dwarf2read: replace gdb::optional<bool> with enum
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "gdbsupport/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "gdbsupport/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "gdbsupport/gdb_unlinker.h"
75 #include "gdbsupport/function-view.h"
76 #include "gdbsupport/gdb_optional.h"
77 #include "gdbsupport/underlying.h"
78 #include "gdbsupport/byte-vector.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "gdbsupport/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop, struct type *type);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1894 static struct type *dwarf2_per_cu_addr_sized_int_type
1895 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1896
1897 /* Class, the destructor of which frees all allocated queue entries. This
1898 will only have work to do if an error was thrown while processing the
1899 dwarf. If no error was thrown then the queue entries should have all
1900 been processed, and freed, as we went along. */
1901
1902 class dwarf2_queue_guard
1903 {
1904 public:
1905 dwarf2_queue_guard () = default;
1906
1907 /* Free any entries remaining on the queue. There should only be
1908 entries left if we hit an error while processing the dwarf. */
1909 ~dwarf2_queue_guard ()
1910 {
1911 struct dwarf2_queue_item *item, *last;
1912
1913 item = dwarf2_queue;
1914 while (item)
1915 {
1916 /* Anything still marked queued is likely to be in an
1917 inconsistent state, so discard it. */
1918 if (item->per_cu->queued)
1919 {
1920 if (item->per_cu->cu != NULL)
1921 free_one_cached_comp_unit (item->per_cu);
1922 item->per_cu->queued = 0;
1923 }
1924
1925 last = item;
1926 item = item->next;
1927 xfree (last);
1928 }
1929
1930 dwarf2_queue = dwarf2_queue_tail = NULL;
1931 }
1932 };
1933
1934 /* The return type of find_file_and_directory. Note, the enclosed
1935 string pointers are only valid while this object is valid. */
1936
1937 struct file_and_directory
1938 {
1939 /* The filename. This is never NULL. */
1940 const char *name;
1941
1942 /* The compilation directory. NULL if not known. If we needed to
1943 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1944 points directly to the DW_AT_comp_dir string attribute owned by
1945 the obstack that owns the DIE. */
1946 const char *comp_dir;
1947
1948 /* If we needed to build a new string for comp_dir, this is what
1949 owns the storage. */
1950 std::string comp_dir_storage;
1951 };
1952
1953 static file_and_directory find_file_and_directory (struct die_info *die,
1954 struct dwarf2_cu *cu);
1955
1956 static char *file_full_name (int file, struct line_header *lh,
1957 const char *comp_dir);
1958
1959 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1960 enum class rcuh_kind { COMPILE, TYPE };
1961
1962 static const gdb_byte *read_and_check_comp_unit_head
1963 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1964 struct comp_unit_head *header,
1965 struct dwarf2_section_info *section,
1966 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1967 rcuh_kind section_kind);
1968
1969 static void init_cutu_and_read_dies
1970 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1971 int use_existing_cu, int keep, bool skip_partial,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static void init_cutu_and_read_dies_simple
1975 (struct dwarf2_per_cu_data *this_cu,
1976 die_reader_func_ftype *die_reader_func, void *data);
1977
1978 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1979
1980 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1981
1982 static struct dwo_unit *lookup_dwo_unit_in_dwp
1983 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1984 struct dwp_file *dwp_file, const char *comp_dir,
1985 ULONGEST signature, int is_debug_types);
1986
1987 static struct dwp_file *get_dwp_file
1988 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1989
1990 static struct dwo_unit *lookup_dwo_comp_unit
1991 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1992
1993 static struct dwo_unit *lookup_dwo_type_unit
1994 (struct signatured_type *, const char *, const char *);
1995
1996 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1997
1998 /* A unique pointer to a dwo_file. */
1999
2000 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2001
2002 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2003
2004 static void check_producer (struct dwarf2_cu *cu);
2005
2006 static void free_line_header_voidp (void *arg);
2007 \f
2008 /* Various complaints about symbol reading that don't abort the process. */
2009
2010 static void
2011 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2012 {
2013 complaint (_("statement list doesn't fit in .debug_line section"));
2014 }
2015
2016 static void
2017 dwarf2_debug_line_missing_file_complaint (void)
2018 {
2019 complaint (_(".debug_line section has line data without a file"));
2020 }
2021
2022 static void
2023 dwarf2_debug_line_missing_end_sequence_complaint (void)
2024 {
2025 complaint (_(".debug_line section has line "
2026 "program sequence without an end"));
2027 }
2028
2029 static void
2030 dwarf2_complex_location_expr_complaint (void)
2031 {
2032 complaint (_("location expression too complex"));
2033 }
2034
2035 static void
2036 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2037 int arg3)
2038 {
2039 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2040 arg1, arg2, arg3);
2041 }
2042
2043 static void
2044 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2045 {
2046 complaint (_("debug info runs off end of %s section"
2047 " [in module %s]"),
2048 get_section_name (section),
2049 get_section_file_name (section));
2050 }
2051
2052 static void
2053 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2054 {
2055 complaint (_("macro debug info contains a "
2056 "malformed macro definition:\n`%s'"),
2057 arg1);
2058 }
2059
2060 static void
2061 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2062 {
2063 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2064 arg1, arg2);
2065 }
2066
2067 /* Hash function for line_header_hash. */
2068
2069 static hashval_t
2070 line_header_hash (const struct line_header *ofs)
2071 {
2072 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2073 }
2074
2075 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2076
2077 static hashval_t
2078 line_header_hash_voidp (const void *item)
2079 {
2080 const struct line_header *ofs = (const struct line_header *) item;
2081
2082 return line_header_hash (ofs);
2083 }
2084
2085 /* Equality function for line_header_hash. */
2086
2087 static int
2088 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2089 {
2090 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2091 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2092
2093 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2094 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2095 }
2096
2097 \f
2098
2099 /* Read the given attribute value as an address, taking the attribute's
2100 form into account. */
2101
2102 static CORE_ADDR
2103 attr_value_as_address (struct attribute *attr)
2104 {
2105 CORE_ADDR addr;
2106
2107 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2108 && attr->form != DW_FORM_GNU_addr_index)
2109 {
2110 /* Aside from a few clearly defined exceptions, attributes that
2111 contain an address must always be in DW_FORM_addr form.
2112 Unfortunately, some compilers happen to be violating this
2113 requirement by encoding addresses using other forms, such
2114 as DW_FORM_data4 for example. For those broken compilers,
2115 we try to do our best, without any guarantee of success,
2116 to interpret the address correctly. It would also be nice
2117 to generate a complaint, but that would require us to maintain
2118 a list of legitimate cases where a non-address form is allowed,
2119 as well as update callers to pass in at least the CU's DWARF
2120 version. This is more overhead than what we're willing to
2121 expand for a pretty rare case. */
2122 addr = DW_UNSND (attr);
2123 }
2124 else
2125 addr = DW_ADDR (attr);
2126
2127 return addr;
2128 }
2129
2130 /* See declaration. */
2131
2132 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2133 const dwarf2_debug_sections *names)
2134 : objfile (objfile_)
2135 {
2136 if (names == NULL)
2137 names = &dwarf2_elf_names;
2138
2139 bfd *obfd = objfile->obfd;
2140
2141 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2142 locate_sections (obfd, sec, *names);
2143 }
2144
2145 dwarf2_per_objfile::~dwarf2_per_objfile ()
2146 {
2147 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2148 free_cached_comp_units ();
2149
2150 if (quick_file_names_table)
2151 htab_delete (quick_file_names_table);
2152
2153 if (line_header_hash)
2154 htab_delete (line_header_hash);
2155
2156 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2157 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2158
2159 for (signatured_type *sig_type : all_type_units)
2160 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2161
2162 /* Everything else should be on the objfile obstack. */
2163 }
2164
2165 /* See declaration. */
2166
2167 void
2168 dwarf2_per_objfile::free_cached_comp_units ()
2169 {
2170 dwarf2_per_cu_data *per_cu = read_in_chain;
2171 dwarf2_per_cu_data **last_chain = &read_in_chain;
2172 while (per_cu != NULL)
2173 {
2174 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2175
2176 delete per_cu->cu;
2177 *last_chain = next_cu;
2178 per_cu = next_cu;
2179 }
2180 }
2181
2182 /* A helper class that calls free_cached_comp_units on
2183 destruction. */
2184
2185 class free_cached_comp_units
2186 {
2187 public:
2188
2189 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2190 : m_per_objfile (per_objfile)
2191 {
2192 }
2193
2194 ~free_cached_comp_units ()
2195 {
2196 m_per_objfile->free_cached_comp_units ();
2197 }
2198
2199 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2200
2201 private:
2202
2203 dwarf2_per_objfile *m_per_objfile;
2204 };
2205
2206 /* Try to locate the sections we need for DWARF 2 debugging
2207 information and return true if we have enough to do something.
2208 NAMES points to the dwarf2 section names, or is NULL if the standard
2209 ELF names are used. */
2210
2211 int
2212 dwarf2_has_info (struct objfile *objfile,
2213 const struct dwarf2_debug_sections *names)
2214 {
2215 if (objfile->flags & OBJF_READNEVER)
2216 return 0;
2217
2218 struct dwarf2_per_objfile *dwarf2_per_objfile
2219 = get_dwarf2_per_objfile (objfile);
2220
2221 if (dwarf2_per_objfile == NULL)
2222 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2223 names);
2224
2225 return (!dwarf2_per_objfile->info.is_virtual
2226 && dwarf2_per_objfile->info.s.section != NULL
2227 && !dwarf2_per_objfile->abbrev.is_virtual
2228 && dwarf2_per_objfile->abbrev.s.section != NULL);
2229 }
2230
2231 /* Return the containing section of virtual section SECTION. */
2232
2233 static struct dwarf2_section_info *
2234 get_containing_section (const struct dwarf2_section_info *section)
2235 {
2236 gdb_assert (section->is_virtual);
2237 return section->s.containing_section;
2238 }
2239
2240 /* Return the bfd owner of SECTION. */
2241
2242 static struct bfd *
2243 get_section_bfd_owner (const struct dwarf2_section_info *section)
2244 {
2245 if (section->is_virtual)
2246 {
2247 section = get_containing_section (section);
2248 gdb_assert (!section->is_virtual);
2249 }
2250 return section->s.section->owner;
2251 }
2252
2253 /* Return the bfd section of SECTION.
2254 Returns NULL if the section is not present. */
2255
2256 static asection *
2257 get_section_bfd_section (const struct dwarf2_section_info *section)
2258 {
2259 if (section->is_virtual)
2260 {
2261 section = get_containing_section (section);
2262 gdb_assert (!section->is_virtual);
2263 }
2264 return section->s.section;
2265 }
2266
2267 /* Return the name of SECTION. */
2268
2269 static const char *
2270 get_section_name (const struct dwarf2_section_info *section)
2271 {
2272 asection *sectp = get_section_bfd_section (section);
2273
2274 gdb_assert (sectp != NULL);
2275 return bfd_section_name (get_section_bfd_owner (section), sectp);
2276 }
2277
2278 /* Return the name of the file SECTION is in. */
2279
2280 static const char *
2281 get_section_file_name (const struct dwarf2_section_info *section)
2282 {
2283 bfd *abfd = get_section_bfd_owner (section);
2284
2285 return bfd_get_filename (abfd);
2286 }
2287
2288 /* Return the id of SECTION.
2289 Returns 0 if SECTION doesn't exist. */
2290
2291 static int
2292 get_section_id (const struct dwarf2_section_info *section)
2293 {
2294 asection *sectp = get_section_bfd_section (section);
2295
2296 if (sectp == NULL)
2297 return 0;
2298 return sectp->id;
2299 }
2300
2301 /* Return the flags of SECTION.
2302 SECTION (or containing section if this is a virtual section) must exist. */
2303
2304 static int
2305 get_section_flags (const struct dwarf2_section_info *section)
2306 {
2307 asection *sectp = get_section_bfd_section (section);
2308
2309 gdb_assert (sectp != NULL);
2310 return bfd_get_section_flags (sectp->owner, sectp);
2311 }
2312
2313 /* When loading sections, we look either for uncompressed section or for
2314 compressed section names. */
2315
2316 static int
2317 section_is_p (const char *section_name,
2318 const struct dwarf2_section_names *names)
2319 {
2320 if (names->normal != NULL
2321 && strcmp (section_name, names->normal) == 0)
2322 return 1;
2323 if (names->compressed != NULL
2324 && strcmp (section_name, names->compressed) == 0)
2325 return 1;
2326 return 0;
2327 }
2328
2329 /* See declaration. */
2330
2331 void
2332 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2333 const dwarf2_debug_sections &names)
2334 {
2335 flagword aflag = bfd_get_section_flags (abfd, sectp);
2336
2337 if ((aflag & SEC_HAS_CONTENTS) == 0)
2338 {
2339 }
2340 else if (section_is_p (sectp->name, &names.info))
2341 {
2342 this->info.s.section = sectp;
2343 this->info.size = bfd_get_section_size (sectp);
2344 }
2345 else if (section_is_p (sectp->name, &names.abbrev))
2346 {
2347 this->abbrev.s.section = sectp;
2348 this->abbrev.size = bfd_get_section_size (sectp);
2349 }
2350 else if (section_is_p (sectp->name, &names.line))
2351 {
2352 this->line.s.section = sectp;
2353 this->line.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &names.loc))
2356 {
2357 this->loc.s.section = sectp;
2358 this->loc.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &names.loclists))
2361 {
2362 this->loclists.s.section = sectp;
2363 this->loclists.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &names.macinfo))
2366 {
2367 this->macinfo.s.section = sectp;
2368 this->macinfo.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &names.macro))
2371 {
2372 this->macro.s.section = sectp;
2373 this->macro.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &names.str))
2376 {
2377 this->str.s.section = sectp;
2378 this->str.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.line_str))
2381 {
2382 this->line_str.s.section = sectp;
2383 this->line_str.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.addr))
2386 {
2387 this->addr.s.section = sectp;
2388 this->addr.size = bfd_get_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.frame))
2391 {
2392 this->frame.s.section = sectp;
2393 this->frame.size = bfd_get_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.eh_frame))
2396 {
2397 this->eh_frame.s.section = sectp;
2398 this->eh_frame.size = bfd_get_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.ranges))
2401 {
2402 this->ranges.s.section = sectp;
2403 this->ranges.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.rnglists))
2406 {
2407 this->rnglists.s.section = sectp;
2408 this->rnglists.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.types))
2411 {
2412 struct dwarf2_section_info type_section;
2413
2414 memset (&type_section, 0, sizeof (type_section));
2415 type_section.s.section = sectp;
2416 type_section.size = bfd_get_section_size (sectp);
2417
2418 this->types.push_back (type_section);
2419 }
2420 else if (section_is_p (sectp->name, &names.gdb_index))
2421 {
2422 this->gdb_index.s.section = sectp;
2423 this->gdb_index.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.debug_names))
2426 {
2427 this->debug_names.s.section = sectp;
2428 this->debug_names.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.debug_aranges))
2431 {
2432 this->debug_aranges.s.section = sectp;
2433 this->debug_aranges.size = bfd_get_section_size (sectp);
2434 }
2435
2436 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2437 && bfd_section_vma (abfd, sectp) == 0)
2438 this->has_section_at_zero = true;
2439 }
2440
2441 /* A helper function that decides whether a section is empty,
2442 or not present. */
2443
2444 static int
2445 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2446 {
2447 if (section->is_virtual)
2448 return section->size == 0;
2449 return section->s.section == NULL || section->size == 0;
2450 }
2451
2452 /* See dwarf2read.h. */
2453
2454 void
2455 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2456 {
2457 asection *sectp;
2458 bfd *abfd;
2459 gdb_byte *buf, *retbuf;
2460
2461 if (info->readin)
2462 return;
2463 info->buffer = NULL;
2464 info->readin = true;
2465
2466 if (dwarf2_section_empty_p (info))
2467 return;
2468
2469 sectp = get_section_bfd_section (info);
2470
2471 /* If this is a virtual section we need to read in the real one first. */
2472 if (info->is_virtual)
2473 {
2474 struct dwarf2_section_info *containing_section =
2475 get_containing_section (info);
2476
2477 gdb_assert (sectp != NULL);
2478 if ((sectp->flags & SEC_RELOC) != 0)
2479 {
2480 error (_("Dwarf Error: DWP format V2 with relocations is not"
2481 " supported in section %s [in module %s]"),
2482 get_section_name (info), get_section_file_name (info));
2483 }
2484 dwarf2_read_section (objfile, containing_section);
2485 /* Other code should have already caught virtual sections that don't
2486 fit. */
2487 gdb_assert (info->virtual_offset + info->size
2488 <= containing_section->size);
2489 /* If the real section is empty or there was a problem reading the
2490 section we shouldn't get here. */
2491 gdb_assert (containing_section->buffer != NULL);
2492 info->buffer = containing_section->buffer + info->virtual_offset;
2493 return;
2494 }
2495
2496 /* If the section has relocations, we must read it ourselves.
2497 Otherwise we attach it to the BFD. */
2498 if ((sectp->flags & SEC_RELOC) == 0)
2499 {
2500 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2501 return;
2502 }
2503
2504 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2505 info->buffer = buf;
2506
2507 /* When debugging .o files, we may need to apply relocations; see
2508 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2509 We never compress sections in .o files, so we only need to
2510 try this when the section is not compressed. */
2511 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2512 if (retbuf != NULL)
2513 {
2514 info->buffer = retbuf;
2515 return;
2516 }
2517
2518 abfd = get_section_bfd_owner (info);
2519 gdb_assert (abfd != NULL);
2520
2521 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2522 || bfd_bread (buf, info->size, abfd) != info->size)
2523 {
2524 error (_("Dwarf Error: Can't read DWARF data"
2525 " in section %s [in module %s]"),
2526 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2527 }
2528 }
2529
2530 /* A helper function that returns the size of a section in a safe way.
2531 If you are positive that the section has been read before using the
2532 size, then it is safe to refer to the dwarf2_section_info object's
2533 "size" field directly. In other cases, you must call this
2534 function, because for compressed sections the size field is not set
2535 correctly until the section has been read. */
2536
2537 static bfd_size_type
2538 dwarf2_section_size (struct objfile *objfile,
2539 struct dwarf2_section_info *info)
2540 {
2541 if (!info->readin)
2542 dwarf2_read_section (objfile, info);
2543 return info->size;
2544 }
2545
2546 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2547 SECTION_NAME. */
2548
2549 void
2550 dwarf2_get_section_info (struct objfile *objfile,
2551 enum dwarf2_section_enum sect,
2552 asection **sectp, const gdb_byte **bufp,
2553 bfd_size_type *sizep)
2554 {
2555 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2556 struct dwarf2_section_info *info;
2557
2558 /* We may see an objfile without any DWARF, in which case we just
2559 return nothing. */
2560 if (data == NULL)
2561 {
2562 *sectp = NULL;
2563 *bufp = NULL;
2564 *sizep = 0;
2565 return;
2566 }
2567 switch (sect)
2568 {
2569 case DWARF2_DEBUG_FRAME:
2570 info = &data->frame;
2571 break;
2572 case DWARF2_EH_FRAME:
2573 info = &data->eh_frame;
2574 break;
2575 default:
2576 gdb_assert_not_reached ("unexpected section");
2577 }
2578
2579 dwarf2_read_section (objfile, info);
2580
2581 *sectp = get_section_bfd_section (info);
2582 *bufp = info->buffer;
2583 *sizep = info->size;
2584 }
2585
2586 /* A helper function to find the sections for a .dwz file. */
2587
2588 static void
2589 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2590 {
2591 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2592
2593 /* Note that we only support the standard ELF names, because .dwz
2594 is ELF-only (at the time of writing). */
2595 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2596 {
2597 dwz_file->abbrev.s.section = sectp;
2598 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2599 }
2600 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2601 {
2602 dwz_file->info.s.section = sectp;
2603 dwz_file->info.size = bfd_get_section_size (sectp);
2604 }
2605 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2606 {
2607 dwz_file->str.s.section = sectp;
2608 dwz_file->str.size = bfd_get_section_size (sectp);
2609 }
2610 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2611 {
2612 dwz_file->line.s.section = sectp;
2613 dwz_file->line.size = bfd_get_section_size (sectp);
2614 }
2615 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2616 {
2617 dwz_file->macro.s.section = sectp;
2618 dwz_file->macro.size = bfd_get_section_size (sectp);
2619 }
2620 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2621 {
2622 dwz_file->gdb_index.s.section = sectp;
2623 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2624 }
2625 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2626 {
2627 dwz_file->debug_names.s.section = sectp;
2628 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2629 }
2630 }
2631
2632 /* See dwarf2read.h. */
2633
2634 struct dwz_file *
2635 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2636 {
2637 const char *filename;
2638 bfd_size_type buildid_len_arg;
2639 size_t buildid_len;
2640 bfd_byte *buildid;
2641
2642 if (dwarf2_per_objfile->dwz_file != NULL)
2643 return dwarf2_per_objfile->dwz_file.get ();
2644
2645 bfd_set_error (bfd_error_no_error);
2646 gdb::unique_xmalloc_ptr<char> data
2647 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2648 &buildid_len_arg, &buildid));
2649 if (data == NULL)
2650 {
2651 if (bfd_get_error () == bfd_error_no_error)
2652 return NULL;
2653 error (_("could not read '.gnu_debugaltlink' section: %s"),
2654 bfd_errmsg (bfd_get_error ()));
2655 }
2656
2657 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2658
2659 buildid_len = (size_t) buildid_len_arg;
2660
2661 filename = data.get ();
2662
2663 std::string abs_storage;
2664 if (!IS_ABSOLUTE_PATH (filename))
2665 {
2666 gdb::unique_xmalloc_ptr<char> abs
2667 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2668
2669 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2670 filename = abs_storage.c_str ();
2671 }
2672
2673 /* First try the file name given in the section. If that doesn't
2674 work, try to use the build-id instead. */
2675 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2676 if (dwz_bfd != NULL)
2677 {
2678 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2679 dwz_bfd.reset (nullptr);
2680 }
2681
2682 if (dwz_bfd == NULL)
2683 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2684
2685 if (dwz_bfd == NULL)
2686 error (_("could not find '.gnu_debugaltlink' file for %s"),
2687 objfile_name (dwarf2_per_objfile->objfile));
2688
2689 std::unique_ptr<struct dwz_file> result
2690 (new struct dwz_file (std::move (dwz_bfd)));
2691
2692 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2693 result.get ());
2694
2695 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2696 result->dwz_bfd.get ());
2697 dwarf2_per_objfile->dwz_file = std::move (result);
2698 return dwarf2_per_objfile->dwz_file.get ();
2699 }
2700 \f
2701 /* DWARF quick_symbols_functions support. */
2702
2703 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2704 unique line tables, so we maintain a separate table of all .debug_line
2705 derived entries to support the sharing.
2706 All the quick functions need is the list of file names. We discard the
2707 line_header when we're done and don't need to record it here. */
2708 struct quick_file_names
2709 {
2710 /* The data used to construct the hash key. */
2711 struct stmt_list_hash hash;
2712
2713 /* The number of entries in file_names, real_names. */
2714 unsigned int num_file_names;
2715
2716 /* The file names from the line table, after being run through
2717 file_full_name. */
2718 const char **file_names;
2719
2720 /* The file names from the line table after being run through
2721 gdb_realpath. These are computed lazily. */
2722 const char **real_names;
2723 };
2724
2725 /* When using the index (and thus not using psymtabs), each CU has an
2726 object of this type. This is used to hold information needed by
2727 the various "quick" methods. */
2728 struct dwarf2_per_cu_quick_data
2729 {
2730 /* The file table. This can be NULL if there was no file table
2731 or it's currently not read in.
2732 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2733 struct quick_file_names *file_names;
2734
2735 /* The corresponding symbol table. This is NULL if symbols for this
2736 CU have not yet been read. */
2737 struct compunit_symtab *compunit_symtab;
2738
2739 /* A temporary mark bit used when iterating over all CUs in
2740 expand_symtabs_matching. */
2741 unsigned int mark : 1;
2742
2743 /* True if we've tried to read the file table and found there isn't one.
2744 There will be no point in trying to read it again next time. */
2745 unsigned int no_file_data : 1;
2746 };
2747
2748 /* Utility hash function for a stmt_list_hash. */
2749
2750 static hashval_t
2751 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2752 {
2753 hashval_t v = 0;
2754
2755 if (stmt_list_hash->dwo_unit != NULL)
2756 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2757 v += to_underlying (stmt_list_hash->line_sect_off);
2758 return v;
2759 }
2760
2761 /* Utility equality function for a stmt_list_hash. */
2762
2763 static int
2764 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2765 const struct stmt_list_hash *rhs)
2766 {
2767 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2768 return 0;
2769 if (lhs->dwo_unit != NULL
2770 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2771 return 0;
2772
2773 return lhs->line_sect_off == rhs->line_sect_off;
2774 }
2775
2776 /* Hash function for a quick_file_names. */
2777
2778 static hashval_t
2779 hash_file_name_entry (const void *e)
2780 {
2781 const struct quick_file_names *file_data
2782 = (const struct quick_file_names *) e;
2783
2784 return hash_stmt_list_entry (&file_data->hash);
2785 }
2786
2787 /* Equality function for a quick_file_names. */
2788
2789 static int
2790 eq_file_name_entry (const void *a, const void *b)
2791 {
2792 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2793 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2794
2795 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2796 }
2797
2798 /* Delete function for a quick_file_names. */
2799
2800 static void
2801 delete_file_name_entry (void *e)
2802 {
2803 struct quick_file_names *file_data = (struct quick_file_names *) e;
2804 int i;
2805
2806 for (i = 0; i < file_data->num_file_names; ++i)
2807 {
2808 xfree ((void*) file_data->file_names[i]);
2809 if (file_data->real_names)
2810 xfree ((void*) file_data->real_names[i]);
2811 }
2812
2813 /* The space for the struct itself lives on objfile_obstack,
2814 so we don't free it here. */
2815 }
2816
2817 /* Create a quick_file_names hash table. */
2818
2819 static htab_t
2820 create_quick_file_names_table (unsigned int nr_initial_entries)
2821 {
2822 return htab_create_alloc (nr_initial_entries,
2823 hash_file_name_entry, eq_file_name_entry,
2824 delete_file_name_entry, xcalloc, xfree);
2825 }
2826
2827 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2828 have to be created afterwards. You should call age_cached_comp_units after
2829 processing PER_CU->CU. dw2_setup must have been already called. */
2830
2831 static void
2832 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2833 {
2834 if (per_cu->is_debug_types)
2835 load_full_type_unit (per_cu);
2836 else
2837 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2838
2839 if (per_cu->cu == NULL)
2840 return; /* Dummy CU. */
2841
2842 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2843 }
2844
2845 /* Read in the symbols for PER_CU. */
2846
2847 static void
2848 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2849 {
2850 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2851
2852 /* Skip type_unit_groups, reading the type units they contain
2853 is handled elsewhere. */
2854 if (IS_TYPE_UNIT_GROUP (per_cu))
2855 return;
2856
2857 /* The destructor of dwarf2_queue_guard frees any entries left on
2858 the queue. After this point we're guaranteed to leave this function
2859 with the dwarf queue empty. */
2860 dwarf2_queue_guard q_guard;
2861
2862 if (dwarf2_per_objfile->using_index
2863 ? per_cu->v.quick->compunit_symtab == NULL
2864 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2865 {
2866 queue_comp_unit (per_cu, language_minimal);
2867 load_cu (per_cu, skip_partial);
2868
2869 /* If we just loaded a CU from a DWO, and we're working with an index
2870 that may badly handle TUs, load all the TUs in that DWO as well.
