Remove "struct" from foreach statements
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_data *dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return ((struct dwarf2_per_objfile *)
285 objfile_data (objfile, dwarf2_objfile_data_key));
286 }
287
288 /* Set the dwarf2_per_objfile associated to OBJFILE. */
289
290 void
291 set_dwarf2_per_objfile (struct objfile *objfile,
292 struct dwarf2_per_objfile *dwarf2_per_objfile)
293 {
294 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
295 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
296 }
297
298 /* Default names of the debugging sections. */
299
300 /* Note that if the debugging section has been compressed, it might
301 have a name like .zdebug_info. */
302
303 static const struct dwarf2_debug_sections dwarf2_elf_names =
304 {
305 { ".debug_info", ".zdebug_info" },
306 { ".debug_abbrev", ".zdebug_abbrev" },
307 { ".debug_line", ".zdebug_line" },
308 { ".debug_loc", ".zdebug_loc" },
309 { ".debug_loclists", ".zdebug_loclists" },
310 { ".debug_macinfo", ".zdebug_macinfo" },
311 { ".debug_macro", ".zdebug_macro" },
312 { ".debug_str", ".zdebug_str" },
313 { ".debug_line_str", ".zdebug_line_str" },
314 { ".debug_ranges", ".zdebug_ranges" },
315 { ".debug_rnglists", ".zdebug_rnglists" },
316 { ".debug_types", ".zdebug_types" },
317 { ".debug_addr", ".zdebug_addr" },
318 { ".debug_frame", ".zdebug_frame" },
319 { ".eh_frame", NULL },
320 { ".gdb_index", ".zgdb_index" },
321 { ".debug_names", ".zdebug_names" },
322 { ".debug_aranges", ".zdebug_aranges" },
323 23
324 };
325
326 /* List of DWO/DWP sections. */
327
328 static const struct dwop_section_names
329 {
330 struct dwarf2_section_names abbrev_dwo;
331 struct dwarf2_section_names info_dwo;
332 struct dwarf2_section_names line_dwo;
333 struct dwarf2_section_names loc_dwo;
334 struct dwarf2_section_names loclists_dwo;
335 struct dwarf2_section_names macinfo_dwo;
336 struct dwarf2_section_names macro_dwo;
337 struct dwarf2_section_names str_dwo;
338 struct dwarf2_section_names str_offsets_dwo;
339 struct dwarf2_section_names types_dwo;
340 struct dwarf2_section_names cu_index;
341 struct dwarf2_section_names tu_index;
342 }
343 dwop_section_names =
344 {
345 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
346 { ".debug_info.dwo", ".zdebug_info.dwo" },
347 { ".debug_line.dwo", ".zdebug_line.dwo" },
348 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
349 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
350 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
351 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
352 { ".debug_str.dwo", ".zdebug_str.dwo" },
353 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
354 { ".debug_types.dwo", ".zdebug_types.dwo" },
355 { ".debug_cu_index", ".zdebug_cu_index" },
356 { ".debug_tu_index", ".zdebug_tu_index" },
357 };
358
359 /* local data types */
360
361 /* The data in a compilation unit header, after target2host
362 translation, looks like this. */
363 struct comp_unit_head
364 {
365 unsigned int length;
366 short version;
367 unsigned char addr_size;
368 unsigned char signed_addr_p;
369 sect_offset abbrev_sect_off;
370
371 /* Size of file offsets; either 4 or 8. */
372 unsigned int offset_size;
373
374 /* Size of the length field; either 4 or 12. */
375 unsigned int initial_length_size;
376
377 enum dwarf_unit_type unit_type;
378
379 /* Offset to the first byte of this compilation unit header in the
380 .debug_info section, for resolving relative reference dies. */
381 sect_offset sect_off;
382
383 /* Offset to first die in this cu from the start of the cu.
384 This will be the first byte following the compilation unit header. */
385 cu_offset first_die_cu_offset;
386
387 /* 64-bit signature of this type unit - it is valid only for
388 UNIT_TYPE DW_UT_type. */
389 ULONGEST signature;
390
391 /* For types, offset in the type's DIE of the type defined by this TU. */
392 cu_offset type_cu_offset_in_tu;
393 };
394
395 /* Type used for delaying computation of method physnames.
396 See comments for compute_delayed_physnames. */
397 struct delayed_method_info
398 {
399 /* The type to which the method is attached, i.e., its parent class. */
400 struct type *type;
401
402 /* The index of the method in the type's function fieldlists. */
403 int fnfield_index;
404
405 /* The index of the method in the fieldlist. */
406 int index;
407
408 /* The name of the DIE. */
409 const char *name;
410
411 /* The DIE associated with this method. */
412 struct die_info *die;
413 };
414
415 /* Internal state when decoding a particular compilation unit. */
416 struct dwarf2_cu
417 {
418 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
419 ~dwarf2_cu ();
420
421 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
422
423 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
424 Create the set of symtabs used by this TU, or if this TU is sharing
425 symtabs with another TU and the symtabs have already been created
426 then restore those symtabs in the line header.
427 We don't need the pc/line-number mapping for type units. */
428 void setup_type_unit_groups (struct die_info *die);
429
430 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
431 buildsym_compunit constructor. */
432 struct compunit_symtab *start_symtab (const char *name,
433 const char *comp_dir,
434 CORE_ADDR low_pc);
435
436 /* Reset the builder. */
437 void reset_builder () { m_builder.reset (); }
438
439 /* The header of the compilation unit. */
440 struct comp_unit_head header {};
441
442 /* Base address of this compilation unit. */
443 CORE_ADDR base_address = 0;
444
445 /* Non-zero if base_address has been set. */
446 int base_known = 0;
447
448 /* The language we are debugging. */
449 enum language language = language_unknown;
450 const struct language_defn *language_defn = nullptr;
451
452 const char *producer = nullptr;
453
454 private:
455 /* The symtab builder for this CU. This is only non-NULL when full
456 symbols are being read. */
457 std::unique_ptr<buildsym_compunit> m_builder;
458
459 public:
460 /* The generic symbol table building routines have separate lists for
461 file scope symbols and all all other scopes (local scopes). So
462 we need to select the right one to pass to add_symbol_to_list().
463 We do it by keeping a pointer to the correct list in list_in_scope.
464
465 FIXME: The original dwarf code just treated the file scope as the
466 first local scope, and all other local scopes as nested local
467 scopes, and worked fine. Check to see if we really need to
468 distinguish these in buildsym.c. */
469 struct pending **list_in_scope = nullptr;
470
471 /* Hash table holding all the loaded partial DIEs
472 with partial_die->offset.SECT_OFF as hash. */
473 htab_t partial_dies = nullptr;
474
475 /* Storage for things with the same lifetime as this read-in compilation
476 unit, including partial DIEs. */
477 auto_obstack comp_unit_obstack;
478
479 /* When multiple dwarf2_cu structures are living in memory, this field
480 chains them all together, so that they can be released efficiently.
481 We will probably also want a generation counter so that most-recently-used
482 compilation units are cached... */
483 struct dwarf2_per_cu_data *read_in_chain = nullptr;
484
485 /* Backlink to our per_cu entry. */
486 struct dwarf2_per_cu_data *per_cu;
487
488 /* How many compilation units ago was this CU last referenced? */
489 int last_used = 0;
490
491 /* A hash table of DIE cu_offset for following references with
492 die_info->offset.sect_off as hash. */
493 htab_t die_hash = nullptr;
494
495 /* Full DIEs if read in. */
496 struct die_info *dies = nullptr;
497
498 /* A set of pointers to dwarf2_per_cu_data objects for compilation
499 units referenced by this one. Only set during full symbol processing;
500 partial symbol tables do not have dependencies. */
501 htab_t dependencies = nullptr;
502
503 /* Header data from the line table, during full symbol processing. */
504 struct line_header *line_header = nullptr;
505 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
506 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
507 this is the DW_TAG_compile_unit die for this CU. We'll hold on
508 to the line header as long as this DIE is being processed. See
509 process_die_scope. */
510 die_info *line_header_die_owner = nullptr;
511
512 /* A list of methods which need to have physnames computed
513 after all type information has been read. */
514 std::vector<delayed_method_info> method_list;
515
516 /* To be copied to symtab->call_site_htab. */
517 htab_t call_site_htab = nullptr;
518
519 /* Non-NULL if this CU came from a DWO file.
520 There is an invariant here that is important to remember:
521 Except for attributes copied from the top level DIE in the "main"
522 (or "stub") file in preparation for reading the DWO file
523 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
524 Either there isn't a DWO file (in which case this is NULL and the point
525 is moot), or there is and either we're not going to read it (in which
526 case this is NULL) or there is and we are reading it (in which case this
527 is non-NULL). */
528 struct dwo_unit *dwo_unit = nullptr;
529
530 /* The DW_AT_addr_base attribute if present, zero otherwise
531 (zero is a valid value though).
532 Note this value comes from the Fission stub CU/TU's DIE. */
533 ULONGEST addr_base = 0;
534
535 /* The DW_AT_ranges_base attribute if present, zero otherwise
536 (zero is a valid value though).
537 Note this value comes from the Fission stub CU/TU's DIE.
538 Also note that the value is zero in the non-DWO case so this value can
539 be used without needing to know whether DWO files are in use or not.
540 N.B. This does not apply to DW_AT_ranges appearing in
541 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
542 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
543 DW_AT_ranges_base *would* have to be applied, and we'd have to care
544 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
545 ULONGEST ranges_base = 0;
546
547 /* When reading debug info generated by older versions of rustc, we
548 have to rewrite some union types to be struct types with a
549 variant part. This rewriting must be done after the CU is fully
550 read in, because otherwise at the point of rewriting some struct
551 type might not have been fully processed. So, we keep a list of
552 all such types here and process them after expansion. */
553 std::vector<struct type *> rust_unions;
554
555 /* Mark used when releasing cached dies. */
556 bool mark : 1;
557
558 /* This CU references .debug_loc. See the symtab->locations_valid field.
559 This test is imperfect as there may exist optimized debug code not using
560 any location list and still facing inlining issues if handled as
561 unoptimized code. For a future better test see GCC PR other/32998. */
562 bool has_loclist : 1;
563
564 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
565 if all the producer_is_* fields are valid. This information is cached
566 because profiling CU expansion showed excessive time spent in
567 producer_is_gxx_lt_4_6. */
568 bool checked_producer : 1;
569 bool producer_is_gxx_lt_4_6 : 1;
570 bool producer_is_gcc_lt_4_3 : 1;
571 bool producer_is_icc : 1;
572 bool producer_is_icc_lt_14 : 1;
573 bool producer_is_codewarrior : 1;
574
575 /* When true, the file that we're processing is known to have
576 debugging info for C++ namespaces. GCC 3.3.x did not produce
577 this information, but later versions do. */
578
579 bool processing_has_namespace_info : 1;
580
581 struct partial_die_info *find_partial_die (sect_offset sect_off);
582
583 /* If this CU was inherited by another CU (via specification,
584 abstract_origin, etc), this is the ancestor CU. */
585 dwarf2_cu *ancestor;
586
587 /* Get the buildsym_compunit for this CU. */
588 buildsym_compunit *get_builder ()
589 {
590 /* If this CU has a builder associated with it, use that. */
591 if (m_builder != nullptr)
592 return m_builder.get ();
593
594 /* Otherwise, search ancestors for a valid builder. */
595 if (ancestor != nullptr)
596 return ancestor->get_builder ();
597
598 return nullptr;
599 }
600 };
601
602 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
603 This includes type_unit_group and quick_file_names. */
604
605 struct stmt_list_hash
606 {
607 /* The DWO unit this table is from or NULL if there is none. */
608 struct dwo_unit *dwo_unit;
609
610 /* Offset in .debug_line or .debug_line.dwo. */
611 sect_offset line_sect_off;
612 };
613
614 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
615 an object of this type. */
616
617 struct type_unit_group
618 {
619 /* dwarf2read.c's main "handle" on a TU symtab.
620 To simplify things we create an artificial CU that "includes" all the
621 type units using this stmt_list so that the rest of the code still has
622 a "per_cu" handle on the symtab.
623 This PER_CU is recognized by having no section. */
624 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
625 struct dwarf2_per_cu_data per_cu;
626
627 /* The TUs that share this DW_AT_stmt_list entry.
628 This is added to while parsing type units to build partial symtabs,
629 and is deleted afterwards and not used again. */
630 VEC (sig_type_ptr) *tus;
631
632 /* The compunit symtab.
633 Type units in a group needn't all be defined in the same source file,
634 so we create an essentially anonymous symtab as the compunit symtab. */
635 struct compunit_symtab *compunit_symtab;
636
637 /* The data used to construct the hash key. */
638 struct stmt_list_hash hash;
639
640 /* The number of symtabs from the line header.
641 The value here must match line_header.num_file_names. */
642 unsigned int num_symtabs;
643
644 /* The symbol tables for this TU (obtained from the files listed in
645 DW_AT_stmt_list).
646 WARNING: The order of entries here must match the order of entries
647 in the line header. After the first TU using this type_unit_group, the
648 line header for the subsequent TUs is recreated from this. This is done
649 because we need to use the same symtabs for each TU using the same
650 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
651 there's no guarantee the line header doesn't have duplicate entries. */
652 struct symtab **symtabs;
653 };
654
655 /* These sections are what may appear in a (real or virtual) DWO file. */
656
657 struct dwo_sections
658 {
659 struct dwarf2_section_info abbrev;
660 struct dwarf2_section_info line;
661 struct dwarf2_section_info loc;
662 struct dwarf2_section_info loclists;
663 struct dwarf2_section_info macinfo;
664 struct dwarf2_section_info macro;
665 struct dwarf2_section_info str;
666 struct dwarf2_section_info str_offsets;
667 /* In the case of a virtual DWO file, these two are unused. */
668 struct dwarf2_section_info info;
669 VEC (dwarf2_section_info_def) *types;
670 };
671
672 /* CUs/TUs in DWP/DWO files. */
673
674 struct dwo_unit
675 {
676 /* Backlink to the containing struct dwo_file. */
677 struct dwo_file *dwo_file;
678
679 /* The "id" that distinguishes this CU/TU.
680 .debug_info calls this "dwo_id", .debug_types calls this "signature".
681 Since signatures came first, we stick with it for consistency. */
682 ULONGEST signature;
683
684 /* The section this CU/TU lives in, in the DWO file. */
685 struct dwarf2_section_info *section;
686
687 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
688 sect_offset sect_off;
689 unsigned int length;
690
691 /* For types, offset in the type's DIE of the type defined by this TU. */
692 cu_offset type_offset_in_tu;
693 };
694
695 /* include/dwarf2.h defines the DWP section codes.
696 It defines a max value but it doesn't define a min value, which we
697 use for error checking, so provide one. */
698
699 enum dwp_v2_section_ids
700 {
701 DW_SECT_MIN = 1
702 };
703
704 /* Data for one DWO file.
705
706 This includes virtual DWO files (a virtual DWO file is a DWO file as it
707 appears in a DWP file). DWP files don't really have DWO files per se -
708 comdat folding of types "loses" the DWO file they came from, and from
709 a high level view DWP files appear to contain a mass of random types.
710 However, to maintain consistency with the non-DWP case we pretend DWP
711 files contain virtual DWO files, and we assign each TU with one virtual
712 DWO file (generally based on the line and abbrev section offsets -
713 a heuristic that seems to work in practice). */
714
715 struct dwo_file
716 {
717 /* The DW_AT_GNU_dwo_name attribute.
718 For virtual DWO files the name is constructed from the section offsets
719 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
720 from related CU+TUs. */
721 const char *dwo_name;
722
723 /* The DW_AT_comp_dir attribute. */
724 const char *comp_dir;
725
726 /* The bfd, when the file is open. Otherwise this is NULL.
727 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
728 bfd *dbfd;
729
730 /* The sections that make up this DWO file.
731 Remember that for virtual DWO files in DWP V2, these are virtual
732 sections (for lack of a better name). */
733 struct dwo_sections sections;
734
735 /* The CUs in the file.
736 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
737 an extension to handle LLVM's Link Time Optimization output (where
738 multiple source files may be compiled into a single object/dwo pair). */
739 htab_t cus;
740
741 /* Table of TUs in the file.
742 Each element is a struct dwo_unit. */
743 htab_t tus;
744 };
745
746 /* These sections are what may appear in a DWP file. */
747
748 struct dwp_sections
749 {
750 /* These are used by both DWP version 1 and 2. */
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info cu_index;
753 struct dwarf2_section_info tu_index;
754
755 /* These are only used by DWP version 2 files.
756 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
757 sections are referenced by section number, and are not recorded here.
758 In DWP version 2 there is at most one copy of all these sections, each
759 section being (effectively) comprised of the concatenation of all of the
760 individual sections that exist in the version 1 format.
761 To keep the code simple we treat each of these concatenated pieces as a
762 section itself (a virtual section?). */
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info info;
765 struct dwarf2_section_info line;
766 struct dwarf2_section_info loc;
767 struct dwarf2_section_info macinfo;
768 struct dwarf2_section_info macro;
769 struct dwarf2_section_info str_offsets;
770 struct dwarf2_section_info types;
771 };
772
773 /* These sections are what may appear in a virtual DWO file in DWP version 1.
774 A virtual DWO file is a DWO file as it appears in a DWP file. */
775
776 struct virtual_v1_dwo_sections
777 {
778 struct dwarf2_section_info abbrev;
779 struct dwarf2_section_info line;
780 struct dwarf2_section_info loc;
781 struct dwarf2_section_info macinfo;
782 struct dwarf2_section_info macro;
783 struct dwarf2_section_info str_offsets;
784 /* Each DWP hash table entry records one CU or one TU.
785 That is recorded here, and copied to dwo_unit.section. */
786 struct dwarf2_section_info info_or_types;
787 };
788
789 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
790 In version 2, the sections of the DWO files are concatenated together
791 and stored in one section of that name. Thus each ELF section contains
792 several "virtual" sections. */
793
794 struct virtual_v2_dwo_sections
795 {
796 bfd_size_type abbrev_offset;
797 bfd_size_type abbrev_size;
798
799 bfd_size_type line_offset;
800 bfd_size_type line_size;
801
802 bfd_size_type loc_offset;
803 bfd_size_type loc_size;
804
805 bfd_size_type macinfo_offset;
806 bfd_size_type macinfo_size;
807
808 bfd_size_type macro_offset;
809 bfd_size_type macro_size;
810
811 bfd_size_type str_offsets_offset;
812 bfd_size_type str_offsets_size;
813
814 /* Each DWP hash table entry records one CU or one TU.
815 That is recorded here, and copied to dwo_unit.section. */
816 bfd_size_type info_or_types_offset;
817 bfd_size_type info_or_types_size;
818 };
819
820 /* Contents of DWP hash tables. */
821
822 struct dwp_hash_table
823 {
824 uint32_t version, nr_columns;
825 uint32_t nr_units, nr_slots;
826 const gdb_byte *hash_table, *unit_table;
827 union
828 {
829 struct
830 {
831 const gdb_byte *indices;
832 } v1;
833 struct
834 {
835 /* This is indexed by column number and gives the id of the section
836 in that column. */
837 #define MAX_NR_V2_DWO_SECTIONS \
838 (1 /* .debug_info or .debug_types */ \
839 + 1 /* .debug_abbrev */ \
840 + 1 /* .debug_line */ \
841 + 1 /* .debug_loc */ \
842 + 1 /* .debug_str_offsets */ \
843 + 1 /* .debug_macro or .debug_macinfo */)
844 int section_ids[MAX_NR_V2_DWO_SECTIONS];
845 const gdb_byte *offsets;
846 const gdb_byte *sizes;
847 } v2;
848 } section_pool;
849 };
850
851 /* Data for one DWP file. */
852
853 struct dwp_file
854 {
855 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
856 : name (name_),
857 dbfd (std::move (abfd))
858 {
859 }
860
861 /* Name of the file. */
862 const char *name;
863
864 /* File format version. */
865 int version = 0;
866
867 /* The bfd. */
868 gdb_bfd_ref_ptr dbfd;
869
870 /* Section info for this file. */
871 struct dwp_sections sections {};
872
873 /* Table of CUs in the file. */
874 const struct dwp_hash_table *cus = nullptr;
875
876 /* Table of TUs in the file. */
877 const struct dwp_hash_table *tus = nullptr;
878
879 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
880 htab_t loaded_cus {};
881 htab_t loaded_tus {};
882
883 /* Table to map ELF section numbers to their sections.
884 This is only needed for the DWP V1 file format. */
885 unsigned int num_sections = 0;
886 asection **elf_sections = nullptr;
887 };
888
889 /* This represents a '.dwz' file. */
890
891 struct dwz_file
892 {
893 dwz_file (gdb_bfd_ref_ptr &&bfd)
894 : dwz_bfd (std::move (bfd))
895 {
896 }
897
898 /* A dwz file can only contain a few sections. */
899 struct dwarf2_section_info abbrev {};
900 struct dwarf2_section_info info {};
901 struct dwarf2_section_info str {};
902 struct dwarf2_section_info line {};
903 struct dwarf2_section_info macro {};
904 struct dwarf2_section_info gdb_index {};
905 struct dwarf2_section_info debug_names {};
906
907 /* The dwz's BFD. */
908 gdb_bfd_ref_ptr dwz_bfd;
909
910 /* If we loaded the index from an external file, this contains the
911 resources associated to the open file, memory mapping, etc. */
912 std::unique_ptr<index_cache_resource> index_cache_res;
913 };
914
915 /* Struct used to pass misc. parameters to read_die_and_children, et
916 al. which are used for both .debug_info and .debug_types dies.
917 All parameters here are unchanging for the life of the call. This
918 struct exists to abstract away the constant parameters of die reading. */
919
920 struct die_reader_specs
921 {
922 /* The bfd of die_section. */
923 bfd* abfd;
924
925 /* The CU of the DIE we are parsing. */
926 struct dwarf2_cu *cu;
927
928 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
929 struct dwo_file *dwo_file;
930
931 /* The section the die comes from.
932 This is either .debug_info or .debug_types, or the .dwo variants. */
933 struct dwarf2_section_info *die_section;
934
935 /* die_section->buffer. */
936 const gdb_byte *buffer;
937
938 /* The end of the buffer. */
939 const gdb_byte *buffer_end;
940
941 /* The value of the DW_AT_comp_dir attribute. */
942 const char *comp_dir;
943
944 /* The abbreviation table to use when reading the DIEs. */
945 struct abbrev_table *abbrev_table;
946 };
947
948 /* Type of function passed to init_cutu_and_read_dies, et.al. */
949 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
950 const gdb_byte *info_ptr,
951 struct die_info *comp_unit_die,
952 int has_children,
953 void *data);
954
955 /* A 1-based directory index. This is a strong typedef to prevent
956 accidentally using a directory index as a 0-based index into an
957 array/vector. */
958 enum class dir_index : unsigned int {};
959
960 /* Likewise, a 1-based file name index. */
961 enum class file_name_index : unsigned int {};
962
963 struct file_entry
964 {
965 file_entry () = default;
966
967 file_entry (const char *name_, dir_index d_index_,
968 unsigned int mod_time_, unsigned int length_)
969 : name (name_),
970 d_index (d_index_),
971 mod_time (mod_time_),
972 length (length_)
973 {}
974
975 /* Return the include directory at D_INDEX stored in LH. Returns
976 NULL if D_INDEX is out of bounds. */
977 const char *include_dir (const line_header *lh) const;
978
979 /* The file name. Note this is an observing pointer. The memory is
980 owned by debug_line_buffer. */
981 const char *name {};
982
983 /* The directory index (1-based). */
984 dir_index d_index {};
985
986 unsigned int mod_time {};
987
988 unsigned int length {};
989
990 /* True if referenced by the Line Number Program. */
991 bool included_p {};
992
993 /* The associated symbol table, if any. */
994 struct symtab *symtab {};
995 };
996
997 /* The line number information for a compilation unit (found in the
998 .debug_line section) begins with a "statement program header",
999 which contains the following information. */
1000 struct line_header
1001 {
1002 line_header ()
1003 : offset_in_dwz {}
1004 {}
1005
1006 /* Add an entry to the include directory table. */
1007 void add_include_dir (const char *include_dir);
1008
1009 /* Add an entry to the file name table. */
1010 void add_file_name (const char *name, dir_index d_index,
1011 unsigned int mod_time, unsigned int length);
1012
1013 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1014 is out of bounds. */
1015 const char *include_dir_at (dir_index index) const
1016 {
1017 /* Convert directory index number (1-based) to vector index
1018 (0-based). */
1019 size_t vec_index = to_underlying (index) - 1;
1020
1021 if (vec_index >= include_dirs.size ())
1022 return NULL;
1023 return include_dirs[vec_index];
1024 }
1025
1026 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1027 is out of bounds. */
1028 file_entry *file_name_at (file_name_index index)
1029 {
1030 /* Convert file name index number (1-based) to vector index
1031 (0-based). */
1032 size_t vec_index = to_underlying (index) - 1;
1033
1034 if (vec_index >= file_names.size ())
1035 return NULL;
1036 return &file_names[vec_index];
1037 }
1038
1039 /* Offset of line number information in .debug_line section. */
1040 sect_offset sect_off {};
1041
1042 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1043 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1044
1045 unsigned int total_length {};
1046 unsigned short version {};
1047 unsigned int header_length {};
1048 unsigned char minimum_instruction_length {};
1049 unsigned char maximum_ops_per_instruction {};
1050 unsigned char default_is_stmt {};
1051 int line_base {};
1052 unsigned char line_range {};
1053 unsigned char opcode_base {};
1054
1055 /* standard_opcode_lengths[i] is the number of operands for the
1056 standard opcode whose value is i. This means that
1057 standard_opcode_lengths[0] is unused, and the last meaningful
1058 element is standard_opcode_lengths[opcode_base - 1]. */
1059 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1060
1061 /* The include_directories table. Note these are observing
1062 pointers. The memory is owned by debug_line_buffer. */
1063 std::vector<const char *> include_dirs;
1064
1065 /* The file_names table. */
1066 std::vector<file_entry> file_names;
1067
1068 /* The start and end of the statement program following this
1069 header. These point into dwarf2_per_objfile->line_buffer. */
1070 const gdb_byte *statement_program_start {}, *statement_program_end {};
1071 };
1072
1073 typedef std::unique_ptr<line_header> line_header_up;
1074
1075 const char *
1076 file_entry::include_dir (const line_header *lh) const
1077 {
1078 return lh->include_dir_at (d_index);
1079 }
1080
1081 /* When we construct a partial symbol table entry we only
1082 need this much information. */
1083 struct partial_die_info : public allocate_on_obstack
1084 {
1085 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1086
1087 /* Disable assign but still keep copy ctor, which is needed
1088 load_partial_dies. */
1089 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1090
1091 /* Adjust the partial die before generating a symbol for it. This
1092 function may set the is_external flag or change the DIE's
1093 name. */
1094 void fixup (struct dwarf2_cu *cu);
1095
1096 /* Read a minimal amount of information into the minimal die
1097 structure. */
1098 const gdb_byte *read (const struct die_reader_specs *reader,
1099 const struct abbrev_info &abbrev,
1100 const gdb_byte *info_ptr);
1101
1102 /* Offset of this DIE. */
1103 const sect_offset sect_off;
1104
1105 /* DWARF-2 tag for this DIE. */
1106 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1107
1108 /* Assorted flags describing the data found in this DIE. */
1109 const unsigned int has_children : 1;
1110
1111 unsigned int is_external : 1;
1112 unsigned int is_declaration : 1;
1113 unsigned int has_type : 1;
1114 unsigned int has_specification : 1;
1115 unsigned int has_pc_info : 1;
1116 unsigned int may_be_inlined : 1;
1117
1118 /* This DIE has been marked DW_AT_main_subprogram. */
1119 unsigned int main_subprogram : 1;
1120
1121 /* Flag set if the SCOPE field of this structure has been
1122 computed. */
1123 unsigned int scope_set : 1;
1124
1125 /* Flag set if the DIE has a byte_size attribute. */
1126 unsigned int has_byte_size : 1;
1127
1128 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1129 unsigned int has_const_value : 1;
1130
1131 /* Flag set if any of the DIE's children are template arguments. */
1132 unsigned int has_template_arguments : 1;
1133
1134 /* Flag set if fixup has been called on this die. */
1135 unsigned int fixup_called : 1;
1136
1137 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1138 unsigned int is_dwz : 1;
1139
1140 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1141 unsigned int spec_is_dwz : 1;
1142
1143 /* The name of this DIE. Normally the value of DW_AT_name, but
1144 sometimes a default name for unnamed DIEs. */
1145 const char *name = nullptr;
1146
1147 /* The linkage name, if present. */
1148 const char *linkage_name = nullptr;
1149
1150 /* The scope to prepend to our children. This is generally
1151 allocated on the comp_unit_obstack, so will disappear
1152 when this compilation unit leaves the cache. */
1153 const char *scope = nullptr;
1154
1155 /* Some data associated with the partial DIE. The tag determines
1156 which field is live. */
1157 union
1158 {
1159 /* The location description associated with this DIE, if any. */
1160 struct dwarf_block *locdesc;
1161 /* The offset of an import, for DW_TAG_imported_unit. */
1162 sect_offset sect_off;
1163 } d {};
1164
1165 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1166 CORE_ADDR lowpc = 0;
1167 CORE_ADDR highpc = 0;
1168
1169 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1170 DW_AT_sibling, if any. */
1171 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1172 could return DW_AT_sibling values to its caller load_partial_dies. */
1173 const gdb_byte *sibling = nullptr;
1174
1175 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1176 DW_AT_specification (or DW_AT_abstract_origin or
1177 DW_AT_extension). */
1178 sect_offset spec_offset {};
1179
1180 /* Pointers to this DIE's parent, first child, and next sibling,
1181 if any. */
1182 struct partial_die_info *die_parent = nullptr;
1183 struct partial_die_info *die_child = nullptr;
1184 struct partial_die_info *die_sibling = nullptr;
1185
1186 friend struct partial_die_info *
1187 dwarf2_cu::find_partial_die (sect_offset sect_off);
1188
1189 private:
1190 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1191 partial_die_info (sect_offset sect_off)
1192 : partial_die_info (sect_off, DW_TAG_padding, 0)
1193 {
1194 }
1195
1196 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1197 int has_children_)
1198 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1199 {
1200 is_external = 0;
1201 is_declaration = 0;
1202 has_type = 0;
1203 has_specification = 0;
1204 has_pc_info = 0;
1205 may_be_inlined = 0;
1206 main_subprogram = 0;
1207 scope_set = 0;
1208 has_byte_size = 0;
1209 has_const_value = 0;
1210 has_template_arguments = 0;
1211 fixup_called = 0;
1212 is_dwz = 0;
1213 spec_is_dwz = 0;
1214 }
1215 };
1216
1217 /* This data structure holds the information of an abbrev. */
1218 struct abbrev_info
1219 {
1220 unsigned int number; /* number identifying abbrev */
1221 enum dwarf_tag tag; /* dwarf tag */
1222 unsigned short has_children; /* boolean */
1223 unsigned short num_attrs; /* number of attributes */
1224 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1225 struct abbrev_info *next; /* next in chain */
1226 };
1227
1228 struct attr_abbrev
1229 {
1230 ENUM_BITFIELD(dwarf_attribute) name : 16;
1231 ENUM_BITFIELD(dwarf_form) form : 16;
1232
1233 /* It is valid only if FORM is DW_FORM_implicit_const. */
1234 LONGEST implicit_const;
1235 };
1236
1237 /* Size of abbrev_table.abbrev_hash_table. */
1238 #define ABBREV_HASH_SIZE 121
1239
1240 /* Top level data structure to contain an abbreviation table. */
1241
1242 struct abbrev_table
1243 {
1244 explicit abbrev_table (sect_offset off)
1245 : sect_off (off)
1246 {
1247 m_abbrevs =
1248 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1249 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1250 }
1251
1252 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1253
1254 /* Allocate space for a struct abbrev_info object in
1255 ABBREV_TABLE. */
1256 struct abbrev_info *alloc_abbrev ();
1257
1258 /* Add an abbreviation to the table. */
1259 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1260
1261 /* Look up an abbrev in the table.
1262 Returns NULL if the abbrev is not found. */
1263
1264 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1265
1266
1267 /* Where the abbrev table came from.
1268 This is used as a sanity check when the table is used. */
1269 const sect_offset sect_off;
1270
1271 /* Storage for the abbrev table. */
1272 auto_obstack abbrev_obstack;
1273
1274 private:
1275
1276 /* Hash table of abbrevs.
1277 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1278 It could be statically allocated, but the previous code didn't so we
1279 don't either. */
1280 struct abbrev_info **m_abbrevs;
1281 };
1282
1283 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1284
1285 /* Attributes have a name and a value. */
1286 struct attribute
1287 {
1288 ENUM_BITFIELD(dwarf_attribute) name : 16;
1289 ENUM_BITFIELD(dwarf_form) form : 15;
1290
1291 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1292 field should be in u.str (existing only for DW_STRING) but it is kept
1293 here for better struct attribute alignment. */
1294 unsigned int string_is_canonical : 1;
1295
1296 union
1297 {
1298 const char *str;
1299 struct dwarf_block *blk;
1300 ULONGEST unsnd;
1301 LONGEST snd;
1302 CORE_ADDR addr;
1303 ULONGEST signature;
1304 }
1305 u;
1306 };
1307
1308 /* This data structure holds a complete die structure. */
1309 struct die_info
1310 {
1311 /* DWARF-2 tag for this DIE. */
1312 ENUM_BITFIELD(dwarf_tag) tag : 16;
1313
1314 /* Number of attributes */
1315 unsigned char num_attrs;
1316
1317 /* True if we're presently building the full type name for the
1318 type derived from this DIE. */
1319 unsigned char building_fullname : 1;
1320
1321 /* True if this die is in process. PR 16581. */
1322 unsigned char in_process : 1;
1323
1324 /* Abbrev number */
1325 unsigned int abbrev;
1326
1327 /* Offset in .debug_info or .debug_types section. */
1328 sect_offset sect_off;
1329
1330 /* The dies in a compilation unit form an n-ary tree. PARENT
1331 points to this die's parent; CHILD points to the first child of
1332 this node; and all the children of a given node are chained
1333 together via their SIBLING fields. */
1334 struct die_info *child; /* Its first child, if any. */
1335 struct die_info *sibling; /* Its next sibling, if any. */
1336 struct die_info *parent; /* Its parent, if any. */
1337
1338 /* An array of attributes, with NUM_ATTRS elements. There may be
1339 zero, but it's not common and zero-sized arrays are not
1340 sufficiently portable C. */
1341 struct attribute attrs[1];
1342 };
1343
1344 /* Get at parts of an attribute structure. */
1345
1346 #define DW_STRING(attr) ((attr)->u.str)
1347 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1348 #define DW_UNSND(attr) ((attr)->u.unsnd)
1349 #define DW_BLOCK(attr) ((attr)->u.blk)
1350 #define DW_SND(attr) ((attr)->u.snd)
1351 #define DW_ADDR(attr) ((attr)->u.addr)
1352 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1353
1354 /* Blocks are a bunch of untyped bytes. */
1355 struct dwarf_block
1356 {
1357 size_t size;
1358
1359 /* Valid only if SIZE is not zero. */
1360 const gdb_byte *data;
1361 };
1362
1363 #ifndef ATTR_ALLOC_CHUNK
1364 #define ATTR_ALLOC_CHUNK 4
1365 #endif
1366
1367 /* Allocate fields for structs, unions and enums in this size. */
1368 #ifndef DW_FIELD_ALLOC_CHUNK
1369 #define DW_FIELD_ALLOC_CHUNK 4
1370 #endif
1371
1372 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1373 but this would require a corresponding change in unpack_field_as_long
1374 and friends. */
1375 static int bits_per_byte = 8;
1376
1377 /* When reading a variant or variant part, we track a bit more
1378 information about the field, and store it in an object of this
1379 type. */
1380
1381 struct variant_field
1382 {
1383 /* If we see a DW_TAG_variant, then this will be the discriminant
1384 value. */
1385 ULONGEST discriminant_value;
1386 /* If we see a DW_TAG_variant, then this will be set if this is the
1387 default branch. */
1388 bool default_branch;
1389 /* While reading a DW_TAG_variant_part, this will be set if this
1390 field is the discriminant. */
1391 bool is_discriminant;
1392 };
1393
1394 struct nextfield
1395 {
1396 int accessibility = 0;
1397 int virtuality = 0;
1398 /* Extra information to describe a variant or variant part. */
1399 struct variant_field variant {};
1400 struct field field {};
1401 };
1402
1403 struct fnfieldlist
1404 {
1405 const char *name = nullptr;
1406 std::vector<struct fn_field> fnfields;
1407 };
1408
1409 /* The routines that read and process dies for a C struct or C++ class
1410 pass lists of data member fields and lists of member function fields
1411 in an instance of a field_info structure, as defined below. */
1412 struct field_info
1413 {
1414 /* List of data member and baseclasses fields. */
1415 std::vector<struct nextfield> fields;
1416 std::vector<struct nextfield> baseclasses;
1417
1418 /* Number of fields (including baseclasses). */
1419 int nfields = 0;
1420
1421 /* Set if the accesibility of one of the fields is not public. */
1422 int non_public_fields = 0;
1423
1424 /* Member function fieldlist array, contains name of possibly overloaded
1425 member function, number of overloaded member functions and a pointer
1426 to the head of the member function field chain. */
1427 std::vector<struct fnfieldlist> fnfieldlists;
1428
1429 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1430 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1431 std::vector<struct decl_field> typedef_field_list;
1432
1433 /* Nested types defined by this class and the number of elements in this
1434 list. */
1435 std::vector<struct decl_field> nested_types_list;
1436 };
1437
1438 /* One item on the queue of compilation units to read in full symbols
1439 for. */
1440 struct dwarf2_queue_item
1441 {
1442 struct dwarf2_per_cu_data *per_cu;
1443 enum language pretend_language;
1444 struct dwarf2_queue_item *next;
1445 };
1446
1447 /* The current queue. */
1448 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1449
1450 /* Loaded secondary compilation units are kept in memory until they
1451 have not been referenced for the processing of this many
1452 compilation units. Set this to zero to disable caching. Cache
1453 sizes of up to at least twenty will improve startup time for
1454 typical inter-CU-reference binaries, at an obvious memory cost. */
1455 static int dwarf_max_cache_age = 5;
1456 static void
1457 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1458 struct cmd_list_element *c, const char *value)
1459 {
1460 fprintf_filtered (file, _("The upper bound on the age of cached "
1461 "DWARF compilation units is %s.\n"),
1462 value);
1463 }
1464 \f
1465 /* local function prototypes */
1466
1467 static const char *get_section_name (const struct dwarf2_section_info *);
1468
1469 static const char *get_section_file_name (const struct dwarf2_section_info *);
1470
1471 static void dwarf2_find_base_address (struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct partial_symtab *create_partial_symtab
1475 (struct dwarf2_per_cu_data *per_cu, const char *name);
1476
1477 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1478 const gdb_byte *info_ptr,
1479 struct die_info *type_unit_die,
1480 int has_children, void *data);
1481
1482 static void dwarf2_build_psymtabs_hard
1483 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1484
1485 static void scan_partial_symbols (struct partial_die_info *,
1486 CORE_ADDR *, CORE_ADDR *,
1487 int, struct dwarf2_cu *);
1488
1489 static void add_partial_symbol (struct partial_die_info *,
1490 struct dwarf2_cu *);
1491
1492 static void add_partial_namespace (struct partial_die_info *pdi,
1493 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1494 int set_addrmap, struct dwarf2_cu *cu);
1495
1496 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1497 CORE_ADDR *highpc, int set_addrmap,
1498 struct dwarf2_cu *cu);
1499
1500 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1501 struct dwarf2_cu *cu);
1502
1503 static void add_partial_subprogram (struct partial_die_info *pdi,
1504 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1505 int need_pc, struct dwarf2_cu *cu);
1506
1507 static void dwarf2_read_symtab (struct partial_symtab *,
1508 struct objfile *);
1509
1510 static void psymtab_to_symtab_1 (struct partial_symtab *);
1511
1512 static abbrev_table_up abbrev_table_read_table
1513 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1514 sect_offset);
1515
1516 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1517
1518 static struct partial_die_info *load_partial_dies
1519 (const struct die_reader_specs *, const gdb_byte *, int);
1520
1521 static struct partial_die_info *find_partial_die (sect_offset, int,
1522 struct dwarf2_cu *);
1523
1524 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1525 struct attribute *, struct attr_abbrev *,
1526 const gdb_byte *);
1527
1528 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1529
1530 static int read_1_signed_byte (bfd *, const gdb_byte *);
1531
1532 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1533
1534 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1535 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1536
1537 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1538
1539 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1540
1541 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1542 unsigned int *);
1543
1544 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1545
1546 static LONGEST read_checked_initial_length_and_offset
1547 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1548 unsigned int *, unsigned int *);
1549
1550 static LONGEST read_offset (bfd *, const gdb_byte *,
1551 const struct comp_unit_head *,
1552 unsigned int *);
1553
1554 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1555
1556 static sect_offset read_abbrev_offset
1557 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1558 struct dwarf2_section_info *, sect_offset);
1559
1560 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1561
1562 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static const char *read_indirect_string
1565 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1566 const struct comp_unit_head *, unsigned int *);
1567
1568 static const char *read_indirect_line_string
1569 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1570 const struct comp_unit_head *, unsigned int *);
1571
1572 static const char *read_indirect_string_at_offset
1573 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1574 LONGEST str_offset);
1575
1576 static const char *read_indirect_string_from_dwz
1577 (struct objfile *objfile, struct dwz_file *, LONGEST);
1578
1579 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1580
1581 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1582 const gdb_byte *,
1583 unsigned int *);
1584
1585 static const char *read_str_index (const struct die_reader_specs *reader,
1586 ULONGEST str_index);
1587
1588 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1589
1590 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1591 struct dwarf2_cu *);
1592
1593 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1594 unsigned int);
1595
1596 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1597 struct dwarf2_cu *cu);
1598
1599 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1600 struct dwarf2_cu *cu);
1601
1602 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1603
1604 static struct die_info *die_specification (struct die_info *die,
1605 struct dwarf2_cu **);
1606
1607 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1608 struct dwarf2_cu *cu);
1609
1610 static void dwarf_decode_lines (struct line_header *, const char *,
1611 struct dwarf2_cu *, struct partial_symtab *,
1612 CORE_ADDR, int decode_mapping);
1613
1614 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1615 const char *);
1616
1617 static struct symbol *new_symbol (struct die_info *, struct type *,
1618 struct dwarf2_cu *, struct symbol * = NULL);
1619
1620 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1621 struct dwarf2_cu *);
1622
1623 static void dwarf2_const_value_attr (const struct attribute *attr,
1624 struct type *type,
1625 const char *name,
1626 struct obstack *obstack,
1627 struct dwarf2_cu *cu, LONGEST *value,
1628 const gdb_byte **bytes,
1629 struct dwarf2_locexpr_baton **baton);
1630
1631 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1632
1633 static int need_gnat_info (struct dwarf2_cu *);
1634
1635 static struct type *die_descriptive_type (struct die_info *,
1636 struct dwarf2_cu *);
1637
1638 static void set_descriptive_type (struct type *, struct die_info *,
1639 struct dwarf2_cu *);
1640
1641 static struct type *die_containing_type (struct die_info *,
1642 struct dwarf2_cu *);
1643
1644 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1645 struct dwarf2_cu *);
1646
1647 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1648
1649 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1650
1651 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1652
1653 static char *typename_concat (struct obstack *obs, const char *prefix,
1654 const char *suffix, int physname,
1655 struct dwarf2_cu *cu);
1656
1657 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1658
1659 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1660
1661 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1662
1663 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1664
1665 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1666
1667 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1668
1669 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1670 struct dwarf2_cu *, struct partial_symtab *);
1671
1672 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1673 values. Keep the items ordered with increasing constraints compliance. */
1674 enum pc_bounds_kind
1675 {
1676 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1677 PC_BOUNDS_NOT_PRESENT,
1678
1679 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1680 were present but they do not form a valid range of PC addresses. */
1681 PC_BOUNDS_INVALID,
1682
1683 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1684 PC_BOUNDS_RANGES,
1685
1686 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1687 PC_BOUNDS_HIGH_LOW,
1688 };
1689
1690 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1691 CORE_ADDR *, CORE_ADDR *,
1692 struct dwarf2_cu *,
1693 struct partial_symtab *);
1694
1695 static void get_scope_pc_bounds (struct die_info *,
1696 CORE_ADDR *, CORE_ADDR *,
1697 struct dwarf2_cu *);
1698
1699 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1700 CORE_ADDR, struct dwarf2_cu *);
1701
1702 static void dwarf2_add_field (struct field_info *, struct die_info *,
1703 struct dwarf2_cu *);
1704
1705 static void dwarf2_attach_fields_to_type (struct field_info *,
1706 struct type *, struct dwarf2_cu *);
1707
1708 static void dwarf2_add_member_fn (struct field_info *,
1709 struct die_info *, struct type *,
1710 struct dwarf2_cu *);
1711
1712 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1713 struct type *,
1714 struct dwarf2_cu *);
1715
1716 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1717
1718 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1719
1720 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1721
1722 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1723
1724 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1725
1726 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1727
1728 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1729
1730 static struct type *read_module_type (struct die_info *die,
1731 struct dwarf2_cu *cu);
1732
1733 static const char *namespace_name (struct die_info *die,
1734 int *is_anonymous, struct dwarf2_cu *);
1735
1736 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1737
1738 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1739
1740 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1741 struct dwarf2_cu *);
1742
1743 static struct die_info *read_die_and_siblings_1
1744 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1745 struct die_info *);
1746
1747 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1748 const gdb_byte *info_ptr,
1749 const gdb_byte **new_info_ptr,
1750 struct die_info *parent);
1751
1752 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1753 struct die_info **, const gdb_byte *,
1754 int *, int);
1755
1756 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1757 struct die_info **, const gdb_byte *,
1758 int *);
1759
1760 static void process_die (struct die_info *, struct dwarf2_cu *);
1761
1762 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1763 struct obstack *);
1764
1765 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1766
1767 static const char *dwarf2_full_name (const char *name,
1768 struct die_info *die,
1769 struct dwarf2_cu *cu);
1770
1771 static const char *dwarf2_physname (const char *name, struct die_info *die,
1772 struct dwarf2_cu *cu);
1773
1774 static struct die_info *dwarf2_extension (struct die_info *die,
1775 struct dwarf2_cu **);
1776
1777 static const char *dwarf_tag_name (unsigned int);
1778
1779 static const char *dwarf_attr_name (unsigned int);
1780
1781 static const char *dwarf_form_name (unsigned int);
1782
1783 static const char *dwarf_bool_name (unsigned int);
1784
1785 static const char *dwarf_type_encoding_name (unsigned int);
1786
1787 static struct die_info *sibling_die (struct die_info *);
1788
1789 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1790
1791 static void dump_die_for_error (struct die_info *);
1792
1793 static void dump_die_1 (struct ui_file *, int level, int max_level,
1794 struct die_info *);
1795
1796 /*static*/ void dump_die (struct die_info *, int max_level);
1797
1798 static void store_in_ref_table (struct die_info *,
1799 struct dwarf2_cu *);
1800
1801 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1802
1803 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1804
1805 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1806 const struct attribute *,
1807 struct dwarf2_cu **);
1808
1809 static struct die_info *follow_die_ref (struct die_info *,
1810 const struct attribute *,
1811 struct dwarf2_cu **);
1812
1813 static struct die_info *follow_die_sig (struct die_info *,
1814 const struct attribute *,
1815 struct dwarf2_cu **);
1816
1817 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1818 struct dwarf2_cu *);
1819
1820 static struct type *get_DW_AT_signature_type (struct die_info *,
1821 const struct attribute *,
1822 struct dwarf2_cu *);
1823
1824 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1825
1826 static void read_signatured_type (struct signatured_type *);
1827
1828 static int attr_to_dynamic_prop (const struct attribute *attr,
1829 struct die_info *die, struct dwarf2_cu *cu,
1830 struct dynamic_prop *prop);
1831
1832 /* memory allocation interface */
1833
1834 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1835
1836 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1837
1838 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1839
1840 static int attr_form_is_block (const struct attribute *);
1841
1842 static int attr_form_is_section_offset (const struct attribute *);
1843
1844 static int attr_form_is_constant (const struct attribute *);
1845
1846 static int attr_form_is_ref (const struct attribute *);
1847
1848 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1849 struct dwarf2_loclist_baton *baton,
1850 const struct attribute *attr);
1851
1852 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1853 struct symbol *sym,
1854 struct dwarf2_cu *cu,
1855 int is_block);
1856
1857 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1858 const gdb_byte *info_ptr,
1859 struct abbrev_info *abbrev);
1860
1861 static hashval_t partial_die_hash (const void *item);
1862
1863 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1864
1865 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1866 (sect_offset sect_off, unsigned int offset_in_dwz,
1867 struct dwarf2_per_objfile *dwarf2_per_objfile);
1868
1869 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1870 struct die_info *comp_unit_die,
1871 enum language pretend_language);
1872
1873 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1876
1877 static struct type *set_die_type (struct die_info *, struct type *,
1878 struct dwarf2_cu *);
1879
1880 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881
1882 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1885 enum language);
1886
1887 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1888 enum language);
1889
1890 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1891 enum language);
1892
1893 static void dwarf2_add_dependence (struct dwarf2_cu *,
1894 struct dwarf2_per_cu_data *);
1895
1896 static void dwarf2_mark (struct dwarf2_cu *);
1897
1898 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1899
1900 static struct type *get_die_type_at_offset (sect_offset,
1901 struct dwarf2_per_cu_data *);
1902
1903 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1904
1905 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1906 enum language pretend_language);
1907
1908 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1909
1910 /* Class, the destructor of which frees all allocated queue entries. This
1911 will only have work to do if an error was thrown while processing the
1912 dwarf. If no error was thrown then the queue entries should have all
1913 been processed, and freed, as we went along. */
1914
1915 class dwarf2_queue_guard
1916 {
1917 public:
1918 dwarf2_queue_guard () = default;
1919
1920 /* Free any entries remaining on the queue. There should only be
1921 entries left if we hit an error while processing the dwarf. */
1922 ~dwarf2_queue_guard ()
1923 {
1924 struct dwarf2_queue_item *item, *last;
1925
1926 item = dwarf2_queue;
1927 while (item)
1928 {
1929 /* Anything still marked queued is likely to be in an
1930 inconsistent state, so discard it. */
1931 if (item->per_cu->queued)
1932 {
1933 if (item->per_cu->cu != NULL)
1934 free_one_cached_comp_unit (item->per_cu);
1935 item->per_cu->queued = 0;
1936 }
1937
1938 last = item;
1939 item = item->next;
1940 xfree (last);
1941 }
1942
1943 dwarf2_queue = dwarf2_queue_tail = NULL;
1944 }
1945 };
1946
1947 /* The return type of find_file_and_directory. Note, the enclosed
1948 string pointers are only valid while this object is valid. */
1949
1950 struct file_and_directory
1951 {
1952 /* The filename. This is never NULL. */
1953 const char *name;
1954
1955 /* The compilation directory. NULL if not known. If we needed to
1956 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1957 points directly to the DW_AT_comp_dir string attribute owned by
1958 the obstack that owns the DIE. */
1959 const char *comp_dir;
1960
1961 /* If we needed to build a new string for comp_dir, this is what
1962 owns the storage. */
1963 std::string comp_dir_storage;
1964 };
1965
1966 static file_and_directory find_file_and_directory (struct die_info *die,
1967 struct dwarf2_cu *cu);
1968
1969 static char *file_full_name (int file, struct line_header *lh,
1970 const char *comp_dir);
1971
1972 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1973 enum class rcuh_kind { COMPILE, TYPE };
1974
1975 static const gdb_byte *read_and_check_comp_unit_head
1976 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1977 struct comp_unit_head *header,
1978 struct dwarf2_section_info *section,
1979 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1980 rcuh_kind section_kind);
1981
1982 static void init_cutu_and_read_dies
1983 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1984 int use_existing_cu, int keep, bool skip_partial,
1985 die_reader_func_ftype *die_reader_func, void *data);
1986
1987 static void init_cutu_and_read_dies_simple
1988 (struct dwarf2_per_cu_data *this_cu,
1989 die_reader_func_ftype *die_reader_func, void *data);
1990
1991 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1992
1993 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1994
1995 static struct dwo_unit *lookup_dwo_unit_in_dwp
1996 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1997 struct dwp_file *dwp_file, const char *comp_dir,
1998 ULONGEST signature, int is_debug_types);
1999
2000 static struct dwp_file *get_dwp_file
2001 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2002
2003 static struct dwo_unit *lookup_dwo_comp_unit
2004 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2005
2006 static struct dwo_unit *lookup_dwo_type_unit
2007 (struct signatured_type *, const char *, const char *);
2008
2009 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2010
2011 static void free_dwo_file (struct dwo_file *);
2012
2013 /* A unique_ptr helper to free a dwo_file. */
2014
2015 struct dwo_file_deleter
2016 {
2017 void operator() (struct dwo_file *df) const
2018 {
2019 free_dwo_file (df);
2020 }
2021 };
2022
2023 /* A unique pointer to a dwo_file. */
2024
2025 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2026
2027 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2028
2029 static void check_producer (struct dwarf2_cu *cu);
2030
2031 static void free_line_header_voidp (void *arg);
2032 \f
2033 /* Various complaints about symbol reading that don't abort the process. */
2034
2035 static void
2036 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2037 {
2038 complaint (_("statement list doesn't fit in .debug_line section"));
2039 }
2040
2041 static void
2042 dwarf2_debug_line_missing_file_complaint (void)
2043 {
2044 complaint (_(".debug_line section has line data without a file"));
2045 }
2046
2047 static void
2048 dwarf2_debug_line_missing_end_sequence_complaint (void)
2049 {
2050 complaint (_(".debug_line section has line "
2051 "program sequence without an end"));
2052 }
2053
2054 static void
2055 dwarf2_complex_location_expr_complaint (void)
2056 {
2057 complaint (_("location expression too complex"));
2058 }
2059
2060 static void
2061 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2062 int arg3)
2063 {
2064 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2065 arg1, arg2, arg3);
2066 }
2067
2068 static void
2069 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2070 {
2071 complaint (_("debug info runs off end of %s section"
2072 " [in module %s]"),
2073 get_section_name (section),
2074 get_section_file_name (section));
2075 }
2076
2077 static void
2078 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2079 {
2080 complaint (_("macro debug info contains a "
2081 "malformed macro definition:\n`%s'"),
2082 arg1);
2083 }
2084
2085 static void
2086 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2087 {
2088 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2089 arg1, arg2);
2090 }
2091
2092 /* Hash function for line_header_hash. */
2093
2094 static hashval_t
2095 line_header_hash (const struct line_header *ofs)
2096 {
2097 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2098 }
2099
2100 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2101
2102 static hashval_t
2103 line_header_hash_voidp (const void *item)
2104 {
2105 const struct line_header *ofs = (const struct line_header *) item;
2106
2107 return line_header_hash (ofs);
2108 }
2109
2110 /* Equality function for line_header_hash. */
2111
2112 static int
2113 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2114 {
2115 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2116 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2117
2118 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2119 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2120 }
2121
2122 \f
2123
2124 /* Read the given attribute value as an address, taking the attribute's
2125 form into account. */
2126
2127 static CORE_ADDR
2128 attr_value_as_address (struct attribute *attr)
2129 {
2130 CORE_ADDR addr;
2131
2132 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2133 && attr->form != DW_FORM_GNU_addr_index)
2134 {
2135 /* Aside from a few clearly defined exceptions, attributes that
2136 contain an address must always be in DW_FORM_addr form.
2137 Unfortunately, some compilers happen to be violating this
2138 requirement by encoding addresses using other forms, such
2139 as DW_FORM_data4 for example. For those broken compilers,
2140 we try to do our best, without any guarantee of success,
2141 to interpret the address correctly. It would also be nice
2142 to generate a complaint, but that would require us to maintain
2143 a list of legitimate cases where a non-address form is allowed,
2144 as well as update callers to pass in at least the CU's DWARF
2145 version. This is more overhead than what we're willing to
2146 expand for a pretty rare case. */
2147 addr = DW_UNSND (attr);
2148 }
2149 else
2150 addr = DW_ADDR (attr);
2151
2152 return addr;
2153 }
2154
2155 /* See declaration. */
2156
2157 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2158 const dwarf2_debug_sections *names)
2159 : objfile (objfile_)
2160 {
2161 if (names == NULL)
2162 names = &dwarf2_elf_names;
2163
2164 bfd *obfd = objfile->obfd;
2165
2166 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2167 locate_sections (obfd, sec, *names);
2168 }
2169
2170 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2171
2172 dwarf2_per_objfile::~dwarf2_per_objfile ()
2173 {
2174 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2175 free_cached_comp_units ();
2176
2177 if (quick_file_names_table)
2178 htab_delete (quick_file_names_table);
2179
2180 if (line_header_hash)
2181 htab_delete (line_header_hash);
2182
2183 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2184 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2185
2186 for (signatured_type *sig_type : all_type_units)
2187 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2188
2189 VEC_free (dwarf2_section_info_def, types);
2190
2191 if (dwo_files != NULL)
2192 free_dwo_files (dwo_files, objfile);
2193
2194 /* Everything else should be on the objfile obstack. */
2195 }
2196
2197 /* See declaration. */
2198
2199 void
2200 dwarf2_per_objfile::free_cached_comp_units ()
2201 {
2202 dwarf2_per_cu_data *per_cu = read_in_chain;
2203 dwarf2_per_cu_data **last_chain = &read_in_chain;
2204 while (per_cu != NULL)
2205 {
2206 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2207
2208 delete per_cu->cu;
2209 *last_chain = next_cu;
2210 per_cu = next_cu;
2211 }
2212 }
2213
2214 /* A helper class that calls free_cached_comp_units on
2215 destruction. */
2216
2217 class free_cached_comp_units
2218 {
2219 public:
2220
2221 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2222 : m_per_objfile (per_objfile)
2223 {
2224 }
2225
2226 ~free_cached_comp_units ()
2227 {
2228 m_per_objfile->free_cached_comp_units ();
2229 }
2230
2231 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2232
2233 private:
2234
2235 dwarf2_per_objfile *m_per_objfile;
2236 };
2237
2238 /* Try to locate the sections we need for DWARF 2 debugging
2239 information and return true if we have enough to do something.
2240 NAMES points to the dwarf2 section names, or is NULL if the standard
2241 ELF names are used. */
2242
2243 int
2244 dwarf2_has_info (struct objfile *objfile,
2245 const struct dwarf2_debug_sections *names)
2246 {
2247 if (objfile->flags & OBJF_READNEVER)
2248 return 0;
2249
2250 struct dwarf2_per_objfile *dwarf2_per_objfile
2251 = get_dwarf2_per_objfile (objfile);
2252
2253 if (dwarf2_per_objfile == NULL)
2254 {
2255 /* Initialize per-objfile state. */
2256 dwarf2_per_objfile
2257 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2258 names);
2259 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2260 }
2261 return (!dwarf2_per_objfile->info.is_virtual
2262 && dwarf2_per_objfile->info.s.section != NULL
2263 && !dwarf2_per_objfile->abbrev.is_virtual
2264 && dwarf2_per_objfile->abbrev.s.section != NULL);
2265 }
2266
2267 /* Return the containing section of virtual section SECTION. */
2268
2269 static struct dwarf2_section_info *
2270 get_containing_section (const struct dwarf2_section_info *section)
2271 {
2272 gdb_assert (section->is_virtual);
2273 return section->s.containing_section;
2274 }
2275
2276 /* Return the bfd owner of SECTION. */
2277
2278 static struct bfd *
2279 get_section_bfd_owner (const struct dwarf2_section_info *section)
2280 {
2281 if (section->is_virtual)
2282 {
2283 section = get_containing_section (section);
2284 gdb_assert (!section->is_virtual);
2285 }
2286 return section->s.section->owner;
2287 }
2288
2289 /* Return the bfd section of SECTION.
2290 Returns NULL if the section is not present. */
2291
2292 static asection *
2293 get_section_bfd_section (const struct dwarf2_section_info *section)
2294 {
2295 if (section->is_virtual)
2296 {
2297 section = get_containing_section (section);
2298 gdb_assert (!section->is_virtual);
2299 }
2300 return section->s.section;
2301 }
2302
2303 /* Return the name of SECTION. */
2304
2305 static const char *
2306 get_section_name (const struct dwarf2_section_info *section)
2307 {
2308 asection *sectp = get_section_bfd_section (section);
2309
2310 gdb_assert (sectp != NULL);
2311 return bfd_section_name (get_section_bfd_owner (section), sectp);
2312 }
2313
2314 /* Return the name of the file SECTION is in. */
2315
2316 static const char *
2317 get_section_file_name (const struct dwarf2_section_info *section)
2318 {
2319 bfd *abfd = get_section_bfd_owner (section);
2320
2321 return bfd_get_filename (abfd);
2322 }
2323
2324 /* Return the id of SECTION.
2325 Returns 0 if SECTION doesn't exist. */
2326
2327 static int
2328 get_section_id (const struct dwarf2_section_info *section)
2329 {
2330 asection *sectp = get_section_bfd_section (section);
2331
2332 if (sectp == NULL)
2333 return 0;
2334 return sectp->id;
2335 }
2336
2337 /* Return the flags of SECTION.
2338 SECTION (or containing section if this is a virtual section) must exist. */
2339
2340 static int
2341 get_section_flags (const struct dwarf2_section_info *section)
2342 {
2343 asection *sectp = get_section_bfd_section (section);
2344
2345 gdb_assert (sectp != NULL);
2346 return bfd_get_section_flags (sectp->owner, sectp);
2347 }
2348
2349 /* When loading sections, we look either for uncompressed section or for
2350 compressed section names. */
2351
2352 static int
2353 section_is_p (const char *section_name,
2354 const struct dwarf2_section_names *names)
2355 {
2356 if (names->normal != NULL
2357 && strcmp (section_name, names->normal) == 0)
2358 return 1;
2359 if (names->compressed != NULL
2360 && strcmp (section_name, names->compressed) == 0)
2361 return 1;
2362 return 0;
2363 }
2364
2365 /* See declaration. */
2366
2367 void
2368 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2369 const dwarf2_debug_sections &names)
2370 {
2371 flagword aflag = bfd_get_section_flags (abfd, sectp);
2372
2373 if ((aflag & SEC_HAS_CONTENTS) == 0)
2374 {
2375 }
2376 else if (section_is_p (sectp->name, &names.info))
2377 {
2378 this->info.s.section = sectp;
2379 this->info.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.abbrev))
2382 {
2383 this->abbrev.s.section = sectp;
2384 this->abbrev.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.line))
2387 {
2388 this->line.s.section = sectp;
2389 this->line.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.loc))
2392 {
2393 this->loc.s.section = sectp;
2394 this->loc.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.loclists))
2397 {
2398 this->loclists.s.section = sectp;
2399 this->loclists.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.macinfo))
2402 {
2403 this->macinfo.s.section = sectp;
2404 this->macinfo.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.macro))
2407 {
2408 this->macro.s.section = sectp;
2409 this->macro.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.str))
2412 {
2413 this->str.s.section = sectp;
2414 this->str.size = bfd_get_section_size (sectp);
2415 }
2416 else if (section_is_p (sectp->name, &names.line_str))
2417 {
2418 this->line_str.s.section = sectp;
2419 this->line_str.size = bfd_get_section_size (sectp);
2420 }
2421 else if (section_is_p (sectp->name, &names.addr))
2422 {
2423 this->addr.s.section = sectp;
2424 this->addr.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &names.frame))
2427 {
2428 this->frame.s.section = sectp;
2429 this->frame.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &names.eh_frame))
2432 {
2433 this->eh_frame.s.section = sectp;
2434 this->eh_frame.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &names.ranges))
2437 {
2438 this->ranges.s.section = sectp;
2439 this->ranges.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &names.rnglists))
2442 {
2443 this->rnglists.s.section = sectp;
2444 this->rnglists.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &names.types))
2447 {
2448 struct dwarf2_section_info type_section;
2449
2450 memset (&type_section, 0, sizeof (type_section));
2451 type_section.s.section = sectp;
2452 type_section.size = bfd_get_section_size (sectp);
2453
2454 VEC_safe_push (dwarf2_section_info_def, this->types,
2455 &type_section);
2456 }
2457 else if (section_is_p (sectp->name, &names.gdb_index))
2458 {
2459 this->gdb_index.s.section = sectp;
2460 this->gdb_index.size = bfd_get_section_size (sectp);
2461 }
2462 else if (section_is_p (sectp->name, &names.debug_names))
2463 {
2464 this->debug_names.s.section = sectp;
2465 this->debug_names.size = bfd_get_section_size (sectp);
2466 }
2467 else if (section_is_p (sectp->name, &names.debug_aranges))
2468 {
2469 this->debug_aranges.s.section = sectp;
2470 this->debug_aranges.size = bfd_get_section_size (sectp);
2471 }
2472
2473 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2474 && bfd_section_vma (abfd, sectp) == 0)
2475 this->has_section_at_zero = true;
2476 }
2477
2478 /* A helper function that decides whether a section is empty,
2479 or not present. */
2480
2481 static int
2482 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2483 {
2484 if (section->is_virtual)
2485 return section->size == 0;
2486 return section->s.section == NULL || section->size == 0;
2487 }
2488
2489 /* See dwarf2read.h. */
2490
2491 void
2492 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2493 {
2494 asection *sectp;
2495 bfd *abfd;
2496 gdb_byte *buf, *retbuf;
2497
2498 if (info->readin)
2499 return;
2500 info->buffer = NULL;
2501 info->readin = 1;
2502
2503 if (dwarf2_section_empty_p (info))
2504 return;
2505
2506 sectp = get_section_bfd_section (info);
2507
2508 /* If this is a virtual section we need to read in the real one first. */
2509 if (info->is_virtual)
2510 {
2511 struct dwarf2_section_info *containing_section =
2512 get_containing_section (info);
2513
2514 gdb_assert (sectp != NULL);
2515 if ((sectp->flags & SEC_RELOC) != 0)
2516 {
2517 error (_("Dwarf Error: DWP format V2 with relocations is not"
2518 " supported in section %s [in module %s]"),
2519 get_section_name (info), get_section_file_name (info));
2520 }
2521 dwarf2_read_section (objfile, containing_section);
2522 /* Other code should have already caught virtual sections that don't
2523 fit. */
2524 gdb_assert (info->virtual_offset + info->size
2525 <= containing_section->size);
2526 /* If the real section is empty or there was a problem reading the
2527 section we shouldn't get here. */
2528 gdb_assert (containing_section->buffer != NULL);
2529 info->buffer = containing_section->buffer + info->virtual_offset;
2530 return;
2531 }
2532
2533 /* If the section has relocations, we must read it ourselves.
2534 Otherwise we attach it to the BFD. */
2535 if ((sectp->flags & SEC_RELOC) == 0)
2536 {
2537 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2538 return;
2539 }
2540
2541 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2542 info->buffer = buf;
2543
2544 /* When debugging .o files, we may need to apply relocations; see
2545 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2546 We never compress sections in .o files, so we only need to
2547 try this when the section is not compressed. */
2548 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2549 if (retbuf != NULL)
2550 {
2551 info->buffer = retbuf;
2552 return;
2553 }
2554
2555 abfd = get_section_bfd_owner (info);
2556 gdb_assert (abfd != NULL);
2557
2558 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2559 || bfd_bread (buf, info->size, abfd) != info->size)
2560 {
2561 error (_("Dwarf Error: Can't read DWARF data"
2562 " in section %s [in module %s]"),
2563 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2564 }
2565 }
2566
2567 /* A helper function that returns the size of a section in a safe way.
2568 If you are positive that the section has been read before using the
2569 size, then it is safe to refer to the dwarf2_section_info object's
2570 "size" field directly. In other cases, you must call this
2571 function, because for compressed sections the size field is not set
2572 correctly until the section has been read. */
2573
2574 static bfd_size_type
2575 dwarf2_section_size (struct objfile *objfile,
2576 struct dwarf2_section_info *info)
2577 {
2578 if (!info->readin)
2579 dwarf2_read_section (objfile, info);
2580 return info->size;
2581 }
2582
2583 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2584 SECTION_NAME. */
2585
2586 void
2587 dwarf2_get_section_info (struct objfile *objfile,
2588 enum dwarf2_section_enum sect,
2589 asection **sectp, const gdb_byte **bufp,
2590 bfd_size_type *sizep)
2591 {
2592 struct dwarf2_per_objfile *data
2593 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2594 dwarf2_objfile_data_key);
2595 struct dwarf2_section_info *info;
2596
2597 /* We may see an objfile without any DWARF, in which case we just
2598 return nothing. */
2599 if (data == NULL)
2600 {
2601 *sectp = NULL;
2602 *bufp = NULL;
2603 *sizep = 0;
2604 return;
2605 }
2606 switch (sect)
2607 {
2608 case DWARF2_DEBUG_FRAME:
2609 info = &data->frame;
2610 break;
2611 case DWARF2_EH_FRAME:
2612 info = &data->eh_frame;
2613 break;
2614 default:
2615 gdb_assert_not_reached ("unexpected section");
2616 }
2617
2618 dwarf2_read_section (objfile, info);
2619
2620 *sectp = get_section_bfd_section (info);
2621 *bufp = info->buffer;
2622 *sizep = info->size;
2623 }
2624
2625 /* A helper function to find the sections for a .dwz file. */
2626
2627 static void
2628 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2629 {
2630 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2631
2632 /* Note that we only support the standard ELF names, because .dwz
2633 is ELF-only (at the time of writing). */
2634 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2635 {
2636 dwz_file->abbrev.s.section = sectp;
2637 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2638 }
2639 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2640 {
2641 dwz_file->info.s.section = sectp;
2642 dwz_file->info.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2645 {
2646 dwz_file->str.s.section = sectp;
2647 dwz_file->str.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2650 {
2651 dwz_file->line.s.section = sectp;
2652 dwz_file->line.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2655 {
2656 dwz_file->macro.s.section = sectp;
2657 dwz_file->macro.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2660 {
2661 dwz_file->gdb_index.s.section = sectp;
2662 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2665 {
2666 dwz_file->debug_names.s.section = sectp;
2667 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2668 }
2669 }
2670
2671 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2672 there is no .gnu_debugaltlink section in the file. Error if there
2673 is such a section but the file cannot be found. */
2674
2675 static struct dwz_file *
2676 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2677 {
2678 const char *filename;
2679 bfd_size_type buildid_len_arg;
2680 size_t buildid_len;
2681 bfd_byte *buildid;
2682
2683 if (dwarf2_per_objfile->dwz_file != NULL)
2684 return dwarf2_per_objfile->dwz_file.get ();
2685
2686 bfd_set_error (bfd_error_no_error);
2687 gdb::unique_xmalloc_ptr<char> data
2688 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2689 &buildid_len_arg, &buildid));
2690 if (data == NULL)
2691 {
2692 if (bfd_get_error () == bfd_error_no_error)
2693 return NULL;
2694 error (_("could not read '.gnu_debugaltlink' section: %s"),
2695 bfd_errmsg (bfd_get_error ()));
2696 }
2697
2698 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2699
2700 buildid_len = (size_t) buildid_len_arg;
2701
2702 filename = data.get ();
2703
2704 std::string abs_storage;
2705 if (!IS_ABSOLUTE_PATH (filename))
2706 {
2707 gdb::unique_xmalloc_ptr<char> abs
2708 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2709
2710 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2711 filename = abs_storage.c_str ();
2712 }
2713
2714 /* First try the file name given in the section. If that doesn't
2715 work, try to use the build-id instead. */
2716 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2717 if (dwz_bfd != NULL)
2718 {
2719 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2720 dwz_bfd.reset (nullptr);
2721 }
2722
2723 if (dwz_bfd == NULL)
2724 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2725
2726 if (dwz_bfd == NULL)
2727 error (_("could not find '.gnu_debugaltlink' file for %s"),
2728 objfile_name (dwarf2_per_objfile->objfile));
2729
2730 std::unique_ptr<struct dwz_file> result
2731 (new struct dwz_file (std::move (dwz_bfd)));
2732
2733 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2734 result.get ());
2735
2736 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2737 result->dwz_bfd.get ());
2738 dwarf2_per_objfile->dwz_file = std::move (result);
2739 return dwarf2_per_objfile->dwz_file.get ();
2740 }
2741 \f
2742 /* DWARF quick_symbols_functions support. */
2743
2744 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2745 unique line tables, so we maintain a separate table of all .debug_line
2746 derived entries to support the sharing.
2747 All the quick functions need is the list of file names. We discard the
2748 line_header when we're done and don't need to record it here. */
2749 struct quick_file_names
2750 {
2751 /* The data used to construct the hash key. */
2752 struct stmt_list_hash hash;
2753
2754 /* The number of entries in file_names, real_names. */
2755 unsigned int num_file_names;
2756
2757 /* The file names from the line table, after being run through
2758 file_full_name. */
2759 const char **file_names;
2760
2761 /* The file names from the line table after being run through
2762 gdb_realpath. These are computed lazily. */
2763 const char **real_names;
2764 };
2765
2766 /* When using the index (and thus not using psymtabs), each CU has an
2767 object of this type. This is used to hold information needed by
2768 the various "quick" methods. */
2769 struct dwarf2_per_cu_quick_data
2770 {
2771 /* The file table. This can be NULL if there was no file table
2772 or it's currently not read in.
2773 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2774 struct quick_file_names *file_names;
2775
2776 /* The corresponding symbol table. This is NULL if symbols for this
2777 CU have not yet been read. */
2778 struct compunit_symtab *compunit_symtab;
2779
2780 /* A temporary mark bit used when iterating over all CUs in
2781 expand_symtabs_matching. */
2782 unsigned int mark : 1;
2783
2784 /* True if we've tried to read the file table and found there isn't one.
2785 There will be no point in trying to read it again next time. */
2786 unsigned int no_file_data : 1;
2787 };
2788
2789 /* Utility hash function for a stmt_list_hash. */
2790
2791 static hashval_t
2792 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2793 {
2794 hashval_t v = 0;
2795
2796 if (stmt_list_hash->dwo_unit != NULL)
2797 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2798 v += to_underlying (stmt_list_hash->line_sect_off);
2799 return v;
2800 }
2801
2802 /* Utility equality function for a stmt_list_hash. */
2803
2804 static int
2805 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2806 const struct stmt_list_hash *rhs)
2807 {
2808 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2809 return 0;
2810 if (lhs->dwo_unit != NULL
2811 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2812 return 0;
2813
2814 return lhs->line_sect_off == rhs->line_sect_off;
2815 }
2816
2817 /* Hash function for a quick_file_names. */
2818
2819 static hashval_t
2820 hash_file_name_entry (const void *e)
2821 {
2822 const struct quick_file_names *file_data
2823 = (const struct quick_file_names *) e;
2824
2825 return hash_stmt_list_entry (&file_data->hash);
2826 }
2827
2828 /* Equality function for a quick_file_names. */
2829
2830 static int
2831 eq_file_name_entry (const void *a, const void *b)
2832 {
2833 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2834 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2835
2836 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2837 }
2838
2839 /* Delete function for a quick_file_names. */
2840
2841 static void
2842 delete_file_name_entry (void *e)
2843 {
2844 struct quick_file_names *file_data = (struct quick_file_names *) e;
2845 int i;
2846
2847 for (i = 0; i < file_data->num_file_names; ++i)
2848 {
2849 xfree ((void*) file_data->file_names[i]);
2850 if (file_data->real_names)
2851 xfree ((void*) file_data->real_names[i]);
2852 }
2853
2854 /* The space for the struct itself lives on objfile_obstack,
2855 so we don't free it here. */
2856 }
2857
2858 /* Create a quick_file_names hash table. */
2859
2860 static htab_t
2861 create_quick_file_names_table (unsigned int nr_initial_entries)
2862 {
2863 return htab_create_alloc (nr_initial_entries,
2864 hash_file_name_entry, eq_file_name_entry,
2865 delete_file_name_entry, xcalloc, xfree);
2866 }
2867
2868 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2869 have to be created afterwards. You should call age_cached_comp_units after
2870 processing PER_CU->CU. dw2_setup must have been already called. */
2871
2872 static void
2873 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2874 {
2875 if (per_cu->is_debug_types)
2876 load_full_type_unit (per_cu);
2877 else
2878 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2879
2880 if (per_cu->cu == NULL)
2881 return; /* Dummy CU. */
2882
2883 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2884 }
2885
2886 /* Read in the symbols for PER_CU. */
2887
2888 static void
2889 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2890 {
2891 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2892
2893 /* Skip type_unit_groups, reading the type units they contain
2894 is handled elsewhere. */
2895 if (IS_TYPE_UNIT_GROUP (per_cu))
2896 return;
2897
2898 /* The destructor of dwarf2_queue_guard frees any entries left on
2899 the queue. After this point we're guaranteed to leave this function
2900 with the dwarf queue empty. */
2901 dwarf2_queue_guard q_guard;
2902
2903 if (dwarf2_per_objfile->using_index
2904 ? per_cu->v.quick->compunit_symtab == NULL
2905 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2906 {
2907 queue_comp_unit (per_cu, language_minimal);
2908 load_cu (per_cu, skip_partial);
2909
2910 /* If we just loaded a CU from a DWO, and we're working with an index
2911 that may badly handle TUs, load all the TUs in that DWO as well.
2912 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2913 if (!per_cu->is_debug_types
2914 && per_cu->cu != NULL
2915 && per_cu->cu->dwo_unit != NULL
2916 && dwarf2_per_objfile->index_table != NULL
2917 && dwarf2_per_objfile->index_table->version <= 7
2918 /* DWP files aren't supported yet. */
2919 && get_dwp_file (dwarf2_per_objfile) == NULL)
2920 queue_and_load_all_dwo_tus (per_cu);
2921 }
2922
2923 process_queue (dwarf2_per_objfile);
2924
2925 /* Age the cache, releasing compilation units that have not
2926 been used recently. */
2927 age_cached_comp_units (dwarf2_per_objfile);
2928 }
2929
2930 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2931 the objfile from which this CU came. Returns the resulting symbol
2932 table. */
2933
2934 static struct compunit_symtab *
2935 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2936 {
2937 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2938
2939 gdb_assert (dwarf2_per_objfile->using_index);
2940 if (!per_cu->v.quick->compunit_symtab)
2941 {
2942 free_cached_comp_units freer (dwarf2_per_objfile);
2943 scoped_restore decrementer = increment_reading_symtab ();
2944 dw2_do_instantiate_symtab (per_cu, skip_partial);
2945 process_cu_includes (dwarf2_per_objfile);
2946 }
2947
2948 return per_cu->v.quick->compunit_symtab;
2949 }
2950
2951 /* See declaration. */
2952
2953 dwarf2_per_cu_data *
2954 dwarf2_per_objfile::get_cutu (int index)
2955 {
2956 if (index >= this->all_comp_units.size ())
2957 {
2958 index -= this->all_comp_units.size ();
2959 gdb_assert (index < this->all_type_units.size ());
2960 return &this->all_type_units[index]->per_cu;
2961 }
2962
2963 return this->all_comp_units[index];
2964 }
2965
2966 /* See declaration. */
2967
2968 dwarf2_per_cu_data *
2969 dwarf2_per_objfile::get_cu (int index)
2970 {
2971 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2972
2973 return this->all_comp_units[index];
2974 }
2975
2976 /* See declaration. */
2977
2978 signatured_type *
2979 dwarf2_per_objfile::get_tu (int index)
2980 {
2981 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2982
2983 return this->all_type_units[index];
2984 }
2985
2986 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2987 objfile_obstack, and constructed with the specified field
2988 values. */
2989
2990 static dwarf2_per_cu_data *
2991 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2992 struct dwarf2_section_info *section,
2993 int is_dwz,
2994 sect_offset sect_off, ULONGEST length)
2995 {
2996 struct objfile *objfile = dwarf2_per_objfile->objfile;
2997 dwarf2_per_cu_data *the_cu
2998 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_data);
3000 the_cu->sect_off = sect_off;
3001 the_cu->length = length;
3002 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3003 the_cu->section = section;
3004 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3005 struct dwarf2_per_cu_quick_data);
3006 the_cu->is_dwz = is_dwz;
3007 return the_cu;
3008 }
3009
3010 /* A helper for create_cus_from_index that handles a given list of
3011 CUs. */
3012
3013 static void
3014 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3015 const gdb_byte *cu_list, offset_type n_elements,
3016 struct dwarf2_section_info *section,
3017 int is_dwz)
3018 {
3019 for (offset_type i = 0; i < n_elements; i += 2)
3020 {
3021 gdb_static_assert (sizeof (ULONGEST) >= 8);
3022
3023 sect_offset sect_off
3024 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3025 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3026 cu_list += 2 * 8;
3027
3028 dwarf2_per_cu_data *per_cu
3029 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3030 sect_off, length);
3031 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3032 }
3033 }
3034
3035 /* Read the CU list from the mapped index, and use it to create all
3036 the CU objects for this objfile. */
3037
3038 static void
3039 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3040 const gdb_byte *cu_list, offset_type cu_list_elements,
3041 const gdb_byte *dwz_list, offset_type dwz_elements)
3042 {
3043 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3044 dwarf2_per_objfile->all_comp_units.reserve
3045 ((cu_list_elements + dwz_elements) / 2);
3046
3047 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3048 &dwarf2_per_objfile->info, 0);
3049
3050 if (dwz_elements == 0)
3051 return;
3052
3053 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3054 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3055 &dwz->info, 1);
3056 }
3057
3058 /* Create the signatured type hash table from the index. */
3059
3060 static void
3061 create_signatured_type_table_from_index
3062 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3063 struct dwarf2_section_info *section,
3064 const gdb_byte *bytes,
3065 offset_type elements)
3066 {
3067 struct objfile *objfile = dwarf2_per_objfile->objfile;
3068
3069 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3070 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3071
3072 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3073
3074 for (offset_type i = 0; i < elements; i += 3)
3075 {
3076 struct signatured_type *sig_type;
3077 ULONGEST signature;
3078 void **slot;
3079 cu_offset type_offset_in_tu;
3080
3081 gdb_static_assert (sizeof (ULONGEST) >= 8);
3082 sect_offset sect_off
3083 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3084 type_offset_in_tu
3085 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3086 BFD_ENDIAN_LITTLE);
3087 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3088 bytes += 3 * 8;
3089
3090 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3091 struct signatured_type);
3092 sig_type->signature = signature;
3093 sig_type->type_offset_in_tu = type_offset_in_tu;
3094 sig_type->per_cu.is_debug_types = 1;
3095 sig_type->per_cu.section = section;
3096 sig_type->per_cu.sect_off = sect_off;
3097 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3098 sig_type->per_cu.v.quick
3099 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3100 struct dwarf2_per_cu_quick_data);
3101
3102 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3103 *slot = sig_type;
3104
3105 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3106 }
3107
3108 dwarf2_per_objfile->signatured_types = sig_types_hash;
3109 }
3110
3111 /* Create the signatured type hash table from .debug_names. */
3112
3113 static void
3114 create_signatured_type_table_from_debug_names
3115 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3116 const mapped_debug_names &map,
3117 struct dwarf2_section_info *section,
3118 struct dwarf2_section_info *abbrev_section)
3119 {
3120 struct objfile *objfile = dwarf2_per_objfile->objfile;
3121
3122 dwarf2_read_section (objfile, section);
3123 dwarf2_read_section (objfile, abbrev_section);
3124
3125 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3126 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3127
3128 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3129
3130 for (uint32_t i = 0; i < map.tu_count; ++i)
3131 {
3132 struct signatured_type *sig_type;
3133 void **slot;
3134
3135 sect_offset sect_off
3136 = (sect_offset) (extract_unsigned_integer
3137 (map.tu_table_reordered + i * map.offset_size,
3138 map.offset_size,
3139 map.dwarf5_byte_order));
3140
3141 comp_unit_head cu_header;
3142 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3143 abbrev_section,
3144 section->buffer + to_underlying (sect_off),
3145 rcuh_kind::TYPE);
3146
3147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3148 struct signatured_type);
3149 sig_type->signature = cu_header.signature;
3150 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3151 sig_type->per_cu.is_debug_types = 1;
3152 sig_type->per_cu.section = section;
3153 sig_type->per_cu.sect_off = sect_off;
3154 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3155 sig_type->per_cu.v.quick
3156 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3157 struct dwarf2_per_cu_quick_data);
3158
3159 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3160 *slot = sig_type;
3161
3162 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3163 }
3164
3165 dwarf2_per_objfile->signatured_types = sig_types_hash;
3166 }
3167
3168 /* Read the address map data from the mapped index, and use it to
3169 populate the objfile's psymtabs_addrmap. */
3170
3171 static void
3172 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3173 struct mapped_index *index)
3174 {
3175 struct objfile *objfile = dwarf2_per_objfile->objfile;
3176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3177 const gdb_byte *iter, *end;
3178 struct addrmap *mutable_map;
3179 CORE_ADDR baseaddr;
3180
3181 auto_obstack temp_obstack;
3182
3183 mutable_map = addrmap_create_mutable (&temp_obstack);
3184
3185 iter = index->address_table.data ();
3186 end = iter + index->address_table.size ();
3187
3188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3189
3190 while (iter < end)
3191 {
3192 ULONGEST hi, lo, cu_index;
3193 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3194 iter += 8;
3195 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3196 iter += 8;
3197 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3198 iter += 4;
3199
3200 if (lo > hi)
3201 {
3202 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3203 hex_string (lo), hex_string (hi));
3204 continue;
3205 }
3206
3207 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3208 {
3209 complaint (_(".gdb_index address table has invalid CU number %u"),
3210 (unsigned) cu_index);
3211 continue;
3212 }
3213
3214 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3215 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3216 addrmap_set_empty (mutable_map, lo, hi - 1,
3217 dwarf2_per_objfile->get_cu (cu_index));
3218 }
3219
3220 objfile->partial_symtabs->psymtabs_addrmap
3221 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3222 }
3223
3224 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3225 populate the objfile's psymtabs_addrmap. */
3226
3227 static void
3228 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3229 struct dwarf2_section_info *section)
3230 {
3231 struct objfile *objfile = dwarf2_per_objfile->objfile;
3232 bfd *abfd = objfile->obfd;
3233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3234 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3235 SECT_OFF_TEXT (objfile));
3236
3237 auto_obstack temp_obstack;
3238 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3239
3240 std::unordered_map<sect_offset,
3241 dwarf2_per_cu_data *,
3242 gdb::hash_enum<sect_offset>>
3243 debug_info_offset_to_per_cu;
3244 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3245 {
3246 const auto insertpair
3247 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3248 if (!insertpair.second)
3249 {
3250 warning (_("Section .debug_aranges in %s has duplicate "
3251 "debug_info_offset %s, ignoring .debug_aranges."),
3252 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3253 return;
3254 }
3255 }
3256
3257 dwarf2_read_section (objfile, section);
3258
3259 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3260
3261 const gdb_byte *addr = section->buffer;
3262
3263 while (addr < section->buffer + section->size)
3264 {
3265 const gdb_byte *const entry_addr = addr;
3266 unsigned int bytes_read;
3267
3268 const LONGEST entry_length = read_initial_length (abfd, addr,
3269 &bytes_read);
3270 addr += bytes_read;
3271
3272 const gdb_byte *const entry_end = addr + entry_length;
3273 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3274 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3275 if (addr + entry_length > section->buffer + section->size)
3276 {
3277 warning (_("Section .debug_aranges in %s entry at offset %zu "
3278 "length %s exceeds section length %s, "
3279 "ignoring .debug_aranges."),
3280 objfile_name (objfile), entry_addr - section->buffer,
3281 plongest (bytes_read + entry_length),
3282 pulongest (section->size));
3283 return;
3284 }
3285
3286 /* The version number. */
3287 const uint16_t version = read_2_bytes (abfd, addr);
3288 addr += 2;
3289 if (version != 2)
3290 {
3291 warning (_("Section .debug_aranges in %s entry at offset %zu "
3292 "has unsupported version %d, ignoring .debug_aranges."),
3293 objfile_name (objfile), entry_addr - section->buffer,
3294 version);
3295 return;
3296 }
3297
3298 const uint64_t debug_info_offset
3299 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3300 addr += offset_size;
3301 const auto per_cu_it
3302 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3303 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %zu "
3306 "debug_info_offset %s does not exists, "
3307 "ignoring .debug_aranges."),
3308 objfile_name (objfile), entry_addr - section->buffer,
3309 pulongest (debug_info_offset));
3310 return;
3311 }
3312 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3313
3314 const uint8_t address_size = *addr++;
3315 if (address_size < 1 || address_size > 8)
3316 {
3317 warning (_("Section .debug_aranges in %s entry at offset %zu "
3318 "address_size %u is invalid, ignoring .debug_aranges."),
3319 objfile_name (objfile), entry_addr - section->buffer,
3320 address_size);
3321 return;
3322 }
3323
3324 const uint8_t segment_selector_size = *addr++;
3325 if (segment_selector_size != 0)
3326 {
3327 warning (_("Section .debug_aranges in %s entry at offset %zu "
3328 "segment_selector_size %u is not supported, "
3329 "ignoring .debug_aranges."),
3330 objfile_name (objfile), entry_addr - section->buffer,
3331 segment_selector_size);
3332 return;
3333 }
3334
3335 /* Must pad to an alignment boundary that is twice the address
3336 size. It is undocumented by the DWARF standard but GCC does
3337 use it. */
3338 for (size_t padding = ((-(addr - section->buffer))
3339 & (2 * address_size - 1));
3340 padding > 0; padding--)
3341 if (*addr++ != 0)
3342 {
3343 warning (_("Section .debug_aranges in %s entry at offset %zu "
3344 "padding is not zero, ignoring .debug_aranges."),
3345 objfile_name (objfile), entry_addr - section->buffer);
3346 return;
3347 }
3348
3349 for (;;)
3350 {
3351 if (addr + 2 * address_size > entry_end)
3352 {
3353 warning (_("Section .debug_aranges in %s entry at offset %zu "
3354 "address list is not properly terminated, "
3355 "ignoring .debug_aranges."),
3356 objfile_name (objfile), entry_addr - section->buffer);
3357 return;
3358 }
3359 ULONGEST start = extract_unsigned_integer (addr, address_size,
3360 dwarf5_byte_order);
3361 addr += address_size;
3362 ULONGEST length = extract_unsigned_integer (addr, address_size,
3363 dwarf5_byte_order);
3364 addr += address_size;
3365 if (start == 0 && length == 0)
3366 break;
3367 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3368 {
3369 /* Symbol was eliminated due to a COMDAT group. */
3370 continue;
3371 }
3372 ULONGEST end = start + length;
3373 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3374 - baseaddr);
3375 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3376 - baseaddr);
3377 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3378 }
3379 }
3380
3381 objfile->partial_symtabs->psymtabs_addrmap
3382 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3383 }
3384
3385 /* Find a slot in the mapped index INDEX for the object named NAME.
3386 If NAME is found, set *VEC_OUT to point to the CU vector in the
3387 constant pool and return true. If NAME cannot be found, return
3388 false. */
3389
3390 static bool
3391 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3392 offset_type **vec_out)
3393 {
3394 offset_type hash;
3395 offset_type slot, step;
3396 int (*cmp) (const char *, const char *);
3397
3398 gdb::unique_xmalloc_ptr<char> without_params;
3399 if (current_language->la_language == language_cplus
3400 || current_language->la_language == language_fortran
3401 || current_language->la_language == language_d)
3402 {
3403 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3404 not contain any. */
3405
3406 if (strchr (name, '(') != NULL)
3407 {
3408 without_params = cp_remove_params (name);
3409
3410 if (without_params != NULL)
3411 name = without_params.get ();
3412 }
3413 }
3414
3415 /* Index version 4 did not support case insensitive searches. But the
3416 indices for case insensitive languages are built in lowercase, therefore
3417 simulate our NAME being searched is also lowercased. */
3418 hash = mapped_index_string_hash ((index->version == 4
3419 && case_sensitivity == case_sensitive_off
3420 ? 5 : index->version),
3421 name);
3422
3423 slot = hash & (index->symbol_table.size () - 1);
3424 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3425 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3426
3427 for (;;)
3428 {
3429 const char *str;
3430
3431 const auto &bucket = index->symbol_table[slot];
3432 if (bucket.name == 0 && bucket.vec == 0)
3433 return false;
3434
3435 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3436 if (!cmp (name, str))
3437 {
3438 *vec_out = (offset_type *) (index->constant_pool
3439 + MAYBE_SWAP (bucket.vec));
3440 return true;
3441 }
3442
3443 slot = (slot + step) & (index->symbol_table.size () - 1);
3444 }
3445 }
3446
3447 /* A helper function that reads the .gdb_index from BUFFER and fills
3448 in MAP. FILENAME is the name of the file containing the data;
3449 it is used for error reporting. DEPRECATED_OK is true if it is
3450 ok to use deprecated sections.
3451
3452 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3453 out parameters that are filled in with information about the CU and
3454 TU lists in the section.
3455
3456 Returns true if all went well, false otherwise. */
3457
3458 static bool
3459 read_gdb_index_from_buffer (struct objfile *objfile,
3460 const char *filename,
3461 bool deprecated_ok,
3462 gdb::array_view<const gdb_byte> buffer,
3463 struct mapped_index *map,
3464 const gdb_byte **cu_list,
3465 offset_type *cu_list_elements,
3466 const gdb_byte **types_list,
3467 offset_type *types_list_elements)
3468 {
3469 const gdb_byte *addr = &buffer[0];
3470
3471 /* Version check. */
3472 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3473 /* Versions earlier than 3 emitted every copy of a psymbol. This
3474 causes the index to behave very poorly for certain requests. Version 3
3475 contained incomplete addrmap. So, it seems better to just ignore such
3476 indices. */
3477 if (version < 4)
3478 {
3479 static int warning_printed = 0;
3480 if (!warning_printed)
3481 {
3482 warning (_("Skipping obsolete .gdb_index section in %s."),
3483 filename);
3484 warning_printed = 1;
3485 }
3486 return 0;
3487 }
3488 /* Index version 4 uses a different hash function than index version
3489 5 and later.
