10227 /* This inclusion and its children have been processed. */
10228 return;
10229 }
10230
10231 *slot = per_cu;
10232 /* Only add a CU if it has a symbol table. */
10233 cust = get_compunit_symtab (per_cu);
10234 if (cust != NULL)
10235 {
10236 /* If this is a type unit only add its symbol table if we haven't
10237 seen it yet (type unit per_cu's can share symtabs). */
10238 if (per_cu->is_debug_types)
10239 {
10240 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10241 if (*slot == NULL)
10242 {
10243 *slot = cust;
10244 result->push_back (cust);
10245 if (cust->user == NULL)
10246 cust->user = immediate_parent;
10247 }
10248 }
10249 else
10250 {
10251 result->push_back (cust);
10252 if (cust->user == NULL)
10253 cust->user = immediate_parent;
10254 }
10255 }
10256
10257 for (ix = 0;
10258 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10259 ++ix)
10260 {
10261 recursively_compute_inclusions (result, all_children,
10262 all_type_symtabs, iter, cust);
10263 }
10264 }
10265
10266 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10267 PER_CU. */
10268
10269 static void
10270 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10271 {
10272 gdb_assert (! per_cu->is_debug_types);
10273
10274 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10275 {
10276 int ix, len;
10277 struct dwarf2_per_cu_data *per_cu_iter;
10278 std::vector<compunit_symtab *> result_symtabs;
10279 htab_t all_children, all_type_symtabs;
10280 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10281
10282 /* If we don't have a symtab, we can just skip this case. */
10283 if (cust == NULL)
10284 return;
10285
10286 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10287 NULL, xcalloc, xfree);
10288 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10289 NULL, xcalloc, xfree);
10290
10291 for (ix = 0;
10292 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10293 ix, per_cu_iter);
10294 ++ix)
10295 {
10296 recursively_compute_inclusions (&result_symtabs, all_children,
10297 all_type_symtabs, per_cu_iter,
10298 cust);
10299 }
10300
10301 /* Now we have a transitive closure of all the included symtabs. */
10302 len = result_symtabs.size ();
10303 cust->includes
10304 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10305 struct compunit_symtab *, len + 1);
10306 memcpy (cust->includes, result_symtabs.data (),
10307 len * sizeof (compunit_symtab *));
10308 cust->includes[len] = NULL;
10309
10310 htab_delete (all_children);
10311 htab_delete (all_type_symtabs);
10312 }
10313 }
10314
10315 /* Compute the 'includes' field for the symtabs of all the CUs we just
10316 read. */
10317
10318 static void
10319 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10320 {
10321 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10322 {
10323 if (! iter->is_debug_types)
10324 compute_compunit_symtab_includes (iter);
10325 }
10326
10327 dwarf2_per_objfile->just_read_cus.clear ();
10328 }
10329
10330 /* Generate full symbol information for PER_CU, whose DIEs have
10331 already been loaded into memory. */
10332
10333 static void
10334 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10335 enum language pretend_language)
10336 {
10337 struct dwarf2_cu *cu = per_cu->cu;
10338 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10339 struct objfile *objfile = dwarf2_per_objfile->objfile;
10340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10341 CORE_ADDR lowpc, highpc;
10342 struct compunit_symtab *cust;
10343 CORE_ADDR baseaddr;
10344 struct block *static_block;
10345 CORE_ADDR addr;
10346
10347 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10348
10349 /* Clear the list here in case something was left over. */
10350 cu->method_list.clear ();
10351
10352 cu->language = pretend_language;
10353 cu->language_defn = language_def (cu->language);
10354
10355 /* Do line number decoding in read_file_scope () */
10356 process_die (cu->dies, cu);
10357
10358 /* For now fudge the Go package. */
10359 if (cu->language == language_go)
10360 fixup_go_packaging (cu);
10361
10362 /* Now that we have processed all the DIEs in the CU, all the types
10363 should be complete, and it should now be safe to compute all of the
10364 physnames. */
10365 compute_delayed_physnames (cu);
10366
10367 if (cu->language == language_rust)
10368 rust_union_quirks (cu);
10369
10370 /* Some compilers don't define a DW_AT_high_pc attribute for the
10371 compilation unit. If the DW_AT_high_pc is missing, synthesize
10372 it, by scanning the DIE's below the compilation unit. */
10373 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10374
10375 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10376 static_block = cu->builder->end_symtab_get_static_block (addr, 0, 1);
10377
10378 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10379 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10380 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10381 addrmap to help ensure it has an accurate map of pc values belonging to
10382 this comp unit. */
10383 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10384
10385 cust = cu->builder->end_symtab_from_static_block (static_block,
10386 SECT_OFF_TEXT (objfile),
10387 0);
10388
10389 if (cust != NULL)
10390 {
10391 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10392
10393 /* Set symtab language to language from DW_AT_language. If the
10394 compilation is from a C file generated by language preprocessors, do
10395 not set the language if it was already deduced by start_subfile. */
10396 if (!(cu->language == language_c
10397 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10398 COMPUNIT_FILETABS (cust)->language = cu->language;
10399
10400 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10401 produce DW_AT_location with location lists but it can be possibly
10402 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10403 there were bugs in prologue debug info, fixed later in GCC-4.5
10404 by "unwind info for epilogues" patch (which is not directly related).
10405
10406 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10407 needed, it would be wrong due to missing DW_AT_producer there.
10408
10409 Still one can confuse GDB by using non-standard GCC compilation
10410 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10411 */
10412 if (cu->has_loclist && gcc_4_minor >= 5)
10413 cust->locations_valid = 1;
10414
10415 if (gcc_4_minor >= 5)
10416 cust->epilogue_unwind_valid = 1;
10417
10418 cust->call_site_htab = cu->call_site_htab;
10419 }
10420
10421 if (dwarf2_per_objfile->using_index)
10422 per_cu->v.quick->compunit_symtab = cust;
10423 else
10424 {
10425 struct partial_symtab *pst = per_cu->v.psymtab;
10426 pst->compunit_symtab = cust;
10427 pst->readin = 1;
10428 }
10429
10430 /* Push it for inclusion processing later. */
10431 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10432
10433 /* Not needed any more. */
10434 cu->builder.reset ();
10435 }
10436
10437 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10438 already been loaded into memory. */
10439
10440 static void
10441 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10442 enum language pretend_language)
10443 {
10444 struct dwarf2_cu *cu = per_cu->cu;
10445 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10446 struct objfile *objfile = dwarf2_per_objfile->objfile;
10447 struct compunit_symtab *cust;
10448 struct signatured_type *sig_type;
10449
10450 gdb_assert (per_cu->is_debug_types);
10451 sig_type = (struct signatured_type *) per_cu;
10452
10453 /* Clear the list here in case something was left over. */
10454 cu->method_list.clear ();
10455
10456 cu->language = pretend_language;
10457 cu->language_defn = language_def (cu->language);
10458
10459 /* The symbol tables are set up in read_type_unit_scope. */
10460 process_die (cu->dies, cu);
10461
10462 /* For now fudge the Go package. */
10463 if (cu->language == language_go)
10464 fixup_go_packaging (cu);
10465
10466 /* Now that we have processed all the DIEs in the CU, all the types
10467 should be complete, and it should now be safe to compute all of the
10468 physnames. */
10469 compute_delayed_physnames (cu);
10470
10471 if (cu->language == language_rust)
10472 rust_union_quirks (cu);
10473
10474 /* TUs share symbol tables.
10475 If this is the first TU to use this symtab, complete the construction
10476 of it with end_expandable_symtab. Otherwise, complete the addition of
10477 this TU's symbols to the existing symtab. */
10478 if (sig_type->type_unit_group->compunit_symtab == NULL)
10479 {
10480 cust = cu->builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10481 sig_type->type_unit_group->compunit_symtab = cust;
10482
10483 if (cust != NULL)
10484 {
10485 /* Set symtab language to language from DW_AT_language. If the
10486 compilation is from a C file generated by language preprocessors,
10487 do not set the language if it was already deduced by
10488 start_subfile. */
10489 if (!(cu->language == language_c
10490 && COMPUNIT_FILETABS (cust)->language != language_c))
10491 COMPUNIT_FILETABS (cust)->language = cu->language;
10492 }
10493 }
10494 else
10495 {
10496 cu->builder->augment_type_symtab ();
10497 cust = sig_type->type_unit_group->compunit_symtab;
10498 }
10499
10500 if (dwarf2_per_objfile->using_index)
10501 per_cu->v.quick->compunit_symtab = cust;
10502 else
10503 {
10504 struct partial_symtab *pst = per_cu->v.psymtab;
10505 pst->compunit_symtab = cust;
10506 pst->readin = 1;
10507 }
10508
10509 /* Not needed any more. */
10510 cu->builder.reset ();
10511 }
10512
10513 /* Process an imported unit DIE. */
10514
10515 static void
10516 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10517 {
10518 struct attribute *attr;
10519
10520 /* For now we don't handle imported units in type units. */
10521 if (cu->per_cu->is_debug_types)
10522 {
10523 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10524 " supported in type units [in module %s]"),
10525 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10526 }
10527
10528 attr = dwarf2_attr (die, DW_AT_import, cu);
10529 if (attr != NULL)
10530 {
10531 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10532 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10533 dwarf2_per_cu_data *per_cu
10534 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10535 cu->per_cu->dwarf2_per_objfile);
10536
10537 /* If necessary, add it to the queue and load its DIEs. */
10538 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10539 load_full_comp_unit (per_cu, false, cu->language);
10540
10541 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10542 per_cu);
10543 }
10544 }
10545
10546 /* RAII object that represents a process_die scope: i.e.,
10547 starts/finishes processing a DIE. */
10548 class process_die_scope
10549 {
10550 public:
10551 process_die_scope (die_info *die, dwarf2_cu *cu)
10552 : m_die (die), m_cu (cu)
10553 {
10554 /* We should only be processing DIEs not already in process. */
10555 gdb_assert (!m_die->in_process);
10556 m_die->in_process = true;
10557 }
10558
10559 ~process_die_scope ()
10560 {
10561 m_die->in_process = false;
10562
10563 /* If we're done processing the DIE for the CU that owns the line
10564 header, we don't need the line header anymore. */
10565 if (m_cu->line_header_die_owner == m_die)
10566 {
10567 delete m_cu->line_header;
10568 m_cu->line_header = NULL;
10569 m_cu->line_header_die_owner = NULL;
10570 }
10571 }
10572
10573 private:
10574 die_info *m_die;
10575 dwarf2_cu *m_cu;
10576 };
10577
10578 /* Process a die and its children. */
10579
10580 static void
10581 process_die (struct die_info *die, struct dwarf2_cu *cu)
10582 {
10583 process_die_scope scope (die, cu);
10584
10585 switch (die->tag)
10586 {
10587 case DW_TAG_padding:
10588 break;
10589 case DW_TAG_compile_unit:
10590 case DW_TAG_partial_unit:
10591 read_file_scope (die, cu);
10592 break;
10593 case DW_TAG_type_unit:
10594 read_type_unit_scope (die, cu);
10595 break;
10596 case DW_TAG_subprogram:
10597 case DW_TAG_inlined_subroutine:
10598 read_func_scope (die, cu);
10599 break;
10600 case DW_TAG_lexical_block:
10601 case DW_TAG_try_block:
10602 case DW_TAG_catch_block:
10603 read_lexical_block_scope (die, cu);
10604 break;
10605 case DW_TAG_call_site:
10606 case DW_TAG_GNU_call_site:
10607 read_call_site_scope (die, cu);
10608 break;
10609 case DW_TAG_class_type:
10610 case DW_TAG_interface_type:
10611 case DW_TAG_structure_type:
10612 case DW_TAG_union_type:
10613 process_structure_scope (die, cu);
10614 break;
10615 case DW_TAG_enumeration_type:
10616 process_enumeration_scope (die, cu);
10617 break;
10618
10619 /* These dies have a type, but processing them does not create
10620 a symbol or recurse to process the children. Therefore we can
10621 read them on-demand through read_type_die. */
10622 case DW_TAG_subroutine_type:
10623 case DW_TAG_set_type:
10624 case DW_TAG_array_type:
10625 case DW_TAG_pointer_type:
10626 case DW_TAG_ptr_to_member_type:
10627 case DW_TAG_reference_type:
10628 case DW_TAG_rvalue_reference_type:
10629 case DW_TAG_string_type:
10630 break;
10631
10632 case DW_TAG_base_type:
10633 case DW_TAG_subrange_type:
10634 case DW_TAG_typedef:
10635 /* Add a typedef symbol for the type definition, if it has a
10636 DW_AT_name. */
10637 new_symbol (die, read_type_die (die, cu), cu);
10638 break;
10639 case DW_TAG_common_block:
10640 read_common_block (die, cu);
10641 break;
10642 case DW_TAG_common_inclusion:
10643 break;
10644 case DW_TAG_namespace:
10645 cu->processing_has_namespace_info = true;
10646 read_namespace (die, cu);
10647 break;
10648 case DW_TAG_module:
10649 cu->processing_has_namespace_info = true;
10650 read_module (die, cu);
10651 break;
10652 case DW_TAG_imported_declaration:
10653 cu->processing_has_namespace_info = true;
10654 if (read_namespace_alias (die, cu))
10655 break;
10656 /* The declaration is not a global namespace alias. */
10657 /* Fall through. */
10658 case DW_TAG_imported_module:
10659 cu->processing_has_namespace_info = true;
10660 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10661 || cu->language != language_fortran))
10662 complaint (_("Tag '%s' has unexpected children"),
10663 dwarf_tag_name (die->tag));
10664 read_import_statement (die, cu);
10665 break;
10666
10667 case DW_TAG_imported_unit:
10668 process_imported_unit_die (die, cu);
10669 break;
10670
10671 case DW_TAG_variable:
10672 read_variable (die, cu);
10673 break;
10674
10675 default:
10676 new_symbol (die, NULL, cu);
10677 break;
10678 }
10679 }
10680 \f
10681 /* DWARF name computation. */
10682
10683 /* A helper function for dwarf2_compute_name which determines whether DIE
10684 needs to have the name of the scope prepended to the name listed in the
10685 die. */
10686
10687 static int
10688 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10689 {
10690 struct attribute *attr;
10691
10692 switch (die->tag)
10693 {
10694 case DW_TAG_namespace:
10695 case DW_TAG_typedef:
10696 case DW_TAG_class_type:
10697 case DW_TAG_interface_type:
10698 case DW_TAG_structure_type:
10699 case DW_TAG_union_type:
10700 case DW_TAG_enumeration_type:
10701 case DW_TAG_enumerator:
10702 case DW_TAG_subprogram:
10703 case DW_TAG_inlined_subroutine:
10704 case DW_TAG_member:
10705 case DW_TAG_imported_declaration:
10706 return 1;
10707
10708 case DW_TAG_variable:
10709 case DW_TAG_constant:
10710 /* We only need to prefix "globally" visible variables. These include
10711 any variable marked with DW_AT_external or any variable that
10712 lives in a namespace. [Variables in anonymous namespaces
10713 require prefixing, but they are not DW_AT_external.] */
10714
10715 if (dwarf2_attr (die, DW_AT_specification, cu))
10716 {
10717 struct dwarf2_cu *spec_cu = cu;
10718
10719 return die_needs_namespace (die_specification (die, &spec_cu),
10720 spec_cu);
10721 }
10722
10723 attr = dwarf2_attr (die, DW_AT_external, cu);
10724 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10725 && die->parent->tag != DW_TAG_module)
10726 return 0;
10727 /* A variable in a lexical block of some kind does not need a
10728 namespace, even though in C++ such variables may be external
10729 and have a mangled name. */
10730 if (die->parent->tag == DW_TAG_lexical_block
10731 || die->parent->tag == DW_TAG_try_block
10732 || die->parent->tag == DW_TAG_catch_block
10733 || die->parent->tag == DW_TAG_subprogram)
10734 return 0;
10735 return 1;
10736
10737 default:
10738 return 0;
10739 }
10740 }
10741
10742 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10743 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10744 defined for the given DIE. */
10745
10746 static struct attribute *
10747 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10748 {
10749 struct attribute *attr;
10750
10751 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10752 if (attr == NULL)
10753 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10754
10755 return attr;
10756 }
10757
10758 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10759 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10760 defined for the given DIE. */
10761
10762 static const char *
10763 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10764 {
10765 const char *linkage_name;
10766
10767 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10768 if (linkage_name == NULL)
10769 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10770
10771 return linkage_name;
10772 }
10773
10774 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10775 compute the physname for the object, which include a method's:
10776 - formal parameters (C++),
10777 - receiver type (Go),
10778
10779 The term "physname" is a bit confusing.
10780 For C++, for example, it is the demangled name.
10781 For Go, for example, it's the mangled name.
10782
10783 For Ada, return the DIE's linkage name rather than the fully qualified
10784 name. PHYSNAME is ignored..
10785
10786 The result is allocated on the objfile_obstack and canonicalized. */
10787
10788 static const char *
10789 dwarf2_compute_name (const char *name,
10790 struct die_info *die, struct dwarf2_cu *cu,
10791 int physname)
10792 {
10793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10794
10795 if (name == NULL)
10796 name = dwarf2_name (die, cu);
10797
10798 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10799 but otherwise compute it by typename_concat inside GDB.
10800 FIXME: Actually this is not really true, or at least not always true.
10801 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10802 Fortran names because there is no mangling standard. So new_symbol
10803 will set the demangled name to the result of dwarf2_full_name, and it is
10804 the demangled name that GDB uses if it exists. */
10805 if (cu->language == language_ada
10806 || (cu->language == language_fortran && physname))
10807 {
10808 /* For Ada unit, we prefer the linkage name over the name, as
10809 the former contains the exported name, which the user expects
10810 to be able to reference. Ideally, we want the user to be able
10811 to reference this entity using either natural or linkage name,
10812 but we haven't started looking at this enhancement yet. */
10813 const char *linkage_name = dw2_linkage_name (die, cu);
10814
10815 if (linkage_name != NULL)
10816 return linkage_name;
10817 }
10818
10819 /* These are the only languages we know how to qualify names in. */
10820 if (name != NULL
10821 && (cu->language == language_cplus
10822 || cu->language == language_fortran || cu->language == language_d
10823 || cu->language == language_rust))
10824 {
10825 if (die_needs_namespace (die, cu))
10826 {
10827 const char *prefix;
10828 const char *canonical_name = NULL;
10829
10830 string_file buf;
10831
10832 prefix = determine_prefix (die, cu);
10833 if (*prefix != '\0')
10834 {
10835 char *prefixed_name = typename_concat (NULL, prefix, name,
10836 physname, cu);
10837
10838 buf.puts (prefixed_name);
10839 xfree (prefixed_name);
10840 }
10841 else
10842 buf.puts (name);
10843
10844 /* Template parameters may be specified in the DIE's DW_AT_name, or
10845 as children with DW_TAG_template_type_param or
10846 DW_TAG_value_type_param. If the latter, add them to the name
10847 here. If the name already has template parameters, then
10848 skip this step; some versions of GCC emit both, and
10849 it is more efficient to use the pre-computed name.
10850
10851 Something to keep in mind about this process: it is very
10852 unlikely, or in some cases downright impossible, to produce
10853 something that will match the mangled name of a function.
10854 If the definition of the function has the same debug info,
10855 we should be able to match up with it anyway. But fallbacks
10856 using the minimal symbol, for instance to find a method
10857 implemented in a stripped copy of libstdc++, will not work.
10858 If we do not have debug info for the definition, we will have to
10859 match them up some other way.
10860
10861 When we do name matching there is a related problem with function
10862 templates; two instantiated function templates are allowed to
10863 differ only by their return types, which we do not add here. */
10864
10865 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10866 {
10867 struct attribute *attr;
10868 struct die_info *child;
10869 int first = 1;
10870
10871 die->building_fullname = 1;
10872
10873 for (child = die->child; child != NULL; child = child->sibling)
10874 {
10875 struct type *type;
10876 LONGEST value;
10877 const gdb_byte *bytes;
10878 struct dwarf2_locexpr_baton *baton;
10879 struct value *v;
10880
10881 if (child->tag != DW_TAG_template_type_param
10882 && child->tag != DW_TAG_template_value_param)
10883 continue;
10884
10885 if (first)
10886 {
10887 buf.puts ("<");
10888 first = 0;
10889 }
10890 else
10891 buf.puts (", ");
10892
10893 attr = dwarf2_attr (child, DW_AT_type, cu);
10894 if (attr == NULL)
10895 {
10896 complaint (_("template parameter missing DW_AT_type"));
10897 buf.puts ("UNKNOWN_TYPE");
10898 continue;
10899 }
10900 type = die_type (child, cu);
10901
10902 if (child->tag == DW_TAG_template_type_param)
10903 {
10904 c_print_type (type, "", &buf, -1, 0, cu->language,
10905 &type_print_raw_options);
10906 continue;
10907 }
10908
10909 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10910 if (attr == NULL)
10911 {
10912 complaint (_("template parameter missing "
10913 "DW_AT_const_value"));
10914 buf.puts ("UNKNOWN_VALUE");
10915 continue;
10916 }
10917
10918 dwarf2_const_value_attr (attr, type, name,
10919 &cu->comp_unit_obstack, cu,
10920 &value, &bytes, &baton);
10921
10922 if (TYPE_NOSIGN (type))
10923 /* GDB prints characters as NUMBER 'CHAR'. If that's
10924 changed, this can use value_print instead. */
10925 c_printchar (value, type, &buf);
10926 else
10927 {
10928 struct value_print_options opts;
10929
10930 if (baton != NULL)
10931 v = dwarf2_evaluate_loc_desc (type, NULL,
10932 baton->data,
10933 baton->size,
10934 baton->per_cu);
10935 else if (bytes != NULL)
10936 {
10937 v = allocate_value (type);
10938 memcpy (value_contents_writeable (v), bytes,
10939 TYPE_LENGTH (type));
10940 }
10941 else
10942 v = value_from_longest (type, value);
10943
10944 /* Specify decimal so that we do not depend on
10945 the radix. */
10946 get_formatted_print_options (&opts, 'd');
10947 opts.raw = 1;
10948 value_print (v, &buf, &opts);
10949 release_value (v);
10950 }
10951 }
10952
10953 die->building_fullname = 0;
10954
10955 if (!first)
10956 {
10957 /* Close the argument list, with a space if necessary
10958 (nested templates). */
10959 if (!buf.empty () && buf.string ().back () == '>')
10960 buf.puts (" >");
10961 else
10962 buf.puts (">");
10963 }
10964 }
10965
10966 /* For C++ methods, append formal parameter type
10967 information, if PHYSNAME. */
10968
10969 if (physname && die->tag == DW_TAG_subprogram
10970 && cu->language == language_cplus)
10971 {
10972 struct type *type = read_type_die (die, cu);
10973
10974 c_type_print_args (type, &buf, 1, cu->language,
10975 &type_print_raw_options);
10976
10977 if (cu->language == language_cplus)
10978 {
10979 /* Assume that an artificial first parameter is
10980 "this", but do not crash if it is not. RealView
10981 marks unnamed (and thus unused) parameters as
10982 artificial; there is no way to differentiate
10983 the two cases. */
10984 if (TYPE_NFIELDS (type) > 0
10985 && TYPE_FIELD_ARTIFICIAL (type, 0)
10986 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10987 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10988 0))))
10989 buf.puts (" const");
10990 }
10991 }
10992
10993 const std::string &intermediate_name = buf.string ();
10994
10995 if (cu->language == language_cplus)
10996 canonical_name
10997 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10998 &objfile->per_bfd->storage_obstack);
10999
11000 /* If we only computed INTERMEDIATE_NAME, or if
11001 INTERMEDIATE_NAME is already canonical, then we need to
11002 copy it to the appropriate obstack. */
11003 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11004 name = ((const char *)
11005 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11006 intermediate_name.c_str (),
11007 intermediate_name.length ()));
11008 else
11009 name = canonical_name;
11010 }
11011 }
11012
11013 return name;
11014 }
11015
11016 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11017 If scope qualifiers are appropriate they will be added. The result
11018 will be allocated on the storage_obstack, or NULL if the DIE does
11019 not have a name. NAME may either be from a previous call to
11020 dwarf2_name or NULL.
11021
11022 The output string will be canonicalized (if C++). */
11023
11024 static const char *
11025 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11026 {
11027 return dwarf2_compute_name (name, die, cu, 0);
11028 }
11029
11030 /* Construct a physname for the given DIE in CU. NAME may either be
11031 from a previous call to dwarf2_name or NULL. The result will be
11032 allocated on the objfile_objstack or NULL if the DIE does not have a
11033 name.
11034
11035 The output string will be canonicalized (if C++). */
11036
11037 static const char *
11038 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11039 {
11040 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11041 const char *retval, *mangled = NULL, *canon = NULL;
11042 int need_copy = 1;
11043
11044 /* In this case dwarf2_compute_name is just a shortcut not building anything
11045 on its own. */
11046 if (!die_needs_namespace (die, cu))
11047 return dwarf2_compute_name (name, die, cu, 1);
11048
11049 mangled = dw2_linkage_name (die, cu);
11050
11051 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11052 See https://github.com/rust-lang/rust/issues/32925. */
11053 if (cu->language == language_rust && mangled != NULL
11054 && strchr (mangled, '{') != NULL)
11055 mangled = NULL;
11056
11057 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11058 has computed. */
11059 gdb::unique_xmalloc_ptr<char> demangled;
11060 if (mangled != NULL)
11061 {
11062
11063 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11064 {
11065 /* Do nothing (do not demangle the symbol name). */
11066 }
11067 else if (cu->language == language_go)
11068 {
11069 /* This is a lie, but we already lie to the caller new_symbol.
11070 new_symbol assumes we return the mangled name.
11071 This just undoes that lie until things are cleaned up. */
11072 }
11073 else
11074 {
11075 /* Use DMGL_RET_DROP for C++ template functions to suppress
11076 their return type. It is easier for GDB users to search
11077 for such functions as `name(params)' than `long name(params)'.
11078 In such case the minimal symbol names do not match the full
11079 symbol names but for template functions there is never a need
11080 to look up their definition from their declaration so
11081 the only disadvantage remains the minimal symbol variant
11082 `long name(params)' does not have the proper inferior type. */
11083 demangled.reset (gdb_demangle (mangled,
11084 (DMGL_PARAMS | DMGL_ANSI
11085 | DMGL_RET_DROP)));
11086 }
11087 if (demangled)
11088 canon = demangled.get ();
11089 else
11090 {
11091 canon = mangled;
11092 need_copy = 0;
11093 }
11094 }
11095
11096 if (canon == NULL || check_physname)
11097 {
11098 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11099
11100 if (canon != NULL && strcmp (physname, canon) != 0)
11101 {
11102 /* It may not mean a bug in GDB. The compiler could also
11103 compute DW_AT_linkage_name incorrectly. But in such case
11104 GDB would need to be bug-to-bug compatible. */
11105
11106 complaint (_("Computed physname <%s> does not match demangled <%s> "
11107 "(from linkage <%s>) - DIE at %s [in module %s]"),
11108 physname, canon, mangled, sect_offset_str (die->sect_off),
11109 objfile_name (objfile));
11110
11111 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11112 is available here - over computed PHYSNAME. It is safer
11113 against both buggy GDB and buggy compilers. */
11114
11115 retval = canon;
11116 }
11117 else
11118 {
11119 retval = physname;
11120 need_copy = 0;
11121 }
11122 }
11123 else
11124 retval = canon;
11125
11126 if (need_copy)
11127 retval = ((const char *)
11128 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11129 retval, strlen (retval)));
11130
11131 return retval;
11132 }
11133
11134 /* Inspect DIE in CU for a namespace alias. If one exists, record
11135 a new symbol for it.
11136
11137 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11138
11139 static int
11140 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11141 {
11142 struct attribute *attr;
11143
11144 /* If the die does not have a name, this is not a namespace
11145 alias. */
11146 attr = dwarf2_attr (die, DW_AT_name, cu);
11147 if (attr != NULL)
11148 {
11149 int num;
11150 struct die_info *d = die;
11151 struct dwarf2_cu *imported_cu = cu;
11152
11153 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11154 keep inspecting DIEs until we hit the underlying import. */
11155 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11156 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11157 {
11158 attr = dwarf2_attr (d, DW_AT_import, cu);
11159 if (attr == NULL)
11160 break;
11161
11162 d = follow_die_ref (d, attr, &imported_cu);
11163 if (d->tag != DW_TAG_imported_declaration)
11164 break;
11165 }
11166
11167 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11168 {
11169 complaint (_("DIE at %s has too many recursively imported "
11170 "declarations"), sect_offset_str (d->sect_off));
11171 return 0;
11172 }
11173
11174 if (attr != NULL)
11175 {
11176 struct type *type;
11177 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11178
11179 type = get_die_type_at_offset (sect_off, cu->per_cu);
11180 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11181 {
11182 /* This declaration is a global namespace alias. Add
11183 a symbol for it whose type is the aliased namespace. */
11184 new_symbol (die, type, cu);
11185 return 1;
11186 }
11187 }
11188 }
11189
11190 return 0;
11191 }
11192
11193 /* Return the using directives repository (global or local?) to use in the
11194 current context for CU.
11195
11196 For Ada, imported declarations can materialize renamings, which *may* be
11197 global. However it is impossible (for now?) in DWARF to distinguish
11198 "external" imported declarations and "static" ones. As all imported
11199 declarations seem to be static in all other languages, make them all CU-wide
11200 global only in Ada. */
11201
11202 static struct using_direct **
11203 using_directives (struct dwarf2_cu *cu)
11204 {
11205 if (cu->language == language_ada && cu->builder->outermost_context_p ())
11206 return cu->builder->get_global_using_directives ();
11207 else
11208 return cu->builder->get_local_using_directives ();
11209 }
11210
11211 /* Read the import statement specified by the given die and record it. */
11212
11213 static void
11214 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11215 {
11216 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11217 struct attribute *import_attr;
11218 struct die_info *imported_die, *child_die;
11219 struct dwarf2_cu *imported_cu;
11220 const char *imported_name;
11221 const char *imported_name_prefix;
11222 const char *canonical_name;
11223 const char *import_alias;
11224 const char *imported_declaration = NULL;
11225 const char *import_prefix;
11226 std::vector<const char *> excludes;
11227
11228 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11229 if (import_attr == NULL)
11230 {
11231 complaint (_("Tag '%s' has no DW_AT_import"),
11232 dwarf_tag_name (die->tag));
11233 return;
11234 }
11235
11236 imported_cu = cu;
11237 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11238 imported_name = dwarf2_name (imported_die, imported_cu);
11239 if (imported_name == NULL)
11240 {
11241 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11242
11243 The import in the following code:
11244 namespace A
11245 {
11246 typedef int B;
11247 }
11248
11249 int main ()
11250 {
11251 using A::B;
11252 B b;
11253 return b;
11254 }
11255
11256 ...
11257 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11258 <52> DW_AT_decl_file : 1
11259 <53> DW_AT_decl_line : 6
11260 <54> DW_AT_import : <0x75>
11261 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11262 <59> DW_AT_name : B
11263 <5b> DW_AT_decl_file : 1
11264 <5c> DW_AT_decl_line : 2
11265 <5d> DW_AT_type : <0x6e>
11266 ...
11267 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11268 <76> DW_AT_byte_size : 4
11269 <77> DW_AT_encoding : 5 (signed)
11270
11271 imports the wrong die ( 0x75 instead of 0x58 ).
11272 This case will be ignored until the gcc bug is fixed. */
11273 return;
11274 }
11275
11276 /* Figure out the local name after import. */
11277 import_alias = dwarf2_name (die, cu);
11278
11279 /* Figure out where the statement is being imported to. */
11280 import_prefix = determine_prefix (die, cu);
11281
11282 /* Figure out what the scope of the imported die is and prepend it
11283 to the name of the imported die. */
11284 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11285
11286 if (imported_die->tag != DW_TAG_namespace
11287 && imported_die->tag != DW_TAG_module)
11288 {
11289 imported_declaration = imported_name;
11290 canonical_name = imported_name_prefix;
11291 }
11292 else if (strlen (imported_name_prefix) > 0)
11293 canonical_name = obconcat (&objfile->objfile_obstack,
11294 imported_name_prefix,
11295 (cu->language == language_d ? "." : "::"),
11296 imported_name, (char *) NULL);
11297 else
11298 canonical_name = imported_name;
11299
11300 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11301 for (child_die = die->child; child_die && child_die->tag;
11302 child_die = sibling_die (child_die))
11303 {
11304 /* DWARF-4: A Fortran use statement with a “rename list” may be
11305 represented by an imported module entry with an import attribute
11306 referring to the module and owned entries corresponding to those
11307 entities that are renamed as part of being imported. */
11308
11309 if (child_die->tag != DW_TAG_imported_declaration)
11310 {
11311 complaint (_("child DW_TAG_imported_declaration expected "
11312 "- DIE at %s [in module %s]"),
11313 sect_offset_str (child_die->sect_off),
11314 objfile_name (objfile));
11315 continue;
11316 }
11317
11318 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11319 if (import_attr == NULL)
11320 {
11321 complaint (_("Tag '%s' has no DW_AT_import"),
11322 dwarf_tag_name (child_die->tag));
11323 continue;
11324 }
11325
11326 imported_cu = cu;
11327 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11328 &imported_cu);
11329 imported_name = dwarf2_name (imported_die, imported_cu);
11330 if (imported_name == NULL)
11331 {
11332 complaint (_("child DW_TAG_imported_declaration has unknown "
11333 "imported name - DIE at %s [in module %s]"),
11334 sect_offset_str (child_die->sect_off),
11335 objfile_name (objfile));
11336 continue;
11337 }
11338
11339 excludes.push_back (imported_name);
11340
11341 process_die (child_die, cu);
11342 }
11343
11344 add_using_directive (using_directives (cu),
11345 import_prefix,
11346 canonical_name,
11347 import_alias,
11348 imported_declaration,
11349 excludes,
11350 0,
11351 &objfile->objfile_obstack);
11352 }
11353
11354 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11355 types, but gives them a size of zero. Starting with version 14,
11356 ICC is compatible with GCC. */
11357
11358 static bool
11359 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11360 {
11361 if (!cu->checked_producer)
11362 check_producer (cu);
11363
11364 return cu->producer_is_icc_lt_14;
11365 }
11366
11367 /* ICC generates a DW_AT_type for C void functions. This was observed on
11368 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11369 which says that void functions should not have a DW_AT_type. */
11370
11371 static bool
11372 producer_is_icc (struct dwarf2_cu *cu)
11373 {
11374 if (!cu->checked_producer)
11375 check_producer (cu);
11376
11377 return cu->producer_is_icc;
11378 }
11379
11380 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11381 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11382 this, it was first present in GCC release 4.3.0. */
11383
11384 static bool
11385 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11386 {
11387 if (!cu->checked_producer)
11388 check_producer (cu);
11389
11390 return cu->producer_is_gcc_lt_4_3;
11391 }
11392
11393 static file_and_directory
11394 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11395 {
11396 file_and_directory res;
11397
11398 /* Find the filename. Do not use dwarf2_name here, since the filename
11399 is not a source language identifier. */
11400 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11401 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11402
11403 if (res.comp_dir == NULL
11404 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11405 && IS_ABSOLUTE_PATH (res.name))
11406 {
11407 res.comp_dir_storage = ldirname (res.name);
11408 if (!res.comp_dir_storage.empty ())
11409 res.comp_dir = res.comp_dir_storage.c_str ();
11410 }
11411 if (res.comp_dir != NULL)
11412 {
11413 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11414 directory, get rid of it. */
11415 const char *cp = strchr (res.comp_dir, ':');
11416
11417 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11418 res.comp_dir = cp + 1;
11419 }
11420
11421 if (res.name == NULL)
11422 res.name = "<unknown>";
11423
11424 return res;
11425 }
11426
11427 /* Handle DW_AT_stmt_list for a compilation unit.
11428 DIE is the DW_TAG_compile_unit die for CU.
11429 COMP_DIR is the compilation directory. LOWPC is passed to
11430 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11431
11432 static void
11433 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11434 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11435 {
11436 struct dwarf2_per_objfile *dwarf2_per_objfile
11437 = cu->per_cu->dwarf2_per_objfile;
11438 struct objfile *objfile = dwarf2_per_objfile->objfile;
11439 struct attribute *attr;
11440 struct line_header line_header_local;
11441 hashval_t line_header_local_hash;
11442 void **slot;
11443 int decode_mapping;
11444
11445 gdb_assert (! cu->per_cu->is_debug_types);
11446
11447 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11448 if (attr == NULL)
11449 return;
11450
11451 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11452
11453 /* The line header hash table is only created if needed (it exists to
11454 prevent redundant reading of the line table for partial_units).
11455 If we're given a partial_unit, we'll need it. If we're given a
11456 compile_unit, then use the line header hash table if it's already
11457 created, but don't create one just yet. */
11458
11459 if (dwarf2_per_objfile->line_header_hash == NULL
11460 && die->tag == DW_TAG_partial_unit)
11461 {
11462 dwarf2_per_objfile->line_header_hash
11463 = htab_create_alloc_ex (127, line_header_hash_voidp,
11464 line_header_eq_voidp,
11465 free_line_header_voidp,
11466 &objfile->objfile_obstack,
11467 hashtab_obstack_allocate,
11468 dummy_obstack_deallocate);
11469 }
11470
11471 line_header_local.sect_off = line_offset;
11472 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11473 line_header_local_hash = line_header_hash (&line_header_local);
11474 if (dwarf2_per_objfile->line_header_hash != NULL)
11475 {
11476 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11477 &line_header_local,
11478 line_header_local_hash, NO_INSERT);
11479
11480 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11481 is not present in *SLOT (since if there is something in *SLOT then
11482 it will be for a partial_unit). */
11483 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11484 {
11485 gdb_assert (*slot != NULL);
11486 cu->line_header = (struct line_header *) *slot;
11487 return;
11488 }
11489 }
11490
11491 /* dwarf_decode_line_header does not yet provide sufficient information.
11492 We always have to call also dwarf_decode_lines for it. */
11493 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11494 if (lh == NULL)
11495 return;
11496
11497 cu->line_header = lh.release ();
11498 cu->line_header_die_owner = die;
11499
11500 if (dwarf2_per_objfile->line_header_hash == NULL)
11501 slot = NULL;
11502 else
11503 {
11504 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11505 &line_header_local,
11506 line_header_local_hash, INSERT);
11507 gdb_assert (slot != NULL);
11508 }
11509 if (slot != NULL && *slot == NULL)
11510 {
11511 /* This newly decoded line number information unit will be owned
11512 by line_header_hash hash table. */
11513 *slot = cu->line_header;
11514 cu->line_header_die_owner = NULL;
11515 }
11516 else
11517 {
11518 /* We cannot free any current entry in (*slot) as that struct line_header
11519 may be already used by multiple CUs. Create only temporary decoded
11520 line_header for this CU - it may happen at most once for each line
11521 number information unit. And if we're not using line_header_hash
11522 then this is what we want as well. */
11523 gdb_assert (die->tag != DW_TAG_partial_unit);
11524 }
11525 decode_mapping = (die->tag != DW_TAG_partial_unit);
11526 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11527 decode_mapping);
11528
11529 }
11530
11531 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11532
11533 static void
11534 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11535 {
11536 struct dwarf2_per_objfile *dwarf2_per_objfile
11537 = cu->per_cu->dwarf2_per_objfile;
11538 struct objfile *objfile = dwarf2_per_objfile->objfile;
11539 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11540 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11541 CORE_ADDR highpc = ((CORE_ADDR) 0);
11542 struct attribute *attr;
11543 struct die_info *child_die;
11544 CORE_ADDR baseaddr;
11545
11546 prepare_one_comp_unit (cu, die, cu->language);
11547 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11548
11549 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11550
11551 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11552 from finish_block. */
11553 if (lowpc == ((CORE_ADDR) -1))
11554 lowpc = highpc;
11555 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11556
11557 file_and_directory fnd = find_file_and_directory (die, cu);
11558
11559 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11560 standardised yet. As a workaround for the language detection we fall
11561 back to the DW_AT_producer string. */
11562 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11563 cu->language = language_opencl;
11564
11565 /* Similar hack for Go. */
11566 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11567 set_cu_language (DW_LANG_Go, cu);
11568
11569 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
11570
11571 /* Decode line number information if present. We do this before
11572 processing child DIEs, so that the line header table is available
11573 for DW_AT_decl_file. */
11574 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11575
11576 /* Process all dies in compilation unit. */
11577 if (die->child != NULL)
11578 {
11579 child_die = die->child;
11580 while (child_die && child_die->tag)
11581 {
11582 process_die (child_die, cu);
11583 child_die = sibling_die (child_die);
11584 }
11585 }
11586
11587 /* Decode macro information, if present. Dwarf 2 macro information
11588 refers to information in the line number info statement program
11589 header, so we can only read it if we've read the header
11590 successfully. */
11591 attr = dwarf2_attr (die, DW_AT_macros, cu);
11592 if (attr == NULL)
11593 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11594 if (attr && cu->line_header)
11595 {
11596 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11597 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11598
11599 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11600 }
11601 else
11602 {
11603 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11604 if (attr && cu->line_header)
11605 {
11606 unsigned int macro_offset = DW_UNSND (attr);
11607
11608 dwarf_decode_macros (cu, macro_offset, 0);
11609 }
11610 }
11611 }
11612
11613 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
11614 Create the set of symtabs used by this TU, or if this TU is sharing
11615 symtabs with another TU and the symtabs have already been created
11616 then restore those symtabs in the line header.
11617 We don't need the pc/line-number mapping for type units. */
11618
11619 static void
11620 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
11621 {
11622 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
11623 struct type_unit_group *tu_group;
11624 int first_time;
11625 struct attribute *attr;
11626 unsigned int i;
11627 struct signatured_type *sig_type;
11628
11629 gdb_assert (per_cu->is_debug_types);
11630 sig_type = (struct signatured_type *) per_cu;
11631
11632 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11633
11634 /* If we're using .gdb_index (includes -readnow) then
11635 per_cu->type_unit_group may not have been set up yet. */
11636 if (sig_type->type_unit_group == NULL)
11637 sig_type->type_unit_group = get_type_unit_group (cu, attr);
11638 tu_group = sig_type->type_unit_group;
11639
11640 /* If we've already processed this stmt_list there's no real need to
11641 do it again, we could fake it and just recreate the part we need
11642 (file name,index -> symtab mapping). If data shows this optimization
11643 is useful we can do it then. */
11644 first_time = tu_group->compunit_symtab == NULL;
11645
11646 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11647 debug info. */
11648 line_header_up lh;
11649 if (attr != NULL)
11650 {
11651 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11652 lh = dwarf_decode_line_header (line_offset, cu);
11653 }
11654 if (lh == NULL)
11655 {
11656 if (first_time)
11657 dwarf2_start_symtab (cu, "", NULL, 0);
11658 else
11659 {
11660 gdb_assert (tu_group->symtabs == NULL);
11661 gdb_assert (cu->builder == nullptr);
11662 struct compunit_symtab *cust = tu_group->compunit_symtab;
11663 cu->builder.reset (new struct buildsym_compunit
11664 (COMPUNIT_OBJFILE (cust), "",
11665 COMPUNIT_DIRNAME (cust),
11666 compunit_language (cust),
11667 0, cust));
11668 }
11669 return;
11670 }
11671
11672 cu->line_header = lh.release ();
11673 cu->line_header_die_owner = die;
11674
11675 if (first_time)
11676 {
11677 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
11678
11679 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11680 still initializing it, and our caller (a few levels up)
11681 process_full_type_unit still needs to know if this is the first
11682 time. */
11683
11684 tu_group->num_symtabs = cu->line_header->file_names.size ();
11685 tu_group->symtabs = XNEWVEC (struct symtab *,
11686 cu->line_header->file_names.size ());
11687
11688 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11689 {
11690 file_entry &fe = cu->line_header->file_names[i];
11691
11692 dwarf2_start_subfile (cu, fe.name, fe.include_dir (cu->line_header));
11693
11694 if (cu->builder->get_current_subfile ()->symtab == NULL)
11695 {
11696 /* NOTE: start_subfile will recognize when it's been
11697 passed a file it has already seen. So we can't
11698 assume there's a simple mapping from
11699 cu->line_header->file_names to subfiles, plus
11700 cu->line_header->file_names may contain dups. */
11701 cu->builder->get_current_subfile ()->symtab
11702 = allocate_symtab (cust,
11703 cu->builder->get_current_subfile ()->name);
11704 }
11705
11706 fe.symtab = cu->builder->get_current_subfile ()->symtab;
11707 tu_group->symtabs[i] = fe.symtab;
11708 }
11709 }
11710 else
11711 {
11712 gdb_assert (cu->builder == nullptr);
11713 struct compunit_symtab *cust = tu_group->compunit_symtab;
11714 cu->builder.reset (new struct buildsym_compunit
11715 (COMPUNIT_OBJFILE (cust), "",
11716 COMPUNIT_DIRNAME (cust),
11717 compunit_language (cust),
11718 0, cust));
11719
11720 for (i = 0; i < cu->line_header->file_names.size (); ++i)
11721 {
11722 file_entry &fe = cu->line_header->file_names[i];
11723
11724 fe.symtab = tu_group->symtabs[i];
11725 }
11726 }
11727
11728 /* The main symtab is allocated last. Type units don't have DW_AT_name
11729 so they don't have a "real" (so to speak) symtab anyway.
11730 There is later code that will assign the main symtab to all symbols
11731 that don't have one. We need to handle the case of a symbol with a
11732 missing symtab (DW_AT_decl_file) anyway. */
11733 }
11734
11735 /* Process DW_TAG_type_unit.
11736 For TUs we want to skip the first top level sibling if it's not the
11737 actual type being defined by this TU. In this case the first top
11738 level sibling is there to provide context only. */
11739
11740 static void
11741 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11742 {
11743 struct die_info *child_die;
11744
11745 prepare_one_comp_unit (cu, die, language_minimal);
11746
11747 /* Initialize (or reinitialize) the machinery for building symtabs.
11748 We do this before processing child DIEs, so that the line header table
11749 is available for DW_AT_decl_file. */
11750 setup_type_unit_groups (die, cu);
11751
11752 if (die->child != NULL)
11753 {
11754 child_die = die->child;
11755 while (child_die && child_die->tag)
11756 {
11757 process_die (child_die, cu);
11758 child_die = sibling_die (child_die);
11759 }
11760 }
11761 }
11762 \f
11763 /* DWO/DWP files.
11764
11765 http://gcc.gnu.org/wiki/DebugFission
11766 http://gcc.gnu.org/wiki/DebugFissionDWP
11767
11768 To simplify handling of both DWO files ("object" files with the DWARF info)
11769 and DWP files (a file with the DWOs packaged up into one file), we treat
11770 DWP files as having a collection of virtual DWO files. */
11771
11772 static hashval_t
11773 hash_dwo_file (const void *item)
11774 {
11775 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11776 hashval_t hash;
11777
11778 hash = htab_hash_string (dwo_file->dwo_name);
11779 if (dwo_file->comp_dir != NULL)
11780 hash += htab_hash_string (dwo_file->comp_dir);
11781 return hash;
11782 }
11783
11784 static int
11785 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11786 {
11787 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11788 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11789
11790 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11791 return 0;
11792 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11793 return lhs->comp_dir == rhs->comp_dir;
11794 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11795 }
11796
11797 /* Allocate a hash table for DWO files. */
11798
11799 static htab_t
11800 allocate_dwo_file_hash_table (struct objfile *objfile)
11801 {
11802 return htab_create_alloc_ex (41,
11803 hash_dwo_file,
11804 eq_dwo_file,
11805 NULL,
11806 &objfile->objfile_obstack,
11807 hashtab_obstack_allocate,
11808 dummy_obstack_deallocate);
11809 }
11810
11811 /* Lookup DWO file DWO_NAME. */
11812
11813 static void **
11814 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11815 const char *dwo_name,
11816 const char *comp_dir)
11817 {
11818 struct dwo_file find_entry;
11819 void **slot;
11820
11821 if (dwarf2_per_objfile->dwo_files == NULL)
11822 dwarf2_per_objfile->dwo_files
11823 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11824
11825 memset (&find_entry, 0, sizeof (find_entry));
11826 find_entry.dwo_name = dwo_name;
11827 find_entry.comp_dir = comp_dir;
11828 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11829
11830 return slot;
11831 }
11832
11833 static hashval_t
11834 hash_dwo_unit (const void *item)
11835 {
11836 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11837
11838 /* This drops the top 32 bits of the id, but is ok for a hash. */
11839 return dwo_unit->signature;
11840 }
11841
11842 static int
11843 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11844 {
11845 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11846 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11847
11848 /* The signature is assumed to be unique within the DWO file.
11849 So while object file CU dwo_id's always have the value zero,
11850 that's OK, assuming each object file DWO file has only one CU,
11851 and that's the rule for now. */
11852 return lhs->signature == rhs->signature;
11853 }
11854
11855 /* Allocate a hash table for DWO CUs,TUs.
11856 There is one of these tables for each of CUs,TUs for each DWO file. */
11857
11858 static htab_t
11859 allocate_dwo_unit_table (struct objfile *objfile)
11860 {
11861 /* Start out with a pretty small number.
11862 Generally DWO files contain only one CU and maybe some TUs. */
11863 return htab_create_alloc_ex (3,
11864 hash_dwo_unit,
11865 eq_dwo_unit,
11866 NULL,
11867 &objfile->objfile_obstack,
11868 hashtab_obstack_allocate,
11869 dummy_obstack_deallocate);
11870 }
11871
11872 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11873
11874 struct create_dwo_cu_data
11875 {
11876 struct dwo_file *dwo_file;
11877 struct dwo_unit dwo_unit;
11878 };
11879
11880 /* die_reader_func for create_dwo_cu. */
11881
11882 static void
11883 create_dwo_cu_reader (const struct die_reader_specs *reader,
11884 const gdb_byte *info_ptr,
11885 struct die_info *comp_unit_die,
11886 int has_children,
11887 void *datap)
11888 {
11889 struct dwarf2_cu *cu = reader->cu;
11890 sect_offset sect_off = cu->per_cu->sect_off;
11891 struct dwarf2_section_info *section = cu->per_cu->section;
11892 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11893 struct dwo_file *dwo_file = data->dwo_file;
11894 struct dwo_unit *dwo_unit = &data->dwo_unit;
11895 struct attribute *attr;
11896
11897 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11898 if (attr == NULL)
11899 {
11900 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11901 " its dwo_id [in module %s]"),
11902 sect_offset_str (sect_off), dwo_file->dwo_name);
11903 return;
11904 }
11905
11906 dwo_unit->dwo_file = dwo_file;
11907 dwo_unit->signature = DW_UNSND (attr);
11908 dwo_unit->section = section;
11909 dwo_unit->sect_off = sect_off;
11910 dwo_unit->length = cu->per_cu->length;
11911
11912 if (dwarf_read_debug)
11913 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11914 sect_offset_str (sect_off),
11915 hex_string (dwo_unit->signature));
11916 }
11917
11918 /* Create the dwo_units for the CUs in a DWO_FILE.
11919 Note: This function processes DWO files only, not DWP files. */
11920
11921 static void
11922 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11923 struct dwo_file &dwo_file, dwarf2_section_info &section,
11924 htab_t &cus_htab)
11925 {
11926 struct objfile *objfile = dwarf2_per_objfile->objfile;
11927 const gdb_byte *info_ptr, *end_ptr;
11928
11929 dwarf2_read_section (objfile, &section);
11930 info_ptr = section.buffer;
11931
11932 if (info_ptr == NULL)
11933 return;
11934
11935 if (dwarf_read_debug)
11936 {
11937 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11938 get_section_name (&section),
11939 get_section_file_name (&section));
11940 }
11941
11942 end_ptr = info_ptr + section.size;
11943 while (info_ptr < end_ptr)
11944 {
11945 struct dwarf2_per_cu_data per_cu;
11946 struct create_dwo_cu_data create_dwo_cu_data;
11947 struct dwo_unit *dwo_unit;
11948 void **slot;
11949 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11950
11951 memset (&create_dwo_cu_data.dwo_unit, 0,
11952 sizeof (create_dwo_cu_data.dwo_unit));
11953 memset (&per_cu, 0, sizeof (per_cu));
11954 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11955 per_cu.is_debug_types = 0;
11956 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11957 per_cu.section = &section;
11958 create_dwo_cu_data.dwo_file = &dwo_file;
11959
11960 init_cutu_and_read_dies_no_follow (
11961 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11962 info_ptr += per_cu.length;
11963
11964 // If the unit could not be parsed, skip it.
11965 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11966 continue;
11967
11968 if (cus_htab == NULL)
11969 cus_htab = allocate_dwo_unit_table (objfile);
11970
11971 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11972 *dwo_unit = create_dwo_cu_data.dwo_unit;
11973 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11974 gdb_assert (slot != NULL);
11975 if (*slot != NULL)
11976 {
11977 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11978 sect_offset dup_sect_off = dup_cu->sect_off;
11979
11980 complaint (_("debug cu entry at offset %s is duplicate to"
11981 " the entry at offset %s, signature %s"),
11982 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11983 hex_string (dwo_unit->signature));
11984 }
11985 *slot = (void *)dwo_unit;
11986 }
11987 }
11988
11989 /* DWP file .debug_{cu,tu}_index section format:
11990 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11991
11992 DWP Version 1:
11993
11994 Both index sections have the same format, and serve to map a 64-bit
11995 signature to a set of section numbers. Each section begins with a header,
11996 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11997 indexes, and a pool of 32-bit section numbers. The index sections will be
11998 aligned at 8-byte boundaries in the file.
11999
12000 The index section header consists of:
12001
12002 V, 32 bit version number
12003 -, 32 bits unused
12004 N, 32 bit number of compilation units or type units in the index
12005 M, 32 bit number of slots in the hash table
12006
12007 Numbers are recorded using the byte order of the application binary.
12008
12009 The hash table begins at offset 16 in the section, and consists of an array
12010 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12011 order of the application binary). Unused slots in the hash table are 0.
12012 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12013
12014 The parallel table begins immediately after the hash table
12015 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12016 array of 32-bit indexes (using the byte order of the application binary),
12017 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12018 table contains a 32-bit index into the pool of section numbers. For unused
12019 hash table slots, the corresponding entry in the parallel table will be 0.
12020
12021 The pool of section numbers begins immediately following the hash table
12022 (at offset 16 + 12 * M from the beginning of the section). The pool of
12023 section numbers consists of an array of 32-bit words (using the byte order
12024 of the application binary). Each item in the array is indexed starting
12025 from 0. The hash table entry provides the index of the first section
12026 number in the set. Additional section numbers in the set follow, and the
12027 set is terminated by a 0 entry (section number 0 is not used in ELF).
12028
12029 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12030 section must be the first entry in the set, and the .debug_abbrev.dwo must
12031 be the second entry. Other members of the set may follow in any order.
12032
12033 ---
12034
12035 DWP Version 2:
12036
12037 DWP Version 2 combines all the .debug_info, etc. sections into one,
12038 and the entries in the index tables are now offsets into these sections.
12039 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12040 section.
12041
12042 Index Section Contents:
12043 Header
12044 Hash Table of Signatures dwp_hash_table.hash_table
12045 Parallel Table of Indices dwp_hash_table.unit_table
12046 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12047 Table of Section Sizes dwp_hash_table.v2.sizes
12048
12049 The index section header consists of:
12050
12051 V, 32 bit version number
12052 L, 32 bit number of columns in the table of section offsets
12053 N, 32 bit number of compilation units or type units in the index
12054 M, 32 bit number of slots in the hash table
12055
12056 Numbers are recorded using the byte order of the application binary.
12057
12058 The hash table has the same format as version 1.
12059 The parallel table of indices has the same format as version 1,
12060 except that the entries are origin-1 indices into the table of sections
12061 offsets and the table of section sizes.
12062
12063 The table of offsets begins immediately following the parallel table
12064 (at offset 16 + 12 * M from the beginning of the section). The table is
12065 a two-dimensional array of 32-bit words (using the byte order of the
12066 application binary), with L columns and N+1 rows, in row-major order.
12067 Each row in the array is indexed starting from 0. The first row provides
12068 a key to the remaining rows: each column in this row provides an identifier
12069 for a debug section, and the offsets in the same column of subsequent rows
12070 refer to that section. The section identifiers are:
12071
12072 DW_SECT_INFO 1 .debug_info.dwo
12073 DW_SECT_TYPES 2 .debug_types.dwo
12074 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12075 DW_SECT_LINE 4 .debug_line.dwo
12076 DW_SECT_LOC 5 .debug_loc.dwo
12077 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12078 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12079 DW_SECT_MACRO 8 .debug_macro.dwo
12080
12081 The offsets provided by the CU and TU index sections are the base offsets
12082 for the contributions made by each CU or TU to the corresponding section
12083 in the package file. Each CU and TU header contains an abbrev_offset
12084 field, used to find the abbreviations table for that CU or TU within the
12085 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12086 be interpreted as relative to the base offset given in the index section.
12087 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12088 should be interpreted as relative to the base offset for .debug_line.dwo,
12089 and offsets into other debug sections obtained from DWARF attributes should
12090 also be interpreted as relative to the corresponding base offset.
12091
12092 The table of sizes begins immediately following the table of offsets.
12093 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12094 with L columns and N rows, in row-major order. Each row in the array is
12095 indexed starting from 1 (row 0 is shared by the two tables).
12096
12097 ---
12098
12099 Hash table lookup is handled the same in version 1 and 2:
12100
12101 We assume that N and M will not exceed 2^32 - 1.
12102 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12103
12104 Given a 64-bit compilation unit signature or a type signature S, an entry
12105 in the hash table is located as follows:
12106
12107 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12108 the low-order k bits all set to 1.
12109
12110 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12111
12112 3) If the hash table entry at index H matches the signature, use that
12113 entry. If the hash table entry at index H is unused (all zeroes),
12114 terminate the search: the signature is not present in the table.