2871 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2872 if (!per_cu->is_debug_types
2873 && per_cu->cu != NULL
2874 && per_cu->cu->dwo_unit != NULL
2875 && dwarf2_per_objfile->index_table != NULL
2876 && dwarf2_per_objfile->index_table->version <= 7
2877 /* DWP files aren't supported yet. */
2878 && get_dwp_file (dwarf2_per_objfile) == NULL)
2879 queue_and_load_all_dwo_tus (per_cu);
2880 }
2881
2882 process_queue (dwarf2_per_objfile);
2883
2884 /* Age the cache, releasing compilation units that have not
2885 been used recently. */
2886 age_cached_comp_units (dwarf2_per_objfile);
2887 }
2888
2889 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2890 the objfile from which this CU came. Returns the resulting symbol
2891 table. */
2892
2893 static struct compunit_symtab *
2894 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 gdb_assert (dwarf2_per_objfile->using_index);
2899 if (!per_cu->v.quick->compunit_symtab)
2900 {
2901 free_cached_comp_units freer (dwarf2_per_objfile);
2902 scoped_restore decrementer = increment_reading_symtab ();
2903 dw2_do_instantiate_symtab (per_cu, skip_partial);
2904 process_cu_includes (dwarf2_per_objfile);
2905 }
2906
2907 return per_cu->v.quick->compunit_symtab;
2908 }
2909
2910 /* See declaration. */
2911
2912 dwarf2_per_cu_data *
2913 dwarf2_per_objfile::get_cutu (int index)
2914 {
2915 if (index >= this->all_comp_units.size ())
2916 {
2917 index -= this->all_comp_units.size ();
2918 gdb_assert (index < this->all_type_units.size ());
2919 return &this->all_type_units[index]->per_cu;
2920 }
2921
2922 return this->all_comp_units[index];
2923 }
2924
2925 /* See declaration. */
2926
2927 dwarf2_per_cu_data *
2928 dwarf2_per_objfile::get_cu (int index)
2929 {
2930 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2931
2932 return this->all_comp_units[index];
2933 }
2934
2935 /* See declaration. */
2936
2937 signatured_type *
2938 dwarf2_per_objfile::get_tu (int index)
2939 {
2940 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2941
2942 return this->all_type_units[index];
2943 }
2944
2945 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2946 objfile_obstack, and constructed with the specified field
2947 values. */
2948
2949 static dwarf2_per_cu_data *
2950 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2951 struct dwarf2_section_info *section,
2952 int is_dwz,
2953 sect_offset sect_off, ULONGEST length)
2954 {
2955 struct objfile *objfile = dwarf2_per_objfile->objfile;
2956 dwarf2_per_cu_data *the_cu
2957 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2958 struct dwarf2_per_cu_data);
2959 the_cu->sect_off = sect_off;
2960 the_cu->length = length;
2961 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2962 the_cu->section = section;
2963 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2964 struct dwarf2_per_cu_quick_data);
2965 the_cu->is_dwz = is_dwz;
2966 return the_cu;
2967 }
2968
2969 /* A helper for create_cus_from_index that handles a given list of
2970 CUs. */
2971
2972 static void
2973 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2974 const gdb_byte *cu_list, offset_type n_elements,
2975 struct dwarf2_section_info *section,
2976 int is_dwz)
2977 {
2978 for (offset_type i = 0; i < n_elements; i += 2)
2979 {
2980 gdb_static_assert (sizeof (ULONGEST) >= 8);
2981
2982 sect_offset sect_off
2983 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2984 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2985 cu_list += 2 * 8;
2986
2987 dwarf2_per_cu_data *per_cu
2988 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2989 sect_off, length);
2990 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2991 }
2992 }
2993
2994 /* Read the CU list from the mapped index, and use it to create all
2995 the CU objects for this objfile. */
2996
2997 static void
2998 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2999 const gdb_byte *cu_list, offset_type cu_list_elements,
3000 const gdb_byte *dwz_list, offset_type dwz_elements)
3001 {
3002 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3003 dwarf2_per_objfile->all_comp_units.reserve
3004 ((cu_list_elements + dwz_elements) / 2);
3005
3006 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3007 &dwarf2_per_objfile->info, 0);
3008
3009 if (dwz_elements == 0)
3010 return;
3011
3012 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3013 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3014 &dwz->info, 1);
3015 }
3016
3017 /* Create the signatured type hash table from the index. */
3018
3019 static void
3020 create_signatured_type_table_from_index
3021 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3022 struct dwarf2_section_info *section,
3023 const gdb_byte *bytes,
3024 offset_type elements)
3025 {
3026 struct objfile *objfile = dwarf2_per_objfile->objfile;
3027
3028 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3029 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3030
3031 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3032
3033 for (offset_type i = 0; i < elements; i += 3)
3034 {
3035 struct signatured_type *sig_type;
3036 ULONGEST signature;
3037 void **slot;
3038 cu_offset type_offset_in_tu;
3039
3040 gdb_static_assert (sizeof (ULONGEST) >= 8);
3041 sect_offset sect_off
3042 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3043 type_offset_in_tu
3044 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3045 BFD_ENDIAN_LITTLE);
3046 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3047 bytes += 3 * 8;
3048
3049 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3050 struct signatured_type);
3051 sig_type->signature = signature;
3052 sig_type->type_offset_in_tu = type_offset_in_tu;
3053 sig_type->per_cu.is_debug_types = 1;
3054 sig_type->per_cu.section = section;
3055 sig_type->per_cu.sect_off = sect_off;
3056 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3057 sig_type->per_cu.v.quick
3058 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3059 struct dwarf2_per_cu_quick_data);
3060
3061 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3062 *slot = sig_type;
3063
3064 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3065 }
3066
3067 dwarf2_per_objfile->signatured_types = sig_types_hash;
3068 }
3069
3070 /* Create the signatured type hash table from .debug_names. */
3071
3072 static void
3073 create_signatured_type_table_from_debug_names
3074 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3075 const mapped_debug_names &map,
3076 struct dwarf2_section_info *section,
3077 struct dwarf2_section_info *abbrev_section)
3078 {
3079 struct objfile *objfile = dwarf2_per_objfile->objfile;
3080
3081 dwarf2_read_section (objfile, section);
3082 dwarf2_read_section (objfile, abbrev_section);
3083
3084 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3085 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3086
3087 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3088
3089 for (uint32_t i = 0; i < map.tu_count; ++i)
3090 {
3091 struct signatured_type *sig_type;
3092 void **slot;
3093
3094 sect_offset sect_off
3095 = (sect_offset) (extract_unsigned_integer
3096 (map.tu_table_reordered + i * map.offset_size,
3097 map.offset_size,
3098 map.dwarf5_byte_order));
3099
3100 comp_unit_head cu_header;
3101 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3102 abbrev_section,
3103 section->buffer + to_underlying (sect_off),
3104 rcuh_kind::TYPE);
3105
3106 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3107 struct signatured_type);
3108 sig_type->signature = cu_header.signature;
3109 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3110 sig_type->per_cu.is_debug_types = 1;
3111 sig_type->per_cu.section = section;
3112 sig_type->per_cu.sect_off = sect_off;
3113 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3114 sig_type->per_cu.v.quick
3115 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3116 struct dwarf2_per_cu_quick_data);
3117
3118 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3119 *slot = sig_type;
3120
3121 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3122 }
3123
3124 dwarf2_per_objfile->signatured_types = sig_types_hash;
3125 }
3126
3127 /* Read the address map data from the mapped index, and use it to
3128 populate the objfile's psymtabs_addrmap. */
3129
3130 static void
3131 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3132 struct mapped_index *index)
3133 {
3134 struct objfile *objfile = dwarf2_per_objfile->objfile;
3135 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3136 const gdb_byte *iter, *end;
3137 struct addrmap *mutable_map;
3138 CORE_ADDR baseaddr;
3139
3140 auto_obstack temp_obstack;
3141
3142 mutable_map = addrmap_create_mutable (&temp_obstack);
3143
3144 iter = index->address_table.data ();
3145 end = iter + index->address_table.size ();
3146
3147 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3148
3149 while (iter < end)
3150 {
3151 ULONGEST hi, lo, cu_index;
3152 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3153 iter += 8;
3154 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3155 iter += 8;
3156 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3157 iter += 4;
3158
3159 if (lo > hi)
3160 {
3161 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3162 hex_string (lo), hex_string (hi));
3163 continue;
3164 }
3165
3166 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3167 {
3168 complaint (_(".gdb_index address table has invalid CU number %u"),
3169 (unsigned) cu_index);
3170 continue;
3171 }
3172
3173 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3174 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3175 addrmap_set_empty (mutable_map, lo, hi - 1,
3176 dwarf2_per_objfile->get_cu (cu_index));
3177 }
3178
3179 objfile->partial_symtabs->psymtabs_addrmap
3180 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3181 }
3182
3183 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3184 populate the objfile's psymtabs_addrmap. */
3185
3186 static void
3187 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3188 struct dwarf2_section_info *section)
3189 {
3190 struct objfile *objfile = dwarf2_per_objfile->objfile;
3191 bfd *abfd = objfile->obfd;
3192 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3193 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3194 SECT_OFF_TEXT (objfile));
3195
3196 auto_obstack temp_obstack;
3197 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3198
3199 std::unordered_map<sect_offset,
3200 dwarf2_per_cu_data *,
3201 gdb::hash_enum<sect_offset>>
3202 debug_info_offset_to_per_cu;
3203 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3204 {
3205 const auto insertpair
3206 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3207 if (!insertpair.second)
3208 {
3209 warning (_("Section .debug_aranges in %s has duplicate "
3210 "debug_info_offset %s, ignoring .debug_aranges."),
3211 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3212 return;
3213 }
3214 }
3215
3216 dwarf2_read_section (objfile, section);
3217
3218 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3219
3220 const gdb_byte *addr = section->buffer;
3221
3222 while (addr < section->buffer + section->size)
3223 {
3224 const gdb_byte *const entry_addr = addr;
3225 unsigned int bytes_read;
3226
3227 const LONGEST entry_length = read_initial_length (abfd, addr,
3228 &bytes_read);
3229 addr += bytes_read;
3230
3231 const gdb_byte *const entry_end = addr + entry_length;
3232 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3233 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3234 if (addr + entry_length > section->buffer + section->size)
3235 {
3236 warning (_("Section .debug_aranges in %s entry at offset %s "
3237 "length %s exceeds section length %s, "
3238 "ignoring .debug_aranges."),
3239 objfile_name (objfile),
3240 plongest (entry_addr - section->buffer),
3241 plongest (bytes_read + entry_length),
3242 pulongest (section->size));
3243 return;
3244 }
3245
3246 /* The version number. */
3247 const uint16_t version = read_2_bytes (abfd, addr);
3248 addr += 2;
3249 if (version != 2)
3250 {
3251 warning (_("Section .debug_aranges in %s entry at offset %s "
3252 "has unsupported version %d, ignoring .debug_aranges."),
3253 objfile_name (objfile),
3254 plongest (entry_addr - section->buffer), version);
3255 return;
3256 }
3257
3258 const uint64_t debug_info_offset
3259 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3260 addr += offset_size;
3261 const auto per_cu_it
3262 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3263 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3264 {
3265 warning (_("Section .debug_aranges in %s entry at offset %s "
3266 "debug_info_offset %s does not exists, "
3267 "ignoring .debug_aranges."),
3268 objfile_name (objfile),
3269 plongest (entry_addr - section->buffer),
3270 pulongest (debug_info_offset));
3271 return;
3272 }
3273 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3274
3275 const uint8_t address_size = *addr++;
3276 if (address_size < 1 || address_size > 8)
3277 {
3278 warning (_("Section .debug_aranges in %s entry at offset %s "
3279 "address_size %u is invalid, ignoring .debug_aranges."),
3280 objfile_name (objfile),
3281 plongest (entry_addr - section->buffer), address_size);
3282 return;
3283 }
3284
3285 const uint8_t segment_selector_size = *addr++;
3286 if (segment_selector_size != 0)
3287 {
3288 warning (_("Section .debug_aranges in %s entry at offset %s "
3289 "segment_selector_size %u is not supported, "
3290 "ignoring .debug_aranges."),
3291 objfile_name (objfile),
3292 plongest (entry_addr - section->buffer),
3293 segment_selector_size);
3294 return;
3295 }
3296
3297 /* Must pad to an alignment boundary that is twice the address
3298 size. It is undocumented by the DWARF standard but GCC does
3299 use it. */
3300 for (size_t padding = ((-(addr - section->buffer))
3301 & (2 * address_size - 1));
3302 padding > 0; padding--)
3303 if (*addr++ != 0)
3304 {
3305 warning (_("Section .debug_aranges in %s entry at offset %s "
3306 "padding is not zero, ignoring .debug_aranges."),
3307 objfile_name (objfile),
3308 plongest (entry_addr - section->buffer));
3309 return;
3310 }
3311
3312 for (;;)
3313 {
3314 if (addr + 2 * address_size > entry_end)
3315 {
3316 warning (_("Section .debug_aranges in %s entry at offset %s "
3317 "address list is not properly terminated, "
3318 "ignoring .debug_aranges."),
3319 objfile_name (objfile),
3320 plongest (entry_addr - section->buffer));
3321 return;
3322 }
3323 ULONGEST start = extract_unsigned_integer (addr, address_size,
3324 dwarf5_byte_order);
3325 addr += address_size;
3326 ULONGEST length = extract_unsigned_integer (addr, address_size,
3327 dwarf5_byte_order);
3328 addr += address_size;
3329 if (start == 0 && length == 0)
3330 break;
3331 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3332 {
3333 /* Symbol was eliminated due to a COMDAT group. */
3334 continue;
3335 }
3336 ULONGEST end = start + length;
3337 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3338 - baseaddr);
3339 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3340 - baseaddr);
3341 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3342 }
3343 }
3344
3345 objfile->partial_symtabs->psymtabs_addrmap
3346 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3347 }
3348
3349 /* Find a slot in the mapped index INDEX for the object named NAME.
3350 If NAME is found, set *VEC_OUT to point to the CU vector in the
3351 constant pool and return true. If NAME cannot be found, return
3352 false. */
3353
3354 static bool
3355 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3356 offset_type **vec_out)
3357 {
3358 offset_type hash;
3359 offset_type slot, step;
3360 int (*cmp) (const char *, const char *);
3361
3362 gdb::unique_xmalloc_ptr<char> without_params;
3363 if (current_language->la_language == language_cplus
3364 || current_language->la_language == language_fortran
3365 || current_language->la_language == language_d)
3366 {
3367 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3368 not contain any. */
3369
3370 if (strchr (name, '(') != NULL)
3371 {
3372 without_params = cp_remove_params (name);
3373
3374 if (without_params != NULL)
3375 name = without_params.get ();
3376 }
3377 }
3378
3379 /* Index version 4 did not support case insensitive searches. But the
3380 indices for case insensitive languages are built in lowercase, therefore
3381 simulate our NAME being searched is also lowercased. */
3382 hash = mapped_index_string_hash ((index->version == 4
3383 && case_sensitivity == case_sensitive_off
3384 ? 5 : index->version),
3385 name);
3386
3387 slot = hash & (index->symbol_table.size () - 1);
3388 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3389 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3390
3391 for (;;)
3392 {
3393 const char *str;
3394
3395 const auto &bucket = index->symbol_table[slot];
3396 if (bucket.name == 0 && bucket.vec == 0)
3397 return false;
3398
3399 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3400 if (!cmp (name, str))
3401 {
3402 *vec_out = (offset_type *) (index->constant_pool
3403 + MAYBE_SWAP (bucket.vec));
3404 return true;
3405 }
3406
3407 slot = (slot + step) & (index->symbol_table.size () - 1);
3408 }
3409 }
3410
3411 /* A helper function that reads the .gdb_index from BUFFER and fills
3412 in MAP. FILENAME is the name of the file containing the data;
3413 it is used for error reporting. DEPRECATED_OK is true if it is
3414 ok to use deprecated sections.
3415
3416 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3417 out parameters that are filled in with information about the CU and
3418 TU lists in the section.
3419
3420 Returns true if all went well, false otherwise. */
3421
3422 static bool
3423 read_gdb_index_from_buffer (struct objfile *objfile,
3424 const char *filename,
3425 bool deprecated_ok,
3426 gdb::array_view<const gdb_byte> buffer,
3427 struct mapped_index *map,
3428 const gdb_byte **cu_list,
3429 offset_type *cu_list_elements,
3430 const gdb_byte **types_list,
3431 offset_type *types_list_elements)
3432 {
3433 const gdb_byte *addr = &buffer[0];
3434
3435 /* Version check. */
3436 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3437 /* Versions earlier than 3 emitted every copy of a psymbol. This
3438 causes the index to behave very poorly for certain requests. Version 3
3439 contained incomplete addrmap. So, it seems better to just ignore such
3440 indices. */
3441 if (version < 4)
3442 {
3443 static int warning_printed = 0;
3444 if (!warning_printed)
3445 {
3446 warning (_("Skipping obsolete .gdb_index section in %s."),
3447 filename);
3448 warning_printed = 1;
3449 }
3450 return 0;
3451 }
3452 /* Index version 4 uses a different hash function than index version
3453 5 and later.
3454
3455 Versions earlier than 6 did not emit psymbols for inlined
3456 functions. Using these files will cause GDB not to be able to
3457 set breakpoints on inlined functions by name, so we ignore these
3458 indices unless the user has done
3459 "set use-deprecated-index-sections on". */
3460 if (version < 6 && !deprecated_ok)
3461 {
3462 static int warning_printed = 0;
3463 if (!warning_printed)
3464 {
3465 warning (_("\
3466 Skipping deprecated .gdb_index section in %s.\n\
3467 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3468 to use the section anyway."),
3469 filename);
3470 warning_printed = 1;
3471 }
3472 return 0;
3473 }
3474 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3475 of the TU (for symbols coming from TUs),
3476 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3477 Plus gold-generated indices can have duplicate entries for global symbols,
3478 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3479 These are just performance bugs, and we can't distinguish gdb-generated
3480 indices from gold-generated ones, so issue no warning here. */
3481
3482 /* Indexes with higher version than the one supported by GDB may be no
3483 longer backward compatible. */
3484 if (version > 8)
3485 return 0;
3486
3487 map->version = version;
3488
3489 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3490
3491 int i = 0;
3492 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3493 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3494 / 8);
3495 ++i;
3496
3497 *types_list = addr + MAYBE_SWAP (metadata[i]);
3498 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3499 - MAYBE_SWAP (metadata[i]))
3500 / 8);
3501 ++i;
3502
3503 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3504 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3505 map->address_table
3506 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3507 ++i;
3508
3509 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3510 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3511 map->symbol_table
3512 = gdb::array_view<mapped_index::symbol_table_slot>
3513 ((mapped_index::symbol_table_slot *) symbol_table,
3514 (mapped_index::symbol_table_slot *) symbol_table_end);
3515
3516 ++i;
3517 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3518
3519 return 1;
3520 }
3521
3522 /* Callback types for dwarf2_read_gdb_index. */
3523
3524 typedef gdb::function_view
3525 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3526 get_gdb_index_contents_ftype;
3527 typedef gdb::function_view
3528 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3529 get_gdb_index_contents_dwz_ftype;
3530
3531 /* Read .gdb_index. If everything went ok, initialize the "quick"
3532 elements of all the CUs and return 1. Otherwise, return 0. */
3533
3534 static int
3535 dwarf2_read_gdb_index
3536 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3537 get_gdb_index_contents_ftype get_gdb_index_contents,
3538 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3539 {
3540 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3541 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3542 struct dwz_file *dwz;
3543 struct objfile *objfile = dwarf2_per_objfile->objfile;
3544
3545 gdb::array_view<const gdb_byte> main_index_contents
3546 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3547
3548 if (main_index_contents.empty ())
3549 return 0;
3550
3551 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3552 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3553 use_deprecated_index_sections,
3554 main_index_contents, map.get (), &cu_list,
3555 &cu_list_elements, &types_list,
3556 &types_list_elements))
3557 return 0;
3558
3559 /* Don't use the index if it's empty. */
3560 if (map->symbol_table.empty ())
3561 return 0;
3562
3563 /* If there is a .dwz file, read it so we can get its CU list as
3564 well. */
3565 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3566 if (dwz != NULL)
3567 {
3568 struct mapped_index dwz_map;
3569 const gdb_byte *dwz_types_ignore;
3570 offset_type dwz_types_elements_ignore;
3571
3572 gdb::array_view<const gdb_byte> dwz_index_content
3573 = get_gdb_index_contents_dwz (objfile, dwz);
3574
3575 if (dwz_index_content.empty ())
3576 return 0;
3577
3578 if (!read_gdb_index_from_buffer (objfile,
3579 bfd_get_filename (dwz->dwz_bfd), 1,
3580 dwz_index_content, &dwz_map,
3581 &dwz_list, &dwz_list_elements,
3582 &dwz_types_ignore,
3583 &dwz_types_elements_ignore))
3584 {
3585 warning (_("could not read '.gdb_index' section from %s; skipping"),
3586 bfd_get_filename (dwz->dwz_bfd));
3587 return 0;
3588 }
3589 }
3590
3591 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3592 dwz_list, dwz_list_elements);
3593
3594 if (types_list_elements)
3595 {
3596 /* We can only handle a single .debug_types when we have an
3597 index. */
3598 if (dwarf2_per_objfile->types.size () != 1)
3599 return 0;
3600
3601 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3602
3603 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3604 types_list, types_list_elements);
3605 }
3606
3607 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3608
3609 dwarf2_per_objfile->index_table = std::move (map);
3610 dwarf2_per_objfile->using_index = 1;
3611 dwarf2_per_objfile->quick_file_names_table =
3612 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3613
3614 return 1;
3615 }
3616
3617 /* die_reader_func for dw2_get_file_names. */
3618
3619 static void
3620 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3621 const gdb_byte *info_ptr,
3622 struct die_info *comp_unit_die,
3623 int has_children,
3624 void *data)
3625 {
3626 struct dwarf2_cu *cu = reader->cu;
3627 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3628 struct dwarf2_per_objfile *dwarf2_per_objfile
3629 = cu->per_cu->dwarf2_per_objfile;
3630 struct objfile *objfile = dwarf2_per_objfile->objfile;
3631 struct dwarf2_per_cu_data *lh_cu;
3632 struct attribute *attr;
3633 int i;
3634 void **slot;
3635 struct quick_file_names *qfn;
3636
3637 gdb_assert (! this_cu->is_debug_types);
3638
3639 /* Our callers never want to match partial units -- instead they
3640 will match the enclosing full CU. */
3641 if (comp_unit_die->tag == DW_TAG_partial_unit)
3642 {
3643 this_cu->v.quick->no_file_data = 1;
3644 return;
3645 }
3646
3647 lh_cu = this_cu;
3648 slot = NULL;
3649
3650 line_header_up lh;
3651 sect_offset line_offset {};
3652
3653 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3654 if (attr)
3655 {
3656 struct quick_file_names find_entry;
3657
3658 line_offset = (sect_offset) DW_UNSND (attr);
3659
3660 /* We may have already read in this line header (TU line header sharing).
3661 If we have we're done. */
3662 find_entry.hash.dwo_unit = cu->dwo_unit;
3663 find_entry.hash.line_sect_off = line_offset;
3664 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3665 &find_entry, INSERT);
3666 if (*slot != NULL)
3667 {
3668 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3669 return;
3670 }
3671
3672 lh = dwarf_decode_line_header (line_offset, cu);
3673 }
3674 if (lh == NULL)
3675 {
3676 lh_cu->v.quick->no_file_data = 1;
3677 return;
3678 }
3679
3680 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3681 qfn->hash.dwo_unit = cu->dwo_unit;
3682 qfn->hash.line_sect_off = line_offset;
3683 gdb_assert (slot != NULL);
3684 *slot = qfn;
3685
3686 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3687
3688 qfn->num_file_names = lh->file_names.size ();
3689 qfn->file_names =
3690 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3691 for (i = 0; i < lh->file_names.size (); ++i)
3692 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3693 qfn->real_names = NULL;
3694
3695 lh_cu->v.quick->file_names = qfn;
3696 }
3697
3698 /* A helper for the "quick" functions which attempts to read the line
3699 table for THIS_CU. */
3700
3701 static struct quick_file_names *
3702 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3703 {
3704 /* This should never be called for TUs. */
3705 gdb_assert (! this_cu->is_debug_types);
3706 /* Nor type unit groups. */
3707 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3708
3709 if (this_cu->v.quick->file_names != NULL)
3710 return this_cu->v.quick->file_names;
3711 /* If we know there is no line data, no point in looking again. */
3712 if (this_cu->v.quick->no_file_data)
3713 return NULL;
3714
3715 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3716
3717 if (this_cu->v.quick->no_file_data)
3718 return NULL;
3719 return this_cu->v.quick->file_names;
3720 }
3721
3722 /* A helper for the "quick" functions which computes and caches the
3723 real path for a given file name from the line table. */
3724
3725 static const char *
3726 dw2_get_real_path (struct objfile *objfile,
3727 struct quick_file_names *qfn, int index)
3728 {
3729 if (qfn->real_names == NULL)
3730 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3731 qfn->num_file_names, const char *);
3732
3733 if (qfn->real_names[index] == NULL)
3734 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3735
3736 return qfn->real_names[index];
3737 }
3738
3739 static struct symtab *
3740 dw2_find_last_source_symtab (struct objfile *objfile)
3741 {
3742 struct dwarf2_per_objfile *dwarf2_per_objfile
3743 = get_dwarf2_per_objfile (objfile);
3744 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3745 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3746
3747 if (cust == NULL)
3748 return NULL;
3749
3750 return compunit_primary_filetab (cust);
3751 }
3752
3753 /* Traversal function for dw2_forget_cached_source_info. */
3754
3755 static int
3756 dw2_free_cached_file_names (void **slot, void *info)
3757 {
3758 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3759
3760 if (file_data->real_names)
3761 {
3762 int i;
3763
3764 for (i = 0; i < file_data->num_file_names; ++i)
3765 {
3766 xfree ((void*) file_data->real_names[i]);
3767 file_data->real_names[i] = NULL;
3768 }
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
3775 dw2_forget_cached_source_info (struct objfile *objfile)
3776 {
3777 struct dwarf2_per_objfile *dwarf2_per_objfile
3778 = get_dwarf2_per_objfile (objfile);
3779
3780 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3781 dw2_free_cached_file_names, NULL);
3782 }
3783
3784 /* Helper function for dw2_map_symtabs_matching_filename that expands
3785 the symtabs and calls the iterator. */
3786
3787 static int
3788 dw2_map_expand_apply (struct objfile *objfile,
3789 struct dwarf2_per_cu_data *per_cu,
3790 const char *name, const char *real_path,
3791 gdb::function_view<bool (symtab *)> callback)
3792 {
3793 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3794
3795 /* Don't visit already-expanded CUs. */
3796 if (per_cu->v.quick->compunit_symtab)
3797 return 0;
3798
3799 /* This may expand more than one symtab, and we want to iterate over
3800 all of them. */
3801 dw2_instantiate_symtab (per_cu, false);
3802
3803 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3804 last_made, callback);
3805 }
3806
3807 /* Implementation of the map_symtabs_matching_filename method. */
3808
3809 static bool
3810 dw2_map_symtabs_matching_filename
3811 (struct objfile *objfile, const char *name, const char *real_path,
3812 gdb::function_view<bool (symtab *)> callback)
3813 {
3814 const char *name_basename = lbasename (name);
3815 struct dwarf2_per_objfile *dwarf2_per_objfile
3816 = get_dwarf2_per_objfile (objfile);
3817
3818 /* The rule is CUs specify all the files, including those used by
3819 any TU, so there's no need to scan TUs here. */
3820
3821 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3822 {
3823 /* We only need to look at symtabs not already expanded. */
3824 if (per_cu->v.quick->compunit_symtab)
3825 continue;
3826
3827 quick_file_names *file_data = dw2_get_file_names (per_cu);
3828 if (file_data == NULL)
3829 continue;
3830
3831 for (int j = 0; j < file_data->num_file_names; ++j)
3832 {
3833 const char *this_name = file_data->file_names[j];
3834 const char *this_real_name;
3835
3836 if (compare_filenames_for_search (this_name, name))
3837 {
3838 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3839 callback))
3840 return true;
3841 continue;
3842 }
3843
3844 /* Before we invoke realpath, which can get expensive when many
3845 files are involved, do a quick comparison of the basenames. */
3846 if (! basenames_may_differ
3847 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3848 continue;
3849
3850 this_real_name = dw2_get_real_path (objfile, file_data, j);
3851 if (compare_filenames_for_search (this_real_name, name))
3852 {
3853 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3854 callback))
3855 return true;
3856 continue;
3857 }
3858
3859 if (real_path != NULL)
3860 {
3861 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3862 gdb_assert (IS_ABSOLUTE_PATH (name));
3863 if (this_real_name != NULL
3864 && FILENAME_CMP (real_path, this_real_name) == 0)
3865 {
3866 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3867 callback))
3868 return true;
3869 continue;
3870 }
3871 }
3872 }
3873 }
3874
3875 return false;
3876 }
3877
3878 /* Struct used to manage iterating over all CUs looking for a symbol. */
3879
3880 struct dw2_symtab_iterator
3881 {
3882 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3883 struct dwarf2_per_objfile *dwarf2_per_objfile;
3884 /* If set, only look for symbols that match that block. Valid values are
3885 GLOBAL_BLOCK and STATIC_BLOCK. */
3886 gdb::optional<int> block_index;
3887 /* The kind of symbol we're looking for. */
3888 domain_enum domain;
3889 /* The list of CUs from the index entry of the symbol,
3890 or NULL if not found. */
3891 offset_type *vec;
3892 /* The next element in VEC to look at. */
3893 int next;
3894 /* The number of elements in VEC, or zero if there is no match. */
3895 int length;
3896 /* Have we seen a global version of the symbol?
3897 If so we can ignore all further global instances.
3898 This is to work around gold/15646, inefficient gold-generated
3899 indices. */
3900 int global_seen;
3901 };
3902
3903 /* Initialize the index symtab iterator ITER. */
3904
3905 static void
3906 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3907 struct dwarf2_per_objfile *dwarf2_per_objfile,
3908 gdb::optional<int> block_index,
3909 domain_enum domain,
3910 const char *name)
3911 {
3912 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3913 iter->block_index = block_index;
3914 iter->domain = domain;
3915 iter->next = 0;
3916 iter->global_seen = 0;
3917
3918 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3919
3920 /* index is NULL if OBJF_READNOW. */
3921 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3922 iter->length = MAYBE_SWAP (*iter->vec);
3923 else
3924 {
3925 iter->vec = NULL;
3926 iter->length = 0;
3927 }
3928 }
3929
3930 /* Return the next matching CU or NULL if there are no more. */
3931
3932 static struct dwarf2_per_cu_data *
3933 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3934 {
3935 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3936
3937 for ( ; iter->next < iter->length; ++iter->next)
3938 {
3939 offset_type cu_index_and_attrs =
3940 MAYBE_SWAP (iter->vec[iter->next + 1]);
3941 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3942 gdb_index_symbol_kind symbol_kind =
3943 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3944 /* Only check the symbol attributes if they're present.
3945 Indices prior to version 7 don't record them,
3946 and indices >= 7 may elide them for certain symbols
3947 (gold does this). */
3948 int attrs_valid =
3949 (dwarf2_per_objfile->index_table->version >= 7
3950 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3951
3952 /* Don't crash on bad data. */
3953 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3954 + dwarf2_per_objfile->all_type_units.size ()))
3955 {
3956 complaint (_(".gdb_index entry has bad CU index"
3957 " [in module %s]"),
3958 objfile_name (dwarf2_per_objfile->objfile));
3959 continue;
3960 }
3961
3962 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3963
3964 /* Skip if already read in. */
3965 if (per_cu->v.quick->compunit_symtab)
3966 continue;
3967
3968 /* Check static vs global. */
3969 if (attrs_valid)
3970 {
3971 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3972
3973 if (iter->block_index.has_value ())
3974 {
3975 bool want_static = *iter->block_index == STATIC_BLOCK;
3976
3977 if (is_static != want_static)
3978 continue;
3979 }
3980
3981 /* Work around gold/15646. */
3982 if (!is_static && iter->global_seen)
3983 continue;
3984 if (!is_static)
3985 iter->global_seen = 1;
3986 }
3987
3988 /* Only check the symbol's kind if it has one. */
3989 if (attrs_valid)
3990 {
3991 switch (iter->domain)
3992 {
3993 case VAR_DOMAIN:
3994 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3995 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3996 /* Some types are also in VAR_DOMAIN. */
3997 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3998 continue;
3999 break;
4000 case STRUCT_DOMAIN:
4001 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4002 continue;
4003 break;
4004 case LABEL_DOMAIN:
4005 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4006 continue;
4007 break;
4008 default:
4009 break;
4010 }
4011 }
4012
4013 ++iter->next;
4014 return per_cu;
4015 }
4016
4017 return NULL;
4018 }
4019
4020 static struct compunit_symtab *
4021 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4022 const char *name, domain_enum domain)
4023 {
4024 struct compunit_symtab *stab_best = NULL;
4025 struct dwarf2_per_objfile *dwarf2_per_objfile
4026 = get_dwarf2_per_objfile (objfile);
4027
4028 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4029
4030 struct dw2_symtab_iterator iter;
4031 struct dwarf2_per_cu_data *per_cu;
4032
4033 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4034
4035 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4036 {
4037 struct symbol *sym, *with_opaque = NULL;
4038 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4039 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4040 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4041
4042 sym = block_find_symbol (block, name, domain,
4043 block_find_non_opaque_type_preferred,
4044 &with_opaque);
4045
4046 /* Some caution must be observed with overloaded functions
4047 and methods, since the index will not contain any overload
4048 information (but NAME might contain it). */
4049
4050 if (sym != NULL
4051 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4052 return stab;
4053 if (with_opaque != NULL
4054 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4055 stab_best = stab;
4056
4057 /* Keep looking through other CUs. */
4058 }
4059
4060 return stab_best;
4061 }
4062
4063 static void
4064 dw2_print_stats (struct objfile *objfile)
4065 {
4066 struct dwarf2_per_objfile *dwarf2_per_objfile
4067 = get_dwarf2_per_objfile (objfile);
4068 int total = (dwarf2_per_objfile->all_comp_units.size ()
4069 + dwarf2_per_objfile->all_type_units.size ());
4070 int count = 0;
4071
4072 for (int i = 0; i < total; ++i)
4073 {
4074 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4075
4076 if (!per_cu->v.quick->compunit_symtab)
4077 ++count;
4078 }
4079 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4080 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4081 }
4082
4083 /* This dumps minimal information about the index.