3490
3491 Versions earlier than 6 did not emit psymbols for inlined
3492 functions. Using these files will cause GDB not to be able to
3493 set breakpoints on inlined functions by name, so we ignore these
3494 indices unless the user has done
3495 "set use-deprecated-index-sections on". */
3496 if (version < 6 && !deprecated_ok)
3497 {
3498 static int warning_printed = 0;
3499 if (!warning_printed)
3500 {
3501 warning (_("\
3502 Skipping deprecated .gdb_index section in %s.\n\
3503 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3504 to use the section anyway."),
3505 filename);
3506 warning_printed = 1;
3507 }
3508 return 0;
3509 }
3510 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3511 of the TU (for symbols coming from TUs),
3512 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3513 Plus gold-generated indices can have duplicate entries for global symbols,
3514 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3515 These are just performance bugs, and we can't distinguish gdb-generated
3516 indices from gold-generated ones, so issue no warning here. */
3517
3518 /* Indexes with higher version than the one supported by GDB may be no
3519 longer backward compatible. */
3520 if (version > 8)
3521 return 0;
3522
3523 map->version = version;
3524
3525 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3526
3527 int i = 0;
3528 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3529 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3530 / 8);
3531 ++i;
3532
3533 *types_list = addr + MAYBE_SWAP (metadata[i]);
3534 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3535 - MAYBE_SWAP (metadata[i]))
3536 / 8);
3537 ++i;
3538
3539 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3540 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3541 map->address_table
3542 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3543 ++i;
3544
3545 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3546 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3547 map->symbol_table
3548 = gdb::array_view<mapped_index::symbol_table_slot>
3549 ((mapped_index::symbol_table_slot *) symbol_table,
3550 (mapped_index::symbol_table_slot *) symbol_table_end);
3551
3552 ++i;
3553 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3554
3555 return 1;
3556 }
3557
3558 /* Callback types for dwarf2_read_gdb_index. */
3559
3560 typedef gdb::function_view
3561 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3562 get_gdb_index_contents_ftype;
3563 typedef gdb::function_view
3564 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3565 get_gdb_index_contents_dwz_ftype;
3566
3567 /* Read .gdb_index. If everything went ok, initialize the "quick"
3568 elements of all the CUs and return 1. Otherwise, return 0. */
3569
3570 static int
3571 dwarf2_read_gdb_index
3572 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3573 get_gdb_index_contents_ftype get_gdb_index_contents,
3574 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3575 {
3576 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3577 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3578 struct dwz_file *dwz;
3579 struct objfile *objfile = dwarf2_per_objfile->objfile;
3580
3581 gdb::array_view<const gdb_byte> main_index_contents
3582 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3583
3584 if (main_index_contents.empty ())
3585 return 0;
3586
3587 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3588 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3589 use_deprecated_index_sections,
3590 main_index_contents, map.get (), &cu_list,
3591 &cu_list_elements, &types_list,
3592 &types_list_elements))
3593 return 0;
3594
3595 /* Don't use the index if it's empty. */
3596 if (map->symbol_table.empty ())
3597 return 0;
3598
3599 /* If there is a .dwz file, read it so we can get its CU list as
3600 well. */
3601 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3602 if (dwz != NULL)
3603 {
3604 struct mapped_index dwz_map;
3605 const gdb_byte *dwz_types_ignore;
3606 offset_type dwz_types_elements_ignore;
3607
3608 gdb::array_view<const gdb_byte> dwz_index_content
3609 = get_gdb_index_contents_dwz (objfile, dwz);
3610
3611 if (dwz_index_content.empty ())
3612 return 0;
3613
3614 if (!read_gdb_index_from_buffer (objfile,
3615 bfd_get_filename (dwz->dwz_bfd), 1,
3616 dwz_index_content, &dwz_map,
3617 &dwz_list, &dwz_list_elements,
3618 &dwz_types_ignore,
3619 &dwz_types_elements_ignore))
3620 {
3621 warning (_("could not read '.gdb_index' section from %s; skipping"),
3622 bfd_get_filename (dwz->dwz_bfd));
3623 return 0;
3624 }
3625 }
3626
3627 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3628 dwz_list, dwz_list_elements);
3629
3630 if (types_list_elements)
3631 {
3632 struct dwarf2_section_info *section;
3633
3634 /* We can only handle a single .debug_types when we have an
3635 index. */
3636 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3637 return 0;
3638
3639 section = VEC_index (dwarf2_section_info_def,
3640 dwarf2_per_objfile->types, 0);
3641
3642 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3643 types_list, types_list_elements);
3644 }
3645
3646 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3647
3648 dwarf2_per_objfile->index_table = std::move (map);
3649 dwarf2_per_objfile->using_index = 1;
3650 dwarf2_per_objfile->quick_file_names_table =
3651 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3652
3653 return 1;
3654 }
3655
3656 /* die_reader_func for dw2_get_file_names. */
3657
3658 static void
3659 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3660 const gdb_byte *info_ptr,
3661 struct die_info *comp_unit_die,
3662 int has_children,
3663 void *data)
3664 {
3665 struct dwarf2_cu *cu = reader->cu;
3666 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3667 struct dwarf2_per_objfile *dwarf2_per_objfile
3668 = cu->per_cu->dwarf2_per_objfile;
3669 struct objfile *objfile = dwarf2_per_objfile->objfile;
3670 struct dwarf2_per_cu_data *lh_cu;
3671 struct attribute *attr;
3672 int i;
3673 void **slot;
3674 struct quick_file_names *qfn;
3675
3676 gdb_assert (! this_cu->is_debug_types);
3677
3678 /* Our callers never want to match partial units -- instead they
3679 will match the enclosing full CU. */
3680 if (comp_unit_die->tag == DW_TAG_partial_unit)
3681 {
3682 this_cu->v.quick->no_file_data = 1;
3683 return;
3684 }
3685
3686 lh_cu = this_cu;
3687 slot = NULL;
3688
3689 line_header_up lh;
3690 sect_offset line_offset {};
3691
3692 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3693 if (attr)
3694 {
3695 struct quick_file_names find_entry;
3696
3697 line_offset = (sect_offset) DW_UNSND (attr);
3698
3699 /* We may have already read in this line header (TU line header sharing).
3700 If we have we're done. */
3701 find_entry.hash.dwo_unit = cu->dwo_unit;
3702 find_entry.hash.line_sect_off = line_offset;
3703 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3704 &find_entry, INSERT);
3705 if (*slot != NULL)
3706 {
3707 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3708 return;
3709 }
3710
3711 lh = dwarf_decode_line_header (line_offset, cu);
3712 }
3713 if (lh == NULL)
3714 {
3715 lh_cu->v.quick->no_file_data = 1;
3716 return;
3717 }
3718
3719 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3720 qfn->hash.dwo_unit = cu->dwo_unit;
3721 qfn->hash.line_sect_off = line_offset;
3722 gdb_assert (slot != NULL);
3723 *slot = qfn;
3724
3725 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3726
3727 qfn->num_file_names = lh->file_names.size ();
3728 qfn->file_names =
3729 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3730 for (i = 0; i < lh->file_names.size (); ++i)
3731 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3732 qfn->real_names = NULL;
3733
3734 lh_cu->v.quick->file_names = qfn;
3735 }
3736
3737 /* A helper for the "quick" functions which attempts to read the line
3738 table for THIS_CU. */
3739
3740 static struct quick_file_names *
3741 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3742 {
3743 /* This should never be called for TUs. */
3744 gdb_assert (! this_cu->is_debug_types);
3745 /* Nor type unit groups. */
3746 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3747
3748 if (this_cu->v.quick->file_names != NULL)
3749 return this_cu->v.quick->file_names;
3750 /* If we know there is no line data, no point in looking again. */
3751 if (this_cu->v.quick->no_file_data)
3752 return NULL;
3753
3754 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3755
3756 if (this_cu->v.quick->no_file_data)
3757 return NULL;
3758 return this_cu->v.quick->file_names;
3759 }
3760
3761 /* A helper for the "quick" functions which computes and caches the
3762 real path for a given file name from the line table. */
3763
3764 static const char *
3765 dw2_get_real_path (struct objfile *objfile,
3766 struct quick_file_names *qfn, int index)
3767 {
3768 if (qfn->real_names == NULL)
3769 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3770 qfn->num_file_names, const char *);
3771
3772 if (qfn->real_names[index] == NULL)
3773 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3774
3775 return qfn->real_names[index];
3776 }
3777
3778 static struct symtab *
3779 dw2_find_last_source_symtab (struct objfile *objfile)
3780 {
3781 struct dwarf2_per_objfile *dwarf2_per_objfile
3782 = get_dwarf2_per_objfile (objfile);
3783 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3784 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3785
3786 if (cust == NULL)
3787 return NULL;
3788
3789 return compunit_primary_filetab (cust);
3790 }
3791
3792 /* Traversal function for dw2_forget_cached_source_info. */
3793
3794 static int
3795 dw2_free_cached_file_names (void **slot, void *info)
3796 {
3797 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3798
3799 if (file_data->real_names)
3800 {
3801 int i;
3802
3803 for (i = 0; i < file_data->num_file_names; ++i)
3804 {
3805 xfree ((void*) file_data->real_names[i]);
3806 file_data->real_names[i] = NULL;
3807 }
3808 }
3809
3810 return 1;
3811 }
3812
3813 static void
3814 dw2_forget_cached_source_info (struct objfile *objfile)
3815 {
3816 struct dwarf2_per_objfile *dwarf2_per_objfile
3817 = get_dwarf2_per_objfile (objfile);
3818
3819 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3820 dw2_free_cached_file_names, NULL);
3821 }
3822
3823 /* Helper function for dw2_map_symtabs_matching_filename that expands
3824 the symtabs and calls the iterator. */
3825
3826 static int
3827 dw2_map_expand_apply (struct objfile *objfile,
3828 struct dwarf2_per_cu_data *per_cu,
3829 const char *name, const char *real_path,
3830 gdb::function_view<bool (symtab *)> callback)
3831 {
3832 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3833
3834 /* Don't visit already-expanded CUs. */
3835 if (per_cu->v.quick->compunit_symtab)
3836 return 0;
3837
3838 /* This may expand more than one symtab, and we want to iterate over
3839 all of them. */
3840 dw2_instantiate_symtab (per_cu, false);
3841
3842 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3843 last_made, callback);
3844 }
3845
3846 /* Implementation of the map_symtabs_matching_filename method. */
3847
3848 static bool
3849 dw2_map_symtabs_matching_filename
3850 (struct objfile *objfile, const char *name, const char *real_path,
3851 gdb::function_view<bool (symtab *)> callback)
3852 {
3853 const char *name_basename = lbasename (name);
3854 struct dwarf2_per_objfile *dwarf2_per_objfile
3855 = get_dwarf2_per_objfile (objfile);
3856
3857 /* The rule is CUs specify all the files, including those used by
3858 any TU, so there's no need to scan TUs here. */
3859
3860 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3861 {
3862 /* We only need to look at symtabs not already expanded. */
3863 if (per_cu->v.quick->compunit_symtab)
3864 continue;
3865
3866 quick_file_names *file_data = dw2_get_file_names (per_cu);
3867 if (file_data == NULL)
3868 continue;
3869
3870 for (int j = 0; j < file_data->num_file_names; ++j)
3871 {
3872 const char *this_name = file_data->file_names[j];
3873 const char *this_real_name;
3874
3875 if (compare_filenames_for_search (this_name, name))
3876 {
3877 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3878 callback))
3879 return true;
3880 continue;
3881 }
3882
3883 /* Before we invoke realpath, which can get expensive when many
3884 files are involved, do a quick comparison of the basenames. */
3885 if (! basenames_may_differ
3886 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3887 continue;
3888
3889 this_real_name = dw2_get_real_path (objfile, file_data, j);
3890 if (compare_filenames_for_search (this_real_name, name))
3891 {
3892 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3893 callback))
3894 return true;
3895 continue;
3896 }
3897
3898 if (real_path != NULL)
3899 {
3900 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3901 gdb_assert (IS_ABSOLUTE_PATH (name));
3902 if (this_real_name != NULL
3903 && FILENAME_CMP (real_path, this_real_name) == 0)
3904 {
3905 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3906 callback))
3907 return true;
3908 continue;
3909 }
3910 }
3911 }
3912 }
3913
3914 return false;
3915 }
3916
3917 /* Struct used to manage iterating over all CUs looking for a symbol. */
3918
3919 struct dw2_symtab_iterator
3920 {
3921 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3922 struct dwarf2_per_objfile *dwarf2_per_objfile;
3923 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3924 int want_specific_block;
3925 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3926 Unused if !WANT_SPECIFIC_BLOCK. */
3927 int block_index;
3928 /* The kind of symbol we're looking for. */
3929 domain_enum domain;
3930 /* The list of CUs from the index entry of the symbol,
3931 or NULL if not found. */
3932 offset_type *vec;
3933 /* The next element in VEC to look at. */
3934 int next;
3935 /* The number of elements in VEC, or zero if there is no match. */
3936 int length;
3937 /* Have we seen a global version of the symbol?
3938 If so we can ignore all further global instances.
3939 This is to work around gold/15646, inefficient gold-generated
3940 indices. */
3941 int global_seen;
3942 };
3943
3944 /* Initialize the index symtab iterator ITER.
3945 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3946 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3947
3948 static void
3949 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3950 struct dwarf2_per_objfile *dwarf2_per_objfile,
3951 int want_specific_block,
3952 int block_index,
3953 domain_enum domain,
3954 const char *name)
3955 {
3956 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3957 iter->want_specific_block = want_specific_block;
3958 iter->block_index = block_index;
3959 iter->domain = domain;
3960 iter->next = 0;
3961 iter->global_seen = 0;
3962
3963 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3964
3965 /* index is NULL if OBJF_READNOW. */
3966 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3967 iter->length = MAYBE_SWAP (*iter->vec);
3968 else
3969 {
3970 iter->vec = NULL;
3971 iter->length = 0;
3972 }
3973 }
3974
3975 /* Return the next matching CU or NULL if there are no more. */
3976
3977 static struct dwarf2_per_cu_data *
3978 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3979 {
3980 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3981
3982 for ( ; iter->next < iter->length; ++iter->next)
3983 {
3984 offset_type cu_index_and_attrs =
3985 MAYBE_SWAP (iter->vec[iter->next + 1]);
3986 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3987 int want_static = iter->block_index != GLOBAL_BLOCK;
3988 /* This value is only valid for index versions >= 7. */
3989 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3990 gdb_index_symbol_kind symbol_kind =
3991 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3992 /* Only check the symbol attributes if they're present.
3993 Indices prior to version 7 don't record them,
3994 and indices >= 7 may elide them for certain symbols
3995 (gold does this). */
3996 int attrs_valid =
3997 (dwarf2_per_objfile->index_table->version >= 7
3998 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3999
4000 /* Don't crash on bad data. */
4001 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4002 + dwarf2_per_objfile->all_type_units.size ()))
4003 {
4004 complaint (_(".gdb_index entry has bad CU index"
4005 " [in module %s]"),
4006 objfile_name (dwarf2_per_objfile->objfile));
4007 continue;
4008 }
4009
4010 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4011
4012 /* Skip if already read in. */
4013 if (per_cu->v.quick->compunit_symtab)
4014 continue;
4015
4016 /* Check static vs global. */
4017 if (attrs_valid)
4018 {
4019 if (iter->want_specific_block
4020 && want_static != is_static)
4021 continue;
4022 /* Work around gold/15646. */
4023 if (!is_static && iter->global_seen)
4024 continue;
4025 if (!is_static)
4026 iter->global_seen = 1;
4027 }
4028
4029 /* Only check the symbol's kind if it has one. */
4030 if (attrs_valid)
4031 {
4032 switch (iter->domain)
4033 {
4034 case VAR_DOMAIN:
4035 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4036 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4037 /* Some types are also in VAR_DOMAIN. */
4038 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4039 continue;
4040 break;
4041 case STRUCT_DOMAIN:
4042 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4043 continue;
4044 break;
4045 case LABEL_DOMAIN:
4046 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4047 continue;
4048 break;
4049 default:
4050 break;
4051 }
4052 }
4053
4054 ++iter->next;
4055 return per_cu;
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static struct compunit_symtab *
4062 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4063 const char *name, domain_enum domain)
4064 {
4065 struct compunit_symtab *stab_best = NULL;
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068
4069 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4070
4071 struct dw2_symtab_iterator iter;
4072 struct dwarf2_per_cu_data *per_cu;
4073
4074 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4075
4076 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4077 {
4078 struct symbol *sym, *with_opaque = NULL;
4079 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4080 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4081 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4082
4083 sym = block_find_symbol (block, name, domain,
4084 block_find_non_opaque_type_preferred,
4085 &with_opaque);
4086
4087 /* Some caution must be observed with overloaded functions
4088 and methods, since the index will not contain any overload
4089 information (but NAME might contain it). */
4090
4091 if (sym != NULL
4092 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4093 return stab;
4094 if (with_opaque != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4096 stab_best = stab;
4097
4098 /* Keep looking through other CUs. */
4099 }
4100
4101 return stab_best;
4102 }
4103
4104 static void
4105 dw2_print_stats (struct objfile *objfile)
4106 {
4107 struct dwarf2_per_objfile *dwarf2_per_objfile
4108 = get_dwarf2_per_objfile (objfile);
4109 int total = (dwarf2_per_objfile->all_comp_units.size ()
4110 + dwarf2_per_objfile->all_type_units.size ());
4111 int count = 0;
4112
4113 for (int i = 0; i < total; ++i)
4114 {
4115 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4116
4117 if (!per_cu->v.quick->compunit_symtab)
4118 ++count;
4119 }
4120 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4121 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4122 }
4123
4124 /* This dumps minimal information about the index.
4125 It is called via "mt print objfiles".
4126 One use is to verify .gdb_index has been loaded by the
4127 gdb.dwarf2/gdb-index.exp testcase. */
4128
4129 static void
4130 dw2_dump (struct objfile *objfile)
4131 {
4132 struct dwarf2_per_objfile *dwarf2_per_objfile
4133 = get_dwarf2_per_objfile (objfile);
4134
4135 gdb_assert (dwarf2_per_objfile->using_index);
4136 printf_filtered (".gdb_index:");
4137 if (dwarf2_per_objfile->index_table != NULL)
4138 {
4139 printf_filtered (" version %d\n",
4140 dwarf2_per_objfile->index_table->version);
4141 }
4142 else
4143 printf_filtered (" faked for \"readnow\"\n");
4144 printf_filtered ("\n");
4145 }
4146
4147 static void
4148 dw2_expand_symtabs_for_function (struct objfile *objfile,
4149 const char *func_name)
4150 {
4151 struct dwarf2_per_objfile *dwarf2_per_objfile
4152 = get_dwarf2_per_objfile (objfile);
4153
4154 struct dw2_symtab_iterator iter;
4155 struct dwarf2_per_cu_data *per_cu;
4156
4157 /* Note: It doesn't matter what we pass for block_index here. */
4158 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4159 func_name);
4160
4161 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4162 dw2_instantiate_symtab (per_cu, false);
4163
4164 }
4165
4166 static void
4167 dw2_expand_all_symtabs (struct objfile *objfile)
4168 {
4169 struct dwarf2_per_objfile *dwarf2_per_objfile
4170 = get_dwarf2_per_objfile (objfile);
4171 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4172 + dwarf2_per_objfile->all_type_units.size ());
4173
4174 for (int i = 0; i < total_units; ++i)
4175 {
4176 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4177
4178 /* We don't want to directly expand a partial CU, because if we
4179 read it with the wrong language, then assertion failures can
4180 be triggered later on. See PR symtab/23010. So, tell
4181 dw2_instantiate_symtab to skip partial CUs -- any important
4182 partial CU will be read via DW_TAG_imported_unit anyway. */
4183 dw2_instantiate_symtab (per_cu, true);
4184 }
4185 }
4186
4187 static void
4188 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4189 const char *fullname)
4190 {
4191 struct dwarf2_per_objfile *dwarf2_per_objfile
4192 = get_dwarf2_per_objfile (objfile);
4193
4194 /* We don't need to consider type units here.
4195 This is only called for examining code, e.g. expand_line_sal.
4196 There can be an order of magnitude (or more) more type units
4197 than comp units, and we avoid them if we can. */
4198
4199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4200 {
4201 /* We only need to look at symtabs not already expanded. */
4202 if (per_cu->v.quick->compunit_symtab)
4203 continue;
4204
4205 quick_file_names *file_data = dw2_get_file_names (per_cu);
4206 if (file_data == NULL)
4207 continue;
4208
4209 for (int j = 0; j < file_data->num_file_names; ++j)
4210 {
4211 const char *this_fullname = file_data->file_names[j];
4212
4213 if (filename_cmp (this_fullname, fullname) == 0)
4214 {
4215 dw2_instantiate_symtab (per_cu, false);
4216 break;
4217 }
4218 }
4219 }
4220 }
4221
4222 static void
4223 dw2_map_matching_symbols (struct objfile *objfile,
4224 const char * name, domain_enum domain,
4225 int global,
4226 int (*callback) (const struct block *,
4227 struct symbol *, void *),
4228 void *data, symbol_name_match_type match,
4229 symbol_compare_ftype *ordered_compare)
4230 {
4231 /* Currently unimplemented; used for Ada. The function can be called if the
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
4234 }
4235
4236 /* Symbol name matcher for .gdb_index names.
4237
4238 Symbol names in .gdb_index have a few particularities:
4239
4240 - There's no indication of which is the language of each symbol.
4241
4242 Since each language has its own symbol name matching algorithm,
4243 and we don't know which language is the right one, we must match
4244 each symbol against all languages. This would be a potential
4245 performance problem if it were not mitigated by the
4246 mapped_index::name_components lookup table, which significantly
4247 reduces the number of times we need to call into this matcher,
4248 making it a non-issue.
4249
4250 - Symbol names in the index have no overload (parameter)
4251 information. I.e., in C++, "foo(int)" and "foo(long)" both
4252 appear as "foo" in the index, for example.
4253
4254 This means that the lookup names passed to the symbol name
4255 matcher functions must have no parameter information either
4256 because (e.g.) symbol search name "foo" does not match
4257 lookup-name "foo(int)" [while swapping search name for lookup
4258 name would match].
4259 */
4260 class gdb_index_symbol_name_matcher
4261 {
4262 public:
4263 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4264 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4265
4266 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4267 Returns true if any matcher matches. */
4268 bool matches (const char *symbol_name);
4269
4270 private:
4271 /* A reference to the lookup name we're matching against. */
4272 const lookup_name_info &m_lookup_name;
4273
4274 /* A vector holding all the different symbol name matchers, for all
4275 languages. */
4276 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4277 };
4278
4279 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4280 (const lookup_name_info &lookup_name)
4281 : m_lookup_name (lookup_name)
4282 {
4283 /* Prepare the vector of comparison functions upfront, to avoid
4284 doing the same work for each symbol. Care is taken to avoid
4285 matching with the same matcher more than once if/when multiple
4286 languages use the same matcher function. */
4287 auto &matchers = m_symbol_name_matcher_funcs;
4288 matchers.reserve (nr_languages);
4289
4290 matchers.push_back (default_symbol_name_matcher);
4291
4292 for (int i = 0; i < nr_languages; i++)
4293 {
4294 const language_defn *lang = language_def ((enum language) i);
4295 symbol_name_matcher_ftype *name_matcher
4296 = get_symbol_name_matcher (lang, m_lookup_name);
4297
4298 /* Don't insert the same comparison routine more than once.
4299 Note that we do this linear walk instead of a seemingly
4300 cheaper sorted insert, or use a std::set or something like
4301 that, because relative order of function addresses is not
4302 stable. This is not a problem in practice because the number
4303 of supported languages is low, and the cost here is tiny
4304 compared to the number of searches we'll do afterwards using
4305 this object. */
4306 if (name_matcher != default_symbol_name_matcher
4307 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4308 == matchers.end ()))
4309 matchers.push_back (name_matcher);
4310 }
4311 }
4312
4313 bool
4314 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4315 {
4316 for (auto matches_name : m_symbol_name_matcher_funcs)
4317 if (matches_name (symbol_name, m_lookup_name, NULL))
4318 return true;
4319
4320 return false;
4321 }
4322
4323 /* Starting from a search name, return the string that finds the upper
4324 bound of all strings that start with SEARCH_NAME in a sorted name
4325 list. Returns the empty string to indicate that the upper bound is
4326 the end of the list. */
4327
4328 static std::string
4329 make_sort_after_prefix_name (const char *search_name)
4330 {
4331 /* When looking to complete "func", we find the upper bound of all
4332 symbols that start with "func" by looking for where we'd insert
4333 the closest string that would follow "func" in lexicographical
4334 order. Usually, that's "func"-with-last-character-incremented,
4335 i.e. "fund". Mind non-ASCII characters, though. Usually those
4336 will be UTF-8 multi-byte sequences, but we can't be certain.
4337 Especially mind the 0xff character, which is a valid character in
4338 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4339 rule out compilers allowing it in identifiers. Note that
4340 conveniently, strcmp/strcasecmp are specified to compare
4341 characters interpreted as unsigned char. So what we do is treat
4342 the whole string as a base 256 number composed of a sequence of
4343 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4344 to 0, and carries 1 to the following more-significant position.
4345 If the very first character in SEARCH_NAME ends up incremented
4346 and carries/overflows, then the upper bound is the end of the
4347 list. The string after the empty string is also the empty
4348 string.
4349
4350 Some examples of this operation:
4351
4352 SEARCH_NAME => "+1" RESULT
4353
4354 "abc" => "abd"
4355 "ab\xff" => "ac"
4356 "\xff" "a" "\xff" => "\xff" "b"
4357 "\xff" => ""
4358 "\xff\xff" => ""
4359 "" => ""
4360
4361 Then, with these symbols for example:
4362
4363 func
4364 func1
4365 fund
4366
4367 completing "func" looks for symbols between "func" and
4368 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4369 which finds "func" and "func1", but not "fund".
4370
4371 And with:
4372
4373 funcÿ (Latin1 'ÿ' [0xff])
4374 funcÿ1
4375 fund
4376
4377 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4378 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4379
4380 And with:
4381
4382 ÿÿ (Latin1 'ÿ' [0xff])
4383 ÿÿ1
4384
4385 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4386 the end of the list.
4387 */
4388 std::string after = search_name;
4389 while (!after.empty () && (unsigned char) after.back () == 0xff)
4390 after.pop_back ();
4391 if (!after.empty ())
4392 after.back () = (unsigned char) after.back () + 1;
4393 return after;
4394 }
4395
4396 /* See declaration. */
4397
4398 std::pair<std::vector<name_component>::const_iterator,
4399 std::vector<name_component>::const_iterator>
4400 mapped_index_base::find_name_components_bounds
4401 (const lookup_name_info &lookup_name_without_params) const
4402 {
4403 auto *name_cmp
4404 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4405
4406 const char *cplus
4407 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4408
4409 /* Comparison function object for lower_bound that matches against a
4410 given symbol name. */
4411 auto lookup_compare_lower = [&] (const name_component &elem,
4412 const char *name)
4413 {
4414 const char *elem_qualified = this->symbol_name_at (elem.idx);
4415 const char *elem_name = elem_qualified + elem.name_offset;
4416 return name_cmp (elem_name, name) < 0;
4417 };
4418
4419 /* Comparison function object for upper_bound that matches against a
4420 given symbol name. */
4421 auto lookup_compare_upper = [&] (const char *name,
4422 const name_component &elem)
4423 {
4424 const char *elem_qualified = this->symbol_name_at (elem.idx);
4425 const char *elem_name = elem_qualified + elem.name_offset;
4426 return name_cmp (name, elem_name) < 0;
4427 };
4428
4429 auto begin = this->name_components.begin ();
4430 auto end = this->name_components.end ();
4431
4432 /* Find the lower bound. */
4433 auto lower = [&] ()
4434 {
4435 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4436 return begin;
4437 else
4438 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4439 } ();
4440
4441 /* Find the upper bound. */
4442 auto upper = [&] ()
4443 {
4444 if (lookup_name_without_params.completion_mode ())
4445 {
4446 /* In completion mode, we want UPPER to point past all
4447 symbols names that have the same prefix. I.e., with
4448 these symbols, and completing "func":
4449
4450 function << lower bound
4451 function1
4452 other_function << upper bound
4453
4454 We find the upper bound by looking for the insertion
4455 point of "func"-with-last-character-incremented,
4456 i.e. "fund". */
4457 std::string after = make_sort_after_prefix_name (cplus);
4458 if (after.empty ())
4459 return end;
4460 return std::lower_bound (lower, end, after.c_str (),
4461 lookup_compare_lower);
4462 }
4463 else
4464 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4465 } ();
4466
4467 return {lower, upper};
4468 }
4469
4470 /* See declaration. */
4471
4472 void
4473 mapped_index_base::build_name_components ()
4474 {
4475 if (!this->name_components.empty ())
4476 return;
4477
4478 this->name_components_casing = case_sensitivity;
4479 auto *name_cmp
4480 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4481
4482 /* The code below only knows how to break apart components of C++
4483 symbol names (and other languages that use '::' as
4484 namespace/module separator). If we add support for wild matching
4485 to some language that uses some other operator (E.g., Ada, Go and
4486 D use '.'), then we'll need to try splitting the symbol name
4487 according to that language too. Note that Ada does support wild
4488 matching, but doesn't currently support .gdb_index. */
4489 auto count = this->symbol_name_count ();
4490 for (offset_type idx = 0; idx < count; idx++)
4491 {
4492 if (this->symbol_name_slot_invalid (idx))
4493 continue;
4494
4495 const char *name = this->symbol_name_at (idx);
4496
4497 /* Add each name component to the name component table. */
4498 unsigned int previous_len = 0;
4499 for (unsigned int current_len = cp_find_first_component (name);
4500 name[current_len] != '\0';
4501 current_len += cp_find_first_component (name + current_len))
4502 {
4503 gdb_assert (name[current_len] == ':');
4504 this->name_components.push_back ({previous_len, idx});
4505 /* Skip the '::'. */
4506 current_len += 2;
4507 previous_len = current_len;
4508 }
4509 this->name_components.push_back ({previous_len, idx});
4510 }
4511
4512 /* Sort name_components elements by name. */
4513 auto name_comp_compare = [&] (const name_component &left,
4514 const name_component &right)
4515 {
4516 const char *left_qualified = this->symbol_name_at (left.idx);
4517 const char *right_qualified = this->symbol_name_at (right.idx);
4518
4519 const char *left_name = left_qualified + left.name_offset;
4520 const char *right_name = right_qualified + right.name_offset;
4521
4522 return name_cmp (left_name, right_name) < 0;
4523 };
4524
4525 std::sort (this->name_components.begin (),
4526 this->name_components.end (),
4527 name_comp_compare);
4528 }
4529
4530 /* Helper for dw2_expand_symtabs_matching that works with a
4531 mapped_index_base instead of the containing objfile. This is split
4532 to a separate function in order to be able to unit test the
4533 name_components matching using a mock mapped_index_base. For each
4534 symbol name that matches, calls MATCH_CALLBACK, passing it the
4535 symbol's index in the mapped_index_base symbol table. */
4536
4537 static void
4538 dw2_expand_symtabs_matching_symbol
4539 (mapped_index_base &index,
4540 const lookup_name_info &lookup_name_in,
4541 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4542 enum search_domain kind,
4543 gdb::function_view<void (offset_type)> match_callback)
4544 {
4545 lookup_name_info lookup_name_without_params
4546 = lookup_name_in.make_ignore_params ();
4547 gdb_index_symbol_name_matcher lookup_name_matcher
4548 (lookup_name_without_params);
4549
4550 /* Build the symbol name component sorted vector, if we haven't
4551 yet. */
4552 index.build_name_components ();
4553
4554 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4555
4556 /* Now for each symbol name in range, check to see if we have a name
4557 match, and if so, call the MATCH_CALLBACK callback. */
4558
4559 /* The same symbol may appear more than once in the range though.
4560 E.g., if we're looking for symbols that complete "w", and we have
4561 a symbol named "w1::w2", we'll find the two name components for
4562 that same symbol in the range. To be sure we only call the
4563 callback once per symbol, we first collect the symbol name
4564 indexes that matched in a temporary vector and ignore
4565 duplicates. */
4566 std::vector<offset_type> matches;
4567 matches.reserve (std::distance (bounds.first, bounds.second));
4568
4569 for (; bounds.first != bounds.second; ++bounds.first)
4570 {
4571 const char *qualified = index.symbol_name_at (bounds.first->idx);
4572
4573 if (!lookup_name_matcher.matches (qualified)
4574 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4575 continue;
4576
4577 matches.push_back (bounds.first->idx);
4578 }
4579
4580 std::sort (matches.begin (), matches.end ());
4581
4582 /* Finally call the callback, once per match. */
4583 ULONGEST prev = -1;
4584 for (offset_type idx : matches)
4585 {
4586 if (prev != idx)
4587 {
4588 match_callback (idx);
4589 prev = idx;
4590 }
4591 }
4592
4593 /* Above we use a type wider than idx's for 'prev', since 0 and
4594 (offset_type)-1 are both possible values. */
4595 static_assert (sizeof (prev) > sizeof (offset_type), "");
4596 }
4597
4598 #if GDB_SELF_TEST
4599
4600 namespace selftests { namespace dw2_expand_symtabs_matching {
4601
4602 /* A mock .gdb_index/.debug_names-like name index table, enough to
4603 exercise dw2_expand_symtabs_matching_symbol, which works with the
4604 mapped_index_base interface. Builds an index from the symbol list
4605 passed as parameter to the constructor. */
4606 class mock_mapped_index : public mapped_index_base
4607 {
4608 public:
4609 mock_mapped_index (gdb::array_view<const char *> symbols)
4610 : m_symbol_table (symbols)
4611 {}
4612
4613 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4614
4615 /* Return the number of names in the symbol table. */
4616 size_t symbol_name_count () const override
4617 {
4618 return m_symbol_table.size ();
4619 }
4620
4621 /* Get the name of the symbol at IDX in the symbol table. */
4622 const char *symbol_name_at (offset_type idx) const override
4623 {
4624 return m_symbol_table[idx];
4625 }
4626
4627 private:
4628 gdb::array_view<const char *> m_symbol_table;
4629 };
4630
4631 /* Convenience function that converts a NULL pointer to a "<null>"
4632 string, to pass to print routines. */
4633
4634 static const char *
4635 string_or_null (const char *str)
4636 {
4637 return str != NULL ? str : "<null>";
4638 }
4639
4640 /* Check if a lookup_name_info built from
4641 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4642 index. EXPECTED_LIST is the list of expected matches, in expected
4643 matching order. If no match expected, then an empty list is
4644 specified. Returns true on success. On failure prints a warning
4645 indicating the file:line that failed, and returns false. */
4646
4647 static bool
4648 check_match (const char *file, int line,
4649 mock_mapped_index &mock_index,
4650 const char *name, symbol_name_match_type match_type,
4651 bool completion_mode,
4652 std::initializer_list<const char *> expected_list)
4653 {
4654 lookup_name_info lookup_name (name, match_type, completion_mode);
4655
4656 bool matched = true;
4657
4658 auto mismatch = [&] (const char *expected_str,
4659 const char *got)
4660 {
4661 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4662 "expected=\"%s\", got=\"%s\"\n"),
4663 file, line,
4664 (match_type == symbol_name_match_type::FULL
4665 ? "FULL" : "WILD"),
4666 name, string_or_null (expected_str), string_or_null (got));
4667 matched = false;
4668 };
4669
4670 auto expected_it = expected_list.begin ();
4671 auto expected_end = expected_list.end ();
4672
4673 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4674 NULL, ALL_DOMAIN,
4675 [&] (offset_type idx)
4676 {
4677 const char *matched_name = mock_index.symbol_name_at (idx);
4678 const char *expected_str
4679 = expected_it == expected_end ? NULL : *expected_it++;
4680
4681 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4682 mismatch (expected_str, matched_name);
4683 });
4684
4685 const char *expected_str
4686 = expected_it == expected_end ? NULL : *expected_it++;
4687 if (expected_str != NULL)
4688 mismatch (expected_str, NULL);
4689
4690 return matched;
4691 }
4692
4693 /* The symbols added to the mock mapped_index for testing (in
4694 canonical form). */
4695 static const char *test_symbols[] = {
4696 "function",
4697 "std::bar",
4698 "std::zfunction",
4699 "std::zfunction2",
4700 "w1::w2",
4701 "ns::foo<char*>",
4702 "ns::foo<int>",
4703 "ns::foo<long>",
4704 "ns2::tmpl<int>::foo2",
4705 "(anonymous namespace)::A::B::C",
4706
4707 /* These are used to check that the increment-last-char in the
4708 matching algorithm for completion doesn't match "t1_fund" when
4709 completing "t1_func". */
4710 "t1_func",
4711 "t1_func1",
4712 "t1_fund",
4713 "t1_fund1",
4714
4715 /* A UTF-8 name with multi-byte sequences to make sure that
4716 cp-name-parser understands this as a single identifier ("função"
4717 is "function" in PT). */
4718 u8"u8função",
4719
4720 /* \377 (0xff) is Latin1 'ÿ'. */
4721 "yfunc\377",
4722
4723 /* \377 (0xff) is Latin1 'ÿ'. */
4724 "\377",
4725 "\377\377123",
4726
4727 /* A name with all sorts of complications. Starts with "z" to make
4728 it easier for the completion tests below. */
4729 #define Z_SYM_NAME \
4730 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4731 "::tuple<(anonymous namespace)::ui*, " \
4732 "std::default_delete<(anonymous namespace)::ui>, void>"
4733
4734 Z_SYM_NAME
4735 };
4736
4737 /* Returns true if the mapped_index_base::find_name_component_bounds
4738 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4739 in completion mode. */
4740
4741 static bool
4742 check_find_bounds_finds (mapped_index_base &index,
4743 const char *search_name,
4744 gdb::array_view<const char *> expected_syms)
4745 {
4746 lookup_name_info lookup_name (search_name,
4747 symbol_name_match_type::FULL, true);
4748
4749 auto bounds = index.find_name_components_bounds (lookup_name);
4750
4751 size_t distance = std::distance (bounds.first, bounds.second);
4752 if (distance != expected_syms.size ())
4753 return false;
4754
4755 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4756 {
4757 auto nc_elem = bounds.first + exp_elem;
4758 const char *qualified = index.symbol_name_at (nc_elem->idx);
4759 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4760 return false;
4761 }
4762
4763 return true;
4764 }
4765
4766 /* Test the lower-level mapped_index::find_name_component_bounds
4767 method. */
4768
4769 static void
4770 test_mapped_index_find_name_component_bounds ()
4771 {
4772 mock_mapped_index mock_index (test_symbols);
4773
4774 mock_index.build_name_components ();
4775
4776 /* Test the lower-level mapped_index::find_name_component_bounds
4777 method in completion mode. */
4778 {
4779 static const char *expected_syms[] = {
4780 "t1_func",
4781 "t1_func1",
4782 };
4783
4784 SELF_CHECK (check_find_bounds_finds (mock_index,
4785 "t1_func", expected_syms));
4786 }
4787
4788 /* Check that the increment-last-char in the name matching algorithm
4789 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4790 {
4791 static const char *expected_syms1[] = {
4792 "\377",
4793 "\377\377123",
4794 };
4795 SELF_CHECK (check_find_bounds_finds (mock_index,
4796 "\377", expected_syms1));
4797
4798 static const char *expected_syms2[] = {
4799 "\377\377123",
4800 };
4801 SELF_CHECK (check_find_bounds_finds (mock_index,
4802 "\377\377", expected_syms2));
4803 }
4804 }
4805
4806 /* Test dw2_expand_symtabs_matching_symbol. */
4807
4808 static void
4809 test_dw2_expand_symtabs_matching_symbol ()
4810 {
4811 mock_mapped_index mock_index (test_symbols);
4812
4813 /* We let all tests run until the end even if some fails, for debug
4814 convenience. */
4815 bool any_mismatch = false;
4816
4817 /* Create the expected symbols list (an initializer_list). Needed
4818 because lists have commas, and we need to pass them to CHECK,
4819 which is a macro. */
4820 #define EXPECT(...) { __VA_ARGS__ }
4821
4822 /* Wrapper for check_match that passes down the current
4823 __FILE__/__LINE__. */
4824 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4825 any_mismatch |= !check_match (__FILE__, __LINE__, \
4826 mock_index, \
4827 NAME, MATCH_TYPE, COMPLETION_MODE, \
4828 EXPECTED_LIST)
4829
4830 /* Identity checks. */
4831 for (const char *sym : test_symbols)
4832 {
4833 /* Should be able to match all existing symbols. */
4834 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4835 EXPECT (sym));
4836
4837 /* Should be able to match all existing symbols with
4838 parameters. */
4839 std::string with_params = std::string (sym) + "(int)";
4840 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4841 EXPECT (sym));
4842
4843 /* Should be able to match all existing symbols with
4844 parameters and qualifiers. */
4845 with_params = std::string (sym) + " ( int ) const";
4846 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4847 EXPECT (sym));
4848
4849 /* This should really find sym, but cp-name-parser.y doesn't
4850 know about lvalue/rvalue qualifiers yet. */
4851 with_params = std::string (sym) + " ( int ) &&";
4852 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4853 {});
4854 }
4855
4856 /* Check that the name matching algorithm for completion doesn't get
4857 confused with Latin1 'ÿ' / 0xff. */
4858 {
4859 static const char str[] = "\377";
4860 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4861 EXPECT ("\377", "\377\377123"));
4862 }
4863
4864 /* Check that the increment-last-char in the matching algorithm for
4865 completion doesn't match "t1_fund" when completing "t1_func". */
4866 {
4867 static const char str[] = "t1_func";
4868 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4869 EXPECT ("t1_func", "t1_func1"));
4870 }
4871
4872 /* Check that completion mode works at each prefix of the expected
4873 symbol name. */
4874 {
4875 static const char str[] = "function(int)";
4876 size_t len = strlen (str);
4877 std::string lookup;
4878
4879 for (size_t i = 1; i < len; i++)
4880 {
4881 lookup.assign (str, i);
4882 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4883 EXPECT ("function"));
4884 }
4885 }
4886
4887 /* While "w" is a prefix of both components, the match function
4888 should still only be called once. */
4889 {
4890 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4891 EXPECT ("w1::w2"));
4892 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4893 EXPECT ("w1::w2"));
4894 }
4895
4896 /* Same, with a "complicated" symbol. */
4897 {
4898 static const char str[] = Z_SYM_NAME;
4899 size_t len = strlen (str);
4900 std::string lookup;
4901
4902 for (size_t i = 1; i < len; i++)
4903 {
4904 lookup.assign (str, i);
4905 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4906 EXPECT (Z_SYM_NAME));
4907 }
4908 }
4909
4910 /* In FULL mode, an incomplete symbol doesn't match. */
4911 {
4912 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4913 {});
4914 }
4915
4916 /* A complete symbol with parameters matches any overload, since the
4917 index has no overload info. */
4918 {
4919 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4920 EXPECT ("std::zfunction", "std::zfunction2"));
4921 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4922 EXPECT ("std::zfunction", "std::zfunction2"));
4923 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4924 EXPECT ("std::zfunction", "std::zfunction2"));
4925 }
4926
4927 /* Check that whitespace is ignored appropriately. A symbol with a
4928 template argument list. */
4929 {
4930 static const char expected[] = "ns::foo<int>";
4931 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4932 EXPECT (expected));
4933 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4934 EXPECT (expected));
4935 }
4936
4937 /* Check that whitespace is ignored appropriately. A symbol with a
4938 template argument list that includes a pointer. */
4939 {
4940 static const char expected[] = "ns::foo<char*>";
4941 /* Try both completion and non-completion modes. */
4942 static const bool completion_mode[2] = {false, true};
4943 for (size_t i = 0; i < 2; i++)
4944 {
4945 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4946 completion_mode[i], EXPECT (expected));
4947 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4948 completion_mode[i], EXPECT (expected));
4949
4950 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4954 }
4955 }
4956
4957 {
4958 /* Check method qualifiers are ignored. */
4959 static const char expected[] = "ns::foo<char*>";
4960 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4961 symbol_name_match_type::FULL, true, EXPECT (expected));
4962 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4963 symbol_name_match_type::FULL, true, EXPECT (expected));
4964 CHECK_MATCH ("foo < char * > ( int ) const",
4965 symbol_name_match_type::WILD, true, EXPECT (expected));
4966 CHECK_MATCH ("foo < char * > ( int ) &&",
4967 symbol_name_match_type::WILD, true, EXPECT (expected));
4968 }
4969
4970 /* Test lookup names that don't match anything. */
4971 {
4972 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4973 {});
4974
4975 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4976 {});
4977 }
4978
4979 /* Some wild matching tests, exercising "(anonymous namespace)",
4980 which should not be confused with a parameter list. */
4981 {
4982 static const char *syms[] = {
4983 "A::B::C",
4984 "B::C",
4985 "C",
4986 "A :: B :: C ( int )",
4987 "B :: C ( int )",
4988 "C ( int )",
4989 };
4990
4991 for (const char *s : syms)
4992 {
4993 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4994 EXPECT ("(anonymous namespace)::A::B::C"));
4995 }
4996 }
4997
4998 {
4999 static const char expected[] = "ns2::tmpl<int>::foo2";
5000 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5001 EXPECT (expected));
5002 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5003 EXPECT (expected));
5004 }
5005
5006 SELF_CHECK (!any_mismatch);
5007
5008 #undef EXPECT
5009 #undef CHECK_MATCH
5010 }
5011
5012 static void
5013 run_test ()
5014 {
5015 test_mapped_index_find_name_component_bounds ();
5016 test_dw2_expand_symtabs_matching_symbol ();
5017 }
5018
5019 }} // namespace selftests::dw2_expand_symtabs_matching
5020
5021 #endif /* GDB_SELF_TEST */
5022
5023 /* If FILE_MATCHER is NULL or if PER_CU has
5024 dwarf2_per_cu_quick_data::MARK set (see
5025 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5026 EXPANSION_NOTIFY on it. */
5027
5028 static void
5029 dw2_expand_symtabs_matching_one
5030 (struct dwarf2_per_cu_data *per_cu,
5031 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5032 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5033 {
5034 if (file_matcher == NULL || per_cu->v.quick->mark)
5035 {
5036 bool symtab_was_null
5037 = (per_cu->v.quick->compunit_symtab == NULL);
5038
5039 dw2_instantiate_symtab (per_cu, false);
5040
5041 if (expansion_notify != NULL
5042 && symtab_was_null
5043 && per_cu->v.quick->compunit_symtab != NULL)
5044 expansion_notify (per_cu->v.quick->compunit_symtab);
5045 }
5046 }
5047
5048 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5049 matched, to expand corresponding CUs that were marked. IDX is the
5050 index of the symbol name that matched. */
5051
5052 static void
5053 dw2_expand_marked_cus
5054 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5055 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5056 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5057 search_domain kind)
5058 {
5059 offset_type *vec, vec_len, vec_idx;
5060 bool global_seen = false;
5061 mapped_index &index = *dwarf2_per_objfile->index_table;
5062
5063 vec = (offset_type *) (index.constant_pool
5064 + MAYBE_SWAP (index.symbol_table[idx].vec));
5065 vec_len = MAYBE_SWAP (vec[0]);
5066 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5067 {
5068 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5069 /* This value is only valid for index versions >= 7. */
5070 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5071 gdb_index_symbol_kind symbol_kind =
5072 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5073 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5074 /* Only check the symbol attributes if they're present.
5075 Indices prior to version 7 don't record them,
5076 and indices >= 7 may elide them for certain symbols
5077 (gold does this). */
5078 int attrs_valid =
5079 (index.version >= 7
5080 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5081
5082 /* Work around gold/15646. */
5083 if (attrs_valid)
5084 {
5085 if (!is_static && global_seen)
5086 continue;
5087 if (!is_static)
5088 global_seen = true;
5089 }
5090
5091 /* Only check the symbol's kind if it has one. */
5092 if (attrs_valid)
5093 {
5094 switch (kind)
5095 {
5096 case VARIABLES_DOMAIN:
5097 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5098 continue;
5099 break;
5100 case FUNCTIONS_DOMAIN:
5101 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5102 continue;
5103 break;
5104 case TYPES_DOMAIN:
5105 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5106 continue;
5107 break;
5108 default:
5109 break;
5110 }
5111 }
5112
5113 /* Don't crash on bad data. */
5114 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5115 + dwarf2_per_objfile->all_type_units.size ()))
5116 {
5117 complaint (_(".gdb_index entry has bad CU index"
5118 " [in module %s]"),
5119 objfile_name (dwarf2_per_objfile->objfile));
5120 continue;
5121 }
5122
5123 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5124 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5125 expansion_notify);
5126 }
5127 }
5128
5129 /* If FILE_MATCHER is non-NULL, set all the
5130 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5131 that match FILE_MATCHER. */
5132
5133 static void
5134 dw_expand_symtabs_matching_file_matcher
5135 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5136 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5137 {
5138 if (file_matcher == NULL)
5139 return;
5140
5141 objfile *const objfile = dwarf2_per_objfile->objfile;
5142
5143 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5144 htab_eq_pointer,
5145 NULL, xcalloc, xfree));
5146 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5147 htab_eq_pointer,
5148 NULL, xcalloc, xfree));
5149
5150 /* The rule is CUs specify all the files, including those used by
5151 any TU, so there's no need to scan TUs here. */
5152
5153 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5154 {
5155 QUIT;
5156
5157 per_cu->v.quick->mark = 0;
5158
5159 /* We only need to look at symtabs not already expanded. */
5160 if (per_cu->v.quick->compunit_symtab)
5161 continue;
5162
5163 quick_file_names *file_data = dw2_get_file_names (per_cu);
5164 if (file_data == NULL)
5165 continue;
5166
5167 if (htab_find (visited_not_found.get (), file_data) != NULL)
5168 continue;
5169 else if (htab_find (visited_found.get (), file_data) != NULL)
5170 {
5171 per_cu->v.quick->mark = 1;
5172 continue;
5173 }
5174
5175 for (int j = 0; j < file_data->num_file_names; ++j)
5176 {
5177 const char *this_real_name;
5178
5179 if (file_matcher (file_data->file_names[j], false))
5180 {
5181 per_cu->v.quick->mark = 1;
5182 break;
5183 }
5184
5185 /* Before we invoke realpath, which can get expensive when many
5186 files are involved, do a quick comparison of the basenames. */
5187 if (!basenames_may_differ
5188 && !file_matcher (lbasename (file_data->file_names[j]),
5189 true))
5190 continue;
5191
5192 this_real_name = dw2_get_real_path (objfile, file_data, j);
5193 if (file_matcher (this_real_name, false))
5194 {
5195 per_cu->v.quick->mark = 1;
5196 break;
5197 }
5198 }
5199
5200 void **slot = htab_find_slot (per_cu->v.quick->mark
5201 ? visited_found.get ()
5202 : visited_not_found.get (),
5203 file_data, INSERT);
5204 *slot = file_data;
5205 }
5206 }
5207
5208 static void
5209 dw2_expand_symtabs_matching
5210 (struct objfile *objfile,
5211 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5212 const lookup_name_info &lookup_name,
5213 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5215 enum search_domain kind)
5216 {
5217 struct dwarf2_per_objfile *dwarf2_per_objfile
5218 = get_dwarf2_per_objfile (objfile);
5219
5220 /* index_table is NULL if OBJF_READNOW. */
5221 if (!dwarf2_per_objfile->index_table)
5222 return;
5223
5224 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5225
5226 mapped_index &index = *dwarf2_per_objfile->index_table;
5227
5228 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5229 symbol_matcher,
5230 kind, [&] (offset_type idx)
5231 {
5232 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5233 expansion_notify, kind);
5234 });
5235 }
5236
5237 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5238 symtab. */
5239
5240 static struct compunit_symtab *
5241 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5242 CORE_ADDR pc)
5243 {
5244 int i;
5245
5246 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5247 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5248 return cust;
5249
5250 if (cust->includes == NULL)
5251 return NULL;
5252
5253 for (i = 0; cust->includes[i]; ++i)
5254 {
5255 struct compunit_symtab *s = cust->includes[i];
5256
5257 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5258 if (s != NULL)
5259 return s;
5260 }
5261
5262 return NULL;
5263 }
5264
5265 static struct compunit_symtab *
5266 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5267 struct bound_minimal_symbol msymbol,
5268 CORE_ADDR pc,
5269 struct obj_section *section,
5270 int warn_if_readin)
5271 {
5272 struct dwarf2_per_cu_data *data;
5273 struct compunit_symtab *result;
5274
5275 if (!objfile->partial_symtabs->psymtabs_addrmap)
5276 return NULL;
5277
5278 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5279 SECT_OFF_TEXT (objfile));
5280 data = (struct dwarf2_per_cu_data *) addrmap_find
5281 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5282 if (!data)
5283 return NULL;
5284
5285 if (warn_if_readin && data->v.quick->compunit_symtab)
5286 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5287 paddress (get_objfile_arch (objfile), pc));
5288
5289 result
5290 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5291 false),
5292 pc);
5293 gdb_assert (result != NULL);
5294 return result;
5295 }
5296
5297 static void
5298 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5299 void *data, int need_fullname)
5300 {
5301 struct dwarf2_per_objfile *dwarf2_per_objfile
5302 = get_dwarf2_per_objfile (objfile);
5303
5304 if (!dwarf2_per_objfile->filenames_cache)
5305 {
5306 dwarf2_per_objfile->filenames_cache.emplace ();
5307
5308 htab_up visited (htab_create_alloc (10,
5309 htab_hash_pointer, htab_eq_pointer,
5310 NULL, xcalloc, xfree));
5311
5312 /* The rule is CUs specify all the files, including those used
5313 by any TU, so there's no need to scan TUs here. We can
5314 ignore file names coming from already-expanded CUs. */
5315
5316 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5317 {
5318 if (per_cu->v.quick->compunit_symtab)
5319 {
5320 void **slot = htab_find_slot (visited.get (),
5321 per_cu->v.quick->file_names,
5322 INSERT);
5323
5324 *slot = per_cu->v.quick->file_names;
5325 }
5326 }
5327
5328 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5329 {
5330 /* We only need to look at symtabs not already expanded. */
5331 if (per_cu->v.quick->compunit_symtab)
5332 continue;
5333
5334 quick_file_names *file_data = dw2_get_file_names (per_cu);
5335 if (file_data == NULL)
5336 continue;
5337
5338 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5339 if (*slot)
5340 {
5341 /* Already visited. */
5342 continue;
5343 }
5344 *slot = file_data;
5345
5346 for (int j = 0; j < file_data->num_file_names; ++j)
5347 {
5348 const char *filename = file_data->file_names[j];
5349 dwarf2_per_objfile->filenames_cache->seen (filename);
5350 }
5351 }
5352 }
5353
5354 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5355 {
5356 gdb::unique_xmalloc_ptr<char> this_real_name;
5357
5358 if (need_fullname)
5359 this_real_name = gdb_realpath (filename);
5360 (*fun) (filename, this_real_name.get (), data);
5361 });
5362 }
5363
5364 static int
5365 dw2_has_symbols (struct objfile *objfile)
5366 {
5367 return 1;
5368 }
5369
5370 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5371 {
5372 dw2_has_symbols,
5373 dw2_find_last_source_symtab,
5374 dw2_forget_cached_source_info,
5375 dw2_map_symtabs_matching_filename,
5376 dw2_lookup_symbol,
5377 dw2_print_stats,
5378 dw2_dump,
5379 dw2_expand_symtabs_for_function,
5380 dw2_expand_all_symtabs,
5381 dw2_expand_symtabs_with_fullname,
5382 dw2_map_matching_symbols,
5383 dw2_expand_symtabs_matching,
5384 dw2_find_pc_sect_compunit_symtab,
5385 NULL,
5386 dw2_map_symbol_filenames
5387 };
5388
5389 /* DWARF-5 debug_names reader. */
5390
5391 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5392 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5393
5394 /* A helper function that reads the .debug_names section in SECTION
5395 and fills in MAP. FILENAME is the name of the file containing the
5396 section; it is used for error reporting.
5397
5398 Returns true if all went well, false otherwise. */
5399
5400 static bool
5401 read_debug_names_from_section (struct objfile *objfile,
5402 const char *filename,
5403 struct dwarf2_section_info *section,
5404 mapped_debug_names &map)
5405 {
5406 if (dwarf2_section_empty_p (section))
5407 return false;
5408
5409 /* Older elfutils strip versions could keep the section in the main
5410 executable while splitting it for the separate debug info file. */
5411 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5412 return false;
5413
5414 dwarf2_read_section (objfile, section);
5415
5416 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5417
5418 const gdb_byte *addr = section->buffer;
5419
5420 bfd *const abfd = get_section_bfd_owner (section);
5421
5422 unsigned int bytes_read;
5423 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5424 addr += bytes_read;
5425
5426 map.dwarf5_is_dwarf64 = bytes_read != 4;
5427 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5428 if (bytes_read + length != section->size)
5429 {
5430 /* There may be multiple per-CU indices. */
5431 warning (_("Section .debug_names in %s length %s does not match "
5432 "section length %s, ignoring .debug_names."),
5433 filename, plongest (bytes_read + length),
5434 pulongest (section->size));
5435 return false;
5436 }
5437
5438 /* The version number. */
5439 uint16_t version = read_2_bytes (abfd, addr);
5440 addr += 2;
5441 if (version != 5)
5442 {
5443 warning (_("Section .debug_names in %s has unsupported version %d, "
5444 "ignoring .debug_names."),
5445 filename, version);
5446 return false;
5447 }
5448
5449 /* Padding. */
5450 uint16_t padding = read_2_bytes (abfd, addr);
5451 addr += 2;
5452 if (padding != 0)
5453 {
5454 warning (_("Section .debug_names in %s has unsupported padding %d, "
5455 "ignoring .debug_names."),
5456 filename, padding);
5457 return false;
5458 }
5459
5460 /* comp_unit_count - The number of CUs in the CU list. */
5461 map.cu_count = read_4_bytes (abfd, addr);
5462 addr += 4;
5463
5464 /* local_type_unit_count - The number of TUs in the local TU
5465 list. */
5466 map.tu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* foreign_type_unit_count - The number of TUs in the foreign TU
5470 list. */
5471 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473 if (foreign_tu_count != 0)
5474 {
5475 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5476 "ignoring .debug_names."),
5477 filename, static_cast<unsigned long> (foreign_tu_count));
5478 return false;
5479 }
5480
5481 /* bucket_count - The number of hash buckets in the hash lookup
5482 table. */
5483 map.bucket_count = read_4_bytes (abfd, addr);
5484 addr += 4;
5485
5486 /* name_count - The number of unique names in the index. */
5487 map.name_count = read_4_bytes (abfd, addr);
5488 addr += 4;
5489
5490 /* abbrev_table_size - The size in bytes of the abbreviations
5491 table. */
5492 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* augmentation_string_size - The size in bytes of the augmentation
5496 string. This value is rounded up to a multiple of 4. */
5497 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499 map.augmentation_is_gdb = ((augmentation_string_size
5500 == sizeof (dwarf5_augmentation))
5501 && memcmp (addr, dwarf5_augmentation,
5502 sizeof (dwarf5_augmentation)) == 0);
5503 augmentation_string_size += (-augmentation_string_size) & 3;
5504 addr += augmentation_string_size;
5505
5506 /* List of CUs */
5507 map.cu_table_reordered = addr;
5508 addr += map.cu_count * map.offset_size;
5509
5510 /* List of Local TUs */
5511 map.tu_table_reordered = addr;
5512 addr += map.tu_count * map.offset_size;
5513
5514 /* Hash Lookup Table */
5515 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5516 addr += map.bucket_count * 4;
5517 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5518 addr += map.name_count * 4;
5519
5520 /* Name Table */
5521 map.name_table_string_offs_reordered = addr;
5522 addr += map.name_count * map.offset_size;
5523 map.name_table_entry_offs_reordered = addr;
5524 addr += map.name_count * map.offset_size;
5525
5526 const gdb_byte *abbrev_table_start = addr;
5527 for (;;)
5528 {
5529 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5530 addr += bytes_read;
5531 if (index_num == 0)
5532 break;
5533
5534 const auto insertpair
5535 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5536 if (!insertpair.second)
5537 {
5538 warning (_("Section .debug_names in %s has duplicate index %s, "
5539 "ignoring .debug_names."),
5540 filename, pulongest (index_num));
5541 return false;
5542 }
5543 mapped_debug_names::index_val &indexval = insertpair.first->second;
5544 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5545 addr += bytes_read;
5546
5547 for (;;)
5548 {
5549 mapped_debug_names::index_val::attr attr;
5550 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5551 addr += bytes_read;
5552 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5553 addr += bytes_read;
5554 if (attr.form == DW_FORM_implicit_const)
5555 {
5556 attr.implicit_const = read_signed_leb128 (abfd, addr,
5557 &bytes_read);
5558 addr += bytes_read;
5559 }
5560 if (attr.dw_idx == 0 && attr.form == 0)
5561 break;
5562 indexval.attr_vec.push_back (std::move (attr));
5563 }
5564 }
5565 if (addr != abbrev_table_start + abbrev_table_size)
5566 {
5567 warning (_("Section .debug_names in %s has abbreviation_table "
5568 "of size %zu vs. written as %u, ignoring .debug_names."),
5569 filename, addr - abbrev_table_start, abbrev_table_size);
5570 return false;
5571 }
5572 map.entry_pool = addr;
5573
5574 return true;
5575 }
5576
5577 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5578 list. */
5579
5580 static void
5581 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5582 const mapped_debug_names &map,
5583 dwarf2_section_info &section,
5584 bool is_dwz)
5585 {
5586 sect_offset sect_off_prev;
5587 for (uint32_t i = 0; i <= map.cu_count; ++i)
5588 {
5589 sect_offset sect_off_next;
5590 if (i < map.cu_count)
5591 {
5592 sect_off_next
5593 = (sect_offset) (extract_unsigned_integer
5594 (map.cu_table_reordered + i * map.offset_size,
5595 map.offset_size,
5596 map.dwarf5_byte_order));
5597 }
5598 else
5599 sect_off_next = (sect_offset) section.size;
5600 if (i >= 1)
5601 {
5602 const ULONGEST length = sect_off_next - sect_off_prev;
5603 dwarf2_per_cu_data *per_cu
5604 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5605 sect_off_prev, length);
5606 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5607 }
5608 sect_off_prev = sect_off_next;
5609 }
5610 }
5611
5612 /* Read the CU list from the mapped index, and use it to create all
5613 the CU objects for this dwarf2_per_objfile. */
5614
5615 static void
5616 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5617 const mapped_debug_names &map,
5618 const mapped_debug_names &dwz_map)
5619 {
5620 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5621 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5622
5623 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5624 dwarf2_per_objfile->info,
5625 false /* is_dwz */);
5626
5627 if (dwz_map.cu_count == 0)
5628 return;
5629
5630 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5631 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5632 true /* is_dwz */);
5633 }
5634
5635 /* Read .debug_names. If everything went ok, initialize the "quick"
5636 elements of all the CUs and return true. Otherwise, return false. */
5637
5638 static bool
5639 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5640 {
5641 std::unique_ptr<mapped_debug_names> map
5642 (new mapped_debug_names (dwarf2_per_objfile));
5643 mapped_debug_names dwz_map (dwarf2_per_objfile);
5644 struct objfile *objfile = dwarf2_per_objfile->objfile;
5645
5646 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5647 &dwarf2_per_objfile->debug_names,
5648 *map))
5649 return false;
5650
5651 /* Don't use the index if it's empty. */
5652 if (map->name_count == 0)
5653 return false;
5654
5655 /* If there is a .dwz file, read it so we can get its CU list as
5656 well. */
5657 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5658 if (dwz != NULL)
5659 {
5660 if (!read_debug_names_from_section (objfile,
5661 bfd_get_filename (dwz->dwz_bfd),
5662 &dwz->debug_names, dwz_map))
5663 {
5664 warning (_("could not read '.debug_names' section from %s; skipping"),
5665 bfd_get_filename (dwz->dwz_bfd));
5666 return false;
5667 }
5668 }
5669
5670 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5671
5672 if (map->tu_count != 0)
5673 {
5674 /* We can only handle a single .debug_types when we have an
5675 index. */
5676 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5677 return false;
5678
5679 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5680 dwarf2_per_objfile->types, 0);
5681
5682 create_signatured_type_table_from_debug_names
5683 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5684 }
5685
5686 create_addrmap_from_aranges (dwarf2_per_objfile,
5687 &dwarf2_per_objfile->debug_aranges);
5688
5689 dwarf2_per_objfile->debug_names_table = std::move (map);
5690 dwarf2_per_objfile->using_index = 1;
5691 dwarf2_per_objfile->quick_file_names_table =
5692 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5693
5694 return true;
5695 }
5696
5697 /* Type used to manage iterating over all CUs looking for a symbol for
5698 .debug_names. */
5699
5700 class dw2_debug_names_iterator
5701 {
5702 public:
5703 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5704 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5705 dw2_debug_names_iterator (const mapped_debug_names &map,
5706 bool want_specific_block,
5707 block_enum block_index, domain_enum domain,
5708 const char *name)
5709 : m_map (map), m_want_specific_block (want_specific_block),
5710 m_block_index (block_index), m_domain (domain),
5711 m_addr (find_vec_in_debug_names (map, name))
5712 {}
5713
5714 dw2_debug_names_iterator (const mapped_debug_names &map,
5715 search_domain search, uint32_t namei)
5716 : m_map (map),
5717 m_search (search),
5718 m_addr (find_vec_in_debug_names (map, namei))
5719 {}
5720
5721 /* Return the next matching CU or NULL if there are no more. */
5722 dwarf2_per_cu_data *next ();
5723
5724 private:
5725 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5726 const char *name);
5727 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5728 uint32_t namei);
5729
5730 /* The internalized form of .debug_names. */
5731 const mapped_debug_names &m_map;
5732
5733 /* If true, only look for symbols that match BLOCK_INDEX. */
5734 const bool m_want_specific_block = false;
5735
5736 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5737 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5738 value. */
5739 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5740
5741 /* The kind of symbol we're looking for. */
5742 const domain_enum m_domain = UNDEF_DOMAIN;
5743 const search_domain m_search = ALL_DOMAIN;
5744
5745 /* The list of CUs from the index entry of the symbol, or NULL if
5746 not found. */
5747 const gdb_byte *m_addr;
5748 };
5749
5750 const char *
5751 mapped_debug_names::namei_to_name (uint32_t namei) const
5752 {
5753 const ULONGEST namei_string_offs
5754 = extract_unsigned_integer ((name_table_string_offs_reordered
5755 + namei * offset_size),
5756 offset_size,
5757 dwarf5_byte_order);
5758 return read_indirect_string_at_offset
5759 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5760 }
5761
5762 /* Find a slot in .debug_names for the object named NAME. If NAME is
5763 found, return pointer to its pool data. If NAME cannot be found,
5764 return NULL. */
5765
5766 const gdb_byte *
5767 dw2_debug_names_iterator::find_vec_in_debug_names
5768 (const mapped_debug_names &map, const char *name)
5769 {
5770 int (*cmp) (const char *, const char *);
5771
5772 if (current_language->la_language == language_cplus
5773 || current_language->la_language == language_fortran
5774 || current_language->la_language == language_d)
5775 {
5776 /* NAME is already canonical. Drop any qualifiers as
5777 .debug_names does not contain any. */
5778
5779 if (strchr (name, '(') != NULL)
5780 {
5781 gdb::unique_xmalloc_ptr<char> without_params
5782 = cp_remove_params (name);
5783
5784 if (without_params != NULL)
5785 {
5786 name = without_params.get();
5787 }
5788 }
5789 }
5790
5791 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5792
5793 const uint32_t full_hash = dwarf5_djb_hash (name);
5794 uint32_t namei
5795 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5796 (map.bucket_table_reordered
5797 + (full_hash % map.bucket_count)), 4,
5798 map.dwarf5_byte_order);
5799 if (namei == 0)
5800 return NULL;
5801 --namei;
5802 if (namei >= map.name_count)
5803 {
5804 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5805 "[in module %s]"),
5806 namei, map.name_count,
5807 objfile_name (map.dwarf2_per_objfile->objfile));
5808 return NULL;
5809 }
5810
5811 for (;;)
5812 {
5813 const uint32_t namei_full_hash
5814 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5815 (map.hash_table_reordered + namei), 4,
5816 map.dwarf5_byte_order);
5817 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5818 return NULL;
5819
5820 if (full_hash == namei_full_hash)
5821 {
5822 const char *const namei_string = map.namei_to_name (namei);
5823
5824 #if 0 /* An expensive sanity check. */
5825 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5826 {
5827 complaint (_("Wrong .debug_names hash for string at index %u "
5828 "[in module %s]"),
5829 namei, objfile_name (dwarf2_per_objfile->objfile));
5830 return NULL;
5831 }
5832 #endif
5833
5834 if (cmp (namei_string, name) == 0)
5835 {
5836 const ULONGEST namei_entry_offs
5837 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5838 + namei * map.offset_size),
5839 map.offset_size, map.dwarf5_byte_order);
5840 return map.entry_pool + namei_entry_offs;
5841 }
5842 }
5843
5844 ++namei;
5845 if (namei >= map.name_count)
5846 return NULL;
5847 }
5848 }
5849
5850 const gdb_byte *
5851 dw2_debug_names_iterator::find_vec_in_debug_names
5852 (const mapped_debug_names &map, uint32_t namei)
5853 {
5854 if (namei >= map.name_count)
5855 {
5856 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5857 "[in module %s]"),
5858 namei, map.name_count,
5859 objfile_name (map.dwarf2_per_objfile->objfile));
5860 return NULL;
5861 }
5862
5863 const ULONGEST namei_entry_offs
5864 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5865 + namei * map.offset_size),
5866 map.offset_size, map.dwarf5_byte_order);
5867 return map.entry_pool + namei_entry_offs;
5868 }
5869
5870 /* See dw2_debug_names_iterator. */
5871
5872 dwarf2_per_cu_data *
5873 dw2_debug_names_iterator::next ()
5874 {
5875 if (m_addr == NULL)
5876 return NULL;
5877
5878 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5879 struct objfile *objfile = dwarf2_per_objfile->objfile;
5880 bfd *const abfd = objfile->obfd;
5881
5882 again:
5883
5884 unsigned int bytes_read;
5885 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5887 if (abbrev == 0)
5888 return NULL;
5889
5890 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5891 if (indexval_it == m_map.abbrev_map.cend ())
5892 {
5893 complaint (_("Wrong .debug_names undefined abbrev code %s "
5894 "[in module %s]"),
5895 pulongest (abbrev), objfile_name (objfile));
5896 return NULL;
5897 }
5898 const mapped_debug_names::index_val &indexval = indexval_it->second;
5899 bool have_is_static = false;
5900 bool is_static;
5901 dwarf2_per_cu_data *per_cu = NULL;
5902 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5903 {
5904 ULONGEST ull;
5905 switch (attr.form)
5906 {
5907 case DW_FORM_implicit_const:
5908 ull = attr.implicit_const;
5909 break;
5910 case DW_FORM_flag_present:
5911 ull = 1;
5912 break;
5913 case DW_FORM_udata:
5914 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5915 m_addr += bytes_read;
5916 break;
5917 default:
5918 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5919 dwarf_form_name (attr.form),
5920 objfile_name (objfile));
5921 return NULL;
5922 }
5923 switch (attr.dw_idx)
5924 {
5925 case DW_IDX_compile_unit:
5926 /* Don't crash on bad data. */
5927 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5928 {
5929 complaint (_(".debug_names entry has bad CU index %s"
5930 " [in module %s]"),
5931 pulongest (ull),
5932 objfile_name (dwarf2_per_objfile->objfile));
5933 continue;
5934 }
5935 per_cu = dwarf2_per_objfile->get_cutu (ull);
5936 break;
5937 case DW_IDX_type_unit:
5938 /* Don't crash on bad data. */
5939 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5940 {
5941 complaint (_(".debug_names entry has bad TU index %s"
5942 " [in module %s]"),
5943 pulongest (ull),
5944 objfile_name (dwarf2_per_objfile->objfile));
5945 continue;
5946 }
5947 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5948 break;
5949 case DW_IDX_GNU_internal:
5950 if (!m_map.augmentation_is_gdb)
5951 break;
5952 have_is_static = true;
5953 is_static = true;
5954 break;
5955 case DW_IDX_GNU_external:
5956 if (!m_map.augmentation_is_gdb)
5957 break;
5958 have_is_static = true;
5959 is_static = false;
5960 break;
5961 }
5962 }
5963
5964 /* Skip if already read in. */
5965 if (per_cu->v.quick->compunit_symtab)
5966 goto again;
5967
5968 /* Check static vs global. */
5969 if (have_is_static)
5970 {
5971 const bool want_static = m_block_index != GLOBAL_BLOCK;
5972 if (m_want_specific_block && want_static != is_static)
5973 goto again;
5974 }
5975
5976 /* Match dw2_symtab_iter_next, symbol_kind
5977 and debug_names::psymbol_tag. */
5978 switch (m_domain)
5979 {
5980 case VAR_DOMAIN:
5981 switch (indexval.dwarf_tag)
5982 {
5983 case DW_TAG_variable:
5984 case DW_TAG_subprogram:
5985 /* Some types are also in VAR_DOMAIN. */
5986 case DW_TAG_typedef:
5987 case DW_TAG_structure_type:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 case STRUCT_DOMAIN:
5994 switch (indexval.dwarf_tag)
5995 {
5996 case DW_TAG_typedef:
5997 case DW_TAG_structure_type:
5998 break;
5999 default:
6000 goto again;
6001 }
6002 break;
6003 case LABEL_DOMAIN:
6004 switch (indexval.dwarf_tag)
6005 {
6006 case 0:
6007 case DW_TAG_variable:
6008 break;
6009 default:
6010 goto again;
6011 }
6012 break;
6013 default:
6014 break;
6015 }
6016
6017 /* Match dw2_expand_symtabs_matching, symbol_kind and
6018 debug_names::psymbol_tag. */
6019 switch (m_search)
6020 {
6021 case VARIABLES_DOMAIN:
6022 switch (indexval.dwarf_tag)
6023 {
6024 case DW_TAG_variable:
6025 break;
6026 default:
6027 goto again;
6028 }
6029 break;
6030 case FUNCTIONS_DOMAIN:
6031 switch (indexval.dwarf_tag)
6032 {
6033 case DW_TAG_subprogram:
6034 break;
6035 default:
6036 goto again;
6037 }
6038 break;
6039 case TYPES_DOMAIN:
6040 switch (indexval.dwarf_tag)
6041 {
6042 case DW_TAG_typedef:
6043 case DW_TAG_structure_type:
6044 break;
6045 default:
6046 goto again;
6047 }
6048 break;
6049 default:
6050 break;
6051 }
6052
6053 return per_cu;
6054 }
6055
6056 static struct compunit_symtab *
6057 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6058 const char *name, domain_enum domain)
6059 {
6060 const block_enum block_index = static_cast<block_enum> (block_index_int);
6061 struct dwarf2_per_objfile *dwarf2_per_objfile
6062 = get_dwarf2_per_objfile (objfile);
6063
6064 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6065 if (!mapp)
6066 {
6067 /* index is NULL if OBJF_READNOW. */
6068 return NULL;
6069 }
6070 const auto &map = *mapp;
6071
6072 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6073 block_index, domain, name);
6074
6075 struct compunit_symtab *stab_best = NULL;
6076 struct dwarf2_per_cu_data *per_cu;
6077 while ((per_cu = iter.next ()) != NULL)
6078 {
6079 struct symbol *sym, *with_opaque = NULL;
6080 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6081 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6082 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6083
6084 sym = block_find_symbol (block, name, domain,
6085 block_find_non_opaque_type_preferred,
6086 &with_opaque);
6087
6088 /* Some caution must be observed with overloaded functions and
6089 methods, since the index will not contain any overload
6090 information (but NAME might contain it). */
6091
6092 if (sym != NULL
6093 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6094 return stab;
6095 if (with_opaque != NULL
6096 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6097 stab_best = stab;
6098
6099 /* Keep looking through other CUs. */
6100 }
6101
6102 return stab_best;
6103 }
6104
6105 /* This dumps minimal information about .debug_names. It is called
6106 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6107 uses this to verify that .debug_names has been loaded. */
6108
6109 static void
6110 dw2_debug_names_dump (struct objfile *objfile)
6111 {
6112 struct dwarf2_per_objfile *dwarf2_per_objfile
6113 = get_dwarf2_per_objfile (objfile);
6114
6115 gdb_assert (dwarf2_per_objfile->using_index);
6116 printf_filtered (".debug_names:");
6117 if (dwarf2_per_objfile->debug_names_table)
6118 printf_filtered (" exists\n");
6119 else
6120 printf_filtered (" faked for \"readnow\"\n");
6121 printf_filtered ("\n");
6122 }
6123
6124 static void
6125 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6126 const char *func_name)
6127 {
6128 struct dwarf2_per_objfile *dwarf2_per_objfile
6129 = get_dwarf2_per_objfile (objfile);
6130
6131 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6132 if (dwarf2_per_objfile->debug_names_table)
6133 {
6134 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6135
6136 /* Note: It doesn't matter what we pass for block_index here. */
6137 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6138 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6139
6140 struct dwarf2_per_cu_data *per_cu;
6141 while ((per_cu = iter.next ()) != NULL)
6142 dw2_instantiate_symtab (per_cu, false);
6143 }
6144 }
6145
6146 static void
6147 dw2_debug_names_expand_symtabs_matching
6148 (struct objfile *objfile,
6149 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6150 const lookup_name_info &lookup_name,
6151 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6152 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6153 enum search_domain kind)
6154 {
6155 struct dwarf2_per_objfile *dwarf2_per_objfile
6156 = get_dwarf2_per_objfile (objfile);
6157
6158 /* debug_names_table is NULL if OBJF_READNOW. */
6159 if (!dwarf2_per_objfile->debug_names_table)
6160 return;
6161
6162 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6163
6164 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6165
6166 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6167 symbol_matcher,
6168 kind, [&] (offset_type namei)
6169 {
6170 /* The name was matched, now expand corresponding CUs that were
6171 marked. */
6172 dw2_debug_names_iterator iter (map, kind, namei);
6173
6174 struct dwarf2_per_cu_data *per_cu;
6175 while ((per_cu = iter.next ()) != NULL)
6176 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6177 expansion_notify);
6178 });
6179 }
6180
6181 const struct quick_symbol_functions dwarf2_debug_names_functions =
6182 {
6183 dw2_has_symbols,
6184 dw2_find_last_source_symtab,
6185 dw2_forget_cached_source_info,
6186 dw2_map_symtabs_matching_filename,
6187 dw2_debug_names_lookup_symbol,
6188 dw2_print_stats,
6189 dw2_debug_names_dump,
6190 dw2_debug_names_expand_symtabs_for_function,
6191 dw2_expand_all_symtabs,
6192 dw2_expand_symtabs_with_fullname,
6193 dw2_map_matching_symbols,
6194 dw2_debug_names_expand_symtabs_matching,
6195 dw2_find_pc_sect_compunit_symtab,
6196 NULL,
6197 dw2_map_symbol_filenames
6198 };
6199
6200 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6201 to either a dwarf2_per_objfile or dwz_file object. */
6202
6203 template <typename T>
6204 static gdb::array_view<const gdb_byte>
6205 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6206 {
6207 dwarf2_section_info *section = &section_owner->gdb_index;
6208
6209 if (dwarf2_section_empty_p (section))
6210 return {};
6211
6212 /* Older elfutils strip versions could keep the section in the main
6213 executable while splitting it for the separate debug info file. */
6214 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6215 return {};
6216
6217 dwarf2_read_section (obj, section);
6218
6219 /* dwarf2_section_info::size is a bfd_size_type, while
6220 gdb::array_view works with size_t. On 32-bit hosts, with
6221 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6222 is 32-bit. So we need an explicit narrowing conversion here.
6223 This is fine, because it's impossible to allocate or mmap an
6224 array/buffer larger than what size_t can represent. */
6225 return gdb::make_array_view (section->buffer, section->size);
6226 }
6227
6228 /* Lookup the index cache for the contents of the index associated to
6229 DWARF2_OBJ. */
6230
6231 static gdb::array_view<const gdb_byte>
6232 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6233 {
6234 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6235 if (build_id == nullptr)
6236 return {};
6237
6238 return global_index_cache.lookup_gdb_index (build_id,
6239 &dwarf2_obj->index_cache_res);
6240 }
6241
6242 /* Same as the above, but for DWZ. */
6243
6244 static gdb::array_view<const gdb_byte>
6245 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6246 {
6247 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6248 if (build_id == nullptr)
6249 return {};
6250
6251 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6252 }
6253
6254 /* See symfile.h. */
6255
6256 bool
6257 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6258 {
6259 struct dwarf2_per_objfile *dwarf2_per_objfile
6260 = get_dwarf2_per_objfile (objfile);
6261
6262 /* If we're about to read full symbols, don't bother with the
6263 indices. In this case we also don't care if some other debug
6264 format is making psymtabs, because they are all about to be
6265 expanded anyway. */
6266 if ((objfile->flags & OBJF_READNOW))
6267 {
6268 dwarf2_per_objfile->using_index = 1;
6269 create_all_comp_units (dwarf2_per_objfile);
6270 create_all_type_units (dwarf2_per_objfile);
6271 dwarf2_per_objfile->quick_file_names_table
6272 = create_quick_file_names_table
6273 (dwarf2_per_objfile->all_comp_units.size ());
6274
6275 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6276 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6277 {
6278 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6279
6280 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6281 struct dwarf2_per_cu_quick_data);
6282 }
6283
6284 /* Return 1 so that gdb sees the "quick" functions. However,
6285 these functions will be no-ops because we will have expanded
6286 all symtabs. */
6287 *index_kind = dw_index_kind::GDB_INDEX;
6288 return true;
6289 }
6290
6291 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6292 {
6293 *index_kind = dw_index_kind::DEBUG_NAMES;
6294 return true;
6295 }
6296
6297 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6298 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6299 get_gdb_index_contents_from_section<dwz_file>))
6300 {
6301 *index_kind = dw_index_kind::GDB_INDEX;
6302 return true;
6303 }
6304
6305 /* ... otherwise, try to find the index in the index cache. */
6306 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6307 get_gdb_index_contents_from_cache,
6308 get_gdb_index_contents_from_cache_dwz))
6309 {
6310 global_index_cache.hit ();
6311 *index_kind = dw_index_kind::GDB_INDEX;
6312 return true;
6313 }
6314
6315 global_index_cache.miss ();
6316 return false;
6317 }
6318
6319 \f
6320
6321 /* Build a partial symbol table. */
6322
6323 void
6324 dwarf2_build_psymtabs (struct objfile *objfile)
6325 {
6326 struct dwarf2_per_objfile *dwarf2_per_objfile
6327 = get_dwarf2_per_objfile (objfile);
6328
6329 init_psymbol_list (objfile, 1024);
6330
6331 try
6332 {
6333 /* This isn't really ideal: all the data we allocate on the
6334 objfile's obstack is still uselessly kept around. However,
6335 freeing it seems unsafe. */
6336 psymtab_discarder psymtabs (objfile);
6337 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6338 psymtabs.keep ();
6339
6340 /* (maybe) store an index in the cache. */
6341 global_index_cache.store (dwarf2_per_objfile);
6342 }
6343 catch (const gdb_exception_error &except)
6344 {
6345 exception_print (gdb_stderr, except);
6346 }
6347 }
6348
6349 /* Return the total length of the CU described by HEADER. */
6350
6351 static unsigned int
6352 get_cu_length (const struct comp_unit_head *header)
6353 {
6354 return header->initial_length_size + header->length;
6355 }
6356
6357 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6358
6359 static inline bool
6360 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6361 {
6362 sect_offset bottom = cu_header->sect_off;
6363 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6364
6365 return sect_off >= bottom && sect_off < top;
6366 }
6367
6368 /* Find the base address of the compilation unit for range lists and
6369 location lists. It will normally be specified by DW_AT_low_pc.
6370 In DWARF-3 draft 4, the base address could be overridden by
6371 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6372 compilation units with discontinuous ranges. */
6373
6374 static void
6375 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6376 {
6377 struct attribute *attr;
6378
6379 cu->base_known = 0;
6380 cu->base_address = 0;
6381
6382 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6383 if (attr)
6384 {
6385 cu->base_address = attr_value_as_address (attr);
6386 cu->base_known = 1;
6387 }
6388 else
6389 {
6390 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6391 if (attr)
6392 {
6393 cu->base_address = attr_value_as_address (attr);
6394 cu->base_known = 1;
6395 }
6396 }
6397 }
6398
6399 /* Read in the comp unit header information from the debug_info at info_ptr.
6400 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6401 NOTE: This leaves members offset, first_die_offset to be filled in
6402 by the caller. */
6403
6404 static const gdb_byte *
6405 read_comp_unit_head (struct comp_unit_head *cu_header,
6406 const gdb_byte *info_ptr,
6407 struct dwarf2_section_info *section,
6408 rcuh_kind section_kind)
6409 {
6410 int signed_addr;
6411 unsigned int bytes_read;
6412 const char *filename = get_section_file_name (section);
6413 bfd *abfd = get_section_bfd_owner (section);
6414
6415 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6416 cu_header->initial_length_size = bytes_read;
6417 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6418 info_ptr += bytes_read;
6419 cu_header->version = read_2_bytes (abfd, info_ptr);
6420 if (cu_header->version < 2 || cu_header->version > 5)
6421 error (_("Dwarf Error: wrong version in compilation unit header "
6422 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6423 cu_header->version, filename);
6424 info_ptr += 2;
6425 if (cu_header->version < 5)
6426 switch (section_kind)
6427 {
6428 case rcuh_kind::COMPILE:
6429 cu_header->unit_type = DW_UT_compile;
6430 break;
6431 case rcuh_kind::TYPE:
6432 cu_header->unit_type = DW_UT_type;
6433 break;
6434 default:
6435 internal_error (__FILE__, __LINE__,
6436 _("read_comp_unit_head: invalid section_kind"));
6437 }
6438 else
6439 {
6440 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6441 (read_1_byte (abfd, info_ptr));
6442 info_ptr += 1;
6443 switch (cu_header->unit_type)
6444 {
6445 case DW_UT_compile:
6446 if (section_kind != rcuh_kind::COMPILE)
6447 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6448 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6449 filename);
6450 break;
6451 case DW_UT_type:
6452 section_kind = rcuh_kind::TYPE;
6453 break;
6454 default:
6455 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6456 "(is %d, should be %d or %d) [in module %s]"),
6457 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6458 }
6459
6460 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6461 info_ptr += 1;
6462 }
6463 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6464 cu_header,
6465 &bytes_read);
6466 info_ptr += bytes_read;
6467 if (cu_header->version < 5)
6468 {
6469 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6470 info_ptr += 1;
6471 }
6472 signed_addr = bfd_get_sign_extend_vma (abfd);
6473 if (signed_addr < 0)
6474 internal_error (__FILE__, __LINE__,
6475 _("read_comp_unit_head: dwarf from non elf file"));
6476 cu_header->signed_addr_p = signed_addr;
6477
6478 if (section_kind == rcuh_kind::TYPE)
6479 {
6480 LONGEST type_offset;
6481
6482 cu_header->signature = read_8_bytes (abfd, info_ptr);
6483 info_ptr += 8;
6484
6485 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6486 info_ptr += bytes_read;
6487 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6488 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6489 error (_("Dwarf Error: Too big type_offset in compilation unit "
6490 "header (is %s) [in module %s]"), plongest (type_offset),
6491 filename);
6492 }
6493
6494 return info_ptr;
6495 }
6496
6497 /* Helper function that returns the proper abbrev section for
6498 THIS_CU. */
6499
6500 static struct dwarf2_section_info *
6501 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6502 {
6503 struct dwarf2_section_info *abbrev;
6504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6505
6506 if (this_cu->is_dwz)
6507 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6508 else
6509 abbrev = &dwarf2_per_objfile->abbrev;
6510
6511 return abbrev;
6512 }
6513
6514 /* Subroutine of read_and_check_comp_unit_head and
6515 read_and_check_type_unit_head to simplify them.
6516 Perform various error checking on the header. */
6517
6518 static void
6519 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct comp_unit_head *header,
6521 struct dwarf2_section_info *section,
6522 struct dwarf2_section_info *abbrev_section)
6523 {
6524 const char *filename = get_section_file_name (section);
6525
6526 if (to_underlying (header->abbrev_sect_off)
6527 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6528 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6529 "(offset %s + 6) [in module %s]"),
6530 sect_offset_str (header->abbrev_sect_off),
6531 sect_offset_str (header->sect_off),
6532 filename);
6533
6534 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6535 avoid potential 32-bit overflow. */
6536 if (((ULONGEST) header->sect_off + get_cu_length (header))
6537 > section->size)
6538 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6539 "(offset %s + 0) [in module %s]"),
6540 header->length, sect_offset_str (header->sect_off),
6541 filename);
6542 }
6543
6544 /* Read in a CU/TU header and perform some basic error checking.
6545 The contents of the header are stored in HEADER.
6546 The result is a pointer to the start of the first DIE. */
6547
6548 static const gdb_byte *
6549 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6550 struct comp_unit_head *header,
6551 struct dwarf2_section_info *section,
6552 struct dwarf2_section_info *abbrev_section,
6553 const gdb_byte *info_ptr,
6554 rcuh_kind section_kind)
6555 {
6556 const gdb_byte *beg_of_comp_unit = info_ptr;
6557
6558 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6559
6560 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6561
6562 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6563
6564 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6565 abbrev_section);
6566
6567 return info_ptr;
6568 }
6569
6570 /* Fetch the abbreviation table offset from a comp or type unit header. */
6571
6572 static sect_offset
6573 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6574 struct dwarf2_section_info *section,
6575 sect_offset sect_off)
6576 {
6577 bfd *abfd = get_section_bfd_owner (section);
6578 const gdb_byte *info_ptr;
6579 unsigned int initial_length_size, offset_size;
6580 uint16_t version;
6581
6582 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6583 info_ptr = section->buffer + to_underlying (sect_off);
6584 read_initial_length (abfd, info_ptr, &initial_length_size);
6585 offset_size = initial_length_size == 4 ? 4 : 8;
6586 info_ptr += initial_length_size;
6587
6588 version = read_2_bytes (abfd, info_ptr);
6589 info_ptr += 2;
6590 if (version >= 5)
6591 {
6592 /* Skip unit type and address size. */
6593 info_ptr += 2;
6594 }
6595
6596 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6597 }
6598
6599 /* Allocate a new partial symtab for file named NAME and mark this new
6600 partial symtab as being an include of PST. */
6601
6602 static void
6603 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6604 struct objfile *objfile)
6605 {
6606 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6607
6608 if (!IS_ABSOLUTE_PATH (subpst->filename))
6609 {
6610 /* It shares objfile->objfile_obstack. */
6611 subpst->dirname = pst->dirname;
6612 }
6613
6614 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6615 subpst->dependencies[0] = pst;
6616 subpst->number_of_dependencies = 1;
6617
6618 subpst->read_symtab = pst->read_symtab;
6619
6620 /* No private part is necessary for include psymtabs. This property
6621 can be used to differentiate between such include psymtabs and
6622 the regular ones. */
6623 subpst->read_symtab_private = NULL;
6624 }
6625
6626 /* Read the Line Number Program data and extract the list of files
6627 included by the source file represented by PST. Build an include
6628 partial symtab for each of these included files. */
6629
6630 static void
6631 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6632 struct die_info *die,
6633 struct partial_symtab *pst)
6634 {
6635 line_header_up lh;
6636 struct attribute *attr;
6637
6638 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6639 if (attr)
6640 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6641 if (lh == NULL)
6642 return; /* No linetable, so no includes. */
6643
6644 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6645 that we pass in the raw text_low here; that is ok because we're
6646 only decoding the line table to make include partial symtabs, and
6647 so the addresses aren't really used. */
6648 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6649 pst->raw_text_low (), 1);
6650 }
6651
6652 static hashval_t
6653 hash_signatured_type (const void *item)
6654 {
6655 const struct signatured_type *sig_type
6656 = (const struct signatured_type *) item;
6657
6658 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6659 return sig_type->signature;
6660 }
6661
6662 static int
6663 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6664 {
6665 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6666 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6667
6668 return lhs->signature == rhs->signature;
6669 }
6670
6671 /* Allocate a hash table for signatured types. */
6672
6673 static htab_t
6674 allocate_signatured_type_table (struct objfile *objfile)
6675 {
6676 return htab_create_alloc_ex (41,
6677 hash_signatured_type,
6678 eq_signatured_type,
6679 NULL,
6680 &objfile->objfile_obstack,
6681 hashtab_obstack_allocate,
6682 dummy_obstack_deallocate);
6683 }
6684
6685 /* A helper function to add a signatured type CU to a table. */
6686
6687 static int
6688 add_signatured_type_cu_to_table (void **slot, void *datum)
6689 {
6690 struct signatured_type *sigt = (struct signatured_type *) *slot;
6691 std::vector<signatured_type *> *all_type_units
6692 = (std::vector<signatured_type *> *) datum;
6693
6694 all_type_units->push_back (sigt);
6695
6696 return 1;
6697 }
6698
6699 /* A helper for create_debug_types_hash_table. Read types from SECTION
6700 and fill them into TYPES_HTAB. It will process only type units,
6701 therefore DW_UT_type. */
6702
6703 static void
6704 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6705 struct dwo_file *dwo_file,
6706 dwarf2_section_info *section, htab_t &types_htab,
6707 rcuh_kind section_kind)
6708 {
6709 struct objfile *objfile = dwarf2_per_objfile->objfile;
6710 struct dwarf2_section_info *abbrev_section;
6711 bfd *abfd;
6712 const gdb_byte *info_ptr, *end_ptr;
6713
6714 abbrev_section = (dwo_file != NULL
6715 ? &dwo_file->sections.abbrev
6716 : &dwarf2_per_objfile->abbrev);
6717
6718 if (dwarf_read_debug)
6719 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6720 get_section_name (section),
6721 get_section_file_name (abbrev_section));
6722
6723 dwarf2_read_section (objfile, section);
6724 info_ptr = section->buffer;
6725
6726 if (info_ptr == NULL)
6727 return;
6728
6729 /* We can't set abfd until now because the section may be empty or
6730 not present, in which case the bfd is unknown. */
6731 abfd = get_section_bfd_owner (section);
6732
6733 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6734 because we don't need to read any dies: the signature is in the
6735 header. */
6736
6737 end_ptr = info_ptr + section->size;
6738 while (info_ptr < end_ptr)
6739 {
6740 struct signatured_type *sig_type;
6741 struct dwo_unit *dwo_tu;
6742 void **slot;
6743 const gdb_byte *ptr = info_ptr;
6744 struct comp_unit_head header;
6745 unsigned int length;
6746
6747 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6748
6749 /* Initialize it due to a false compiler warning. */
6750 header.signature = -1;
6751 header.type_cu_offset_in_tu = (cu_offset) -1;
6752
6753 /* We need to read the type's signature in order to build the hash
6754 table, but we don't need anything else just yet. */
6755
6756 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6757 abbrev_section, ptr, section_kind);
6758
6759 length = get_cu_length (&header);
6760
6761 /* Skip dummy type units. */
6762 if (ptr >= info_ptr + length
6763 || peek_abbrev_code (abfd, ptr) == 0
6764 || header.unit_type != DW_UT_type)
6765 {
6766 info_ptr += length;
6767 continue;
6768 }
6769
6770 if (types_htab == NULL)
6771 {
6772 if (dwo_file)
6773 types_htab = allocate_dwo_unit_table (objfile);
6774 else
6775 types_htab = allocate_signatured_type_table (objfile);
6776 }
6777
6778 if (dwo_file)
6779 {
6780 sig_type = NULL;
6781 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6782 struct dwo_unit);
6783 dwo_tu->dwo_file = dwo_file;
6784 dwo_tu->signature = header.signature;
6785 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6786 dwo_tu->section = section;
6787 dwo_tu->sect_off = sect_off;
6788 dwo_tu->length = length;
6789 }
6790 else
6791 {
6792 /* N.B.: type_offset is not usable if this type uses a DWO file.