12115
12116 4) Let H = (H + H') modulo M. Repeat at Step 3.
12117
12118 Because M > N and H' and M are relatively prime, the search is guaranteed
12119 to stop at an unused slot or find the match. */
12120
12121 /* Create a hash table to map DWO IDs to their CU/TU entry in
12122 .debug_{info,types}.dwo in DWP_FILE.
12123 Returns NULL if there isn't one.
12124 Note: This function processes DWP files only, not DWO files. */
12125
12126 static struct dwp_hash_table *
12127 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12128 struct dwp_file *dwp_file, int is_debug_types)
12129 {
12130 struct objfile *objfile = dwarf2_per_objfile->objfile;
12131 bfd *dbfd = dwp_file->dbfd.get ();
12132 const gdb_byte *index_ptr, *index_end;
12133 struct dwarf2_section_info *index;
12134 uint32_t version, nr_columns, nr_units, nr_slots;
12135 struct dwp_hash_table *htab;
12136
12137 if (is_debug_types)
12138 index = &dwp_file->sections.tu_index;
12139 else
12140 index = &dwp_file->sections.cu_index;
12141
12142 if (dwarf2_section_empty_p (index))
12143 return NULL;
12144 dwarf2_read_section (objfile, index);
12145
12146 index_ptr = index->buffer;
12147 index_end = index_ptr + index->size;
12148
12149 version = read_4_bytes (dbfd, index_ptr);
12150 index_ptr += 4;
12151 if (version == 2)
12152 nr_columns = read_4_bytes (dbfd, index_ptr);
12153 else
12154 nr_columns = 0;
12155 index_ptr += 4;
12156 nr_units = read_4_bytes (dbfd, index_ptr);
12157 index_ptr += 4;
12158 nr_slots = read_4_bytes (dbfd, index_ptr);
12159 index_ptr += 4;
12160
12161 if (version != 1 && version != 2)
12162 {
12163 error (_("Dwarf Error: unsupported DWP file version (%s)"
12164 " [in module %s]"),
12165 pulongest (version), dwp_file->name);
12166 }
12167 if (nr_slots != (nr_slots & -nr_slots))
12168 {
12169 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12170 " is not power of 2 [in module %s]"),
12171 pulongest (nr_slots), dwp_file->name);
12172 }
12173
12174 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12175 htab->version = version;
12176 htab->nr_columns = nr_columns;
12177 htab->nr_units = nr_units;
12178 htab->nr_slots = nr_slots;
12179 htab->hash_table = index_ptr;
12180 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12181
12182 /* Exit early if the table is empty. */
12183 if (nr_slots == 0 || nr_units == 0
12184 || (version == 2 && nr_columns == 0))
12185 {
12186 /* All must be zero. */
12187 if (nr_slots != 0 || nr_units != 0
12188 || (version == 2 && nr_columns != 0))
12189 {
12190 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12191 " all zero [in modules %s]"),
12192 dwp_file->name);
12193 }
12194 return htab;
12195 }
12196
12197 if (version == 1)
12198 {
12199 htab->section_pool.v1.indices =
12200 htab->unit_table + sizeof (uint32_t) * nr_slots;
12201 /* It's harder to decide whether the section is too small in v1.
12202 V1 is deprecated anyway so we punt. */
12203 }
12204 else
12205 {
12206 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12207 int *ids = htab->section_pool.v2.section_ids;
12208 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12209 /* Reverse map for error checking. */
12210 int ids_seen[DW_SECT_MAX + 1];
12211 int i;
12212
12213 if (nr_columns < 2)
12214 {
12215 error (_("Dwarf Error: bad DWP hash table, too few columns"
12216 " in section table [in module %s]"),
12217 dwp_file->name);
12218 }
12219 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12220 {
12221 error (_("Dwarf Error: bad DWP hash table, too many columns"
12222 " in section table [in module %s]"),
12223 dwp_file->name);
12224 }
12225 memset (ids, 255, sizeof_ids);
12226 memset (ids_seen, 255, sizeof (ids_seen));
12227 for (i = 0; i < nr_columns; ++i)
12228 {
12229 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12230
12231 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12232 {
12233 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12234 " in section table [in module %s]"),
12235 id, dwp_file->name);
12236 }
12237 if (ids_seen[id] != -1)
12238 {
12239 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12240 " id %d in section table [in module %s]"),
12241 id, dwp_file->name);
12242 }
12243 ids_seen[id] = i;
12244 ids[i] = id;
12245 }
12246 /* Must have exactly one info or types section. */
12247 if (((ids_seen[DW_SECT_INFO] != -1)
12248 + (ids_seen[DW_SECT_TYPES] != -1))
12249 != 1)
12250 {
12251 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12252 " DWO info/types section [in module %s]"),
12253 dwp_file->name);
12254 }
12255 /* Must have an abbrev section. */
12256 if (ids_seen[DW_SECT_ABBREV] == -1)
12257 {
12258 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12259 " section [in module %s]"),
12260 dwp_file->name);
12261 }
12262 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12263 htab->section_pool.v2.sizes =
12264 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12265 * nr_units * nr_columns);
12266 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12267 * nr_units * nr_columns))
12268 > index_end)
12269 {
12270 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12271 " [in module %s]"),
12272 dwp_file->name);
12273 }
12274 }
12275
12276 return htab;
12277 }
12278
12279 /* Update SECTIONS with the data from SECTP.
12280
12281 This function is like the other "locate" section routines that are
12282 passed to bfd_map_over_sections, but in this context the sections to
12283 read comes from the DWP V1 hash table, not the full ELF section table.
12284
12285 The result is non-zero for success, or zero if an error was found. */
12286
12287 static int
12288 locate_v1_virtual_dwo_sections (asection *sectp,
12289 struct virtual_v1_dwo_sections *sections)
12290 {
12291 const struct dwop_section_names *names = &dwop_section_names;
12292
12293 if (section_is_p (sectp->name, &names->abbrev_dwo))
12294 {
12295 /* There can be only one. */
12296 if (sections->abbrev.s.section != NULL)
12297 return 0;
12298 sections->abbrev.s.section = sectp;
12299 sections->abbrev.size = bfd_get_section_size (sectp);
12300 }
12301 else if (section_is_p (sectp->name, &names->info_dwo)
12302 || section_is_p (sectp->name, &names->types_dwo))
12303 {
12304 /* There can be only one. */
12305 if (sections->info_or_types.s.section != NULL)
12306 return 0;
12307 sections->info_or_types.s.section = sectp;
12308 sections->info_or_types.size = bfd_get_section_size (sectp);
12309 }
12310 else if (section_is_p (sectp->name, &names->line_dwo))
12311 {
12312 /* There can be only one. */
12313 if (sections->line.s.section != NULL)
12314 return 0;
12315 sections->line.s.section = sectp;
12316 sections->line.size = bfd_get_section_size (sectp);
12317 }
12318 else if (section_is_p (sectp->name, &names->loc_dwo))
12319 {
12320 /* There can be only one. */
12321 if (sections->loc.s.section != NULL)
12322 return 0;
12323 sections->loc.s.section = sectp;
12324 sections->loc.size = bfd_get_section_size (sectp);
12325 }
12326 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12327 {
12328 /* There can be only one. */
12329 if (sections->macinfo.s.section != NULL)
12330 return 0;
12331 sections->macinfo.s.section = sectp;
12332 sections->macinfo.size = bfd_get_section_size (sectp);
12333 }
12334 else if (section_is_p (sectp->name, &names->macro_dwo))
12335 {
12336 /* There can be only one. */
12337 if (sections->macro.s.section != NULL)
12338 return 0;
12339 sections->macro.s.section = sectp;
12340 sections->macro.size = bfd_get_section_size (sectp);
12341 }
12342 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12343 {
12344 /* There can be only one. */
12345 if (sections->str_offsets.s.section != NULL)
12346 return 0;
12347 sections->str_offsets.s.section = sectp;
12348 sections->str_offsets.size = bfd_get_section_size (sectp);
12349 }
12350 else
12351 {
12352 /* No other kind of section is valid. */
12353 return 0;
12354 }
12355
12356 return 1;
12357 }
12358
12359 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12360 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12361 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12362 This is for DWP version 1 files. */
12363
12364 static struct dwo_unit *
12365 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12366 struct dwp_file *dwp_file,
12367 uint32_t unit_index,
12368 const char *comp_dir,
12369 ULONGEST signature, int is_debug_types)
12370 {
12371 struct objfile *objfile = dwarf2_per_objfile->objfile;
12372 const struct dwp_hash_table *dwp_htab =
12373 is_debug_types ? dwp_file->tus : dwp_file->cus;
12374 bfd *dbfd = dwp_file->dbfd.get ();
12375 const char *kind = is_debug_types ? "TU" : "CU";
12376 struct dwo_file *dwo_file;
12377 struct dwo_unit *dwo_unit;
12378 struct virtual_v1_dwo_sections sections;
12379 void **dwo_file_slot;
12380 int i;
12381
12382 gdb_assert (dwp_file->version == 1);
12383
12384 if (dwarf_read_debug)
12385 {
12386 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12387 kind,
12388 pulongest (unit_index), hex_string (signature),
12389 dwp_file->name);
12390 }
12391
12392 /* Fetch the sections of this DWO unit.
12393 Put a limit on the number of sections we look for so that bad data
12394 doesn't cause us to loop forever. */
12395
12396 #define MAX_NR_V1_DWO_SECTIONS \
12397 (1 /* .debug_info or .debug_types */ \
12398 + 1 /* .debug_abbrev */ \
12399 + 1 /* .debug_line */ \
12400 + 1 /* .debug_loc */ \
12401 + 1 /* .debug_str_offsets */ \
12402 + 1 /* .debug_macro or .debug_macinfo */ \
12403 + 1 /* trailing zero */)
12404
12405 memset (&sections, 0, sizeof (sections));
12406
12407 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12408 {
12409 asection *sectp;
12410 uint32_t section_nr =
12411 read_4_bytes (dbfd,
12412 dwp_htab->section_pool.v1.indices
12413 + (unit_index + i) * sizeof (uint32_t));
12414
12415 if (section_nr == 0)
12416 break;
12417 if (section_nr >= dwp_file->num_sections)
12418 {
12419 error (_("Dwarf Error: bad DWP hash table, section number too large"
12420 " [in module %s]"),
12421 dwp_file->name);
12422 }
12423
12424 sectp = dwp_file->elf_sections[section_nr];
12425 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12426 {
12427 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12428 " [in module %s]"),
12429 dwp_file->name);
12430 }
12431 }
12432
12433 if (i < 2
12434 || dwarf2_section_empty_p (&sections.info_or_types)
12435 || dwarf2_section_empty_p (&sections.abbrev))
12436 {
12437 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12438 " [in module %s]"),
12439 dwp_file->name);
12440 }
12441 if (i == MAX_NR_V1_DWO_SECTIONS)
12442 {
12443 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12444 " [in module %s]"),
12445 dwp_file->name);
12446 }
12447
12448 /* It's easier for the rest of the code if we fake a struct dwo_file and
12449 have dwo_unit "live" in that. At least for now.
12450
12451 The DWP file can be made up of a random collection of CUs and TUs.
12452 However, for each CU + set of TUs that came from the same original DWO
12453 file, we can combine them back into a virtual DWO file to save space
12454 (fewer struct dwo_file objects to allocate). Remember that for really
12455 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12456
12457 std::string virtual_dwo_name =
12458 string_printf ("virtual-dwo/%d-%d-%d-%d",
12459 get_section_id (&sections.abbrev),
12460 get_section_id (&sections.line),
12461 get_section_id (&sections.loc),
12462 get_section_id (&sections.str_offsets));
12463 /* Can we use an existing virtual DWO file? */
12464 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12465 virtual_dwo_name.c_str (),
12466 comp_dir);
12467 /* Create one if necessary. */
12468 if (*dwo_file_slot == NULL)
12469 {
12470 if (dwarf_read_debug)
12471 {
12472 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12473 virtual_dwo_name.c_str ());
12474 }
12475 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12476 dwo_file->dwo_name
12477 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12478 virtual_dwo_name.c_str (),
12479 virtual_dwo_name.size ());
12480 dwo_file->comp_dir = comp_dir;
12481 dwo_file->sections.abbrev = sections.abbrev;
12482 dwo_file->sections.line = sections.line;
12483 dwo_file->sections.loc = sections.loc;
12484 dwo_file->sections.macinfo = sections.macinfo;
12485 dwo_file->sections.macro = sections.macro;
12486 dwo_file->sections.str_offsets = sections.str_offsets;
12487 /* The "str" section is global to the entire DWP file. */
12488 dwo_file->sections.str = dwp_file->sections.str;
12489 /* The info or types section is assigned below to dwo_unit,
12490 there's no need to record it in dwo_file.
12491 Also, we can't simply record type sections in dwo_file because
12492 we record a pointer into the vector in dwo_unit. As we collect more
12493 types we'll grow the vector and eventually have to reallocate space
12494 for it, invalidating all copies of pointers into the previous
12495 contents. */
12496 *dwo_file_slot = dwo_file;
12497 }
12498 else
12499 {
12500 if (dwarf_read_debug)
12501 {
12502 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12503 virtual_dwo_name.c_str ());
12504 }
12505 dwo_file = (struct dwo_file *) *dwo_file_slot;
12506 }
12507
12508 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12509 dwo_unit->dwo_file = dwo_file;
12510 dwo_unit->signature = signature;
12511 dwo_unit->section =
12512 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12513 *dwo_unit->section = sections.info_or_types;
12514 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12515
12516 return dwo_unit;
12517 }
12518
12519 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12520 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12521 piece within that section used by a TU/CU, return a virtual section
12522 of just that piece. */
12523
12524 static struct dwarf2_section_info
12525 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12526 struct dwarf2_section_info *section,
12527 bfd_size_type offset, bfd_size_type size)
12528 {
12529 struct dwarf2_section_info result;
12530 asection *sectp;
12531
12532 gdb_assert (section != NULL);
12533 gdb_assert (!section->is_virtual);
12534
12535 memset (&result, 0, sizeof (result));
12536 result.s.containing_section = section;
12537 result.is_virtual = 1;
12538
12539 if (size == 0)
12540 return result;
12541
12542 sectp = get_section_bfd_section (section);
12543
12544 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12545 bounds of the real section. This is a pretty-rare event, so just
12546 flag an error (easier) instead of a warning and trying to cope. */
12547 if (sectp == NULL
12548 || offset + size > bfd_get_section_size (sectp))
12549 {
12550 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12551 " in section %s [in module %s]"),
12552 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12553 objfile_name (dwarf2_per_objfile->objfile));
12554 }
12555
12556 result.virtual_offset = offset;
12557 result.size = size;
12558 return result;
12559 }
12560
12561 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12562 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12563 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12564 This is for DWP version 2 files. */
12565
12566 static struct dwo_unit *
12567 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12568 struct dwp_file *dwp_file,
12569 uint32_t unit_index,
12570 const char *comp_dir,
12571 ULONGEST signature, int is_debug_types)
12572 {
12573 struct objfile *objfile = dwarf2_per_objfile->objfile;
12574 const struct dwp_hash_table *dwp_htab =
12575 is_debug_types ? dwp_file->tus : dwp_file->cus;
12576 bfd *dbfd = dwp_file->dbfd.get ();
12577 const char *kind = is_debug_types ? "TU" : "CU";
12578 struct dwo_file *dwo_file;
12579 struct dwo_unit *dwo_unit;
12580 struct virtual_v2_dwo_sections sections;
12581 void **dwo_file_slot;
12582 int i;
12583
12584 gdb_assert (dwp_file->version == 2);
12585
12586 if (dwarf_read_debug)
12587 {
12588 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12589 kind,
12590 pulongest (unit_index), hex_string (signature),
12591 dwp_file->name);
12592 }
12593
12594 /* Fetch the section offsets of this DWO unit. */
12595
12596 memset (&sections, 0, sizeof (sections));
12597
12598 for (i = 0; i < dwp_htab->nr_columns; ++i)
12599 {
12600 uint32_t offset = read_4_bytes (dbfd,
12601 dwp_htab->section_pool.v2.offsets
12602 + (((unit_index - 1) * dwp_htab->nr_columns
12603 + i)
12604 * sizeof (uint32_t)));
12605 uint32_t size = read_4_bytes (dbfd,
12606 dwp_htab->section_pool.v2.sizes
12607 + (((unit_index - 1) * dwp_htab->nr_columns
12608 + i)
12609 * sizeof (uint32_t)));
12610
12611 switch (dwp_htab->section_pool.v2.section_ids[i])
12612 {
12613 case DW_SECT_INFO:
12614 case DW_SECT_TYPES:
12615 sections.info_or_types_offset = offset;
12616 sections.info_or_types_size = size;
12617 break;
12618 case DW_SECT_ABBREV:
12619 sections.abbrev_offset = offset;
12620 sections.abbrev_size = size;
12621 break;
12622 case DW_SECT_LINE:
12623 sections.line_offset = offset;
12624 sections.line_size = size;
12625 break;
12626 case DW_SECT_LOC:
12627 sections.loc_offset = offset;
12628 sections.loc_size = size;
12629 break;
12630 case DW_SECT_STR_OFFSETS:
12631 sections.str_offsets_offset = offset;
12632 sections.str_offsets_size = size;
12633 break;
12634 case DW_SECT_MACINFO:
12635 sections.macinfo_offset = offset;
12636 sections.macinfo_size = size;
12637 break;
12638 case DW_SECT_MACRO:
12639 sections.macro_offset = offset;
12640 sections.macro_size = size;
12641 break;
12642 }
12643 }
12644
12645 /* It's easier for the rest of the code if we fake a struct dwo_file and
12646 have dwo_unit "live" in that. At least for now.
12647
12648 The DWP file can be made up of a random collection of CUs and TUs.
12649 However, for each CU + set of TUs that came from the same original DWO
12650 file, we can combine them back into a virtual DWO file to save space
12651 (fewer struct dwo_file objects to allocate). Remember that for really
12652 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12653
12654 std::string virtual_dwo_name =
12655 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12656 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12657 (long) (sections.line_size ? sections.line_offset : 0),
12658 (long) (sections.loc_size ? sections.loc_offset : 0),
12659 (long) (sections.str_offsets_size
12660 ? sections.str_offsets_offset : 0));
12661 /* Can we use an existing virtual DWO file? */
12662 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12663 virtual_dwo_name.c_str (),
12664 comp_dir);
12665 /* Create one if necessary. */
12666 if (*dwo_file_slot == NULL)
12667 {
12668 if (dwarf_read_debug)
12669 {
12670 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12671 virtual_dwo_name.c_str ());
12672 }
12673 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12674 dwo_file->dwo_name
12675 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12676 virtual_dwo_name.c_str (),
12677 virtual_dwo_name.size ());
12678 dwo_file->comp_dir = comp_dir;
12679 dwo_file->sections.abbrev =
12680 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12681 sections.abbrev_offset, sections.abbrev_size);
12682 dwo_file->sections.line =
12683 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12684 sections.line_offset, sections.line_size);
12685 dwo_file->sections.loc =
12686 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12687 sections.loc_offset, sections.loc_size);
12688 dwo_file->sections.macinfo =
12689 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12690 sections.macinfo_offset, sections.macinfo_size);
12691 dwo_file->sections.macro =
12692 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12693 sections.macro_offset, sections.macro_size);
12694 dwo_file->sections.str_offsets =
12695 create_dwp_v2_section (dwarf2_per_objfile,
12696 &dwp_file->sections.str_offsets,
12697 sections.str_offsets_offset,
12698 sections.str_offsets_size);
12699 /* The "str" section is global to the entire DWP file. */
12700 dwo_file->sections.str = dwp_file->sections.str;
12701 /* The info or types section is assigned below to dwo_unit,
12702 there's no need to record it in dwo_file.
12703 Also, we can't simply record type sections in dwo_file because
12704 we record a pointer into the vector in dwo_unit. As we collect more
12705 types we'll grow the vector and eventually have to reallocate space
12706 for it, invalidating all copies of pointers into the previous
12707 contents. */
12708 *dwo_file_slot = dwo_file;
12709 }
12710 else
12711 {
12712 if (dwarf_read_debug)
12713 {
12714 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12715 virtual_dwo_name.c_str ());
12716 }
12717 dwo_file = (struct dwo_file *) *dwo_file_slot;
12718 }
12719
12720 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12721 dwo_unit->dwo_file = dwo_file;
12722 dwo_unit->signature = signature;
12723 dwo_unit->section =
12724 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12725 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12726 is_debug_types
12727 ? &dwp_file->sections.types
12728 : &dwp_file->sections.info,
12729 sections.info_or_types_offset,
12730 sections.info_or_types_size);
12731 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12732
12733 return dwo_unit;
12734 }
12735
12736 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12737 Returns NULL if the signature isn't found. */
12738
12739 static struct dwo_unit *
12740 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12741 struct dwp_file *dwp_file, const char *comp_dir,
12742 ULONGEST signature, int is_debug_types)
12743 {
12744 const struct dwp_hash_table *dwp_htab =
12745 is_debug_types ? dwp_file->tus : dwp_file->cus;
12746 bfd *dbfd = dwp_file->dbfd.get ();
12747 uint32_t mask = dwp_htab->nr_slots - 1;
12748 uint32_t hash = signature & mask;
12749 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12750 unsigned int i;
12751 void **slot;
12752 struct dwo_unit find_dwo_cu;
12753
12754 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12755 find_dwo_cu.signature = signature;
12756 slot = htab_find_slot (is_debug_types
12757 ? dwp_file->loaded_tus
12758 : dwp_file->loaded_cus,
12759 &find_dwo_cu, INSERT);
12760
12761 if (*slot != NULL)
12762 return (struct dwo_unit *) *slot;
12763
12764 /* Use a for loop so that we don't loop forever on bad debug info. */
12765 for (i = 0; i < dwp_htab->nr_slots; ++i)
12766 {
12767 ULONGEST signature_in_table;
12768
12769 signature_in_table =
12770 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12771 if (signature_in_table == signature)
12772 {
12773 uint32_t unit_index =
12774 read_4_bytes (dbfd,
12775 dwp_htab->unit_table + hash * sizeof (uint32_t));
12776
12777 if (dwp_file->version == 1)
12778 {
12779 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12780 dwp_file, unit_index,
12781 comp_dir, signature,
12782 is_debug_types);
12783 }
12784 else
12785 {
12786 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12787 dwp_file, unit_index,
12788 comp_dir, signature,
12789 is_debug_types);
12790 }
12791 return (struct dwo_unit *) *slot;
12792 }
12793 if (signature_in_table == 0)
12794 return NULL;
12795 hash = (hash + hash2) & mask;
12796 }
12797
12798 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12799 " [in module %s]"),
12800 dwp_file->name);
12801 }
12802
12803 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12804 Open the file specified by FILE_NAME and hand it off to BFD for
12805 preliminary analysis. Return a newly initialized bfd *, which
12806 includes a canonicalized copy of FILE_NAME.
12807 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12808 SEARCH_CWD is true if the current directory is to be searched.
12809 It will be searched before debug-file-directory.
12810 If successful, the file is added to the bfd include table of the
12811 objfile's bfd (see gdb_bfd_record_inclusion).
12812 If unable to find/open the file, return NULL.
12813 NOTE: This function is derived from symfile_bfd_open. */
12814
12815 static gdb_bfd_ref_ptr
12816 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12817 const char *file_name, int is_dwp, int search_cwd)
12818 {
12819 int desc;
12820 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12821 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12822 to debug_file_directory. */
12823 const char *search_path;
12824 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12825
12826 gdb::unique_xmalloc_ptr<char> search_path_holder;
12827 if (search_cwd)
12828 {
12829 if (*debug_file_directory != '\0')
12830 {
12831 search_path_holder.reset (concat (".", dirname_separator_string,
12832 debug_file_directory,
12833 (char *) NULL));
12834 search_path = search_path_holder.get ();
12835 }
12836 else
12837 search_path = ".";
12838 }
12839 else
12840 search_path = debug_file_directory;
12841
12842 openp_flags flags = OPF_RETURN_REALPATH;
12843 if (is_dwp)
12844 flags |= OPF_SEARCH_IN_PATH;
12845
12846 gdb::unique_xmalloc_ptr<char> absolute_name;
12847 desc = openp (search_path, flags, file_name,
12848 O_RDONLY | O_BINARY, &absolute_name);
12849 if (desc < 0)
12850 return NULL;
12851
12852 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12853 gnutarget, desc));
12854 if (sym_bfd == NULL)
12855 return NULL;
12856 bfd_set_cacheable (sym_bfd.get (), 1);
12857
12858 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12859 return NULL;
12860
12861 /* Success. Record the bfd as having been included by the objfile's bfd.
12862 This is important because things like demangled_names_hash lives in the
12863 objfile's per_bfd space and may have references to things like symbol
12864 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12865 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12866
12867 return sym_bfd;
12868 }
12869
12870 /* Try to open DWO file FILE_NAME.
12871 COMP_DIR is the DW_AT_comp_dir attribute.
12872 The result is the bfd handle of the file.
12873 If there is a problem finding or opening the file, return NULL.
12874 Upon success, the canonicalized path of the file is stored in the bfd,
12875 same as symfile_bfd_open. */
12876
12877 static gdb_bfd_ref_ptr
12878 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12879 const char *file_name, const char *comp_dir)
12880 {
12881 if (IS_ABSOLUTE_PATH (file_name))
12882 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12883 0 /*is_dwp*/, 0 /*search_cwd*/);
12884
12885 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12886
12887 if (comp_dir != NULL)
12888 {
12889 char *path_to_try = concat (comp_dir, SLASH_STRING,
12890 file_name, (char *) NULL);
12891
12892 /* NOTE: If comp_dir is a relative path, this will also try the
12893 search path, which seems useful. */
12894 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12895 path_to_try,
12896 0 /*is_dwp*/,
12897 1 /*search_cwd*/));
12898 xfree (path_to_try);
12899 if (abfd != NULL)
12900 return abfd;
12901 }
12902
12903 /* That didn't work, try debug-file-directory, which, despite its name,
12904 is a list of paths. */
12905
12906 if (*debug_file_directory == '\0')
12907 return NULL;
12908
12909 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12910 0 /*is_dwp*/, 1 /*search_cwd*/);
12911 }
12912
12913 /* This function is mapped across the sections and remembers the offset and
12914 size of each of the DWO debugging sections we are interested in. */
12915
12916 static void
12917 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12918 {
12919 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12920 const struct dwop_section_names *names = &dwop_section_names;
12921
12922 if (section_is_p (sectp->name, &names->abbrev_dwo))
12923 {
12924 dwo_sections->abbrev.s.section = sectp;
12925 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12926 }
12927 else if (section_is_p (sectp->name, &names->info_dwo))
12928 {
12929 dwo_sections->info.s.section = sectp;
12930 dwo_sections->info.size = bfd_get_section_size (sectp);
12931 }
12932 else if (section_is_p (sectp->name, &names->line_dwo))
12933 {
12934 dwo_sections->line.s.section = sectp;
12935 dwo_sections->line.size = bfd_get_section_size (sectp);
12936 }
12937 else if (section_is_p (sectp->name, &names->loc_dwo))
12938 {
12939 dwo_sections->loc.s.section = sectp;
12940 dwo_sections->loc.size = bfd_get_section_size (sectp);
12941 }
12942 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12943 {
12944 dwo_sections->macinfo.s.section = sectp;
12945 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12946 }
12947 else if (section_is_p (sectp->name, &names->macro_dwo))
12948 {
12949 dwo_sections->macro.s.section = sectp;
12950 dwo_sections->macro.size = bfd_get_section_size (sectp);
12951 }
12952 else if (section_is_p (sectp->name, &names->str_dwo))
12953 {
12954 dwo_sections->str.s.section = sectp;
12955 dwo_sections->str.size = bfd_get_section_size (sectp);
12956 }
12957 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12958 {
12959 dwo_sections->str_offsets.s.section = sectp;
12960 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12961 }
12962 else if (section_is_p (sectp->name, &names->types_dwo))
12963 {
12964 struct dwarf2_section_info type_section;
12965
12966 memset (&type_section, 0, sizeof (type_section));
12967 type_section.s.section = sectp;
12968 type_section.size = bfd_get_section_size (sectp);
12969 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12970 &type_section);
12971 }
12972 }
12973
12974 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12975 by PER_CU. This is for the non-DWP case.
12976 The result is NULL if DWO_NAME can't be found. */
12977
12978 static struct dwo_file *
12979 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12980 const char *dwo_name, const char *comp_dir)
12981 {
12982 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12983 struct objfile *objfile = dwarf2_per_objfile->objfile;
12984
12985 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12986 if (dbfd == NULL)
12987 {
12988 if (dwarf_read_debug)
12989 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12990 return NULL;
12991 }
12992
12993 /* We use a unique pointer here, despite the obstack allocation,
12994 because a dwo_file needs some cleanup if it is abandoned. */
12995 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12996 struct dwo_file));
12997 dwo_file->dwo_name = dwo_name;
12998 dwo_file->comp_dir = comp_dir;
12999 dwo_file->dbfd = dbfd.release ();
13000
13001 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13002 &dwo_file->sections);
13003
13004 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13005 dwo_file->cus);
13006
13007 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13008 dwo_file->sections.types, dwo_file->tus);
13009
13010 if (dwarf_read_debug)
13011 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13012
13013 return dwo_file.release ();
13014 }
13015
13016 /* This function is mapped across the sections and remembers the offset and
13017 size of each of the DWP debugging sections common to version 1 and 2 that
13018 we are interested in. */
13019
13020 static void
13021 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13022 void *dwp_file_ptr)
13023 {
13024 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13025 const struct dwop_section_names *names = &dwop_section_names;
13026 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13027
13028 /* Record the ELF section number for later lookup: this is what the
13029 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13030 gdb_assert (elf_section_nr < dwp_file->num_sections);
13031 dwp_file->elf_sections[elf_section_nr] = sectp;
13032
13033 /* Look for specific sections that we need. */
13034 if (section_is_p (sectp->name, &names->str_dwo))
13035 {
13036 dwp_file->sections.str.s.section = sectp;
13037 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13038 }
13039 else if (section_is_p (sectp->name, &names->cu_index))
13040 {
13041 dwp_file->sections.cu_index.s.section = sectp;
13042 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13043 }
13044 else if (section_is_p (sectp->name, &names->tu_index))
13045 {
13046 dwp_file->sections.tu_index.s.section = sectp;
13047 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13048 }
13049 }
13050
13051 /* This function is mapped across the sections and remembers the offset and
13052 size of each of the DWP version 2 debugging sections that we are interested
13053 in. This is split into a separate function because we don't know if we
13054 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13055
13056 static void
13057 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13058 {
13059 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13060 const struct dwop_section_names *names = &dwop_section_names;
13061 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13062
13063 /* Record the ELF section number for later lookup: this is what the
13064 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13065 gdb_assert (elf_section_nr < dwp_file->num_sections);
13066 dwp_file->elf_sections[elf_section_nr] = sectp;
13067
13068 /* Look for specific sections that we need. */
13069 if (section_is_p (sectp->name, &names->abbrev_dwo))
13070 {
13071 dwp_file->sections.abbrev.s.section = sectp;
13072 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13073 }
13074 else if (section_is_p (sectp->name, &names->info_dwo))
13075 {
13076 dwp_file->sections.info.s.section = sectp;
13077 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13078 }
13079 else if (section_is_p (sectp->name, &names->line_dwo))
13080 {
13081 dwp_file->sections.line.s.section = sectp;
13082 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13083 }
13084 else if (section_is_p (sectp->name, &names->loc_dwo))
13085 {
13086 dwp_file->sections.loc.s.section = sectp;
13087 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13088 }
13089 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13090 {
13091 dwp_file->sections.macinfo.s.section = sectp;
13092 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13093 }
13094 else if (section_is_p (sectp->name, &names->macro_dwo))
13095 {
13096 dwp_file->sections.macro.s.section = sectp;
13097 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13098 }
13099 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13100 {
13101 dwp_file->sections.str_offsets.s.section = sectp;
13102 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13103 }
13104 else if (section_is_p (sectp->name, &names->types_dwo))
13105 {
13106 dwp_file->sections.types.s.section = sectp;
13107 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13108 }
13109 }
13110
13111 /* Hash function for dwp_file loaded CUs/TUs. */
13112
13113 static hashval_t
13114 hash_dwp_loaded_cutus (const void *item)
13115 {
13116 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13117
13118 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13119 return dwo_unit->signature;
13120 }
13121
13122 /* Equality function for dwp_file loaded CUs/TUs. */
13123
13124 static int
13125 eq_dwp_loaded_cutus (const void *a, const void *b)
13126 {
13127 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13128 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13129
13130 return dua->signature == dub->signature;
13131 }
13132
13133 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13134
13135 static htab_t
13136 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13137 {
13138 return htab_create_alloc_ex (3,
13139 hash_dwp_loaded_cutus,
13140 eq_dwp_loaded_cutus,
13141 NULL,
13142 &objfile->objfile_obstack,
13143 hashtab_obstack_allocate,
13144 dummy_obstack_deallocate);
13145 }
13146
13147 /* Try to open DWP file FILE_NAME.
13148 The result is the bfd handle of the file.
13149 If there is a problem finding or opening the file, return NULL.
13150 Upon success, the canonicalized path of the file is stored in the bfd,
13151 same as symfile_bfd_open. */
13152
13153 static gdb_bfd_ref_ptr
13154 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13155 const char *file_name)
13156 {
13157 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13158 1 /*is_dwp*/,
13159 1 /*search_cwd*/));
13160 if (abfd != NULL)
13161 return abfd;
13162
13163 /* Work around upstream bug 15652.
13164 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13165 [Whether that's a "bug" is debatable, but it is getting in our way.]
13166 We have no real idea where the dwp file is, because gdb's realpath-ing
13167 of the executable's path may have discarded the needed info.
13168 [IWBN if the dwp file name was recorded in the executable, akin to
13169 .gnu_debuglink, but that doesn't exist yet.]
13170 Strip the directory from FILE_NAME and search again. */
13171 if (*debug_file_directory != '\0')
13172 {
13173 /* Don't implicitly search the current directory here.
13174 If the user wants to search "." to handle this case,
13175 it must be added to debug-file-directory. */
13176 return try_open_dwop_file (dwarf2_per_objfile,
13177 lbasename (file_name), 1 /*is_dwp*/,
13178 0 /*search_cwd*/);
13179 }
13180
13181 return NULL;
13182 }
13183
13184 /* Initialize the use of the DWP file for the current objfile.
13185 By convention the name of the DWP file is ${objfile}.dwp.
13186 The result is NULL if it can't be found. */
13187
13188 static std::unique_ptr<struct dwp_file>
13189 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13190 {
13191 struct objfile *objfile = dwarf2_per_objfile->objfile;
13192
13193 /* Try to find first .dwp for the binary file before any symbolic links
13194 resolving. */
13195
13196 /* If the objfile is a debug file, find the name of the real binary
13197 file and get the name of dwp file from there. */
13198 std::string dwp_name;
13199 if (objfile->separate_debug_objfile_backlink != NULL)
13200 {
13201 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13202 const char *backlink_basename = lbasename (backlink->original_name);
13203
13204 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13205 }
13206 else
13207 dwp_name = objfile->original_name;
13208
13209 dwp_name += ".dwp";
13210
13211 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13212 if (dbfd == NULL
13213 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13214 {
13215 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13216 dwp_name = objfile_name (objfile);
13217 dwp_name += ".dwp";
13218 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13219 }
13220
13221 if (dbfd == NULL)
13222 {
13223 if (dwarf_read_debug)
13224 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13225 return std::unique_ptr<dwp_file> ();
13226 }
13227
13228 const char *name = bfd_get_filename (dbfd.get ());
13229 std::unique_ptr<struct dwp_file> dwp_file
13230 (new struct dwp_file (name, std::move (dbfd)));
13231
13232 /* +1: section 0 is unused */
13233 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13234 dwp_file->elf_sections =
13235 OBSTACK_CALLOC (&objfile->objfile_obstack,
13236 dwp_file->num_sections, asection *);
13237
13238 bfd_map_over_sections (dwp_file->dbfd.get (),
13239 dwarf2_locate_common_dwp_sections,
13240 dwp_file.get ());
13241
13242 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13243 0);
13244
13245 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13246 1);
13247
13248 /* The DWP file version is stored in the hash table. Oh well. */
13249 if (dwp_file->cus && dwp_file->tus
13250 && dwp_file->cus->version != dwp_file->tus->version)
13251 {
13252 /* Technically speaking, we should try to limp along, but this is
13253 pretty bizarre. We use pulongest here because that's the established
13254 portability solution (e.g, we cannot use %u for uint32_t). */
13255 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13256 " TU version %s [in DWP file %s]"),
13257 pulongest (dwp_file->cus->version),
13258 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13259 }
13260
13261 if (dwp_file->cus)
13262 dwp_file->version = dwp_file->cus->version;
13263 else if (dwp_file->tus)
13264 dwp_file->version = dwp_file->tus->version;
13265 else
13266 dwp_file->version = 2;
13267
13268 if (dwp_file->version == 2)
13269 bfd_map_over_sections (dwp_file->dbfd.get (),
13270 dwarf2_locate_v2_dwp_sections,
13271 dwp_file.get ());
13272
13273 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13274 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13275
13276 if (dwarf_read_debug)
13277 {
13278 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13279 fprintf_unfiltered (gdb_stdlog,
13280 " %s CUs, %s TUs\n",
13281 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13282 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13283 }
13284
13285 return dwp_file;
13286 }
13287
13288 /* Wrapper around open_and_init_dwp_file, only open it once. */
13289
13290 static struct dwp_file *
13291 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13292 {
13293 if (! dwarf2_per_objfile->dwp_checked)
13294 {
13295 dwarf2_per_objfile->dwp_file
13296 = open_and_init_dwp_file (dwarf2_per_objfile);
13297 dwarf2_per_objfile->dwp_checked = 1;
13298 }
13299 return dwarf2_per_objfile->dwp_file.get ();
13300 }
13301
13302 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13303 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13304 or in the DWP file for the objfile, referenced by THIS_UNIT.
13305 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13306 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13307
13308 This is called, for example, when wanting to read a variable with a
13309 complex location. Therefore we don't want to do file i/o for every call.
13310 Therefore we don't want to look for a DWO file on every call.
13311 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13312 then we check if we've already seen DWO_NAME, and only THEN do we check
13313 for a DWO file.
13314
13315 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13316 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13317
13318 static struct dwo_unit *
13319 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13320 const char *dwo_name, const char *comp_dir,
13321 ULONGEST signature, int is_debug_types)
13322 {
13323 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13324 struct objfile *objfile = dwarf2_per_objfile->objfile;
13325 const char *kind = is_debug_types ? "TU" : "CU";
13326 void **dwo_file_slot;
13327 struct dwo_file *dwo_file;
13328 struct dwp_file *dwp_file;
13329
13330 /* First see if there's a DWP file.
13331 If we have a DWP file but didn't find the DWO inside it, don't
13332 look for the original DWO file. It makes gdb behave differently
13333 depending on whether one is debugging in the build tree. */
13334
13335 dwp_file = get_dwp_file (dwarf2_per_objfile);
13336 if (dwp_file != NULL)
13337 {
13338 const struct dwp_hash_table *dwp_htab =
13339 is_debug_types ? dwp_file->tus : dwp_file->cus;
13340
13341 if (dwp_htab != NULL)
13342 {
13343 struct dwo_unit *dwo_cutu =
13344 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13345 signature, is_debug_types);
13346
13347 if (dwo_cutu != NULL)
13348 {
13349 if (dwarf_read_debug)
13350 {
13351 fprintf_unfiltered (gdb_stdlog,
13352 "Virtual DWO %s %s found: @%s\n",
13353 kind, hex_string (signature),
13354 host_address_to_string (dwo_cutu));
13355 }
13356 return dwo_cutu;
13357 }
13358 }
13359 }
13360 else
13361 {
13362 /* No DWP file, look for the DWO file. */
13363
13364 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13365 dwo_name, comp_dir);
13366 if (*dwo_file_slot == NULL)
13367 {
13368 /* Read in the file and build a table of the CUs/TUs it contains. */
13369 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13370 }
13371 /* NOTE: This will be NULL if unable to open the file. */
13372 dwo_file = (struct dwo_file *) *dwo_file_slot;
13373
13374 if (dwo_file != NULL)
13375 {
13376 struct dwo_unit *dwo_cutu = NULL;
13377
13378 if (is_debug_types && dwo_file->tus)
13379 {
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu
13385 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13386 }
13387 else if (!is_debug_types && dwo_file->cus)
13388 {
13389 struct dwo_unit find_dwo_cutu;
13390
13391 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13392 find_dwo_cutu.signature = signature;
13393 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13394 &find_dwo_cutu);
13395 }
13396
13397 if (dwo_cutu != NULL)
13398 {
13399 if (dwarf_read_debug)
13400 {
13401 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13402 kind, dwo_name, hex_string (signature),
13403 host_address_to_string (dwo_cutu));
13404 }
13405 return dwo_cutu;
13406 }
13407 }
13408 }
13409
13410 /* We didn't find it. This could mean a dwo_id mismatch, or
13411 someone deleted the DWO/DWP file, or the search path isn't set up
13412 correctly to find the file. */
13413
13414 if (dwarf_read_debug)
13415 {
13416 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13417 kind, dwo_name, hex_string (signature));
13418 }
13419
13420 /* This is a warning and not a complaint because it can be caused by
13421 pilot error (e.g., user accidentally deleting the DWO). */
13422 {
13423 /* Print the name of the DWP file if we looked there, helps the user
13424 better diagnose the problem. */
13425 std::string dwp_text;
13426
13427 if (dwp_file != NULL)
13428 dwp_text = string_printf (" [in DWP file %s]",
13429 lbasename (dwp_file->name));
13430
13431 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13432 " [in module %s]"),
13433 kind, dwo_name, hex_string (signature),
13434 dwp_text.c_str (),
13435 this_unit->is_debug_types ? "TU" : "CU",
13436 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13437 }
13438 return NULL;
13439 }
13440
13441 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13442 See lookup_dwo_cutu_unit for details. */
13443
13444 static struct dwo_unit *
13445 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13446 const char *dwo_name, const char *comp_dir,
13447 ULONGEST signature)
13448 {
13449 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13450 }
13451
13452 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13453 See lookup_dwo_cutu_unit for details. */
13454
13455 static struct dwo_unit *
13456 lookup_dwo_type_unit (struct signatured_type *this_tu,
13457 const char *dwo_name, const char *comp_dir)
13458 {
13459 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13460 }
13461
13462 /* Traversal function for queue_and_load_all_dwo_tus. */
13463
13464 static int
13465 queue_and_load_dwo_tu (void **slot, void *info)
13466 {
13467 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13468 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13469 ULONGEST signature = dwo_unit->signature;
13470 struct signatured_type *sig_type =
13471 lookup_dwo_signatured_type (per_cu->cu, signature);
13472
13473 if (sig_type != NULL)
13474 {
13475 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13476
13477 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13478 a real dependency of PER_CU on SIG_TYPE. That is detected later
13479 while processing PER_CU. */
13480 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13481 load_full_type_unit (sig_cu);
13482 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13483 }
13484
13485 return 1;
13486 }
13487
13488 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13489 The DWO may have the only definition of the type, though it may not be
13490 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13492
13493 static void
13494 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13495 {
13496 struct dwo_unit *dwo_unit;
13497 struct dwo_file *dwo_file;
13498
13499 gdb_assert (!per_cu->is_debug_types);
13500 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13501 gdb_assert (per_cu->cu != NULL);
13502
13503 dwo_unit = per_cu->cu->dwo_unit;
13504 gdb_assert (dwo_unit != NULL);
13505
13506 dwo_file = dwo_unit->dwo_file;
13507 if (dwo_file->tus != NULL)
13508 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13509 }
13510
13511 /* Free all resources associated with DWO_FILE.
13512 Close the DWO file and munmap the sections. */
13513
13514 static void
13515 free_dwo_file (struct dwo_file *dwo_file)
13516 {
13517 /* Note: dbfd is NULL for virtual DWO files. */
13518 gdb_bfd_unref (dwo_file->dbfd);
13519
13520 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13521 }
13522
13523 /* Traversal function for free_dwo_files. */
13524
13525 static int
13526 free_dwo_file_from_slot (void **slot, void *info)
13527 {
13528 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13529
13530 free_dwo_file (dwo_file);
13531
13532 return 1;
13533 }
13534
13535 /* Free all resources associated with DWO_FILES. */
13536
13537 static void
13538 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13539 {
13540 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13541 }
13542 \f
13543 /* Read in various DIEs. */
13544
13545 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13546 Inherit only the children of the DW_AT_abstract_origin DIE not being
13547 already referenced by DW_AT_abstract_origin from the children of the
13548 current DIE. */
13549
13550 static void
13551 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13552 {
13553 struct die_info *child_die;
13554 sect_offset *offsetp;
13555 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13556 struct die_info *origin_die;
13557 /* Iterator of the ORIGIN_DIE children. */
13558 struct die_info *origin_child_die;
13559 struct attribute *attr;
13560 struct dwarf2_cu *origin_cu;
13561 struct pending **origin_previous_list_in_scope;
13562
13563 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13564 if (!attr)
13565 return;
13566
13567 /* Note that following die references may follow to a die in a
13568 different cu. */
13569
13570 origin_cu = cu;
13571 origin_die = follow_die_ref (die, attr, &origin_cu);
13572
13573 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13574 symbols in. */
13575 origin_previous_list_in_scope = origin_cu->list_in_scope;
13576 origin_cu->list_in_scope = cu->list_in_scope;
13577
13578 if (die->tag != origin_die->tag
13579 && !(die->tag == DW_TAG_inlined_subroutine
13580 && origin_die->tag == DW_TAG_subprogram))
13581 complaint (_("DIE %s and its abstract origin %s have different tags"),
13582 sect_offset_str (die->sect_off),
13583 sect_offset_str (origin_die->sect_off));
13584
13585 std::vector<sect_offset> offsets;
13586
13587 for (child_die = die->child;
13588 child_die && child_die->tag;
13589 child_die = sibling_die (child_die))
13590 {
13591 struct die_info *child_origin_die;
13592 struct dwarf2_cu *child_origin_cu;
13593
13594 /* We are trying to process concrete instance entries:
13595 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13596 it's not relevant to our analysis here. i.e. detecting DIEs that are
13597 present in the abstract instance but not referenced in the concrete
13598 one. */
13599 if (child_die->tag == DW_TAG_call_site
13600 || child_die->tag == DW_TAG_GNU_call_site)
13601 continue;
13602
13603 /* For each CHILD_DIE, find the corresponding child of
13604 ORIGIN_DIE. If there is more than one layer of
13605 DW_AT_abstract_origin, follow them all; there shouldn't be,
13606 but GCC versions at least through 4.4 generate this (GCC PR
13607 40573). */
13608 child_origin_die = child_die;
13609 child_origin_cu = cu;
13610 while (1)
13611 {
13612 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13613 child_origin_cu);
13614 if (attr == NULL)
13615 break;
13616 child_origin_die = follow_die_ref (child_origin_die, attr,
13617 &child_origin_cu);
13618 }
13619
13620 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13621 counterpart may exist. */
13622 if (child_origin_die != child_die)
13623 {
13624 if (child_die->tag != child_origin_die->tag
13625 && !(child_die->tag == DW_TAG_inlined_subroutine
13626 && child_origin_die->tag == DW_TAG_subprogram))
13627 complaint (_("Child DIE %s and its abstract origin %s have "
13628 "different tags"),
13629 sect_offset_str (child_die->sect_off),
13630 sect_offset_str (child_origin_die->sect_off));
13631 if (child_origin_die->parent != origin_die)
13632 complaint (_("Child DIE %s and its abstract origin %s have "
13633 "different parents"),
13634 sect_offset_str (child_die->sect_off),
13635 sect_offset_str (child_origin_die->sect_off));
13636 else
13637 offsets.push_back (child_origin_die->sect_off);
13638 }
13639 }
13640 std::sort (offsets.begin (), offsets.end ());
13641 sect_offset *offsets_end = offsets.data () + offsets.size ();
13642 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13643 if (offsetp[-1] == *offsetp)
13644 complaint (_("Multiple children of DIE %s refer "
13645 "to DIE %s as their abstract origin"),
13646 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13647
13648 offsetp = offsets.data ();
13649 origin_child_die = origin_die->child;
13650 while (origin_child_die && origin_child_die->tag)
13651 {
13652 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13653 while (offsetp < offsets_end
13654 && *offsetp < origin_child_die->sect_off)
13655 offsetp++;
13656 if (offsetp >= offsets_end
13657 || *offsetp > origin_child_die->sect_off)
13658 {
13659 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13660 Check whether we're already processing ORIGIN_CHILD_DIE.
13661 This can happen with mutually referenced abstract_origins.
13662 PR 16581. */
13663 if (!origin_child_die->in_process)
13664 process_die (origin_child_die, origin_cu);
13665 }
13666 origin_child_die = sibling_die (origin_child_die);
13667 }
13668 origin_cu->list_in_scope = origin_previous_list_in_scope;
13669 }
13670
13671 static void
13672 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13673 {
13674 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13675 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13676 struct context_stack *newobj;
13677 CORE_ADDR lowpc;
13678 CORE_ADDR highpc;
13679 struct die_info *child_die;
13680 struct attribute *attr, *call_line, *call_file;
13681 const char *name;
13682 CORE_ADDR baseaddr;
13683 struct block *block;
13684 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13685 std::vector<struct symbol *> template_args;
13686 struct template_symbol *templ_func = NULL;
13687
13688 if (inlined_func)
13689 {
13690 /* If we do not have call site information, we can't show the
13691 caller of this inlined function. That's too confusing, so
13692 only use the scope for local variables. */
13693 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13694 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13695 if (call_line == NULL || call_file == NULL)
13696 {
13697 read_lexical_block_scope (die, cu);
13698 return;
13699 }
13700 }
13701
13702 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13703
13704 name = dwarf2_name (die, cu);
13705
13706 /* Ignore functions with missing or empty names. These are actually
13707 illegal according to the DWARF standard. */
13708 if (name == NULL)
13709 {
13710 complaint (_("missing name for subprogram DIE at %s"),
13711 sect_offset_str (die->sect_off));
13712 return;
13713 }
13714
13715 /* Ignore functions with missing or invalid low and high pc attributes. */
13716 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13717 <= PC_BOUNDS_INVALID)
13718 {
13719 attr = dwarf2_attr (die, DW_AT_external, cu);
13720 if (!attr || !DW_UNSND (attr))
13721 complaint (_("cannot get low and high bounds "
13722 "for subprogram DIE at %s"),
13723 sect_offset_str (die->sect_off));
13724 return;
13725 }
13726
13727 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13728 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13729
13730 /* If we have any template arguments, then we must allocate a
13731 different sort of symbol. */
13732 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13733 {
13734 if (child_die->tag == DW_TAG_template_type_param
13735 || child_die->tag == DW_TAG_template_value_param)
13736 {
13737 templ_func = allocate_template_symbol (objfile);
13738 templ_func->subclass = SYMBOL_TEMPLATE;
13739 break;
13740 }
13741 }
13742
13743 newobj = cu->builder->push_context (0, lowpc);
13744 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13745 (struct symbol *) templ_func);
13746
13747 /* If there is a location expression for DW_AT_frame_base, record
13748 it. */
13749 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13750 if (attr)
13751 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13752
13753 /* If there is a location for the static link, record it. */
13754 newobj->static_link = NULL;
13755 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13756 if (attr)
13757 {
13758 newobj->static_link
13759 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13760 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13761 }
13762
13763 cu->list_in_scope = cu->builder->get_local_symbols ();
13764
13765 if (die->child != NULL)
13766 {
13767 child_die = die->child;
13768 while (child_die && child_die->tag)
13769 {
13770 if (child_die->tag == DW_TAG_template_type_param
13771 || child_die->tag == DW_TAG_template_value_param)
13772 {
13773 struct symbol *arg = new_symbol (child_die, NULL, cu);
13774
13775 if (arg != NULL)
13776 template_args.push_back (arg);
13777 }
13778 else
13779 process_die (child_die, cu);
13780 child_die = sibling_die (child_die);
13781 }
13782 }
13783
13784 inherit_abstract_dies (die, cu);
13785
13786 /* If we have a DW_AT_specification, we might need to import using
13787 directives from the context of the specification DIE. See the
13788 comment in determine_prefix. */
13789 if (cu->language == language_cplus
13790 && dwarf2_attr (die, DW_AT_specification, cu))
13791 {
13792 struct dwarf2_cu *spec_cu = cu;
13793 struct die_info *spec_die = die_specification (die, &spec_cu);
13794
13795 while (spec_die)
13796 {
13797 child_die = spec_die->child;
13798 while (child_die && child_die->tag)
13799 {
13800 if (child_die->tag == DW_TAG_imported_module)
13801 process_die (child_die, spec_cu);
13802 child_die = sibling_die (child_die);
13803 }
13804
13805 /* In some cases, GCC generates specification DIEs that
13806 themselves contain DW_AT_specification attributes. */
13807 spec_die = die_specification (spec_die, &spec_cu);
13808 }
13809 }
13810
13811 struct context_stack cstk = cu->builder->pop_context ();
13812 /* Make a block for the local symbols within. */
13813 block = cu->builder->finish_block (cstk.name, cstk.old_blocks,
13814 cstk.static_link, lowpc, highpc);
13815
13816 /* For C++, set the block's scope. */
13817 if ((cu->language == language_cplus
13818 || cu->language == language_fortran
13819 || cu->language == language_d
13820 || cu->language == language_rust)
13821 && cu->processing_has_namespace_info)
13822 block_set_scope (block, determine_prefix (die, cu),
13823 &objfile->objfile_obstack);
13824
13825 /* If we have address ranges, record them. */
13826 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13827
13828 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13829
13830 /* Attach template arguments to function. */
13831 if (!template_args.empty ())
13832 {
13833 gdb_assert (templ_func != NULL);
13834
13835 templ_func->n_template_arguments = template_args.size ();
13836 templ_func->template_arguments
13837 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13838 templ_func->n_template_arguments);
13839 memcpy (templ_func->template_arguments,
13840 template_args.data (),
13841 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13842
13843 /* Make sure that the symtab is set on the new symbols. Even
13844 though they don't appear in this symtab directly, other parts
13845 of gdb assume that symbols do, and this is reasonably
13846 true. */
13847 for (symbol *sym : template_args)
13848 symbol_set_symtab (sym, symbol_symtab (templ_func));
13849 }
13850
13851 /* In C++, we can have functions nested inside functions (e.g., when
13852 a function declares a class that has methods). This means that
13853 when we finish processing a function scope, we may need to go
13854 back to building a containing block's symbol lists. */
13855 *cu->builder->get_local_symbols () = cstk.locals;
13856 cu->builder->set_local_using_directives (cstk.local_using_directives);
13857
13858 /* If we've finished processing a top-level function, subsequent
13859 symbols go in the file symbol list. */
13860 if (cu->builder->outermost_context_p ())
13861 cu->list_in_scope = cu->builder->get_file_symbols ();
13862 }
13863
13864 /* Process all the DIES contained within a lexical block scope. Start
13865 a new scope, process the dies, and then close the scope. */
13866
13867 static void
13868 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13869 {
13870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13872 CORE_ADDR lowpc, highpc;
13873 struct die_info *child_die;
13874 CORE_ADDR baseaddr;
13875
13876 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13877
13878 /* Ignore blocks with missing or invalid low and high pc attributes. */
13879 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13880 as multiple lexical blocks? Handling children in a sane way would
13881 be nasty. Might be easier to properly extend generic blocks to
13882 describe ranges. */
13883 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13884 {
13885 case PC_BOUNDS_NOT_PRESENT:
13886 /* DW_TAG_lexical_block has no attributes, process its children as if
13887 there was no wrapping by that DW_TAG_lexical_block.
13888 GCC does no longer produces such DWARF since GCC r224161. */
13889 for (child_die = die->child;
13890 child_die != NULL && child_die->tag;
13891 child_die = sibling_die (child_die))
13892 process_die (child_die, cu);
13893 return;
13894 case PC_BOUNDS_INVALID:
13895 return;
13896 }
13897 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13898 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13899
13900 cu->builder->push_context (0, lowpc);
13901 if (die->child != NULL)
13902 {
13903 child_die = die->child;
13904 while (child_die && child_die->tag)
13905 {
13906 process_die (child_die, cu);
13907 child_die = sibling_die (child_die);
13908 }
13909 }
13910 inherit_abstract_dies (die, cu);
13911 struct context_stack cstk = cu->builder->pop_context ();
13912
13913 if (*cu->builder->get_local_symbols () != NULL
13914 || (*cu->builder->get_local_using_directives ()) != NULL)
13915 {
13916 struct block *block
13917 = cu->builder->finish_block (0, cstk.old_blocks, NULL,
13918 cstk.start_addr, highpc);
13919
13920 /* Note that recording ranges after traversing children, as we
13921 do here, means that recording a parent's ranges entails
13922 walking across all its children's ranges as they appear in
13923 the address map, which is quadratic behavior.