4084 It is called via "mt print objfiles".
4085 One use is to verify .gdb_index has been loaded by the
4086 gdb.dwarf2/gdb-index.exp testcase. */
4087
4088 static void
4089 dw2_dump (struct objfile *objfile)
4090 {
4091 struct dwarf2_per_objfile *dwarf2_per_objfile
4092 = get_dwarf2_per_objfile (objfile);
4093
4094 gdb_assert (dwarf2_per_objfile->using_index);
4095 printf_filtered (".gdb_index:");
4096 if (dwarf2_per_objfile->index_table != NULL)
4097 {
4098 printf_filtered (" version %d\n",
4099 dwarf2_per_objfile->index_table->version);
4100 }
4101 else
4102 printf_filtered (" faked for \"readnow\"\n");
4103 printf_filtered ("\n");
4104 }
4105
4106 static void
4107 dw2_expand_symtabs_for_function (struct objfile *objfile,
4108 const char *func_name)
4109 {
4110 struct dwarf2_per_objfile *dwarf2_per_objfile
4111 = get_dwarf2_per_objfile (objfile);
4112
4113 struct dw2_symtab_iterator iter;
4114 struct dwarf2_per_cu_data *per_cu;
4115
4116 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4117
4118 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4119 dw2_instantiate_symtab (per_cu, false);
4120
4121 }
4122
4123 static void
4124 dw2_expand_all_symtabs (struct objfile *objfile)
4125 {
4126 struct dwarf2_per_objfile *dwarf2_per_objfile
4127 = get_dwarf2_per_objfile (objfile);
4128 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4129 + dwarf2_per_objfile->all_type_units.size ());
4130
4131 for (int i = 0; i < total_units; ++i)
4132 {
4133 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4134
4135 /* We don't want to directly expand a partial CU, because if we
4136 read it with the wrong language, then assertion failures can
4137 be triggered later on. See PR symtab/23010. So, tell
4138 dw2_instantiate_symtab to skip partial CUs -- any important
4139 partial CU will be read via DW_TAG_imported_unit anyway. */
4140 dw2_instantiate_symtab (per_cu, true);
4141 }
4142 }
4143
4144 static void
4145 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4146 const char *fullname)
4147 {
4148 struct dwarf2_per_objfile *dwarf2_per_objfile
4149 = get_dwarf2_per_objfile (objfile);
4150
4151 /* We don't need to consider type units here.
4152 This is only called for examining code, e.g. expand_line_sal.
4153 There can be an order of magnitude (or more) more type units
4154 than comp units, and we avoid them if we can. */
4155
4156 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4157 {
4158 /* We only need to look at symtabs not already expanded. */
4159 if (per_cu->v.quick->compunit_symtab)
4160 continue;
4161
4162 quick_file_names *file_data = dw2_get_file_names (per_cu);
4163 if (file_data == NULL)
4164 continue;
4165
4166 for (int j = 0; j < file_data->num_file_names; ++j)
4167 {
4168 const char *this_fullname = file_data->file_names[j];
4169
4170 if (filename_cmp (this_fullname, fullname) == 0)
4171 {
4172 dw2_instantiate_symtab (per_cu, false);
4173 break;
4174 }
4175 }
4176 }
4177 }
4178
4179 static void
4180 dw2_map_matching_symbols (struct objfile *objfile,
4181 const char * name, domain_enum domain,
4182 int global,
4183 int (*callback) (const struct block *,
4184 struct symbol *, void *),
4185 void *data, symbol_name_match_type match,
4186 symbol_compare_ftype *ordered_compare)
4187 {
4188 /* Currently unimplemented; used for Ada. The function can be called if the
4189 current language is Ada for a non-Ada objfile using GNU index. As Ada
4190 does not look for non-Ada symbols this function should just return. */
4191 }
4192
4193 /* Symbol name matcher for .gdb_index names.
4194
4195 Symbol names in .gdb_index have a few particularities:
4196
4197 - There's no indication of which is the language of each symbol.
4198
4199 Since each language has its own symbol name matching algorithm,
4200 and we don't know which language is the right one, we must match
4201 each symbol against all languages. This would be a potential
4202 performance problem if it were not mitigated by the
4203 mapped_index::name_components lookup table, which significantly
4204 reduces the number of times we need to call into this matcher,
4205 making it a non-issue.
4206
4207 - Symbol names in the index have no overload (parameter)
4208 information. I.e., in C++, "foo(int)" and "foo(long)" both
4209 appear as "foo" in the index, for example.
4210
4211 This means that the lookup names passed to the symbol name
4212 matcher functions must have no parameter information either
4213 because (e.g.) symbol search name "foo" does not match
4214 lookup-name "foo(int)" [while swapping search name for lookup
4215 name would match].
4216 */
4217 class gdb_index_symbol_name_matcher
4218 {
4219 public:
4220 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4221 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4222
4223 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4224 Returns true if any matcher matches. */
4225 bool matches (const char *symbol_name);
4226
4227 private:
4228 /* A reference to the lookup name we're matching against. */
4229 const lookup_name_info &m_lookup_name;
4230
4231 /* A vector holding all the different symbol name matchers, for all
4232 languages. */
4233 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4234 };
4235
4236 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4237 (const lookup_name_info &lookup_name)
4238 : m_lookup_name (lookup_name)
4239 {
4240 /* Prepare the vector of comparison functions upfront, to avoid
4241 doing the same work for each symbol. Care is taken to avoid
4242 matching with the same matcher more than once if/when multiple
4243 languages use the same matcher function. */
4244 auto &matchers = m_symbol_name_matcher_funcs;
4245 matchers.reserve (nr_languages);
4246
4247 matchers.push_back (default_symbol_name_matcher);
4248
4249 for (int i = 0; i < nr_languages; i++)
4250 {
4251 const language_defn *lang = language_def ((enum language) i);
4252 symbol_name_matcher_ftype *name_matcher
4253 = get_symbol_name_matcher (lang, m_lookup_name);
4254
4255 /* Don't insert the same comparison routine more than once.
4256 Note that we do this linear walk instead of a seemingly
4257 cheaper sorted insert, or use a std::set or something like
4258 that, because relative order of function addresses is not
4259 stable. This is not a problem in practice because the number
4260 of supported languages is low, and the cost here is tiny
4261 compared to the number of searches we'll do afterwards using
4262 this object. */
4263 if (name_matcher != default_symbol_name_matcher
4264 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4265 == matchers.end ()))
4266 matchers.push_back (name_matcher);
4267 }
4268 }
4269
4270 bool
4271 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4272 {
4273 for (auto matches_name : m_symbol_name_matcher_funcs)
4274 if (matches_name (symbol_name, m_lookup_name, NULL))
4275 return true;
4276
4277 return false;
4278 }
4279
4280 /* Starting from a search name, return the string that finds the upper
4281 bound of all strings that start with SEARCH_NAME in a sorted name
4282 list. Returns the empty string to indicate that the upper bound is
4283 the end of the list. */
4284
4285 static std::string
4286 make_sort_after_prefix_name (const char *search_name)
4287 {
4288 /* When looking to complete "func", we find the upper bound of all
4289 symbols that start with "func" by looking for where we'd insert
4290 the closest string that would follow "func" in lexicographical
4291 order. Usually, that's "func"-with-last-character-incremented,
4292 i.e. "fund". Mind non-ASCII characters, though. Usually those
4293 will be UTF-8 multi-byte sequences, but we can't be certain.
4294 Especially mind the 0xff character, which is a valid character in
4295 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4296 rule out compilers allowing it in identifiers. Note that
4297 conveniently, strcmp/strcasecmp are specified to compare
4298 characters interpreted as unsigned char. So what we do is treat
4299 the whole string as a base 256 number composed of a sequence of
4300 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4301 to 0, and carries 1 to the following more-significant position.
4302 If the very first character in SEARCH_NAME ends up incremented
4303 and carries/overflows, then the upper bound is the end of the
4304 list. The string after the empty string is also the empty
4305 string.
4306
4307 Some examples of this operation:
4308
4309 SEARCH_NAME => "+1" RESULT
4310
4311 "abc" => "abd"
4312 "ab\xff" => "ac"
4313 "\xff" "a" "\xff" => "\xff" "b"
4314 "\xff" => ""
4315 "\xff\xff" => ""
4316 "" => ""
4317
4318 Then, with these symbols for example:
4319
4320 func
4321 func1
4322 fund
4323
4324 completing "func" looks for symbols between "func" and
4325 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4326 which finds "func" and "func1", but not "fund".
4327
4328 And with:
4329
4330 funcÿ (Latin1 'ÿ' [0xff])
4331 funcÿ1
4332 fund
4333
4334 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4335 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4336
4337 And with:
4338
4339 ÿÿ (Latin1 'ÿ' [0xff])
4340 ÿÿ1
4341
4342 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4343 the end of the list.
4344 */
4345 std::string after = search_name;
4346 while (!after.empty () && (unsigned char) after.back () == 0xff)
4347 after.pop_back ();
4348 if (!after.empty ())
4349 after.back () = (unsigned char) after.back () + 1;
4350 return after;
4351 }
4352
4353 /* See declaration. */
4354
4355 std::pair<std::vector<name_component>::const_iterator,
4356 std::vector<name_component>::const_iterator>
4357 mapped_index_base::find_name_components_bounds
4358 (const lookup_name_info &lookup_name_without_params) const
4359 {
4360 auto *name_cmp
4361 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4362
4363 const char *cplus
4364 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4365
4366 /* Comparison function object for lower_bound that matches against a
4367 given symbol name. */
4368 auto lookup_compare_lower = [&] (const name_component &elem,
4369 const char *name)
4370 {
4371 const char *elem_qualified = this->symbol_name_at (elem.idx);
4372 const char *elem_name = elem_qualified + elem.name_offset;
4373 return name_cmp (elem_name, name) < 0;
4374 };
4375
4376 /* Comparison function object for upper_bound that matches against a
4377 given symbol name. */
4378 auto lookup_compare_upper = [&] (const char *name,
4379 const name_component &elem)
4380 {
4381 const char *elem_qualified = this->symbol_name_at (elem.idx);
4382 const char *elem_name = elem_qualified + elem.name_offset;
4383 return name_cmp (name, elem_name) < 0;
4384 };
4385
4386 auto begin = this->name_components.begin ();
4387 auto end = this->name_components.end ();
4388
4389 /* Find the lower bound. */
4390 auto lower = [&] ()
4391 {
4392 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4393 return begin;
4394 else
4395 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4396 } ();
4397
4398 /* Find the upper bound. */
4399 auto upper = [&] ()
4400 {
4401 if (lookup_name_without_params.completion_mode ())
4402 {
4403 /* In completion mode, we want UPPER to point past all
4404 symbols names that have the same prefix. I.e., with
4405 these symbols, and completing "func":
4406
4407 function << lower bound
4408 function1
4409 other_function << upper bound
4410
4411 We find the upper bound by looking for the insertion
4412 point of "func"-with-last-character-incremented,
4413 i.e. "fund". */
4414 std::string after = make_sort_after_prefix_name (cplus);
4415 if (after.empty ())
4416 return end;
4417 return std::lower_bound (lower, end, after.c_str (),
4418 lookup_compare_lower);
4419 }
4420 else
4421 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4422 } ();
4423
4424 return {lower, upper};
4425 }
4426
4427 /* See declaration. */
4428
4429 void
4430 mapped_index_base::build_name_components ()
4431 {
4432 if (!this->name_components.empty ())
4433 return;
4434
4435 this->name_components_casing = case_sensitivity;
4436 auto *name_cmp
4437 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4438
4439 /* The code below only knows how to break apart components of C++
4440 symbol names (and other languages that use '::' as
4441 namespace/module separator). If we add support for wild matching
4442 to some language that uses some other operator (E.g., Ada, Go and
4443 D use '.'), then we'll need to try splitting the symbol name
4444 according to that language too. Note that Ada does support wild
4445 matching, but doesn't currently support .gdb_index. */
4446 auto count = this->symbol_name_count ();
4447 for (offset_type idx = 0; idx < count; idx++)
4448 {
4449 if (this->symbol_name_slot_invalid (idx))
4450 continue;
4451
4452 const char *name = this->symbol_name_at (idx);
4453
4454 /* Add each name component to the name component table. */
4455 unsigned int previous_len = 0;
4456 for (unsigned int current_len = cp_find_first_component (name);
4457 name[current_len] != '\0';
4458 current_len += cp_find_first_component (name + current_len))
4459 {
4460 gdb_assert (name[current_len] == ':');
4461 this->name_components.push_back ({previous_len, idx});
4462 /* Skip the '::'. */
4463 current_len += 2;
4464 previous_len = current_len;
4465 }
4466 this->name_components.push_back ({previous_len, idx});
4467 }
4468
4469 /* Sort name_components elements by name. */
4470 auto name_comp_compare = [&] (const name_component &left,
4471 const name_component &right)
4472 {
4473 const char *left_qualified = this->symbol_name_at (left.idx);
4474 const char *right_qualified = this->symbol_name_at (right.idx);
4475
4476 const char *left_name = left_qualified + left.name_offset;
4477 const char *right_name = right_qualified + right.name_offset;
4478
4479 return name_cmp (left_name, right_name) < 0;
4480 };
4481
4482 std::sort (this->name_components.begin (),
4483 this->name_components.end (),
4484 name_comp_compare);
4485 }
4486
4487 /* Helper for dw2_expand_symtabs_matching that works with a
4488 mapped_index_base instead of the containing objfile. This is split
4489 to a separate function in order to be able to unit test the
4490 name_components matching using a mock mapped_index_base. For each
4491 symbol name that matches, calls MATCH_CALLBACK, passing it the
4492 symbol's index in the mapped_index_base symbol table. */
4493
4494 static void
4495 dw2_expand_symtabs_matching_symbol
4496 (mapped_index_base &index,
4497 const lookup_name_info &lookup_name_in,
4498 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4499 enum search_domain kind,
4500 gdb::function_view<void (offset_type)> match_callback)
4501 {
4502 lookup_name_info lookup_name_without_params
4503 = lookup_name_in.make_ignore_params ();
4504 gdb_index_symbol_name_matcher lookup_name_matcher
4505 (lookup_name_without_params);
4506
4507 /* Build the symbol name component sorted vector, if we haven't
4508 yet. */
4509 index.build_name_components ();
4510
4511 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4512
4513 /* Now for each symbol name in range, check to see if we have a name
4514 match, and if so, call the MATCH_CALLBACK callback. */
4515
4516 /* The same symbol may appear more than once in the range though.
4517 E.g., if we're looking for symbols that complete "w", and we have
4518 a symbol named "w1::w2", we'll find the two name components for
4519 that same symbol in the range. To be sure we only call the
4520 callback once per symbol, we first collect the symbol name
4521 indexes that matched in a temporary vector and ignore
4522 duplicates. */
4523 std::vector<offset_type> matches;
4524 matches.reserve (std::distance (bounds.first, bounds.second));
4525
4526 for (; bounds.first != bounds.second; ++bounds.first)
4527 {
4528 const char *qualified = index.symbol_name_at (bounds.first->idx);
4529
4530 if (!lookup_name_matcher.matches (qualified)
4531 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4532 continue;
4533
4534 matches.push_back (bounds.first->idx);
4535 }
4536
4537 std::sort (matches.begin (), matches.end ());
4538
4539 /* Finally call the callback, once per match. */
4540 ULONGEST prev = -1;
4541 for (offset_type idx : matches)
4542 {
4543 if (prev != idx)
4544 {
4545 match_callback (idx);
4546 prev = idx;
4547 }
4548 }
4549
4550 /* Above we use a type wider than idx's for 'prev', since 0 and
4551 (offset_type)-1 are both possible values. */
4552 static_assert (sizeof (prev) > sizeof (offset_type), "");
4553 }
4554
4555 #if GDB_SELF_TEST
4556
4557 namespace selftests { namespace dw2_expand_symtabs_matching {
4558
4559 /* A mock .gdb_index/.debug_names-like name index table, enough to
4560 exercise dw2_expand_symtabs_matching_symbol, which works with the
4561 mapped_index_base interface. Builds an index from the symbol list
4562 passed as parameter to the constructor. */
4563 class mock_mapped_index : public mapped_index_base
4564 {
4565 public:
4566 mock_mapped_index (gdb::array_view<const char *> symbols)
4567 : m_symbol_table (symbols)
4568 {}
4569
4570 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4571
4572 /* Return the number of names in the symbol table. */
4573 size_t symbol_name_count () const override
4574 {
4575 return m_symbol_table.size ();
4576 }
4577
4578 /* Get the name of the symbol at IDX in the symbol table. */
4579 const char *symbol_name_at (offset_type idx) const override
4580 {
4581 return m_symbol_table[idx];
4582 }
4583
4584 private:
4585 gdb::array_view<const char *> m_symbol_table;
4586 };
4587
4588 /* Convenience function that converts a NULL pointer to a "<null>"
4589 string, to pass to print routines. */
4590
4591 static const char *
4592 string_or_null (const char *str)
4593 {
4594 return str != NULL ? str : "<null>";
4595 }
4596
4597 /* Check if a lookup_name_info built from
4598 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4599 index. EXPECTED_LIST is the list of expected matches, in expected
4600 matching order. If no match expected, then an empty list is
4601 specified. Returns true on success. On failure prints a warning
4602 indicating the file:line that failed, and returns false. */
4603
4604 static bool
4605 check_match (const char *file, int line,
4606 mock_mapped_index &mock_index,
4607 const char *name, symbol_name_match_type match_type,
4608 bool completion_mode,
4609 std::initializer_list<const char *> expected_list)
4610 {
4611 lookup_name_info lookup_name (name, match_type, completion_mode);
4612
4613 bool matched = true;
4614
4615 auto mismatch = [&] (const char *expected_str,
4616 const char *got)
4617 {
4618 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4619 "expected=\"%s\", got=\"%s\"\n"),
4620 file, line,
4621 (match_type == symbol_name_match_type::FULL
4622 ? "FULL" : "WILD"),
4623 name, string_or_null (expected_str), string_or_null (got));
4624 matched = false;
4625 };
4626
4627 auto expected_it = expected_list.begin ();
4628 auto expected_end = expected_list.end ();
4629
4630 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4631 NULL, ALL_DOMAIN,
4632 [&] (offset_type idx)
4633 {
4634 const char *matched_name = mock_index.symbol_name_at (idx);
4635 const char *expected_str
4636 = expected_it == expected_end ? NULL : *expected_it++;
4637
4638 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4639 mismatch (expected_str, matched_name);
4640 });
4641
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644 if (expected_str != NULL)
4645 mismatch (expected_str, NULL);
4646
4647 return matched;
4648 }
4649
4650 /* The symbols added to the mock mapped_index for testing (in
4651 canonical form). */
4652 static const char *test_symbols[] = {
4653 "function",
4654 "std::bar",
4655 "std::zfunction",
4656 "std::zfunction2",
4657 "w1::w2",
4658 "ns::foo<char*>",
4659 "ns::foo<int>",
4660 "ns::foo<long>",
4661 "ns2::tmpl<int>::foo2",
4662 "(anonymous namespace)::A::B::C",
4663
4664 /* These are used to check that the increment-last-char in the
4665 matching algorithm for completion doesn't match "t1_fund" when
4666 completing "t1_func". */
4667 "t1_func",
4668 "t1_func1",
4669 "t1_fund",
4670 "t1_fund1",
4671
4672 /* A UTF-8 name with multi-byte sequences to make sure that
4673 cp-name-parser understands this as a single identifier ("função"
4674 is "function" in PT). */
4675 u8"u8função",
4676
4677 /* \377 (0xff) is Latin1 'ÿ'. */
4678 "yfunc\377",
4679
4680 /* \377 (0xff) is Latin1 'ÿ'. */
4681 "\377",
4682 "\377\377123",
4683
4684 /* A name with all sorts of complications. Starts with "z" to make
4685 it easier for the completion tests below. */
4686 #define Z_SYM_NAME \
4687 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4688 "::tuple<(anonymous namespace)::ui*, " \
4689 "std::default_delete<(anonymous namespace)::ui>, void>"
4690
4691 Z_SYM_NAME
4692 };
4693
4694 /* Returns true if the mapped_index_base::find_name_component_bounds
4695 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4696 in completion mode. */
4697
4698 static bool
4699 check_find_bounds_finds (mapped_index_base &index,
4700 const char *search_name,
4701 gdb::array_view<const char *> expected_syms)
4702 {
4703 lookup_name_info lookup_name (search_name,
4704 symbol_name_match_type::FULL, true);
4705
4706 auto bounds = index.find_name_components_bounds (lookup_name);
4707
4708 size_t distance = std::distance (bounds.first, bounds.second);
4709 if (distance != expected_syms.size ())
4710 return false;
4711
4712 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4713 {
4714 auto nc_elem = bounds.first + exp_elem;
4715 const char *qualified = index.symbol_name_at (nc_elem->idx);
4716 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4717 return false;
4718 }
4719
4720 return true;
4721 }
4722
4723 /* Test the lower-level mapped_index::find_name_component_bounds
4724 method. */
4725
4726 static void
4727 test_mapped_index_find_name_component_bounds ()
4728 {
4729 mock_mapped_index mock_index (test_symbols);
4730
4731 mock_index.build_name_components ();
4732
4733 /* Test the lower-level mapped_index::find_name_component_bounds
4734 method in completion mode. */
4735 {
4736 static const char *expected_syms[] = {
4737 "t1_func",
4738 "t1_func1",
4739 };
4740
4741 SELF_CHECK (check_find_bounds_finds (mock_index,
4742 "t1_func", expected_syms));
4743 }
4744
4745 /* Check that the increment-last-char in the name matching algorithm
4746 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4747 {
4748 static const char *expected_syms1[] = {
4749 "\377",
4750 "\377\377123",
4751 };
4752 SELF_CHECK (check_find_bounds_finds (mock_index,
4753 "\377", expected_syms1));
4754
4755 static const char *expected_syms2[] = {
4756 "\377\377123",
4757 };
4758 SELF_CHECK (check_find_bounds_finds (mock_index,
4759 "\377\377", expected_syms2));
4760 }
4761 }
4762
4763 /* Test dw2_expand_symtabs_matching_symbol. */
4764
4765 static void
4766 test_dw2_expand_symtabs_matching_symbol ()
4767 {
4768 mock_mapped_index mock_index (test_symbols);
4769
4770 /* We let all tests run until the end even if some fails, for debug
4771 convenience. */
4772 bool any_mismatch = false;
4773
4774 /* Create the expected symbols list (an initializer_list). Needed
4775 because lists have commas, and we need to pass them to CHECK,
4776 which is a macro. */
4777 #define EXPECT(...) { __VA_ARGS__ }
4778
4779 /* Wrapper for check_match that passes down the current
4780 __FILE__/__LINE__. */
4781 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4782 any_mismatch |= !check_match (__FILE__, __LINE__, \
4783 mock_index, \
4784 NAME, MATCH_TYPE, COMPLETION_MODE, \
4785 EXPECTED_LIST)
4786
4787 /* Identity checks. */
4788 for (const char *sym : test_symbols)
4789 {
4790 /* Should be able to match all existing symbols. */
4791 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4792 EXPECT (sym));
4793
4794 /* Should be able to match all existing symbols with
4795 parameters. */
4796 std::string with_params = std::string (sym) + "(int)";
4797 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4798 EXPECT (sym));
4799
4800 /* Should be able to match all existing symbols with
4801 parameters and qualifiers. */
4802 with_params = std::string (sym) + " ( int ) const";
4803 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4804 EXPECT (sym));
4805
4806 /* This should really find sym, but cp-name-parser.y doesn't
4807 know about lvalue/rvalue qualifiers yet. */
4808 with_params = std::string (sym) + " ( int ) &&";
4809 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4810 {});
4811 }
4812
4813 /* Check that the name matching algorithm for completion doesn't get
4814 confused with Latin1 'ÿ' / 0xff. */
4815 {
4816 static const char str[] = "\377";
4817 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4818 EXPECT ("\377", "\377\377123"));
4819 }
4820
4821 /* Check that the increment-last-char in the matching algorithm for
4822 completion doesn't match "t1_fund" when completing "t1_func". */
4823 {
4824 static const char str[] = "t1_func";
4825 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4826 EXPECT ("t1_func", "t1_func1"));
4827 }
4828
4829 /* Check that completion mode works at each prefix of the expected
4830 symbol name. */
4831 {
4832 static const char str[] = "function(int)";
4833 size_t len = strlen (str);
4834 std::string lookup;
4835
4836 for (size_t i = 1; i < len; i++)
4837 {
4838 lookup.assign (str, i);
4839 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4840 EXPECT ("function"));
4841 }
4842 }
4843
4844 /* While "w" is a prefix of both components, the match function
4845 should still only be called once. */
4846 {
4847 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4848 EXPECT ("w1::w2"));
4849 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4850 EXPECT ("w1::w2"));
4851 }
4852
4853 /* Same, with a "complicated" symbol. */
4854 {
4855 static const char str[] = Z_SYM_NAME;
4856 size_t len = strlen (str);
4857 std::string lookup;
4858
4859 for (size_t i = 1; i < len; i++)
4860 {
4861 lookup.assign (str, i);
4862 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4863 EXPECT (Z_SYM_NAME));
4864 }
4865 }
4866
4867 /* In FULL mode, an incomplete symbol doesn't match. */
4868 {
4869 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4870 {});
4871 }
4872
4873 /* A complete symbol with parameters matches any overload, since the
4874 index has no overload info. */
4875 {
4876 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4877 EXPECT ("std::zfunction", "std::zfunction2"));
4878 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4879 EXPECT ("std::zfunction", "std::zfunction2"));
4880 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4881 EXPECT ("std::zfunction", "std::zfunction2"));
4882 }
4883
4884 /* Check that whitespace is ignored appropriately. A symbol with a
4885 template argument list. */
4886 {
4887 static const char expected[] = "ns::foo<int>";
4888 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4889 EXPECT (expected));
4890 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4891 EXPECT (expected));
4892 }
4893
4894 /* Check that whitespace is ignored appropriately. A symbol with a
4895 template argument list that includes a pointer. */
4896 {
4897 static const char expected[] = "ns::foo<char*>";
4898 /* Try both completion and non-completion modes. */
4899 static const bool completion_mode[2] = {false, true};
4900 for (size_t i = 0; i < 2; i++)
4901 {
4902 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906
4907 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4908 completion_mode[i], EXPECT (expected));
4909 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4910 completion_mode[i], EXPECT (expected));
4911 }
4912 }
4913
4914 {
4915 /* Check method qualifiers are ignored. */
4916 static const char expected[] = "ns::foo<char*>";
4917 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4918 symbol_name_match_type::FULL, true, EXPECT (expected));
4919 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4920 symbol_name_match_type::FULL, true, EXPECT (expected));
4921 CHECK_MATCH ("foo < char * > ( int ) const",
4922 symbol_name_match_type::WILD, true, EXPECT (expected));
4923 CHECK_MATCH ("foo < char * > ( int ) &&",
4924 symbol_name_match_type::WILD, true, EXPECT (expected));
4925 }
4926
4927 /* Test lookup names that don't match anything. */
4928 {
4929 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4930 {});
4931
4932 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4933 {});
4934 }
4935
4936 /* Some wild matching tests, exercising "(anonymous namespace)",
4937 which should not be confused with a parameter list. */
4938 {
4939 static const char *syms[] = {
4940 "A::B::C",
4941 "B::C",
4942 "C",
4943 "A :: B :: C ( int )",
4944 "B :: C ( int )",
4945 "C ( int )",
4946 };
4947
4948 for (const char *s : syms)
4949 {
4950 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4951 EXPECT ("(anonymous namespace)::A::B::C"));
4952 }
4953 }
4954
4955 {
4956 static const char expected[] = "ns2::tmpl<int>::foo2";
4957 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4958 EXPECT (expected));
4959 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4960 EXPECT (expected));
4961 }
4962
4963 SELF_CHECK (!any_mismatch);
4964
4965 #undef EXPECT
4966 #undef CHECK_MATCH
4967 }
4968
4969 static void
4970 run_test ()
4971 {
4972 test_mapped_index_find_name_component_bounds ();
4973 test_dw2_expand_symtabs_matching_symbol ();
4974 }
4975
4976 }} // namespace selftests::dw2_expand_symtabs_matching
4977
4978 #endif /* GDB_SELF_TEST */
4979
4980 /* If FILE_MATCHER is NULL or if PER_CU has
4981 dwarf2_per_cu_quick_data::MARK set (see
4982 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4983 EXPANSION_NOTIFY on it. */
4984
4985 static void
4986 dw2_expand_symtabs_matching_one
4987 (struct dwarf2_per_cu_data *per_cu,
4988 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4989 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4990 {
4991 if (file_matcher == NULL || per_cu->v.quick->mark)
4992 {
4993 bool symtab_was_null
4994 = (per_cu->v.quick->compunit_symtab == NULL);
4995
4996 dw2_instantiate_symtab (per_cu, false);
4997
4998 if (expansion_notify != NULL
4999 && symtab_was_null
5000 && per_cu->v.quick->compunit_symtab != NULL)
5001 expansion_notify (per_cu->v.quick->compunit_symtab);
5002 }
5003 }
5004
5005 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5006 matched, to expand corresponding CUs that were marked. IDX is the
5007 index of the symbol name that matched. */
5008
5009 static void
5010 dw2_expand_marked_cus
5011 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5012 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5013 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5014 search_domain kind)
5015 {
5016 offset_type *vec, vec_len, vec_idx;
5017 bool global_seen = false;
5018 mapped_index &index = *dwarf2_per_objfile->index_table;
5019
5020 vec = (offset_type *) (index.constant_pool
5021 + MAYBE_SWAP (index.symbol_table[idx].vec));
5022 vec_len = MAYBE_SWAP (vec[0]);
5023 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5024 {
5025 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5026 /* This value is only valid for index versions >= 7. */
5027 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5028 gdb_index_symbol_kind symbol_kind =
5029 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5030 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5031 /* Only check the symbol attributes if they're present.