6793 The real type_offset is in the DWO file. */
6794 dwo_tu = NULL;
6795 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6796 struct signatured_type);
6797 sig_type->signature = header.signature;
6798 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6799 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6800 sig_type->per_cu.is_debug_types = 1;
6801 sig_type->per_cu.section = section;
6802 sig_type->per_cu.sect_off = sect_off;
6803 sig_type->per_cu.length = length;
6804 }
6805
6806 slot = htab_find_slot (types_htab,
6807 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6808 INSERT);
6809 gdb_assert (slot != NULL);
6810 if (*slot != NULL)
6811 {
6812 sect_offset dup_sect_off;
6813
6814 if (dwo_file)
6815 {
6816 const struct dwo_unit *dup_tu
6817 = (const struct dwo_unit *) *slot;
6818
6819 dup_sect_off = dup_tu->sect_off;
6820 }
6821 else
6822 {
6823 const struct signatured_type *dup_tu
6824 = (const struct signatured_type *) *slot;
6825
6826 dup_sect_off = dup_tu->per_cu.sect_off;
6827 }
6828
6829 complaint (_("debug type entry at offset %s is duplicate to"
6830 " the entry at offset %s, signature %s"),
6831 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6832 hex_string (header.signature));
6833 }
6834 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6835
6836 if (dwarf_read_debug > 1)
6837 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6838 sect_offset_str (sect_off),
6839 hex_string (header.signature));
6840
6841 info_ptr += length;
6842 }
6843 }
6844
6845 /* Create the hash table of all entries in the .debug_types
6846 (or .debug_types.dwo) section(s).
6847 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6848 otherwise it is NULL.
6849
6850 The result is a pointer to the hash table or NULL if there are no types.
6851
6852 Note: This function processes DWO files only, not DWP files. */
6853
6854 static void
6855 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6856 struct dwo_file *dwo_file,
6857 VEC (dwarf2_section_info_def) *types,
6858 htab_t &types_htab)
6859 {
6860 int ix;
6861 struct dwarf2_section_info *section;
6862
6863 if (VEC_empty (dwarf2_section_info_def, types))
6864 return;
6865
6866 for (ix = 0;
6867 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6868 ++ix)
6869 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6870 types_htab, rcuh_kind::TYPE);
6871 }
6872
6873 /* Create the hash table of all entries in the .debug_types section,
6874 and initialize all_type_units.
6875 The result is zero if there is an error (e.g. missing .debug_types section),
6876 otherwise non-zero. */
6877
6878 static int
6879 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6880 {
6881 htab_t types_htab = NULL;
6882
6883 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6884 &dwarf2_per_objfile->info, types_htab,
6885 rcuh_kind::COMPILE);
6886 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6887 dwarf2_per_objfile->types, types_htab);
6888 if (types_htab == NULL)
6889 {
6890 dwarf2_per_objfile->signatured_types = NULL;
6891 return 0;
6892 }
6893
6894 dwarf2_per_objfile->signatured_types = types_htab;
6895
6896 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6897 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6898
6899 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6900 &dwarf2_per_objfile->all_type_units);
6901
6902 return 1;
6903 }
6904
6905 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6906 If SLOT is non-NULL, it is the entry to use in the hash table.
6907 Otherwise we find one. */
6908
6909 static struct signatured_type *
6910 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6911 void **slot)
6912 {
6913 struct objfile *objfile = dwarf2_per_objfile->objfile;
6914
6915 if (dwarf2_per_objfile->all_type_units.size ()
6916 == dwarf2_per_objfile->all_type_units.capacity ())
6917 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6918
6919 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6920 struct signatured_type);
6921
6922 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6923 sig_type->signature = sig;
6924 sig_type->per_cu.is_debug_types = 1;
6925 if (dwarf2_per_objfile->using_index)
6926 {
6927 sig_type->per_cu.v.quick =
6928 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6929 struct dwarf2_per_cu_quick_data);
6930 }
6931
6932 if (slot == NULL)
6933 {
6934 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6935 sig_type, INSERT);
6936 }
6937 gdb_assert (*slot == NULL);
6938 *slot = sig_type;
6939 /* The rest of sig_type must be filled in by the caller. */
6940 return sig_type;
6941 }
6942
6943 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6944 Fill in SIG_ENTRY with DWO_ENTRY. */
6945
6946 static void
6947 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6948 struct signatured_type *sig_entry,
6949 struct dwo_unit *dwo_entry)
6950 {
6951 /* Make sure we're not clobbering something we don't expect to. */
6952 gdb_assert (! sig_entry->per_cu.queued);
6953 gdb_assert (sig_entry->per_cu.cu == NULL);
6954 if (dwarf2_per_objfile->using_index)
6955 {
6956 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6957 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6958 }
6959 else
6960 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6961 gdb_assert (sig_entry->signature == dwo_entry->signature);
6962 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6963 gdb_assert (sig_entry->type_unit_group == NULL);
6964 gdb_assert (sig_entry->dwo_unit == NULL);
6965
6966 sig_entry->per_cu.section = dwo_entry->section;
6967 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6968 sig_entry->per_cu.length = dwo_entry->length;
6969 sig_entry->per_cu.reading_dwo_directly = 1;
6970 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6971 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6972 sig_entry->dwo_unit = dwo_entry;
6973 }
6974
6975 /* Subroutine of lookup_signatured_type.
6976 If we haven't read the TU yet, create the signatured_type data structure
6977 for a TU to be read in directly from a DWO file, bypassing the stub.
6978 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6979 using .gdb_index, then when reading a CU we want to stay in the DWO file
6980 containing that CU. Otherwise we could end up reading several other DWO
6981 files (due to comdat folding) to process the transitive closure of all the
6982 mentioned TUs, and that can be slow. The current DWO file will have every
6983 type signature that it needs.
6984 We only do this for .gdb_index because in the psymtab case we already have
6985 to read all the DWOs to build the type unit groups. */
6986
6987 static struct signatured_type *
6988 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6989 {
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = cu->per_cu->dwarf2_per_objfile;
6992 struct objfile *objfile = dwarf2_per_objfile->objfile;
6993 struct dwo_file *dwo_file;
6994 struct dwo_unit find_dwo_entry, *dwo_entry;
6995 struct signatured_type find_sig_entry, *sig_entry;
6996 void **slot;
6997
6998 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6999
7000 /* If TU skeletons have been removed then we may not have read in any
7001 TUs yet. */
7002 if (dwarf2_per_objfile->signatured_types == NULL)
7003 {
7004 dwarf2_per_objfile->signatured_types
7005 = allocate_signatured_type_table (objfile);
7006 }
7007
7008 /* We only ever need to read in one copy of a signatured type.
7009 Use the global signatured_types array to do our own comdat-folding
7010 of types. If this is the first time we're reading this TU, and
7011 the TU has an entry in .gdb_index, replace the recorded data from
7012 .gdb_index with this TU. */
7013
7014 find_sig_entry.signature = sig;
7015 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7016 &find_sig_entry, INSERT);
7017 sig_entry = (struct signatured_type *) *slot;
7018
7019 /* We can get here with the TU already read, *or* in the process of being
7020 read. Don't reassign the global entry to point to this DWO if that's
7021 the case. Also note that if the TU is already being read, it may not
7022 have come from a DWO, the program may be a mix of Fission-compiled
7023 code and non-Fission-compiled code. */
7024
7025 /* Have we already tried to read this TU?
7026 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7027 needn't exist in the global table yet). */
7028 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7029 return sig_entry;
7030
7031 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7032 dwo_unit of the TU itself. */
7033 dwo_file = cu->dwo_unit->dwo_file;
7034
7035 /* Ok, this is the first time we're reading this TU. */
7036 if (dwo_file->tus == NULL)
7037 return NULL;
7038 find_dwo_entry.signature = sig;
7039 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7040 if (dwo_entry == NULL)
7041 return NULL;
7042
7043 /* If the global table doesn't have an entry for this TU, add one. */
7044 if (sig_entry == NULL)
7045 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7046
7047 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7048 sig_entry->per_cu.tu_read = 1;
7049 return sig_entry;
7050 }
7051
7052 /* Subroutine of lookup_signatured_type.
7053 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7054 then try the DWP file. If the TU stub (skeleton) has been removed then
7055 it won't be in .gdb_index. */
7056
7057 static struct signatured_type *
7058 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7059 {
7060 struct dwarf2_per_objfile *dwarf2_per_objfile
7061 = cu->per_cu->dwarf2_per_objfile;
7062 struct objfile *objfile = dwarf2_per_objfile->objfile;
7063 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7064 struct dwo_unit *dwo_entry;
7065 struct signatured_type find_sig_entry, *sig_entry;
7066 void **slot;
7067
7068 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7069 gdb_assert (dwp_file != NULL);
7070
7071 /* If TU skeletons have been removed then we may not have read in any
7072 TUs yet. */
7073 if (dwarf2_per_objfile->signatured_types == NULL)
7074 {
7075 dwarf2_per_objfile->signatured_types
7076 = allocate_signatured_type_table (objfile);
7077 }
7078
7079 find_sig_entry.signature = sig;
7080 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7081 &find_sig_entry, INSERT);
7082 sig_entry = (struct signatured_type *) *slot;
7083
7084 /* Have we already tried to read this TU?
7085 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7086 needn't exist in the global table yet). */
7087 if (sig_entry != NULL)
7088 return sig_entry;
7089
7090 if (dwp_file->tus == NULL)
7091 return NULL;
7092 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7093 sig, 1 /* is_debug_types */);
7094 if (dwo_entry == NULL)
7095 return NULL;
7096
7097 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7098 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7099
7100 return sig_entry;
7101 }
7102
7103 /* Lookup a signature based type for DW_FORM_ref_sig8.
7104 Returns NULL if signature SIG is not present in the table.
7105 It is up to the caller to complain about this. */
7106
7107 static struct signatured_type *
7108 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7109 {
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
7112
7113 if (cu->dwo_unit
7114 && dwarf2_per_objfile->using_index)
7115 {
7116 /* We're in a DWO/DWP file, and we're using .gdb_index.
7117 These cases require special processing. */
7118 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7119 return lookup_dwo_signatured_type (cu, sig);
7120 else
7121 return lookup_dwp_signatured_type (cu, sig);
7122 }
7123 else
7124 {
7125 struct signatured_type find_entry, *entry;
7126
7127 if (dwarf2_per_objfile->signatured_types == NULL)
7128 return NULL;
7129 find_entry.signature = sig;
7130 entry = ((struct signatured_type *)
7131 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7132 return entry;
7133 }
7134 }
7135 \f
7136 /* Low level DIE reading support. */
7137
7138 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7139
7140 static void
7141 init_cu_die_reader (struct die_reader_specs *reader,
7142 struct dwarf2_cu *cu,
7143 struct dwarf2_section_info *section,
7144 struct dwo_file *dwo_file,
7145 struct abbrev_table *abbrev_table)
7146 {
7147 gdb_assert (section->readin && section->buffer != NULL);
7148 reader->abfd = get_section_bfd_owner (section);
7149 reader->cu = cu;
7150 reader->dwo_file = dwo_file;
7151 reader->die_section = section;
7152 reader->buffer = section->buffer;
7153 reader->buffer_end = section->buffer + section->size;
7154 reader->comp_dir = NULL;
7155 reader->abbrev_table = abbrev_table;
7156 }
7157
7158 /* Subroutine of init_cutu_and_read_dies to simplify it.
7159 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7160 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7161 already.
7162
7163 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7164 from it to the DIE in the DWO. If NULL we are skipping the stub.
7165 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7166 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7167 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7168 STUB_COMP_DIR may be non-NULL.
7169 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7170 are filled in with the info of the DIE from the DWO file.
7171 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7172 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7173 kept around for at least as long as *RESULT_READER.
7174
7175 The result is non-zero if a valid (non-dummy) DIE was found. */
7176
7177 static int
7178 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7179 struct dwo_unit *dwo_unit,
7180 struct die_info *stub_comp_unit_die,
7181 const char *stub_comp_dir,
7182 struct die_reader_specs *result_reader,
7183 const gdb_byte **result_info_ptr,
7184 struct die_info **result_comp_unit_die,
7185 int *result_has_children,
7186 abbrev_table_up *result_dwo_abbrev_table)
7187 {
7188 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7189 struct objfile *objfile = dwarf2_per_objfile->objfile;
7190 struct dwarf2_cu *cu = this_cu->cu;
7191 bfd *abfd;
7192 const gdb_byte *begin_info_ptr, *info_ptr;
7193 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7194 int i,num_extra_attrs;
7195 struct dwarf2_section_info *dwo_abbrev_section;
7196 struct attribute *attr;
7197 struct die_info *comp_unit_die;
7198
7199 /* At most one of these may be provided. */
7200 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7201
7202 /* These attributes aren't processed until later:
7203 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7204 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7205 referenced later. However, these attributes are found in the stub
7206 which we won't have later. In order to not impose this complication
7207 on the rest of the code, we read them here and copy them to the
7208 DWO CU/TU die. */
7209
7210 stmt_list = NULL;
7211 low_pc = NULL;
7212 high_pc = NULL;
7213 ranges = NULL;
7214 comp_dir = NULL;
7215
7216 if (stub_comp_unit_die != NULL)
7217 {
7218 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7219 DWO file. */
7220 if (! this_cu->is_debug_types)
7221 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7222 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7223 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7224 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7225 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7226
7227 /* There should be a DW_AT_addr_base attribute here (if needed).
7228 We need the value before we can process DW_FORM_GNU_addr_index
7229 or DW_FORM_addrx. */
7230 cu->addr_base = 0;
7231 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7232 if (attr)
7233 cu->addr_base = DW_UNSND (attr);
7234
7235 /* There should be a DW_AT_ranges_base attribute here (if needed).
7236 We need the value before we can process DW_AT_ranges. */
7237 cu->ranges_base = 0;
7238 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7239 if (attr)
7240 cu->ranges_base = DW_UNSND (attr);
7241 }
7242 else if (stub_comp_dir != NULL)
7243 {
7244 /* Reconstruct the comp_dir attribute to simplify the code below. */
7245 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7246 comp_dir->name = DW_AT_comp_dir;
7247 comp_dir->form = DW_FORM_string;
7248 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7249 DW_STRING (comp_dir) = stub_comp_dir;
7250 }
7251
7252 /* Set up for reading the DWO CU/TU. */
7253 cu->dwo_unit = dwo_unit;
7254 dwarf2_section_info *section = dwo_unit->section;
7255 dwarf2_read_section (objfile, section);
7256 abfd = get_section_bfd_owner (section);
7257 begin_info_ptr = info_ptr = (section->buffer
7258 + to_underlying (dwo_unit->sect_off));
7259 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7260
7261 if (this_cu->is_debug_types)
7262 {
7263 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7264
7265 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7266 &cu->header, section,
7267 dwo_abbrev_section,
7268 info_ptr, rcuh_kind::TYPE);
7269 /* This is not an assert because it can be caused by bad debug info. */
7270 if (sig_type->signature != cu->header.signature)
7271 {
7272 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7273 " TU at offset %s [in module %s]"),
7274 hex_string (sig_type->signature),
7275 hex_string (cu->header.signature),
7276 sect_offset_str (dwo_unit->sect_off),
7277 bfd_get_filename (abfd));
7278 }
7279 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7280 /* For DWOs coming from DWP files, we don't know the CU length
7281 nor the type's offset in the TU until now. */
7282 dwo_unit->length = get_cu_length (&cu->header);
7283 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7284
7285 /* Establish the type offset that can be used to lookup the type.
7286 For DWO files, we don't know it until now. */
7287 sig_type->type_offset_in_section
7288 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7289 }
7290 else
7291 {
7292 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7293 &cu->header, section,
7294 dwo_abbrev_section,
7295 info_ptr, rcuh_kind::COMPILE);
7296 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7297 /* For DWOs coming from DWP files, we don't know the CU length
7298 until now. */
7299 dwo_unit->length = get_cu_length (&cu->header);
7300 }
7301
7302 *result_dwo_abbrev_table
7303 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7304 cu->header.abbrev_sect_off);
7305 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7306 result_dwo_abbrev_table->get ());
7307
7308 /* Read in the die, but leave space to copy over the attributes
7309 from the stub. This has the benefit of simplifying the rest of
7310 the code - all the work to maintain the illusion of a single
7311 DW_TAG_{compile,type}_unit DIE is done here. */
7312 num_extra_attrs = ((stmt_list != NULL)
7313 + (low_pc != NULL)
7314 + (high_pc != NULL)
7315 + (ranges != NULL)
7316 + (comp_dir != NULL));
7317 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7318 result_has_children, num_extra_attrs);
7319
7320 /* Copy over the attributes from the stub to the DIE we just read in. */
7321 comp_unit_die = *result_comp_unit_die;
7322 i = comp_unit_die->num_attrs;
7323 if (stmt_list != NULL)
7324 comp_unit_die->attrs[i++] = *stmt_list;
7325 if (low_pc != NULL)
7326 comp_unit_die->attrs[i++] = *low_pc;
7327 if (high_pc != NULL)
7328 comp_unit_die->attrs[i++] = *high_pc;
7329 if (ranges != NULL)
7330 comp_unit_die->attrs[i++] = *ranges;
7331 if (comp_dir != NULL)
7332 comp_unit_die->attrs[i++] = *comp_dir;
7333 comp_unit_die->num_attrs += num_extra_attrs;
7334
7335 if (dwarf_die_debug)
7336 {
7337 fprintf_unfiltered (gdb_stdlog,
7338 "Read die from %s@0x%x of %s:\n",
7339 get_section_name (section),
7340 (unsigned) (begin_info_ptr - section->buffer),
7341 bfd_get_filename (abfd));
7342 dump_die (comp_unit_die, dwarf_die_debug);
7343 }
7344
7345 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7346 TUs by skipping the stub and going directly to the entry in the DWO file.
7347 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7348 to get it via circuitous means. Blech. */
7349 if (comp_dir != NULL)
7350 result_reader->comp_dir = DW_STRING (comp_dir);
7351
7352 /* Skip dummy compilation units. */
7353 if (info_ptr >= begin_info_ptr + dwo_unit->length
7354 || peek_abbrev_code (abfd, info_ptr) == 0)
7355 return 0;
7356
7357 *result_info_ptr = info_ptr;
7358 return 1;
7359 }
7360
7361 /* Subroutine of init_cutu_and_read_dies to simplify it.
7362 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7363 Returns NULL if the specified DWO unit cannot be found. */
7364
7365 static struct dwo_unit *
7366 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7367 struct die_info *comp_unit_die)
7368 {
7369 struct dwarf2_cu *cu = this_cu->cu;
7370 ULONGEST signature;
7371 struct dwo_unit *dwo_unit;
7372 const char *comp_dir, *dwo_name;
7373
7374 gdb_assert (cu != NULL);
7375
7376 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7377 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7378 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7379
7380 if (this_cu->is_debug_types)
7381 {
7382 struct signatured_type *sig_type;
7383
7384 /* Since this_cu is the first member of struct signatured_type,
7385 we can go from a pointer to one to a pointer to the other. */
7386 sig_type = (struct signatured_type *) this_cu;
7387 signature = sig_type->signature;
7388 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7389 }
7390 else
7391 {
7392 struct attribute *attr;
7393
7394 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7395 if (! attr)
7396 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7397 " [in module %s]"),
7398 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7399 signature = DW_UNSND (attr);
7400 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7401 signature);
7402 }
7403
7404 return dwo_unit;
7405 }
7406
7407 /* Subroutine of init_cutu_and_read_dies to simplify it.
7408 See it for a description of the parameters.
7409 Read a TU directly from a DWO file, bypassing the stub. */
7410
7411 static void
7412 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7413 int use_existing_cu, int keep,
7414 die_reader_func_ftype *die_reader_func,
7415 void *data)
7416 {
7417 std::unique_ptr<dwarf2_cu> new_cu;
7418 struct signatured_type *sig_type;
7419 struct die_reader_specs reader;
7420 const gdb_byte *info_ptr;
7421 struct die_info *comp_unit_die;
7422 int has_children;
7423 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7424
7425 /* Verify we can do the following downcast, and that we have the
7426 data we need. */
7427 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7428 sig_type = (struct signatured_type *) this_cu;
7429 gdb_assert (sig_type->dwo_unit != NULL);
7430
7431 if (use_existing_cu && this_cu->cu != NULL)
7432 {
7433 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7434 /* There's no need to do the rereading_dwo_cu handling that
7435 init_cutu_and_read_dies does since we don't read the stub. */
7436 }
7437 else
7438 {
7439 /* If !use_existing_cu, this_cu->cu must be NULL. */
7440 gdb_assert (this_cu->cu == NULL);
7441 new_cu.reset (new dwarf2_cu (this_cu));
7442 }
7443
7444 /* A future optimization, if needed, would be to use an existing
7445 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7446 could share abbrev tables. */
7447
7448 /* The abbreviation table used by READER, this must live at least as long as
7449 READER. */
7450 abbrev_table_up dwo_abbrev_table;
7451
7452 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7453 NULL /* stub_comp_unit_die */,
7454 sig_type->dwo_unit->dwo_file->comp_dir,
7455 &reader, &info_ptr,
7456 &comp_unit_die, &has_children,
7457 &dwo_abbrev_table) == 0)
7458 {
7459 /* Dummy die. */
7460 return;
7461 }
7462
7463 /* All the "real" work is done here. */
7464 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7465
7466 /* This duplicates the code in init_cutu_and_read_dies,
7467 but the alternative is making the latter more complex.
7468 This function is only for the special case of using DWO files directly:
7469 no point in overly complicating the general case just to handle this. */
7470 if (new_cu != NULL && keep)
7471 {
7472 /* Link this CU into read_in_chain. */
7473 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7474 dwarf2_per_objfile->read_in_chain = this_cu;
7475 /* The chain owns it now. */
7476 new_cu.release ();
7477 }
7478 }
7479
7480 /* Initialize a CU (or TU) and read its DIEs.
7481 If the CU defers to a DWO file, read the DWO file as well.
7482
7483 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7484 Otherwise the table specified in the comp unit header is read in and used.
7485 This is an optimization for when we already have the abbrev table.
7486
7487 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7488 Otherwise, a new CU is allocated with xmalloc.
7489
7490 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7491 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7492
7493 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7494 linker) then DIE_READER_FUNC will not get called. */
7495
7496 static void
7497 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7498 struct abbrev_table *abbrev_table,
7499 int use_existing_cu, int keep,
7500 bool skip_partial,
7501 die_reader_func_ftype *die_reader_func,
7502 void *data)
7503 {
7504 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7505 struct objfile *objfile = dwarf2_per_objfile->objfile;
7506 struct dwarf2_section_info *section = this_cu->section;
7507 bfd *abfd = get_section_bfd_owner (section);
7508 struct dwarf2_cu *cu;
7509 const gdb_byte *begin_info_ptr, *info_ptr;
7510 struct die_reader_specs reader;
7511 struct die_info *comp_unit_die;
7512 int has_children;
7513 struct attribute *attr;
7514 struct signatured_type *sig_type = NULL;
7515 struct dwarf2_section_info *abbrev_section;
7516 /* Non-zero if CU currently points to a DWO file and we need to
7517 reread it. When this happens we need to reread the skeleton die
7518 before we can reread the DWO file (this only applies to CUs, not TUs). */
7519 int rereading_dwo_cu = 0;
7520
7521 if (dwarf_die_debug)
7522 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7523 this_cu->is_debug_types ? "type" : "comp",
7524 sect_offset_str (this_cu->sect_off));
7525
7526 if (use_existing_cu)
7527 gdb_assert (keep);
7528
7529 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7530 file (instead of going through the stub), short-circuit all of this. */
7531 if (this_cu->reading_dwo_directly)
7532 {
7533 /* Narrow down the scope of possibilities to have to understand. */
7534 gdb_assert (this_cu->is_debug_types);
7535 gdb_assert (abbrev_table == NULL);
7536 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7537 die_reader_func, data);
7538 return;
7539 }
7540
7541 /* This is cheap if the section is already read in. */
7542 dwarf2_read_section (objfile, section);
7543
7544 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7545
7546 abbrev_section = get_abbrev_section_for_cu (this_cu);
7547
7548 std::unique_ptr<dwarf2_cu> new_cu;
7549 if (use_existing_cu && this_cu->cu != NULL)
7550 {
7551 cu = this_cu->cu;
7552 /* If this CU is from a DWO file we need to start over, we need to
7553 refetch the attributes from the skeleton CU.
7554 This could be optimized by retrieving those attributes from when we
7555 were here the first time: the previous comp_unit_die was stored in
7556 comp_unit_obstack. But there's no data yet that we need this
7557 optimization. */
7558 if (cu->dwo_unit != NULL)
7559 rereading_dwo_cu = 1;
7560 }
7561 else
7562 {
7563 /* If !use_existing_cu, this_cu->cu must be NULL. */
7564 gdb_assert (this_cu->cu == NULL);
7565 new_cu.reset (new dwarf2_cu (this_cu));
7566 cu = new_cu.get ();
7567 }
7568
7569 /* Get the header. */
7570 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7571 {
7572 /* We already have the header, there's no need to read it in again. */
7573 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7574 }
7575 else
7576 {
7577 if (this_cu->is_debug_types)
7578 {
7579 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7580 &cu->header, section,
7581 abbrev_section, info_ptr,
7582 rcuh_kind::TYPE);
7583
7584 /* Since per_cu is the first member of struct signatured_type,
7585 we can go from a pointer to one to a pointer to the other. */
7586 sig_type = (struct signatured_type *) this_cu;
7587 gdb_assert (sig_type->signature == cu->header.signature);
7588 gdb_assert (sig_type->type_offset_in_tu
7589 == cu->header.type_cu_offset_in_tu);
7590 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7591
7592 /* LENGTH has not been set yet for type units if we're
7593 using .gdb_index. */
7594 this_cu->length = get_cu_length (&cu->header);
7595
7596 /* Establish the type offset that can be used to lookup the type. */
7597 sig_type->type_offset_in_section =
7598 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7599
7600 this_cu->dwarf_version = cu->header.version;
7601 }
7602 else
7603 {
7604 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7605 &cu->header, section,
7606 abbrev_section,
7607 info_ptr,
7608 rcuh_kind::COMPILE);
7609
7610 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7611 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7612 this_cu->dwarf_version = cu->header.version;
7613 }
7614 }
7615
7616 /* Skip dummy compilation units. */
7617 if (info_ptr >= begin_info_ptr + this_cu->length
7618 || peek_abbrev_code (abfd, info_ptr) == 0)
7619 return;
7620
7621 /* If we don't have them yet, read the abbrevs for this compilation unit.
7622 And if we need to read them now, make sure they're freed when we're
7623 done (own the table through ABBREV_TABLE_HOLDER). */
7624 abbrev_table_up abbrev_table_holder;
7625 if (abbrev_table != NULL)
7626 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7627 else
7628 {
7629 abbrev_table_holder
7630 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7631 cu->header.abbrev_sect_off);
7632 abbrev_table = abbrev_table_holder.get ();
7633 }
7634
7635 /* Read the top level CU/TU die. */
7636 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7637 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7638
7639 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7640 return;
7641
7642 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7643 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7644 table from the DWO file and pass the ownership over to us. It will be
7645 referenced from READER, so we must make sure to free it after we're done
7646 with READER.
7647
7648 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7649 DWO CU, that this test will fail (the attribute will not be present). */
7650 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7651 abbrev_table_up dwo_abbrev_table;
7652 if (attr)
7653 {
7654 struct dwo_unit *dwo_unit;
7655 struct die_info *dwo_comp_unit_die;
7656
7657 if (has_children)
7658 {
7659 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7660 " has children (offset %s) [in module %s]"),
7661 sect_offset_str (this_cu->sect_off),
7662 bfd_get_filename (abfd));
7663 }
7664 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7665 if (dwo_unit != NULL)
7666 {
7667 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7668 comp_unit_die, NULL,
7669 &reader, &info_ptr,
7670 &dwo_comp_unit_die, &has_children,
7671 &dwo_abbrev_table) == 0)
7672 {
7673 /* Dummy die. */
7674 return;
7675 }
7676 comp_unit_die = dwo_comp_unit_die;
7677 }
7678 else
7679 {
7680 /* Yikes, we couldn't find the rest of the DIE, we only have
7681 the stub. A complaint has already been logged. There's
7682 not much more we can do except pass on the stub DIE to
7683 die_reader_func. We don't want to throw an error on bad
7684 debug info. */
7685 }
7686 }
7687
7688 /* All of the above is setup for this call. Yikes. */
7689 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7690
7691 /* Done, clean up. */
7692 if (new_cu != NULL && keep)
7693 {
7694 /* Link this CU into read_in_chain. */
7695 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7696 dwarf2_per_objfile->read_in_chain = this_cu;
7697 /* The chain owns it now. */
7698 new_cu.release ();
7699 }
7700 }
7701
7702 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7703 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7704 to have already done the lookup to find the DWO file).
7705
7706 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7707 THIS_CU->is_debug_types, but nothing else.
7708
7709 We fill in THIS_CU->length.
7710
7711 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7712 linker) then DIE_READER_FUNC will not get called.
7713
7714 THIS_CU->cu is always freed when done.
7715 This is done in order to not leave THIS_CU->cu in a state where we have
7716 to care whether it refers to the "main" CU or the DWO CU. */
7717
7718 static void
7719 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7720 struct dwo_file *dwo_file,
7721 die_reader_func_ftype *die_reader_func,
7722 void *data)
7723 {
7724 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7725 struct objfile *objfile = dwarf2_per_objfile->objfile;
7726 struct dwarf2_section_info *section = this_cu->section;
7727 bfd *abfd = get_section_bfd_owner (section);
7728 struct dwarf2_section_info *abbrev_section;
7729 const gdb_byte *begin_info_ptr, *info_ptr;
7730 struct die_reader_specs reader;
7731 struct die_info *comp_unit_die;
7732 int has_children;
7733
7734 if (dwarf_die_debug)
7735 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7736 this_cu->is_debug_types ? "type" : "comp",
7737 sect_offset_str (this_cu->sect_off));
7738
7739 gdb_assert (this_cu->cu == NULL);
7740
7741 abbrev_section = (dwo_file != NULL
7742 ? &dwo_file->sections.abbrev
7743 : get_abbrev_section_for_cu (this_cu));
7744
7745 /* This is cheap if the section is already read in. */
7746 dwarf2_read_section (objfile, section);
7747
7748 struct dwarf2_cu cu (this_cu);
7749
7750 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7751 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7752 &cu.header, section,
7753 abbrev_section, info_ptr,
7754 (this_cu->is_debug_types
7755 ? rcuh_kind::TYPE
7756 : rcuh_kind::COMPILE));
7757
7758 this_cu->length = get_cu_length (&cu.header);
7759
7760 /* Skip dummy compilation units. */
7761 if (info_ptr >= begin_info_ptr + this_cu->length
7762 || peek_abbrev_code (abfd, info_ptr) == 0)
7763 return;
7764
7765 abbrev_table_up abbrev_table
7766 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7767 cu.header.abbrev_sect_off);
7768
7769 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7771
7772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7773 }
7774
7775 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7776 does not lookup the specified DWO file.
7777 This cannot be used to read DWO files.
7778
7779 THIS_CU->cu is always freed when done.
7780 This is done in order to not leave THIS_CU->cu in a state where we have
7781 to care whether it refers to the "main" CU or the DWO CU.
7782 We can revisit this if the data shows there's a performance issue. */
7783
7784 static void
7785 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7786 die_reader_func_ftype *die_reader_func,
7787 void *data)
7788 {
7789 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7790 }
7791 \f
7792 /* Type Unit Groups.
7793
7794 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7795 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7796 so that all types coming from the same compilation (.o file) are grouped
7797 together. A future step could be to put the types in the same symtab as
7798 the CU the types ultimately came from. */
7799
7800 static hashval_t
7801 hash_type_unit_group (const void *item)
7802 {
7803 const struct type_unit_group *tu_group
7804 = (const struct type_unit_group *) item;
7805
7806 return hash_stmt_list_entry (&tu_group->hash);
7807 }
7808
7809 static int
7810 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7811 {
7812 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7813 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7814
7815 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7816 }
7817
7818 /* Allocate a hash table for type unit groups. */
7819
7820 static htab_t
7821 allocate_type_unit_groups_table (struct objfile *objfile)
7822 {
7823 return htab_create_alloc_ex (3,
7824 hash_type_unit_group,
7825 eq_type_unit_group,
7826 NULL,
7827 &objfile->objfile_obstack,
7828 hashtab_obstack_allocate,
7829 dummy_obstack_deallocate);
7830 }
7831
7832 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7833 partial symtabs. We combine several TUs per psymtab to not let the size
7834 of any one psymtab grow too big. */
7835 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7836 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7837
7838 /* Helper routine for get_type_unit_group.
7839 Create the type_unit_group object used to hold one or more TUs. */
7840
7841 static struct type_unit_group *
7842 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7843 {
7844 struct dwarf2_per_objfile *dwarf2_per_objfile
7845 = cu->per_cu->dwarf2_per_objfile;
7846 struct objfile *objfile = dwarf2_per_objfile->objfile;
7847 struct dwarf2_per_cu_data *per_cu;
7848 struct type_unit_group *tu_group;
7849
7850 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7851 struct type_unit_group);
7852 per_cu = &tu_group->per_cu;
7853 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7854
7855 if (dwarf2_per_objfile->using_index)
7856 {
7857 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7858 struct dwarf2_per_cu_quick_data);
7859 }
7860 else
7861 {
7862 unsigned int line_offset = to_underlying (line_offset_struct);
7863 struct partial_symtab *pst;
7864 std::string name;
7865
7866 /* Give the symtab a useful name for debug purposes. */
7867 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7868 name = string_printf ("<type_units_%d>",
7869 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7870 else
7871 name = string_printf ("<type_units_at_0x%x>", line_offset);
7872
7873 pst = create_partial_symtab (per_cu, name.c_str ());
7874 pst->anonymous = 1;
7875 }
7876
7877 tu_group->hash.dwo_unit = cu->dwo_unit;
7878 tu_group->hash.line_sect_off = line_offset_struct;
7879
7880 return tu_group;
7881 }
7882
7883 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7884 STMT_LIST is a DW_AT_stmt_list attribute. */
7885
7886 static struct type_unit_group *
7887 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7888 {
7889 struct dwarf2_per_objfile *dwarf2_per_objfile
7890 = cu->per_cu->dwarf2_per_objfile;
7891 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7892 struct type_unit_group *tu_group;
7893 void **slot;
7894 unsigned int line_offset;
7895 struct type_unit_group type_unit_group_for_lookup;
7896
7897 if (dwarf2_per_objfile->type_unit_groups == NULL)
7898 {
7899 dwarf2_per_objfile->type_unit_groups =
7900 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7901 }
7902
7903 /* Do we need to create a new group, or can we use an existing one? */
7904
7905 if (stmt_list)
7906 {
7907 line_offset = DW_UNSND (stmt_list);
7908 ++tu_stats->nr_symtab_sharers;
7909 }
7910 else
7911 {
7912 /* Ugh, no stmt_list. Rare, but we have to handle it.
7913 We can do various things here like create one group per TU or
7914 spread them over multiple groups to split up the expansion work.
7915 To avoid worst case scenarios (too many groups or too large groups)
7916 we, umm, group them in bunches. */
7917 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7918 | (tu_stats->nr_stmt_less_type_units
7919 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7920 ++tu_stats->nr_stmt_less_type_units;
7921 }
7922
7923 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7924 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7925 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7926 &type_unit_group_for_lookup, INSERT);
7927 if (*slot != NULL)
7928 {
7929 tu_group = (struct type_unit_group *) *slot;
7930 gdb_assert (tu_group != NULL);
7931 }
7932 else
7933 {
7934 sect_offset line_offset_struct = (sect_offset) line_offset;
7935 tu_group = create_type_unit_group (cu, line_offset_struct);
7936 *slot = tu_group;
7937 ++tu_stats->nr_symtabs;
7938 }
7939
7940 return tu_group;
7941 }
7942 \f
7943 /* Partial symbol tables. */
7944
7945 /* Create a psymtab named NAME and assign it to PER_CU.
7946
7947 The caller must fill in the following details:
7948 dirname, textlow, texthigh. */
7949
7950 static struct partial_symtab *
7951 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7952 {
7953 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7954 struct partial_symtab *pst;
7955
7956 pst = start_psymtab_common (objfile, name, 0);
7957
7958 pst->psymtabs_addrmap_supported = 1;
7959
7960 /* This is the glue that links PST into GDB's symbol API. */
7961 pst->read_symtab_private = per_cu;
7962 pst->read_symtab = dwarf2_read_symtab;
7963 per_cu->v.psymtab = pst;
7964
7965 return pst;
7966 }
7967
7968 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7969 type. */
7970
7971 struct process_psymtab_comp_unit_data
7972 {
7973 /* True if we are reading a DW_TAG_partial_unit. */
7974
7975 int want_partial_unit;
7976
7977 /* The "pretend" language that is used if the CU doesn't declare a
7978 language. */
7979
7980 enum language pretend_language;
7981 };
7982
7983 /* die_reader_func for process_psymtab_comp_unit. */
7984
7985 static void
7986 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7987 const gdb_byte *info_ptr,
7988 struct die_info *comp_unit_die,
7989 int has_children,
7990 void *data)
7991 {
7992 struct dwarf2_cu *cu = reader->cu;
7993 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7995 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7996 CORE_ADDR baseaddr;
7997 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7998 struct partial_symtab *pst;
7999 enum pc_bounds_kind cu_bounds_kind;
8000 const char *filename;
8001 struct process_psymtab_comp_unit_data *info
8002 = (struct process_psymtab_comp_unit_data *) data;
8003
8004 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8005 return;
8006
8007 gdb_assert (! per_cu->is_debug_types);
8008
8009 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8010
8011 /* Allocate a new partial symbol table structure. */
8012 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8013 if (filename == NULL)
8014 filename = "";
8015
8016 pst = create_partial_symtab (per_cu, filename);
8017
8018 /* This must be done before calling dwarf2_build_include_psymtabs. */
8019 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8020
8021 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8022
8023 dwarf2_find_base_address (comp_unit_die, cu);
8024
8025 /* Possibly set the default values of LOWPC and HIGHPC from
8026 `DW_AT_ranges'. */
8027 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8028 &best_highpc, cu, pst);
8029 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8030 {
8031 CORE_ADDR low
8032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8033 - baseaddr);
8034 CORE_ADDR high
8035 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8036 - baseaddr - 1);
8037 /* Store the contiguous range if it is not empty; it can be
8038 empty for CUs with no code. */
8039 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8040 low, high, pst);
8041 }
8042
8043 /* Check if comp unit has_children.
8044 If so, read the rest of the partial symbols from this comp unit.
8045 If not, there's no more debug_info for this comp unit. */
8046 if (has_children)
8047 {
8048 struct partial_die_info *first_die;
8049 CORE_ADDR lowpc, highpc;
8050
8051 lowpc = ((CORE_ADDR) -1);
8052 highpc = ((CORE_ADDR) 0);
8053
8054 first_die = load_partial_dies (reader, info_ptr, 1);
8055
8056 scan_partial_symbols (first_die, &lowpc, &highpc,
8057 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8058
8059 /* If we didn't find a lowpc, set it to highpc to avoid
8060 complaints from `maint check'. */
8061 if (lowpc == ((CORE_ADDR) -1))
8062 lowpc = highpc;
8063
8064 /* If the compilation unit didn't have an explicit address range,
8065 then use the information extracted from its child dies. */
8066 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8067 {
8068 best_lowpc = lowpc;
8069 best_highpc = highpc;
8070 }
8071 }
8072 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8073 best_lowpc + baseaddr)
8074 - baseaddr);
8075 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8076 best_highpc + baseaddr)
8077 - baseaddr);
8078
8079 end_psymtab_common (objfile, pst);
8080
8081 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8082 {
8083 int i;
8084 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8085 struct dwarf2_per_cu_data *iter;
8086
8087 /* Fill in 'dependencies' here; we fill in 'users' in a
8088 post-pass. */
8089 pst->number_of_dependencies = len;
8090 pst->dependencies
8091 = objfile->partial_symtabs->allocate_dependencies (len);
8092 for (i = 0;
8093 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8094 i, iter);
8095 ++i)
8096 pst->dependencies[i] = iter->v.psymtab;
8097
8098 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8099 }
8100
8101 /* Get the list of files included in the current compilation unit,
8102 and build a psymtab for each of them. */
8103 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8104
8105 if (dwarf_read_debug)
8106 fprintf_unfiltered (gdb_stdlog,
8107 "Psymtab for %s unit @%s: %s - %s"
8108 ", %d global, %d static syms\n",
8109 per_cu->is_debug_types ? "type" : "comp",
8110 sect_offset_str (per_cu->sect_off),
8111 paddress (gdbarch, pst->text_low (objfile)),
8112 paddress (gdbarch, pst->text_high (objfile)),
8113 pst->n_global_syms, pst->n_static_syms);
8114 }
8115
8116 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8117 Process compilation unit THIS_CU for a psymtab. */
8118
8119 static void
8120 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8121 int want_partial_unit,
8122 enum language pretend_language)
8123 {
8124 /* If this compilation unit was already read in, free the
8125 cached copy in order to read it in again. This is
8126 necessary because we skipped some symbols when we first
8127 read in the compilation unit (see load_partial_dies).
8128 This problem could be avoided, but the benefit is unclear. */
8129 if (this_cu->cu != NULL)
8130 free_one_cached_comp_unit (this_cu);
8131
8132 if (this_cu->is_debug_types)
8133 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8134 build_type_psymtabs_reader, NULL);
8135 else
8136 {
8137 process_psymtab_comp_unit_data info;
8138 info.want_partial_unit = want_partial_unit;
8139 info.pretend_language = pretend_language;
8140 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8141 process_psymtab_comp_unit_reader, &info);
8142 }
8143
8144 /* Age out any secondary CUs. */
8145 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8146 }
8147
8148 /* Reader function for build_type_psymtabs. */
8149
8150 static void
8151 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8152 const gdb_byte *info_ptr,
8153 struct die_info *type_unit_die,
8154 int has_children,
8155 void *data)
8156 {
8157 struct dwarf2_per_objfile *dwarf2_per_objfile
8158 = reader->cu->per_cu->dwarf2_per_objfile;
8159 struct objfile *objfile = dwarf2_per_objfile->objfile;
8160 struct dwarf2_cu *cu = reader->cu;
8161 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8162 struct signatured_type *sig_type;
8163 struct type_unit_group *tu_group;
8164 struct attribute *attr;
8165 struct partial_die_info *first_die;
8166 CORE_ADDR lowpc, highpc;
8167 struct partial_symtab *pst;
8168
8169 gdb_assert (data == NULL);
8170 gdb_assert (per_cu->is_debug_types);
8171 sig_type = (struct signatured_type *) per_cu;
8172
8173 if (! has_children)
8174 return;
8175
8176 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8177 tu_group = get_type_unit_group (cu, attr);
8178
8179 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8180
8181 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8182 pst = create_partial_symtab (per_cu, "");
8183 pst->anonymous = 1;
8184
8185 first_die = load_partial_dies (reader, info_ptr, 1);
8186
8187 lowpc = (CORE_ADDR) -1;
8188 highpc = (CORE_ADDR) 0;
8189 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8190
8191 end_psymtab_common (objfile, pst);
8192 }
8193
8194 /* Struct used to sort TUs by their abbreviation table offset. */
8195
8196 struct tu_abbrev_offset
8197 {
8198 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8199 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8200 {}
8201
8202 signatured_type *sig_type;
8203 sect_offset abbrev_offset;
8204 };
8205
8206 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8207
8208 static bool
8209 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8210 const struct tu_abbrev_offset &b)
8211 {
8212 return a.abbrev_offset < b.abbrev_offset;
8213 }
8214
8215 /* Efficiently read all the type units.
8216 This does the bulk of the work for build_type_psymtabs.
8217
8218 The efficiency is because we sort TUs by the abbrev table they use and
8219 only read each abbrev table once. In one program there are 200K TUs
8220 sharing 8K abbrev tables.
8221
8222 The main purpose of this function is to support building the
8223 dwarf2_per_objfile->type_unit_groups table.
8224 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8225 can collapse the search space by grouping them by stmt_list.
8226 The savings can be significant, in the same program from above the 200K TUs
8227 share 8K stmt_list tables.
8228
8229 FUNC is expected to call get_type_unit_group, which will create the
8230 struct type_unit_group if necessary and add it to
8231 dwarf2_per_objfile->type_unit_groups. */
8232
8233 static void
8234 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8235 {
8236 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8237 abbrev_table_up abbrev_table;
8238 sect_offset abbrev_offset;
8239
8240 /* It's up to the caller to not call us multiple times. */
8241 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8242
8243 if (dwarf2_per_objfile->all_type_units.empty ())
8244 return;
8245
8246 /* TUs typically share abbrev tables, and there can be way more TUs than
8247 abbrev tables. Sort by abbrev table to reduce the number of times we
8248 read each abbrev table in.
8249 Alternatives are to punt or to maintain a cache of abbrev tables.
8250 This is simpler and efficient enough for now.
8251
8252 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8253 symtab to use). Typically TUs with the same abbrev offset have the same
8254 stmt_list value too so in practice this should work well.
8255
8256 The basic algorithm here is:
8257
8258 sort TUs by abbrev table
8259 for each TU with same abbrev table:
8260 read abbrev table if first user
8261 read TU top level DIE
8262 [IWBN if DWO skeletons had DW_AT_stmt_list]
8263 call FUNC */
8264
8265 if (dwarf_read_debug)
8266 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8267
8268 /* Sort in a separate table to maintain the order of all_type_units
8269 for .gdb_index: TU indices directly index all_type_units. */
8270 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8271 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8272
8273 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8274 sorted_by_abbrev.emplace_back
8275 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8276 sig_type->per_cu.section,
8277 sig_type->per_cu.sect_off));
8278
8279 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8280 sort_tu_by_abbrev_offset);
8281
8282 abbrev_offset = (sect_offset) ~(unsigned) 0;
8283
8284 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8285 {
8286 /* Switch to the next abbrev table if necessary. */
8287 if (abbrev_table == NULL
8288 || tu.abbrev_offset != abbrev_offset)
8289 {
8290 abbrev_offset = tu.abbrev_offset;
8291 abbrev_table =
8292 abbrev_table_read_table (dwarf2_per_objfile,
8293 &dwarf2_per_objfile->abbrev,
8294 abbrev_offset);
8295 ++tu_stats->nr_uniq_abbrev_tables;
8296 }
8297
8298 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8299 0, 0, false, build_type_psymtabs_reader, NULL);
8300 }
8301 }
8302
8303 /* Print collected type unit statistics. */
8304
8305 static void
8306 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8307 {
8308 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8309
8310 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8311 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8312 dwarf2_per_objfile->all_type_units.size ());
8313 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8314 tu_stats->nr_uniq_abbrev_tables);
8315 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8316 tu_stats->nr_symtabs);
8317 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8318 tu_stats->nr_symtab_sharers);
8319 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8320 tu_stats->nr_stmt_less_type_units);
8321 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8322 tu_stats->nr_all_type_units_reallocs);
8323 }
8324
8325 /* Traversal function for build_type_psymtabs. */
8326
8327 static int
8328 build_type_psymtab_dependencies (void **slot, void *info)
8329 {
8330 struct dwarf2_per_objfile *dwarf2_per_objfile
8331 = (struct dwarf2_per_objfile *) info;
8332 struct objfile *objfile = dwarf2_per_objfile->objfile;
8333 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8334 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8335 struct partial_symtab *pst = per_cu->v.psymtab;
8336 int len = VEC_length (sig_type_ptr, tu_group->tus);
8337 struct signatured_type *iter;
8338 int i;
8339
8340 gdb_assert (len > 0);
8341 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8342
8343 pst->number_of_dependencies = len;
8344 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8345 for (i = 0;
8346 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8347 ++i)
8348 {
8349 gdb_assert (iter->per_cu.is_debug_types);
8350 pst->dependencies[i] = iter->per_cu.v.psymtab;
8351 iter->type_unit_group = tu_group;
8352 }
8353
8354 VEC_free (sig_type_ptr, tu_group->tus);
8355
8356 return 1;
8357 }
8358
8359 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8360 Build partial symbol tables for the .debug_types comp-units. */
8361
8362 static void
8363 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8364 {
8365 if (! create_all_type_units (dwarf2_per_objfile))
8366 return;
8367
8368 build_type_psymtabs_1 (dwarf2_per_objfile);
8369 }
8370
8371 /* Traversal function for process_skeletonless_type_unit.
8372 Read a TU in a DWO file and build partial symbols for it. */
8373
8374 static int
8375 process_skeletonless_type_unit (void **slot, void *info)
8376 {
8377 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8378 struct dwarf2_per_objfile *dwarf2_per_objfile
8379 = (struct dwarf2_per_objfile *) info;
8380 struct signatured_type find_entry, *entry;
8381
8382 /* If this TU doesn't exist in the global table, add it and read it in. */
8383
8384 if (dwarf2_per_objfile->signatured_types == NULL)
8385 {
8386 dwarf2_per_objfile->signatured_types
8387 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8388 }
8389
8390 find_entry.signature = dwo_unit->signature;
8391 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8392 INSERT);
8393 /* If we've already seen this type there's nothing to do. What's happening
8394 is we're doing our own version of comdat-folding here. */
8395 if (*slot != NULL)
8396 return 1;
8397
8398 /* This does the job that create_all_type_units would have done for
8399 this TU. */
8400 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8401 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8402 *slot = entry;
8403
8404 /* This does the job that build_type_psymtabs_1 would have done. */
8405 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8406 build_type_psymtabs_reader, NULL);
8407
8408 return 1;
8409 }
8410
8411 /* Traversal function for process_skeletonless_type_units. */
8412
8413 static int
8414 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8415 {
8416 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8417
8418 if (dwo_file->tus != NULL)
8419 {
8420 htab_traverse_noresize (dwo_file->tus,
8421 process_skeletonless_type_unit, info);
8422 }
8423
8424 return 1;
8425 }
8426
8427 /* Scan all TUs of DWO files, verifying we've processed them.
8428 This is needed in case a TU was emitted without its skeleton.
8429 Note: This can't be done until we know what all the DWO files are. */
8430
8431 static void
8432 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8433 {
8434 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8435 if (get_dwp_file (dwarf2_per_objfile) == NULL
8436 && dwarf2_per_objfile->dwo_files != NULL)
8437 {
8438 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8439 process_dwo_file_for_skeletonless_type_units,
8440 dwarf2_per_objfile);
8441 }
8442 }
8443
8444 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8445
8446 static void
8447 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8448 {
8449 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8450 {
8451 struct partial_symtab *pst = per_cu->v.psymtab;
8452
8453 if (pst == NULL)
8454 continue;
8455
8456 for (int j = 0; j < pst->number_of_dependencies; ++j)
8457 {
8458 /* Set the 'user' field only if it is not already set. */
8459 if (pst->dependencies[j]->user == NULL)
8460 pst->dependencies[j]->user = pst;
8461 }
8462 }
8463 }
8464
8465 /* Build the partial symbol table by doing a quick pass through the
8466 .debug_info and .debug_abbrev sections. */
8467
8468 static void
8469 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8470 {
8471 struct objfile *objfile = dwarf2_per_objfile->objfile;
8472
8473 if (dwarf_read_debug)
8474 {
8475 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8476 objfile_name (objfile));
8477 }
8478
8479 dwarf2_per_objfile->reading_partial_symbols = 1;
8480
8481 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8482
8483 /* Any cached compilation units will be linked by the per-objfile
8484 read_in_chain. Make sure to free them when we're done. */
8485 free_cached_comp_units freer (dwarf2_per_objfile);
8486
8487 build_type_psymtabs (dwarf2_per_objfile);
8488
8489 create_all_comp_units (dwarf2_per_objfile);
8490
8491 /* Create a temporary address map on a temporary obstack. We later
8492 copy this to the final obstack. */
8493 auto_obstack temp_obstack;
8494
8495 scoped_restore save_psymtabs_addrmap
8496 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8497 addrmap_create_mutable (&temp_obstack));
8498
8499 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8501
8502 /* This has to wait until we read the CUs, we need the list of DWOs. */
8503 process_skeletonless_type_units (dwarf2_per_objfile);
8504
8505 /* Now that all TUs have been processed we can fill in the dependencies. */
8506 if (dwarf2_per_objfile->type_unit_groups != NULL)
8507 {
8508 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8509 build_type_psymtab_dependencies, dwarf2_per_objfile);
8510 }
8511
8512 if (dwarf_read_debug)
8513 print_tu_stats (dwarf2_per_objfile);
8514
8515 set_partial_user (dwarf2_per_objfile);
8516
8517 objfile->partial_symtabs->psymtabs_addrmap
8518 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8519 objfile->partial_symtabs->obstack ());
8520 /* At this point we want to keep the address map. */
8521 save_psymtabs_addrmap.release ();
8522
8523 if (dwarf_read_debug)
8524 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8525 objfile_name (objfile));
8526 }
8527
8528 /* die_reader_func for load_partial_comp_unit. */
8529
8530 static void
8531 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8532 const gdb_byte *info_ptr,
8533 struct die_info *comp_unit_die,
8534 int has_children,
8535 void *data)
8536 {
8537 struct dwarf2_cu *cu = reader->cu;
8538
8539 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8540
8541 /* Check if comp unit has_children.
8542 If so, read the rest of the partial symbols from this comp unit.
8543 If not, there's no more debug_info for this comp unit. */
8544 if (has_children)
8545 load_partial_dies (reader, info_ptr, 0);
8546 }
8547
8548 /* Load the partial DIEs for a secondary CU into memory.
8549 This is also used when rereading a primary CU with load_all_dies. */
8550
8551 static void
8552 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8553 {
8554 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8555 load_partial_comp_unit_reader, NULL);
8556 }
8557
8558 static void
8559 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8560 struct dwarf2_section_info *section,
8561 struct dwarf2_section_info *abbrev_section,
8562 unsigned int is_dwz)
8563 {
8564 const gdb_byte *info_ptr;
8565 struct objfile *objfile = dwarf2_per_objfile->objfile;
8566
8567 if (dwarf_read_debug)
8568 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8569 get_section_name (section),
8570 get_section_file_name (section));
8571
8572 dwarf2_read_section (objfile, section);
8573
8574 info_ptr = section->buffer;
8575
8576 while (info_ptr < section->buffer + section->size)
8577 {
8578 struct dwarf2_per_cu_data *this_cu;
8579
8580 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8581
8582 comp_unit_head cu_header;
8583 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8584 abbrev_section, info_ptr,
8585 rcuh_kind::COMPILE);
8586
8587 /* Save the compilation unit for later lookup. */
8588 if (cu_header.unit_type != DW_UT_type)
8589 {
8590 this_cu = XOBNEW (&objfile->objfile_obstack,
8591 struct dwarf2_per_cu_data);
8592 memset (this_cu, 0, sizeof (*this_cu));
8593 }
8594 else
8595 {
8596 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8597 struct signatured_type);
8598 memset (sig_type, 0, sizeof (*sig_type));
8599 sig_type->signature = cu_header.signature;
8600 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8601 this_cu = &sig_type->per_cu;
8602 }
8603 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8604 this_cu->sect_off = sect_off;
8605 this_cu->length = cu_header.length + cu_header.initial_length_size;
8606 this_cu->is_dwz = is_dwz;
8607 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8608 this_cu->section = section;
8609
8610 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8611
8612 info_ptr = info_ptr + this_cu->length;
8613 }
8614 }
8615
8616 /* Create a list of all compilation units in OBJFILE.
8617 This is only done for -readnow and building partial symtabs. */
8618
8619 static void
8620 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8621 {
8622 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8623 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8624 &dwarf2_per_objfile->abbrev, 0);
8625
8626 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8627 if (dwz != NULL)
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8629 1);
8630 }
8631
8632 /* Process all loaded DIEs for compilation unit CU, starting at
8633 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8634 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8635 DW_AT_ranges). See the comments of add_partial_subprogram on how
8636 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8637
8638 static void
8639 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8640 CORE_ADDR *highpc, int set_addrmap,
8641 struct dwarf2_cu *cu)
8642 {
8643 struct partial_die_info *pdi;
8644
8645 /* Now, march along the PDI's, descending into ones which have
8646 interesting children but skipping the children of the other ones,
8647 until we reach the end of the compilation unit. */
8648
8649 pdi = first_die;
8650
8651 while (pdi != NULL)
8652 {
8653 pdi->fixup (cu);
8654
8655 /* Anonymous namespaces or modules have no name but have interesting
8656 children, so we need to look at them. Ditto for anonymous
8657 enums. */
8658
8659 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8660 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8661 || pdi->tag == DW_TAG_imported_unit
8662 || pdi->tag == DW_TAG_inlined_subroutine)
8663 {
8664 switch (pdi->tag)
8665 {
8666 case DW_TAG_subprogram:
8667 case DW_TAG_inlined_subroutine:
8668 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8669 break;
8670 case DW_TAG_constant:
8671 case DW_TAG_variable:
8672 case DW_TAG_typedef:
8673 case DW_TAG_union_type:
8674 if (!pdi->is_declaration)
8675 {
8676 add_partial_symbol (pdi, cu);
8677 }
8678 break;
8679 case DW_TAG_class_type:
8680 case DW_TAG_interface_type:
8681 case DW_TAG_structure_type:
8682 if (!pdi->is_declaration)
8683 {
8684 add_partial_symbol (pdi, cu);
8685 }
8686 if ((cu->language == language_rust
8687 || cu->language == language_cplus) && pdi->has_children)
8688 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8689 set_addrmap, cu);
8690 break;
8691 case DW_TAG_enumeration_type:
8692 if (!pdi->is_declaration)
8693 add_partial_enumeration (pdi, cu);
8694 break;
8695 case DW_TAG_base_type:
8696 case DW_TAG_subrange_type:
8697 /* File scope base type definitions are added to the partial
8698 symbol table. */
8699 add_partial_symbol (pdi, cu);
8700 break;
8701 case DW_TAG_namespace:
8702 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8703 break;
8704 case DW_TAG_module:
8705 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8706 break;
8707 case DW_TAG_imported_unit:
8708 {
8709 struct dwarf2_per_cu_data *per_cu;
8710
8711 /* For now we don't handle imported units in type units. */
8712 if (cu->per_cu->is_debug_types)
8713 {
8714 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8715 " supported in type units [in module %s]"),
8716 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8717 }
8718
8719 per_cu = dwarf2_find_containing_comp_unit
8720 (pdi->d.sect_off, pdi->is_dwz,
8721 cu->per_cu->dwarf2_per_objfile);
8722
8723 /* Go read the partial unit, if needed. */
8724 if (per_cu->v.psymtab == NULL)
8725 process_psymtab_comp_unit (per_cu, 1, cu->language);
8726
8727 VEC_safe_push (dwarf2_per_cu_ptr,
8728 cu->per_cu->imported_symtabs, per_cu);
8729 }
8730 break;
8731 case DW_TAG_imported_declaration:
8732 add_partial_symbol (pdi, cu);
8733 break;
8734 default:
8735 break;
8736 }
8737 }
8738
8739 /* If the die has a sibling, skip to the sibling. */
8740
8741 pdi = pdi->die_sibling;
8742 }
8743 }
8744
8745 /* Functions used to compute the fully scoped name of a partial DIE.
8746
8747 Normally, this is simple. For C++, the parent DIE's fully scoped
8748 name is concatenated with "::" and the partial DIE's name.
8749 Enumerators are an exception; they use the scope of their parent
8750 enumeration type, i.e. the name of the enumeration type is not
8751 prepended to the enumerator.
8752
8753 There are two complexities. One is DW_AT_specification; in this
8754 case "parent" means the parent of the target of the specification,
8755 instead of the direct parent of the DIE. The other is compilers
8756 which do not emit DW_TAG_namespace; in this case we try to guess
8757 the fully qualified name of structure types from their members'
8758 linkage names. This must be done using the DIE's children rather
8759 than the children of any DW_AT_specification target. We only need
8760 to do this for structures at the top level, i.e. if the target of
8761 any DW_AT_specification (if any; otherwise the DIE itself) does not
8762 have a parent. */
8763
8764 /* Compute the scope prefix associated with PDI's parent, in
8765 compilation unit CU. The result will be allocated on CU's
8766 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8767 field. NULL is returned if no prefix is necessary. */
8768 static const char *
8769 partial_die_parent_scope (struct partial_die_info *pdi,
8770 struct dwarf2_cu *cu)
8771 {
8772 const char *grandparent_scope;
8773 struct partial_die_info *parent, *real_pdi;
8774
8775 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8776 then this means the parent of the specification DIE. */
8777
8778 real_pdi = pdi;
8779 while (real_pdi->has_specification)
8780 real_pdi = find_partial_die (real_pdi->spec_offset,
8781 real_pdi->spec_is_dwz, cu);
8782
8783 parent = real_pdi->die_parent;
8784 if (parent == NULL)
8785 return NULL;
8786
8787 if (parent->scope_set)
8788 return parent->scope;
8789
8790 parent->fixup (cu);
8791
8792 grandparent_scope = partial_die_parent_scope (parent, cu);
8793
8794 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8795 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8796 Work around this problem here. */
8797 if (cu->language == language_cplus
8798 && parent->tag == DW_TAG_namespace
8799 && strcmp (parent->name, "::") == 0
8800 && grandparent_scope == NULL)
8801 {
8802 parent->scope = NULL;
8803 parent->scope_set = 1;
8804 return NULL;
8805 }
8806
8807 if (pdi->tag == DW_TAG_enumerator)
8808 /* Enumerators should not get the name of the enumeration as a prefix. */
8809 parent->scope = grandparent_scope;
8810 else if (parent->tag == DW_TAG_namespace
8811 || parent->tag == DW_TAG_module
8812 || parent->tag == DW_TAG_structure_type
8813 || parent->tag == DW_TAG_class_type
8814 || parent->tag == DW_TAG_interface_type
8815 || parent->tag == DW_TAG_union_type
8816 || parent->tag == DW_TAG_enumeration_type)
8817 {
8818 if (grandparent_scope == NULL)
8819 parent->scope = parent->name;
8820 else
8821 parent->scope = typename_concat (&cu->comp_unit_obstack,
8822 grandparent_scope,
8823 parent->name, 0, cu);
8824 }
8825 else
8826 {
8827 /* FIXME drow/2004-04-01: What should we be doing with
8828 function-local names? For partial symbols, we should probably be
8829 ignoring them. */
8830 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8831 parent->tag, sect_offset_str (pdi->sect_off));
8832 parent->scope = grandparent_scope;
8833 }
8834
8835 parent->scope_set = 1;
8836 return parent->scope;
8837 }
8838
8839 /* Return the fully scoped name associated with PDI, from compilation unit
8840 CU. The result will be allocated with malloc. */
8841
8842 static char *
8843 partial_die_full_name (struct partial_die_info *pdi,
8844 struct dwarf2_cu *cu)
8845 {
8846 const char *parent_scope;
8847
8848 /* If this is a template instantiation, we can not work out the
8849 template arguments from partial DIEs. So, unfortunately, we have
8850 to go through the full DIEs. At least any work we do building
8851 types here will be reused if full symbols are loaded later. */
8852 if (pdi->has_template_arguments)
8853 {
8854 pdi->fixup (cu);
8855
8856 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8857 {
8858 struct die_info *die;
8859 struct attribute attr;
8860 struct dwarf2_cu *ref_cu = cu;
8861
8862 /* DW_FORM_ref_addr is using section offset. */
8863 attr.name = (enum dwarf_attribute) 0;
8864 attr.form = DW_FORM_ref_addr;
8865 attr.u.unsnd = to_underlying (pdi->sect_off);
8866 die = follow_die_ref (NULL, &attr, &ref_cu);
8867
8868 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8869 }
8870 }
8871
8872 parent_scope = partial_die_parent_scope (pdi, cu);
8873 if (parent_scope == NULL)
8874 return NULL;
8875 else
8876 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8877 }
8878
8879 static void
8880 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8881 {
8882 struct dwarf2_per_objfile *dwarf2_per_objfile
8883 = cu->per_cu->dwarf2_per_objfile;
8884 struct objfile *objfile = dwarf2_per_objfile->objfile;
8885 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8886 CORE_ADDR addr = 0;
8887 const char *actual_name = NULL;
8888 CORE_ADDR baseaddr;
8889 char *built_actual_name;
8890
8891 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8892
8893 built_actual_name = partial_die_full_name (pdi, cu);
8894 if (built_actual_name != NULL)
8895 actual_name = built_actual_name;
8896
8897 if (actual_name == NULL)
8898 actual_name = pdi->name;
8899
8900 switch (pdi->tag)
8901 {
8902 case DW_TAG_inlined_subroutine:
8903 case DW_TAG_subprogram:
8904 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8905 - baseaddr);
8906 if (pdi->is_external || cu->language == language_ada)
8907 {
8908 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8909 of the global scope. But in Ada, we want to be able to access
8910 nested procedures globally. So all Ada subprograms are stored
8911 in the global scope. */
8912 add_psymbol_to_list (actual_name, strlen (actual_name),
8913 built_actual_name != NULL,
8914 VAR_DOMAIN, LOC_BLOCK,
8915 SECT_OFF_TEXT (objfile),
8916 psymbol_placement::GLOBAL,
8917 addr,
8918 cu->language, objfile);
8919 }
8920 else
8921 {
8922 add_psymbol_to_list (actual_name, strlen (actual_name),
8923 built_actual_name != NULL,
8924 VAR_DOMAIN, LOC_BLOCK,
8925 SECT_OFF_TEXT (objfile),
8926 psymbol_placement::STATIC,
8927 addr, cu->language, objfile);
8928 }
8929
8930 if (pdi->main_subprogram && actual_name != NULL)
8931 set_objfile_main_name (objfile, actual_name, cu->language);
8932 break;
8933 case DW_TAG_constant:
8934 add_psymbol_to_list (actual_name, strlen (actual_name),
8935 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8936 -1, (pdi->is_external
8937 ? psymbol_placement::GLOBAL
8938 : psymbol_placement::STATIC),
8939 0, cu->language, objfile);
8940 break;
8941 case DW_TAG_variable:
8942 if (pdi->d.locdesc)
8943 addr = decode_locdesc (pdi->d.locdesc, cu);
8944
8945 if (pdi->d.locdesc
8946 && addr == 0
8947 && !dwarf2_per_objfile->has_section_at_zero)
8948 {
8949 /* A global or static variable may also have been stripped
8950 out by the linker if unused, in which case its address
8951 will be nullified; do not add such variables into partial
8952 symbol table then. */
8953 }
8954 else if (pdi->is_external)
8955 {
8956 /* Global Variable.
8957 Don't enter into the minimal symbol tables as there is
8958 a minimal symbol table entry from the ELF symbols already.
8959 Enter into partial symbol table if it has a location
8960 descriptor or a type.
8961 If the location descriptor is missing, new_symbol will create
8962 a LOC_UNRESOLVED symbol, the address of the variable will then
8963 be determined from the minimal symbol table whenever the variable
8964 is referenced.
8965 The address for the partial symbol table entry is not
8966 used by GDB, but it comes in handy for debugging partial symbol
8967 table building. */
8968
8969 if (pdi->d.locdesc || pdi->has_type)
8970 add_psymbol_to_list (actual_name, strlen (actual_name),
8971 built_actual_name != NULL,
8972 VAR_DOMAIN, LOC_STATIC,
8973 SECT_OFF_TEXT (objfile),
8974 psymbol_placement::GLOBAL,
8975 addr, cu->language, objfile);
8976 }
8977 else
8978 {
8979 int has_loc = pdi->d.locdesc != NULL;
8980
8981 /* Static Variable. Skip symbols whose value we cannot know (those
8982 without location descriptors or constant values). */
8983 if (!has_loc && !pdi->has_const_value)
8984 {
8985 xfree (built_actual_name);
8986 return;
8987 }
8988
8989 add_psymbol_to_list (actual_name, strlen (actual_name),
8990 built_actual_name != NULL,
8991 VAR_DOMAIN, LOC_STATIC,
8992 SECT_OFF_TEXT (objfile),
8993 psymbol_placement::STATIC,
8994 has_loc ? addr : 0,
8995 cu->language, objfile);
8996 }
8997 break;
8998 case DW_TAG_typedef:
8999 case DW_TAG_base_type:
9000 case DW_TAG_subrange_type:
9001 add_psymbol_to_list (actual_name, strlen (actual_name),
9002 built_actual_name != NULL,
9003 VAR_DOMAIN, LOC_TYPEDEF, -1,
9004 psymbol_placement::STATIC,
9005 0, cu->language, objfile);
9006 break;
9007 case DW_TAG_imported_declaration:
9008 case DW_TAG_namespace:
9009 add_psymbol_to_list (actual_name, strlen (actual_name),
9010 built_actual_name != NULL,
9011 VAR_DOMAIN, LOC_TYPEDEF, -1,
9012 psymbol_placement::GLOBAL,
9013 0, cu->language, objfile);
9014 break;
9015 case DW_TAG_module:
9016 add_psymbol_to_list (actual_name, strlen (actual_name),
9017 built_actual_name != NULL,
9018 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9019 psymbol_placement::GLOBAL,
9020 0, cu->language, objfile);
9021 break;
9022 case DW_TAG_class_type:
9023 case DW_TAG_interface_type:
9024 case DW_TAG_structure_type:
9025 case DW_TAG_union_type:
9026 case DW_TAG_enumeration_type:
9027 /* Skip external references. The DWARF standard says in the section
9028 about "Structure, Union, and Class Type Entries": "An incomplete
9029 structure, union or class type is represented by a structure,
9030 union or class entry that does not have a byte size attribute
9031 and that has a DW_AT_declaration attribute." */
9032 if (!pdi->has_byte_size && pdi->is_declaration)
9033 {
9034 xfree (built_actual_name);
9035 return;
9036 }
9037
9038 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9039 static vs. global. */
9040 add_psymbol_to_list (actual_name, strlen (actual_name),
9041 built_actual_name != NULL,
9042 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9043 cu->language == language_cplus
9044 ? psymbol_placement::GLOBAL
9045 : psymbol_placement::STATIC,
9046 0, cu->language, objfile);
9047
9048 break;
9049 case DW_TAG_enumerator:
9050 add_psymbol_to_list (actual_name, strlen (actual_name),
9051 built_actual_name != NULL,
9052 VAR_DOMAIN, LOC_CONST, -1,
9053 cu->language == language_cplus
9054 ? psymbol_placement::GLOBAL
9055 : psymbol_placement::STATIC,
9056 0, cu->language, objfile);
9057 break;
9058 default:
9059 break;
9060 }
9061
9062 xfree (built_actual_name);
9063 }
9064
9065 /* Read a partial die corresponding to a namespace; also, add a symbol
9066 corresponding to that namespace to the symbol table. NAMESPACE is
9067 the name of the enclosing namespace. */
9068
9069 static void
9070 add_partial_namespace (struct partial_die_info *pdi,
9071 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9072 int set_addrmap, struct dwarf2_cu *cu)
9073 {
9074 /* Add a symbol for the namespace. */
9075
9076 add_partial_symbol (pdi, cu);
9077
9078 /* Now scan partial symbols in that namespace. */
9079
9080 if (pdi->has_children)
9081 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9082 }
9083
9084 /* Read a partial die corresponding to a Fortran module. */
9085
9086 static void
9087 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9088 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9089 {
9090 /* Add a symbol for the namespace. */
9091
9092 add_partial_symbol (pdi, cu);
9093
9094 /* Now scan partial symbols in that module. */
9095
9096 if (pdi->has_children)
9097 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9098 }
9099
9100 /* Read a partial die corresponding to a subprogram or an inlined
9101 subprogram and create a partial symbol for that subprogram.
9102 When the CU language allows it, this routine also defines a partial
9103 symbol for each nested subprogram that this subprogram contains.
9104 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9105 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9106
9107 PDI may also be a lexical block, in which case we simply search
9108 recursively for subprograms defined inside that lexical block.
9109 Again, this is only performed when the CU language allows this
9110 type of definitions. */
9111
9112 static void
9113 add_partial_subprogram (struct partial_die_info *pdi,
9114 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9115 int set_addrmap, struct dwarf2_cu *cu)
9116 {
9117 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9118 {
9119 if (pdi->has_pc_info)
9120 {
9121 if (pdi->lowpc < *lowpc)
9122 *lowpc = pdi->lowpc;
9123 if (pdi->highpc > *highpc)
9124 *highpc = pdi->highpc;
9125 if (set_addrmap)
9126 {
9127 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9129 CORE_ADDR baseaddr;
9130 CORE_ADDR this_highpc;
9131 CORE_ADDR this_lowpc;
9132
9133 baseaddr = ANOFFSET (objfile->section_offsets,
9134 SECT_OFF_TEXT (objfile));
9135 this_lowpc
9136 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9137 pdi->lowpc + baseaddr)
9138 - baseaddr);
9139 this_highpc
9140 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9141 pdi->highpc + baseaddr)
9142 - baseaddr);
9143 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9144 this_lowpc, this_highpc - 1,
9145 cu->per_cu->v.psymtab);
9146 }
9147 }
9148
9149 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9150 {
9151 if (!pdi->is_declaration)
9152 /* Ignore subprogram DIEs that do not have a name, they are
9153 illegal. Do not emit a complaint at this point, we will
9154 do so when we convert this psymtab into a symtab. */
9155 if (pdi->name)
9156 add_partial_symbol (pdi, cu);
9157 }
9158 }
9159
9160 if (! pdi->has_children)
9161 return;
9162
9163 if (cu->language == language_ada)
9164 {
9165 pdi = pdi->die_child;
9166 while (pdi != NULL)
9167 {
9168 pdi->fixup (cu);
9169 if (pdi->tag == DW_TAG_subprogram
9170 || pdi->tag == DW_TAG_inlined_subroutine
9171 || pdi->tag == DW_TAG_lexical_block)
9172 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9173 pdi = pdi->die_sibling;
9174 }
9175 }
9176 }
9177
9178 /* Read a partial die corresponding to an enumeration type. */
9179
9180 static void
9181 add_partial_enumeration (struct partial_die_info *enum_pdi,
9182 struct dwarf2_cu *cu)
9183 {
9184 struct partial_die_info *pdi;
9185
9186 if (enum_pdi->name != NULL)
9187 add_partial_symbol (enum_pdi, cu);
9188
9189 pdi = enum_pdi->die_child;
9190 while (pdi)
9191 {
9192 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9193 complaint (_("malformed enumerator DIE ignored"));
9194 else
9195 add_partial_symbol (pdi, cu);
9196 pdi = pdi->die_sibling;
9197 }
9198 }
9199
9200 /* Return the initial uleb128 in the die at INFO_PTR. */
9201
9202 static unsigned int
9203 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9204 {
9205 unsigned int bytes_read;
9206
9207 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9208 }
9209
9210 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9211 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9212
9213 Return the corresponding abbrev, or NULL if the number is zero (indicating
9214 an empty DIE). In either case *BYTES_READ will be set to the length of
9215 the initial number. */
9216
9217 static struct abbrev_info *
9218 peek_die_abbrev (const die_reader_specs &reader,
9219 const gdb_byte *info_ptr, unsigned int *bytes_read)
9220 {
9221 dwarf2_cu *cu = reader.cu;
9222 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9223 unsigned int abbrev_number
9224 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9225
9226 if (abbrev_number == 0)
9227 return NULL;
9228
9229 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9230 if (!abbrev)
9231 {
9232 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9233 " at offset %s [in module %s]"),
9234 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9235 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9236 }
9237
9238 return abbrev;
9239 }
9240
9241 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9242 Returns a pointer to the end of a series of DIEs, terminated by an empty
9243 DIE. Any children of the skipped DIEs will also be skipped. */
9244
9245 static const gdb_byte *
9246 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9247 {
9248 while (1)
9249 {
9250 unsigned int bytes_read;
9251 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9252
9253 if (abbrev == NULL)
9254 return info_ptr + bytes_read;
9255 else
9256 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9257 }
9258 }
9259
9260 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9261 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9262 abbrev corresponding to that skipped uleb128 should be passed in
9263 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9264 children. */
9265
9266 static const gdb_byte *
9267 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9268 struct abbrev_info *abbrev)
9269 {
9270 unsigned int bytes_read;
9271 struct attribute attr;
9272 bfd *abfd = reader->abfd;
9273 struct dwarf2_cu *cu = reader->cu;
9274 const gdb_byte *buffer = reader->buffer;
9275 const gdb_byte *buffer_end = reader->buffer_end;
9276 unsigned int form, i;
9277
9278 for (i = 0; i < abbrev->num_attrs; i++)
9279 {
9280 /* The only abbrev we care about is DW_AT_sibling. */
9281 if (abbrev->attrs[i].name == DW_AT_sibling)
9282 {
9283 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9284 if (attr.form == DW_FORM_ref_addr)
9285 complaint (_("ignoring absolute DW_AT_sibling"));
9286 else
9287 {
9288 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9289 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9290
9291 if (sibling_ptr < info_ptr)
9292 complaint (_("DW_AT_sibling points backwards"));
9293 else if (sibling_ptr > reader->buffer_end)
9294 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9295 else
9296 return sibling_ptr;
9297 }
9298 }
9299
9300 /* If it isn't DW_AT_sibling, skip this attribute. */
9301 form = abbrev->attrs[i].form;
9302 skip_attribute:
9303 switch (form)
9304 {
9305 case DW_FORM_ref_addr:
9306 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9307 and later it is offset sized. */
9308 if (cu->header.version == 2)
9309 info_ptr += cu->header.addr_size;
9310 else
9311 info_ptr += cu->header.offset_size;
9312 break;
9313 case DW_FORM_GNU_ref_alt:
9314 info_ptr += cu->header.offset_size;
9315 break;
9316 case DW_FORM_addr:
9317 info_ptr += cu->header.addr_size;
9318 break;
9319 case DW_FORM_data1:
9320 case DW_FORM_ref1:
9321 case DW_FORM_flag:
9322 info_ptr += 1;
9323 break;
9324 case DW_FORM_flag_present:
9325 case DW_FORM_implicit_const:
9326 break;
9327 case DW_FORM_data2:
9328 case DW_FORM_ref2:
9329 info_ptr += 2;
9330 break;
9331 case DW_FORM_data4:
9332 case DW_FORM_ref4:
9333 info_ptr += 4;
9334 break;
9335 case DW_FORM_data8:
9336 case DW_FORM_ref8:
9337 case DW_FORM_ref_sig8:
9338 info_ptr += 8;
9339 break;
9340 case DW_FORM_data16:
9341 info_ptr += 16;
9342 break;
9343 case DW_FORM_string:
9344 read_direct_string (abfd, info_ptr, &bytes_read);
9345 info_ptr += bytes_read;
9346 break;
9347 case DW_FORM_sec_offset:
9348 case DW_FORM_strp:
9349 case DW_FORM_GNU_strp_alt:
9350 info_ptr += cu->header.offset_size;
9351 break;
9352 case DW_FORM_exprloc:
9353 case DW_FORM_block:
9354 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9355 info_ptr += bytes_read;
9356 break;
9357 case DW_FORM_block1:
9358 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9359 break;
9360 case DW_FORM_block2:
9361 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9362 break;
9363 case DW_FORM_block4:
9364 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9365 break;
9366 case DW_FORM_addrx:
9367 case DW_FORM_strx:
9368 case DW_FORM_sdata:
9369 case DW_FORM_udata:
9370 case DW_FORM_ref_udata:
9371 case DW_FORM_GNU_addr_index:
9372 case DW_FORM_GNU_str_index:
9373 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9374 break;
9375 case DW_FORM_indirect:
9376 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9377 info_ptr += bytes_read;
9378 /* We need to continue parsing from here, so just go back to
9379 the top. */
9380 goto skip_attribute;
9381
9382 default:
9383 error (_("Dwarf Error: Cannot handle %s "
9384 "in DWARF reader [in module %s]"),
9385 dwarf_form_name (form),
9386 bfd_get_filename (abfd));
9387 }
9388 }
9389
9390 if (abbrev->has_children)
9391 return skip_children (reader, info_ptr);
9392 else
9393 return info_ptr;
9394 }
9395
9396 /* Locate ORIG_PDI's sibling.
9397 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9398
9399 static const gdb_byte *
9400 locate_pdi_sibling (const struct die_reader_specs *reader,
9401 struct partial_die_info *orig_pdi,
9402 const gdb_byte *info_ptr)
9403 {
9404 /* Do we know the sibling already? */
9405
9406 if (orig_pdi->sibling)
9407 return orig_pdi->sibling;
9408
9409 /* Are there any children to deal with? */
9410
9411 if (!orig_pdi->has_children)
9412 return info_ptr;
9413
9414 /* Skip the children the long way. */
9415
9416 return skip_children (reader, info_ptr);
9417 }
9418
9419 /* Expand this partial symbol table into a full symbol table. SELF is
9420 not NULL. */
9421
9422 static void
9423 dwarf2_read_symtab (struct partial_symtab *self,
9424 struct objfile *objfile)
9425 {
9426 struct dwarf2_per_objfile *dwarf2_per_objfile
9427 = get_dwarf2_per_objfile (objfile);
9428
9429 if (self->readin)
9430 {
9431 warning (_("bug: psymtab for %s is already read in."),
9432 self->filename);
9433 }
9434 else
9435 {
9436 if (info_verbose)
9437 {
9438 printf_filtered (_("Reading in symbols for %s..."),
9439 self->filename);
9440 gdb_flush (gdb_stdout);
9441 }
9442
9443 /* If this psymtab is constructed from a debug-only objfile, the
9444 has_section_at_zero flag will not necessarily be correct. We
9445 can get the correct value for this flag by looking at the data
9446 associated with the (presumably stripped) associated objfile. */
9447 if (objfile->separate_debug_objfile_backlink)
9448 {
9449 struct dwarf2_per_objfile *dpo_backlink
9450 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9451
9452 dwarf2_per_objfile->has_section_at_zero
9453 = dpo_backlink->has_section_at_zero;
9454 }
9455
9456 dwarf2_per_objfile->reading_partial_symbols = 0;
9457
9458 psymtab_to_symtab_1 (self);
9459
9460 /* Finish up the debug error message. */
9461 if (info_verbose)
9462 printf_filtered (_("done.\n"));
9463 }
9464
9465 process_cu_includes (dwarf2_per_objfile);
9466 }
9467 \f
9468 /* Reading in full CUs. */
9469
9470 /* Add PER_CU to the queue. */
9471
9472 static void
9473 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9474 enum language pretend_language)
9475 {
9476 struct dwarf2_queue_item *item;
9477
9478 per_cu->queued = 1;
9479 item = XNEW (struct dwarf2_queue_item);
9480 item->per_cu = per_cu;
9481 item->pretend_language = pretend_language;
9482 item->next = NULL;
9483
9484 if (dwarf2_queue == NULL)
9485 dwarf2_queue = item;
9486 else
9487 dwarf2_queue_tail->next = item;
9488
9489 dwarf2_queue_tail = item;
9490 }
9491
9492 /* If PER_CU is not yet queued, add it to the queue.
9493 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9494 dependency.
9495 The result is non-zero if PER_CU was queued, otherwise the result is zero
9496 meaning either PER_CU is already queued or it is already loaded.
9497
9498 N.B. There is an invariant here that if a CU is queued then it is loaded.
9499 The caller is required to load PER_CU if we return non-zero. */
9500
9501 static int
9502 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9503 struct dwarf2_per_cu_data *per_cu,
9504 enum language pretend_language)
9505 {
9506 /* We may arrive here during partial symbol reading, if we need full
9507 DIEs to process an unusual case (e.g. template arguments). Do
9508 not queue PER_CU, just tell our caller to load its DIEs. */
9509 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9510 {
9511 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9512 return 1;
9513 return 0;
9514 }
9515
9516 /* Mark the dependence relation so that we don't flush PER_CU
9517 too early. */
9518 if (dependent_cu != NULL)
9519 dwarf2_add_dependence (dependent_cu, per_cu);
9520
9521 /* If it's already on the queue, we have nothing to do. */
9522 if (per_cu->queued)
9523 return 0;
9524
9525 /* If the compilation unit is already loaded, just mark it as
9526 used. */
9527 if (per_cu->cu != NULL)
9528 {
9529 per_cu->cu->last_used = 0;
9530 return 0;
9531 }
9532
9533 /* Add it to the queue. */
9534 queue_comp_unit (per_cu, pretend_language);
9535
9536 return 1;
9537 }
9538
9539 /* Process the queue. */
9540
9541 static void
9542 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9543 {
9544 struct dwarf2_queue_item *item, *next_item;
9545
9546 if (dwarf_read_debug)
9547 {
9548 fprintf_unfiltered (gdb_stdlog,
9549 "Expanding one or more symtabs of objfile %s ...\n",
9550 objfile_name (dwarf2_per_objfile->objfile));
9551 }
9552
9553 /* The queue starts out with one item, but following a DIE reference
9554 may load a new CU, adding it to the end of the queue. */
9555 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9556 {
9557 if ((dwarf2_per_objfile->using_index
9558 ? !item->per_cu->v.quick->compunit_symtab
9559 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9560 /* Skip dummy CUs. */
9561 && item->per_cu->cu != NULL)
9562 {
9563 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9564 unsigned int debug_print_threshold;
9565 char buf[100];
9566
9567 if (per_cu->is_debug_types)
9568 {
9569 struct signatured_type *sig_type =
9570 (struct signatured_type *) per_cu;
9571
9572 sprintf (buf, "TU %s at offset %s",
9573 hex_string (sig_type->signature),
9574 sect_offset_str (per_cu->sect_off));
9575 /* There can be 100s of TUs.
9576 Only print them in verbose mode. */
9577 debug_print_threshold = 2;
9578 }
9579 else
9580 {
9581 sprintf (buf, "CU at offset %s",
9582 sect_offset_str (per_cu->sect_off));
9583 debug_print_threshold = 1;
9584 }
9585
9586 if (dwarf_read_debug >= debug_print_threshold)
9587 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9588
9589 if (per_cu->is_debug_types)
9590 process_full_type_unit (per_cu, item->pretend_language);
9591 else
9592 process_full_comp_unit (per_cu, item->pretend_language);
9593
9594 if (dwarf_read_debug >= debug_print_threshold)
9595 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9596 }
9597
9598 item->per_cu->queued = 0;
9599 next_item = item->next;
9600 xfree (item);
9601 }
9602
9603 dwarf2_queue_tail = NULL;
9604
9605 if (dwarf_read_debug)
9606 {
9607 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9608 objfile_name (dwarf2_per_objfile->objfile));
9609 }
9610 }
9611
9612 /* Read in full symbols for PST, and anything it depends on. */
9613
9614 static void
9615 psymtab_to_symtab_1 (struct partial_symtab *pst)
9616 {
9617 struct dwarf2_per_cu_data *per_cu;
9618 int i;
9619
9620 if (pst->readin)
9621 return;
9622
9623 for (i = 0; i < pst->number_of_dependencies; i++)
9624 if (!pst->dependencies[i]->readin
9625 && pst->dependencies[i]->user == NULL)
9626 {
9627 /* Inform about additional files that need to be read in. */
9628 if (info_verbose)
9629 {
9630 /* FIXME: i18n: Need to make this a single string. */
9631 fputs_filtered (" ", gdb_stdout);
9632 wrap_here ("");
9633 fputs_filtered ("and ", gdb_stdout);
9634 wrap_here ("");
9635 printf_filtered ("%s...", pst->dependencies[i]->filename);
9636 wrap_here (""); /* Flush output. */
9637 gdb_flush (gdb_stdout);
9638 }
9639 psymtab_to_symtab_1 (pst->dependencies[i]);
9640 }
9641
9642 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9643
9644 if (per_cu == NULL)
9645 {
9646 /* It's an include file, no symbols to read for it.
9647 Everything is in the parent symtab. */
9648 pst->readin = 1;
9649 return;
9650 }
9651
9652 dw2_do_instantiate_symtab (per_cu, false);
9653 }
9654
9655 /* Trivial hash function for die_info: the hash value of a DIE
9656 is its offset in .debug_info for this objfile. */
9657
9658 static hashval_t
9659 die_hash (const void *item)
9660 {
9661 const struct die_info *die = (const struct die_info *) item;
9662
9663 return to_underlying (die->sect_off);
9664 }
9665
9666 /* Trivial comparison function for die_info structures: two DIEs
9667 are equal if they have the same offset. */
9668
9669 static int
9670 die_eq (const void *item_lhs, const void *item_rhs)
9671 {
9672 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9673 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9674
9675 return die_lhs->sect_off == die_rhs->sect_off;
9676 }
9677
9678 /* die_reader_func for load_full_comp_unit.
9679 This is identical to read_signatured_type_reader,
9680 but is kept separate for now. */
9681
9682 static void
9683 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9684 const gdb_byte *info_ptr,
9685 struct die_info *comp_unit_die,
9686 int has_children,
9687 void *data)
9688 {
9689 struct dwarf2_cu *cu = reader->cu;
9690 enum language *language_ptr = (enum language *) data;
9691
9692 gdb_assert (cu->die_hash == NULL);
9693 cu->die_hash =
9694 htab_create_alloc_ex (cu->header.length / 12,
9695 die_hash,
9696 die_eq,
9697 NULL,
9698 &cu->comp_unit_obstack,
9699 hashtab_obstack_allocate,
9700 dummy_obstack_deallocate);
9701
9702 if (has_children)
9703 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9704 &info_ptr, comp_unit_die);
9705 cu->dies = comp_unit_die;
9706 /* comp_unit_die is not stored in die_hash, no need. */
9707
9708 /* We try not to read any attributes in this function, because not
9709 all CUs needed for references have been loaded yet, and symbol
9710 table processing isn't initialized. But we have to set the CU language,
9711 or we won't be able to build types correctly.
9712 Similarly, if we do not read the producer, we can not apply
9713 producer-specific interpretation. */
9714 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9715 }
9716
9717 /* Load the DIEs associated with PER_CU into memory. */
9718
9719 static void
9720 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9721 bool skip_partial,
9722 enum language pretend_language)
9723 {
9724 gdb_assert (! this_cu->is_debug_types);
9725
9726 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9727 load_full_comp_unit_reader, &pretend_language);
9728 }
9729
9730 /* Add a DIE to the delayed physname list. */
9731
9732 static void
9733 add_to_method_list (struct type *type, int fnfield_index, int index,
9734 const char *name, struct die_info *die,
9735 struct dwarf2_cu *cu)
9736 {
9737 struct delayed_method_info mi;
9738 mi.type = type;
9739 mi.fnfield_index = fnfield_index;
9740 mi.index = index;
9741 mi.name = name;
9742 mi.die = die;
9743 cu->method_list.push_back (mi);
9744 }
9745
9746 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9747 "const" / "volatile". If so, decrements LEN by the length of the
9748 modifier and return true. Otherwise return false. */
9749
9750 template<size_t N>
9751 static bool
9752 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9753 {
9754 size_t mod_len = sizeof (mod) - 1;
9755 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9756 {
9757 len -= mod_len;
9758 return true;
9759 }
9760 return false;
9761 }
9762
9763 /* Compute the physnames of any methods on the CU's method list.
9764
9765 The computation of method physnames is delayed in order to avoid the
9766 (bad) condition that one of the method's formal parameters is of an as yet
9767 incomplete type. */
9768
9769 static void
9770 compute_delayed_physnames (struct dwarf2_cu *cu)
9771 {
9772 /* Only C++ delays computing physnames. */
9773 if (cu->method_list.empty ())
9774 return;
9775 gdb_assert (cu->language == language_cplus);
9776
9777 for (const delayed_method_info &mi : cu->method_list)
9778 {
9779 const char *physname;
9780 struct fn_fieldlist *fn_flp
9781 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9782 physname = dwarf2_physname (mi.name, mi.die, cu);
9783 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9784 = physname ? physname : "";
9785
9786 /* Since there's no tag to indicate whether a method is a
9787 const/volatile overload, extract that information out of the
9788 demangled name. */
9789 if (physname != NULL)
9790 {
9791 size_t len = strlen (physname);
9792
9793 while (1)
9794 {
9795 if (physname[len] == ')') /* shortcut */
9796 break;
9797 else if (check_modifier (physname, len, " const"))
9798 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9799 else if (check_modifier (physname, len, " volatile"))
9800 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9801 else
9802 break;
9803 }
9804 }
9805 }
9806
9807 /* The list is no longer needed. */
9808 cu->method_list.clear ();
9809 }
9810
9811 /* Go objects should be embedded in a DW_TAG_module DIE,
9812 and it's not clear if/how imported objects will appear.
9813 To keep Go support simple until that's worked out,
9814 go back through what we've read and create something usable.
9815 We could do this while processing each DIE, and feels kinda cleaner,
9816 but that way is more invasive.
9817 This is to, for example, allow the user to type "p var" or "b main"
9818 without having to specify the package name, and allow lookups
9819 of module.object to work in contexts that use the expression
9820 parser. */
9821
9822 static void
9823 fixup_go_packaging (struct dwarf2_cu *cu)
9824 {
9825 char *package_name = NULL;
9826 struct pending *list;
9827 int i;
9828
9829 for (list = *cu->get_builder ()->get_global_symbols ();
9830 list != NULL;
9831 list = list->next)
9832 {
9833 for (i = 0; i < list->nsyms; ++i)
9834 {
9835 struct symbol *sym = list->symbol[i];
9836
9837 if (SYMBOL_LANGUAGE (sym) == language_go
9838 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9839 {
9840 char *this_package_name = go_symbol_package_name (sym);
9841
9842 if (this_package_name == NULL)
9843 continue;
9844 if (package_name == NULL)
9845 package_name = this_package_name;
9846 else
9847 {
9848 struct objfile *objfile
9849 = cu->per_cu->dwarf2_per_objfile->objfile;
9850 if (strcmp (package_name, this_package_name) != 0)
9851 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9852 (symbol_symtab (sym) != NULL
9853 ? symtab_to_filename_for_display
9854 (symbol_symtab (sym))
9855 : objfile_name (objfile)),
9856 this_package_name, package_name);
9857 xfree (this_package_name);
9858 }
9859 }
9860 }
9861 }
9862
9863 if (package_name != NULL)
9864 {
9865 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9866 const char *saved_package_name
9867 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9868 package_name,
9869 strlen (package_name));
9870 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9871 saved_package_name);
9872 struct symbol *sym;
9873
9874 sym = allocate_symbol (objfile);
9875 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9876 SYMBOL_SET_NAMES (sym, saved_package_name,
9877 strlen (saved_package_name), 0, objfile);
9878 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9879 e.g., "main" finds the "main" module and not C's main(). */
9880 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9881 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9882 SYMBOL_TYPE (sym) = type;
9883
9884 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9885
9886 xfree (package_name);
9887 }
9888 }
9889
9890 /* Allocate a fully-qualified name consisting of the two parts on the
9891 obstack. */
9892
9893 static const char *
9894 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9895 {
9896 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9897 }
9898
9899 /* A helper that allocates a struct discriminant_info to attach to a
9900 union type. */
9901
9902 static struct discriminant_info *
9903 alloc_discriminant_info (struct type *type, int discriminant_index,
9904 int default_index)
9905 {
9906 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9907 gdb_assert (discriminant_index == -1
9908 || (discriminant_index >= 0
9909 && discriminant_index < TYPE_NFIELDS (type)));
9910 gdb_assert (default_index == -1
9911 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9912
9913 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9914
9915 struct discriminant_info *disc
9916 = ((struct discriminant_info *)
9917 TYPE_ZALLOC (type,
9918 offsetof (struct discriminant_info, discriminants)
9919 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9920 disc->default_index = default_index;
9921 disc->discriminant_index = discriminant_index;
9922
9923 struct dynamic_prop prop;
9924 prop.kind = PROP_UNDEFINED;
9925 prop.data.baton = disc;
9926
9927 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9928
9929 return disc;
9930 }
9931
9932 /* Some versions of rustc emitted enums in an unusual way.