13924
13925 It would be nicer to record the parent's ranges before
13926 traversing its children, simply overriding whatever you find
13927 there. But since we don't even decide whether to create a
13928 block until after we've traversed its children, that's hard
13929 to do. */
13930 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13931 }
13932 *cu->builder->get_local_symbols () = cstk.locals;
13933 cu->builder->set_local_using_directives (cstk.local_using_directives);
13934 }
13935
13936 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13937
13938 static void
13939 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13940 {
13941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13943 CORE_ADDR pc, baseaddr;
13944 struct attribute *attr;
13945 struct call_site *call_site, call_site_local;
13946 void **slot;
13947 int nparams;
13948 struct die_info *child_die;
13949
13950 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13951
13952 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13953 if (attr == NULL)
13954 {
13955 /* This was a pre-DWARF-5 GNU extension alias
13956 for DW_AT_call_return_pc. */
13957 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13958 }
13959 if (!attr)
13960 {
13961 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13962 "DIE %s [in module %s]"),
13963 sect_offset_str (die->sect_off), objfile_name (objfile));
13964 return;
13965 }
13966 pc = attr_value_as_address (attr) + baseaddr;
13967 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13968
13969 if (cu->call_site_htab == NULL)
13970 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13971 NULL, &objfile->objfile_obstack,
13972 hashtab_obstack_allocate, NULL);
13973 call_site_local.pc = pc;
13974 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13975 if (*slot != NULL)
13976 {
13977 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13978 "DIE %s [in module %s]"),
13979 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13980 objfile_name (objfile));
13981 return;
13982 }
13983
13984 /* Count parameters at the caller. */
13985
13986 nparams = 0;
13987 for (child_die = die->child; child_die && child_die->tag;
13988 child_die = sibling_die (child_die))
13989 {
13990 if (child_die->tag != DW_TAG_call_site_parameter
13991 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13992 {
13993 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13994 "DW_TAG_call_site child DIE %s [in module %s]"),
13995 child_die->tag, sect_offset_str (child_die->sect_off),
13996 objfile_name (objfile));
13997 continue;
13998 }
13999
14000 nparams++;
14001 }
14002
14003 call_site
14004 = ((struct call_site *)
14005 obstack_alloc (&objfile->objfile_obstack,
14006 sizeof (*call_site)
14007 + (sizeof (*call_site->parameter) * (nparams - 1))));
14008 *slot = call_site;
14009 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14010 call_site->pc = pc;
14011
14012 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14013 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14014 {
14015 struct die_info *func_die;
14016
14017 /* Skip also over DW_TAG_inlined_subroutine. */
14018 for (func_die = die->parent;
14019 func_die && func_die->tag != DW_TAG_subprogram
14020 && func_die->tag != DW_TAG_subroutine_type;
14021 func_die = func_die->parent);
14022
14023 /* DW_AT_call_all_calls is a superset
14024 of DW_AT_call_all_tail_calls. */
14025 if (func_die
14026 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14027 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14030 {
14031 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14032 not complete. But keep CALL_SITE for look ups via call_site_htab,
14033 both the initial caller containing the real return address PC and
14034 the final callee containing the current PC of a chain of tail
14035 calls do not need to have the tail call list complete. But any
14036 function candidate for a virtual tail call frame searched via
14037 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14038 determined unambiguously. */
14039 }
14040 else
14041 {
14042 struct type *func_type = NULL;
14043
14044 if (func_die)
14045 func_type = get_die_type (func_die, cu);
14046 if (func_type != NULL)
14047 {
14048 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14049
14050 /* Enlist this call site to the function. */
14051 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14052 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14053 }
14054 else
14055 complaint (_("Cannot find function owning DW_TAG_call_site "
14056 "DIE %s [in module %s]"),
14057 sect_offset_str (die->sect_off), objfile_name (objfile));
14058 }
14059 }
14060
14061 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14062 if (attr == NULL)
14063 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14064 if (attr == NULL)
14065 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14066 if (attr == NULL)
14067 {
14068 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14069 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14070 }
14071 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14072 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14073 /* Keep NULL DWARF_BLOCK. */;
14074 else if (attr_form_is_block (attr))
14075 {
14076 struct dwarf2_locexpr_baton *dlbaton;
14077
14078 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14079 dlbaton->data = DW_BLOCK (attr)->data;
14080 dlbaton->size = DW_BLOCK (attr)->size;
14081 dlbaton->per_cu = cu->per_cu;
14082
14083 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14084 }
14085 else if (attr_form_is_ref (attr))
14086 {
14087 struct dwarf2_cu *target_cu = cu;
14088 struct die_info *target_die;
14089
14090 target_die = follow_die_ref (die, attr, &target_cu);
14091 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14092 if (die_is_declaration (target_die, target_cu))
14093 {
14094 const char *target_physname;
14095
14096 /* Prefer the mangled name; otherwise compute the demangled one. */
14097 target_physname = dw2_linkage_name (target_die, target_cu);
14098 if (target_physname == NULL)
14099 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14100 if (target_physname == NULL)
14101 complaint (_("DW_AT_call_target target DIE has invalid "
14102 "physname, for referencing DIE %s [in module %s]"),
14103 sect_offset_str (die->sect_off), objfile_name (objfile));
14104 else
14105 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14106 }
14107 else
14108 {
14109 CORE_ADDR lowpc;
14110
14111 /* DW_AT_entry_pc should be preferred. */
14112 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14113 <= PC_BOUNDS_INVALID)
14114 complaint (_("DW_AT_call_target target DIE has invalid "
14115 "low pc, for referencing DIE %s [in module %s]"),
14116 sect_offset_str (die->sect_off), objfile_name (objfile));
14117 else
14118 {
14119 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14120 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14121 }
14122 }
14123 }
14124 else
14125 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14126 "block nor reference, for DIE %s [in module %s]"),
14127 sect_offset_str (die->sect_off), objfile_name (objfile));
14128
14129 call_site->per_cu = cu->per_cu;
14130
14131 for (child_die = die->child;
14132 child_die && child_die->tag;
14133 child_die = sibling_die (child_die))
14134 {
14135 struct call_site_parameter *parameter;
14136 struct attribute *loc, *origin;
14137
14138 if (child_die->tag != DW_TAG_call_site_parameter
14139 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14140 {
14141 /* Already printed the complaint above. */
14142 continue;
14143 }
14144
14145 gdb_assert (call_site->parameter_count < nparams);
14146 parameter = &call_site->parameter[call_site->parameter_count];
14147
14148 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14149 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14150 register is contained in DW_AT_call_value. */
14151
14152 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14153 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14154 if (origin == NULL)
14155 {
14156 /* This was a pre-DWARF-5 GNU extension alias
14157 for DW_AT_call_parameter. */
14158 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14159 }
14160 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14161 {
14162 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14163
14164 sect_offset sect_off
14165 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14166 if (!offset_in_cu_p (&cu->header, sect_off))
14167 {
14168 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14169 binding can be done only inside one CU. Such referenced DIE
14170 therefore cannot be even moved to DW_TAG_partial_unit. */
14171 complaint (_("DW_AT_call_parameter offset is not in CU for "
14172 "DW_TAG_call_site child DIE %s [in module %s]"),
14173 sect_offset_str (child_die->sect_off),
14174 objfile_name (objfile));
14175 continue;
14176 }
14177 parameter->u.param_cu_off
14178 = (cu_offset) (sect_off - cu->header.sect_off);
14179 }
14180 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14181 {
14182 complaint (_("No DW_FORM_block* DW_AT_location for "
14183 "DW_TAG_call_site child DIE %s [in module %s]"),
14184 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14185 continue;
14186 }
14187 else
14188 {
14189 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14190 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14191 if (parameter->u.dwarf_reg != -1)
14192 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14193 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14194 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14195 &parameter->u.fb_offset))
14196 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14197 else
14198 {
14199 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14200 "for DW_FORM_block* DW_AT_location is supported for "
14201 "DW_TAG_call_site child DIE %s "
14202 "[in module %s]"),
14203 sect_offset_str (child_die->sect_off),
14204 objfile_name (objfile));
14205 continue;
14206 }
14207 }
14208
14209 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14210 if (attr == NULL)
14211 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14212 if (!attr_form_is_block (attr))
14213 {
14214 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14215 "DW_TAG_call_site child DIE %s [in module %s]"),
14216 sect_offset_str (child_die->sect_off),
14217 objfile_name (objfile));
14218 continue;
14219 }
14220 parameter->value = DW_BLOCK (attr)->data;
14221 parameter->value_size = DW_BLOCK (attr)->size;
14222
14223 /* Parameters are not pre-cleared by memset above. */
14224 parameter->data_value = NULL;
14225 parameter->data_value_size = 0;
14226 call_site->parameter_count++;
14227
14228 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14229 if (attr == NULL)
14230 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14231 if (attr)
14232 {
14233 if (!attr_form_is_block (attr))
14234 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14235 "DW_TAG_call_site child DIE %s [in module %s]"),
14236 sect_offset_str (child_die->sect_off),
14237 objfile_name (objfile));
14238 else
14239 {
14240 parameter->data_value = DW_BLOCK (attr)->data;
14241 parameter->data_value_size = DW_BLOCK (attr)->size;
14242 }
14243 }
14244 }
14245 }
14246
14247 /* Helper function for read_variable. If DIE represents a virtual
14248 table, then return the type of the concrete object that is
14249 associated with the virtual table. Otherwise, return NULL. */
14250
14251 static struct type *
14252 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14253 {
14254 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14255 if (attr == NULL)
14256 return NULL;
14257
14258 /* Find the type DIE. */
14259 struct die_info *type_die = NULL;
14260 struct dwarf2_cu *type_cu = cu;
14261
14262 if (attr_form_is_ref (attr))
14263 type_die = follow_die_ref (die, attr, &type_cu);
14264 if (type_die == NULL)
14265 return NULL;
14266
14267 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14268 return NULL;
14269 return die_containing_type (type_die, type_cu);
14270 }
14271
14272 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14273
14274 static void
14275 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14276 {
14277 struct rust_vtable_symbol *storage = NULL;
14278
14279 if (cu->language == language_rust)
14280 {
14281 struct type *containing_type = rust_containing_type (die, cu);
14282
14283 if (containing_type != NULL)
14284 {
14285 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14286
14287 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14288 struct rust_vtable_symbol);
14289 initialize_objfile_symbol (storage);
14290 storage->concrete_type = containing_type;
14291 storage->subclass = SYMBOL_RUST_VTABLE;
14292 }
14293 }
14294
14295 struct symbol *res = new_symbol (die, NULL, cu, storage);
14296 struct attribute *abstract_origin
14297 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14298 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14299 if (res == NULL && loc && abstract_origin)
14300 {
14301 /* We have a variable without a name, but with a location and an abstract
14302 origin. This may be a concrete instance of an abstract variable
14303 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14304 later. */
14305 struct dwarf2_cu *origin_cu = cu;
14306 struct die_info *origin_die
14307 = follow_die_ref (die, abstract_origin, &origin_cu);
14308 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14309 dpo->abstract_to_concrete[origin_die].push_back (die);
14310 }
14311 }
14312
14313 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14314 reading .debug_rnglists.
14315 Callback's type should be:
14316 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14317 Return true if the attributes are present and valid, otherwise,
14318 return false. */
14319
14320 template <typename Callback>
14321 static bool
14322 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14323 Callback &&callback)
14324 {
14325 struct dwarf2_per_objfile *dwarf2_per_objfile
14326 = cu->per_cu->dwarf2_per_objfile;
14327 struct objfile *objfile = dwarf2_per_objfile->objfile;
14328 bfd *obfd = objfile->obfd;
14329 /* Base address selection entry. */
14330 CORE_ADDR base;
14331 int found_base;
14332 const gdb_byte *buffer;
14333 CORE_ADDR baseaddr;
14334 bool overflow = false;
14335
14336 found_base = cu->base_known;
14337 base = cu->base_address;
14338
14339 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14340 if (offset >= dwarf2_per_objfile->rnglists.size)
14341 {
14342 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14343 offset);
14344 return false;
14345 }
14346 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14347
14348 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14349
14350 while (1)
14351 {
14352 /* Initialize it due to a false compiler warning. */
14353 CORE_ADDR range_beginning = 0, range_end = 0;
14354 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14355 + dwarf2_per_objfile->rnglists.size);
14356 unsigned int bytes_read;
14357
14358 if (buffer == buf_end)
14359 {
14360 overflow = true;
14361 break;
14362 }
14363 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14364 switch (rlet)
14365 {
14366 case DW_RLE_end_of_list:
14367 break;
14368 case DW_RLE_base_address:
14369 if (buffer + cu->header.addr_size > buf_end)
14370 {
14371 overflow = true;
14372 break;
14373 }
14374 base = read_address (obfd, buffer, cu, &bytes_read);
14375 found_base = 1;
14376 buffer += bytes_read;
14377 break;
14378 case DW_RLE_start_length:
14379 if (buffer + cu->header.addr_size > buf_end)
14380 {
14381 overflow = true;
14382 break;
14383 }
14384 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14385 buffer += bytes_read;
14386 range_end = (range_beginning
14387 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 break;
14395 case DW_RLE_offset_pair:
14396 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14397 buffer += bytes_read;
14398 if (buffer > buf_end)
14399 {
14400 overflow = true;
14401 break;
14402 }
14403 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14404 buffer += bytes_read;
14405 if (buffer > buf_end)
14406 {
14407 overflow = true;
14408 break;
14409 }
14410 break;
14411 case DW_RLE_start_end:
14412 if (buffer + 2 * cu->header.addr_size > buf_end)
14413 {
14414 overflow = true;
14415 break;
14416 }
14417 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14418 buffer += bytes_read;
14419 range_end = read_address (obfd, buffer, cu, &bytes_read);
14420 buffer += bytes_read;
14421 break;
14422 default:
14423 complaint (_("Invalid .debug_rnglists data (no base address)"));
14424 return false;
14425 }
14426 if (rlet == DW_RLE_end_of_list || overflow)
14427 break;
14428 if (rlet == DW_RLE_base_address)
14429 continue;
14430
14431 if (!found_base)
14432 {
14433 /* We have no valid base address for the ranges
14434 data. */
14435 complaint (_("Invalid .debug_rnglists data (no base address)"));
14436 return false;
14437 }
14438
14439 if (range_beginning > range_end)
14440 {
14441 /* Inverted range entries are invalid. */
14442 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14443 return false;
14444 }
14445
14446 /* Empty range entries have no effect. */
14447 if (range_beginning == range_end)
14448 continue;
14449
14450 range_beginning += base;
14451 range_end += base;
14452
14453 /* A not-uncommon case of bad debug info.
14454 Don't pollute the addrmap with bad data. */
14455 if (range_beginning + baseaddr == 0
14456 && !dwarf2_per_objfile->has_section_at_zero)
14457 {
14458 complaint (_(".debug_rnglists entry has start address of zero"
14459 " [in module %s]"), objfile_name (objfile));
14460 continue;
14461 }
14462
14463 callback (range_beginning, range_end);
14464 }
14465
14466 if (overflow)
14467 {
14468 complaint (_("Offset %d is not terminated "
14469 "for DW_AT_ranges attribute"),
14470 offset);
14471 return false;
14472 }
14473
14474 return true;
14475 }
14476
14477 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14478 Callback's type should be:
14479 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14480 Return 1 if the attributes are present and valid, otherwise, return 0. */
14481
14482 template <typename Callback>
14483 static int
14484 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14485 Callback &&callback)
14486 {
14487 struct dwarf2_per_objfile *dwarf2_per_objfile
14488 = cu->per_cu->dwarf2_per_objfile;
14489 struct objfile *objfile = dwarf2_per_objfile->objfile;
14490 struct comp_unit_head *cu_header = &cu->header;
14491 bfd *obfd = objfile->obfd;
14492 unsigned int addr_size = cu_header->addr_size;
14493 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14494 /* Base address selection entry. */
14495 CORE_ADDR base;
14496 int found_base;
14497 unsigned int dummy;
14498 const gdb_byte *buffer;
14499 CORE_ADDR baseaddr;
14500
14501 if (cu_header->version >= 5)
14502 return dwarf2_rnglists_process (offset, cu, callback);
14503
14504 found_base = cu->base_known;
14505 base = cu->base_address;
14506
14507 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14508 if (offset >= dwarf2_per_objfile->ranges.size)
14509 {
14510 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14511 offset);
14512 return 0;
14513 }
14514 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14515
14516 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14517
14518 while (1)
14519 {
14520 CORE_ADDR range_beginning, range_end;
14521
14522 range_beginning = read_address (obfd, buffer, cu, &dummy);
14523 buffer += addr_size;
14524 range_end = read_address (obfd, buffer, cu, &dummy);
14525 buffer += addr_size;
14526 offset += 2 * addr_size;
14527
14528 /* An end of list marker is a pair of zero addresses. */
14529 if (range_beginning == 0 && range_end == 0)
14530 /* Found the end of list entry. */
14531 break;
14532
14533 /* Each base address selection entry is a pair of 2 values.
14534 The first is the largest possible address, the second is
14535 the base address. Check for a base address here. */
14536 if ((range_beginning & mask) == mask)
14537 {
14538 /* If we found the largest possible address, then we already
14539 have the base address in range_end. */
14540 base = range_end;
14541 found_base = 1;
14542 continue;
14543 }
14544
14545 if (!found_base)
14546 {
14547 /* We have no valid base address for the ranges
14548 data. */
14549 complaint (_("Invalid .debug_ranges data (no base address)"));
14550 return 0;
14551 }
14552
14553 if (range_beginning > range_end)
14554 {
14555 /* Inverted range entries are invalid. */
14556 complaint (_("Invalid .debug_ranges data (inverted range)"));
14557 return 0;
14558 }
14559
14560 /* Empty range entries have no effect. */
14561 if (range_beginning == range_end)
14562 continue;
14563
14564 range_beginning += base;
14565 range_end += base;
14566
14567 /* A not-uncommon case of bad debug info.
14568 Don't pollute the addrmap with bad data. */
14569 if (range_beginning + baseaddr == 0
14570 && !dwarf2_per_objfile->has_section_at_zero)
14571 {
14572 complaint (_(".debug_ranges entry has start address of zero"
14573 " [in module %s]"), objfile_name (objfile));
14574 continue;
14575 }
14576
14577 callback (range_beginning, range_end);
14578 }
14579
14580 return 1;
14581 }
14582
14583 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14584 Return 1 if the attributes are present and valid, otherwise, return 0.
14585 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14586
14587 static int
14588 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14589 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14590 struct partial_symtab *ranges_pst)
14591 {
14592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14593 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14594 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14595 SECT_OFF_TEXT (objfile));
14596 int low_set = 0;
14597 CORE_ADDR low = 0;
14598 CORE_ADDR high = 0;
14599 int retval;
14600
14601 retval = dwarf2_ranges_process (offset, cu,
14602 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14603 {
14604 if (ranges_pst != NULL)
14605 {
14606 CORE_ADDR lowpc;
14607 CORE_ADDR highpc;
14608
14609 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14610 range_beginning + baseaddr)
14611 - baseaddr);
14612 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14613 range_end + baseaddr)
14614 - baseaddr);
14615 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
14616 ranges_pst);
14617 }
14618
14619 /* FIXME: This is recording everything as a low-high
14620 segment of consecutive addresses. We should have a
14621 data structure for discontiguous block ranges
14622 instead. */
14623 if (! low_set)
14624 {
14625 low = range_beginning;
14626 high = range_end;
14627 low_set = 1;
14628 }
14629 else
14630 {
14631 if (range_beginning < low)
14632 low = range_beginning;
14633 if (range_end > high)
14634 high = range_end;
14635 }
14636 });
14637 if (!retval)
14638 return 0;
14639
14640 if (! low_set)
14641 /* If the first entry is an end-of-list marker, the range
14642 describes an empty scope, i.e. no instructions. */
14643 return 0;
14644
14645 if (low_return)
14646 *low_return = low;
14647 if (high_return)
14648 *high_return = high;
14649 return 1;
14650 }
14651
14652 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14653 definition for the return value. *LOWPC and *HIGHPC are set iff
14654 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14655
14656 static enum pc_bounds_kind
14657 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14658 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14659 struct partial_symtab *pst)
14660 {
14661 struct dwarf2_per_objfile *dwarf2_per_objfile
14662 = cu->per_cu->dwarf2_per_objfile;
14663 struct attribute *attr;
14664 struct attribute *attr_high;
14665 CORE_ADDR low = 0;
14666 CORE_ADDR high = 0;
14667 enum pc_bounds_kind ret;
14668
14669 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14670 if (attr_high)
14671 {
14672 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14673 if (attr)
14674 {
14675 low = attr_value_as_address (attr);
14676 high = attr_value_as_address (attr_high);
14677 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14678 high += low;
14679 }
14680 else
14681 /* Found high w/o low attribute. */
14682 return PC_BOUNDS_INVALID;
14683
14684 /* Found consecutive range of addresses. */
14685 ret = PC_BOUNDS_HIGH_LOW;
14686 }
14687 else
14688 {
14689 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14690 if (attr != NULL)
14691 {
14692 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14693 We take advantage of the fact that DW_AT_ranges does not appear
14694 in DW_TAG_compile_unit of DWO files. */
14695 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14696 unsigned int ranges_offset = (DW_UNSND (attr)
14697 + (need_ranges_base
14698 ? cu->ranges_base
14699 : 0));
14700
14701 /* Value of the DW_AT_ranges attribute is the offset in the
14702 .debug_ranges section. */
14703 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14704 return PC_BOUNDS_INVALID;
14705 /* Found discontinuous range of addresses. */
14706 ret = PC_BOUNDS_RANGES;
14707 }
14708 else
14709 return PC_BOUNDS_NOT_PRESENT;
14710 }
14711
14712 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14713 if (high <= low)
14714 return PC_BOUNDS_INVALID;
14715
14716 /* When using the GNU linker, .gnu.linkonce. sections are used to
14717 eliminate duplicate copies of functions and vtables and such.
14718 The linker will arbitrarily choose one and discard the others.
14719 The AT_*_pc values for such functions refer to local labels in
14720 these sections. If the section from that file was discarded, the
14721 labels are not in the output, so the relocs get a value of 0.
14722 If this is a discarded function, mark the pc bounds as invalid,
14723 so that GDB will ignore it. */
14724 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14725 return PC_BOUNDS_INVALID;
14726
14727 *lowpc = low;
14728 if (highpc)
14729 *highpc = high;
14730 return ret;
14731 }
14732
14733 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14734 its low and high PC addresses. Do nothing if these addresses could not
14735 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14736 and HIGHPC to the high address if greater than HIGHPC. */
14737
14738 static void
14739 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14740 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14741 struct dwarf2_cu *cu)
14742 {
14743 CORE_ADDR low, high;
14744 struct die_info *child = die->child;
14745
14746 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14747 {
14748 *lowpc = std::min (*lowpc, low);
14749 *highpc = std::max (*highpc, high);
14750 }
14751
14752 /* If the language does not allow nested subprograms (either inside
14753 subprograms or lexical blocks), we're done. */
14754 if (cu->language != language_ada)
14755 return;
14756
14757 /* Check all the children of the given DIE. If it contains nested
14758 subprograms, then check their pc bounds. Likewise, we need to
14759 check lexical blocks as well, as they may also contain subprogram
14760 definitions. */
14761 while (child && child->tag)
14762 {
14763 if (child->tag == DW_TAG_subprogram
14764 || child->tag == DW_TAG_lexical_block)
14765 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14766 child = sibling_die (child);
14767 }
14768 }
14769
14770 /* Get the low and high pc's represented by the scope DIE, and store
14771 them in *LOWPC and *HIGHPC. If the correct values can't be
14772 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14773
14774 static void
14775 get_scope_pc_bounds (struct die_info *die,
14776 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14777 struct dwarf2_cu *cu)
14778 {
14779 CORE_ADDR best_low = (CORE_ADDR) -1;
14780 CORE_ADDR best_high = (CORE_ADDR) 0;
14781 CORE_ADDR current_low, current_high;
14782
14783 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14784 >= PC_BOUNDS_RANGES)
14785 {
14786 best_low = current_low;
14787 best_high = current_high;
14788 }
14789 else
14790 {
14791 struct die_info *child = die->child;
14792
14793 while (child && child->tag)
14794 {
14795 switch (child->tag) {
14796 case DW_TAG_subprogram:
14797 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14798 break;
14799 case DW_TAG_namespace:
14800 case DW_TAG_module:
14801 /* FIXME: carlton/2004-01-16: Should we do this for
14802 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14803 that current GCC's always emit the DIEs corresponding
14804 to definitions of methods of classes as children of a
14805 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14806 the DIEs giving the declarations, which could be
14807 anywhere). But I don't see any reason why the
14808 standards says that they have to be there. */
14809 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14810
14811 if (current_low != ((CORE_ADDR) -1))
14812 {
14813 best_low = std::min (best_low, current_low);
14814 best_high = std::max (best_high, current_high);
14815 }
14816 break;
14817 default:
14818 /* Ignore. */
14819 break;
14820 }
14821
14822 child = sibling_die (child);
14823 }
14824 }
14825
14826 *lowpc = best_low;
14827 *highpc = best_high;
14828 }
14829
14830 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14831 in DIE. */
14832
14833 static void
14834 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14835 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14836 {
14837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14838 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14839 struct attribute *attr;
14840 struct attribute *attr_high;
14841
14842 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14843 if (attr_high)
14844 {
14845 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14846 if (attr)
14847 {
14848 CORE_ADDR low = attr_value_as_address (attr);
14849 CORE_ADDR high = attr_value_as_address (attr_high);
14850
14851 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14852 high += low;
14853
14854 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14855 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14856 cu->builder->record_block_range (block, low, high - 1);
14857 }
14858 }
14859
14860 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14861 if (attr)
14862 {
14863 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14864 We take advantage of the fact that DW_AT_ranges does not appear
14865 in DW_TAG_compile_unit of DWO files. */
14866 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14867
14868 /* The value of the DW_AT_ranges attribute is the offset of the
14869 address range list in the .debug_ranges section. */
14870 unsigned long offset = (DW_UNSND (attr)
14871 + (need_ranges_base ? cu->ranges_base : 0));
14872
14873 std::vector<blockrange> blockvec;
14874 dwarf2_ranges_process (offset, cu,
14875 [&] (CORE_ADDR start, CORE_ADDR end)
14876 {
14877 start += baseaddr;
14878 end += baseaddr;
14879 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14880 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14881 cu->builder->record_block_range (block, start, end - 1);
14882 blockvec.emplace_back (start, end);
14883 });
14884
14885 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14886 }
14887 }
14888
14889 /* Check whether the producer field indicates either of GCC < 4.6, or the
14890 Intel C/C++ compiler, and cache the result in CU. */
14891
14892 static void
14893 check_producer (struct dwarf2_cu *cu)
14894 {
14895 int major, minor;
14896
14897 if (cu->producer == NULL)
14898 {
14899 /* For unknown compilers expect their behavior is DWARF version
14900 compliant.
14901
14902 GCC started to support .debug_types sections by -gdwarf-4 since
14903 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14904 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14905 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14906 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14907 }
14908 else if (producer_is_gcc (cu->producer, &major, &minor))
14909 {
14910 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14911 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14912 }
14913 else if (producer_is_icc (cu->producer, &major, &minor))
14914 {
14915 cu->producer_is_icc = true;
14916 cu->producer_is_icc_lt_14 = major < 14;
14917 }
14918 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14919 cu->producer_is_codewarrior = true;
14920 else
14921 {
14922 /* For other non-GCC compilers, expect their behavior is DWARF version
14923 compliant. */
14924 }
14925
14926 cu->checked_producer = true;
14927 }
14928
14929 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14930 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14931 during 4.6.0 experimental. */
14932
14933 static bool
14934 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14935 {
14936 if (!cu->checked_producer)
14937 check_producer (cu);
14938
14939 return cu->producer_is_gxx_lt_4_6;
14940 }
14941
14942
14943 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14944 with incorrect is_stmt attributes. */
14945
14946 static bool
14947 producer_is_codewarrior (struct dwarf2_cu *cu)
14948 {
14949 if (!cu->checked_producer)
14950 check_producer (cu);
14951
14952 return cu->producer_is_codewarrior;
14953 }
14954
14955 /* Return the default accessibility type if it is not overriden by
14956 DW_AT_accessibility. */
14957
14958 static enum dwarf_access_attribute
14959 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14960 {
14961 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14962 {
14963 /* The default DWARF 2 accessibility for members is public, the default
14964 accessibility for inheritance is private. */
14965
14966 if (die->tag != DW_TAG_inheritance)
14967 return DW_ACCESS_public;
14968 else
14969 return DW_ACCESS_private;
14970 }
14971 else
14972 {
14973 /* DWARF 3+ defines the default accessibility a different way. The same
14974 rules apply now for DW_TAG_inheritance as for the members and it only
14975 depends on the container kind. */
14976
14977 if (die->parent->tag == DW_TAG_class_type)
14978 return DW_ACCESS_private;
14979 else
14980 return DW_ACCESS_public;
14981 }
14982 }
14983
14984 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14985 offset. If the attribute was not found return 0, otherwise return
14986 1. If it was found but could not properly be handled, set *OFFSET
14987 to 0. */
14988
14989 static int
14990 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14991 LONGEST *offset)
14992 {
14993 struct attribute *attr;
14994
14995 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14996 if (attr != NULL)
14997 {
14998 *offset = 0;
14999
15000 /* Note that we do not check for a section offset first here.
15001 This is because DW_AT_data_member_location is new in DWARF 4,
15002 so if we see it, we can assume that a constant form is really
15003 a constant and not a section offset. */
15004 if (attr_form_is_constant (attr))
15005 *offset = dwarf2_get_attr_constant_value (attr, 0);
15006 else if (attr_form_is_section_offset (attr))
15007 dwarf2_complex_location_expr_complaint ();
15008 else if (attr_form_is_block (attr))
15009 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15010 else
15011 dwarf2_complex_location_expr_complaint ();
15012
15013 return 1;
15014 }
15015
15016 return 0;
15017 }
15018
15019 /* Add an aggregate field to the field list. */
15020
15021 static void
15022 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15023 struct dwarf2_cu *cu)
15024 {
15025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15026 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15027 struct nextfield *new_field;
15028 struct attribute *attr;
15029 struct field *fp;
15030 const char *fieldname = "";
15031
15032 if (die->tag == DW_TAG_inheritance)
15033 {
15034 fip->baseclasses.emplace_back ();
15035 new_field = &fip->baseclasses.back ();
15036 }
15037 else
15038 {
15039 fip->fields.emplace_back ();
15040 new_field = &fip->fields.back ();
15041 }
15042
15043 fip->nfields++;
15044
15045 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15046 if (attr)
15047 new_field->accessibility = DW_UNSND (attr);
15048 else
15049 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15050 if (new_field->accessibility != DW_ACCESS_public)
15051 fip->non_public_fields = 1;
15052
15053 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15054 if (attr)
15055 new_field->virtuality = DW_UNSND (attr);
15056 else
15057 new_field->virtuality = DW_VIRTUALITY_none;
15058
15059 fp = &new_field->field;
15060
15061 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15062 {
15063 LONGEST offset;
15064
15065 /* Data member other than a C++ static data member. */
15066
15067 /* Get type of field. */
15068 fp->type = die_type (die, cu);
15069
15070 SET_FIELD_BITPOS (*fp, 0);
15071
15072 /* Get bit size of field (zero if none). */
15073 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15074 if (attr)
15075 {
15076 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15077 }
15078 else
15079 {
15080 FIELD_BITSIZE (*fp) = 0;
15081 }
15082
15083 /* Get bit offset of field. */
15084 if (handle_data_member_location (die, cu, &offset))
15085 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15086 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15087 if (attr)
15088 {
15089 if (gdbarch_bits_big_endian (gdbarch))
15090 {
15091 /* For big endian bits, the DW_AT_bit_offset gives the
15092 additional bit offset from the MSB of the containing
15093 anonymous object to the MSB of the field. We don't
15094 have to do anything special since we don't need to
15095 know the size of the anonymous object. */
15096 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15097 }
15098 else
15099 {
15100 /* For little endian bits, compute the bit offset to the
15101 MSB of the anonymous object, subtract off the number of
15102 bits from the MSB of the field to the MSB of the
15103 object, and then subtract off the number of bits of
15104 the field itself. The result is the bit offset of
15105 the LSB of the field. */
15106 int anonymous_size;
15107 int bit_offset = DW_UNSND (attr);
15108
15109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15110 if (attr)
15111 {
15112 /* The size of the anonymous object containing
15113 the bit field is explicit, so use the
15114 indicated size (in bytes). */
15115 anonymous_size = DW_UNSND (attr);
15116 }
15117 else
15118 {
15119 /* The size of the anonymous object containing
15120 the bit field must be inferred from the type
15121 attribute of the data member containing the
15122 bit field. */
15123 anonymous_size = TYPE_LENGTH (fp->type);
15124 }
15125 SET_FIELD_BITPOS (*fp,
15126 (FIELD_BITPOS (*fp)
15127 + anonymous_size * bits_per_byte
15128 - bit_offset - FIELD_BITSIZE (*fp)));
15129 }
15130 }
15131 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15132 if (attr != NULL)
15133 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15134 + dwarf2_get_attr_constant_value (attr, 0)));
15135
15136 /* Get name of field. */
15137 fieldname = dwarf2_name (die, cu);
15138 if (fieldname == NULL)
15139 fieldname = "";
15140
15141 /* The name is already allocated along with this objfile, so we don't
15142 need to duplicate it for the type. */
15143 fp->name = fieldname;
15144
15145 /* Change accessibility for artificial fields (e.g. virtual table
15146 pointer or virtual base class pointer) to private. */
15147 if (dwarf2_attr (die, DW_AT_artificial, cu))
15148 {
15149 FIELD_ARTIFICIAL (*fp) = 1;
15150 new_field->accessibility = DW_ACCESS_private;
15151 fip->non_public_fields = 1;
15152 }
15153 }
15154 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15155 {
15156 /* C++ static member. */
15157
15158 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15159 is a declaration, but all versions of G++ as of this writing
15160 (so through at least 3.2.1) incorrectly generate
15161 DW_TAG_variable tags. */
15162
15163 const char *physname;
15164
15165 /* Get name of field. */
15166 fieldname = dwarf2_name (die, cu);
15167 if (fieldname == NULL)
15168 return;
15169
15170 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15171 if (attr
15172 /* Only create a symbol if this is an external value.
15173 new_symbol checks this and puts the value in the global symbol
15174 table, which we want. If it is not external, new_symbol
15175 will try to put the value in cu->list_in_scope which is wrong. */
15176 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15177 {
15178 /* A static const member, not much different than an enum as far as
15179 we're concerned, except that we can support more types. */
15180 new_symbol (die, NULL, cu);
15181 }
15182
15183 /* Get physical name. */
15184 physname = dwarf2_physname (fieldname, die, cu);
15185
15186 /* The name is already allocated along with this objfile, so we don't
15187 need to duplicate it for the type. */
15188 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15189 FIELD_TYPE (*fp) = die_type (die, cu);
15190 FIELD_NAME (*fp) = fieldname;
15191 }
15192 else if (die->tag == DW_TAG_inheritance)
15193 {
15194 LONGEST offset;
15195
15196 /* C++ base class field. */
15197 if (handle_data_member_location (die, cu, &offset))
15198 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15199 FIELD_BITSIZE (*fp) = 0;
15200 FIELD_TYPE (*fp) = die_type (die, cu);
15201 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15202 }
15203 else if (die->tag == DW_TAG_variant_part)
15204 {
15205 /* process_structure_scope will treat this DIE as a union. */
15206 process_structure_scope (die, cu);
15207
15208 /* The variant part is relative to the start of the enclosing
15209 structure. */
15210 SET_FIELD_BITPOS (*fp, 0);
15211 fp->type = get_die_type (die, cu);
15212 fp->artificial = 1;
15213 fp->name = "<<variant>>";
15214
15215 /* Normally a DW_TAG_variant_part won't have a size, but our
15216 representation requires one, so set it to the maximum of the
15217 child sizes. */
15218 if (TYPE_LENGTH (fp->type) == 0)
15219 {
15220 unsigned max = 0;
15221 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15222 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15223 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15224 TYPE_LENGTH (fp->type) = max;
15225 }
15226 }
15227 else
15228 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15229 }
15230
15231 /* Can the type given by DIE define another type? */
15232
15233 static bool
15234 type_can_define_types (const struct die_info *die)
15235 {
15236 switch (die->tag)
15237 {
15238 case DW_TAG_typedef:
15239 case DW_TAG_class_type:
15240 case DW_TAG_structure_type:
15241 case DW_TAG_union_type:
15242 case DW_TAG_enumeration_type:
15243 return true;
15244
15245 default:
15246 return false;
15247 }
15248 }
15249
15250 /* Add a type definition defined in the scope of the FIP's class. */
15251
15252 static void
15253 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15254 struct dwarf2_cu *cu)
15255 {
15256 struct decl_field fp;
15257 memset (&fp, 0, sizeof (fp));
15258
15259 gdb_assert (type_can_define_types (die));
15260
15261 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15262 fp.name = dwarf2_name (die, cu);
15263 fp.type = read_type_die (die, cu);
15264
15265 /* Save accessibility. */
15266 enum dwarf_access_attribute accessibility;
15267 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15268 if (attr != NULL)
15269 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15270 else
15271 accessibility = dwarf2_default_access_attribute (die, cu);
15272 switch (accessibility)
15273 {
15274 case DW_ACCESS_public:
15275 /* The assumed value if neither private nor protected. */
15276 break;
15277 case DW_ACCESS_private:
15278 fp.is_private = 1;
15279 break;
15280 case DW_ACCESS_protected:
15281 fp.is_protected = 1;
15282 break;
15283 default:
15284 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15285 }
15286
15287 if (die->tag == DW_TAG_typedef)
15288 fip->typedef_field_list.push_back (fp);
15289 else
15290 fip->nested_types_list.push_back (fp);
15291 }
15292
15293 /* Create the vector of fields, and attach it to the type. */
15294
15295 static void
15296 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15297 struct dwarf2_cu *cu)
15298 {
15299 int nfields = fip->nfields;
15300
15301 /* Record the field count, allocate space for the array of fields,
15302 and create blank accessibility bitfields if necessary. */
15303 TYPE_NFIELDS (type) = nfields;
15304 TYPE_FIELDS (type) = (struct field *)
15305 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15306
15307 if (fip->non_public_fields && cu->language != language_ada)
15308 {
15309 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15310
15311 TYPE_FIELD_PRIVATE_BITS (type) =
15312 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15313 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15314
15315 TYPE_FIELD_PROTECTED_BITS (type) =
15316 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15317 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15318
15319 TYPE_FIELD_IGNORE_BITS (type) =
15320 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15321 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15322 }
15323
15324 /* If the type has baseclasses, allocate and clear a bit vector for
15325 TYPE_FIELD_VIRTUAL_BITS. */
15326 if (!fip->baseclasses.empty () && cu->language != language_ada)
15327 {
15328 int num_bytes = B_BYTES (fip->baseclasses.size ());
15329 unsigned char *pointer;
15330
15331 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15332 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15333 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15334 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15335 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15336 }
15337
15338 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15339 {
15340 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15341
15342 for (int index = 0; index < nfields; ++index)
15343 {
15344 struct nextfield &field = fip->fields[index];
15345
15346 if (field.variant.is_discriminant)
15347 di->discriminant_index = index;
15348 else if (field.variant.default_branch)
15349 di->default_index = index;
15350 else
15351 di->discriminants[index] = field.variant.discriminant_value;
15352 }
15353 }
15354
15355 /* Copy the saved-up fields into the field vector. */
15356 for (int i = 0; i < nfields; ++i)
15357 {
15358 struct nextfield &field
15359 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15360 : fip->fields[i - fip->baseclasses.size ()]);
15361
15362 TYPE_FIELD (type, i) = field.field;
15363 switch (field.accessibility)
15364 {
15365 case DW_ACCESS_private:
15366 if (cu->language != language_ada)
15367 SET_TYPE_FIELD_PRIVATE (type, i);
15368 break;
15369
15370 case DW_ACCESS_protected:
15371 if (cu->language != language_ada)
15372 SET_TYPE_FIELD_PROTECTED (type, i);
15373 break;
15374
15375 case DW_ACCESS_public:
15376 break;
15377
15378 default:
15379 /* Unknown accessibility. Complain and treat it as public. */
15380 {
15381 complaint (_("unsupported accessibility %d"),
15382 field.accessibility);
15383 }
15384 break;
15385 }
15386 if (i < fip->baseclasses.size ())
15387 {
15388 switch (field.virtuality)
15389 {
15390 case DW_VIRTUALITY_virtual:
15391 case DW_VIRTUALITY_pure_virtual:
15392 if (cu->language == language_ada)
15393 error (_("unexpected virtuality in component of Ada type"));
15394 SET_TYPE_FIELD_VIRTUAL (type, i);
15395 break;
15396 }
15397 }
15398 }
15399 }
15400
15401 /* Return true if this member function is a constructor, false
15402 otherwise. */
15403
15404 static int
15405 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15406 {
15407 const char *fieldname;
15408 const char *type_name;
15409 int len;
15410
15411 if (die->parent == NULL)
15412 return 0;
15413
15414 if (die->parent->tag != DW_TAG_structure_type
15415 && die->parent->tag != DW_TAG_union_type
15416 && die->parent->tag != DW_TAG_class_type)
15417 return 0;
15418
15419 fieldname = dwarf2_name (die, cu);
15420 type_name = dwarf2_name (die->parent, cu);
15421 if (fieldname == NULL || type_name == NULL)
15422 return 0;
15423
15424 len = strlen (fieldname);
15425 return (strncmp (fieldname, type_name, len) == 0
15426 && (type_name[len] == '\0' || type_name[len] == '<'));
15427 }
15428
15429 /* Add a member function to the proper fieldlist. */
15430
15431 static void
15432 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15433 struct type *type, struct dwarf2_cu *cu)
15434 {
15435 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15436 struct attribute *attr;
15437 int i;
15438 struct fnfieldlist *flp = nullptr;
15439 struct fn_field *fnp;
15440 const char *fieldname;
15441 struct type *this_type;
15442 enum dwarf_access_attribute accessibility;
15443
15444 if (cu->language == language_ada)
15445 error (_("unexpected member function in Ada type"));
15446
15447 /* Get name of member function. */
15448 fieldname = dwarf2_name (die, cu);
15449 if (fieldname == NULL)
15450 return;
15451
15452 /* Look up member function name in fieldlist. */
15453 for (i = 0; i < fip->fnfieldlists.size (); i++)
15454 {
15455 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15456 {
15457 flp = &fip->fnfieldlists[i];
15458 break;
15459 }
15460 }
15461
15462 /* Create a new fnfieldlist if necessary. */
15463 if (flp == nullptr)
15464 {
15465 fip->fnfieldlists.emplace_back ();
15466 flp = &fip->fnfieldlists.back ();
15467 flp->name = fieldname;
15468 i = fip->fnfieldlists.size () - 1;
15469 }
15470
15471 /* Create a new member function field and add it to the vector of
15472 fnfieldlists. */
15473 flp->fnfields.emplace_back ();
15474 fnp = &flp->fnfields.back ();
15475
15476 /* Delay processing of the physname until later. */
15477 if (cu->language == language_cplus)
15478 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15479 die, cu);
15480 else
15481 {
15482 const char *physname = dwarf2_physname (fieldname, die, cu);
15483 fnp->physname = physname ? physname : "";
15484 }
15485
15486 fnp->type = alloc_type (objfile);
15487 this_type = read_type_die (die, cu);
15488 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15489 {
15490 int nparams = TYPE_NFIELDS (this_type);
15491
15492 /* TYPE is the domain of this method, and THIS_TYPE is the type
15493 of the method itself (TYPE_CODE_METHOD). */
15494 smash_to_method_type (fnp->type, type,
15495 TYPE_TARGET_TYPE (this_type),
15496 TYPE_FIELDS (this_type),
15497 TYPE_NFIELDS (this_type),
15498 TYPE_VARARGS (this_type));
15499
15500 /* Handle static member functions.
15501 Dwarf2 has no clean way to discern C++ static and non-static
15502 member functions. G++ helps GDB by marking the first
15503 parameter for non-static member functions (which is the this
15504 pointer) as artificial. We obtain this information from
15505 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15506 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15507 fnp->voffset = VOFFSET_STATIC;
15508 }
15509 else
15510 complaint (_("member function type missing for '%s'"),
15511 dwarf2_full_name (fieldname, die, cu));
15512
15513 /* Get fcontext from DW_AT_containing_type if present. */
15514 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15515 fnp->fcontext = die_containing_type (die, cu);
15516
15517 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15518 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15519
15520 /* Get accessibility. */
15521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15522 if (attr)
15523 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15524 else
15525 accessibility = dwarf2_default_access_attribute (die, cu);
15526 switch (accessibility)
15527 {
15528 case DW_ACCESS_private:
15529 fnp->is_private = 1;
15530 break;
15531 case DW_ACCESS_protected:
15532 fnp->is_protected = 1;
15533 break;
15534 }
15535
15536 /* Check for artificial methods. */
15537 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15538 if (attr && DW_UNSND (attr) != 0)
15539 fnp->is_artificial = 1;
15540
15541 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15542
15543 /* Get index in virtual function table if it is a virtual member
15544 function. For older versions of GCC, this is an offset in the
15545 appropriate virtual table, as specified by DW_AT_containing_type.
15546 For everyone else, it is an expression to be evaluated relative
15547 to the object address. */
15548
15549 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15550 if (attr)
15551 {
15552 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15553 {
15554 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15555 {
15556 /* Old-style GCC. */
15557 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15558 }
15559 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15560 || (DW_BLOCK (attr)->size > 1
15561 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15562 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15563 {
15564 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15565 if ((fnp->voffset % cu->header.addr_size) != 0)
15566 dwarf2_complex_location_expr_complaint ();
15567 else
15568 fnp->voffset /= cu->header.addr_size;
15569 fnp->voffset += 2;
15570 }
15571 else
15572 dwarf2_complex_location_expr_complaint ();
15573
15574 if (!fnp->fcontext)
15575 {
15576 /* If there is no `this' field and no DW_AT_containing_type,
15577 we cannot actually find a base class context for the
15578 vtable! */
15579 if (TYPE_NFIELDS (this_type) == 0
15580 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15581 {
15582 complaint (_("cannot determine context for virtual member "
15583 "function \"%s\" (offset %s)"),
15584 fieldname, sect_offset_str (die->sect_off));
15585 }
15586 else
15587 {
15588 fnp->fcontext
15589 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15590 }
15591 }
15592 }
15593 else if (attr_form_is_section_offset (attr))
15594 {
15595 dwarf2_complex_location_expr_complaint ();
15596 }
15597 else
15598 {
15599 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15600 fieldname);
15601 }
15602 }
15603 else
15604 {
15605 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15606 if (attr && DW_UNSND (attr))
15607 {
15608 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15609 complaint (_("Member function \"%s\" (offset %s) is virtual "
15610 "but the vtable offset is not specified"),
15611 fieldname, sect_offset_str (die->sect_off));
15612 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15613 TYPE_CPLUS_DYNAMIC (type) = 1;
15614 }
15615 }
15616 }
15617
15618 /* Create the vector of member function fields, and attach it to the type. */
15619
15620 static void
15621 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15622 struct dwarf2_cu *cu)
15623 {
15624 if (cu->language == language_ada)
15625 error (_("unexpected member functions in Ada type"));
15626
15627 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15628 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15629 TYPE_ALLOC (type,
15630 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15631
15632 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15633 {
15634 struct fnfieldlist &nf = fip->fnfieldlists[i];
15635 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15636
15637 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15638 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15639 fn_flp->fn_fields = (struct fn_field *)
15640 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15641
15642 for (int k = 0; k < nf.fnfields.size (); ++k)
15643 fn_flp->fn_fields[k] = nf.fnfields[k];
15644 }
15645
15646 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15647 }
15648
15649 /* Returns non-zero if NAME is the name of a vtable member in CU's
15650 language, zero otherwise. */
15651 static int
15652 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15653 {
15654 static const char vptr[] = "_vptr";
15655
15656 /* Look for the C++ form of the vtable. */
15657 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15658 return 1;
15659
15660 return 0;
15661 }
15662
15663 /* GCC outputs unnamed structures that are really pointers to member
15664 functions, with the ABI-specified layout. If TYPE describes
15665 such a structure, smash it into a member function type.
15666
15667 GCC shouldn't do this; it should just output pointer to member DIEs.
15668 This is GCC PR debug/28767. */
15669
15670 static void
15671 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15672 {
15673 struct type *pfn_type, *self_type, *new_type;
15674
15675 /* Check for a structure with no name and two children. */
15676 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15677 return;
15678
15679 /* Check for __pfn and __delta members. */
15680 if (TYPE_FIELD_NAME (type, 0) == NULL
15681 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15682 || TYPE_FIELD_NAME (type, 1) == NULL
15683 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15684 return;
15685
15686 /* Find the type of the method. */
15687 pfn_type = TYPE_FIELD_TYPE (type, 0);
15688 if (pfn_type == NULL
15689 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15690 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15691 return;
15692
15693 /* Look for the "this" argument. */
15694 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15695 if (TYPE_NFIELDS (pfn_type) == 0
15696 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15697 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15698 return;
15699
15700 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15701 new_type = alloc_type (objfile);
15702 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15703 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15704 TYPE_VARARGS (pfn_type));
15705 smash_to_methodptr_type (type, new_type);
15706 }
15707
15708 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15709 appropriate error checking and issuing complaints if there is a
15710 problem. */
15711
15712 static ULONGEST
15713 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15714 {
15715 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15716
15717 if (attr == nullptr)
15718 return 0;
15719
15720 if (!attr_form_is_constant (attr))
15721 {
15722 complaint (_("DW_AT_alignment must have constant form"
15723 " - DIE at %s [in module %s]"),
15724 sect_offset_str (die->sect_off),
15725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15726 return 0;
15727 }
15728
15729 ULONGEST align;
15730 if (attr->form == DW_FORM_sdata)
15731 {
15732 LONGEST val = DW_SND (attr);
15733 if (val < 0)
15734 {
15735 complaint (_("DW_AT_alignment value must not be negative"
15736 " - DIE at %s [in module %s]"),
15737 sect_offset_str (die->sect_off),
15738 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15739 return 0;
15740 }
15741 align = val;
15742 }
15743 else
15744 align = DW_UNSND (attr);
15745
15746 if (align == 0)
15747 {
15748 complaint (_("DW_AT_alignment value must not be zero"
15749 " - DIE at %s [in module %s]"),
15750 sect_offset_str (die->sect_off),
15751 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15752 return 0;
15753 }
15754 if ((align & (align - 1)) != 0)
15755 {
15756 complaint (_("DW_AT_alignment value must be a power of 2"
15757 " - DIE at %s [in module %s]"),
15758 sect_offset_str (die->sect_off),
15759 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15760 return 0;
15761 }
15762
15763 return align;
15764 }
15765
15766 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15767 the alignment for TYPE. */
15768
15769 static void
15770 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15771 struct type *type)
15772 {
15773 if (!set_type_align (type, get_alignment (cu, die)))
15774 complaint (_("DW_AT_alignment value too large"
15775 " - DIE at %s [in module %s]"),
15776 sect_offset_str (die->sect_off),
15777 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15778 }
15779
15780 /* Called when we find the DIE that starts a structure or union scope
15781 (definition) to create a type for the structure or union. Fill in
15782 the type's name and general properties; the members will not be
15783 processed until process_structure_scope. A symbol table entry for
15784 the type will also not be done until process_structure_scope (assuming
15785 the type has a name).
15786
15787 NOTE: we need to call these functions regardless of whether or not the
15788 DIE has a DW_AT_name attribute, since it might be an anonymous
15789 structure or union. This gets the type entered into our set of
15790 user defined types. */
15791
15792 static struct type *
15793 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15794 {
15795 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15796 struct type *type;
15797 struct attribute *attr;
15798 const char *name;
15799
15800 /* If the definition of this type lives in .debug_types, read that type.
15801 Don't follow DW_AT_specification though, that will take us back up
15802 the chain and we want to go down. */
15803 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15804 if (attr)
15805 {
15806 type = get_DW_AT_signature_type (die, attr, cu);
15807
15808 /* The type's CU may not be the same as CU.
15809 Ensure TYPE is recorded with CU in die_type_hash. */
15810 return set_die_type (die, type, cu);
15811 }
15812
15813 type = alloc_type (objfile);
15814 INIT_CPLUS_SPECIFIC (type);
15815
15816 name = dwarf2_name (die, cu);
15817 if (name != NULL)
15818 {
15819 if (cu->language == language_cplus
15820 || cu->language == language_d
15821 || cu->language == language_rust)
15822 {
15823 const char *full_name = dwarf2_full_name (name, die, cu);
15824
15825 /* dwarf2_full_name might have already finished building the DIE's
15826 type. If so, there is no need to continue. */
15827 if (get_die_type (die, cu) != NULL)
15828 return get_die_type (die, cu);
15829
15830 TYPE_NAME (type) = full_name;
15831 }
15832 else
15833 {
15834 /* The name is already allocated along with this objfile, so
15835 we don't need to duplicate it for the type. */
15836 TYPE_NAME (type) = name;
15837 }
15838 }
15839
15840 if (die->tag == DW_TAG_structure_type)
15841 {
15842 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15843 }
15844 else if (die->tag == DW_TAG_union_type)
15845 {
15846 TYPE_CODE (type) = TYPE_CODE_UNION;
15847 }
15848 else if (die->tag == DW_TAG_variant_part)
15849 {
15850 TYPE_CODE (type) = TYPE_CODE_UNION;
15851 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15852 }
15853 else
15854 {
15855 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15856 }
15857
15858 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15859 TYPE_DECLARED_CLASS (type) = 1;
15860
15861 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15862 if (attr)
15863 {
15864 if (attr_form_is_constant (attr))
15865 TYPE_LENGTH (type) = DW_UNSND (attr);
15866 else
15867 {
15868 /* For the moment, dynamic type sizes are not supported
15869 by GDB's struct type. The actual size is determined
15870 on-demand when resolving the type of a given object,
15871 so set the type's length to zero for now. Otherwise,
15872 we record an expression as the length, and that expression
15873 could lead to a very large value, which could eventually
15874 lead to us trying to allocate that much memory when creating
15875 a value of that type. */
15876 TYPE_LENGTH (type) = 0;
15877 }
15878 }
15879 else
15880 {
15881 TYPE_LENGTH (type) = 0;
15882 }
15883
15884 maybe_set_alignment (cu, die, type);
15885
15886 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15887 {
15888 /* ICC<14 does not output the required DW_AT_declaration on
15889 incomplete types, but gives them a size of zero. */
15890 TYPE_STUB (type) = 1;
15891 }
15892 else
15893 TYPE_STUB_SUPPORTED (type) = 1;
15894
15895 if (die_is_declaration (die, cu))
15896 TYPE_STUB (type) = 1;
15897 else if (attr == NULL && die->child == NULL
15898 && producer_is_realview (cu->producer))
15899 /* RealView does not output the required DW_AT_declaration
15900 on incomplete types. */
15901 TYPE_STUB (type) = 1;
15902
15903 /* We need to add the type field to the die immediately so we don't
15904 infinitely recurse when dealing with pointers to the structure
15905 type within the structure itself. */
15906 set_die_type (die, type, cu);
15907
15908 /* set_die_type should be already done. */
15909 set_descriptive_type (type, die, cu);
15910
15911 return type;
15912 }
15913
15914 /* A helper for process_structure_scope that handles a single member
15915 DIE. */
15916
15917 static void
15918 handle_struct_member_die (struct die_info *child_die, struct type *type,
15919 struct field_info *fi,
15920 std::vector<struct symbol *> *template_args,
15921 struct dwarf2_cu *cu)
15922 {
15923 if (child_die->tag == DW_TAG_member
15924 || child_die->tag == DW_TAG_variable
15925 || child_die->tag == DW_TAG_variant_part)
15926 {
15927 /* NOTE: carlton/2002-11-05: A C++ static data member
15928 should be a DW_TAG_member that is a declaration, but
15929 all versions of G++ as of this writing (so through at
15930 least 3.2.1) incorrectly generate DW_TAG_variable
15931 tags for them instead. */
15932 dwarf2_add_field (fi, child_die, cu);
15933 }
15934 else if (child_die->tag == DW_TAG_subprogram)
15935 {
15936 /* Rust doesn't have member functions in the C++ sense.
15937 However, it does emit ordinary functions as children
15938 of a struct DIE. */
15939 if (cu->language == language_rust)
15940 read_func_scope (child_die, cu);
15941 else
15942 {
15943 /* C++ member function. */
15944 dwarf2_add_member_fn (fi, child_die, type, cu);
15945 }
15946 }
15947 else if (child_die->tag == DW_TAG_inheritance)
15948 {
15949 /* C++ base class field. */
15950 dwarf2_add_field (fi, child_die, cu);
15951 }
15952 else if (type_can_define_types (child_die))
15953 dwarf2_add_type_defn (fi, child_die, cu);
15954 else if (child_die->tag == DW_TAG_template_type_param
15955 || child_die->tag == DW_TAG_template_value_param)
15956 {
15957 struct symbol *arg = new_symbol (child_die, NULL, cu);
15958
15959 if (arg != NULL)
15960 template_args->push_back (arg);
15961 }
15962 else if (child_die->tag == DW_TAG_variant)
15963 {
15964 /* In a variant we want to get the discriminant and also add a
15965 field for our sole member child. */
15966 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15967
15968 for (struct die_info *variant_child = child_die->child;
15969 variant_child != NULL;
15970 variant_child = sibling_die (variant_child))
15971 {
15972 if (variant_child->tag == DW_TAG_member)
15973 {
15974 handle_struct_member_die (variant_child, type, fi,
15975 template_args, cu);
15976 /* Only handle the one. */
15977 break;
15978 }
15979 }
15980
15981 /* We don't handle this but we might as well report it if we see
15982 it. */
15983 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15984 complaint (_("DW_AT_discr_list is not supported yet"
15985 " - DIE at %s [in module %s]"),
15986 sect_offset_str (child_die->sect_off),
15987 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15988
15989 /* The first field was just added, so we can stash the
15990 discriminant there. */
15991 gdb_assert (!fi->fields.empty ());
15992 if (discr == NULL)
15993 fi->fields.back ().variant.default_branch = true;
15994 else
15995 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15996 }
15997 }
15998
15999 /* Finish creating a structure or union type, including filling in
16000 its members and creating a symbol for it. */
16001
16002 static void
16003 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16004 {
16005 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16006 struct die_info *child_die;
16007 struct type *type;
16008
16009 type = get_die_type (die, cu);
16010 if (type == NULL)
16011 type = read_structure_type (die, cu);
16012
16013 /* When reading a DW_TAG_variant_part, we need to notice when we
16014 read the discriminant member, so we can record it later in the
16015 discriminant_info. */
16016 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16017 sect_offset discr_offset;
16018 bool has_template_parameters = false;
16019
16020 if (is_variant_part)
16021 {
16022 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16023 if (discr == NULL)
16024 {
16025 /* Maybe it's a univariant form, an extension we support.