5032 Indices prior to version 7 don't record them,
5033 and indices >= 7 may elide them for certain symbols
5034 (gold does this). */
5035 int attrs_valid =
5036 (index.version >= 7
5037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5038
5039 /* Work around gold/15646. */
5040 if (attrs_valid)
5041 {
5042 if (!is_static && global_seen)
5043 continue;
5044 if (!is_static)
5045 global_seen = true;
5046 }
5047
5048 /* Only check the symbol's kind if it has one. */
5049 if (attrs_valid)
5050 {
5051 switch (kind)
5052 {
5053 case VARIABLES_DOMAIN:
5054 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5055 continue;
5056 break;
5057 case FUNCTIONS_DOMAIN:
5058 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5059 continue;
5060 break;
5061 case TYPES_DOMAIN:
5062 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5063 continue;
5064 break;
5065 default:
5066 break;
5067 }
5068 }
5069
5070 /* Don't crash on bad data. */
5071 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5072 + dwarf2_per_objfile->all_type_units.size ()))
5073 {
5074 complaint (_(".gdb_index entry has bad CU index"
5075 " [in module %s]"),
5076 objfile_name (dwarf2_per_objfile->objfile));
5077 continue;
5078 }
5079
5080 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5081 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5082 expansion_notify);
5083 }
5084 }
5085
5086 /* If FILE_MATCHER is non-NULL, set all the
5087 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5088 that match FILE_MATCHER. */
5089
5090 static void
5091 dw_expand_symtabs_matching_file_matcher
5092 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5093 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5094 {
5095 if (file_matcher == NULL)
5096 return;
5097
5098 objfile *const objfile = dwarf2_per_objfile->objfile;
5099
5100 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5101 htab_eq_pointer,
5102 NULL, xcalloc, xfree));
5103 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5104 htab_eq_pointer,
5105 NULL, xcalloc, xfree));
5106
5107 /* The rule is CUs specify all the files, including those used by
5108 any TU, so there's no need to scan TUs here. */
5109
5110 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5111 {
5112 QUIT;
5113
5114 per_cu->v.quick->mark = 0;
5115
5116 /* We only need to look at symtabs not already expanded. */
5117 if (per_cu->v.quick->compunit_symtab)
5118 continue;
5119
5120 quick_file_names *file_data = dw2_get_file_names (per_cu);
5121 if (file_data == NULL)
5122 continue;
5123
5124 if (htab_find (visited_not_found.get (), file_data) != NULL)
5125 continue;
5126 else if (htab_find (visited_found.get (), file_data) != NULL)
5127 {
5128 per_cu->v.quick->mark = 1;
5129 continue;
5130 }
5131
5132 for (int j = 0; j < file_data->num_file_names; ++j)
5133 {
5134 const char *this_real_name;
5135
5136 if (file_matcher (file_data->file_names[j], false))
5137 {
5138 per_cu->v.quick->mark = 1;
5139 break;
5140 }
5141
5142 /* Before we invoke realpath, which can get expensive when many
5143 files are involved, do a quick comparison of the basenames. */
5144 if (!basenames_may_differ
5145 && !file_matcher (lbasename (file_data->file_names[j]),
5146 true))
5147 continue;
5148
5149 this_real_name = dw2_get_real_path (objfile, file_data, j);
5150 if (file_matcher (this_real_name, false))
5151 {
5152 per_cu->v.quick->mark = 1;
5153 break;
5154 }
5155 }
5156
5157 void **slot = htab_find_slot (per_cu->v.quick->mark
5158 ? visited_found.get ()
5159 : visited_not_found.get (),
5160 file_data, INSERT);
5161 *slot = file_data;
5162 }
5163 }
5164
5165 static void
5166 dw2_expand_symtabs_matching
5167 (struct objfile *objfile,
5168 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5169 const lookup_name_info &lookup_name,
5170 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5171 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5172 enum search_domain kind)
5173 {
5174 struct dwarf2_per_objfile *dwarf2_per_objfile
5175 = get_dwarf2_per_objfile (objfile);
5176
5177 /* index_table is NULL if OBJF_READNOW. */
5178 if (!dwarf2_per_objfile->index_table)
5179 return;
5180
5181 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5182
5183 mapped_index &index = *dwarf2_per_objfile->index_table;
5184
5185 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5186 symbol_matcher,
5187 kind, [&] (offset_type idx)
5188 {
5189 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5190 expansion_notify, kind);
5191 });
5192 }
5193
5194 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5195 symtab. */
5196
5197 static struct compunit_symtab *
5198 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5199 CORE_ADDR pc)
5200 {
5201 int i;
5202
5203 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5204 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5205 return cust;
5206
5207 if (cust->includes == NULL)
5208 return NULL;
5209
5210 for (i = 0; cust->includes[i]; ++i)
5211 {
5212 struct compunit_symtab *s = cust->includes[i];
5213
5214 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5215 if (s != NULL)
5216 return s;
5217 }
5218
5219 return NULL;
5220 }
5221
5222 static struct compunit_symtab *
5223 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5224 struct bound_minimal_symbol msymbol,
5225 CORE_ADDR pc,
5226 struct obj_section *section,
5227 int warn_if_readin)
5228 {
5229 struct dwarf2_per_cu_data *data;
5230 struct compunit_symtab *result;
5231
5232 if (!objfile->partial_symtabs->psymtabs_addrmap)
5233 return NULL;
5234
5235 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5236 SECT_OFF_TEXT (objfile));
5237 data = (struct dwarf2_per_cu_data *) addrmap_find
5238 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5239 if (!data)
5240 return NULL;
5241
5242 if (warn_if_readin && data->v.quick->compunit_symtab)
5243 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5244 paddress (get_objfile_arch (objfile), pc));
5245
5246 result
5247 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5248 false),
5249 pc);
5250 gdb_assert (result != NULL);
5251 return result;
5252 }
5253
5254 static void
5255 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5256 void *data, int need_fullname)
5257 {
5258 struct dwarf2_per_objfile *dwarf2_per_objfile
5259 = get_dwarf2_per_objfile (objfile);
5260
5261 if (!dwarf2_per_objfile->filenames_cache)
5262 {
5263 dwarf2_per_objfile->filenames_cache.emplace ();
5264
5265 htab_up visited (htab_create_alloc (10,
5266 htab_hash_pointer, htab_eq_pointer,
5267 NULL, xcalloc, xfree));
5268
5269 /* The rule is CUs specify all the files, including those used
5270 by any TU, so there's no need to scan TUs here. We can
5271 ignore file names coming from already-expanded CUs. */
5272
5273 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5274 {
5275 if (per_cu->v.quick->compunit_symtab)
5276 {
5277 void **slot = htab_find_slot (visited.get (),
5278 per_cu->v.quick->file_names,
5279 INSERT);
5280
5281 *slot = per_cu->v.quick->file_names;
5282 }
5283 }
5284
5285 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5286 {
5287 /* We only need to look at symtabs not already expanded. */
5288 if (per_cu->v.quick->compunit_symtab)
5289 continue;
5290
5291 quick_file_names *file_data = dw2_get_file_names (per_cu);
5292 if (file_data == NULL)
5293 continue;
5294
5295 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5296 if (*slot)
5297 {
5298 /* Already visited. */
5299 continue;
5300 }
5301 *slot = file_data;
5302
5303 for (int j = 0; j < file_data->num_file_names; ++j)
5304 {
5305 const char *filename = file_data->file_names[j];
5306 dwarf2_per_objfile->filenames_cache->seen (filename);
5307 }
5308 }
5309 }
5310
5311 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5312 {
5313 gdb::unique_xmalloc_ptr<char> this_real_name;
5314
5315 if (need_fullname)
5316 this_real_name = gdb_realpath (filename);
5317 (*fun) (filename, this_real_name.get (), data);
5318 });
5319 }
5320
5321 static int
5322 dw2_has_symbols (struct objfile *objfile)
5323 {
5324 return 1;
5325 }
5326
5327 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5328 {
5329 dw2_has_symbols,
5330 dw2_find_last_source_symtab,
5331 dw2_forget_cached_source_info,
5332 dw2_map_symtabs_matching_filename,
5333 dw2_lookup_symbol,
5334 dw2_print_stats,
5335 dw2_dump,
5336 dw2_expand_symtabs_for_function,
5337 dw2_expand_all_symtabs,
5338 dw2_expand_symtabs_with_fullname,
5339 dw2_map_matching_symbols,
5340 dw2_expand_symtabs_matching,
5341 dw2_find_pc_sect_compunit_symtab,
5342 NULL,
5343 dw2_map_symbol_filenames
5344 };
5345
5346 /* DWARF-5 debug_names reader. */
5347
5348 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5349 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5350
5351 /* A helper function that reads the .debug_names section in SECTION
5352 and fills in MAP. FILENAME is the name of the file containing the
5353 section; it is used for error reporting.
5354
5355 Returns true if all went well, false otherwise. */
5356
5357 static bool
5358 read_debug_names_from_section (struct objfile *objfile,
5359 const char *filename,
5360 struct dwarf2_section_info *section,
5361 mapped_debug_names &map)
5362 {
5363 if (dwarf2_section_empty_p (section))
5364 return false;
5365
5366 /* Older elfutils strip versions could keep the section in the main
5367 executable while splitting it for the separate debug info file. */
5368 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5369 return false;
5370
5371 dwarf2_read_section (objfile, section);
5372
5373 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5374
5375 const gdb_byte *addr = section->buffer;
5376
5377 bfd *const abfd = get_section_bfd_owner (section);
5378
5379 unsigned int bytes_read;
5380 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5381 addr += bytes_read;
5382
5383 map.dwarf5_is_dwarf64 = bytes_read != 4;
5384 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5385 if (bytes_read + length != section->size)
5386 {
5387 /* There may be multiple per-CU indices. */
5388 warning (_("Section .debug_names in %s length %s does not match "
5389 "section length %s, ignoring .debug_names."),
5390 filename, plongest (bytes_read + length),
5391 pulongest (section->size));
5392 return false;
5393 }
5394
5395 /* The version number. */
5396 uint16_t version = read_2_bytes (abfd, addr);
5397 addr += 2;
5398 if (version != 5)
5399 {
5400 warning (_("Section .debug_names in %s has unsupported version %d, "
5401 "ignoring .debug_names."),
5402 filename, version);
5403 return false;
5404 }
5405
5406 /* Padding. */
5407 uint16_t padding = read_2_bytes (abfd, addr);
5408 addr += 2;
5409 if (padding != 0)
5410 {
5411 warning (_("Section .debug_names in %s has unsupported padding %d, "
5412 "ignoring .debug_names."),
5413 filename, padding);
5414 return false;
5415 }
5416
5417 /* comp_unit_count - The number of CUs in the CU list. */
5418 map.cu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* local_type_unit_count - The number of TUs in the local TU
5422 list. */
5423 map.tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425
5426 /* foreign_type_unit_count - The number of TUs in the foreign TU
5427 list. */
5428 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5429 addr += 4;
5430 if (foreign_tu_count != 0)
5431 {
5432 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5433 "ignoring .debug_names."),
5434 filename, static_cast<unsigned long> (foreign_tu_count));
5435 return false;
5436 }
5437
5438 /* bucket_count - The number of hash buckets in the hash lookup
5439 table. */
5440 map.bucket_count = read_4_bytes (abfd, addr);
5441 addr += 4;
5442
5443 /* name_count - The number of unique names in the index. */
5444 map.name_count = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* abbrev_table_size - The size in bytes of the abbreviations
5448 table. */
5449 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451
5452 /* augmentation_string_size - The size in bytes of the augmentation
5453 string. This value is rounded up to a multiple of 4. */
5454 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5455 addr += 4;
5456 map.augmentation_is_gdb = ((augmentation_string_size
5457 == sizeof (dwarf5_augmentation))
5458 && memcmp (addr, dwarf5_augmentation,
5459 sizeof (dwarf5_augmentation)) == 0);
5460 augmentation_string_size += (-augmentation_string_size) & 3;
5461 addr += augmentation_string_size;
5462
5463 /* List of CUs */
5464 map.cu_table_reordered = addr;
5465 addr += map.cu_count * map.offset_size;
5466
5467 /* List of Local TUs */
5468 map.tu_table_reordered = addr;
5469 addr += map.tu_count * map.offset_size;
5470
5471 /* Hash Lookup Table */
5472 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5473 addr += map.bucket_count * 4;
5474 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5475 addr += map.name_count * 4;
5476
5477 /* Name Table */
5478 map.name_table_string_offs_reordered = addr;
5479 addr += map.name_count * map.offset_size;
5480 map.name_table_entry_offs_reordered = addr;
5481 addr += map.name_count * map.offset_size;
5482
5483 const gdb_byte *abbrev_table_start = addr;
5484 for (;;)
5485 {
5486 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5487 addr += bytes_read;
5488 if (index_num == 0)
5489 break;
5490
5491 const auto insertpair
5492 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5493 if (!insertpair.second)
5494 {
5495 warning (_("Section .debug_names in %s has duplicate index %s, "
5496 "ignoring .debug_names."),
5497 filename, pulongest (index_num));
5498 return false;
5499 }
5500 mapped_debug_names::index_val &indexval = insertpair.first->second;
5501 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5502 addr += bytes_read;
5503
5504 for (;;)
5505 {
5506 mapped_debug_names::index_val::attr attr;
5507 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5508 addr += bytes_read;
5509 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5510 addr += bytes_read;
5511 if (attr.form == DW_FORM_implicit_const)
5512 {
5513 attr.implicit_const = read_signed_leb128 (abfd, addr,
5514 &bytes_read);
5515 addr += bytes_read;
5516 }
5517 if (attr.dw_idx == 0 && attr.form == 0)
5518 break;
5519 indexval.attr_vec.push_back (std::move (attr));
5520 }
5521 }
5522 if (addr != abbrev_table_start + abbrev_table_size)
5523 {
5524 warning (_("Section .debug_names in %s has abbreviation_table "
5525 "of size %s vs. written as %u, ignoring .debug_names."),
5526 filename, plongest (addr - abbrev_table_start),
5527 abbrev_table_size);
5528 return false;
5529 }
5530 map.entry_pool = addr;
5531
5532 return true;
5533 }
5534
5535 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5536 list. */
5537
5538 static void
5539 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5540 const mapped_debug_names &map,
5541 dwarf2_section_info &section,
5542 bool is_dwz)
5543 {
5544 sect_offset sect_off_prev;
5545 for (uint32_t i = 0; i <= map.cu_count; ++i)
5546 {
5547 sect_offset sect_off_next;
5548 if (i < map.cu_count)
5549 {
5550 sect_off_next
5551 = (sect_offset) (extract_unsigned_integer
5552 (map.cu_table_reordered + i * map.offset_size,
5553 map.offset_size,
5554 map.dwarf5_byte_order));
5555 }
5556 else
5557 sect_off_next = (sect_offset) section.size;
5558 if (i >= 1)
5559 {
5560 const ULONGEST length = sect_off_next - sect_off_prev;
5561 dwarf2_per_cu_data *per_cu
5562 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5563 sect_off_prev, length);
5564 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5565 }
5566 sect_off_prev = sect_off_next;
5567 }
5568 }
5569
5570 /* Read the CU list from the mapped index, and use it to create all
5571 the CU objects for this dwarf2_per_objfile. */
5572
5573 static void
5574 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5575 const mapped_debug_names &map,
5576 const mapped_debug_names &dwz_map)
5577 {
5578 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5579 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5580
5581 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5582 dwarf2_per_objfile->info,
5583 false /* is_dwz */);
5584
5585 if (dwz_map.cu_count == 0)
5586 return;
5587
5588 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5589 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5590 true /* is_dwz */);
5591 }
5592
5593 /* Read .debug_names. If everything went ok, initialize the "quick"
5594 elements of all the CUs and return true. Otherwise, return false. */
5595
5596 static bool
5597 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5598 {
5599 std::unique_ptr<mapped_debug_names> map
5600 (new mapped_debug_names (dwarf2_per_objfile));
5601 mapped_debug_names dwz_map (dwarf2_per_objfile);
5602 struct objfile *objfile = dwarf2_per_objfile->objfile;
5603
5604 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5605 &dwarf2_per_objfile->debug_names,
5606 *map))
5607 return false;
5608
5609 /* Don't use the index if it's empty. */
5610 if (map->name_count == 0)
5611 return false;
5612
5613 /* If there is a .dwz file, read it so we can get its CU list as
5614 well. */
5615 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5616 if (dwz != NULL)
5617 {
5618 if (!read_debug_names_from_section (objfile,
5619 bfd_get_filename (dwz->dwz_bfd),
5620 &dwz->debug_names, dwz_map))
5621 {
5622 warning (_("could not read '.debug_names' section from %s; skipping"),
5623 bfd_get_filename (dwz->dwz_bfd));
5624 return false;
5625 }
5626 }
5627
5628 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5629
5630 if (map->tu_count != 0)
5631 {
5632 /* We can only handle a single .debug_types when we have an
5633 index. */
5634 if (dwarf2_per_objfile->types.size () != 1)
5635 return false;
5636
5637 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5638
5639 create_signatured_type_table_from_debug_names
5640 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5641 }
5642
5643 create_addrmap_from_aranges (dwarf2_per_objfile,
5644 &dwarf2_per_objfile->debug_aranges);
5645
5646 dwarf2_per_objfile->debug_names_table = std::move (map);
5647 dwarf2_per_objfile->using_index = 1;
5648 dwarf2_per_objfile->quick_file_names_table =
5649 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5650
5651 return true;
5652 }
5653
5654 /* Type used to manage iterating over all CUs looking for a symbol for
5655 .debug_names. */
5656
5657 class dw2_debug_names_iterator
5658 {
5659 public:
5660 dw2_debug_names_iterator (const mapped_debug_names &map,
5661 gdb::optional<block_enum> block_index,
5662 domain_enum domain,
5663 const char *name)
5664 : m_map (map), m_block_index (block_index), m_domain (domain),
5665 m_addr (find_vec_in_debug_names (map, name))
5666 {}
5667
5668 dw2_debug_names_iterator (const mapped_debug_names &map,
5669 search_domain search, uint32_t namei)
5670 : m_map (map),
5671 m_search (search),
5672 m_addr (find_vec_in_debug_names (map, namei))
5673 {}
5674
5675 /* Return the next matching CU or NULL if there are no more. */
5676 dwarf2_per_cu_data *next ();
5677
5678 private:
5679 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5680 const char *name);
5681 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5682 uint32_t namei);
5683
5684 /* The internalized form of .debug_names. */
5685 const mapped_debug_names &m_map;
5686
5687 /* If set, only look for symbols that match that block. Valid values are
5688 GLOBAL_BLOCK and STATIC_BLOCK. */
5689 const gdb::optional<block_enum> m_block_index;
5690
5691 /* The kind of symbol we're looking for. */
5692 const domain_enum m_domain = UNDEF_DOMAIN;
5693 const search_domain m_search = ALL_DOMAIN;
5694
5695 /* The list of CUs from the index entry of the symbol, or NULL if
5696 not found. */
5697 const gdb_byte *m_addr;
5698 };
5699
5700 const char *
5701 mapped_debug_names::namei_to_name (uint32_t namei) const
5702 {
5703 const ULONGEST namei_string_offs
5704 = extract_unsigned_integer ((name_table_string_offs_reordered
5705 + namei * offset_size),
5706 offset_size,
5707 dwarf5_byte_order);
5708 return read_indirect_string_at_offset
5709 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5710 }
5711
5712 /* Find a slot in .debug_names for the object named NAME. If NAME is
5713 found, return pointer to its pool data. If NAME cannot be found,
5714 return NULL. */
5715
5716 const gdb_byte *
5717 dw2_debug_names_iterator::find_vec_in_debug_names
5718 (const mapped_debug_names &map, const char *name)
5719 {
5720 int (*cmp) (const char *, const char *);
5721
5722 gdb::unique_xmalloc_ptr<char> without_params;
5723 if (current_language->la_language == language_cplus
5724 || current_language->la_language == language_fortran
5725 || current_language->la_language == language_d)
5726 {
5727 /* NAME is already canonical. Drop any qualifiers as
5728 .debug_names does not contain any. */
5729
5730 if (strchr (name, '(') != NULL)
5731 {
5732 without_params = cp_remove_params (name);
5733 if (without_params != NULL)
5734 name = without_params.get ();
5735 }
5736 }
5737
5738 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5739
5740 const uint32_t full_hash = dwarf5_djb_hash (name);
5741 uint32_t namei
5742 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5743 (map.bucket_table_reordered
5744 + (full_hash % map.bucket_count)), 4,
5745 map.dwarf5_byte_order);
5746 if (namei == 0)
5747 return NULL;
5748 --namei;
5749 if (namei >= map.name_count)
5750 {
5751 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5752 "[in module %s]"),
5753 namei, map.name_count,
5754 objfile_name (map.dwarf2_per_objfile->objfile));
5755 return NULL;
5756 }
5757
5758 for (;;)
5759 {
5760 const uint32_t namei_full_hash
5761 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5762 (map.hash_table_reordered + namei), 4,
5763 map.dwarf5_byte_order);
5764 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5765 return NULL;
5766
5767 if (full_hash == namei_full_hash)
5768 {
5769 const char *const namei_string = map.namei_to_name (namei);
5770
5771 #if 0 /* An expensive sanity check. */
5772 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5773 {
5774 complaint (_("Wrong .debug_names hash for string at index %u "
5775 "[in module %s]"),
5776 namei, objfile_name (dwarf2_per_objfile->objfile));
5777 return NULL;
5778 }
5779 #endif
5780
5781 if (cmp (namei_string, name) == 0)
5782 {
5783 const ULONGEST namei_entry_offs
5784 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5785 + namei * map.offset_size),
5786 map.offset_size, map.dwarf5_byte_order);
5787 return map.entry_pool + namei_entry_offs;
5788 }
5789 }
5790
5791 ++namei;
5792 if (namei >= map.name_count)
5793 return NULL;
5794 }
5795 }
5796
5797 const gdb_byte *
5798 dw2_debug_names_iterator::find_vec_in_debug_names
5799 (const mapped_debug_names &map, uint32_t namei)
5800 {
5801 if (namei >= map.name_count)
5802 {
5803 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5804 "[in module %s]"),
5805 namei, map.name_count,
5806 objfile_name (map.dwarf2_per_objfile->objfile));
5807 return NULL;
5808 }
5809
5810 const ULONGEST namei_entry_offs
5811 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5812 + namei * map.offset_size),
5813 map.offset_size, map.dwarf5_byte_order);
5814 return map.entry_pool + namei_entry_offs;
5815 }
5816
5817 /* See dw2_debug_names_iterator. */
5818
5819 dwarf2_per_cu_data *
5820 dw2_debug_names_iterator::next ()
5821 {
5822 if (m_addr == NULL)
5823 return NULL;
5824
5825 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5826 struct objfile *objfile = dwarf2_per_objfile->objfile;
5827 bfd *const abfd = objfile->obfd;
5828
5829 again:
5830
5831 unsigned int bytes_read;
5832 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5833 m_addr += bytes_read;
5834 if (abbrev == 0)
5835 return NULL;
5836
5837 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5838 if (indexval_it == m_map.abbrev_map.cend ())
5839 {
5840 complaint (_("Wrong .debug_names undefined abbrev code %s "
5841 "[in module %s]"),
5842 pulongest (abbrev), objfile_name (objfile));
5843 return NULL;
5844 }
5845 const mapped_debug_names::index_val &indexval = indexval_it->second;
5846 enum class symbol_linkage {
5847 unknown,
5848 static_,
5849 extern_,
5850 } symbol_linkage = symbol_linkage::unknown;
5851 dwarf2_per_cu_data *per_cu = NULL;
5852 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5853 {
5854 ULONGEST ull;
5855 switch (attr.form)
5856 {
5857 case DW_FORM_implicit_const:
5858 ull = attr.implicit_const;
5859 break;
5860 case DW_FORM_flag_present:
5861 ull = 1;
5862 break;
5863 case DW_FORM_udata:
5864 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5865 m_addr += bytes_read;
5866 break;
5867 default:
5868 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5869 dwarf_form_name (attr.form),
5870 objfile_name (objfile));
5871 return NULL;
5872 }
5873 switch (attr.dw_idx)
5874 {
5875 case DW_IDX_compile_unit:
5876 /* Don't crash on bad data. */
5877 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5878 {
5879 complaint (_(".debug_names entry has bad CU index %s"
5880 " [in module %s]"),
5881 pulongest (ull),
5882 objfile_name (dwarf2_per_objfile->objfile));
5883 continue;
5884 }
5885 per_cu = dwarf2_per_objfile->get_cutu (ull);
5886 break;
5887 case DW_IDX_type_unit:
5888 /* Don't crash on bad data. */
5889 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5890 {
5891 complaint (_(".debug_names entry has bad TU index %s"
5892 " [in module %s]"),
5893 pulongest (ull),
5894 objfile_name (dwarf2_per_objfile->objfile));
5895 continue;
5896 }
5897 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5898 break;
5899 case DW_IDX_GNU_internal:
5900 if (!m_map.augmentation_is_gdb)
5901 break;
5902 symbol_linkage = symbol_linkage::static_;
5903 break;
5904 case DW_IDX_GNU_external:
5905 if (!m_map.augmentation_is_gdb)
5906 break;
5907 symbol_linkage = symbol_linkage::extern_;
5908 break;
5909 }
5910 }
5911
5912 /* Skip if already read in. */
5913 if (per_cu->v.quick->compunit_symtab)
5914 goto again;
5915
5916 /* Check static vs global. */
5917 if (symbol_linkage != symbol_linkage::unknown && m_block_index.has_value ())
5918 {
5919 const bool want_static = *m_block_index == STATIC_BLOCK;
5920 const bool symbol_is_static = symbol_linkage == symbol_linkage::static_;
5921 if (want_static != symbol_is_static)
5922 goto again;
5923 }
5924
5925 /* Match dw2_symtab_iter_next, symbol_kind
5926 and debug_names::psymbol_tag. */
5927 switch (m_domain)
5928 {
5929 case VAR_DOMAIN:
5930 switch (indexval.dwarf_tag)
5931 {
5932 case DW_TAG_variable:
5933 case DW_TAG_subprogram:
5934 /* Some types are also in VAR_DOMAIN. */
5935 case DW_TAG_typedef:
5936 case DW_TAG_structure_type:
5937 break;
5938 default:
5939 goto again;
5940 }
5941 break;
5942 case STRUCT_DOMAIN:
5943 switch (indexval.dwarf_tag)
5944 {
5945 case DW_TAG_typedef:
5946 case DW_TAG_structure_type:
5947 break;
5948 default:
5949 goto again;
5950 }
5951 break;
5952 case LABEL_DOMAIN:
5953 switch (indexval.dwarf_tag)
5954 {
5955 case 0:
5956 case DW_TAG_variable:
5957 break;
5958 default:
5959 goto again;
5960 }
5961 break;
5962 default:
5963 break;
5964 }
5965
5966 /* Match dw2_expand_symtabs_matching, symbol_kind and
5967 debug_names::psymbol_tag. */
5968 switch (m_search)
5969 {
5970 case VARIABLES_DOMAIN:
5971 switch (indexval.dwarf_tag)
5972 {
5973 case DW_TAG_variable:
5974 break;
5975 default:
5976 goto again;
5977 }
5978 break;
5979 case FUNCTIONS_DOMAIN:
5980 switch (indexval.dwarf_tag)
5981 {
5982 case DW_TAG_subprogram:
5983 break;
5984 default:
5985 goto again;
5986 }
5987 break;
5988 case TYPES_DOMAIN:
5989 switch (indexval.dwarf_tag)
5990 {
5991 case DW_TAG_typedef:
5992 case DW_TAG_structure_type:
5993 break;
5994 default:
5995 goto again;
5996 }
5997 break;
5998 default:
5999 break;
6000 }
6001
6002 return per_cu;
6003 }
6004
6005 static struct compunit_symtab *
6006 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6007 const char *name, domain_enum domain)
6008 {
6009 const block_enum block_index = static_cast<block_enum> (block_index_int);
6010 struct dwarf2_per_objfile *dwarf2_per_objfile
6011 = get_dwarf2_per_objfile (objfile);
6012
6013 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6014 if (!mapp)
6015 {
6016 /* index is NULL if OBJF_READNOW. */
6017 return NULL;
6018 }
6019 const auto &map = *mapp;
6020
6021 dw2_debug_names_iterator iter (map, block_index, domain, name);
6022
6023 struct compunit_symtab *stab_best = NULL;
6024 struct dwarf2_per_cu_data *per_cu;
6025 while ((per_cu = iter.next ()) != NULL)
6026 {
6027 struct symbol *sym, *with_opaque = NULL;
6028 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6029 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6030 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6031
6032 sym = block_find_symbol (block, name, domain,
6033 block_find_non_opaque_type_preferred,
6034 &with_opaque);
6035
6036 /* Some caution must be observed with overloaded functions and
6037 methods, since the index will not contain any overload
6038 information (but NAME might contain it). */
6039
6040 if (sym != NULL
6041 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6042 return stab;
6043 if (with_opaque != NULL
6044 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6045 stab_best = stab;
6046
6047 /* Keep looking through other CUs. */
6048 }
6049
6050 return stab_best;
6051 }
6052
6053 /* This dumps minimal information about .debug_names. It is called
6054 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6055 uses this to verify that .debug_names has been loaded. */
6056
6057 static void
6058 dw2_debug_names_dump (struct objfile *objfile)
6059 {
6060 struct dwarf2_per_objfile *dwarf2_per_objfile
6061 = get_dwarf2_per_objfile (objfile);
6062
6063 gdb_assert (dwarf2_per_objfile->using_index);
6064 printf_filtered (".debug_names:");
6065 if (dwarf2_per_objfile->debug_names_table)
6066 printf_filtered (" exists\n");
6067 else
6068 printf_filtered (" faked for \"readnow\"\n");
6069 printf_filtered ("\n");
6070 }
6071
6072 static void
6073 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6074 const char *func_name)
6075 {
6076 struct dwarf2_per_objfile *dwarf2_per_objfile
6077 = get_dwarf2_per_objfile (objfile);
6078
6079 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6080 if (dwarf2_per_objfile->debug_names_table)
6081 {
6082 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6083
6084 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6085
6086 struct dwarf2_per_cu_data *per_cu;
6087 while ((per_cu = iter.next ()) != NULL)
6088 dw2_instantiate_symtab (per_cu, false);
6089 }
6090 }
6091
6092 static void
6093 dw2_debug_names_expand_symtabs_matching
6094 (struct objfile *objfile,
6095 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6096 const lookup_name_info &lookup_name,
6097 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6098 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6099 enum search_domain kind)
6100 {
6101 struct dwarf2_per_objfile *dwarf2_per_objfile
6102 = get_dwarf2_per_objfile (objfile);
6103
6104 /* debug_names_table is NULL if OBJF_READNOW. */
6105 if (!dwarf2_per_objfile->debug_names_table)
6106 return;
6107
6108 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6109
6110 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6111
6112 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6113 symbol_matcher,
6114 kind, [&] (offset_type namei)
6115 {
6116 /* The name was matched, now expand corresponding CUs that were
6117 marked. */
6118 dw2_debug_names_iterator iter (map, kind, namei);
6119
6120 struct dwarf2_per_cu_data *per_cu;
6121 while ((per_cu = iter.next ()) != NULL)
6122 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6123 expansion_notify);
6124 });
6125 }
6126
6127 const struct quick_symbol_functions dwarf2_debug_names_functions =
6128 {
6129 dw2_has_symbols,
6130 dw2_find_last_source_symtab,
6131 dw2_forget_cached_source_info,
6132 dw2_map_symtabs_matching_filename,
6133 dw2_debug_names_lookup_symbol,
6134 dw2_print_stats,
6135 dw2_debug_names_dump,
6136 dw2_debug_names_expand_symtabs_for_function,
6137 dw2_expand_all_symtabs,
6138 dw2_expand_symtabs_with_fullname,
6139 dw2_map_matching_symbols,
6140 dw2_debug_names_expand_symtabs_matching,
6141 dw2_find_pc_sect_compunit_symtab,
6142 NULL,
6143 dw2_map_symbol_filenames
6144 };
6145
6146 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6147 to either a dwarf2_per_objfile or dwz_file object. */
6148
6149 template <typename T>
6150 static gdb::array_view<const gdb_byte>
6151 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6152 {
6153 dwarf2_section_info *section = &section_owner->gdb_index;
6154
6155 if (dwarf2_section_empty_p (section))
6156 return {};
6157
6158 /* Older elfutils strip versions could keep the section in the main
6159 executable while splitting it for the separate debug info file. */
6160 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6161 return {};
6162
6163 dwarf2_read_section (obj, section);
6164
6165 /* dwarf2_section_info::size is a bfd_size_type, while
6166 gdb::array_view works with size_t. On 32-bit hosts, with
6167 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6168 is 32-bit. So we need an explicit narrowing conversion here.