9933
9934 Ordinary enums were emitted as unions. The first element of each
9935 structure in the union was named "RUST$ENUM$DISR". This element
9936 held the discriminant.
9937
9938 These versions of Rust also implemented the "non-zero"
9939 optimization. When the enum had two values, and one is empty and
9940 the other holds a pointer that cannot be zero, the pointer is used
9941 as the discriminant, with a zero value meaning the empty variant.
9942 Here, the union's first member is of the form
9943 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9944 where the fieldnos are the indices of the fields that should be
9945 traversed in order to find the field (which may be several fields deep)
9946 and the variantname is the name of the variant of the case when the
9947 field is zero.
9948
9949 This function recognizes whether TYPE is of one of these forms,
9950 and, if so, smashes it to be a variant type. */
9951
9952 static void
9953 quirk_rust_enum (struct type *type, struct objfile *objfile)
9954 {
9955 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9956
9957 /* We don't need to deal with empty enums. */
9958 if (TYPE_NFIELDS (type) == 0)
9959 return;
9960
9961 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9962 if (TYPE_NFIELDS (type) == 1
9963 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9964 {
9965 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9966
9967 /* Decode the field name to find the offset of the
9968 discriminant. */
9969 ULONGEST bit_offset = 0;
9970 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9971 while (name[0] >= '0' && name[0] <= '9')
9972 {
9973 char *tail;
9974 unsigned long index = strtoul (name, &tail, 10);
9975 name = tail;
9976 if (*name != '$'
9977 || index >= TYPE_NFIELDS (field_type)
9978 || (TYPE_FIELD_LOC_KIND (field_type, index)
9979 != FIELD_LOC_KIND_BITPOS))
9980 {
9981 complaint (_("Could not parse Rust enum encoding string \"%s\""
9982 "[in module %s]"),
9983 TYPE_FIELD_NAME (type, 0),
9984 objfile_name (objfile));
9985 return;
9986 }
9987 ++name;
9988
9989 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9990 field_type = TYPE_FIELD_TYPE (field_type, index);
9991 }
9992
9993 /* Make a union to hold the variants. */
9994 struct type *union_type = alloc_type (objfile);
9995 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9996 TYPE_NFIELDS (union_type) = 3;
9997 TYPE_FIELDS (union_type)
9998 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9999 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10000 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10001
10002 /* Put the discriminant must at index 0. */
10003 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10004 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10005 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10006 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10007
10008 /* The order of fields doesn't really matter, so put the real
10009 field at index 1 and the data-less field at index 2. */
10010 struct discriminant_info *disc
10011 = alloc_discriminant_info (union_type, 0, 1);
10012 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10013 TYPE_FIELD_NAME (union_type, 1)
10014 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10015 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10016 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10017 TYPE_FIELD_NAME (union_type, 1));
10018
10019 const char *dataless_name
10020 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10021 name);
10022 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10023 dataless_name);
10024 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10025 /* NAME points into the original discriminant name, which
10026 already has the correct lifetime. */
10027 TYPE_FIELD_NAME (union_type, 2) = name;
10028 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10029 disc->discriminants[2] = 0;
10030
10031 /* Smash this type to be a structure type. We have to do this
10032 because the type has already been recorded. */
10033 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10034 TYPE_NFIELDS (type) = 1;
10035 TYPE_FIELDS (type)
10036 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10037
10038 /* Install the variant part. */
10039 TYPE_FIELD_TYPE (type, 0) = union_type;
10040 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10041 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10042 }
10043 else if (TYPE_NFIELDS (type) == 1)
10044 {
10045 /* We assume that a union with a single field is a univariant
10046 enum. */
10047 /* Smash this type to be a structure type. We have to do this
10048 because the type has already been recorded. */
10049 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10050
10051 /* Make a union to hold the variants. */
10052 struct type *union_type = alloc_type (objfile);
10053 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10054 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10055 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10056 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10057 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10058
10059 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10060 const char *variant_name
10061 = rust_last_path_segment (TYPE_NAME (field_type));
10062 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10063 TYPE_NAME (field_type)
10064 = rust_fully_qualify (&objfile->objfile_obstack,
10065 TYPE_NAME (type), variant_name);
10066
10067 /* Install the union in the outer struct type. */
10068 TYPE_NFIELDS (type) = 1;
10069 TYPE_FIELDS (type)
10070 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10071 TYPE_FIELD_TYPE (type, 0) = union_type;
10072 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10073 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10074
10075 alloc_discriminant_info (union_type, -1, 0);
10076 }
10077 else
10078 {
10079 struct type *disr_type = nullptr;
10080 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10081 {
10082 disr_type = TYPE_FIELD_TYPE (type, i);
10083
10084 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10085 {
10086 /* All fields of a true enum will be structs. */
10087 return;
10088 }
10089 else if (TYPE_NFIELDS (disr_type) == 0)
10090 {
10091 /* Could be data-less variant, so keep going. */
10092 disr_type = nullptr;
10093 }
10094 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10095 "RUST$ENUM$DISR") != 0)
10096 {
10097 /* Not a Rust enum. */
10098 return;
10099 }
10100 else
10101 {
10102 /* Found one. */
10103 break;
10104 }
10105 }
10106
10107 /* If we got here without a discriminant, then it's probably
10108 just a union. */
10109 if (disr_type == nullptr)
10110 return;
10111
10112 /* Smash this type to be a structure type. We have to do this
10113 because the type has already been recorded. */
10114 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10115
10116 /* Make a union to hold the variants. */
10117 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10118 struct type *union_type = alloc_type (objfile);
10119 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10120 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10121 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10122 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10123 TYPE_FIELDS (union_type)
10124 = (struct field *) TYPE_ZALLOC (union_type,
10125 (TYPE_NFIELDS (union_type)
10126 * sizeof (struct field)));
10127
10128 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10129 TYPE_NFIELDS (type) * sizeof (struct field));
10130
10131 /* Install the discriminant at index 0 in the union. */
10132 TYPE_FIELD (union_type, 0) = *disr_field;
10133 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10134 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10135
10136 /* Install the union in the outer struct type. */
10137 TYPE_FIELD_TYPE (type, 0) = union_type;
10138 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10139 TYPE_NFIELDS (type) = 1;
10140
10141 /* Set the size and offset of the union type. */
10142 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10143
10144 /* We need a way to find the correct discriminant given a
10145 variant name. For convenience we build a map here. */
10146 struct type *enum_type = FIELD_TYPE (*disr_field);
10147 std::unordered_map<std::string, ULONGEST> discriminant_map;
10148 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10149 {
10150 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10151 {
10152 const char *name
10153 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10154 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10155 }
10156 }
10157
10158 int n_fields = TYPE_NFIELDS (union_type);
10159 struct discriminant_info *disc
10160 = alloc_discriminant_info (union_type, 0, -1);
10161 /* Skip the discriminant here. */
10162 for (int i = 1; i < n_fields; ++i)
10163 {
10164 /* Find the final word in the name of this variant's type.
10165 That name can be used to look up the correct
10166 discriminant. */
10167 const char *variant_name
10168 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10169 i)));
10170
10171 auto iter = discriminant_map.find (variant_name);
10172 if (iter != discriminant_map.end ())
10173 disc->discriminants[i] = iter->second;
10174
10175 /* Remove the discriminant field, if it exists. */
10176 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10177 if (TYPE_NFIELDS (sub_type) > 0)
10178 {
10179 --TYPE_NFIELDS (sub_type);
10180 ++TYPE_FIELDS (sub_type);
10181 }
10182 TYPE_FIELD_NAME (union_type, i) = variant_name;
10183 TYPE_NAME (sub_type)
10184 = rust_fully_qualify (&objfile->objfile_obstack,
10185 TYPE_NAME (type), variant_name);
10186 }
10187 }
10188 }
10189
10190 /* Rewrite some Rust unions to be structures with variants parts. */
10191
10192 static void
10193 rust_union_quirks (struct dwarf2_cu *cu)
10194 {
10195 gdb_assert (cu->language == language_rust);
10196 for (type *type_ : cu->rust_unions)
10197 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10198 /* We don't need this any more. */
10199 cu->rust_unions.clear ();
10200 }
10201
10202 /* Return the symtab for PER_CU. This works properly regardless of
10203 whether we're using the index or psymtabs. */
10204
10205 static struct compunit_symtab *
10206 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10207 {
10208 return (per_cu->dwarf2_per_objfile->using_index
10209 ? per_cu->v.quick->compunit_symtab
10210 : per_cu->v.psymtab->compunit_symtab);
10211 }
10212
10213 /* A helper function for computing the list of all symbol tables
10214 included by PER_CU. */
10215
10216 static void
10217 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10218 htab_t all_children, htab_t all_type_symtabs,
10219 struct dwarf2_per_cu_data *per_cu,
10220 struct compunit_symtab *immediate_parent)
10221 {
10222 void **slot;
10223 int ix;
10224 struct compunit_symtab *cust;
10225 struct dwarf2_per_cu_data *iter;
10226
10227 slot = htab_find_slot (all_children, per_cu, INSERT);
10228 if (*slot != NULL)
10229 {
10230 /* This inclusion and its children have been processed. */
10231 return;
10232 }
10233
10234 *slot = per_cu;
10235 /* Only add a CU if it has a symbol table. */
10236 cust = get_compunit_symtab (per_cu);
10237 if (cust != NULL)
10238 {
10239 /* If this is a type unit only add its symbol table if we haven't
10240 seen it yet (type unit per_cu's can share symtabs). */
10241 if (per_cu->is_debug_types)
10242 {
10243 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10244 if (*slot == NULL)
10245 {
10246 *slot = cust;
10247 result->push_back (cust);
10248 if (cust->user == NULL)
10249 cust->user = immediate_parent;
10250 }
10251 }
10252 else
10253 {
10254 result->push_back (cust);
10255 if (cust->user == NULL)
10256 cust->user = immediate_parent;
10257 }
10258 }
10259
10260 for (ix = 0;
10261 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10262 ++ix)
10263 {
10264 recursively_compute_inclusions (result, all_children,
10265 all_type_symtabs, iter, cust);
10266 }
10267 }
10268
10269 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10270 PER_CU. */
10271
10272 static void
10273 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10274 {
10275 gdb_assert (! per_cu->is_debug_types);
10276
10277 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10278 {
10279 int ix, len;
10280 struct dwarf2_per_cu_data *per_cu_iter;
10281 std::vector<compunit_symtab *> result_symtabs;
10282 htab_t all_children, all_type_symtabs;
10283 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10284
10285 /* If we don't have a symtab, we can just skip this case. */
10286 if (cust == NULL)
10287 return;
10288
10289 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10290 NULL, xcalloc, xfree);
10291 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10292 NULL, xcalloc, xfree);
10293
10294 for (ix = 0;
10295 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10296 ix, per_cu_iter);
10297 ++ix)
10298 {
10299 recursively_compute_inclusions (&result_symtabs, all_children,
10300 all_type_symtabs, per_cu_iter,
10301 cust);
10302 }
10303
10304 /* Now we have a transitive closure of all the included symtabs. */
10305 len = result_symtabs.size ();
10306 cust->includes
10307 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10308 struct compunit_symtab *, len + 1);
10309 memcpy (cust->includes, result_symtabs.data (),
10310 len * sizeof (compunit_symtab *));
10311 cust->includes[len] = NULL;
10312
10313 htab_delete (all_children);
10314 htab_delete (all_type_symtabs);
10315 }
10316 }
10317
10318 /* Compute the 'includes' field for the symtabs of all the CUs we just
10319 read. */
10320
10321 static void
10322 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10323 {
10324 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10325 {
10326 if (! iter->is_debug_types)
10327 compute_compunit_symtab_includes (iter);
10328 }
10329
10330 dwarf2_per_objfile->just_read_cus.clear ();
10331 }
10332
10333 /* Generate full symbol information for PER_CU, whose DIEs have
10334 already been loaded into memory. */
10335
10336 static void
10337 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10338 enum language pretend_language)
10339 {
10340 struct dwarf2_cu *cu = per_cu->cu;
10341 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10342 struct objfile *objfile = dwarf2_per_objfile->objfile;
10343 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10344 CORE_ADDR lowpc, highpc;
10345 struct compunit_symtab *cust;
10346 CORE_ADDR baseaddr;
10347 struct block *static_block;
10348 CORE_ADDR addr;
10349
10350 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10351
10352 /* Clear the list here in case something was left over. */
10353 cu->method_list.clear ();
10354
10355 cu->language = pretend_language;
10356 cu->language_defn = language_def (cu->language);
10357
10358 /* Do line number decoding in read_file_scope () */
10359 process_die (cu->dies, cu);
10360
10361 /* For now fudge the Go package. */
10362 if (cu->language == language_go)
10363 fixup_go_packaging (cu);
10364
10365 /* Now that we have processed all the DIEs in the CU, all the types
10366 should be complete, and it should now be safe to compute all of the
10367 physnames. */
10368 compute_delayed_physnames (cu);
10369
10370 if (cu->language == language_rust)
10371 rust_union_quirks (cu);
10372
10373 /* Some compilers don't define a DW_AT_high_pc attribute for the
10374 compilation unit. If the DW_AT_high_pc is missing, synthesize
10375 it, by scanning the DIE's below the compilation unit. */
10376 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10377
10378 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10379 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10380
10381 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10382 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10383 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10384 addrmap to help ensure it has an accurate map of pc values belonging to
10385 this comp unit. */
10386 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10387
10388 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10389 SECT_OFF_TEXT (objfile),
10390 0);
10391
10392 if (cust != NULL)
10393 {
10394 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10395
10396 /* Set symtab language to language from DW_AT_language. If the
10397 compilation is from a C file generated by language preprocessors, do
10398 not set the language if it was already deduced by start_subfile. */
10399 if (!(cu->language == language_c
10400 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10401 COMPUNIT_FILETABS (cust)->language = cu->language;
10402
10403 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10404 produce DW_AT_location with location lists but it can be possibly
10405 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10406 there were bugs in prologue debug info, fixed later in GCC-4.5
10407 by "unwind info for epilogues" patch (which is not directly related).
10408
10409 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10410 needed, it would be wrong due to missing DW_AT_producer there.
10411
10412 Still one can confuse GDB by using non-standard GCC compilation
10413 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10414 */
10415 if (cu->has_loclist && gcc_4_minor >= 5)
10416 cust->locations_valid = 1;
10417
10418 if (gcc_4_minor >= 5)
10419 cust->epilogue_unwind_valid = 1;
10420
10421 cust->call_site_htab = cu->call_site_htab;
10422 }
10423
10424 if (dwarf2_per_objfile->using_index)
10425 per_cu->v.quick->compunit_symtab = cust;
10426 else
10427 {
10428 struct partial_symtab *pst = per_cu->v.psymtab;
10429 pst->compunit_symtab = cust;
10430 pst->readin = 1;
10431 }
10432
10433 /* Push it for inclusion processing later. */
10434 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10435
10436 /* Not needed any more. */
10437 cu->reset_builder ();
10438 }
10439
10440 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10441 already been loaded into memory. */
10442
10443 static void
10444 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10445 enum language pretend_language)
10446 {
10447 struct dwarf2_cu *cu = per_cu->cu;
10448 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10449 struct objfile *objfile = dwarf2_per_objfile->objfile;
10450 struct compunit_symtab *cust;
10451 struct signatured_type *sig_type;
10452
10453 gdb_assert (per_cu->is_debug_types);
10454 sig_type = (struct signatured_type *) per_cu;
10455
10456 /* Clear the list here in case something was left over. */
10457 cu->method_list.clear ();
10458
10459 cu->language = pretend_language;
10460 cu->language_defn = language_def (cu->language);
10461
10462 /* The symbol tables are set up in read_type_unit_scope. */
10463 process_die (cu->dies, cu);
10464
10465 /* For now fudge the Go package. */
10466 if (cu->language == language_go)
10467 fixup_go_packaging (cu);
10468
10469 /* Now that we have processed all the DIEs in the CU, all the types
10470 should be complete, and it should now be safe to compute all of the
10471 physnames. */
10472 compute_delayed_physnames (cu);
10473
10474 if (cu->language == language_rust)
10475 rust_union_quirks (cu);
10476
10477 /* TUs share symbol tables.
10478 If this is the first TU to use this symtab, complete the construction
10479 of it with end_expandable_symtab. Otherwise, complete the addition of
10480 this TU's symbols to the existing symtab. */
10481 if (sig_type->type_unit_group->compunit_symtab == NULL)
10482 {
10483 buildsym_compunit *builder = cu->get_builder ();
10484 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10485 sig_type->type_unit_group->compunit_symtab = cust;
10486
10487 if (cust != NULL)
10488 {
10489 /* Set symtab language to language from DW_AT_language. If the
10490 compilation is from a C file generated by language preprocessors,
10491 do not set the language if it was already deduced by
10492 start_subfile. */
10493 if (!(cu->language == language_c
10494 && COMPUNIT_FILETABS (cust)->language != language_c))
10495 COMPUNIT_FILETABS (cust)->language = cu->language;
10496 }
10497 }
10498 else
10499 {
10500 cu->get_builder ()->augment_type_symtab ();
10501 cust = sig_type->type_unit_group->compunit_symtab;
10502 }
10503
10504 if (dwarf2_per_objfile->using_index)
10505 per_cu->v.quick->compunit_symtab = cust;
10506 else
10507 {
10508 struct partial_symtab *pst = per_cu->v.psymtab;
10509 pst->compunit_symtab = cust;
10510 pst->readin = 1;
10511 }
10512
10513 /* Not needed any more. */
10514 cu->reset_builder ();
10515 }
10516
10517 /* Process an imported unit DIE. */
10518
10519 static void
10520 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10521 {
10522 struct attribute *attr;
10523
10524 /* For now we don't handle imported units in type units. */
10525 if (cu->per_cu->is_debug_types)
10526 {
10527 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10528 " supported in type units [in module %s]"),
10529 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10530 }
10531
10532 attr = dwarf2_attr (die, DW_AT_import, cu);
10533 if (attr != NULL)
10534 {
10535 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10536 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10537 dwarf2_per_cu_data *per_cu
10538 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10539 cu->per_cu->dwarf2_per_objfile);
10540
10541 /* If necessary, add it to the queue and load its DIEs. */
10542 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10543 load_full_comp_unit (per_cu, false, cu->language);
10544
10545 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10546 per_cu);
10547 }
10548 }
10549
10550 /* RAII object that represents a process_die scope: i.e.,
10551 starts/finishes processing a DIE. */
10552 class process_die_scope
10553 {
10554 public:
10555 process_die_scope (die_info *die, dwarf2_cu *cu)
10556 : m_die (die), m_cu (cu)
10557 {
10558 /* We should only be processing DIEs not already in process. */
10559 gdb_assert (!m_die->in_process);
10560 m_die->in_process = true;
10561 }
10562
10563 ~process_die_scope ()
10564 {
10565 m_die->in_process = false;
10566
10567 /* If we're done processing the DIE for the CU that owns the line
10568 header, we don't need the line header anymore. */
10569 if (m_cu->line_header_die_owner == m_die)
10570 {
10571 delete m_cu->line_header;
10572 m_cu->line_header = NULL;
10573 m_cu->line_header_die_owner = NULL;
10574 }
10575 }
10576
10577 private:
10578 die_info *m_die;
10579 dwarf2_cu *m_cu;
10580 };
10581
10582 /* Process a die and its children. */
10583
10584 static void
10585 process_die (struct die_info *die, struct dwarf2_cu *cu)
10586 {
10587 process_die_scope scope (die, cu);
10588
10589 switch (die->tag)
10590 {
10591 case DW_TAG_padding:
10592 break;
10593 case DW_TAG_compile_unit:
10594 case DW_TAG_partial_unit:
10595 read_file_scope (die, cu);
10596 break;
10597 case DW_TAG_type_unit:
10598 read_type_unit_scope (die, cu);
10599 break;
10600 case DW_TAG_subprogram:
10601 case DW_TAG_inlined_subroutine:
10602 read_func_scope (die, cu);
10603 break;
10604 case DW_TAG_lexical_block:
10605 case DW_TAG_try_block:
10606 case DW_TAG_catch_block:
10607 read_lexical_block_scope (die, cu);
10608 break;
10609 case DW_TAG_call_site:
10610 case DW_TAG_GNU_call_site:
10611 read_call_site_scope (die, cu);
10612 break;
10613 case DW_TAG_class_type:
10614 case DW_TAG_interface_type:
10615 case DW_TAG_structure_type:
10616 case DW_TAG_union_type:
10617 process_structure_scope (die, cu);
10618 break;
10619 case DW_TAG_enumeration_type:
10620 process_enumeration_scope (die, cu);
10621 break;
10622
10623 /* These dies have a type, but processing them does not create
10624 a symbol or recurse to process the children. Therefore we can
10625 read them on-demand through read_type_die. */
10626 case DW_TAG_subroutine_type:
10627 case DW_TAG_set_type:
10628 case DW_TAG_array_type:
10629 case DW_TAG_pointer_type:
10630 case DW_TAG_ptr_to_member_type:
10631 case DW_TAG_reference_type:
10632 case DW_TAG_rvalue_reference_type:
10633 case DW_TAG_string_type:
10634 break;
10635
10636 case DW_TAG_base_type:
10637 case DW_TAG_subrange_type:
10638 case DW_TAG_typedef:
10639 /* Add a typedef symbol for the type definition, if it has a
10640 DW_AT_name. */
10641 new_symbol (die, read_type_die (die, cu), cu);
10642 break;
10643 case DW_TAG_common_block:
10644 read_common_block (die, cu);
10645 break;
10646 case DW_TAG_common_inclusion:
10647 break;
10648 case DW_TAG_namespace:
10649 cu->processing_has_namespace_info = true;
10650 read_namespace (die, cu);
10651 break;
10652 case DW_TAG_module:
10653 cu->processing_has_namespace_info = true;
10654 read_module (die, cu);
10655 break;
10656 case DW_TAG_imported_declaration:
10657 cu->processing_has_namespace_info = true;
10658 if (read_namespace_alias (die, cu))
10659 break;
10660 /* The declaration is not a global namespace alias. */
10661 /* Fall through. */
10662 case DW_TAG_imported_module:
10663 cu->processing_has_namespace_info = true;
10664 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10665 || cu->language != language_fortran))
10666 complaint (_("Tag '%s' has unexpected children"),
10667 dwarf_tag_name (die->tag));
10668 read_import_statement (die, cu);
10669 break;
10670
10671 case DW_TAG_imported_unit:
10672 process_imported_unit_die (die, cu);
10673 break;
10674
10675 case DW_TAG_variable:
10676 read_variable (die, cu);
10677 break;
10678
10679 default:
10680 new_symbol (die, NULL, cu);
10681 break;
10682 }
10683 }
10684 \f
10685 /* DWARF name computation. */
10686
10687 /* A helper function for dwarf2_compute_name which determines whether DIE
10688 needs to have the name of the scope prepended to the name listed in the
10689 die. */
10690
10691 static int
10692 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10693 {
10694 struct attribute *attr;
10695
10696 switch (die->tag)
10697 {
10698 case DW_TAG_namespace:
10699 case DW_TAG_typedef:
10700 case DW_TAG_class_type:
10701 case DW_TAG_interface_type:
10702 case DW_TAG_structure_type:
10703 case DW_TAG_union_type:
10704 case DW_TAG_enumeration_type:
10705 case DW_TAG_enumerator:
10706 case DW_TAG_subprogram:
10707 case DW_TAG_inlined_subroutine:
10708 case DW_TAG_member:
10709 case DW_TAG_imported_declaration:
10710 return 1;
10711
10712 case DW_TAG_variable:
10713 case DW_TAG_constant:
10714 /* We only need to prefix "globally" visible variables. These include
10715 any variable marked with DW_AT_external or any variable that
10716 lives in a namespace. [Variables in anonymous namespaces
10717 require prefixing, but they are not DW_AT_external.] */
10718
10719 if (dwarf2_attr (die, DW_AT_specification, cu))
10720 {
10721 struct dwarf2_cu *spec_cu = cu;
10722
10723 return die_needs_namespace (die_specification (die, &spec_cu),
10724 spec_cu);
10725 }
10726
10727 attr = dwarf2_attr (die, DW_AT_external, cu);
10728 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10729 && die->parent->tag != DW_TAG_module)
10730 return 0;
10731 /* A variable in a lexical block of some kind does not need a
10732 namespace, even though in C++ such variables may be external
10733 and have a mangled name. */
10734 if (die->parent->tag == DW_TAG_lexical_block
10735 || die->parent->tag == DW_TAG_try_block
10736 || die->parent->tag == DW_TAG_catch_block
10737 || die->parent->tag == DW_TAG_subprogram)
10738 return 0;
10739 return 1;
10740
10741 default:
10742 return 0;
10743 }
10744 }
10745
10746 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10747 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10748 defined for the given DIE. */
10749
10750 static struct attribute *
10751 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10752 {
10753 struct attribute *attr;
10754
10755 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10756 if (attr == NULL)
10757 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10758
10759 return attr;
10760 }
10761
10762 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10763 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10764 defined for the given DIE. */
10765
10766 static const char *
10767 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10768 {
10769 const char *linkage_name;
10770
10771 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10772 if (linkage_name == NULL)
10773 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10774
10775 return linkage_name;
10776 }
10777
10778 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10779 compute the physname for the object, which include a method's:
10780 - formal parameters (C++),
10781 - receiver type (Go),
10782
10783 The term "physname" is a bit confusing.
10784 For C++, for example, it is the demangled name.
10785 For Go, for example, it's the mangled name.
10786
10787 For Ada, return the DIE's linkage name rather than the fully qualified
10788 name. PHYSNAME is ignored..
10789
10790 The result is allocated on the objfile_obstack and canonicalized. */
10791
10792 static const char *
10793 dwarf2_compute_name (const char *name,
10794 struct die_info *die, struct dwarf2_cu *cu,
10795 int physname)
10796 {
10797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10798
10799 if (name == NULL)
10800 name = dwarf2_name (die, cu);
10801
10802 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10803 but otherwise compute it by typename_concat inside GDB.
10804 FIXME: Actually this is not really true, or at least not always true.
10805 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10806 Fortran names because there is no mangling standard. So new_symbol
10807 will set the demangled name to the result of dwarf2_full_name, and it is
10808 the demangled name that GDB uses if it exists. */
10809 if (cu->language == language_ada
10810 || (cu->language == language_fortran && physname))
10811 {
10812 /* For Ada unit, we prefer the linkage name over the name, as
10813 the former contains the exported name, which the user expects
10814 to be able to reference. Ideally, we want the user to be able
10815 to reference this entity using either natural or linkage name,
10816 but we haven't started looking at this enhancement yet. */
10817 const char *linkage_name = dw2_linkage_name (die, cu);
10818
10819 if (linkage_name != NULL)
10820 return linkage_name;
10821 }
10822
10823 /* These are the only languages we know how to qualify names in. */
10824 if (name != NULL
10825 && (cu->language == language_cplus
10826 || cu->language == language_fortran || cu->language == language_d
10827 || cu->language == language_rust))
10828 {
10829 if (die_needs_namespace (die, cu))
10830 {
10831 const char *prefix;
10832 const char *canonical_name = NULL;
10833
10834 string_file buf;
10835
10836 prefix = determine_prefix (die, cu);
10837 if (*prefix != '\0')
10838 {
10839 char *prefixed_name = typename_concat (NULL, prefix, name,
10840 physname, cu);
10841
10842 buf.puts (prefixed_name);
10843 xfree (prefixed_name);
10844 }
10845 else
10846 buf.puts (name);
10847
10848 /* Template parameters may be specified in the DIE's DW_AT_name, or
10849 as children with DW_TAG_template_type_param or
10850 DW_TAG_value_type_param. If the latter, add them to the name
10851 here. If the name already has template parameters, then
10852 skip this step; some versions of GCC emit both, and
10853 it is more efficient to use the pre-computed name.
10854
10855 Something to keep in mind about this process: it is very
10856 unlikely, or in some cases downright impossible, to produce
10857 something that will match the mangled name of a function.
10858 If the definition of the function has the same debug info,
10859 we should be able to match up with it anyway. But fallbacks
10860 using the minimal symbol, for instance to find a method
10861 implemented in a stripped copy of libstdc++, will not work.
10862 If we do not have debug info for the definition, we will have to
10863 match them up some other way.
10864
10865 When we do name matching there is a related problem with function
10866 templates; two instantiated function templates are allowed to
10867 differ only by their return types, which we do not add here. */
10868
10869 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10870 {
10871 struct attribute *attr;
10872 struct die_info *child;
10873 int first = 1;
10874
10875 die->building_fullname = 1;
10876
10877 for (child = die->child; child != NULL; child = child->sibling)
10878 {
10879 struct type *type;
10880 LONGEST value;
10881 const gdb_byte *bytes;
10882 struct dwarf2_locexpr_baton *baton;
10883 struct value *v;
10884
10885 if (child->tag != DW_TAG_template_type_param
10886 && child->tag != DW_TAG_template_value_param)
10887 continue;
10888
10889 if (first)
10890 {
10891 buf.puts ("<");
10892 first = 0;
10893 }
10894 else
10895 buf.puts (", ");
10896
10897 attr = dwarf2_attr (child, DW_AT_type, cu);
10898 if (attr == NULL)
10899 {
10900 complaint (_("template parameter missing DW_AT_type"));
10901 buf.puts ("UNKNOWN_TYPE");
10902 continue;
10903 }
10904 type = die_type (child, cu);
10905
10906 if (child->tag == DW_TAG_template_type_param)
10907 {
10908 c_print_type (type, "", &buf, -1, 0, cu->language,
10909 &type_print_raw_options);
10910 continue;
10911 }
10912
10913 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10914 if (attr == NULL)
10915 {
10916 complaint (_("template parameter missing "
10917 "DW_AT_const_value"));
10918 buf.puts ("UNKNOWN_VALUE");
10919 continue;
10920 }
10921
10922 dwarf2_const_value_attr (attr, type, name,
10923 &cu->comp_unit_obstack, cu,
10924 &value, &bytes, &baton);
10925
10926 if (TYPE_NOSIGN (type))
10927 /* GDB prints characters as NUMBER 'CHAR'. If that's
10928 changed, this can use value_print instead. */
10929 c_printchar (value, type, &buf);
10930 else
10931 {
10932 struct value_print_options opts;
10933
10934 if (baton != NULL)
10935 v = dwarf2_evaluate_loc_desc (type, NULL,
10936 baton->data,
10937 baton->size,
10938 baton->per_cu);
10939 else if (bytes != NULL)
10940 {
10941 v = allocate_value (type);
10942 memcpy (value_contents_writeable (v), bytes,
10943 TYPE_LENGTH (type));
10944 }
10945 else
10946 v = value_from_longest (type, value);
10947
10948 /* Specify decimal so that we do not depend on
10949 the radix. */
10950 get_formatted_print_options (&opts, 'd');
10951 opts.raw = 1;
10952 value_print (v, &buf, &opts);
10953 release_value (v);
10954 }
10955 }
10956
10957 die->building_fullname = 0;
10958
10959 if (!first)
10960 {
10961 /* Close the argument list, with a space if necessary
10962 (nested templates). */
10963 if (!buf.empty () && buf.string ().back () == '>')
10964 buf.puts (" >");
10965 else
10966 buf.puts (">");
10967 }
10968 }
10969
10970 /* For C++ methods, append formal parameter type
10971 information, if PHYSNAME. */
10972
10973 if (physname && die->tag == DW_TAG_subprogram
10974 && cu->language == language_cplus)
10975 {
10976 struct type *type = read_type_die (die, cu);
10977
10978 c_type_print_args (type, &buf, 1, cu->language,
10979 &type_print_raw_options);
10980
10981 if (cu->language == language_cplus)
10982 {
10983 /* Assume that an artificial first parameter is
10984 "this", but do not crash if it is not. RealView
10985 marks unnamed (and thus unused) parameters as
10986 artificial; there is no way to differentiate
10987 the two cases. */
10988 if (TYPE_NFIELDS (type) > 0
10989 && TYPE_FIELD_ARTIFICIAL (type, 0)
10990 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10991 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10992 0))))
10993 buf.puts (" const");
10994 }
10995 }
10996
10997 const std::string &intermediate_name = buf.string ();
10998
10999 if (cu->language == language_cplus)
11000 canonical_name
11001 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11002 &objfile->per_bfd->storage_obstack);
11003
11004 /* If we only computed INTERMEDIATE_NAME, or if
11005 INTERMEDIATE_NAME is already canonical, then we need to
11006 copy it to the appropriate obstack. */
11007 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11008 name = ((const char *)
11009 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11010 intermediate_name.c_str (),
11011 intermediate_name.length ()));
11012 else
11013 name = canonical_name;
11014 }
11015 }
11016
11017 return name;
11018 }
11019
11020 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11021 If scope qualifiers are appropriate they will be added. The result
11022 will be allocated on the storage_obstack, or NULL if the DIE does
11023 not have a name. NAME may either be from a previous call to
11024 dwarf2_name or NULL.
11025
11026 The output string will be canonicalized (if C++). */
11027
11028 static const char *
11029 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11030 {
11031 return dwarf2_compute_name (name, die, cu, 0);
11032 }
11033
11034 /* Construct a physname for the given DIE in CU. NAME may either be
11035 from a previous call to dwarf2_name or NULL. The result will be
11036 allocated on the objfile_objstack or NULL if the DIE does not have a
11037 name.
11038
11039 The output string will be canonicalized (if C++). */
11040
11041 static const char *
11042 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11043 {
11044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11045 const char *retval, *mangled = NULL, *canon = NULL;
11046 int need_copy = 1;
11047
11048 /* In this case dwarf2_compute_name is just a shortcut not building anything
11049 on its own. */
11050 if (!die_needs_namespace (die, cu))
11051 return dwarf2_compute_name (name, die, cu, 1);
11052
11053 mangled = dw2_linkage_name (die, cu);
11054
11055 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11056 See https://github.com/rust-lang/rust/issues/32925. */
11057 if (cu->language == language_rust && mangled != NULL
11058 && strchr (mangled, '{') != NULL)
11059 mangled = NULL;
11060
11061 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11062 has computed. */
11063 gdb::unique_xmalloc_ptr<char> demangled;
11064 if (mangled != NULL)
11065 {
11066
11067 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11068 {
11069 /* Do nothing (do not demangle the symbol name). */
11070 }
11071 else if (cu->language == language_go)
11072 {
11073 /* This is a lie, but we already lie to the caller new_symbol.
11074 new_symbol assumes we return the mangled name.
11075 This just undoes that lie until things are cleaned up. */
11076 }
11077 else
11078 {
11079 /* Use DMGL_RET_DROP for C++ template functions to suppress
11080 their return type. It is easier for GDB users to search
11081 for such functions as `name(params)' than `long name(params)'.
11082 In such case the minimal symbol names do not match the full
11083 symbol names but for template functions there is never a need
11084 to look up their definition from their declaration so
11085 the only disadvantage remains the minimal symbol variant
11086 `long name(params)' does not have the proper inferior type. */
11087 demangled.reset (gdb_demangle (mangled,
11088 (DMGL_PARAMS | DMGL_ANSI
11089 | DMGL_RET_DROP)));
11090 }
11091 if (demangled)
11092 canon = demangled.get ();
11093 else
11094 {
11095 canon = mangled;
11096 need_copy = 0;
11097 }
11098 }
11099
11100 if (canon == NULL || check_physname)
11101 {
11102 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11103
11104 if (canon != NULL && strcmp (physname, canon) != 0)
11105 {
11106 /* It may not mean a bug in GDB. The compiler could also
11107 compute DW_AT_linkage_name incorrectly. But in such case
11108 GDB would need to be bug-to-bug compatible. */
11109
11110 complaint (_("Computed physname <%s> does not match demangled <%s> "
11111 "(from linkage <%s>) - DIE at %s [in module %s]"),
11112 physname, canon, mangled, sect_offset_str (die->sect_off),
11113 objfile_name (objfile));
11114
11115 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11116 is available here - over computed PHYSNAME. It is safer
11117 against both buggy GDB and buggy compilers. */
11118
11119 retval = canon;
11120 }
11121 else
11122 {
11123 retval = physname;
11124 need_copy = 0;
11125 }
11126 }
11127 else
11128 retval = canon;
11129
11130 if (need_copy)
11131 retval = ((const char *)
11132 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11133 retval, strlen (retval)));
11134
11135 return retval;
11136 }
11137
11138 /* Inspect DIE in CU for a namespace alias. If one exists, record
11139 a new symbol for it.
11140
11141 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11142
11143 static int
11144 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11145 {
11146 struct attribute *attr;
11147
11148 /* If the die does not have a name, this is not a namespace
11149 alias. */
11150 attr = dwarf2_attr (die, DW_AT_name, cu);
11151 if (attr != NULL)
11152 {
11153 int num;
11154 struct die_info *d = die;
11155 struct dwarf2_cu *imported_cu = cu;
11156
11157 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11158 keep inspecting DIEs until we hit the underlying import. */
11159 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11160 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11161 {
11162 attr = dwarf2_attr (d, DW_AT_import, cu);
11163 if (attr == NULL)
11164 break;
11165
11166 d = follow_die_ref (d, attr, &imported_cu);
11167 if (d->tag != DW_TAG_imported_declaration)
11168 break;
11169 }
11170
11171 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11172 {
11173 complaint (_("DIE at %s has too many recursively imported "
11174 "declarations"), sect_offset_str (d->sect_off));
11175 return 0;
11176 }
11177
11178 if (attr != NULL)
11179 {
11180 struct type *type;
11181 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11182
11183 type = get_die_type_at_offset (sect_off, cu->per_cu);
11184 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11185 {
11186 /* This declaration is a global namespace alias. Add
11187 a symbol for it whose type is the aliased namespace. */
11188 new_symbol (die, type, cu);
11189 return 1;
11190 }
11191 }
11192 }
11193
11194 return 0;
11195 }
11196
11197 /* Return the using directives repository (global or local?) to use in the
11198 current context for CU.
11199
11200 For Ada, imported declarations can materialize renamings, which *may* be
11201 global. However it is impossible (for now?) in DWARF to distinguish
11202 "external" imported declarations and "static" ones. As all imported
11203 declarations seem to be static in all other languages, make them all CU-wide
11204 global only in Ada. */
11205
11206 static struct using_direct **
11207 using_directives (struct dwarf2_cu *cu)
11208 {
11209 if (cu->language == language_ada
11210 && cu->get_builder ()->outermost_context_p ())
11211 return cu->get_builder ()->get_global_using_directives ();
11212 else
11213 return cu->get_builder ()->get_local_using_directives ();
11214 }
11215
11216 /* Read the import statement specified by the given die and record it. */
11217
11218 static void
11219 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11220 {
11221 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11222 struct attribute *import_attr;
11223 struct die_info *imported_die, *child_die;
11224 struct dwarf2_cu *imported_cu;
11225 const char *imported_name;
11226 const char *imported_name_prefix;
11227 const char *canonical_name;
11228 const char *import_alias;
11229 const char *imported_declaration = NULL;
11230 const char *import_prefix;
11231 std::vector<const char *> excludes;
11232
11233 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11234 if (import_attr == NULL)
11235 {
11236 complaint (_("Tag '%s' has no DW_AT_import"),
11237 dwarf_tag_name (die->tag));
11238 return;
11239 }
11240
11241 imported_cu = cu;
11242 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11243 imported_name = dwarf2_name (imported_die, imported_cu);
11244 if (imported_name == NULL)
11245 {
11246 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11247
11248 The import in the following code:
11249 namespace A
11250 {
11251 typedef int B;
11252 }
11253
11254 int main ()
11255 {
11256 using A::B;
11257 B b;
11258 return b;
11259 }
11260
11261 ...
11262 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11263 <52> DW_AT_decl_file : 1
11264 <53> DW_AT_decl_line : 6
11265 <54> DW_AT_import : <0x75>
11266 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11267 <59> DW_AT_name : B
11268 <5b> DW_AT_decl_file : 1
11269 <5c> DW_AT_decl_line : 2
11270 <5d> DW_AT_type : <0x6e>
11271 ...
11272 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11273 <76> DW_AT_byte_size : 4
11274 <77> DW_AT_encoding : 5 (signed)
11275
11276 imports the wrong die ( 0x75 instead of 0x58 ).
11277 This case will be ignored until the gcc bug is fixed. */
11278 return;
11279 }
11280
11281 /* Figure out the local name after import. */
11282 import_alias = dwarf2_name (die, cu);
11283
11284 /* Figure out where the statement is being imported to. */
11285 import_prefix = determine_prefix (die, cu);
11286
11287 /* Figure out what the scope of the imported die is and prepend it
11288 to the name of the imported die. */
11289 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11290
11291 if (imported_die->tag != DW_TAG_namespace
11292 && imported_die->tag != DW_TAG_module)
11293 {
11294 imported_declaration = imported_name;
11295 canonical_name = imported_name_prefix;
11296 }
11297 else if (strlen (imported_name_prefix) > 0)
11298 canonical_name = obconcat (&objfile->objfile_obstack,
11299 imported_name_prefix,
11300 (cu->language == language_d ? "." : "::"),
11301 imported_name, (char *) NULL);
11302 else
11303 canonical_name = imported_name;
11304
11305 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11306 for (child_die = die->child; child_die && child_die->tag;
11307 child_die = sibling_die (child_die))
11308 {
11309 /* DWARF-4: A Fortran use statement with a “rename list” may be
11310 represented by an imported module entry with an import attribute
11311 referring to the module and owned entries corresponding to those
11312 entities that are renamed as part of being imported. */
11313
11314 if (child_die->tag != DW_TAG_imported_declaration)
11315 {
11316 complaint (_("child DW_TAG_imported_declaration expected "
11317 "- DIE at %s [in module %s]"),
11318 sect_offset_str (child_die->sect_off),
11319 objfile_name (objfile));
11320 continue;
11321 }
11322
11323 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11324 if (import_attr == NULL)
11325 {
11326 complaint (_("Tag '%s' has no DW_AT_import"),
11327 dwarf_tag_name (child_die->tag));
11328 continue;
11329 }
11330
11331 imported_cu = cu;
11332 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11333 &imported_cu);
11334 imported_name = dwarf2_name (imported_die, imported_cu);
11335 if (imported_name == NULL)
11336 {
11337 complaint (_("child DW_TAG_imported_declaration has unknown "
11338 "imported name - DIE at %s [in module %s]"),
11339 sect_offset_str (child_die->sect_off),
11340 objfile_name (objfile));
11341 continue;
11342 }
11343
11344 excludes.push_back (imported_name);
11345
11346 process_die (child_die, cu);
11347 }
11348
11349 add_using_directive (using_directives (cu),
11350 import_prefix,
11351 canonical_name,
11352 import_alias,
11353 imported_declaration,
11354 excludes,
11355 0,
11356 &objfile->objfile_obstack);
11357 }
11358
11359 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11360 types, but gives them a size of zero. Starting with version 14,
11361 ICC is compatible with GCC. */
11362
11363 static bool
11364 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11365 {
11366 if (!cu->checked_producer)
11367 check_producer (cu);
11368
11369 return cu->producer_is_icc_lt_14;
11370 }
11371
11372 /* ICC generates a DW_AT_type for C void functions. This was observed on
11373 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11374 which says that void functions should not have a DW_AT_type. */
11375
11376 static bool
11377 producer_is_icc (struct dwarf2_cu *cu)
11378 {
11379 if (!cu->checked_producer)
11380 check_producer (cu);
11381
11382 return cu->producer_is_icc;
11383 }
11384
11385 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11386 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11387 this, it was first present in GCC release 4.3.0. */
11388
11389 static bool
11390 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11391 {
11392 if (!cu->checked_producer)
11393 check_producer (cu);
11394
11395 return cu->producer_is_gcc_lt_4_3;
11396 }
11397
11398 static file_and_directory
11399 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11400 {
11401 file_and_directory res;
11402
11403 /* Find the filename. Do not use dwarf2_name here, since the filename
11404 is not a source language identifier. */
11405 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11406 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11407
11408 if (res.comp_dir == NULL
11409 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11410 && IS_ABSOLUTE_PATH (res.name))
11411 {
11412 res.comp_dir_storage = ldirname (res.name);
11413 if (!res.comp_dir_storage.empty ())
11414 res.comp_dir = res.comp_dir_storage.c_str ();
11415 }
11416 if (res.comp_dir != NULL)
11417 {
11418 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11419 directory, get rid of it. */
11420 const char *cp = strchr (res.comp_dir, ':');
11421
11422 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11423 res.comp_dir = cp + 1;
11424 }
11425
11426 if (res.name == NULL)
11427 res.name = "<unknown>";
11428
11429 return res;
11430 }
11431
11432 /* Handle DW_AT_stmt_list for a compilation unit.
11433 DIE is the DW_TAG_compile_unit die for CU.
11434 COMP_DIR is the compilation directory. LOWPC is passed to
11435 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11436
11437 static void
11438 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11439 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11440 {
11441 struct dwarf2_per_objfile *dwarf2_per_objfile
11442 = cu->per_cu->dwarf2_per_objfile;
11443 struct objfile *objfile = dwarf2_per_objfile->objfile;
11444 struct attribute *attr;
11445 struct line_header line_header_local;
11446 hashval_t line_header_local_hash;
11447 void **slot;
11448 int decode_mapping;
11449
11450 gdb_assert (! cu->per_cu->is_debug_types);
11451
11452 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11453 if (attr == NULL)
11454 return;
11455
11456 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11457
11458 /* The line header hash table is only created if needed (it exists to
11459 prevent redundant reading of the line table for partial_units).
11460 If we're given a partial_unit, we'll need it. If we're given a
11461 compile_unit, then use the line header hash table if it's already
11462 created, but don't create one just yet. */
11463
11464 if (dwarf2_per_objfile->line_header_hash == NULL
11465 && die->tag == DW_TAG_partial_unit)
11466 {
11467 dwarf2_per_objfile->line_header_hash
11468 = htab_create_alloc_ex (127, line_header_hash_voidp,
11469 line_header_eq_voidp,
11470 free_line_header_voidp,
11471 &objfile->objfile_obstack,
11472 hashtab_obstack_allocate,
11473 dummy_obstack_deallocate);
11474 }
11475
11476 line_header_local.sect_off = line_offset;
11477 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11478 line_header_local_hash = line_header_hash (&line_header_local);
11479 if (dwarf2_per_objfile->line_header_hash != NULL)
11480 {
11481 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11482 &line_header_local,
11483 line_header_local_hash, NO_INSERT);
11484
11485 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11486 is not present in *SLOT (since if there is something in *SLOT then
11487 it will be for a partial_unit). */
11488 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11489 {
11490 gdb_assert (*slot != NULL);
11491 cu->line_header = (struct line_header *) *slot;
11492 return;
11493 }
11494 }
11495
11496 /* dwarf_decode_line_header does not yet provide sufficient information.
11497 We always have to call also dwarf_decode_lines for it. */
11498 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11499 if (lh == NULL)
11500 return;
11501
11502 cu->line_header = lh.release ();
11503 cu->line_header_die_owner = die;
11504
11505 if (dwarf2_per_objfile->line_header_hash == NULL)
11506 slot = NULL;
11507 else
11508 {
11509 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11510 &line_header_local,
11511 line_header_local_hash, INSERT);
11512 gdb_assert (slot != NULL);
11513 }
11514 if (slot != NULL && *slot == NULL)
11515 {
11516 /* This newly decoded line number information unit will be owned
11517 by line_header_hash hash table. */
11518 *slot = cu->line_header;
11519 cu->line_header_die_owner = NULL;
11520 }
11521 else
11522 {
11523 /* We cannot free any current entry in (*slot) as that struct line_header
11524 may be already used by multiple CUs. Create only temporary decoded
11525 line_header for this CU - it may happen at most once for each line
11526 number information unit. And if we're not using line_header_hash
11527 then this is what we want as well. */
11528 gdb_assert (die->tag != DW_TAG_partial_unit);
11529 }
11530 decode_mapping = (die->tag != DW_TAG_partial_unit);
11531 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11532 decode_mapping);
11533
11534 }
11535
11536 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11537
11538 static void
11539 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11540 {
11541 struct dwarf2_per_objfile *dwarf2_per_objfile
11542 = cu->per_cu->dwarf2_per_objfile;
11543 struct objfile *objfile = dwarf2_per_objfile->objfile;
11544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11545 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11546 CORE_ADDR highpc = ((CORE_ADDR) 0);
11547 struct attribute *attr;
11548 struct die_info *child_die;
11549 CORE_ADDR baseaddr;
11550
11551 prepare_one_comp_unit (cu, die, cu->language);
11552 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11553
11554 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11555
11556 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11557 from finish_block. */
11558 if (lowpc == ((CORE_ADDR) -1))
11559 lowpc = highpc;
11560 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11561
11562 file_and_directory fnd = find_file_and_directory (die, cu);
11563
11564 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11565 standardised yet. As a workaround for the language detection we fall
11566 back to the DW_AT_producer string. */
11567 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11568 cu->language = language_opencl;
11569
11570 /* Similar hack for Go. */
11571 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11572 set_cu_language (DW_LANG_Go, cu);
11573
11574 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11575
11576 /* Decode line number information if present. We do this before
11577 processing child DIEs, so that the line header table is available
11578 for DW_AT_decl_file. */
11579 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11580
11581 /* Process all dies in compilation unit. */
11582 if (die->child != NULL)
11583 {
11584 child_die = die->child;
11585 while (child_die && child_die->tag)
11586 {
11587 process_die (child_die, cu);
11588 child_die = sibling_die (child_die);
11589 }
11590 }
11591
11592 /* Decode macro information, if present. Dwarf 2 macro information
11593 refers to information in the line number info statement program
11594 header, so we can only read it if we've read the header
11595 successfully. */
11596 attr = dwarf2_attr (die, DW_AT_macros, cu);
11597 if (attr == NULL)
11598 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11599 if (attr && cu->line_header)
11600 {
11601 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11602 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11603
11604 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11605 }
11606 else
11607 {
11608 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11609 if (attr && cu->line_header)
11610 {
11611 unsigned int macro_offset = DW_UNSND (attr);
11612
11613 dwarf_decode_macros (cu, macro_offset, 0);
11614 }
11615 }
11616 }
11617
11618 void
11619 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11620 {
11621 struct type_unit_group *tu_group;
11622 int first_time;
11623 struct attribute *attr;
11624 unsigned int i;
11625 struct signatured_type *sig_type;
11626
11627 gdb_assert (per_cu->is_debug_types);
11628 sig_type = (struct signatured_type *) per_cu;
11629
11630 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11631
11632 /* If we're using .gdb_index (includes -readnow) then
11633 per_cu->type_unit_group may not have been set up yet. */
11634 if (sig_type->type_unit_group == NULL)
11635 sig_type->type_unit_group = get_type_unit_group (this, attr);
11636 tu_group = sig_type->type_unit_group;
11637
11638 /* If we've already processed this stmt_list there's no real need to
11639 do it again, we could fake it and just recreate the part we need
11640 (file name,index -> symtab mapping). If data shows this optimization
11641 is useful we can do it then. */
11642 first_time = tu_group->compunit_symtab == NULL;
11643
11644 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11645 debug info. */
11646 line_header_up lh;
11647 if (attr != NULL)
11648 {
11649 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11650 lh = dwarf_decode_line_header (line_offset, this);
11651 }
11652 if (lh == NULL)
11653 {
11654 if (first_time)
11655 start_symtab ("", NULL, 0);
11656 else
11657 {
11658 gdb_assert (tu_group->symtabs == NULL);
11659 gdb_assert (m_builder == nullptr);
11660 struct compunit_symtab *cust = tu_group->compunit_symtab;
11661 m_builder.reset (new struct buildsym_compunit
11662 (COMPUNIT_OBJFILE (cust), "",
11663 COMPUNIT_DIRNAME (cust),
11664 compunit_language (cust),
11665 0, cust));
11666 }
11667 return;
11668 }
11669
11670 line_header = lh.release ();
11671 line_header_die_owner = die;
11672
11673 if (first_time)
11674 {
11675 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11676
11677 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11678 still initializing it, and our caller (a few levels up)
11679 process_full_type_unit still needs to know if this is the first
11680 time. */
11681
11682 tu_group->num_symtabs = line_header->file_names.size ();
11683 tu_group->symtabs = XNEWVEC (struct symtab *,
11684 line_header->file_names.size ());
11685
11686 for (i = 0; i < line_header->file_names.size (); ++i)
11687 {
11688 file_entry &fe = line_header->file_names[i];
11689
11690 dwarf2_start_subfile (this, fe.name,
11691 fe.include_dir (line_header));
11692 buildsym_compunit *b = get_builder ();
11693 if (b->get_current_subfile ()->symtab == NULL)
11694 {
11695 /* NOTE: start_subfile will recognize when it's been
11696 passed a file it has already seen. So we can't
11697 assume there's a simple mapping from
11698 cu->line_header->file_names to subfiles, plus
11699 cu->line_header->file_names may contain dups. */
11700 b->get_current_subfile ()->symtab
11701 = allocate_symtab (cust, b->get_current_subfile ()->name);
11702 }
11703
11704 fe.symtab = b->get_current_subfile ()->symtab;
11705 tu_group->symtabs[i] = fe.symtab;
11706 }
11707 }
11708 else
11709 {
11710 gdb_assert (m_builder == nullptr);
11711 struct compunit_symtab *cust = tu_group->compunit_symtab;
11712 m_builder.reset (new struct buildsym_compunit
11713 (COMPUNIT_OBJFILE (cust), "",
11714 COMPUNIT_DIRNAME (cust),
11715 compunit_language (cust),
11716 0, cust));
11717
11718 for (i = 0; i < line_header->file_names.size (); ++i)
11719 {
11720 file_entry &fe = line_header->file_names[i];
11721
11722 fe.symtab = tu_group->symtabs[i];
11723 }
11724 }
11725
11726 /* The main symtab is allocated last. Type units don't have DW_AT_name
11727 so they don't have a "real" (so to speak) symtab anyway.
11728 There is later code that will assign the main symtab to all symbols
11729 that don't have one. We need to handle the case of a symbol with a
11730 missing symtab (DW_AT_decl_file) anyway. */
11731 }
11732
11733 /* Process DW_TAG_type_unit.
11734 For TUs we want to skip the first top level sibling if it's not the
11735 actual type being defined by this TU. In this case the first top
11736 level sibling is there to provide context only. */
11737
11738 static void
11739 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11740 {
11741 struct die_info *child_die;
11742
11743 prepare_one_comp_unit (cu, die, language_minimal);
11744
11745 /* Initialize (or reinitialize) the machinery for building symtabs.
11746 We do this before processing child DIEs, so that the line header table
11747 is available for DW_AT_decl_file. */
11748 cu->setup_type_unit_groups (die);
11749
11750 if (die->child != NULL)
11751 {
11752 child_die = die->child;
11753 while (child_die && child_die->tag)
11754 {
11755 process_die (child_die, cu);
11756 child_die = sibling_die (child_die);
11757 }
11758 }
11759 }
11760 \f
11761 /* DWO/DWP files.
11762
11763 http://gcc.gnu.org/wiki/DebugFission
11764 http://gcc.gnu.org/wiki/DebugFissionDWP
11765
11766 To simplify handling of both DWO files ("object" files with the DWARF info)
11767 and DWP files (a file with the DWOs packaged up into one file), we treat
11768 DWP files as having a collection of virtual DWO files. */
11769
11770 static hashval_t
11771 hash_dwo_file (const void *item)
11772 {
11773 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11774 hashval_t hash;
11775
11776 hash = htab_hash_string (dwo_file->dwo_name);
11777 if (dwo_file->comp_dir != NULL)
11778 hash += htab_hash_string (dwo_file->comp_dir);
11779 return hash;
11780 }
11781
11782 static int
11783 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11784 {
11785 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11786 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11787
11788 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11789 return 0;
11790 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11791 return lhs->comp_dir == rhs->comp_dir;
11792 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11793 }
11794
11795 /* Allocate a hash table for DWO files. */
11796
11797 static htab_t
11798 allocate_dwo_file_hash_table (struct objfile *objfile)
11799 {
11800 return htab_create_alloc_ex (41,
11801 hash_dwo_file,
11802 eq_dwo_file,
11803 NULL,
11804 &objfile->objfile_obstack,
11805 hashtab_obstack_allocate,
11806 dummy_obstack_deallocate);
11807 }
11808
11809 /* Lookup DWO file DWO_NAME. */
11810
11811 static void **
11812 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11813 const char *dwo_name,
11814 const char *comp_dir)
11815 {
11816 struct dwo_file find_entry;
11817 void **slot;
11818
11819 if (dwarf2_per_objfile->dwo_files == NULL)
11820 dwarf2_per_objfile->dwo_files
11821 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11822
11823 memset (&find_entry, 0, sizeof (find_entry));
11824 find_entry.dwo_name = dwo_name;
11825 find_entry.comp_dir = comp_dir;
11826 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11827
11828 return slot;
11829 }
11830
11831 static hashval_t
11832 hash_dwo_unit (const void *item)
11833 {
11834 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11835
11836 /* This drops the top 32 bits of the id, but is ok for a hash. */
11837 return dwo_unit->signature;
11838 }
11839
11840 static int
11841 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11842 {
11843 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11844 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11845
11846 /* The signature is assumed to be unique within the DWO file.
11847 So while object file CU dwo_id's always have the value zero,
11848 that's OK, assuming each object file DWO file has only one CU,
11849 and that's the rule for now. */
11850 return lhs->signature == rhs->signature;
11851 }
11852
11853 /* Allocate a hash table for DWO CUs,TUs.
11854 There is one of these tables for each of CUs,TUs for each DWO file. */
11855
11856 static htab_t
11857 allocate_dwo_unit_table (struct objfile *objfile)
11858 {
11859 /* Start out with a pretty small number.
11860 Generally DWO files contain only one CU and maybe some TUs. */
11861 return htab_create_alloc_ex (3,
11862 hash_dwo_unit,
11863 eq_dwo_unit,
11864 NULL,
11865 &objfile->objfile_obstack,
11866 hashtab_obstack_allocate,
11867 dummy_obstack_deallocate);
11868 }
11869
11870 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11871
11872 struct create_dwo_cu_data
11873 {
11874 struct dwo_file *dwo_file;
11875 struct dwo_unit dwo_unit;
11876 };
11877
11878 /* die_reader_func for create_dwo_cu. */
11879
11880 static void
11881 create_dwo_cu_reader (const struct die_reader_specs *reader,
11882 const gdb_byte *info_ptr,
11883 struct die_info *comp_unit_die,
11884 int has_children,
11885 void *datap)
11886 {
11887 struct dwarf2_cu *cu = reader->cu;
11888 sect_offset sect_off = cu->per_cu->sect_off;
11889 struct dwarf2_section_info *section = cu->per_cu->section;
11890 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11891 struct dwo_file *dwo_file = data->dwo_file;
11892 struct dwo_unit *dwo_unit = &data->dwo_unit;
11893 struct attribute *attr;
11894
11895 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11896 if (attr == NULL)
11897 {
11898 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11899 " its dwo_id [in module %s]"),
11900 sect_offset_str (sect_off), dwo_file->dwo_name);
11901 return;
11902 }
11903
11904 dwo_unit->dwo_file = dwo_file;
11905 dwo_unit->signature = DW_UNSND (attr);
11906 dwo_unit->section = section;
11907 dwo_unit->sect_off = sect_off;
11908 dwo_unit->length = cu->per_cu->length;
11909
11910 if (dwarf_read_debug)
11911 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11912 sect_offset_str (sect_off),
11913 hex_string (dwo_unit->signature));
11914 }
11915
11916 /* Create the dwo_units for the CUs in a DWO_FILE.
11917 Note: This function processes DWO files only, not DWP files. */
11918
11919 static void
11920 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11921 struct dwo_file &dwo_file, dwarf2_section_info &section,
11922 htab_t &cus_htab)
11923 {
11924 struct objfile *objfile = dwarf2_per_objfile->objfile;
11925 const gdb_byte *info_ptr, *end_ptr;
11926
11927 dwarf2_read_section (objfile, &section);
11928 info_ptr = section.buffer;
11929
11930 if (info_ptr == NULL)
11931 return;
11932
11933 if (dwarf_read_debug)
11934 {
11935 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11936 get_section_name (&section),
11937 get_section_file_name (&section));
11938 }
11939
11940 end_ptr = info_ptr + section.size;
11941 while (info_ptr < end_ptr)
11942 {
11943 struct dwarf2_per_cu_data per_cu;
11944 struct create_dwo_cu_data create_dwo_cu_data;
11945 struct dwo_unit *dwo_unit;
11946 void **slot;
11947 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11948
11949 memset (&create_dwo_cu_data.dwo_unit, 0,
11950 sizeof (create_dwo_cu_data.dwo_unit));
11951 memset (&per_cu, 0, sizeof (per_cu));
11952 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11953 per_cu.is_debug_types = 0;
11954 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11955 per_cu.section = &section;
11956 create_dwo_cu_data.dwo_file = &dwo_file;
11957
11958 init_cutu_and_read_dies_no_follow (
11959 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11960 info_ptr += per_cu.length;
11961
11962 // If the unit could not be parsed, skip it.
11963 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11964 continue;
11965
11966 if (cus_htab == NULL)
11967 cus_htab = allocate_dwo_unit_table (objfile);
11968
11969 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11970 *dwo_unit = create_dwo_cu_data.dwo_unit;
11971 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11972 gdb_assert (slot != NULL);
11973 if (*slot != NULL)
11974 {
11975 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11976 sect_offset dup_sect_off = dup_cu->sect_off;
11977
11978 complaint (_("debug cu entry at offset %s is duplicate to"
11979 " the entry at offset %s, signature %s"),
11980 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11981 hex_string (dwo_unit->signature));
11982 }
11983 *slot = (void *)dwo_unit;
11984 }
11985 }
11986
11987 /* DWP file .debug_{cu,tu}_index section format:
11988 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11989
11990 DWP Version 1:
11991
11992 Both index sections have the same format, and serve to map a 64-bit
11993 signature to a set of section numbers. Each section begins with a header,
11994 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11995 indexes, and a pool of 32-bit section numbers. The index sections will be
11996 aligned at 8-byte boundaries in the file.
11997
11998 The index section header consists of:
11999
12000 V, 32 bit version number
12001 -, 32 bits unused
12002 N, 32 bit number of compilation units or type units in the index
12003 M, 32 bit number of slots in the hash table
12004
12005 Numbers are recorded using the byte order of the application binary.
12006
12007 The hash table begins at offset 16 in the section, and consists of an array
12008 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12009 order of the application binary). Unused slots in the hash table are 0.
12010 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12011
12012 The parallel table begins immediately after the hash table
12013 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12014 array of 32-bit indexes (using the byte order of the application binary),
12015 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12016 table contains a 32-bit index into the pool of section numbers. For unused
12017 hash table slots, the corresponding entry in the parallel table will be 0.
12018
12019 The pool of section numbers begins immediately following the hash table
12020 (at offset 16 + 12 * M from the beginning of the section). The pool of
12021 section numbers consists of an array of 32-bit words (using the byte order
12022 of the application binary). Each item in the array is indexed starting
12023 from 0. The hash table entry provides the index of the first section
12024 number in the set. Additional section numbers in the set follow, and the
12025 set is terminated by a 0 entry (section number 0 is not used in ELF).
12026
12027 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12028 section must be the first entry in the set, and the .debug_abbrev.dwo must
12029 be the second entry. Other members of the set may follow in any order.
12030
12031 ---
12032
12033 DWP Version 2:
12034
12035 DWP Version 2 combines all the .debug_info, etc. sections into one,
12036 and the entries in the index tables are now offsets into these sections.
12037 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12038 section.
12039
12040 Index Section Contents:
12041 Header
12042 Hash Table of Signatures dwp_hash_table.hash_table
12043 Parallel Table of Indices dwp_hash_table.unit_table
12044 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12045 Table of Section Sizes dwp_hash_table.v2.sizes
12046
12047 The index section header consists of:
12048
12049 V, 32 bit version number
12050 L, 32 bit number of columns in the table of section offsets
12051 N, 32 bit number of compilation units or type units in the index
12052 M, 32 bit number of slots in the hash table
12053
12054 Numbers are recorded using the byte order of the application binary.
12055
12056 The hash table has the same format as version 1.
12057 The parallel table of indices has the same format as version 1,
12058 except that the entries are origin-1 indices into the table of sections
12059 offsets and the table of section sizes.
12060
12061 The table of offsets begins immediately following the parallel table
12062 (at offset 16 + 12 * M from the beginning of the section). The table is
12063 a two-dimensional array of 32-bit words (using the byte order of the
12064 application binary), with L columns and N+1 rows, in row-major order.
12065 Each row in the array is indexed starting from 0. The first row provides
12066 a key to the remaining rows: each column in this row provides an identifier
12067 for a debug section, and the offsets in the same column of subsequent rows
12068 refer to that section. The section identifiers are:
12069
12070 DW_SECT_INFO 1 .debug_info.dwo
12071 DW_SECT_TYPES 2 .debug_types.dwo
12072 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12073 DW_SECT_LINE 4 .debug_line.dwo
12074 DW_SECT_LOC 5 .debug_loc.dwo
12075 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12076 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12077 DW_SECT_MACRO 8 .debug_macro.dwo
12078
12079 The offsets provided by the CU and TU index sections are the base offsets
12080 for the contributions made by each CU or TU to the corresponding section
12081 in the package file. Each CU and TU header contains an abbrev_offset
12082 field, used to find the abbreviations table for that CU or TU within the
12083 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12084 be interpreted as relative to the base offset given in the index section.
12085 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12086 should be interpreted as relative to the base offset for .debug_line.dwo,
12087 and offsets into other debug sections obtained from DWARF attributes should
12088 also be interpreted as relative to the corresponding base offset.
12089
12090 The table of sizes begins immediately following the table of offsets.
12091 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12092 with L columns and N rows, in row-major order. Each row in the array is
12093 indexed starting from 1 (row 0 is shared by the two tables).
12094
12095 ---
12096
12097 Hash table lookup is handled the same in version 1 and 2:
12098
12099 We assume that N and M will not exceed 2^32 - 1.
12100 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12101
12102 Given a 64-bit compilation unit signature or a type signature S, an entry
12103 in the hash table is located as follows:
12104
12105 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12106 the low-order k bits all set to 1.
12107
12108 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12109
12110 3) If the hash table entry at index H matches the signature, use that
12111 entry. If the hash table entry at index H is unused (all zeroes),
12112 terminate the search: the signature is not present in the table.
12113
12114 4) Let H = (H + H') modulo M. Repeat at Step 3.
12115
12116 Because M > N and H' and M are relatively prime, the search is guaranteed
12117 to stop at an unused slot or find the match. */
12118
12119 /* Create a hash table to map DWO IDs to their CU/TU entry in
12120 .debug_{info,types}.dwo in DWP_FILE.
12121 Returns NULL if there isn't one.
12122 Note: This function processes DWP files only, not DWO files. */
12123
12124 static struct dwp_hash_table *
12125 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12126 struct dwp_file *dwp_file, int is_debug_types)
12127 {
12128 struct objfile *objfile = dwarf2_per_objfile->objfile;
12129 bfd *dbfd = dwp_file->dbfd.get ();
12130 const gdb_byte *index_ptr, *index_end;
12131 struct dwarf2_section_info *index;
12132 uint32_t version, nr_columns, nr_units, nr_slots;
12133 struct dwp_hash_table *htab;
12134
12135 if (is_debug_types)
12136 index = &dwp_file->sections.tu_index;
12137 else
12138 index = &dwp_file->sections.cu_index;
12139
12140 if (dwarf2_section_empty_p (index))
12141 return NULL;
12142 dwarf2_read_section (objfile, index);
12143
12144 index_ptr = index->buffer;
12145 index_end = index_ptr + index->size;
12146
12147 version = read_4_bytes (dbfd, index_ptr);
12148 index_ptr += 4;
12149 if (version == 2)
12150 nr_columns = read_4_bytes (dbfd, index_ptr);
12151 else
12152 nr_columns = 0;
12153 index_ptr += 4;
12154 nr_units = read_4_bytes (dbfd, index_ptr);
12155 index_ptr += 4;
12156 nr_slots = read_4_bytes (dbfd, index_ptr);
12157 index_ptr += 4;
12158
12159 if (version != 1 && version != 2)
12160 {
12161 error (_("Dwarf Error: unsupported DWP file version (%s)"
12162 " [in module %s]"),
12163 pulongest (version), dwp_file->name);
12164 }
12165 if (nr_slots != (nr_slots & -nr_slots))
12166 {
12167 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12168 " is not power of 2 [in module %s]"),
12169 pulongest (nr_slots), dwp_file->name);
12170 }
12171
12172 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12173 htab->version = version;
12174 htab->nr_columns = nr_columns;
12175 htab->nr_units = nr_units;
12176 htab->nr_slots = nr_slots;
12177 htab->hash_table = index_ptr;
12178 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12179
12180 /* Exit early if the table is empty. */
12181 if (nr_slots == 0 || nr_units == 0
12182 || (version == 2 && nr_columns == 0))
12183 {
12184 /* All must be zero. */
12185 if (nr_slots != 0 || nr_units != 0
12186 || (version == 2 && nr_columns != 0))
12187 {
12188 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12189 " all zero [in modules %s]"),
12190 dwp_file->name);
12191 }
12192 return htab;
12193 }
12194
12195 if (version == 1)
12196 {
12197 htab->section_pool.v1.indices =
12198 htab->unit_table + sizeof (uint32_t) * nr_slots;
12199 /* It's harder to decide whether the section is too small in v1.
12200 V1 is deprecated anyway so we punt. */
12201 }
12202 else
12203 {
12204 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12205 int *ids = htab->section_pool.v2.section_ids;
12206 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12207 /* Reverse map for error checking. */
12208 int ids_seen[DW_SECT_MAX + 1];
12209 int i;
12210
12211 if (nr_columns < 2)
12212 {
12213 error (_("Dwarf Error: bad DWP hash table, too few columns"
12214 " in section table [in module %s]"),
12215 dwp_file->name);
12216 }
12217 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12218 {
12219 error (_("Dwarf Error: bad DWP hash table, too many columns"
12220 " in section table [in module %s]"),
12221 dwp_file->name);
12222 }
12223 memset (ids, 255, sizeof_ids);
12224 memset (ids_seen, 255, sizeof (ids_seen));
12225 for (i = 0; i < nr_columns; ++i)
12226 {
12227 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12228
12229 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12230 {
12231 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12232 " in section table [in module %s]"),
12233 id, dwp_file->name);
12234 }
12235 if (ids_seen[id] != -1)
12236 {
12237 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12238 " id %d in section table [in module %s]"),
12239 id, dwp_file->name);
12240 }
12241 ids_seen[id] = i;
12242 ids[i] = id;
12243 }
12244 /* Must have exactly one info or types section. */
12245 if (((ids_seen[DW_SECT_INFO] != -1)
12246 + (ids_seen[DW_SECT_TYPES] != -1))
12247 != 1)
12248 {
12249 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12250 " DWO info/types section [in module %s]"),
12251 dwp_file->name);
12252 }
12253 /* Must have an abbrev section. */
12254 if (ids_seen[DW_SECT_ABBREV] == -1)
12255 {
12256 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12257 " section [in module %s]"),
12258 dwp_file->name);
12259 }
12260 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12261 htab->section_pool.v2.sizes =
12262 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12263 * nr_units * nr_columns);
12264 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12265 * nr_units * nr_columns))
12266 > index_end)
12267 {
12268 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12269 " [in module %s]"),
12270 dwp_file->name);
12271 }
12272 }
12273
12274 return htab;
12275 }
12276
12277 /* Update SECTIONS with the data from SECTP.
12278
12279 This function is like the other "locate" section routines that are
12280 passed to bfd_map_over_sections, but in this context the sections to
12281 read comes from the DWP V1 hash table, not the full ELF section table.
12282
12283 The result is non-zero for success, or zero if an error was found. */
12284
12285 static int
12286 locate_v1_virtual_dwo_sections (asection *sectp,
12287 struct virtual_v1_dwo_sections *sections)
12288 {
12289 const struct dwop_section_names *names = &dwop_section_names;
12290
12291 if (section_is_p (sectp->name, &names->abbrev_dwo))
12292 {
12293 /* There can be only one. */
12294 if (sections->abbrev.s.section != NULL)
12295 return 0;
12296 sections->abbrev.s.section = sectp;
12297 sections->abbrev.size = bfd_get_section_size (sectp);
12298 }
12299 else if (section_is_p (sectp->name, &names->info_dwo)
12300 || section_is_p (sectp->name, &names->types_dwo))
12301 {
12302 /* There can be only one. */
12303 if (sections->info_or_types.s.section != NULL)
12304 return 0;
12305 sections->info_or_types.s.section = sectp;
12306 sections->info_or_types.size = bfd_get_section_size (sectp);
12307 }
12308 else if (section_is_p (sectp->name, &names->line_dwo))
12309 {
12310 /* There can be only one. */
12311 if (sections->line.s.section != NULL)
12312 return 0;
12313 sections->line.s.section = sectp;
12314 sections->line.size = bfd_get_section_size (sectp);
12315 }
12316 else if (section_is_p (sectp->name, &names->loc_dwo))
12317 {
12318 /* There can be only one. */
12319 if (sections->loc.s.section != NULL)
12320 return 0;
12321 sections->loc.s.section = sectp;
12322 sections->loc.size = bfd_get_section_size (sectp);
12323 }
12324 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12325 {
12326 /* There can be only one. */
12327 if (sections->macinfo.s.section != NULL)
12328 return 0;
12329 sections->macinfo.s.section = sectp;
12330 sections->macinfo.size = bfd_get_section_size (sectp);
12331 }
12332 else if (section_is_p (sectp->name, &names->macro_dwo))
12333 {
12334 /* There can be only one. */
12335 if (sections->macro.s.section != NULL)
12336 return 0;
12337 sections->macro.s.section = sectp;
12338 sections->macro.size = bfd_get_section_size (sectp);
12339 }
12340 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12341 {
12342 /* There can be only one. */
12343 if (sections->str_offsets.s.section != NULL)
12344 return 0;
12345 sections->str_offsets.s.section = sectp;
12346 sections->str_offsets.size = bfd_get_section_size (sectp);
12347 }
12348 else
12349 {
12350 /* No other kind of section is valid. */
12351 return 0;
12352 }
12353
12354 return 1;
12355 }
12356
12357 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12358 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12359 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12360 This is for DWP version 1 files. */
12361
12362 static struct dwo_unit *
12363 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12364 struct dwp_file *dwp_file,
12365 uint32_t unit_index,
12366 const char *comp_dir,
12367 ULONGEST signature, int is_debug_types)
12368 {
12369 struct objfile *objfile = dwarf2_per_objfile->objfile;
12370 const struct dwp_hash_table *dwp_htab =
12371 is_debug_types ? dwp_file->tus : dwp_file->cus;
12372 bfd *dbfd = dwp_file->dbfd.get ();
12373 const char *kind = is_debug_types ? "TU" : "CU";
12374 struct dwo_file *dwo_file;
12375 struct dwo_unit *dwo_unit;
12376 struct virtual_v1_dwo_sections sections;
12377 void **dwo_file_slot;
12378 int i;
12379
12380 gdb_assert (dwp_file->version == 1);
12381
12382 if (dwarf_read_debug)
12383 {
12384 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12385 kind,
12386 pulongest (unit_index), hex_string (signature),
12387 dwp_file->name);
12388 }
12389
12390 /* Fetch the sections of this DWO unit.
12391 Put a limit on the number of sections we look for so that bad data
12392 doesn't cause us to loop forever. */
12393
12394 #define MAX_NR_V1_DWO_SECTIONS \
12395 (1 /* .debug_info or .debug_types */ \
12396 + 1 /* .debug_abbrev */ \
12397 + 1 /* .debug_line */ \
12398 + 1 /* .debug_loc */ \
12399 + 1 /* .debug_str_offsets */ \
12400 + 1 /* .debug_macro or .debug_macinfo */ \
12401 + 1 /* trailing zero */)
12402
12403 memset (&sections, 0, sizeof (sections));
12404
12405 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12406 {
12407 asection *sectp;
12408 uint32_t section_nr =
12409 read_4_bytes (dbfd,
12410 dwp_htab->section_pool.v1.indices
12411 + (unit_index + i) * sizeof (uint32_t));
12412
12413 if (section_nr == 0)
12414 break;
12415 if (section_nr >= dwp_file->num_sections)
12416 {
12417 error (_("Dwarf Error: bad DWP hash table, section number too large"
12418 " [in module %s]"),
12419 dwp_file->name);
12420 }
12421
12422 sectp = dwp_file->elf_sections[section_nr];
12423 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12424 {
12425 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12426 " [in module %s]"),
12427 dwp_file->name);
12428 }
12429 }
12430
12431 if (i < 2
12432 || dwarf2_section_empty_p (&sections.info_or_types)
12433 || dwarf2_section_empty_p (&sections.abbrev))
12434 {
12435 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12436 " [in module %s]"),
12437 dwp_file->name);
12438 }
12439 if (i == MAX_NR_V1_DWO_SECTIONS)
12440 {
12441 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12442 " [in module %s]"),
12443 dwp_file->name);
12444 }
12445
12446 /* It's easier for the rest of the code if we fake a struct dwo_file and
12447 have dwo_unit "live" in that. At least for now.
12448
12449 The DWP file can be made up of a random collection of CUs and TUs.
12450 However, for each CU + set of TUs that came from the same original DWO
12451 file, we can combine them back into a virtual DWO file to save space
12452 (fewer struct dwo_file objects to allocate). Remember that for really
12453 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12454
12455 std::string virtual_dwo_name =
12456 string_printf ("virtual-dwo/%d-%d-%d-%d",
12457 get_section_id (&sections.abbrev),
12458 get_section_id (&sections.line),
12459 get_section_id (&sections.loc),
12460 get_section_id (&sections.str_offsets));
12461 /* Can we use an existing virtual DWO file? */
12462 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12463 virtual_dwo_name.c_str (),
12464 comp_dir);
12465 /* Create one if necessary. */
12466 if (*dwo_file_slot == NULL)
12467 {
12468 if (dwarf_read_debug)
12469 {
12470 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12471 virtual_dwo_name.c_str ());
12472 }
12473 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12474 dwo_file->dwo_name
12475 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12476 virtual_dwo_name.c_str (),
12477 virtual_dwo_name.size ());
12478 dwo_file->comp_dir = comp_dir;
12479 dwo_file->sections.abbrev = sections.abbrev;
12480 dwo_file->sections.line = sections.line;
12481 dwo_file->sections.loc = sections.loc;
12482 dwo_file->sections.macinfo = sections.macinfo;
12483 dwo_file->sections.macro = sections.macro;
12484 dwo_file->sections.str_offsets = sections.str_offsets;
12485 /* The "str" section is global to the entire DWP file. */
12486 dwo_file->sections.str = dwp_file->sections.str;
12487 /* The info or types section is assigned below to dwo_unit,
12488 there's no need to record it in dwo_file.
12489 Also, we can't simply record type sections in dwo_file because
12490 we record a pointer into the vector in dwo_unit. As we collect more
12491 types we'll grow the vector and eventually have to reallocate space
12492 for it, invalidating all copies of pointers into the previous
12493 contents. */
12494 *dwo_file_slot = dwo_file;
12495 }
12496 else
12497 {
12498 if (dwarf_read_debug)
12499 {
12500 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12501 virtual_dwo_name.c_str ());
12502 }
12503 dwo_file = (struct dwo_file *) *dwo_file_slot;
12504 }
12505
12506 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12507 dwo_unit->dwo_file = dwo_file;
12508 dwo_unit->signature = signature;
12509 dwo_unit->section =
12510 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12511 *dwo_unit->section = sections.info_or_types;
12512 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12513
12514 return dwo_unit;
12515 }
12516
12517 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12518 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12519 piece within that section used by a TU/CU, return a virtual section
12520 of just that piece. */
12521
12522 static struct dwarf2_section_info
12523 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12524 struct dwarf2_section_info *section,
12525 bfd_size_type offset, bfd_size_type size)
12526 {
12527 struct dwarf2_section_info result;
12528 asection *sectp;
12529
12530 gdb_assert (section != NULL);
12531 gdb_assert (!section->is_virtual);
12532
12533 memset (&result, 0, sizeof (result));
12534 result.s.containing_section = section;
12535 result.is_virtual = 1;
12536
12537 if (size == 0)
12538 return result;
12539
12540 sectp = get_section_bfd_section (section);
12541
12542 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12543 bounds of the real section. This is a pretty-rare event, so just
12544 flag an error (easier) instead of a warning and trying to cope. */
12545 if (sectp == NULL
12546 || offset + size > bfd_get_section_size (sectp))
12547 {
12548 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12549 " in section %s [in module %s]"),
12550 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12551 objfile_name (dwarf2_per_objfile->objfile));
12552 }
12553
12554 result.virtual_offset = offset;
12555 result.size = size;
12556 return result;
12557 }
12558
12559 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12560 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12561 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12562 This is for DWP version 2 files. */
12563
12564 static struct dwo_unit *
12565 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12566 struct dwp_file *dwp_file,
12567 uint32_t unit_index,
12568 const char *comp_dir,
12569 ULONGEST signature, int is_debug_types)
12570 {
12571 struct objfile *objfile = dwarf2_per_objfile->objfile;
12572 const struct dwp_hash_table *dwp_htab =
12573 is_debug_types ? dwp_file->tus : dwp_file->cus;
12574 bfd *dbfd = dwp_file->dbfd.get ();
12575 const char *kind = is_debug_types ? "TU" : "CU";
12576 struct dwo_file *dwo_file;
12577 struct dwo_unit *dwo_unit;
12578 struct virtual_v2_dwo_sections sections;
12579 void **dwo_file_slot;
12580 int i;
12581
12582 gdb_assert (dwp_file->version == 2);
12583
12584 if (dwarf_read_debug)
12585 {
12586 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12587 kind,
12588 pulongest (unit_index), hex_string (signature),
12589 dwp_file->name);
12590 }
12591
12592 /* Fetch the section offsets of this DWO unit. */
12593
12594 memset (&sections, 0, sizeof (sections));
12595
12596 for (i = 0; i < dwp_htab->nr_columns; ++i)
12597 {
12598 uint32_t offset = read_4_bytes (dbfd,
12599 dwp_htab->section_pool.v2.offsets
12600 + (((unit_index - 1) * dwp_htab->nr_columns
12601 + i)
12602 * sizeof (uint32_t)));
12603 uint32_t size = read_4_bytes (dbfd,
12604 dwp_htab->section_pool.v2.sizes
12605 + (((unit_index - 1) * dwp_htab->nr_columns
12606 + i)
12607 * sizeof (uint32_t)));
12608
12609 switch (dwp_htab->section_pool.v2.section_ids[i])
12610 {
12611 case DW_SECT_INFO:
12612 case DW_SECT_TYPES:
12613 sections.info_or_types_offset = offset;
12614 sections.info_or_types_size = size;
12615 break;
12616 case DW_SECT_ABBREV:
12617 sections.abbrev_offset = offset;
12618 sections.abbrev_size = size;
12619 break;
12620 case DW_SECT_LINE:
12621 sections.line_offset = offset;
12622 sections.line_size = size;
12623 break;
12624 case DW_SECT_LOC:
12625 sections.loc_offset = offset;
12626 sections.loc_size = size;
12627 break;
12628 case DW_SECT_STR_OFFSETS:
12629 sections.str_offsets_offset = offset;
12630 sections.str_offsets_size = size;
12631 break;
12632 case DW_SECT_MACINFO:
12633 sections.macinfo_offset = offset;
12634 sections.macinfo_size = size;
12635 break;
12636 case DW_SECT_MACRO:
12637 sections.macro_offset = offset;
12638 sections.macro_size = size;
12639 break;
12640 }
12641 }
12642
12643 /* It's easier for the rest of the code if we fake a struct dwo_file and
12644 have dwo_unit "live" in that. At least for now.
12645
12646 The DWP file can be made up of a random collection of CUs and TUs.
12647 However, for each CU + set of TUs that came from the same original DWO
12648 file, we can combine them back into a virtual DWO file to save space
12649 (fewer struct dwo_file objects to allocate). Remember that for really
12650 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12651
12652 std::string virtual_dwo_name =
12653 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12654 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12655 (long) (sections.line_size ? sections.line_offset : 0),
12656 (long) (sections.loc_size ? sections.loc_offset : 0),
12657 (long) (sections.str_offsets_size
12658 ? sections.str_offsets_offset : 0));
12659 /* Can we use an existing virtual DWO file? */
12660 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12661 virtual_dwo_name.c_str (),
12662 comp_dir);
12663 /* Create one if necessary. */
12664 if (*dwo_file_slot == NULL)
12665 {
12666 if (dwarf_read_debug)
12667 {
12668 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12669 virtual_dwo_name.c_str ());
12670 }
12671 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12672 dwo_file->dwo_name
12673 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12674 virtual_dwo_name.c_str (),
12675 virtual_dwo_name.size ());
12676 dwo_file->comp_dir = comp_dir;
12677 dwo_file->sections.abbrev =
12678 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12679 sections.abbrev_offset, sections.abbrev_size);
12680 dwo_file->sections.line =
12681 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12682 sections.line_offset, sections.line_size);
12683 dwo_file->sections.loc =
12684 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12685 sections.loc_offset, sections.loc_size);
12686 dwo_file->sections.macinfo =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12688 sections.macinfo_offset, sections.macinfo_size);
12689 dwo_file->sections.macro =
12690 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12691 sections.macro_offset, sections.macro_size);
12692 dwo_file->sections.str_offsets =
12693 create_dwp_v2_section (dwarf2_per_objfile,
12694 &dwp_file->sections.str_offsets,
12695 sections.str_offsets_offset,
12696 sections.str_offsets_size);
12697 /* The "str" section is global to the entire DWP file. */
12698 dwo_file->sections.str = dwp_file->sections.str;
12699 /* The info or types section is assigned below to dwo_unit,
12700 there's no need to record it in dwo_file.
12701 Also, we can't simply record type sections in dwo_file because
12702 we record a pointer into the vector in dwo_unit. As we collect more
12703 types we'll grow the vector and eventually have to reallocate space
12704 for it, invalidating all copies of pointers into the previous
12705 contents. */
12706 *dwo_file_slot = dwo_file;
12707 }
12708 else
12709 {
12710 if (dwarf_read_debug)
12711 {
12712 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12713 virtual_dwo_name.c_str ());
12714 }
12715 dwo_file = (struct dwo_file *) *dwo_file_slot;
12716 }
12717
12718 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12719 dwo_unit->dwo_file = dwo_file;
12720 dwo_unit->signature = signature;
12721 dwo_unit->section =
12722 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12723 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12724 is_debug_types
12725 ? &dwp_file->sections.types
12726 : &dwp_file->sections.info,
12727 sections.info_or_types_offset,
12728 sections.info_or_types_size);
12729 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12730
12731 return dwo_unit;
12732 }
12733
12734 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12735 Returns NULL if the signature isn't found. */
12736
12737 static struct dwo_unit *
12738 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12739 struct dwp_file *dwp_file, const char *comp_dir,
12740 ULONGEST signature, int is_debug_types)
12741 {
12742 const struct dwp_hash_table *dwp_htab =
12743 is_debug_types ? dwp_file->tus : dwp_file->cus;
12744 bfd *dbfd = dwp_file->dbfd.get ();
12745 uint32_t mask = dwp_htab->nr_slots - 1;
12746 uint32_t hash = signature & mask;
12747 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12748 unsigned int i;
12749 void **slot;
12750 struct dwo_unit find_dwo_cu;
12751
12752 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12753 find_dwo_cu.signature = signature;
12754 slot = htab_find_slot (is_debug_types
12755 ? dwp_file->loaded_tus
12756 : dwp_file->loaded_cus,
12757 &find_dwo_cu, INSERT);
12758
12759 if (*slot != NULL)
12760 return (struct dwo_unit *) *slot;
12761
12762 /* Use a for loop so that we don't loop forever on bad debug info. */
12763 for (i = 0; i < dwp_htab->nr_slots; ++i)
12764 {
12765 ULONGEST signature_in_table;
12766
12767 signature_in_table =
12768 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12769 if (signature_in_table == signature)
12770 {
12771 uint32_t unit_index =
12772 read_4_bytes (dbfd,
12773 dwp_htab->unit_table + hash * sizeof (uint32_t));
12774
12775 if (dwp_file->version == 1)
12776 {
12777 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12778 dwp_file, unit_index,
12779 comp_dir, signature,
12780 is_debug_types);
12781 }
12782 else
12783 {
12784 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12785 dwp_file, unit_index,
12786 comp_dir, signature,
12787 is_debug_types);
12788 }
12789 return (struct dwo_unit *) *slot;
12790 }
12791 if (signature_in_table == 0)
12792 return NULL;
12793 hash = (hash + hash2) & mask;
12794 }
12795
12796 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12797 " [in module %s]"),
12798 dwp_file->name);
12799 }
12800
12801 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12802 Open the file specified by FILE_NAME and hand it off to BFD for
12803 preliminary analysis. Return a newly initialized bfd *, which
12804 includes a canonicalized copy of FILE_NAME.
12805 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12806 SEARCH_CWD is true if the current directory is to be searched.
12807 It will be searched before debug-file-directory.
12808 If successful, the file is added to the bfd include table of the
12809 objfile's bfd (see gdb_bfd_record_inclusion).
12810 If unable to find/open the file, return NULL.
12811 NOTE: This function is derived from symfile_bfd_open. */
12812
12813 static gdb_bfd_ref_ptr
12814 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12815 const char *file_name, int is_dwp, int search_cwd)
12816 {
12817 int desc;
12818 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12819 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12820 to debug_file_directory. */
12821 const char *search_path;
12822 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12823
12824 gdb::unique_xmalloc_ptr<char> search_path_holder;
12825 if (search_cwd)
12826 {
12827 if (*debug_file_directory != '\0')
12828 {
12829 search_path_holder.reset (concat (".", dirname_separator_string,
12830 debug_file_directory,
12831 (char *) NULL));
12832 search_path = search_path_holder.get ();
12833 }
12834 else
12835 search_path = ".";
12836 }
12837 else
12838 search_path = debug_file_directory;
12839
12840 openp_flags flags = OPF_RETURN_REALPATH;
12841 if (is_dwp)
12842 flags |= OPF_SEARCH_IN_PATH;
12843
12844 gdb::unique_xmalloc_ptr<char> absolute_name;
12845 desc = openp (search_path, flags, file_name,
12846 O_RDONLY | O_BINARY, &absolute_name);
12847 if (desc < 0)
12848 return NULL;
12849
12850 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12851 gnutarget, desc));
12852 if (sym_bfd == NULL)
12853 return NULL;
12854 bfd_set_cacheable (sym_bfd.get (), 1);
12855
12856 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12857 return NULL;
12858
12859 /* Success. Record the bfd as having been included by the objfile's bfd.
12860 This is important because things like demangled_names_hash lives in the
12861 objfile's per_bfd space and may have references to things like symbol
12862 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12863 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12864
12865 return sym_bfd;
12866 }
12867
12868 /* Try to open DWO file FILE_NAME.
12869 COMP_DIR is the DW_AT_comp_dir attribute.
12870 The result is the bfd handle of the file.
12871 If there is a problem finding or opening the file, return NULL.
12872 Upon success, the canonicalized path of the file is stored in the bfd,
12873 same as symfile_bfd_open. */
12874
12875 static gdb_bfd_ref_ptr
12876 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12877 const char *file_name, const char *comp_dir)
12878 {
12879 if (IS_ABSOLUTE_PATH (file_name))
12880 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12881 0 /*is_dwp*/, 0 /*search_cwd*/);
12882
12883 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12884
12885 if (comp_dir != NULL)
12886 {
12887 char *path_to_try = concat (comp_dir, SLASH_STRING,
12888 file_name, (char *) NULL);
12889
12890 /* NOTE: If comp_dir is a relative path, this will also try the
12891 search path, which seems useful. */
12892 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12893 path_to_try,
12894 0 /*is_dwp*/,
12895 1 /*search_cwd*/));
12896 xfree (path_to_try);
12897 if (abfd != NULL)
12898 return abfd;
12899 }
12900
12901 /* That didn't work, try debug-file-directory, which, despite its name,
12902 is a list of paths. */
12903
12904 if (*debug_file_directory == '\0')
12905 return NULL;
12906
12907 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12908 0 /*is_dwp*/, 1 /*search_cwd*/);
12909 }
12910
12911 /* This function is mapped across the sections and remembers the offset and
12912 size of each of the DWO debugging sections we are interested in. */
12913
12914 static void
12915 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12916 {
12917 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12918 const struct dwop_section_names *names = &dwop_section_names;
12919
12920 if (section_is_p (sectp->name, &names->abbrev_dwo))
12921 {
12922 dwo_sections->abbrev.s.section = sectp;
12923 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12924 }
12925 else if (section_is_p (sectp->name, &names->info_dwo))
12926 {
12927 dwo_sections->info.s.section = sectp;
12928 dwo_sections->info.size = bfd_get_section_size (sectp);
12929 }
12930 else if (section_is_p (sectp->name, &names->line_dwo))
12931 {
12932 dwo_sections->line.s.section = sectp;
12933 dwo_sections->line.size = bfd_get_section_size (sectp);
12934 }
12935 else if (section_is_p (sectp->name, &names->loc_dwo))
12936 {
12937 dwo_sections->loc.s.section = sectp;
12938 dwo_sections->loc.size = bfd_get_section_size (sectp);
12939 }
12940 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12941 {
12942 dwo_sections->macinfo.s.section = sectp;
12943 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12944 }
12945 else if (section_is_p (sectp->name, &names->macro_dwo))
12946 {
12947 dwo_sections->macro.s.section = sectp;
12948 dwo_sections->macro.size = bfd_get_section_size (sectp);
12949 }
12950 else if (section_is_p (sectp->name, &names->str_dwo))
12951 {
12952 dwo_sections->str.s.section = sectp;
12953 dwo_sections->str.size = bfd_get_section_size (sectp);
12954 }
12955 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12956 {
12957 dwo_sections->str_offsets.s.section = sectp;
12958 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12959 }
12960 else if (section_is_p (sectp->name, &names->types_dwo))
12961 {
12962 struct dwarf2_section_info type_section;
12963
12964 memset (&type_section, 0, sizeof (type_section));
12965 type_section.s.section = sectp;
12966 type_section.size = bfd_get_section_size (sectp);
12967 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12968 &type_section);
12969 }
12970 }
12971
12972 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12973 by PER_CU. This is for the non-DWP case.