16026 In this case arrange not to check the offset. */
16027 is_variant_part = false;
16028 }
16029 else if (attr_form_is_ref (discr))
16030 {
16031 struct dwarf2_cu *target_cu = cu;
16032 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16033
16034 discr_offset = target_die->sect_off;
16035 }
16036 else
16037 {
16038 complaint (_("DW_AT_discr does not have DIE reference form"
16039 " - DIE at %s [in module %s]"),
16040 sect_offset_str (die->sect_off),
16041 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16042 is_variant_part = false;
16043 }
16044 }
16045
16046 if (die->child != NULL && ! die_is_declaration (die, cu))
16047 {
16048 struct field_info fi;
16049 std::vector<struct symbol *> template_args;
16050
16051 child_die = die->child;
16052
16053 while (child_die && child_die->tag)
16054 {
16055 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16056
16057 if (is_variant_part && discr_offset == child_die->sect_off)
16058 fi.fields.back ().variant.is_discriminant = true;
16059
16060 child_die = sibling_die (child_die);
16061 }
16062
16063 /* Attach template arguments to type. */
16064 if (!template_args.empty ())
16065 {
16066 has_template_parameters = true;
16067 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16068 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16069 TYPE_TEMPLATE_ARGUMENTS (type)
16070 = XOBNEWVEC (&objfile->objfile_obstack,
16071 struct symbol *,
16072 TYPE_N_TEMPLATE_ARGUMENTS (type));
16073 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16074 template_args.data (),
16075 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16076 * sizeof (struct symbol *)));
16077 }
16078
16079 /* Attach fields and member functions to the type. */
16080 if (fi.nfields)
16081 dwarf2_attach_fields_to_type (&fi, type, cu);
16082 if (!fi.fnfieldlists.empty ())
16083 {
16084 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16085
16086 /* Get the type which refers to the base class (possibly this
16087 class itself) which contains the vtable pointer for the current
16088 class from the DW_AT_containing_type attribute. This use of
16089 DW_AT_containing_type is a GNU extension. */
16090
16091 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16092 {
16093 struct type *t = die_containing_type (die, cu);
16094
16095 set_type_vptr_basetype (type, t);
16096 if (type == t)
16097 {
16098 int i;
16099
16100 /* Our own class provides vtbl ptr. */
16101 for (i = TYPE_NFIELDS (t) - 1;
16102 i >= TYPE_N_BASECLASSES (t);
16103 --i)
16104 {
16105 const char *fieldname = TYPE_FIELD_NAME (t, i);
16106
16107 if (is_vtable_name (fieldname, cu))
16108 {
16109 set_type_vptr_fieldno (type, i);
16110 break;
16111 }
16112 }
16113
16114 /* Complain if virtual function table field not found. */
16115 if (i < TYPE_N_BASECLASSES (t))
16116 complaint (_("virtual function table pointer "
16117 "not found when defining class '%s'"),
16118 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16119 }
16120 else
16121 {
16122 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16123 }
16124 }
16125 else if (cu->producer
16126 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16127 {
16128 /* The IBM XLC compiler does not provide direct indication
16129 of the containing type, but the vtable pointer is
16130 always named __vfp. */
16131
16132 int i;
16133
16134 for (i = TYPE_NFIELDS (type) - 1;
16135 i >= TYPE_N_BASECLASSES (type);
16136 --i)
16137 {
16138 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16139 {
16140 set_type_vptr_fieldno (type, i);
16141 set_type_vptr_basetype (type, type);
16142 break;
16143 }
16144 }
16145 }
16146 }
16147
16148 /* Copy fi.typedef_field_list linked list elements content into the
16149 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16150 if (!fi.typedef_field_list.empty ())
16151 {
16152 int count = fi.typedef_field_list.size ();
16153
16154 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16155 TYPE_TYPEDEF_FIELD_ARRAY (type)
16156 = ((struct decl_field *)
16157 TYPE_ALLOC (type,
16158 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16159 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16160
16161 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16162 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16163 }
16164
16165 /* Copy fi.nested_types_list linked list elements content into the
16166 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16167 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16168 {
16169 int count = fi.nested_types_list.size ();
16170
16171 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16172 TYPE_NESTED_TYPES_ARRAY (type)
16173 = ((struct decl_field *)
16174 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16175 TYPE_NESTED_TYPES_COUNT (type) = count;
16176
16177 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16178 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16179 }
16180 }
16181
16182 quirk_gcc_member_function_pointer (type, objfile);
16183 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16184 cu->rust_unions.push_back (type);
16185
16186 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16187 snapshots) has been known to create a die giving a declaration
16188 for a class that has, as a child, a die giving a definition for a
16189 nested class. So we have to process our children even if the
16190 current die is a declaration. Normally, of course, a declaration
16191 won't have any children at all. */
16192
16193 child_die = die->child;
16194
16195 while (child_die != NULL && child_die->tag)
16196 {
16197 if (child_die->tag == DW_TAG_member
16198 || child_die->tag == DW_TAG_variable
16199 || child_die->tag == DW_TAG_inheritance
16200 || child_die->tag == DW_TAG_template_value_param
16201 || child_die->tag == DW_TAG_template_type_param)
16202 {
16203 /* Do nothing. */
16204 }
16205 else
16206 process_die (child_die, cu);
16207
16208 child_die = sibling_die (child_die);
16209 }
16210
16211 /* Do not consider external references. According to the DWARF standard,
16212 these DIEs are identified by the fact that they have no byte_size
16213 attribute, and a declaration attribute. */
16214 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16215 || !die_is_declaration (die, cu))
16216 {
16217 struct symbol *sym = new_symbol (die, type, cu);
16218
16219 if (has_template_parameters)
16220 {
16221 /* Make sure that the symtab is set on the new symbols.
16222 Even though they don't appear in this symtab directly,
16223 other parts of gdb assume that symbols do, and this is
16224 reasonably true. */
16225 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16226 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16227 symbol_symtab (sym));
16228 }
16229 }
16230 }
16231
16232 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16233 update TYPE using some information only available in DIE's children. */
16234
16235 static void
16236 update_enumeration_type_from_children (struct die_info *die,
16237 struct type *type,
16238 struct dwarf2_cu *cu)
16239 {
16240 struct die_info *child_die;
16241 int unsigned_enum = 1;
16242 int flag_enum = 1;
16243 ULONGEST mask = 0;
16244
16245 auto_obstack obstack;
16246
16247 for (child_die = die->child;
16248 child_die != NULL && child_die->tag;
16249 child_die = sibling_die (child_die))
16250 {
16251 struct attribute *attr;
16252 LONGEST value;
16253 const gdb_byte *bytes;
16254 struct dwarf2_locexpr_baton *baton;
16255 const char *name;
16256
16257 if (child_die->tag != DW_TAG_enumerator)
16258 continue;
16259
16260 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16261 if (attr == NULL)
16262 continue;
16263
16264 name = dwarf2_name (child_die, cu);
16265 if (name == NULL)
16266 name = "<anonymous enumerator>";
16267
16268 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16269 &value, &bytes, &baton);
16270 if (value < 0)
16271 {
16272 unsigned_enum = 0;
16273 flag_enum = 0;
16274 }
16275 else if ((mask & value) != 0)
16276 flag_enum = 0;
16277 else
16278 mask |= value;
16279
16280 /* If we already know that the enum type is neither unsigned, nor
16281 a flag type, no need to look at the rest of the enumerates. */
16282 if (!unsigned_enum && !flag_enum)
16283 break;
16284 }
16285
16286 if (unsigned_enum)
16287 TYPE_UNSIGNED (type) = 1;
16288 if (flag_enum)
16289 TYPE_FLAG_ENUM (type) = 1;
16290 }
16291
16292 /* Given a DW_AT_enumeration_type die, set its type. We do not
16293 complete the type's fields yet, or create any symbols. */
16294
16295 static struct type *
16296 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16297 {
16298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16299 struct type *type;
16300 struct attribute *attr;
16301 const char *name;
16302
16303 /* If the definition of this type lives in .debug_types, read that type.
16304 Don't follow DW_AT_specification though, that will take us back up
16305 the chain and we want to go down. */
16306 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16307 if (attr)
16308 {
16309 type = get_DW_AT_signature_type (die, attr, cu);
16310
16311 /* The type's CU may not be the same as CU.
16312 Ensure TYPE is recorded with CU in die_type_hash. */
16313 return set_die_type (die, type, cu);
16314 }
16315
16316 type = alloc_type (objfile);
16317
16318 TYPE_CODE (type) = TYPE_CODE_ENUM;
16319 name = dwarf2_full_name (NULL, die, cu);
16320 if (name != NULL)
16321 TYPE_NAME (type) = name;
16322
16323 attr = dwarf2_attr (die, DW_AT_type, cu);
16324 if (attr != NULL)
16325 {
16326 struct type *underlying_type = die_type (die, cu);
16327
16328 TYPE_TARGET_TYPE (type) = underlying_type;
16329 }
16330
16331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16332 if (attr)
16333 {
16334 TYPE_LENGTH (type) = DW_UNSND (attr);
16335 }
16336 else
16337 {
16338 TYPE_LENGTH (type) = 0;
16339 }
16340
16341 maybe_set_alignment (cu, die, type);
16342
16343 /* The enumeration DIE can be incomplete. In Ada, any type can be
16344 declared as private in the package spec, and then defined only
16345 inside the package body. Such types are known as Taft Amendment
16346 Types. When another package uses such a type, an incomplete DIE
16347 may be generated by the compiler. */
16348 if (die_is_declaration (die, cu))
16349 TYPE_STUB (type) = 1;
16350
16351 /* Finish the creation of this type by using the enum's children.
16352 We must call this even when the underlying type has been provided
16353 so that we can determine if we're looking at a "flag" enum. */
16354 update_enumeration_type_from_children (die, type, cu);
16355
16356 /* If this type has an underlying type that is not a stub, then we
16357 may use its attributes. We always use the "unsigned" attribute
16358 in this situation, because ordinarily we guess whether the type
16359 is unsigned -- but the guess can be wrong and the underlying type
16360 can tell us the reality. However, we defer to a local size
16361 attribute if one exists, because this lets the compiler override
16362 the underlying type if needed. */
16363 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16364 {
16365 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16366 if (TYPE_LENGTH (type) == 0)
16367 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16368 if (TYPE_RAW_ALIGN (type) == 0
16369 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16370 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16371 }
16372
16373 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16374
16375 return set_die_type (die, type, cu);
16376 }
16377
16378 /* Given a pointer to a die which begins an enumeration, process all
16379 the dies that define the members of the enumeration, and create the
16380 symbol for the enumeration type.
16381
16382 NOTE: We reverse the order of the element list. */
16383
16384 static void
16385 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16386 {
16387 struct type *this_type;
16388
16389 this_type = get_die_type (die, cu);
16390 if (this_type == NULL)
16391 this_type = read_enumeration_type (die, cu);
16392
16393 if (die->child != NULL)
16394 {
16395 struct die_info *child_die;
16396 struct symbol *sym;
16397 struct field *fields = NULL;
16398 int num_fields = 0;
16399 const char *name;
16400
16401 child_die = die->child;
16402 while (child_die && child_die->tag)
16403 {
16404 if (child_die->tag != DW_TAG_enumerator)
16405 {
16406 process_die (child_die, cu);
16407 }
16408 else
16409 {
16410 name = dwarf2_name (child_die, cu);
16411 if (name)
16412 {
16413 sym = new_symbol (child_die, this_type, cu);
16414
16415 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16416 {
16417 fields = (struct field *)
16418 xrealloc (fields,
16419 (num_fields + DW_FIELD_ALLOC_CHUNK)
16420 * sizeof (struct field));
16421 }
16422
16423 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16424 FIELD_TYPE (fields[num_fields]) = NULL;
16425 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16426 FIELD_BITSIZE (fields[num_fields]) = 0;
16427
16428 num_fields++;
16429 }
16430 }
16431
16432 child_die = sibling_die (child_die);
16433 }
16434
16435 if (num_fields)
16436 {
16437 TYPE_NFIELDS (this_type) = num_fields;
16438 TYPE_FIELDS (this_type) = (struct field *)
16439 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16440 memcpy (TYPE_FIELDS (this_type), fields,
16441 sizeof (struct field) * num_fields);
16442 xfree (fields);
16443 }
16444 }
16445
16446 /* If we are reading an enum from a .debug_types unit, and the enum
16447 is a declaration, and the enum is not the signatured type in the
16448 unit, then we do not want to add a symbol for it. Adding a
16449 symbol would in some cases obscure the true definition of the
16450 enum, giving users an incomplete type when the definition is
16451 actually available. Note that we do not want to do this for all
16452 enums which are just declarations, because C++0x allows forward
16453 enum declarations. */
16454 if (cu->per_cu->is_debug_types
16455 && die_is_declaration (die, cu))
16456 {
16457 struct signatured_type *sig_type;
16458
16459 sig_type = (struct signatured_type *) cu->per_cu;
16460 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16461 if (sig_type->type_offset_in_section != die->sect_off)
16462 return;
16463 }
16464
16465 new_symbol (die, this_type, cu);
16466 }
16467
16468 /* Extract all information from a DW_TAG_array_type DIE and put it in
16469 the DIE's type field. For now, this only handles one dimensional
16470 arrays. */
16471
16472 static struct type *
16473 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16474 {
16475 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16476 struct die_info *child_die;
16477 struct type *type;
16478 struct type *element_type, *range_type, *index_type;
16479 struct attribute *attr;
16480 const char *name;
16481 struct dynamic_prop *byte_stride_prop = NULL;
16482 unsigned int bit_stride = 0;
16483
16484 element_type = die_type (die, cu);
16485
16486 /* The die_type call above may have already set the type for this DIE. */
16487 type = get_die_type (die, cu);
16488 if (type)
16489 return type;
16490
16491 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16492 if (attr != NULL)
16493 {
16494 int stride_ok;
16495
16496 byte_stride_prop
16497 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16498 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16499 if (!stride_ok)
16500 {
16501 complaint (_("unable to read array DW_AT_byte_stride "
16502 " - DIE at %s [in module %s]"),
16503 sect_offset_str (die->sect_off),
16504 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16505 /* Ignore this attribute. We will likely not be able to print
16506 arrays of this type correctly, but there is little we can do
16507 to help if we cannot read the attribute's value. */
16508 byte_stride_prop = NULL;
16509 }
16510 }
16511
16512 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16513 if (attr != NULL)
16514 bit_stride = DW_UNSND (attr);
16515
16516 /* Irix 6.2 native cc creates array types without children for
16517 arrays with unspecified length. */
16518 if (die->child == NULL)
16519 {
16520 index_type = objfile_type (objfile)->builtin_int;
16521 range_type = create_static_range_type (NULL, index_type, 0, -1);
16522 type = create_array_type_with_stride (NULL, element_type, range_type,
16523 byte_stride_prop, bit_stride);
16524 return set_die_type (die, type, cu);
16525 }
16526
16527 std::vector<struct type *> range_types;
16528 child_die = die->child;
16529 while (child_die && child_die->tag)
16530 {
16531 if (child_die->tag == DW_TAG_subrange_type)
16532 {
16533 struct type *child_type = read_type_die (child_die, cu);
16534
16535 if (child_type != NULL)
16536 {
16537 /* The range type was succesfully read. Save it for the
16538 array type creation. */
16539 range_types.push_back (child_type);
16540 }
16541 }
16542 child_die = sibling_die (child_die);
16543 }
16544
16545 /* Dwarf2 dimensions are output from left to right, create the
16546 necessary array types in backwards order. */
16547
16548 type = element_type;
16549
16550 if (read_array_order (die, cu) == DW_ORD_col_major)
16551 {
16552 int i = 0;
16553
16554 while (i < range_types.size ())
16555 type = create_array_type_with_stride (NULL, type, range_types[i++],
16556 byte_stride_prop, bit_stride);
16557 }
16558 else
16559 {
16560 size_t ndim = range_types.size ();
16561 while (ndim-- > 0)
16562 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16563 byte_stride_prop, bit_stride);
16564 }
16565
16566 /* Understand Dwarf2 support for vector types (like they occur on
16567 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16568 array type. This is not part of the Dwarf2/3 standard yet, but a
16569 custom vendor extension. The main difference between a regular
16570 array and the vector variant is that vectors are passed by value
16571 to functions. */
16572 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16573 if (attr)
16574 make_vector_type (type);
16575
16576 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16577 implementation may choose to implement triple vectors using this
16578 attribute. */
16579 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16580 if (attr)
16581 {
16582 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16583 TYPE_LENGTH (type) = DW_UNSND (attr);
16584 else
16585 complaint (_("DW_AT_byte_size for array type smaller "
16586 "than the total size of elements"));
16587 }
16588
16589 name = dwarf2_name (die, cu);
16590 if (name)
16591 TYPE_NAME (type) = name;
16592
16593 maybe_set_alignment (cu, die, type);
16594
16595 /* Install the type in the die. */
16596 set_die_type (die, type, cu);
16597
16598 /* set_die_type should be already done. */
16599 set_descriptive_type (type, die, cu);
16600
16601 return type;
16602 }
16603
16604 static enum dwarf_array_dim_ordering
16605 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16606 {
16607 struct attribute *attr;
16608
16609 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16610
16611 if (attr)
16612 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16613
16614 /* GNU F77 is a special case, as at 08/2004 array type info is the
16615 opposite order to the dwarf2 specification, but data is still
16616 laid out as per normal fortran.
16617
16618 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16619 version checking. */
16620
16621 if (cu->language == language_fortran
16622 && cu->producer && strstr (cu->producer, "GNU F77"))
16623 {
16624 return DW_ORD_row_major;
16625 }
16626
16627 switch (cu->language_defn->la_array_ordering)
16628 {
16629 case array_column_major:
16630 return DW_ORD_col_major;
16631 case array_row_major:
16632 default:
16633 return DW_ORD_row_major;
16634 };
16635 }
16636
16637 /* Extract all information from a DW_TAG_set_type DIE and put it in
16638 the DIE's type field. */
16639
16640 static struct type *
16641 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16642 {
16643 struct type *domain_type, *set_type;
16644 struct attribute *attr;
16645
16646 domain_type = die_type (die, cu);
16647
16648 /* The die_type call above may have already set the type for this DIE. */
16649 set_type = get_die_type (die, cu);
16650 if (set_type)
16651 return set_type;
16652
16653 set_type = create_set_type (NULL, domain_type);
16654
16655 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16656 if (attr)
16657 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16658
16659 maybe_set_alignment (cu, die, set_type);
16660
16661 return set_die_type (die, set_type, cu);
16662 }
16663
16664 /* A helper for read_common_block that creates a locexpr baton.
16665 SYM is the symbol which we are marking as computed.
16666 COMMON_DIE is the DIE for the common block.
16667 COMMON_LOC is the location expression attribute for the common
16668 block itself.
16669 MEMBER_LOC is the location expression attribute for the particular
16670 member of the common block that we are processing.
16671 CU is the CU from which the above come. */
16672
16673 static void
16674 mark_common_block_symbol_computed (struct symbol *sym,
16675 struct die_info *common_die,
16676 struct attribute *common_loc,
16677 struct attribute *member_loc,
16678 struct dwarf2_cu *cu)
16679 {
16680 struct dwarf2_per_objfile *dwarf2_per_objfile
16681 = cu->per_cu->dwarf2_per_objfile;
16682 struct objfile *objfile = dwarf2_per_objfile->objfile;
16683 struct dwarf2_locexpr_baton *baton;
16684 gdb_byte *ptr;
16685 unsigned int cu_off;
16686 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16687 LONGEST offset = 0;
16688
16689 gdb_assert (common_loc && member_loc);
16690 gdb_assert (attr_form_is_block (common_loc));
16691 gdb_assert (attr_form_is_block (member_loc)
16692 || attr_form_is_constant (member_loc));
16693
16694 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16695 baton->per_cu = cu->per_cu;
16696 gdb_assert (baton->per_cu);
16697
16698 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16699
16700 if (attr_form_is_constant (member_loc))
16701 {
16702 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16703 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16704 }
16705 else
16706 baton->size += DW_BLOCK (member_loc)->size;
16707
16708 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16709 baton->data = ptr;
16710
16711 *ptr++ = DW_OP_call4;
16712 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16713 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16714 ptr += 4;
16715
16716 if (attr_form_is_constant (member_loc))
16717 {
16718 *ptr++ = DW_OP_addr;
16719 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16720 ptr += cu->header.addr_size;
16721 }
16722 else
16723 {
16724 /* We have to copy the data here, because DW_OP_call4 will only
16725 use a DW_AT_location attribute. */
16726 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16727 ptr += DW_BLOCK (member_loc)->size;
16728 }
16729
16730 *ptr++ = DW_OP_plus;
16731 gdb_assert (ptr - baton->data == baton->size);
16732
16733 SYMBOL_LOCATION_BATON (sym) = baton;
16734 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16735 }
16736
16737 /* Create appropriate locally-scoped variables for all the
16738 DW_TAG_common_block entries. Also create a struct common_block
16739 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16740 is used to sepate the common blocks name namespace from regular
16741 variable names. */
16742
16743 static void
16744 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16745 {
16746 struct attribute *attr;
16747
16748 attr = dwarf2_attr (die, DW_AT_location, cu);
16749 if (attr)
16750 {
16751 /* Support the .debug_loc offsets. */
16752 if (attr_form_is_block (attr))
16753 {
16754 /* Ok. */
16755 }
16756 else if (attr_form_is_section_offset (attr))
16757 {
16758 dwarf2_complex_location_expr_complaint ();
16759 attr = NULL;
16760 }
16761 else
16762 {
16763 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16764 "common block member");
16765 attr = NULL;
16766 }
16767 }
16768
16769 if (die->child != NULL)
16770 {
16771 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16772 struct die_info *child_die;
16773 size_t n_entries = 0, size;
16774 struct common_block *common_block;
16775 struct symbol *sym;
16776
16777 for (child_die = die->child;
16778 child_die && child_die->tag;
16779 child_die = sibling_die (child_die))
16780 ++n_entries;
16781
16782 size = (sizeof (struct common_block)
16783 + (n_entries - 1) * sizeof (struct symbol *));
16784 common_block
16785 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16786 size);
16787 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16788 common_block->n_entries = 0;
16789
16790 for (child_die = die->child;
16791 child_die && child_die->tag;
16792 child_die = sibling_die (child_die))
16793 {
16794 /* Create the symbol in the DW_TAG_common_block block in the current
16795 symbol scope. */
16796 sym = new_symbol (child_die, NULL, cu);
16797 if (sym != NULL)
16798 {
16799 struct attribute *member_loc;
16800
16801 common_block->contents[common_block->n_entries++] = sym;
16802
16803 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16804 cu);
16805 if (member_loc)
16806 {
16807 /* GDB has handled this for a long time, but it is
16808 not specified by DWARF. It seems to have been
16809 emitted by gfortran at least as recently as:
16810 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16811 complaint (_("Variable in common block has "
16812 "DW_AT_data_member_location "
16813 "- DIE at %s [in module %s]"),
16814 sect_offset_str (child_die->sect_off),
16815 objfile_name (objfile));
16816
16817 if (attr_form_is_section_offset (member_loc))
16818 dwarf2_complex_location_expr_complaint ();
16819 else if (attr_form_is_constant (member_loc)
16820 || attr_form_is_block (member_loc))
16821 {
16822 if (attr)
16823 mark_common_block_symbol_computed (sym, die, attr,
16824 member_loc, cu);
16825 }
16826 else
16827 dwarf2_complex_location_expr_complaint ();
16828 }
16829 }
16830 }
16831
16832 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16833 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16834 }
16835 }
16836
16837 /* Create a type for a C++ namespace. */
16838
16839 static struct type *
16840 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16841 {
16842 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16843 const char *previous_prefix, *name;
16844 int is_anonymous;
16845 struct type *type;
16846
16847 /* For extensions, reuse the type of the original namespace. */
16848 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16849 {
16850 struct die_info *ext_die;
16851 struct dwarf2_cu *ext_cu = cu;
16852
16853 ext_die = dwarf2_extension (die, &ext_cu);
16854 type = read_type_die (ext_die, ext_cu);
16855
16856 /* EXT_CU may not be the same as CU.
16857 Ensure TYPE is recorded with CU in die_type_hash. */
16858 return set_die_type (die, type, cu);
16859 }
16860
16861 name = namespace_name (die, &is_anonymous, cu);
16862
16863 /* Now build the name of the current namespace. */
16864
16865 previous_prefix = determine_prefix (die, cu);
16866 if (previous_prefix[0] != '\0')
16867 name = typename_concat (&objfile->objfile_obstack,
16868 previous_prefix, name, 0, cu);
16869
16870 /* Create the type. */
16871 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16872
16873 return set_die_type (die, type, cu);
16874 }
16875
16876 /* Read a namespace scope. */
16877
16878 static void
16879 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16880 {
16881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16882 int is_anonymous;
16883
16884 /* Add a symbol associated to this if we haven't seen the namespace
16885 before. Also, add a using directive if it's an anonymous
16886 namespace. */
16887
16888 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16889 {
16890 struct type *type;
16891
16892 type = read_type_die (die, cu);
16893 new_symbol (die, type, cu);
16894
16895 namespace_name (die, &is_anonymous, cu);
16896 if (is_anonymous)
16897 {
16898 const char *previous_prefix = determine_prefix (die, cu);
16899
16900 std::vector<const char *> excludes;
16901 add_using_directive (using_directives (cu),
16902 previous_prefix, TYPE_NAME (type), NULL,
16903 NULL, excludes, 0, &objfile->objfile_obstack);
16904 }
16905 }
16906
16907 if (die->child != NULL)
16908 {
16909 struct die_info *child_die = die->child;
16910
16911 while (child_die && child_die->tag)
16912 {
16913 process_die (child_die, cu);
16914 child_die = sibling_die (child_die);
16915 }
16916 }
16917 }
16918
16919 /* Read a Fortran module as type. This DIE can be only a declaration used for
16920 imported module. Still we need that type as local Fortran "use ... only"
16921 declaration imports depend on the created type in determine_prefix. */
16922
16923 static struct type *
16924 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16925 {
16926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16927 const char *module_name;
16928 struct type *type;
16929
16930 module_name = dwarf2_name (die, cu);
16931 if (!module_name)
16932 complaint (_("DW_TAG_module has no name, offset %s"),
16933 sect_offset_str (die->sect_off));
16934 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16935
16936 return set_die_type (die, type, cu);
16937 }
16938
16939 /* Read a Fortran module. */
16940
16941 static void
16942 read_module (struct die_info *die, struct dwarf2_cu *cu)
16943 {
16944 struct die_info *child_die = die->child;
16945 struct type *type;
16946
16947 type = read_type_die (die, cu);
16948 new_symbol (die, type, cu);
16949
16950 while (child_die && child_die->tag)
16951 {
16952 process_die (child_die, cu);
16953 child_die = sibling_die (child_die);
16954 }
16955 }
16956
16957 /* Return the name of the namespace represented by DIE. Set
16958 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16959 namespace. */
16960
16961 static const char *
16962 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16963 {
16964 struct die_info *current_die;
16965 const char *name = NULL;
16966
16967 /* Loop through the extensions until we find a name. */
16968
16969 for (current_die = die;
16970 current_die != NULL;
16971 current_die = dwarf2_extension (die, &cu))
16972 {
16973 /* We don't use dwarf2_name here so that we can detect the absence
16974 of a name -> anonymous namespace. */
16975 name = dwarf2_string_attr (die, DW_AT_name, cu);
16976
16977 if (name != NULL)
16978 break;
16979 }
16980
16981 /* Is it an anonymous namespace? */
16982
16983 *is_anonymous = (name == NULL);
16984 if (*is_anonymous)
16985 name = CP_ANONYMOUS_NAMESPACE_STR;
16986
16987 return name;
16988 }
16989
16990 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16991 the user defined type vector. */
16992
16993 static struct type *
16994 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16995 {
16996 struct gdbarch *gdbarch
16997 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16998 struct comp_unit_head *cu_header = &cu->header;
16999 struct type *type;
17000 struct attribute *attr_byte_size;
17001 struct attribute *attr_address_class;
17002 int byte_size, addr_class;
17003 struct type *target_type;
17004
17005 target_type = die_type (die, cu);
17006
17007 /* The die_type call above may have already set the type for this DIE. */
17008 type = get_die_type (die, cu);
17009 if (type)
17010 return type;
17011
17012 type = lookup_pointer_type (target_type);
17013
17014 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17015 if (attr_byte_size)
17016 byte_size = DW_UNSND (attr_byte_size);
17017 else
17018 byte_size = cu_header->addr_size;
17019
17020 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17021 if (attr_address_class)
17022 addr_class = DW_UNSND (attr_address_class);
17023 else
17024 addr_class = DW_ADDR_none;
17025
17026 ULONGEST alignment = get_alignment (cu, die);
17027
17028 /* If the pointer size, alignment, or address class is different
17029 than the default, create a type variant marked as such and set
17030 the length accordingly. */
17031 if (TYPE_LENGTH (type) != byte_size
17032 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17033 && alignment != TYPE_RAW_ALIGN (type))
17034 || addr_class != DW_ADDR_none)
17035 {
17036 if (gdbarch_address_class_type_flags_p (gdbarch))
17037 {
17038 int type_flags;
17039
17040 type_flags = gdbarch_address_class_type_flags
17041 (gdbarch, byte_size, addr_class);
17042 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17043 == 0);
17044 type = make_type_with_address_space (type, type_flags);
17045 }
17046 else if (TYPE_LENGTH (type) != byte_size)
17047 {
17048 complaint (_("invalid pointer size %d"), byte_size);
17049 }
17050 else if (TYPE_RAW_ALIGN (type) != alignment)
17051 {
17052 complaint (_("Invalid DW_AT_alignment"
17053 " - DIE at %s [in module %s]"),
17054 sect_offset_str (die->sect_off),
17055 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17056 }
17057 else
17058 {
17059 /* Should we also complain about unhandled address classes? */
17060 }
17061 }
17062
17063 TYPE_LENGTH (type) = byte_size;
17064 set_type_align (type, alignment);
17065 return set_die_type (die, type, cu);
17066 }
17067
17068 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17069 the user defined type vector. */
17070
17071 static struct type *
17072 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17073 {
17074 struct type *type;
17075 struct type *to_type;
17076 struct type *domain;
17077
17078 to_type = die_type (die, cu);
17079 domain = die_containing_type (die, cu);
17080
17081 /* The calls above may have already set the type for this DIE. */
17082 type = get_die_type (die, cu);
17083 if (type)
17084 return type;
17085
17086 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17087 type = lookup_methodptr_type (to_type);
17088 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17089 {
17090 struct type *new_type
17091 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17092
17093 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17094 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17095 TYPE_VARARGS (to_type));
17096 type = lookup_methodptr_type (new_type);
17097 }
17098 else
17099 type = lookup_memberptr_type (to_type, domain);
17100
17101 return set_die_type (die, type, cu);
17102 }
17103
17104 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17105 the user defined type vector. */
17106
17107 static struct type *
17108 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17109 enum type_code refcode)
17110 {
17111 struct comp_unit_head *cu_header = &cu->header;
17112 struct type *type, *target_type;
17113 struct attribute *attr;
17114
17115 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17116
17117 target_type = die_type (die, cu);
17118
17119 /* The die_type call above may have already set the type for this DIE. */
17120 type = get_die_type (die, cu);
17121 if (type)
17122 return type;
17123
17124 type = lookup_reference_type (target_type, refcode);
17125 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17126 if (attr)
17127 {
17128 TYPE_LENGTH (type) = DW_UNSND (attr);
17129 }
17130 else
17131 {
17132 TYPE_LENGTH (type) = cu_header->addr_size;
17133 }
17134 maybe_set_alignment (cu, die, type);
17135 return set_die_type (die, type, cu);
17136 }
17137
17138 /* Add the given cv-qualifiers to the element type of the array. GCC
17139 outputs DWARF type qualifiers that apply to an array, not the
17140 element type. But GDB relies on the array element type to carry
17141 the cv-qualifiers. This mimics section 6.7.3 of the C99
17142 specification. */
17143
17144 static struct type *
17145 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17146 struct type *base_type, int cnst, int voltl)
17147 {
17148 struct type *el_type, *inner_array;
17149
17150 base_type = copy_type (base_type);
17151 inner_array = base_type;
17152
17153 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17154 {
17155 TYPE_TARGET_TYPE (inner_array) =
17156 copy_type (TYPE_TARGET_TYPE (inner_array));
17157 inner_array = TYPE_TARGET_TYPE (inner_array);
17158 }
17159
17160 el_type = TYPE_TARGET_TYPE (inner_array);
17161 cnst |= TYPE_CONST (el_type);
17162 voltl |= TYPE_VOLATILE (el_type);
17163 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17164
17165 return set_die_type (die, base_type, cu);
17166 }
17167
17168 static struct type *
17169 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17170 {
17171 struct type *base_type, *cv_type;
17172
17173 base_type = die_type (die, cu);
17174
17175 /* The die_type call above may have already set the type for this DIE. */
17176 cv_type = get_die_type (die, cu);
17177 if (cv_type)
17178 return cv_type;
17179
17180 /* In case the const qualifier is applied to an array type, the element type
17181 is so qualified, not the array type (section 6.7.3 of C99). */
17182 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17183 return add_array_cv_type (die, cu, base_type, 1, 0);
17184
17185 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17186 return set_die_type (die, cv_type, cu);
17187 }
17188
17189 static struct type *
17190 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17191 {
17192 struct type *base_type, *cv_type;
17193
17194 base_type = die_type (die, cu);
17195
17196 /* The die_type call above may have already set the type for this DIE. */
17197 cv_type = get_die_type (die, cu);
17198 if (cv_type)
17199 return cv_type;
17200
17201 /* In case the volatile qualifier is applied to an array type, the
17202 element type is so qualified, not the array type (section 6.7.3
17203 of C99). */
17204 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17205 return add_array_cv_type (die, cu, base_type, 0, 1);
17206
17207 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17208 return set_die_type (die, cv_type, cu);
17209 }
17210
17211 /* Handle DW_TAG_restrict_type. */
17212
17213 static struct type *
17214 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17215 {
17216 struct type *base_type, *cv_type;
17217
17218 base_type = die_type (die, cu);
17219
17220 /* The die_type call above may have already set the type for this DIE. */
17221 cv_type = get_die_type (die, cu);
17222 if (cv_type)
17223 return cv_type;
17224
17225 cv_type = make_restrict_type (base_type);
17226 return set_die_type (die, cv_type, cu);
17227 }
17228
17229 /* Handle DW_TAG_atomic_type. */
17230
17231 static struct type *
17232 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17233 {
17234 struct type *base_type, *cv_type;
17235
17236 base_type = die_type (die, cu);
17237
17238 /* The die_type call above may have already set the type for this DIE. */
17239 cv_type = get_die_type (die, cu);
17240 if (cv_type)
17241 return cv_type;
17242
17243 cv_type = make_atomic_type (base_type);
17244 return set_die_type (die, cv_type, cu);
17245 }
17246
17247 /* Extract all information from a DW_TAG_string_type DIE and add to
17248 the user defined type vector. It isn't really a user defined type,
17249 but it behaves like one, with other DIE's using an AT_user_def_type
17250 attribute to reference it. */
17251
17252 static struct type *
17253 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17254 {
17255 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17256 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17257 struct type *type, *range_type, *index_type, *char_type;
17258 struct attribute *attr;
17259 unsigned int length;
17260
17261 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17262 if (attr)
17263 {
17264 length = DW_UNSND (attr);
17265 }
17266 else
17267 {
17268 /* Check for the DW_AT_byte_size attribute. */
17269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17270 if (attr)
17271 {
17272 length = DW_UNSND (attr);
17273 }
17274 else
17275 {
17276 length = 1;
17277 }
17278 }
17279
17280 index_type = objfile_type (objfile)->builtin_int;
17281 range_type = create_static_range_type (NULL, index_type, 1, length);
17282 char_type = language_string_char_type (cu->language_defn, gdbarch);
17283 type = create_string_type (NULL, char_type, range_type);
17284
17285 return set_die_type (die, type, cu);
17286 }
17287
17288 /* Assuming that DIE corresponds to a function, returns nonzero
17289 if the function is prototyped. */
17290
17291 static int
17292 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17293 {
17294 struct attribute *attr;
17295
17296 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17297 if (attr && (DW_UNSND (attr) != 0))
17298 return 1;
17299
17300 /* The DWARF standard implies that the DW_AT_prototyped attribute
17301 is only meaninful for C, but the concept also extends to other
17302 languages that allow unprototyped functions (Eg: Objective C).
17303 For all other languages, assume that functions are always
17304 prototyped. */
17305 if (cu->language != language_c
17306 && cu->language != language_objc
17307 && cu->language != language_opencl)
17308 return 1;
17309
17310 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17311 prototyped and unprototyped functions; default to prototyped,
17312 since that is more common in modern code (and RealView warns
17313 about unprototyped functions). */
17314 if (producer_is_realview (cu->producer))
17315 return 1;
17316
17317 return 0;
17318 }
17319
17320 /* Handle DIES due to C code like:
17321
17322 struct foo
17323 {
17324 int (*funcp)(int a, long l);
17325 int b;
17326 };
17327
17328 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17329
17330 static struct type *
17331 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17332 {
17333 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17334 struct type *type; /* Type that this function returns. */
17335 struct type *ftype; /* Function that returns above type. */
17336 struct attribute *attr;
17337
17338 type = die_type (die, cu);
17339
17340 /* The die_type call above may have already set the type for this DIE. */
17341 ftype = get_die_type (die, cu);
17342 if (ftype)
17343 return ftype;
17344
17345 ftype = lookup_function_type (type);
17346
17347 if (prototyped_function_p (die, cu))
17348 TYPE_PROTOTYPED (ftype) = 1;
17349
17350 /* Store the calling convention in the type if it's available in
17351 the subroutine die. Otherwise set the calling convention to
17352 the default value DW_CC_normal. */
17353 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17354 if (attr)
17355 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17356 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17357 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17358 else
17359 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17360
17361 /* Record whether the function returns normally to its caller or not
17362 if the DWARF producer set that information. */
17363 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17364 if (attr && (DW_UNSND (attr) != 0))
17365 TYPE_NO_RETURN (ftype) = 1;
17366
17367 /* We need to add the subroutine type to the die immediately so
17368 we don't infinitely recurse when dealing with parameters
17369 declared as the same subroutine type. */
17370 set_die_type (die, ftype, cu);
17371
17372 if (die->child != NULL)
17373 {
17374 struct type *void_type = objfile_type (objfile)->builtin_void;
17375 struct die_info *child_die;
17376 int nparams, iparams;
17377
17378 /* Count the number of parameters.
17379 FIXME: GDB currently ignores vararg functions, but knows about
17380 vararg member functions. */
17381 nparams = 0;
17382 child_die = die->child;
17383 while (child_die && child_die->tag)
17384 {
17385 if (child_die->tag == DW_TAG_formal_parameter)
17386 nparams++;
17387 else if (child_die->tag == DW_TAG_unspecified_parameters)
17388 TYPE_VARARGS (ftype) = 1;
17389 child_die = sibling_die (child_die);
17390 }
17391
17392 /* Allocate storage for parameters and fill them in. */
17393 TYPE_NFIELDS (ftype) = nparams;
17394 TYPE_FIELDS (ftype) = (struct field *)
17395 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17396
17397 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17398 even if we error out during the parameters reading below. */
17399 for (iparams = 0; iparams < nparams; iparams++)
17400 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17401
17402 iparams = 0;
17403 child_die = die->child;
17404 while (child_die && child_die->tag)
17405 {
17406 if (child_die->tag == DW_TAG_formal_parameter)
17407 {
17408 struct type *arg_type;
17409
17410 /* DWARF version 2 has no clean way to discern C++
17411 static and non-static member functions. G++ helps
17412 GDB by marking the first parameter for non-static
17413 member functions (which is the this pointer) as
17414 artificial. We pass this information to
17415 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17416
17417 DWARF version 3 added DW_AT_object_pointer, which GCC
17418 4.5 does not yet generate. */
17419 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17420 if (attr)
17421 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17422 else
17423 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17424 arg_type = die_type (child_die, cu);
17425
17426 /* RealView does not mark THIS as const, which the testsuite
17427 expects. GCC marks THIS as const in method definitions,
17428 but not in the class specifications (GCC PR 43053). */
17429 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17430 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17431 {
17432 int is_this = 0;
17433 struct dwarf2_cu *arg_cu = cu;
17434 const char *name = dwarf2_name (child_die, cu);
17435
17436 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17437 if (attr)
17438 {
17439 /* If the compiler emits this, use it. */
17440 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17441 is_this = 1;
17442 }
17443 else if (name && strcmp (name, "this") == 0)
17444 /* Function definitions will have the argument names. */
17445 is_this = 1;
17446 else if (name == NULL && iparams == 0)
17447 /* Declarations may not have the names, so like
17448 elsewhere in GDB, assume an artificial first
17449 argument is "this". */
17450 is_this = 1;
17451
17452 if (is_this)
17453 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17454 arg_type, 0);
17455 }
17456
17457 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17458 iparams++;
17459 }
17460 child_die = sibling_die (child_die);
17461 }
17462 }
17463
17464 return ftype;
17465 }
17466
17467 static struct type *
17468 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17469 {
17470 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17471 const char *name = NULL;
17472 struct type *this_type, *target_type;
17473
17474 name = dwarf2_full_name (NULL, die, cu);
17475 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17476 TYPE_TARGET_STUB (this_type) = 1;
17477 set_die_type (die, this_type, cu);
17478 target_type = die_type (die, cu);
17479 if (target_type != this_type)
17480 TYPE_TARGET_TYPE (this_type) = target_type;
17481 else
17482 {
17483 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17484 spec and cause infinite loops in GDB. */
17485 complaint (_("Self-referential DW_TAG_typedef "
17486 "- DIE at %s [in module %s]"),
17487 sect_offset_str (die->sect_off), objfile_name (objfile));
17488 TYPE_TARGET_TYPE (this_type) = NULL;
17489 }
17490 return this_type;
17491 }
17492
17493 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17494 (which may be different from NAME) to the architecture back-end to allow
17495 it to guess the correct format if necessary. */
17496
17497 static struct type *
17498 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17499 const char *name_hint)
17500 {
17501 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17502 const struct floatformat **format;
17503 struct type *type;
17504
17505 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17506 if (format)
17507 type = init_float_type (objfile, bits, name, format);
17508 else
17509 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17510
17511 return type;
17512 }
17513
17514 /* Allocate an integer type of size BITS and name NAME. */
17515
17516 static struct type *
17517 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17518 int bits, int unsigned_p, const char *name)
17519 {
17520 struct type *type;
17521
17522 /* Versions of Intel's C Compiler generate an integer type called "void"
17523 instead of using DW_TAG_unspecified_type. This has been seen on
17524 at least versions 14, 17, and 18. */
17525 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17526 && strcmp (name, "void") == 0)
17527 type = objfile_type (objfile)->builtin_void;
17528 else
17529 type = init_integer_type (objfile, bits, unsigned_p, name);
17530
17531 return type;
17532 }
17533
17534 /* Find a representation of a given base type and install
17535 it in the TYPE field of the die. */
17536
17537 static struct type *
17538 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17539 {
17540 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17541 struct type *type;
17542 struct attribute *attr;
17543 int encoding = 0, bits = 0;
17544 const char *name;
17545
17546 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17547 if (attr)
17548 {
17549 encoding = DW_UNSND (attr);
17550 }
17551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17552 if (attr)
17553 {
17554 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17555 }
17556 name = dwarf2_name (die, cu);
17557 if (!name)
17558 {
17559 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17560 }
17561
17562 switch (encoding)
17563 {
17564 case DW_ATE_address:
17565 /* Turn DW_ATE_address into a void * pointer. */
17566 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17567 type = init_pointer_type (objfile, bits, name, type);
17568 break;
17569 case DW_ATE_boolean:
17570 type = init_boolean_type (objfile, bits, 1, name);
17571 break;
17572 case DW_ATE_complex_float:
17573 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17574 type = init_complex_type (objfile, name, type);
17575 break;
17576 case DW_ATE_decimal_float:
17577 type = init_decfloat_type (objfile, bits, name);
17578 break;
17579 case DW_ATE_float:
17580 type = dwarf2_init_float_type (objfile, bits, name, name);
17581 break;
17582 case DW_ATE_signed:
17583 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17584 break;
17585 case DW_ATE_unsigned:
17586 if (cu->language == language_fortran
17587 && name
17588 && startswith (name, "character("))
17589 type = init_character_type (objfile, bits, 1, name);
17590 else
17591 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17592 break;
17593 case DW_ATE_signed_char:
17594 if (cu->language == language_ada || cu->language == language_m2
17595 || cu->language == language_pascal
17596 || cu->language == language_fortran)
17597 type = init_character_type (objfile, bits, 0, name);
17598 else
17599 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17600 break;
17601 case DW_ATE_unsigned_char:
17602 if (cu->language == language_ada || cu->language == language_m2
17603 || cu->language == language_pascal
17604 || cu->language == language_fortran
17605 || cu->language == language_rust)
17606 type = init_character_type (objfile, bits, 1, name);
17607 else
17608 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17609 break;
17610 case DW_ATE_UTF:
17611 {
17612 gdbarch *arch = get_objfile_arch (objfile);
17613
17614 if (bits == 16)
17615 type = builtin_type (arch)->builtin_char16;
17616 else if (bits == 32)
17617 type = builtin_type (arch)->builtin_char32;
17618 else
17619 {
17620 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17621 bits);
17622 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17623 }
17624 return set_die_type (die, type, cu);
17625 }
17626 break;
17627
17628 default:
17629 complaint (_("unsupported DW_AT_encoding: '%s'"),
17630 dwarf_type_encoding_name (encoding));
17631 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17632 break;
17633 }
17634
17635 if (name && strcmp (name, "char") == 0)
17636 TYPE_NOSIGN (type) = 1;
17637
17638 maybe_set_alignment (cu, die, type);
17639
17640 return set_die_type (die, type, cu);
17641 }
17642
17643 /* Parse dwarf attribute if it's a block, reference or constant and put the
17644 resulting value of the attribute into struct bound_prop.
17645 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17646
17647 static int
17648 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17649 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17650 {
17651 struct dwarf2_property_baton *baton;
17652 struct obstack *obstack
17653 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17654
17655 if (attr == NULL || prop == NULL)
17656 return 0;
17657
17658 if (attr_form_is_block (attr))
17659 {
17660 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17661 baton->referenced_type = NULL;
17662 baton->locexpr.per_cu = cu->per_cu;
17663 baton->locexpr.size = DW_BLOCK (attr)->size;
17664 baton->locexpr.data = DW_BLOCK (attr)->data;
17665 prop->data.baton = baton;
17666 prop->kind = PROP_LOCEXPR;
17667 gdb_assert (prop->data.baton != NULL);
17668 }
17669 else if (attr_form_is_ref (attr))
17670 {
17671 struct dwarf2_cu *target_cu = cu;
17672 struct die_info *target_die;
17673 struct attribute *target_attr;
17674
17675 target_die = follow_die_ref (die, attr, &target_cu);
17676 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17677 if (target_attr == NULL)
17678 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17679 target_cu);
17680 if (target_attr == NULL)
17681 return 0;
17682
17683 switch (target_attr->name)
17684 {
17685 case DW_AT_location:
17686 if (attr_form_is_section_offset (target_attr))
17687 {
17688 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17689 baton->referenced_type = die_type (target_die, target_cu);
17690 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17691 prop->data.baton = baton;
17692 prop->kind = PROP_LOCLIST;
17693 gdb_assert (prop->data.baton != NULL);
17694 }
17695 else if (attr_form_is_block (target_attr))
17696 {
17697 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17698 baton->referenced_type = die_type (target_die, target_cu);
17699 baton->locexpr.per_cu = cu->per_cu;
17700 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17701 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17702 prop->data.baton = baton;
17703 prop->kind = PROP_LOCEXPR;
17704 gdb_assert (prop->data.baton != NULL);
17705 }
17706 else
17707 {
17708 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17709 "dynamic property");
17710 return 0;
17711 }
17712 break;
17713 case DW_AT_data_member_location:
17714 {
17715 LONGEST offset;
17716
17717 if (!handle_data_member_location (target_die, target_cu,
17718 &offset))
17719 return 0;
17720
17721 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17722 baton->referenced_type = read_type_die (target_die->parent,
17723 target_cu);
17724 baton->offset_info.offset = offset;
17725 baton->offset_info.type = die_type (target_die, target_cu);
17726 prop->data.baton = baton;
17727 prop->kind = PROP_ADDR_OFFSET;
17728 break;
17729 }
17730 }
17731 }
17732 else if (attr_form_is_constant (attr))
17733 {
17734 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17735 prop->kind = PROP_CONST;
17736 }
17737 else
17738 {
17739 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17740 dwarf2_name (die, cu));
17741 return 0;
17742 }
17743
17744 return 1;
17745 }
17746
17747 /* Read the given DW_AT_subrange DIE. */
17748
17749 static struct type *
17750 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17751 {
17752 struct type *base_type, *orig_base_type;
17753 struct type *range_type;
17754 struct attribute *attr;
17755 struct dynamic_prop low, high;
17756 int low_default_is_valid;
17757 int high_bound_is_count = 0;
17758 const char *name;
17759 ULONGEST negative_mask;
17760
17761 orig_base_type = die_type (die, cu);
17762 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17763 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17764 creating the range type, but we use the result of check_typedef
17765 when examining properties of the type. */
17766 base_type = check_typedef (orig_base_type);
17767
17768 /* The die_type call above may have already set the type for this DIE. */
17769 range_type = get_die_type (die, cu);
17770 if (range_type)
17771 return range_type;
17772
17773 low.kind = PROP_CONST;
17774 high.kind = PROP_CONST;
17775 high.data.const_val = 0;
17776
17777 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17778 omitting DW_AT_lower_bound. */
17779 switch (cu->language)
17780 {
17781 case language_c:
17782 case language_cplus:
17783 low.data.const_val = 0;
17784 low_default_is_valid = 1;
17785 break;
17786 case language_fortran:
17787 low.data.const_val = 1;
17788 low_default_is_valid = 1;
17789 break;
17790 case language_d:
17791 case language_objc:
17792 case language_rust:
17793 low.data.const_val = 0;
17794 low_default_is_valid = (cu->header.version >= 4);
17795 break;
17796 case language_ada:
17797 case language_m2:
17798 case language_pascal:
17799 low.data.const_val = 1;
17800 low_default_is_valid = (cu->header.version >= 4);
17801 break;
17802 default:
17803 low.data.const_val = 0;
17804 low_default_is_valid = 0;
17805 break;
17806 }
17807
17808 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17809 if (attr)
17810 attr_to_dynamic_prop (attr, die, cu, &low);
17811 else if (!low_default_is_valid)
17812 complaint (_("Missing DW_AT_lower_bound "
17813 "- DIE at %s [in module %s]"),
17814 sect_offset_str (die->sect_off),
17815 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17816
17817 struct attribute *attr_ub, *attr_count;
17818 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17819 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17820 {
17821 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17822 if (attr_to_dynamic_prop (attr, die, cu, &high))
17823 {
17824 /* If bounds are constant do the final calculation here. */
17825 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17826 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17827 else
17828 high_bound_is_count = 1;
17829 }
17830 else
17831 {
17832 if (attr_ub != NULL)
17833 complaint (_("Unresolved DW_AT_upper_bound "
17834 "- DIE at %s [in module %s]"),
17835 sect_offset_str (die->sect_off),
17836 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17837 if (attr_count != NULL)
17838 complaint (_("Unresolved DW_AT_count "
17839 "- DIE at %s [in module %s]"),
17840 sect_offset_str (die->sect_off),
17841 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17842 }
17843
17844 }
17845
17846 /* Dwarf-2 specifications explicitly allows to create subrange types
17847 without specifying a base type.
17848 In that case, the base type must be set to the type of
17849 the lower bound, upper bound or count, in that order, if any of these
17850 three attributes references an object that has a type.
17851 If no base type is found, the Dwarf-2 specifications say that
17852 a signed integer type of size equal to the size of an address should
17853 be used.
17854 For the following C code: `extern char gdb_int [];'
17855 GCC produces an empty range DIE.
17856 FIXME: muller/2010-05-28: Possible references to object for low bound,
17857 high bound or count are not yet handled by this code. */
17858 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17859 {
17860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17862 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17863 struct type *int_type = objfile_type (objfile)->builtin_int;
17864
17865 /* Test "int", "long int", and "long long int" objfile types,
17866 and select the first one having a size above or equal to the
17867 architecture address size. */
17868 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17869 base_type = int_type;
17870 else
17871 {
17872 int_type = objfile_type (objfile)->builtin_long;
17873 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17874 base_type = int_type;
17875 else
17876 {
17877 int_type = objfile_type (objfile)->builtin_long_long;
17878 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17879 base_type = int_type;
17880 }
17881 }
17882 }
17883
17884 /* Normally, the DWARF producers are expected to use a signed
17885 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17886 But this is unfortunately not always the case, as witnessed
17887 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17888 is used instead. To work around that ambiguity, we treat
17889 the bounds as signed, and thus sign-extend their values, when
17890 the base type is signed. */
17891 negative_mask =
17892 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17893 if (low.kind == PROP_CONST
17894 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17895 low.data.const_val |= negative_mask;
17896 if (high.kind == PROP_CONST
17897 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17898 high.data.const_val |= negative_mask;
17899
17900 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17901
17902 if (high_bound_is_count)
17903 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17904
17905 /* Ada expects an empty array on no boundary attributes. */
17906 if (attr == NULL && cu->language != language_ada)
17907 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17908
17909 name = dwarf2_name (die, cu);
17910 if (name)
17911 TYPE_NAME (range_type) = name;
17912
17913 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17914 if (attr)
17915 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17916
17917 maybe_set_alignment (cu, die, range_type);
17918
17919 set_die_type (die, range_type, cu);
17920
17921 /* set_die_type should be already done. */
17922 set_descriptive_type (range_type, die, cu);
17923
17924 return range_type;
17925 }
17926
17927 static struct type *
17928 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17929 {
17930 struct type *type;
17931
17932 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17933 NULL);
17934 TYPE_NAME (type) = dwarf2_name (die, cu);
17935
17936 /* In Ada, an unspecified type is typically used when the description
17937 of the type is defered to a different unit. When encountering
17938 such a type, we treat it as a stub, and try to resolve it later on,
17939 when needed. */
17940 if (cu->language == language_ada)
17941 TYPE_STUB (type) = 1;
17942
17943 return set_die_type (die, type, cu);
17944 }
17945
17946 /* Read a single die and all its descendents. Set the die's sibling
17947 field to NULL; set other fields in the die correctly, and set all
17948 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17949 location of the info_ptr after reading all of those dies. PARENT
17950 is the parent of the die in question. */
17951
17952 static struct die_info *
17953 read_die_and_children (const struct die_reader_specs *reader,
17954 const gdb_byte *info_ptr,
17955 const gdb_byte **new_info_ptr,
17956 struct die_info *parent)
17957 {
17958 struct die_info *die;
17959 const gdb_byte *cur_ptr;
17960 int has_children;
17961
17962 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17963 if (die == NULL)
17964 {
17965 *new_info_ptr = cur_ptr;
17966 return NULL;
17967 }
17968 store_in_ref_table (die, reader->cu);
17969
17970 if (has_children)
17971 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17972 else
17973 {
17974 die->child = NULL;
17975 *new_info_ptr = cur_ptr;
17976 }
17977
17978 die->sibling = NULL;
17979 die->parent = parent;
17980 return die;
17981 }
17982
17983 /* Read a die, all of its descendents, and all of its siblings; set
17984 all of the fields of all of the dies correctly. Arguments are as
17985 in read_die_and_children. */
17986
17987 static struct die_info *
17988 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17989 const gdb_byte *info_ptr,
17990 const gdb_byte **new_info_ptr,
17991 struct die_info *parent)
17992 {
17993 struct die_info *first_die, *last_sibling;
17994 const gdb_byte *cur_ptr;
17995
17996 cur_ptr = info_ptr;
17997 first_die = last_sibling = NULL;
17998
17999 while (1)
18000 {
18001 struct die_info *die
18002 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18003
18004 if (die == NULL)
18005 {
18006 *new_info_ptr = cur_ptr;
18007 return first_die;
18008 }
18009
18010 if (!first_die)
18011 first_die = die;
18012 else
18013 last_sibling->sibling = die;
18014
18015 last_sibling = die;
18016 }
18017 }
18018
18019 /* Read a die, all of its descendents, and all of its siblings; set
18020 all of the fields of all of the dies correctly. Arguments are as
18021 in read_die_and_children.
18022 This the main entry point for reading a DIE and all its children. */
18023
18024 static struct die_info *
18025 read_die_and_siblings (const struct die_reader_specs *reader,
18026 const gdb_byte *info_ptr,
18027 const gdb_byte **new_info_ptr,
18028 struct die_info *parent)
18029 {
18030 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18031 new_info_ptr, parent);
18032
18033 if (dwarf_die_debug)
18034 {
18035 fprintf_unfiltered (gdb_stdlog,
18036 "Read die from %s@0x%x of %s:\n",
18037 get_section_name (reader->die_section),
18038 (unsigned) (info_ptr - reader->die_section->buffer),
18039 bfd_get_filename (reader->abfd));
18040 dump_die (die, dwarf_die_debug);
18041 }
18042
18043 return die;
18044 }
18045
18046 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18047 attributes.