6169 This is fine, because it's impossible to allocate or mmap an
6170 array/buffer larger than what size_t can represent. */
6171 return gdb::make_array_view (section->buffer, section->size);
6172 }
6173
6174 /* Lookup the index cache for the contents of the index associated to
6175 DWARF2_OBJ. */
6176
6177 static gdb::array_view<const gdb_byte>
6178 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6179 {
6180 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6181 if (build_id == nullptr)
6182 return {};
6183
6184 return global_index_cache.lookup_gdb_index (build_id,
6185 &dwarf2_obj->index_cache_res);
6186 }
6187
6188 /* Same as the above, but for DWZ. */
6189
6190 static gdb::array_view<const gdb_byte>
6191 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6192 {
6193 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6194 if (build_id == nullptr)
6195 return {};
6196
6197 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6198 }
6199
6200 /* See symfile.h. */
6201
6202 bool
6203 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6204 {
6205 struct dwarf2_per_objfile *dwarf2_per_objfile
6206 = get_dwarf2_per_objfile (objfile);
6207
6208 /* If we're about to read full symbols, don't bother with the
6209 indices. In this case we also don't care if some other debug
6210 format is making psymtabs, because they are all about to be
6211 expanded anyway. */
6212 if ((objfile->flags & OBJF_READNOW))
6213 {
6214 dwarf2_per_objfile->using_index = 1;
6215 create_all_comp_units (dwarf2_per_objfile);
6216 create_all_type_units (dwarf2_per_objfile);
6217 dwarf2_per_objfile->quick_file_names_table
6218 = create_quick_file_names_table
6219 (dwarf2_per_objfile->all_comp_units.size ());
6220
6221 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6222 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6223 {
6224 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6225
6226 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6227 struct dwarf2_per_cu_quick_data);
6228 }
6229
6230 /* Return 1 so that gdb sees the "quick" functions. However,
6231 these functions will be no-ops because we will have expanded
6232 all symtabs. */
6233 *index_kind = dw_index_kind::GDB_INDEX;
6234 return true;
6235 }
6236
6237 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6238 {
6239 *index_kind = dw_index_kind::DEBUG_NAMES;
6240 return true;
6241 }
6242
6243 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6244 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6245 get_gdb_index_contents_from_section<dwz_file>))
6246 {
6247 *index_kind = dw_index_kind::GDB_INDEX;
6248 return true;
6249 }
6250
6251 /* ... otherwise, try to find the index in the index cache. */
6252 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6253 get_gdb_index_contents_from_cache,
6254 get_gdb_index_contents_from_cache_dwz))
6255 {
6256 global_index_cache.hit ();
6257 *index_kind = dw_index_kind::GDB_INDEX;
6258 return true;
6259 }
6260
6261 global_index_cache.miss ();
6262 return false;
6263 }
6264
6265 \f
6266
6267 /* Build a partial symbol table. */
6268
6269 void
6270 dwarf2_build_psymtabs (struct objfile *objfile)
6271 {
6272 struct dwarf2_per_objfile *dwarf2_per_objfile
6273 = get_dwarf2_per_objfile (objfile);
6274
6275 init_psymbol_list (objfile, 1024);
6276
6277 try
6278 {
6279 /* This isn't really ideal: all the data we allocate on the
6280 objfile's obstack is still uselessly kept around. However,
6281 freeing it seems unsafe. */
6282 psymtab_discarder psymtabs (objfile);
6283 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6284 psymtabs.keep ();
6285
6286 /* (maybe) store an index in the cache. */
6287 global_index_cache.store (dwarf2_per_objfile);
6288 }
6289 catch (const gdb_exception_error &except)
6290 {
6291 exception_print (gdb_stderr, except);
6292 }
6293 }
6294
6295 /* Return the total length of the CU described by HEADER. */
6296
6297 static unsigned int
6298 get_cu_length (const struct comp_unit_head *header)
6299 {
6300 return header->initial_length_size + header->length;
6301 }
6302
6303 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6304
6305 static inline bool
6306 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6307 {
6308 sect_offset bottom = cu_header->sect_off;
6309 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6310
6311 return sect_off >= bottom && sect_off < top;
6312 }
6313
6314 /* Find the base address of the compilation unit for range lists and
6315 location lists. It will normally be specified by DW_AT_low_pc.
6316 In DWARF-3 draft 4, the base address could be overridden by
6317 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6318 compilation units with discontinuous ranges. */
6319
6320 static void
6321 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6322 {
6323 struct attribute *attr;
6324
6325 cu->base_known = 0;
6326 cu->base_address = 0;
6327
6328 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6329 if (attr)
6330 {
6331 cu->base_address = attr_value_as_address (attr);
6332 cu->base_known = 1;
6333 }
6334 else
6335 {
6336 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6337 if (attr)
6338 {
6339 cu->base_address = attr_value_as_address (attr);
6340 cu->base_known = 1;
6341 }
6342 }
6343 }
6344
6345 /* Read in the comp unit header information from the debug_info at info_ptr.
6346 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6347 NOTE: This leaves members offset, first_die_offset to be filled in
6348 by the caller. */
6349
6350 static const gdb_byte *
6351 read_comp_unit_head (struct comp_unit_head *cu_header,
6352 const gdb_byte *info_ptr,
6353 struct dwarf2_section_info *section,
6354 rcuh_kind section_kind)
6355 {
6356 int signed_addr;
6357 unsigned int bytes_read;
6358 const char *filename = get_section_file_name (section);
6359 bfd *abfd = get_section_bfd_owner (section);
6360
6361 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6362 cu_header->initial_length_size = bytes_read;
6363 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6364 info_ptr += bytes_read;
6365 cu_header->version = read_2_bytes (abfd, info_ptr);
6366 if (cu_header->version < 2 || cu_header->version > 5)
6367 error (_("Dwarf Error: wrong version in compilation unit header "
6368 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6369 cu_header->version, filename);
6370 info_ptr += 2;
6371 if (cu_header->version < 5)
6372 switch (section_kind)
6373 {
6374 case rcuh_kind::COMPILE:
6375 cu_header->unit_type = DW_UT_compile;
6376 break;
6377 case rcuh_kind::TYPE:
6378 cu_header->unit_type = DW_UT_type;
6379 break;
6380 default:
6381 internal_error (__FILE__, __LINE__,
6382 _("read_comp_unit_head: invalid section_kind"));
6383 }
6384 else
6385 {
6386 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6387 (read_1_byte (abfd, info_ptr));
6388 info_ptr += 1;
6389 switch (cu_header->unit_type)
6390 {
6391 case DW_UT_compile:
6392 if (section_kind != rcuh_kind::COMPILE)
6393 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6394 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6395 filename);
6396 break;
6397 case DW_UT_type:
6398 section_kind = rcuh_kind::TYPE;
6399 break;
6400 default:
6401 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6402 "(is %d, should be %d or %d) [in module %s]"),
6403 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6404 }
6405
6406 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6407 info_ptr += 1;
6408 }
6409 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6410 cu_header,
6411 &bytes_read);
6412 info_ptr += bytes_read;
6413 if (cu_header->version < 5)
6414 {
6415 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6416 info_ptr += 1;
6417 }
6418 signed_addr = bfd_get_sign_extend_vma (abfd);
6419 if (signed_addr < 0)
6420 internal_error (__FILE__, __LINE__,
6421 _("read_comp_unit_head: dwarf from non elf file"));
6422 cu_header->signed_addr_p = signed_addr;
6423
6424 if (section_kind == rcuh_kind::TYPE)
6425 {
6426 LONGEST type_offset;
6427
6428 cu_header->signature = read_8_bytes (abfd, info_ptr);
6429 info_ptr += 8;
6430
6431 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6432 info_ptr += bytes_read;
6433 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6434 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6435 error (_("Dwarf Error: Too big type_offset in compilation unit "
6436 "header (is %s) [in module %s]"), plongest (type_offset),
6437 filename);
6438 }
6439
6440 return info_ptr;
6441 }
6442
6443 /* Helper function that returns the proper abbrev section for
6444 THIS_CU. */
6445
6446 static struct dwarf2_section_info *
6447 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6448 {
6449 struct dwarf2_section_info *abbrev;
6450 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6451
6452 if (this_cu->is_dwz)
6453 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6454 else
6455 abbrev = &dwarf2_per_objfile->abbrev;
6456
6457 return abbrev;
6458 }
6459
6460 /* Subroutine of read_and_check_comp_unit_head and
6461 read_and_check_type_unit_head to simplify them.
6462 Perform various error checking on the header. */
6463
6464 static void
6465 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6466 struct comp_unit_head *header,
6467 struct dwarf2_section_info *section,
6468 struct dwarf2_section_info *abbrev_section)
6469 {
6470 const char *filename = get_section_file_name (section);
6471
6472 if (to_underlying (header->abbrev_sect_off)
6473 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6474 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6475 "(offset %s + 6) [in module %s]"),
6476 sect_offset_str (header->abbrev_sect_off),
6477 sect_offset_str (header->sect_off),
6478 filename);
6479
6480 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6481 avoid potential 32-bit overflow. */
6482 if (((ULONGEST) header->sect_off + get_cu_length (header))
6483 > section->size)
6484 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6485 "(offset %s + 0) [in module %s]"),
6486 header->length, sect_offset_str (header->sect_off),
6487 filename);
6488 }
6489
6490 /* Read in a CU/TU header and perform some basic error checking.
6491 The contents of the header are stored in HEADER.
6492 The result is a pointer to the start of the first DIE. */
6493
6494 static const gdb_byte *
6495 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6496 struct comp_unit_head *header,
6497 struct dwarf2_section_info *section,
6498 struct dwarf2_section_info *abbrev_section,
6499 const gdb_byte *info_ptr,
6500 rcuh_kind section_kind)
6501 {
6502 const gdb_byte *beg_of_comp_unit = info_ptr;
6503
6504 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6505
6506 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6507
6508 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6509
6510 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6511 abbrev_section);
6512
6513 return info_ptr;
6514 }
6515
6516 /* Fetch the abbreviation table offset from a comp or type unit header. */
6517
6518 static sect_offset
6519 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6520 struct dwarf2_section_info *section,
6521 sect_offset sect_off)
6522 {
6523 bfd *abfd = get_section_bfd_owner (section);
6524 const gdb_byte *info_ptr;
6525 unsigned int initial_length_size, offset_size;
6526 uint16_t version;
6527
6528 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6529 info_ptr = section->buffer + to_underlying (sect_off);
6530 read_initial_length (abfd, info_ptr, &initial_length_size);
6531 offset_size = initial_length_size == 4 ? 4 : 8;
6532 info_ptr += initial_length_size;
6533
6534 version = read_2_bytes (abfd, info_ptr);
6535 info_ptr += 2;
6536 if (version >= 5)
6537 {
6538 /* Skip unit type and address size. */
6539 info_ptr += 2;
6540 }
6541
6542 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6543 }
6544
6545 /* Allocate a new partial symtab for file named NAME and mark this new
6546 partial symtab as being an include of PST. */
6547
6548 static void
6549 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6550 struct objfile *objfile)
6551 {
6552 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6553
6554 if (!IS_ABSOLUTE_PATH (subpst->filename))
6555 {
6556 /* It shares objfile->objfile_obstack. */
6557 subpst->dirname = pst->dirname;
6558 }
6559
6560 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6561 subpst->dependencies[0] = pst;
6562 subpst->number_of_dependencies = 1;
6563
6564 subpst->read_symtab = pst->read_symtab;
6565
6566 /* No private part is necessary for include psymtabs. This property
6567 can be used to differentiate between such include psymtabs and
6568 the regular ones. */
6569 subpst->read_symtab_private = NULL;
6570 }
6571
6572 /* Read the Line Number Program data and extract the list of files
6573 included by the source file represented by PST. Build an include
6574 partial symtab for each of these included files. */
6575
6576 static void
6577 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6578 struct die_info *die,
6579 struct partial_symtab *pst)
6580 {
6581 line_header_up lh;
6582 struct attribute *attr;
6583
6584 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6585 if (attr)
6586 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6587 if (lh == NULL)
6588 return; /* No linetable, so no includes. */
6589
6590 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6591 that we pass in the raw text_low here; that is ok because we're
6592 only decoding the line table to make include partial symtabs, and
6593 so the addresses aren't really used. */
6594 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6595 pst->raw_text_low (), 1);
6596 }
6597
6598 static hashval_t
6599 hash_signatured_type (const void *item)
6600 {
6601 const struct signatured_type *sig_type
6602 = (const struct signatured_type *) item;
6603
6604 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6605 return sig_type->signature;
6606 }
6607
6608 static int
6609 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6610 {
6611 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6612 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6613
6614 return lhs->signature == rhs->signature;
6615 }
6616
6617 /* Allocate a hash table for signatured types. */
6618
6619 static htab_t
6620 allocate_signatured_type_table (struct objfile *objfile)
6621 {
6622 return htab_create_alloc_ex (41,
6623 hash_signatured_type,
6624 eq_signatured_type,
6625 NULL,
6626 &objfile->objfile_obstack,
6627 hashtab_obstack_allocate,
6628 dummy_obstack_deallocate);
6629 }
6630
6631 /* A helper function to add a signatured type CU to a table. */
6632
6633 static int
6634 add_signatured_type_cu_to_table (void **slot, void *datum)
6635 {
6636 struct signatured_type *sigt = (struct signatured_type *) *slot;
6637 std::vector<signatured_type *> *all_type_units
6638 = (std::vector<signatured_type *> *) datum;
6639
6640 all_type_units->push_back (sigt);
6641
6642 return 1;
6643 }
6644
6645 /* A helper for create_debug_types_hash_table. Read types from SECTION
6646 and fill them into TYPES_HTAB. It will process only type units,
6647 therefore DW_UT_type. */
6648
6649 static void
6650 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6651 struct dwo_file *dwo_file,
6652 dwarf2_section_info *section, htab_t &types_htab,
6653 rcuh_kind section_kind)
6654 {
6655 struct objfile *objfile = dwarf2_per_objfile->objfile;
6656 struct dwarf2_section_info *abbrev_section;
6657 bfd *abfd;
6658 const gdb_byte *info_ptr, *end_ptr;
6659
6660 abbrev_section = (dwo_file != NULL
6661 ? &dwo_file->sections.abbrev
6662 : &dwarf2_per_objfile->abbrev);
6663
6664 if (dwarf_read_debug)
6665 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6666 get_section_name (section),
6667 get_section_file_name (abbrev_section));
6668
6669 dwarf2_read_section (objfile, section);
6670 info_ptr = section->buffer;
6671
6672 if (info_ptr == NULL)
6673 return;
6674
6675 /* We can't set abfd until now because the section may be empty or
6676 not present, in which case the bfd is unknown. */
6677 abfd = get_section_bfd_owner (section);
6678
6679 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6680 because we don't need to read any dies: the signature is in the
6681 header. */
6682
6683 end_ptr = info_ptr + section->size;
6684 while (info_ptr < end_ptr)
6685 {
6686 struct signatured_type *sig_type;
6687 struct dwo_unit *dwo_tu;
6688 void **slot;
6689 const gdb_byte *ptr = info_ptr;
6690 struct comp_unit_head header;
6691 unsigned int length;
6692
6693 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6694
6695 /* Initialize it due to a false compiler warning. */
6696 header.signature = -1;
6697 header.type_cu_offset_in_tu = (cu_offset) -1;
6698
6699 /* We need to read the type's signature in order to build the hash
6700 table, but we don't need anything else just yet. */
6701
6702 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6703 abbrev_section, ptr, section_kind);
6704
6705 length = get_cu_length (&header);
6706
6707 /* Skip dummy type units. */
6708 if (ptr >= info_ptr + length
6709 || peek_abbrev_code (abfd, ptr) == 0
6710 || header.unit_type != DW_UT_type)
6711 {
6712 info_ptr += length;
6713 continue;
6714 }
6715
6716 if (types_htab == NULL)
6717 {
6718 if (dwo_file)
6719 types_htab = allocate_dwo_unit_table (objfile);
6720 else
6721 types_htab = allocate_signatured_type_table (objfile);
6722 }
6723
6724 if (dwo_file)
6725 {
6726 sig_type = NULL;
6727 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6728 struct dwo_unit);
6729 dwo_tu->dwo_file = dwo_file;
6730 dwo_tu->signature = header.signature;
6731 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6732 dwo_tu->section = section;
6733 dwo_tu->sect_off = sect_off;
6734 dwo_tu->length = length;
6735 }
6736 else
6737 {
6738 /* N.B.: type_offset is not usable if this type uses a DWO file.
6739 The real type_offset is in the DWO file. */
6740 dwo_tu = NULL;
6741 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6742 struct signatured_type);
6743 sig_type->signature = header.signature;
6744 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6745 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6746 sig_type->per_cu.is_debug_types = 1;
6747 sig_type->per_cu.section = section;
6748 sig_type->per_cu.sect_off = sect_off;
6749 sig_type->per_cu.length = length;
6750 }
6751
6752 slot = htab_find_slot (types_htab,
6753 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6754 INSERT);
6755 gdb_assert (slot != NULL);
6756 if (*slot != NULL)
6757 {
6758 sect_offset dup_sect_off;
6759
6760 if (dwo_file)
6761 {
6762 const struct dwo_unit *dup_tu
6763 = (const struct dwo_unit *) *slot;
6764
6765 dup_sect_off = dup_tu->sect_off;
6766 }
6767 else
6768 {
6769 const struct signatured_type *dup_tu
6770 = (const struct signatured_type *) *slot;
6771
6772 dup_sect_off = dup_tu->per_cu.sect_off;
6773 }
6774
6775 complaint (_("debug type entry at offset %s is duplicate to"
6776 " the entry at offset %s, signature %s"),
6777 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6778 hex_string (header.signature));
6779 }
6780 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6781
6782 if (dwarf_read_debug > 1)
6783 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6784 sect_offset_str (sect_off),
6785 hex_string (header.signature));
6786
6787 info_ptr += length;
6788 }
6789 }
6790
6791 /* Create the hash table of all entries in the .debug_types
6792 (or .debug_types.dwo) section(s).
6793 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6794 otherwise it is NULL.
6795
6796 The result is a pointer to the hash table or NULL if there are no types.
6797
6798 Note: This function processes DWO files only, not DWP files. */
6799
6800 static void
6801 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6802 struct dwo_file *dwo_file,
6803 gdb::array_view<dwarf2_section_info> type_sections,
6804 htab_t &types_htab)
6805 {
6806 for (dwarf2_section_info &section : type_sections)
6807 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6808 types_htab, rcuh_kind::TYPE);
6809 }
6810
6811 /* Create the hash table of all entries in the .debug_types section,
6812 and initialize all_type_units.
6813 The result is zero if there is an error (e.g. missing .debug_types section),
6814 otherwise non-zero. */
6815
6816 static int
6817 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6818 {
6819 htab_t types_htab = NULL;
6820
6821 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6822 &dwarf2_per_objfile->info, types_htab,
6823 rcuh_kind::COMPILE);
6824 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6825 dwarf2_per_objfile->types, types_htab);
6826 if (types_htab == NULL)
6827 {
6828 dwarf2_per_objfile->signatured_types = NULL;
6829 return 0;
6830 }
6831
6832 dwarf2_per_objfile->signatured_types = types_htab;
6833
6834 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6835 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6836
6837 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6838 &dwarf2_per_objfile->all_type_units);
6839
6840 return 1;
6841 }
6842
6843 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6844 If SLOT is non-NULL, it is the entry to use in the hash table.
6845 Otherwise we find one. */
6846
6847 static struct signatured_type *
6848 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6849 void **slot)
6850 {
6851 struct objfile *objfile = dwarf2_per_objfile->objfile;
6852
6853 if (dwarf2_per_objfile->all_type_units.size ()
6854 == dwarf2_per_objfile->all_type_units.capacity ())
6855 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6856
6857 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6858 struct signatured_type);
6859
6860 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6861 sig_type->signature = sig;
6862 sig_type->per_cu.is_debug_types = 1;
6863 if (dwarf2_per_objfile->using_index)
6864 {
6865 sig_type->per_cu.v.quick =
6866 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6867 struct dwarf2_per_cu_quick_data);
6868 }
6869
6870 if (slot == NULL)
6871 {
6872 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6873 sig_type, INSERT);
6874 }
6875 gdb_assert (*slot == NULL);
6876 *slot = sig_type;
6877 /* The rest of sig_type must be filled in by the caller. */
6878 return sig_type;
6879 }
6880
6881 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6882 Fill in SIG_ENTRY with DWO_ENTRY. */
6883
6884 static void
6885 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6886 struct signatured_type *sig_entry,
6887 struct dwo_unit *dwo_entry)
6888 {
6889 /* Make sure we're not clobbering something we don't expect to. */
6890 gdb_assert (! sig_entry->per_cu.queued);
6891 gdb_assert (sig_entry->per_cu.cu == NULL);
6892 if (dwarf2_per_objfile->using_index)
6893 {
6894 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6895 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6896 }
6897 else
6898 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6899 gdb_assert (sig_entry->signature == dwo_entry->signature);
6900 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6901 gdb_assert (sig_entry->type_unit_group == NULL);
6902 gdb_assert (sig_entry->dwo_unit == NULL);
6903
6904 sig_entry->per_cu.section = dwo_entry->section;
6905 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6906 sig_entry->per_cu.length = dwo_entry->length;
6907 sig_entry->per_cu.reading_dwo_directly = 1;
6908 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6909 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6910 sig_entry->dwo_unit = dwo_entry;
6911 }
6912
6913 /* Subroutine of lookup_signatured_type.
6914 If we haven't read the TU yet, create the signatured_type data structure
6915 for a TU to be read in directly from a DWO file, bypassing the stub.
6916 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6917 using .gdb_index, then when reading a CU we want to stay in the DWO file
6918 containing that CU. Otherwise we could end up reading several other DWO
6919 files (due to comdat folding) to process the transitive closure of all the
6920 mentioned TUs, and that can be slow. The current DWO file will have every
6921 type signature that it needs.
6922 We only do this for .gdb_index because in the psymtab case we already have
6923 to read all the DWOs to build the type unit groups. */
6924
6925 static struct signatured_type *
6926 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6927 {
6928 struct dwarf2_per_objfile *dwarf2_per_objfile
6929 = cu->per_cu->dwarf2_per_objfile;
6930 struct objfile *objfile = dwarf2_per_objfile->objfile;
6931 struct dwo_file *dwo_file;
6932 struct dwo_unit find_dwo_entry, *dwo_entry;
6933 struct signatured_type find_sig_entry, *sig_entry;
6934 void **slot;
6935
6936 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6937
6938 /* If TU skeletons have been removed then we may not have read in any
6939 TUs yet. */
6940 if (dwarf2_per_objfile->signatured_types == NULL)
6941 {
6942 dwarf2_per_objfile->signatured_types
6943 = allocate_signatured_type_table (objfile);
6944 }
6945
6946 /* We only ever need to read in one copy of a signatured type.
6947 Use the global signatured_types array to do our own comdat-folding
6948 of types. If this is the first time we're reading this TU, and
6949 the TU has an entry in .gdb_index, replace the recorded data from
6950 .gdb_index with this TU. */
6951
6952 find_sig_entry.signature = sig;
6953 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6954 &find_sig_entry, INSERT);
6955 sig_entry = (struct signatured_type *) *slot;
6956
6957 /* We can get here with the TU already read, *or* in the process of being
6958 read. Don't reassign the global entry to point to this DWO if that's
6959 the case. Also note that if the TU is already being read, it may not
6960 have come from a DWO, the program may be a mix of Fission-compiled
6961 code and non-Fission-compiled code. */
6962
6963 /* Have we already tried to read this TU?
6964 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6965 needn't exist in the global table yet). */
6966 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6967 return sig_entry;
6968
6969 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6970 dwo_unit of the TU itself. */
6971 dwo_file = cu->dwo_unit->dwo_file;
6972
6973 /* Ok, this is the first time we're reading this TU. */
6974 if (dwo_file->tus == NULL)
6975 return NULL;
6976 find_dwo_entry.signature = sig;
6977 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6978 if (dwo_entry == NULL)
6979 return NULL;
6980
6981 /* If the global table doesn't have an entry for this TU, add one. */
6982 if (sig_entry == NULL)
6983 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6984
6985 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6986 sig_entry->per_cu.tu_read = 1;
6987 return sig_entry;
6988 }
6989
6990 /* Subroutine of lookup_signatured_type.
6991 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6992 then try the DWP file. If the TU stub (skeleton) has been removed then
6993 it won't be in .gdb_index. */
6994
6995 static struct signatured_type *
6996 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6997 {
6998 struct dwarf2_per_objfile *dwarf2_per_objfile
6999 = cu->per_cu->dwarf2_per_objfile;
7000 struct objfile *objfile = dwarf2_per_objfile->objfile;
7001 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7002 struct dwo_unit *dwo_entry;
7003 struct signatured_type find_sig_entry, *sig_entry;
7004 void **slot;
7005
7006 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7007 gdb_assert (dwp_file != NULL);
7008
7009 /* If TU skeletons have been removed then we may not have read in any
7010 TUs yet. */
7011 if (dwarf2_per_objfile->signatured_types == NULL)
7012 {
7013 dwarf2_per_objfile->signatured_types
7014 = allocate_signatured_type_table (objfile);
7015 }
7016
7017 find_sig_entry.signature = sig;
7018 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7019 &find_sig_entry, INSERT);
7020 sig_entry = (struct signatured_type *) *slot;
7021
7022 /* Have we already tried to read this TU?
7023 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7024 needn't exist in the global table yet). */
7025 if (sig_entry != NULL)
7026 return sig_entry;
7027
7028 if (dwp_file->tus == NULL)
7029 return NULL;
7030 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7031 sig, 1 /* is_debug_types */);
7032 if (dwo_entry == NULL)
7033 return NULL;
7034
7035 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7036 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7037
7038 return sig_entry;
7039 }
7040
7041 /* Lookup a signature based type for DW_FORM_ref_sig8.
7042 Returns NULL if signature SIG is not present in the table.
7043 It is up to the caller to complain about this. */
7044
7045 static struct signatured_type *
7046 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7047 {
7048 struct dwarf2_per_objfile *dwarf2_per_objfile
7049 = cu->per_cu->dwarf2_per_objfile;
7050
7051 if (cu->dwo_unit
7052 && dwarf2_per_objfile->using_index)
7053 {
7054 /* We're in a DWO/DWP file, and we're using .gdb_index.
7055 These cases require special processing. */
7056 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7057 return lookup_dwo_signatured_type (cu, sig);
7058 else
7059 return lookup_dwp_signatured_type (cu, sig);
7060 }
7061 else
7062 {
7063 struct signatured_type find_entry, *entry;
7064
7065 if (dwarf2_per_objfile->signatured_types == NULL)
7066 return NULL;
7067 find_entry.signature = sig;
7068 entry = ((struct signatured_type *)
7069 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7070 return entry;
7071 }
7072 }
7073 \f
7074 /* Low level DIE reading support. */
7075
7076 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7077
7078 static void
7079 init_cu_die_reader (struct die_reader_specs *reader,
7080 struct dwarf2_cu *cu,
7081 struct dwarf2_section_info *section,
7082 struct dwo_file *dwo_file,
7083 struct abbrev_table *abbrev_table)
7084 {
7085 gdb_assert (section->readin && section->buffer != NULL);
7086 reader->abfd = get_section_bfd_owner (section);
7087 reader->cu = cu;
7088 reader->dwo_file = dwo_file;
7089 reader->die_section = section;
7090 reader->buffer = section->buffer;
7091 reader->buffer_end = section->buffer + section->size;
7092 reader->comp_dir = NULL;
7093 reader->abbrev_table = abbrev_table;
7094 }
7095
7096 /* Subroutine of init_cutu_and_read_dies to simplify it.
7097 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7098 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7099 already.
7100
7101 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7102 from it to the DIE in the DWO. If NULL we are skipping the stub.
7103 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7104 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7105 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7106 STUB_COMP_DIR may be non-NULL.
7107 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7108 are filled in with the info of the DIE from the DWO file.
7109 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7110 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7111 kept around for at least as long as *RESULT_READER.
7112
7113 The result is non-zero if a valid (non-dummy) DIE was found. */
7114
7115 static int
7116 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7117 struct dwo_unit *dwo_unit,
7118 struct die_info *stub_comp_unit_die,
7119 const char *stub_comp_dir,
7120 struct die_reader_specs *result_reader,
7121 const gdb_byte **result_info_ptr,
7122 struct die_info **result_comp_unit_die,
7123 int *result_has_children,
7124 abbrev_table_up *result_dwo_abbrev_table)
7125 {
7126 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7127 struct objfile *objfile = dwarf2_per_objfile->objfile;
7128 struct dwarf2_cu *cu = this_cu->cu;
7129 bfd *abfd;
7130 const gdb_byte *begin_info_ptr, *info_ptr;
7131 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7132 int i,num_extra_attrs;
7133 struct dwarf2_section_info *dwo_abbrev_section;
7134 struct attribute *attr;
7135 struct die_info *comp_unit_die;
7136
7137 /* At most one of these may be provided. */
7138 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7139
7140 /* These attributes aren't processed until later:
7141 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7142 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7143 referenced later. However, these attributes are found in the stub
7144 which we won't have later. In order to not impose this complication
7145 on the rest of the code, we read them here and copy them to the
7146 DWO CU/TU die. */
7147
7148 stmt_list = NULL;
7149 low_pc = NULL;
7150 high_pc = NULL;
7151 ranges = NULL;
7152 comp_dir = NULL;
7153
7154 if (stub_comp_unit_die != NULL)
7155 {
7156 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7157 DWO file. */
7158 if (! this_cu->is_debug_types)
7159 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7160 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7161 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7162 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7163 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7164
7165 /* There should be a DW_AT_addr_base attribute here (if needed).
7166 We need the value before we can process DW_FORM_GNU_addr_index
7167 or DW_FORM_addrx. */
7168 cu->addr_base = 0;
7169 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7170 if (attr)
7171 cu->addr_base = DW_UNSND (attr);
7172
7173 /* There should be a DW_AT_ranges_base attribute here (if needed).
7174 We need the value before we can process DW_AT_ranges. */
7175 cu->ranges_base = 0;
7176 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7177 if (attr)
7178 cu->ranges_base = DW_UNSND (attr);
7179 }
7180 else if (stub_comp_dir != NULL)
7181 {
7182 /* Reconstruct the comp_dir attribute to simplify the code below. */
7183 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7184 comp_dir->name = DW_AT_comp_dir;
7185 comp_dir->form = DW_FORM_string;
7186 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7187 DW_STRING (comp_dir) = stub_comp_dir;
7188 }
7189
7190 /* Set up for reading the DWO CU/TU. */
7191 cu->dwo_unit = dwo_unit;
7192 dwarf2_section_info *section = dwo_unit->section;
7193 dwarf2_read_section (objfile, section);
7194 abfd = get_section_bfd_owner (section);
7195 begin_info_ptr = info_ptr = (section->buffer
7196 + to_underlying (dwo_unit->sect_off));
7197 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7198
7199 if (this_cu->is_debug_types)
7200 {
7201 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7202
7203 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7204 &cu->header, section,
7205 dwo_abbrev_section,
7206 info_ptr, rcuh_kind::TYPE);
7207 /* This is not an assert because it can be caused by bad debug info. */
7208 if (sig_type->signature != cu->header.signature)
7209 {
7210 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7211 " TU at offset %s [in module %s]"),
7212 hex_string (sig_type->signature),
7213 hex_string (cu->header.signature),
7214 sect_offset_str (dwo_unit->sect_off),
7215 bfd_get_filename (abfd));
7216 }
7217 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7218 /* For DWOs coming from DWP files, we don't know the CU length
7219 nor the type's offset in the TU until now. */
7220 dwo_unit->length = get_cu_length (&cu->header);
7221 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7222
7223 /* Establish the type offset that can be used to lookup the type.