12974 The result is NULL if DWO_NAME can't be found. */
12975
12976 static struct dwo_file *
12977 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12978 const char *dwo_name, const char *comp_dir)
12979 {
12980 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12981 struct objfile *objfile = dwarf2_per_objfile->objfile;
12982
12983 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12984 if (dbfd == NULL)
12985 {
12986 if (dwarf_read_debug)
12987 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12988 return NULL;
12989 }
12990
12991 /* We use a unique pointer here, despite the obstack allocation,
12992 because a dwo_file needs some cleanup if it is abandoned. */
12993 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12994 struct dwo_file));
12995 dwo_file->dwo_name = dwo_name;
12996 dwo_file->comp_dir = comp_dir;
12997 dwo_file->dbfd = dbfd.release ();
12998
12999 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13000 &dwo_file->sections);
13001
13002 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13003 dwo_file->cus);
13004
13005 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13006 dwo_file->sections.types, dwo_file->tus);
13007
13008 if (dwarf_read_debug)
13009 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13010
13011 return dwo_file.release ();
13012 }
13013
13014 /* This function is mapped across the sections and remembers the offset and
13015 size of each of the DWP debugging sections common to version 1 and 2 that
13016 we are interested in. */
13017
13018 static void
13019 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13020 void *dwp_file_ptr)
13021 {
13022 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13023 const struct dwop_section_names *names = &dwop_section_names;
13024 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13025
13026 /* Record the ELF section number for later lookup: this is what the
13027 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13028 gdb_assert (elf_section_nr < dwp_file->num_sections);
13029 dwp_file->elf_sections[elf_section_nr] = sectp;
13030
13031 /* Look for specific sections that we need. */
13032 if (section_is_p (sectp->name, &names->str_dwo))
13033 {
13034 dwp_file->sections.str.s.section = sectp;
13035 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13036 }
13037 else if (section_is_p (sectp->name, &names->cu_index))
13038 {
13039 dwp_file->sections.cu_index.s.section = sectp;
13040 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13041 }
13042 else if (section_is_p (sectp->name, &names->tu_index))
13043 {
13044 dwp_file->sections.tu_index.s.section = sectp;
13045 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13046 }
13047 }
13048
13049 /* This function is mapped across the sections and remembers the offset and
13050 size of each of the DWP version 2 debugging sections that we are interested
13051 in. This is split into a separate function because we don't know if we
13052 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13053
13054 static void
13055 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13056 {
13057 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13058 const struct dwop_section_names *names = &dwop_section_names;
13059 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13060
13061 /* Record the ELF section number for later lookup: this is what the
13062 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13063 gdb_assert (elf_section_nr < dwp_file->num_sections);
13064 dwp_file->elf_sections[elf_section_nr] = sectp;
13065
13066 /* Look for specific sections that we need. */
13067 if (section_is_p (sectp->name, &names->abbrev_dwo))
13068 {
13069 dwp_file->sections.abbrev.s.section = sectp;
13070 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13071 }
13072 else if (section_is_p (sectp->name, &names->info_dwo))
13073 {
13074 dwp_file->sections.info.s.section = sectp;
13075 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13076 }
13077 else if (section_is_p (sectp->name, &names->line_dwo))
13078 {
13079 dwp_file->sections.line.s.section = sectp;
13080 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13081 }
13082 else if (section_is_p (sectp->name, &names->loc_dwo))
13083 {
13084 dwp_file->sections.loc.s.section = sectp;
13085 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13086 }
13087 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13088 {
13089 dwp_file->sections.macinfo.s.section = sectp;
13090 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13091 }
13092 else if (section_is_p (sectp->name, &names->macro_dwo))
13093 {
13094 dwp_file->sections.macro.s.section = sectp;
13095 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13096 }
13097 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13098 {
13099 dwp_file->sections.str_offsets.s.section = sectp;
13100 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13101 }
13102 else if (section_is_p (sectp->name, &names->types_dwo))
13103 {
13104 dwp_file->sections.types.s.section = sectp;
13105 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13106 }
13107 }
13108
13109 /* Hash function for dwp_file loaded CUs/TUs. */
13110
13111 static hashval_t
13112 hash_dwp_loaded_cutus (const void *item)
13113 {
13114 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13115
13116 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13117 return dwo_unit->signature;
13118 }
13119
13120 /* Equality function for dwp_file loaded CUs/TUs. */
13121
13122 static int
13123 eq_dwp_loaded_cutus (const void *a, const void *b)
13124 {
13125 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13126 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13127
13128 return dua->signature == dub->signature;
13129 }
13130
13131 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13132
13133 static htab_t
13134 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13135 {
13136 return htab_create_alloc_ex (3,
13137 hash_dwp_loaded_cutus,
13138 eq_dwp_loaded_cutus,
13139 NULL,
13140 &objfile->objfile_obstack,
13141 hashtab_obstack_allocate,
13142 dummy_obstack_deallocate);
13143 }
13144
13145 /* Try to open DWP file FILE_NAME.
13146 The result is the bfd handle of the file.
13147 If there is a problem finding or opening the file, return NULL.
13148 Upon success, the canonicalized path of the file is stored in the bfd,
13149 same as symfile_bfd_open. */
13150
13151 static gdb_bfd_ref_ptr
13152 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13153 const char *file_name)
13154 {
13155 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13156 1 /*is_dwp*/,
13157 1 /*search_cwd*/));
13158 if (abfd != NULL)
13159 return abfd;
13160
13161 /* Work around upstream bug 15652.
13162 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13163 [Whether that's a "bug" is debatable, but it is getting in our way.]
13164 We have no real idea where the dwp file is, because gdb's realpath-ing
13165 of the executable's path may have discarded the needed info.
13166 [IWBN if the dwp file name was recorded in the executable, akin to
13167 .gnu_debuglink, but that doesn't exist yet.]
13168 Strip the directory from FILE_NAME and search again. */
13169 if (*debug_file_directory != '\0')
13170 {
13171 /* Don't implicitly search the current directory here.
13172 If the user wants to search "." to handle this case,
13173 it must be added to debug-file-directory. */
13174 return try_open_dwop_file (dwarf2_per_objfile,
13175 lbasename (file_name), 1 /*is_dwp*/,
13176 0 /*search_cwd*/);
13177 }
13178
13179 return NULL;
13180 }
13181
13182 /* Initialize the use of the DWP file for the current objfile.
13183 By convention the name of the DWP file is ${objfile}.dwp.
13184 The result is NULL if it can't be found. */
13185
13186 static std::unique_ptr<struct dwp_file>
13187 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13188 {
13189 struct objfile *objfile = dwarf2_per_objfile->objfile;
13190
13191 /* Try to find first .dwp for the binary file before any symbolic links
13192 resolving. */
13193
13194 /* If the objfile is a debug file, find the name of the real binary
13195 file and get the name of dwp file from there. */
13196 std::string dwp_name;
13197 if (objfile->separate_debug_objfile_backlink != NULL)
13198 {
13199 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13200 const char *backlink_basename = lbasename (backlink->original_name);
13201
13202 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13203 }
13204 else
13205 dwp_name = objfile->original_name;
13206
13207 dwp_name += ".dwp";
13208
13209 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13210 if (dbfd == NULL
13211 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13212 {
13213 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13214 dwp_name = objfile_name (objfile);
13215 dwp_name += ".dwp";
13216 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13217 }
13218
13219 if (dbfd == NULL)
13220 {
13221 if (dwarf_read_debug)
13222 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13223 return std::unique_ptr<dwp_file> ();
13224 }
13225
13226 const char *name = bfd_get_filename (dbfd.get ());
13227 std::unique_ptr<struct dwp_file> dwp_file
13228 (new struct dwp_file (name, std::move (dbfd)));
13229
13230 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13231 dwp_file->elf_sections =
13232 OBSTACK_CALLOC (&objfile->objfile_obstack,
13233 dwp_file->num_sections, asection *);
13234
13235 bfd_map_over_sections (dwp_file->dbfd.get (),
13236 dwarf2_locate_common_dwp_sections,
13237 dwp_file.get ());
13238
13239 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13240 0);
13241
13242 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13243 1);
13244
13245 /* The DWP file version is stored in the hash table. Oh well. */
13246 if (dwp_file->cus && dwp_file->tus
13247 && dwp_file->cus->version != dwp_file->tus->version)
13248 {
13249 /* Technically speaking, we should try to limp along, but this is
13250 pretty bizarre. We use pulongest here because that's the established
13251 portability solution (e.g, we cannot use %u for uint32_t). */
13252 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13253 " TU version %s [in DWP file %s]"),
13254 pulongest (dwp_file->cus->version),
13255 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13256 }
13257
13258 if (dwp_file->cus)
13259 dwp_file->version = dwp_file->cus->version;
13260 else if (dwp_file->tus)
13261 dwp_file->version = dwp_file->tus->version;
13262 else
13263 dwp_file->version = 2;
13264
13265 if (dwp_file->version == 2)
13266 bfd_map_over_sections (dwp_file->dbfd.get (),
13267 dwarf2_locate_v2_dwp_sections,
13268 dwp_file.get ());
13269
13270 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13271 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13272
13273 if (dwarf_read_debug)
13274 {
13275 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13276 fprintf_unfiltered (gdb_stdlog,
13277 " %s CUs, %s TUs\n",
13278 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13279 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13280 }
13281
13282 return dwp_file;
13283 }
13284
13285 /* Wrapper around open_and_init_dwp_file, only open it once. */
13286
13287 static struct dwp_file *
13288 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13289 {
13290 if (! dwarf2_per_objfile->dwp_checked)
13291 {
13292 dwarf2_per_objfile->dwp_file
13293 = open_and_init_dwp_file (dwarf2_per_objfile);
13294 dwarf2_per_objfile->dwp_checked = 1;
13295 }
13296 return dwarf2_per_objfile->dwp_file.get ();
13297 }
13298
13299 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13300 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13301 or in the DWP file for the objfile, referenced by THIS_UNIT.
13302 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13303 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13304
13305 This is called, for example, when wanting to read a variable with a
13306 complex location. Therefore we don't want to do file i/o for every call.
13307 Therefore we don't want to look for a DWO file on every call.
13308 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13309 then we check if we've already seen DWO_NAME, and only THEN do we check
13310 for a DWO file.
13311
13312 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13313 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13314
13315 static struct dwo_unit *
13316 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13317 const char *dwo_name, const char *comp_dir,
13318 ULONGEST signature, int is_debug_types)
13319 {
13320 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13321 struct objfile *objfile = dwarf2_per_objfile->objfile;
13322 const char *kind = is_debug_types ? "TU" : "CU";
13323 void **dwo_file_slot;
13324 struct dwo_file *dwo_file;
13325 struct dwp_file *dwp_file;
13326
13327 /* First see if there's a DWP file.
13328 If we have a DWP file but didn't find the DWO inside it, don't
13329 look for the original DWO file. It makes gdb behave differently
13330 depending on whether one is debugging in the build tree. */
13331
13332 dwp_file = get_dwp_file (dwarf2_per_objfile);
13333 if (dwp_file != NULL)
13334 {
13335 const struct dwp_hash_table *dwp_htab =
13336 is_debug_types ? dwp_file->tus : dwp_file->cus;
13337
13338 if (dwp_htab != NULL)
13339 {
13340 struct dwo_unit *dwo_cutu =
13341 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13342 signature, is_debug_types);
13343
13344 if (dwo_cutu != NULL)
13345 {
13346 if (dwarf_read_debug)
13347 {
13348 fprintf_unfiltered (gdb_stdlog,
13349 "Virtual DWO %s %s found: @%s\n",
13350 kind, hex_string (signature),
13351 host_address_to_string (dwo_cutu));
13352 }
13353 return dwo_cutu;
13354 }
13355 }
13356 }
13357 else
13358 {
13359 /* No DWP file, look for the DWO file. */
13360
13361 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13362 dwo_name, comp_dir);
13363 if (*dwo_file_slot == NULL)
13364 {
13365 /* Read in the file and build a table of the CUs/TUs it contains. */
13366 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13367 }
13368 /* NOTE: This will be NULL if unable to open the file. */
13369 dwo_file = (struct dwo_file *) *dwo_file_slot;
13370
13371 if (dwo_file != NULL)
13372 {
13373 struct dwo_unit *dwo_cutu = NULL;
13374
13375 if (is_debug_types && dwo_file->tus)
13376 {
13377 struct dwo_unit find_dwo_cutu;
13378
13379 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13380 find_dwo_cutu.signature = signature;
13381 dwo_cutu
13382 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13383 }
13384 else if (!is_debug_types && dwo_file->cus)
13385 {
13386 struct dwo_unit find_dwo_cutu;
13387
13388 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13389 find_dwo_cutu.signature = signature;
13390 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13391 &find_dwo_cutu);
13392 }
13393
13394 if (dwo_cutu != NULL)
13395 {
13396 if (dwarf_read_debug)
13397 {
13398 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13399 kind, dwo_name, hex_string (signature),
13400 host_address_to_string (dwo_cutu));
13401 }
13402 return dwo_cutu;
13403 }
13404 }
13405 }
13406
13407 /* We didn't find it. This could mean a dwo_id mismatch, or
13408 someone deleted the DWO/DWP file, or the search path isn't set up
13409 correctly to find the file. */
13410
13411 if (dwarf_read_debug)
13412 {
13413 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13414 kind, dwo_name, hex_string (signature));
13415 }
13416
13417 /* This is a warning and not a complaint because it can be caused by
13418 pilot error (e.g., user accidentally deleting the DWO). */
13419 {
13420 /* Print the name of the DWP file if we looked there, helps the user
13421 better diagnose the problem. */
13422 std::string dwp_text;
13423
13424 if (dwp_file != NULL)
13425 dwp_text = string_printf (" [in DWP file %s]",
13426 lbasename (dwp_file->name));
13427
13428 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13429 " [in module %s]"),
13430 kind, dwo_name, hex_string (signature),
13431 dwp_text.c_str (),
13432 this_unit->is_debug_types ? "TU" : "CU",
13433 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13434 }
13435 return NULL;
13436 }
13437
13438 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13439 See lookup_dwo_cutu_unit for details. */
13440
13441 static struct dwo_unit *
13442 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13443 const char *dwo_name, const char *comp_dir,
13444 ULONGEST signature)
13445 {
13446 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13447 }
13448
13449 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13450 See lookup_dwo_cutu_unit for details. */
13451
13452 static struct dwo_unit *
13453 lookup_dwo_type_unit (struct signatured_type *this_tu,
13454 const char *dwo_name, const char *comp_dir)
13455 {
13456 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13457 }
13458
13459 /* Traversal function for queue_and_load_all_dwo_tus. */
13460
13461 static int
13462 queue_and_load_dwo_tu (void **slot, void *info)
13463 {
13464 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13465 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13466 ULONGEST signature = dwo_unit->signature;
13467 struct signatured_type *sig_type =
13468 lookup_dwo_signatured_type (per_cu->cu, signature);
13469
13470 if (sig_type != NULL)
13471 {
13472 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13473
13474 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13475 a real dependency of PER_CU on SIG_TYPE. That is detected later
13476 while processing PER_CU. */
13477 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13478 load_full_type_unit (sig_cu);
13479 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13480 }
13481
13482 return 1;
13483 }
13484
13485 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13486 The DWO may have the only definition of the type, though it may not be
13487 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13488 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13489
13490 static void
13491 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13492 {
13493 struct dwo_unit *dwo_unit;
13494 struct dwo_file *dwo_file;
13495
13496 gdb_assert (!per_cu->is_debug_types);
13497 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13498 gdb_assert (per_cu->cu != NULL);
13499
13500 dwo_unit = per_cu->cu->dwo_unit;
13501 gdb_assert (dwo_unit != NULL);
13502
13503 dwo_file = dwo_unit->dwo_file;
13504 if (dwo_file->tus != NULL)
13505 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13506 }
13507
13508 /* Free all resources associated with DWO_FILE.
13509 Close the DWO file and munmap the sections. */
13510
13511 static void
13512 free_dwo_file (struct dwo_file *dwo_file)
13513 {
13514 /* Note: dbfd is NULL for virtual DWO files. */
13515 gdb_bfd_unref (dwo_file->dbfd);
13516
13517 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13518 }
13519
13520 /* Traversal function for free_dwo_files. */
13521
13522 static int
13523 free_dwo_file_from_slot (void **slot, void *info)
13524 {
13525 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13526
13527 free_dwo_file (dwo_file);
13528
13529 return 1;
13530 }
13531
13532 /* Free all resources associated with DWO_FILES. */
13533
13534 static void
13535 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13536 {
13537 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13538 }
13539 \f
13540 /* Read in various DIEs. */
13541
13542 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13543 Inherit only the children of the DW_AT_abstract_origin DIE not being
13544 already referenced by DW_AT_abstract_origin from the children of the
13545 current DIE. */
13546
13547 static void
13548 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13549 {
13550 struct die_info *child_die;
13551 sect_offset *offsetp;
13552 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13553 struct die_info *origin_die;
13554 /* Iterator of the ORIGIN_DIE children. */
13555 struct die_info *origin_child_die;
13556 struct attribute *attr;
13557 struct dwarf2_cu *origin_cu;
13558 struct pending **origin_previous_list_in_scope;
13559
13560 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13561 if (!attr)
13562 return;
13563
13564 /* Note that following die references may follow to a die in a
13565 different cu. */
13566
13567 origin_cu = cu;
13568 origin_die = follow_die_ref (die, attr, &origin_cu);
13569
13570 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13571 symbols in. */
13572 origin_previous_list_in_scope = origin_cu->list_in_scope;
13573 origin_cu->list_in_scope = cu->list_in_scope;
13574
13575 if (die->tag != origin_die->tag
13576 && !(die->tag == DW_TAG_inlined_subroutine
13577 && origin_die->tag == DW_TAG_subprogram))
13578 complaint (_("DIE %s and its abstract origin %s have different tags"),
13579 sect_offset_str (die->sect_off),
13580 sect_offset_str (origin_die->sect_off));
13581
13582 std::vector<sect_offset> offsets;
13583
13584 for (child_die = die->child;
13585 child_die && child_die->tag;
13586 child_die = sibling_die (child_die))
13587 {
13588 struct die_info *child_origin_die;
13589 struct dwarf2_cu *child_origin_cu;
13590
13591 /* We are trying to process concrete instance entries:
13592 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13593 it's not relevant to our analysis here. i.e. detecting DIEs that are
13594 present in the abstract instance but not referenced in the concrete
13595 one. */
13596 if (child_die->tag == DW_TAG_call_site
13597 || child_die->tag == DW_TAG_GNU_call_site)
13598 continue;
13599
13600 /* For each CHILD_DIE, find the corresponding child of
13601 ORIGIN_DIE. If there is more than one layer of
13602 DW_AT_abstract_origin, follow them all; there shouldn't be,
13603 but GCC versions at least through 4.4 generate this (GCC PR
13604 40573). */
13605 child_origin_die = child_die;
13606 child_origin_cu = cu;
13607 while (1)
13608 {
13609 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13610 child_origin_cu);
13611 if (attr == NULL)
13612 break;
13613 child_origin_die = follow_die_ref (child_origin_die, attr,
13614 &child_origin_cu);
13615 }
13616
13617 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13618 counterpart may exist. */
13619 if (child_origin_die != child_die)
13620 {
13621 if (child_die->tag != child_origin_die->tag
13622 && !(child_die->tag == DW_TAG_inlined_subroutine
13623 && child_origin_die->tag == DW_TAG_subprogram))
13624 complaint (_("Child DIE %s and its abstract origin %s have "
13625 "different tags"),
13626 sect_offset_str (child_die->sect_off),
13627 sect_offset_str (child_origin_die->sect_off));
13628 if (child_origin_die->parent != origin_die)
13629 complaint (_("Child DIE %s and its abstract origin %s have "
13630 "different parents"),
13631 sect_offset_str (child_die->sect_off),
13632 sect_offset_str (child_origin_die->sect_off));
13633 else
13634 offsets.push_back (child_origin_die->sect_off);
13635 }
13636 }
13637 std::sort (offsets.begin (), offsets.end ());
13638 sect_offset *offsets_end = offsets.data () + offsets.size ();
13639 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13640 if (offsetp[-1] == *offsetp)
13641 complaint (_("Multiple children of DIE %s refer "
13642 "to DIE %s as their abstract origin"),
13643 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13644
13645 offsetp = offsets.data ();
13646 origin_child_die = origin_die->child;
13647 while (origin_child_die && origin_child_die->tag)
13648 {
13649 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13650 while (offsetp < offsets_end
13651 && *offsetp < origin_child_die->sect_off)
13652 offsetp++;
13653 if (offsetp >= offsets_end
13654 || *offsetp > origin_child_die->sect_off)
13655 {
13656 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13657 Check whether we're already processing ORIGIN_CHILD_DIE.
13658 This can happen with mutually referenced abstract_origins.
13659 PR 16581. */
13660 if (!origin_child_die->in_process)
13661 process_die (origin_child_die, origin_cu);
13662 }
13663 origin_child_die = sibling_die (origin_child_die);
13664 }
13665 origin_cu->list_in_scope = origin_previous_list_in_scope;
13666 }
13667
13668 static void
13669 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13670 {
13671 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13672 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13673 struct context_stack *newobj;
13674 CORE_ADDR lowpc;
13675 CORE_ADDR highpc;
13676 struct die_info *child_die;
13677 struct attribute *attr, *call_line, *call_file;
13678 const char *name;
13679 CORE_ADDR baseaddr;
13680 struct block *block;
13681 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13682 std::vector<struct symbol *> template_args;
13683 struct template_symbol *templ_func = NULL;
13684
13685 if (inlined_func)
13686 {
13687 /* If we do not have call site information, we can't show the
13688 caller of this inlined function. That's too confusing, so
13689 only use the scope for local variables. */
13690 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13691 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13692 if (call_line == NULL || call_file == NULL)
13693 {
13694 read_lexical_block_scope (die, cu);
13695 return;
13696 }
13697 }
13698
13699 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13700
13701 name = dwarf2_name (die, cu);
13702
13703 /* Ignore functions with missing or empty names. These are actually
13704 illegal according to the DWARF standard. */
13705 if (name == NULL)
13706 {
13707 complaint (_("missing name for subprogram DIE at %s"),
13708 sect_offset_str (die->sect_off));
13709 return;
13710 }
13711
13712 /* Ignore functions with missing or invalid low and high pc attributes. */
13713 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13714 <= PC_BOUNDS_INVALID)
13715 {
13716 attr = dwarf2_attr (die, DW_AT_external, cu);
13717 if (!attr || !DW_UNSND (attr))
13718 complaint (_("cannot get low and high bounds "
13719 "for subprogram DIE at %s"),
13720 sect_offset_str (die->sect_off));
13721 return;
13722 }
13723
13724 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13725 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13726
13727 /* If we have any template arguments, then we must allocate a
13728 different sort of symbol. */
13729 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13730 {
13731 if (child_die->tag == DW_TAG_template_type_param
13732 || child_die->tag == DW_TAG_template_value_param)
13733 {
13734 templ_func = allocate_template_symbol (objfile);
13735 templ_func->subclass = SYMBOL_TEMPLATE;
13736 break;
13737 }
13738 }
13739
13740 newobj = cu->get_builder ()->push_context (0, lowpc);
13741 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13742 (struct symbol *) templ_func);
13743
13744 /* If there is a location expression for DW_AT_frame_base, record
13745 it. */
13746 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13747 if (attr)
13748 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13749
13750 /* If there is a location for the static link, record it. */
13751 newobj->static_link = NULL;
13752 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13753 if (attr)
13754 {
13755 newobj->static_link
13756 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13757 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13758 }
13759
13760 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13761
13762 if (die->child != NULL)
13763 {
13764 child_die = die->child;
13765 while (child_die && child_die->tag)
13766 {
13767 if (child_die->tag == DW_TAG_template_type_param
13768 || child_die->tag == DW_TAG_template_value_param)
13769 {
13770 struct symbol *arg = new_symbol (child_die, NULL, cu);
13771
13772 if (arg != NULL)
13773 template_args.push_back (arg);
13774 }
13775 else
13776 process_die (child_die, cu);
13777 child_die = sibling_die (child_die);
13778 }
13779 }
13780
13781 inherit_abstract_dies (die, cu);
13782
13783 /* If we have a DW_AT_specification, we might need to import using
13784 directives from the context of the specification DIE. See the
13785 comment in determine_prefix. */
13786 if (cu->language == language_cplus
13787 && dwarf2_attr (die, DW_AT_specification, cu))
13788 {
13789 struct dwarf2_cu *spec_cu = cu;
13790 struct die_info *spec_die = die_specification (die, &spec_cu);
13791
13792 while (spec_die)
13793 {
13794 child_die = spec_die->child;
13795 while (child_die && child_die->tag)
13796 {
13797 if (child_die->tag == DW_TAG_imported_module)
13798 process_die (child_die, spec_cu);
13799 child_die = sibling_die (child_die);
13800 }
13801
13802 /* In some cases, GCC generates specification DIEs that
13803 themselves contain DW_AT_specification attributes. */
13804 spec_die = die_specification (spec_die, &spec_cu);
13805 }
13806 }
13807
13808 struct context_stack cstk = cu->get_builder ()->pop_context ();
13809 /* Make a block for the local symbols within. */
13810 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13811 cstk.static_link, lowpc, highpc);
13812
13813 /* For C++, set the block's scope. */
13814 if ((cu->language == language_cplus
13815 || cu->language == language_fortran
13816 || cu->language == language_d
13817 || cu->language == language_rust)
13818 && cu->processing_has_namespace_info)
13819 block_set_scope (block, determine_prefix (die, cu),
13820 &objfile->objfile_obstack);
13821
13822 /* If we have address ranges, record them. */
13823 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13824
13825 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13826
13827 /* Attach template arguments to function. */
13828 if (!template_args.empty ())
13829 {
13830 gdb_assert (templ_func != NULL);
13831
13832 templ_func->n_template_arguments = template_args.size ();
13833 templ_func->template_arguments
13834 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13835 templ_func->n_template_arguments);
13836 memcpy (templ_func->template_arguments,
13837 template_args.data (),
13838 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13839
13840 /* Make sure that the symtab is set on the new symbols. Even
13841 though they don't appear in this symtab directly, other parts
13842 of gdb assume that symbols do, and this is reasonably
13843 true. */
13844 for (symbol *sym : template_args)
13845 symbol_set_symtab (sym, symbol_symtab (templ_func));
13846 }
13847
13848 /* In C++, we can have functions nested inside functions (e.g., when
13849 a function declares a class that has methods). This means that
13850 when we finish processing a function scope, we may need to go
13851 back to building a containing block's symbol lists. */
13852 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13853 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13854
13855 /* If we've finished processing a top-level function, subsequent
13856 symbols go in the file symbol list. */
13857 if (cu->get_builder ()->outermost_context_p ())
13858 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13859 }
13860
13861 /* Process all the DIES contained within a lexical block scope. Start
13862 a new scope, process the dies, and then close the scope. */
13863
13864 static void
13865 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13866 {
13867 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13868 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13869 CORE_ADDR lowpc, highpc;
13870 struct die_info *child_die;
13871 CORE_ADDR baseaddr;
13872
13873 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13874
13875 /* Ignore blocks with missing or invalid low and high pc attributes. */
13876 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13877 as multiple lexical blocks? Handling children in a sane way would
13878 be nasty. Might be easier to properly extend generic blocks to
13879 describe ranges. */
13880 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13881 {
13882 case PC_BOUNDS_NOT_PRESENT:
13883 /* DW_TAG_lexical_block has no attributes, process its children as if
13884 there was no wrapping by that DW_TAG_lexical_block.
13885 GCC does no longer produces such DWARF since GCC r224161. */
13886 for (child_die = die->child;
13887 child_die != NULL && child_die->tag;
13888 child_die = sibling_die (child_die))
13889 process_die (child_die, cu);
13890 return;
13891 case PC_BOUNDS_INVALID:
13892 return;
13893 }
13894 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13895 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13896
13897 cu->get_builder ()->push_context (0, lowpc);
13898 if (die->child != NULL)
13899 {
13900 child_die = die->child;
13901 while (child_die && child_die->tag)
13902 {
13903 process_die (child_die, cu);
13904 child_die = sibling_die (child_die);
13905 }
13906 }
13907 inherit_abstract_dies (die, cu);
13908 struct context_stack cstk = cu->get_builder ()->pop_context ();
13909
13910 if (*cu->get_builder ()->get_local_symbols () != NULL
13911 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13912 {
13913 struct block *block
13914 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13915 cstk.start_addr, highpc);
13916
13917 /* Note that recording ranges after traversing children, as we
13918 do here, means that recording a parent's ranges entails
13919 walking across all its children's ranges as they appear in
13920 the address map, which is quadratic behavior.
13921
13922 It would be nicer to record the parent's ranges before
13923 traversing its children, simply overriding whatever you find
13924 there. But since we don't even decide whether to create a
13925 block until after we've traversed its children, that's hard
13926 to do. */
13927 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13928 }
13929 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13930 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13931 }
13932
13933 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13934
13935 static void
13936 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13937 {
13938 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13940 CORE_ADDR pc, baseaddr;
13941 struct attribute *attr;
13942 struct call_site *call_site, call_site_local;
13943 void **slot;
13944 int nparams;
13945 struct die_info *child_die;
13946
13947 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13948
13949 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13950 if (attr == NULL)
13951 {
13952 /* This was a pre-DWARF-5 GNU extension alias
13953 for DW_AT_call_return_pc. */
13954 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13955 }
13956 if (!attr)
13957 {
13958 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13959 "DIE %s [in module %s]"),
13960 sect_offset_str (die->sect_off), objfile_name (objfile));
13961 return;
13962 }
13963 pc = attr_value_as_address (attr) + baseaddr;
13964 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13965
13966 if (cu->call_site_htab == NULL)
13967 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13968 NULL, &objfile->objfile_obstack,
13969 hashtab_obstack_allocate, NULL);
13970 call_site_local.pc = pc;
13971 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13972 if (*slot != NULL)
13973 {
13974 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13975 "DIE %s [in module %s]"),
13976 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13977 objfile_name (objfile));
13978 return;
13979 }
13980
13981 /* Count parameters at the caller. */
13982
13983 nparams = 0;
13984 for (child_die = die->child; child_die && child_die->tag;
13985 child_die = sibling_die (child_die))
13986 {
13987 if (child_die->tag != DW_TAG_call_site_parameter
13988 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13989 {
13990 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13991 "DW_TAG_call_site child DIE %s [in module %s]"),
13992 child_die->tag, sect_offset_str (child_die->sect_off),
13993 objfile_name (objfile));
13994 continue;
13995 }
13996
13997 nparams++;
13998 }
13999
14000 call_site
14001 = ((struct call_site *)
14002 obstack_alloc (&objfile->objfile_obstack,
14003 sizeof (*call_site)
14004 + (sizeof (*call_site->parameter) * (nparams - 1))));
14005 *slot = call_site;
14006 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14007 call_site->pc = pc;
14008
14009 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14010 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14011 {
14012 struct die_info *func_die;
14013
14014 /* Skip also over DW_TAG_inlined_subroutine. */
14015 for (func_die = die->parent;
14016 func_die && func_die->tag != DW_TAG_subprogram
14017 && func_die->tag != DW_TAG_subroutine_type;
14018 func_die = func_die->parent);
14019
14020 /* DW_AT_call_all_calls is a superset
14021 of DW_AT_call_all_tail_calls. */
14022 if (func_die
14023 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14024 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14025 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14026 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14027 {
14028 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14029 not complete. But keep CALL_SITE for look ups via call_site_htab,
14030 both the initial caller containing the real return address PC and
14031 the final callee containing the current PC of a chain of tail
14032 calls do not need to have the tail call list complete. But any
14033 function candidate for a virtual tail call frame searched via
14034 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14035 determined unambiguously. */
14036 }
14037 else
14038 {
14039 struct type *func_type = NULL;
14040
14041 if (func_die)
14042 func_type = get_die_type (func_die, cu);
14043 if (func_type != NULL)
14044 {
14045 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14046
14047 /* Enlist this call site to the function. */
14048 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14049 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14050 }
14051 else
14052 complaint (_("Cannot find function owning DW_TAG_call_site "
14053 "DIE %s [in module %s]"),
14054 sect_offset_str (die->sect_off), objfile_name (objfile));
14055 }
14056 }
14057
14058 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14059 if (attr == NULL)
14060 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14061 if (attr == NULL)
14062 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14063 if (attr == NULL)
14064 {
14065 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14066 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14067 }
14068 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14069 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14070 /* Keep NULL DWARF_BLOCK. */;
14071 else if (attr_form_is_block (attr))
14072 {
14073 struct dwarf2_locexpr_baton *dlbaton;
14074
14075 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14076 dlbaton->data = DW_BLOCK (attr)->data;
14077 dlbaton->size = DW_BLOCK (attr)->size;
14078 dlbaton->per_cu = cu->per_cu;
14079
14080 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14081 }
14082 else if (attr_form_is_ref (attr))
14083 {
14084 struct dwarf2_cu *target_cu = cu;
14085 struct die_info *target_die;
14086
14087 target_die = follow_die_ref (die, attr, &target_cu);
14088 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14089 if (die_is_declaration (target_die, target_cu))
14090 {
14091 const char *target_physname;
14092
14093 /* Prefer the mangled name; otherwise compute the demangled one. */
14094 target_physname = dw2_linkage_name (target_die, target_cu);
14095 if (target_physname == NULL)
14096 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14097 if (target_physname == NULL)
14098 complaint (_("DW_AT_call_target target DIE has invalid "
14099 "physname, for referencing DIE %s [in module %s]"),
14100 sect_offset_str (die->sect_off), objfile_name (objfile));
14101 else
14102 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14103 }
14104 else
14105 {
14106 CORE_ADDR lowpc;
14107
14108 /* DW_AT_entry_pc should be preferred. */
14109 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14110 <= PC_BOUNDS_INVALID)
14111 complaint (_("DW_AT_call_target target DIE has invalid "
14112 "low pc, for referencing DIE %s [in module %s]"),
14113 sect_offset_str (die->sect_off), objfile_name (objfile));
14114 else
14115 {
14116 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14117 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14118 }
14119 }
14120 }
14121 else
14122 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14123 "block nor reference, for DIE %s [in module %s]"),
14124 sect_offset_str (die->sect_off), objfile_name (objfile));
14125
14126 call_site->per_cu = cu->per_cu;
14127
14128 for (child_die = die->child;
14129 child_die && child_die->tag;
14130 child_die = sibling_die (child_die))
14131 {
14132 struct call_site_parameter *parameter;
14133 struct attribute *loc, *origin;
14134
14135 if (child_die->tag != DW_TAG_call_site_parameter
14136 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14137 {
14138 /* Already printed the complaint above. */
14139 continue;
14140 }
14141
14142 gdb_assert (call_site->parameter_count < nparams);
14143 parameter = &call_site->parameter[call_site->parameter_count];
14144
14145 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14146 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14147 register is contained in DW_AT_call_value. */
14148
14149 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14150 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14151 if (origin == NULL)
14152 {
14153 /* This was a pre-DWARF-5 GNU extension alias
14154 for DW_AT_call_parameter. */
14155 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14156 }
14157 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14158 {
14159 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14160
14161 sect_offset sect_off
14162 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14163 if (!offset_in_cu_p (&cu->header, sect_off))
14164 {
14165 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14166 binding can be done only inside one CU. Such referenced DIE
14167 therefore cannot be even moved to DW_TAG_partial_unit. */
14168 complaint (_("DW_AT_call_parameter offset is not in CU for "
14169 "DW_TAG_call_site child DIE %s [in module %s]"),
14170 sect_offset_str (child_die->sect_off),
14171 objfile_name (objfile));
14172 continue;
14173 }
14174 parameter->u.param_cu_off
14175 = (cu_offset) (sect_off - cu->header.sect_off);
14176 }
14177 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14178 {
14179 complaint (_("No DW_FORM_block* DW_AT_location for "
14180 "DW_TAG_call_site child DIE %s [in module %s]"),
14181 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14182 continue;
14183 }
14184 else
14185 {
14186 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14187 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14188 if (parameter->u.dwarf_reg != -1)
14189 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14190 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14191 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14192 &parameter->u.fb_offset))
14193 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14194 else
14195 {
14196 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14197 "for DW_FORM_block* DW_AT_location is supported for "
14198 "DW_TAG_call_site child DIE %s "
14199 "[in module %s]"),
14200 sect_offset_str (child_die->sect_off),
14201 objfile_name (objfile));
14202 continue;
14203 }
14204 }
14205
14206 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14207 if (attr == NULL)
14208 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14209 if (!attr_form_is_block (attr))
14210 {
14211 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14212 "DW_TAG_call_site child DIE %s [in module %s]"),
14213 sect_offset_str (child_die->sect_off),
14214 objfile_name (objfile));
14215 continue;
14216 }
14217 parameter->value = DW_BLOCK (attr)->data;
14218 parameter->value_size = DW_BLOCK (attr)->size;
14219
14220 /* Parameters are not pre-cleared by memset above. */
14221 parameter->data_value = NULL;
14222 parameter->data_value_size = 0;
14223 call_site->parameter_count++;
14224
14225 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14226 if (attr == NULL)
14227 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14228 if (attr)
14229 {
14230 if (!attr_form_is_block (attr))
14231 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14232 "DW_TAG_call_site child DIE %s [in module %s]"),
14233 sect_offset_str (child_die->sect_off),
14234 objfile_name (objfile));
14235 else
14236 {
14237 parameter->data_value = DW_BLOCK (attr)->data;
14238 parameter->data_value_size = DW_BLOCK (attr)->size;
14239 }
14240 }
14241 }
14242 }
14243
14244 /* Helper function for read_variable. If DIE represents a virtual
14245 table, then return the type of the concrete object that is
14246 associated with the virtual table. Otherwise, return NULL. */
14247
14248 static struct type *
14249 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14250 {
14251 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14252 if (attr == NULL)
14253 return NULL;
14254
14255 /* Find the type DIE. */
14256 struct die_info *type_die = NULL;
14257 struct dwarf2_cu *type_cu = cu;
14258
14259 if (attr_form_is_ref (attr))
14260 type_die = follow_die_ref (die, attr, &type_cu);
14261 if (type_die == NULL)
14262 return NULL;
14263
14264 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14265 return NULL;
14266 return die_containing_type (type_die, type_cu);
14267 }
14268
14269 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14270
14271 static void
14272 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14273 {
14274 struct rust_vtable_symbol *storage = NULL;
14275
14276 if (cu->language == language_rust)
14277 {
14278 struct type *containing_type = rust_containing_type (die, cu);
14279
14280 if (containing_type != NULL)
14281 {
14282 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14283
14284 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14285 struct rust_vtable_symbol);
14286 initialize_objfile_symbol (storage);
14287 storage->concrete_type = containing_type;
14288 storage->subclass = SYMBOL_RUST_VTABLE;
14289 }
14290 }
14291
14292 struct symbol *res = new_symbol (die, NULL, cu, storage);
14293 struct attribute *abstract_origin
14294 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14295 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14296 if (res == NULL && loc && abstract_origin)
14297 {
14298 /* We have a variable without a name, but with a location and an abstract
14299 origin. This may be a concrete instance of an abstract variable
14300 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14301 later. */
14302 struct dwarf2_cu *origin_cu = cu;
14303 struct die_info *origin_die
14304 = follow_die_ref (die, abstract_origin, &origin_cu);
14305 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14306 dpo->abstract_to_concrete[origin_die].push_back (die);
14307 }
14308 }
14309
14310 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14311 reading .debug_rnglists.
14312 Callback's type should be:
14313 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14314 Return true if the attributes are present and valid, otherwise,
14315 return false. */
14316
14317 template <typename Callback>
14318 static bool
14319 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14320 Callback &&callback)
14321 {
14322 struct dwarf2_per_objfile *dwarf2_per_objfile
14323 = cu->per_cu->dwarf2_per_objfile;
14324 struct objfile *objfile = dwarf2_per_objfile->objfile;
14325 bfd *obfd = objfile->obfd;
14326 /* Base address selection entry. */
14327 CORE_ADDR base;
14328 int found_base;
14329 const gdb_byte *buffer;
14330 CORE_ADDR baseaddr;
14331 bool overflow = false;
14332
14333 found_base = cu->base_known;
14334 base = cu->base_address;
14335
14336 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14337 if (offset >= dwarf2_per_objfile->rnglists.size)
14338 {
14339 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14340 offset);
14341 return false;
14342 }
14343 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14344
14345 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14346
14347 while (1)
14348 {
14349 /* Initialize it due to a false compiler warning. */
14350 CORE_ADDR range_beginning = 0, range_end = 0;
14351 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14352 + dwarf2_per_objfile->rnglists.size);
14353 unsigned int bytes_read;
14354
14355 if (buffer == buf_end)
14356 {
14357 overflow = true;
14358 break;
14359 }
14360 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14361 switch (rlet)
14362 {
14363 case DW_RLE_end_of_list:
14364 break;
14365 case DW_RLE_base_address:
14366 if (buffer + cu->header.addr_size > buf_end)
14367 {
14368 overflow = true;
14369 break;
14370 }
14371 base = read_address (obfd, buffer, cu, &bytes_read);
14372 found_base = 1;
14373 buffer += bytes_read;
14374 break;
14375 case DW_RLE_start_length:
14376 if (buffer + cu->header.addr_size > buf_end)
14377 {
14378 overflow = true;
14379 break;
14380 }
14381 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14382 buffer += bytes_read;
14383 range_end = (range_beginning
14384 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14385 buffer += bytes_read;
14386 if (buffer > buf_end)
14387 {
14388 overflow = true;
14389 break;
14390 }
14391 break;
14392 case DW_RLE_offset_pair:
14393 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14394 buffer += bytes_read;
14395 if (buffer > buf_end)
14396 {
14397 overflow = true;
14398 break;
14399 }
14400 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14401 buffer += bytes_read;
14402 if (buffer > buf_end)
14403 {
14404 overflow = true;
14405 break;
14406 }
14407 break;
14408 case DW_RLE_start_end:
14409 if (buffer + 2 * cu->header.addr_size > buf_end)
14410 {
14411 overflow = true;
14412 break;
14413 }
14414 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14415 buffer += bytes_read;
14416 range_end = read_address (obfd, buffer, cu, &bytes_read);
14417 buffer += bytes_read;
14418 break;
14419 default:
14420 complaint (_("Invalid .debug_rnglists data (no base address)"));
14421 return false;
14422 }
14423 if (rlet == DW_RLE_end_of_list || overflow)
14424 break;
14425 if (rlet == DW_RLE_base_address)
14426 continue;
14427
14428 if (!found_base)
14429 {
14430 /* We have no valid base address for the ranges
14431 data. */
14432 complaint (_("Invalid .debug_rnglists data (no base address)"));
14433 return false;
14434 }
14435
14436 if (range_beginning > range_end)
14437 {
14438 /* Inverted range entries are invalid. */
14439 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14440 return false;
14441 }
14442
14443 /* Empty range entries have no effect. */
14444 if (range_beginning == range_end)
14445 continue;
14446
14447 range_beginning += base;
14448 range_end += base;
14449
14450 /* A not-uncommon case of bad debug info.
14451 Don't pollute the addrmap with bad data. */
14452 if (range_beginning + baseaddr == 0
14453 && !dwarf2_per_objfile->has_section_at_zero)
14454 {
14455 complaint (_(".debug_rnglists entry has start address of zero"
14456 " [in module %s]"), objfile_name (objfile));
14457 continue;
14458 }
14459
14460 callback (range_beginning, range_end);
14461 }
14462
14463 if (overflow)
14464 {
14465 complaint (_("Offset %d is not terminated "
14466 "for DW_AT_ranges attribute"),
14467 offset);
14468 return false;
14469 }
14470
14471 return true;
14472 }
14473
14474 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14475 Callback's type should be:
14476 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14477 Return 1 if the attributes are present and valid, otherwise, return 0. */
14478
14479 template <typename Callback>
14480 static int
14481 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14482 Callback &&callback)
14483 {
14484 struct dwarf2_per_objfile *dwarf2_per_objfile
14485 = cu->per_cu->dwarf2_per_objfile;
14486 struct objfile *objfile = dwarf2_per_objfile->objfile;
14487 struct comp_unit_head *cu_header = &cu->header;
14488 bfd *obfd = objfile->obfd;
14489 unsigned int addr_size = cu_header->addr_size;
14490 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14491 /* Base address selection entry. */
14492 CORE_ADDR base;
14493 int found_base;
14494 unsigned int dummy;
14495 const gdb_byte *buffer;
14496 CORE_ADDR baseaddr;
14497
14498 if (cu_header->version >= 5)
14499 return dwarf2_rnglists_process (offset, cu, callback);
14500
14501 found_base = cu->base_known;
14502 base = cu->base_address;
14503
14504 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14505 if (offset >= dwarf2_per_objfile->ranges.size)
14506 {
14507 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14508 offset);
14509 return 0;
14510 }
14511 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14512
14513 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14514
14515 while (1)
14516 {
14517 CORE_ADDR range_beginning, range_end;
14518
14519 range_beginning = read_address (obfd, buffer, cu, &dummy);
14520 buffer += addr_size;
14521 range_end = read_address (obfd, buffer, cu, &dummy);
14522 buffer += addr_size;
14523 offset += 2 * addr_size;
14524
14525 /* An end of list marker is a pair of zero addresses. */
14526 if (range_beginning == 0 && range_end == 0)
14527 /* Found the end of list entry. */
14528 break;
14529
14530 /* Each base address selection entry is a pair of 2 values.
14531 The first is the largest possible address, the second is
14532 the base address. Check for a base address here. */
14533 if ((range_beginning & mask) == mask)
14534 {
14535 /* If we found the largest possible address, then we already
14536 have the base address in range_end. */
14537 base = range_end;
14538 found_base = 1;
14539 continue;
14540 }
14541
14542 if (!found_base)
14543 {
14544 /* We have no valid base address for the ranges
14545 data. */
14546 complaint (_("Invalid .debug_ranges data (no base address)"));
14547 return 0;
14548 }
14549
14550 if (range_beginning > range_end)
14551 {
14552 /* Inverted range entries are invalid. */
14553 complaint (_("Invalid .debug_ranges data (inverted range)"));
14554 return 0;
14555 }
14556
14557 /* Empty range entries have no effect. */
14558 if (range_beginning == range_end)
14559 continue;
14560
14561 range_beginning += base;
14562 range_end += base;
14563
14564 /* A not-uncommon case of bad debug info.
14565 Don't pollute the addrmap with bad data. */
14566 if (range_beginning + baseaddr == 0
14567 && !dwarf2_per_objfile->has_section_at_zero)
14568 {
14569 complaint (_(".debug_ranges entry has start address of zero"
14570 " [in module %s]"), objfile_name (objfile));
14571 continue;
14572 }
14573
14574 callback (range_beginning, range_end);
14575 }
14576
14577 return 1;
14578 }
14579
14580 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14581 Return 1 if the attributes are present and valid, otherwise, return 0.
14582 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14583
14584 static int
14585 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14586 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14587 struct partial_symtab *ranges_pst)
14588 {
14589 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14590 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14591 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14592 SECT_OFF_TEXT (objfile));
14593 int low_set = 0;
14594 CORE_ADDR low = 0;
14595 CORE_ADDR high = 0;
14596 int retval;
14597
14598 retval = dwarf2_ranges_process (offset, cu,
14599 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14600 {
14601 if (ranges_pst != NULL)
14602 {
14603 CORE_ADDR lowpc;
14604 CORE_ADDR highpc;
14605
14606 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14607 range_beginning + baseaddr)
14608 - baseaddr);
14609 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14610 range_end + baseaddr)
14611 - baseaddr);
14612 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14613 lowpc, highpc - 1, ranges_pst);
14614 }
14615
14616 /* FIXME: This is recording everything as a low-high
14617 segment of consecutive addresses. We should have a
14618 data structure for discontiguous block ranges
14619 instead. */
14620 if (! low_set)
14621 {
14622 low = range_beginning;
14623 high = range_end;
14624 low_set = 1;
14625 }
14626 else
14627 {
14628 if (range_beginning < low)
14629 low = range_beginning;
14630 if (range_end > high)
14631 high = range_end;
14632 }
14633 });
14634 if (!retval)
14635 return 0;
14636
14637 if (! low_set)
14638 /* If the first entry is an end-of-list marker, the range
14639 describes an empty scope, i.e. no instructions. */
14640 return 0;
14641
14642 if (low_return)
14643 *low_return = low;
14644 if (high_return)
14645 *high_return = high;
14646 return 1;
14647 }
14648
14649 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14650 definition for the return value. *LOWPC and *HIGHPC are set iff
14651 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14652
14653 static enum pc_bounds_kind
14654 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14655 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14656 struct partial_symtab *pst)
14657 {
14658 struct dwarf2_per_objfile *dwarf2_per_objfile
14659 = cu->per_cu->dwarf2_per_objfile;
14660 struct attribute *attr;
14661 struct attribute *attr_high;
14662 CORE_ADDR low = 0;
14663 CORE_ADDR high = 0;
14664 enum pc_bounds_kind ret;
14665
14666 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14667 if (attr_high)
14668 {
14669 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14670 if (attr)
14671 {
14672 low = attr_value_as_address (attr);
14673 high = attr_value_as_address (attr_high);
14674 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14675 high += low;
14676 }
14677 else
14678 /* Found high w/o low attribute. */
14679 return PC_BOUNDS_INVALID;
14680
14681 /* Found consecutive range of addresses. */
14682 ret = PC_BOUNDS_HIGH_LOW;
14683 }
14684 else
14685 {
14686 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14687 if (attr != NULL)
14688 {
14689 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14690 We take advantage of the fact that DW_AT_ranges does not appear
14691 in DW_TAG_compile_unit of DWO files. */
14692 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14693 unsigned int ranges_offset = (DW_UNSND (attr)
14694 + (need_ranges_base
14695 ? cu->ranges_base
14696 : 0));
14697
14698 /* Value of the DW_AT_ranges attribute is the offset in the
14699 .debug_ranges section. */
14700 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14701 return PC_BOUNDS_INVALID;
14702 /* Found discontinuous range of addresses. */
14703 ret = PC_BOUNDS_RANGES;
14704 }
14705 else
14706 return PC_BOUNDS_NOT_PRESENT;
14707 }
14708
14709 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14710 if (high <= low)
14711 return PC_BOUNDS_INVALID;
14712
14713 /* When using the GNU linker, .gnu.linkonce. sections are used to
14714 eliminate duplicate copies of functions and vtables and such.
14715 The linker will arbitrarily choose one and discard the others.
14716 The AT_*_pc values for such functions refer to local labels in
14717 these sections. If the section from that file was discarded, the
14718 labels are not in the output, so the relocs get a value of 0.
14719 If this is a discarded function, mark the pc bounds as invalid,
14720 so that GDB will ignore it. */
14721 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14722 return PC_BOUNDS_INVALID;
14723
14724 *lowpc = low;
14725 if (highpc)
14726 *highpc = high;
14727 return ret;
14728 }
14729
14730 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14731 its low and high PC addresses. Do nothing if these addresses could not
14732 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14733 and HIGHPC to the high address if greater than HIGHPC. */
14734
14735 static void
14736 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14737 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14738 struct dwarf2_cu *cu)
14739 {
14740 CORE_ADDR low, high;
14741 struct die_info *child = die->child;
14742
14743 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14744 {
14745 *lowpc = std::min (*lowpc, low);
14746 *highpc = std::max (*highpc, high);
14747 }
14748
14749 /* If the language does not allow nested subprograms (either inside
14750 subprograms or lexical blocks), we're done. */
14751 if (cu->language != language_ada)
14752 return;
14753
14754 /* Check all the children of the given DIE. If it contains nested
14755 subprograms, then check their pc bounds. Likewise, we need to
14756 check lexical blocks as well, as they may also contain subprogram
14757 definitions. */
14758 while (child && child->tag)
14759 {
14760 if (child->tag == DW_TAG_subprogram
14761 || child->tag == DW_TAG_lexical_block)
14762 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14763 child = sibling_die (child);
14764 }
14765 }
14766
14767 /* Get the low and high pc's represented by the scope DIE, and store
14768 them in *LOWPC and *HIGHPC. If the correct values can't be
14769 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14770
14771 static void
14772 get_scope_pc_bounds (struct die_info *die,
14773 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14774 struct dwarf2_cu *cu)
14775 {
14776 CORE_ADDR best_low = (CORE_ADDR) -1;
14777 CORE_ADDR best_high = (CORE_ADDR) 0;
14778 CORE_ADDR current_low, current_high;
14779
14780 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14781 >= PC_BOUNDS_RANGES)
14782 {
14783 best_low = current_low;
14784 best_high = current_high;
14785 }
14786 else
14787 {
14788 struct die_info *child = die->child;
14789
14790 while (child && child->tag)
14791 {
14792 switch (child->tag) {
14793 case DW_TAG_subprogram:
14794 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14795 break;
14796 case DW_TAG_namespace:
14797 case DW_TAG_module:
14798 /* FIXME: carlton/2004-01-16: Should we do this for
14799 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14800 that current GCC's always emit the DIEs corresponding
14801 to definitions of methods of classes as children of a
14802 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14803 the DIEs giving the declarations, which could be
14804 anywhere). But I don't see any reason why the
14805 standards says that they have to be there. */
14806 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14807
14808 if (current_low != ((CORE_ADDR) -1))
14809 {
14810 best_low = std::min (best_low, current_low);
14811 best_high = std::max (best_high, current_high);
14812 }
14813 break;
14814 default:
14815 /* Ignore. */
14816 break;
14817 }
14818
14819 child = sibling_die (child);
14820 }
14821 }
14822
14823 *lowpc = best_low;
14824 *highpc = best_high;
14825 }
14826
14827 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14828 in DIE. */
14829
14830 static void
14831 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14832 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14833 {
14834 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14835 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14836 struct attribute *attr;
14837 struct attribute *attr_high;
14838
14839 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14840 if (attr_high)
14841 {
14842 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14843 if (attr)
14844 {
14845 CORE_ADDR low = attr_value_as_address (attr);
14846 CORE_ADDR high = attr_value_as_address (attr_high);
14847
14848 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14849 high += low;
14850
14851 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14852 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14853 cu->get_builder ()->record_block_range (block, low, high - 1);
14854 }
14855 }
14856
14857 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14858 if (attr)
14859 {
14860 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14861 We take advantage of the fact that DW_AT_ranges does not appear
14862 in DW_TAG_compile_unit of DWO files. */
14863 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14864
14865 /* The value of the DW_AT_ranges attribute is the offset of the
14866 address range list in the .debug_ranges section. */
14867 unsigned long offset = (DW_UNSND (attr)
14868 + (need_ranges_base ? cu->ranges_base : 0));
14869
14870 std::vector<blockrange> blockvec;
14871 dwarf2_ranges_process (offset, cu,
14872 [&] (CORE_ADDR start, CORE_ADDR end)
14873 {
14874 start += baseaddr;
14875 end += baseaddr;
14876 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14877 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14878 cu->get_builder ()->record_block_range (block, start, end - 1);
14879 blockvec.emplace_back (start, end);
14880 });
14881
14882 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14883 }
14884 }
14885
14886 /* Check whether the producer field indicates either of GCC < 4.6, or the
14887 Intel C/C++ compiler, and cache the result in CU. */
14888
14889 static void
14890 check_producer (struct dwarf2_cu *cu)
14891 {
14892 int major, minor;
14893
14894 if (cu->producer == NULL)
14895 {
14896 /* For unknown compilers expect their behavior is DWARF version
14897 compliant.
14898
14899 GCC started to support .debug_types sections by -gdwarf-4 since
14900 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14901 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14902 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14903 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14904 }
14905 else if (producer_is_gcc (cu->producer, &major, &minor))
14906 {
14907 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14908 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14909 }
14910 else if (producer_is_icc (cu->producer, &major, &minor))
14911 {
14912 cu->producer_is_icc = true;
14913 cu->producer_is_icc_lt_14 = major < 14;
14914 }
14915 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14916 cu->producer_is_codewarrior = true;
14917 else
14918 {
14919 /* For other non-GCC compilers, expect their behavior is DWARF version
14920 compliant. */
14921 }
14922
14923 cu->checked_producer = true;
14924 }
14925
14926 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14927 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14928 during 4.6.0 experimental. */
14929
14930 static bool
14931 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14932 {
14933 if (!cu->checked_producer)
14934 check_producer (cu);
14935
14936 return cu->producer_is_gxx_lt_4_6;
14937 }
14938
14939
14940 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14941 with incorrect is_stmt attributes. */
14942
14943 static bool
14944 producer_is_codewarrior (struct dwarf2_cu *cu)
14945 {
14946 if (!cu->checked_producer)
14947 check_producer (cu);
14948
14949 return cu->producer_is_codewarrior;
14950 }
14951
14952 /* Return the default accessibility type if it is not overriden by
14953 DW_AT_accessibility. */
14954
14955 static enum dwarf_access_attribute
14956 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14957 {
14958 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14959 {
14960 /* The default DWARF 2 accessibility for members is public, the default
14961 accessibility for inheritance is private. */
14962
14963 if (die->tag != DW_TAG_inheritance)
14964 return DW_ACCESS_public;
14965 else
14966 return DW_ACCESS_private;
14967 }
14968 else
14969 {
14970 /* DWARF 3+ defines the default accessibility a different way. The same
14971 rules apply now for DW_TAG_inheritance as for the members and it only
14972 depends on the container kind. */
14973
14974 if (die->parent->tag == DW_TAG_class_type)
14975 return DW_ACCESS_private;
14976 else
14977 return DW_ACCESS_public;
14978 }
14979 }
14980
14981 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14982 offset. If the attribute was not found return 0, otherwise return
14983 1. If it was found but could not properly be handled, set *OFFSET
14984 to 0. */
14985
14986 static int
14987 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14988 LONGEST *offset)
14989 {
14990 struct attribute *attr;
14991
14992 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14993 if (attr != NULL)
14994 {
14995 *offset = 0;
14996
14997 /* Note that we do not check for a section offset first here.
14998 This is because DW_AT_data_member_location is new in DWARF 4,
14999 so if we see it, we can assume that a constant form is really
15000 a constant and not a section offset. */
15001 if (attr_form_is_constant (attr))
15002 *offset = dwarf2_get_attr_constant_value (attr, 0);
15003 else if (attr_form_is_section_offset (attr))
15004 dwarf2_complex_location_expr_complaint ();
15005 else if (attr_form_is_block (attr))
15006 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15007 else
15008 dwarf2_complex_location_expr_complaint ();
15009
15010 return 1;
15011 }
15012
15013 return 0;
15014 }
15015
15016 /* Add an aggregate field to the field list. */
15017
15018 static void
15019 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15020 struct dwarf2_cu *cu)
15021 {
15022 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15024 struct nextfield *new_field;
15025 struct attribute *attr;
15026 struct field *fp;
15027 const char *fieldname = "";
15028
15029 if (die->tag == DW_TAG_inheritance)
15030 {
15031 fip->baseclasses.emplace_back ();
15032 new_field = &fip->baseclasses.back ();
15033 }
15034 else
15035 {
15036 fip->fields.emplace_back ();
15037 new_field = &fip->fields.back ();
15038 }
15039
15040 fip->nfields++;
15041
15042 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15043 if (attr)
15044 new_field->accessibility = DW_UNSND (attr);
15045 else
15046 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15047 if (new_field->accessibility != DW_ACCESS_public)
15048 fip->non_public_fields = 1;
15049
15050 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15051 if (attr)
15052 new_field->virtuality = DW_UNSND (attr);
15053 else
15054 new_field->virtuality = DW_VIRTUALITY_none;
15055
15056 fp = &new_field->field;
15057
15058 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15059 {
15060 LONGEST offset;
15061
15062 /* Data member other than a C++ static data member. */
15063
15064 /* Get type of field. */
15065 fp->type = die_type (die, cu);
15066
15067 SET_FIELD_BITPOS (*fp, 0);
15068
15069 /* Get bit size of field (zero if none). */
15070 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15071 if (attr)
15072 {
15073 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15074 }
15075 else
15076 {
15077 FIELD_BITSIZE (*fp) = 0;
15078 }
15079
15080 /* Get bit offset of field. */
15081 if (handle_data_member_location (die, cu, &offset))
15082 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15083 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15084 if (attr)
15085 {
15086 if (gdbarch_bits_big_endian (gdbarch))
15087 {
15088 /* For big endian bits, the DW_AT_bit_offset gives the
15089 additional bit offset from the MSB of the containing
15090 anonymous object to the MSB of the field. We don't
15091 have to do anything special since we don't need to
15092 know the size of the anonymous object. */
15093 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15094 }
15095 else
15096 {
15097 /* For little endian bits, compute the bit offset to the
15098 MSB of the anonymous object, subtract off the number of
15099 bits from the MSB of the field to the MSB of the
15100 object, and then subtract off the number of bits of
15101 the field itself. The result is the bit offset of
15102 the LSB of the field. */
15103 int anonymous_size;
15104 int bit_offset = DW_UNSND (attr);
15105
15106 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15107 if (attr)
15108 {
15109 /* The size of the anonymous object containing
15110 the bit field is explicit, so use the
15111 indicated size (in bytes). */
15112 anonymous_size = DW_UNSND (attr);
15113 }
15114 else
15115 {
15116 /* The size of the anonymous object containing
15117 the bit field must be inferred from the type
15118 attribute of the data member containing the
15119 bit field. */
15120 anonymous_size = TYPE_LENGTH (fp->type);
15121 }
15122 SET_FIELD_BITPOS (*fp,
15123 (FIELD_BITPOS (*fp)
15124 + anonymous_size * bits_per_byte
15125 - bit_offset - FIELD_BITSIZE (*fp)));
15126 }
15127 }
15128 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15129 if (attr != NULL)
15130 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15131 + dwarf2_get_attr_constant_value (attr, 0)));
15132
15133 /* Get name of field. */
15134 fieldname = dwarf2_name (die, cu);
15135 if (fieldname == NULL)
15136 fieldname = "";
15137
15138 /* The name is already allocated along with this objfile, so we don't
15139 need to duplicate it for the type. */
15140 fp->name = fieldname;
15141
15142 /* Change accessibility for artificial fields (e.g. virtual table
15143 pointer or virtual base class pointer) to private. */
15144 if (dwarf2_attr (die, DW_AT_artificial, cu))
15145 {
15146 FIELD_ARTIFICIAL (*fp) = 1;
15147 new_field->accessibility = DW_ACCESS_private;
15148 fip->non_public_fields = 1;
15149 }
15150 }
15151 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15152 {
15153 /* C++ static member. */
15154
15155 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15156 is a declaration, but all versions of G++ as of this writing
15157 (so through at least 3.2.1) incorrectly generate
15158 DW_TAG_variable tags. */
15159
15160 const char *physname;
15161
15162 /* Get name of field. */
15163 fieldname = dwarf2_name (die, cu);
15164 if (fieldname == NULL)
15165 return;
15166
15167 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15168 if (attr
15169 /* Only create a symbol if this is an external value.
15170 new_symbol checks this and puts the value in the global symbol
15171 table, which we want. If it is not external, new_symbol
15172 will try to put the value in cu->list_in_scope which is wrong. */
15173 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15174 {
15175 /* A static const member, not much different than an enum as far as
15176 we're concerned, except that we can support more types. */
15177 new_symbol (die, NULL, cu);
15178 }
15179
15180 /* Get physical name. */
15181 physname = dwarf2_physname (fieldname, die, cu);
15182
15183 /* The name is already allocated along with this objfile, so we don't
15184 need to duplicate it for the type. */
15185 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15186 FIELD_TYPE (*fp) = die_type (die, cu);
15187 FIELD_NAME (*fp) = fieldname;
15188 }
15189 else if (die->tag == DW_TAG_inheritance)
15190 {
15191 LONGEST offset;
15192
15193 /* C++ base class field. */
15194 if (handle_data_member_location (die, cu, &offset))
15195 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15196 FIELD_BITSIZE (*fp) = 0;
15197 FIELD_TYPE (*fp) = die_type (die, cu);
15198 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15199 }
15200 else if (die->tag == DW_TAG_variant_part)
15201 {
15202 /* process_structure_scope will treat this DIE as a union. */
15203 process_structure_scope (die, cu);
15204
15205 /* The variant part is relative to the start of the enclosing
15206 structure. */
15207 SET_FIELD_BITPOS (*fp, 0);
15208 fp->type = get_die_type (die, cu);
15209 fp->artificial = 1;
15210 fp->name = "<<variant>>";
15211
15212 /* Normally a DW_TAG_variant_part won't have a size, but our
15213 representation requires one, so set it to the maximum of the
15214 child sizes. */
15215 if (TYPE_LENGTH (fp->type) == 0)
15216 {
15217 unsigned max = 0;
15218 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15219 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15220 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15221 TYPE_LENGTH (fp->type) = max;
15222 }
15223 }
15224 else
15225 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15226 }
15227
15228 /* Can the type given by DIE define another type? */
15229
15230 static bool
15231 type_can_define_types (const struct die_info *die)
15232 {
15233 switch (die->tag)
15234 {
15235 case DW_TAG_typedef:
15236 case DW_TAG_class_type:
15237 case DW_TAG_structure_type:
15238 case DW_TAG_union_type:
15239 case DW_TAG_enumeration_type:
15240 return true;
15241
15242 default:
15243 return false;
15244 }
15245 }
15246
15247 /* Add a type definition defined in the scope of the FIP's class. */
15248
15249 static void
15250 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15251 struct dwarf2_cu *cu)
15252 {
15253 struct decl_field fp;
15254 memset (&fp, 0, sizeof (fp));
15255
15256 gdb_assert (type_can_define_types (die));
15257
15258 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15259 fp.name = dwarf2_name (die, cu);
15260 fp.type = read_type_die (die, cu);
15261
15262 /* Save accessibility. */
15263 enum dwarf_access_attribute accessibility;
15264 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15265 if (attr != NULL)
15266 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15267 else
15268 accessibility = dwarf2_default_access_attribute (die, cu);
15269 switch (accessibility)
15270 {
15271 case DW_ACCESS_public:
15272 /* The assumed value if neither private nor protected. */
15273 break;
15274 case DW_ACCESS_private:
15275 fp.is_private = 1;
15276 break;
15277 case DW_ACCESS_protected:
15278 fp.is_protected = 1;
15279 break;
15280 default:
15281 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15282 }
15283
15284 if (die->tag == DW_TAG_typedef)
15285 fip->typedef_field_list.push_back (fp);
15286 else
15287 fip->nested_types_list.push_back (fp);
15288 }
15289
15290 /* Create the vector of fields, and attach it to the type. */
15291
15292 static void
15293 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15294 struct dwarf2_cu *cu)
15295 {
15296 int nfields = fip->nfields;
15297
15298 /* Record the field count, allocate space for the array of fields,
15299 and create blank accessibility bitfields if necessary. */
15300 TYPE_NFIELDS (type) = nfields;
15301 TYPE_FIELDS (type) = (struct field *)
15302 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15303
15304 if (fip->non_public_fields && cu->language != language_ada)
15305 {
15306 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15307
15308 TYPE_FIELD_PRIVATE_BITS (type) =
15309 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15310 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15311
15312 TYPE_FIELD_PROTECTED_BITS (type) =
15313 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15314 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15315
15316 TYPE_FIELD_IGNORE_BITS (type) =
15317 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15318 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15319 }
15320
15321 /* If the type has baseclasses, allocate and clear a bit vector for
15322 TYPE_FIELD_VIRTUAL_BITS. */
15323 if (!fip->baseclasses.empty () && cu->language != language_ada)
15324 {
15325 int num_bytes = B_BYTES (fip->baseclasses.size ());
15326 unsigned char *pointer;
15327
15328 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15329 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15330 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15331 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15332 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15333 }
15334
15335 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15336 {
15337 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15338
15339 for (int index = 0; index < nfields; ++index)
15340 {
15341 struct nextfield &field = fip->fields[index];
15342
15343 if (field.variant.is_discriminant)
15344 di->discriminant_index = index;
15345 else if (field.variant.default_branch)
15346 di->default_index = index;
15347 else
15348 di->discriminants[index] = field.variant.discriminant_value;
15349 }
15350 }
15351
15352 /* Copy the saved-up fields into the field vector. */
15353 for (int i = 0; i < nfields; ++i)
15354 {
15355 struct nextfield &field
15356 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15357 : fip->fields[i - fip->baseclasses.size ()]);
15358
15359 TYPE_FIELD (type, i) = field.field;
15360 switch (field.accessibility)
15361 {
15362 case DW_ACCESS_private:
15363 if (cu->language != language_ada)
15364 SET_TYPE_FIELD_PRIVATE (type, i);
15365 break;
15366
15367 case DW_ACCESS_protected:
15368 if (cu->language != language_ada)
15369 SET_TYPE_FIELD_PROTECTED (type, i);
15370 break;
15371
15372 case DW_ACCESS_public:
15373 break;
15374
15375 default:
15376 /* Unknown accessibility. Complain and treat it as public. */
15377 {
15378 complaint (_("unsupported accessibility %d"),
15379 field.accessibility);
15380 }
15381 break;
15382 }
15383 if (i < fip->baseclasses.size ())
15384 {
15385 switch (field.virtuality)
15386 {
15387 case DW_VIRTUALITY_virtual:
15388 case DW_VIRTUALITY_pure_virtual:
15389 if (cu->language == language_ada)
15390 error (_("unexpected virtuality in component of Ada type"));
15391 SET_TYPE_FIELD_VIRTUAL (type, i);
15392 break;
15393 }
15394 }
15395 }
15396 }
15397
15398 /* Return true if this member function is a constructor, false
15399 otherwise. */
15400
15401 static int
15402 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15403 {
15404 const char *fieldname;
15405 const char *type_name;
15406 int len;
15407
15408 if (die->parent == NULL)
15409 return 0;
15410
15411 if (die->parent->tag != DW_TAG_structure_type
15412 && die->parent->tag != DW_TAG_union_type
15413 && die->parent->tag != DW_TAG_class_type)
15414 return 0;
15415
15416 fieldname = dwarf2_name (die, cu);
15417 type_name = dwarf2_name (die->parent, cu);
15418 if (fieldname == NULL || type_name == NULL)
15419 return 0;
15420
15421 len = strlen (fieldname);
15422 return (strncmp (fieldname, type_name, len) == 0
15423 && (type_name[len] == '\0' || type_name[len] == '<'));
15424 }
15425
15426 /* Add a member function to the proper fieldlist. */
15427
15428 static void
15429 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15430 struct type *type, struct dwarf2_cu *cu)
15431 {
15432 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15433 struct attribute *attr;
15434 int i;
15435 struct fnfieldlist *flp = nullptr;
15436 struct fn_field *fnp;
15437 const char *fieldname;
15438 struct type *this_type;
15439 enum dwarf_access_attribute accessibility;
15440
15441 if (cu->language == language_ada)
15442 error (_("unexpected member function in Ada type"));
15443
15444 /* Get name of member function. */
15445 fieldname = dwarf2_name (die, cu);
15446 if (fieldname == NULL)
15447 return;
15448
15449 /* Look up member function name in fieldlist. */
15450 for (i = 0; i < fip->fnfieldlists.size (); i++)
15451 {
15452 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15453 {
15454 flp = &fip->fnfieldlists[i];
15455 break;
15456 }
15457 }
15458
15459 /* Create a new fnfieldlist if necessary. */
15460 if (flp == nullptr)
15461 {
15462 fip->fnfieldlists.emplace_back ();
15463 flp = &fip->fnfieldlists.back ();
15464 flp->name = fieldname;
15465 i = fip->fnfieldlists.size () - 1;
15466 }
15467
15468 /* Create a new member function field and add it to the vector of
15469 fnfieldlists. */
15470 flp->fnfields.emplace_back ();
15471 fnp = &flp->fnfields.back ();
15472
15473 /* Delay processing of the physname until later. */
15474 if (cu->language == language_cplus)
15475 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15476 die, cu);
15477 else
15478 {
15479 const char *physname = dwarf2_physname (fieldname, die, cu);
15480 fnp->physname = physname ? physname : "";
15481 }
15482
15483 fnp->type = alloc_type (objfile);
15484 this_type = read_type_die (die, cu);
15485 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15486 {
15487 int nparams = TYPE_NFIELDS (this_type);
15488
15489 /* TYPE is the domain of this method, and THIS_TYPE is the type
15490 of the method itself (TYPE_CODE_METHOD). */
15491 smash_to_method_type (fnp->type, type,
15492 TYPE_TARGET_TYPE (this_type),
15493 TYPE_FIELDS (this_type),
15494 TYPE_NFIELDS (this_type),
15495 TYPE_VARARGS (this_type));
15496
15497 /* Handle static member functions.
15498 Dwarf2 has no clean way to discern C++ static and non-static
15499 member functions. G++ helps GDB by marking the first
15500 parameter for non-static member functions (which is the this
15501 pointer) as artificial. We obtain this information from
15502 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15503 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15504 fnp->voffset = VOFFSET_STATIC;
15505 }
15506 else
15507 complaint (_("member function type missing for '%s'"),
15508 dwarf2_full_name (fieldname, die, cu));
15509
15510 /* Get fcontext from DW_AT_containing_type if present. */
15511 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15512 fnp->fcontext = die_containing_type (die, cu);
15513
15514 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15515 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15516
15517 /* Get accessibility. */
15518 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15519 if (attr)
15520 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15521 else
15522 accessibility = dwarf2_default_access_attribute (die, cu);
15523 switch (accessibility)
15524 {
15525 case DW_ACCESS_private:
15526 fnp->is_private = 1;
15527 break;
15528 case DW_ACCESS_protected:
15529 fnp->is_protected = 1;
15530 break;
15531 }
15532
15533 /* Check for artificial methods. */
15534 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15535 if (attr && DW_UNSND (attr) != 0)
15536 fnp->is_artificial = 1;
15537
15538 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15539
15540 /* Get index in virtual function table if it is a virtual member
15541 function. For older versions of GCC, this is an offset in the
15542 appropriate virtual table, as specified by DW_AT_containing_type.
15543 For everyone else, it is an expression to be evaluated relative
15544 to the object address. */
15545
15546 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15547 if (attr)
15548 {
15549 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15550 {
15551 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15552 {
15553 /* Old-style GCC. */
15554 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15555 }
15556 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15557 || (DW_BLOCK (attr)->size > 1
15558 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15559 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15560 {
15561 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15562 if ((fnp->voffset % cu->header.addr_size) != 0)
15563 dwarf2_complex_location_expr_complaint ();
15564 else
15565 fnp->voffset /= cu->header.addr_size;
15566 fnp->voffset += 2;
15567 }
15568 else
15569 dwarf2_complex_location_expr_complaint ();
15570
15571 if (!fnp->fcontext)
15572 {
15573 /* If there is no `this' field and no DW_AT_containing_type,
15574 we cannot actually find a base class context for the
15575 vtable! */
15576 if (TYPE_NFIELDS (this_type) == 0
15577 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15578 {
15579 complaint (_("cannot determine context for virtual member "
15580 "function \"%s\" (offset %s)"),
15581 fieldname, sect_offset_str (die->sect_off));
15582 }
15583 else
15584 {
15585 fnp->fcontext
15586 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15587 }
15588 }
15589 }
15590 else if (attr_form_is_section_offset (attr))
15591 {
15592 dwarf2_complex_location_expr_complaint ();
15593 }
15594 else
15595 {
15596 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15597 fieldname);
15598 }
15599 }
15600 else
15601 {
15602 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15603 if (attr && DW_UNSND (attr))
15604 {
15605 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15606 complaint (_("Member function \"%s\" (offset %s) is virtual "
15607 "but the vtable offset is not specified"),
15608 fieldname, sect_offset_str (die->sect_off));
15609 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15610 TYPE_CPLUS_DYNAMIC (type) = 1;
15611 }
15612 }
15613 }
15614
15615 /* Create the vector of member function fields, and attach it to the type. */
15616
15617 static void
15618 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15619 struct dwarf2_cu *cu)
15620 {
15621 if (cu->language == language_ada)
15622 error (_("unexpected member functions in Ada type"));
15623
15624 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15625 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15626 TYPE_ALLOC (type,
15627 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15628
15629 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15630 {
15631 struct fnfieldlist &nf = fip->fnfieldlists[i];
15632 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15633
15634 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15635 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15636 fn_flp->fn_fields = (struct fn_field *)
15637 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15638
15639 for (int k = 0; k < nf.fnfields.size (); ++k)
15640 fn_flp->fn_fields[k] = nf.fnfields[k];
15641 }
15642
15643 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15644 }
15645
15646 /* Returns non-zero if NAME is the name of a vtable member in CU's
15647 language, zero otherwise. */
15648 static int
15649 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15650 {
15651 static const char vptr[] = "_vptr";
15652
15653 /* Look for the C++ form of the vtable. */
15654 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15655 return 1;
15656
15657 return 0;
15658 }
15659
15660 /* GCC outputs unnamed structures that are really pointers to member
15661 functions, with the ABI-specified layout. If TYPE describes
15662 such a structure, smash it into a member function type.
15663
15664 GCC shouldn't do this; it should just output pointer to member DIEs.
15665 This is GCC PR debug/28767. */
15666
15667 static void
15668 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15669 {
15670 struct type *pfn_type, *self_type, *new_type;
15671
15672 /* Check for a structure with no name and two children. */
15673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15674 return;
15675
15676 /* Check for __pfn and __delta members. */
15677 if (TYPE_FIELD_NAME (type, 0) == NULL
15678 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15679 || TYPE_FIELD_NAME (type, 1) == NULL
15680 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15681 return;
15682
15683 /* Find the type of the method. */
15684 pfn_type = TYPE_FIELD_TYPE (type, 0);
15685 if (pfn_type == NULL
15686 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15687 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15688 return;
15689
15690 /* Look for the "this" argument. */
15691 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15692 if (TYPE_NFIELDS (pfn_type) == 0
15693 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15694 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15695 return;
15696
15697 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15698 new_type = alloc_type (objfile);
15699 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15700 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15701 TYPE_VARARGS (pfn_type));
15702 smash_to_methodptr_type (type, new_type);
15703 }
15704
15705 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15706 appropriate error checking and issuing complaints if there is a
15707 problem. */
15708
15709 static ULONGEST
15710 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15711 {
15712 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15713
15714 if (attr == nullptr)
15715 return 0;
15716
15717 if (!attr_form_is_constant (attr))
15718 {
15719 complaint (_("DW_AT_alignment must have constant form"
15720 " - DIE at %s [in module %s]"),
15721 sect_offset_str (die->sect_off),
15722 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15723 return 0;
15724 }
15725
15726 ULONGEST align;
15727 if (attr->form == DW_FORM_sdata)
15728 {
15729 LONGEST val = DW_SND (attr);
15730 if (val < 0)
15731 {
15732 complaint (_("DW_AT_alignment value must not be negative"
15733 " - DIE at %s [in module %s]"),
15734 sect_offset_str (die->sect_off),
15735 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15736 return 0;
15737 }
15738 align = val;
15739 }
15740 else
15741 align = DW_UNSND (attr);
15742
15743 if (align == 0)
15744 {
15745 complaint (_("DW_AT_alignment value must not be zero"
15746 " - DIE at %s [in module %s]"),
15747 sect_offset_str (die->sect_off),
15748 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15749 return 0;
15750 }
15751 if ((align & (align - 1)) != 0)
15752 {
15753 complaint (_("DW_AT_alignment value must be a power of 2"
15754 " - DIE at %s [in module %s]"),
15755 sect_offset_str (die->sect_off),
15756 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15757 return 0;
15758 }
15759
15760 return align;
15761 }
15762
15763 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15764 the alignment for TYPE. */
15765
15766 static void
15767 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15768 struct type *type)
15769 {
15770 if (!set_type_align (type, get_alignment (cu, die)))
15771 complaint (_("DW_AT_alignment value too large"
15772 " - DIE at %s [in module %s]"),
15773 sect_offset_str (die->sect_off),
15774 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15775 }
15776
15777 /* Called when we find the DIE that starts a structure or union scope
15778 (definition) to create a type for the structure or union. Fill in
15779 the type's name and general properties; the members will not be
15780 processed until process_structure_scope. A symbol table entry for
15781 the type will also not be done until process_structure_scope (assuming
15782 the type has a name).
15783
15784 NOTE: we need to call these functions regardless of whether or not the
15785 DIE has a DW_AT_name attribute, since it might be an anonymous
15786 structure or union. This gets the type entered into our set of
15787 user defined types. */
15788
15789 static struct type *
15790 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15791 {
15792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15793 struct type *type;
15794 struct attribute *attr;
15795 const char *name;
15796
15797 /* If the definition of this type lives in .debug_types, read that type.
15798 Don't follow DW_AT_specification though, that will take us back up
15799 the chain and we want to go down. */
15800 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15801 if (attr)
15802 {
15803 type = get_DW_AT_signature_type (die, attr, cu);
15804
15805 /* The type's CU may not be the same as CU.
15806 Ensure TYPE is recorded with CU in die_type_hash. */
15807 return set_die_type (die, type, cu);
15808 }
15809
15810 type = alloc_type (objfile);
15811 INIT_CPLUS_SPECIFIC (type);
15812
15813 name = dwarf2_name (die, cu);
15814 if (name != NULL)
15815 {
15816 if (cu->language == language_cplus
15817 || cu->language == language_d
15818 || cu->language == language_rust)
15819 {
15820 const char *full_name = dwarf2_full_name (name, die, cu);
15821
15822 /* dwarf2_full_name might have already finished building the DIE's
15823 type. If so, there is no need to continue. */
15824 if (get_die_type (die, cu) != NULL)
15825 return get_die_type (die, cu);
15826
15827 TYPE_NAME (type) = full_name;
15828 }
15829 else
15830 {
15831 /* The name is already allocated along with this objfile, so
15832 we don't need to duplicate it for the type. */
15833 TYPE_NAME (type) = name;
15834 }
15835 }
15836
15837 if (die->tag == DW_TAG_structure_type)
15838 {
15839 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15840 }
15841 else if (die->tag == DW_TAG_union_type)
15842 {
15843 TYPE_CODE (type) = TYPE_CODE_UNION;
15844 }
15845 else if (die->tag == DW_TAG_variant_part)
15846 {
15847 TYPE_CODE (type) = TYPE_CODE_UNION;
15848 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15849 }
15850 else
15851 {
15852 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15853 }
15854
15855 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15856 TYPE_DECLARED_CLASS (type) = 1;
15857
15858 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15859 if (attr)
15860 {
15861 if (attr_form_is_constant (attr))
15862 TYPE_LENGTH (type) = DW_UNSND (attr);
15863 else
15864 {
15865 /* For the moment, dynamic type sizes are not supported
15866 by GDB's struct type. The actual size is determined
15867 on-demand when resolving the type of a given object,
15868 so set the type's length to zero for now. Otherwise,
15869 we record an expression as the length, and that expression
15870 could lead to a very large value, which could eventually
15871 lead to us trying to allocate that much memory when creating
15872 a value of that type. */
15873 TYPE_LENGTH (type) = 0;
15874 }
15875 }
15876 else
15877 {
15878 TYPE_LENGTH (type) = 0;
15879 }
15880
15881 maybe_set_alignment (cu, die, type);
15882
15883 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15884 {
15885 /* ICC<14 does not output the required DW_AT_declaration on
15886 incomplete types, but gives them a size of zero. */
15887 TYPE_STUB (type) = 1;
15888 }
15889 else
15890 TYPE_STUB_SUPPORTED (type) = 1;
15891
15892 if (die_is_declaration (die, cu))
15893 TYPE_STUB (type) = 1;
15894 else if (attr == NULL && die->child == NULL
15895 && producer_is_realview (cu->producer))
15896 /* RealView does not output the required DW_AT_declaration
15897 on incomplete types. */
15898 TYPE_STUB (type) = 1;
15899
15900 /* We need to add the type field to the die immediately so we don't
15901 infinitely recurse when dealing with pointers to the structure
15902 type within the structure itself. */
15903 set_die_type (die, type, cu);
15904
15905 /* set_die_type should be already done. */
15906 set_descriptive_type (type, die, cu);
15907
15908 return type;
15909 }
15910
15911 /* A helper for process_structure_scope that handles a single member
15912 DIE. */
15913
15914 static void
15915 handle_struct_member_die (struct die_info *child_die, struct type *type,
15916 struct field_info *fi,
15917 std::vector<struct symbol *> *template_args,
15918 struct dwarf2_cu *cu)
15919 {
15920 if (child_die->tag == DW_TAG_member
15921 || child_die->tag == DW_TAG_variable
15922 || child_die->tag == DW_TAG_variant_part)
15923 {
15924 /* NOTE: carlton/2002-11-05: A C++ static data member
15925 should be a DW_TAG_member that is a declaration, but
15926 all versions of G++ as of this writing (so through at
15927 least 3.2.1) incorrectly generate DW_TAG_variable
15928 tags for them instead. */
15929 dwarf2_add_field (fi, child_die, cu);
15930 }
15931 else if (child_die->tag == DW_TAG_subprogram)
15932 {
15933 /* Rust doesn't have member functions in the C++ sense.
15934 However, it does emit ordinary functions as children
15935 of a struct DIE. */
15936 if (cu->language == language_rust)
15937 read_func_scope (child_die, cu);
15938 else
15939 {
15940 /* C++ member function. */
15941 dwarf2_add_member_fn (fi, child_die, type, cu);
15942 }
15943 }
15944 else if (child_die->tag == DW_TAG_inheritance)
15945 {
15946 /* C++ base class field. */
15947 dwarf2_add_field (fi, child_die, cu);
15948 }
15949 else if (type_can_define_types (child_die))
15950 dwarf2_add_type_defn (fi, child_die, cu);
15951 else if (child_die->tag == DW_TAG_template_type_param
15952 || child_die->tag == DW_TAG_template_value_param)
15953 {
15954 struct symbol *arg = new_symbol (child_die, NULL, cu);
15955
15956 if (arg != NULL)
15957 template_args->push_back (arg);
15958 }
15959 else if (child_die->tag == DW_TAG_variant)
15960 {
15961 /* In a variant we want to get the discriminant and also add a
15962 field for our sole member child. */
15963 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15964
15965 for (die_info *variant_child = child_die->child;
15966 variant_child != NULL;
15967 variant_child = sibling_die (variant_child))
15968 {
15969 if (variant_child->tag == DW_TAG_member)
15970 {
15971 handle_struct_member_die (variant_child, type, fi,
15972 template_args, cu);
15973 /* Only handle the one. */
15974 break;
15975 }
15976 }
15977
15978 /* We don't handle this but we might as well report it if we see
15979 it. */
15980 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15981 complaint (_("DW_AT_discr_list is not supported yet"
15982 " - DIE at %s [in module %s]"),
15983 sect_offset_str (child_die->sect_off),
15984 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15985
15986 /* The first field was just added, so we can stash the
15987 discriminant there. */
15988 gdb_assert (!fi->fields.empty ());
15989 if (discr == NULL)
15990 fi->fields.back ().variant.default_branch = true;
15991 else
15992 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15993 }
15994 }
15995
15996 /* Finish creating a structure or union type, including filling in
15997 its members and creating a symbol for it. */
15998
15999 static void
16000 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16001 {
16002 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16003 struct die_info *child_die;
16004 struct type *type;
16005
16006 type = get_die_type (die, cu);
16007 if (type == NULL)
16008 type = read_structure_type (die, cu);
16009
16010 /* When reading a DW_TAG_variant_part, we need to notice when we
16011 read the discriminant member, so we can record it later in the
16012 discriminant_info. */
16013 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16014 sect_offset discr_offset;
16015 bool has_template_parameters = false;
16016
16017 if (is_variant_part)
16018 {
16019 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16020 if (discr == NULL)
16021 {
16022 /* Maybe it's a univariant form, an extension we support.
16023 In this case arrange not to check the offset. */
16024 is_variant_part = false;
16025 }
16026 else if (attr_form_is_ref (discr))
16027 {
16028 struct dwarf2_cu *target_cu = cu;
16029 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16030
16031 discr_offset = target_die->sect_off;
16032 }
16033 else
16034 {
16035 complaint (_("DW_AT_discr does not have DIE reference form"
16036 " - DIE at %s [in module %s]"),
16037 sect_offset_str (die->sect_off),
16038 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16039 is_variant_part = false;
16040 }
16041 }
16042
16043 if (die->child != NULL && ! die_is_declaration (die, cu))
16044 {
16045 struct field_info fi;
16046 std::vector<struct symbol *> template_args;
16047
16048 child_die = die->child;
16049
16050 while (child_die && child_die->tag)
16051 {
16052 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16053
16054 if (is_variant_part && discr_offset == child_die->sect_off)
16055 fi.fields.back ().variant.is_discriminant = true;
16056
16057 child_die = sibling_die (child_die);
16058 }
16059
16060 /* Attach template arguments to type. */
16061 if (!template_args.empty ())
16062 {
16063 has_template_parameters = true;
16064 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16065 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16066 TYPE_TEMPLATE_ARGUMENTS (type)
16067 = XOBNEWVEC (&objfile->objfile_obstack,
16068 struct symbol *,
16069 TYPE_N_TEMPLATE_ARGUMENTS (type));
16070 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16071 template_args.data (),
16072 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16073 * sizeof (struct symbol *)));
16074 }
16075
16076 /* Attach fields and member functions to the type. */
16077 if (fi.nfields)
16078 dwarf2_attach_fields_to_type (&fi, type, cu);
16079 if (!fi.fnfieldlists.empty ())
16080 {
16081 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16082
16083 /* Get the type which refers to the base class (possibly this
16084 class itself) which contains the vtable pointer for the current
16085 class from the DW_AT_containing_type attribute. This use of
16086 DW_AT_containing_type is a GNU extension. */
16087
16088 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16089 {
16090 struct type *t = die_containing_type (die, cu);
16091
16092 set_type_vptr_basetype (type, t);
16093 if (type == t)
16094 {
16095 int i;
16096
16097 /* Our own class provides vtbl ptr. */
16098 for (i = TYPE_NFIELDS (t) - 1;
16099 i >= TYPE_N_BASECLASSES (t);
16100 --i)
16101 {
16102 const char *fieldname = TYPE_FIELD_NAME (t, i);
16103
16104 if (is_vtable_name (fieldname, cu))
16105 {
16106 set_type_vptr_fieldno (type, i);
16107 break;
16108 }
16109 }
16110
16111 /* Complain if virtual function table field not found. */
16112 if (i < TYPE_N_BASECLASSES (t))
16113 complaint (_("virtual function table pointer "
16114 "not found when defining class '%s'"),
16115 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16116 }
16117 else
16118 {
16119 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16120 }
16121 }
16122 else if (cu->producer
16123 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16124 {
16125 /* The IBM XLC compiler does not provide direct indication
16126 of the containing type, but the vtable pointer is
16127 always named __vfp. */
16128
16129 int i;
16130
16131 for (i = TYPE_NFIELDS (type) - 1;
16132 i >= TYPE_N_BASECLASSES (type);
16133 --i)
16134 {
16135 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16136 {
16137 set_type_vptr_fieldno (type, i);
16138 set_type_vptr_basetype (type, type);
16139 break;
16140 }
16141 }
16142 }
16143 }
16144
16145 /* Copy fi.typedef_field_list linked list elements content into the
16146 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16147 if (!fi.typedef_field_list.empty ())
16148 {
16149 int count = fi.typedef_field_list.size ();
16150
16151 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16152 TYPE_TYPEDEF_FIELD_ARRAY (type)
16153 = ((struct decl_field *)
16154 TYPE_ALLOC (type,
16155 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16156 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16157
16158 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16159 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16160 }
16161
16162 /* Copy fi.nested_types_list linked list elements content into the
16163 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16164 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16165 {
16166 int count = fi.nested_types_list.size ();
16167
16168 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16169 TYPE_NESTED_TYPES_ARRAY (type)
16170 = ((struct decl_field *)
16171 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16172 TYPE_NESTED_TYPES_COUNT (type) = count;
16173
16174 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16175 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16176 }
16177 }
16178
16179 quirk_gcc_member_function_pointer (type, objfile);
16180 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16181 cu->rust_unions.push_back (type);
16182
16183 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16184 snapshots) has been known to create a die giving a declaration
16185 for a class that has, as a child, a die giving a definition for a
16186 nested class. So we have to process our children even if the
16187 current die is a declaration. Normally, of course, a declaration
16188 won't have any children at all. */
16189
16190 child_die = die->child;
16191
16192 while (child_die != NULL && child_die->tag)
16193 {
16194 if (child_die->tag == DW_TAG_member
16195 || child_die->tag == DW_TAG_variable
16196 || child_die->tag == DW_TAG_inheritance
16197 || child_die->tag == DW_TAG_template_value_param
16198 || child_die->tag == DW_TAG_template_type_param)
16199 {
16200 /* Do nothing. */
16201 }
16202 else
16203 process_die (child_die, cu);
16204
16205 child_die = sibling_die (child_die);
16206 }
16207
16208 /* Do not consider external references. According to the DWARF standard,
16209 these DIEs are identified by the fact that they have no byte_size
16210 attribute, and a declaration attribute. */
16211 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16212 || !die_is_declaration (die, cu))
16213 {
16214 struct symbol *sym = new_symbol (die, type, cu);
16215
16216 if (has_template_parameters)
16217 {
16218 struct symtab *symtab;
16219 if (sym != nullptr)
16220 symtab = symbol_symtab (sym);
16221 else if (cu->line_header != nullptr)
16222 {
16223 /* Any related symtab will do. */
16224 symtab
16225 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16226 }
16227 else
16228 {
16229 symtab = nullptr;
16230 complaint (_("could not find suitable "
16231 "symtab for template parameter"
16232 " - DIE at %s [in module %s]"),
16233 sect_offset_str (die->sect_off),
16234 objfile_name (objfile));
16235 }
16236
16237 if (symtab != nullptr)
16238 {
16239 /* Make sure that the symtab is set on the new symbols.