18048 The caller is responsible for filling in the extra attributes
18049 and updating (*DIEP)->num_attrs.
18050 Set DIEP to point to a newly allocated die with its information,
18051 except for its child, sibling, and parent fields.
18052 Set HAS_CHILDREN to tell whether the die has children or not. */
18053
18054 static const gdb_byte *
18055 read_full_die_1 (const struct die_reader_specs *reader,
18056 struct die_info **diep, const gdb_byte *info_ptr,
18057 int *has_children, int num_extra_attrs)
18058 {
18059 unsigned int abbrev_number, bytes_read, i;
18060 struct abbrev_info *abbrev;
18061 struct die_info *die;
18062 struct dwarf2_cu *cu = reader->cu;
18063 bfd *abfd = reader->abfd;
18064
18065 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18066 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18067 info_ptr += bytes_read;
18068 if (!abbrev_number)
18069 {
18070 *diep = NULL;
18071 *has_children = 0;
18072 return info_ptr;
18073 }
18074
18075 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18076 if (!abbrev)
18077 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18078 abbrev_number,
18079 bfd_get_filename (abfd));
18080
18081 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18082 die->sect_off = sect_off;
18083 die->tag = abbrev->tag;
18084 die->abbrev = abbrev_number;
18085
18086 /* Make the result usable.
18087 The caller needs to update num_attrs after adding the extra
18088 attributes. */
18089 die->num_attrs = abbrev->num_attrs;
18090
18091 for (i = 0; i < abbrev->num_attrs; ++i)
18092 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18093 info_ptr);
18094
18095 *diep = die;
18096 *has_children = abbrev->has_children;
18097 return info_ptr;
18098 }
18099
18100 /* Read a die and all its attributes.
18101 Set DIEP to point to a newly allocated die with its information,
18102 except for its child, sibling, and parent fields.
18103 Set HAS_CHILDREN to tell whether the die has children or not. */
18104
18105 static const gdb_byte *
18106 read_full_die (const struct die_reader_specs *reader,
18107 struct die_info **diep, const gdb_byte *info_ptr,
18108 int *has_children)
18109 {
18110 const gdb_byte *result;
18111
18112 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18113
18114 if (dwarf_die_debug)
18115 {
18116 fprintf_unfiltered (gdb_stdlog,
18117 "Read die from %s@0x%x of %s:\n",
18118 get_section_name (reader->die_section),
18119 (unsigned) (info_ptr - reader->die_section->buffer),
18120 bfd_get_filename (reader->abfd));
18121 dump_die (*diep, dwarf_die_debug);
18122 }
18123
18124 return result;
18125 }
18126 \f
18127 /* Abbreviation tables.
18128
18129 In DWARF version 2, the description of the debugging information is
18130 stored in a separate .debug_abbrev section. Before we read any
18131 dies from a section we read in all abbreviations and install them
18132 in a hash table. */
18133
18134 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18135
18136 struct abbrev_info *
18137 abbrev_table::alloc_abbrev ()
18138 {
18139 struct abbrev_info *abbrev;
18140
18141 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18142 memset (abbrev, 0, sizeof (struct abbrev_info));
18143
18144 return abbrev;
18145 }
18146
18147 /* Add an abbreviation to the table. */
18148
18149 void
18150 abbrev_table::add_abbrev (unsigned int abbrev_number,
18151 struct abbrev_info *abbrev)
18152 {
18153 unsigned int hash_number;
18154
18155 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18156 abbrev->next = m_abbrevs[hash_number];
18157 m_abbrevs[hash_number] = abbrev;
18158 }
18159
18160 /* Look up an abbrev in the table.
18161 Returns NULL if the abbrev is not found. */
18162
18163 struct abbrev_info *
18164 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18165 {
18166 unsigned int hash_number;
18167 struct abbrev_info *abbrev;
18168
18169 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18170 abbrev = m_abbrevs[hash_number];
18171
18172 while (abbrev)
18173 {
18174 if (abbrev->number == abbrev_number)
18175 return abbrev;
18176 abbrev = abbrev->next;
18177 }
18178 return NULL;
18179 }
18180
18181 /* Read in an abbrev table. */
18182
18183 static abbrev_table_up
18184 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18185 struct dwarf2_section_info *section,
18186 sect_offset sect_off)
18187 {
18188 struct objfile *objfile = dwarf2_per_objfile->objfile;
18189 bfd *abfd = get_section_bfd_owner (section);
18190 const gdb_byte *abbrev_ptr;
18191 struct abbrev_info *cur_abbrev;
18192 unsigned int abbrev_number, bytes_read, abbrev_name;
18193 unsigned int abbrev_form;
18194 struct attr_abbrev *cur_attrs;
18195 unsigned int allocated_attrs;
18196
18197 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18198
18199 dwarf2_read_section (objfile, section);
18200 abbrev_ptr = section->buffer + to_underlying (sect_off);
18201 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18202 abbrev_ptr += bytes_read;
18203
18204 allocated_attrs = ATTR_ALLOC_CHUNK;
18205 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18206
18207 /* Loop until we reach an abbrev number of 0. */
18208 while (abbrev_number)
18209 {
18210 cur_abbrev = abbrev_table->alloc_abbrev ();
18211
18212 /* read in abbrev header */
18213 cur_abbrev->number = abbrev_number;
18214 cur_abbrev->tag
18215 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18216 abbrev_ptr += bytes_read;
18217 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18218 abbrev_ptr += 1;
18219
18220 /* now read in declarations */
18221 for (;;)
18222 {
18223 LONGEST implicit_const;
18224
18225 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18226 abbrev_ptr += bytes_read;
18227 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18228 abbrev_ptr += bytes_read;
18229 if (abbrev_form == DW_FORM_implicit_const)
18230 {
18231 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18232 &bytes_read);
18233 abbrev_ptr += bytes_read;
18234 }
18235 else
18236 {
18237 /* Initialize it due to a false compiler warning. */
18238 implicit_const = -1;
18239 }
18240
18241 if (abbrev_name == 0)
18242 break;
18243
18244 if (cur_abbrev->num_attrs == allocated_attrs)
18245 {
18246 allocated_attrs += ATTR_ALLOC_CHUNK;
18247 cur_attrs
18248 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18249 }
18250
18251 cur_attrs[cur_abbrev->num_attrs].name
18252 = (enum dwarf_attribute) abbrev_name;
18253 cur_attrs[cur_abbrev->num_attrs].form
18254 = (enum dwarf_form) abbrev_form;
18255 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18256 ++cur_abbrev->num_attrs;
18257 }
18258
18259 cur_abbrev->attrs =
18260 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18261 cur_abbrev->num_attrs);
18262 memcpy (cur_abbrev->attrs, cur_attrs,
18263 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18264
18265 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18266
18267 /* Get next abbreviation.
18268 Under Irix6 the abbreviations for a compilation unit are not
18269 always properly terminated with an abbrev number of 0.
18270 Exit loop if we encounter an abbreviation which we have
18271 already read (which means we are about to read the abbreviations
18272 for the next compile unit) or if the end of the abbreviation
18273 table is reached. */
18274 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18275 break;
18276 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18277 abbrev_ptr += bytes_read;
18278 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18279 break;
18280 }
18281
18282 xfree (cur_attrs);
18283 return abbrev_table;
18284 }
18285
18286 /* Returns nonzero if TAG represents a type that we might generate a partial
18287 symbol for. */
18288
18289 static int
18290 is_type_tag_for_partial (int tag)
18291 {
18292 switch (tag)
18293 {
18294 #if 0
18295 /* Some types that would be reasonable to generate partial symbols for,
18296 that we don't at present. */
18297 case DW_TAG_array_type:
18298 case DW_TAG_file_type:
18299 case DW_TAG_ptr_to_member_type:
18300 case DW_TAG_set_type:
18301 case DW_TAG_string_type:
18302 case DW_TAG_subroutine_type:
18303 #endif
18304 case DW_TAG_base_type:
18305 case DW_TAG_class_type:
18306 case DW_TAG_interface_type:
18307 case DW_TAG_enumeration_type:
18308 case DW_TAG_structure_type:
18309 case DW_TAG_subrange_type:
18310 case DW_TAG_typedef:
18311 case DW_TAG_union_type:
18312 return 1;
18313 default:
18314 return 0;
18315 }
18316 }
18317
18318 /* Load all DIEs that are interesting for partial symbols into memory. */
18319
18320 static struct partial_die_info *
18321 load_partial_dies (const struct die_reader_specs *reader,
18322 const gdb_byte *info_ptr, int building_psymtab)
18323 {
18324 struct dwarf2_cu *cu = reader->cu;
18325 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18326 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18327 unsigned int bytes_read;
18328 unsigned int load_all = 0;
18329 int nesting_level = 1;
18330
18331 parent_die = NULL;
18332 last_die = NULL;
18333
18334 gdb_assert (cu->per_cu != NULL);
18335 if (cu->per_cu->load_all_dies)
18336 load_all = 1;
18337
18338 cu->partial_dies
18339 = htab_create_alloc_ex (cu->header.length / 12,
18340 partial_die_hash,
18341 partial_die_eq,
18342 NULL,
18343 &cu->comp_unit_obstack,
18344 hashtab_obstack_allocate,
18345 dummy_obstack_deallocate);
18346
18347 while (1)
18348 {
18349 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18350
18351 /* A NULL abbrev means the end of a series of children. */
18352 if (abbrev == NULL)
18353 {
18354 if (--nesting_level == 0)
18355 return first_die;
18356
18357 info_ptr += bytes_read;
18358 last_die = parent_die;
18359 parent_die = parent_die->die_parent;
18360 continue;
18361 }
18362
18363 /* Check for template arguments. We never save these; if
18364 they're seen, we just mark the parent, and go on our way. */
18365 if (parent_die != NULL
18366 && cu->language == language_cplus
18367 && (abbrev->tag == DW_TAG_template_type_param
18368 || abbrev->tag == DW_TAG_template_value_param))
18369 {
18370 parent_die->has_template_arguments = 1;
18371
18372 if (!load_all)
18373 {
18374 /* We don't need a partial DIE for the template argument. */
18375 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18376 continue;
18377 }
18378 }
18379
18380 /* We only recurse into c++ subprograms looking for template arguments.
18381 Skip their other children. */
18382 if (!load_all
18383 && cu->language == language_cplus
18384 && parent_die != NULL
18385 && parent_die->tag == DW_TAG_subprogram)
18386 {
18387 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18388 continue;
18389 }
18390
18391 /* Check whether this DIE is interesting enough to save. Normally
18392 we would not be interested in members here, but there may be
18393 later variables referencing them via DW_AT_specification (for
18394 static members). */
18395 if (!load_all
18396 && !is_type_tag_for_partial (abbrev->tag)
18397 && abbrev->tag != DW_TAG_constant
18398 && abbrev->tag != DW_TAG_enumerator
18399 && abbrev->tag != DW_TAG_subprogram
18400 && abbrev->tag != DW_TAG_inlined_subroutine
18401 && abbrev->tag != DW_TAG_lexical_block
18402 && abbrev->tag != DW_TAG_variable
18403 && abbrev->tag != DW_TAG_namespace
18404 && abbrev->tag != DW_TAG_module
18405 && abbrev->tag != DW_TAG_member
18406 && abbrev->tag != DW_TAG_imported_unit
18407 && abbrev->tag != DW_TAG_imported_declaration)
18408 {
18409 /* Otherwise we skip to the next sibling, if any. */
18410 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18411 continue;
18412 }
18413
18414 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18415 abbrev);
18416
18417 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18418
18419 /* This two-pass algorithm for processing partial symbols has a
18420 high cost in cache pressure. Thus, handle some simple cases
18421 here which cover the majority of C partial symbols. DIEs
18422 which neither have specification tags in them, nor could have
18423 specification tags elsewhere pointing at them, can simply be
18424 processed and discarded.
18425
18426 This segment is also optional; scan_partial_symbols and
18427 add_partial_symbol will handle these DIEs if we chain
18428 them in normally. When compilers which do not emit large
18429 quantities of duplicate debug information are more common,
18430 this code can probably be removed. */
18431
18432 /* Any complete simple types at the top level (pretty much all
18433 of them, for a language without namespaces), can be processed
18434 directly. */
18435 if (parent_die == NULL
18436 && pdi.has_specification == 0
18437 && pdi.is_declaration == 0
18438 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18439 || pdi.tag == DW_TAG_base_type
18440 || pdi.tag == DW_TAG_subrange_type))
18441 {
18442 if (building_psymtab && pdi.name != NULL)
18443 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18444 VAR_DOMAIN, LOC_TYPEDEF, -1,
18445 &objfile->static_psymbols,
18446 0, cu->language, objfile);
18447 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18448 continue;
18449 }
18450
18451 /* The exception for DW_TAG_typedef with has_children above is
18452 a workaround of GCC PR debug/47510. In the case of this complaint
18453 type_name_or_error will error on such types later.
18454
18455 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18456 it could not find the child DIEs referenced later, this is checked
18457 above. In correct DWARF DW_TAG_typedef should have no children. */
18458
18459 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18460 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18461 "- DIE at %s [in module %s]"),
18462 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18463
18464 /* If we're at the second level, and we're an enumerator, and
18465 our parent has no specification (meaning possibly lives in a
18466 namespace elsewhere), then we can add the partial symbol now
18467 instead of queueing it. */
18468 if (pdi.tag == DW_TAG_enumerator
18469 && parent_die != NULL
18470 && parent_die->die_parent == NULL
18471 && parent_die->tag == DW_TAG_enumeration_type
18472 && parent_die->has_specification == 0)
18473 {
18474 if (pdi.name == NULL)
18475 complaint (_("malformed enumerator DIE ignored"));
18476 else if (building_psymtab)
18477 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18478 VAR_DOMAIN, LOC_CONST, -1,
18479 cu->language == language_cplus
18480 ? &objfile->global_psymbols
18481 : &objfile->static_psymbols,
18482 0, cu->language, objfile);
18483
18484 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18485 continue;
18486 }
18487
18488 struct partial_die_info *part_die
18489 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18490
18491 /* We'll save this DIE so link it in. */
18492 part_die->die_parent = parent_die;
18493 part_die->die_sibling = NULL;
18494 part_die->die_child = NULL;
18495
18496 if (last_die && last_die == parent_die)
18497 last_die->die_child = part_die;
18498 else if (last_die)
18499 last_die->die_sibling = part_die;
18500
18501 last_die = part_die;
18502
18503 if (first_die == NULL)
18504 first_die = part_die;
18505
18506 /* Maybe add the DIE to the hash table. Not all DIEs that we
18507 find interesting need to be in the hash table, because we
18508 also have the parent/sibling/child chains; only those that we
18509 might refer to by offset later during partial symbol reading.
18510
18511 For now this means things that might have be the target of a
18512 DW_AT_specification, DW_AT_abstract_origin, or
18513 DW_AT_extension. DW_AT_extension will refer only to
18514 namespaces; DW_AT_abstract_origin refers to functions (and
18515 many things under the function DIE, but we do not recurse
18516 into function DIEs during partial symbol reading) and
18517 possibly variables as well; DW_AT_specification refers to
18518 declarations. Declarations ought to have the DW_AT_declaration
18519 flag. It happens that GCC forgets to put it in sometimes, but
18520 only for functions, not for types.
18521
18522 Adding more things than necessary to the hash table is harmless
18523 except for the performance cost. Adding too few will result in
18524 wasted time in find_partial_die, when we reread the compilation
18525 unit with load_all_dies set. */
18526
18527 if (load_all
18528 || abbrev->tag == DW_TAG_constant
18529 || abbrev->tag == DW_TAG_subprogram
18530 || abbrev->tag == DW_TAG_variable
18531 || abbrev->tag == DW_TAG_namespace
18532 || part_die->is_declaration)
18533 {
18534 void **slot;
18535
18536 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18537 to_underlying (part_die->sect_off),
18538 INSERT);
18539 *slot = part_die;
18540 }
18541
18542 /* For some DIEs we want to follow their children (if any). For C
18543 we have no reason to follow the children of structures; for other
18544 languages we have to, so that we can get at method physnames
18545 to infer fully qualified class names, for DW_AT_specification,
18546 and for C++ template arguments. For C++, we also look one level
18547 inside functions to find template arguments (if the name of the
18548 function does not already contain the template arguments).
18549
18550 For Ada, we need to scan the children of subprograms and lexical
18551 blocks as well because Ada allows the definition of nested
18552 entities that could be interesting for the debugger, such as
18553 nested subprograms for instance. */
18554 if (last_die->has_children
18555 && (load_all
18556 || last_die->tag == DW_TAG_namespace
18557 || last_die->tag == DW_TAG_module
18558 || last_die->tag == DW_TAG_enumeration_type
18559 || (cu->language == language_cplus
18560 && last_die->tag == DW_TAG_subprogram
18561 && (last_die->name == NULL
18562 || strchr (last_die->name, '<') == NULL))
18563 || (cu->language != language_c
18564 && (last_die->tag == DW_TAG_class_type
18565 || last_die->tag == DW_TAG_interface_type
18566 || last_die->tag == DW_TAG_structure_type
18567 || last_die->tag == DW_TAG_union_type))
18568 || (cu->language == language_ada
18569 && (last_die->tag == DW_TAG_subprogram
18570 || last_die->tag == DW_TAG_lexical_block))))
18571 {
18572 nesting_level++;
18573 parent_die = last_die;
18574 continue;
18575 }
18576
18577 /* Otherwise we skip to the next sibling, if any. */
18578 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18579
18580 /* Back to the top, do it again. */
18581 }
18582 }
18583
18584 partial_die_info::partial_die_info (sect_offset sect_off_,
18585 struct abbrev_info *abbrev)
18586 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18587 {
18588 }
18589
18590 /* Read a minimal amount of information into the minimal die structure.
18591 INFO_PTR should point just after the initial uleb128 of a DIE. */
18592
18593 const gdb_byte *
18594 partial_die_info::read (const struct die_reader_specs *reader,
18595 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18596 {
18597 struct dwarf2_cu *cu = reader->cu;
18598 struct dwarf2_per_objfile *dwarf2_per_objfile
18599 = cu->per_cu->dwarf2_per_objfile;
18600 unsigned int i;
18601 int has_low_pc_attr = 0;
18602 int has_high_pc_attr = 0;
18603 int high_pc_relative = 0;
18604
18605 for (i = 0; i < abbrev.num_attrs; ++i)
18606 {
18607 struct attribute attr;
18608
18609 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18610
18611 /* Store the data if it is of an attribute we want to keep in a
18612 partial symbol table. */
18613 switch (attr.name)
18614 {
18615 case DW_AT_name:
18616 switch (tag)
18617 {
18618 case DW_TAG_compile_unit:
18619 case DW_TAG_partial_unit:
18620 case DW_TAG_type_unit:
18621 /* Compilation units have a DW_AT_name that is a filename, not
18622 a source language identifier. */
18623 case DW_TAG_enumeration_type:
18624 case DW_TAG_enumerator:
18625 /* These tags always have simple identifiers already; no need
18626 to canonicalize them. */
18627 name = DW_STRING (&attr);
18628 break;
18629 default:
18630 {
18631 struct objfile *objfile = dwarf2_per_objfile->objfile;
18632
18633 name
18634 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18635 &objfile->per_bfd->storage_obstack);
18636 }
18637 break;
18638 }
18639 break;
18640 case DW_AT_linkage_name:
18641 case DW_AT_MIPS_linkage_name:
18642 /* Note that both forms of linkage name might appear. We
18643 assume they will be the same, and we only store the last
18644 one we see. */
18645 if (cu->language == language_ada)
18646 name = DW_STRING (&attr);
18647 linkage_name = DW_STRING (&attr);
18648 break;
18649 case DW_AT_low_pc:
18650 has_low_pc_attr = 1;
18651 lowpc = attr_value_as_address (&attr);
18652 break;
18653 case DW_AT_high_pc:
18654 has_high_pc_attr = 1;
18655 highpc = attr_value_as_address (&attr);
18656 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18657 high_pc_relative = 1;
18658 break;
18659 case DW_AT_location:
18660 /* Support the .debug_loc offsets. */
18661 if (attr_form_is_block (&attr))
18662 {
18663 d.locdesc = DW_BLOCK (&attr);
18664 }
18665 else if (attr_form_is_section_offset (&attr))
18666 {
18667 dwarf2_complex_location_expr_complaint ();
18668 }
18669 else
18670 {
18671 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18672 "partial symbol information");
18673 }
18674 break;
18675 case DW_AT_external:
18676 is_external = DW_UNSND (&attr);
18677 break;
18678 case DW_AT_declaration:
18679 is_declaration = DW_UNSND (&attr);
18680 break;
18681 case DW_AT_type:
18682 has_type = 1;
18683 break;
18684 case DW_AT_abstract_origin:
18685 case DW_AT_specification:
18686 case DW_AT_extension:
18687 has_specification = 1;
18688 spec_offset = dwarf2_get_ref_die_offset (&attr);
18689 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18690 || cu->per_cu->is_dwz);
18691 break;
18692 case DW_AT_sibling:
18693 /* Ignore absolute siblings, they might point outside of
18694 the current compile unit. */
18695 if (attr.form == DW_FORM_ref_addr)
18696 complaint (_("ignoring absolute DW_AT_sibling"));
18697 else
18698 {
18699 const gdb_byte *buffer = reader->buffer;
18700 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18701 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18702
18703 if (sibling_ptr < info_ptr)
18704 complaint (_("DW_AT_sibling points backwards"));
18705 else if (sibling_ptr > reader->buffer_end)
18706 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18707 else
18708 sibling = sibling_ptr;
18709 }
18710 break;
18711 case DW_AT_byte_size:
18712 has_byte_size = 1;
18713 break;
18714 case DW_AT_const_value:
18715 has_const_value = 1;
18716 break;
18717 case DW_AT_calling_convention:
18718 /* DWARF doesn't provide a way to identify a program's source-level
18719 entry point. DW_AT_calling_convention attributes are only meant
18720 to describe functions' calling conventions.
18721
18722 However, because it's a necessary piece of information in
18723 Fortran, and before DWARF 4 DW_CC_program was the only
18724 piece of debugging information whose definition refers to
18725 a 'main program' at all, several compilers marked Fortran
18726 main programs with DW_CC_program --- even when those
18727 functions use the standard calling conventions.
18728
18729 Although DWARF now specifies a way to provide this
18730 information, we support this practice for backward
18731 compatibility. */
18732 if (DW_UNSND (&attr) == DW_CC_program
18733 && cu->language == language_fortran)
18734 main_subprogram = 1;
18735 break;
18736 case DW_AT_inline:
18737 if (DW_UNSND (&attr) == DW_INL_inlined
18738 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18739 may_be_inlined = 1;
18740 break;
18741
18742 case DW_AT_import:
18743 if (tag == DW_TAG_imported_unit)
18744 {
18745 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18746 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18747 || cu->per_cu->is_dwz);
18748 }
18749 break;
18750
18751 case DW_AT_main_subprogram:
18752 main_subprogram = DW_UNSND (&attr);
18753 break;
18754
18755 default:
18756 break;
18757 }
18758 }
18759
18760 if (high_pc_relative)
18761 highpc += lowpc;
18762
18763 if (has_low_pc_attr && has_high_pc_attr)
18764 {
18765 /* When using the GNU linker, .gnu.linkonce. sections are used to
18766 eliminate duplicate copies of functions and vtables and such.
18767 The linker will arbitrarily choose one and discard the others.
18768 The AT_*_pc values for such functions refer to local labels in
18769 these sections. If the section from that file was discarded, the
18770 labels are not in the output, so the relocs get a value of 0.
18771 If this is a discarded function, mark the pc bounds as invalid,
18772 so that GDB will ignore it. */
18773 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18774 {
18775 struct objfile *objfile = dwarf2_per_objfile->objfile;
18776 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18777
18778 complaint (_("DW_AT_low_pc %s is zero "
18779 "for DIE at %s [in module %s]"),
18780 paddress (gdbarch, lowpc),
18781 sect_offset_str (sect_off),
18782 objfile_name (objfile));
18783 }
18784 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18785 else if (lowpc >= highpc)
18786 {
18787 struct objfile *objfile = dwarf2_per_objfile->objfile;
18788 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18789
18790 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18791 "for DIE at %s [in module %s]"),
18792 paddress (gdbarch, lowpc),
18793 paddress (gdbarch, highpc),
18794 sect_offset_str (sect_off),
18795 objfile_name (objfile));
18796 }
18797 else
18798 has_pc_info = 1;
18799 }
18800
18801 return info_ptr;
18802 }
18803
18804 /* Find a cached partial DIE at OFFSET in CU. */
18805
18806 struct partial_die_info *
18807 dwarf2_cu::find_partial_die (sect_offset sect_off)
18808 {
18809 struct partial_die_info *lookup_die = NULL;
18810 struct partial_die_info part_die (sect_off);
18811
18812 lookup_die = ((struct partial_die_info *)
18813 htab_find_with_hash (partial_dies, &part_die,
18814 to_underlying (sect_off)));
18815
18816 return lookup_die;
18817 }
18818
18819 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18820 except in the case of .debug_types DIEs which do not reference
18821 outside their CU (they do however referencing other types via
18822 DW_FORM_ref_sig8). */
18823
18824 static struct partial_die_info *
18825 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18826 {
18827 struct dwarf2_per_objfile *dwarf2_per_objfile
18828 = cu->per_cu->dwarf2_per_objfile;
18829 struct objfile *objfile = dwarf2_per_objfile->objfile;
18830 struct dwarf2_per_cu_data *per_cu = NULL;
18831 struct partial_die_info *pd = NULL;
18832
18833 if (offset_in_dwz == cu->per_cu->is_dwz
18834 && offset_in_cu_p (&cu->header, sect_off))
18835 {
18836 pd = cu->find_partial_die (sect_off);
18837 if (pd != NULL)
18838 return pd;
18839 /* We missed recording what we needed.
18840 Load all dies and try again. */
18841 per_cu = cu->per_cu;
18842 }
18843 else
18844 {
18845 /* TUs don't reference other CUs/TUs (except via type signatures). */
18846 if (cu->per_cu->is_debug_types)
18847 {
18848 error (_("Dwarf Error: Type Unit at offset %s contains"
18849 " external reference to offset %s [in module %s].\n"),
18850 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18851 bfd_get_filename (objfile->obfd));
18852 }
18853 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18854 dwarf2_per_objfile);
18855
18856 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18857 load_partial_comp_unit (per_cu);
18858
18859 per_cu->cu->last_used = 0;
18860 pd = per_cu->cu->find_partial_die (sect_off);
18861 }
18862
18863 /* If we didn't find it, and not all dies have been loaded,
18864 load them all and try again. */
18865
18866 if (pd == NULL && per_cu->load_all_dies == 0)
18867 {
18868 per_cu->load_all_dies = 1;
18869
18870 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18871 THIS_CU->cu may already be in use. So we can't just free it and
18872 replace its DIEs with the ones we read in. Instead, we leave those
18873 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18874 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18875 set. */
18876 load_partial_comp_unit (per_cu);
18877
18878 pd = per_cu->cu->find_partial_die (sect_off);
18879 }
18880
18881 if (pd == NULL)
18882 internal_error (__FILE__, __LINE__,
18883 _("could not find partial DIE %s "
18884 "in cache [from module %s]\n"),
18885 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18886 return pd;
18887 }
18888
18889 /* See if we can figure out if the class lives in a namespace. We do
18890 this by looking for a member function; its demangled name will
18891 contain namespace info, if there is any. */
18892
18893 static void
18894 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18895 struct dwarf2_cu *cu)
18896 {
18897 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18898 what template types look like, because the demangler
18899 frequently doesn't give the same name as the debug info. We
18900 could fix this by only using the demangled name to get the
18901 prefix (but see comment in read_structure_type). */
18902
18903 struct partial_die_info *real_pdi;
18904 struct partial_die_info *child_pdi;
18905
18906 /* If this DIE (this DIE's specification, if any) has a parent, then
18907 we should not do this. We'll prepend the parent's fully qualified
18908 name when we create the partial symbol. */
18909
18910 real_pdi = struct_pdi;
18911 while (real_pdi->has_specification)
18912 real_pdi = find_partial_die (real_pdi->spec_offset,
18913 real_pdi->spec_is_dwz, cu);
18914
18915 if (real_pdi->die_parent != NULL)
18916 return;
18917
18918 for (child_pdi = struct_pdi->die_child;
18919 child_pdi != NULL;
18920 child_pdi = child_pdi->die_sibling)
18921 {
18922 if (child_pdi->tag == DW_TAG_subprogram
18923 && child_pdi->linkage_name != NULL)
18924 {
18925 char *actual_class_name
18926 = language_class_name_from_physname (cu->language_defn,
18927 child_pdi->linkage_name);
18928 if (actual_class_name != NULL)
18929 {
18930 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18931 struct_pdi->name
18932 = ((const char *)
18933 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18934 actual_class_name,
18935 strlen (actual_class_name)));
18936 xfree (actual_class_name);
18937 }
18938 break;
18939 }
18940 }
18941 }
18942
18943 void
18944 partial_die_info::fixup (struct dwarf2_cu *cu)
18945 {
18946 /* Once we've fixed up a die, there's no point in doing so again.
18947 This also avoids a memory leak if we were to call
18948 guess_partial_die_structure_name multiple times. */
18949 if (fixup_called)
18950 return;
18951
18952 /* If we found a reference attribute and the DIE has no name, try
18953 to find a name in the referred to DIE. */
18954
18955 if (name == NULL && has_specification)
18956 {
18957 struct partial_die_info *spec_die;
18958
18959 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18960
18961 spec_die->fixup (cu);
18962
18963 if (spec_die->name)
18964 {
18965 name = spec_die->name;
18966
18967 /* Copy DW_AT_external attribute if it is set. */
18968 if (spec_die->is_external)
18969 is_external = spec_die->is_external;
18970 }
18971 }
18972
18973 /* Set default names for some unnamed DIEs. */
18974
18975 if (name == NULL && tag == DW_TAG_namespace)
18976 name = CP_ANONYMOUS_NAMESPACE_STR;
18977
18978 /* If there is no parent die to provide a namespace, and there are
18979 children, see if we can determine the namespace from their linkage
18980 name. */
18981 if (cu->language == language_cplus
18982 && !VEC_empty (dwarf2_section_info_def,
18983 cu->per_cu->dwarf2_per_objfile->types)
18984 && die_parent == NULL
18985 && has_children
18986 && (tag == DW_TAG_class_type
18987 || tag == DW_TAG_structure_type
18988 || tag == DW_TAG_union_type))
18989 guess_partial_die_structure_name (this, cu);
18990
18991 /* GCC might emit a nameless struct or union that has a linkage
18992 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18993 if (name == NULL
18994 && (tag == DW_TAG_class_type
18995 || tag == DW_TAG_interface_type
18996 || tag == DW_TAG_structure_type
18997 || tag == DW_TAG_union_type)
18998 && linkage_name != NULL)
18999 {
19000 char *demangled;
19001
19002 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19003 if (demangled)
19004 {
19005 const char *base;
19006
19007 /* Strip any leading namespaces/classes, keep only the base name.
19008 DW_AT_name for named DIEs does not contain the prefixes. */
19009 base = strrchr (demangled, ':');
19010 if (base && base > demangled && base[-1] == ':')
19011 base++;
19012 else
19013 base = demangled;
19014
19015 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19016 name
19017 = ((const char *)
19018 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19019 base, strlen (base)));
19020 xfree (demangled);
19021 }
19022 }
19023
19024 fixup_called = 1;
19025 }
19026
19027 /* Read an attribute value described by an attribute form. */
19028
19029 static const gdb_byte *
19030 read_attribute_value (const struct die_reader_specs *reader,
19031 struct attribute *attr, unsigned form,
19032 LONGEST implicit_const, const gdb_byte *info_ptr)
19033 {
19034 struct dwarf2_cu *cu = reader->cu;
19035 struct dwarf2_per_objfile *dwarf2_per_objfile
19036 = cu->per_cu->dwarf2_per_objfile;
19037 struct objfile *objfile = dwarf2_per_objfile->objfile;
19038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19039 bfd *abfd = reader->abfd;
19040 struct comp_unit_head *cu_header = &cu->header;
19041 unsigned int bytes_read;
19042 struct dwarf_block *blk;
19043
19044 attr->form = (enum dwarf_form) form;
19045 switch (form)
19046 {
19047 case DW_FORM_ref_addr:
19048 if (cu->header.version == 2)
19049 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19050 else
19051 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19052 &cu->header, &bytes_read);
19053 info_ptr += bytes_read;
19054 break;
19055 case DW_FORM_GNU_ref_alt:
19056 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19057 info_ptr += bytes_read;
19058 break;
19059 case DW_FORM_addr:
19060 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19061 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19062 info_ptr += bytes_read;
19063 break;
19064 case DW_FORM_block2:
19065 blk = dwarf_alloc_block (cu);
19066 blk->size = read_2_bytes (abfd, info_ptr);
19067 info_ptr += 2;
19068 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19069 info_ptr += blk->size;
19070 DW_BLOCK (attr) = blk;
19071 break;
19072 case DW_FORM_block4:
19073 blk = dwarf_alloc_block (cu);
19074 blk->size = read_4_bytes (abfd, info_ptr);
19075 info_ptr += 4;
19076 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19077 info_ptr += blk->size;
19078 DW_BLOCK (attr) = blk;
19079 break;
19080 case DW_FORM_data2:
19081 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19082 info_ptr += 2;
19083 break;
19084 case DW_FORM_data4:
19085 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19086 info_ptr += 4;
19087 break;
19088 case DW_FORM_data8:
19089 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19090 info_ptr += 8;
19091 break;
19092 case DW_FORM_data16:
19093 blk = dwarf_alloc_block (cu);
19094 blk->size = 16;
19095 blk->data = read_n_bytes (abfd, info_ptr, 16);
19096 info_ptr += 16;
19097 DW_BLOCK (attr) = blk;
19098 break;
19099 case DW_FORM_sec_offset:
19100 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19101 info_ptr += bytes_read;
19102 break;
19103 case DW_FORM_string:
19104 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19105 DW_STRING_IS_CANONICAL (attr) = 0;
19106 info_ptr += bytes_read;
19107 break;
19108 case DW_FORM_strp:
19109 if (!cu->per_cu->is_dwz)
19110 {
19111 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19112 abfd, info_ptr, cu_header,
19113 &bytes_read);
19114 DW_STRING_IS_CANONICAL (attr) = 0;
19115 info_ptr += bytes_read;
19116 break;
19117 }
19118 /* FALLTHROUGH */
19119 case DW_FORM_line_strp:
19120 if (!cu->per_cu->is_dwz)
19121 {
19122 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19123 abfd, info_ptr,
19124 cu_header, &bytes_read);
19125 DW_STRING_IS_CANONICAL (attr) = 0;
19126 info_ptr += bytes_read;
19127 break;
19128 }
19129 /* FALLTHROUGH */
19130 case DW_FORM_GNU_strp_alt:
19131 {
19132 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19133 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19134 &bytes_read);
19135
19136 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19137 dwz, str_offset);
19138 DW_STRING_IS_CANONICAL (attr) = 0;
19139 info_ptr += bytes_read;
19140 }
19141 break;
19142 case DW_FORM_exprloc:
19143 case DW_FORM_block:
19144 blk = dwarf_alloc_block (cu);
19145 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19146 info_ptr += bytes_read;
19147 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19148 info_ptr += blk->size;
19149 DW_BLOCK (attr) = blk;
19150 break;
19151 case DW_FORM_block1:
19152 blk = dwarf_alloc_block (cu);
19153 blk->size = read_1_byte (abfd, info_ptr);
19154 info_ptr += 1;
19155 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19156 info_ptr += blk->size;
19157 DW_BLOCK (attr) = blk;
19158 break;
19159 case DW_FORM_data1:
19160 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19161 info_ptr += 1;
19162 break;
19163 case DW_FORM_flag:
19164 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19165 info_ptr += 1;
19166 break;
19167 case DW_FORM_flag_present:
19168 DW_UNSND (attr) = 1;
19169 break;
19170 case DW_FORM_sdata:
19171 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19172 info_ptr += bytes_read;
19173 break;
19174 case DW_FORM_udata:
19175 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19176 info_ptr += bytes_read;
19177 break;
19178 case DW_FORM_ref1:
19179 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19180 + read_1_byte (abfd, info_ptr));
19181 info_ptr += 1;
19182 break;
19183 case DW_FORM_ref2:
19184 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19185 + read_2_bytes (abfd, info_ptr));
19186 info_ptr += 2;
19187 break;
19188 case DW_FORM_ref4:
19189 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19190 + read_4_bytes (abfd, info_ptr));
19191 info_ptr += 4;
19192 break;
19193 case DW_FORM_ref8:
19194 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19195 + read_8_bytes (abfd, info_ptr));
19196 info_ptr += 8;
19197 break;
19198 case DW_FORM_ref_sig8:
19199 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19200 info_ptr += 8;
19201 break;
19202 case DW_FORM_ref_udata:
19203 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19204 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19205 info_ptr += bytes_read;
19206 break;
19207 case DW_FORM_indirect:
19208 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19209 info_ptr += bytes_read;
19210 if (form == DW_FORM_implicit_const)
19211 {
19212 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19213 info_ptr += bytes_read;
19214 }
19215 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19216 info_ptr);
19217 break;
19218 case DW_FORM_implicit_const:
19219 DW_SND (attr) = implicit_const;
19220 break;
19221 case DW_FORM_GNU_addr_index:
19222 if (reader->dwo_file == NULL)
19223 {
19224 /* For now flag a hard error.
19225 Later we can turn this into a complaint. */
19226 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19227 dwarf_form_name (form),
19228 bfd_get_filename (abfd));
19229 }
19230 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19231 info_ptr += bytes_read;
19232 break;
19233 case DW_FORM_GNU_str_index:
19234 if (reader->dwo_file == NULL)
19235 {
19236 /* For now flag a hard error.
19237 Later we can turn this into a complaint if warranted. */
19238 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19239 dwarf_form_name (form),
19240 bfd_get_filename (abfd));
19241 }
19242 {
19243 ULONGEST str_index =
19244 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19245
19246 DW_STRING (attr) = read_str_index (reader, str_index);
19247 DW_STRING_IS_CANONICAL (attr) = 0;
19248 info_ptr += bytes_read;
19249 }
19250 break;
19251 default:
19252 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19253 dwarf_form_name (form),
19254 bfd_get_filename (abfd));
19255 }
19256
19257 /* Super hack. */
19258 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19259 attr->form = DW_FORM_GNU_ref_alt;
19260
19261 /* We have seen instances where the compiler tried to emit a byte
19262 size attribute of -1 which ended up being encoded as an unsigned
19263 0xffffffff. Although 0xffffffff is technically a valid size value,
19264 an object of this size seems pretty unlikely so we can relatively
19265 safely treat these cases as if the size attribute was invalid and
19266 treat them as zero by default. */
19267 if (attr->name == DW_AT_byte_size
19268 && form == DW_FORM_data4
19269 && DW_UNSND (attr) >= 0xffffffff)
19270 {
19271 complaint
19272 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19273 hex_string (DW_UNSND (attr)));
19274 DW_UNSND (attr) = 0;
19275 }
19276
19277 return info_ptr;
19278 }
19279
19280 /* Read an attribute described by an abbreviated attribute. */
19281
19282 static const gdb_byte *
19283 read_attribute (const struct die_reader_specs *reader,
19284 struct attribute *attr, struct attr_abbrev *abbrev,
19285 const gdb_byte *info_ptr)
19286 {
19287 attr->name = abbrev->name;
19288 return read_attribute_value (reader, attr, abbrev->form,
19289 abbrev->implicit_const, info_ptr);
19290 }
19291
19292 /* Read dwarf information from a buffer. */
19293
19294 static unsigned int
19295 read_1_byte (bfd *abfd, const gdb_byte *buf)
19296 {
19297 return bfd_get_8 (abfd, buf);
19298 }
19299
19300 static int
19301 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19302 {
19303 return bfd_get_signed_8 (abfd, buf);
19304 }
19305
19306 static unsigned int
19307 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19308 {
19309 return bfd_get_16 (abfd, buf);
19310 }
19311
19312 static int
19313 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19314 {
19315 return bfd_get_signed_16 (abfd, buf);
19316 }
19317
19318 static unsigned int
19319 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19320 {
19321 return bfd_get_32 (abfd, buf);
19322 }
19323
19324 static int
19325 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19326 {
19327 return bfd_get_signed_32 (abfd, buf);
19328 }
19329
19330 static ULONGEST
19331 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19332 {
19333 return bfd_get_64 (abfd, buf);
19334 }
19335
19336 static CORE_ADDR
19337 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19338 unsigned int *bytes_read)
19339 {
19340 struct comp_unit_head *cu_header = &cu->header;
19341 CORE_ADDR retval = 0;
19342
19343 if (cu_header->signed_addr_p)
19344 {
19345 switch (cu_header->addr_size)
19346 {
19347 case 2:
19348 retval = bfd_get_signed_16 (abfd, buf);
19349 break;
19350 case 4:
19351 retval = bfd_get_signed_32 (abfd, buf);
19352 break;
19353 case 8:
19354 retval = bfd_get_signed_64 (abfd, buf);
19355 break;
19356 default:
19357 internal_error (__FILE__, __LINE__,
19358 _("read_address: bad switch, signed [in module %s]"),
19359 bfd_get_filename (abfd));
19360 }
19361 }
19362 else
19363 {
19364 switch (cu_header->addr_size)
19365 {
19366 case 2:
19367 retval = bfd_get_16 (abfd, buf);
19368 break;
19369 case 4:
19370 retval = bfd_get_32 (abfd, buf);
19371 break;
19372 case 8:
19373 retval = bfd_get_64 (abfd, buf);
19374 break;
19375 default:
19376 internal_error (__FILE__, __LINE__,
19377 _("read_address: bad switch, "
19378 "unsigned [in module %s]"),
19379 bfd_get_filename (abfd));
19380 }
19381 }
19382
19383 *bytes_read = cu_header->addr_size;
19384 return retval;
19385 }
19386
19387 /* Read the initial length from a section. The (draft) DWARF 3
19388 specification allows the initial length to take up either 4 bytes
19389 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19390 bytes describe the length and all offsets will be 8 bytes in length
19391 instead of 4.
19392
19393 An older, non-standard 64-bit format is also handled by this
19394 function. The older format in question stores the initial length
19395 as an 8-byte quantity without an escape value. Lengths greater
19396 than 2^32 aren't very common which means that the initial 4 bytes
19397 is almost always zero. Since a length value of zero doesn't make
19398 sense for the 32-bit format, this initial zero can be considered to
19399 be an escape value which indicates the presence of the older 64-bit
19400 format. As written, the code can't detect (old format) lengths
19401 greater than 4GB. If it becomes necessary to handle lengths
19402 somewhat larger than 4GB, we could allow other small values (such
19403 as the non-sensical values of 1, 2, and 3) to also be used as
19404 escape values indicating the presence of the old format.
19405
19406 The value returned via bytes_read should be used to increment the
19407 relevant pointer after calling read_initial_length().
19408
19409 [ Note: read_initial_length() and read_offset() are based on the
19410 document entitled "DWARF Debugging Information Format", revision
19411 3, draft 8, dated November 19, 2001. This document was obtained
19412 from:
19413
19414 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19415
19416 This document is only a draft and is subject to change. (So beware.)
19417
19418 Details regarding the older, non-standard 64-bit format were
19419 determined empirically by examining 64-bit ELF files produced by
19420 the SGI toolchain on an IRIX 6.5 machine.
19421
19422 - Kevin, July 16, 2002
19423 ] */
19424
19425 static LONGEST
19426 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19427 {
19428 LONGEST length = bfd_get_32 (abfd, buf);
19429
19430 if (length == 0xffffffff)
19431 {
19432 length = bfd_get_64 (abfd, buf + 4);
19433 *bytes_read = 12;
19434 }
19435 else if (length == 0)
19436 {
19437 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19438 length = bfd_get_64 (abfd, buf);
19439 *bytes_read = 8;
19440 }
19441 else
19442 {
19443 *bytes_read = 4;
19444 }
19445
19446 return length;
19447 }
19448
19449 /* Cover function for read_initial_length.
19450 Returns the length of the object at BUF, and stores the size of the
19451 initial length in *BYTES_READ and stores the size that offsets will be in
19452 *OFFSET_SIZE.
19453 If the initial length size is not equivalent to that specified in
19454 CU_HEADER then issue a complaint.
19455 This is useful when reading non-comp-unit headers. */
19456
19457 static LONGEST
19458 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19459 const struct comp_unit_head *cu_header,
19460 unsigned int *bytes_read,
19461 unsigned int *offset_size)
19462 {
19463 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19464
19465 gdb_assert (cu_header->initial_length_size == 4
19466 || cu_header->initial_length_size == 8
19467 || cu_header->initial_length_size == 12);
19468
19469 if (cu_header->initial_length_size != *bytes_read)
19470 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19471
19472 *offset_size = (*bytes_read == 4) ? 4 : 8;
19473 return length;
19474 }
19475
19476 /* Read an offset from the data stream. The size of the offset is
19477 given by cu_header->offset_size. */
19478
19479 static LONGEST
19480 read_offset (bfd *abfd, const gdb_byte *buf,
19481 const struct comp_unit_head *cu_header,
19482 unsigned int *bytes_read)
19483 {
19484 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19485
19486 *bytes_read = cu_header->offset_size;
19487 return offset;
19488 }
19489
19490 /* Read an offset from the data stream. */
19491
19492 static LONGEST
19493 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19494 {
19495 LONGEST retval = 0;
19496
19497 switch (offset_size)
19498 {
19499 case 4:
19500 retval = bfd_get_32 (abfd, buf);
19501 break;
19502 case 8:
19503 retval = bfd_get_64 (abfd, buf);
19504 break;
19505 default:
19506 internal_error (__FILE__, __LINE__,
19507 _("read_offset_1: bad switch [in module %s]"),
19508 bfd_get_filename (abfd));
19509 }
19510
19511 return retval;
19512 }
19513
19514 static const gdb_byte *
19515 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19516 {
19517 /* If the size of a host char is 8 bits, we can return a pointer
19518 to the buffer, otherwise we have to copy the data to a buffer
19519 allocated on the temporary obstack. */
19520 gdb_assert (HOST_CHAR_BIT == 8);
19521 return buf;
19522 }
19523
19524 static const char *
19525 read_direct_string (bfd *abfd, const gdb_byte *buf,
19526 unsigned int *bytes_read_ptr)
19527 {
19528 /* If the size of a host char is 8 bits, we can return a pointer
19529 to the string, otherwise we have to copy the string to a buffer
19530 allocated on the temporary obstack. */
19531 gdb_assert (HOST_CHAR_BIT == 8);
19532 if (*buf == '\0')
19533 {
19534 *bytes_read_ptr = 1;
19535 return NULL;
19536 }
19537 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19538 return (const char *) buf;
19539 }
19540
19541 /* Return pointer to string at section SECT offset STR_OFFSET with error
19542 reporting strings FORM_NAME and SECT_NAME. */
19543
19544 static const char *
19545 read_indirect_string_at_offset_from (struct objfile *objfile,
19546 bfd *abfd, LONGEST str_offset,
19547 struct dwarf2_section_info *sect,
19548 const char *form_name,
19549 const char *sect_name)
19550 {
19551 dwarf2_read_section (objfile, sect);
19552 if (sect->buffer == NULL)
19553 error (_("%s used without %s section [in module %s]"),
19554 form_name, sect_name, bfd_get_filename (abfd));
19555 if (str_offset >= sect->size)
19556 error (_("%s pointing outside of %s section [in module %s]"),
19557 form_name, sect_name, bfd_get_filename (abfd));
19558 gdb_assert (HOST_CHAR_BIT == 8);
19559 if (sect->buffer[str_offset] == '\0')
19560 return NULL;
19561 return (const char *) (sect->buffer + str_offset);
19562 }
19563
19564 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19565
19566 static const char *
19567 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19568 bfd *abfd, LONGEST str_offset)
19569 {
19570 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19571 abfd, str_offset,
19572 &dwarf2_per_objfile->str,
19573 "DW_FORM_strp", ".debug_str");
19574 }
19575
19576 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19577
19578 static const char *
19579 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19580 bfd *abfd, LONGEST str_offset)
19581 {
19582 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19583 abfd, str_offset,
19584 &dwarf2_per_objfile->line_str,
19585 "DW_FORM_line_strp",
19586 ".debug_line_str");
19587 }
19588
19589 /* Read a string at offset STR_OFFSET in the .debug_str section from
19590 the .dwz file DWZ. Throw an error if the offset is too large. If
19591 the string consists of a single NUL byte, return NULL; otherwise
19592 return a pointer to the string. */
19593
19594 static const char *
19595 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19596 LONGEST str_offset)
19597 {
19598 dwarf2_read_section (objfile, &dwz->str);
19599
19600 if (dwz->str.buffer == NULL)
19601 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19602 "section [in module %s]"),
19603 bfd_get_filename (dwz->dwz_bfd));
19604 if (str_offset >= dwz->str.size)
19605 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19606 ".debug_str section [in module %s]"),
19607 bfd_get_filename (dwz->dwz_bfd));
19608 gdb_assert (HOST_CHAR_BIT == 8);
19609 if (dwz->str.buffer[str_offset] == '\0')
19610 return NULL;
19611 return (const char *) (dwz->str.buffer + str_offset);
19612 }
19613
19614 /* Return pointer to string at .debug_str offset as read from BUF.
19615 BUF is assumed to be in a compilation unit described by CU_HEADER.
19616 Return *BYTES_READ_PTR count of bytes read from BUF. */
19617
19618 static const char *
19619 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19620 const gdb_byte *buf,
19621 const struct comp_unit_head *cu_header,
19622 unsigned int *bytes_read_ptr)
19623 {
19624 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19625
19626 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19627 }
19628
19629 /* Return pointer to string at .debug_line_str offset as read from BUF.
19630 BUF is assumed to be in a compilation unit described by CU_HEADER.
19631 Return *BYTES_READ_PTR count of bytes read from BUF. */
19632
19633 static const char *
19634 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19635 bfd *abfd, const gdb_byte *buf,
19636 const struct comp_unit_head *cu_header,
19637 unsigned int *bytes_read_ptr)
19638 {
19639 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19640
19641 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19642 str_offset);
19643 }
19644
19645 ULONGEST
19646 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19647 unsigned int *bytes_read_ptr)
19648 {
19649 ULONGEST result;
19650 unsigned int num_read;
19651 int shift;
19652 unsigned char byte;
19653
19654 result = 0;
19655 shift = 0;
19656 num_read = 0;
19657 while (1)
19658 {
19659 byte = bfd_get_8 (abfd, buf);
19660 buf++;
19661 num_read++;
19662 result |= ((ULONGEST) (byte & 127) << shift);
19663 if ((byte & 128) == 0)
19664 {
19665 break;
19666 }
19667 shift += 7;
19668 }
19669 *bytes_read_ptr = num_read;
19670 return result;
19671 }
19672
19673 static LONGEST
19674 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19675 unsigned int *bytes_read_ptr)
19676 {
19677 ULONGEST result;
19678 int shift, num_read;
19679 unsigned char byte;
19680
19681 result = 0;
19682 shift = 0;
19683 num_read = 0;
19684 while (1)
19685 {
19686 byte = bfd_get_8 (abfd, buf);
19687 buf++;
19688 num_read++;
19689 result |= ((ULONGEST) (byte & 127) << shift);
19690 shift += 7;
19691 if ((byte & 128) == 0)
19692 {
19693 break;
19694 }
19695 }
19696 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19697 result |= -(((ULONGEST) 1) << shift);
19698 *bytes_read_ptr = num_read;
19699 return result;
19700 }
19701
19702 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19703 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19704 ADDR_SIZE is the size of addresses from the CU header. */
19705
19706 static CORE_ADDR
19707 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19708 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19709 {
19710 struct objfile *objfile = dwarf2_per_objfile->objfile;
19711 bfd *abfd = objfile->obfd;
19712 const gdb_byte *info_ptr;
19713
19714 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19715 if (dwarf2_per_objfile->addr.buffer == NULL)
19716 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19717 objfile_name (objfile));
19718 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19719 error (_("DW_FORM_addr_index pointing outside of "
19720 ".debug_addr section [in module %s]"),
19721 objfile_name (objfile));
19722 info_ptr = (dwarf2_per_objfile->addr.buffer
19723 + addr_base + addr_index * addr_size);
19724 if (addr_size == 4)
19725 return bfd_get_32 (abfd, info_ptr);
19726 else
19727 return bfd_get_64 (abfd, info_ptr);
19728 }
19729
19730 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19731
19732 static CORE_ADDR
19733 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19734 {
19735 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19736 cu->addr_base, cu->header.addr_size);
19737 }
19738
19739 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19740
19741 static CORE_ADDR
19742 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19743 unsigned int *bytes_read)
19744 {
19745 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19746 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19747
19748 return read_addr_index (cu, addr_index);
19749 }
19750
19751 /* Data structure to pass results from dwarf2_read_addr_index_reader
19752 back to dwarf2_read_addr_index. */
19753
19754 struct dwarf2_read_addr_index_data
19755 {
19756 ULONGEST addr_base;
19757 int addr_size;
19758 };
19759
19760 /* die_reader_func for dwarf2_read_addr_index. */
19761
19762 static void
19763 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19764 const gdb_byte *info_ptr,
19765 struct die_info *comp_unit_die,
19766 int has_children,
19767 void *data)
19768 {
19769 struct dwarf2_cu *cu = reader->cu;
19770 struct dwarf2_read_addr_index_data *aidata =
19771 (struct dwarf2_read_addr_index_data *) data;
19772
19773 aidata->addr_base = cu->addr_base;
19774 aidata->addr_size = cu->header.addr_size;
19775 }
19776
19777 /* Given an index in .debug_addr, fetch the value.
19778 NOTE: This can be called during dwarf expression evaluation,
19779 long after the debug information has been read, and thus per_cu->cu
19780 may no longer exist. */
19781
19782 CORE_ADDR
19783 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19784 unsigned int addr_index)
19785 {
19786 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19787 struct dwarf2_cu *cu = per_cu->cu;
19788 ULONGEST addr_base;
19789 int addr_size;
19790
19791 /* We need addr_base and addr_size.
19792 If we don't have PER_CU->cu, we have to get it.
19793 Nasty, but the alternative is storing the needed info in PER_CU,
19794 which at this point doesn't seem justified: it's not clear how frequently
19795 it would get used and it would increase the size of every PER_CU.
19796 Entry points like dwarf2_per_cu_addr_size do a similar thing
19797 so we're not in uncharted territory here.
19798 Alas we need to be a bit more complicated as addr_base is contained
19799 in the DIE.
19800
19801 We don't need to read the entire CU(/TU).
19802 We just need the header and top level die.
19803
19804 IWBN to use the aging mechanism to let us lazily later discard the CU.
19805 For now we skip this optimization. */
19806
19807 if (cu != NULL)
19808 {
19809 addr_base = cu->addr_base;
19810 addr_size = cu->header.addr_size;
19811 }
19812 else
19813 {
19814 struct dwarf2_read_addr_index_data aidata;
19815
19816 /* Note: We can't use init_cutu_and_read_dies_simple here,
19817 we need addr_base. */
19818 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19819 dwarf2_read_addr_index_reader, &aidata);
19820 addr_base = aidata.addr_base;
19821 addr_size = aidata.addr_size;
19822 }
19823
19824 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19825 addr_size);
19826 }
19827
19828 /* Given a DW_FORM_GNU_str_index, fetch the string.