7224 For DWO files, we don't know it until now. */
7225 sig_type->type_offset_in_section
7226 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7227 }
7228 else
7229 {
7230 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7231 &cu->header, section,
7232 dwo_abbrev_section,
7233 info_ptr, rcuh_kind::COMPILE);
7234 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7235 /* For DWOs coming from DWP files, we don't know the CU length
7236 until now. */
7237 dwo_unit->length = get_cu_length (&cu->header);
7238 }
7239
7240 *result_dwo_abbrev_table
7241 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7242 cu->header.abbrev_sect_off);
7243 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7244 result_dwo_abbrev_table->get ());
7245
7246 /* Read in the die, but leave space to copy over the attributes
7247 from the stub. This has the benefit of simplifying the rest of
7248 the code - all the work to maintain the illusion of a single
7249 DW_TAG_{compile,type}_unit DIE is done here. */
7250 num_extra_attrs = ((stmt_list != NULL)
7251 + (low_pc != NULL)
7252 + (high_pc != NULL)
7253 + (ranges != NULL)
7254 + (comp_dir != NULL));
7255 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7256 result_has_children, num_extra_attrs);
7257
7258 /* Copy over the attributes from the stub to the DIE we just read in. */
7259 comp_unit_die = *result_comp_unit_die;
7260 i = comp_unit_die->num_attrs;
7261 if (stmt_list != NULL)
7262 comp_unit_die->attrs[i++] = *stmt_list;
7263 if (low_pc != NULL)
7264 comp_unit_die->attrs[i++] = *low_pc;
7265 if (high_pc != NULL)
7266 comp_unit_die->attrs[i++] = *high_pc;
7267 if (ranges != NULL)
7268 comp_unit_die->attrs[i++] = *ranges;
7269 if (comp_dir != NULL)
7270 comp_unit_die->attrs[i++] = *comp_dir;
7271 comp_unit_die->num_attrs += num_extra_attrs;
7272
7273 if (dwarf_die_debug)
7274 {
7275 fprintf_unfiltered (gdb_stdlog,
7276 "Read die from %s@0x%x of %s:\n",
7277 get_section_name (section),
7278 (unsigned) (begin_info_ptr - section->buffer),
7279 bfd_get_filename (abfd));
7280 dump_die (comp_unit_die, dwarf_die_debug);
7281 }
7282
7283 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7284 TUs by skipping the stub and going directly to the entry in the DWO file.
7285 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7286 to get it via circuitous means. Blech. */
7287 if (comp_dir != NULL)
7288 result_reader->comp_dir = DW_STRING (comp_dir);
7289
7290 /* Skip dummy compilation units. */
7291 if (info_ptr >= begin_info_ptr + dwo_unit->length
7292 || peek_abbrev_code (abfd, info_ptr) == 0)
7293 return 0;
7294
7295 *result_info_ptr = info_ptr;
7296 return 1;
7297 }
7298
7299 /* Subroutine of init_cutu_and_read_dies to simplify it.
7300 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7301 Returns NULL if the specified DWO unit cannot be found. */
7302
7303 static struct dwo_unit *
7304 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7305 struct die_info *comp_unit_die)
7306 {
7307 struct dwarf2_cu *cu = this_cu->cu;
7308 ULONGEST signature;
7309 struct dwo_unit *dwo_unit;
7310 const char *comp_dir, *dwo_name;
7311
7312 gdb_assert (cu != NULL);
7313
7314 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7315 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7316 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7317
7318 if (this_cu->is_debug_types)
7319 {
7320 struct signatured_type *sig_type;
7321
7322 /* Since this_cu is the first member of struct signatured_type,
7323 we can go from a pointer to one to a pointer to the other. */
7324 sig_type = (struct signatured_type *) this_cu;
7325 signature = sig_type->signature;
7326 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7327 }
7328 else
7329 {
7330 struct attribute *attr;
7331
7332 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7333 if (! attr)
7334 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7335 " [in module %s]"),
7336 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7337 signature = DW_UNSND (attr);
7338 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7339 signature);
7340 }
7341
7342 return dwo_unit;
7343 }
7344
7345 /* Subroutine of init_cutu_and_read_dies to simplify it.
7346 See it for a description of the parameters.
7347 Read a TU directly from a DWO file, bypassing the stub. */
7348
7349 static void
7350 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7351 int use_existing_cu, int keep,
7352 die_reader_func_ftype *die_reader_func,
7353 void *data)
7354 {
7355 std::unique_ptr<dwarf2_cu> new_cu;
7356 struct signatured_type *sig_type;
7357 struct die_reader_specs reader;
7358 const gdb_byte *info_ptr;
7359 struct die_info *comp_unit_die;
7360 int has_children;
7361 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7362
7363 /* Verify we can do the following downcast, and that we have the
7364 data we need. */
7365 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7366 sig_type = (struct signatured_type *) this_cu;
7367 gdb_assert (sig_type->dwo_unit != NULL);
7368
7369 if (use_existing_cu && this_cu->cu != NULL)
7370 {
7371 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7372 /* There's no need to do the rereading_dwo_cu handling that
7373 init_cutu_and_read_dies does since we don't read the stub. */
7374 }
7375 else
7376 {
7377 /* If !use_existing_cu, this_cu->cu must be NULL. */
7378 gdb_assert (this_cu->cu == NULL);
7379 new_cu.reset (new dwarf2_cu (this_cu));
7380 }
7381
7382 /* A future optimization, if needed, would be to use an existing
7383 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7384 could share abbrev tables. */
7385
7386 /* The abbreviation table used by READER, this must live at least as long as
7387 READER. */
7388 abbrev_table_up dwo_abbrev_table;
7389
7390 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7391 NULL /* stub_comp_unit_die */,
7392 sig_type->dwo_unit->dwo_file->comp_dir,
7393 &reader, &info_ptr,
7394 &comp_unit_die, &has_children,
7395 &dwo_abbrev_table) == 0)
7396 {
7397 /* Dummy die. */
7398 return;
7399 }
7400
7401 /* All the "real" work is done here. */
7402 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7403
7404 /* This duplicates the code in init_cutu_and_read_dies,
7405 but the alternative is making the latter more complex.
7406 This function is only for the special case of using DWO files directly:
7407 no point in overly complicating the general case just to handle this. */
7408 if (new_cu != NULL && keep)
7409 {
7410 /* Link this CU into read_in_chain. */
7411 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7412 dwarf2_per_objfile->read_in_chain = this_cu;
7413 /* The chain owns it now. */
7414 new_cu.release ();
7415 }
7416 }
7417
7418 /* Initialize a CU (or TU) and read its DIEs.
7419 If the CU defers to a DWO file, read the DWO file as well.
7420
7421 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7422 Otherwise the table specified in the comp unit header is read in and used.
7423 This is an optimization for when we already have the abbrev table.
7424
7425 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7426 Otherwise, a new CU is allocated with xmalloc.
7427
7428 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7429 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7430
7431 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7432 linker) then DIE_READER_FUNC will not get called. */
7433
7434 static void
7435 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7436 struct abbrev_table *abbrev_table,
7437 int use_existing_cu, int keep,
7438 bool skip_partial,
7439 die_reader_func_ftype *die_reader_func,
7440 void *data)
7441 {
7442 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7443 struct objfile *objfile = dwarf2_per_objfile->objfile;
7444 struct dwarf2_section_info *section = this_cu->section;
7445 bfd *abfd = get_section_bfd_owner (section);
7446 struct dwarf2_cu *cu;
7447 const gdb_byte *begin_info_ptr, *info_ptr;
7448 struct die_reader_specs reader;
7449 struct die_info *comp_unit_die;
7450 int has_children;
7451 struct attribute *attr;
7452 struct signatured_type *sig_type = NULL;
7453 struct dwarf2_section_info *abbrev_section;
7454 /* Non-zero if CU currently points to a DWO file and we need to
7455 reread it. When this happens we need to reread the skeleton die
7456 before we can reread the DWO file (this only applies to CUs, not TUs). */
7457 int rereading_dwo_cu = 0;
7458
7459 if (dwarf_die_debug)
7460 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7461 this_cu->is_debug_types ? "type" : "comp",
7462 sect_offset_str (this_cu->sect_off));
7463
7464 if (use_existing_cu)
7465 gdb_assert (keep);
7466
7467 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7468 file (instead of going through the stub), short-circuit all of this. */
7469 if (this_cu->reading_dwo_directly)
7470 {
7471 /* Narrow down the scope of possibilities to have to understand. */
7472 gdb_assert (this_cu->is_debug_types);
7473 gdb_assert (abbrev_table == NULL);
7474 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7475 die_reader_func, data);
7476 return;
7477 }
7478
7479 /* This is cheap if the section is already read in. */
7480 dwarf2_read_section (objfile, section);
7481
7482 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7483
7484 abbrev_section = get_abbrev_section_for_cu (this_cu);
7485
7486 std::unique_ptr<dwarf2_cu> new_cu;
7487 if (use_existing_cu && this_cu->cu != NULL)
7488 {
7489 cu = this_cu->cu;
7490 /* If this CU is from a DWO file we need to start over, we need to
7491 refetch the attributes from the skeleton CU.
7492 This could be optimized by retrieving those attributes from when we
7493 were here the first time: the previous comp_unit_die was stored in
7494 comp_unit_obstack. But there's no data yet that we need this
7495 optimization. */
7496 if (cu->dwo_unit != NULL)
7497 rereading_dwo_cu = 1;
7498 }
7499 else
7500 {
7501 /* If !use_existing_cu, this_cu->cu must be NULL. */
7502 gdb_assert (this_cu->cu == NULL);
7503 new_cu.reset (new dwarf2_cu (this_cu));
7504 cu = new_cu.get ();
7505 }
7506
7507 /* Get the header. */
7508 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7509 {
7510 /* We already have the header, there's no need to read it in again. */
7511 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7512 }
7513 else
7514 {
7515 if (this_cu->is_debug_types)
7516 {
7517 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7518 &cu->header, section,
7519 abbrev_section, info_ptr,
7520 rcuh_kind::TYPE);
7521
7522 /* Since per_cu is the first member of struct signatured_type,
7523 we can go from a pointer to one to a pointer to the other. */
7524 sig_type = (struct signatured_type *) this_cu;
7525 gdb_assert (sig_type->signature == cu->header.signature);
7526 gdb_assert (sig_type->type_offset_in_tu
7527 == cu->header.type_cu_offset_in_tu);
7528 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7529
7530 /* LENGTH has not been set yet for type units if we're
7531 using .gdb_index. */
7532 this_cu->length = get_cu_length (&cu->header);
7533
7534 /* Establish the type offset that can be used to lookup the type. */
7535 sig_type->type_offset_in_section =
7536 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7537
7538 this_cu->dwarf_version = cu->header.version;
7539 }
7540 else
7541 {
7542 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7543 &cu->header, section,
7544 abbrev_section,
7545 info_ptr,
7546 rcuh_kind::COMPILE);
7547
7548 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7549 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7550 this_cu->dwarf_version = cu->header.version;
7551 }
7552 }
7553
7554 /* Skip dummy compilation units. */
7555 if (info_ptr >= begin_info_ptr + this_cu->length
7556 || peek_abbrev_code (abfd, info_ptr) == 0)
7557 return;
7558
7559 /* If we don't have them yet, read the abbrevs for this compilation unit.
7560 And if we need to read them now, make sure they're freed when we're
7561 done (own the table through ABBREV_TABLE_HOLDER). */
7562 abbrev_table_up abbrev_table_holder;
7563 if (abbrev_table != NULL)
7564 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7565 else
7566 {
7567 abbrev_table_holder
7568 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7569 cu->header.abbrev_sect_off);
7570 abbrev_table = abbrev_table_holder.get ();
7571 }
7572
7573 /* Read the top level CU/TU die. */
7574 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7575 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7576
7577 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7578 return;
7579
7580 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7581 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7582 table from the DWO file and pass the ownership over to us. It will be
7583 referenced from READER, so we must make sure to free it after we're done
7584 with READER.
7585
7586 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7587 DWO CU, that this test will fail (the attribute will not be present). */
7588 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7589 abbrev_table_up dwo_abbrev_table;
7590 if (attr)
7591 {
7592 struct dwo_unit *dwo_unit;
7593 struct die_info *dwo_comp_unit_die;
7594
7595 if (has_children)
7596 {
7597 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7598 " has children (offset %s) [in module %s]"),
7599 sect_offset_str (this_cu->sect_off),
7600 bfd_get_filename (abfd));
7601 }
7602 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7603 if (dwo_unit != NULL)
7604 {
7605 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7606 comp_unit_die, NULL,
7607 &reader, &info_ptr,
7608 &dwo_comp_unit_die, &has_children,
7609 &dwo_abbrev_table) == 0)
7610 {
7611 /* Dummy die. */
7612 return;
7613 }
7614 comp_unit_die = dwo_comp_unit_die;
7615 }
7616 else
7617 {
7618 /* Yikes, we couldn't find the rest of the DIE, we only have
7619 the stub. A complaint has already been logged. There's
7620 not much more we can do except pass on the stub DIE to
7621 die_reader_func. We don't want to throw an error on bad
7622 debug info. */
7623 }
7624 }
7625
7626 /* All of the above is setup for this call. Yikes. */
7627 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7628
7629 /* Done, clean up. */
7630 if (new_cu != NULL && keep)
7631 {
7632 /* Link this CU into read_in_chain. */
7633 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7634 dwarf2_per_objfile->read_in_chain = this_cu;
7635 /* The chain owns it now. */
7636 new_cu.release ();
7637 }
7638 }
7639
7640 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7641 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7642 to have already done the lookup to find the DWO file).
7643
7644 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7645 THIS_CU->is_debug_types, but nothing else.
7646
7647 We fill in THIS_CU->length.
7648
7649 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7650 linker) then DIE_READER_FUNC will not get called.
7651
7652 THIS_CU->cu is always freed when done.
7653 This is done in order to not leave THIS_CU->cu in a state where we have
7654 to care whether it refers to the "main" CU or the DWO CU. */
7655
7656 static void
7657 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7658 struct dwo_file *dwo_file,
7659 die_reader_func_ftype *die_reader_func,
7660 void *data)
7661 {
7662 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7663 struct objfile *objfile = dwarf2_per_objfile->objfile;
7664 struct dwarf2_section_info *section = this_cu->section;
7665 bfd *abfd = get_section_bfd_owner (section);
7666 struct dwarf2_section_info *abbrev_section;
7667 const gdb_byte *begin_info_ptr, *info_ptr;
7668 struct die_reader_specs reader;
7669 struct die_info *comp_unit_die;
7670 int has_children;
7671
7672 if (dwarf_die_debug)
7673 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7674 this_cu->is_debug_types ? "type" : "comp",
7675 sect_offset_str (this_cu->sect_off));
7676
7677 gdb_assert (this_cu->cu == NULL);
7678
7679 abbrev_section = (dwo_file != NULL
7680 ? &dwo_file->sections.abbrev
7681 : get_abbrev_section_for_cu (this_cu));
7682
7683 /* This is cheap if the section is already read in. */
7684 dwarf2_read_section (objfile, section);
7685
7686 struct dwarf2_cu cu (this_cu);
7687
7688 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7689 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7690 &cu.header, section,
7691 abbrev_section, info_ptr,
7692 (this_cu->is_debug_types
7693 ? rcuh_kind::TYPE
7694 : rcuh_kind::COMPILE));
7695
7696 this_cu->length = get_cu_length (&cu.header);
7697
7698 /* Skip dummy compilation units. */
7699 if (info_ptr >= begin_info_ptr + this_cu->length
7700 || peek_abbrev_code (abfd, info_ptr) == 0)
7701 return;
7702
7703 abbrev_table_up abbrev_table
7704 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7705 cu.header.abbrev_sect_off);
7706
7707 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7708 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7709
7710 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7711 }
7712
7713 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7714 does not lookup the specified DWO file.
7715 This cannot be used to read DWO files.
7716
7717 THIS_CU->cu is always freed when done.
7718 This is done in order to not leave THIS_CU->cu in a state where we have
7719 to care whether it refers to the "main" CU or the DWO CU.
7720 We can revisit this if the data shows there's a performance issue. */
7721
7722 static void
7723 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7724 die_reader_func_ftype *die_reader_func,
7725 void *data)
7726 {
7727 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7728 }
7729 \f
7730 /* Type Unit Groups.
7731
7732 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7733 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7734 so that all types coming from the same compilation (.o file) are grouped
7735 together. A future step could be to put the types in the same symtab as
7736 the CU the types ultimately came from. */
7737
7738 static hashval_t
7739 hash_type_unit_group (const void *item)
7740 {
7741 const struct type_unit_group *tu_group
7742 = (const struct type_unit_group *) item;
7743
7744 return hash_stmt_list_entry (&tu_group->hash);
7745 }
7746
7747 static int
7748 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7749 {
7750 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7751 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7752
7753 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7754 }
7755
7756 /* Allocate a hash table for type unit groups. */
7757
7758 static htab_t
7759 allocate_type_unit_groups_table (struct objfile *objfile)
7760 {
7761 return htab_create_alloc_ex (3,
7762 hash_type_unit_group,
7763 eq_type_unit_group,
7764 NULL,
7765 &objfile->objfile_obstack,
7766 hashtab_obstack_allocate,
7767 dummy_obstack_deallocate);
7768 }
7769
7770 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7771 partial symtabs. We combine several TUs per psymtab to not let the size
7772 of any one psymtab grow too big. */
7773 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7774 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7775
7776 /* Helper routine for get_type_unit_group.
7777 Create the type_unit_group object used to hold one or more TUs. */
7778
7779 static struct type_unit_group *
7780 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7781 {
7782 struct dwarf2_per_objfile *dwarf2_per_objfile
7783 = cu->per_cu->dwarf2_per_objfile;
7784 struct objfile *objfile = dwarf2_per_objfile->objfile;
7785 struct dwarf2_per_cu_data *per_cu;
7786 struct type_unit_group *tu_group;
7787
7788 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7789 struct type_unit_group);
7790 per_cu = &tu_group->per_cu;
7791 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7792
7793 if (dwarf2_per_objfile->using_index)
7794 {
7795 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7796 struct dwarf2_per_cu_quick_data);
7797 }
7798 else
7799 {
7800 unsigned int line_offset = to_underlying (line_offset_struct);
7801 struct partial_symtab *pst;
7802 std::string name;
7803
7804 /* Give the symtab a useful name for debug purposes. */
7805 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7806 name = string_printf ("<type_units_%d>",
7807 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7808 else
7809 name = string_printf ("<type_units_at_0x%x>", line_offset);
7810
7811 pst = create_partial_symtab (per_cu, name.c_str ());
7812 pst->anonymous = 1;
7813 }
7814
7815 tu_group->hash.dwo_unit = cu->dwo_unit;
7816 tu_group->hash.line_sect_off = line_offset_struct;
7817
7818 return tu_group;
7819 }
7820
7821 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7822 STMT_LIST is a DW_AT_stmt_list attribute. */
7823
7824 static struct type_unit_group *
7825 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7826 {
7827 struct dwarf2_per_objfile *dwarf2_per_objfile
7828 = cu->per_cu->dwarf2_per_objfile;
7829 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7830 struct type_unit_group *tu_group;
7831 void **slot;
7832 unsigned int line_offset;
7833 struct type_unit_group type_unit_group_for_lookup;
7834
7835 if (dwarf2_per_objfile->type_unit_groups == NULL)
7836 {
7837 dwarf2_per_objfile->type_unit_groups =
7838 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7839 }
7840
7841 /* Do we need to create a new group, or can we use an existing one? */
7842
7843 if (stmt_list)
7844 {
7845 line_offset = DW_UNSND (stmt_list);
7846 ++tu_stats->nr_symtab_sharers;
7847 }
7848 else
7849 {
7850 /* Ugh, no stmt_list. Rare, but we have to handle it.
7851 We can do various things here like create one group per TU or
7852 spread them over multiple groups to split up the expansion work.
7853 To avoid worst case scenarios (too many groups or too large groups)
7854 we, umm, group them in bunches. */
7855 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7856 | (tu_stats->nr_stmt_less_type_units
7857 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7858 ++tu_stats->nr_stmt_less_type_units;
7859 }
7860
7861 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7862 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7863 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7864 &type_unit_group_for_lookup, INSERT);
7865 if (*slot != NULL)
7866 {
7867 tu_group = (struct type_unit_group *) *slot;
7868 gdb_assert (tu_group != NULL);
7869 }
7870 else
7871 {
7872 sect_offset line_offset_struct = (sect_offset) line_offset;
7873 tu_group = create_type_unit_group (cu, line_offset_struct);
7874 *slot = tu_group;
7875 ++tu_stats->nr_symtabs;
7876 }
7877
7878 return tu_group;
7879 }
7880 \f
7881 /* Partial symbol tables. */
7882
7883 /* Create a psymtab named NAME and assign it to PER_CU.
7884
7885 The caller must fill in the following details:
7886 dirname, textlow, texthigh. */
7887
7888 static struct partial_symtab *
7889 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7890 {
7891 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7892 struct partial_symtab *pst;
7893
7894 pst = start_psymtab_common (objfile, name, 0);
7895
7896 pst->psymtabs_addrmap_supported = 1;
7897
7898 /* This is the glue that links PST into GDB's symbol API. */
7899 pst->read_symtab_private = per_cu;
7900 pst->read_symtab = dwarf2_read_symtab;
7901 per_cu->v.psymtab = pst;
7902
7903 return pst;
7904 }
7905
7906 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7907 type. */
7908
7909 struct process_psymtab_comp_unit_data
7910 {
7911 /* True if we are reading a DW_TAG_partial_unit. */
7912
7913 int want_partial_unit;
7914
7915 /* The "pretend" language that is used if the CU doesn't declare a
7916 language. */
7917
7918 enum language pretend_language;
7919 };
7920
7921 /* die_reader_func for process_psymtab_comp_unit. */
7922
7923 static void
7924 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7925 const gdb_byte *info_ptr,
7926 struct die_info *comp_unit_die,
7927 int has_children,
7928 void *data)
7929 {
7930 struct dwarf2_cu *cu = reader->cu;
7931 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7932 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7933 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7934 CORE_ADDR baseaddr;
7935 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7936 struct partial_symtab *pst;
7937 enum pc_bounds_kind cu_bounds_kind;
7938 const char *filename;
7939 struct process_psymtab_comp_unit_data *info
7940 = (struct process_psymtab_comp_unit_data *) data;
7941
7942 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7943 return;
7944
7945 gdb_assert (! per_cu->is_debug_types);
7946
7947 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7948
7949 /* Allocate a new partial symbol table structure. */
7950 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7951 if (filename == NULL)
7952 filename = "";
7953
7954 pst = create_partial_symtab (per_cu, filename);
7955
7956 /* This must be done before calling dwarf2_build_include_psymtabs. */
7957 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7958
7959 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7960
7961 dwarf2_find_base_address (comp_unit_die, cu);
7962
7963 /* Possibly set the default values of LOWPC and HIGHPC from
7964 `DW_AT_ranges'. */
7965 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7966 &best_highpc, cu, pst);
7967 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7968 {
7969 CORE_ADDR low
7970 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7971 - baseaddr);
7972 CORE_ADDR high
7973 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7974 - baseaddr - 1);
7975 /* Store the contiguous range if it is not empty; it can be
7976 empty for CUs with no code. */
7977 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7978 low, high, pst);
7979 }
7980
7981 /* Check if comp unit has_children.
7982 If so, read the rest of the partial symbols from this comp unit.
7983 If not, there's no more debug_info for this comp unit. */
7984 if (has_children)
7985 {
7986 struct partial_die_info *first_die;
7987 CORE_ADDR lowpc, highpc;
7988
7989 lowpc = ((CORE_ADDR) -1);
7990 highpc = ((CORE_ADDR) 0);
7991
7992 first_die = load_partial_dies (reader, info_ptr, 1);
7993
7994 scan_partial_symbols (first_die, &lowpc, &highpc,
7995 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7996
7997 /* If we didn't find a lowpc, set it to highpc to avoid
7998 complaints from `maint check'. */
7999 if (lowpc == ((CORE_ADDR) -1))
8000 lowpc = highpc;
8001
8002 /* If the compilation unit didn't have an explicit address range,
8003 then use the information extracted from its child dies. */
8004 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8005 {
8006 best_lowpc = lowpc;
8007 best_highpc = highpc;
8008 }
8009 }
8010 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8011 best_lowpc + baseaddr)
8012 - baseaddr);
8013 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8014 best_highpc + baseaddr)
8015 - baseaddr);
8016
8017 end_psymtab_common (objfile, pst);
8018
8019 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8020 {
8021 int i;
8022 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8023 struct dwarf2_per_cu_data *iter;
8024
8025 /* Fill in 'dependencies' here; we fill in 'users' in a
8026 post-pass. */
8027 pst->number_of_dependencies = len;
8028 pst->dependencies
8029 = objfile->partial_symtabs->allocate_dependencies (len);
8030 for (i = 0;
8031 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8032 i, iter);
8033 ++i)
8034 pst->dependencies[i] = iter->v.psymtab;
8035
8036 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8037 }
8038
8039 /* Get the list of files included in the current compilation unit,
8040 and build a psymtab for each of them. */
8041 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8042
8043 if (dwarf_read_debug)
8044 fprintf_unfiltered (gdb_stdlog,
8045 "Psymtab for %s unit @%s: %s - %s"
8046 ", %d global, %d static syms\n",
8047 per_cu->is_debug_types ? "type" : "comp",
8048 sect_offset_str (per_cu->sect_off),
8049 paddress (gdbarch, pst->text_low (objfile)),
8050 paddress (gdbarch, pst->text_high (objfile)),
8051 pst->n_global_syms, pst->n_static_syms);
8052 }
8053
8054 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8055 Process compilation unit THIS_CU for a psymtab. */
8056
8057 static void
8058 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8059 int want_partial_unit,
8060 enum language pretend_language)
8061 {
8062 /* If this compilation unit was already read in, free the
8063 cached copy in order to read it in again. This is
8064 necessary because we skipped some symbols when we first
8065 read in the compilation unit (see load_partial_dies).
8066 This problem could be avoided, but the benefit is unclear. */
8067 if (this_cu->cu != NULL)
8068 free_one_cached_comp_unit (this_cu);
8069
8070 if (this_cu->is_debug_types)
8071 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8072 build_type_psymtabs_reader, NULL);
8073 else
8074 {
8075 process_psymtab_comp_unit_data info;
8076 info.want_partial_unit = want_partial_unit;
8077 info.pretend_language = pretend_language;
8078 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8079 process_psymtab_comp_unit_reader, &info);
8080 }
8081
8082 /* Age out any secondary CUs. */
8083 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8084 }
8085
8086 /* Reader function for build_type_psymtabs. */
8087
8088 static void
8089 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8090 const gdb_byte *info_ptr,
8091 struct die_info *type_unit_die,
8092 int has_children,
8093 void *data)
8094 {
8095 struct dwarf2_per_objfile *dwarf2_per_objfile
8096 = reader->cu->per_cu->dwarf2_per_objfile;
8097 struct objfile *objfile = dwarf2_per_objfile->objfile;
8098 struct dwarf2_cu *cu = reader->cu;
8099 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8100 struct signatured_type *sig_type;
8101 struct type_unit_group *tu_group;
8102 struct attribute *attr;
8103 struct partial_die_info *first_die;
8104 CORE_ADDR lowpc, highpc;
8105 struct partial_symtab *pst;
8106
8107 gdb_assert (data == NULL);
8108 gdb_assert (per_cu->is_debug_types);
8109 sig_type = (struct signatured_type *) per_cu;
8110
8111 if (! has_children)
8112 return;
8113
8114 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8115 tu_group = get_type_unit_group (cu, attr);
8116
8117 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8118
8119 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8120 pst = create_partial_symtab (per_cu, "");
8121 pst->anonymous = 1;
8122
8123 first_die = load_partial_dies (reader, info_ptr, 1);
8124
8125 lowpc = (CORE_ADDR) -1;
8126 highpc = (CORE_ADDR) 0;
8127 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8128
8129 end_psymtab_common (objfile, pst);
8130 }
8131
8132 /* Struct used to sort TUs by their abbreviation table offset. */
8133
8134 struct tu_abbrev_offset
8135 {
8136 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8137 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8138 {}
8139
8140 signatured_type *sig_type;
8141 sect_offset abbrev_offset;
8142 };
8143
8144 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8145
8146 static bool
8147 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8148 const struct tu_abbrev_offset &b)
8149 {
8150 return a.abbrev_offset < b.abbrev_offset;
8151 }
8152
8153 /* Efficiently read all the type units.
8154 This does the bulk of the work for build_type_psymtabs.
8155
8156 The efficiency is because we sort TUs by the abbrev table they use and
8157 only read each abbrev table once. In one program there are 200K TUs
8158 sharing 8K abbrev tables.
8159
8160 The main purpose of this function is to support building the
8161 dwarf2_per_objfile->type_unit_groups table.
8162 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8163 can collapse the search space by grouping them by stmt_list.
8164 The savings can be significant, in the same program from above the 200K TUs
8165 share 8K stmt_list tables.
8166
8167 FUNC is expected to call get_type_unit_group, which will create the
8168 struct type_unit_group if necessary and add it to
8169 dwarf2_per_objfile->type_unit_groups. */
8170
8171 static void
8172 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8173 {
8174 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8175 abbrev_table_up abbrev_table;
8176 sect_offset abbrev_offset;
8177
8178 /* It's up to the caller to not call us multiple times. */
8179 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8180
8181 if (dwarf2_per_objfile->all_type_units.empty ())
8182 return;
8183
8184 /* TUs typically share abbrev tables, and there can be way more TUs than
8185 abbrev tables. Sort by abbrev table to reduce the number of times we
8186 read each abbrev table in.
8187 Alternatives are to punt or to maintain a cache of abbrev tables.
8188 This is simpler and efficient enough for now.
8189
8190 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8191 symtab to use). Typically TUs with the same abbrev offset have the same
8192 stmt_list value too so in practice this should work well.