16240 Even though they don't appear in this symtab directly,
16241 other parts of gdb assume that symbols do, and this is
16242 reasonably true. */
16243 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16244 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16245 }
16246 }
16247 }
16248 }
16249
16250 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16251 update TYPE using some information only available in DIE's children. */
16252
16253 static void
16254 update_enumeration_type_from_children (struct die_info *die,
16255 struct type *type,
16256 struct dwarf2_cu *cu)
16257 {
16258 struct die_info *child_die;
16259 int unsigned_enum = 1;
16260 int flag_enum = 1;
16261 ULONGEST mask = 0;
16262
16263 auto_obstack obstack;
16264
16265 for (child_die = die->child;
16266 child_die != NULL && child_die->tag;
16267 child_die = sibling_die (child_die))
16268 {
16269 struct attribute *attr;
16270 LONGEST value;
16271 const gdb_byte *bytes;
16272 struct dwarf2_locexpr_baton *baton;
16273 const char *name;
16274
16275 if (child_die->tag != DW_TAG_enumerator)
16276 continue;
16277
16278 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16279 if (attr == NULL)
16280 continue;
16281
16282 name = dwarf2_name (child_die, cu);
16283 if (name == NULL)
16284 name = "<anonymous enumerator>";
16285
16286 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16287 &value, &bytes, &baton);
16288 if (value < 0)
16289 {
16290 unsigned_enum = 0;
16291 flag_enum = 0;
16292 }
16293 else if ((mask & value) != 0)
16294 flag_enum = 0;
16295 else
16296 mask |= value;
16297
16298 /* If we already know that the enum type is neither unsigned, nor
16299 a flag type, no need to look at the rest of the enumerates. */
16300 if (!unsigned_enum && !flag_enum)
16301 break;
16302 }
16303
16304 if (unsigned_enum)
16305 TYPE_UNSIGNED (type) = 1;
16306 if (flag_enum)
16307 TYPE_FLAG_ENUM (type) = 1;
16308 }
16309
16310 /* Given a DW_AT_enumeration_type die, set its type. We do not
16311 complete the type's fields yet, or create any symbols. */
16312
16313 static struct type *
16314 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16315 {
16316 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16317 struct type *type;
16318 struct attribute *attr;
16319 const char *name;
16320
16321 /* If the definition of this type lives in .debug_types, read that type.
16322 Don't follow DW_AT_specification though, that will take us back up
16323 the chain and we want to go down. */
16324 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16325 if (attr)
16326 {
16327 type = get_DW_AT_signature_type (die, attr, cu);
16328
16329 /* The type's CU may not be the same as CU.
16330 Ensure TYPE is recorded with CU in die_type_hash. */
16331 return set_die_type (die, type, cu);
16332 }
16333
16334 type = alloc_type (objfile);
16335
16336 TYPE_CODE (type) = TYPE_CODE_ENUM;
16337 name = dwarf2_full_name (NULL, die, cu);
16338 if (name != NULL)
16339 TYPE_NAME (type) = name;
16340
16341 attr = dwarf2_attr (die, DW_AT_type, cu);
16342 if (attr != NULL)
16343 {
16344 struct type *underlying_type = die_type (die, cu);
16345
16346 TYPE_TARGET_TYPE (type) = underlying_type;
16347 }
16348
16349 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16350 if (attr)
16351 {
16352 TYPE_LENGTH (type) = DW_UNSND (attr);
16353 }
16354 else
16355 {
16356 TYPE_LENGTH (type) = 0;
16357 }
16358
16359 maybe_set_alignment (cu, die, type);
16360
16361 /* The enumeration DIE can be incomplete. In Ada, any type can be
16362 declared as private in the package spec, and then defined only
16363 inside the package body. Such types are known as Taft Amendment
16364 Types. When another package uses such a type, an incomplete DIE
16365 may be generated by the compiler. */
16366 if (die_is_declaration (die, cu))
16367 TYPE_STUB (type) = 1;
16368
16369 /* Finish the creation of this type by using the enum's children.
16370 We must call this even when the underlying type has been provided
16371 so that we can determine if we're looking at a "flag" enum. */
16372 update_enumeration_type_from_children (die, type, cu);
16373
16374 /* If this type has an underlying type that is not a stub, then we
16375 may use its attributes. We always use the "unsigned" attribute
16376 in this situation, because ordinarily we guess whether the type
16377 is unsigned -- but the guess can be wrong and the underlying type
16378 can tell us the reality. However, we defer to a local size
16379 attribute if one exists, because this lets the compiler override
16380 the underlying type if needed. */
16381 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16382 {
16383 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16384 if (TYPE_LENGTH (type) == 0)
16385 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16386 if (TYPE_RAW_ALIGN (type) == 0
16387 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16388 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16389 }
16390
16391 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16392
16393 return set_die_type (die, type, cu);
16394 }
16395
16396 /* Given a pointer to a die which begins an enumeration, process all
16397 the dies that define the members of the enumeration, and create the
16398 symbol for the enumeration type.
16399
16400 NOTE: We reverse the order of the element list. */
16401
16402 static void
16403 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16404 {
16405 struct type *this_type;
16406
16407 this_type = get_die_type (die, cu);
16408 if (this_type == NULL)
16409 this_type = read_enumeration_type (die, cu);
16410
16411 if (die->child != NULL)
16412 {
16413 struct die_info *child_die;
16414 struct symbol *sym;
16415 struct field *fields = NULL;
16416 int num_fields = 0;
16417 const char *name;
16418
16419 child_die = die->child;
16420 while (child_die && child_die->tag)
16421 {
16422 if (child_die->tag != DW_TAG_enumerator)
16423 {
16424 process_die (child_die, cu);
16425 }
16426 else
16427 {
16428 name = dwarf2_name (child_die, cu);
16429 if (name)
16430 {
16431 sym = new_symbol (child_die, this_type, cu);
16432
16433 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16434 {
16435 fields = (struct field *)
16436 xrealloc (fields,
16437 (num_fields + DW_FIELD_ALLOC_CHUNK)
16438 * sizeof (struct field));
16439 }
16440
16441 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16442 FIELD_TYPE (fields[num_fields]) = NULL;
16443 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16444 FIELD_BITSIZE (fields[num_fields]) = 0;
16445
16446 num_fields++;
16447 }
16448 }
16449
16450 child_die = sibling_die (child_die);
16451 }
16452
16453 if (num_fields)
16454 {
16455 TYPE_NFIELDS (this_type) = num_fields;
16456 TYPE_FIELDS (this_type) = (struct field *)
16457 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16458 memcpy (TYPE_FIELDS (this_type), fields,
16459 sizeof (struct field) * num_fields);
16460 xfree (fields);
16461 }
16462 }
16463
16464 /* If we are reading an enum from a .debug_types unit, and the enum
16465 is a declaration, and the enum is not the signatured type in the
16466 unit, then we do not want to add a symbol for it. Adding a
16467 symbol would in some cases obscure the true definition of the
16468 enum, giving users an incomplete type when the definition is
16469 actually available. Note that we do not want to do this for all
16470 enums which are just declarations, because C++0x allows forward
16471 enum declarations. */
16472 if (cu->per_cu->is_debug_types
16473 && die_is_declaration (die, cu))
16474 {
16475 struct signatured_type *sig_type;
16476
16477 sig_type = (struct signatured_type *) cu->per_cu;
16478 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16479 if (sig_type->type_offset_in_section != die->sect_off)
16480 return;
16481 }
16482
16483 new_symbol (die, this_type, cu);
16484 }
16485
16486 /* Extract all information from a DW_TAG_array_type DIE and put it in
16487 the DIE's type field. For now, this only handles one dimensional
16488 arrays. */
16489
16490 static struct type *
16491 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16492 {
16493 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16494 struct die_info *child_die;
16495 struct type *type;
16496 struct type *element_type, *range_type, *index_type;
16497 struct attribute *attr;
16498 const char *name;
16499 struct dynamic_prop *byte_stride_prop = NULL;
16500 unsigned int bit_stride = 0;
16501
16502 element_type = die_type (die, cu);
16503
16504 /* The die_type call above may have already set the type for this DIE. */
16505 type = get_die_type (die, cu);
16506 if (type)
16507 return type;
16508
16509 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16510 if (attr != NULL)
16511 {
16512 int stride_ok;
16513
16514 byte_stride_prop
16515 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16516 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16517 if (!stride_ok)
16518 {
16519 complaint (_("unable to read array DW_AT_byte_stride "
16520 " - DIE at %s [in module %s]"),
16521 sect_offset_str (die->sect_off),
16522 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16523 /* Ignore this attribute. We will likely not be able to print
16524 arrays of this type correctly, but there is little we can do
16525 to help if we cannot read the attribute's value. */
16526 byte_stride_prop = NULL;
16527 }
16528 }
16529
16530 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16531 if (attr != NULL)
16532 bit_stride = DW_UNSND (attr);
16533
16534 /* Irix 6.2 native cc creates array types without children for
16535 arrays with unspecified length. */
16536 if (die->child == NULL)
16537 {
16538 index_type = objfile_type (objfile)->builtin_int;
16539 range_type = create_static_range_type (NULL, index_type, 0, -1);
16540 type = create_array_type_with_stride (NULL, element_type, range_type,
16541 byte_stride_prop, bit_stride);
16542 return set_die_type (die, type, cu);
16543 }
16544
16545 std::vector<struct type *> range_types;
16546 child_die = die->child;
16547 while (child_die && child_die->tag)
16548 {
16549 if (child_die->tag == DW_TAG_subrange_type)
16550 {
16551 struct type *child_type = read_type_die (child_die, cu);
16552
16553 if (child_type != NULL)
16554 {
16555 /* The range type was succesfully read. Save it for the
16556 array type creation. */
16557 range_types.push_back (child_type);
16558 }
16559 }
16560 child_die = sibling_die (child_die);
16561 }
16562
16563 /* Dwarf2 dimensions are output from left to right, create the
16564 necessary array types in backwards order. */
16565
16566 type = element_type;
16567
16568 if (read_array_order (die, cu) == DW_ORD_col_major)
16569 {
16570 int i = 0;
16571
16572 while (i < range_types.size ())
16573 type = create_array_type_with_stride (NULL, type, range_types[i++],
16574 byte_stride_prop, bit_stride);
16575 }
16576 else
16577 {
16578 size_t ndim = range_types.size ();
16579 while (ndim-- > 0)
16580 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16581 byte_stride_prop, bit_stride);
16582 }
16583
16584 /* Understand Dwarf2 support for vector types (like they occur on
16585 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16586 array type. This is not part of the Dwarf2/3 standard yet, but a
16587 custom vendor extension. The main difference between a regular
16588 array and the vector variant is that vectors are passed by value
16589 to functions. */
16590 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16591 if (attr)
16592 make_vector_type (type);
16593
16594 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16595 implementation may choose to implement triple vectors using this
16596 attribute. */
16597 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16598 if (attr)
16599 {
16600 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16601 TYPE_LENGTH (type) = DW_UNSND (attr);
16602 else
16603 complaint (_("DW_AT_byte_size for array type smaller "
16604 "than the total size of elements"));
16605 }
16606
16607 name = dwarf2_name (die, cu);
16608 if (name)
16609 TYPE_NAME (type) = name;
16610
16611 maybe_set_alignment (cu, die, type);
16612
16613 /* Install the type in the die. */
16614 set_die_type (die, type, cu);
16615
16616 /* set_die_type should be already done. */
16617 set_descriptive_type (type, die, cu);
16618
16619 return type;
16620 }
16621
16622 static enum dwarf_array_dim_ordering
16623 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16624 {
16625 struct attribute *attr;
16626
16627 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16628
16629 if (attr)
16630 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16631
16632 /* GNU F77 is a special case, as at 08/2004 array type info is the
16633 opposite order to the dwarf2 specification, but data is still
16634 laid out as per normal fortran.
16635
16636 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16637 version checking. */
16638
16639 if (cu->language == language_fortran
16640 && cu->producer && strstr (cu->producer, "GNU F77"))
16641 {
16642 return DW_ORD_row_major;
16643 }
16644
16645 switch (cu->language_defn->la_array_ordering)
16646 {
16647 case array_column_major:
16648 return DW_ORD_col_major;
16649 case array_row_major:
16650 default:
16651 return DW_ORD_row_major;
16652 };
16653 }
16654
16655 /* Extract all information from a DW_TAG_set_type DIE and put it in
16656 the DIE's type field. */
16657
16658 static struct type *
16659 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16660 {
16661 struct type *domain_type, *set_type;
16662 struct attribute *attr;
16663
16664 domain_type = die_type (die, cu);
16665
16666 /* The die_type call above may have already set the type for this DIE. */
16667 set_type = get_die_type (die, cu);
16668 if (set_type)
16669 return set_type;
16670
16671 set_type = create_set_type (NULL, domain_type);
16672
16673 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16674 if (attr)
16675 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16676
16677 maybe_set_alignment (cu, die, set_type);
16678
16679 return set_die_type (die, set_type, cu);
16680 }
16681
16682 /* A helper for read_common_block that creates a locexpr baton.
16683 SYM is the symbol which we are marking as computed.
16684 COMMON_DIE is the DIE for the common block.
16685 COMMON_LOC is the location expression attribute for the common
16686 block itself.
16687 MEMBER_LOC is the location expression attribute for the particular
16688 member of the common block that we are processing.
16689 CU is the CU from which the above come. */
16690
16691 static void
16692 mark_common_block_symbol_computed (struct symbol *sym,
16693 struct die_info *common_die,
16694 struct attribute *common_loc,
16695 struct attribute *member_loc,
16696 struct dwarf2_cu *cu)
16697 {
16698 struct dwarf2_per_objfile *dwarf2_per_objfile
16699 = cu->per_cu->dwarf2_per_objfile;
16700 struct objfile *objfile = dwarf2_per_objfile->objfile;
16701 struct dwarf2_locexpr_baton *baton;
16702 gdb_byte *ptr;
16703 unsigned int cu_off;
16704 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16705 LONGEST offset = 0;
16706
16707 gdb_assert (common_loc && member_loc);
16708 gdb_assert (attr_form_is_block (common_loc));
16709 gdb_assert (attr_form_is_block (member_loc)
16710 || attr_form_is_constant (member_loc));
16711
16712 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16713 baton->per_cu = cu->per_cu;
16714 gdb_assert (baton->per_cu);
16715
16716 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16717
16718 if (attr_form_is_constant (member_loc))
16719 {
16720 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16721 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16722 }
16723 else
16724 baton->size += DW_BLOCK (member_loc)->size;
16725
16726 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16727 baton->data = ptr;
16728
16729 *ptr++ = DW_OP_call4;
16730 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16731 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16732 ptr += 4;
16733
16734 if (attr_form_is_constant (member_loc))
16735 {
16736 *ptr++ = DW_OP_addr;
16737 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16738 ptr += cu->header.addr_size;
16739 }
16740 else
16741 {
16742 /* We have to copy the data here, because DW_OP_call4 will only
16743 use a DW_AT_location attribute. */
16744 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16745 ptr += DW_BLOCK (member_loc)->size;
16746 }
16747
16748 *ptr++ = DW_OP_plus;
16749 gdb_assert (ptr - baton->data == baton->size);
16750
16751 SYMBOL_LOCATION_BATON (sym) = baton;
16752 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16753 }
16754
16755 /* Create appropriate locally-scoped variables for all the
16756 DW_TAG_common_block entries. Also create a struct common_block
16757 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16758 is used to sepate the common blocks name namespace from regular
16759 variable names. */
16760
16761 static void
16762 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16763 {
16764 struct attribute *attr;
16765
16766 attr = dwarf2_attr (die, DW_AT_location, cu);
16767 if (attr)
16768 {
16769 /* Support the .debug_loc offsets. */
16770 if (attr_form_is_block (attr))
16771 {
16772 /* Ok. */
16773 }
16774 else if (attr_form_is_section_offset (attr))
16775 {
16776 dwarf2_complex_location_expr_complaint ();
16777 attr = NULL;
16778 }
16779 else
16780 {
16781 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16782 "common block member");
16783 attr = NULL;
16784 }
16785 }
16786
16787 if (die->child != NULL)
16788 {
16789 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16790 struct die_info *child_die;
16791 size_t n_entries = 0, size;
16792 struct common_block *common_block;
16793 struct symbol *sym;
16794
16795 for (child_die = die->child;
16796 child_die && child_die->tag;
16797 child_die = sibling_die (child_die))
16798 ++n_entries;
16799
16800 size = (sizeof (struct common_block)
16801 + (n_entries - 1) * sizeof (struct symbol *));
16802 common_block
16803 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16804 size);
16805 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16806 common_block->n_entries = 0;
16807
16808 for (child_die = die->child;
16809 child_die && child_die->tag;
16810 child_die = sibling_die (child_die))
16811 {
16812 /* Create the symbol in the DW_TAG_common_block block in the current
16813 symbol scope. */
16814 sym = new_symbol (child_die, NULL, cu);
16815 if (sym != NULL)
16816 {
16817 struct attribute *member_loc;
16818
16819 common_block->contents[common_block->n_entries++] = sym;
16820
16821 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16822 cu);
16823 if (member_loc)
16824 {
16825 /* GDB has handled this for a long time, but it is
16826 not specified by DWARF. It seems to have been
16827 emitted by gfortran at least as recently as:
16828 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16829 complaint (_("Variable in common block has "
16830 "DW_AT_data_member_location "
16831 "- DIE at %s [in module %s]"),
16832 sect_offset_str (child_die->sect_off),
16833 objfile_name (objfile));
16834
16835 if (attr_form_is_section_offset (member_loc))
16836 dwarf2_complex_location_expr_complaint ();
16837 else if (attr_form_is_constant (member_loc)
16838 || attr_form_is_block (member_loc))
16839 {
16840 if (attr)
16841 mark_common_block_symbol_computed (sym, die, attr,
16842 member_loc, cu);
16843 }
16844 else
16845 dwarf2_complex_location_expr_complaint ();
16846 }
16847 }
16848 }
16849
16850 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16851 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16852 }
16853 }
16854
16855 /* Create a type for a C++ namespace. */
16856
16857 static struct type *
16858 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16859 {
16860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16861 const char *previous_prefix, *name;
16862 int is_anonymous;
16863 struct type *type;
16864
16865 /* For extensions, reuse the type of the original namespace. */
16866 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16867 {
16868 struct die_info *ext_die;
16869 struct dwarf2_cu *ext_cu = cu;
16870
16871 ext_die = dwarf2_extension (die, &ext_cu);
16872 type = read_type_die (ext_die, ext_cu);
16873
16874 /* EXT_CU may not be the same as CU.
16875 Ensure TYPE is recorded with CU in die_type_hash. */
16876 return set_die_type (die, type, cu);
16877 }
16878
16879 name = namespace_name (die, &is_anonymous, cu);
16880
16881 /* Now build the name of the current namespace. */
16882
16883 previous_prefix = determine_prefix (die, cu);
16884 if (previous_prefix[0] != '\0')
16885 name = typename_concat (&objfile->objfile_obstack,
16886 previous_prefix, name, 0, cu);
16887
16888 /* Create the type. */
16889 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16890
16891 return set_die_type (die, type, cu);
16892 }
16893
16894 /* Read a namespace scope. */
16895
16896 static void
16897 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16898 {
16899 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16900 int is_anonymous;
16901
16902 /* Add a symbol associated to this if we haven't seen the namespace
16903 before. Also, add a using directive if it's an anonymous
16904 namespace. */
16905
16906 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16907 {
16908 struct type *type;
16909
16910 type = read_type_die (die, cu);
16911 new_symbol (die, type, cu);
16912
16913 namespace_name (die, &is_anonymous, cu);
16914 if (is_anonymous)
16915 {
16916 const char *previous_prefix = determine_prefix (die, cu);
16917
16918 std::vector<const char *> excludes;
16919 add_using_directive (using_directives (cu),
16920 previous_prefix, TYPE_NAME (type), NULL,
16921 NULL, excludes, 0, &objfile->objfile_obstack);
16922 }
16923 }
16924
16925 if (die->child != NULL)
16926 {
16927 struct die_info *child_die = die->child;
16928
16929 while (child_die && child_die->tag)
16930 {
16931 process_die (child_die, cu);
16932 child_die = sibling_die (child_die);
16933 }
16934 }
16935 }
16936
16937 /* Read a Fortran module as type. This DIE can be only a declaration used for
16938 imported module. Still we need that type as local Fortran "use ... only"
16939 declaration imports depend on the created type in determine_prefix. */
16940
16941 static struct type *
16942 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16943 {
16944 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16945 const char *module_name;
16946 struct type *type;
16947
16948 module_name = dwarf2_name (die, cu);
16949 if (!module_name)
16950 complaint (_("DW_TAG_module has no name, offset %s"),
16951 sect_offset_str (die->sect_off));
16952 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16953
16954 return set_die_type (die, type, cu);
16955 }
16956
16957 /* Read a Fortran module. */
16958
16959 static void
16960 read_module (struct die_info *die, struct dwarf2_cu *cu)
16961 {
16962 struct die_info *child_die = die->child;
16963 struct type *type;
16964
16965 type = read_type_die (die, cu);
16966 new_symbol (die, type, cu);
16967
16968 while (child_die && child_die->tag)
16969 {
16970 process_die (child_die, cu);
16971 child_die = sibling_die (child_die);
16972 }
16973 }
16974
16975 /* Return the name of the namespace represented by DIE. Set
16976 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16977 namespace. */
16978
16979 static const char *
16980 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16981 {
16982 struct die_info *current_die;
16983 const char *name = NULL;
16984
16985 /* Loop through the extensions until we find a name. */
16986
16987 for (current_die = die;
16988 current_die != NULL;
16989 current_die = dwarf2_extension (die, &cu))
16990 {
16991 /* We don't use dwarf2_name here so that we can detect the absence
16992 of a name -> anonymous namespace. */
16993 name = dwarf2_string_attr (die, DW_AT_name, cu);
16994
16995 if (name != NULL)
16996 break;
16997 }
16998
16999 /* Is it an anonymous namespace? */
17000
17001 *is_anonymous = (name == NULL);
17002 if (*is_anonymous)
17003 name = CP_ANONYMOUS_NAMESPACE_STR;
17004
17005 return name;
17006 }
17007
17008 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17009 the user defined type vector. */
17010
17011 static struct type *
17012 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17013 {
17014 struct gdbarch *gdbarch
17015 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17016 struct comp_unit_head *cu_header = &cu->header;
17017 struct type *type;
17018 struct attribute *attr_byte_size;
17019 struct attribute *attr_address_class;
17020 int byte_size, addr_class;
17021 struct type *target_type;
17022
17023 target_type = die_type (die, cu);
17024
17025 /* The die_type call above may have already set the type for this DIE. */
17026 type = get_die_type (die, cu);
17027 if (type)
17028 return type;
17029
17030 type = lookup_pointer_type (target_type);
17031
17032 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17033 if (attr_byte_size)
17034 byte_size = DW_UNSND (attr_byte_size);
17035 else
17036 byte_size = cu_header->addr_size;
17037
17038 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17039 if (attr_address_class)
17040 addr_class = DW_UNSND (attr_address_class);
17041 else
17042 addr_class = DW_ADDR_none;
17043
17044 ULONGEST alignment = get_alignment (cu, die);
17045
17046 /* If the pointer size, alignment, or address class is different
17047 than the default, create a type variant marked as such and set
17048 the length accordingly. */
17049 if (TYPE_LENGTH (type) != byte_size
17050 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17051 && alignment != TYPE_RAW_ALIGN (type))
17052 || addr_class != DW_ADDR_none)
17053 {
17054 if (gdbarch_address_class_type_flags_p (gdbarch))
17055 {
17056 int type_flags;
17057
17058 type_flags = gdbarch_address_class_type_flags
17059 (gdbarch, byte_size, addr_class);
17060 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17061 == 0);
17062 type = make_type_with_address_space (type, type_flags);
17063 }
17064 else if (TYPE_LENGTH (type) != byte_size)
17065 {
17066 complaint (_("invalid pointer size %d"), byte_size);
17067 }
17068 else if (TYPE_RAW_ALIGN (type) != alignment)
17069 {
17070 complaint (_("Invalid DW_AT_alignment"
17071 " - DIE at %s [in module %s]"),
17072 sect_offset_str (die->sect_off),
17073 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17074 }
17075 else
17076 {
17077 /* Should we also complain about unhandled address classes? */
17078 }
17079 }
17080
17081 TYPE_LENGTH (type) = byte_size;
17082 set_type_align (type, alignment);
17083 return set_die_type (die, type, cu);
17084 }
17085
17086 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17087 the user defined type vector. */
17088
17089 static struct type *
17090 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17091 {
17092 struct type *type;
17093 struct type *to_type;
17094 struct type *domain;
17095
17096 to_type = die_type (die, cu);
17097 domain = die_containing_type (die, cu);
17098
17099 /* The calls above may have already set the type for this DIE. */
17100 type = get_die_type (die, cu);
17101 if (type)
17102 return type;
17103
17104 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17105 type = lookup_methodptr_type (to_type);
17106 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17107 {
17108 struct type *new_type
17109 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17110
17111 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17112 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17113 TYPE_VARARGS (to_type));
17114 type = lookup_methodptr_type (new_type);
17115 }
17116 else
17117 type = lookup_memberptr_type (to_type, domain);
17118
17119 return set_die_type (die, type, cu);
17120 }
17121
17122 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17123 the user defined type vector. */
17124
17125 static struct type *
17126 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17127 enum type_code refcode)
17128 {
17129 struct comp_unit_head *cu_header = &cu->header;
17130 struct type *type, *target_type;
17131 struct attribute *attr;
17132
17133 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17134
17135 target_type = die_type (die, cu);
17136
17137 /* The die_type call above may have already set the type for this DIE. */
17138 type = get_die_type (die, cu);
17139 if (type)
17140 return type;
17141
17142 type = lookup_reference_type (target_type, refcode);
17143 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17144 if (attr)
17145 {
17146 TYPE_LENGTH (type) = DW_UNSND (attr);
17147 }
17148 else
17149 {
17150 TYPE_LENGTH (type) = cu_header->addr_size;
17151 }
17152 maybe_set_alignment (cu, die, type);
17153 return set_die_type (die, type, cu);
17154 }
17155
17156 /* Add the given cv-qualifiers to the element type of the array. GCC
17157 outputs DWARF type qualifiers that apply to an array, not the
17158 element type. But GDB relies on the array element type to carry
17159 the cv-qualifiers. This mimics section 6.7.3 of the C99
17160 specification. */
17161
17162 static struct type *
17163 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17164 struct type *base_type, int cnst, int voltl)
17165 {
17166 struct type *el_type, *inner_array;
17167
17168 base_type = copy_type (base_type);
17169 inner_array = base_type;
17170
17171 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17172 {
17173 TYPE_TARGET_TYPE (inner_array) =
17174 copy_type (TYPE_TARGET_TYPE (inner_array));
17175 inner_array = TYPE_TARGET_TYPE (inner_array);
17176 }
17177
17178 el_type = TYPE_TARGET_TYPE (inner_array);
17179 cnst |= TYPE_CONST (el_type);
17180 voltl |= TYPE_VOLATILE (el_type);
17181 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17182
17183 return set_die_type (die, base_type, cu);
17184 }
17185
17186 static struct type *
17187 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17188 {
17189 struct type *base_type, *cv_type;
17190
17191 base_type = die_type (die, cu);
17192
17193 /* The die_type call above may have already set the type for this DIE. */
17194 cv_type = get_die_type (die, cu);
17195 if (cv_type)
17196 return cv_type;
17197
17198 /* In case the const qualifier is applied to an array type, the element type
17199 is so qualified, not the array type (section 6.7.3 of C99). */
17200 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17201 return add_array_cv_type (die, cu, base_type, 1, 0);
17202
17203 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17204 return set_die_type (die, cv_type, cu);
17205 }
17206
17207 static struct type *
17208 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17209 {
17210 struct type *base_type, *cv_type;
17211
17212 base_type = die_type (die, cu);
17213
17214 /* The die_type call above may have already set the type for this DIE. */
17215 cv_type = get_die_type (die, cu);
17216 if (cv_type)
17217 return cv_type;
17218
17219 /* In case the volatile qualifier is applied to an array type, the
17220 element type is so qualified, not the array type (section 6.7.3
17221 of C99). */
17222 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17223 return add_array_cv_type (die, cu, base_type, 0, 1);
17224
17225 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17226 return set_die_type (die, cv_type, cu);
17227 }
17228
17229 /* Handle DW_TAG_restrict_type. */
17230
17231 static struct type *
17232 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17233 {
17234 struct type *base_type, *cv_type;
17235
17236 base_type = die_type (die, cu);
17237
17238 /* The die_type call above may have already set the type for this DIE. */
17239 cv_type = get_die_type (die, cu);
17240 if (cv_type)
17241 return cv_type;
17242
17243 cv_type = make_restrict_type (base_type);
17244 return set_die_type (die, cv_type, cu);
17245 }
17246
17247 /* Handle DW_TAG_atomic_type. */
17248
17249 static struct type *
17250 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17251 {
17252 struct type *base_type, *cv_type;
17253
17254 base_type = die_type (die, cu);
17255
17256 /* The die_type call above may have already set the type for this DIE. */
17257 cv_type = get_die_type (die, cu);
17258 if (cv_type)
17259 return cv_type;
17260
17261 cv_type = make_atomic_type (base_type);
17262 return set_die_type (die, cv_type, cu);
17263 }
17264
17265 /* Extract all information from a DW_TAG_string_type DIE and add to
17266 the user defined type vector. It isn't really a user defined type,
17267 but it behaves like one, with other DIE's using an AT_user_def_type
17268 attribute to reference it. */
17269
17270 static struct type *
17271 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17272 {
17273 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17274 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17275 struct type *type, *range_type, *index_type, *char_type;
17276 struct attribute *attr;
17277 unsigned int length;
17278
17279 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17280 if (attr)
17281 {
17282 length = DW_UNSND (attr);
17283 }
17284 else
17285 {
17286 /* Check for the DW_AT_byte_size attribute. */
17287 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17288 if (attr)
17289 {
17290 length = DW_UNSND (attr);
17291 }
17292 else
17293 {
17294 length = 1;
17295 }
17296 }
17297
17298 index_type = objfile_type (objfile)->builtin_int;
17299 range_type = create_static_range_type (NULL, index_type, 1, length);
17300 char_type = language_string_char_type (cu->language_defn, gdbarch);
17301 type = create_string_type (NULL, char_type, range_type);
17302
17303 return set_die_type (die, type, cu);
17304 }
17305
17306 /* Assuming that DIE corresponds to a function, returns nonzero
17307 if the function is prototyped. */
17308
17309 static int
17310 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17311 {
17312 struct attribute *attr;
17313
17314 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17315 if (attr && (DW_UNSND (attr) != 0))
17316 return 1;
17317
17318 /* The DWARF standard implies that the DW_AT_prototyped attribute
17319 is only meaninful for C, but the concept also extends to other
17320 languages that allow unprototyped functions (Eg: Objective C).
17321 For all other languages, assume that functions are always
17322 prototyped. */
17323 if (cu->language != language_c
17324 && cu->language != language_objc
17325 && cu->language != language_opencl)
17326 return 1;
17327
17328 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17329 prototyped and unprototyped functions; default to prototyped,
17330 since that is more common in modern code (and RealView warns
17331 about unprototyped functions). */
17332 if (producer_is_realview (cu->producer))
17333 return 1;
17334
17335 return 0;
17336 }
17337
17338 /* Handle DIES due to C code like:
17339
17340 struct foo
17341 {
17342 int (*funcp)(int a, long l);
17343 int b;
17344 };
17345
17346 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17347
17348 static struct type *
17349 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17350 {
17351 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17352 struct type *type; /* Type that this function returns. */
17353 struct type *ftype; /* Function that returns above type. */
17354 struct attribute *attr;
17355
17356 type = die_type (die, cu);
17357
17358 /* The die_type call above may have already set the type for this DIE. */
17359 ftype = get_die_type (die, cu);
17360 if (ftype)
17361 return ftype;
17362
17363 ftype = lookup_function_type (type);
17364
17365 if (prototyped_function_p (die, cu))
17366 TYPE_PROTOTYPED (ftype) = 1;
17367
17368 /* Store the calling convention in the type if it's available in
17369 the subroutine die. Otherwise set the calling convention to
17370 the default value DW_CC_normal. */
17371 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17372 if (attr)
17373 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17374 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17375 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17376 else
17377 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17378
17379 /* Record whether the function returns normally to its caller or not
17380 if the DWARF producer set that information. */
17381 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17382 if (attr && (DW_UNSND (attr) != 0))
17383 TYPE_NO_RETURN (ftype) = 1;
17384
17385 /* We need to add the subroutine type to the die immediately so
17386 we don't infinitely recurse when dealing with parameters
17387 declared as the same subroutine type. */
17388 set_die_type (die, ftype, cu);
17389
17390 if (die->child != NULL)
17391 {
17392 struct type *void_type = objfile_type (objfile)->builtin_void;
17393 struct die_info *child_die;
17394 int nparams, iparams;
17395
17396 /* Count the number of parameters.
17397 FIXME: GDB currently ignores vararg functions, but knows about
17398 vararg member functions. */
17399 nparams = 0;
17400 child_die = die->child;
17401 while (child_die && child_die->tag)
17402 {
17403 if (child_die->tag == DW_TAG_formal_parameter)
17404 nparams++;
17405 else if (child_die->tag == DW_TAG_unspecified_parameters)
17406 TYPE_VARARGS (ftype) = 1;
17407 child_die = sibling_die (child_die);
17408 }
17409
17410 /* Allocate storage for parameters and fill them in. */
17411 TYPE_NFIELDS (ftype) = nparams;
17412 TYPE_FIELDS (ftype) = (struct field *)
17413 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17414
17415 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17416 even if we error out during the parameters reading below. */
17417 for (iparams = 0; iparams < nparams; iparams++)
17418 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17419
17420 iparams = 0;
17421 child_die = die->child;
17422 while (child_die && child_die->tag)
17423 {
17424 if (child_die->tag == DW_TAG_formal_parameter)
17425 {
17426 struct type *arg_type;
17427
17428 /* DWARF version 2 has no clean way to discern C++
17429 static and non-static member functions. G++ helps
17430 GDB by marking the first parameter for non-static
17431 member functions (which is the this pointer) as
17432 artificial. We pass this information to
17433 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17434
17435 DWARF version 3 added DW_AT_object_pointer, which GCC
17436 4.5 does not yet generate. */
17437 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17438 if (attr)
17439 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17440 else
17441 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17442 arg_type = die_type (child_die, cu);
17443
17444 /* RealView does not mark THIS as const, which the testsuite
17445 expects. GCC marks THIS as const in method definitions,
17446 but not in the class specifications (GCC PR 43053). */
17447 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17448 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17449 {
17450 int is_this = 0;
17451 struct dwarf2_cu *arg_cu = cu;
17452 const char *name = dwarf2_name (child_die, cu);
17453
17454 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17455 if (attr)
17456 {
17457 /* If the compiler emits this, use it. */
17458 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17459 is_this = 1;
17460 }
17461 else if (name && strcmp (name, "this") == 0)
17462 /* Function definitions will have the argument names. */
17463 is_this = 1;
17464 else if (name == NULL && iparams == 0)
17465 /* Declarations may not have the names, so like
17466 elsewhere in GDB, assume an artificial first
17467 argument is "this". */
17468 is_this = 1;
17469
17470 if (is_this)
17471 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17472 arg_type, 0);
17473 }
17474
17475 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17476 iparams++;
17477 }
17478 child_die = sibling_die (child_die);
17479 }
17480 }
17481
17482 return ftype;
17483 }
17484
17485 static struct type *
17486 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17487 {
17488 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17489 const char *name = NULL;
17490 struct type *this_type, *target_type;
17491
17492 name = dwarf2_full_name (NULL, die, cu);
17493 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17494 TYPE_TARGET_STUB (this_type) = 1;
17495 set_die_type (die, this_type, cu);
17496 target_type = die_type (die, cu);
17497 if (target_type != this_type)
17498 TYPE_TARGET_TYPE (this_type) = target_type;
17499 else
17500 {
17501 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17502 spec and cause infinite loops in GDB. */
17503 complaint (_("Self-referential DW_TAG_typedef "
17504 "- DIE at %s [in module %s]"),
17505 sect_offset_str (die->sect_off), objfile_name (objfile));
17506 TYPE_TARGET_TYPE (this_type) = NULL;
17507 }
17508 return this_type;
17509 }
17510
17511 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17512 (which may be different from NAME) to the architecture back-end to allow
17513 it to guess the correct format if necessary. */
17514
17515 static struct type *
17516 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17517 const char *name_hint)
17518 {
17519 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17520 const struct floatformat **format;
17521 struct type *type;
17522
17523 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17524 if (format)
17525 type = init_float_type (objfile, bits, name, format);
17526 else
17527 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17528
17529 return type;
17530 }
17531
17532 /* Allocate an integer type of size BITS and name NAME. */
17533
17534 static struct type *
17535 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17536 int bits, int unsigned_p, const char *name)
17537 {
17538 struct type *type;
17539
17540 /* Versions of Intel's C Compiler generate an integer type called "void"
17541 instead of using DW_TAG_unspecified_type. This has been seen on
17542 at least versions 14, 17, and 18. */
17543 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17544 && strcmp (name, "void") == 0)
17545 type = objfile_type (objfile)->builtin_void;
17546 else
17547 type = init_integer_type (objfile, bits, unsigned_p, name);
17548
17549 return type;
17550 }
17551
17552 /* Initialise and return a floating point type of size BITS suitable for
17553 use as a component of a complex number. The NAME_HINT is passed through
17554 when initialising the floating point type and is the name of the complex
17555 type.
17556
17557 As DWARF doesn't currently provide an explicit name for the components
17558 of a complex number, but it can be helpful to have these components
17559 named, we try to select a suitable name based on the size of the
17560 component. */
17561 static struct type *
17562 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17563 struct objfile *objfile,
17564 int bits, const char *name_hint)
17565 {
17566 gdbarch *gdbarch = get_objfile_arch (objfile);
17567 struct type *tt = nullptr;
17568
17569 /* Try to find a suitable floating point builtin type of size BITS.
17570 We're going to use the name of this type as the name for the complex
17571 target type that we are about to create. */
17572 switch (cu->language)
17573 {
17574 case language_fortran:
17575 switch (bits)
17576 {
17577 case 32:
17578 tt = builtin_f_type (gdbarch)->builtin_real;
17579 break;
17580 case 64:
17581 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17582 break;
17583 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17584 case 128:
17585 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17586 break;
17587 }
17588 break;
17589 default:
17590 switch (bits)
17591 {
17592 case 32:
17593 tt = builtin_type (gdbarch)->builtin_float;
17594 break;
17595 case 64:
17596 tt = builtin_type (gdbarch)->builtin_double;
17597 break;
17598 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17599 case 128:
17600 tt = builtin_type (gdbarch)->builtin_long_double;
17601 break;
17602 }
17603 break;
17604 }
17605
17606 /* If the type we found doesn't match the size we were looking for, then
17607 pretend we didn't find a type at all, the complex target type we
17608 create will then be nameless. */
17609 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17610 tt = nullptr;
17611
17612 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17613 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17614 }
17615
17616 /* Find a representation of a given base type and install
17617 it in the TYPE field of the die. */
17618
17619 static struct type *
17620 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17621 {
17622 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17623 struct type *type;
17624 struct attribute *attr;
17625 int encoding = 0, bits = 0;
17626 const char *name;
17627
17628 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17629 if (attr)
17630 {
17631 encoding = DW_UNSND (attr);
17632 }
17633 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17634 if (attr)
17635 {
17636 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17637 }
17638 name = dwarf2_name (die, cu);
17639 if (!name)
17640 {
17641 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17642 }
17643
17644 switch (encoding)
17645 {
17646 case DW_ATE_address:
17647 /* Turn DW_ATE_address into a void * pointer. */
17648 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17649 type = init_pointer_type (objfile, bits, name, type);
17650 break;
17651 case DW_ATE_boolean:
17652 type = init_boolean_type (objfile, bits, 1, name);
17653 break;
17654 case DW_ATE_complex_float:
17655 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17656 type = init_complex_type (objfile, name, type);
17657 break;
17658 case DW_ATE_decimal_float:
17659 type = init_decfloat_type (objfile, bits, name);
17660 break;
17661 case DW_ATE_float:
17662 type = dwarf2_init_float_type (objfile, bits, name, name);
17663 break;
17664 case DW_ATE_signed:
17665 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17666 break;
17667 case DW_ATE_unsigned:
17668 if (cu->language == language_fortran
17669 && name
17670 && startswith (name, "character("))
17671 type = init_character_type (objfile, bits, 1, name);
17672 else
17673 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17674 break;
17675 case DW_ATE_signed_char:
17676 if (cu->language == language_ada || cu->language == language_m2
17677 || cu->language == language_pascal
17678 || cu->language == language_fortran)
17679 type = init_character_type (objfile, bits, 0, name);
17680 else
17681 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17682 break;
17683 case DW_ATE_unsigned_char:
17684 if (cu->language == language_ada || cu->language == language_m2
17685 || cu->language == language_pascal
17686 || cu->language == language_fortran
17687 || cu->language == language_rust)
17688 type = init_character_type (objfile, bits, 1, name);
17689 else
17690 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17691 break;
17692 case DW_ATE_UTF:
17693 {
17694 gdbarch *arch = get_objfile_arch (objfile);
17695
17696 if (bits == 16)
17697 type = builtin_type (arch)->builtin_char16;
17698 else if (bits == 32)
17699 type = builtin_type (arch)->builtin_char32;
17700 else
17701 {
17702 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17703 bits);
17704 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17705 }
17706 return set_die_type (die, type, cu);
17707 }
17708 break;
17709
17710 default:
17711 complaint (_("unsupported DW_AT_encoding: '%s'"),
17712 dwarf_type_encoding_name (encoding));
17713 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17714 break;
17715 }
17716
17717 if (name && strcmp (name, "char") == 0)
17718 TYPE_NOSIGN (type) = 1;
17719
17720 maybe_set_alignment (cu, die, type);
17721
17722 return set_die_type (die, type, cu);
17723 }
17724
17725 /* Parse dwarf attribute if it's a block, reference or constant and put the
17726 resulting value of the attribute into struct bound_prop.
17727 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17728
17729 static int
17730 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17731 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17732 {
17733 struct dwarf2_property_baton *baton;
17734 struct obstack *obstack
17735 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17736
17737 if (attr == NULL || prop == NULL)
17738 return 0;
17739
17740 if (attr_form_is_block (attr))
17741 {
17742 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17743 baton->referenced_type = NULL;
17744 baton->locexpr.per_cu = cu->per_cu;
17745 baton->locexpr.size = DW_BLOCK (attr)->size;
17746 baton->locexpr.data = DW_BLOCK (attr)->data;
17747 prop->data.baton = baton;
17748 prop->kind = PROP_LOCEXPR;
17749 gdb_assert (prop->data.baton != NULL);
17750 }
17751 else if (attr_form_is_ref (attr))
17752 {
17753 struct dwarf2_cu *target_cu = cu;
17754 struct die_info *target_die;
17755 struct attribute *target_attr;
17756
17757 target_die = follow_die_ref (die, attr, &target_cu);
17758 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17759 if (target_attr == NULL)
17760 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17761 target_cu);
17762 if (target_attr == NULL)
17763 return 0;
17764
17765 switch (target_attr->name)
17766 {
17767 case DW_AT_location:
17768 if (attr_form_is_section_offset (target_attr))
17769 {
17770 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17771 baton->referenced_type = die_type (target_die, target_cu);
17772 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17773 prop->data.baton = baton;
17774 prop->kind = PROP_LOCLIST;
17775 gdb_assert (prop->data.baton != NULL);
17776 }
17777 else if (attr_form_is_block (target_attr))
17778 {
17779 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17780 baton->referenced_type = die_type (target_die, target_cu);
17781 baton->locexpr.per_cu = cu->per_cu;
17782 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17783 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17784 prop->data.baton = baton;
17785 prop->kind = PROP_LOCEXPR;
17786 gdb_assert (prop->data.baton != NULL);
17787 }
17788 else
17789 {
17790 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17791 "dynamic property");
17792 return 0;
17793 }
17794 break;
17795 case DW_AT_data_member_location:
17796 {
17797 LONGEST offset;
17798
17799 if (!handle_data_member_location (target_die, target_cu,
17800 &offset))
17801 return 0;
17802
17803 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17804 baton->referenced_type = read_type_die (target_die->parent,
17805 target_cu);
17806 baton->offset_info.offset = offset;
17807 baton->offset_info.type = die_type (target_die, target_cu);
17808 prop->data.baton = baton;
17809 prop->kind = PROP_ADDR_OFFSET;
17810 break;
17811 }
17812 }
17813 }
17814 else if (attr_form_is_constant (attr))
17815 {
17816 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17817 prop->kind = PROP_CONST;
17818 }
17819 else
17820 {
17821 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17822 dwarf2_name (die, cu));
17823 return 0;
17824 }
17825
17826 return 1;
17827 }
17828
17829 /* Read the given DW_AT_subrange DIE. */
17830
17831 static struct type *
17832 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17833 {
17834 struct type *base_type, *orig_base_type;
17835 struct type *range_type;
17836 struct attribute *attr;
17837 struct dynamic_prop low, high;
17838 int low_default_is_valid;
17839 int high_bound_is_count = 0;
17840 const char *name;
17841 ULONGEST negative_mask;
17842
17843 orig_base_type = die_type (die, cu);
17844 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17845 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17846 creating the range type, but we use the result of check_typedef
17847 when examining properties of the type. */
17848 base_type = check_typedef (orig_base_type);
17849
17850 /* The die_type call above may have already set the type for this DIE. */
17851 range_type = get_die_type (die, cu);
17852 if (range_type)
17853 return range_type;
17854
17855 low.kind = PROP_CONST;
17856 high.kind = PROP_CONST;
17857 high.data.const_val = 0;
17858
17859 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17860 omitting DW_AT_lower_bound. */
17861 switch (cu->language)
17862 {
17863 case language_c:
17864 case language_cplus:
17865 low.data.const_val = 0;
17866 low_default_is_valid = 1;
17867 break;
17868 case language_fortran:
17869 low.data.const_val = 1;
17870 low_default_is_valid = 1;
17871 break;
17872 case language_d:
17873 case language_objc:
17874 case language_rust:
17875 low.data.const_val = 0;
17876 low_default_is_valid = (cu->header.version >= 4);
17877 break;
17878 case language_ada:
17879 case language_m2:
17880 case language_pascal:
17881 low.data.const_val = 1;
17882 low_default_is_valid = (cu->header.version >= 4);
17883 break;
17884 default:
17885 low.data.const_val = 0;
17886 low_default_is_valid = 0;
17887 break;
17888 }
17889
17890 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17891 if (attr)
17892 attr_to_dynamic_prop (attr, die, cu, &low);
17893 else if (!low_default_is_valid)
17894 complaint (_("Missing DW_AT_lower_bound "
17895 "- DIE at %s [in module %s]"),
17896 sect_offset_str (die->sect_off),
17897 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17898
17899 struct attribute *attr_ub, *attr_count;
17900 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17901 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17902 {
17903 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17904 if (attr_to_dynamic_prop (attr, die, cu, &high))
17905 {
17906 /* If bounds are constant do the final calculation here. */
17907 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17908 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17909 else
17910 high_bound_is_count = 1;
17911 }
17912 else
17913 {
17914 if (attr_ub != NULL)
17915 complaint (_("Unresolved DW_AT_upper_bound "
17916 "- DIE at %s [in module %s]"),
17917 sect_offset_str (die->sect_off),
17918 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17919 if (attr_count != NULL)
17920 complaint (_("Unresolved DW_AT_count "
17921 "- DIE at %s [in module %s]"),
17922 sect_offset_str (die->sect_off),
17923 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17924 }
17925
17926 }
17927
17928 /* Dwarf-2 specifications explicitly allows to create subrange types
17929 without specifying a base type.
17930 In that case, the base type must be set to the type of
17931 the lower bound, upper bound or count, in that order, if any of these
17932 three attributes references an object that has a type.
17933 If no base type is found, the Dwarf-2 specifications say that
17934 a signed integer type of size equal to the size of an address should
17935 be used.
17936 For the following C code: `extern char gdb_int [];'
17937 GCC produces an empty range DIE.
17938 FIXME: muller/2010-05-28: Possible references to object for low bound,
17939 high bound or count are not yet handled by this code. */
17940 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17941 {
17942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17943 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17944 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17945 struct type *int_type = objfile_type (objfile)->builtin_int;
17946
17947 /* Test "int", "long int", and "long long int" objfile types,
17948 and select the first one having a size above or equal to the
17949 architecture address size. */
17950 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17951 base_type = int_type;
17952 else
17953 {
17954 int_type = objfile_type (objfile)->builtin_long;
17955 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17956 base_type = int_type;
17957 else
17958 {
17959 int_type = objfile_type (objfile)->builtin_long_long;
17960 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17961 base_type = int_type;
17962 }
17963 }
17964 }
17965
17966 /* Normally, the DWARF producers are expected to use a signed
17967 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17968 But this is unfortunately not always the case, as witnessed
17969 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17970 is used instead. To work around that ambiguity, we treat
17971 the bounds as signed, and thus sign-extend their values, when
17972 the base type is signed. */
17973 negative_mask =
17974 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17975 if (low.kind == PROP_CONST
17976 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17977 low.data.const_val |= negative_mask;
17978 if (high.kind == PROP_CONST
17979 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17980 high.data.const_val |= negative_mask;
17981
17982 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17983
17984 if (high_bound_is_count)
17985 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17986
17987 /* Ada expects an empty array on no boundary attributes. */
17988 if (attr == NULL && cu->language != language_ada)
17989 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17990
17991 name = dwarf2_name (die, cu);
17992 if (name)
17993 TYPE_NAME (range_type) = name;
17994
17995 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17996 if (attr)
17997 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17998
17999 maybe_set_alignment (cu, die, range_type);
18000
18001 set_die_type (die, range_type, cu);
18002
18003 /* set_die_type should be already done. */
18004 set_descriptive_type (range_type, die, cu);
18005
18006 return range_type;
18007 }
18008
18009 static struct type *
18010 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18011 {
18012 struct type *type;
18013
18014 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18015 NULL);
18016 TYPE_NAME (type) = dwarf2_name (die, cu);
18017
18018 /* In Ada, an unspecified type is typically used when the description
18019 of the type is defered to a different unit. When encountering
18020 such a type, we treat it as a stub, and try to resolve it later on,
18021 when needed. */
18022 if (cu->language == language_ada)
18023 TYPE_STUB (type) = 1;
18024
18025 return set_die_type (die, type, cu);
18026 }
18027
18028 /* Read a single die and all its descendents. Set the die's sibling
18029 field to NULL; set other fields in the die correctly, and set all
18030 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18031 location of the info_ptr after reading all of those dies. PARENT
18032 is the parent of the die in question. */
18033
18034 static struct die_info *
18035 read_die_and_children (const struct die_reader_specs *reader,
18036 const gdb_byte *info_ptr,
18037 const gdb_byte **new_info_ptr,
18038 struct die_info *parent)
18039 {
18040 struct die_info *die;
18041 const gdb_byte *cur_ptr;
18042 int has_children;
18043
18044 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18045 if (die == NULL)
18046 {
18047 *new_info_ptr = cur_ptr;
18048 return NULL;
18049 }
18050 store_in_ref_table (die, reader->cu);
18051
18052 if (has_children)
18053 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18054 else
18055 {
18056 die->child = NULL;
18057 *new_info_ptr = cur_ptr;
18058 }
18059
18060 die->sibling = NULL;
18061 die->parent = parent;
18062 return die;
18063 }
18064
18065 /* Read a die, all of its descendents, and all of its siblings; set
18066 all of the fields of all of the dies correctly. Arguments are as
18067 in read_die_and_children. */
18068
18069 static struct die_info *
18070 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18071 const gdb_byte *info_ptr,
18072 const gdb_byte **new_info_ptr,
18073 struct die_info *parent)
18074 {
18075 struct die_info *first_die, *last_sibling;
18076 const gdb_byte *cur_ptr;
18077
18078 cur_ptr = info_ptr;
18079 first_die = last_sibling = NULL;
18080
18081 while (1)
18082 {
18083 struct die_info *die
18084 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18085
18086 if (die == NULL)
18087 {
18088 *new_info_ptr = cur_ptr;
18089 return first_die;
18090 }
18091
18092 if (!first_die)
18093 first_die = die;
18094 else
18095 last_sibling->sibling = die;
18096
18097 last_sibling = die;
18098 }
18099 }
18100
18101 /* Read a die, all of its descendents, and all of its siblings; set
18102 all of the fields of all of the dies correctly. Arguments are as
18103 in read_die_and_children.
18104 This the main entry point for reading a DIE and all its children. */
18105
18106 static struct die_info *
18107 read_die_and_siblings (const struct die_reader_specs *reader,
18108 const gdb_byte *info_ptr,
18109 const gdb_byte **new_info_ptr,
18110 struct die_info *parent)
18111 {
18112 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18113 new_info_ptr, parent);
18114
18115 if (dwarf_die_debug)
18116 {
18117 fprintf_unfiltered (gdb_stdlog,
18118 "Read die from %s@0x%x of %s:\n",
18119 get_section_name (reader->die_section),
18120 (unsigned) (info_ptr - reader->die_section->buffer),
18121 bfd_get_filename (reader->abfd));
18122 dump_die (die, dwarf_die_debug);
18123 }
18124
18125 return die;
18126 }
18127
18128 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18129 attributes.
18130 The caller is responsible for filling in the extra attributes
18131 and updating (*DIEP)->num_attrs.
18132 Set DIEP to point to a newly allocated die with its information,
18133 except for its child, sibling, and parent fields.
18134 Set HAS_CHILDREN to tell whether the die has children or not. */
18135
18136 static const gdb_byte *
18137 read_full_die_1 (const struct die_reader_specs *reader,
18138 struct die_info **diep, const gdb_byte *info_ptr,
18139 int *has_children, int num_extra_attrs)
18140 {
18141 unsigned int abbrev_number, bytes_read, i;
18142 struct abbrev_info *abbrev;
18143 struct die_info *die;
18144 struct dwarf2_cu *cu = reader->cu;
18145 bfd *abfd = reader->abfd;
18146
18147 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18148 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18149 info_ptr += bytes_read;
18150 if (!abbrev_number)
18151 {
18152 *diep = NULL;
18153 *has_children = 0;
18154 return info_ptr;
18155 }
18156
18157 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18158 if (!abbrev)
18159 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18160 abbrev_number,
18161 bfd_get_filename (abfd));
18162
18163 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18164 die->sect_off = sect_off;
18165 die->tag = abbrev->tag;
18166 die->abbrev = abbrev_number;
18167
18168 /* Make the result usable.
18169 The caller needs to update num_attrs after adding the extra
18170 attributes. */
18171 die->num_attrs = abbrev->num_attrs;
18172
18173 for (i = 0; i < abbrev->num_attrs; ++i)
18174 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18175 info_ptr);
18176
18177 *diep = die;
18178 *has_children = abbrev->has_children;
18179 return info_ptr;
18180 }
18181
18182 /* Read a die and all its attributes.
18183 Set DIEP to point to a newly allocated die with its information,
18184 except for its child, sibling, and parent fields.
18185 Set HAS_CHILDREN to tell whether the die has children or not. */
18186
18187 static const gdb_byte *
18188 read_full_die (const struct die_reader_specs *reader,
18189 struct die_info **diep, const gdb_byte *info_ptr,
18190 int *has_children)
18191 {
18192 const gdb_byte *result;
18193
18194 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18195
18196 if (dwarf_die_debug)
18197 {
18198 fprintf_unfiltered (gdb_stdlog,
18199 "Read die from %s@0x%x of %s:\n",
18200 get_section_name (reader->die_section),
18201 (unsigned) (info_ptr - reader->die_section->buffer),
18202 bfd_get_filename (reader->abfd));
18203 dump_die (*diep, dwarf_die_debug);
18204 }
18205
18206 return result;
18207 }
18208 \f
18209 /* Abbreviation tables.
18210
18211 In DWARF version 2, the description of the debugging information is
18212 stored in a separate .debug_abbrev section. Before we read any
18213 dies from a section we read in all abbreviations and install them
18214 in a hash table. */
18215
18216 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18217
18218 struct abbrev_info *
18219 abbrev_table::alloc_abbrev ()
18220 {
18221 struct abbrev_info *abbrev;
18222
18223 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18224 memset (abbrev, 0, sizeof (struct abbrev_info));
18225
18226 return abbrev;
18227 }
18228
18229 /* Add an abbreviation to the table. */
18230
18231 void
18232 abbrev_table::add_abbrev (unsigned int abbrev_number,
18233 struct abbrev_info *abbrev)
18234 {
18235 unsigned int hash_number;
18236
18237 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18238 abbrev->next = m_abbrevs[hash_number];
18239 m_abbrevs[hash_number] = abbrev;
18240 }
18241
18242 /* Look up an abbrev in the table.
18243 Returns NULL if the abbrev is not found. */
18244
18245 struct abbrev_info *
18246 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18247 {
18248 unsigned int hash_number;
18249 struct abbrev_info *abbrev;
18250
18251 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18252 abbrev = m_abbrevs[hash_number];
18253
18254 while (abbrev)
18255 {
18256 if (abbrev->number == abbrev_number)
18257 return abbrev;
18258 abbrev = abbrev->next;
18259 }
18260 return NULL;
18261 }
18262
18263 /* Read in an abbrev table. */
18264
18265 static abbrev_table_up
18266 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18267 struct dwarf2_section_info *section,
18268 sect_offset sect_off)
18269 {
18270 struct objfile *objfile = dwarf2_per_objfile->objfile;
18271 bfd *abfd = get_section_bfd_owner (section);
18272 const gdb_byte *abbrev_ptr;
18273 struct abbrev_info *cur_abbrev;
18274 unsigned int abbrev_number, bytes_read, abbrev_name;
18275 unsigned int abbrev_form;
18276 struct attr_abbrev *cur_attrs;
18277 unsigned int allocated_attrs;
18278
18279 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18280
18281 dwarf2_read_section (objfile, section);
18282 abbrev_ptr = section->buffer + to_underlying (sect_off);
18283 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18284 abbrev_ptr += bytes_read;
18285
18286 allocated_attrs = ATTR_ALLOC_CHUNK;
18287 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18288
18289 /* Loop until we reach an abbrev number of 0. */
18290 while (abbrev_number)
18291 {
18292 cur_abbrev = abbrev_table->alloc_abbrev ();
18293
18294 /* read in abbrev header */
18295 cur_abbrev->number = abbrev_number;
18296 cur_abbrev->tag
18297 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18298 abbrev_ptr += bytes_read;
18299 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18300 abbrev_ptr += 1;
18301
18302 /* now read in declarations */
18303 for (;;)
18304 {
18305 LONGEST implicit_const;
18306
18307 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18308 abbrev_ptr += bytes_read;
18309 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18310 abbrev_ptr += bytes_read;
18311 if (abbrev_form == DW_FORM_implicit_const)
18312 {
18313 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18314 &bytes_read);
18315 abbrev_ptr += bytes_read;
18316 }
18317 else
18318 {
18319 /* Initialize it due to a false compiler warning. */
18320 implicit_const = -1;
18321 }
18322
18323 if (abbrev_name == 0)
18324 break;
18325
18326 if (cur_abbrev->num_attrs == allocated_attrs)
18327 {
18328 allocated_attrs += ATTR_ALLOC_CHUNK;
18329 cur_attrs
18330 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18331 }
18332
18333 cur_attrs[cur_abbrev->num_attrs].name
18334 = (enum dwarf_attribute) abbrev_name;
18335 cur_attrs[cur_abbrev->num_attrs].form
18336 = (enum dwarf_form) abbrev_form;
18337 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18338 ++cur_abbrev->num_attrs;
18339 }
18340
18341 cur_abbrev->attrs =
18342 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18343 cur_abbrev->num_attrs);
18344 memcpy (cur_abbrev->attrs, cur_attrs,
18345 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18346
18347 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18348
18349 /* Get next abbreviation.
18350 Under Irix6 the abbreviations for a compilation unit are not
18351 always properly terminated with an abbrev number of 0.
18352 Exit loop if we encounter an abbreviation which we have
18353 already read (which means we are about to read the abbreviations
18354 for the next compile unit) or if the end of the abbreviation
18355 table is reached. */
18356 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18357 break;
18358 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18359 abbrev_ptr += bytes_read;
18360 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18361 break;
18362 }
18363
18364 xfree (cur_attrs);
18365 return abbrev_table;
18366 }
18367
18368 /* Returns nonzero if TAG represents a type that we might generate a partial
18369 symbol for. */
18370
18371 static int
18372 is_type_tag_for_partial (int tag)
18373 {
18374 switch (tag)
18375 {
18376 #if 0
18377 /* Some types that would be reasonable to generate partial symbols for,
18378 that we don't at present. */
18379 case DW_TAG_array_type:
18380 case DW_TAG_file_type:
18381 case DW_TAG_ptr_to_member_type:
18382 case DW_TAG_set_type:
18383 case DW_TAG_string_type:
18384 case DW_TAG_subroutine_type:
18385 #endif
18386 case DW_TAG_base_type:
18387 case DW_TAG_class_type:
18388 case DW_TAG_interface_type:
18389 case DW_TAG_enumeration_type:
18390 case DW_TAG_structure_type:
18391 case DW_TAG_subrange_type:
18392 case DW_TAG_typedef:
18393 case DW_TAG_union_type:
18394 return 1;
18395 default:
18396 return 0;
18397 }
18398 }
18399
18400 /* Load all DIEs that are interesting for partial symbols into memory. */
18401
18402 static struct partial_die_info *
18403 load_partial_dies (const struct die_reader_specs *reader,
18404 const gdb_byte *info_ptr, int building_psymtab)
18405 {
18406 struct dwarf2_cu *cu = reader->cu;
18407 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18408 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18409 unsigned int bytes_read;
18410 unsigned int load_all = 0;
18411 int nesting_level = 1;
18412
18413 parent_die = NULL;
18414 last_die = NULL;
18415
18416 gdb_assert (cu->per_cu != NULL);
18417 if (cu->per_cu->load_all_dies)
18418 load_all = 1;
18419
18420 cu->partial_dies
18421 = htab_create_alloc_ex (cu->header.length / 12,
18422 partial_die_hash,
18423 partial_die_eq,
18424 NULL,
18425 &cu->comp_unit_obstack,
18426 hashtab_obstack_allocate,
18427 dummy_obstack_deallocate);
18428
18429 while (1)
18430 {
18431 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18432
18433 /* A NULL abbrev means the end of a series of children. */
18434 if (abbrev == NULL)
18435 {
18436 if (--nesting_level == 0)
18437 return first_die;
18438
18439 info_ptr += bytes_read;
18440 last_die = parent_die;
18441 parent_die = parent_die->die_parent;
18442 continue;
18443 }
18444
18445 /* Check for template arguments. We never save these; if
18446 they're seen, we just mark the parent, and go on our way. */
18447 if (parent_die != NULL
18448 && cu->language == language_cplus
18449 && (abbrev->tag == DW_TAG_template_type_param
18450 || abbrev->tag == DW_TAG_template_value_param))
18451 {
18452 parent_die->has_template_arguments = 1;
18453
18454 if (!load_all)
18455 {
18456 /* We don't need a partial DIE for the template argument. */
18457 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18458 continue;
18459 }
18460 }
18461
18462 /* We only recurse into c++ subprograms looking for template arguments.
18463 Skip their other children. */
18464 if (!load_all
18465 && cu->language == language_cplus
18466 && parent_die != NULL
18467 && parent_die->tag == DW_TAG_subprogram)
18468 {
18469 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18470 continue;
18471 }
18472
18473 /* Check whether this DIE is interesting enough to save. Normally
18474 we would not be interested in members here, but there may be
18475 later variables referencing them via DW_AT_specification (for
18476 static members). */
18477 if (!load_all
18478 && !is_type_tag_for_partial (abbrev->tag)
18479 && abbrev->tag != DW_TAG_constant
18480 && abbrev->tag != DW_TAG_enumerator
18481 && abbrev->tag != DW_TAG_subprogram
18482 && abbrev->tag != DW_TAG_inlined_subroutine
18483 && abbrev->tag != DW_TAG_lexical_block
18484 && abbrev->tag != DW_TAG_variable
18485 && abbrev->tag != DW_TAG_namespace
18486 && abbrev->tag != DW_TAG_module
18487 && abbrev->tag != DW_TAG_member
18488 && abbrev->tag != DW_TAG_imported_unit
18489 && abbrev->tag != DW_TAG_imported_declaration)
18490 {
18491 /* Otherwise we skip to the next sibling, if any. */
18492 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18493 continue;
18494 }
18495
18496 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18497 abbrev);
18498
18499 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18500
18501 /* This two-pass algorithm for processing partial symbols has a
18502 high cost in cache pressure. Thus, handle some simple cases
18503 here which cover the majority of C partial symbols. DIEs
18504 which neither have specification tags in them, nor could have
18505 specification tags elsewhere pointing at them, can simply be
18506 processed and discarded.
18507
18508 This segment is also optional; scan_partial_symbols and
18509 add_partial_symbol will handle these DIEs if we chain
18510 them in normally. When compilers which do not emit large
18511 quantities of duplicate debug information are more common,
18512 this code can probably be removed. */
18513
18514 /* Any complete simple types at the top level (pretty much all
18515 of them, for a language without namespaces), can be processed
18516 directly. */
18517 if (parent_die == NULL
18518 && pdi.has_specification == 0
18519 && pdi.is_declaration == 0
18520 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18521 || pdi.tag == DW_TAG_base_type
18522 || pdi.tag == DW_TAG_subrange_type))
18523 {
18524 if (building_psymtab && pdi.name != NULL)
18525 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18526 VAR_DOMAIN, LOC_TYPEDEF, -1,
18527 psymbol_placement::STATIC,
18528 0, cu->language, objfile);
18529 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18530 continue;
18531 }
18532
18533 /* The exception for DW_TAG_typedef with has_children above is
18534 a workaround of GCC PR debug/47510. In the case of this complaint
18535 type_name_or_error will error on such types later.
18536
18537 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18538 it could not find the child DIEs referenced later, this is checked
18539 above. In correct DWARF DW_TAG_typedef should have no children. */
18540
18541 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18542 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18543 "- DIE at %s [in module %s]"),
18544 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18545
18546 /* If we're at the second level, and we're an enumerator, and
18547 our parent has no specification (meaning possibly lives in a
18548 namespace elsewhere), then we can add the partial symbol now
18549 instead of queueing it. */
18550 if (pdi.tag == DW_TAG_enumerator
18551 && parent_die != NULL
18552 && parent_die->die_parent == NULL
18553 && parent_die->tag == DW_TAG_enumeration_type
18554 && parent_die->has_specification == 0)
18555 {
18556 if (pdi.name == NULL)
18557 complaint (_("malformed enumerator DIE ignored"));
18558 else if (building_psymtab)
18559 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18560 VAR_DOMAIN, LOC_CONST, -1,
18561 cu->language == language_cplus
18562 ? psymbol_placement::GLOBAL
18563 : psymbol_placement::STATIC,
18564 0, cu->language, objfile);
18565
18566 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18567 continue;
18568 }
18569
18570 struct partial_die_info *part_die
18571 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18572
18573 /* We'll save this DIE so link it in. */
18574 part_die->die_parent = parent_die;
18575 part_die->die_sibling = NULL;
18576 part_die->die_child = NULL;
18577
18578 if (last_die && last_die == parent_die)
18579 last_die->die_child = part_die;
18580 else if (last_die)
18581 last_die->die_sibling = part_die;
18582
18583 last_die = part_die;
18584
18585 if (first_die == NULL)
18586 first_die = part_die;
18587
18588 /* Maybe add the DIE to the hash table. Not all DIEs that we
18589 find interesting need to be in the hash table, because we
18590 also have the parent/sibling/child chains; only those that we
18591 might refer to by offset later during partial symbol reading.
18592
18593 For now this means things that might have be the target of a
18594 DW_AT_specification, DW_AT_abstract_origin, or
18595 DW_AT_extension. DW_AT_extension will refer only to
18596 namespaces; DW_AT_abstract_origin refers to functions (and
18597 many things under the function DIE, but we do not recurse
18598 into function DIEs during partial symbol reading) and
18599 possibly variables as well; DW_AT_specification refers to
18600 declarations. Declarations ought to have the DW_AT_declaration
18601 flag. It happens that GCC forgets to put it in sometimes, but
18602 only for functions, not for types.
18603
18604 Adding more things than necessary to the hash table is harmless
18605 except for the performance cost. Adding too few will result in
18606 wasted time in find_partial_die, when we reread the compilation
18607 unit with load_all_dies set. */
18608
18609 if (load_all
18610 || abbrev->tag == DW_TAG_constant
18611 || abbrev->tag == DW_TAG_subprogram
18612 || abbrev->tag == DW_TAG_variable
18613 || abbrev->tag == DW_TAG_namespace
18614 || part_die->is_declaration)
18615 {
18616 void **slot;
18617
18618 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18619 to_underlying (part_die->sect_off),
18620 INSERT);
18621 *slot = part_die;
18622 }
18623
18624 /* For some DIEs we want to follow their children (if any). For C
18625 we have no reason to follow the children of structures; for other
18626 languages we have to, so that we can get at method physnames
18627 to infer fully qualified class names, for DW_AT_specification,
18628 and for C++ template arguments. For C++, we also look one level
18629 inside functions to find template arguments (if the name of the
18630 function does not already contain the template arguments).
18631
18632 For Ada, we need to scan the children of subprograms and lexical
18633 blocks as well because Ada allows the definition of nested
18634 entities that could be interesting for the debugger, such as
18635 nested subprograms for instance. */
18636 if (last_die->has_children
18637 && (load_all
18638 || last_die->tag == DW_TAG_namespace
18639 || last_die->tag == DW_TAG_module
18640 || last_die->tag == DW_TAG_enumeration_type
18641 || (cu->language == language_cplus
18642 && last_die->tag == DW_TAG_subprogram
18643 && (last_die->name == NULL
18644 || strchr (last_die->name, '<') == NULL))
18645 || (cu->language != language_c
18646 && (last_die->tag == DW_TAG_class_type
18647 || last_die->tag == DW_TAG_interface_type
18648 || last_die->tag == DW_TAG_structure_type
18649 || last_die->tag == DW_TAG_union_type))
18650 || (cu->language == language_ada
18651 && (last_die->tag == DW_TAG_subprogram
18652 || last_die->tag == DW_TAG_lexical_block))))
18653 {
18654 nesting_level++;
18655 parent_die = last_die;
18656 continue;
18657 }
18658
18659 /* Otherwise we skip to the next sibling, if any. */
18660 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18661
18662 /* Back to the top, do it again. */
18663 }
18664 }
18665
18666 partial_die_info::partial_die_info (sect_offset sect_off_,
18667 struct abbrev_info *abbrev)
18668 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18669 {
18670 }
18671
18672 /* Read a minimal amount of information into the minimal die structure.
18673 INFO_PTR should point just after the initial uleb128 of a DIE. */
18674
18675 const gdb_byte *
18676 partial_die_info::read (const struct die_reader_specs *reader,
18677 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18678 {
18679 struct dwarf2_cu *cu = reader->cu;
18680 struct dwarf2_per_objfile *dwarf2_per_objfile
18681 = cu->per_cu->dwarf2_per_objfile;
18682 unsigned int i;
18683 int has_low_pc_attr = 0;
18684 int has_high_pc_attr = 0;
18685 int high_pc_relative = 0;
18686
18687 for (i = 0; i < abbrev.num_attrs; ++i)
18688 {
18689 struct attribute attr;
18690
18691 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18692
18693 /* Store the data if it is of an attribute we want to keep in a
18694 partial symbol table. */
18695 switch (attr.name)
18696 {
18697 case DW_AT_name:
18698 switch (tag)
18699 {
18700 case DW_TAG_compile_unit:
18701 case DW_TAG_partial_unit:
18702 case DW_TAG_type_unit:
18703 /* Compilation units have a DW_AT_name that is a filename, not
18704 a source language identifier. */
18705 case DW_TAG_enumeration_type:
18706 case DW_TAG_enumerator:
18707 /* These tags always have simple identifiers already; no need
18708 to canonicalize them. */
18709 name = DW_STRING (&attr);
18710 break;
18711 default:
18712 {
18713 struct objfile *objfile = dwarf2_per_objfile->objfile;
18714
18715 name
18716 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18717 &objfile->per_bfd->storage_obstack);
18718 }
18719 break;
18720 }
18721 break;
18722 case DW_AT_linkage_name:
18723 case DW_AT_MIPS_linkage_name:
18724 /* Note that both forms of linkage name might appear. We
18725 assume they will be the same, and we only store the last
18726 one we see. */
18727 if (cu->language == language_ada)
18728 name = DW_STRING (&attr);
18729 linkage_name = DW_STRING (&attr);
18730 break;
18731 case DW_AT_low_pc:
18732 has_low_pc_attr = 1;
18733 lowpc = attr_value_as_address (&attr);
18734 break;
18735 case DW_AT_high_pc:
18736 has_high_pc_attr = 1;
18737 highpc = attr_value_as_address (&attr);
18738 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18739 high_pc_relative = 1;
18740 break;
18741 case DW_AT_location:
18742 /* Support the .debug_loc offsets. */
18743 if (attr_form_is_block (&attr))
18744 {
18745 d.locdesc = DW_BLOCK (&attr);
18746 }
18747 else if (attr_form_is_section_offset (&attr))
18748 {
18749 dwarf2_complex_location_expr_complaint ();
18750 }
18751 else
18752 {
18753 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18754 "partial symbol information");
18755 }
18756 break;
18757 case DW_AT_external:
18758 is_external = DW_UNSND (&attr);
18759 break;
18760 case DW_AT_declaration:
18761 is_declaration = DW_UNSND (&attr);
18762 break;
18763 case DW_AT_type:
18764 has_type = 1;
18765 break;
18766 case DW_AT_abstract_origin:
18767 case DW_AT_specification:
18768 case DW_AT_extension:
18769 has_specification = 1;
18770 spec_offset = dwarf2_get_ref_die_offset (&attr);
18771 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18772 || cu->per_cu->is_dwz);
18773 break;
18774 case DW_AT_sibling:
18775 /* Ignore absolute siblings, they might point outside of
18776 the current compile unit. */
18777 if (attr.form == DW_FORM_ref_addr)
18778 complaint (_("ignoring absolute DW_AT_sibling"));
18779 else
18780 {
18781 const gdb_byte *buffer = reader->buffer;
18782 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18783 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18784
18785 if (sibling_ptr < info_ptr)
18786 complaint (_("DW_AT_sibling points backwards"));
18787 else if (sibling_ptr > reader->buffer_end)
18788 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18789 else
18790 sibling = sibling_ptr;
18791 }
18792 break;
18793 case DW_AT_byte_size:
18794 has_byte_size = 1;
18795 break;
18796 case DW_AT_const_value:
18797 has_const_value = 1;
18798 break;
18799 case DW_AT_calling_convention:
18800 /* DWARF doesn't provide a way to identify a program's source-level
18801 entry point. DW_AT_calling_convention attributes are only meant
18802 to describe functions' calling conventions.
18803
18804 However, because it's a necessary piece of information in
18805 Fortran, and before DWARF 4 DW_CC_program was the only
18806 piece of debugging information whose definition refers to
18807 a 'main program' at all, several compilers marked Fortran
18808 main programs with DW_CC_program --- even when those
18809 functions use the standard calling conventions.
18810
18811 Although DWARF now specifies a way to provide this
18812 information, we support this practice for backward
18813 compatibility. */
18814 if (DW_UNSND (&attr) == DW_CC_program
18815 && cu->language == language_fortran)
18816 main_subprogram = 1;
18817 break;
18818 case DW_AT_inline:
18819 if (DW_UNSND (&attr) == DW_INL_inlined
18820 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18821 may_be_inlined = 1;
18822 break;
18823
18824 case DW_AT_import:
18825 if (tag == DW_TAG_imported_unit)
18826 {
18827 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18828 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18829 || cu->per_cu->is_dwz);
18830 }
18831 break;
18832
18833 case DW_AT_main_subprogram:
18834 main_subprogram = DW_UNSND (&attr);
18835 break;
18836
18837 case DW_AT_ranges:
18838 {
18839 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18840 but that requires a full DIE, so instead we just
18841 reimplement it. */
18842 int need_ranges_base = tag != DW_TAG_compile_unit;
18843 unsigned int ranges_offset = (DW_UNSND (&attr)
18844 + (need_ranges_base
18845 ? cu->ranges_base
18846 : 0));
18847
18848 /* Value of the DW_AT_ranges attribute is the offset in the
18849 .debug_ranges section. */
18850 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18851 nullptr))
18852 has_pc_info = 1;
18853 }
18854 break;
18855
18856 default:
18857 break;
18858 }
18859 }
18860
18861 if (high_pc_relative)
18862 highpc += lowpc;
18863
18864 if (has_low_pc_attr && has_high_pc_attr)
18865 {
18866 /* When using the GNU linker, .gnu.linkonce. sections are used to
18867 eliminate duplicate copies of functions and vtables and such.
18868 The linker will arbitrarily choose one and discard the others.
18869 The AT_*_pc values for such functions refer to local labels in
18870 these sections. If the section from that file was discarded, the
18871 labels are not in the output, so the relocs get a value of 0.
18872 If this is a discarded function, mark the pc bounds as invalid,
18873 so that GDB will ignore it. */
18874 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18875 {
18876 struct objfile *objfile = dwarf2_per_objfile->objfile;
18877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18878
18879 complaint (_("DW_AT_low_pc %s is zero "
18880 "for DIE at %s [in module %s]"),
18881 paddress (gdbarch, lowpc),
18882 sect_offset_str (sect_off),
18883 objfile_name (objfile));
18884 }
18885 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18886 else if (lowpc >= highpc)
18887 {
18888 struct objfile *objfile = dwarf2_per_objfile->objfile;
18889 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18890
18891 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18892 "for DIE at %s [in module %s]"),
18893 paddress (gdbarch, lowpc),
18894 paddress (gdbarch, highpc),
18895 sect_offset_str (sect_off),
18896 objfile_name (objfile));
18897 }
18898 else
18899 has_pc_info = 1;
18900 }
18901
18902 return info_ptr;
18903 }
18904
18905 /* Find a cached partial DIE at OFFSET in CU. */
18906
18907 struct partial_die_info *
18908 dwarf2_cu::find_partial_die (sect_offset sect_off)
18909 {
18910 struct partial_die_info *lookup_die = NULL;
18911 struct partial_die_info part_die (sect_off);
18912
18913 lookup_die = ((struct partial_die_info *)
18914 htab_find_with_hash (partial_dies, &part_die,
18915 to_underlying (sect_off)));
18916
18917 return lookup_die;
18918 }
18919
18920 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18921 except in the case of .debug_types DIEs which do not reference
18922 outside their CU (they do however referencing other types via
18923 DW_FORM_ref_sig8). */
18924
18925 static struct partial_die_info *
18926 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18927 {
18928 struct dwarf2_per_objfile *dwarf2_per_objfile
18929 = cu->per_cu->dwarf2_per_objfile;
18930 struct objfile *objfile = dwarf2_per_objfile->objfile;
18931 struct dwarf2_per_cu_data *per_cu = NULL;
18932 struct partial_die_info *pd = NULL;
18933
18934 if (offset_in_dwz == cu->per_cu->is_dwz
18935 && offset_in_cu_p (&cu->header, sect_off))
18936 {
18937 pd = cu->find_partial_die (sect_off);
18938 if (pd != NULL)
18939 return pd;
18940 /* We missed recording what we needed.
18941 Load all dies and try again. */
18942 per_cu = cu->per_cu;
18943 }
18944 else
18945 {
18946 /* TUs don't reference other CUs/TUs (except via type signatures). */
18947 if (cu->per_cu->is_debug_types)
18948 {
18949 error (_("Dwarf Error: Type Unit at offset %s contains"
18950 " external reference to offset %s [in module %s].\n"),
18951 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18952 bfd_get_filename (objfile->obfd));
18953 }
18954 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18955 dwarf2_per_objfile);
18956
18957 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18958 load_partial_comp_unit (per_cu);
18959
18960 per_cu->cu->last_used = 0;
18961 pd = per_cu->cu->find_partial_die (sect_off);
18962 }
18963
18964 /* If we didn't find it, and not all dies have been loaded,
18965 load them all and try again. */
18966
18967 if (pd == NULL && per_cu->load_all_dies == 0)
18968 {
18969 per_cu->load_all_dies = 1;
18970
18971 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18972 THIS_CU->cu may already be in use. So we can't just free it and
18973 replace its DIEs with the ones we read in. Instead, we leave those
18974 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18975 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18976 set. */
18977 load_partial_comp_unit (per_cu);
18978
18979 pd = per_cu->cu->find_partial_die (sect_off);
18980 }
18981
18982 if (pd == NULL)
18983 internal_error (__FILE__, __LINE__,
18984 _("could not find partial DIE %s "
18985 "in cache [from module %s]\n"),
18986 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18987 return pd;
18988 }
18989
18990 /* See if we can figure out if the class lives in a namespace. We do
18991 this by looking for a member function; its demangled name will
18992 contain namespace info, if there is any. */
18993
18994 static void
18995 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18996 struct dwarf2_cu *cu)
18997 {
18998 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18999 what template types look like, because the demangler
19000 frequently doesn't give the same name as the debug info. We
19001 could fix this by only using the demangled name to get the
19002 prefix (but see comment in read_structure_type). */
19003
19004 struct partial_die_info *real_pdi;
19005 struct partial_die_info *child_pdi;
19006
19007 /* If this DIE (this DIE's specification, if any) has a parent, then
19008 we should not do this. We'll prepend the parent's fully qualified
19009 name when we create the partial symbol. */
19010
19011 real_pdi = struct_pdi;
19012 while (real_pdi->has_specification)
19013 real_pdi = find_partial_die (real_pdi->spec_offset,
19014 real_pdi->spec_is_dwz, cu);
19015
19016 if (real_pdi->die_parent != NULL)
19017 return;
19018
19019 for (child_pdi = struct_pdi->die_child;
19020 child_pdi != NULL;
19021 child_pdi = child_pdi->die_sibling)
19022 {
19023 if (child_pdi->tag == DW_TAG_subprogram
19024 && child_pdi->linkage_name != NULL)
19025 {
19026 char *actual_class_name
19027 = language_class_name_from_physname (cu->language_defn,
19028 child_pdi->linkage_name);
19029 if (actual_class_name != NULL)
19030 {
19031 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19032 struct_pdi->name
19033 = ((const char *)
19034 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19035 actual_class_name,
19036 strlen (actual_class_name)));
19037 xfree (actual_class_name);
19038 }
19039 break;
19040 }
19041 }
19042 }
19043
19044 void
19045 partial_die_info::fixup (struct dwarf2_cu *cu)
19046 {
19047 /* Once we've fixed up a die, there's no point in doing so again.
19048 This also avoids a memory leak if we were to call
19049 guess_partial_die_structure_name multiple times. */
19050 if (fixup_called)
19051 return;
19052
19053 /* If we found a reference attribute and the DIE has no name, try
19054 to find a name in the referred to DIE. */
19055
19056 if (name == NULL && has_specification)
19057 {
19058 struct partial_die_info *spec_die;
19059
19060 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19061
19062 spec_die->fixup (cu);
19063
19064 if (spec_die->name)
19065 {
19066 name = spec_die->name;
19067
19068 /* Copy DW_AT_external attribute if it is set. */
19069 if (spec_die->is_external)
19070 is_external = spec_die->is_external;
19071 }
19072 }
19073
19074 /* Set default names for some unnamed DIEs. */
19075
19076 if (name == NULL && tag == DW_TAG_namespace)
19077 name = CP_ANONYMOUS_NAMESPACE_STR;
19078
19079 /* If there is no parent die to provide a namespace, and there are
19080 children, see if we can determine the namespace from their linkage
19081 name. */
19082 if (cu->language == language_cplus
19083 && !VEC_empty (dwarf2_section_info_def,
19084 cu->per_cu->dwarf2_per_objfile->types)
19085 && die_parent == NULL
19086 && has_children
19087 && (tag == DW_TAG_class_type
19088 || tag == DW_TAG_structure_type
19089 || tag == DW_TAG_union_type))
19090 guess_partial_die_structure_name (this, cu);
19091
19092 /* GCC might emit a nameless struct or union that has a linkage
19093 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19094 if (name == NULL
19095 && (tag == DW_TAG_class_type
19096 || tag == DW_TAG_interface_type
19097 || tag == DW_TAG_structure_type
19098 || tag == DW_TAG_union_type)
19099 && linkage_name != NULL)
19100 {
19101 char *demangled;
19102
19103 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19104 if (demangled)
19105 {
19106 const char *base;
19107
19108 /* Strip any leading namespaces/classes, keep only the base name.
19109 DW_AT_name for named DIEs does not contain the prefixes. */
19110 base = strrchr (demangled, ':');
19111 if (base && base > demangled && base[-1] == ':')
19112 base++;
19113 else
19114 base = demangled;
19115
19116 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19117 name
19118 = ((const char *)
19119 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19120 base, strlen (base)));
19121 xfree (demangled);
19122 }
19123 }
19124
19125 fixup_called = 1;
19126 }
19127
19128 /* Read an attribute value described by an attribute form. */
19129
19130 static const gdb_byte *
19131 read_attribute_value (const struct die_reader_specs *reader,
19132 struct attribute *attr, unsigned form,
19133 LONGEST implicit_const, const gdb_byte *info_ptr)
19134 {
19135 struct dwarf2_cu *cu = reader->cu;
19136 struct dwarf2_per_objfile *dwarf2_per_objfile
19137 = cu->per_cu->dwarf2_per_objfile;
19138 struct objfile *objfile = dwarf2_per_objfile->objfile;
19139 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19140 bfd *abfd = reader->abfd;
19141 struct comp_unit_head *cu_header = &cu->header;
19142 unsigned int bytes_read;
19143 struct dwarf_block *blk;
19144
19145 attr->form = (enum dwarf_form) form;
19146 switch (form)
19147 {
19148 case DW_FORM_ref_addr:
19149 if (cu->header.version == 2)
19150 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19151 else
19152 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19153 &cu->header, &bytes_read);
19154 info_ptr += bytes_read;
19155 break;
19156 case DW_FORM_GNU_ref_alt:
19157 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19158 info_ptr += bytes_read;
19159 break;
19160 case DW_FORM_addr:
19161 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19162 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19163 info_ptr += bytes_read;
19164 break;
19165 case DW_FORM_block2:
19166 blk = dwarf_alloc_block (cu);
19167 blk->size = read_2_bytes (abfd, info_ptr);
19168 info_ptr += 2;
19169 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19170 info_ptr += blk->size;
19171 DW_BLOCK (attr) = blk;
19172 break;
19173 case DW_FORM_block4:
19174 blk = dwarf_alloc_block (cu);
19175 blk->size = read_4_bytes (abfd, info_ptr);
19176 info_ptr += 4;
19177 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19178 info_ptr += blk->size;
19179 DW_BLOCK (attr) = blk;
19180 break;
19181 case DW_FORM_data2:
19182 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19183 info_ptr += 2;
19184 break;
19185 case DW_FORM_data4:
19186 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19187 info_ptr += 4;
19188 break;
19189 case DW_FORM_data8:
19190 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19191 info_ptr += 8;
19192 break;
19193 case DW_FORM_data16:
19194 blk = dwarf_alloc_block (cu);
19195 blk->size = 16;
19196 blk->data = read_n_bytes (abfd, info_ptr, 16);
19197 info_ptr += 16;
19198 DW_BLOCK (attr) = blk;
19199 break;
19200 case DW_FORM_sec_offset:
19201 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19202 info_ptr += bytes_read;
19203 break;
19204 case DW_FORM_string:
19205 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19206 DW_STRING_IS_CANONICAL (attr) = 0;
19207 info_ptr += bytes_read;
19208 break;
19209 case DW_FORM_strp:
19210 if (!cu->per_cu->is_dwz)
19211 {
19212 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19213 abfd, info_ptr, cu_header,
19214 &bytes_read);
19215 DW_STRING_IS_CANONICAL (attr) = 0;
19216 info_ptr += bytes_read;
19217 break;
19218 }
19219 /* FALLTHROUGH */
19220 case DW_FORM_line_strp:
19221 if (!cu->per_cu->is_dwz)
19222 {
19223 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19224 abfd, info_ptr,
19225 cu_header, &bytes_read);
19226 DW_STRING_IS_CANONICAL (attr) = 0;
19227 info_ptr += bytes_read;
19228 break;
19229 }
19230 /* FALLTHROUGH */
19231 case DW_FORM_GNU_strp_alt:
19232 {
19233 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19234 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19235 &bytes_read);
19236
19237 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19238 dwz, str_offset);
19239 DW_STRING_IS_CANONICAL (attr) = 0;
19240 info_ptr += bytes_read;
19241 }
19242 break;
19243 case DW_FORM_exprloc:
19244 case DW_FORM_block:
19245 blk = dwarf_alloc_block (cu);
19246 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19247 info_ptr += bytes_read;
19248 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19249 info_ptr += blk->size;
19250 DW_BLOCK (attr) = blk;
19251 break;
19252 case DW_FORM_block1:
19253 blk = dwarf_alloc_block (cu);
19254 blk->size = read_1_byte (abfd, info_ptr);
19255 info_ptr += 1;
19256 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19257 info_ptr += blk->size;
19258 DW_BLOCK (attr) = blk;
19259 break;
19260 case DW_FORM_data1:
19261 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19262 info_ptr += 1;
19263 break;
19264 case DW_FORM_flag:
19265 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19266 info_ptr += 1;
19267 break;
19268 case DW_FORM_flag_present:
19269 DW_UNSND (attr) = 1;
19270 break;
19271 case DW_FORM_sdata:
19272 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19273 info_ptr += bytes_read;
19274 break;
19275 case DW_FORM_udata:
19276 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19277 info_ptr += bytes_read;
19278 break;
19279 case DW_FORM_ref1:
19280 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19281 + read_1_byte (abfd, info_ptr));
19282 info_ptr += 1;
19283 break;
19284 case DW_FORM_ref2:
19285 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19286 + read_2_bytes (abfd, info_ptr));
19287 info_ptr += 2;
19288 break;
19289 case DW_FORM_ref4:
19290 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19291 + read_4_bytes (abfd, info_ptr));
19292 info_ptr += 4;
19293 break;
19294 case DW_FORM_ref8:
19295 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19296 + read_8_bytes (abfd, info_ptr));
19297 info_ptr += 8;
19298 break;
19299 case DW_FORM_ref_sig8:
19300 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19301 info_ptr += 8;
19302 break;
19303 case DW_FORM_ref_udata:
19304 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19305 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19306 info_ptr += bytes_read;
19307 break;
19308 case DW_FORM_indirect:
19309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19310 info_ptr += bytes_read;
19311 if (form == DW_FORM_implicit_const)
19312 {
19313 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19314 info_ptr += bytes_read;
19315 }
19316 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19317 info_ptr);
19318 break;
19319 case DW_FORM_implicit_const:
19320 DW_SND (attr) = implicit_const;
19321 break;
19322 case DW_FORM_addrx:
19323 case DW_FORM_GNU_addr_index:
19324 if (reader->dwo_file == NULL)
19325 {
19326 /* For now flag a hard error.
19327 Later we can turn this into a complaint. */
19328 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19329 dwarf_form_name (form),
19330 bfd_get_filename (abfd));
19331 }
19332 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19333 info_ptr += bytes_read;
19334 break;
19335 case DW_FORM_strx:
19336 case DW_FORM_strx1:
19337 case DW_FORM_strx2:
19338 case DW_FORM_strx3:
19339 case DW_FORM_strx4:
19340 case DW_FORM_GNU_str_index:
19341 if (reader->dwo_file == NULL)
19342 {
19343 /* For now flag a hard error.
19344 Later we can turn this into a complaint if warranted. */
19345 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19346 dwarf_form_name (form),
19347 bfd_get_filename (abfd));
19348 }
19349 {
19350 ULONGEST str_index;
19351 if (form == DW_FORM_strx1)
19352 {
19353 str_index = read_1_byte (abfd, info_ptr);
19354 info_ptr += 1;
19355 }
19356 else if (form == DW_FORM_strx2)
19357 {
19358 str_index = read_2_bytes (abfd, info_ptr);
19359 info_ptr += 2;
19360 }
19361 else if (form == DW_FORM_strx3)
19362 {
19363 str_index = read_3_bytes (abfd, info_ptr);
19364 info_ptr += 3;
19365 }
19366 else if (form == DW_FORM_strx4)
19367 {
19368 str_index = read_4_bytes (abfd, info_ptr);
19369 info_ptr += 4;
19370 }
19371 else
19372 {
19373 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19374 info_ptr += bytes_read;
19375 }
19376 DW_STRING (attr) = read_str_index (reader, str_index);
19377 DW_STRING_IS_CANONICAL (attr) = 0;
19378 }
19379 break;
19380 default:
19381 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19382 dwarf_form_name (form),
19383 bfd_get_filename (abfd));
19384 }
19385
19386 /* Super hack. */
19387 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19388 attr->form = DW_FORM_GNU_ref_alt;
19389
19390 /* We have seen instances where the compiler tried to emit a byte
19391 size attribute of -1 which ended up being encoded as an unsigned
19392 0xffffffff. Although 0xffffffff is technically a valid size value,
19393 an object of this size seems pretty unlikely so we can relatively
19394 safely treat these cases as if the size attribute was invalid and
19395 treat them as zero by default. */
19396 if (attr->name == DW_AT_byte_size
19397 && form == DW_FORM_data4
19398 && DW_UNSND (attr) >= 0xffffffff)
19399 {
19400 complaint
19401 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19402 hex_string (DW_UNSND (attr)));
19403 DW_UNSND (attr) = 0;
19404 }
19405
19406 return info_ptr;
19407 }
19408
19409 /* Read an attribute described by an abbreviated attribute. */
19410
19411 static const gdb_byte *
19412 read_attribute (const struct die_reader_specs *reader,
19413 struct attribute *attr, struct attr_abbrev *abbrev,
19414 const gdb_byte *info_ptr)
19415 {
19416 attr->name = abbrev->name;
19417 return read_attribute_value (reader, attr, abbrev->form,
19418 abbrev->implicit_const, info_ptr);
19419 }
19420
19421 /* Read dwarf information from a buffer. */
19422
19423 static unsigned int
19424 read_1_byte (bfd *abfd, const gdb_byte *buf)
19425 {
19426 return bfd_get_8 (abfd, buf);
19427 }
19428
19429 static int
19430 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19431 {
19432 return bfd_get_signed_8 (abfd, buf);
19433 }
19434
19435 static unsigned int
19436 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19437 {
19438 return bfd_get_16 (abfd, buf);
19439 }
19440
19441 static int
19442 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19443 {
19444 return bfd_get_signed_16 (abfd, buf);
19445 }
19446
19447 static unsigned int
19448 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19449 {
19450 unsigned int result = 0;
19451 for (int i = 0; i < 3; ++i)
19452 {
19453 unsigned char byte = bfd_get_8 (abfd, buf);
19454 buf++;
19455 result |= ((unsigned int) byte << (i * 8));
19456 }
19457 return result;
19458 }
19459
19460 static unsigned int
19461 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19462 {
19463 return bfd_get_32 (abfd, buf);
19464 }
19465
19466 static int
19467 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19468 {
19469 return bfd_get_signed_32 (abfd, buf);
19470 }
19471
19472 static ULONGEST
19473 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19474 {
19475 return bfd_get_64 (abfd, buf);
19476 }
19477
19478 static CORE_ADDR
19479 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19480 unsigned int *bytes_read)
19481 {
19482 struct comp_unit_head *cu_header = &cu->header;
19483 CORE_ADDR retval = 0;
19484
19485 if (cu_header->signed_addr_p)
19486 {
19487 switch (cu_header->addr_size)
19488 {
19489 case 2:
19490 retval = bfd_get_signed_16 (abfd, buf);
19491 break;
19492 case 4:
19493 retval = bfd_get_signed_32 (abfd, buf);
19494 break;
19495 case 8:
19496 retval = bfd_get_signed_64 (abfd, buf);
19497 break;
19498 default:
19499 internal_error (__FILE__, __LINE__,
19500 _("read_address: bad switch, signed [in module %s]"),
19501 bfd_get_filename (abfd));
19502 }
19503 }
19504 else
19505 {
19506 switch (cu_header->addr_size)
19507 {
19508 case 2:
19509 retval = bfd_get_16 (abfd, buf);
19510 break;
19511 case 4:
19512 retval = bfd_get_32 (abfd, buf);
19513 break;
19514 case 8:
19515 retval = bfd_get_64 (abfd, buf);
19516 break;
19517 default:
19518 internal_error (__FILE__, __LINE__,
19519 _("read_address: bad switch, "
19520 "unsigned [in module %s]"),
19521 bfd_get_filename (abfd));
19522 }
19523 }
19524
19525 *bytes_read = cu_header->addr_size;
19526 return retval;
19527 }
19528
19529 /* Read the initial length from a section. The (draft) DWARF 3
19530 specification allows the initial length to take up either 4 bytes
19531 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19532 bytes describe the length and all offsets will be 8 bytes in length
19533 instead of 4.