19829 This is only used by the Fission support. */
19830
19831 static const char *
19832 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19833 {
19834 struct dwarf2_cu *cu = reader->cu;
19835 struct dwarf2_per_objfile *dwarf2_per_objfile
19836 = cu->per_cu->dwarf2_per_objfile;
19837 struct objfile *objfile = dwarf2_per_objfile->objfile;
19838 const char *objf_name = objfile_name (objfile);
19839 bfd *abfd = objfile->obfd;
19840 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19841 struct dwarf2_section_info *str_offsets_section =
19842 &reader->dwo_file->sections.str_offsets;
19843 const gdb_byte *info_ptr;
19844 ULONGEST str_offset;
19845 static const char form_name[] = "DW_FORM_GNU_str_index";
19846
19847 dwarf2_read_section (objfile, str_section);
19848 dwarf2_read_section (objfile, str_offsets_section);
19849 if (str_section->buffer == NULL)
19850 error (_("%s used without .debug_str.dwo section"
19851 " in CU at offset %s [in module %s]"),
19852 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19853 if (str_offsets_section->buffer == NULL)
19854 error (_("%s used without .debug_str_offsets.dwo section"
19855 " in CU at offset %s [in module %s]"),
19856 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19857 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19858 error (_("%s pointing outside of .debug_str_offsets.dwo"
19859 " section in CU at offset %s [in module %s]"),
19860 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19861 info_ptr = (str_offsets_section->buffer
19862 + str_index * cu->header.offset_size);
19863 if (cu->header.offset_size == 4)
19864 str_offset = bfd_get_32 (abfd, info_ptr);
19865 else
19866 str_offset = bfd_get_64 (abfd, info_ptr);
19867 if (str_offset >= str_section->size)
19868 error (_("Offset from %s pointing outside of"
19869 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19870 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19871 return (const char *) (str_section->buffer + str_offset);
19872 }
19873
19874 /* Return the length of an LEB128 number in BUF. */
19875
19876 static int
19877 leb128_size (const gdb_byte *buf)
19878 {
19879 const gdb_byte *begin = buf;
19880 gdb_byte byte;
19881
19882 while (1)
19883 {
19884 byte = *buf++;
19885 if ((byte & 128) == 0)
19886 return buf - begin;
19887 }
19888 }
19889
19890 static void
19891 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19892 {
19893 switch (lang)
19894 {
19895 case DW_LANG_C89:
19896 case DW_LANG_C99:
19897 case DW_LANG_C11:
19898 case DW_LANG_C:
19899 case DW_LANG_UPC:
19900 cu->language = language_c;
19901 break;
19902 case DW_LANG_Java:
19903 case DW_LANG_C_plus_plus:
19904 case DW_LANG_C_plus_plus_11:
19905 case DW_LANG_C_plus_plus_14:
19906 cu->language = language_cplus;
19907 break;
19908 case DW_LANG_D:
19909 cu->language = language_d;
19910 break;
19911 case DW_LANG_Fortran77:
19912 case DW_LANG_Fortran90:
19913 case DW_LANG_Fortran95:
19914 case DW_LANG_Fortran03:
19915 case DW_LANG_Fortran08:
19916 cu->language = language_fortran;
19917 break;
19918 case DW_LANG_Go:
19919 cu->language = language_go;
19920 break;
19921 case DW_LANG_Mips_Assembler:
19922 cu->language = language_asm;
19923 break;
19924 case DW_LANG_Ada83:
19925 case DW_LANG_Ada95:
19926 cu->language = language_ada;
19927 break;
19928 case DW_LANG_Modula2:
19929 cu->language = language_m2;
19930 break;
19931 case DW_LANG_Pascal83:
19932 cu->language = language_pascal;
19933 break;
19934 case DW_LANG_ObjC:
19935 cu->language = language_objc;
19936 break;
19937 case DW_LANG_Rust:
19938 case DW_LANG_Rust_old:
19939 cu->language = language_rust;
19940 break;
19941 case DW_LANG_Cobol74:
19942 case DW_LANG_Cobol85:
19943 default:
19944 cu->language = language_minimal;
19945 break;
19946 }
19947 cu->language_defn = language_def (cu->language);
19948 }
19949
19950 /* Return the named attribute or NULL if not there. */
19951
19952 static struct attribute *
19953 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19954 {
19955 for (;;)
19956 {
19957 unsigned int i;
19958 struct attribute *spec = NULL;
19959
19960 for (i = 0; i < die->num_attrs; ++i)
19961 {
19962 if (die->attrs[i].name == name)
19963 return &die->attrs[i];
19964 if (die->attrs[i].name == DW_AT_specification
19965 || die->attrs[i].name == DW_AT_abstract_origin)
19966 spec = &die->attrs[i];
19967 }
19968
19969 if (!spec)
19970 break;
19971
19972 die = follow_die_ref (die, spec, &cu);
19973 }
19974
19975 return NULL;
19976 }
19977
19978 /* Return the named attribute or NULL if not there,
19979 but do not follow DW_AT_specification, etc.
19980 This is for use in contexts where we're reading .debug_types dies.
19981 Following DW_AT_specification, DW_AT_abstract_origin will take us
19982 back up the chain, and we want to go down. */
19983
19984 static struct attribute *
19985 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19986 {
19987 unsigned int i;
19988
19989 for (i = 0; i < die->num_attrs; ++i)
19990 if (die->attrs[i].name == name)
19991 return &die->attrs[i];
19992
19993 return NULL;
19994 }
19995
19996 /* Return the string associated with a string-typed attribute, or NULL if it
19997 is either not found or is of an incorrect type. */
19998
19999 static const char *
20000 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20001 {
20002 struct attribute *attr;
20003 const char *str = NULL;
20004
20005 attr = dwarf2_attr (die, name, cu);
20006
20007 if (attr != NULL)
20008 {
20009 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20010 || attr->form == DW_FORM_string
20011 || attr->form == DW_FORM_GNU_str_index
20012 || attr->form == DW_FORM_GNU_strp_alt)
20013 str = DW_STRING (attr);
20014 else
20015 complaint (_("string type expected for attribute %s for "
20016 "DIE at %s in module %s"),
20017 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20018 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20019 }
20020
20021 return str;
20022 }
20023
20024 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20025 and holds a non-zero value. This function should only be used for
20026 DW_FORM_flag or DW_FORM_flag_present attributes. */
20027
20028 static int
20029 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20030 {
20031 struct attribute *attr = dwarf2_attr (die, name, cu);
20032
20033 return (attr && DW_UNSND (attr));
20034 }
20035
20036 static int
20037 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20038 {
20039 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20040 which value is non-zero. However, we have to be careful with
20041 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20042 (via dwarf2_flag_true_p) follows this attribute. So we may
20043 end up accidently finding a declaration attribute that belongs
20044 to a different DIE referenced by the specification attribute,
20045 even though the given DIE does not have a declaration attribute. */
20046 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20047 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20048 }
20049
20050 /* Return the die giving the specification for DIE, if there is
20051 one. *SPEC_CU is the CU containing DIE on input, and the CU
20052 containing the return value on output. If there is no
20053 specification, but there is an abstract origin, that is
20054 returned. */
20055
20056 static struct die_info *
20057 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20058 {
20059 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20060 *spec_cu);
20061
20062 if (spec_attr == NULL)
20063 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20064
20065 if (spec_attr == NULL)
20066 return NULL;
20067 else
20068 return follow_die_ref (die, spec_attr, spec_cu);
20069 }
20070
20071 /* Stub for free_line_header to match void * callback types. */
20072
20073 static void
20074 free_line_header_voidp (void *arg)
20075 {
20076 struct line_header *lh = (struct line_header *) arg;
20077
20078 delete lh;
20079 }
20080
20081 void
20082 line_header::add_include_dir (const char *include_dir)
20083 {
20084 if (dwarf_line_debug >= 2)
20085 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20086 include_dirs.size () + 1, include_dir);
20087
20088 include_dirs.push_back (include_dir);
20089 }
20090
20091 void
20092 line_header::add_file_name (const char *name,
20093 dir_index d_index,
20094 unsigned int mod_time,
20095 unsigned int length)
20096 {
20097 if (dwarf_line_debug >= 2)
20098 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20099 (unsigned) file_names.size () + 1, name);
20100
20101 file_names.emplace_back (name, d_index, mod_time, length);
20102 }
20103
20104 /* A convenience function to find the proper .debug_line section for a CU. */
20105
20106 static struct dwarf2_section_info *
20107 get_debug_line_section (struct dwarf2_cu *cu)
20108 {
20109 struct dwarf2_section_info *section;
20110 struct dwarf2_per_objfile *dwarf2_per_objfile
20111 = cu->per_cu->dwarf2_per_objfile;
20112
20113 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20114 DWO file. */
20115 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20116 section = &cu->dwo_unit->dwo_file->sections.line;
20117 else if (cu->per_cu->is_dwz)
20118 {
20119 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20120
20121 section = &dwz->line;
20122 }
20123 else
20124 section = &dwarf2_per_objfile->line;
20125
20126 return section;
20127 }
20128
20129 /* Read directory or file name entry format, starting with byte of
20130 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20131 entries count and the entries themselves in the described entry
20132 format. */
20133
20134 static void
20135 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20136 bfd *abfd, const gdb_byte **bufp,
20137 struct line_header *lh,
20138 const struct comp_unit_head *cu_header,
20139 void (*callback) (struct line_header *lh,
20140 const char *name,
20141 dir_index d_index,
20142 unsigned int mod_time,
20143 unsigned int length))
20144 {
20145 gdb_byte format_count, formati;
20146 ULONGEST data_count, datai;
20147 const gdb_byte *buf = *bufp;
20148 const gdb_byte *format_header_data;
20149 unsigned int bytes_read;
20150
20151 format_count = read_1_byte (abfd, buf);
20152 buf += 1;
20153 format_header_data = buf;
20154 for (formati = 0; formati < format_count; formati++)
20155 {
20156 read_unsigned_leb128 (abfd, buf, &bytes_read);
20157 buf += bytes_read;
20158 read_unsigned_leb128 (abfd, buf, &bytes_read);
20159 buf += bytes_read;
20160 }
20161
20162 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20163 buf += bytes_read;
20164 for (datai = 0; datai < data_count; datai++)
20165 {
20166 const gdb_byte *format = format_header_data;
20167 struct file_entry fe;
20168
20169 for (formati = 0; formati < format_count; formati++)
20170 {
20171 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20172 format += bytes_read;
20173
20174 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20175 format += bytes_read;
20176
20177 gdb::optional<const char *> string;
20178 gdb::optional<unsigned int> uint;
20179
20180 switch (form)
20181 {
20182 case DW_FORM_string:
20183 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20184 buf += bytes_read;
20185 break;
20186
20187 case DW_FORM_line_strp:
20188 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20189 abfd, buf,
20190 cu_header,
20191 &bytes_read));
20192 buf += bytes_read;
20193 break;
20194
20195 case DW_FORM_data1:
20196 uint.emplace (read_1_byte (abfd, buf));
20197 buf += 1;
20198 break;
20199
20200 case DW_FORM_data2:
20201 uint.emplace (read_2_bytes (abfd, buf));
20202 buf += 2;
20203 break;
20204
20205 case DW_FORM_data4:
20206 uint.emplace (read_4_bytes (abfd, buf));
20207 buf += 4;
20208 break;
20209
20210 case DW_FORM_data8:
20211 uint.emplace (read_8_bytes (abfd, buf));
20212 buf += 8;
20213 break;
20214
20215 case DW_FORM_udata:
20216 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20217 buf += bytes_read;
20218 break;
20219
20220 case DW_FORM_block:
20221 /* It is valid only for DW_LNCT_timestamp which is ignored by
20222 current GDB. */
20223 break;
20224 }
20225
20226 switch (content_type)
20227 {
20228 case DW_LNCT_path:
20229 if (string.has_value ())
20230 fe.name = *string;
20231 break;
20232 case DW_LNCT_directory_index:
20233 if (uint.has_value ())
20234 fe.d_index = (dir_index) *uint;
20235 break;
20236 case DW_LNCT_timestamp:
20237 if (uint.has_value ())
20238 fe.mod_time = *uint;
20239 break;
20240 case DW_LNCT_size:
20241 if (uint.has_value ())
20242 fe.length = *uint;
20243 break;
20244 case DW_LNCT_MD5:
20245 break;
20246 default:
20247 complaint (_("Unknown format content type %s"),
20248 pulongest (content_type));
20249 }
20250 }
20251
20252 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20253 }
20254
20255 *bufp = buf;
20256 }
20257
20258 /* Read the statement program header starting at OFFSET in
20259 .debug_line, or .debug_line.dwo. Return a pointer
20260 to a struct line_header, allocated using xmalloc.
20261 Returns NULL if there is a problem reading the header, e.g., if it
20262 has a version we don't understand.
20263
20264 NOTE: the strings in the include directory and file name tables of
20265 the returned object point into the dwarf line section buffer,
20266 and must not be freed. */
20267
20268 static line_header_up
20269 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20270 {
20271 const gdb_byte *line_ptr;
20272 unsigned int bytes_read, offset_size;
20273 int i;
20274 const char *cur_dir, *cur_file;
20275 struct dwarf2_section_info *section;
20276 bfd *abfd;
20277 struct dwarf2_per_objfile *dwarf2_per_objfile
20278 = cu->per_cu->dwarf2_per_objfile;
20279
20280 section = get_debug_line_section (cu);
20281 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20282 if (section->buffer == NULL)
20283 {
20284 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20285 complaint (_("missing .debug_line.dwo section"));
20286 else
20287 complaint (_("missing .debug_line section"));
20288 return 0;
20289 }
20290
20291 /* We can't do this until we know the section is non-empty.
20292 Only then do we know we have such a section. */
20293 abfd = get_section_bfd_owner (section);
20294
20295 /* Make sure that at least there's room for the total_length field.
20296 That could be 12 bytes long, but we're just going to fudge that. */
20297 if (to_underlying (sect_off) + 4 >= section->size)
20298 {
20299 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20300 return 0;
20301 }
20302
20303 line_header_up lh (new line_header ());
20304
20305 lh->sect_off = sect_off;
20306 lh->offset_in_dwz = cu->per_cu->is_dwz;
20307
20308 line_ptr = section->buffer + to_underlying (sect_off);
20309
20310 /* Read in the header. */
20311 lh->total_length =
20312 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20313 &bytes_read, &offset_size);
20314 line_ptr += bytes_read;
20315 if (line_ptr + lh->total_length > (section->buffer + section->size))
20316 {
20317 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20318 return 0;
20319 }
20320 lh->statement_program_end = line_ptr + lh->total_length;
20321 lh->version = read_2_bytes (abfd, line_ptr);
20322 line_ptr += 2;
20323 if (lh->version > 5)
20324 {
20325 /* This is a version we don't understand. The format could have
20326 changed in ways we don't handle properly so just punt. */
20327 complaint (_("unsupported version in .debug_line section"));
20328 return NULL;
20329 }
20330 if (lh->version >= 5)
20331 {
20332 gdb_byte segment_selector_size;
20333
20334 /* Skip address size. */
20335 read_1_byte (abfd, line_ptr);
20336 line_ptr += 1;
20337
20338 segment_selector_size = read_1_byte (abfd, line_ptr);
20339 line_ptr += 1;
20340 if (segment_selector_size != 0)
20341 {
20342 complaint (_("unsupported segment selector size %u "
20343 "in .debug_line section"),
20344 segment_selector_size);
20345 return NULL;
20346 }
20347 }
20348 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20349 line_ptr += offset_size;
20350 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20351 line_ptr += 1;
20352 if (lh->version >= 4)
20353 {
20354 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20355 line_ptr += 1;
20356 }
20357 else
20358 lh->maximum_ops_per_instruction = 1;
20359
20360 if (lh->maximum_ops_per_instruction == 0)
20361 {
20362 lh->maximum_ops_per_instruction = 1;
20363 complaint (_("invalid maximum_ops_per_instruction "
20364 "in `.debug_line' section"));
20365 }
20366
20367 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20368 line_ptr += 1;
20369 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20370 line_ptr += 1;
20371 lh->line_range = read_1_byte (abfd, line_ptr);
20372 line_ptr += 1;
20373 lh->opcode_base = read_1_byte (abfd, line_ptr);
20374 line_ptr += 1;
20375 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20376
20377 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20378 for (i = 1; i < lh->opcode_base; ++i)
20379 {
20380 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20381 line_ptr += 1;
20382 }
20383
20384 if (lh->version >= 5)
20385 {
20386 /* Read directory table. */
20387 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20388 &cu->header,
20389 [] (struct line_header *header, const char *name,
20390 dir_index d_index, unsigned int mod_time,
20391 unsigned int length)
20392 {
20393 header->add_include_dir (name);
20394 });
20395
20396 /* Read file name table. */
20397 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20398 &cu->header,
20399 [] (struct line_header *header, const char *name,
20400 dir_index d_index, unsigned int mod_time,
20401 unsigned int length)
20402 {
20403 header->add_file_name (name, d_index, mod_time, length);
20404 });
20405 }
20406 else
20407 {
20408 /* Read directory table. */
20409 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20410 {
20411 line_ptr += bytes_read;
20412 lh->add_include_dir (cur_dir);
20413 }
20414 line_ptr += bytes_read;
20415
20416 /* Read file name table. */
20417 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20418 {
20419 unsigned int mod_time, length;
20420 dir_index d_index;
20421
20422 line_ptr += bytes_read;
20423 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20424 line_ptr += bytes_read;
20425 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20426 line_ptr += bytes_read;
20427 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20428 line_ptr += bytes_read;
20429
20430 lh->add_file_name (cur_file, d_index, mod_time, length);
20431 }
20432 line_ptr += bytes_read;
20433 }
20434 lh->statement_program_start = line_ptr;
20435
20436 if (line_ptr > (section->buffer + section->size))
20437 complaint (_("line number info header doesn't "
20438 "fit in `.debug_line' section"));
20439
20440 return lh;
20441 }
20442
20443 /* Subroutine of dwarf_decode_lines to simplify it.
20444 Return the file name of the psymtab for included file FILE_INDEX
20445 in line header LH of PST.
20446 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20447 If space for the result is malloc'd, *NAME_HOLDER will be set.
20448 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20449
20450 static const char *
20451 psymtab_include_file_name (const struct line_header *lh, int file_index,
20452 const struct partial_symtab *pst,
20453 const char *comp_dir,
20454 gdb::unique_xmalloc_ptr<char> *name_holder)
20455 {
20456 const file_entry &fe = lh->file_names[file_index];
20457 const char *include_name = fe.name;
20458 const char *include_name_to_compare = include_name;
20459 const char *pst_filename;
20460 int file_is_pst;
20461
20462 const char *dir_name = fe.include_dir (lh);
20463
20464 gdb::unique_xmalloc_ptr<char> hold_compare;
20465 if (!IS_ABSOLUTE_PATH (include_name)
20466 && (dir_name != NULL || comp_dir != NULL))
20467 {
20468 /* Avoid creating a duplicate psymtab for PST.
20469 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20470 Before we do the comparison, however, we need to account
20471 for DIR_NAME and COMP_DIR.
20472 First prepend dir_name (if non-NULL). If we still don't
20473 have an absolute path prepend comp_dir (if non-NULL).
20474 However, the directory we record in the include-file's
20475 psymtab does not contain COMP_DIR (to match the
20476 corresponding symtab(s)).
20477
20478 Example:
20479
20480 bash$ cd /tmp
20481 bash$ gcc -g ./hello.c
20482 include_name = "hello.c"
20483 dir_name = "."
20484 DW_AT_comp_dir = comp_dir = "/tmp"
20485 DW_AT_name = "./hello.c"
20486
20487 */
20488
20489 if (dir_name != NULL)
20490 {
20491 name_holder->reset (concat (dir_name, SLASH_STRING,
20492 include_name, (char *) NULL));
20493 include_name = name_holder->get ();
20494 include_name_to_compare = include_name;
20495 }
20496 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20497 {
20498 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20499 include_name, (char *) NULL));
20500 include_name_to_compare = hold_compare.get ();
20501 }
20502 }
20503
20504 pst_filename = pst->filename;
20505 gdb::unique_xmalloc_ptr<char> copied_name;
20506 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20507 {
20508 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20509 pst_filename, (char *) NULL));
20510 pst_filename = copied_name.get ();
20511 }
20512
20513 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20514
20515 if (file_is_pst)
20516 return NULL;
20517 return include_name;
20518 }
20519
20520 /* State machine to track the state of the line number program. */
20521
20522 class lnp_state_machine
20523 {
20524 public:
20525 /* Initialize a machine state for the start of a line number
20526 program. */
20527 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20528 bool record_lines_p);
20529
20530 file_entry *current_file ()
20531 {
20532 /* lh->file_names is 0-based, but the file name numbers in the
20533 statement program are 1-based. */
20534 return m_line_header->file_name_at (m_file);
20535 }
20536
20537 /* Record the line in the state machine. END_SEQUENCE is true if
20538 we're processing the end of a sequence. */
20539 void record_line (bool end_sequence);
20540
20541 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20542 nop-out rest of the lines in this sequence. */
20543 void check_line_address (struct dwarf2_cu *cu,
20544 const gdb_byte *line_ptr,
20545 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20546
20547 void handle_set_discriminator (unsigned int discriminator)
20548 {
20549 m_discriminator = discriminator;
20550 m_line_has_non_zero_discriminator |= discriminator != 0;
20551 }
20552
20553 /* Handle DW_LNE_set_address. */
20554 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20555 {
20556 m_op_index = 0;
20557 address += baseaddr;
20558 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20559 }
20560
20561 /* Handle DW_LNS_advance_pc. */
20562 void handle_advance_pc (CORE_ADDR adjust);
20563
20564 /* Handle a special opcode. */
20565 void handle_special_opcode (unsigned char op_code);
20566
20567 /* Handle DW_LNS_advance_line. */
20568 void handle_advance_line (int line_delta)
20569 {
20570 advance_line (line_delta);
20571 }
20572
20573 /* Handle DW_LNS_set_file. */
20574 void handle_set_file (file_name_index file);
20575
20576 /* Handle DW_LNS_negate_stmt. */
20577 void handle_negate_stmt ()
20578 {
20579 m_is_stmt = !m_is_stmt;
20580 }
20581
20582 /* Handle DW_LNS_const_add_pc. */
20583 void handle_const_add_pc ();
20584
20585 /* Handle DW_LNS_fixed_advance_pc. */
20586 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20587 {
20588 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20589 m_op_index = 0;
20590 }
20591
20592 /* Handle DW_LNS_copy. */
20593 void handle_copy ()
20594 {
20595 record_line (false);
20596 m_discriminator = 0;
20597 }
20598
20599 /* Handle DW_LNE_end_sequence. */
20600 void handle_end_sequence ()
20601 {
20602 m_currently_recording_lines = true;
20603 }
20604
20605 private:
20606 /* Advance the line by LINE_DELTA. */
20607 void advance_line (int line_delta)
20608 {
20609 m_line += line_delta;
20610
20611 if (line_delta != 0)
20612 m_line_has_non_zero_discriminator = m_discriminator != 0;
20613 }
20614
20615 struct dwarf2_cu *m_cu;
20616
20617 gdbarch *m_gdbarch;
20618
20619 /* True if we're recording lines.
20620 Otherwise we're building partial symtabs and are just interested in
20621 finding include files mentioned by the line number program. */
20622 bool m_record_lines_p;
20623
20624 /* The line number header. */
20625 line_header *m_line_header;
20626
20627 /* These are part of the standard DWARF line number state machine,
20628 and initialized according to the DWARF spec. */
20629
20630 unsigned char m_op_index = 0;
20631 /* The line table index (1-based) of the current file. */
20632 file_name_index m_file = (file_name_index) 1;
20633 unsigned int m_line = 1;
20634
20635 /* These are initialized in the constructor. */
20636
20637 CORE_ADDR m_address;
20638 bool m_is_stmt;
20639 unsigned int m_discriminator;
20640
20641 /* Additional bits of state we need to track. */
20642
20643 /* The last file that we called dwarf2_start_subfile for.
20644 This is only used for TLLs. */
20645 unsigned int m_last_file = 0;
20646 /* The last file a line number was recorded for. */
20647 struct subfile *m_last_subfile = NULL;
20648
20649 /* When true, record the lines we decode. */
20650 bool m_currently_recording_lines = false;
20651
20652 /* The last line number that was recorded, used to coalesce
20653 consecutive entries for the same line. This can happen, for
20654 example, when discriminators are present. PR 17276. */
20655 unsigned int m_last_line = 0;
20656 bool m_line_has_non_zero_discriminator = false;
20657 };
20658
20659 void
20660 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20661 {
20662 CORE_ADDR addr_adj = (((m_op_index + adjust)
20663 / m_line_header->maximum_ops_per_instruction)
20664 * m_line_header->minimum_instruction_length);
20665 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20666 m_op_index = ((m_op_index + adjust)
20667 % m_line_header->maximum_ops_per_instruction);
20668 }
20669
20670 void
20671 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20672 {
20673 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20674 CORE_ADDR addr_adj = (((m_op_index
20675 + (adj_opcode / m_line_header->line_range))
20676 / m_line_header->maximum_ops_per_instruction)
20677 * m_line_header->minimum_instruction_length);
20678 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20679 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20680 % m_line_header->maximum_ops_per_instruction);
20681
20682 int line_delta = (m_line_header->line_base
20683 + (adj_opcode % m_line_header->line_range));
20684 advance_line (line_delta);
20685 record_line (false);
20686 m_discriminator = 0;
20687 }
20688
20689 void
20690 lnp_state_machine::handle_set_file (file_name_index file)
20691 {
20692 m_file = file;
20693
20694 const file_entry *fe = current_file ();
20695 if (fe == NULL)
20696 dwarf2_debug_line_missing_file_complaint ();
20697 else if (m_record_lines_p)
20698 {
20699 const char *dir = fe->include_dir (m_line_header);
20700
20701 m_last_subfile = m_cu->builder->get_current_subfile ();
20702 m_line_has_non_zero_discriminator = m_discriminator != 0;
20703 dwarf2_start_subfile (m_cu, fe->name, dir);
20704 }
20705 }
20706
20707 void
20708 lnp_state_machine::handle_const_add_pc ()
20709 {
20710 CORE_ADDR adjust
20711 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20712
20713 CORE_ADDR addr_adj
20714 = (((m_op_index + adjust)
20715 / m_line_header->maximum_ops_per_instruction)
20716 * m_line_header->minimum_instruction_length);
20717
20718 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20719 m_op_index = ((m_op_index + adjust)
20720 % m_line_header->maximum_ops_per_instruction);
20721 }
20722
20723 /* Return non-zero if we should add LINE to the line number table.
20724 LINE is the line to add, LAST_LINE is the last line that was added,
20725 LAST_SUBFILE is the subfile for LAST_LINE.
20726 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20727 had a non-zero discriminator.
20728
20729 We have to be careful in the presence of discriminators.
20730 E.g., for this line:
20731
20732 for (i = 0; i < 100000; i++);
20733
20734 clang can emit four line number entries for that one line,
20735 each with a different discriminator.
20736 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20737
20738 However, we want gdb to coalesce all four entries into one.
20739 Otherwise the user could stepi into the middle of the line and
20740 gdb would get confused about whether the pc really was in the
20741 middle of the line.
20742
20743 Things are further complicated by the fact that two consecutive
20744 line number entries for the same line is a heuristic used by gcc
20745 to denote the end of the prologue. So we can't just discard duplicate
20746 entries, we have to be selective about it. The heuristic we use is
20747 that we only collapse consecutive entries for the same line if at least
20748 one of those entries has a non-zero discriminator. PR 17276.
20749
20750 Note: Addresses in the line number state machine can never go backwards
20751 within one sequence, thus this coalescing is ok. */
20752
20753 static int
20754 dwarf_record_line_p (struct dwarf2_cu *cu,
20755 unsigned int line, unsigned int last_line,
20756 int line_has_non_zero_discriminator,
20757 struct subfile *last_subfile)
20758 {
20759 if (cu->builder->get_current_subfile () != last_subfile)
20760 return 1;
20761 if (line != last_line)
20762 return 1;
20763 /* Same line for the same file that we've seen already.
20764 As a last check, for pr 17276, only record the line if the line
20765 has never had a non-zero discriminator. */
20766 if (!line_has_non_zero_discriminator)
20767 return 1;
20768 return 0;
20769 }
20770
20771 /* Use the CU's builder to record line number LINE beginning at
20772 address ADDRESS in the line table of subfile SUBFILE. */
20773
20774 static void
20775 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20776 unsigned int line, CORE_ADDR address,
20777 struct dwarf2_cu *cu)
20778 {
20779 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20780
20781 if (dwarf_line_debug)
20782 {
20783 fprintf_unfiltered (gdb_stdlog,
20784 "Recording line %u, file %s, address %s\n",
20785 line, lbasename (subfile->name),
20786 paddress (gdbarch, address));
20787 }
20788
20789 if (cu != nullptr)
20790 cu->builder->record_line (subfile, line, addr);
20791 }
20792
20793 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20794 Mark the end of a set of line number records.
20795 The arguments are the same as for dwarf_record_line_1.
20796 If SUBFILE is NULL the request is ignored. */
20797
20798 static void
20799 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20800 CORE_ADDR address, struct dwarf2_cu *cu)
20801 {
20802 if (subfile == NULL)
20803 return;
20804
20805 if (dwarf_line_debug)
20806 {
20807 fprintf_unfiltered (gdb_stdlog,
20808 "Finishing current line, file %s, address %s\n",
20809 lbasename (subfile->name),
20810 paddress (gdbarch, address));
20811 }
20812
20813 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20814 }
20815
20816 void
20817 lnp_state_machine::record_line (bool end_sequence)
20818 {
20819 if (dwarf_line_debug)
20820 {
20821 fprintf_unfiltered (gdb_stdlog,
20822 "Processing actual line %u: file %u,"
20823 " address %s, is_stmt %u, discrim %u\n",
20824 m_line, to_underlying (m_file),
20825 paddress (m_gdbarch, m_address),
20826 m_is_stmt, m_discriminator);
20827 }
20828
20829 file_entry *fe = current_file ();
20830
20831 if (fe == NULL)
20832 dwarf2_debug_line_missing_file_complaint ();
20833 /* For now we ignore lines not starting on an instruction boundary.
20834 But not when processing end_sequence for compatibility with the
20835 previous version of the code. */
20836 else if (m_op_index == 0 || end_sequence)
20837 {
20838 fe->included_p = 1;
20839 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20840 {
20841 if (m_last_subfile != m_cu->builder->get_current_subfile ()
20842 || end_sequence)
20843 {
20844 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20845 m_currently_recording_lines ? m_cu : nullptr);
20846 }
20847
20848 if (!end_sequence)
20849 {
20850 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20851 m_line_has_non_zero_discriminator,
20852 m_last_subfile))
20853 {
20854 dwarf_record_line_1 (m_gdbarch,
20855 m_cu->builder->get_current_subfile (),
20856 m_line, m_address,
20857 m_currently_recording_lines ? m_cu : nullptr);
20858 }
20859 m_last_subfile = m_cu->builder->get_current_subfile ();
20860 m_last_line = m_line;
20861 }
20862 }
20863 }
20864 }
20865
20866 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20867 line_header *lh, bool record_lines_p)
20868 {
20869 m_cu = cu;
20870 m_gdbarch = arch;
20871 m_record_lines_p = record_lines_p;
20872 m_line_header = lh;
20873
20874 m_currently_recording_lines = true;
20875
20876 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20877 was a line entry for it so that the backend has a chance to adjust it
20878 and also record it in case it needs it. This is currently used by MIPS
20879 code, cf. `mips_adjust_dwarf2_line'. */
20880 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20881 m_is_stmt = lh->default_is_stmt;
20882 m_discriminator = 0;
20883 }
20884
20885 void
20886 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20887 const gdb_byte *line_ptr,
20888 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20889 {
20890 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20891 the pc range of the CU. However, we restrict the test to only ADDRESS
20892 values of zero to preserve GDB's previous behaviour which is to handle
20893 the specific case of a function being GC'd by the linker. */
20894
20895 if (address == 0 && address < unrelocated_lowpc)
20896 {
20897 /* This line table is for a function which has been
20898 GCd by the linker. Ignore it. PR gdb/12528 */
20899
20900 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20901 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20902
20903 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20904 line_offset, objfile_name (objfile));
20905 m_currently_recording_lines = false;
20906 /* Note: m_currently_recording_lines is left as false until we see
20907 DW_LNE_end_sequence. */
20908 }
20909 }
20910
20911 /* Subroutine of dwarf_decode_lines to simplify it.
20912 Process the line number information in LH.
20913 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20914 program in order to set included_p for every referenced header. */
20915
20916 static void
20917 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20918 const int decode_for_pst_p, CORE_ADDR lowpc)
20919 {
20920 const gdb_byte *line_ptr, *extended_end;
20921 const gdb_byte *line_end;
20922 unsigned int bytes_read, extended_len;
20923 unsigned char op_code, extended_op;
20924 CORE_ADDR baseaddr;
20925 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20926 bfd *abfd = objfile->obfd;
20927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20928 /* True if we're recording line info (as opposed to building partial
20929 symtabs and just interested in finding include files mentioned by
20930 the line number program). */
20931 bool record_lines_p = !decode_for_pst_p;
20932
20933 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20934
20935 line_ptr = lh->statement_program_start;
20936 line_end = lh->statement_program_end;
20937
20938 /* Read the statement sequences until there's nothing left. */
20939 while (line_ptr < line_end)
20940 {
20941 /* The DWARF line number program state machine. Reset the state
20942 machine at the start of each sequence. */
20943 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20944 bool end_sequence = false;
20945
20946 if (record_lines_p)
20947 {
20948 /* Start a subfile for the current file of the state
20949 machine. */
20950 const file_entry *fe = state_machine.current_file ();
20951
20952 if (fe != NULL)
20953 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20954 }
20955
20956 /* Decode the table. */
20957 while (line_ptr < line_end && !end_sequence)
20958 {
20959 op_code = read_1_byte (abfd, line_ptr);
20960 line_ptr += 1;
20961
20962 if (op_code >= lh->opcode_base)
20963 {
20964 /* Special opcode. */
20965 state_machine.handle_special_opcode (op_code);
20966 }
20967 else switch (op_code)
20968 {
20969 case DW_LNS_extended_op:
20970 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20971 &bytes_read);
20972 line_ptr += bytes_read;
20973 extended_end = line_ptr + extended_len;
20974 extended_op = read_1_byte (abfd, line_ptr);
20975 line_ptr += 1;
20976 switch (extended_op)
20977 {
20978 case DW_LNE_end_sequence:
20979 state_machine.handle_end_sequence ();
20980 end_sequence = true;
20981 break;
20982 case DW_LNE_set_address:
20983 {
20984 CORE_ADDR address
20985 = read_address (abfd, line_ptr, cu, &bytes_read);
20986 line_ptr += bytes_read;
20987
20988 state_machine.check_line_address (cu, line_ptr,
20989 lowpc - baseaddr, address);
20990 state_machine.handle_set_address (baseaddr, address);
20991 }
20992 break;
20993 case DW_LNE_define_file:
20994 {
20995 const char *cur_file;
20996 unsigned int mod_time, length;
20997 dir_index dindex;
20998
20999 cur_file = read_direct_string (abfd, line_ptr,
21000 &bytes_read);
21001 line_ptr += bytes_read;
21002 dindex = (dir_index)
21003 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21004 line_ptr += bytes_read;
21005 mod_time =
21006 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21007 line_ptr += bytes_read;
21008 length =
21009 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21010 line_ptr += bytes_read;
21011 lh->add_file_name (cur_file, dindex, mod_time, length);
21012 }
21013 break;
21014 case DW_LNE_set_discriminator:
21015 {
21016 /* The discriminator is not interesting to the
21017 debugger; just ignore it. We still need to
21018 check its value though:
21019 if there are consecutive entries for the same
21020 (non-prologue) line we want to coalesce them.
21021 PR 17276. */
21022 unsigned int discr
21023 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21024 line_ptr += bytes_read;
21025
21026 state_machine.handle_set_discriminator (discr);
21027 }
21028 break;
21029 default:
21030 complaint (_("mangled .debug_line section"));
21031 return;
21032 }
21033 /* Make sure that we parsed the extended op correctly. If e.g.
21034 we expected a different address size than the producer used,
21035 we may have read the wrong number of bytes. */
21036 if (line_ptr != extended_end)
21037 {
21038 complaint (_("mangled .debug_line section"));
21039 return;
21040 }
21041 break;
21042 case DW_LNS_copy:
21043 state_machine.handle_copy ();
21044 break;
21045 case DW_LNS_advance_pc:
21046 {
21047 CORE_ADDR adjust
21048 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21049 line_ptr += bytes_read;
21050
21051 state_machine.handle_advance_pc (adjust);
21052 }
21053 break;
21054 case DW_LNS_advance_line:
21055 {
21056 int line_delta
21057 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21058 line_ptr += bytes_read;
21059
21060 state_machine.handle_advance_line (line_delta);
21061 }
21062 break;
21063 case DW_LNS_set_file:
21064 {
21065 file_name_index file
21066 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21067 &bytes_read);
21068 line_ptr += bytes_read;
21069
21070 state_machine.handle_set_file (file);
21071 }
21072 break;
21073 case DW_LNS_set_column:
21074 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21075 line_ptr += bytes_read;
21076 break;
21077 case DW_LNS_negate_stmt:
21078 state_machine.handle_negate_stmt ();
21079 break;
21080 case DW_LNS_set_basic_block:
21081 break;
21082 /* Add to the address register of the state machine the
21083 address increment value corresponding to special opcode
21084 255. I.e., this value is scaled by the minimum
21085 instruction length since special opcode 255 would have
21086 scaled the increment. */
21087 case DW_LNS_const_add_pc:
21088 state_machine.handle_const_add_pc ();
21089 break;
21090 case DW_LNS_fixed_advance_pc:
21091 {
21092 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21093 line_ptr += 2;
21094
21095 state_machine.handle_fixed_advance_pc (addr_adj);
21096 }
21097 break;
21098 default:
21099 {
21100 /* Unknown standard opcode, ignore it. */
21101 int i;
21102
21103 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21104 {
21105 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21106 line_ptr += bytes_read;
21107 }
21108 }
21109 }
21110 }
21111
21112 if (!end_sequence)
21113 dwarf2_debug_line_missing_end_sequence_complaint ();
21114
21115 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21116 in which case we still finish recording the last line). */
21117 state_machine.record_line (true);
21118 }
21119 }
21120
21121 /* Decode the Line Number Program (LNP) for the given line_header
21122 structure and CU. The actual information extracted and the type
21123 of structures created from the LNP depends on the value of PST.
21124
21125 1. If PST is NULL, then this procedure uses the data from the program
21126 to create all necessary symbol tables, and their linetables.
21127
21128 2. If PST is not NULL, this procedure reads the program to determine
21129 the list of files included by the unit represented by PST, and
21130 builds all the associated partial symbol tables.
21131
21132 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21133 It is used for relative paths in the line table.
21134 NOTE: When processing partial symtabs (pst != NULL),
21135 comp_dir == pst->dirname.
21136
21137 NOTE: It is important that psymtabs have the same file name (via strcmp)
21138 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21139 symtab we don't use it in the name of the psymtabs we create.
21140 E.g. expand_line_sal requires this when finding psymtabs to expand.
21141 A good testcase for this is mb-inline.exp.
21142
21143 LOWPC is the lowest address in CU (or 0 if not known).
21144
21145 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21146 for its PC<->lines mapping information. Otherwise only the filename
21147 table is read in. */
21148
21149 static void
21150 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21151 struct dwarf2_cu *cu, struct partial_symtab *pst,
21152 CORE_ADDR lowpc, int decode_mapping)
21153 {
21154 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21155 const int decode_for_pst_p = (pst != NULL);
21156
21157 if (decode_mapping)
21158 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21159
21160 if (decode_for_pst_p)
21161 {
21162 int file_index;
21163
21164 /* Now that we're done scanning the Line Header Program, we can
21165 create the psymtab of each included file. */
21166 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21167 if (lh->file_names[file_index].included_p == 1)
21168 {
21169 gdb::unique_xmalloc_ptr<char> name_holder;
21170 const char *include_name =
21171 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21172 &name_holder);
21173 if (include_name != NULL)
21174 dwarf2_create_include_psymtab (include_name, pst, objfile);
21175 }
21176 }
21177 else
21178 {
21179 /* Make sure a symtab is created for every file, even files
21180 which contain only variables (i.e. no code with associated
21181 line numbers). */
21182 struct compunit_symtab *cust = cu->builder->get_compunit_symtab ();
21183 int i;
21184
21185 for (i = 0; i < lh->file_names.size (); i++)
21186 {
21187 file_entry &fe = lh->file_names[i];
21188
21189 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21190
21191 if (cu->builder->get_current_subfile ()->symtab == NULL)
21192 {
21193 cu->builder->get_current_subfile ()->symtab
21194 = allocate_symtab (cust,
21195 cu->builder->get_current_subfile ()->name);
21196 }
21197 fe.symtab = cu->builder->get_current_subfile ()->symtab;
21198 }
21199 }
21200 }
21201
21202 /* Start a subfile for DWARF. FILENAME is the name of the file and
21203 DIRNAME the name of the source directory which contains FILENAME
21204 or NULL if not known.
21205 This routine tries to keep line numbers from identical absolute and
21206 relative file names in a common subfile.
21207
21208 Using the `list' example from the GDB testsuite, which resides in
21209 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21210 of /srcdir/list0.c yields the following debugging information for list0.c:
21211
21212 DW_AT_name: /srcdir/list0.c
21213 DW_AT_comp_dir: /compdir
21214 files.files[0].name: list0.h
21215 files.files[0].dir: /srcdir
21216 files.files[1].name: list0.c
21217 files.files[1].dir: /srcdir
21218
21219 The line number information for list0.c has to end up in a single
21220 subfile, so that `break /srcdir/list0.c:1' works as expected.
21221 start_subfile will ensure that this happens provided that we pass the
21222 concatenation of files.files[1].dir and files.files[1].name as the
21223 subfile's name. */
21224
21225 static void
21226 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21227 const char *dirname)
21228 {
21229 char *copy = NULL;
21230
21231 /* In order not to lose the line information directory,
21232 we concatenate it to the filename when it makes sense.
21233 Note that the Dwarf3 standard says (speaking of filenames in line
21234 information): ``The directory index is ignored for file names
21235 that represent full path names''. Thus ignoring dirname in the
21236 `else' branch below isn't an issue. */
21237
21238 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21239 {
21240 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21241 filename = copy;
21242 }
21243
21244 cu->builder->start_subfile (filename);
21245
21246 if (copy != NULL)
21247 xfree (copy);
21248 }
21249
21250 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21251 buildsym_compunit constructor. */
21252
21253 static struct compunit_symtab *
21254 dwarf2_start_symtab (struct dwarf2_cu *cu,
21255 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21256 {
21257 gdb_assert (cu->builder == nullptr);
21258
21259 cu->builder.reset (new struct buildsym_compunit
21260 (cu->per_cu->dwarf2_per_objfile->objfile,
21261 name, comp_dir, cu->language, low_pc));
21262
21263 cu->list_in_scope = cu->builder->get_file_symbols ();
21264
21265 cu->builder->record_debugformat ("DWARF 2");
21266 cu->builder->record_producer (cu->producer);
21267
21268 cu->processing_has_namespace_info = false;
21269
21270 return cu->builder->get_compunit_symtab ();
21271 }
21272
21273 static void
21274 var_decode_location (struct attribute *attr, struct symbol *sym,
21275 struct dwarf2_cu *cu)
21276 {
21277 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21278 struct comp_unit_head *cu_header = &cu->header;
21279
21280 /* NOTE drow/2003-01-30: There used to be a comment and some special
21281 code here to turn a symbol with DW_AT_external and a
21282 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21283 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21284 with some versions of binutils) where shared libraries could have
21285 relocations against symbols in their debug information - the
21286 minimal symbol would have the right address, but the debug info
21287 would not. It's no longer necessary, because we will explicitly
21288 apply relocations when we read in the debug information now. */
21289
21290 /* A DW_AT_location attribute with no contents indicates that a
21291 variable has been optimized away. */
21292 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21293 {
21294 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21295 return;
21296 }
21297
21298 /* Handle one degenerate form of location expression specially, to
21299 preserve GDB's previous behavior when section offsets are
21300 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21301 then mark this symbol as LOC_STATIC. */
21302
21303 if (attr_form_is_block (attr)
21304 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21305 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21306 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21307 && (DW_BLOCK (attr)->size
21308 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21309 {
21310 unsigned int dummy;
21311
21312 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21313 SYMBOL_VALUE_ADDRESS (sym) =
21314 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21315 else
21316 SYMBOL_VALUE_ADDRESS (sym) =
21317 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21318 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21319 fixup_symbol_section (sym, objfile);
21320 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21321 SYMBOL_SECTION (sym));
21322 return;
21323 }
21324
21325 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21326 expression evaluator, and use LOC_COMPUTED only when necessary
21327 (i.e. when the value of a register or memory location is
21328 referenced, or a thread-local block, etc.). Then again, it might
21329 not be worthwhile. I'm assuming that it isn't unless performance
21330 or memory numbers show me otherwise. */
21331
21332 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21333
21334 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21335 cu->has_loclist = true;
21336 }
21337
21338 /* Given a pointer to a DWARF information entry, figure out if we need
21339 to make a symbol table entry for it, and if so, create a new entry
21340 and return a pointer to it.
21341 If TYPE is NULL, determine symbol type from the die, otherwise
21342 used the passed type.
21343 If SPACE is not NULL, use it to hold the new symbol. If it is
21344 NULL, allocate a new symbol on the objfile's obstack. */
21345
21346 static struct symbol *
21347 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21348 struct symbol *space)
21349 {
21350 struct dwarf2_per_objfile *dwarf2_per_objfile
21351 = cu->per_cu->dwarf2_per_objfile;
21352 struct objfile *objfile = dwarf2_per_objfile->objfile;
21353 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21354 struct symbol *sym = NULL;
21355 const char *name;
21356 struct attribute *attr = NULL;
21357 struct attribute *attr2 = NULL;
21358 CORE_ADDR baseaddr;
21359 struct pending **list_to_add = NULL;
21360
21361 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21362
21363 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21364
21365 name = dwarf2_name (die, cu);
21366 if (name)
21367 {
21368 const char *linkagename;
21369 int suppress_add = 0;
21370
21371 if (space)
21372 sym = space;
21373 else
21374 sym = allocate_symbol (objfile);
21375 OBJSTAT (objfile, n_syms++);
21376
21377 /* Cache this symbol's name and the name's demangled form (if any). */
21378 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21379 linkagename = dwarf2_physname (name, die, cu);
21380 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21381
21382 /* Fortran does not have mangling standard and the mangling does differ
21383 between gfortran, iFort etc. */
21384 if (cu->language == language_fortran
21385 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21386 symbol_set_demangled_name (&(sym->ginfo),
21387 dwarf2_full_name (name, die, cu),
21388 NULL);
21389
21390 /* Default assumptions.
21391 Use the passed type or decode it from the die. */
21392 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21393 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21394 if (type != NULL)
21395 SYMBOL_TYPE (sym) = type;
21396 else
21397 SYMBOL_TYPE (sym) = die_type (die, cu);
21398 attr = dwarf2_attr (die,
21399 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21400 cu);
21401 if (attr)
21402 {
21403 SYMBOL_LINE (sym) = DW_UNSND (attr);
21404 }
21405
21406 attr = dwarf2_attr (die,
21407 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21408 cu);
21409 if (attr)
21410 {
21411 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21412 struct file_entry *fe;
21413
21414 if (cu->line_header != NULL)
21415 fe = cu->line_header->file_name_at (file_index);
21416 else
21417 fe = NULL;
21418
21419 if (fe == NULL)
21420 complaint (_("file index out of range"));
21421 else
21422 symbol_set_symtab (sym, fe->symtab);
21423 }
21424
21425 switch (die->tag)
21426 {
21427 case DW_TAG_label:
21428 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21429 if (attr)
21430 {
21431 CORE_ADDR addr;
21432
21433 addr = attr_value_as_address (attr);
21434 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21435 SYMBOL_VALUE_ADDRESS (sym) = addr;
21436 }
21437 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21438 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21439 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21440 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21441 break;
21442 case DW_TAG_subprogram:
21443 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21444 finish_block. */
21445 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21446 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21447 if ((attr2 && (DW_UNSND (attr2) != 0))
21448 || cu->language == language_ada)
21449 {
21450 /* Subprograms marked external are stored as a global symbol.
21451 Ada subprograms, whether marked external or not, are always
21452 stored as a global symbol, because we want to be able to
21453 access them globally. For instance, we want to be able
21454 to break on a nested subprogram without having to
21455 specify the context. */
21456 list_to_add = cu->builder->get_global_symbols ();
21457 }
21458 else
21459 {
21460 list_to_add = cu->list_in_scope;
21461 }
21462 break;
21463 case DW_TAG_inlined_subroutine:
21464 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21465 finish_block. */
21466 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21467 SYMBOL_INLINED (sym) = 1;
21468 list_to_add = cu->list_in_scope;
21469 break;
21470 case DW_TAG_template_value_param:
21471 suppress_add = 1;
21472 /* Fall through. */
21473 case DW_TAG_constant:
21474 case DW_TAG_variable:
21475 case DW_TAG_member:
21476 /* Compilation with minimal debug info may result in
21477 variables with missing type entries. Change the
21478 misleading `void' type to something sensible. */
21479 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21480 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21481
21482 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21483 /* In the case of DW_TAG_member, we should only be called for
21484 static const members. */
21485 if (die->tag == DW_TAG_member)
21486 {
21487 /* dwarf2_add_field uses die_is_declaration,
21488 so we do the same. */
21489 gdb_assert (die_is_declaration (die, cu));
21490 gdb_assert (attr);
21491 }
21492 if (attr)
21493 {
21494 dwarf2_const_value (attr, sym, cu);
21495 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21496 if (!suppress_add)
21497 {
21498 if (attr2 && (DW_UNSND (attr2) != 0))
21499 list_to_add = cu->builder->get_global_symbols ();
21500 else
21501 list_to_add = cu->list_in_scope;
21502 }
21503 break;
21504 }
21505 attr = dwarf2_attr (die, DW_AT_location, cu);
21506 if (attr)
21507 {
21508 var_decode_location (attr, sym, cu);
21509 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21510
21511 /* Fortran explicitly imports any global symbols to the local
21512 scope by DW_TAG_common_block. */
21513 if (cu->language == language_fortran && die->parent
21514 && die->parent->tag == DW_TAG_common_block)
21515 attr2 = NULL;
21516
21517 if (SYMBOL_CLASS (sym) == LOC_STATIC
21518 && SYMBOL_VALUE_ADDRESS (sym) == 0
21519 && !dwarf2_per_objfile->has_section_at_zero)
21520 {
21521 /* When a static variable is eliminated by the linker,
21522 the corresponding debug information is not stripped
21523 out, but the variable address is set to null;
21524 do not add such variables into symbol table. */
21525 }
21526 else if (attr2 && (DW_UNSND (attr2) != 0))
21527 {
21528 /* Workaround gfortran PR debug/40040 - it uses
21529 DW_AT_location for variables in -fPIC libraries which may
21530 get overriden by other libraries/executable and get
21531 a different address. Resolve it by the minimal symbol
21532 which may come from inferior's executable using copy
21533 relocation. Make this workaround only for gfortran as for
21534 other compilers GDB cannot guess the minimal symbol
21535 Fortran mangling kind. */
21536 if (cu->language == language_fortran && die->parent
21537 && die->parent->tag == DW_TAG_module
21538 && cu->producer
21539 && startswith (cu->producer, "GNU Fortran"))
21540 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21541
21542 /* A variable with DW_AT_external is never static,
21543 but it may be block-scoped. */
21544 list_to_add
21545 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21546 ? cu->builder->get_global_symbols ()
21547 : cu->list_in_scope);
21548 }
21549 else
21550 list_to_add = cu->list_in_scope;
21551 }
21552 else
21553 {
21554 /* We do not know the address of this symbol.
21555 If it is an external symbol and we have type information
21556 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21557 The address of the variable will then be determined from
21558 the minimal symbol table whenever the variable is
21559 referenced. */
21560 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21561
21562 /* Fortran explicitly imports any global symbols to the local
21563 scope by DW_TAG_common_block. */
21564 if (cu->language == language_fortran && die->parent
21565 && die->parent->tag == DW_TAG_common_block)
21566 {
21567 /* SYMBOL_CLASS doesn't matter here because
21568 read_common_block is going to reset it. */
21569 if (!suppress_add)
21570 list_to_add = cu->list_in_scope;
21571 }
21572 else if (attr2 && (DW_UNSND (attr2) != 0)
21573 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21574 {
21575 /* A variable with DW_AT_external is never static, but it
21576 may be block-scoped. */
21577 list_to_add
21578 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21579 ? cu->builder->get_global_symbols ()
21580 : cu->list_in_scope);
21581
21582 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21583 }
21584 else if (!die_is_declaration (die, cu))
21585 {
21586 /* Use the default LOC_OPTIMIZED_OUT class. */
21587 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21588 if (!suppress_add)
21589 list_to_add = cu->list_in_scope;
21590 }
21591 }
21592 break;
21593 case DW_TAG_formal_parameter:
21594 {
21595 /* If we are inside a function, mark this as an argument. If
21596 not, we might be looking at an argument to an inlined function
21597 when we do not have enough information to show inlined frames;
21598 pretend it's a local variable in that case so that the user can
21599 still see it. */
21600 struct context_stack *curr
21601 = cu->builder->get_current_context_stack ();
21602 if (curr != nullptr && curr->name != nullptr)
21603 SYMBOL_IS_ARGUMENT (sym) = 1;
21604 attr = dwarf2_attr (die, DW_AT_location, cu);
21605 if (attr)
21606 {
21607 var_decode_location (attr, sym, cu);
21608 }
21609 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21610 if (attr)
21611 {
21612 dwarf2_const_value (attr, sym, cu);
21613 }
21614
21615 list_to_add = cu->list_in_scope;
21616 }
21617 break;
21618 case DW_TAG_unspecified_parameters:
21619 /* From varargs functions; gdb doesn't seem to have any
21620 interest in this information, so just ignore it for now.