8193
8194 The basic algorithm here is:
8195
8196 sort TUs by abbrev table
8197 for each TU with same abbrev table:
8198 read abbrev table if first user
8199 read TU top level DIE
8200 [IWBN if DWO skeletons had DW_AT_stmt_list]
8201 call FUNC */
8202
8203 if (dwarf_read_debug)
8204 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8205
8206 /* Sort in a separate table to maintain the order of all_type_units
8207 for .gdb_index: TU indices directly index all_type_units. */
8208 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8209 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8210
8211 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8212 sorted_by_abbrev.emplace_back
8213 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8214 sig_type->per_cu.section,
8215 sig_type->per_cu.sect_off));
8216
8217 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8218 sort_tu_by_abbrev_offset);
8219
8220 abbrev_offset = (sect_offset) ~(unsigned) 0;
8221
8222 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8223 {
8224 /* Switch to the next abbrev table if necessary. */
8225 if (abbrev_table == NULL
8226 || tu.abbrev_offset != abbrev_offset)
8227 {
8228 abbrev_offset = tu.abbrev_offset;
8229 abbrev_table =
8230 abbrev_table_read_table (dwarf2_per_objfile,
8231 &dwarf2_per_objfile->abbrev,
8232 abbrev_offset);
8233 ++tu_stats->nr_uniq_abbrev_tables;
8234 }
8235
8236 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8237 0, 0, false, build_type_psymtabs_reader, NULL);
8238 }
8239 }
8240
8241 /* Print collected type unit statistics. */
8242
8243 static void
8244 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8245 {
8246 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8247
8248 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8249 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8250 dwarf2_per_objfile->all_type_units.size ());
8251 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8252 tu_stats->nr_uniq_abbrev_tables);
8253 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8254 tu_stats->nr_symtabs);
8255 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8256 tu_stats->nr_symtab_sharers);
8257 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8258 tu_stats->nr_stmt_less_type_units);
8259 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8260 tu_stats->nr_all_type_units_reallocs);
8261 }
8262
8263 /* Traversal function for build_type_psymtabs. */
8264
8265 static int
8266 build_type_psymtab_dependencies (void **slot, void *info)
8267 {
8268 struct dwarf2_per_objfile *dwarf2_per_objfile
8269 = (struct dwarf2_per_objfile *) info;
8270 struct objfile *objfile = dwarf2_per_objfile->objfile;
8271 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8272 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8273 struct partial_symtab *pst = per_cu->v.psymtab;
8274 int len = VEC_length (sig_type_ptr, tu_group->tus);
8275 struct signatured_type *iter;
8276 int i;
8277
8278 gdb_assert (len > 0);
8279 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8280
8281 pst->number_of_dependencies = len;
8282 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8283 for (i = 0;
8284 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8285 ++i)
8286 {
8287 gdb_assert (iter->per_cu.is_debug_types);
8288 pst->dependencies[i] = iter->per_cu.v.psymtab;
8289 iter->type_unit_group = tu_group;
8290 }
8291
8292 VEC_free (sig_type_ptr, tu_group->tus);
8293
8294 return 1;
8295 }
8296
8297 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8298 Build partial symbol tables for the .debug_types comp-units. */
8299
8300 static void
8301 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8302 {
8303 if (! create_all_type_units (dwarf2_per_objfile))
8304 return;
8305
8306 build_type_psymtabs_1 (dwarf2_per_objfile);
8307 }
8308
8309 /* Traversal function for process_skeletonless_type_unit.
8310 Read a TU in a DWO file and build partial symbols for it. */
8311
8312 static int
8313 process_skeletonless_type_unit (void **slot, void *info)
8314 {
8315 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8316 struct dwarf2_per_objfile *dwarf2_per_objfile
8317 = (struct dwarf2_per_objfile *) info;
8318 struct signatured_type find_entry, *entry;
8319
8320 /* If this TU doesn't exist in the global table, add it and read it in. */
8321
8322 if (dwarf2_per_objfile->signatured_types == NULL)
8323 {
8324 dwarf2_per_objfile->signatured_types
8325 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8326 }
8327
8328 find_entry.signature = dwo_unit->signature;
8329 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8330 INSERT);
8331 /* If we've already seen this type there's nothing to do. What's happening
8332 is we're doing our own version of comdat-folding here. */
8333 if (*slot != NULL)
8334 return 1;
8335
8336 /* This does the job that create_all_type_units would have done for
8337 this TU. */
8338 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8339 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8340 *slot = entry;
8341
8342 /* This does the job that build_type_psymtabs_1 would have done. */
8343 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8344 build_type_psymtabs_reader, NULL);
8345
8346 return 1;
8347 }
8348
8349 /* Traversal function for process_skeletonless_type_units. */
8350
8351 static int
8352 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8353 {
8354 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8355
8356 if (dwo_file->tus != NULL)
8357 {
8358 htab_traverse_noresize (dwo_file->tus,
8359 process_skeletonless_type_unit, info);
8360 }
8361
8362 return 1;
8363 }
8364
8365 /* Scan all TUs of DWO files, verifying we've processed them.
8366 This is needed in case a TU was emitted without its skeleton.
8367 Note: This can't be done until we know what all the DWO files are. */
8368
8369 static void
8370 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8371 {
8372 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8373 if (get_dwp_file (dwarf2_per_objfile) == NULL
8374 && dwarf2_per_objfile->dwo_files != NULL)
8375 {
8376 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8377 process_dwo_file_for_skeletonless_type_units,
8378 dwarf2_per_objfile);
8379 }
8380 }
8381
8382 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8383
8384 static void
8385 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8386 {
8387 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8388 {
8389 struct partial_symtab *pst = per_cu->v.psymtab;
8390
8391 if (pst == NULL)
8392 continue;
8393
8394 for (int j = 0; j < pst->number_of_dependencies; ++j)
8395 {
8396 /* Set the 'user' field only if it is not already set. */
8397 if (pst->dependencies[j]->user == NULL)
8398 pst->dependencies[j]->user = pst;
8399 }
8400 }
8401 }
8402
8403 /* Build the partial symbol table by doing a quick pass through the
8404 .debug_info and .debug_abbrev sections. */
8405
8406 static void
8407 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8408 {
8409 struct objfile *objfile = dwarf2_per_objfile->objfile;
8410
8411 if (dwarf_read_debug)
8412 {
8413 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8414 objfile_name (objfile));
8415 }
8416
8417 dwarf2_per_objfile->reading_partial_symbols = 1;
8418
8419 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8420
8421 /* Any cached compilation units will be linked by the per-objfile
8422 read_in_chain. Make sure to free them when we're done. */
8423 free_cached_comp_units freer (dwarf2_per_objfile);
8424
8425 build_type_psymtabs (dwarf2_per_objfile);
8426
8427 create_all_comp_units (dwarf2_per_objfile);
8428
8429 /* Create a temporary address map on a temporary obstack. We later
8430 copy this to the final obstack. */
8431 auto_obstack temp_obstack;
8432
8433 scoped_restore save_psymtabs_addrmap
8434 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8435 addrmap_create_mutable (&temp_obstack));
8436
8437 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8438 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8439
8440 /* This has to wait until we read the CUs, we need the list of DWOs. */
8441 process_skeletonless_type_units (dwarf2_per_objfile);
8442
8443 /* Now that all TUs have been processed we can fill in the dependencies. */
8444 if (dwarf2_per_objfile->type_unit_groups != NULL)
8445 {
8446 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8447 build_type_psymtab_dependencies, dwarf2_per_objfile);
8448 }
8449
8450 if (dwarf_read_debug)
8451 print_tu_stats (dwarf2_per_objfile);
8452
8453 set_partial_user (dwarf2_per_objfile);
8454
8455 objfile->partial_symtabs->psymtabs_addrmap
8456 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8457 objfile->partial_symtabs->obstack ());
8458 /* At this point we want to keep the address map. */
8459 save_psymtabs_addrmap.release ();
8460
8461 if (dwarf_read_debug)
8462 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8463 objfile_name (objfile));
8464 }
8465
8466 /* die_reader_func for load_partial_comp_unit. */
8467
8468 static void
8469 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8470 const gdb_byte *info_ptr,
8471 struct die_info *comp_unit_die,
8472 int has_children,
8473 void *data)
8474 {
8475 struct dwarf2_cu *cu = reader->cu;
8476
8477 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8478
8479 /* Check if comp unit has_children.
8480 If so, read the rest of the partial symbols from this comp unit.
8481 If not, there's no more debug_info for this comp unit. */
8482 if (has_children)
8483 load_partial_dies (reader, info_ptr, 0);
8484 }
8485
8486 /* Load the partial DIEs for a secondary CU into memory.
8487 This is also used when rereading a primary CU with load_all_dies. */
8488
8489 static void
8490 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8491 {
8492 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8493 load_partial_comp_unit_reader, NULL);
8494 }
8495
8496 static void
8497 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8498 struct dwarf2_section_info *section,
8499 struct dwarf2_section_info *abbrev_section,
8500 unsigned int is_dwz)
8501 {
8502 const gdb_byte *info_ptr;
8503 struct objfile *objfile = dwarf2_per_objfile->objfile;
8504
8505 if (dwarf_read_debug)
8506 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8507 get_section_name (section),
8508 get_section_file_name (section));
8509
8510 dwarf2_read_section (objfile, section);
8511
8512 info_ptr = section->buffer;
8513
8514 while (info_ptr < section->buffer + section->size)
8515 {
8516 struct dwarf2_per_cu_data *this_cu;
8517
8518 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8519
8520 comp_unit_head cu_header;
8521 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8522 abbrev_section, info_ptr,
8523 rcuh_kind::COMPILE);
8524
8525 /* Save the compilation unit for later lookup. */
8526 if (cu_header.unit_type != DW_UT_type)
8527 {
8528 this_cu = XOBNEW (&objfile->objfile_obstack,
8529 struct dwarf2_per_cu_data);
8530 memset (this_cu, 0, sizeof (*this_cu));
8531 }
8532 else
8533 {
8534 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8535 struct signatured_type);
8536 memset (sig_type, 0, sizeof (*sig_type));
8537 sig_type->signature = cu_header.signature;
8538 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8539 this_cu = &sig_type->per_cu;
8540 }
8541 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8542 this_cu->sect_off = sect_off;
8543 this_cu->length = cu_header.length + cu_header.initial_length_size;
8544 this_cu->is_dwz = is_dwz;
8545 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8546 this_cu->section = section;
8547
8548 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8549
8550 info_ptr = info_ptr + this_cu->length;
8551 }
8552 }
8553
8554 /* Create a list of all compilation units in OBJFILE.
8555 This is only done for -readnow and building partial symtabs. */
8556
8557 static void
8558 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8559 {
8560 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8561 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8562 &dwarf2_per_objfile->abbrev, 0);
8563
8564 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8565 if (dwz != NULL)
8566 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8567 1);
8568 }
8569
8570 /* Process all loaded DIEs for compilation unit CU, starting at
8571 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8572 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8573 DW_AT_ranges). See the comments of add_partial_subprogram on how
8574 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8575
8576 static void
8577 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8578 CORE_ADDR *highpc, int set_addrmap,
8579 struct dwarf2_cu *cu)
8580 {
8581 struct partial_die_info *pdi;
8582
8583 /* Now, march along the PDI's, descending into ones which have
8584 interesting children but skipping the children of the other ones,
8585 until we reach the end of the compilation unit. */
8586
8587 pdi = first_die;
8588
8589 while (pdi != NULL)
8590 {
8591 pdi->fixup (cu);
8592
8593 /* Anonymous namespaces or modules have no name but have interesting
8594 children, so we need to look at them. Ditto for anonymous
8595 enums. */
8596
8597 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8598 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8599 || pdi->tag == DW_TAG_imported_unit
8600 || pdi->tag == DW_TAG_inlined_subroutine)
8601 {
8602 switch (pdi->tag)
8603 {
8604 case DW_TAG_subprogram:
8605 case DW_TAG_inlined_subroutine:
8606 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8607 break;
8608 case DW_TAG_constant:
8609 case DW_TAG_variable:
8610 case DW_TAG_typedef:
8611 case DW_TAG_union_type:
8612 if (!pdi->is_declaration)
8613 {
8614 add_partial_symbol (pdi, cu);
8615 }
8616 break;
8617 case DW_TAG_class_type:
8618 case DW_TAG_interface_type:
8619 case DW_TAG_structure_type:
8620 if (!pdi->is_declaration)
8621 {
8622 add_partial_symbol (pdi, cu);
8623 }
8624 if ((cu->language == language_rust
8625 || cu->language == language_cplus) && pdi->has_children)
8626 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8627 set_addrmap, cu);
8628 break;
8629 case DW_TAG_enumeration_type:
8630 if (!pdi->is_declaration)
8631 add_partial_enumeration (pdi, cu);
8632 break;
8633 case DW_TAG_base_type:
8634 case DW_TAG_subrange_type:
8635 /* File scope base type definitions are added to the partial
8636 symbol table. */
8637 add_partial_symbol (pdi, cu);
8638 break;
8639 case DW_TAG_namespace:
8640 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8641 break;
8642 case DW_TAG_module:
8643 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8644 break;
8645 case DW_TAG_imported_unit:
8646 {
8647 struct dwarf2_per_cu_data *per_cu;
8648
8649 /* For now we don't handle imported units in type units. */
8650 if (cu->per_cu->is_debug_types)
8651 {
8652 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8653 " supported in type units [in module %s]"),
8654 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8655 }
8656
8657 per_cu = dwarf2_find_containing_comp_unit
8658 (pdi->d.sect_off, pdi->is_dwz,
8659 cu->per_cu->dwarf2_per_objfile);
8660
8661 /* Go read the partial unit, if needed. */
8662 if (per_cu->v.psymtab == NULL)
8663 process_psymtab_comp_unit (per_cu, 1, cu->language);
8664
8665 VEC_safe_push (dwarf2_per_cu_ptr,
8666 cu->per_cu->imported_symtabs, per_cu);
8667 }
8668 break;
8669 case DW_TAG_imported_declaration:
8670 add_partial_symbol (pdi, cu);
8671 break;
8672 default:
8673 break;
8674 }
8675 }
8676
8677 /* If the die has a sibling, skip to the sibling. */
8678
8679 pdi = pdi->die_sibling;
8680 }
8681 }
8682
8683 /* Functions used to compute the fully scoped name of a partial DIE.
8684
8685 Normally, this is simple. For C++, the parent DIE's fully scoped
8686 name is concatenated with "::" and the partial DIE's name.
8687 Enumerators are an exception; they use the scope of their parent
8688 enumeration type, i.e. the name of the enumeration type is not
8689 prepended to the enumerator.
8690
8691 There are two complexities. One is DW_AT_specification; in this
8692 case "parent" means the parent of the target of the specification,
8693 instead of the direct parent of the DIE. The other is compilers
8694 which do not emit DW_TAG_namespace; in this case we try to guess
8695 the fully qualified name of structure types from their members'
8696 linkage names. This must be done using the DIE's children rather
8697 than the children of any DW_AT_specification target. We only need
8698 to do this for structures at the top level, i.e. if the target of
8699 any DW_AT_specification (if any; otherwise the DIE itself) does not
8700 have a parent. */
8701
8702 /* Compute the scope prefix associated with PDI's parent, in
8703 compilation unit CU. The result will be allocated on CU's
8704 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8705 field. NULL is returned if no prefix is necessary. */
8706 static const char *
8707 partial_die_parent_scope (struct partial_die_info *pdi,
8708 struct dwarf2_cu *cu)
8709 {
8710 const char *grandparent_scope;
8711 struct partial_die_info *parent, *real_pdi;
8712
8713 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8714 then this means the parent of the specification DIE. */
8715
8716 real_pdi = pdi;
8717 while (real_pdi->has_specification)
8718 {
8719 auto res = find_partial_die (real_pdi->spec_offset,
8720 real_pdi->spec_is_dwz, cu);
8721 real_pdi = res.pdi;
8722 cu = res.cu;
8723 }
8724
8725 parent = real_pdi->die_parent;
8726 if (parent == NULL)
8727 return NULL;
8728
8729 if (parent->scope_set)
8730 return parent->scope;
8731
8732 parent->fixup (cu);
8733
8734 grandparent_scope = partial_die_parent_scope (parent, cu);
8735
8736 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8737 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8738 Work around this problem here. */
8739 if (cu->language == language_cplus
8740 && parent->tag == DW_TAG_namespace
8741 && strcmp (parent->name, "::") == 0
8742 && grandparent_scope == NULL)
8743 {
8744 parent->scope = NULL;
8745 parent->scope_set = 1;
8746 return NULL;
8747 }
8748
8749 if (pdi->tag == DW_TAG_enumerator)
8750 /* Enumerators should not get the name of the enumeration as a prefix. */
8751 parent->scope = grandparent_scope;
8752 else if (parent->tag == DW_TAG_namespace
8753 || parent->tag == DW_TAG_module
8754 || parent->tag == DW_TAG_structure_type
8755 || parent->tag == DW_TAG_class_type
8756 || parent->tag == DW_TAG_interface_type
8757 || parent->tag == DW_TAG_union_type
8758 || parent->tag == DW_TAG_enumeration_type)
8759 {
8760 if (grandparent_scope == NULL)
8761 parent->scope = parent->name;
8762 else
8763 parent->scope = typename_concat (&cu->comp_unit_obstack,
8764 grandparent_scope,
8765 parent->name, 0, cu);
8766 }
8767 else
8768 {
8769 /* FIXME drow/2004-04-01: What should we be doing with
8770 function-local names? For partial symbols, we should probably be
8771 ignoring them. */
8772 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8773 dwarf_tag_name (parent->tag),
8774 sect_offset_str (pdi->sect_off));
8775 parent->scope = grandparent_scope;
8776 }
8777
8778 parent->scope_set = 1;
8779 return parent->scope;
8780 }
8781
8782 /* Return the fully scoped name associated with PDI, from compilation unit
8783 CU. The result will be allocated with malloc. */
8784
8785 static char *
8786 partial_die_full_name (struct partial_die_info *pdi,
8787 struct dwarf2_cu *cu)
8788 {
8789 const char *parent_scope;
8790
8791 /* If this is a template instantiation, we can not work out the
8792 template arguments from partial DIEs. So, unfortunately, we have
8793 to go through the full DIEs. At least any work we do building
8794 types here will be reused if full symbols are loaded later. */
8795 if (pdi->has_template_arguments)
8796 {
8797 pdi->fixup (cu);
8798
8799 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8800 {
8801 struct die_info *die;
8802 struct attribute attr;
8803 struct dwarf2_cu *ref_cu = cu;
8804
8805 /* DW_FORM_ref_addr is using section offset. */
8806 attr.name = (enum dwarf_attribute) 0;
8807 attr.form = DW_FORM_ref_addr;
8808 attr.u.unsnd = to_underlying (pdi->sect_off);
8809 die = follow_die_ref (NULL, &attr, &ref_cu);
8810
8811 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8812 }
8813 }
8814
8815 parent_scope = partial_die_parent_scope (pdi, cu);
8816 if (parent_scope == NULL)
8817 return NULL;
8818 else
8819 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8820 }
8821
8822 static void
8823 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8824 {
8825 struct dwarf2_per_objfile *dwarf2_per_objfile
8826 = cu->per_cu->dwarf2_per_objfile;
8827 struct objfile *objfile = dwarf2_per_objfile->objfile;
8828 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8829 CORE_ADDR addr = 0;
8830 const char *actual_name = NULL;
8831 CORE_ADDR baseaddr;
8832 char *built_actual_name;
8833
8834 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8835
8836 built_actual_name = partial_die_full_name (pdi, cu);
8837 if (built_actual_name != NULL)
8838 actual_name = built_actual_name;
8839
8840 if (actual_name == NULL)
8841 actual_name = pdi->name;
8842
8843 switch (pdi->tag)
8844 {
8845 case DW_TAG_inlined_subroutine:
8846 case DW_TAG_subprogram:
8847 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8848 - baseaddr);
8849 if (pdi->is_external || cu->language == language_ada)
8850 {
8851 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8852 of the global scope. But in Ada, we want to be able to access
8853 nested procedures globally. So all Ada subprograms are stored
8854 in the global scope. */
8855 add_psymbol_to_list (actual_name, strlen (actual_name),
8856 built_actual_name != NULL,
8857 VAR_DOMAIN, LOC_BLOCK,
8858 SECT_OFF_TEXT (objfile),
8859 psymbol_placement::GLOBAL,
8860 addr,
8861 cu->language, objfile);
8862 }
8863 else
8864 {
8865 add_psymbol_to_list (actual_name, strlen (actual_name),
8866 built_actual_name != NULL,
8867 VAR_DOMAIN, LOC_BLOCK,
8868 SECT_OFF_TEXT (objfile),
8869 psymbol_placement::STATIC,
8870 addr, cu->language, objfile);
8871 }
8872
8873 if (pdi->main_subprogram && actual_name != NULL)
8874 set_objfile_main_name (objfile, actual_name, cu->language);
8875 break;
8876 case DW_TAG_constant:
8877 add_psymbol_to_list (actual_name, strlen (actual_name),
8878 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8879 -1, (pdi->is_external
8880 ? psymbol_placement::GLOBAL
8881 : psymbol_placement::STATIC),
8882 0, cu->language, objfile);
8883 break;
8884 case DW_TAG_variable:
8885 if (pdi->d.locdesc)
8886 addr = decode_locdesc (pdi->d.locdesc, cu);
8887
8888 if (pdi->d.locdesc
8889 && addr == 0
8890 && !dwarf2_per_objfile->has_section_at_zero)
8891 {
8892 /* A global or static variable may also have been stripped
8893 out by the linker if unused, in which case its address
8894 will be nullified; do not add such variables into partial
8895 symbol table then. */
8896 }
8897 else if (pdi->is_external)
8898 {
8899 /* Global Variable.
8900 Don't enter into the minimal symbol tables as there is
8901 a minimal symbol table entry from the ELF symbols already.
8902 Enter into partial symbol table if it has a location
8903 descriptor or a type.
8904 If the location descriptor is missing, new_symbol will create
8905 a LOC_UNRESOLVED symbol, the address of the variable will then
8906 be determined from the minimal symbol table whenever the variable
8907 is referenced.
8908 The address for the partial symbol table entry is not
8909 used by GDB, but it comes in handy for debugging partial symbol
8910 table building. */
8911
8912 if (pdi->d.locdesc || pdi->has_type)
8913 add_psymbol_to_list (actual_name, strlen (actual_name),
8914 built_actual_name != NULL,
8915 VAR_DOMAIN, LOC_STATIC,
8916 SECT_OFF_TEXT (objfile),
8917 psymbol_placement::GLOBAL,
8918 addr, cu->language, objfile);
8919 }
8920 else
8921 {
8922 int has_loc = pdi->d.locdesc != NULL;
8923
8924 /* Static Variable. Skip symbols whose value we cannot know (those
8925 without location descriptors or constant values). */
8926 if (!has_loc && !pdi->has_const_value)
8927 {
8928 xfree (built_actual_name);
8929 return;
8930 }
8931
8932 add_psymbol_to_list (actual_name, strlen (actual_name),
8933 built_actual_name != NULL,
8934 VAR_DOMAIN, LOC_STATIC,
8935 SECT_OFF_TEXT (objfile),
8936 psymbol_placement::STATIC,
8937 has_loc ? addr : 0,
8938 cu->language, objfile);
8939 }
8940 break;
8941 case DW_TAG_typedef:
8942 case DW_TAG_base_type:
8943 case DW_TAG_subrange_type:
8944 add_psymbol_to_list (actual_name, strlen (actual_name),
8945 built_actual_name != NULL,
8946 VAR_DOMAIN, LOC_TYPEDEF, -1,
8947 psymbol_placement::STATIC,
8948 0, cu->language, objfile);
8949 break;
8950 case DW_TAG_imported_declaration:
8951 case DW_TAG_namespace:
8952 add_psymbol_to_list (actual_name, strlen (actual_name),
8953 built_actual_name != NULL,
8954 VAR_DOMAIN, LOC_TYPEDEF, -1,
8955 psymbol_placement::GLOBAL,
8956 0, cu->language, objfile);
8957 break;
8958 case DW_TAG_module:
8959 /* With Fortran 77 there might be a "BLOCK DATA" module
8960 available without any name. If so, we skip the module as it
8961 doesn't bring any value. */
8962 if (actual_name != nullptr)
8963 add_psymbol_to_list (actual_name, strlen (actual_name),
8964 built_actual_name != NULL,
8965 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8966 psymbol_placement::GLOBAL,
8967 0, cu->language, objfile);
8968 break;
8969 case DW_TAG_class_type:
8970 case DW_TAG_interface_type:
8971 case DW_TAG_structure_type:
8972 case DW_TAG_union_type:
8973 case DW_TAG_enumeration_type:
8974 /* Skip external references. The DWARF standard says in the section
8975 about "Structure, Union, and Class Type Entries": "An incomplete
8976 structure, union or class type is represented by a structure,
8977 union or class entry that does not have a byte size attribute
8978 and that has a DW_AT_declaration attribute." */
8979 if (!pdi->has_byte_size && pdi->is_declaration)
8980 {
8981 xfree (built_actual_name);
8982 return;
8983 }
8984
8985 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8986 static vs. global. */
8987 add_psymbol_to_list (actual_name, strlen (actual_name),
8988 built_actual_name != NULL,
8989 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8990 cu->language == language_cplus
8991 ? psymbol_placement::GLOBAL
8992 : psymbol_placement::STATIC,
8993 0, cu->language, objfile);
8994
8995 break;
8996 case DW_TAG_enumerator:
8997 add_psymbol_to_list (actual_name, strlen (actual_name),
8998 built_actual_name != NULL,
8999 VAR_DOMAIN, LOC_CONST, -1,
9000 cu->language == language_cplus
9001 ? psymbol_placement::GLOBAL
9002 : psymbol_placement::STATIC,
9003 0, cu->language, objfile);
9004 break;
9005 default:
9006 break;
9007 }
9008
9009 xfree (built_actual_name);
9010 }
9011
9012 /* Read a partial die corresponding to a namespace; also, add a symbol
9013 corresponding to that namespace to the symbol table. NAMESPACE is
9014 the name of the enclosing namespace. */
9015
9016 static void
9017 add_partial_namespace (struct partial_die_info *pdi,
9018 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9019 int set_addrmap, struct dwarf2_cu *cu)
9020 {
9021 /* Add a symbol for the namespace. */
9022
9023 add_partial_symbol (pdi, cu);
9024
9025 /* Now scan partial symbols in that namespace. */
9026
9027 if (pdi->has_children)
9028 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9029 }
9030
9031 /* Read a partial die corresponding to a Fortran module. */
9032
9033 static void
9034 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9035 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9036 {
9037 /* Add a symbol for the namespace. */
9038
9039 add_partial_symbol (pdi, cu);
9040
9041 /* Now scan partial symbols in that module. */
9042
9043 if (pdi->has_children)
9044 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9045 }
9046
9047 /* Read a partial die corresponding to a subprogram or an inlined
9048 subprogram and create a partial symbol for that subprogram.
9049 When the CU language allows it, this routine also defines a partial
9050 symbol for each nested subprogram that this subprogram contains.
9051 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9052 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9053
9054 PDI may also be a lexical block, in which case we simply search
9055 recursively for subprograms defined inside that lexical block.
9056 Again, this is only performed when the CU language allows this
9057 type of definitions. */
9058
9059 static void
9060 add_partial_subprogram (struct partial_die_info *pdi,
9061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9062 int set_addrmap, struct dwarf2_cu *cu)
9063 {
9064 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9065 {
9066 if (pdi->has_pc_info)
9067 {
9068 if (pdi->lowpc < *lowpc)
9069 *lowpc = pdi->lowpc;
9070 if (pdi->highpc > *highpc)
9071 *highpc = pdi->highpc;
9072 if (set_addrmap)
9073 {
9074 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9075 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9076 CORE_ADDR baseaddr;
9077 CORE_ADDR this_highpc;
9078 CORE_ADDR this_lowpc;
9079
9080 baseaddr = ANOFFSET (objfile->section_offsets,
9081 SECT_OFF_TEXT (objfile));
9082 this_lowpc
9083 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9084 pdi->lowpc + baseaddr)
9085 - baseaddr);
9086 this_highpc
9087 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9088 pdi->highpc + baseaddr)
9089 - baseaddr);
9090 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9091 this_lowpc, this_highpc - 1,
9092 cu->per_cu->v.psymtab);
9093 }
9094 }
9095
9096 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9097 {
9098 if (!pdi->is_declaration)
9099 /* Ignore subprogram DIEs that do not have a name, they are
9100 illegal. Do not emit a complaint at this point, we will
9101 do so when we convert this psymtab into a symtab. */
9102 if (pdi->name)
9103 add_partial_symbol (pdi, cu);
9104 }
9105 }
9106
9107 if (! pdi->has_children)
9108 return;
9109
9110 if (cu->language == language_ada)
9111 {
9112 pdi = pdi->die_child;
9113 while (pdi != NULL)
9114 {
9115 pdi->fixup (cu);
9116 if (pdi->tag == DW_TAG_subprogram
9117 || pdi->tag == DW_TAG_inlined_subroutine
9118 || pdi->tag == DW_TAG_lexical_block)
9119 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9120 pdi = pdi->die_sibling;
9121 }
9122 }
9123 }
9124
9125 /* Read a partial die corresponding to an enumeration type. */
9126
9127 static void
9128 add_partial_enumeration (struct partial_die_info *enum_pdi,
9129 struct dwarf2_cu *cu)
9130 {
9131 struct partial_die_info *pdi;
9132
9133 if (enum_pdi->name != NULL)
9134 add_partial_symbol (enum_pdi, cu);
9135
9136 pdi = enum_pdi->die_child;
9137 while (pdi)
9138 {
9139 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9140 complaint (_("malformed enumerator DIE ignored"));
9141 else
9142 add_partial_symbol (pdi, cu);
9143 pdi = pdi->die_sibling;
9144 }
9145 }
9146
9147 /* Return the initial uleb128 in the die at INFO_PTR. */
9148
9149 static unsigned int
9150 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9151 {
9152 unsigned int bytes_read;
9153
9154 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9155 }
9156
9157 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9158 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9159
9160 Return the corresponding abbrev, or NULL if the number is zero (indicating
9161 an empty DIE). In either case *BYTES_READ will be set to the length of
9162 the initial number. */
9163
9164 static struct abbrev_info *
9165 peek_die_abbrev (const die_reader_specs &reader,
9166 const gdb_byte *info_ptr, unsigned int *bytes_read)
9167 {
9168 dwarf2_cu *cu = reader.cu;
9169 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9170 unsigned int abbrev_number
9171 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9172
9173 if (abbrev_number == 0)
9174 return NULL;
9175
9176 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9177 if (!abbrev)
9178 {
9179 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9180 " at offset %s [in module %s]"),
9181 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9182 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9183 }
9184
9185 return abbrev;
9186 }
9187
9188 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9189 Returns a pointer to the end of a series of DIEs, terminated by an empty
9190 DIE. Any children of the skipped DIEs will also be skipped. */
9191
9192 static const gdb_byte *
9193 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9194 {
9195 while (1)
9196 {
9197 unsigned int bytes_read;
9198 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9199
9200 if (abbrev == NULL)
9201 return info_ptr + bytes_read;
9202 else
9203 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9204 }
9205 }
9206
9207 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9208 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9209 abbrev corresponding to that skipped uleb128 should be passed in
9210 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9211 children. */
9212
9213 static const gdb_byte *
9214 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9215 struct abbrev_info *abbrev)
9216 {
9217 unsigned int bytes_read;
9218 struct attribute attr;
9219 bfd *abfd = reader->abfd;
9220 struct dwarf2_cu *cu = reader->cu;
9221 const gdb_byte *buffer = reader->buffer;
9222 const gdb_byte *buffer_end = reader->buffer_end;
9223 unsigned int form, i;
9224
9225 for (i = 0; i < abbrev->num_attrs; i++)
9226 {
9227 /* The only abbrev we care about is DW_AT_sibling. */
9228 if (abbrev->attrs[i].name == DW_AT_sibling)
9229 {
9230 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9231 if (attr.form == DW_FORM_ref_addr)
9232 complaint (_("ignoring absolute DW_AT_sibling"));
9233 else
9234 {
9235 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9236 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9237
9238 if (sibling_ptr < info_ptr)
9239 complaint (_("DW_AT_sibling points backwards"));
9240 else if (sibling_ptr > reader->buffer_end)
9241 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9242 else
9243 return sibling_ptr;
9244 }
9245 }
9246
9247 /* If it isn't DW_AT_sibling, skip this attribute. */
9248 form = abbrev->attrs[i].form;
9249 skip_attribute:
9250 switch (form)
9251 {
9252 case DW_FORM_ref_addr:
9253 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9254 and later it is offset sized. */
9255 if (cu->header.version == 2)
9256 info_ptr += cu->header.addr_size;
9257 else
9258 info_ptr += cu->header.offset_size;
9259 break;
9260 case DW_FORM_GNU_ref_alt:
9261 info_ptr += cu->header.offset_size;
9262 break;
9263 case DW_FORM_addr:
9264 info_ptr += cu->header.addr_size;
9265 break;
9266 case DW_FORM_data1:
9267 case DW_FORM_ref1:
9268 case DW_FORM_flag:
9269 info_ptr += 1;
9270 break;
9271 case DW_FORM_flag_present:
9272 case DW_FORM_implicit_const:
9273 break;
9274 case DW_FORM_data2:
9275 case DW_FORM_ref2:
9276 info_ptr += 2;
9277 break;
9278 case DW_FORM_data4:
9279 case DW_FORM_ref4:
9280 info_ptr += 4;
9281 break;
9282 case DW_FORM_data8:
9283 case DW_FORM_ref8:
9284 case DW_FORM_ref_sig8:
9285 info_ptr += 8;
9286 break;
9287 case DW_FORM_data16:
9288 info_ptr += 16;
9289 break;
9290 case DW_FORM_string:
9291 read_direct_string (abfd, info_ptr, &bytes_read);
9292 info_ptr += bytes_read;
9293 break;
9294 case DW_FORM_sec_offset:
9295 case DW_FORM_strp:
9296 case DW_FORM_GNU_strp_alt:
9297 info_ptr += cu->header.offset_size;
9298 break;
9299 case DW_FORM_exprloc:
9300 case DW_FORM_block:
9301 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9302 info_ptr += bytes_read;
9303 break;
9304 case DW_FORM_block1:
9305 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9306 break;
9307 case DW_FORM_block2:
9308 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9309 break;
9310 case DW_FORM_block4:
9311 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9312 break;
9313 case DW_FORM_addrx:
9314 case DW_FORM_strx:
9315 case DW_FORM_sdata:
9316 case DW_FORM_udata:
9317 case DW_FORM_ref_udata:
9318 case DW_FORM_GNU_addr_index:
9319 case DW_FORM_GNU_str_index:
9320 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9321 break;
9322 case DW_FORM_indirect:
9323 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9324 info_ptr += bytes_read;
9325 /* We need to continue parsing from here, so just go back to
9326 the top. */
9327 goto skip_attribute;
9328
9329 default:
9330 error (_("Dwarf Error: Cannot handle %s "
9331 "in DWARF reader [in module %s]"),
9332 dwarf_form_name (form),
9333 bfd_get_filename (abfd));
9334 }
9335 }
9336
9337 if (abbrev->has_children)
9338 return skip_children (reader, info_ptr);
9339 else
9340 return info_ptr;
9341 }
9342
9343 /* Locate ORIG_PDI's sibling.