19534
19535 An older, non-standard 64-bit format is also handled by this
19536 function. The older format in question stores the initial length
19537 as an 8-byte quantity without an escape value. Lengths greater
19538 than 2^32 aren't very common which means that the initial 4 bytes
19539 is almost always zero. Since a length value of zero doesn't make
19540 sense for the 32-bit format, this initial zero can be considered to
19541 be an escape value which indicates the presence of the older 64-bit
19542 format. As written, the code can't detect (old format) lengths
19543 greater than 4GB. If it becomes necessary to handle lengths
19544 somewhat larger than 4GB, we could allow other small values (such
19545 as the non-sensical values of 1, 2, and 3) to also be used as
19546 escape values indicating the presence of the old format.
19547
19548 The value returned via bytes_read should be used to increment the
19549 relevant pointer after calling read_initial_length().
19550
19551 [ Note: read_initial_length() and read_offset() are based on the
19552 document entitled "DWARF Debugging Information Format", revision
19553 3, draft 8, dated November 19, 2001. This document was obtained
19554 from:
19555
19556 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19557
19558 This document is only a draft and is subject to change. (So beware.)
19559
19560 Details regarding the older, non-standard 64-bit format were
19561 determined empirically by examining 64-bit ELF files produced by
19562 the SGI toolchain on an IRIX 6.5 machine.
19563
19564 - Kevin, July 16, 2002
19565 ] */
19566
19567 static LONGEST
19568 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19569 {
19570 LONGEST length = bfd_get_32 (abfd, buf);
19571
19572 if (length == 0xffffffff)
19573 {
19574 length = bfd_get_64 (abfd, buf + 4);
19575 *bytes_read = 12;
19576 }
19577 else if (length == 0)
19578 {
19579 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19580 length = bfd_get_64 (abfd, buf);
19581 *bytes_read = 8;
19582 }
19583 else
19584 {
19585 *bytes_read = 4;
19586 }
19587
19588 return length;
19589 }
19590
19591 /* Cover function for read_initial_length.
19592 Returns the length of the object at BUF, and stores the size of the
19593 initial length in *BYTES_READ and stores the size that offsets will be in
19594 *OFFSET_SIZE.
19595 If the initial length size is not equivalent to that specified in
19596 CU_HEADER then issue a complaint.
19597 This is useful when reading non-comp-unit headers. */
19598
19599 static LONGEST
19600 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19601 const struct comp_unit_head *cu_header,
19602 unsigned int *bytes_read,
19603 unsigned int *offset_size)
19604 {
19605 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19606
19607 gdb_assert (cu_header->initial_length_size == 4
19608 || cu_header->initial_length_size == 8
19609 || cu_header->initial_length_size == 12);
19610
19611 if (cu_header->initial_length_size != *bytes_read)
19612 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19613
19614 *offset_size = (*bytes_read == 4) ? 4 : 8;
19615 return length;
19616 }
19617
19618 /* Read an offset from the data stream. The size of the offset is
19619 given by cu_header->offset_size. */
19620
19621 static LONGEST
19622 read_offset (bfd *abfd, const gdb_byte *buf,
19623 const struct comp_unit_head *cu_header,
19624 unsigned int *bytes_read)
19625 {
19626 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19627
19628 *bytes_read = cu_header->offset_size;
19629 return offset;
19630 }
19631
19632 /* Read an offset from the data stream. */
19633
19634 static LONGEST
19635 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19636 {
19637 LONGEST retval = 0;
19638
19639 switch (offset_size)
19640 {
19641 case 4:
19642 retval = bfd_get_32 (abfd, buf);
19643 break;
19644 case 8:
19645 retval = bfd_get_64 (abfd, buf);
19646 break;
19647 default:
19648 internal_error (__FILE__, __LINE__,
19649 _("read_offset_1: bad switch [in module %s]"),
19650 bfd_get_filename (abfd));
19651 }
19652
19653 return retval;
19654 }
19655
19656 static const gdb_byte *
19657 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19658 {
19659 /* If the size of a host char is 8 bits, we can return a pointer
19660 to the buffer, otherwise we have to copy the data to a buffer
19661 allocated on the temporary obstack. */
19662 gdb_assert (HOST_CHAR_BIT == 8);
19663 return buf;
19664 }
19665
19666 static const char *
19667 read_direct_string (bfd *abfd, const gdb_byte *buf,
19668 unsigned int *bytes_read_ptr)
19669 {
19670 /* If the size of a host char is 8 bits, we can return a pointer
19671 to the string, otherwise we have to copy the string to a buffer
19672 allocated on the temporary obstack. */
19673 gdb_assert (HOST_CHAR_BIT == 8);
19674 if (*buf == '\0')
19675 {
19676 *bytes_read_ptr = 1;
19677 return NULL;
19678 }
19679 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19680 return (const char *) buf;
19681 }
19682
19683 /* Return pointer to string at section SECT offset STR_OFFSET with error
19684 reporting strings FORM_NAME and SECT_NAME. */
19685
19686 static const char *
19687 read_indirect_string_at_offset_from (struct objfile *objfile,
19688 bfd *abfd, LONGEST str_offset,
19689 struct dwarf2_section_info *sect,
19690 const char *form_name,
19691 const char *sect_name)
19692 {
19693 dwarf2_read_section (objfile, sect);
19694 if (sect->buffer == NULL)
19695 error (_("%s used without %s section [in module %s]"),
19696 form_name, sect_name, bfd_get_filename (abfd));
19697 if (str_offset >= sect->size)
19698 error (_("%s pointing outside of %s section [in module %s]"),
19699 form_name, sect_name, bfd_get_filename (abfd));
19700 gdb_assert (HOST_CHAR_BIT == 8);
19701 if (sect->buffer[str_offset] == '\0')
19702 return NULL;
19703 return (const char *) (sect->buffer + str_offset);
19704 }
19705
19706 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19707
19708 static const char *
19709 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19710 bfd *abfd, LONGEST str_offset)
19711 {
19712 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19713 abfd, str_offset,
19714 &dwarf2_per_objfile->str,
19715 "DW_FORM_strp", ".debug_str");
19716 }
19717
19718 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19719
19720 static const char *
19721 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19722 bfd *abfd, LONGEST str_offset)
19723 {
19724 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19725 abfd, str_offset,
19726 &dwarf2_per_objfile->line_str,
19727 "DW_FORM_line_strp",
19728 ".debug_line_str");
19729 }
19730
19731 /* Read a string at offset STR_OFFSET in the .debug_str section from
19732 the .dwz file DWZ. Throw an error if the offset is too large. If
19733 the string consists of a single NUL byte, return NULL; otherwise
19734 return a pointer to the string. */
19735
19736 static const char *
19737 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19738 LONGEST str_offset)
19739 {
19740 dwarf2_read_section (objfile, &dwz->str);
19741
19742 if (dwz->str.buffer == NULL)
19743 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19744 "section [in module %s]"),
19745 bfd_get_filename (dwz->dwz_bfd));
19746 if (str_offset >= dwz->str.size)
19747 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19748 ".debug_str section [in module %s]"),
19749 bfd_get_filename (dwz->dwz_bfd));
19750 gdb_assert (HOST_CHAR_BIT == 8);
19751 if (dwz->str.buffer[str_offset] == '\0')
19752 return NULL;
19753 return (const char *) (dwz->str.buffer + str_offset);
19754 }
19755
19756 /* Return pointer to string at .debug_str offset as read from BUF.
19757 BUF is assumed to be in a compilation unit described by CU_HEADER.
19758 Return *BYTES_READ_PTR count of bytes read from BUF. */
19759
19760 static const char *
19761 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19762 const gdb_byte *buf,
19763 const struct comp_unit_head *cu_header,
19764 unsigned int *bytes_read_ptr)
19765 {
19766 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19767
19768 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19769 }
19770
19771 /* Return pointer to string at .debug_line_str offset as read from BUF.
19772 BUF is assumed to be in a compilation unit described by CU_HEADER.
19773 Return *BYTES_READ_PTR count of bytes read from BUF. */
19774
19775 static const char *
19776 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19777 bfd *abfd, const gdb_byte *buf,
19778 const struct comp_unit_head *cu_header,
19779 unsigned int *bytes_read_ptr)
19780 {
19781 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19782
19783 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19784 str_offset);
19785 }
19786
19787 ULONGEST
19788 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19789 unsigned int *bytes_read_ptr)
19790 {
19791 ULONGEST result;
19792 unsigned int num_read;
19793 int shift;
19794 unsigned char byte;
19795
19796 result = 0;
19797 shift = 0;
19798 num_read = 0;
19799 while (1)
19800 {
19801 byte = bfd_get_8 (abfd, buf);
19802 buf++;
19803 num_read++;
19804 result |= ((ULONGEST) (byte & 127) << shift);
19805 if ((byte & 128) == 0)
19806 {
19807 break;
19808 }
19809 shift += 7;
19810 }
19811 *bytes_read_ptr = num_read;
19812 return result;
19813 }
19814
19815 static LONGEST
19816 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19817 unsigned int *bytes_read_ptr)
19818 {
19819 ULONGEST result;
19820 int shift, num_read;
19821 unsigned char byte;
19822
19823 result = 0;
19824 shift = 0;
19825 num_read = 0;
19826 while (1)
19827 {
19828 byte = bfd_get_8 (abfd, buf);
19829 buf++;
19830 num_read++;
19831 result |= ((ULONGEST) (byte & 127) << shift);
19832 shift += 7;
19833 if ((byte & 128) == 0)
19834 {
19835 break;
19836 }
19837 }
19838 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19839 result |= -(((ULONGEST) 1) << shift);
19840 *bytes_read_ptr = num_read;
19841 return result;
19842 }
19843
19844 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19845 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19846 ADDR_SIZE is the size of addresses from the CU header. */
19847
19848 static CORE_ADDR
19849 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19850 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19851 {
19852 struct objfile *objfile = dwarf2_per_objfile->objfile;
19853 bfd *abfd = objfile->obfd;
19854 const gdb_byte *info_ptr;
19855
19856 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19857 if (dwarf2_per_objfile->addr.buffer == NULL)
19858 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19859 objfile_name (objfile));
19860 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19861 error (_("DW_FORM_addr_index pointing outside of "
19862 ".debug_addr section [in module %s]"),
19863 objfile_name (objfile));
19864 info_ptr = (dwarf2_per_objfile->addr.buffer
19865 + addr_base + addr_index * addr_size);
19866 if (addr_size == 4)
19867 return bfd_get_32 (abfd, info_ptr);
19868 else
19869 return bfd_get_64 (abfd, info_ptr);
19870 }
19871
19872 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19873
19874 static CORE_ADDR
19875 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19876 {
19877 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19878 cu->addr_base, cu->header.addr_size);
19879 }
19880
19881 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19882
19883 static CORE_ADDR
19884 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19885 unsigned int *bytes_read)
19886 {
19887 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19888 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19889
19890 return read_addr_index (cu, addr_index);
19891 }
19892
19893 /* Data structure to pass results from dwarf2_read_addr_index_reader
19894 back to dwarf2_read_addr_index. */
19895
19896 struct dwarf2_read_addr_index_data
19897 {
19898 ULONGEST addr_base;
19899 int addr_size;
19900 };
19901
19902 /* die_reader_func for dwarf2_read_addr_index. */
19903
19904 static void
19905 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19906 const gdb_byte *info_ptr,
19907 struct die_info *comp_unit_die,
19908 int has_children,
19909 void *data)
19910 {
19911 struct dwarf2_cu *cu = reader->cu;
19912 struct dwarf2_read_addr_index_data *aidata =
19913 (struct dwarf2_read_addr_index_data *) data;
19914
19915 aidata->addr_base = cu->addr_base;
19916 aidata->addr_size = cu->header.addr_size;
19917 }
19918
19919 /* Given an index in .debug_addr, fetch the value.
19920 NOTE: This can be called during dwarf expression evaluation,
19921 long after the debug information has been read, and thus per_cu->cu
19922 may no longer exist. */
19923
19924 CORE_ADDR
19925 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19926 unsigned int addr_index)
19927 {
19928 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19929 struct dwarf2_cu *cu = per_cu->cu;
19930 ULONGEST addr_base;
19931 int addr_size;
19932
19933 /* We need addr_base and addr_size.
19934 If we don't have PER_CU->cu, we have to get it.
19935 Nasty, but the alternative is storing the needed info in PER_CU,
19936 which at this point doesn't seem justified: it's not clear how frequently
19937 it would get used and it would increase the size of every PER_CU.
19938 Entry points like dwarf2_per_cu_addr_size do a similar thing
19939 so we're not in uncharted territory here.
19940 Alas we need to be a bit more complicated as addr_base is contained
19941 in the DIE.
19942
19943 We don't need to read the entire CU(/TU).
19944 We just need the header and top level die.
19945
19946 IWBN to use the aging mechanism to let us lazily later discard the CU.
19947 For now we skip this optimization. */
19948
19949 if (cu != NULL)
19950 {
19951 addr_base = cu->addr_base;
19952 addr_size = cu->header.addr_size;
19953 }
19954 else
19955 {
19956 struct dwarf2_read_addr_index_data aidata;
19957
19958 /* Note: We can't use init_cutu_and_read_dies_simple here,
19959 we need addr_base. */
19960 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19961 dwarf2_read_addr_index_reader, &aidata);
19962 addr_base = aidata.addr_base;
19963 addr_size = aidata.addr_size;
19964 }
19965
19966 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19967 addr_size);
19968 }
19969
19970 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19971 This is only used by the Fission support. */
19972
19973 static const char *
19974 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19975 {
19976 struct dwarf2_cu *cu = reader->cu;
19977 struct dwarf2_per_objfile *dwarf2_per_objfile
19978 = cu->per_cu->dwarf2_per_objfile;
19979 struct objfile *objfile = dwarf2_per_objfile->objfile;
19980 const char *objf_name = objfile_name (objfile);
19981 bfd *abfd = objfile->obfd;
19982 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19983 struct dwarf2_section_info *str_offsets_section =
19984 &reader->dwo_file->sections.str_offsets;
19985 const gdb_byte *info_ptr;
19986 ULONGEST str_offset;
19987 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19988
19989 dwarf2_read_section (objfile, str_section);
19990 dwarf2_read_section (objfile, str_offsets_section);
19991 if (str_section->buffer == NULL)
19992 error (_("%s used without .debug_str.dwo section"
19993 " in CU at offset %s [in module %s]"),
19994 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19995 if (str_offsets_section->buffer == NULL)
19996 error (_("%s used without .debug_str_offsets.dwo section"
19997 " in CU at offset %s [in module %s]"),
19998 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19999 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20000 error (_("%s pointing outside of .debug_str_offsets.dwo"
20001 " section in CU at offset %s [in module %s]"),
20002 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20003 info_ptr = (str_offsets_section->buffer
20004 + str_index * cu->header.offset_size);
20005 if (cu->header.offset_size == 4)
20006 str_offset = bfd_get_32 (abfd, info_ptr);
20007 else
20008 str_offset = bfd_get_64 (abfd, info_ptr);
20009 if (str_offset >= str_section->size)
20010 error (_("Offset from %s pointing outside of"
20011 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20012 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20013 return (const char *) (str_section->buffer + str_offset);
20014 }
20015
20016 /* Return the length of an LEB128 number in BUF. */
20017
20018 static int
20019 leb128_size (const gdb_byte *buf)
20020 {
20021 const gdb_byte *begin = buf;
20022 gdb_byte byte;
20023
20024 while (1)
20025 {
20026 byte = *buf++;
20027 if ((byte & 128) == 0)
20028 return buf - begin;
20029 }
20030 }
20031
20032 static void
20033 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20034 {
20035 switch (lang)
20036 {
20037 case DW_LANG_C89:
20038 case DW_LANG_C99:
20039 case DW_LANG_C11:
20040 case DW_LANG_C:
20041 case DW_LANG_UPC:
20042 cu->language = language_c;
20043 break;
20044 case DW_LANG_Java:
20045 case DW_LANG_C_plus_plus:
20046 case DW_LANG_C_plus_plus_11:
20047 case DW_LANG_C_plus_plus_14:
20048 cu->language = language_cplus;
20049 break;
20050 case DW_LANG_D:
20051 cu->language = language_d;
20052 break;
20053 case DW_LANG_Fortran77:
20054 case DW_LANG_Fortran90:
20055 case DW_LANG_Fortran95:
20056 case DW_LANG_Fortran03:
20057 case DW_LANG_Fortran08:
20058 cu->language = language_fortran;
20059 break;
20060 case DW_LANG_Go:
20061 cu->language = language_go;
20062 break;
20063 case DW_LANG_Mips_Assembler:
20064 cu->language = language_asm;
20065 break;
20066 case DW_LANG_Ada83:
20067 case DW_LANG_Ada95:
20068 cu->language = language_ada;
20069 break;
20070 case DW_LANG_Modula2:
20071 cu->language = language_m2;
20072 break;
20073 case DW_LANG_Pascal83:
20074 cu->language = language_pascal;
20075 break;
20076 case DW_LANG_ObjC:
20077 cu->language = language_objc;
20078 break;
20079 case DW_LANG_Rust:
20080 case DW_LANG_Rust_old:
20081 cu->language = language_rust;
20082 break;
20083 case DW_LANG_Cobol74:
20084 case DW_LANG_Cobol85:
20085 default:
20086 cu->language = language_minimal;
20087 break;
20088 }
20089 cu->language_defn = language_def (cu->language);
20090 }
20091
20092 /* Return the named attribute or NULL if not there. */
20093
20094 static struct attribute *
20095 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20096 {
20097 for (;;)
20098 {
20099 unsigned int i;
20100 struct attribute *spec = NULL;
20101
20102 for (i = 0; i < die->num_attrs; ++i)
20103 {
20104 if (die->attrs[i].name == name)
20105 return &die->attrs[i];
20106 if (die->attrs[i].name == DW_AT_specification
20107 || die->attrs[i].name == DW_AT_abstract_origin)
20108 spec = &die->attrs[i];
20109 }
20110
20111 if (!spec)
20112 break;
20113
20114 die = follow_die_ref (die, spec, &cu);
20115 }
20116
20117 return NULL;
20118 }
20119
20120 /* Return the named attribute or NULL if not there,
20121 but do not follow DW_AT_specification, etc.
20122 This is for use in contexts where we're reading .debug_types dies.
20123 Following DW_AT_specification, DW_AT_abstract_origin will take us
20124 back up the chain, and we want to go down. */
20125
20126 static struct attribute *
20127 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20128 {
20129 unsigned int i;
20130
20131 for (i = 0; i < die->num_attrs; ++i)
20132 if (die->attrs[i].name == name)
20133 return &die->attrs[i];
20134
20135 return NULL;
20136 }
20137
20138 /* Return the string associated with a string-typed attribute, or NULL if it
20139 is either not found or is of an incorrect type. */
20140
20141 static const char *
20142 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20143 {
20144 struct attribute *attr;
20145 const char *str = NULL;
20146
20147 attr = dwarf2_attr (die, name, cu);
20148
20149 if (attr != NULL)
20150 {
20151 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20152 || attr->form == DW_FORM_string
20153 || attr->form == DW_FORM_strx
20154 || attr->form == DW_FORM_GNU_str_index
20155 || attr->form == DW_FORM_GNU_strp_alt)
20156 str = DW_STRING (attr);
20157 else
20158 complaint (_("string type expected for attribute %s for "
20159 "DIE at %s in module %s"),
20160 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20161 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20162 }
20163
20164 return str;
20165 }
20166
20167 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20168 and holds a non-zero value. This function should only be used for
20169 DW_FORM_flag or DW_FORM_flag_present attributes. */
20170
20171 static int
20172 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20173 {
20174 struct attribute *attr = dwarf2_attr (die, name, cu);
20175
20176 return (attr && DW_UNSND (attr));
20177 }
20178
20179 static int
20180 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20181 {
20182 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20183 which value is non-zero. However, we have to be careful with
20184 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20185 (via dwarf2_flag_true_p) follows this attribute. So we may
20186 end up accidently finding a declaration attribute that belongs
20187 to a different DIE referenced by the specification attribute,
20188 even though the given DIE does not have a declaration attribute. */
20189 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20190 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20191 }
20192
20193 /* Return the die giving the specification for DIE, if there is
20194 one. *SPEC_CU is the CU containing DIE on input, and the CU
20195 containing the return value on output. If there is no
20196 specification, but there is an abstract origin, that is
20197 returned. */
20198
20199 static struct die_info *
20200 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20201 {
20202 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20203 *spec_cu);
20204
20205 if (spec_attr == NULL)
20206 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20207
20208 if (spec_attr == NULL)
20209 return NULL;
20210 else
20211 return follow_die_ref (die, spec_attr, spec_cu);
20212 }
20213
20214 /* Stub for free_line_header to match void * callback types. */
20215
20216 static void
20217 free_line_header_voidp (void *arg)
20218 {
20219 struct line_header *lh = (struct line_header *) arg;
20220
20221 delete lh;
20222 }
20223
20224 void
20225 line_header::add_include_dir (const char *include_dir)
20226 {
20227 if (dwarf_line_debug >= 2)
20228 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20229 include_dirs.size () + 1, include_dir);
20230
20231 include_dirs.push_back (include_dir);
20232 }
20233
20234 void
20235 line_header::add_file_name (const char *name,
20236 dir_index d_index,
20237 unsigned int mod_time,
20238 unsigned int length)
20239 {
20240 if (dwarf_line_debug >= 2)
20241 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20242 (unsigned) file_names.size () + 1, name);
20243
20244 file_names.emplace_back (name, d_index, mod_time, length);
20245 }
20246
20247 /* A convenience function to find the proper .debug_line section for a CU. */
20248
20249 static struct dwarf2_section_info *
20250 get_debug_line_section (struct dwarf2_cu *cu)
20251 {
20252 struct dwarf2_section_info *section;
20253 struct dwarf2_per_objfile *dwarf2_per_objfile
20254 = cu->per_cu->dwarf2_per_objfile;
20255
20256 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20257 DWO file. */
20258 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20259 section = &cu->dwo_unit->dwo_file->sections.line;
20260 else if (cu->per_cu->is_dwz)
20261 {
20262 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20263
20264 section = &dwz->line;
20265 }
20266 else
20267 section = &dwarf2_per_objfile->line;
20268
20269 return section;
20270 }
20271
20272 /* Read directory or file name entry format, starting with byte of
20273 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20274 entries count and the entries themselves in the described entry
20275 format. */
20276
20277 static void
20278 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20279 bfd *abfd, const gdb_byte **bufp,
20280 struct line_header *lh,
20281 const struct comp_unit_head *cu_header,
20282 void (*callback) (struct line_header *lh,
20283 const char *name,
20284 dir_index d_index,
20285 unsigned int mod_time,
20286 unsigned int length))
20287 {
20288 gdb_byte format_count, formati;
20289 ULONGEST data_count, datai;
20290 const gdb_byte *buf = *bufp;
20291 const gdb_byte *format_header_data;
20292 unsigned int bytes_read;
20293
20294 format_count = read_1_byte (abfd, buf);
20295 buf += 1;
20296 format_header_data = buf;
20297 for (formati = 0; formati < format_count; formati++)
20298 {
20299 read_unsigned_leb128 (abfd, buf, &bytes_read);
20300 buf += bytes_read;
20301 read_unsigned_leb128 (abfd, buf, &bytes_read);
20302 buf += bytes_read;
20303 }
20304
20305 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20306 buf += bytes_read;
20307 for (datai = 0; datai < data_count; datai++)
20308 {
20309 const gdb_byte *format = format_header_data;
20310 struct file_entry fe;
20311
20312 for (formati = 0; formati < format_count; formati++)
20313 {
20314 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20315 format += bytes_read;
20316
20317 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20318 format += bytes_read;
20319
20320 gdb::optional<const char *> string;
20321 gdb::optional<unsigned int> uint;
20322
20323 switch (form)
20324 {
20325 case DW_FORM_string:
20326 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20327 buf += bytes_read;
20328 break;
20329
20330 case DW_FORM_line_strp:
20331 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20332 abfd, buf,
20333 cu_header,
20334 &bytes_read));
20335 buf += bytes_read;
20336 break;
20337
20338 case DW_FORM_data1:
20339 uint.emplace (read_1_byte (abfd, buf));
20340 buf += 1;
20341 break;
20342
20343 case DW_FORM_data2:
20344 uint.emplace (read_2_bytes (abfd, buf));
20345 buf += 2;
20346 break;
20347
20348 case DW_FORM_data4:
20349 uint.emplace (read_4_bytes (abfd, buf));
20350 buf += 4;
20351 break;
20352
20353 case DW_FORM_data8:
20354 uint.emplace (read_8_bytes (abfd, buf));
20355 buf += 8;
20356 break;
20357
20358 case DW_FORM_udata:
20359 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20360 buf += bytes_read;
20361 break;
20362
20363 case DW_FORM_block:
20364 /* It is valid only for DW_LNCT_timestamp which is ignored by
20365 current GDB. */
20366 break;
20367 }
20368
20369 switch (content_type)
20370 {
20371 case DW_LNCT_path:
20372 if (string.has_value ())
20373 fe.name = *string;
20374 break;
20375 case DW_LNCT_directory_index:
20376 if (uint.has_value ())
20377 fe.d_index = (dir_index) *uint;
20378 break;
20379 case DW_LNCT_timestamp:
20380 if (uint.has_value ())
20381 fe.mod_time = *uint;
20382 break;
20383 case DW_LNCT_size:
20384 if (uint.has_value ())
20385 fe.length = *uint;
20386 break;
20387 case DW_LNCT_MD5:
20388 break;
20389 default:
20390 complaint (_("Unknown format content type %s"),
20391 pulongest (content_type));
20392 }
20393 }
20394
20395 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20396 }
20397
20398 *bufp = buf;
20399 }
20400
20401 /* Read the statement program header starting at OFFSET in
20402 .debug_line, or .debug_line.dwo. Return a pointer
20403 to a struct line_header, allocated using xmalloc.
20404 Returns NULL if there is a problem reading the header, e.g., if it
20405 has a version we don't understand.
20406
20407 NOTE: the strings in the include directory and file name tables of
20408 the returned object point into the dwarf line section buffer,
20409 and must not be freed. */
20410
20411 static line_header_up
20412 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20413 {
20414 const gdb_byte *line_ptr;
20415 unsigned int bytes_read, offset_size;
20416 int i;
20417 const char *cur_dir, *cur_file;
20418 struct dwarf2_section_info *section;
20419 bfd *abfd;
20420 struct dwarf2_per_objfile *dwarf2_per_objfile
20421 = cu->per_cu->dwarf2_per_objfile;
20422
20423 section = get_debug_line_section (cu);
20424 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20425 if (section->buffer == NULL)
20426 {
20427 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20428 complaint (_("missing .debug_line.dwo section"));
20429 else
20430 complaint (_("missing .debug_line section"));
20431 return 0;
20432 }
20433
20434 /* We can't do this until we know the section is non-empty.
20435 Only then do we know we have such a section. */
20436 abfd = get_section_bfd_owner (section);
20437
20438 /* Make sure that at least there's room for the total_length field.
20439 That could be 12 bytes long, but we're just going to fudge that. */
20440 if (to_underlying (sect_off) + 4 >= section->size)
20441 {
20442 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20443 return 0;
20444 }
20445
20446 line_header_up lh (new line_header ());
20447
20448 lh->sect_off = sect_off;
20449 lh->offset_in_dwz = cu->per_cu->is_dwz;
20450
20451 line_ptr = section->buffer + to_underlying (sect_off);
20452
20453 /* Read in the header. */
20454 lh->total_length =
20455 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20456 &bytes_read, &offset_size);
20457 line_ptr += bytes_read;
20458 if (line_ptr + lh->total_length > (section->buffer + section->size))
20459 {
20460 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20461 return 0;
20462 }
20463 lh->statement_program_end = line_ptr + lh->total_length;
20464 lh->version = read_2_bytes (abfd, line_ptr);
20465 line_ptr += 2;
20466 if (lh->version > 5)
20467 {
20468 /* This is a version we don't understand. The format could have
20469 changed in ways we don't handle properly so just punt. */
20470 complaint (_("unsupported version in .debug_line section"));
20471 return NULL;
20472 }
20473 if (lh->version >= 5)
20474 {
20475 gdb_byte segment_selector_size;
20476
20477 /* Skip address size. */
20478 read_1_byte (abfd, line_ptr);
20479 line_ptr += 1;
20480
20481 segment_selector_size = read_1_byte (abfd, line_ptr);
20482 line_ptr += 1;
20483 if (segment_selector_size != 0)
20484 {
20485 complaint (_("unsupported segment selector size %u "
20486 "in .debug_line section"),
20487 segment_selector_size);
20488 return NULL;
20489 }
20490 }
20491 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20492 line_ptr += offset_size;
20493 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20494 line_ptr += 1;
20495 if (lh->version >= 4)
20496 {
20497 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20498 line_ptr += 1;
20499 }
20500 else
20501 lh->maximum_ops_per_instruction = 1;
20502
20503 if (lh->maximum_ops_per_instruction == 0)
20504 {
20505 lh->maximum_ops_per_instruction = 1;
20506 complaint (_("invalid maximum_ops_per_instruction "
20507 "in `.debug_line' section"));
20508 }
20509
20510 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20511 line_ptr += 1;
20512 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20513 line_ptr += 1;
20514 lh->line_range = read_1_byte (abfd, line_ptr);
20515 line_ptr += 1;
20516 lh->opcode_base = read_1_byte (abfd, line_ptr);
20517 line_ptr += 1;
20518 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20519
20520 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20521 for (i = 1; i < lh->opcode_base; ++i)
20522 {
20523 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20524 line_ptr += 1;
20525 }
20526
20527 if (lh->version >= 5)
20528 {
20529 /* Read directory table. */
20530 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20531 &cu->header,
20532 [] (struct line_header *header, const char *name,
20533 dir_index d_index, unsigned int mod_time,
20534 unsigned int length)
20535 {
20536 header->add_include_dir (name);
20537 });
20538
20539 /* Read file name table. */
20540 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20541 &cu->header,
20542 [] (struct line_header *header, const char *name,
20543 dir_index d_index, unsigned int mod_time,
20544 unsigned int length)
20545 {
20546 header->add_file_name (name, d_index, mod_time, length);
20547 });
20548 }
20549 else
20550 {
20551 /* Read directory table. */
20552 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20553 {
20554 line_ptr += bytes_read;
20555 lh->add_include_dir (cur_dir);
20556 }
20557 line_ptr += bytes_read;
20558
20559 /* Read file name table. */
20560 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20561 {
20562 unsigned int mod_time, length;
20563 dir_index d_index;
20564
20565 line_ptr += bytes_read;
20566 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20567 line_ptr += bytes_read;
20568 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20569 line_ptr += bytes_read;
20570 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20571 line_ptr += bytes_read;
20572
20573 lh->add_file_name (cur_file, d_index, mod_time, length);
20574 }
20575 line_ptr += bytes_read;
20576 }
20577 lh->statement_program_start = line_ptr;
20578
20579 if (line_ptr > (section->buffer + section->size))
20580 complaint (_("line number info header doesn't "
20581 "fit in `.debug_line' section"));
20582
20583 return lh;
20584 }
20585
20586 /* Subroutine of dwarf_decode_lines to simplify it.
20587 Return the file name of the psymtab for included file FILE_INDEX
20588 in line header LH of PST.
20589 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20590 If space for the result is malloc'd, *NAME_HOLDER will be set.
20591 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20592
20593 static const char *
20594 psymtab_include_file_name (const struct line_header *lh, int file_index,
20595 const struct partial_symtab *pst,
20596 const char *comp_dir,
20597 gdb::unique_xmalloc_ptr<char> *name_holder)
20598 {
20599 const file_entry &fe = lh->file_names[file_index];
20600 const char *include_name = fe.name;
20601 const char *include_name_to_compare = include_name;
20602 const char *pst_filename;
20603 int file_is_pst;
20604
20605 const char *dir_name = fe.include_dir (lh);
20606
20607 gdb::unique_xmalloc_ptr<char> hold_compare;
20608 if (!IS_ABSOLUTE_PATH (include_name)
20609 && (dir_name != NULL || comp_dir != NULL))
20610 {
20611 /* Avoid creating a duplicate psymtab for PST.
20612 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20613 Before we do the comparison, however, we need to account
20614 for DIR_NAME and COMP_DIR.
20615 First prepend dir_name (if non-NULL). If we still don't
20616 have an absolute path prepend comp_dir (if non-NULL).
20617 However, the directory we record in the include-file's
20618 psymtab does not contain COMP_DIR (to match the
20619 corresponding symtab(s)).
20620
20621 Example:
20622
20623 bash$ cd /tmp
20624 bash$ gcc -g ./hello.c
20625 include_name = "hello.c"
20626 dir_name = "."
20627 DW_AT_comp_dir = comp_dir = "/tmp"
20628 DW_AT_name = "./hello.c"
20629
20630 */
20631
20632 if (dir_name != NULL)
20633 {
20634 name_holder->reset (concat (dir_name, SLASH_STRING,
20635 include_name, (char *) NULL));
20636 include_name = name_holder->get ();
20637 include_name_to_compare = include_name;
20638 }
20639 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20640 {
20641 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20642 include_name, (char *) NULL));
20643 include_name_to_compare = hold_compare.get ();
20644 }
20645 }
20646
20647 pst_filename = pst->filename;
20648 gdb::unique_xmalloc_ptr<char> copied_name;
20649 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20650 {
20651 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20652 pst_filename, (char *) NULL));
20653 pst_filename = copied_name.get ();
20654 }
20655
20656 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20657
20658 if (file_is_pst)
20659 return NULL;
20660 return include_name;
20661 }
20662
20663 /* State machine to track the state of the line number program. */
20664
20665 class lnp_state_machine
20666 {
20667 public:
20668 /* Initialize a machine state for the start of a line number
20669 program. */
20670 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20671 bool record_lines_p);
20672
20673 file_entry *current_file ()
20674 {
20675 /* lh->file_names is 0-based, but the file name numbers in the
20676 statement program are 1-based. */
20677 return m_line_header->file_name_at (m_file);
20678 }
20679
20680 /* Record the line in the state machine. END_SEQUENCE is true if
20681 we're processing the end of a sequence. */
20682 void record_line (bool end_sequence);
20683
20684 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20685 nop-out rest of the lines in this sequence. */
20686 void check_line_address (struct dwarf2_cu *cu,
20687 const gdb_byte *line_ptr,
20688 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20689
20690 void handle_set_discriminator (unsigned int discriminator)
20691 {
20692 m_discriminator = discriminator;
20693 m_line_has_non_zero_discriminator |= discriminator != 0;
20694 }
20695
20696 /* Handle DW_LNE_set_address. */
20697 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20698 {
20699 m_op_index = 0;
20700 address += baseaddr;
20701 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20702 }
20703
20704 /* Handle DW_LNS_advance_pc. */
20705 void handle_advance_pc (CORE_ADDR adjust);
20706
20707 /* Handle a special opcode. */
20708 void handle_special_opcode (unsigned char op_code);
20709
20710 /* Handle DW_LNS_advance_line. */
20711 void handle_advance_line (int line_delta)
20712 {
20713 advance_line (line_delta);
20714 }
20715
20716 /* Handle DW_LNS_set_file. */
20717 void handle_set_file (file_name_index file);
20718
20719 /* Handle DW_LNS_negate_stmt. */
20720 void handle_negate_stmt ()
20721 {
20722 m_is_stmt = !m_is_stmt;
20723 }
20724
20725 /* Handle DW_LNS_const_add_pc. */
20726 void handle_const_add_pc ();
20727
20728 /* Handle DW_LNS_fixed_advance_pc. */
20729 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20730 {
20731 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20732 m_op_index = 0;
20733 }
20734
20735 /* Handle DW_LNS_copy. */
20736 void handle_copy ()
20737 {
20738 record_line (false);
20739 m_discriminator = 0;
20740 }
20741
20742 /* Handle DW_LNE_end_sequence. */
20743 void handle_end_sequence ()
20744 {
20745 m_currently_recording_lines = true;
20746 }
20747
20748 private:
20749 /* Advance the line by LINE_DELTA. */
20750 void advance_line (int line_delta)
20751 {
20752 m_line += line_delta;
20753
20754 if (line_delta != 0)
20755 m_line_has_non_zero_discriminator = m_discriminator != 0;
20756 }
20757
20758 struct dwarf2_cu *m_cu;
20759
20760 gdbarch *m_gdbarch;
20761
20762 /* True if we're recording lines.
20763 Otherwise we're building partial symtabs and are just interested in
20764 finding include files mentioned by the line number program. */
20765 bool m_record_lines_p;
20766
20767 /* The line number header. */
20768 line_header *m_line_header;
20769
20770 /* These are part of the standard DWARF line number state machine,
20771 and initialized according to the DWARF spec. */
20772
20773 unsigned char m_op_index = 0;
20774 /* The line table index (1-based) of the current file. */
20775 file_name_index m_file = (file_name_index) 1;
20776 unsigned int m_line = 1;
20777
20778 /* These are initialized in the constructor. */
20779
20780 CORE_ADDR m_address;
20781 bool m_is_stmt;
20782 unsigned int m_discriminator;
20783
20784 /* Additional bits of state we need to track. */
20785
20786 /* The last file that we called dwarf2_start_subfile for.
20787 This is only used for TLLs. */
20788 unsigned int m_last_file = 0;
20789 /* The last file a line number was recorded for. */
20790 struct subfile *m_last_subfile = NULL;
20791
20792 /* When true, record the lines we decode. */
20793 bool m_currently_recording_lines = false;
20794
20795 /* The last line number that was recorded, used to coalesce
20796 consecutive entries for the same line. This can happen, for
20797 example, when discriminators are present. PR 17276. */
20798 unsigned int m_last_line = 0;
20799 bool m_line_has_non_zero_discriminator = false;
20800 };
20801
20802 void
20803 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20804 {
20805 CORE_ADDR addr_adj = (((m_op_index + adjust)
20806 / m_line_header->maximum_ops_per_instruction)
20807 * m_line_header->minimum_instruction_length);
20808 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20809 m_op_index = ((m_op_index + adjust)
20810 % m_line_header->maximum_ops_per_instruction);
20811 }
20812
20813 void
20814 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20815 {
20816 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20817 CORE_ADDR addr_adj = (((m_op_index
20818 + (adj_opcode / m_line_header->line_range))
20819 / m_line_header->maximum_ops_per_instruction)
20820 * m_line_header->minimum_instruction_length);
20821 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20822 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20823 % m_line_header->maximum_ops_per_instruction);
20824
20825 int line_delta = (m_line_header->line_base
20826 + (adj_opcode % m_line_header->line_range));
20827 advance_line (line_delta);
20828 record_line (false);
20829 m_discriminator = 0;
20830 }
20831
20832 void
20833 lnp_state_machine::handle_set_file (file_name_index file)
20834 {
20835 m_file = file;
20836
20837 const file_entry *fe = current_file ();
20838 if (fe == NULL)
20839 dwarf2_debug_line_missing_file_complaint ();
20840 else if (m_record_lines_p)
20841 {
20842 const char *dir = fe->include_dir (m_line_header);
20843
20844 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20845 m_line_has_non_zero_discriminator = m_discriminator != 0;
20846 dwarf2_start_subfile (m_cu, fe->name, dir);
20847 }
20848 }
20849
20850 void
20851 lnp_state_machine::handle_const_add_pc ()
20852 {
20853 CORE_ADDR adjust
20854 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20855
20856 CORE_ADDR addr_adj
20857 = (((m_op_index + adjust)
20858 / m_line_header->maximum_ops_per_instruction)
20859 * m_line_header->minimum_instruction_length);
20860
20861 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20862 m_op_index = ((m_op_index + adjust)
20863 % m_line_header->maximum_ops_per_instruction);
20864 }
20865
20866 /* Return non-zero if we should add LINE to the line number table.
20867 LINE is the line to add, LAST_LINE is the last line that was added,
20868 LAST_SUBFILE is the subfile for LAST_LINE.
20869 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20870 had a non-zero discriminator.
20871
20872 We have to be careful in the presence of discriminators.
20873 E.g., for this line:
20874
20875 for (i = 0; i < 100000; i++);
20876
20877 clang can emit four line number entries for that one line,
20878 each with a different discriminator.
20879 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20880
20881 However, we want gdb to coalesce all four entries into one.
20882 Otherwise the user could stepi into the middle of the line and
20883 gdb would get confused about whether the pc really was in the
20884 middle of the line.
20885
20886 Things are further complicated by the fact that two consecutive
20887 line number entries for the same line is a heuristic used by gcc
20888 to denote the end of the prologue. So we can't just discard duplicate
20889 entries, we have to be selective about it. The heuristic we use is
20890 that we only collapse consecutive entries for the same line if at least
20891 one of those entries has a non-zero discriminator. PR 17276.
20892
20893 Note: Addresses in the line number state machine can never go backwards
20894 within one sequence, thus this coalescing is ok. */
20895
20896 static int
20897 dwarf_record_line_p (struct dwarf2_cu *cu,
20898 unsigned int line, unsigned int last_line,
20899 int line_has_non_zero_discriminator,
20900 struct subfile *last_subfile)
20901 {
20902 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20903 return 1;
20904 if (line != last_line)
20905 return 1;
20906 /* Same line for the same file that we've seen already.
20907 As a last check, for pr 17276, only record the line if the line
20908 has never had a non-zero discriminator. */
20909 if (!line_has_non_zero_discriminator)
20910 return 1;
20911 return 0;
20912 }
20913
20914 /* Use the CU's builder to record line number LINE beginning at
20915 address ADDRESS in the line table of subfile SUBFILE. */
20916
20917 static void
20918 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20919 unsigned int line, CORE_ADDR address,
20920 struct dwarf2_cu *cu)
20921 {
20922 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20923
20924 if (dwarf_line_debug)
20925 {
20926 fprintf_unfiltered (gdb_stdlog,
20927 "Recording line %u, file %s, address %s\n",
20928 line, lbasename (subfile->name),
20929 paddress (gdbarch, address));
20930 }
20931
20932 if (cu != nullptr)
20933 cu->get_builder ()->record_line (subfile, line, addr);
20934 }
20935
20936 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20937 Mark the end of a set of line number records.
20938 The arguments are the same as for dwarf_record_line_1.
20939 If SUBFILE is NULL the request is ignored. */
20940
20941 static void
20942 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20943 CORE_ADDR address, struct dwarf2_cu *cu)
20944 {
20945 if (subfile == NULL)
20946 return;
20947
20948 if (dwarf_line_debug)
20949 {
20950 fprintf_unfiltered (gdb_stdlog,
20951 "Finishing current line, file %s, address %s\n",
20952 lbasename (subfile->name),
20953 paddress (gdbarch, address));
20954 }
20955
20956 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20957 }
20958
20959 void
20960 lnp_state_machine::record_line (bool end_sequence)
20961 {
20962 if (dwarf_line_debug)
20963 {
20964 fprintf_unfiltered (gdb_stdlog,
20965 "Processing actual line %u: file %u,"
20966 " address %s, is_stmt %u, discrim %u\n",
20967 m_line, to_underlying (m_file),
20968 paddress (m_gdbarch, m_address),
20969 m_is_stmt, m_discriminator);
20970 }
20971
20972 file_entry *fe = current_file ();
20973
20974 if (fe == NULL)
20975 dwarf2_debug_line_missing_file_complaint ();
20976 /* For now we ignore lines not starting on an instruction boundary.
20977 But not when processing end_sequence for compatibility with the
20978 previous version of the code. */
20979 else if (m_op_index == 0 || end_sequence)
20980 {
20981 fe->included_p = 1;
20982 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20983 {
20984 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20985 || end_sequence)
20986 {
20987 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20988 m_currently_recording_lines ? m_cu : nullptr);
20989 }
20990
20991 if (!end_sequence)
20992 {
20993 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20994 m_line_has_non_zero_discriminator,
20995 m_last_subfile))
20996 {
20997 buildsym_compunit *builder = m_cu->get_builder ();
20998 dwarf_record_line_1 (m_gdbarch,
20999 builder->get_current_subfile (),
21000 m_line, m_address,
21001 m_currently_recording_lines ? m_cu : nullptr);
21002 }
21003 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21004 m_last_line = m_line;
21005 }
21006 }
21007 }
21008 }
21009
21010 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21011 line_header *lh, bool record_lines_p)
21012 {
21013 m_cu = cu;
21014 m_gdbarch = arch;
21015 m_record_lines_p = record_lines_p;
21016 m_line_header = lh;
21017
21018 m_currently_recording_lines = true;
21019
21020 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21021 was a line entry for it so that the backend has a chance to adjust it
21022 and also record it in case it needs it. This is currently used by MIPS
21023 code, cf. `mips_adjust_dwarf2_line'. */
21024 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21025 m_is_stmt = lh->default_is_stmt;
21026 m_discriminator = 0;
21027 }
21028
21029 void
21030 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21031 const gdb_byte *line_ptr,
21032 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21033 {
21034 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21035 the pc range of the CU. However, we restrict the test to only ADDRESS
21036 values of zero to preserve GDB's previous behaviour which is to handle
21037 the specific case of a function being GC'd by the linker. */
21038
21039 if (address == 0 && address < unrelocated_lowpc)
21040 {
21041 /* This line table is for a function which has been
21042 GCd by the linker. Ignore it. PR gdb/12528 */
21043
21044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21045 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21046
21047 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21048 line_offset, objfile_name (objfile));
21049 m_currently_recording_lines = false;
21050 /* Note: m_currently_recording_lines is left as false until we see
21051 DW_LNE_end_sequence. */
21052 }
21053 }
21054
21055 /* Subroutine of dwarf_decode_lines to simplify it.
21056 Process the line number information in LH.
21057 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21058 program in order to set included_p for every referenced header. */
21059
21060 static void
21061 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21062 const int decode_for_pst_p, CORE_ADDR lowpc)
21063 {
21064 const gdb_byte *line_ptr, *extended_end;
21065 const gdb_byte *line_end;
21066 unsigned int bytes_read, extended_len;
21067 unsigned char op_code, extended_op;
21068 CORE_ADDR baseaddr;
21069 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21070 bfd *abfd = objfile->obfd;
21071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21072 /* True if we're recording line info (as opposed to building partial
21073 symtabs and just interested in finding include files mentioned by
21074 the line number program). */
21075 bool record_lines_p = !decode_for_pst_p;
21076
21077 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21078
21079 line_ptr = lh->statement_program_start;
21080 line_end = lh->statement_program_end;
21081
21082 /* Read the statement sequences until there's nothing left. */
21083 while (line_ptr < line_end)
21084 {
21085 /* The DWARF line number program state machine. Reset the state
21086 machine at the start of each sequence. */
21087 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21088 bool end_sequence = false;
21089
21090 if (record_lines_p)
21091 {
21092 /* Start a subfile for the current file of the state
21093 machine. */
21094 const file_entry *fe = state_machine.current_file ();
21095
21096 if (fe != NULL)
21097 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21098 }
21099
21100 /* Decode the table. */
21101 while (line_ptr < line_end && !end_sequence)
21102 {
21103 op_code = read_1_byte (abfd, line_ptr);
21104 line_ptr += 1;
21105
21106 if (op_code >= lh->opcode_base)
21107 {
21108 /* Special opcode. */
21109 state_machine.handle_special_opcode (op_code);
21110 }
21111 else switch (op_code)
21112 {
21113 case DW_LNS_extended_op:
21114 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21115 &bytes_read);
21116 line_ptr += bytes_read;
21117 extended_end = line_ptr + extended_len;
21118 extended_op = read_1_byte (abfd, line_ptr);
21119 line_ptr += 1;
21120 switch (extended_op)
21121 {
21122 case DW_LNE_end_sequence:
21123 state_machine.handle_end_sequence ();
21124 end_sequence = true;
21125 break;
21126 case DW_LNE_set_address:
21127 {
21128 CORE_ADDR address
21129 = read_address (abfd, line_ptr, cu, &bytes_read);
21130 line_ptr += bytes_read;
21131
21132 state_machine.check_line_address (cu, line_ptr,
21133 lowpc - baseaddr, address);
21134 state_machine.handle_set_address (baseaddr, address);
21135 }
21136 break;
21137 case DW_LNE_define_file:
21138 {
21139 const char *cur_file;
21140 unsigned int mod_time, length;
21141 dir_index dindex;
21142
21143 cur_file = read_direct_string (abfd, line_ptr,
21144 &bytes_read);
21145 line_ptr += bytes_read;
21146 dindex = (dir_index)
21147 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21148 line_ptr += bytes_read;
21149 mod_time =
21150 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21151 line_ptr += bytes_read;
21152 length =
21153 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21154 line_ptr += bytes_read;
21155 lh->add_file_name (cur_file, dindex, mod_time, length);
21156 }
21157 break;
21158 case DW_LNE_set_discriminator:
21159 {
21160 /* The discriminator is not interesting to the
21161 debugger; just ignore it. We still need to
21162 check its value though:
21163 if there are consecutive entries for the same
21164 (non-prologue) line we want to coalesce them.
21165 PR 17276. */
21166 unsigned int discr
21167 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21168 line_ptr += bytes_read;
21169
21170 state_machine.handle_set_discriminator (discr);
21171 }
21172 break;
21173 default:
21174 complaint (_("mangled .debug_line section"));
21175 return;
21176 }
21177 /* Make sure that we parsed the extended op correctly. If e.g.
21178 we expected a different address size than the producer used,
21179 we may have read the wrong number of bytes. */
21180 if (line_ptr != extended_end)
21181 {
21182 complaint (_("mangled .debug_line section"));
21183 return;
21184 }
21185 break;
21186 case DW_LNS_copy:
21187 state_machine.handle_copy ();
21188 break;
21189 case DW_LNS_advance_pc:
21190 {
21191 CORE_ADDR adjust
21192 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21193 line_ptr += bytes_read;
21194
21195 state_machine.handle_advance_pc (adjust);
21196 }
21197 break;
21198 case DW_LNS_advance_line:
21199 {
21200 int line_delta
21201 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21202 line_ptr += bytes_read;
21203
21204 state_machine.handle_advance_line (line_delta);
21205 }
21206 break;
21207 case DW_LNS_set_file:
21208 {
21209 file_name_index file
21210 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21211 &bytes_read);
21212 line_ptr += bytes_read;
21213
21214 state_machine.handle_set_file (file);
21215 }
21216 break;
21217 case DW_LNS_set_column:
21218 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21219 line_ptr += bytes_read;
21220 break;
21221 case DW_LNS_negate_stmt:
21222 state_machine.handle_negate_stmt ();
21223 break;
21224 case DW_LNS_set_basic_block:
21225 break;
21226 /* Add to the address register of the state machine the
21227 address increment value corresponding to special opcode
21228 255. I.e., this value is scaled by the minimum
21229 instruction length since special opcode 255 would have
21230 scaled the increment. */
21231 case DW_LNS_const_add_pc:
21232 state_machine.handle_const_add_pc ();
21233 break;
21234 case DW_LNS_fixed_advance_pc:
21235 {
21236 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21237 line_ptr += 2;
21238
21239 state_machine.handle_fixed_advance_pc (addr_adj);
21240 }
21241 break;
21242 default:
21243 {
21244 /* Unknown standard opcode, ignore it. */
21245 int i;
21246
21247 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21248 {
21249 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21250 line_ptr += bytes_read;
21251 }
21252 }
21253 }
21254 }
21255
21256 if (!end_sequence)
21257 dwarf2_debug_line_missing_end_sequence_complaint ();
21258
21259 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21260 in which case we still finish recording the last line). */
21261 state_machine.record_line (true);
21262 }
21263 }
21264
21265 /* Decode the Line Number Program (LNP) for the given line_header
21266 structure and CU. The actual information extracted and the type
21267 of structures created from the LNP depends on the value of PST.
21268
21269 1. If PST is NULL, then this procedure uses the data from the program
21270 to create all necessary symbol tables, and their linetables.
21271
21272 2. If PST is not NULL, this procedure reads the program to determine
21273 the list of files included by the unit represented by PST, and
21274 builds all the associated partial symbol tables.
21275
21276 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21277 It is used for relative paths in the line table.
21278 NOTE: When processing partial symtabs (pst != NULL),
21279 comp_dir == pst->dirname.
21280
21281 NOTE: It is important that psymtabs have the same file name (via strcmp)
21282 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21283 symtab we don't use it in the name of the psymtabs we create.
21284 E.g. expand_line_sal requires this when finding psymtabs to expand.
21285 A good testcase for this is mb-inline.exp.
21286
21287 LOWPC is the lowest address in CU (or 0 if not known).
21288
21289 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21290 for its PC<->lines mapping information. Otherwise only the filename
21291 table is read in. */
21292
21293 static void
21294 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21295 struct dwarf2_cu *cu, struct partial_symtab *pst,
21296 CORE_ADDR lowpc, int decode_mapping)
21297 {
21298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21299 const int decode_for_pst_p = (pst != NULL);
21300
21301 if (decode_mapping)
21302 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21303
21304 if (decode_for_pst_p)
21305 {
21306 int file_index;
21307
21308 /* Now that we're done scanning the Line Header Program, we can
21309 create the psymtab of each included file. */
21310 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21311 if (lh->file_names[file_index].included_p == 1)
21312 {
21313 gdb::unique_xmalloc_ptr<char> name_holder;
21314 const char *include_name =
21315 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21316 &name_holder);
21317 if (include_name != NULL)
21318 dwarf2_create_include_psymtab (include_name, pst, objfile);
21319 }
21320 }
21321 else
21322 {
21323 /* Make sure a symtab is created for every file, even files
21324 which contain only variables (i.e. no code with associated
21325 line numbers). */
21326 buildsym_compunit *builder = cu->get_builder ();
21327 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21328 int i;
21329
21330 for (i = 0; i < lh->file_names.size (); i++)
21331 {
21332 file_entry &fe = lh->file_names[i];
21333
21334 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21335
21336 if (builder->get_current_subfile ()->symtab == NULL)
21337 {
21338 builder->get_current_subfile ()->symtab
21339 = allocate_symtab (cust,
21340 builder->get_current_subfile ()->name);
21341 }
21342 fe.symtab = builder->get_current_subfile ()->symtab;
21343 }
21344 }
21345 }
21346
21347 /* Start a subfile for DWARF. FILENAME is the name of the file and
21348 DIRNAME the name of the source directory which contains FILENAME
21349 or NULL if not known.
21350 This routine tries to keep line numbers from identical absolute and
21351 relative file names in a common subfile.
21352
21353 Using the `list' example from the GDB testsuite, which resides in
21354 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21355 of /srcdir/list0.c yields the following debugging information for list0.c:
21356
21357 DW_AT_name: /srcdir/list0.c
21358 DW_AT_comp_dir: /compdir
21359 files.files[0].name: list0.h
21360 files.files[0].dir: /srcdir
21361 files.files[1].name: list0.c
21362 files.files[1].dir: /srcdir
21363
21364 The line number information for list0.c has to end up in a single
21365 subfile, so that `break /srcdir/list0.c:1' works as expected.
21366 start_subfile will ensure that this happens provided that we pass the
21367 concatenation of files.files[1].dir and files.files[1].name as the
21368 subfile's name. */
21369
21370 static void
21371 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21372 const char *dirname)
21373 {
21374 char *copy = NULL;
21375
21376 /* In order not to lose the line information directory,
21377 we concatenate it to the filename when it makes sense.
21378 Note that the Dwarf3 standard says (speaking of filenames in line
21379 information): ``The directory index is ignored for file names
21380 that represent full path names''. Thus ignoring dirname in the
21381 `else' branch below isn't an issue. */
21382
21383 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21384 {
21385 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21386 filename = copy;
21387 }
21388
21389 cu->get_builder ()->start_subfile (filename);
21390
21391 if (copy != NULL)
21392 xfree (copy);
21393 }
21394
21395 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21396 buildsym_compunit constructor. */
21397
21398 struct compunit_symtab *
21399 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21400 CORE_ADDR low_pc)
21401 {
21402 gdb_assert (m_builder == nullptr);
21403
21404 m_builder.reset (new struct buildsym_compunit
21405 (per_cu->dwarf2_per_objfile->objfile,
21406 name, comp_dir, language, low_pc));
21407
21408 list_in_scope = get_builder ()->get_file_symbols ();
21409
21410 get_builder ()->record_debugformat ("DWARF 2");
21411 get_builder ()->record_producer (producer);
21412
21413 processing_has_namespace_info = false;
21414
21415 return get_builder ()->get_compunit_symtab ();
21416 }
21417
21418 static void
21419 var_decode_location (struct attribute *attr, struct symbol *sym,
21420 struct dwarf2_cu *cu)
21421 {
21422 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21423 struct comp_unit_head *cu_header = &cu->header;
21424
21425 /* NOTE drow/2003-01-30: There used to be a comment and some special
21426 code here to turn a symbol with DW_AT_external and a
21427 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21428 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21429 with some versions of binutils) where shared libraries could have
21430 relocations against symbols in their debug information - the
21431 minimal symbol would have the right address, but the debug info
21432 would not. It's no longer necessary, because we will explicitly
21433 apply relocations when we read in the debug information now. */
21434
21435 /* A DW_AT_location attribute with no contents indicates that a
21436 variable has been optimized away. */
21437 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21438 {
21439 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21440 return;
21441 }
21442
21443 /* Handle one degenerate form of location expression specially, to
21444 preserve GDB's previous behavior when section offsets are
21445 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21446 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21447
21448 if (attr_form_is_block (attr)
21449 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21450 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21451 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21452 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21453 && (DW_BLOCK (attr)->size
21454 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21455 {
21456 unsigned int dummy;
21457
21458 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21459 SYMBOL_VALUE_ADDRESS (sym) =
21460 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21461 else
21462 SYMBOL_VALUE_ADDRESS (sym) =
21463 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21464 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21465 fixup_symbol_section (sym, objfile);
21466 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21467 SYMBOL_SECTION (sym));
21468 return;
21469 }
21470
21471 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21472 expression evaluator, and use LOC_COMPUTED only when necessary
21473 (i.e. when the value of a register or memory location is
21474 referenced, or a thread-local block, etc.). Then again, it might
21475 not be worthwhile. I'm assuming that it isn't unless performance
21476 or memory numbers show me otherwise. */
21477
21478 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21479
21480 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21481 cu->has_loclist = true;
21482 }
21483
21484 /* Given a pointer to a DWARF information entry, figure out if we need
21485 to make a symbol table entry for it, and if so, create a new entry
21486 and return a pointer to it.
21487 If TYPE is NULL, determine symbol type from the die, otherwise
21488 used the passed type.
21489 If SPACE is not NULL, use it to hold the new symbol. If it is
21490 NULL, allocate a new symbol on the objfile's obstack. */
21491
21492 static struct symbol *
21493 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21494 struct symbol *space)
21495 {
21496 struct dwarf2_per_objfile *dwarf2_per_objfile
21497 = cu->per_cu->dwarf2_per_objfile;
21498 struct objfile *objfile = dwarf2_per_objfile->objfile;
21499 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21500 struct symbol *sym = NULL;
21501 const char *name;
21502 struct attribute *attr = NULL;
21503 struct attribute *attr2 = NULL;
21504 CORE_ADDR baseaddr;
21505 struct pending **list_to_add = NULL;
21506
21507 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21508
21509 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21510
21511 name = dwarf2_name (die, cu);
21512 if (name)
21513 {
21514 const char *linkagename;
21515 int suppress_add = 0;
21516
21517 if (space)
21518 sym = space;
21519 else
21520 sym = allocate_symbol (objfile);
21521 OBJSTAT (objfile, n_syms++);
21522
21523 /* Cache this symbol's name and the name's demangled form (if any). */
21524 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21525 linkagename = dwarf2_physname (name, die, cu);
21526 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21527
21528 /* Fortran does not have mangling standard and the mangling does differ
21529 between gfortran, iFort etc. */
21530 if (cu->language == language_fortran
21531 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21532 symbol_set_demangled_name (&(sym->ginfo),
21533 dwarf2_full_name (name, die, cu),
21534 NULL);
21535
21536 /* Default assumptions.
21537 Use the passed type or decode it from the die. */
21538 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21539 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21540 if (type != NULL)
21541 SYMBOL_TYPE (sym) = type;
21542 else
21543 SYMBOL_TYPE (sym) = die_type (die, cu);
21544 attr = dwarf2_attr (die,
21545 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21546 cu);
21547 if (attr)
21548 {
21549 SYMBOL_LINE (sym) = DW_UNSND (attr);
21550 }
21551
21552 attr = dwarf2_attr (die,
21553 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21554 cu);
21555 if (attr)
21556 {
21557 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21558 struct file_entry *fe;
21559
21560 if (cu->line_header != NULL)
21561 fe = cu->line_header->file_name_at (file_index);
21562 else
21563 fe = NULL;
21564
21565 if (fe == NULL)
21566 complaint (_("file index out of range"));
21567 else
21568 symbol_set_symtab (sym, fe->symtab);
21569 }
21570
21571 switch (die->tag)
21572 {
21573 case DW_TAG_label:
21574 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21575 if (attr)
21576 {
21577 CORE_ADDR addr;
21578
21579 addr = attr_value_as_address (attr);
21580 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21581 SYMBOL_VALUE_ADDRESS (sym) = addr;
21582 }
21583 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21584 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21585 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21586 add_symbol_to_list (sym, cu->list_in_scope);
21587 break;
21588 case DW_TAG_subprogram:
21589 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21590 finish_block. */
21591 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21592 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21593 if ((attr2 && (DW_UNSND (attr2) != 0))
21594 || cu->language == language_ada)
21595 {
21596 /* Subprograms marked external are stored as a global symbol.
21597 Ada subprograms, whether marked external or not, are always
21598 stored as a global symbol, because we want to be able to
21599 access them globally. For instance, we want to be able
21600 to break on a nested subprogram without having to
21601 specify the context. */
21602 list_to_add = cu->get_builder ()->get_global_symbols ();
21603 }
21604 else
21605 {
21606 list_to_add = cu->list_in_scope;
21607 }
21608 break;
21609 case DW_TAG_inlined_subroutine:
21610 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21611 finish_block. */
21612 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21613 SYMBOL_INLINED (sym) = 1;
21614 list_to_add = cu->list_in_scope;
21615 break;
21616 case DW_TAG_template_value_param:
21617 suppress_add = 1;
21618 /* Fall through. */
21619 case DW_TAG_constant:
21620 case DW_TAG_variable:
21621 case DW_TAG_member:
21622 /* Compilation with minimal debug info may result in
21623 variables with missing type entries. Change the
21624 misleading `void' type to something sensible. */
21625 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21626 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21627
21628 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21629 /* In the case of DW_TAG_member, we should only be called for
21630 static const members. */
21631 if (die->tag == DW_TAG_member)
21632 {
21633 /* dwarf2_add_field uses die_is_declaration,
21634 so we do the same. */
21635 gdb_assert (die_is_declaration (die, cu));
21636 gdb_assert (attr);
21637 }
21638 if (attr)
21639 {
21640 dwarf2_const_value (attr, sym, cu);
21641 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21642 if (!suppress_add)
21643 {
21644 if (attr2 && (DW_UNSND (attr2) != 0))
21645 list_to_add = cu->get_builder ()->get_global_symbols ();
21646 else
21647 list_to_add = cu->list_in_scope;
21648 }
21649 break;
21650 }
21651 attr = dwarf2_attr (die, DW_AT_location, cu);
21652 if (attr)
21653 {
21654 var_decode_location (attr, sym, cu);
21655 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21656
21657 /* Fortran explicitly imports any global symbols to the local
21658 scope by DW_TAG_common_block. */
21659 if (cu->language == language_fortran && die->parent
21660 && die->parent->tag == DW_TAG_common_block)
21661 attr2 = NULL;
21662
21663 if (SYMBOL_CLASS (sym) == LOC_STATIC
21664 && SYMBOL_VALUE_ADDRESS (sym) == 0
21665 && !dwarf2_per_objfile->has_section_at_zero)
21666 {
21667 /* When a static variable is eliminated by the linker,
21668 the corresponding debug information is not stripped
21669 out, but the variable address is set to null;
21670 do not add such variables into symbol table. */
21671 }
21672 else if (attr2 && (DW_UNSND (attr2) != 0))
21673 {
21674 /* Workaround gfortran PR debug/40040 - it uses
21675 DW_AT_location for variables in -fPIC libraries which may
21676 get overriden by other libraries/executable and get
21677 a different address. Resolve it by the minimal symbol
21678 which may come from inferior's executable using copy
21679 relocation. Make this workaround only for gfortran as for
21680 other compilers GDB cannot guess the minimal symbol
21681 Fortran mangling kind. */
21682 if (cu->language == language_fortran && die->parent
21683 && die->parent->tag == DW_TAG_module
21684 && cu->producer
21685 && startswith (cu->producer, "GNU Fortran"))
21686 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21687
21688 /* A variable with DW_AT_external is never static,
21689 but it may be block-scoped. */
21690 list_to_add
21691 = ((cu->list_in_scope
21692 == cu->get_builder ()->get_file_symbols ())
21693 ? cu->get_builder ()->get_global_symbols ()
21694 : cu->list_in_scope);
21695 }
21696 else
21697 list_to_add = cu->list_in_scope;
21698 }
21699 else
21700 {
21701 /* We do not know the address of this symbol.
21702 If it is an external symbol and we have type information
21703 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21704 The address of the variable will then be determined from
21705 the minimal symbol table whenever the variable is
21706 referenced. */
21707 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21708
21709 /* Fortran explicitly imports any global symbols to the local
21710 scope by DW_TAG_common_block. */
21711 if (cu->language == language_fortran && die->parent
21712 && die->parent->tag == DW_TAG_common_block)
21713 {
21714 /* SYMBOL_CLASS doesn't matter here because
21715 read_common_block is going to reset it. */
21716 if (!suppress_add)
21717 list_to_add = cu->list_in_scope;
21718 }
21719 else if (attr2 && (DW_UNSND (attr2) != 0)
21720 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21721 {
21722 /* A variable with DW_AT_external is never static, but it
21723 may be block-scoped. */
21724 list_to_add
21725 = ((cu->list_in_scope
21726 == cu->get_builder ()->get_file_symbols ())
21727 ? cu->get_builder ()->get_global_symbols ()
21728 : cu->list_in_scope);
21729
21730 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21731 }
21732 else if (!die_is_declaration (die, cu))
21733 {
21734 /* Use the default LOC_OPTIMIZED_OUT class. */
21735 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21736 if (!suppress_add)
21737 list_to_add = cu->list_in_scope;
21738 }
21739 }
21740 break;
21741 case DW_TAG_formal_parameter:
21742 {
21743 /* If we are inside a function, mark this as an argument. If
21744 not, we might be looking at an argument to an inlined function
21745 when we do not have enough information to show inlined frames;
21746 pretend it's a local variable in that case so that the user can
21747 still see it. */
21748 struct context_stack *curr
21749 = cu->get_builder ()->get_current_context_stack ();
21750 if (curr != nullptr && curr->name != nullptr)
21751 SYMBOL_IS_ARGUMENT (sym) = 1;
21752 attr = dwarf2_attr (die, DW_AT_location, cu);
21753 if (attr)
21754 {
21755 var_decode_location (attr, sym, cu);
21756 }
21757 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21758 if (attr)
21759 {
21760 dwarf2_const_value (attr, sym, cu);
21761 }
21762
21763 list_to_add = cu->list_in_scope;
21764 }
21765 break;
21766 case DW_TAG_unspecified_parameters:
21767 /* From varargs functions; gdb doesn't seem to have any
21768 interest in this information, so just ignore it for now.
21769 (FIXME?) */
21770 break;
21771 case DW_TAG_template_type_param:
21772 suppress_add = 1;
21773 /* Fall through. */
21774 case DW_TAG_class_type:
21775 case DW_TAG_interface_type:
21776 case DW_TAG_structure_type:
21777 case DW_TAG_union_type:
21778 case DW_TAG_set_type:
21779 case DW_TAG_enumeration_type:
21780 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21781 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21782
21783 {
21784 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21785 really ever be static objects: otherwise, if you try
21786 to, say, break of a class's method and you're in a file
21787 which doesn't mention that class, it won't work unless
21788 the check for all static symbols in lookup_symbol_aux
21789 saves you. See the OtherFileClass tests in
21790 gdb.c++/namespace.exp. */
21791
21792 if (!suppress_add)
21793 {
21794 buildsym_compunit *builder = cu->get_builder ();
21795 list_to_add
21796 = (cu->list_in_scope == builder->get_file_symbols ()
21797 && cu->language == language_cplus
21798 ? builder->get_global_symbols ()
21799 : cu->list_in_scope);
21800
21801 /* The semantics of C++ state that "struct foo {
21802 ... }" also defines a typedef for "foo". */
21803 if (cu->language == language_cplus
21804 || cu->language == language_ada
21805 || cu->language == language_d
21806 || cu->language == language_rust)
21807 {
21808 /* The symbol's name is already allocated along
21809 with this objfile, so we don't need to
21810 duplicate it for the type. */
21811 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21812 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21813 }
21814 }
21815 }
21816 break;
21817 case DW_TAG_typedef:
21818 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21819 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21820 list_to_add = cu->list_in_scope;
21821 break;
21822 case DW_TAG_base_type:
21823 case DW_TAG_subrange_type:
21824 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21825 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21826 list_to_add = cu->list_in_scope;
21827 break;
21828 case DW_TAG_enumerator:
21829 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21830 if (attr)
21831 {
21832 dwarf2_const_value (attr, sym, cu);
21833 }
21834 {
21835 /* NOTE: carlton/2003-11-10: See comment above in the
21836 DW_TAG_class_type, etc. block. */
21837
21838 list_to_add
21839 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21840 && cu->language == language_cplus
21841 ? cu->get_builder ()->get_global_symbols ()
21842 : cu->list_in_scope);
21843 }
21844 break;
21845 case DW_TAG_imported_declaration:
21846 case DW_TAG_namespace:
21847 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21848 list_to_add = cu->get_builder ()->get_global_symbols ();
21849 break;
21850 case DW_TAG_module:
21851 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21852 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21853 list_to_add = cu->get_builder ()->get_global_symbols ();
21854 break;
21855 case DW_TAG_common_block:
21856 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21857 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21858 add_symbol_to_list (sym, cu->list_in_scope);
21859 break;
21860 default:
21861 /* Not a tag we recognize. Hopefully we aren't processing
21862 trash data, but since we must specifically ignore things
21863 we don't recognize, there is nothing else we should do at
21864 this point. */
21865 complaint (_("unsupported tag: '%s'"),
21866 dwarf_tag_name (die->tag));
21867 break;
21868 }
21869
21870 if (suppress_add)
21871 {
21872 sym->hash_next = objfile->template_symbols;
21873 objfile->template_symbols = sym;
21874 list_to_add = NULL;
21875 }
21876
21877 if (list_to_add != NULL)
21878 add_symbol_to_list (sym, list_to_add);
21879
21880 /* For the benefit of old versions of GCC, check for anonymous
21881 namespaces based on the demangled name. */
21882 if (!cu->processing_has_namespace_info
21883 && cu->language == language_cplus)
21884 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21885 }
21886 return (sym);
21887 }
21888
21889 /* Given an attr with a DW_FORM_dataN value in host byte order,
21890 zero-extend it as appropriate for the symbol's type. The DWARF
21891 standard (v4) is not entirely clear about the meaning of using
21892 DW_FORM_dataN for a constant with a signed type, where the type is
21893 wider than the data. The conclusion of a discussion on the DWARF
21894 list was that this is unspecified. We choose to always zero-extend
21895 because that is the interpretation long in use by GCC. */
21896
21897 static gdb_byte *
21898 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21899 struct dwarf2_cu *cu, LONGEST *value, int bits)
21900 {
21901 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21902 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21903 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21904 LONGEST l = DW_UNSND (attr);
21905
21906 if (bits < sizeof (*value) * 8)
21907 {
21908 l &= ((LONGEST) 1 << bits) - 1;
21909 *value = l;
21910 }
21911 else if (bits == sizeof (*value) * 8)
21912 *value = l;
21913 else
21914 {
21915 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21916 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21917 return bytes;
21918 }
21919
21920 return NULL;
21921 }
21922
21923 /* Read a constant value from an attribute. Either set *VALUE, or if
21924 the value does not fit in *VALUE, set *BYTES - either already
21925 allocated on the objfile obstack, or newly allocated on OBSTACK,
21926 or, set *BATON, if we translated the constant to a location
21927 expression. */
21928
21929 static void
21930 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21931 const char *name, struct obstack *obstack,
21932 struct dwarf2_cu *cu,
21933 LONGEST *value, const gdb_byte **bytes,
21934 struct dwarf2_locexpr_baton **baton)
21935 {
21936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21937 struct comp_unit_head *cu_header = &cu->header;
21938 struct dwarf_block *blk;
21939 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21940 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21941
21942 *value = 0;
21943 *bytes = NULL;
21944 *baton = NULL;
21945
21946 switch (attr->form)
21947 {
21948 case DW_FORM_addr:
21949 case DW_FORM_addrx:
21950 case DW_FORM_GNU_addr_index:
21951 {
21952 gdb_byte *data;
21953
21954 if (TYPE_LENGTH (type) != cu_header->addr_size)
21955 dwarf2_const_value_length_mismatch_complaint (name,
21956 cu_header->addr_size,
21957 TYPE_LENGTH (type));
21958 /* Symbols of this form are reasonably rare, so we just
21959 piggyback on the existing location code rather than writing
21960 a new implementation of symbol_computed_ops. */
21961 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21962 (*baton)->per_cu = cu->per_cu;
21963 gdb_assert ((*baton)->per_cu);
21964
21965 (*baton)->size = 2 + cu_header->addr_size;
21966 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21967 (*baton)->data = data;
21968
21969 data[0] = DW_OP_addr;
21970 store_unsigned_integer (&data[1], cu_header->addr_size,
21971 byte_order, DW_ADDR (attr));
21972 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21973 }
21974 break;
21975 case DW_FORM_string:
21976 case DW_FORM_strp:
21977 case DW_FORM_strx:
21978 case DW_FORM_GNU_str_index:
21979 case DW_FORM_GNU_strp_alt:
21980 /* DW_STRING is already allocated on the objfile obstack, point
21981 directly to it. */
21982 *bytes = (const gdb_byte *) DW_STRING (attr);
21983 break;
21984 case DW_FORM_block1:
21985 case DW_FORM_block2:
21986 case DW_FORM_block4:
21987 case DW_FORM_block:
21988 case DW_FORM_exprloc:
21989 case DW_FORM_data16:
21990 blk = DW_BLOCK (attr);
21991 if (TYPE_LENGTH (type) != blk->size)
21992 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21993 TYPE_LENGTH (type));
21994 *bytes = blk->data;
21995 break;
21996
21997 /* The DW_AT_const_value attributes are supposed to carry the
21998 symbol's value "represented as it would be on the target
21999 architecture." By the time we get here, it's already been
22000 converted to host endianness, so we just need to sign- or
22001 zero-extend it as appropriate. */
22002 case DW_FORM_data1:
22003 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22004 break;
22005 case DW_FORM_data2:
22006 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22007 break;
22008 case DW_FORM_data4:
22009 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22010 break;
22011 case DW_FORM_data8:
22012 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22013 break;
22014
22015 case DW_FORM_sdata:
22016 case DW_FORM_implicit_const:
22017 *value = DW_SND (attr);
22018 break;
22019
22020 case DW_FORM_udata:
22021 *value = DW_UNSND (attr);
22022 break;
22023
22024 default:
22025 complaint (_("unsupported const value attribute form: '%s'"),
22026 dwarf_form_name (attr->form));
22027 *value = 0;
22028 break;
22029 }
22030 }
22031
22032
22033 /* Copy constant value from an attribute to a symbol. */
22034
22035 static void
22036 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22037 struct dwarf2_cu *cu)
22038 {
22039 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22040 LONGEST value;
22041 const gdb_byte *bytes;
22042 struct dwarf2_locexpr_baton *baton;
22043
22044 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22045 SYMBOL_PRINT_NAME (sym),
22046 &objfile->objfile_obstack, cu,
22047 &value, &bytes, &baton);
22048
22049 if (baton != NULL)
22050 {
22051 SYMBOL_LOCATION_BATON (sym) = baton;
22052 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22053 }
22054 else if (bytes != NULL)
22055 {
22056 SYMBOL_VALUE_BYTES (sym) = bytes;
22057 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22058 }
22059 else
22060 {
22061 SYMBOL_VALUE (sym) = value;
22062 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22063 }
22064 }
22065
22066 /* Return the type of the die in question using its DW_AT_type attribute. */
22067
22068 static struct type *
22069 die_type (struct die_info *die, struct dwarf2_cu *cu)
22070 {
22071 struct attribute *type_attr;
22072
22073 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22074 if (!type_attr)
22075 {
22076 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22077 /* A missing DW_AT_type represents a void type. */
22078 return objfile_type (objfile)->builtin_void;
22079 }
22080
22081 return lookup_die_type (die, type_attr, cu);
22082 }
22083
22084 /* True iff CU's producer generates GNAT Ada auxiliary information
22085 that allows to find parallel types through that information instead
22086 of having to do expensive parallel lookups by type name. */
22087
22088 static int
22089 need_gnat_info (struct dwarf2_cu *cu)
22090 {
22091 /* Assume that the Ada compiler was GNAT, which always produces
22092 the auxiliary information. */
22093 return (cu->language == language_ada);
22094 }
22095
22096 /* Return the auxiliary type of the die in question using its
22097 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22098 attribute is not present. */
22099
22100 static struct type *
22101 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22102 {
22103 struct attribute *type_attr;
22104
22105 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22106 if (!type_attr)
22107 return NULL;
22108
22109 return lookup_die_type (die, type_attr, cu);
22110 }
22111
22112 /* If DIE has a descriptive_type attribute, then set the TYPE's
22113 descriptive type accordingly. */
22114
22115 static void
22116 set_descriptive_type (struct type *type, struct die_info *die,
22117 struct dwarf2_cu *cu)
22118 {
22119 struct type *descriptive_type = die_descriptive_type (die, cu);
22120
22121 if (descriptive_type)
22122 {
22123 ALLOCATE_GNAT_AUX_TYPE (type);
22124 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22125 }
22126 }
22127
22128 /* Return the containing type of the die in question using its
22129 DW_AT_containing_type attribute. */
22130
22131 static struct type *
22132 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22133 {
22134 struct attribute *type_attr;
22135 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22136
22137 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22138 if (!type_attr)
22139 error (_("Dwarf Error: Problem turning containing type into gdb type "
22140 "[in module %s]"), objfile_name (objfile));
22141
22142 return lookup_die_type (die, type_attr, cu);
22143 }
22144
22145 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22146
22147 static struct type *
22148 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22149 {
22150 struct dwarf2_per_objfile *dwarf2_per_objfile
22151 = cu->per_cu->dwarf2_per_objfile;
22152 struct objfile *objfile = dwarf2_per_objfile->objfile;
22153 char *saved;
22154
22155 std::string message
22156 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22157 objfile_name (objfile),
22158 sect_offset_str (cu->header.sect_off),
22159 sect_offset_str (die->sect_off));
22160 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22161 message.c_str (), message.length ());
22162
22163 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22164 }
22165
22166 /* Look up the type of DIE in CU using its type attribute ATTR.
22167 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22168 DW_AT_containing_type.
22169 If there is no type substitute an error marker. */
22170
22171 static struct type *
22172 lookup_die_type (struct die_info *die, const struct attribute *attr,
22173 struct dwarf2_cu *cu)
22174 {
22175 struct dwarf2_per_objfile *dwarf2_per_objfile
22176 = cu->per_cu->dwarf2_per_objfile;
22177 struct objfile *objfile = dwarf2_per_objfile->objfile;
22178 struct type *this_type;
22179
22180 gdb_assert (attr->name == DW_AT_type
22181 || attr->name == DW_AT_GNAT_descriptive_type
22182 || attr->name == DW_AT_containing_type);
22183
22184 /* First see if we have it cached. */
22185
22186 if (attr->form == DW_FORM_GNU_ref_alt)
22187 {
22188 struct dwarf2_per_cu_data *per_cu;
22189 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22190
22191 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22192 dwarf2_per_objfile);
22193 this_type = get_die_type_at_offset (sect_off, per_cu);
22194 }
22195 else if (attr_form_is_ref (attr))
22196 {
22197 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22198
22199 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22200 }
22201 else if (attr->form == DW_FORM_ref_sig8)
22202 {
22203 ULONGEST signature = DW_SIGNATURE (attr);
22204
22205 return get_signatured_type (die, signature, cu);
22206 }
22207 else
22208 {
22209 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22210 " at %s [in module %s]"),
22211 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22212 objfile_name (objfile));
22213 return build_error_marker_type (cu, die);
22214 }
22215
22216 /* If not cached we need to read it in. */
22217
22218 if (this_type == NULL)
22219 {
22220 struct die_info *type_die = NULL;
22221 struct dwarf2_cu *type_cu = cu;
22222
22223 if (attr_form_is_ref (attr))
22224 type_die = follow_die_ref (die, attr, &type_cu);
22225 if (type_die == NULL)
22226 return build_error_marker_type (cu, die);
22227 /* If we find the type now, it's probably because the type came
22228 from an inter-CU reference and the type's CU got expanded before
22229 ours. */
22230 this_type = read_type_die (type_die, type_cu);
22231 }
22232
22233 /* If we still don't have a type use an error marker. */
22234
22235 if (this_type == NULL)
22236 return build_error_marker_type (cu, die);
22237
22238 return this_type;
22239 }
22240
22241 /* Return the type in DIE, CU.
22242 Returns NULL for invalid types.
22243
22244 This first does a lookup in die_type_hash,
22245 and only reads the die in if necessary.
22246
22247 NOTE: This can be called when reading in partial or full symbols. */
22248
22249 static struct type *
22250 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22251 {
22252 struct type *this_type;
22253
22254 this_type = get_die_type (die, cu);
22255 if (this_type)
22256 return this_type;
22257
22258 return read_type_die_1 (die, cu);
22259 }
22260
22261 /* Read the type in DIE, CU.
22262 Returns NULL for invalid types. */
22263
22264 static struct type *
22265 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22266 {
22267 struct type *this_type = NULL;
22268
22269 switch (die->tag)
22270 {
22271 case DW_TAG_class_type:
22272 case DW_TAG_interface_type:
22273 case DW_TAG_structure_type:
22274 case DW_TAG_union_type:
22275 this_type = read_structure_type (die, cu);
22276 break;
22277 case DW_TAG_enumeration_type:
22278 this_type = read_enumeration_type (die, cu);
22279 break;
22280 case DW_TAG_subprogram:
22281 case DW_TAG_subroutine_type:
22282 case DW_TAG_inlined_subroutine:
22283 this_type = read_subroutine_type (die, cu);
22284 break;
22285 case DW_TAG_array_type:
22286 this_type = read_array_type (die, cu);
22287 break;
22288 case DW_TAG_set_type:
22289 this_type = read_set_type (die, cu);
22290 break;
22291 case DW_TAG_pointer_type:
22292 this_type = read_tag_pointer_type (die, cu);
22293 break;
22294 case DW_TAG_ptr_to_member_type:
22295 this_type = read_tag_ptr_to_member_type (die, cu);
22296 break;
22297 case DW_TAG_reference_type:
22298 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22299 break;
22300 case DW_TAG_rvalue_reference_type:
22301 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22302 break;
22303 case DW_TAG_const_type:
22304 this_type = read_tag_const_type (die, cu);
22305 break;
22306 case DW_TAG_volatile_type:
22307 this_type = read_tag_volatile_type (die, cu);
22308 break;
22309 case DW_TAG_restrict_type:
22310 this_type = read_tag_restrict_type (die, cu);
22311 break;
22312 case DW_TAG_string_type:
22313 this_type = read_tag_string_type (die, cu);
22314 break;
22315 case DW_TAG_typedef:
22316 this_type = read_typedef (die, cu);
22317 break;
22318 case DW_TAG_subrange_type:
22319 this_type = read_subrange_type (die, cu);
22320 break;
22321 case DW_TAG_base_type:
22322 this_type = read_base_type (die, cu);
22323 break;
22324 case DW_TAG_unspecified_type:
22325 this_type = read_unspecified_type (die, cu);
22326 break;
22327 case DW_TAG_namespace:
22328 this_type = read_namespace_type (die, cu);
22329 break;
22330 case DW_TAG_module:
22331 this_type = read_module_type (die, cu);
22332 break;
22333 case DW_TAG_atomic_type:
22334 this_type = read_tag_atomic_type (die, cu);
22335 break;
22336 default:
22337 complaint (_("unexpected tag in read_type_die: '%s'"),
22338 dwarf_tag_name (die->tag));
22339 break;
22340 }
22341
22342 return this_type;
22343 }
22344
22345 /* See if we can figure out if the class lives in a namespace. We do
22346 this by looking for a member function; its demangled name will
22347 contain namespace info, if there is any.
22348 Return the computed name or NULL.
22349 Space for the result is allocated on the objfile's obstack.
22350 This is the full-die version of guess_partial_die_structure_name.
22351 In this case we know DIE has no useful parent. */
22352
22353 static char *
22354 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22355 {
22356 struct die_info *spec_die;
22357 struct dwarf2_cu *spec_cu;
22358 struct die_info *child;
22359 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22360
22361 spec_cu = cu;
22362 spec_die = die_specification (die, &spec_cu);
22363 if (spec_die != NULL)
22364 {
22365 die = spec_die;
22366 cu = spec_cu;
22367 }
22368
22369 for (child = die->child;
22370 child != NULL;
22371 child = child->sibling)
22372 {
22373 if (child->tag == DW_TAG_subprogram)
22374 {
22375 const char *linkage_name = dw2_linkage_name (child, cu);
22376
22377 if (linkage_name != NULL)
22378 {
22379 char *actual_name
22380 = language_class_name_from_physname (cu->language_defn,
22381 linkage_name);
22382 char *name = NULL;
22383
22384 if (actual_name != NULL)
22385 {
22386 const char *die_name = dwarf2_name (die, cu);
22387
22388 if (die_name != NULL
22389 && strcmp (die_name, actual_name) != 0)
22390 {
22391 /* Strip off the class name from the full name.
22392 We want the prefix. */
22393 int die_name_len = strlen (die_name);
22394 int actual_name_len = strlen (actual_name);
22395
22396 /* Test for '::' as a sanity check. */
22397 if (actual_name_len > die_name_len + 2
22398 && actual_name[actual_name_len
22399 - die_name_len - 1] == ':')
22400 name = (char *) obstack_copy0 (
22401 &objfile->per_bfd->storage_obstack,
22402 actual_name, actual_name_len - die_name_len - 2);
22403 }
22404 }
22405 xfree (actual_name);
22406 return name;
22407 }
22408 }
22409 }
22410
22411 return NULL;
22412 }
22413
22414 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22415 prefix part in such case. See
22416 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22417
22418 static const char *
22419 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22420 {
22421 struct attribute *attr;
22422 const char *base;
22423
22424 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22425 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22426 return NULL;
22427
22428 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22429 return NULL;
22430
22431 attr = dw2_linkage_name_attr (die, cu);
22432 if (attr == NULL || DW_STRING (attr) == NULL)
22433 return NULL;
22434
22435 /* dwarf2_name had to be already called. */
22436 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22437
22438 /* Strip the base name, keep any leading namespaces/classes. */
22439 base = strrchr (DW_STRING (attr), ':');
22440 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22441 return "";
22442
22443 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22444 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22445 DW_STRING (attr),
22446 &base[-1] - DW_STRING (attr));
22447 }
22448
22449 /* Return the name of the namespace/class that DIE is defined within,
22450 or "" if we can't tell. The caller should not xfree the result.
22451
22452 For example, if we're within the method foo() in the following
22453 code:
22454
22455 namespace N {
22456 class C {
22457 void foo () {
22458 }
22459 };
22460 }
22461
22462 then determine_prefix on foo's die will return "N::C". */
22463
22464 static const char *
22465 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22466 {
22467 struct dwarf2_per_objfile *dwarf2_per_objfile
22468 = cu->per_cu->dwarf2_per_objfile;
22469 struct die_info *parent, *spec_die;
22470 struct dwarf2_cu *spec_cu;
22471 struct type *parent_type;
22472 const char *retval;
22473
22474 if (cu->language != language_cplus
22475 && cu->language != language_fortran && cu->language != language_d
22476 && cu->language != language_rust)
22477 return "";
22478
22479 retval = anonymous_struct_prefix (die, cu);
22480 if (retval)
22481 return retval;
22482
22483 /* We have to be careful in the presence of DW_AT_specification.
22484 For example, with GCC 3.4, given the code
22485
22486 namespace N {
22487 void foo() {
22488 // Definition of N::foo.
22489 }
22490 }
22491
22492 then we'll have a tree of DIEs like this:
22493
22494 1: DW_TAG_compile_unit
22495 2: DW_TAG_namespace // N
22496 3: DW_TAG_subprogram // declaration of N::foo
22497 4: DW_TAG_subprogram // definition of N::foo
22498 DW_AT_specification // refers to die #3
22499
22500 Thus, when processing die #4, we have to pretend that we're in
22501 the context of its DW_AT_specification, namely the contex of die
22502 #3. */
22503 spec_cu = cu;
22504 spec_die = die_specification (die, &spec_cu);
22505 if (spec_die == NULL)
22506 parent = die->parent;
22507 else
22508 {
22509 parent = spec_die->parent;
22510 cu = spec_cu;
22511 }
22512
22513 if (parent == NULL)
22514 return "";
22515 else if (parent->building_fullname)
22516 {
22517 const char *name;
22518 const char *parent_name;
22519
22520 /* It has been seen on RealView 2.2 built binaries,
22521 DW_TAG_template_type_param types actually _defined_ as
22522 children of the parent class:
22523
22524 enum E {};
22525 template class <class Enum> Class{};
22526 Class<enum E> class_e;
22527
22528 1: DW_TAG_class_type (Class)
22529 2: DW_TAG_enumeration_type (E)
22530 3: DW_TAG_enumerator (enum1:0)
22531 3: DW_TAG_enumerator (enum2:1)
22532 ...
22533 2: DW_TAG_template_type_param
22534 DW_AT_type DW_FORM_ref_udata (E)
22535
22536 Besides being broken debug info, it can put GDB into an
22537 infinite loop. Consider:
22538
22539 When we're building the full name for Class<E>, we'll start
22540 at Class, and go look over its template type parameters,
22541 finding E. We'll then try to build the full name of E, and
22542 reach here. We're now trying to build the full name of E,
22543 and look over the parent DIE for containing scope. In the
22544 broken case, if we followed the parent DIE of E, we'd again
22545 find Class, and once again go look at its template type
22546 arguments, etc., etc. Simply don't consider such parent die
22547 as source-level parent of this die (it can't be, the language
22548 doesn't allow it), and break the loop here. */
22549 name = dwarf2_name (die, cu);
22550 parent_name = dwarf2_name (parent, cu);
22551 complaint (_("template param type '%s' defined within parent '%s'"),
22552 name ? name : "<unknown>",
22553 parent_name ? parent_name : "<unknown>");
22554 return "";
22555 }
22556 else
22557 switch (parent->tag)
22558 {
22559 case DW_TAG_namespace:
22560 parent_type = read_type_die (parent, cu);
22561 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22562 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22563 Work around this problem here. */
22564 if (cu->language == language_cplus
22565 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22566 return "";
22567 /* We give a name to even anonymous namespaces. */
22568 return TYPE_NAME (parent_type);
22569 case DW_TAG_class_type:
22570 case DW_TAG_interface_type:
22571 case DW_TAG_structure_type:
22572 case DW_TAG_union_type:
22573 case DW_TAG_module:
22574 parent_type = read_type_die (parent, cu);
22575 if (TYPE_NAME (parent_type) != NULL)
22576 return TYPE_NAME (parent_type);
22577 else
22578 /* An anonymous structure is only allowed non-static data
22579 members; no typedefs, no member functions, et cetera.
22580 So it does not need a prefix. */
22581 return "";
22582 case DW_TAG_compile_unit:
22583 case DW_TAG_partial_unit:
22584 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22585 if (cu->language == language_cplus
22586 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22587 && die->child != NULL
22588 && (die->tag == DW_TAG_class_type
22589 || die->tag == DW_TAG_structure_type
22590 || die->tag == DW_TAG_union_type))
22591 {
22592 char *name = guess_full_die_structure_name (die, cu);
22593 if (name != NULL)
22594 return name;
22595 }
22596 return "";
22597 case DW_TAG_enumeration_type:
22598 parent_type = read_type_die (parent, cu);
22599 if (TYPE_DECLARED_CLASS (parent_type))
22600 {
22601 if (TYPE_NAME (parent_type) != NULL)
22602 return TYPE_NAME (parent_type);
22603 return "";
22604 }
22605 /* Fall through. */
22606 default:
22607 return determine_prefix (parent, cu);
22608 }
22609 }
22610
22611 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22612 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22613 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22614 an obconcat, otherwise allocate storage for the result. The CU argument is
22615 used to determine the language and hence, the appropriate separator. */
22616
22617 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22618
22619 static char *
22620 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22621 int physname, struct dwarf2_cu *cu)
22622 {
22623 const char *lead = "";
22624 const char *sep;
22625
22626 if (suffix == NULL || suffix[0] == '\0'
22627 || prefix == NULL || prefix[0] == '\0')
22628 sep = "";
22629 else if (cu->language == language_d)
22630 {
22631 /* For D, the 'main' function could be defined in any module, but it
22632 should never be prefixed. */
22633 if (strcmp (suffix, "D main") == 0)
22634 {
22635 prefix = "";
22636 sep = "";
22637 }
22638 else
22639 sep = ".";
22640 }
22641 else if (cu->language == language_fortran && physname)
22642 {
22643 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22644 DW_AT_MIPS_linkage_name is preferred and used instead. */
22645
22646 lead = "__";
22647 sep = "_MOD_";
22648 }
22649 else
22650 sep = "::";
22651
22652 if (prefix == NULL)
22653 prefix = "";
22654 if (suffix == NULL)
22655 suffix = "";
22656
22657 if (obs == NULL)
22658 {
22659 char *retval
22660 = ((char *)
22661 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22662
22663 strcpy (retval, lead);
22664 strcat (retval, prefix);
22665 strcat (retval, sep);
22666 strcat (retval, suffix);
22667 return retval;
22668 }
22669 else
22670 {
22671 /* We have an obstack. */
22672 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22673 }
22674 }
22675
22676 /* Return sibling of die, NULL if no sibling. */
22677
22678 static struct die_info *
22679 sibling_die (struct die_info *die)
22680 {
22681 return die->sibling;
22682 }
22683
22684 /* Get name of a die, return NULL if not found. */
22685
22686 static const char *
22687 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22688 struct obstack *obstack)
22689 {
22690 if (name && cu->language == language_cplus)
22691 {
22692 std::string canon_name = cp_canonicalize_string (name);
22693
22694 if (!canon_name.empty ())
22695 {
22696 if (canon_name != name)
22697 name = (const char *) obstack_copy0 (obstack,
22698 canon_name.c_str (),
22699 canon_name.length ());
22700 }
22701 }
22702
22703 return name;
22704 }
22705
22706 /* Get name of a die, return NULL if not found.