21621 (FIXME?) */
21622 break;
21623 case DW_TAG_template_type_param:
21624 suppress_add = 1;
21625 /* Fall through. */
21626 case DW_TAG_class_type:
21627 case DW_TAG_interface_type:
21628 case DW_TAG_structure_type:
21629 case DW_TAG_union_type:
21630 case DW_TAG_set_type:
21631 case DW_TAG_enumeration_type:
21632 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21633 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21634
21635 {
21636 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21637 really ever be static objects: otherwise, if you try
21638 to, say, break of a class's method and you're in a file
21639 which doesn't mention that class, it won't work unless
21640 the check for all static symbols in lookup_symbol_aux
21641 saves you. See the OtherFileClass tests in
21642 gdb.c++/namespace.exp. */
21643
21644 if (!suppress_add)
21645 {
21646 list_to_add
21647 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21648 && cu->language == language_cplus
21649 ? cu->builder->get_global_symbols ()
21650 : cu->list_in_scope);
21651
21652 /* The semantics of C++ state that "struct foo {
21653 ... }" also defines a typedef for "foo". */
21654 if (cu->language == language_cplus
21655 || cu->language == language_ada
21656 || cu->language == language_d
21657 || cu->language == language_rust)
21658 {
21659 /* The symbol's name is already allocated along
21660 with this objfile, so we don't need to
21661 duplicate it for the type. */
21662 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21663 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21664 }
21665 }
21666 }
21667 break;
21668 case DW_TAG_typedef:
21669 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21670 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21671 list_to_add = cu->list_in_scope;
21672 break;
21673 case DW_TAG_base_type:
21674 case DW_TAG_subrange_type:
21675 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21676 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21677 list_to_add = cu->list_in_scope;
21678 break;
21679 case DW_TAG_enumerator:
21680 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21681 if (attr)
21682 {
21683 dwarf2_const_value (attr, sym, cu);
21684 }
21685 {
21686 /* NOTE: carlton/2003-11-10: See comment above in the
21687 DW_TAG_class_type, etc. block. */
21688
21689 list_to_add
21690 = (cu->list_in_scope == cu->builder->get_file_symbols ()
21691 && cu->language == language_cplus
21692 ? cu->builder->get_global_symbols ()
21693 : cu->list_in_scope);
21694 }
21695 break;
21696 case DW_TAG_imported_declaration:
21697 case DW_TAG_namespace:
21698 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21699 list_to_add = cu->builder->get_global_symbols ();
21700 break;
21701 case DW_TAG_module:
21702 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21703 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21704 list_to_add = cu->builder->get_global_symbols ();
21705 break;
21706 case DW_TAG_common_block:
21707 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21708 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21709 dw2_add_symbol_to_list (sym, cu->list_in_scope);
21710 break;
21711 default:
21712 /* Not a tag we recognize. Hopefully we aren't processing
21713 trash data, but since we must specifically ignore things
21714 we don't recognize, there is nothing else we should do at
21715 this point. */
21716 complaint (_("unsupported tag: '%s'"),
21717 dwarf_tag_name (die->tag));
21718 break;
21719 }
21720
21721 if (suppress_add)
21722 {
21723 sym->hash_next = objfile->template_symbols;
21724 objfile->template_symbols = sym;
21725 list_to_add = NULL;
21726 }
21727
21728 if (list_to_add != NULL)
21729 dw2_add_symbol_to_list (sym, list_to_add);
21730
21731 /* For the benefit of old versions of GCC, check for anonymous
21732 namespaces based on the demangled name. */
21733 if (!cu->processing_has_namespace_info
21734 && cu->language == language_cplus)
21735 cp_scan_for_anonymous_namespaces (cu->builder.get (), sym, objfile);
21736 }
21737 return (sym);
21738 }
21739
21740 /* Given an attr with a DW_FORM_dataN value in host byte order,
21741 zero-extend it as appropriate for the symbol's type. The DWARF
21742 standard (v4) is not entirely clear about the meaning of using
21743 DW_FORM_dataN for a constant with a signed type, where the type is
21744 wider than the data. The conclusion of a discussion on the DWARF
21745 list was that this is unspecified. We choose to always zero-extend
21746 because that is the interpretation long in use by GCC. */
21747
21748 static gdb_byte *
21749 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21750 struct dwarf2_cu *cu, LONGEST *value, int bits)
21751 {
21752 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21753 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21754 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21755 LONGEST l = DW_UNSND (attr);
21756
21757 if (bits < sizeof (*value) * 8)
21758 {
21759 l &= ((LONGEST) 1 << bits) - 1;
21760 *value = l;
21761 }
21762 else if (bits == sizeof (*value) * 8)
21763 *value = l;
21764 else
21765 {
21766 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21767 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21768 return bytes;
21769 }
21770
21771 return NULL;
21772 }
21773
21774 /* Read a constant value from an attribute. Either set *VALUE, or if
21775 the value does not fit in *VALUE, set *BYTES - either already
21776 allocated on the objfile obstack, or newly allocated on OBSTACK,
21777 or, set *BATON, if we translated the constant to a location
21778 expression. */
21779
21780 static void
21781 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21782 const char *name, struct obstack *obstack,
21783 struct dwarf2_cu *cu,
21784 LONGEST *value, const gdb_byte **bytes,
21785 struct dwarf2_locexpr_baton **baton)
21786 {
21787 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21788 struct comp_unit_head *cu_header = &cu->header;
21789 struct dwarf_block *blk;
21790 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21791 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21792
21793 *value = 0;
21794 *bytes = NULL;
21795 *baton = NULL;
21796
21797 switch (attr->form)
21798 {
21799 case DW_FORM_addr:
21800 case DW_FORM_GNU_addr_index:
21801 {
21802 gdb_byte *data;
21803
21804 if (TYPE_LENGTH (type) != cu_header->addr_size)
21805 dwarf2_const_value_length_mismatch_complaint (name,
21806 cu_header->addr_size,
21807 TYPE_LENGTH (type));
21808 /* Symbols of this form are reasonably rare, so we just
21809 piggyback on the existing location code rather than writing
21810 a new implementation of symbol_computed_ops. */
21811 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21812 (*baton)->per_cu = cu->per_cu;
21813 gdb_assert ((*baton)->per_cu);
21814
21815 (*baton)->size = 2 + cu_header->addr_size;
21816 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21817 (*baton)->data = data;
21818
21819 data[0] = DW_OP_addr;
21820 store_unsigned_integer (&data[1], cu_header->addr_size,
21821 byte_order, DW_ADDR (attr));
21822 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21823 }
21824 break;
21825 case DW_FORM_string:
21826 case DW_FORM_strp:
21827 case DW_FORM_GNU_str_index:
21828 case DW_FORM_GNU_strp_alt:
21829 /* DW_STRING is already allocated on the objfile obstack, point
21830 directly to it. */
21831 *bytes = (const gdb_byte *) DW_STRING (attr);
21832 break;
21833 case DW_FORM_block1:
21834 case DW_FORM_block2:
21835 case DW_FORM_block4:
21836 case DW_FORM_block:
21837 case DW_FORM_exprloc:
21838 case DW_FORM_data16:
21839 blk = DW_BLOCK (attr);
21840 if (TYPE_LENGTH (type) != blk->size)
21841 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21842 TYPE_LENGTH (type));
21843 *bytes = blk->data;
21844 break;
21845
21846 /* The DW_AT_const_value attributes are supposed to carry the
21847 symbol's value "represented as it would be on the target
21848 architecture." By the time we get here, it's already been
21849 converted to host endianness, so we just need to sign- or
21850 zero-extend it as appropriate. */
21851 case DW_FORM_data1:
21852 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21853 break;
21854 case DW_FORM_data2:
21855 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21856 break;
21857 case DW_FORM_data4:
21858 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21859 break;
21860 case DW_FORM_data8:
21861 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21862 break;
21863
21864 case DW_FORM_sdata:
21865 case DW_FORM_implicit_const:
21866 *value = DW_SND (attr);
21867 break;
21868
21869 case DW_FORM_udata:
21870 *value = DW_UNSND (attr);
21871 break;
21872
21873 default:
21874 complaint (_("unsupported const value attribute form: '%s'"),
21875 dwarf_form_name (attr->form));
21876 *value = 0;
21877 break;
21878 }
21879 }
21880
21881
21882 /* Copy constant value from an attribute to a symbol. */
21883
21884 static void
21885 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21886 struct dwarf2_cu *cu)
21887 {
21888 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21889 LONGEST value;
21890 const gdb_byte *bytes;
21891 struct dwarf2_locexpr_baton *baton;
21892
21893 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21894 SYMBOL_PRINT_NAME (sym),
21895 &objfile->objfile_obstack, cu,
21896 &value, &bytes, &baton);
21897
21898 if (baton != NULL)
21899 {
21900 SYMBOL_LOCATION_BATON (sym) = baton;
21901 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21902 }
21903 else if (bytes != NULL)
21904 {
21905 SYMBOL_VALUE_BYTES (sym) = bytes;
21906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21907 }
21908 else
21909 {
21910 SYMBOL_VALUE (sym) = value;
21911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21912 }
21913 }
21914
21915 /* Return the type of the die in question using its DW_AT_type attribute. */
21916
21917 static struct type *
21918 die_type (struct die_info *die, struct dwarf2_cu *cu)
21919 {
21920 struct attribute *type_attr;
21921
21922 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21923 if (!type_attr)
21924 {
21925 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21926 /* A missing DW_AT_type represents a void type. */
21927 return objfile_type (objfile)->builtin_void;
21928 }
21929
21930 return lookup_die_type (die, type_attr, cu);
21931 }
21932
21933 /* True iff CU's producer generates GNAT Ada auxiliary information
21934 that allows to find parallel types through that information instead
21935 of having to do expensive parallel lookups by type name. */
21936
21937 static int
21938 need_gnat_info (struct dwarf2_cu *cu)
21939 {
21940 /* Assume that the Ada compiler was GNAT, which always produces
21941 the auxiliary information. */
21942 return (cu->language == language_ada);
21943 }
21944
21945 /* Return the auxiliary type of the die in question using its
21946 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21947 attribute is not present. */
21948
21949 static struct type *
21950 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21951 {
21952 struct attribute *type_attr;
21953
21954 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21955 if (!type_attr)
21956 return NULL;
21957
21958 return lookup_die_type (die, type_attr, cu);
21959 }
21960
21961 /* If DIE has a descriptive_type attribute, then set the TYPE's
21962 descriptive type accordingly. */
21963
21964 static void
21965 set_descriptive_type (struct type *type, struct die_info *die,
21966 struct dwarf2_cu *cu)
21967 {
21968 struct type *descriptive_type = die_descriptive_type (die, cu);
21969
21970 if (descriptive_type)
21971 {
21972 ALLOCATE_GNAT_AUX_TYPE (type);
21973 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21974 }
21975 }
21976
21977 /* Return the containing type of the die in question using its
21978 DW_AT_containing_type attribute. */
21979
21980 static struct type *
21981 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21982 {
21983 struct attribute *type_attr;
21984 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21985
21986 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21987 if (!type_attr)
21988 error (_("Dwarf Error: Problem turning containing type into gdb type "
21989 "[in module %s]"), objfile_name (objfile));
21990
21991 return lookup_die_type (die, type_attr, cu);
21992 }
21993
21994 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21995
21996 static struct type *
21997 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21998 {
21999 struct dwarf2_per_objfile *dwarf2_per_objfile
22000 = cu->per_cu->dwarf2_per_objfile;
22001 struct objfile *objfile = dwarf2_per_objfile->objfile;
22002 char *saved;
22003
22004 std::string message
22005 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22006 objfile_name (objfile),
22007 sect_offset_str (cu->header.sect_off),
22008 sect_offset_str (die->sect_off));
22009 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22010 message.c_str (), message.length ());
22011
22012 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22013 }
22014
22015 /* Look up the type of DIE in CU using its type attribute ATTR.
22016 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22017 DW_AT_containing_type.
22018 If there is no type substitute an error marker. */
22019
22020 static struct type *
22021 lookup_die_type (struct die_info *die, const struct attribute *attr,
22022 struct dwarf2_cu *cu)
22023 {
22024 struct dwarf2_per_objfile *dwarf2_per_objfile
22025 = cu->per_cu->dwarf2_per_objfile;
22026 struct objfile *objfile = dwarf2_per_objfile->objfile;
22027 struct type *this_type;
22028
22029 gdb_assert (attr->name == DW_AT_type
22030 || attr->name == DW_AT_GNAT_descriptive_type
22031 || attr->name == DW_AT_containing_type);
22032
22033 /* First see if we have it cached. */
22034
22035 if (attr->form == DW_FORM_GNU_ref_alt)
22036 {
22037 struct dwarf2_per_cu_data *per_cu;
22038 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22039
22040 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22041 dwarf2_per_objfile);
22042 this_type = get_die_type_at_offset (sect_off, per_cu);
22043 }
22044 else if (attr_form_is_ref (attr))
22045 {
22046 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22047
22048 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22049 }
22050 else if (attr->form == DW_FORM_ref_sig8)
22051 {
22052 ULONGEST signature = DW_SIGNATURE (attr);
22053
22054 return get_signatured_type (die, signature, cu);
22055 }
22056 else
22057 {
22058 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22059 " at %s [in module %s]"),
22060 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22061 objfile_name (objfile));
22062 return build_error_marker_type (cu, die);
22063 }
22064
22065 /* If not cached we need to read it in. */
22066
22067 if (this_type == NULL)
22068 {
22069 struct die_info *type_die = NULL;
22070 struct dwarf2_cu *type_cu = cu;
22071
22072 if (attr_form_is_ref (attr))
22073 type_die = follow_die_ref (die, attr, &type_cu);
22074 if (type_die == NULL)
22075 return build_error_marker_type (cu, die);
22076 /* If we find the type now, it's probably because the type came
22077 from an inter-CU reference and the type's CU got expanded before
22078 ours. */
22079 this_type = read_type_die (type_die, type_cu);
22080 }
22081
22082 /* If we still don't have a type use an error marker. */
22083
22084 if (this_type == NULL)
22085 return build_error_marker_type (cu, die);
22086
22087 return this_type;
22088 }
22089
22090 /* Return the type in DIE, CU.
22091 Returns NULL for invalid types.
22092
22093 This first does a lookup in die_type_hash,
22094 and only reads the die in if necessary.
22095
22096 NOTE: This can be called when reading in partial or full symbols. */
22097
22098 static struct type *
22099 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22100 {
22101 struct type *this_type;
22102
22103 this_type = get_die_type (die, cu);
22104 if (this_type)
22105 return this_type;
22106
22107 return read_type_die_1 (die, cu);
22108 }
22109
22110 /* Read the type in DIE, CU.
22111 Returns NULL for invalid types. */
22112
22113 static struct type *
22114 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22115 {
22116 struct type *this_type = NULL;
22117
22118 switch (die->tag)
22119 {
22120 case DW_TAG_class_type:
22121 case DW_TAG_interface_type:
22122 case DW_TAG_structure_type:
22123 case DW_TAG_union_type:
22124 this_type = read_structure_type (die, cu);
22125 break;
22126 case DW_TAG_enumeration_type:
22127 this_type = read_enumeration_type (die, cu);
22128 break;
22129 case DW_TAG_subprogram:
22130 case DW_TAG_subroutine_type:
22131 case DW_TAG_inlined_subroutine:
22132 this_type = read_subroutine_type (die, cu);
22133 break;
22134 case DW_TAG_array_type:
22135 this_type = read_array_type (die, cu);
22136 break;
22137 case DW_TAG_set_type:
22138 this_type = read_set_type (die, cu);
22139 break;
22140 case DW_TAG_pointer_type:
22141 this_type = read_tag_pointer_type (die, cu);
22142 break;
22143 case DW_TAG_ptr_to_member_type:
22144 this_type = read_tag_ptr_to_member_type (die, cu);
22145 break;
22146 case DW_TAG_reference_type:
22147 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22148 break;
22149 case DW_TAG_rvalue_reference_type:
22150 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22151 break;
22152 case DW_TAG_const_type:
22153 this_type = read_tag_const_type (die, cu);
22154 break;
22155 case DW_TAG_volatile_type:
22156 this_type = read_tag_volatile_type (die, cu);
22157 break;
22158 case DW_TAG_restrict_type:
22159 this_type = read_tag_restrict_type (die, cu);
22160 break;
22161 case DW_TAG_string_type:
22162 this_type = read_tag_string_type (die, cu);
22163 break;
22164 case DW_TAG_typedef:
22165 this_type = read_typedef (die, cu);
22166 break;
22167 case DW_TAG_subrange_type:
22168 this_type = read_subrange_type (die, cu);
22169 break;
22170 case DW_TAG_base_type:
22171 this_type = read_base_type (die, cu);
22172 break;
22173 case DW_TAG_unspecified_type:
22174 this_type = read_unspecified_type (die, cu);
22175 break;
22176 case DW_TAG_namespace:
22177 this_type = read_namespace_type (die, cu);
22178 break;
22179 case DW_TAG_module:
22180 this_type = read_module_type (die, cu);
22181 break;
22182 case DW_TAG_atomic_type:
22183 this_type = read_tag_atomic_type (die, cu);
22184 break;
22185 default:
22186 complaint (_("unexpected tag in read_type_die: '%s'"),
22187 dwarf_tag_name (die->tag));
22188 break;
22189 }
22190
22191 return this_type;
22192 }
22193
22194 /* See if we can figure out if the class lives in a namespace. We do
22195 this by looking for a member function; its demangled name will
22196 contain namespace info, if there is any.
22197 Return the computed name or NULL.
22198 Space for the result is allocated on the objfile's obstack.
22199 This is the full-die version of guess_partial_die_structure_name.
22200 In this case we know DIE has no useful parent. */
22201
22202 static char *
22203 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22204 {
22205 struct die_info *spec_die;
22206 struct dwarf2_cu *spec_cu;
22207 struct die_info *child;
22208 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22209
22210 spec_cu = cu;
22211 spec_die = die_specification (die, &spec_cu);
22212 if (spec_die != NULL)
22213 {
22214 die = spec_die;
22215 cu = spec_cu;
22216 }
22217
22218 for (child = die->child;
22219 child != NULL;
22220 child = child->sibling)
22221 {
22222 if (child->tag == DW_TAG_subprogram)
22223 {
22224 const char *linkage_name = dw2_linkage_name (child, cu);
22225
22226 if (linkage_name != NULL)
22227 {
22228 char *actual_name
22229 = language_class_name_from_physname (cu->language_defn,
22230 linkage_name);
22231 char *name = NULL;
22232
22233 if (actual_name != NULL)
22234 {
22235 const char *die_name = dwarf2_name (die, cu);
22236
22237 if (die_name != NULL
22238 && strcmp (die_name, actual_name) != 0)
22239 {
22240 /* Strip off the class name from the full name.
22241 We want the prefix. */
22242 int die_name_len = strlen (die_name);
22243 int actual_name_len = strlen (actual_name);
22244
22245 /* Test for '::' as a sanity check. */
22246 if (actual_name_len > die_name_len + 2
22247 && actual_name[actual_name_len
22248 - die_name_len - 1] == ':')
22249 name = (char *) obstack_copy0 (
22250 &objfile->per_bfd->storage_obstack,
22251 actual_name, actual_name_len - die_name_len - 2);
22252 }
22253 }
22254 xfree (actual_name);
22255 return name;
22256 }
22257 }
22258 }
22259
22260 return NULL;
22261 }
22262
22263 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22264 prefix part in such case. See
22265 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22266
22267 static const char *
22268 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22269 {
22270 struct attribute *attr;
22271 const char *base;
22272
22273 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22274 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22275 return NULL;
22276
22277 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22278 return NULL;
22279
22280 attr = dw2_linkage_name_attr (die, cu);
22281 if (attr == NULL || DW_STRING (attr) == NULL)
22282 return NULL;
22283
22284 /* dwarf2_name had to be already called. */
22285 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22286
22287 /* Strip the base name, keep any leading namespaces/classes. */
22288 base = strrchr (DW_STRING (attr), ':');
22289 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22290 return "";
22291
22292 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22293 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22294 DW_STRING (attr),
22295 &base[-1] - DW_STRING (attr));
22296 }
22297
22298 /* Return the name of the namespace/class that DIE is defined within,
22299 or "" if we can't tell. The caller should not xfree the result.
22300
22301 For example, if we're within the method foo() in the following
22302 code:
22303
22304 namespace N {
22305 class C {
22306 void foo () {
22307 }
22308 };
22309 }
22310
22311 then determine_prefix on foo's die will return "N::C". */
22312
22313 static const char *
22314 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22315 {
22316 struct dwarf2_per_objfile *dwarf2_per_objfile
22317 = cu->per_cu->dwarf2_per_objfile;
22318 struct die_info *parent, *spec_die;
22319 struct dwarf2_cu *spec_cu;
22320 struct type *parent_type;
22321 const char *retval;
22322
22323 if (cu->language != language_cplus
22324 && cu->language != language_fortran && cu->language != language_d
22325 && cu->language != language_rust)
22326 return "";
22327
22328 retval = anonymous_struct_prefix (die, cu);
22329 if (retval)
22330 return retval;
22331
22332 /* We have to be careful in the presence of DW_AT_specification.
22333 For example, with GCC 3.4, given the code
22334
22335 namespace N {
22336 void foo() {
22337 // Definition of N::foo.
22338 }
22339 }
22340
22341 then we'll have a tree of DIEs like this:
22342
22343 1: DW_TAG_compile_unit
22344 2: DW_TAG_namespace // N
22345 3: DW_TAG_subprogram // declaration of N::foo
22346 4: DW_TAG_subprogram // definition of N::foo
22347 DW_AT_specification // refers to die #3
22348
22349 Thus, when processing die #4, we have to pretend that we're in
22350 the context of its DW_AT_specification, namely the contex of die
22351 #3. */
22352 spec_cu = cu;
22353 spec_die = die_specification (die, &spec_cu);
22354 if (spec_die == NULL)
22355 parent = die->parent;
22356 else
22357 {
22358 parent = spec_die->parent;
22359 cu = spec_cu;
22360 }
22361
22362 if (parent == NULL)
22363 return "";
22364 else if (parent->building_fullname)
22365 {
22366 const char *name;
22367 const char *parent_name;
22368
22369 /* It has been seen on RealView 2.2 built binaries,
22370 DW_TAG_template_type_param types actually _defined_ as
22371 children of the parent class:
22372
22373 enum E {};
22374 template class <class Enum> Class{};
22375 Class<enum E> class_e;
22376
22377 1: DW_TAG_class_type (Class)
22378 2: DW_TAG_enumeration_type (E)
22379 3: DW_TAG_enumerator (enum1:0)
22380 3: DW_TAG_enumerator (enum2:1)
22381 ...
22382 2: DW_TAG_template_type_param
22383 DW_AT_type DW_FORM_ref_udata (E)
22384
22385 Besides being broken debug info, it can put GDB into an
22386 infinite loop. Consider:
22387
22388 When we're building the full name for Class<E>, we'll start
22389 at Class, and go look over its template type parameters,
22390 finding E. We'll then try to build the full name of E, and
22391 reach here. We're now trying to build the full name of E,
22392 and look over the parent DIE for containing scope. In the
22393 broken case, if we followed the parent DIE of E, we'd again
22394 find Class, and once again go look at its template type
22395 arguments, etc., etc. Simply don't consider such parent die
22396 as source-level parent of this die (it can't be, the language
22397 doesn't allow it), and break the loop here. */
22398 name = dwarf2_name (die, cu);
22399 parent_name = dwarf2_name (parent, cu);
22400 complaint (_("template param type '%s' defined within parent '%s'"),
22401 name ? name : "<unknown>",
22402 parent_name ? parent_name : "<unknown>");
22403 return "";
22404 }
22405 else
22406 switch (parent->tag)
22407 {
22408 case DW_TAG_namespace:
22409 parent_type = read_type_die (parent, cu);
22410 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22411 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22412 Work around this problem here. */
22413 if (cu->language == language_cplus
22414 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22415 return "";
22416 /* We give a name to even anonymous namespaces. */
22417 return TYPE_NAME (parent_type);
22418 case DW_TAG_class_type:
22419 case DW_TAG_interface_type:
22420 case DW_TAG_structure_type:
22421 case DW_TAG_union_type:
22422 case DW_TAG_module:
22423 parent_type = read_type_die (parent, cu);
22424 if (TYPE_NAME (parent_type) != NULL)
22425 return TYPE_NAME (parent_type);
22426 else
22427 /* An anonymous structure is only allowed non-static data
22428 members; no typedefs, no member functions, et cetera.
22429 So it does not need a prefix. */
22430 return "";
22431 case DW_TAG_compile_unit:
22432 case DW_TAG_partial_unit:
22433 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22434 if (cu->language == language_cplus
22435 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22436 && die->child != NULL
22437 && (die->tag == DW_TAG_class_type
22438 || die->tag == DW_TAG_structure_type
22439 || die->tag == DW_TAG_union_type))
22440 {
22441 char *name = guess_full_die_structure_name (die, cu);
22442 if (name != NULL)
22443 return name;
22444 }
22445 return "";
22446 case DW_TAG_enumeration_type:
22447 parent_type = read_type_die (parent, cu);
22448 if (TYPE_DECLARED_CLASS (parent_type))
22449 {
22450 if (TYPE_NAME (parent_type) != NULL)
22451 return TYPE_NAME (parent_type);
22452 return "";
22453 }
22454 /* Fall through. */
22455 default:
22456 return determine_prefix (parent, cu);
22457 }
22458 }
22459
22460 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22461 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22462 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22463 an obconcat, otherwise allocate storage for the result. The CU argument is
22464 used to determine the language and hence, the appropriate separator. */
22465
22466 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22467
22468 static char *
22469 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22470 int physname, struct dwarf2_cu *cu)
22471 {
22472 const char *lead = "";
22473 const char *sep;
22474
22475 if (suffix == NULL || suffix[0] == '\0'
22476 || prefix == NULL || prefix[0] == '\0')
22477 sep = "";
22478 else if (cu->language == language_d)
22479 {
22480 /* For D, the 'main' function could be defined in any module, but it
22481 should never be prefixed. */
22482 if (strcmp (suffix, "D main") == 0)
22483 {
22484 prefix = "";
22485 sep = "";
22486 }
22487 else
22488 sep = ".";
22489 }
22490 else if (cu->language == language_fortran && physname)
22491 {
22492 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22493 DW_AT_MIPS_linkage_name is preferred and used instead. */
22494
22495 lead = "__";
22496 sep = "_MOD_";
22497 }
22498 else
22499 sep = "::";
22500
22501 if (prefix == NULL)
22502 prefix = "";
22503 if (suffix == NULL)
22504 suffix = "";
22505
22506 if (obs == NULL)
22507 {
22508 char *retval
22509 = ((char *)
22510 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22511
22512 strcpy (retval, lead);
22513 strcat (retval, prefix);
22514 strcat (retval, sep);
22515 strcat (retval, suffix);
22516 return retval;
22517 }
22518 else
22519 {
22520 /* We have an obstack. */
22521 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22522 }
22523 }
22524
22525 /* Return sibling of die, NULL if no sibling. */
22526
22527 static struct die_info *
22528 sibling_die (struct die_info *die)
22529 {
22530 return die->sibling;
22531 }
22532
22533 /* Get name of a die, return NULL if not found. */
22534
22535 static const char *
22536 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22537 struct obstack *obstack)
22538 {
22539 if (name && cu->language == language_cplus)
22540 {
22541 std::string canon_name = cp_canonicalize_string (name);
22542
22543 if (!canon_name.empty ())
22544 {
22545 if (canon_name != name)
22546 name = (const char *) obstack_copy0 (obstack,
22547 canon_name.c_str (),
22548 canon_name.length ());
22549 }
22550 }
22551
22552 return name;
22553 }
22554
22555 /* Get name of a die, return NULL if not found.
22556 Anonymous namespaces are converted to their magic string. */
22557
22558 static const char *
22559 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22560 {
22561 struct attribute *attr;
22562 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22563
22564 attr = dwarf2_attr (die, DW_AT_name, cu);
22565 if ((!attr || !DW_STRING (attr))
22566 && die->tag != DW_TAG_namespace
22567 && die->tag != DW_TAG_class_type
22568 && die->tag != DW_TAG_interface_type
22569 && die->tag != DW_TAG_structure_type
22570 && die->tag != DW_TAG_union_type)
22571 return NULL;
22572
22573 switch (die->tag)
22574 {
22575 case DW_TAG_compile_unit:
22576 case DW_TAG_partial_unit:
22577 /* Compilation units have a DW_AT_name that is a filename, not
22578 a source language identifier. */
22579 case DW_TAG_enumeration_type:
22580 case DW_TAG_enumerator:
22581 /* These tags always have simple identifiers already; no need
22582 to canonicalize them. */
22583 return DW_STRING (attr);
22584
22585 case DW_TAG_namespace:
22586 if (attr != NULL && DW_STRING (attr) != NULL)
22587 return DW_STRING (attr);
22588 return CP_ANONYMOUS_NAMESPACE_STR;
22589
22590 case DW_TAG_class_type:
22591 case DW_TAG_interface_type:
22592 case DW_TAG_structure_type:
22593 case DW_TAG_union_type:
22594 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22595 structures or unions. These were of the form "._%d" in GCC 4.1,
22596 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22597 and GCC 4.4. We work around this problem by ignoring these. */
22598 if (attr && DW_STRING (attr)
22599 && (startswith (DW_STRING (attr), "._")
22600 || startswith (DW_STRING (attr), "<anonymous")))
22601 return NULL;
22602
22603 /* GCC might emit a nameless typedef that has a linkage name. See
22604 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22605 if (!attr || DW_STRING (attr) == NULL)
22606 {
22607 char *demangled = NULL;
22608
22609 attr = dw2_linkage_name_attr (die, cu);
22610 if (attr == NULL || DW_STRING (attr) == NULL)
22611 return NULL;
22612
22613 /* Avoid demangling DW_STRING (attr) the second time on a second
22614 call for the same DIE. */
22615 if (!DW_STRING_IS_CANONICAL (attr))
22616 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22617
22618 if (demangled)
22619 {
22620 const char *base;
22621
22622 /* FIXME: we already did this for the partial symbol... */
22623 DW_STRING (attr)
22624 = ((const char *)
22625 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22626 demangled, strlen (demangled)));
22627 DW_STRING_IS_CANONICAL (attr) = 1;
22628 xfree (demangled);
22629
22630 /* Strip any leading namespaces/classes, keep only the base name.
22631 DW_AT_name for named DIEs does not contain the prefixes. */
22632 base = strrchr (DW_STRING (attr), ':');
22633 if (base && base > DW_STRING (attr) && base[-1] == ':')
22634 return &base[1];
22635 else
22636 return DW_STRING (attr);
22637 }
22638 }
22639 break;
22640
22641 default:
22642 break;
22643 }
22644
22645 if (!DW_STRING_IS_CANONICAL (attr))
22646 {
22647 DW_STRING (attr)
22648 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22649 &objfile->per_bfd->storage_obstack);
22650 DW_STRING_IS_CANONICAL (attr) = 1;
22651 }
22652 return DW_STRING (attr);
22653 }
22654
22655 /* Return the die that this die in an extension of, or NULL if there
22656 is none. *EXT_CU is the CU containing DIE on input, and the CU
22657 containing the return value on output. */
22658
22659 static struct die_info *
22660 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22661 {
22662 struct attribute *attr;
22663
22664 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22665 if (attr == NULL)
22666 return NULL;
22667
22668 return follow_die_ref (die, attr, ext_cu);
22669 }
22670
22671 /* Convert a DIE tag into its string name. */
22672
22673 static const char *
22674 dwarf_tag_name (unsigned tag)
22675 {
22676 const char *name = get_DW_TAG_name (tag);
22677
22678 if (name == NULL)
22679 return "DW_TAG_<unknown>";
22680
22681 return name;
22682 }
22683
22684 /* Convert a DWARF attribute code into its string name. */
22685
22686 static const char *
22687 dwarf_attr_name (unsigned attr)
22688 {
22689 const char *name;
22690
22691 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22692 if (attr == DW_AT_MIPS_fde)
22693 return "DW_AT_MIPS_fde";
22694 #else
22695 if (attr == DW_AT_HP_block_index)
22696 return "DW_AT_HP_block_index";
22697 #endif
22698
22699 name = get_DW_AT_name (attr);
22700
22701 if (name == NULL)
22702 return "DW_AT_<unknown>";
22703
22704 return name;
22705 }
22706
22707 /* Convert a DWARF value form code into its string name. */
22708
22709 static const char *
22710 dwarf_form_name (unsigned form)
22711 {
22712 const char *name = get_DW_FORM_name (form);
22713
22714 if (name == NULL)
22715 return "DW_FORM_<unknown>";
22716
22717 return name;
22718 }
22719
22720 static const char *
22721 dwarf_bool_name (unsigned mybool)
22722 {
22723 if (mybool)
22724 return "TRUE";
22725 else
22726 return "FALSE";
22727 }
22728
22729 /* Convert a DWARF type code into its string name. */
22730
22731 static const char *
22732 dwarf_type_encoding_name (unsigned enc)
22733 {
22734 const char *name = get_DW_ATE_name (enc);
22735
22736 if (name == NULL)
22737 return "DW_ATE_<unknown>";
22738
22739 return name;
22740 }
22741
22742 static void
22743 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22744 {
22745 unsigned int i;
22746
22747 print_spaces (indent, f);
22748 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22749 dwarf_tag_name (die->tag), die->abbrev,
22750 sect_offset_str (die->sect_off));
22751
22752 if (die->parent != NULL)
22753 {
22754 print_spaces (indent, f);
22755 fprintf_unfiltered (f, " parent at offset: %s\n",
22756 sect_offset_str (die->parent->sect_off));
22757 }
22758
22759 print_spaces (indent, f);
22760 fprintf_unfiltered (f, " has children: %s\n",
22761 dwarf_bool_name (die->child != NULL));
22762
22763 print_spaces (indent, f);
22764 fprintf_unfiltered (f, " attributes:\n");
22765
22766 for (i = 0; i < die->num_attrs; ++i)
22767 {
22768 print_spaces (indent, f);
22769 fprintf_unfiltered (f, " %s (%s) ",
22770 dwarf_attr_name (die->attrs[i].name),
22771 dwarf_form_name (die->attrs[i].form));
22772
22773 switch (die->attrs[i].form)
22774 {
22775 case DW_FORM_addr:
22776 case DW_FORM_GNU_addr_index:
22777 fprintf_unfiltered (f, "address: ");
22778 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22779 break;
22780 case DW_FORM_block2:
22781 case DW_FORM_block4:
22782 case DW_FORM_block:
22783 case DW_FORM_block1:
22784 fprintf_unfiltered (f, "block: size %s",
22785 pulongest (DW_BLOCK (&die->attrs[i])->size));
22786 break;
22787 case DW_FORM_exprloc:
22788 fprintf_unfiltered (f, "expression: size %s",
22789 pulongest (DW_BLOCK (&die->attrs[i])->size));
22790 break;
22791 case DW_FORM_data16:
22792 fprintf_unfiltered (f, "constant of 16 bytes");
22793 break;
22794 case DW_FORM_ref_addr:
22795 fprintf_unfiltered (f, "ref address: ");
22796 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22797 break;
22798 case DW_FORM_GNU_ref_alt:
22799 fprintf_unfiltered (f, "alt ref address: ");
22800 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22801 break;
22802 case DW_FORM_ref1:
22803 case DW_FORM_ref2:
22804 case DW_FORM_ref4:
22805 case DW_FORM_ref8:
22806 case DW_FORM_ref_udata:
22807 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22808 (long) (DW_UNSND (&die->attrs[i])));
22809 break;
22810 case DW_FORM_data1:
22811 case DW_FORM_data2:
22812 case DW_FORM_data4:
22813 case DW_FORM_data8:
22814 case DW_FORM_udata:
22815 case DW_FORM_sdata:
22816 fprintf_unfiltered (f, "constant: %s",
22817 pulongest (DW_UNSND (&die->attrs[i])));
22818 break;
22819 case DW_FORM_sec_offset:
22820 fprintf_unfiltered (f, "section offset: %s",
22821 pulongest (DW_UNSND (&die->attrs[i])));
22822 break;
22823 case DW_FORM_ref_sig8:
22824 fprintf_unfiltered (f, "signature: %s",
22825 hex_string (DW_SIGNATURE (&die->attrs[i])));
22826 break;
22827 case DW_FORM_string:
22828 case DW_FORM_strp:
22829 case DW_FORM_line_strp:
22830 case DW_FORM_GNU_str_index:
22831 case DW_FORM_GNU_strp_alt:
22832 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22833 DW_STRING (&die->attrs[i])
22834 ? DW_STRING (&die->attrs[i]) : "",
22835 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22836 break;
22837 case DW_FORM_flag:
22838 if (DW_UNSND (&die->attrs[i]))
22839 fprintf_unfiltered (f, "flag: TRUE");
22840 else
22841 fprintf_unfiltered (f, "flag: FALSE");
22842 break;
22843 case DW_FORM_flag_present:
22844 fprintf_unfiltered (f, "flag: TRUE");
22845 break;
22846 case DW_FORM_indirect:
22847 /* The reader will have reduced the indirect form to
22848 the "base form" so this form should not occur. */
22849 fprintf_unfiltered (f,
22850 "unexpected attribute form: DW_FORM_indirect");
22851 break;
22852 case DW_FORM_implicit_const:
22853 fprintf_unfiltered (f, "constant: %s",
22854 plongest (DW_SND (&die->attrs[i])));
22855 break;
22856 default:
22857 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22858 die->attrs[i].form);
22859 break;
22860 }
22861 fprintf_unfiltered (f, "\n");
22862 }
22863 }
22864
22865 static void
22866 dump_die_for_error (struct die_info *die)
22867 {
22868 dump_die_shallow (gdb_stderr, 0, die);
22869 }
22870
22871 static void
22872 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22873 {
22874 int indent = level * 4;
22875
22876 gdb_assert (die != NULL);
22877
22878 if (level >= max_level)
22879 return;
22880
22881 dump_die_shallow (f, indent, die);
22882
22883 if (die->child != NULL)
22884 {
22885 print_spaces (indent, f);
22886 fprintf_unfiltered (f, " Children:");
22887 if (level + 1 < max_level)
22888 {
22889 fprintf_unfiltered (f, "\n");
22890 dump_die_1 (f, level + 1, max_level, die->child);
22891 }
22892 else
22893 {
22894 fprintf_unfiltered (f,
22895 " [not printed, max nesting level reached]\n");
22896 }
22897 }
22898
22899 if (die->sibling != NULL && level > 0)
22900 {
22901 dump_die_1 (f, level, max_level, die->sibling);
22902 }
22903 }
22904
22905 /* This is called from the pdie macro in gdbinit.in.
22906 It's not static so gcc will keep a copy callable from gdb. */
22907
22908 void
22909 dump_die (struct die_info *die, int max_level)
22910 {
22911 dump_die_1 (gdb_stdlog, 0, max_level, die);
22912 }
22913
22914 static void
22915 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22916 {
22917 void **slot;
22918
22919 slot = htab_find_slot_with_hash (cu->die_hash, die,
22920 to_underlying (die->sect_off),
22921 INSERT);
22922
22923 *slot = die;
22924 }
22925
22926 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22927 required kind. */
22928
22929 static sect_offset
22930 dwarf2_get_ref_die_offset (const struct attribute *attr)
22931 {
22932 if (attr_form_is_ref (attr))
22933 return (sect_offset) DW_UNSND (attr);
22934
22935 complaint (_("unsupported die ref attribute form: '%s'"),
22936 dwarf_form_name (attr->form));
22937 return {};
22938 }
22939
22940 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22941 * the value held by the attribute is not constant. */
22942
22943 static LONGEST
22944 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22945 {
22946 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22947 return DW_SND (attr);
22948 else if (attr->form == DW_FORM_udata
22949 || attr->form == DW_FORM_data1
22950 || attr->form == DW_FORM_data2
22951 || attr->form == DW_FORM_data4
22952 || attr->form == DW_FORM_data8)
22953 return DW_UNSND (attr);
22954 else
22955 {
22956 /* For DW_FORM_data16 see attr_form_is_constant. */
22957 complaint (_("Attribute value is not a constant (%s)"),
22958 dwarf_form_name (attr->form));
22959 return default_value;
22960 }
22961 }
22962
22963 /* Follow reference or signature attribute ATTR of SRC_DIE.
22964 On entry *REF_CU is the CU of SRC_DIE.
22965 On exit *REF_CU is the CU of the result. */
22966
22967 static struct die_info *
22968 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22969 struct dwarf2_cu **ref_cu)
22970 {
22971 struct die_info *die;
22972
22973 if (attr_form_is_ref (attr))
22974 die = follow_die_ref (src_die, attr, ref_cu);
22975 else if (attr->form == DW_FORM_ref_sig8)
22976 die = follow_die_sig (src_die, attr, ref_cu);
22977 else
22978 {
22979 dump_die_for_error (src_die);
22980 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22981 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22982 }
22983
22984 return die;
22985 }
22986
22987 /* Follow reference OFFSET.
22988 On entry *REF_CU is the CU of the source die referencing OFFSET.
22989 On exit *REF_CU is the CU of the result.
22990 Returns NULL if OFFSET is invalid. */
22991
22992 static struct die_info *
22993 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22994 struct dwarf2_cu **ref_cu)
22995 {
22996 struct die_info temp_die;
22997 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22998 struct dwarf2_per_objfile *dwarf2_per_objfile
22999 = cu->per_cu->dwarf2_per_objfile;
23000
23001 gdb_assert (cu->per_cu != NULL);
23002
23003 target_cu = cu;
23004
23005 if (cu->per_cu->is_debug_types)
23006 {
23007 /* .debug_types CUs cannot reference anything outside their CU.
23008 If they need to, they have to reference a signatured type via
23009 DW_FORM_ref_sig8. */
23010 if (!offset_in_cu_p (&cu->header, sect_off))
23011 return NULL;
23012 }
23013 else if (offset_in_dwz != cu->per_cu->is_dwz
23014 || !offset_in_cu_p (&cu->header, sect_off))
23015 {
23016 struct dwarf2_per_cu_data *per_cu;
23017
23018 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23019 dwarf2_per_objfile);
23020
23021 /* If necessary, add it to the queue and load its DIEs. */
23022 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23023 load_full_comp_unit (per_cu, false, cu->language);
23024
23025 target_cu = per_cu->cu;
23026 }
23027 else if (cu->dies == NULL)
23028 {
23029 /* We're loading full DIEs during partial symbol reading. */
23030 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23031 load_full_comp_unit (cu->per_cu, false, language_minimal);
23032 }
23033
23034 *ref_cu = target_cu;
23035 temp_die.sect_off = sect_off;
23036 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23037 &temp_die,
23038 to_underlying (sect_off));
23039 }
23040
23041 /* Follow reference attribute ATTR of SRC_DIE.
23042 On entry *REF_CU is the CU of SRC_DIE.
23043 On exit *REF_CU is the CU of the result. */
23044
23045 static struct die_info *
23046 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23047 struct dwarf2_cu **ref_cu)
23048 {
23049 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23050 struct dwarf2_cu *cu = *ref_cu;
23051 struct die_info *die;
23052
23053 die = follow_die_offset (sect_off,
23054 (attr->form == DW_FORM_GNU_ref_alt
23055 || cu->per_cu->is_dwz),
23056 ref_cu);
23057 if (!die)
23058 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23059 "at %s [in module %s]"),
23060 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23061 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23062
23063 return die;
23064 }
23065
23066 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23067 Returned value is intended for DW_OP_call*. Returned
23068 dwarf2_locexpr_baton->data has lifetime of
23069 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23070
23071 struct dwarf2_locexpr_baton
23072 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23073 struct dwarf2_per_cu_data *per_cu,
23074 CORE_ADDR (*get_frame_pc) (void *baton),
23075 void *baton, bool resolve_abstract_p)
23076 {
23077 struct dwarf2_cu *cu;
23078 struct die_info *die;
23079 struct attribute *attr;
23080 struct dwarf2_locexpr_baton retval;
23081 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23082 struct objfile *objfile = dwarf2_per_objfile->objfile;
23083
23084 if (per_cu->cu == NULL)
23085 load_cu (per_cu, false);
23086 cu = per_cu->cu;
23087 if (cu == NULL)
23088 {
23089 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23090 Instead just throw an error, not much else we can do. */
23091 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23092 sect_offset_str (sect_off), objfile_name (objfile));
23093 }
23094
23095 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23096 if (!die)
23097 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23098 sect_offset_str (sect_off), objfile_name (objfile));
23099
23100 attr = dwarf2_attr (die, DW_AT_location, cu);
23101 if (!attr && resolve_abstract_p
23102 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23103 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23104 {
23105 CORE_ADDR pc = (*get_frame_pc) (baton);
23106
23107 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23108 {
23109 if (!cand->parent
23110 || cand->parent->tag != DW_TAG_subprogram)
23111 continue;
23112
23113 CORE_ADDR pc_low, pc_high;
23114 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23115 if (pc_low == ((CORE_ADDR) -1)
23116 || !(pc_low <= pc && pc < pc_high))
23117 continue;
23118
23119 die = cand;
23120 attr = dwarf2_attr (die, DW_AT_location, cu);
23121 break;
23122 }
23123 }
23124
23125 if (!attr)
23126 {
23127 /* DWARF: "If there is no such attribute, then there is no effect.".
23128 DATA is ignored if SIZE is 0. */
23129
23130 retval.data = NULL;
23131 retval.size = 0;
23132 }
23133 else if (attr_form_is_section_offset (attr))
23134 {
23135 struct dwarf2_loclist_baton loclist_baton;
23136 CORE_ADDR pc = (*get_frame_pc) (baton);
23137 size_t size;
23138
23139 fill_in_loclist_baton (cu, &loclist_baton, attr);
23140
23141 retval.data = dwarf2_find_location_expression (&loclist_baton,
23142 &size, pc);
23143 retval.size = size;
23144 }
23145 else
23146 {
23147 if (!attr_form_is_block (attr))
23148 error (_("Dwarf Error: DIE at %s referenced in module %s "
23149 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23150 sect_offset_str (sect_off), objfile_name (objfile));
23151
23152 retval.data = DW_BLOCK (attr)->data;
23153 retval.size = DW_BLOCK (attr)->size;
23154 }
23155 retval.per_cu = cu->per_cu;
23156
23157 age_cached_comp_units (dwarf2_per_objfile);
23158
23159 return retval;
23160 }
23161
23162 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23163 offset. */
23164
23165 struct dwarf2_locexpr_baton
23166 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23167 struct dwarf2_per_cu_data *per_cu,
23168 CORE_ADDR (*get_frame_pc) (void *baton),
23169 void *baton)
23170 {
23171 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23172
23173 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23174 }
23175
23176 /* Write a constant of a given type as target-ordered bytes into
23177 OBSTACK. */
23178
23179 static const gdb_byte *
23180 write_constant_as_bytes (struct obstack *obstack,
23181 enum bfd_endian byte_order,
23182 struct type *type,
23183 ULONGEST value,
23184 LONGEST *len)
23185 {
23186 gdb_byte *result;
23187
23188 *len = TYPE_LENGTH (type);
23189 result = (gdb_byte *) obstack_alloc (obstack, *len);
23190 store_unsigned_integer (result, *len, byte_order, value);
23191
23192 return result;
23193 }
23194
23195 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23196 pointer to the constant bytes and set LEN to the length of the
23197 data. If memory is needed, allocate it on OBSTACK. If the DIE
23198 does not have a DW_AT_const_value, return NULL. */
23199
23200 const gdb_byte *
23201 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23202 struct dwarf2_per_cu_data *per_cu,
23203 struct obstack *obstack,
23204 LONGEST *len)
23205 {
23206 struct dwarf2_cu *cu;
23207 struct die_info *die;
23208 struct attribute *attr;
23209 const gdb_byte *result = NULL;
23210 struct type *type;
23211 LONGEST value;
23212 enum bfd_endian byte_order;
23213 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23214
23215 if (per_cu->cu == NULL)
23216 load_cu (per_cu, false);
23217 cu = per_cu->cu;
23218 if (cu == NULL)
23219 {
23220 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23221 Instead just throw an error, not much else we can do. */
23222 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23223 sect_offset_str (sect_off), objfile_name (objfile));
23224 }
23225
23226 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23227 if (!die)
23228 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23229 sect_offset_str (sect_off), objfile_name (objfile));
23230
23231 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23232 if (attr == NULL)
23233 return NULL;
23234
23235 byte_order = (bfd_big_endian (objfile->obfd)
23236 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23237
23238 switch (attr->form)
23239 {
23240 case DW_FORM_addr:
23241 case DW_FORM_GNU_addr_index:
23242 {
23243 gdb_byte *tem;
23244
23245 *len = cu->header.addr_size;
23246 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23247 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23248 result = tem;
23249 }
23250 break;
23251 case DW_FORM_string:
23252 case DW_FORM_strp:
23253 case DW_FORM_GNU_str_index:
23254 case DW_FORM_GNU_strp_alt:
23255 /* DW_STRING is already allocated on the objfile obstack, point
23256 directly to it. */
23257 result = (const gdb_byte *) DW_STRING (attr);
23258 *len = strlen (DW_STRING (attr));
23259 break;
23260 case DW_FORM_block1:
23261 case DW_FORM_block2:
23262 case DW_FORM_block4:
23263 case DW_FORM_block:
23264 case DW_FORM_exprloc:
23265 case DW_FORM_data16:
23266 result = DW_BLOCK (attr)->data;
23267 *len = DW_BLOCK (attr)->size;
23268 break;
23269
23270 /* The DW_AT_const_value attributes are supposed to carry the
23271 symbol's value "represented as it would be on the target
23272 architecture." By the time we get here, it's already been
23273 converted to host endianness, so we just need to sign- or
23274 zero-extend it as appropriate. */
23275 case DW_FORM_data1:
23276 type = die_type (die, cu);
23277 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23278 if (result == NULL)
23279 result = write_constant_as_bytes (obstack, byte_order,
23280 type, value, len);
23281 break;
23282 case DW_FORM_data2:
23283 type = die_type (die, cu);
23284 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23285 if (result == NULL)
23286 result = write_constant_as_bytes (obstack, byte_order,
23287 type, value, len);
23288 break;
23289 case DW_FORM_data4:
23290 type = die_type (die, cu);
23291 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23292 if (result == NULL)
23293 result = write_constant_as_bytes (obstack, byte_order,
23294 type, value, len);
23295 break;
23296 case DW_FORM_data8:
23297 type = die_type (die, cu);
23298 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23299 if (result == NULL)
23300 result = write_constant_as_bytes (obstack, byte_order,
23301 type, value, len);
23302 break;
23303
23304 case DW_FORM_sdata:
23305 case DW_FORM_implicit_const:
23306 type = die_type (die, cu);
23307 result = write_constant_as_bytes (obstack, byte_order,
23308 type, DW_SND (attr), len);
23309 break;
23310
23311 case DW_FORM_udata:
23312 type = die_type (die, cu);
23313 result = write_constant_as_bytes (obstack, byte_order,
23314 type, DW_UNSND (attr), len);
23315 break;
23316
23317 default:
23318 complaint (_("unsupported const value attribute form: '%s'"),
23319 dwarf_form_name (attr->form));
23320 break;
23321 }
23322
23323 return result;
23324 }
23325
23326 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23327 valid type for this die is found. */
23328
23329 struct type *
23330 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23331 struct dwarf2_per_cu_data *per_cu)
23332 {
23333 struct dwarf2_cu *cu;
23334 struct die_info *die;
23335
23336 if (per_cu->cu == NULL)
23337 load_cu (per_cu, false);
23338 cu = per_cu->cu;
23339 if (!cu)
23340 return NULL;
23341
23342 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23343 if (!die)
23344 return NULL;
23345
23346 return die_type (die, cu);
23347 }
23348
23349 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23350 PER_CU. */
23351
23352 struct type *
23353 dwarf2_get_die_type (cu_offset die_offset,
23354 struct dwarf2_per_cu_data *per_cu)
23355 {
23356 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23357 return get_die_type_at_offset (die_offset_sect, per_cu);
23358 }
23359
23360 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23361 On entry *REF_CU is the CU of SRC_DIE.
23362 On exit *REF_CU is the CU of the result.
23363 Returns NULL if the referenced DIE isn't found. */
23364
23365 static struct die_info *
23366 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23367 struct dwarf2_cu **ref_cu)
23368 {
23369 struct die_info temp_die;
23370 struct dwarf2_cu *sig_cu;
23371 struct die_info *die;
23372
23373 /* While it might be nice to assert sig_type->type == NULL here,
23374 we can get here for DW_AT_imported_declaration where we need
23375 the DIE not the type. */
23376
23377 /* If necessary, add it to the queue and load its DIEs. */
23378
23379 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23380 read_signatured_type (sig_type);
23381
23382 sig_cu = sig_type->per_cu.cu;
23383 gdb_assert (sig_cu != NULL);
23384 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23385 temp_die.sect_off = sig_type->type_offset_in_section;
23386 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23387 to_underlying (temp_die.sect_off));
23388 if (die)
23389 {
23390 struct dwarf2_per_objfile *dwarf2_per_objfile
23391 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23392
23393 /* For .gdb_index version 7 keep track of included TUs.
23394 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23395 if (dwarf2_per_objfile->index_table != NULL
23396 && dwarf2_per_objfile->index_table->version <= 7)
23397 {
23398 VEC_safe_push (dwarf2_per_cu_ptr,
23399 (*ref_cu)->per_cu->imported_symtabs,
23400 sig_cu->per_cu);
23401 }
23402
23403 *ref_cu = sig_cu;
23404 return die;
23405 }
23406
23407 return NULL;
23408 }
23409
23410 /* Follow signatured type referenced by ATTR in SRC_DIE.
23411 On entry *REF_CU is the CU of SRC_DIE.
23412 On exit *REF_CU is the CU of the result.
23413 The result is the DIE of the type.
23414 If the referenced type cannot be found an error is thrown. */
23415
23416 static struct die_info *
23417 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23418 struct dwarf2_cu **ref_cu)
23419 {
23420 ULONGEST signature = DW_SIGNATURE (attr);
23421 struct signatured_type *sig_type;
23422 struct die_info *die;
23423
23424 gdb_assert (attr->form == DW_FORM_ref_sig8);
23425
23426 sig_type = lookup_signatured_type (*ref_cu, signature);
23427 /* sig_type will be NULL if the signatured type is missing from
23428 the debug info. */
23429 if (sig_type == NULL)
23430 {
23431 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23432 " from DIE at %s [in module %s]"),
23433 hex_string (signature), sect_offset_str (src_die->sect_off),
23434 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23435 }
23436
23437 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23438 if (die == NULL)
23439 {
23440 dump_die_for_error (src_die);
23441 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23442 " from DIE at %s [in module %s]"),
23443 hex_string (signature), sect_offset_str (src_die->sect_off),
23444 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23445 }
23446
23447 return die;
23448 }
23449
23450 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23451 reading in and processing the type unit if necessary. */
23452
23453 static struct type *
23454 get_signatured_type (struct die_info *die, ULONGEST signature,
23455 struct dwarf2_cu *cu)
23456 {
23457 struct dwarf2_per_objfile *dwarf2_per_objfile
23458 = cu->per_cu->dwarf2_per_objfile;
23459 struct signatured_type *sig_type;
23460 struct dwarf2_cu *type_cu;
23461 struct die_info *type_die;
23462 struct type *type;
23463
23464 sig_type = lookup_signatured_type (cu, signature);
23465 /* sig_type will be NULL if the signatured type is missing from
23466 the debug info. */
23467 if (sig_type == NULL)
23468 {
23469 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23470 " from DIE at %s [in module %s]"),
23471 hex_string (signature), sect_offset_str (die->sect_off),
23472 objfile_name (dwarf2_per_objfile->objfile));
23473 return build_error_marker_type (cu, die);
23474 }
23475
23476 /* If we already know the type we're done. */
23477 if (sig_type->type != NULL)
23478 return sig_type->type;
23479
23480 type_cu = cu;
23481 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23482 if (type_die != NULL)
23483 {
23484 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23485 is created. This is important, for example, because for c++ classes
23486 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23487 type = read_type_die (type_die, type_cu);
23488 if (type == NULL)
23489 {
23490 complaint (_("Dwarf Error: Cannot build signatured type %s"
23491 " referenced from DIE at %s [in module %s]"),
23492 hex_string (signature), sect_offset_str (die->sect_off),
23493 objfile_name (dwarf2_per_objfile->objfile));
23494 type = build_error_marker_type (cu, die);
23495 }
23496 }
23497 else
23498 {
23499 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23500 " from DIE at %s [in module %s]"),
23501 hex_string (signature), sect_offset_str (die->sect_off),
23502 objfile_name (dwarf2_per_objfile->objfile));
23503 type = build_error_marker_type (cu, die);
23504 }
23505 sig_type->type = type;
23506
23507 return type;
23508 }
23509
23510 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23511 reading in and processing the type unit if necessary. */
23512
23513 static struct type *
23514 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23515 struct dwarf2_cu *cu) /* ARI: editCase function */
23516 {
23517 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23518 if (attr_form_is_ref (attr))
23519 {
23520 struct dwarf2_cu *type_cu = cu;
23521 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23522
23523 return read_type_die (type_die, type_cu);
23524 }
23525 else if (attr->form == DW_FORM_ref_sig8)
23526 {
23527 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23528 }
23529 else
23530 {
23531 struct dwarf2_per_objfile *dwarf2_per_objfile
23532 = cu->per_cu->dwarf2_per_objfile;
23533
23534 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23535 " at %s [in module %s]"),
23536 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23537 objfile_name (dwarf2_per_objfile->objfile));
23538 return build_error_marker_type (cu, die);
23539 }
23540 }
23541
23542 /* Load the DIEs associated with type unit PER_CU into memory. */
23543
23544 static void
23545 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23546 {
23547 struct signatured_type *sig_type;
23548
23549 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23550 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23551
23552 /* We have the per_cu, but we need the signatured_type.
23553 Fortunately this is an easy translation. */
23554 gdb_assert (per_cu->is_debug_types);
23555 sig_type = (struct signatured_type *) per_cu;
23556
23557 gdb_assert (per_cu->cu == NULL);
23558
23559 read_signatured_type (sig_type);
23560
23561 gdb_assert (per_cu->cu != NULL);
23562 }
23563
23564 /* die_reader_func for read_signatured_type.
23565 This is identical to load_full_comp_unit_reader,
23566 but is kept separate for now. */
23567
23568 static void
23569 read_signatured_type_reader (const struct die_reader_specs *reader,
23570 const gdb_byte *info_ptr,
23571 struct die_info *comp_unit_die,
23572 int has_children,
23573 void *data)
23574 {
23575 struct dwarf2_cu *cu = reader->cu;
23576
23577 gdb_assert (cu->die_hash == NULL);
23578 cu->die_hash =
23579 htab_create_alloc_ex (cu->header.length / 12,
23580 die_hash,
23581 die_eq,
23582 NULL,
23583 &cu->comp_unit_obstack,
23584 hashtab_obstack_allocate,
23585 dummy_obstack_deallocate);
23586
23587 if (has_children)
23588 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23589 &info_ptr, comp_unit_die);
23590 cu->dies = comp_unit_die;
23591 /* comp_unit_die is not stored in die_hash, no need. */
23592
23593 /* We try not to read any attributes in this function, because not
23594 all CUs needed for references have been loaded yet, and symbol
23595 table processing isn't initialized. But we have to set the CU language,
23596 or we won't be able to build types correctly.
23597 Similarly, if we do not read the producer, we can not apply
23598 producer-specific interpretation. */
23599 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23600 }
23601
23602 /* Read in a signatured type and build its CU and DIEs.
23603 If the type is a stub for the real type in a DWO file,
23604 read in the real type from the DWO file as well. */
23605
23606 static void
23607 read_signatured_type (struct signatured_type *sig_type)
23608 {
23609 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23610
23611 gdb_assert (per_cu->is_debug_types);
23612 gdb_assert (per_cu->cu == NULL);
23613
23614 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23615 read_signatured_type_reader, NULL);
23616 sig_type->per_cu.tu_read = 1;
23617 }
23618
23619 /* Decode simple location descriptions.
23620 Given a pointer to a dwarf block that defines a location, compute
23621 the location and return the value.
23622
23623 NOTE drow/2003-11-18: This function is called in two situations
23624 now: for the address of static or global variables (partial symbols
23625 only) and for offsets into structures which are expected to be
23626 (more or less) constant. The partial symbol case should go away,
23627 and only the constant case should remain. That will let this
23628 function complain more accurately. A few special modes are allowed
23629 without complaint for global variables (for instance, global
23630 register values and thread-local values).
23631
23632 A location description containing no operations indicates that the
23633 object is optimized out. The return value is 0 for that case.
23634 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23635 callers will only want a very basic result and this can become a
23636 complaint.
23637
23638 Note that stack[0] is unused except as a default error return. */
23639
23640 static CORE_ADDR
23641 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23642 {
23643 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23644 size_t i;
23645 size_t size = blk->size;
23646 const gdb_byte *data = blk->data;
23647 CORE_ADDR stack[64];
23648 int stacki;
23649 unsigned int bytes_read, unsnd;
23650 gdb_byte op;
23651
23652 i = 0;
23653 stacki = 0;
23654 stack[stacki] = 0;
23655 stack[++stacki] = 0;
23656
23657 while (i < size)
23658 {
23659 op = data[i++];
23660 switch (op)
23661 {
23662 case DW_OP_lit0:
23663 case DW_OP_lit1:
23664 case DW_OP_lit2:
23665 case DW_OP_lit3:
23666 case DW_OP_lit4:
23667 case DW_OP_lit5:
23668 case DW_OP_lit6:
23669 case DW_OP_lit7:
23670 case DW_OP_lit8:
23671 case DW_OP_lit9:
23672 case DW_OP_lit10:
23673 case DW_OP_lit11:
23674 case DW_OP_lit12:
23675 case DW_OP_lit13:
23676 case DW_OP_lit14:
23677 case DW_OP_lit15:
23678 case DW_OP_lit16:
23679 case DW_OP_lit17:
23680 case DW_OP_lit18:
23681 case DW_OP_lit19:
23682 case DW_OP_lit20:
23683 case DW_OP_lit21:
23684 case DW_OP_lit22:
23685 case DW_OP_lit23:
23686 case DW_OP_lit24:
23687 case DW_OP_lit25:
23688 case DW_OP_lit26:
23689 case DW_OP_lit27:
23690 case DW_OP_lit28:
23691 case DW_OP_lit29:
23692 case DW_OP_lit30:
23693 case DW_OP_lit31:
23694 stack[++stacki] = op - DW_OP_lit0;
23695 break;
23696
23697 case DW_OP_reg0:
23698 case DW_OP_reg1:
23699 case DW_OP_reg2:
23700 case DW_OP_reg3:
23701 case DW_OP_reg4:
23702 case DW_OP_reg5:
23703 case DW_OP_reg6:
23704 case DW_OP_reg7:
23705 case DW_OP_reg8:
23706 case DW_OP_reg9:
23707 case DW_OP_reg10:
23708 case DW_OP_reg11:
23709 case DW_OP_reg12:
23710 case DW_OP_reg13:
23711 case DW_OP_reg14:
23712 case DW_OP_reg15:
23713 case DW_OP_reg16:
23714 case DW_OP_reg17:
23715 case DW_OP_reg18:
23716 case DW_OP_reg19:
23717 case DW_OP_reg20:
23718 case DW_OP_reg21:
23719 case DW_OP_reg22:
23720 case DW_OP_reg23:
23721 case DW_OP_reg24:
23722 case DW_OP_reg25:
23723 case DW_OP_reg26:
23724 case DW_OP_reg27:
23725 case DW_OP_reg28:
23726 case DW_OP_reg29:
23727 case DW_OP_reg30:
23728 case DW_OP_reg31:
23729 stack[++stacki] = op - DW_OP_reg0;
23730 if (i < size)
23731 dwarf2_complex_location_expr_complaint ();
23732 break;
23733
23734 case DW_OP_regx:
23735 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23736 i += bytes_read;
23737 stack[++stacki] = unsnd;
23738 if (i < size)
23739 dwarf2_complex_location_expr_complaint ();
23740 break;
23741
23742 case DW_OP_addr:
23743 stack[++stacki] = read_address (objfile->obfd, &data[i],
23744 cu, &bytes_read);
23745 i += bytes_read;
23746 break;
23747
23748 case DW_OP_const1u:
23749 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23750 i += 1;
23751 break;
23752
23753 case DW_OP_const1s:
23754 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23755 i += 1;
23756 break;
23757
23758 case DW_OP_const2u:
23759 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23760 i += 2;
23761 break;
23762
23763 case DW_OP_const2s:
23764 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23765 i += 2;
23766 break;
23767
23768 case DW_OP_const4u:
23769 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23770 i += 4;
23771 break;
23772
23773 case DW_OP_const4s:
23774 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23775 i += 4;
23776 break;
23777
23778 case DW_OP_const8u:
23779 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23780 i += 8;
23781 break;
23782
23783 case DW_OP_constu:
23784 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23785 &bytes_read);
23786 i += bytes_read;
23787 break;
23788
23789 case DW_OP_consts:
23790 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23791 i += bytes_read;
23792 break;
23793
23794 case DW_OP_dup:
23795 stack[stacki + 1] = stack[stacki];
23796 stacki++;
23797 break;
23798
23799 case DW_OP_plus:
23800 stack[stacki - 1] += stack[stacki];
23801 stacki--;
23802 break;
23803
23804 case DW_OP_plus_uconst:
23805 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23806 &bytes_read);
23807 i += bytes_read;
23808 break;
23809
23810 case DW_OP_minus:
23811 stack[stacki - 1] -= stack[stacki];
23812 stacki--;
23813 break;
23814
23815 case DW_OP_deref:
23816 /* If we're not the last op, then we definitely can't encode
23817 this using GDB's address_class enum. This is valid for partial
23818 global symbols, although the variable's address will be bogus
23819 in the psymtab. */
23820 if (i < size)
23821 dwarf2_complex_location_expr_complaint ();
23822 break;
23823
23824 case DW_OP_GNU_push_tls_address:
23825 case DW_OP_form_tls_address:
23826 /* The top of the stack has the offset from the beginning
23827 of the thread control block at which the variable is located. */
23828 /* Nothing should follow this operator, so the top of stack would
23829 be returned. */
23830 /* This is valid for partial global symbols, but the variable's
23831 address will be bogus in the psymtab. Make it always at least
23832 non-zero to not look as a variable garbage collected by linker
23833 which have DW_OP_addr 0. */
23834 if (i < size)
23835 dwarf2_complex_location_expr_complaint ();
23836 stack[stacki]++;
23837 break;
23838
23839 case DW_OP_GNU_uninit:
23840 break;
23841
23842 case DW_OP_GNU_addr_index:
23843 case DW_OP_GNU_const_index:
23844 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23845 &bytes_read);
23846 i += bytes_read;
23847 break;
23848
23849 default:
23850 {
23851 const char *name = get_DW_OP_name (op);
23852
23853 if (name)
23854 complaint (_("unsupported stack op: '%s'"),
23855 name);
23856 else
23857 complaint (_("unsupported stack op: '%02x'"),
23858 op);
23859 }
23860
23861 return (stack[stacki]);
23862 }
23863
23864 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23865 outside of the allocated space. Also enforce minimum>0. */
23866 if (stacki >= ARRAY_SIZE (stack) - 1)
23867 {
23868 complaint (_("location description stack overflow"));
23869 return 0;
23870 }
23871
23872 if (stacki <= 0)
23873 {
23874 complaint (_("location description stack underflow"));
23875 return 0;
23876 }
23877 }
23878 return (stack[stacki]);
23879 }
23880
23881 /* memory allocation interface */
23882
23883 static struct dwarf_block *
23884 dwarf_alloc_block (struct dwarf2_cu *cu)
23885 {
23886 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23887 }
23888
23889 static struct die_info *
23890 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23891 {
23892 struct die_info *die;
23893 size_t size = sizeof (struct die_info);
23894
23895 if (num_attrs > 1)
23896 size += (num_attrs - 1) * sizeof (struct attribute);
23897
23898 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23899 memset (die, 0, sizeof (struct die_info));
23900 return (die);
23901 }
23902
23903 \f
23904 /* Macro support. */
23905
23906 /* Return file name relative to the compilation directory of file number I in
23907 *LH's file name table. The result is allocated using xmalloc; the caller is
23908 responsible for freeing it. */
23909
23910 static char *
23911 file_file_name (int file, struct line_header *lh)
23912 {
23913 /* Is the file number a valid index into the line header's file name
23914 table? Remember that file numbers start with one, not zero. */
23915 if (1 <= file && file <= lh->file_names.size ())
23916 {
23917 const file_entry &fe = lh->file_names[file - 1];
23918
23919 if (!IS_ABSOLUTE_PATH (fe.name))
23920 {
23921 const char *dir = fe.include_dir (lh);
23922 if (dir != NULL)
23923 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23924 }
23925 return xstrdup (fe.name);
23926 }
23927 else
23928 {
23929 /* The compiler produced a bogus file number. We can at least
23930 record the macro definitions made in the file, even if we
23931 won't be able to find the file by name. */
23932 char fake_name[80];
23933
23934 xsnprintf (fake_name, sizeof (fake_name),
23935 "<bad macro file number %d>", file);
23936
23937 complaint (_("bad file number in macro information (%d)"),
23938 file);
23939
23940 return xstrdup (fake_name);
23941 }
23942 }
23943
23944 /* Return the full name of file number I in *LH's file name table.
23945 Use COMP_DIR as the name of the current directory of the
23946 compilation. The result is allocated using xmalloc; the caller is
23947 responsible for freeing it. */
23948 static char *
23949 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23950 {
23951 /* Is the file number a valid index into the line header's file name
23952 table? Remember that file numbers start with one, not zero. */
23953 if (1 <= file && file <= lh->file_names.size ())
23954 {
23955 char *relative = file_file_name (file, lh);
23956
23957 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23958 return relative;
23959 return reconcat (relative, comp_dir, SLASH_STRING,
23960 relative, (char *) NULL);
23961 }
23962 else
23963 return file_file_name (file, lh);
23964 }
23965
23966
23967 static struct macro_source_file *
23968 macro_start_file (struct dwarf2_cu *cu,
23969 int file, int line,
23970 struct macro_source_file *current_file,
23971 struct line_header *lh)
23972 {
23973 /* File name relative to the compilation directory of this source file. */
23974 char *file_name = file_file_name (file, lh);
23975
23976 if (! current_file)
23977 {
23978 /* Note: We don't create a macro table for this compilation unit
23979 at all until we actually get a filename. */
23980 struct macro_table *macro_table = cu->builder->get_macro_table ();
23981
23982 /* If we have no current file, then this must be the start_file
23983 directive for the compilation unit's main source file. */
23984 current_file = macro_set_main (macro_table, file_name);
23985 macro_define_special (macro_table);
23986 }
23987 else
23988 current_file = macro_include (current_file, line, file_name);
23989
23990 xfree (file_name);
23991
23992 return current_file;
23993 }
23994
23995 static const char *
23996 consume_improper_spaces (const char *p, const char *body)
23997 {
23998 if (*p == ' ')
23999 {
24000 complaint (_("macro definition contains spaces "
24001 "in formal argument list:\n`%s'"),
24002 body);
24003
24004 while (*p == ' ')
24005 p++;
24006 }
24007
24008 return p;
24009 }
24010
24011
24012 static void
24013 parse_macro_definition (struct macro_source_file *file, int line,
24014 const char *body)
24015 {
24016 const char *p;
24017
24018 /* The body string takes one of two forms. For object-like macro
24019 definitions, it should be:
24020
24021 <macro name> " " <definition>
24022
24023 For function-like macro definitions, it should be:
24024
24025 <macro name> "() " <definition>
24026 or
24027 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24028
24029 Spaces may appear only where explicitly indicated, and in the
24030 <definition>.
24031
24032 The Dwarf 2 spec says that an object-like macro's name is always
24033 followed by a space, but versions of GCC around March 2002 omit
24034 the space when the macro's definition is the empty string.
24035
24036 The Dwarf 2 spec says that there should be no spaces between the
24037 formal arguments in a function-like macro's formal argument list,
24038 but versions of GCC around March 2002 include spaces after the
24039 commas. */
24040
24041
24042 /* Find the extent of the macro name. The macro name is terminated
24043 by either a space or null character (for an object-like macro) or
24044 an opening paren (for a function-like macro). */
24045 for (p = body; *p; p++)
24046 if (*p == ' ' || *p == '(')
24047 break;
24048
24049 if (*p == ' ' || *p == '\0')
24050 {
24051 /* It's an object-like macro. */
24052 int name_len = p - body;
24053 char *name = savestring (body, name_len);
24054 const char *replacement;
24055
24056 if (*p == ' ')
24057 replacement = body + name_len + 1;
24058 else
24059 {
24060 dwarf2_macro_malformed_definition_complaint (body);
24061 replacement = body + name_len;
24062 }
24063
24064 macro_define_object (file, line, name, replacement);
24065
24066 xfree (name);
24067 }
24068 else if (*p == '(')
24069 {
24070 /* It's a function-like macro. */
24071 char *name = savestring (body, p - body);
24072 int argc = 0;
24073 int argv_size = 1;
24074 char **argv = XNEWVEC (char *, argv_size);
24075
24076 p++;
24077
24078 p = consume_improper_spaces (p, body);
24079
24080 /* Parse the formal argument list. */
24081 while (*p && *p != ')')
24082 {
24083 /* Find the extent of the current argument name. */
24084 const char *arg_start = p;
24085
24086 while (*p && *p != ',' && *p != ')' && *p != ' ')
24087 p++;
24088
24089 if (! *p || p == arg_start)
24090 dwarf2_macro_malformed_definition_complaint (body);
24091 else
24092 {
24093 /* Make sure argv has room for the new argument. */
24094 if (argc >= argv_size)
24095 {
24096 argv_size *= 2;
24097 argv = XRESIZEVEC (char *, argv, argv_size);
24098 }
24099
24100 argv[argc++] = savestring (arg_start, p - arg_start);
24101 }
24102
24103 p = consume_improper_spaces (p, body);
24104
24105 /* Consume the comma, if present. */
24106 if (*p == ',')
24107 {
24108 p++;
24109
24110 p = consume_improper_spaces (p, body);
24111 }
24112 }
24113
24114 if (*p == ')')
24115 {
24116 p++;
24117
24118 if (*p == ' ')
24119 /* Perfectly formed definition, no complaints. */
24120 macro_define_function (file, line, name,
24121 argc, (const char **) argv,
24122 p + 1);
24123 else if (*p == '\0')
24124 {
24125 /* Complain, but do define it. */
24126 dwarf2_macro_malformed_definition_complaint (body);
24127 macro_define_function (file, line, name,
24128 argc, (const char **) argv,
24129 p);
24130 }
24131 else
24132 /* Just complain. */
24133 dwarf2_macro_malformed_definition_complaint (body);
24134 }
24135 else
24136 /* Just complain. */
24137 dwarf2_macro_malformed_definition_complaint (body);
24138
24139 xfree (name);
24140 {
24141 int i;
24142
24143 for (i = 0; i < argc; i++)
24144 xfree (argv[i]);
24145 }
24146 xfree (argv);
24147 }
24148 else
24149 dwarf2_macro_malformed_definition_complaint (body);
24150 }
24151
24152 /* Skip some bytes from BYTES according to the form given in FORM.
24153 Returns the new pointer. */
24154
24155 static const gdb_byte *
24156 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24157 enum dwarf_form form,
24158 unsigned int offset_size,
24159 struct dwarf2_section_info *section)
24160 {
24161 unsigned int bytes_read;
24162
24163 switch (form)
24164 {
24165 case DW_FORM_data1:
24166 case DW_FORM_flag:
24167 ++bytes;
24168 break;
24169
24170 case DW_FORM_data2:
24171 bytes += 2;
24172 break;
24173
24174 case DW_FORM_data4:
24175 bytes += 4;
24176 break;
24177
24178 case DW_FORM_data8:
24179 bytes += 8;
24180 break;
24181
24182 case DW_FORM_data16:
24183 bytes += 16;
24184 break;
24185
24186 case DW_FORM_string:
24187 read_direct_string (abfd, bytes, &bytes_read);
24188 bytes += bytes_read;
24189 break;
24190
24191 case DW_FORM_sec_offset:
24192 case DW_FORM_strp:
24193 case DW_FORM_GNU_strp_alt:
24194 bytes += offset_size;
24195 break;
24196
24197 case DW_FORM_block:
24198 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24199 bytes += bytes_read;
24200 break;
24201
24202 case DW_FORM_block1:
24203 bytes += 1 + read_1_byte (abfd, bytes);
24204 break;
24205 case DW_FORM_block2:
24206 bytes += 2 + read_2_bytes (abfd, bytes);
24207 break;
24208 case DW_FORM_block4:
24209 bytes += 4 + read_4_bytes (abfd, bytes);
24210 break;
24211
24212 case DW_FORM_sdata:
24213 case DW_FORM_udata:
24214 case DW_FORM_GNU_addr_index:
24215 case DW_FORM_GNU_str_index:
24216 bytes = gdb_skip_leb128 (bytes, buffer_end);
24217 if (bytes == NULL)
24218 {
24219 dwarf2_section_buffer_overflow_complaint (section);
24220 return NULL;
24221 }
24222 break;
24223
24224 case DW_FORM_implicit_const:
24225 break;
24226
24227 default:
24228 {
24229 complaint (_("invalid form 0x%x in `%s'"),
24230 form, get_section_name (section));
24231 return NULL;
24232 }
24233 }
24234
24235 return bytes;
24236 }
24237
24238 /* A helper for dwarf_decode_macros that handles skipping an unknown
24239 opcode. Returns an updated pointer to the macro data buffer; or,
24240 on error, issues a complaint and returns NULL. */
24241
24242 static const gdb_byte *
24243 skip_unknown_opcode (unsigned int opcode,
24244 const gdb_byte **opcode_definitions,
24245 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24246 bfd *abfd,
24247 unsigned int offset_size,
24248 struct dwarf2_section_info *section)
24249 {
24250 unsigned int bytes_read, i;
24251 unsigned long arg;
24252 const gdb_byte *defn;
24253
24254 if (opcode_definitions[opcode] == NULL)
24255 {
24256 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24257 opcode);
24258 return NULL;
24259 }
24260
24261 defn = opcode_definitions[opcode];
24262 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24263 defn += bytes_read;
24264
24265 for (i = 0; i < arg; ++i)
24266 {
24267 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24268 (enum dwarf_form) defn[i], offset_size,
24269 section);
24270 if (mac_ptr == NULL)
24271 {
24272 /* skip_form_bytes already issued the complaint. */
24273 return NULL;
24274 }
24275 }
24276
24277 return mac_ptr;
24278 }
24279
24280 /* A helper function which parses the header of a macro section.
24281 If the macro section is the extended (for now called "GNU") type,
24282 then this updates *OFFSET_SIZE. Returns a pointer to just after
24283 the header, or issues a complaint and returns NULL on error. */
24284
24285 static const gdb_byte *
24286 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24287 bfd *abfd,
24288 const gdb_byte *mac_ptr,
24289 unsigned int *offset_size,
24290 int section_is_gnu)
24291 {
24292 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24293
24294 if (section_is_gnu)
24295 {
24296 unsigned int version, flags;
24297
24298 version = read_2_bytes (abfd, mac_ptr);
24299 if (version != 4 && version != 5)
24300 {
24301 complaint (_("unrecognized version `%d' in .debug_macro section"),
24302 version);
24303 return NULL;
24304 }
24305 mac_ptr += 2;
24306
24307 flags = read_1_byte (abfd, mac_ptr);
24308 ++mac_ptr;
24309 *offset_size = (flags & 1) ? 8 : 4;
24310
24311 if ((flags & 2) != 0)
24312 /* We don't need the line table offset. */
24313 mac_ptr += *offset_size;
24314
24315 /* Vendor opcode descriptions. */
24316 if ((flags & 4) != 0)
24317 {
24318 unsigned int i, count;
24319
24320 count = read_1_byte (abfd, mac_ptr);
24321 ++mac_ptr;
24322 for (i = 0; i < count; ++i)
24323 {
24324 unsigned int opcode, bytes_read;
24325 unsigned long arg;
24326
24327 opcode = read_1_byte (abfd, mac_ptr);
24328 ++mac_ptr;
24329 opcode_definitions[opcode] = mac_ptr;
24330 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24331 mac_ptr += bytes_read;
24332 mac_ptr += arg;
24333 }
24334 }
24335 }
24336
24337 return mac_ptr;
24338 }
24339
24340 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24341 including DW_MACRO_import. */
24342
24343 static void
24344 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24345 bfd *abfd,
24346 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24347 struct macro_source_file *current_file,
24348 struct line_header *lh,
24349 struct dwarf2_section_info *section,
24350 int section_is_gnu, int section_is_dwz,
24351 unsigned int offset_size,
24352 htab_t include_hash)
24353 {
24354 struct dwarf2_per_objfile *dwarf2_per_objfile
24355 = cu->per_cu->dwarf2_per_objfile;
24356 struct objfile *objfile = dwarf2_per_objfile->objfile;
24357 enum dwarf_macro_record_type macinfo_type;
24358 int at_commandline;
24359 const gdb_byte *opcode_definitions[256];
24360
24361 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24362 &offset_size, section_is_gnu);
24363 if (mac_ptr == NULL)
24364 {
24365 /* We already issued a complaint. */
24366 return;
24367 }
24368
24369 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24370 GDB is still reading the definitions from command line. First
24371 DW_MACINFO_start_file will need to be ignored as it was already executed
24372 to create CURRENT_FILE for the main source holding also the command line
24373 definitions. On first met DW_MACINFO_start_file this flag is reset to
24374 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24375
24376 at_commandline = 1;
24377
24378 do
24379 {
24380 /* Do we at least have room for a macinfo type byte? */
24381 if (mac_ptr >= mac_end)
24382 {
24383 dwarf2_section_buffer_overflow_complaint (section);
24384 break;
24385 }
24386
24387 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24388 mac_ptr++;
24389
24390 /* Note that we rely on the fact that the corresponding GNU and
24391 DWARF constants are the same. */
24392 DIAGNOSTIC_PUSH
24393 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24394 switch (macinfo_type)
24395 {
24396 /* A zero macinfo type indicates the end of the macro
24397 information. */
24398 case 0:
24399 break;
24400
24401 case DW_MACRO_define:
24402 case DW_MACRO_undef:
24403 case DW_MACRO_define_strp:
24404 case DW_MACRO_undef_strp:
24405 case DW_MACRO_define_sup:
24406 case DW_MACRO_undef_sup:
24407 {
24408 unsigned int bytes_read;
24409 int line;
24410 const char *body;
24411 int is_define;
24412
24413 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24414 mac_ptr += bytes_read;
24415
24416 if (macinfo_type == DW_MACRO_define
24417 || macinfo_type == DW_MACRO_undef)
24418 {
24419 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24420 mac_ptr += bytes_read;
24421 }
24422 else
24423 {
24424 LONGEST str_offset;
24425
24426 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24427 mac_ptr += offset_size;
24428
24429 if (macinfo_type == DW_MACRO_define_sup
24430 || macinfo_type == DW_MACRO_undef_sup
24431 || section_is_dwz)
24432 {
24433 struct dwz_file *dwz
24434 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24435
24436 body = read_indirect_string_from_dwz (objfile,
24437 dwz, str_offset);
24438 }
24439 else
24440 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24441 abfd, str_offset);
24442 }
24443
24444 is_define = (macinfo_type == DW_MACRO_define
24445 || macinfo_type == DW_MACRO_define_strp
24446 || macinfo_type == DW_MACRO_define_sup);
24447 if (! current_file)
24448 {
24449 /* DWARF violation as no main source is present. */
24450 complaint (_("debug info with no main source gives macro %s "
24451 "on line %d: %s"),
24452 is_define ? _("definition") : _("undefinition"),
24453 line, body);
24454 break;
24455 }
24456 if ((line == 0 && !at_commandline)
24457 || (line != 0 && at_commandline))
24458 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24459 at_commandline ? _("command-line") : _("in-file"),
24460 is_define ? _("definition") : _("undefinition"),
24461 line == 0 ? _("zero") : _("non-zero"), line, body);
24462
24463 if (is_define)
24464 parse_macro_definition (current_file, line, body);
24465 else
24466 {
24467 gdb_assert (macinfo_type == DW_MACRO_undef
24468 || macinfo_type == DW_MACRO_undef_strp
24469 || macinfo_type == DW_MACRO_undef_sup);
24470 macro_undef (current_file, line, body);
24471 }
24472 }
24473 break;
24474
24475 case DW_MACRO_start_file:
24476 {
24477 unsigned int bytes_read;
24478 int line, file;
24479
24480 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24481 mac_ptr += bytes_read;
24482 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24483 mac_ptr += bytes_read;
24484
24485 if ((line == 0 && !at_commandline)
24486 || (line != 0 && at_commandline))
24487 complaint (_("debug info gives source %d included "
24488 "from %s at %s line %d"),
24489 file, at_commandline ? _("command-line") : _("file"),
24490 line == 0 ? _("zero") : _("non-zero"), line);
24491
24492 if (at_commandline)
24493 {
24494 /* This DW_MACRO_start_file was executed in the
24495 pass one. */
24496 at_commandline = 0;
24497 }
24498 else
24499 current_file = macro_start_file (cu, file, line, current_file,
24500 lh);
24501 }
24502 break;
24503
24504 case DW_MACRO_end_file:
24505 if (! current_file)
24506 complaint (_("macro debug info has an unmatched "
24507 "`close_file' directive"));
24508 else
24509 {
24510 current_file = current_file->included_by;
24511 if (! current_file)
24512 {
24513 enum dwarf_macro_record_type next_type;
24514
24515 /* GCC circa March 2002 doesn't produce the zero
24516 type byte marking the end of the compilation
24517 unit. Complain if it's not there, but exit no
24518 matter what. */
24519
24520 /* Do we at least have room for a macinfo type byte? */
24521 if (mac_ptr >= mac_end)
24522 {
24523 dwarf2_section_buffer_overflow_complaint (section);
24524 return;
24525 }
24526
24527 /* We don't increment mac_ptr here, so this is just
24528 a look-ahead. */
24529 next_type
24530 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24531 mac_ptr);
24532 if (next_type != 0)
24533 complaint (_("no terminating 0-type entry for "
24534 "macros in `.debug_macinfo' section"));
24535
24536 return;
24537 }
24538 }
24539 break;
24540
24541 case DW_MACRO_import:
24542 case DW_MACRO_import_sup:
24543 {
24544 LONGEST offset;
24545 void **slot;
24546 bfd *include_bfd = abfd;
24547 struct dwarf2_section_info *include_section = section;
24548 const gdb_byte *include_mac_end = mac_end;
24549 int is_dwz = section_is_dwz;
24550 const gdb_byte *new_mac_ptr;
24551
24552 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24553 mac_ptr += offset_size;
24554
24555 if (macinfo_type == DW_MACRO_import_sup)
24556 {
24557 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24558
24559 dwarf2_read_section (objfile, &dwz->macro);
24560
24561 include_section = &dwz->macro;
24562 include_bfd = get_section_bfd_owner (include_section);
24563 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24564 is_dwz = 1;
24565 }
24566
24567 new_mac_ptr = include_section->buffer + offset;
24568 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24569
24570 if (*slot != NULL)
24571 {
24572 /* This has actually happened; see
24573 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24574 complaint (_("recursive DW_MACRO_import in "
24575 ".debug_macro section"));
24576 }
24577 else
24578 {
24579 *slot = (void *) new_mac_ptr;
24580
24581 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24582 include_mac_end, current_file, lh,
24583 section, section_is_gnu, is_dwz,
24584 offset_size, include_hash);
24585
24586 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24587 }
24588 }
24589 break;
24590
24591 case DW_MACINFO_vendor_ext:
24592 if (!section_is_gnu)
24593 {
24594 unsigned int bytes_read;
24595
24596 /* This reads the constant, but since we don't recognize
24597 any vendor extensions, we ignore it. */
24598 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24599 mac_ptr += bytes_read;
24600 read_direct_string (abfd, mac_ptr, &bytes_read);
24601 mac_ptr += bytes_read;
24602
24603 /* We don't recognize any vendor extensions. */
24604 break;
24605 }
24606 /* FALLTHROUGH */
24607
24608 default:
24609 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24610 mac_ptr, mac_end, abfd, offset_size,
24611 section);
24612 if (mac_ptr == NULL)
24613 return;
24614 break;
24615 }
24616 DIAGNOSTIC_POP
24617 } while (macinfo_type != 0);
24618 }
24619
24620 static void
24621 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24622 int section_is_gnu)
24623 {
24624 struct dwarf2_per_objfile *dwarf2_per_objfile
24625 = cu->per_cu->dwarf2_per_objfile;
24626 struct objfile *objfile = dwarf2_per_objfile->objfile;
24627 struct line_header *lh = cu->line_header;
24628 bfd *abfd;
24629 const gdb_byte *mac_ptr, *mac_end;
24630 struct macro_source_file *current_file = 0;
24631 enum dwarf_macro_record_type macinfo_type;
24632 unsigned int offset_size = cu->header.offset_size;
24633 const gdb_byte *opcode_definitions[256];
24634 void **slot;
24635 struct dwarf2_section_info *section;
24636 const char *section_name;
24637
24638 if (cu->dwo_unit != NULL)
24639 {
24640 if (section_is_gnu)
24641 {
24642 section = &cu->dwo_unit->dwo_file->sections.macro;
24643 section_name = ".debug_macro.dwo";
24644 }
24645 else
24646 {
24647 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24648 section_name = ".debug_macinfo.dwo";
24649 }
24650 }
24651 else
24652 {
24653 if (section_is_gnu)
24654 {
24655 section = &dwarf2_per_objfile->macro;
24656 section_name = ".debug_macro";
24657 }
24658 else
24659 {
24660 section = &dwarf2_per_objfile->macinfo;
24661 section_name = ".debug_macinfo";
24662 }
24663 }
24664
24665 dwarf2_read_section (objfile, section);
24666 if (section->buffer == NULL)
24667 {
24668 complaint (_("missing %s section"), section_name);
24669 return;
24670 }
24671 abfd = get_section_bfd_owner (section);
24672
24673 /* First pass: Find the name of the base filename.
24674 This filename is needed in order to process all macros whose definition
24675 (or undefinition) comes from the command line. These macros are defined
24676 before the first DW_MACINFO_start_file entry, and yet still need to be
24677 associated to the base file.
24678
24679 To determine the base file name, we scan the macro definitions until we
24680 reach the first DW_MACINFO_start_file entry. We then initialize
24681 CURRENT_FILE accordingly so that any macro definition found before the
24682 first DW_MACINFO_start_file can still be associated to the base file. */
24683
24684 mac_ptr = section->buffer + offset;
24685 mac_end = section->buffer + section->size;
24686
24687 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24688 &offset_size, section_is_gnu);
24689 if (mac_ptr == NULL)
24690 {
24691 /* We already issued a complaint. */
24692 return;
24693 }
24694
24695 do
24696 {
24697 /* Do we at least have room for a macinfo type byte? */
24698 if (mac_ptr >= mac_end)
24699 {
24700 /* Complaint is printed during the second pass as GDB will probably
24701 stop the first pass earlier upon finding
24702 DW_MACINFO_start_file. */
24703 break;
24704 }
24705
24706 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24707 mac_ptr++;
24708
24709 /* Note that we rely on the fact that the corresponding GNU and
24710 DWARF constants are the same. */
24711 DIAGNOSTIC_PUSH
24712 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24713 switch (macinfo_type)
24714 {
24715 /* A zero macinfo type indicates the end of the macro
24716 information. */
24717 case 0:
24718 break;
24719
24720 case DW_MACRO_define:
24721 case DW_MACRO_undef:
24722 /* Only skip the data by MAC_PTR. */
24723 {
24724 unsigned int bytes_read;
24725
24726 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24727 mac_ptr += bytes_read;
24728 read_direct_string (abfd, mac_ptr, &bytes_read);
24729 mac_ptr += bytes_read;
24730 }
24731 break;
24732
24733 case DW_MACRO_start_file:
24734 {
24735 unsigned int bytes_read;
24736 int line, file;
24737
24738 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24739 mac_ptr += bytes_read;
24740 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24741 mac_ptr += bytes_read;
24742
24743 current_file = macro_start_file (cu, file, line, current_file, lh);
24744 }
24745 break;
24746
24747 case DW_MACRO_end_file:
24748 /* No data to skip by MAC_PTR. */
24749 break;
24750
24751 case DW_MACRO_define_strp:
24752 case DW_MACRO_undef_strp:
24753 case DW_MACRO_define_sup:
24754 case DW_MACRO_undef_sup:
24755 {
24756 unsigned int bytes_read;
24757
24758 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24759 mac_ptr += bytes_read;
24760 mac_ptr += offset_size;
24761 }
24762 break;
24763
24764 case DW_MACRO_import:
24765 case DW_MACRO_import_sup:
24766 /* Note that, according to the spec, a transparent include
24767 chain cannot call DW_MACRO_start_file. So, we can just
24768 skip this opcode. */
24769 mac_ptr += offset_size;
24770 break;
24771
24772 case DW_MACINFO_vendor_ext:
24773 /* Only skip the data by MAC_PTR. */
24774 if (!section_is_gnu)
24775 {
24776 unsigned int bytes_read;
24777
24778 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24779 mac_ptr += bytes_read;
24780 read_direct_string (abfd, mac_ptr, &bytes_read);
24781 mac_ptr += bytes_read;
24782 }
24783 /* FALLTHROUGH */
24784
24785 default:
24786 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24787 mac_ptr, mac_end, abfd, offset_size,
24788 section);
24789 if (mac_ptr == NULL)
24790 return;
24791 break;
24792 }
24793 DIAGNOSTIC_POP
24794 } while (macinfo_type != 0 && current_file == NULL);
24795
24796 /* Second pass: Process all entries.
24797
24798 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24799 command-line macro definitions/undefinitions. This flag is unset when we
24800 reach the first DW_MACINFO_start_file entry. */
24801
24802 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24803 htab_eq_pointer,
24804 NULL, xcalloc, xfree));
24805 mac_ptr = section->buffer + offset;
24806 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24807 *slot = (void *) mac_ptr;
24808 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24809 current_file, lh, section,
24810 section_is_gnu, 0, offset_size,
24811 include_hash.get ());
24812 }
24813
24814 /* Check if the attribute's form is a DW_FORM_block*
24815 if so return true else false. */
24816
24817 static int
24818 attr_form_is_block (const struct attribute *attr)
24819 {
24820 return (attr == NULL ? 0 :
24821 attr->form == DW_FORM_block1
24822 || attr->form == DW_FORM_block2
24823 || attr->form == DW_FORM_block4
24824 || attr->form == DW_FORM_block
24825 || attr->form == DW_FORM_exprloc);
24826 }
24827
24828 /* Return non-zero if ATTR's value is a section offset --- classes
24829 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24830 You may use DW_UNSND (attr) to retrieve such offsets.
24831
24832 Section 7.5.4, "Attribute Encodings", explains that no attribute
24833 may have a value that belongs to more than one of these classes; it
24834 would be ambiguous if we did, because we use the same forms for all
24835 of them. */
24836
24837 static int
24838 attr_form_is_section_offset (const struct attribute *attr)
24839 {
24840 return (attr->form == DW_FORM_data4
24841 || attr->form == DW_FORM_data8
24842 || attr->form == DW_FORM_sec_offset);
24843 }
24844
24845 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24846 zero otherwise. When this function returns true, you can apply
24847 dwarf2_get_attr_constant_value to it.
24848
24849 However, note that for some attributes you must check
24850 attr_form_is_section_offset before using this test. DW_FORM_data4
24851 and DW_FORM_data8 are members of both the constant class, and of
24852 the classes that contain offsets into other debug sections
24853 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24854 that, if an attribute's can be either a constant or one of the
24855 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24856 taken as section offsets, not constants.
24857
24858 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24859 cannot handle that. */
24860
24861 static int
24862 attr_form_is_constant (const struct attribute *attr)
24863 {
24864 switch (attr->form)
24865 {
24866 case DW_FORM_sdata:
24867 case DW_FORM_udata:
24868 case DW_FORM_data1:
24869 case DW_FORM_data2:
24870 case DW_FORM_data4:
24871 case DW_FORM_data8:
24872 case DW_FORM_implicit_const:
24873 return 1;
24874 default:
24875 return 0;
24876 }
24877 }
24878
24879
24880 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24881 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24882
24883 static int
24884 attr_form_is_ref (const struct attribute *attr)
24885 {
24886 switch (attr->form)
24887 {
24888 case DW_FORM_ref_addr:
24889 case DW_FORM_ref1:
24890 case DW_FORM_ref2:
24891 case DW_FORM_ref4:
24892 case DW_FORM_ref8:
24893 case DW_FORM_ref_udata:
24894 case DW_FORM_GNU_ref_alt:
24895 return 1;
24896 default:
24897 return 0;
24898 }
24899 }
24900
24901 /* Return the .debug_loc section to use for CU.
24902 For DWO files use .debug_loc.dwo. */
24903
24904 static struct dwarf2_section_info *
24905 cu_debug_loc_section (struct dwarf2_cu *cu)
24906 {
24907 struct dwarf2_per_objfile *dwarf2_per_objfile
24908 = cu->per_cu->dwarf2_per_objfile;
24909
24910 if (cu->dwo_unit)
24911 {
24912 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24913
24914 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24915 }
24916 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24917 : &dwarf2_per_objfile->loc);
24918 }
24919
24920 /* A helper function that fills in a dwarf2_loclist_baton. */
24921
24922 static void
24923 fill_in_loclist_baton (struct dwarf2_cu *cu,
24924 struct dwarf2_loclist_baton *baton,
24925 const struct attribute *attr)
24926 {
24927 struct dwarf2_per_objfile *dwarf2_per_objfile
24928 = cu->per_cu->dwarf2_per_objfile;
24929 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24930
24931 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24932
24933 baton->per_cu = cu->per_cu;
24934 gdb_assert (baton->per_cu);
24935 /* We don't know how long the location list is, but make sure we
24936 don't run off the edge of the section. */
24937 baton->size = section->size - DW_UNSND (attr);
24938 baton->data = section->buffer + DW_UNSND (attr);
24939 baton->base_address = cu->base_address;
24940 baton->from_dwo = cu->dwo_unit != NULL;
24941 }
24942
24943 static void
24944 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24945 struct dwarf2_cu *cu, int is_block)
24946 {
24947 struct dwarf2_per_objfile *dwarf2_per_objfile
24948 = cu->per_cu->dwarf2_per_objfile;
24949 struct objfile *objfile = dwarf2_per_objfile->objfile;
24950 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24951
24952 if (attr_form_is_section_offset (attr)
24953 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24954 the section. If so, fall through to the complaint in the
24955 other branch. */
24956 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24957 {
24958 struct dwarf2_loclist_baton *baton;
24959
24960 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24961
24962 fill_in_loclist_baton (cu, baton, attr);
24963
24964 if (cu->base_known == 0)
24965 complaint (_("Location list used without "
24966 "specifying the CU base address."));
24967
24968 SYMBOL_ACLASS_INDEX (sym) = (is_block
24969 ? dwarf2_loclist_block_index
24970 : dwarf2_loclist_index);
24971 SYMBOL_LOCATION_BATON (sym) = baton;
24972 }
24973 else
24974 {
24975 struct dwarf2_locexpr_baton *baton;
24976
24977 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24978 baton->per_cu = cu->per_cu;
24979 gdb_assert (baton->per_cu);
24980
24981 if (attr_form_is_block (attr))
24982 {
24983 /* Note that we're just copying the block's data pointer
24984 here, not the actual data. We're still pointing into the
24985 info_buffer for SYM's objfile; right now we never release
24986 that buffer, but when we do clean up properly this may
24987 need to change. */
24988 baton->size = DW_BLOCK (attr)->size;
24989 baton->data = DW_BLOCK (attr)->data;
24990 }
24991 else
24992 {
24993 dwarf2_invalid_attrib_class_complaint ("location description",
24994 SYMBOL_NATURAL_NAME (sym));
24995 baton->size = 0;
24996 }
24997
24998 SYMBOL_ACLASS_INDEX (sym) = (is_block
24999 ? dwarf2_locexpr_block_index
25000 : dwarf2_locexpr_index);
25001 SYMBOL_LOCATION_BATON (sym) = baton;
25002 }
25003 }
25004
25005 /* Return the OBJFILE associated with the compilation unit CU. If CU
25006 came from a separate debuginfo file, then the master objfile is
25007 returned. */
25008
25009 struct objfile *
25010 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25011 {
25012 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25013
25014 /* Return the master objfile, so that we can report and look up the
25015 correct file containing this variable. */
25016 if (objfile->separate_debug_objfile_backlink)
25017 objfile = objfile->separate_debug_objfile_backlink;
25018
25019 return objfile;
25020 }
25021
25022 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25023 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25024 CU_HEADERP first. */
25025
25026 static const struct comp_unit_head *
25027 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25028 struct dwarf2_per_cu_data *per_cu)
25029 {
25030 const gdb_byte *info_ptr;
25031
25032 if (per_cu->cu)
25033 return &per_cu->cu->header;
25034
25035 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25036
25037 memset (cu_headerp, 0, sizeof (*cu_headerp));
25038 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25039 rcuh_kind::COMPILE);
25040
25041 return cu_headerp;
25042 }
25043
25044 /* Return the address size given in the compilation unit header for CU. */
25045
25046 int
25047 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25048 {
25049 struct comp_unit_head cu_header_local;
25050 const struct comp_unit_head *cu_headerp;
25051
25052 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25053
25054 return cu_headerp->addr_size;
25055 }
25056
25057 /* Return the offset size given in the compilation unit header for CU. */
25058
25059 int
25060 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25061 {
25062 struct comp_unit_head cu_header_local;
25063 const struct comp_unit_head *cu_headerp;
25064
25065 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25066
25067 return cu_headerp->offset_size;
25068 }
25069
25070 /* See its dwarf2loc.h declaration. */
25071
25072 int
25073 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25074 {
25075 struct comp_unit_head cu_header_local;
25076 const struct comp_unit_head *cu_headerp;
25077
25078 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25079
25080 if (cu_headerp->version == 2)
25081 return cu_headerp->addr_size;
25082 else
25083 return cu_headerp->offset_size;
25084 }
25085
25086 /* Return the text offset of the CU. The returned offset comes from
25087 this CU's objfile. If this objfile came from a separate debuginfo
25088 file, then the offset may be different from the corresponding
25089 offset in the parent objfile. */
25090
25091 CORE_ADDR
25092 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25093 {
25094 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25095
25096 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25097 }
25098
25099 /* Return DWARF version number of PER_CU. */
25100
25101 short
25102 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25103 {
25104 return per_cu->dwarf_version;
25105 }
25106
25107 /* Locate the .debug_info compilation unit from CU's objfile which contains
25108 the DIE at OFFSET. Raises an error on failure. */
25109
25110 static struct dwarf2_per_cu_data *
25111 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25112 unsigned int offset_in_dwz,
25113 struct dwarf2_per_objfile *dwarf2_per_objfile)
25114 {
25115 struct dwarf2_per_cu_data *this_cu;
25116 int low, high;
25117
25118 low = 0;
25119 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25120 while (high > low)
25121 {
25122 struct dwarf2_per_cu_data *mid_cu;
25123 int mid = low + (high - low) / 2;
25124
25125 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25126 if (mid_cu->is_dwz > offset_in_dwz
25127 || (mid_cu->is_dwz == offset_in_dwz
25128 && mid_cu->sect_off + mid_cu->length >= sect_off))
25129 high = mid;
25130 else
25131 low = mid + 1;
25132 }
25133 gdb_assert (low == high);
25134 this_cu = dwarf2_per_objfile->all_comp_units[low];
25135 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25136 {
25137 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25138 error (_("Dwarf Error: could not find partial DIE containing "
25139 "offset %s [in module %s]"),
25140 sect_offset_str (sect_off),
25141 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25142
25143 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25144 <= sect_off);
25145 return dwarf2_per_objfile->all_comp_units[low-1];
25146 }
25147 else
25148 {
25149 this_cu = dwarf2_per_objfile->all_comp_units[low];
25150 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25151 && sect_off >= this_cu->sect_off + this_cu->length)
25152 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25153 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25154 return this_cu;
25155 }
25156 }
25157
25158 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25159
25160 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25161 : per_cu (per_cu_),
25162 mark (false),
25163 has_loclist (false),
25164 checked_producer (false),
25165 producer_is_gxx_lt_4_6 (false),
25166 producer_is_gcc_lt_4_3 (false),
25167 producer_is_icc (false),
25168 producer_is_icc_lt_14 (false),
25169 producer_is_codewarrior (false),
25170 processing_has_namespace_info (false)
25171 {
25172 per_cu->cu = this;
25173 }
25174
25175 /* Destroy a dwarf2_cu. */
25176
25177 dwarf2_cu::~dwarf2_cu ()
25178 {
25179 per_cu->cu = NULL;
25180 }
25181
25182 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25183
25184 static void
25185 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25186 enum language pretend_language)
25187 {
25188 struct attribute *attr;
25189
25190 /* Set the language we're debugging. */
25191 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25192 if (attr)
25193 set_cu_language (DW_UNSND (attr), cu);
25194 else
25195 {
25196 cu->language = pretend_language;
25197 cu->language_defn = language_def (cu->language);
25198 }
25199
25200 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25201 }
25202
25203 /* Increase the age counter on each cached compilation unit, and free
25204 any that are too old. */
25205
25206 static void
25207 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25208 {
25209 struct dwarf2_per_cu_data *per_cu, **last_chain;
25210
25211 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25212 per_cu = dwarf2_per_objfile->read_in_chain;
25213 while (per_cu != NULL)
25214 {
25215 per_cu->cu->last_used ++;
25216 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25217 dwarf2_mark (per_cu->cu);
25218 per_cu = per_cu->cu->read_in_chain;
25219 }
25220
25221 per_cu = dwarf2_per_objfile->read_in_chain;
25222 last_chain = &dwarf2_per_objfile->read_in_chain;
25223 while (per_cu != NULL)
25224 {
25225 struct dwarf2_per_cu_data *next_cu;
25226
25227 next_cu = per_cu->cu->read_in_chain;
25228
25229 if (!per_cu->cu->mark)
25230 {
25231 delete per_cu->cu;
25232 *last_chain = next_cu;
25233 }
25234 else
25235 last_chain = &per_cu->cu->read_in_chain;
25236
25237 per_cu = next_cu;
25238 }
25239 }
25240
25241 /* Remove a single compilation unit from the cache. */
25242
25243 static void
25244 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25245 {
25246 struct dwarf2_per_cu_data *per_cu, **last_chain;
25247 struct dwarf2_per_objfile *dwarf2_per_objfile
25248 = target_per_cu->dwarf2_per_objfile;
25249
25250 per_cu = dwarf2_per_objfile->read_in_chain;
25251 last_chain = &dwarf2_per_objfile->read_in_chain;
25252 while (per_cu != NULL)
25253 {
25254 struct dwarf2_per_cu_data *next_cu;
25255
25256 next_cu = per_cu->cu->read_in_chain;
25257
25258 if (per_cu == target_per_cu)
25259 {
25260 delete per_cu->cu;
25261 per_cu->cu = NULL;
25262 *last_chain = next_cu;
25263 break;
25264 }
25265 else
25266 last_chain = &per_cu->cu->read_in_chain;
25267
25268 per_cu = next_cu;
25269 }
25270 }
25271
25272 /* Cleanup function for the dwarf2_per_objfile data. */
25273
25274 static void
25275 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25276 {
25277 struct dwarf2_per_objfile *dwarf2_per_objfile
25278 = static_cast<struct dwarf2_per_objfile *> (datum);
25279
25280 delete dwarf2_per_objfile;
25281 }
25282
25283 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25284 We store these in a hash table separate from the DIEs, and preserve them
25285 when the DIEs are flushed out of cache.
25286
25287 The CU "per_cu" pointer is needed because offset alone is not enough to
25288 uniquely identify the type. A file may have multiple .debug_types sections,
25289 or the type may come from a DWO file. Furthermore, while it's more logical
25290 to use per_cu->section+offset, with Fission the section with the data is in
25291 the DWO file but we don't know that section at the point we need it.
25292 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25293 because we can enter the lookup routine, get_die_type_at_offset, from
25294 outside this file, and thus won't necessarily have PER_CU->cu.
25295 Fortunately, PER_CU is stable for the life of the objfile. */
25296
25297 struct dwarf2_per_cu_offset_and_type
25298 {
25299 const struct dwarf2_per_cu_data *per_cu;
25300 sect_offset sect_off;
25301 struct type *type;
25302 };
25303
25304 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25305
25306 static hashval_t
25307 per_cu_offset_and_type_hash (const void *item)
25308 {
25309 const struct dwarf2_per_cu_offset_and_type *ofs
25310 = (const struct dwarf2_per_cu_offset_and_type *) item;
25311
25312 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25313 }
25314
25315 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25316
25317 static int
25318 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25319 {
25320 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25321 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25322 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25323 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25324
25325 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25326 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25327 }
25328
25329 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25330 table if necessary. For convenience, return TYPE.
25331
25332 The DIEs reading must have careful ordering to:
25333 * Not cause infite loops trying to read in DIEs as a prerequisite for
25334 reading current DIE.
25335 * Not trying to dereference contents of still incompletely read in types
25336 while reading in other DIEs.
25337 * Enable referencing still incompletely read in types just by a pointer to
25338 the type without accessing its fields.
25339
25340 Therefore caller should follow these rules:
25341 * Try to fetch any prerequisite types we may need to build this DIE type
25342 before building the type and calling set_die_type.
25343 * After building type call set_die_type for current DIE as soon as
25344 possible before fetching more types to complete the current type.
25345 * Make the type as complete as possible before fetching more types. */
25346
25347 static struct type *
25348 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25349 {
25350 struct dwarf2_per_objfile *dwarf2_per_objfile
25351 = cu->per_cu->dwarf2_per_objfile;
25352 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25353 struct objfile *objfile = dwarf2_per_objfile->objfile;
25354 struct attribute *attr;
25355 struct dynamic_prop prop;
25356
25357 /* For Ada types, make sure that the gnat-specific data is always
25358 initialized (if not already set). There are a few types where
25359 we should not be doing so, because the type-specific area is
25360 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25361 where the type-specific area is used to store the floatformat).
25362 But this is not a problem, because the gnat-specific information
25363 is actually not needed for these types. */
25364 if (need_gnat_info (cu)
25365 && TYPE_CODE (type) != TYPE_CODE_FUNC
25366 && TYPE_CODE (type) != TYPE_CODE_FLT
25367 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25368 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25369 && TYPE_CODE (type) != TYPE_CODE_METHOD
25370 && !HAVE_GNAT_AUX_INFO (type))
25371 INIT_GNAT_SPECIFIC (type);
25372
25373 /* Read DW_AT_allocated and set in type. */
25374 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25375 if (attr_form_is_block (attr))
25376 {
25377 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25378 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25379 }
25380 else if (attr != NULL)
25381 {
25382 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25383 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25384 sect_offset_str (die->sect_off));
25385 }
25386
25387 /* Read DW_AT_associated and set in type. */
25388 attr = dwarf2_attr (die, DW_AT_associated, cu);
25389 if (attr_form_is_block (attr))
25390 {
25391 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25392 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25393 }
25394 else if (attr != NULL)
25395 {
25396 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25397 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25398 sect_offset_str (die->sect_off));
25399 }
25400
25401 /* Read DW_AT_data_location and set in type. */
25402 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25403 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25404 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25405
25406 if (dwarf2_per_objfile->die_type_hash == NULL)
25407 {
25408 dwarf2_per_objfile->die_type_hash =
25409 htab_create_alloc_ex (127,
25410 per_cu_offset_and_type_hash,
25411 per_cu_offset_and_type_eq,
25412 NULL,
25413 &objfile->objfile_obstack,
25414 hashtab_obstack_allocate,
25415 dummy_obstack_deallocate);
25416 }
25417
25418 ofs.per_cu = cu->per_cu;
25419 ofs.sect_off = die->sect_off;
25420 ofs.type = type;
25421 slot = (struct dwarf2_per_cu_offset_and_type **)
25422 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25423 if (*slot)
25424 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25425 sect_offset_str (die->sect_off));
25426 *slot = XOBNEW (&objfile->objfile_obstack,
25427 struct dwarf2_per_cu_offset_and_type);
25428 **slot = ofs;
25429 return type;
25430 }
25431
25432 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25433 or return NULL if the die does not have a saved type. */
25434
25435 static struct type *
25436 get_die_type_at_offset (sect_offset sect_off,
25437 struct dwarf2_per_cu_data *per_cu)
25438 {
25439 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25440 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25441
25442 if (dwarf2_per_objfile->die_type_hash == NULL)
25443 return NULL;
25444
25445 ofs.per_cu = per_cu;
25446 ofs.sect_off = sect_off;
25447 slot = ((struct dwarf2_per_cu_offset_and_type *)
25448 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25449 if (slot)
25450 return slot->type;
25451 else
25452 return NULL;
25453 }
25454
25455 /* Look up the type for DIE in CU in die_type_hash,
25456 or return NULL if DIE does not have a saved type. */
25457
25458 static struct type *
25459 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25460 {
25461 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25462 }
25463
25464 /* Add a dependence relationship from CU to REF_PER_CU. */
25465
25466 static void
25467 dwarf2_add_dependence (struct dwarf2_cu *cu,
25468 struct dwarf2_per_cu_data *ref_per_cu)
25469 {
25470 void **slot;
25471
25472 if (cu->dependencies == NULL)
25473 cu->dependencies
25474 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25475 NULL, &cu->comp_unit_obstack,
25476 hashtab_obstack_allocate,
25477 dummy_obstack_deallocate);
25478
25479 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25480 if (*slot == NULL)
25481 *slot = ref_per_cu;
25482 }
25483
25484 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25485 Set the mark field in every compilation unit in the
25486 cache that we must keep because we are keeping CU. */
25487
25488 static int
25489 dwarf2_mark_helper (void **slot, void *data)
25490 {
25491 struct dwarf2_per_cu_data *per_cu;
25492
25493 per_cu = (struct dwarf2_per_cu_data *) *slot;
25494
25495 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25496 reading of the chain. As such dependencies remain valid it is not much
25497 useful to track and undo them during QUIT cleanups. */
25498 if (per_cu->cu == NULL)
25499 return 1;
25500
25501 if (per_cu->cu->mark)
25502 return 1;
25503 per_cu->cu->mark = true;
25504
25505 if (per_cu->cu->dependencies != NULL)
25506 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25507
25508 return 1;
25509 }
25510
25511 /* Set the mark field in CU and in every other compilation unit in the
25512 cache that we must keep because we are keeping CU. */
25513
25514 static void
25515 dwarf2_mark (struct dwarf2_cu *cu)
25516 {
25517 if (cu->mark)
25518 return;
25519 cu->mark = true;
25520 if (cu->dependencies != NULL)
25521 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25522 }
25523
25524 static void
25525 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25526 {
25527 while (per_cu)
25528 {
25529 per_cu->cu->mark = false;
25530 per_cu = per_cu->cu->read_in_chain;
25531 }
25532 }
25533
25534 /* Trivial hash function for partial_die_info: the hash value of a DIE
25535 is its offset in .debug_info for this objfile. */
25536
25537 static hashval_t
25538 partial_die_hash (const void *item)
25539 {
25540 const struct partial_die_info *part_die
25541 = (const struct partial_die_info *) item;
25542
25543 return to_underlying (part_die->sect_off);
25544 }
25545
25546 /* Trivial comparison function for partial_die_info structures: two DIEs
25547 are equal if they have the same offset. */
25548
25549 static int
25550 partial_die_eq (const void *item_lhs, const void *item_rhs)
25551 {
25552 const struct partial_die_info *part_die_lhs
25553 = (const struct partial_die_info *) item_lhs;
25554 const struct partial_die_info *part_die_rhs
25555 = (const struct partial_die_info *) item_rhs;
25556
25557 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25558 }
25559
25560 struct cmd_list_element *set_dwarf_cmdlist;
25561 struct cmd_list_element *show_dwarf_cmdlist;
25562
25563 static void
25564 set_dwarf_cmd (const char *args, int from_tty)
25565 {
25566 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25567 gdb_stdout);
25568 }
25569
25570 static void
25571 show_dwarf_cmd (const char *args, int from_tty)
25572 {
25573 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25574 }
25575
25576 int dwarf_always_disassemble;
25577
25578 static void
25579 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25580 struct cmd_list_element *c, const char *value)
25581 {
25582 fprintf_filtered (file,
25583 _("Whether to always disassemble "
25584 "DWARF expressions is %s.\n"),
25585 value);
25586 }
25587
25588 static void
25589 show_check_physname (struct ui_file *file, int from_tty,
25590 struct cmd_list_element *c, const char *value)
25591 {
25592 fprintf_filtered (file,
25593 _("Whether to check \"physname\" is %s.\n"),
25594 value);
25595 }
25596
25597 void
25598 _initialize_dwarf2_read (void)
25599 {
25600 dwarf2_objfile_data_key
25601 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25602
25603 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25604 Set DWARF specific variables.\n\
25605 Configure DWARF variables such as the cache size"),
25606 &set_dwarf_cmdlist, "maintenance set dwarf ",
25607 0/*allow-unknown*/, &maintenance_set_cmdlist);
25608
25609 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25610 Show DWARF specific variables\n\
25611 Show DWARF variables such as the cache size"),
25612 &show_dwarf_cmdlist, "maintenance show dwarf ",
25613 0/*allow-unknown*/, &maintenance_show_cmdlist);
25614
25615 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25616 &dwarf_max_cache_age, _("\
25617 Set the upper bound on the age of cached DWARF compilation units."), _("\
25618 Show the upper bound on the age of cached DWARF compilation units."), _("\
25619 A higher limit means that cached compilation units will be stored\n\
25620 in memory longer, and more total memory will be used. Zero disables\n\
25621 caching, which can slow down startup."),
25622 NULL,
25623 show_dwarf_max_cache_age,
25624 &set_dwarf_cmdlist,
25625 &show_dwarf_cmdlist);
25626
25627 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25628 &dwarf_always_disassemble, _("\
25629 Set whether `info address' always disassembles DWARF expressions."), _("\
25630 Show whether `info address' always disassembles DWARF expressions."), _("\
25631 When enabled, DWARF expressions are always printed in an assembly-like\n\
25632 syntax. When disabled, expressions will be printed in a more\n\
25633 conversational style, when possible."),
25634 NULL,
25635 show_dwarf_always_disassemble,
25636 &set_dwarf_cmdlist,
25637 &show_dwarf_cmdlist);
25638
25639 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25640 Set debugging of the DWARF reader."), _("\
25641 Show debugging of the DWARF reader."), _("\
25642 When enabled (non-zero), debugging messages are printed during DWARF\n\
25643 reading and symtab expansion. A value of 1 (one) provides basic\n\
25644 information. A value greater than 1 provides more verbose information."),
25645 NULL,
25646 NULL,
25647 &setdebuglist, &showdebuglist);
25648
25649 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25650 Set debugging of the DWARF DIE reader."), _("\
25651 Show debugging of the DWARF DIE reader."), _("\
25652 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25653 The value is the maximum depth to print."),
25654 NULL,
25655 NULL,
25656 &setdebuglist, &showdebuglist);
25657
25658 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25659 Set debugging of the dwarf line reader."), _("\
25660 Show debugging of the dwarf line reader."), _("\
25661 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25662 A value of 1 (one) provides basic information.\n\
25663 A value greater than 1 provides more verbose information."),
25664 NULL,
25665 NULL,
25666 &setdebuglist, &showdebuglist);
25667
25668 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25669 Set cross-checking of \"physname\" code against demangler."), _("\
25670 Show cross-checking of \"physname\" code against demangler."), _("\
25671 When enabled, GDB's internal \"physname\" code is checked against\n\
25672 the demangler."),
25673 NULL, show_check_physname,
25674 &setdebuglist, &showdebuglist);
25675
25676 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25677 no_class, &use_deprecated_index_sections, _("\
25678 Set whether to use deprecated gdb_index sections."), _("\
25679 Show whether to use deprecated gdb_index sections."), _("\
25680 When enabled, deprecated .gdb_index sections are used anyway.\n\
25681 Normally they are ignored either because of a missing feature or\n\
25682 performance issue.\n\
25683 Warning: This option must be enabled before gdb reads the file."),
25684 NULL,
25685 NULL,
25686 &setlist, &showlist);
25687
25688 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25689 &dwarf2_locexpr_funcs);
25690 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25691 &dwarf2_loclist_funcs);
25692
25693 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25694 &dwarf2_block_frame_base_locexpr_funcs);
25695 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25696 &dwarf2_block_frame_base_loclist_funcs);
25697
25698 #if GDB_SELF_TEST
25699 selftests::register_test ("dw2_expand_symtabs_matching",
25700 selftests::dw2_expand_symtabs_matching::run_test);
25701 #endif
25702 }
This page took 0.931465 seconds and 5 git commands to generate.