22707 Anonymous namespaces are converted to their magic string. */
22708
22709 static const char *
22710 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22711 {
22712 struct attribute *attr;
22713 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22714
22715 attr = dwarf2_attr (die, DW_AT_name, cu);
22716 if ((!attr || !DW_STRING (attr))
22717 && die->tag != DW_TAG_namespace
22718 && die->tag != DW_TAG_class_type
22719 && die->tag != DW_TAG_interface_type
22720 && die->tag != DW_TAG_structure_type
22721 && die->tag != DW_TAG_union_type)
22722 return NULL;
22723
22724 switch (die->tag)
22725 {
22726 case DW_TAG_compile_unit:
22727 case DW_TAG_partial_unit:
22728 /* Compilation units have a DW_AT_name that is a filename, not
22729 a source language identifier. */
22730 case DW_TAG_enumeration_type:
22731 case DW_TAG_enumerator:
22732 /* These tags always have simple identifiers already; no need
22733 to canonicalize them. */
22734 return DW_STRING (attr);
22735
22736 case DW_TAG_namespace:
22737 if (attr != NULL && DW_STRING (attr) != NULL)
22738 return DW_STRING (attr);
22739 return CP_ANONYMOUS_NAMESPACE_STR;
22740
22741 case DW_TAG_class_type:
22742 case DW_TAG_interface_type:
22743 case DW_TAG_structure_type:
22744 case DW_TAG_union_type:
22745 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22746 structures or unions. These were of the form "._%d" in GCC 4.1,
22747 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22748 and GCC 4.4. We work around this problem by ignoring these. */
22749 if (attr && DW_STRING (attr)
22750 && (startswith (DW_STRING (attr), "._")
22751 || startswith (DW_STRING (attr), "<anonymous")))
22752 return NULL;
22753
22754 /* GCC might emit a nameless typedef that has a linkage name. See
22755 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22756 if (!attr || DW_STRING (attr) == NULL)
22757 {
22758 char *demangled = NULL;
22759
22760 attr = dw2_linkage_name_attr (die, cu);
22761 if (attr == NULL || DW_STRING (attr) == NULL)
22762 return NULL;
22763
22764 /* Avoid demangling DW_STRING (attr) the second time on a second
22765 call for the same DIE. */
22766 if (!DW_STRING_IS_CANONICAL (attr))
22767 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22768
22769 if (demangled)
22770 {
22771 const char *base;
22772
22773 /* FIXME: we already did this for the partial symbol... */
22774 DW_STRING (attr)
22775 = ((const char *)
22776 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22777 demangled, strlen (demangled)));
22778 DW_STRING_IS_CANONICAL (attr) = 1;
22779 xfree (demangled);
22780
22781 /* Strip any leading namespaces/classes, keep only the base name.
22782 DW_AT_name for named DIEs does not contain the prefixes. */
22783 base = strrchr (DW_STRING (attr), ':');
22784 if (base && base > DW_STRING (attr) && base[-1] == ':')
22785 return &base[1];
22786 else
22787 return DW_STRING (attr);
22788 }
22789 }
22790 break;
22791
22792 default:
22793 break;
22794 }
22795
22796 if (!DW_STRING_IS_CANONICAL (attr))
22797 {
22798 DW_STRING (attr)
22799 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22800 &objfile->per_bfd->storage_obstack);
22801 DW_STRING_IS_CANONICAL (attr) = 1;
22802 }
22803 return DW_STRING (attr);
22804 }
22805
22806 /* Return the die that this die in an extension of, or NULL if there
22807 is none. *EXT_CU is the CU containing DIE on input, and the CU
22808 containing the return value on output. */
22809
22810 static struct die_info *
22811 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22812 {
22813 struct attribute *attr;
22814
22815 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22816 if (attr == NULL)
22817 return NULL;
22818
22819 return follow_die_ref (die, attr, ext_cu);
22820 }
22821
22822 /* Convert a DIE tag into its string name. */
22823
22824 static const char *
22825 dwarf_tag_name (unsigned tag)
22826 {
22827 const char *name = get_DW_TAG_name (tag);
22828
22829 if (name == NULL)
22830 return "DW_TAG_<unknown>";
22831
22832 return name;
22833 }
22834
22835 /* Convert a DWARF attribute code into its string name. */
22836
22837 static const char *
22838 dwarf_attr_name (unsigned attr)
22839 {
22840 const char *name;
22841
22842 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22843 if (attr == DW_AT_MIPS_fde)
22844 return "DW_AT_MIPS_fde";
22845 #else
22846 if (attr == DW_AT_HP_block_index)
22847 return "DW_AT_HP_block_index";
22848 #endif
22849
22850 name = get_DW_AT_name (attr);
22851
22852 if (name == NULL)
22853 return "DW_AT_<unknown>";
22854
22855 return name;
22856 }
22857
22858 /* Convert a DWARF value form code into its string name. */
22859
22860 static const char *
22861 dwarf_form_name (unsigned form)
22862 {
22863 const char *name = get_DW_FORM_name (form);
22864
22865 if (name == NULL)
22866 return "DW_FORM_<unknown>";
22867
22868 return name;
22869 }
22870
22871 static const char *
22872 dwarf_bool_name (unsigned mybool)
22873 {
22874 if (mybool)
22875 return "TRUE";
22876 else
22877 return "FALSE";
22878 }
22879
22880 /* Convert a DWARF type code into its string name. */
22881
22882 static const char *
22883 dwarf_type_encoding_name (unsigned enc)
22884 {
22885 const char *name = get_DW_ATE_name (enc);
22886
22887 if (name == NULL)
22888 return "DW_ATE_<unknown>";
22889
22890 return name;
22891 }
22892
22893 static void
22894 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22895 {
22896 unsigned int i;
22897
22898 print_spaces (indent, f);
22899 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22900 dwarf_tag_name (die->tag), die->abbrev,
22901 sect_offset_str (die->sect_off));
22902
22903 if (die->parent != NULL)
22904 {
22905 print_spaces (indent, f);
22906 fprintf_unfiltered (f, " parent at offset: %s\n",
22907 sect_offset_str (die->parent->sect_off));
22908 }
22909
22910 print_spaces (indent, f);
22911 fprintf_unfiltered (f, " has children: %s\n",
22912 dwarf_bool_name (die->child != NULL));
22913
22914 print_spaces (indent, f);
22915 fprintf_unfiltered (f, " attributes:\n");
22916
22917 for (i = 0; i < die->num_attrs; ++i)
22918 {
22919 print_spaces (indent, f);
22920 fprintf_unfiltered (f, " %s (%s) ",
22921 dwarf_attr_name (die->attrs[i].name),
22922 dwarf_form_name (die->attrs[i].form));
22923
22924 switch (die->attrs[i].form)
22925 {
22926 case DW_FORM_addr:
22927 case DW_FORM_addrx:
22928 case DW_FORM_GNU_addr_index:
22929 fprintf_unfiltered (f, "address: ");
22930 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22931 break;
22932 case DW_FORM_block2:
22933 case DW_FORM_block4:
22934 case DW_FORM_block:
22935 case DW_FORM_block1:
22936 fprintf_unfiltered (f, "block: size %s",
22937 pulongest (DW_BLOCK (&die->attrs[i])->size));
22938 break;
22939 case DW_FORM_exprloc:
22940 fprintf_unfiltered (f, "expression: size %s",
22941 pulongest (DW_BLOCK (&die->attrs[i])->size));
22942 break;
22943 case DW_FORM_data16:
22944 fprintf_unfiltered (f, "constant of 16 bytes");
22945 break;
22946 case DW_FORM_ref_addr:
22947 fprintf_unfiltered (f, "ref address: ");
22948 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22949 break;
22950 case DW_FORM_GNU_ref_alt:
22951 fprintf_unfiltered (f, "alt ref address: ");
22952 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22953 break;
22954 case DW_FORM_ref1:
22955 case DW_FORM_ref2:
22956 case DW_FORM_ref4:
22957 case DW_FORM_ref8:
22958 case DW_FORM_ref_udata:
22959 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22960 (long) (DW_UNSND (&die->attrs[i])));
22961 break;
22962 case DW_FORM_data1:
22963 case DW_FORM_data2:
22964 case DW_FORM_data4:
22965 case DW_FORM_data8:
22966 case DW_FORM_udata:
22967 case DW_FORM_sdata:
22968 fprintf_unfiltered (f, "constant: %s",
22969 pulongest (DW_UNSND (&die->attrs[i])));
22970 break;
22971 case DW_FORM_sec_offset:
22972 fprintf_unfiltered (f, "section offset: %s",
22973 pulongest (DW_UNSND (&die->attrs[i])));
22974 break;
22975 case DW_FORM_ref_sig8:
22976 fprintf_unfiltered (f, "signature: %s",
22977 hex_string (DW_SIGNATURE (&die->attrs[i])));
22978 break;
22979 case DW_FORM_string:
22980 case DW_FORM_strp:
22981 case DW_FORM_line_strp:
22982 case DW_FORM_strx:
22983 case DW_FORM_GNU_str_index:
22984 case DW_FORM_GNU_strp_alt:
22985 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22986 DW_STRING (&die->attrs[i])
22987 ? DW_STRING (&die->attrs[i]) : "",
22988 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22989 break;
22990 case DW_FORM_flag:
22991 if (DW_UNSND (&die->attrs[i]))
22992 fprintf_unfiltered (f, "flag: TRUE");
22993 else
22994 fprintf_unfiltered (f, "flag: FALSE");
22995 break;
22996 case DW_FORM_flag_present:
22997 fprintf_unfiltered (f, "flag: TRUE");
22998 break;
22999 case DW_FORM_indirect:
23000 /* The reader will have reduced the indirect form to
23001 the "base form" so this form should not occur. */
23002 fprintf_unfiltered (f,
23003 "unexpected attribute form: DW_FORM_indirect");
23004 break;
23005 case DW_FORM_implicit_const:
23006 fprintf_unfiltered (f, "constant: %s",
23007 plongest (DW_SND (&die->attrs[i])));
23008 break;
23009 default:
23010 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23011 die->attrs[i].form);
23012 break;
23013 }
23014 fprintf_unfiltered (f, "\n");
23015 }
23016 }
23017
23018 static void
23019 dump_die_for_error (struct die_info *die)
23020 {
23021 dump_die_shallow (gdb_stderr, 0, die);
23022 }
23023
23024 static void
23025 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23026 {
23027 int indent = level * 4;
23028
23029 gdb_assert (die != NULL);
23030
23031 if (level >= max_level)
23032 return;
23033
23034 dump_die_shallow (f, indent, die);
23035
23036 if (die->child != NULL)
23037 {
23038 print_spaces (indent, f);
23039 fprintf_unfiltered (f, " Children:");
23040 if (level + 1 < max_level)
23041 {
23042 fprintf_unfiltered (f, "\n");
23043 dump_die_1 (f, level + 1, max_level, die->child);
23044 }
23045 else
23046 {
23047 fprintf_unfiltered (f,
23048 " [not printed, max nesting level reached]\n");
23049 }
23050 }
23051
23052 if (die->sibling != NULL && level > 0)
23053 {
23054 dump_die_1 (f, level, max_level, die->sibling);
23055 }
23056 }
23057
23058 /* This is called from the pdie macro in gdbinit.in.
23059 It's not static so gcc will keep a copy callable from gdb. */
23060
23061 void
23062 dump_die (struct die_info *die, int max_level)
23063 {
23064 dump_die_1 (gdb_stdlog, 0, max_level, die);
23065 }
23066
23067 static void
23068 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23069 {
23070 void **slot;
23071
23072 slot = htab_find_slot_with_hash (cu->die_hash, die,
23073 to_underlying (die->sect_off),
23074 INSERT);
23075
23076 *slot = die;
23077 }
23078
23079 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23080 required kind. */
23081
23082 static sect_offset
23083 dwarf2_get_ref_die_offset (const struct attribute *attr)
23084 {
23085 if (attr_form_is_ref (attr))
23086 return (sect_offset) DW_UNSND (attr);
23087
23088 complaint (_("unsupported die ref attribute form: '%s'"),
23089 dwarf_form_name (attr->form));
23090 return {};
23091 }
23092
23093 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23094 * the value held by the attribute is not constant. */
23095
23096 static LONGEST
23097 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23098 {
23099 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23100 return DW_SND (attr);
23101 else if (attr->form == DW_FORM_udata
23102 || attr->form == DW_FORM_data1
23103 || attr->form == DW_FORM_data2
23104 || attr->form == DW_FORM_data4
23105 || attr->form == DW_FORM_data8)
23106 return DW_UNSND (attr);
23107 else
23108 {
23109 /* For DW_FORM_data16 see attr_form_is_constant. */
23110 complaint (_("Attribute value is not a constant (%s)"),
23111 dwarf_form_name (attr->form));
23112 return default_value;
23113 }
23114 }
23115
23116 /* Follow reference or signature attribute ATTR of SRC_DIE.
23117 On entry *REF_CU is the CU of SRC_DIE.
23118 On exit *REF_CU is the CU of the result. */
23119
23120 static struct die_info *
23121 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23122 struct dwarf2_cu **ref_cu)
23123 {
23124 struct die_info *die;
23125
23126 if (attr_form_is_ref (attr))
23127 die = follow_die_ref (src_die, attr, ref_cu);
23128 else if (attr->form == DW_FORM_ref_sig8)
23129 die = follow_die_sig (src_die, attr, ref_cu);
23130 else
23131 {
23132 dump_die_for_error (src_die);
23133 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23134 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23135 }
23136
23137 return die;
23138 }
23139
23140 /* Follow reference OFFSET.
23141 On entry *REF_CU is the CU of the source die referencing OFFSET.
23142 On exit *REF_CU is the CU of the result.
23143 Returns NULL if OFFSET is invalid. */
23144
23145 static struct die_info *
23146 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23147 struct dwarf2_cu **ref_cu)
23148 {
23149 struct die_info temp_die;
23150 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23151 struct dwarf2_per_objfile *dwarf2_per_objfile
23152 = cu->per_cu->dwarf2_per_objfile;
23153
23154 gdb_assert (cu->per_cu != NULL);
23155
23156 target_cu = cu;
23157
23158 if (cu->per_cu->is_debug_types)
23159 {
23160 /* .debug_types CUs cannot reference anything outside their CU.
23161 If they need to, they have to reference a signatured type via
23162 DW_FORM_ref_sig8. */
23163 if (!offset_in_cu_p (&cu->header, sect_off))
23164 return NULL;
23165 }
23166 else if (offset_in_dwz != cu->per_cu->is_dwz
23167 || !offset_in_cu_p (&cu->header, sect_off))
23168 {
23169 struct dwarf2_per_cu_data *per_cu;
23170
23171 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23172 dwarf2_per_objfile);
23173
23174 /* If necessary, add it to the queue and load its DIEs. */
23175 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23176 load_full_comp_unit (per_cu, false, cu->language);
23177
23178 target_cu = per_cu->cu;
23179 }
23180 else if (cu->dies == NULL)
23181 {
23182 /* We're loading full DIEs during partial symbol reading. */
23183 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23184 load_full_comp_unit (cu->per_cu, false, language_minimal);
23185 }
23186
23187 *ref_cu = target_cu;
23188 temp_die.sect_off = sect_off;
23189
23190 if (target_cu != cu)
23191 target_cu->ancestor = cu;
23192
23193 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23194 &temp_die,
23195 to_underlying (sect_off));
23196 }
23197
23198 /* Follow reference attribute ATTR of SRC_DIE.
23199 On entry *REF_CU is the CU of SRC_DIE.
23200 On exit *REF_CU is the CU of the result. */
23201
23202 static struct die_info *
23203 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23204 struct dwarf2_cu **ref_cu)
23205 {
23206 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23207 struct dwarf2_cu *cu = *ref_cu;
23208 struct die_info *die;
23209
23210 die = follow_die_offset (sect_off,
23211 (attr->form == DW_FORM_GNU_ref_alt
23212 || cu->per_cu->is_dwz),
23213 ref_cu);
23214 if (!die)
23215 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23216 "at %s [in module %s]"),
23217 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23218 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23219
23220 return die;
23221 }
23222
23223 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23224 Returned value is intended for DW_OP_call*. Returned
23225 dwarf2_locexpr_baton->data has lifetime of
23226 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23227
23228 struct dwarf2_locexpr_baton
23229 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23230 struct dwarf2_per_cu_data *per_cu,
23231 CORE_ADDR (*get_frame_pc) (void *baton),
23232 void *baton, bool resolve_abstract_p)
23233 {
23234 struct dwarf2_cu *cu;
23235 struct die_info *die;
23236 struct attribute *attr;
23237 struct dwarf2_locexpr_baton retval;
23238 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23239 struct objfile *objfile = dwarf2_per_objfile->objfile;
23240
23241 if (per_cu->cu == NULL)
23242 load_cu (per_cu, false);
23243 cu = per_cu->cu;
23244 if (cu == NULL)
23245 {
23246 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23247 Instead just throw an error, not much else we can do. */
23248 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23249 sect_offset_str (sect_off), objfile_name (objfile));
23250 }
23251
23252 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23253 if (!die)
23254 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23255 sect_offset_str (sect_off), objfile_name (objfile));
23256
23257 attr = dwarf2_attr (die, DW_AT_location, cu);
23258 if (!attr && resolve_abstract_p
23259 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23260 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23261 {
23262 CORE_ADDR pc = (*get_frame_pc) (baton);
23263
23264 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23265 {
23266 if (!cand->parent
23267 || cand->parent->tag != DW_TAG_subprogram)
23268 continue;
23269
23270 CORE_ADDR pc_low, pc_high;
23271 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23272 if (pc_low == ((CORE_ADDR) -1)
23273 || !(pc_low <= pc && pc < pc_high))
23274 continue;
23275
23276 die = cand;
23277 attr = dwarf2_attr (die, DW_AT_location, cu);
23278 break;
23279 }
23280 }
23281
23282 if (!attr)
23283 {
23284 /* DWARF: "If there is no such attribute, then there is no effect.".
23285 DATA is ignored if SIZE is 0. */
23286
23287 retval.data = NULL;
23288 retval.size = 0;
23289 }
23290 else if (attr_form_is_section_offset (attr))
23291 {
23292 struct dwarf2_loclist_baton loclist_baton;
23293 CORE_ADDR pc = (*get_frame_pc) (baton);
23294 size_t size;
23295
23296 fill_in_loclist_baton (cu, &loclist_baton, attr);
23297
23298 retval.data = dwarf2_find_location_expression (&loclist_baton,
23299 &size, pc);
23300 retval.size = size;
23301 }
23302 else
23303 {
23304 if (!attr_form_is_block (attr))
23305 error (_("Dwarf Error: DIE at %s referenced in module %s "
23306 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23307 sect_offset_str (sect_off), objfile_name (objfile));
23308
23309 retval.data = DW_BLOCK (attr)->data;
23310 retval.size = DW_BLOCK (attr)->size;
23311 }
23312 retval.per_cu = cu->per_cu;
23313
23314 age_cached_comp_units (dwarf2_per_objfile);
23315
23316 return retval;
23317 }
23318
23319 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23320 offset. */
23321
23322 struct dwarf2_locexpr_baton
23323 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23324 struct dwarf2_per_cu_data *per_cu,
23325 CORE_ADDR (*get_frame_pc) (void *baton),
23326 void *baton)
23327 {
23328 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23329
23330 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23331 }
23332
23333 /* Write a constant of a given type as target-ordered bytes into
23334 OBSTACK. */
23335
23336 static const gdb_byte *
23337 write_constant_as_bytes (struct obstack *obstack,
23338 enum bfd_endian byte_order,
23339 struct type *type,
23340 ULONGEST value,
23341 LONGEST *len)
23342 {
23343 gdb_byte *result;
23344
23345 *len = TYPE_LENGTH (type);
23346 result = (gdb_byte *) obstack_alloc (obstack, *len);
23347 store_unsigned_integer (result, *len, byte_order, value);
23348
23349 return result;
23350 }
23351
23352 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23353 pointer to the constant bytes and set LEN to the length of the
23354 data. If memory is needed, allocate it on OBSTACK. If the DIE
23355 does not have a DW_AT_const_value, return NULL. */
23356
23357 const gdb_byte *
23358 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23359 struct dwarf2_per_cu_data *per_cu,
23360 struct obstack *obstack,
23361 LONGEST *len)
23362 {
23363 struct dwarf2_cu *cu;
23364 struct die_info *die;
23365 struct attribute *attr;
23366 const gdb_byte *result = NULL;
23367 struct type *type;
23368 LONGEST value;
23369 enum bfd_endian byte_order;
23370 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23371
23372 if (per_cu->cu == NULL)
23373 load_cu (per_cu, false);
23374 cu = per_cu->cu;
23375 if (cu == NULL)
23376 {
23377 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23378 Instead just throw an error, not much else we can do. */
23379 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23380 sect_offset_str (sect_off), objfile_name (objfile));
23381 }
23382
23383 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23384 if (!die)
23385 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23386 sect_offset_str (sect_off), objfile_name (objfile));
23387
23388 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23389 if (attr == NULL)
23390 return NULL;
23391
23392 byte_order = (bfd_big_endian (objfile->obfd)
23393 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23394
23395 switch (attr->form)
23396 {
23397 case DW_FORM_addr:
23398 case DW_FORM_addrx:
23399 case DW_FORM_GNU_addr_index:
23400 {
23401 gdb_byte *tem;
23402
23403 *len = cu->header.addr_size;
23404 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23405 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23406 result = tem;
23407 }
23408 break;
23409 case DW_FORM_string:
23410 case DW_FORM_strp:
23411 case DW_FORM_strx:
23412 case DW_FORM_GNU_str_index:
23413 case DW_FORM_GNU_strp_alt:
23414 /* DW_STRING is already allocated on the objfile obstack, point
23415 directly to it. */
23416 result = (const gdb_byte *) DW_STRING (attr);
23417 *len = strlen (DW_STRING (attr));
23418 break;
23419 case DW_FORM_block1:
23420 case DW_FORM_block2:
23421 case DW_FORM_block4:
23422 case DW_FORM_block:
23423 case DW_FORM_exprloc:
23424 case DW_FORM_data16:
23425 result = DW_BLOCK (attr)->data;
23426 *len = DW_BLOCK (attr)->size;
23427 break;
23428
23429 /* The DW_AT_const_value attributes are supposed to carry the
23430 symbol's value "represented as it would be on the target
23431 architecture." By the time we get here, it's already been
23432 converted to host endianness, so we just need to sign- or
23433 zero-extend it as appropriate. */
23434 case DW_FORM_data1:
23435 type = die_type (die, cu);
23436 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23437 if (result == NULL)
23438 result = write_constant_as_bytes (obstack, byte_order,
23439 type, value, len);
23440 break;
23441 case DW_FORM_data2:
23442 type = die_type (die, cu);
23443 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23444 if (result == NULL)
23445 result = write_constant_as_bytes (obstack, byte_order,
23446 type, value, len);
23447 break;
23448 case DW_FORM_data4:
23449 type = die_type (die, cu);
23450 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23451 if (result == NULL)
23452 result = write_constant_as_bytes (obstack, byte_order,
23453 type, value, len);
23454 break;
23455 case DW_FORM_data8:
23456 type = die_type (die, cu);
23457 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23458 if (result == NULL)
23459 result = write_constant_as_bytes (obstack, byte_order,
23460 type, value, len);
23461 break;
23462
23463 case DW_FORM_sdata:
23464 case DW_FORM_implicit_const:
23465 type = die_type (die, cu);
23466 result = write_constant_as_bytes (obstack, byte_order,
23467 type, DW_SND (attr), len);
23468 break;
23469
23470 case DW_FORM_udata:
23471 type = die_type (die, cu);
23472 result = write_constant_as_bytes (obstack, byte_order,
23473 type, DW_UNSND (attr), len);
23474 break;
23475
23476 default:
23477 complaint (_("unsupported const value attribute form: '%s'"),
23478 dwarf_form_name (attr->form));
23479 break;
23480 }
23481
23482 return result;
23483 }
23484
23485 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23486 valid type for this die is found. */
23487
23488 struct type *
23489 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23490 struct dwarf2_per_cu_data *per_cu)
23491 {
23492 struct dwarf2_cu *cu;
23493 struct die_info *die;
23494
23495 if (per_cu->cu == NULL)
23496 load_cu (per_cu, false);
23497 cu = per_cu->cu;
23498 if (!cu)
23499 return NULL;
23500
23501 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23502 if (!die)
23503 return NULL;
23504
23505 return die_type (die, cu);
23506 }
23507
23508 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23509 PER_CU. */
23510
23511 struct type *
23512 dwarf2_get_die_type (cu_offset die_offset,
23513 struct dwarf2_per_cu_data *per_cu)
23514 {
23515 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23516 return get_die_type_at_offset (die_offset_sect, per_cu);
23517 }
23518
23519 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23520 On entry *REF_CU is the CU of SRC_DIE.
23521 On exit *REF_CU is the CU of the result.
23522 Returns NULL if the referenced DIE isn't found. */
23523
23524 static struct die_info *
23525 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23526 struct dwarf2_cu **ref_cu)
23527 {
23528 struct die_info temp_die;
23529 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23530 struct die_info *die;
23531
23532 /* While it might be nice to assert sig_type->type == NULL here,
23533 we can get here for DW_AT_imported_declaration where we need
23534 the DIE not the type. */
23535
23536 /* If necessary, add it to the queue and load its DIEs. */
23537
23538 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23539 read_signatured_type (sig_type);
23540
23541 sig_cu = sig_type->per_cu.cu;
23542 gdb_assert (sig_cu != NULL);
23543 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23544 temp_die.sect_off = sig_type->type_offset_in_section;
23545 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23546 to_underlying (temp_die.sect_off));
23547 if (die)
23548 {
23549 struct dwarf2_per_objfile *dwarf2_per_objfile
23550 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23551
23552 /* For .gdb_index version 7 keep track of included TUs.
23553 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23554 if (dwarf2_per_objfile->index_table != NULL
23555 && dwarf2_per_objfile->index_table->version <= 7)
23556 {
23557 VEC_safe_push (dwarf2_per_cu_ptr,
23558 (*ref_cu)->per_cu->imported_symtabs,
23559 sig_cu->per_cu);
23560 }
23561
23562 *ref_cu = sig_cu;
23563 if (sig_cu != cu)
23564 sig_cu->ancestor = cu;
23565
23566 return die;
23567 }
23568
23569 return NULL;
23570 }
23571
23572 /* Follow signatured type referenced by ATTR in SRC_DIE.
23573 On entry *REF_CU is the CU of SRC_DIE.
23574 On exit *REF_CU is the CU of the result.
23575 The result is the DIE of the type.
23576 If the referenced type cannot be found an error is thrown. */
23577
23578 static struct die_info *
23579 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23580 struct dwarf2_cu **ref_cu)
23581 {
23582 ULONGEST signature = DW_SIGNATURE (attr);
23583 struct signatured_type *sig_type;
23584 struct die_info *die;
23585
23586 gdb_assert (attr->form == DW_FORM_ref_sig8);
23587
23588 sig_type = lookup_signatured_type (*ref_cu, signature);
23589 /* sig_type will be NULL if the signatured type is missing from
23590 the debug info. */
23591 if (sig_type == NULL)
23592 {
23593 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23594 " from DIE at %s [in module %s]"),
23595 hex_string (signature), sect_offset_str (src_die->sect_off),
23596 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23597 }
23598
23599 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23600 if (die == NULL)
23601 {
23602 dump_die_for_error (src_die);
23603 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23604 " from DIE at %s [in module %s]"),
23605 hex_string (signature), sect_offset_str (src_die->sect_off),
23606 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23607 }
23608
23609 return die;
23610 }
23611
23612 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23613 reading in and processing the type unit if necessary. */
23614
23615 static struct type *
23616 get_signatured_type (struct die_info *die, ULONGEST signature,
23617 struct dwarf2_cu *cu)
23618 {
23619 struct dwarf2_per_objfile *dwarf2_per_objfile
23620 = cu->per_cu->dwarf2_per_objfile;
23621 struct signatured_type *sig_type;
23622 struct dwarf2_cu *type_cu;
23623 struct die_info *type_die;
23624 struct type *type;
23625
23626 sig_type = lookup_signatured_type (cu, signature);
23627 /* sig_type will be NULL if the signatured type is missing from
23628 the debug info. */
23629 if (sig_type == NULL)
23630 {
23631 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23632 " from DIE at %s [in module %s]"),
23633 hex_string (signature), sect_offset_str (die->sect_off),
23634 objfile_name (dwarf2_per_objfile->objfile));
23635 return build_error_marker_type (cu, die);
23636 }
23637
23638 /* If we already know the type we're done. */
23639 if (sig_type->type != NULL)
23640 return sig_type->type;
23641
23642 type_cu = cu;
23643 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23644 if (type_die != NULL)
23645 {
23646 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23647 is created. This is important, for example, because for c++ classes
23648 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23649 type = read_type_die (type_die, type_cu);
23650 if (type == NULL)
23651 {
23652 complaint (_("Dwarf Error: Cannot build signatured type %s"
23653 " referenced from DIE at %s [in module %s]"),
23654 hex_string (signature), sect_offset_str (die->sect_off),
23655 objfile_name (dwarf2_per_objfile->objfile));
23656 type = build_error_marker_type (cu, die);
23657 }
23658 }
23659 else
23660 {
23661 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23662 " from DIE at %s [in module %s]"),
23663 hex_string (signature), sect_offset_str (die->sect_off),
23664 objfile_name (dwarf2_per_objfile->objfile));
23665 type = build_error_marker_type (cu, die);
23666 }
23667 sig_type->type = type;
23668
23669 return type;
23670 }
23671
23672 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23673 reading in and processing the type unit if necessary. */
23674
23675 static struct type *
23676 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23677 struct dwarf2_cu *cu) /* ARI: editCase function */
23678 {
23679 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23680 if (attr_form_is_ref (attr))
23681 {
23682 struct dwarf2_cu *type_cu = cu;
23683 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23684
23685 return read_type_die (type_die, type_cu);
23686 }
23687 else if (attr->form == DW_FORM_ref_sig8)
23688 {
23689 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23690 }
23691 else
23692 {
23693 struct dwarf2_per_objfile *dwarf2_per_objfile
23694 = cu->per_cu->dwarf2_per_objfile;
23695
23696 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23697 " at %s [in module %s]"),
23698 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23699 objfile_name (dwarf2_per_objfile->objfile));
23700 return build_error_marker_type (cu, die);
23701 }
23702 }
23703
23704 /* Load the DIEs associated with type unit PER_CU into memory. */
23705
23706 static void
23707 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23708 {
23709 struct signatured_type *sig_type;
23710
23711 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23712 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23713
23714 /* We have the per_cu, but we need the signatured_type.
23715 Fortunately this is an easy translation. */
23716 gdb_assert (per_cu->is_debug_types);
23717 sig_type = (struct signatured_type *) per_cu;
23718
23719 gdb_assert (per_cu->cu == NULL);
23720
23721 read_signatured_type (sig_type);
23722
23723 gdb_assert (per_cu->cu != NULL);
23724 }
23725
23726 /* die_reader_func for read_signatured_type.
23727 This is identical to load_full_comp_unit_reader,
23728 but is kept separate for now. */
23729
23730 static void
23731 read_signatured_type_reader (const struct die_reader_specs *reader,
23732 const gdb_byte *info_ptr,
23733 struct die_info *comp_unit_die,
23734 int has_children,
23735 void *data)
23736 {
23737 struct dwarf2_cu *cu = reader->cu;
23738
23739 gdb_assert (cu->die_hash == NULL);
23740 cu->die_hash =
23741 htab_create_alloc_ex (cu->header.length / 12,
23742 die_hash,
23743 die_eq,
23744 NULL,
23745 &cu->comp_unit_obstack,
23746 hashtab_obstack_allocate,
23747 dummy_obstack_deallocate);
23748
23749 if (has_children)
23750 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23751 &info_ptr, comp_unit_die);
23752 cu->dies = comp_unit_die;
23753 /* comp_unit_die is not stored in die_hash, no need. */
23754
23755 /* We try not to read any attributes in this function, because not
23756 all CUs needed for references have been loaded yet, and symbol
23757 table processing isn't initialized. But we have to set the CU language,
23758 or we won't be able to build types correctly.
23759 Similarly, if we do not read the producer, we can not apply
23760 producer-specific interpretation. */
23761 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23762 }
23763
23764 /* Read in a signatured type and build its CU and DIEs.
23765 If the type is a stub for the real type in a DWO file,
23766 read in the real type from the DWO file as well. */
23767
23768 static void
23769 read_signatured_type (struct signatured_type *sig_type)
23770 {
23771 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23772
23773 gdb_assert (per_cu->is_debug_types);
23774 gdb_assert (per_cu->cu == NULL);
23775
23776 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23777 read_signatured_type_reader, NULL);
23778 sig_type->per_cu.tu_read = 1;
23779 }
23780
23781 /* Decode simple location descriptions.
23782 Given a pointer to a dwarf block that defines a location, compute
23783 the location and return the value.
23784
23785 NOTE drow/2003-11-18: This function is called in two situations
23786 now: for the address of static or global variables (partial symbols
23787 only) and for offsets into structures which are expected to be
23788 (more or less) constant. The partial symbol case should go away,
23789 and only the constant case should remain. That will let this
23790 function complain more accurately. A few special modes are allowed
23791 without complaint for global variables (for instance, global
23792 register values and thread-local values).
23793
23794 A location description containing no operations indicates that the
23795 object is optimized out. The return value is 0 for that case.
23796 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23797 callers will only want a very basic result and this can become a
23798 complaint.
23799
23800 Note that stack[0] is unused except as a default error return. */
23801
23802 static CORE_ADDR
23803 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23804 {
23805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23806 size_t i;
23807 size_t size = blk->size;
23808 const gdb_byte *data = blk->data;
23809 CORE_ADDR stack[64];
23810 int stacki;
23811 unsigned int bytes_read, unsnd;
23812 gdb_byte op;
23813
23814 i = 0;
23815 stacki = 0;
23816 stack[stacki] = 0;
23817 stack[++stacki] = 0;
23818
23819 while (i < size)
23820 {
23821 op = data[i++];
23822 switch (op)
23823 {
23824 case DW_OP_lit0:
23825 case DW_OP_lit1:
23826 case DW_OP_lit2:
23827 case DW_OP_lit3:
23828 case DW_OP_lit4:
23829 case DW_OP_lit5:
23830 case DW_OP_lit6:
23831 case DW_OP_lit7:
23832 case DW_OP_lit8:
23833 case DW_OP_lit9:
23834 case DW_OP_lit10:
23835 case DW_OP_lit11:
23836 case DW_OP_lit12:
23837 case DW_OP_lit13:
23838 case DW_OP_lit14:
23839 case DW_OP_lit15:
23840 case DW_OP_lit16:
23841 case DW_OP_lit17:
23842 case DW_OP_lit18:
23843 case DW_OP_lit19:
23844 case DW_OP_lit20:
23845 case DW_OP_lit21:
23846 case DW_OP_lit22:
23847 case DW_OP_lit23:
23848 case DW_OP_lit24:
23849 case DW_OP_lit25:
23850 case DW_OP_lit26:
23851 case DW_OP_lit27:
23852 case DW_OP_lit28:
23853 case DW_OP_lit29:
23854 case DW_OP_lit30:
23855 case DW_OP_lit31:
23856 stack[++stacki] = op - DW_OP_lit0;
23857 break;
23858
23859 case DW_OP_reg0:
23860 case DW_OP_reg1:
23861 case DW_OP_reg2:
23862 case DW_OP_reg3:
23863 case DW_OP_reg4:
23864 case DW_OP_reg5:
23865 case DW_OP_reg6:
23866 case DW_OP_reg7:
23867 case DW_OP_reg8:
23868 case DW_OP_reg9:
23869 case DW_OP_reg10:
23870 case DW_OP_reg11:
23871 case DW_OP_reg12:
23872 case DW_OP_reg13:
23873 case DW_OP_reg14:
23874 case DW_OP_reg15:
23875 case DW_OP_reg16:
23876 case DW_OP_reg17:
23877 case DW_OP_reg18:
23878 case DW_OP_reg19:
23879 case DW_OP_reg20:
23880 case DW_OP_reg21:
23881 case DW_OP_reg22:
23882 case DW_OP_reg23:
23883 case DW_OP_reg24:
23884 case DW_OP_reg25:
23885 case DW_OP_reg26:
23886 case DW_OP_reg27:
23887 case DW_OP_reg28:
23888 case DW_OP_reg29:
23889 case DW_OP_reg30:
23890 case DW_OP_reg31:
23891 stack[++stacki] = op - DW_OP_reg0;
23892 if (i < size)
23893 dwarf2_complex_location_expr_complaint ();
23894 break;
23895
23896 case DW_OP_regx:
23897 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23898 i += bytes_read;
23899 stack[++stacki] = unsnd;
23900 if (i < size)
23901 dwarf2_complex_location_expr_complaint ();
23902 break;
23903
23904 case DW_OP_addr:
23905 stack[++stacki] = read_address (objfile->obfd, &data[i],
23906 cu, &bytes_read);
23907 i += bytes_read;
23908 break;
23909
23910 case DW_OP_const1u:
23911 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23912 i += 1;
23913 break;
23914
23915 case DW_OP_const1s:
23916 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23917 i += 1;
23918 break;
23919
23920 case DW_OP_const2u:
23921 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23922 i += 2;
23923 break;
23924
23925 case DW_OP_const2s:
23926 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23927 i += 2;
23928 break;
23929
23930 case DW_OP_const4u:
23931 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23932 i += 4;
23933 break;
23934
23935 case DW_OP_const4s:
23936 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23937 i += 4;
23938 break;
23939
23940 case DW_OP_const8u:
23941 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23942 i += 8;
23943 break;
23944
23945 case DW_OP_constu:
23946 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23947 &bytes_read);
23948 i += bytes_read;
23949 break;
23950
23951 case DW_OP_consts:
23952 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23953 i += bytes_read;
23954 break;
23955
23956 case DW_OP_dup:
23957 stack[stacki + 1] = stack[stacki];
23958 stacki++;
23959 break;
23960
23961 case DW_OP_plus:
23962 stack[stacki - 1] += stack[stacki];
23963 stacki--;
23964 break;
23965
23966 case DW_OP_plus_uconst:
23967 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23968 &bytes_read);
23969 i += bytes_read;
23970 break;
23971
23972 case DW_OP_minus:
23973 stack[stacki - 1] -= stack[stacki];
23974 stacki--;
23975 break;
23976
23977 case DW_OP_deref:
23978 /* If we're not the last op, then we definitely can't encode
23979 this using GDB's address_class enum. This is valid for partial
23980 global symbols, although the variable's address will be bogus
23981 in the psymtab. */
23982 if (i < size)
23983 dwarf2_complex_location_expr_complaint ();
23984 break;
23985
23986 case DW_OP_GNU_push_tls_address:
23987 case DW_OP_form_tls_address:
23988 /* The top of the stack has the offset from the beginning
23989 of the thread control block at which the variable is located. */
23990 /* Nothing should follow this operator, so the top of stack would
23991 be returned. */
23992 /* This is valid for partial global symbols, but the variable's
23993 address will be bogus in the psymtab. Make it always at least
23994 non-zero to not look as a variable garbage collected by linker
23995 which have DW_OP_addr 0. */
23996 if (i < size)
23997 dwarf2_complex_location_expr_complaint ();
23998 stack[stacki]++;
23999 break;
24000
24001 case DW_OP_GNU_uninit:
24002 break;
24003
24004 case DW_OP_addrx:
24005 case DW_OP_GNU_addr_index:
24006 case DW_OP_GNU_const_index:
24007 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24008 &bytes_read);
24009 i += bytes_read;
24010 break;
24011
24012 default:
24013 {
24014 const char *name = get_DW_OP_name (op);
24015
24016 if (name)
24017 complaint (_("unsupported stack op: '%s'"),
24018 name);
24019 else
24020 complaint (_("unsupported stack op: '%02x'"),
24021 op);
24022 }
24023
24024 return (stack[stacki]);
24025 }
24026
24027 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24028 outside of the allocated space. Also enforce minimum>0. */
24029 if (stacki >= ARRAY_SIZE (stack) - 1)
24030 {
24031 complaint (_("location description stack overflow"));
24032 return 0;
24033 }
24034
24035 if (stacki <= 0)
24036 {
24037 complaint (_("location description stack underflow"));
24038 return 0;
24039 }
24040 }
24041 return (stack[stacki]);
24042 }
24043
24044 /* memory allocation interface */
24045
24046 static struct dwarf_block *
24047 dwarf_alloc_block (struct dwarf2_cu *cu)
24048 {
24049 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24050 }
24051
24052 static struct die_info *
24053 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24054 {
24055 struct die_info *die;
24056 size_t size = sizeof (struct die_info);
24057
24058 if (num_attrs > 1)
24059 size += (num_attrs - 1) * sizeof (struct attribute);
24060
24061 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24062 memset (die, 0, sizeof (struct die_info));
24063 return (die);
24064 }
24065
24066 \f
24067 /* Macro support. */
24068
24069 /* Return file name relative to the compilation directory of file number I in
24070 *LH's file name table. The result is allocated using xmalloc; the caller is
24071 responsible for freeing it. */
24072
24073 static char *
24074 file_file_name (int file, struct line_header *lh)
24075 {
24076 /* Is the file number a valid index into the line header's file name
24077 table? Remember that file numbers start with one, not zero. */
24078 if (1 <= file && file <= lh->file_names.size ())
24079 {
24080 const file_entry &fe = lh->file_names[file - 1];
24081
24082 if (!IS_ABSOLUTE_PATH (fe.name))
24083 {
24084 const char *dir = fe.include_dir (lh);
24085 if (dir != NULL)
24086 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24087 }
24088 return xstrdup (fe.name);
24089 }
24090 else
24091 {
24092 /* The compiler produced a bogus file number. We can at least
24093 record the macro definitions made in the file, even if we
24094 won't be able to find the file by name. */
24095 char fake_name[80];
24096
24097 xsnprintf (fake_name, sizeof (fake_name),
24098 "<bad macro file number %d>", file);
24099
24100 complaint (_("bad file number in macro information (%d)"),
24101 file);
24102
24103 return xstrdup (fake_name);
24104 }
24105 }
24106
24107 /* Return the full name of file number I in *LH's file name table.
24108 Use COMP_DIR as the name of the current directory of the
24109 compilation. The result is allocated using xmalloc; the caller is
24110 responsible for freeing it. */
24111 static char *
24112 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24113 {
24114 /* Is the file number a valid index into the line header's file name
24115 table? Remember that file numbers start with one, not zero. */
24116 if (1 <= file && file <= lh->file_names.size ())
24117 {
24118 char *relative = file_file_name (file, lh);
24119
24120 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24121 return relative;
24122 return reconcat (relative, comp_dir, SLASH_STRING,
24123 relative, (char *) NULL);
24124 }
24125 else
24126 return file_file_name (file, lh);
24127 }
24128
24129
24130 static struct macro_source_file *
24131 macro_start_file (struct dwarf2_cu *cu,
24132 int file, int line,
24133 struct macro_source_file *current_file,
24134 struct line_header *lh)
24135 {
24136 /* File name relative to the compilation directory of this source file. */
24137 char *file_name = file_file_name (file, lh);
24138
24139 if (! current_file)
24140 {
24141 /* Note: We don't create a macro table for this compilation unit
24142 at all until we actually get a filename. */
24143 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24144
24145 /* If we have no current file, then this must be the start_file
24146 directive for the compilation unit's main source file. */
24147 current_file = macro_set_main (macro_table, file_name);
24148 macro_define_special (macro_table);
24149 }
24150 else
24151 current_file = macro_include (current_file, line, file_name);
24152
24153 xfree (file_name);
24154
24155 return current_file;
24156 }
24157
24158 static const char *
24159 consume_improper_spaces (const char *p, const char *body)
24160 {
24161 if (*p == ' ')
24162 {
24163 complaint (_("macro definition contains spaces "
24164 "in formal argument list:\n`%s'"),
24165 body);
24166
24167 while (*p == ' ')
24168 p++;
24169 }
24170
24171 return p;
24172 }
24173
24174
24175 static void
24176 parse_macro_definition (struct macro_source_file *file, int line,
24177 const char *body)
24178 {
24179 const char *p;
24180
24181 /* The body string takes one of two forms. For object-like macro
24182 definitions, it should be:
24183
24184 <macro name> " " <definition>
24185
24186 For function-like macro definitions, it should be:
24187
24188 <macro name> "() " <definition>
24189 or
24190 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24191
24192 Spaces may appear only where explicitly indicated, and in the
24193 <definition>.
24194
24195 The Dwarf 2 spec says that an object-like macro's name is always
24196 followed by a space, but versions of GCC around March 2002 omit
24197 the space when the macro's definition is the empty string.
24198
24199 The Dwarf 2 spec says that there should be no spaces between the
24200 formal arguments in a function-like macro's formal argument list,
24201 but versions of GCC around March 2002 include spaces after the
24202 commas. */
24203
24204
24205 /* Find the extent of the macro name. The macro name is terminated
24206 by either a space or null character (for an object-like macro) or
24207 an opening paren (for a function-like macro). */
24208 for (p = body; *p; p++)
24209 if (*p == ' ' || *p == '(')
24210 break;
24211
24212 if (*p == ' ' || *p == '\0')
24213 {
24214 /* It's an object-like macro. */
24215 int name_len = p - body;
24216 char *name = savestring (body, name_len);
24217 const char *replacement;
24218
24219 if (*p == ' ')
24220 replacement = body + name_len + 1;
24221 else
24222 {
24223 dwarf2_macro_malformed_definition_complaint (body);
24224 replacement = body + name_len;
24225 }
24226
24227 macro_define_object (file, line, name, replacement);
24228
24229 xfree (name);
24230 }
24231 else if (*p == '(')
24232 {
24233 /* It's a function-like macro. */
24234 char *name = savestring (body, p - body);
24235 int argc = 0;
24236 int argv_size = 1;
24237 char **argv = XNEWVEC (char *, argv_size);
24238
24239 p++;
24240
24241 p = consume_improper_spaces (p, body);
24242
24243 /* Parse the formal argument list. */
24244 while (*p && *p != ')')
24245 {
24246 /* Find the extent of the current argument name. */
24247 const char *arg_start = p;
24248
24249 while (*p && *p != ',' && *p != ')' && *p != ' ')
24250 p++;
24251
24252 if (! *p || p == arg_start)
24253 dwarf2_macro_malformed_definition_complaint (body);
24254 else
24255 {
24256 /* Make sure argv has room for the new argument. */
24257 if (argc >= argv_size)
24258 {
24259 argv_size *= 2;
24260 argv = XRESIZEVEC (char *, argv, argv_size);
24261 }
24262
24263 argv[argc++] = savestring (arg_start, p - arg_start);
24264 }
24265
24266 p = consume_improper_spaces (p, body);
24267
24268 /* Consume the comma, if present. */
24269 if (*p == ',')
24270 {
24271 p++;
24272
24273 p = consume_improper_spaces (p, body);
24274 }
24275 }
24276
24277 if (*p == ')')
24278 {
24279 p++;
24280
24281 if (*p == ' ')
24282 /* Perfectly formed definition, no complaints. */
24283 macro_define_function (file, line, name,
24284 argc, (const char **) argv,
24285 p + 1);
24286 else if (*p == '\0')
24287 {
24288 /* Complain, but do define it. */
24289 dwarf2_macro_malformed_definition_complaint (body);
24290 macro_define_function (file, line, name,
24291 argc, (const char **) argv,
24292 p);
24293 }
24294 else
24295 /* Just complain. */
24296 dwarf2_macro_malformed_definition_complaint (body);
24297 }
24298 else
24299 /* Just complain. */
24300 dwarf2_macro_malformed_definition_complaint (body);
24301
24302 xfree (name);
24303 {
24304 int i;
24305
24306 for (i = 0; i < argc; i++)
24307 xfree (argv[i]);
24308 }
24309 xfree (argv);
24310 }
24311 else
24312 dwarf2_macro_malformed_definition_complaint (body);
24313 }
24314
24315 /* Skip some bytes from BYTES according to the form given in FORM.
24316 Returns the new pointer. */
24317
24318 static const gdb_byte *
24319 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24320 enum dwarf_form form,
24321 unsigned int offset_size,
24322 struct dwarf2_section_info *section)
24323 {
24324 unsigned int bytes_read;
24325
24326 switch (form)
24327 {
24328 case DW_FORM_data1:
24329 case DW_FORM_flag:
24330 ++bytes;
24331 break;
24332
24333 case DW_FORM_data2:
24334 bytes += 2;
24335 break;
24336
24337 case DW_FORM_data4:
24338 bytes += 4;
24339 break;
24340
24341 case DW_FORM_data8:
24342 bytes += 8;
24343 break;
24344
24345 case DW_FORM_data16:
24346 bytes += 16;
24347 break;
24348
24349 case DW_FORM_string:
24350 read_direct_string (abfd, bytes, &bytes_read);
24351 bytes += bytes_read;
24352 break;
24353
24354 case DW_FORM_sec_offset:
24355 case DW_FORM_strp:
24356 case DW_FORM_GNU_strp_alt:
24357 bytes += offset_size;
24358 break;
24359
24360 case DW_FORM_block:
24361 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24362 bytes += bytes_read;
24363 break;
24364
24365 case DW_FORM_block1:
24366 bytes += 1 + read_1_byte (abfd, bytes);
24367 break;
24368 case DW_FORM_block2:
24369 bytes += 2 + read_2_bytes (abfd, bytes);
24370 break;
24371 case DW_FORM_block4:
24372 bytes += 4 + read_4_bytes (abfd, bytes);
24373 break;
24374
24375 case DW_FORM_addrx:
24376 case DW_FORM_sdata:
24377 case DW_FORM_strx:
24378 case DW_FORM_udata:
24379 case DW_FORM_GNU_addr_index:
24380 case DW_FORM_GNU_str_index:
24381 bytes = gdb_skip_leb128 (bytes, buffer_end);
24382 if (bytes == NULL)
24383 {
24384 dwarf2_section_buffer_overflow_complaint (section);
24385 return NULL;
24386 }
24387 break;
24388
24389 case DW_FORM_implicit_const:
24390 break;
24391
24392 default:
24393 {
24394 complaint (_("invalid form 0x%x in `%s'"),
24395 form, get_section_name (section));
24396 return NULL;
24397 }
24398 }
24399
24400 return bytes;
24401 }
24402
24403 /* A helper for dwarf_decode_macros that handles skipping an unknown
24404 opcode. Returns an updated pointer to the macro data buffer; or,
24405 on error, issues a complaint and returns NULL. */
24406
24407 static const gdb_byte *
24408 skip_unknown_opcode (unsigned int opcode,
24409 const gdb_byte **opcode_definitions,
24410 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24411 bfd *abfd,
24412 unsigned int offset_size,
24413 struct dwarf2_section_info *section)
24414 {
24415 unsigned int bytes_read, i;
24416 unsigned long arg;
24417 const gdb_byte *defn;
24418
24419 if (opcode_definitions[opcode] == NULL)
24420 {
24421 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24422 opcode);
24423 return NULL;
24424 }
24425
24426 defn = opcode_definitions[opcode];
24427 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24428 defn += bytes_read;
24429
24430 for (i = 0; i < arg; ++i)
24431 {
24432 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24433 (enum dwarf_form) defn[i], offset_size,
24434 section);
24435 if (mac_ptr == NULL)
24436 {
24437 /* skip_form_bytes already issued the complaint. */
24438 return NULL;
24439 }
24440 }
24441
24442 return mac_ptr;
24443 }
24444
24445 /* A helper function which parses the header of a macro section.
24446 If the macro section is the extended (for now called "GNU") type,
24447 then this updates *OFFSET_SIZE. Returns a pointer to just after
24448 the header, or issues a complaint and returns NULL on error. */
24449
24450 static const gdb_byte *
24451 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24452 bfd *abfd,
24453 const gdb_byte *mac_ptr,
24454 unsigned int *offset_size,
24455 int section_is_gnu)
24456 {
24457 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24458
24459 if (section_is_gnu)
24460 {
24461 unsigned int version, flags;
24462
24463 version = read_2_bytes (abfd, mac_ptr);
24464 if (version != 4 && version != 5)
24465 {
24466 complaint (_("unrecognized version `%d' in .debug_macro section"),
24467 version);
24468 return NULL;
24469 }
24470 mac_ptr += 2;
24471
24472 flags = read_1_byte (abfd, mac_ptr);
24473 ++mac_ptr;
24474 *offset_size = (flags & 1) ? 8 : 4;
24475
24476 if ((flags & 2) != 0)
24477 /* We don't need the line table offset. */
24478 mac_ptr += *offset_size;
24479
24480 /* Vendor opcode descriptions. */
24481 if ((flags & 4) != 0)
24482 {
24483 unsigned int i, count;
24484
24485 count = read_1_byte (abfd, mac_ptr);
24486 ++mac_ptr;
24487 for (i = 0; i < count; ++i)
24488 {
24489 unsigned int opcode, bytes_read;
24490 unsigned long arg;
24491
24492 opcode = read_1_byte (abfd, mac_ptr);
24493 ++mac_ptr;
24494 opcode_definitions[opcode] = mac_ptr;
24495 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24496 mac_ptr += bytes_read;
24497 mac_ptr += arg;
24498 }
24499 }
24500 }
24501
24502 return mac_ptr;
24503 }
24504
24505 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24506 including DW_MACRO_import. */
24507
24508 static void
24509 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24510 bfd *abfd,
24511 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24512 struct macro_source_file *current_file,
24513 struct line_header *lh,
24514 struct dwarf2_section_info *section,
24515 int section_is_gnu, int section_is_dwz,
24516 unsigned int offset_size,
24517 htab_t include_hash)
24518 {
24519 struct dwarf2_per_objfile *dwarf2_per_objfile
24520 = cu->per_cu->dwarf2_per_objfile;
24521 struct objfile *objfile = dwarf2_per_objfile->objfile;
24522 enum dwarf_macro_record_type macinfo_type;
24523 int at_commandline;
24524 const gdb_byte *opcode_definitions[256];
24525
24526 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24527 &offset_size, section_is_gnu);
24528 if (mac_ptr == NULL)
24529 {
24530 /* We already issued a complaint. */
24531 return;
24532 }
24533
24534 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24535 GDB is still reading the definitions from command line. First
24536 DW_MACINFO_start_file will need to be ignored as it was already executed
24537 to create CURRENT_FILE for the main source holding also the command line
24538 definitions. On first met DW_MACINFO_start_file this flag is reset to
24539 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24540
24541 at_commandline = 1;
24542
24543 do
24544 {
24545 /* Do we at least have room for a macinfo type byte? */
24546 if (mac_ptr >= mac_end)
24547 {
24548 dwarf2_section_buffer_overflow_complaint (section);
24549 break;
24550 }
24551
24552 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24553 mac_ptr++;
24554
24555 /* Note that we rely on the fact that the corresponding GNU and
24556 DWARF constants are the same. */
24557 DIAGNOSTIC_PUSH
24558 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24559 switch (macinfo_type)
24560 {
24561 /* A zero macinfo type indicates the end of the macro
24562 information. */
24563 case 0:
24564 break;
24565
24566 case DW_MACRO_define:
24567 case DW_MACRO_undef:
24568 case DW_MACRO_define_strp:
24569 case DW_MACRO_undef_strp:
24570 case DW_MACRO_define_sup:
24571 case DW_MACRO_undef_sup:
24572 {
24573 unsigned int bytes_read;
24574 int line;
24575 const char *body;
24576 int is_define;
24577
24578 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24579 mac_ptr += bytes_read;
24580
24581 if (macinfo_type == DW_MACRO_define
24582 || macinfo_type == DW_MACRO_undef)
24583 {
24584 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24585 mac_ptr += bytes_read;
24586 }
24587 else
24588 {
24589 LONGEST str_offset;
24590
24591 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24592 mac_ptr += offset_size;
24593
24594 if (macinfo_type == DW_MACRO_define_sup
24595 || macinfo_type == DW_MACRO_undef_sup
24596 || section_is_dwz)
24597 {
24598 struct dwz_file *dwz
24599 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24600
24601 body = read_indirect_string_from_dwz (objfile,
24602 dwz, str_offset);
24603 }
24604 else
24605 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24606 abfd, str_offset);
24607 }
24608
24609 is_define = (macinfo_type == DW_MACRO_define
24610 || macinfo_type == DW_MACRO_define_strp
24611 || macinfo_type == DW_MACRO_define_sup);
24612 if (! current_file)
24613 {
24614 /* DWARF violation as no main source is present. */
24615 complaint (_("debug info with no main source gives macro %s "
24616 "on line %d: %s"),
24617 is_define ? _("definition") : _("undefinition"),
24618 line, body);
24619 break;
24620 }
24621 if ((line == 0 && !at_commandline)
24622 || (line != 0 && at_commandline))
24623 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24624 at_commandline ? _("command-line") : _("in-file"),
24625 is_define ? _("definition") : _("undefinition"),
24626 line == 0 ? _("zero") : _("non-zero"), line, body);
24627
24628 if (is_define)
24629 parse_macro_definition (current_file, line, body);
24630 else
24631 {
24632 gdb_assert (macinfo_type == DW_MACRO_undef
24633 || macinfo_type == DW_MACRO_undef_strp
24634 || macinfo_type == DW_MACRO_undef_sup);
24635 macro_undef (current_file, line, body);
24636 }
24637 }
24638 break;
24639
24640 case DW_MACRO_start_file:
24641 {
24642 unsigned int bytes_read;
24643 int line, file;
24644
24645 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24646 mac_ptr += bytes_read;
24647 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24648 mac_ptr += bytes_read;
24649
24650 if ((line == 0 && !at_commandline)
24651 || (line != 0 && at_commandline))
24652 complaint (_("debug info gives source %d included "
24653 "from %s at %s line %d"),
24654 file, at_commandline ? _("command-line") : _("file"),
24655 line == 0 ? _("zero") : _("non-zero"), line);
24656
24657 if (at_commandline)
24658 {
24659 /* This DW_MACRO_start_file was executed in the
24660 pass one. */
24661 at_commandline = 0;
24662 }
24663 else
24664 current_file = macro_start_file (cu, file, line, current_file,
24665 lh);
24666 }
24667 break;
24668
24669 case DW_MACRO_end_file:
24670 if (! current_file)
24671 complaint (_("macro debug info has an unmatched "
24672 "`close_file' directive"));
24673 else
24674 {
24675 current_file = current_file->included_by;
24676 if (! current_file)
24677 {
24678 enum dwarf_macro_record_type next_type;
24679
24680 /* GCC circa March 2002 doesn't produce the zero
24681 type byte marking the end of the compilation
24682 unit. Complain if it's not there, but exit no
24683 matter what. */
24684
24685 /* Do we at least have room for a macinfo type byte? */
24686 if (mac_ptr >= mac_end)
24687 {
24688 dwarf2_section_buffer_overflow_complaint (section);
24689 return;
24690 }
24691
24692 /* We don't increment mac_ptr here, so this is just
24693 a look-ahead. */
24694 next_type
24695 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24696 mac_ptr);
24697 if (next_type != 0)
24698 complaint (_("no terminating 0-type entry for "
24699 "macros in `.debug_macinfo' section"));
24700
24701 return;
24702 }
24703 }
24704 break;
24705
24706 case DW_MACRO_import:
24707 case DW_MACRO_import_sup:
24708 {
24709 LONGEST offset;
24710 void **slot;
24711 bfd *include_bfd = abfd;
24712 struct dwarf2_section_info *include_section = section;
24713 const gdb_byte *include_mac_end = mac_end;
24714 int is_dwz = section_is_dwz;
24715 const gdb_byte *new_mac_ptr;
24716
24717 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24718 mac_ptr += offset_size;
24719
24720 if (macinfo_type == DW_MACRO_import_sup)
24721 {
24722 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24723
24724 dwarf2_read_section (objfile, &dwz->macro);
24725
24726 include_section = &dwz->macro;
24727 include_bfd = get_section_bfd_owner (include_section);
24728 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24729 is_dwz = 1;
24730 }
24731
24732 new_mac_ptr = include_section->buffer + offset;
24733 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24734
24735 if (*slot != NULL)
24736 {
24737 /* This has actually happened; see
24738 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24739 complaint (_("recursive DW_MACRO_import in "
24740 ".debug_macro section"));
24741 }
24742 else
24743 {
24744 *slot = (void *) new_mac_ptr;
24745
24746 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24747 include_mac_end, current_file, lh,
24748 section, section_is_gnu, is_dwz,
24749 offset_size, include_hash);
24750
24751 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24752 }
24753 }
24754 break;
24755
24756 case DW_MACINFO_vendor_ext:
24757 if (!section_is_gnu)
24758 {
24759 unsigned int bytes_read;
24760
24761 /* This reads the constant, but since we don't recognize
24762 any vendor extensions, we ignore it. */
24763 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24764 mac_ptr += bytes_read;
24765 read_direct_string (abfd, mac_ptr, &bytes_read);
24766 mac_ptr += bytes_read;
24767
24768 /* We don't recognize any vendor extensions. */
24769 break;
24770 }
24771 /* FALLTHROUGH */
24772
24773 default:
24774 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24775 mac_ptr, mac_end, abfd, offset_size,
24776 section);
24777 if (mac_ptr == NULL)
24778 return;
24779 break;
24780 }
24781 DIAGNOSTIC_POP
24782 } while (macinfo_type != 0);
24783 }
24784
24785 static void
24786 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24787 int section_is_gnu)
24788 {
24789 struct dwarf2_per_objfile *dwarf2_per_objfile
24790 = cu->per_cu->dwarf2_per_objfile;
24791 struct objfile *objfile = dwarf2_per_objfile->objfile;
24792 struct line_header *lh = cu->line_header;
24793 bfd *abfd;
24794 const gdb_byte *mac_ptr, *mac_end;
24795 struct macro_source_file *current_file = 0;
24796 enum dwarf_macro_record_type macinfo_type;
24797 unsigned int offset_size = cu->header.offset_size;
24798 const gdb_byte *opcode_definitions[256];
24799 void **slot;
24800 struct dwarf2_section_info *section;
24801 const char *section_name;
24802
24803 if (cu->dwo_unit != NULL)
24804 {
24805 if (section_is_gnu)
24806 {
24807 section = &cu->dwo_unit->dwo_file->sections.macro;
24808 section_name = ".debug_macro.dwo";
24809 }
24810 else
24811 {
24812 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24813 section_name = ".debug_macinfo.dwo";
24814 }
24815 }
24816 else
24817 {
24818 if (section_is_gnu)
24819 {
24820 section = &dwarf2_per_objfile->macro;
24821 section_name = ".debug_macro";
24822 }
24823 else
24824 {
24825 section = &dwarf2_per_objfile->macinfo;
24826 section_name = ".debug_macinfo";
24827 }
24828 }
24829
24830 dwarf2_read_section (objfile, section);
24831 if (section->buffer == NULL)
24832 {
24833 complaint (_("missing %s section"), section_name);
24834 return;
24835 }
24836 abfd = get_section_bfd_owner (section);
24837
24838 /* First pass: Find the name of the base filename.
24839 This filename is needed in order to process all macros whose definition
24840 (or undefinition) comes from the command line. These macros are defined
24841 before the first DW_MACINFO_start_file entry, and yet still need to be
24842 associated to the base file.
24843
24844 To determine the base file name, we scan the macro definitions until we
24845 reach the first DW_MACINFO_start_file entry. We then initialize
24846 CURRENT_FILE accordingly so that any macro definition found before the
24847 first DW_MACINFO_start_file can still be associated to the base file. */
24848
24849 mac_ptr = section->buffer + offset;
24850 mac_end = section->buffer + section->size;
24851
24852 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24853 &offset_size, section_is_gnu);
24854 if (mac_ptr == NULL)
24855 {
24856 /* We already issued a complaint. */
24857 return;
24858 }
24859
24860 do
24861 {
24862 /* Do we at least have room for a macinfo type byte? */
24863 if (mac_ptr >= mac_end)
24864 {
24865 /* Complaint is printed during the second pass as GDB will probably
24866 stop the first pass earlier upon finding
24867 DW_MACINFO_start_file. */
24868 break;
24869 }
24870
24871 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24872 mac_ptr++;
24873
24874 /* Note that we rely on the fact that the corresponding GNU and
24875 DWARF constants are the same. */
24876 DIAGNOSTIC_PUSH
24877 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24878 switch (macinfo_type)
24879 {
24880 /* A zero macinfo type indicates the end of the macro
24881 information. */
24882 case 0:
24883 break;
24884
24885 case DW_MACRO_define:
24886 case DW_MACRO_undef:
24887 /* Only skip the data by MAC_PTR. */
24888 {
24889 unsigned int bytes_read;
24890
24891 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24892 mac_ptr += bytes_read;
24893 read_direct_string (abfd, mac_ptr, &bytes_read);
24894 mac_ptr += bytes_read;
24895 }
24896 break;
24897
24898 case DW_MACRO_start_file:
24899 {
24900 unsigned int bytes_read;
24901 int line, file;
24902
24903 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24904 mac_ptr += bytes_read;
24905 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24906 mac_ptr += bytes_read;
24907
24908 current_file = macro_start_file (cu, file, line, current_file, lh);
24909 }
24910 break;
24911
24912 case DW_MACRO_end_file:
24913 /* No data to skip by MAC_PTR. */
24914 break;
24915
24916 case DW_MACRO_define_strp:
24917 case DW_MACRO_undef_strp:
24918 case DW_MACRO_define_sup:
24919 case DW_MACRO_undef_sup:
24920 {
24921 unsigned int bytes_read;
24922
24923 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24924 mac_ptr += bytes_read;
24925 mac_ptr += offset_size;
24926 }
24927 break;
24928
24929 case DW_MACRO_import:
24930 case DW_MACRO_import_sup:
24931 /* Note that, according to the spec, a transparent include
24932 chain cannot call DW_MACRO_start_file. So, we can just
24933 skip this opcode. */
24934 mac_ptr += offset_size;
24935 break;
24936
24937 case DW_MACINFO_vendor_ext:
24938 /* Only skip the data by MAC_PTR. */
24939 if (!section_is_gnu)
24940 {
24941 unsigned int bytes_read;
24942
24943 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24944 mac_ptr += bytes_read;
24945 read_direct_string (abfd, mac_ptr, &bytes_read);
24946 mac_ptr += bytes_read;
24947 }
24948 /* FALLTHROUGH */
24949
24950 default:
24951 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24952 mac_ptr, mac_end, abfd, offset_size,
24953 section);
24954 if (mac_ptr == NULL)
24955 return;
24956 break;
24957 }
24958 DIAGNOSTIC_POP
24959 } while (macinfo_type != 0 && current_file == NULL);
24960
24961 /* Second pass: Process all entries.
24962
24963 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24964 command-line macro definitions/undefinitions. This flag is unset when we
24965 reach the first DW_MACINFO_start_file entry. */
24966
24967 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24968 htab_eq_pointer,
24969 NULL, xcalloc, xfree));
24970 mac_ptr = section->buffer + offset;
24971 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24972 *slot = (void *) mac_ptr;
24973 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24974 current_file, lh, section,
24975 section_is_gnu, 0, offset_size,
24976 include_hash.get ());
24977 }
24978
24979 /* Check if the attribute's form is a DW_FORM_block*
24980 if so return true else false. */
24981
24982 static int
24983 attr_form_is_block (const struct attribute *attr)
24984 {
24985 return (attr == NULL ? 0 :
24986 attr->form == DW_FORM_block1
24987 || attr->form == DW_FORM_block2
24988 || attr->form == DW_FORM_block4
24989 || attr->form == DW_FORM_block
24990 || attr->form == DW_FORM_exprloc);
24991 }
24992
24993 /* Return non-zero if ATTR's value is a section offset --- classes
24994 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24995 You may use DW_UNSND (attr) to retrieve such offsets.
24996
24997 Section 7.5.4, "Attribute Encodings", explains that no attribute
24998 may have a value that belongs to more than one of these classes; it
24999 would be ambiguous if we did, because we use the same forms for all
25000 of them. */
25001
25002 static int
25003 attr_form_is_section_offset (const struct attribute *attr)
25004 {
25005 return (attr->form == DW_FORM_data4
25006 || attr->form == DW_FORM_data8
25007 || attr->form == DW_FORM_sec_offset);
25008 }
25009
25010 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25011 zero otherwise. When this function returns true, you can apply
25012 dwarf2_get_attr_constant_value to it.
25013
25014 However, note that for some attributes you must check
25015 attr_form_is_section_offset before using this test. DW_FORM_data4
25016 and DW_FORM_data8 are members of both the constant class, and of
25017 the classes that contain offsets into other debug sections
25018 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25019 that, if an attribute's can be either a constant or one of the
25020 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25021 taken as section offsets, not constants.
25022
25023 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25024 cannot handle that. */
25025
25026 static int
25027 attr_form_is_constant (const struct attribute *attr)
25028 {
25029 switch (attr->form)
25030 {
25031 case DW_FORM_sdata:
25032 case DW_FORM_udata:
25033 case DW_FORM_data1:
25034 case DW_FORM_data2:
25035 case DW_FORM_data4:
25036 case DW_FORM_data8:
25037 case DW_FORM_implicit_const:
25038 return 1;
25039 default:
25040 return 0;
25041 }
25042 }
25043
25044
25045 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25046 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25047
25048 static int
25049 attr_form_is_ref (const struct attribute *attr)
25050 {
25051 switch (attr->form)
25052 {
25053 case DW_FORM_ref_addr:
25054 case DW_FORM_ref1:
25055 case DW_FORM_ref2:
25056 case DW_FORM_ref4:
25057 case DW_FORM_ref8:
25058 case DW_FORM_ref_udata:
25059 case DW_FORM_GNU_ref_alt:
25060 return 1;
25061 default:
25062 return 0;
25063 }
25064 }
25065
25066 /* Return the .debug_loc section to use for CU.
25067 For DWO files use .debug_loc.dwo. */
25068
25069 static struct dwarf2_section_info *
25070 cu_debug_loc_section (struct dwarf2_cu *cu)
25071 {
25072 struct dwarf2_per_objfile *dwarf2_per_objfile
25073 = cu->per_cu->dwarf2_per_objfile;
25074
25075 if (cu->dwo_unit)
25076 {
25077 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25078
25079 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25080 }
25081 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25082 : &dwarf2_per_objfile->loc);
25083 }
25084
25085 /* A helper function that fills in a dwarf2_loclist_baton. */
25086
25087 static void
25088 fill_in_loclist_baton (struct dwarf2_cu *cu,
25089 struct dwarf2_loclist_baton *baton,
25090 const struct attribute *attr)
25091 {
25092 struct dwarf2_per_objfile *dwarf2_per_objfile
25093 = cu->per_cu->dwarf2_per_objfile;
25094 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25095
25096 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25097
25098 baton->per_cu = cu->per_cu;
25099 gdb_assert (baton->per_cu);
25100 /* We don't know how long the location list is, but make sure we
25101 don't run off the edge of the section. */
25102 baton->size = section->size - DW_UNSND (attr);
25103 baton->data = section->buffer + DW_UNSND (attr);
25104 baton->base_address = cu->base_address;
25105 baton->from_dwo = cu->dwo_unit != NULL;
25106 }
25107
25108 static void
25109 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25110 struct dwarf2_cu *cu, int is_block)
25111 {
25112 struct dwarf2_per_objfile *dwarf2_per_objfile
25113 = cu->per_cu->dwarf2_per_objfile;
25114 struct objfile *objfile = dwarf2_per_objfile->objfile;
25115 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25116
25117 if (attr_form_is_section_offset (attr)
25118 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25119 the section. If so, fall through to the complaint in the
25120 other branch. */
25121 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25122 {
25123 struct dwarf2_loclist_baton *baton;
25124
25125 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25126
25127 fill_in_loclist_baton (cu, baton, attr);
25128
25129 if (cu->base_known == 0)
25130 complaint (_("Location list used without "
25131 "specifying the CU base address."));
25132
25133 SYMBOL_ACLASS_INDEX (sym) = (is_block
25134 ? dwarf2_loclist_block_index
25135 : dwarf2_loclist_index);
25136 SYMBOL_LOCATION_BATON (sym) = baton;
25137 }
25138 else
25139 {
25140 struct dwarf2_locexpr_baton *baton;
25141
25142 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25143 baton->per_cu = cu->per_cu;
25144 gdb_assert (baton->per_cu);
25145
25146 if (attr_form_is_block (attr))
25147 {
25148 /* Note that we're just copying the block's data pointer
25149 here, not the actual data. We're still pointing into the
25150 info_buffer for SYM's objfile; right now we never release
25151 that buffer, but when we do clean up properly this may
25152 need to change. */
25153 baton->size = DW_BLOCK (attr)->size;
25154 baton->data = DW_BLOCK (attr)->data;
25155 }
25156 else
25157 {
25158 dwarf2_invalid_attrib_class_complaint ("location description",
25159 SYMBOL_NATURAL_NAME (sym));
25160 baton->size = 0;
25161 }
25162
25163 SYMBOL_ACLASS_INDEX (sym) = (is_block
25164 ? dwarf2_locexpr_block_index
25165 : dwarf2_locexpr_index);
25166 SYMBOL_LOCATION_BATON (sym) = baton;
25167 }
25168 }
25169
25170 /* Return the OBJFILE associated with the compilation unit CU. If CU
25171 came from a separate debuginfo file, then the master objfile is
25172 returned. */
25173
25174 struct objfile *
25175 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25176 {
25177 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25178
25179 /* Return the master objfile, so that we can report and look up the
25180 correct file containing this variable. */
25181 if (objfile->separate_debug_objfile_backlink)
25182 objfile = objfile->separate_debug_objfile_backlink;
25183
25184 return objfile;
25185 }
25186
25187 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25188 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25189 CU_HEADERP first. */
25190
25191 static const struct comp_unit_head *
25192 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25193 struct dwarf2_per_cu_data *per_cu)
25194 {
25195 const gdb_byte *info_ptr;
25196
25197 if (per_cu->cu)
25198 return &per_cu->cu->header;
25199
25200 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25201
25202 memset (cu_headerp, 0, sizeof (*cu_headerp));
25203 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25204 rcuh_kind::COMPILE);
25205
25206 return cu_headerp;
25207 }
25208
25209 /* Return the address size given in the compilation unit header for CU. */
25210
25211 int
25212 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25213 {
25214 struct comp_unit_head cu_header_local;
25215 const struct comp_unit_head *cu_headerp;
25216
25217 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25218
25219 return cu_headerp->addr_size;
25220 }
25221
25222 /* Return the offset size given in the compilation unit header for CU. */
25223
25224 int
25225 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25226 {
25227 struct comp_unit_head cu_header_local;
25228 const struct comp_unit_head *cu_headerp;
25229
25230 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25231
25232 return cu_headerp->offset_size;
25233 }
25234
25235 /* See its dwarf2loc.h declaration. */
25236
25237 int
25238 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25239 {
25240 struct comp_unit_head cu_header_local;
25241 const struct comp_unit_head *cu_headerp;
25242
25243 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25244
25245 if (cu_headerp->version == 2)
25246 return cu_headerp->addr_size;
25247 else
25248 return cu_headerp->offset_size;
25249 }
25250
25251 /* Return the text offset of the CU. The returned offset comes from
25252 this CU's objfile. If this objfile came from a separate debuginfo
25253 file, then the offset may be different from the corresponding
25254 offset in the parent objfile. */
25255
25256 CORE_ADDR
25257 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25258 {
25259 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25260
25261 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25262 }
25263
25264 /* Return DWARF version number of PER_CU. */
25265
25266 short
25267 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25268 {
25269 return per_cu->dwarf_version;
25270 }
25271
25272 /* Locate the .debug_info compilation unit from CU's objfile which contains
25273 the DIE at OFFSET. Raises an error on failure. */
25274
25275 static struct dwarf2_per_cu_data *
25276 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25277 unsigned int offset_in_dwz,
25278 struct dwarf2_per_objfile *dwarf2_per_objfile)
25279 {
25280 struct dwarf2_per_cu_data *this_cu;
25281 int low, high;
25282
25283 low = 0;
25284 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25285 while (high > low)
25286 {
25287 struct dwarf2_per_cu_data *mid_cu;
25288 int mid = low + (high - low) / 2;
25289
25290 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25291 if (mid_cu->is_dwz > offset_in_dwz
25292 || (mid_cu->is_dwz == offset_in_dwz
25293 && mid_cu->sect_off + mid_cu->length >= sect_off))
25294 high = mid;
25295 else
25296 low = mid + 1;
25297 }
25298 gdb_assert (low == high);
25299 this_cu = dwarf2_per_objfile->all_comp_units[low];
25300 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25301 {
25302 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25303 error (_("Dwarf Error: could not find partial DIE containing "
25304 "offset %s [in module %s]"),
25305 sect_offset_str (sect_off),
25306 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25307
25308 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25309 <= sect_off);
25310 return dwarf2_per_objfile->all_comp_units[low-1];
25311 }
25312 else
25313 {
25314 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25315 && sect_off >= this_cu->sect_off + this_cu->length)
25316 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25317 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25318 return this_cu;
25319 }
25320 }
25321
25322 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25323
25324 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25325 : per_cu (per_cu_),
25326 mark (false),
25327 has_loclist (false),
25328 checked_producer (false),
25329 producer_is_gxx_lt_4_6 (false),
25330 producer_is_gcc_lt_4_3 (false),
25331 producer_is_icc (false),
25332 producer_is_icc_lt_14 (false),
25333 producer_is_codewarrior (false),
25334 processing_has_namespace_info (false)
25335 {
25336 per_cu->cu = this;
25337 }
25338
25339 /* Destroy a dwarf2_cu. */
25340
25341 dwarf2_cu::~dwarf2_cu ()
25342 {
25343 per_cu->cu = NULL;
25344 }
25345
25346 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25347
25348 static void
25349 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25350 enum language pretend_language)
25351 {
25352 struct attribute *attr;
25353
25354 /* Set the language we're debugging. */
25355 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25356 if (attr)
25357 set_cu_language (DW_UNSND (attr), cu);
25358 else
25359 {
25360 cu->language = pretend_language;
25361 cu->language_defn = language_def (cu->language);
25362 }
25363
25364 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25365 }
25366
25367 /* Increase the age counter on each cached compilation unit, and free
25368 any that are too old. */
25369
25370 static void
25371 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25372 {
25373 struct dwarf2_per_cu_data *per_cu, **last_chain;
25374
25375 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25376 per_cu = dwarf2_per_objfile->read_in_chain;
25377 while (per_cu != NULL)
25378 {
25379 per_cu->cu->last_used ++;
25380 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25381 dwarf2_mark (per_cu->cu);
25382 per_cu = per_cu->cu->read_in_chain;
25383 }
25384
25385 per_cu = dwarf2_per_objfile->read_in_chain;
25386 last_chain = &dwarf2_per_objfile->read_in_chain;
25387 while (per_cu != NULL)
25388 {
25389 struct dwarf2_per_cu_data *next_cu;
25390
25391 next_cu = per_cu->cu->read_in_chain;
25392
25393 if (!per_cu->cu->mark)
25394 {
25395 delete per_cu->cu;
25396 *last_chain = next_cu;
25397 }
25398 else
25399 last_chain = &per_cu->cu->read_in_chain;
25400
25401 per_cu = next_cu;
25402 }
25403 }
25404
25405 /* Remove a single compilation unit from the cache. */
25406
25407 static void
25408 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25409 {
25410 struct dwarf2_per_cu_data *per_cu, **last_chain;
25411 struct dwarf2_per_objfile *dwarf2_per_objfile
25412 = target_per_cu->dwarf2_per_objfile;
25413
25414 per_cu = dwarf2_per_objfile->read_in_chain;
25415 last_chain = &dwarf2_per_objfile->read_in_chain;
25416 while (per_cu != NULL)
25417 {
25418 struct dwarf2_per_cu_data *next_cu;
25419
25420 next_cu = per_cu->cu->read_in_chain;
25421
25422 if (per_cu == target_per_cu)
25423 {
25424 delete per_cu->cu;
25425 per_cu->cu = NULL;
25426 *last_chain = next_cu;
25427 break;
25428 }
25429 else
25430 last_chain = &per_cu->cu->read_in_chain;
25431
25432 per_cu = next_cu;
25433 }
25434 }
25435
25436 /* Cleanup function for the dwarf2_per_objfile data. */
25437
25438 static void
25439 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25440 {
25441 struct dwarf2_per_objfile *dwarf2_per_objfile
25442 = static_cast<struct dwarf2_per_objfile *> (datum);
25443
25444 delete dwarf2_per_objfile;
25445 }
25446
25447 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25448 We store these in a hash table separate from the DIEs, and preserve them
25449 when the DIEs are flushed out of cache.
25450
25451 The CU "per_cu" pointer is needed because offset alone is not enough to
25452 uniquely identify the type. A file may have multiple .debug_types sections,
25453 or the type may come from a DWO file. Furthermore, while it's more logical
25454 to use per_cu->section+offset, with Fission the section with the data is in
25455 the DWO file but we don't know that section at the point we need it.
25456 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25457 because we can enter the lookup routine, get_die_type_at_offset, from
25458 outside this file, and thus won't necessarily have PER_CU->cu.
25459 Fortunately, PER_CU is stable for the life of the objfile. */
25460
25461 struct dwarf2_per_cu_offset_and_type
25462 {
25463 const struct dwarf2_per_cu_data *per_cu;
25464 sect_offset sect_off;
25465 struct type *type;
25466 };
25467
25468 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25469
25470 static hashval_t
25471 per_cu_offset_and_type_hash (const void *item)
25472 {
25473 const struct dwarf2_per_cu_offset_and_type *ofs
25474 = (const struct dwarf2_per_cu_offset_and_type *) item;
25475
25476 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25477 }
25478
25479 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25480
25481 static int
25482 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25483 {
25484 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25485 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25486 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25487 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25488
25489 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25490 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25491 }
25492
25493 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25494 table if necessary. For convenience, return TYPE.
25495
25496 The DIEs reading must have careful ordering to:
25497 * Not cause infite loops trying to read in DIEs as a prerequisite for
25498 reading current DIE.
25499 * Not trying to dereference contents of still incompletely read in types
25500 while reading in other DIEs.
25501 * Enable referencing still incompletely read in types just by a pointer to
25502 the type without accessing its fields.
25503
25504 Therefore caller should follow these rules:
25505 * Try to fetch any prerequisite types we may need to build this DIE type
25506 before building the type and calling set_die_type.
25507 * After building type call set_die_type for current DIE as soon as
25508 possible before fetching more types to complete the current type.
25509 * Make the type as complete as possible before fetching more types. */
25510
25511 static struct type *
25512 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25513 {
25514 struct dwarf2_per_objfile *dwarf2_per_objfile
25515 = cu->per_cu->dwarf2_per_objfile;
25516 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25517 struct objfile *objfile = dwarf2_per_objfile->objfile;
25518 struct attribute *attr;
25519 struct dynamic_prop prop;
25520
25521 /* For Ada types, make sure that the gnat-specific data is always
25522 initialized (if not already set). There are a few types where
25523 we should not be doing so, because the type-specific area is
25524 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25525 where the type-specific area is used to store the floatformat).
25526 But this is not a problem, because the gnat-specific information
25527 is actually not needed for these types. */
25528 if (need_gnat_info (cu)
25529 && TYPE_CODE (type) != TYPE_CODE_FUNC
25530 && TYPE_CODE (type) != TYPE_CODE_FLT
25531 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25532 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25533 && TYPE_CODE (type) != TYPE_CODE_METHOD
25534 && !HAVE_GNAT_AUX_INFO (type))
25535 INIT_GNAT_SPECIFIC (type);
25536
25537 /* Read DW_AT_allocated and set in type. */
25538 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25539 if (attr_form_is_block (attr))
25540 {
25541 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25542 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25543 }
25544 else if (attr != NULL)
25545 {
25546 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25547 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25548 sect_offset_str (die->sect_off));
25549 }
25550
25551 /* Read DW_AT_associated and set in type. */
25552 attr = dwarf2_attr (die, DW_AT_associated, cu);
25553 if (attr_form_is_block (attr))
25554 {
25555 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25556 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25557 }
25558 else if (attr != NULL)
25559 {
25560 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25561 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25562 sect_offset_str (die->sect_off));
25563 }
25564
25565 /* Read DW_AT_data_location and set in type. */
25566 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25567 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25568 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25569
25570 if (dwarf2_per_objfile->die_type_hash == NULL)
25571 {
25572 dwarf2_per_objfile->die_type_hash =
25573 htab_create_alloc_ex (127,
25574 per_cu_offset_and_type_hash,
25575 per_cu_offset_and_type_eq,
25576 NULL,
25577 &objfile->objfile_obstack,
25578 hashtab_obstack_allocate,
25579 dummy_obstack_deallocate);
25580 }
25581
25582 ofs.per_cu = cu->per_cu;
25583 ofs.sect_off = die->sect_off;
25584 ofs.type = type;
25585 slot = (struct dwarf2_per_cu_offset_and_type **)
25586 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25587 if (*slot)
25588 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25589 sect_offset_str (die->sect_off));
25590 *slot = XOBNEW (&objfile->objfile_obstack,
25591 struct dwarf2_per_cu_offset_and_type);
25592 **slot = ofs;
25593 return type;
25594 }
25595
25596 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25597 or return NULL if the die does not have a saved type. */
25598
25599 static struct type *
25600 get_die_type_at_offset (sect_offset sect_off,
25601 struct dwarf2_per_cu_data *per_cu)
25602 {
25603 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25604 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25605
25606 if (dwarf2_per_objfile->die_type_hash == NULL)
25607 return NULL;
25608
25609 ofs.per_cu = per_cu;
25610 ofs.sect_off = sect_off;
25611 slot = ((struct dwarf2_per_cu_offset_and_type *)
25612 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25613 if (slot)
25614 return slot->type;
25615 else
25616 return NULL;
25617 }
25618
25619 /* Look up the type for DIE in CU in die_type_hash,
25620 or return NULL if DIE does not have a saved type. */
25621
25622 static struct type *
25623 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25624 {
25625 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25626 }
25627
25628 /* Add a dependence relationship from CU to REF_PER_CU. */
25629
25630 static void
25631 dwarf2_add_dependence (struct dwarf2_cu *cu,
25632 struct dwarf2_per_cu_data *ref_per_cu)
25633 {
25634 void **slot;
25635
25636 if (cu->dependencies == NULL)
25637 cu->dependencies
25638 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25639 NULL, &cu->comp_unit_obstack,
25640 hashtab_obstack_allocate,
25641 dummy_obstack_deallocate);
25642
25643 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25644 if (*slot == NULL)
25645 *slot = ref_per_cu;
25646 }
25647
25648 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25649 Set the mark field in every compilation unit in the
25650 cache that we must keep because we are keeping CU. */
25651
25652 static int
25653 dwarf2_mark_helper (void **slot, void *data)
25654 {
25655 struct dwarf2_per_cu_data *per_cu;
25656
25657 per_cu = (struct dwarf2_per_cu_data *) *slot;
25658
25659 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25660 reading of the chain. As such dependencies remain valid it is not much
25661 useful to track and undo them during QUIT cleanups. */
25662 if (per_cu->cu == NULL)
25663 return 1;
25664
25665 if (per_cu->cu->mark)
25666 return 1;
25667 per_cu->cu->mark = true;
25668
25669 if (per_cu->cu->dependencies != NULL)
25670 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25671
25672 return 1;
25673 }
25674
25675 /* Set the mark field in CU and in every other compilation unit in the
25676 cache that we must keep because we are keeping CU. */
25677
25678 static void
25679 dwarf2_mark (struct dwarf2_cu *cu)
25680 {
25681 if (cu->mark)
25682 return;
25683 cu->mark = true;
25684 if (cu->dependencies != NULL)
25685 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25686 }
25687
25688 static void
25689 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25690 {
25691 while (per_cu)
25692 {
25693 per_cu->cu->mark = false;
25694 per_cu = per_cu->cu->read_in_chain;
25695 }
25696 }
25697
25698 /* Trivial hash function for partial_die_info: the hash value of a DIE
25699 is its offset in .debug_info for this objfile. */
25700
25701 static hashval_t
25702 partial_die_hash (const void *item)
25703 {
25704 const struct partial_die_info *part_die
25705 = (const struct partial_die_info *) item;
25706
25707 return to_underlying (part_die->sect_off);
25708 }
25709
25710 /* Trivial comparison function for partial_die_info structures: two DIEs
25711 are equal if they have the same offset. */
25712
25713 static int
25714 partial_die_eq (const void *item_lhs, const void *item_rhs)
25715 {
25716 const struct partial_die_info *part_die_lhs
25717 = (const struct partial_die_info *) item_lhs;
25718 const struct partial_die_info *part_die_rhs
25719 = (const struct partial_die_info *) item_rhs;
25720
25721 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25722 }
25723
25724 struct cmd_list_element *set_dwarf_cmdlist;
25725 struct cmd_list_element *show_dwarf_cmdlist;
25726
25727 static void
25728 set_dwarf_cmd (const char *args, int from_tty)
25729 {
25730 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25731 gdb_stdout);
25732 }
25733
25734 static void
25735 show_dwarf_cmd (const char *args, int from_tty)
25736 {
25737 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25738 }
25739
25740 int dwarf_always_disassemble;
25741
25742 static void
25743 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25744 struct cmd_list_element *c, const char *value)
25745 {
25746 fprintf_filtered (file,
25747 _("Whether to always disassemble "
25748 "DWARF expressions is %s.\n"),
25749 value);
25750 }
25751
25752 static void
25753 show_check_physname (struct ui_file *file, int from_tty,
25754 struct cmd_list_element *c, const char *value)
25755 {
25756 fprintf_filtered (file,
25757 _("Whether to check \"physname\" is %s.\n"),
25758 value);
25759 }
25760
25761 void
25762 _initialize_dwarf2_read (void)
25763 {
25764 dwarf2_objfile_data_key
25765 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25766
25767 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25768 Set DWARF specific variables.\n\
25769 Configure DWARF variables such as the cache size"),
25770 &set_dwarf_cmdlist, "maintenance set dwarf ",
25771 0/*allow-unknown*/, &maintenance_set_cmdlist);
25772
25773 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25774 Show DWARF specific variables\n\
25775 Show DWARF variables such as the cache size"),
25776 &show_dwarf_cmdlist, "maintenance show dwarf ",
25777 0/*allow-unknown*/, &maintenance_show_cmdlist);
25778
25779 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25780 &dwarf_max_cache_age, _("\
25781 Set the upper bound on the age of cached DWARF compilation units."), _("\
25782 Show the upper bound on the age of cached DWARF compilation units."), _("\
25783 A higher limit means that cached compilation units will be stored\n\
25784 in memory longer, and more total memory will be used. Zero disables\n\
25785 caching, which can slow down startup."),
25786 NULL,
25787 show_dwarf_max_cache_age,
25788 &set_dwarf_cmdlist,
25789 &show_dwarf_cmdlist);
25790
25791 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25792 &dwarf_always_disassemble, _("\
25793 Set whether `info address' always disassembles DWARF expressions."), _("\
25794 Show whether `info address' always disassembles DWARF expressions."), _("\
25795 When enabled, DWARF expressions are always printed in an assembly-like\n\
25796 syntax. When disabled, expressions will be printed in a more\n\
25797 conversational style, when possible."),
25798 NULL,
25799 show_dwarf_always_disassemble,
25800 &set_dwarf_cmdlist,
25801 &show_dwarf_cmdlist);
25802
25803 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25804 Set debugging of the DWARF reader."), _("\
25805 Show debugging of the DWARF reader."), _("\
25806 When enabled (non-zero), debugging messages are printed during DWARF\n\
25807 reading and symtab expansion. A value of 1 (one) provides basic\n\
25808 information. A value greater than 1 provides more verbose information."),
25809 NULL,
25810 NULL,
25811 &setdebuglist, &showdebuglist);
25812
25813 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25814 Set debugging of the DWARF DIE reader."), _("\
25815 Show debugging of the DWARF DIE reader."), _("\
25816 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25817 The value is the maximum depth to print."),
25818 NULL,
25819 NULL,
25820 &setdebuglist, &showdebuglist);
25821
25822 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25823 Set debugging of the dwarf line reader."), _("\
25824 Show debugging of the dwarf line reader."), _("\
25825 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25826 A value of 1 (one) provides basic information.\n\
25827 A value greater than 1 provides more verbose information."),
25828 NULL,
25829 NULL,
25830 &setdebuglist, &showdebuglist);
25831
25832 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25833 Set cross-checking of \"physname\" code against demangler."), _("\
25834 Show cross-checking of \"physname\" code against demangler."), _("\
25835 When enabled, GDB's internal \"physname\" code is checked against\n\
25836 the demangler."),
25837 NULL, show_check_physname,
25838 &setdebuglist, &showdebuglist);
25839
25840 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25841 no_class, &use_deprecated_index_sections, _("\
25842 Set whether to use deprecated gdb_index sections."), _("\
25843 Show whether to use deprecated gdb_index sections."), _("\
25844 When enabled, deprecated .gdb_index sections are used anyway.\n\
25845 Normally they are ignored either because of a missing feature or\n\
25846 performance issue.\n\
25847 Warning: This option must be enabled before gdb reads the file."),
25848 NULL,
25849 NULL,
25850 &setlist, &showlist);
25851
25852 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25853 &dwarf2_locexpr_funcs);
25854 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25855 &dwarf2_loclist_funcs);
25856
25857 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25858 &dwarf2_block_frame_base_locexpr_funcs);
25859 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25860 &dwarf2_block_frame_base_loclist_funcs);
25861
25862 #if GDB_SELF_TEST
25863 selftests::register_test ("dw2_expand_symtabs_matching",
25864 selftests::dw2_expand_symtabs_matching::run_test);
25865 #endif
25866 }
This page took 0.601397 seconds and 5 git commands to generate.