9344 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9345
9346 static const gdb_byte *
9347 locate_pdi_sibling (const struct die_reader_specs *reader,
9348 struct partial_die_info *orig_pdi,
9349 const gdb_byte *info_ptr)
9350 {
9351 /* Do we know the sibling already? */
9352
9353 if (orig_pdi->sibling)
9354 return orig_pdi->sibling;
9355
9356 /* Are there any children to deal with? */
9357
9358 if (!orig_pdi->has_children)
9359 return info_ptr;
9360
9361 /* Skip the children the long way. */
9362
9363 return skip_children (reader, info_ptr);
9364 }
9365
9366 /* Expand this partial symbol table into a full symbol table. SELF is
9367 not NULL. */
9368
9369 static void
9370 dwarf2_read_symtab (struct partial_symtab *self,
9371 struct objfile *objfile)
9372 {
9373 struct dwarf2_per_objfile *dwarf2_per_objfile
9374 = get_dwarf2_per_objfile (objfile);
9375
9376 if (self->readin)
9377 {
9378 warning (_("bug: psymtab for %s is already read in."),
9379 self->filename);
9380 }
9381 else
9382 {
9383 if (info_verbose)
9384 {
9385 printf_filtered (_("Reading in symbols for %s..."),
9386 self->filename);
9387 gdb_flush (gdb_stdout);
9388 }
9389
9390 /* If this psymtab is constructed from a debug-only objfile, the
9391 has_section_at_zero flag will not necessarily be correct. We
9392 can get the correct value for this flag by looking at the data
9393 associated with the (presumably stripped) associated objfile. */
9394 if (objfile->separate_debug_objfile_backlink)
9395 {
9396 struct dwarf2_per_objfile *dpo_backlink
9397 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9398
9399 dwarf2_per_objfile->has_section_at_zero
9400 = dpo_backlink->has_section_at_zero;
9401 }
9402
9403 dwarf2_per_objfile->reading_partial_symbols = 0;
9404
9405 psymtab_to_symtab_1 (self);
9406
9407 /* Finish up the debug error message. */
9408 if (info_verbose)
9409 printf_filtered (_("done.\n"));
9410 }
9411
9412 process_cu_includes (dwarf2_per_objfile);
9413 }
9414 \f
9415 /* Reading in full CUs. */
9416
9417 /* Add PER_CU to the queue. */
9418
9419 static void
9420 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9421 enum language pretend_language)
9422 {
9423 struct dwarf2_queue_item *item;
9424
9425 per_cu->queued = 1;
9426 item = XNEW (struct dwarf2_queue_item);
9427 item->per_cu = per_cu;
9428 item->pretend_language = pretend_language;
9429 item->next = NULL;
9430
9431 if (dwarf2_queue == NULL)
9432 dwarf2_queue = item;
9433 else
9434 dwarf2_queue_tail->next = item;
9435
9436 dwarf2_queue_tail = item;
9437 }
9438
9439 /* If PER_CU is not yet queued, add it to the queue.
9440 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9441 dependency.
9442 The result is non-zero if PER_CU was queued, otherwise the result is zero
9443 meaning either PER_CU is already queued or it is already loaded.
9444
9445 N.B. There is an invariant here that if a CU is queued then it is loaded.
9446 The caller is required to load PER_CU if we return non-zero. */
9447
9448 static int
9449 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9450 struct dwarf2_per_cu_data *per_cu,
9451 enum language pretend_language)
9452 {
9453 /* We may arrive here during partial symbol reading, if we need full
9454 DIEs to process an unusual case (e.g. template arguments). Do
9455 not queue PER_CU, just tell our caller to load its DIEs. */
9456 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9457 {
9458 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9459 return 1;
9460 return 0;
9461 }
9462
9463 /* Mark the dependence relation so that we don't flush PER_CU
9464 too early. */
9465 if (dependent_cu != NULL)
9466 dwarf2_add_dependence (dependent_cu, per_cu);
9467
9468 /* If it's already on the queue, we have nothing to do. */
9469 if (per_cu->queued)
9470 return 0;
9471
9472 /* If the compilation unit is already loaded, just mark it as
9473 used. */
9474 if (per_cu->cu != NULL)
9475 {
9476 per_cu->cu->last_used = 0;
9477 return 0;
9478 }
9479
9480 /* Add it to the queue. */
9481 queue_comp_unit (per_cu, pretend_language);
9482
9483 return 1;
9484 }
9485
9486 /* Process the queue. */
9487
9488 static void
9489 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9490 {
9491 struct dwarf2_queue_item *item, *next_item;
9492
9493 if (dwarf_read_debug)
9494 {
9495 fprintf_unfiltered (gdb_stdlog,
9496 "Expanding one or more symtabs of objfile %s ...\n",
9497 objfile_name (dwarf2_per_objfile->objfile));
9498 }
9499
9500 /* The queue starts out with one item, but following a DIE reference
9501 may load a new CU, adding it to the end of the queue. */
9502 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9503 {
9504 if ((dwarf2_per_objfile->using_index
9505 ? !item->per_cu->v.quick->compunit_symtab
9506 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9507 /* Skip dummy CUs. */
9508 && item->per_cu->cu != NULL)
9509 {
9510 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9511 unsigned int debug_print_threshold;
9512 char buf[100];
9513
9514 if (per_cu->is_debug_types)
9515 {
9516 struct signatured_type *sig_type =
9517 (struct signatured_type *) per_cu;
9518
9519 sprintf (buf, "TU %s at offset %s",
9520 hex_string (sig_type->signature),
9521 sect_offset_str (per_cu->sect_off));
9522 /* There can be 100s of TUs.
9523 Only print them in verbose mode. */
9524 debug_print_threshold = 2;
9525 }
9526 else
9527 {
9528 sprintf (buf, "CU at offset %s",
9529 sect_offset_str (per_cu->sect_off));
9530 debug_print_threshold = 1;
9531 }
9532
9533 if (dwarf_read_debug >= debug_print_threshold)
9534 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9535
9536 if (per_cu->is_debug_types)
9537 process_full_type_unit (per_cu, item->pretend_language);
9538 else
9539 process_full_comp_unit (per_cu, item->pretend_language);
9540
9541 if (dwarf_read_debug >= debug_print_threshold)
9542 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9543 }
9544
9545 item->per_cu->queued = 0;
9546 next_item = item->next;
9547 xfree (item);
9548 }
9549
9550 dwarf2_queue_tail = NULL;
9551
9552 if (dwarf_read_debug)
9553 {
9554 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9555 objfile_name (dwarf2_per_objfile->objfile));
9556 }
9557 }
9558
9559 /* Read in full symbols for PST, and anything it depends on. */
9560
9561 static void
9562 psymtab_to_symtab_1 (struct partial_symtab *pst)
9563 {
9564 struct dwarf2_per_cu_data *per_cu;
9565 int i;
9566
9567 if (pst->readin)
9568 return;
9569
9570 for (i = 0; i < pst->number_of_dependencies; i++)
9571 if (!pst->dependencies[i]->readin
9572 && pst->dependencies[i]->user == NULL)
9573 {
9574 /* Inform about additional files that need to be read in. */
9575 if (info_verbose)
9576 {
9577 /* FIXME: i18n: Need to make this a single string. */
9578 fputs_filtered (" ", gdb_stdout);
9579 wrap_here ("");
9580 fputs_filtered ("and ", gdb_stdout);
9581 wrap_here ("");
9582 printf_filtered ("%s...", pst->dependencies[i]->filename);
9583 wrap_here (""); /* Flush output. */
9584 gdb_flush (gdb_stdout);
9585 }
9586 psymtab_to_symtab_1 (pst->dependencies[i]);
9587 }
9588
9589 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9590
9591 if (per_cu == NULL)
9592 {
9593 /* It's an include file, no symbols to read for it.
9594 Everything is in the parent symtab. */
9595 pst->readin = 1;
9596 return;
9597 }
9598
9599 dw2_do_instantiate_symtab (per_cu, false);
9600 }
9601
9602 /* Trivial hash function for die_info: the hash value of a DIE
9603 is its offset in .debug_info for this objfile. */
9604
9605 static hashval_t
9606 die_hash (const void *item)
9607 {
9608 const struct die_info *die = (const struct die_info *) item;
9609
9610 return to_underlying (die->sect_off);
9611 }
9612
9613 /* Trivial comparison function for die_info structures: two DIEs
9614 are equal if they have the same offset. */
9615
9616 static int
9617 die_eq (const void *item_lhs, const void *item_rhs)
9618 {
9619 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9620 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9621
9622 return die_lhs->sect_off == die_rhs->sect_off;
9623 }
9624
9625 /* die_reader_func for load_full_comp_unit.
9626 This is identical to read_signatured_type_reader,
9627 but is kept separate for now. */
9628
9629 static void
9630 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9631 const gdb_byte *info_ptr,
9632 struct die_info *comp_unit_die,
9633 int has_children,
9634 void *data)
9635 {
9636 struct dwarf2_cu *cu = reader->cu;
9637 enum language *language_ptr = (enum language *) data;
9638
9639 gdb_assert (cu->die_hash == NULL);
9640 cu->die_hash =
9641 htab_create_alloc_ex (cu->header.length / 12,
9642 die_hash,
9643 die_eq,
9644 NULL,
9645 &cu->comp_unit_obstack,
9646 hashtab_obstack_allocate,
9647 dummy_obstack_deallocate);
9648
9649 if (has_children)
9650 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9651 &info_ptr, comp_unit_die);
9652 cu->dies = comp_unit_die;
9653 /* comp_unit_die is not stored in die_hash, no need. */
9654
9655 /* We try not to read any attributes in this function, because not
9656 all CUs needed for references have been loaded yet, and symbol
9657 table processing isn't initialized. But we have to set the CU language,
9658 or we won't be able to build types correctly.
9659 Similarly, if we do not read the producer, we can not apply
9660 producer-specific interpretation. */
9661 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9662 }
9663
9664 /* Load the DIEs associated with PER_CU into memory. */
9665
9666 static void
9667 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9668 bool skip_partial,
9669 enum language pretend_language)
9670 {
9671 gdb_assert (! this_cu->is_debug_types);
9672
9673 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9674 load_full_comp_unit_reader, &pretend_language);
9675 }
9676
9677 /* Add a DIE to the delayed physname list. */
9678
9679 static void
9680 add_to_method_list (struct type *type, int fnfield_index, int index,
9681 const char *name, struct die_info *die,
9682 struct dwarf2_cu *cu)
9683 {
9684 struct delayed_method_info mi;
9685 mi.type = type;
9686 mi.fnfield_index = fnfield_index;
9687 mi.index = index;
9688 mi.name = name;
9689 mi.die = die;
9690 cu->method_list.push_back (mi);
9691 }
9692
9693 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9694 "const" / "volatile". If so, decrements LEN by the length of the
9695 modifier and return true. Otherwise return false. */
9696
9697 template<size_t N>
9698 static bool
9699 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9700 {
9701 size_t mod_len = sizeof (mod) - 1;
9702 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9703 {
9704 len -= mod_len;
9705 return true;
9706 }
9707 return false;
9708 }
9709
9710 /* Compute the physnames of any methods on the CU's method list.
9711
9712 The computation of method physnames is delayed in order to avoid the
9713 (bad) condition that one of the method's formal parameters is of an as yet
9714 incomplete type. */
9715
9716 static void
9717 compute_delayed_physnames (struct dwarf2_cu *cu)
9718 {
9719 /* Only C++ delays computing physnames. */
9720 if (cu->method_list.empty ())
9721 return;
9722 gdb_assert (cu->language == language_cplus);
9723
9724 for (const delayed_method_info &mi : cu->method_list)
9725 {
9726 const char *physname;
9727 struct fn_fieldlist *fn_flp
9728 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9729 physname = dwarf2_physname (mi.name, mi.die, cu);
9730 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9731 = physname ? physname : "";
9732
9733 /* Since there's no tag to indicate whether a method is a
9734 const/volatile overload, extract that information out of the
9735 demangled name. */
9736 if (physname != NULL)
9737 {
9738 size_t len = strlen (physname);
9739
9740 while (1)
9741 {
9742 if (physname[len] == ')') /* shortcut */
9743 break;
9744 else if (check_modifier (physname, len, " const"))
9745 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9746 else if (check_modifier (physname, len, " volatile"))
9747 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9748 else
9749 break;
9750 }
9751 }
9752 }
9753
9754 /* The list is no longer needed. */
9755 cu->method_list.clear ();
9756 }
9757
9758 /* Go objects should be embedded in a DW_TAG_module DIE,
9759 and it's not clear if/how imported objects will appear.
9760 To keep Go support simple until that's worked out,
9761 go back through what we've read and create something usable.
9762 We could do this while processing each DIE, and feels kinda cleaner,
9763 but that way is more invasive.
9764 This is to, for example, allow the user to type "p var" or "b main"
9765 without having to specify the package name, and allow lookups
9766 of module.object to work in contexts that use the expression
9767 parser. */
9768
9769 static void
9770 fixup_go_packaging (struct dwarf2_cu *cu)
9771 {
9772 char *package_name = NULL;
9773 struct pending *list;
9774 int i;
9775
9776 for (list = *cu->get_builder ()->get_global_symbols ();
9777 list != NULL;
9778 list = list->next)
9779 {
9780 for (i = 0; i < list->nsyms; ++i)
9781 {
9782 struct symbol *sym = list->symbol[i];
9783
9784 if (SYMBOL_LANGUAGE (sym) == language_go
9785 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9786 {
9787 char *this_package_name = go_symbol_package_name (sym);
9788
9789 if (this_package_name == NULL)
9790 continue;
9791 if (package_name == NULL)
9792 package_name = this_package_name;
9793 else
9794 {
9795 struct objfile *objfile
9796 = cu->per_cu->dwarf2_per_objfile->objfile;
9797 if (strcmp (package_name, this_package_name) != 0)
9798 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9799 (symbol_symtab (sym) != NULL
9800 ? symtab_to_filename_for_display
9801 (symbol_symtab (sym))
9802 : objfile_name (objfile)),
9803 this_package_name, package_name);
9804 xfree (this_package_name);
9805 }
9806 }
9807 }
9808 }
9809
9810 if (package_name != NULL)
9811 {
9812 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9813 const char *saved_package_name
9814 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9815 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9816 saved_package_name);
9817 struct symbol *sym;
9818
9819 sym = allocate_symbol (objfile);
9820 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9821 SYMBOL_SET_NAMES (sym, saved_package_name,
9822 strlen (saved_package_name), 0, objfile);
9823 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9824 e.g., "main" finds the "main" module and not C's main(). */
9825 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9826 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9827 SYMBOL_TYPE (sym) = type;
9828
9829 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9830
9831 xfree (package_name);
9832 }
9833 }
9834
9835 /* Allocate a fully-qualified name consisting of the two parts on the
9836 obstack. */
9837
9838 static const char *
9839 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9840 {
9841 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9842 }
9843
9844 /* A helper that allocates a struct discriminant_info to attach to a
9845 union type. */
9846
9847 static struct discriminant_info *
9848 alloc_discriminant_info (struct type *type, int discriminant_index,
9849 int default_index)
9850 {
9851 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9852 gdb_assert (discriminant_index == -1
9853 || (discriminant_index >= 0
9854 && discriminant_index < TYPE_NFIELDS (type)));
9855 gdb_assert (default_index == -1
9856 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9857
9858 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9859
9860 struct discriminant_info *disc
9861 = ((struct discriminant_info *)
9862 TYPE_ZALLOC (type,
9863 offsetof (struct discriminant_info, discriminants)
9864 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9865 disc->default_index = default_index;
9866 disc->discriminant_index = discriminant_index;
9867
9868 struct dynamic_prop prop;
9869 prop.kind = PROP_UNDEFINED;
9870 prop.data.baton = disc;
9871
9872 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9873
9874 return disc;
9875 }
9876
9877 /* Some versions of rustc emitted enums in an unusual way.
9878
9879 Ordinary enums were emitted as unions. The first element of each
9880 structure in the union was named "RUST$ENUM$DISR". This element
9881 held the discriminant.
9882
9883 These versions of Rust also implemented the "non-zero"
9884 optimization. When the enum had two values, and one is empty and
9885 the other holds a pointer that cannot be zero, the pointer is used
9886 as the discriminant, with a zero value meaning the empty variant.
9887 Here, the union's first member is of the form
9888 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9889 where the fieldnos are the indices of the fields that should be
9890 traversed in order to find the field (which may be several fields deep)
9891 and the variantname is the name of the variant of the case when the
9892 field is zero.
9893
9894 This function recognizes whether TYPE is of one of these forms,
9895 and, if so, smashes it to be a variant type. */
9896
9897 static void
9898 quirk_rust_enum (struct type *type, struct objfile *objfile)
9899 {
9900 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9901
9902 /* We don't need to deal with empty enums. */
9903 if (TYPE_NFIELDS (type) == 0)
9904 return;
9905
9906 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9907 if (TYPE_NFIELDS (type) == 1
9908 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9909 {
9910 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9911
9912 /* Decode the field name to find the offset of the
9913 discriminant. */
9914 ULONGEST bit_offset = 0;
9915 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9916 while (name[0] >= '0' && name[0] <= '9')
9917 {
9918 char *tail;
9919 unsigned long index = strtoul (name, &tail, 10);
9920 name = tail;
9921 if (*name != '$'
9922 || index >= TYPE_NFIELDS (field_type)
9923 || (TYPE_FIELD_LOC_KIND (field_type, index)
9924 != FIELD_LOC_KIND_BITPOS))
9925 {
9926 complaint (_("Could not parse Rust enum encoding string \"%s\""
9927 "[in module %s]"),
9928 TYPE_FIELD_NAME (type, 0),
9929 objfile_name (objfile));
9930 return;
9931 }
9932 ++name;
9933
9934 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9935 field_type = TYPE_FIELD_TYPE (field_type, index);
9936 }
9937
9938 /* Make a union to hold the variants. */
9939 struct type *union_type = alloc_type (objfile);
9940 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9941 TYPE_NFIELDS (union_type) = 3;
9942 TYPE_FIELDS (union_type)
9943 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9944 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9945 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9946
9947 /* Put the discriminant must at index 0. */
9948 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9949 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9950 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9951 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9952
9953 /* The order of fields doesn't really matter, so put the real
9954 field at index 1 and the data-less field at index 2. */
9955 struct discriminant_info *disc
9956 = alloc_discriminant_info (union_type, 0, 1);
9957 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9958 TYPE_FIELD_NAME (union_type, 1)
9959 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9960 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9961 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9962 TYPE_FIELD_NAME (union_type, 1));
9963
9964 const char *dataless_name
9965 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9966 name);
9967 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9968 dataless_name);
9969 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9970 /* NAME points into the original discriminant name, which
9971 already has the correct lifetime. */
9972 TYPE_FIELD_NAME (union_type, 2) = name;
9973 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9974 disc->discriminants[2] = 0;
9975
9976 /* Smash this type to be a structure type. We have to do this
9977 because the type has already been recorded. */
9978 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9979 TYPE_NFIELDS (type) = 1;
9980 TYPE_FIELDS (type)
9981 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9982
9983 /* Install the variant part. */
9984 TYPE_FIELD_TYPE (type, 0) = union_type;
9985 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9986 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9987 }
9988 else if (TYPE_NFIELDS (type) == 1)
9989 {
9990 /* We assume that a union with a single field is a univariant
9991 enum. */
9992 /* Smash this type to be a structure type. We have to do this
9993 because the type has already been recorded. */
9994 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9995
9996 /* Make a union to hold the variants. */
9997 struct type *union_type = alloc_type (objfile);
9998 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9999 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10000 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10001 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10002 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10003
10004 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10005 const char *variant_name
10006 = rust_last_path_segment (TYPE_NAME (field_type));
10007 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10008 TYPE_NAME (field_type)
10009 = rust_fully_qualify (&objfile->objfile_obstack,
10010 TYPE_NAME (type), variant_name);
10011
10012 /* Install the union in the outer struct type. */
10013 TYPE_NFIELDS (type) = 1;
10014 TYPE_FIELDS (type)
10015 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10016 TYPE_FIELD_TYPE (type, 0) = union_type;
10017 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10018 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10019
10020 alloc_discriminant_info (union_type, -1, 0);
10021 }
10022 else
10023 {
10024 struct type *disr_type = nullptr;
10025 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10026 {
10027 disr_type = TYPE_FIELD_TYPE (type, i);
10028
10029 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10030 {
10031 /* All fields of a true enum will be structs. */
10032 return;
10033 }
10034 else if (TYPE_NFIELDS (disr_type) == 0)
10035 {
10036 /* Could be data-less variant, so keep going. */
10037 disr_type = nullptr;
10038 }
10039 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10040 "RUST$ENUM$DISR") != 0)
10041 {
10042 /* Not a Rust enum. */
10043 return;
10044 }
10045 else
10046 {
10047 /* Found one. */
10048 break;
10049 }
10050 }
10051
10052 /* If we got here without a discriminant, then it's probably
10053 just a union. */
10054 if (disr_type == nullptr)
10055 return;
10056
10057 /* Smash this type to be a structure type. We have to do this
10058 because the type has already been recorded. */
10059 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10060
10061 /* Make a union to hold the variants. */
10062 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10063 struct type *union_type = alloc_type (objfile);
10064 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10065 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10066 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10067 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10068 TYPE_FIELDS (union_type)
10069 = (struct field *) TYPE_ZALLOC (union_type,
10070 (TYPE_NFIELDS (union_type)
10071 * sizeof (struct field)));
10072
10073 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10074 TYPE_NFIELDS (type) * sizeof (struct field));
10075
10076 /* Install the discriminant at index 0 in the union. */
10077 TYPE_FIELD (union_type, 0) = *disr_field;
10078 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10079 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10080
10081 /* Install the union in the outer struct type. */
10082 TYPE_FIELD_TYPE (type, 0) = union_type;
10083 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10084 TYPE_NFIELDS (type) = 1;
10085
10086 /* Set the size and offset of the union type. */
10087 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10088
10089 /* We need a way to find the correct discriminant given a
10090 variant name. For convenience we build a map here. */
10091 struct type *enum_type = FIELD_TYPE (*disr_field);
10092 std::unordered_map<std::string, ULONGEST> discriminant_map;
10093 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10094 {
10095 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10096 {
10097 const char *name
10098 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10099 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10100 }
10101 }
10102
10103 int n_fields = TYPE_NFIELDS (union_type);
10104 struct discriminant_info *disc
10105 = alloc_discriminant_info (union_type, 0, -1);
10106 /* Skip the discriminant here. */
10107 for (int i = 1; i < n_fields; ++i)
10108 {
10109 /* Find the final word in the name of this variant's type.
10110 That name can be used to look up the correct
10111 discriminant. */
10112 const char *variant_name
10113 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10114 i)));
10115
10116 auto iter = discriminant_map.find (variant_name);
10117 if (iter != discriminant_map.end ())
10118 disc->discriminants[i] = iter->second;
10119
10120 /* Remove the discriminant field, if it exists. */
10121 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10122 if (TYPE_NFIELDS (sub_type) > 0)
10123 {
10124 --TYPE_NFIELDS (sub_type);
10125 ++TYPE_FIELDS (sub_type);
10126 }
10127 TYPE_FIELD_NAME (union_type, i) = variant_name;
10128 TYPE_NAME (sub_type)
10129 = rust_fully_qualify (&objfile->objfile_obstack,
10130 TYPE_NAME (type), variant_name);
10131 }
10132 }
10133 }
10134
10135 /* Rewrite some Rust unions to be structures with variants parts. */
10136
10137 static void
10138 rust_union_quirks (struct dwarf2_cu *cu)
10139 {
10140 gdb_assert (cu->language == language_rust);
10141 for (type *type_ : cu->rust_unions)
10142 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10143 /* We don't need this any more. */
10144 cu->rust_unions.clear ();
10145 }
10146
10147 /* Return the symtab for PER_CU. This works properly regardless of
10148 whether we're using the index or psymtabs. */
10149
10150 static struct compunit_symtab *
10151 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10152 {
10153 return (per_cu->dwarf2_per_objfile->using_index
10154 ? per_cu->v.quick->compunit_symtab
10155 : per_cu->v.psymtab->compunit_symtab);
10156 }
10157
10158 /* A helper function for computing the list of all symbol tables
10159 included by PER_CU. */
10160
10161 static void
10162 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10163 htab_t all_children, htab_t all_type_symtabs,
10164 struct dwarf2_per_cu_data *per_cu,
10165 struct compunit_symtab *immediate_parent)
10166 {
10167 void **slot;
10168 int ix;
10169 struct compunit_symtab *cust;
10170 struct dwarf2_per_cu_data *iter;
10171
10172 slot = htab_find_slot (all_children, per_cu, INSERT);
10173 if (*slot != NULL)
10174 {
10175 /* This inclusion and its children have been processed. */
10176 return;
10177 }
10178
10179 *slot = per_cu;
10180 /* Only add a CU if it has a symbol table. */
10181 cust = get_compunit_symtab (per_cu);
10182 if (cust != NULL)
10183 {
10184 /* If this is a type unit only add its symbol table if we haven't
10185 seen it yet (type unit per_cu's can share symtabs). */
10186 if (per_cu->is_debug_types)
10187 {
10188 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10189 if (*slot == NULL)
10190 {
10191 *slot = cust;
10192 result->push_back (cust);
10193 if (cust->user == NULL)
10194 cust->user = immediate_parent;
10195 }
10196 }
10197 else
10198 {
10199 result->push_back (cust);
10200 if (cust->user == NULL)
10201 cust->user = immediate_parent;
10202 }
10203 }
10204
10205 for (ix = 0;
10206 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10207 ++ix)
10208 {
10209 recursively_compute_inclusions (result, all_children,
10210 all_type_symtabs, iter, cust);
10211 }
10212 }
10213
10214 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10215 PER_CU. */
10216
10217 static void
10218 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10219 {
10220 gdb_assert (! per_cu->is_debug_types);
10221
10222 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10223 {
10224 int ix, len;
10225 struct dwarf2_per_cu_data *per_cu_iter;
10226 std::vector<compunit_symtab *> result_symtabs;
10227 htab_t all_children, all_type_symtabs;
10228 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10229
10230 /* If we don't have a symtab, we can just skip this case. */
10231 if (cust == NULL)
10232 return;
10233
10234 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10235 NULL, xcalloc, xfree);
10236 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10237 NULL, xcalloc, xfree);
10238
10239 for (ix = 0;
10240 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10241 ix, per_cu_iter);
10242 ++ix)
10243 {
10244 recursively_compute_inclusions (&result_symtabs, all_children,
10245 all_type_symtabs, per_cu_iter,
10246 cust);
10247 }
10248
10249 /* Now we have a transitive closure of all the included symtabs. */
10250 len = result_symtabs.size ();
10251 cust->includes
10252 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10253 struct compunit_symtab *, len + 1);
10254 memcpy (cust->includes, result_symtabs.data (),
10255 len * sizeof (compunit_symtab *));
10256 cust->includes[len] = NULL;
10257
10258 htab_delete (all_children);
10259 htab_delete (all_type_symtabs);
10260 }
10261 }
10262
10263 /* Compute the 'includes' field for the symtabs of all the CUs we just
10264 read. */
10265
10266 static void
10267 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10268 {
10269 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10270 {
10271 if (! iter->is_debug_types)
10272 compute_compunit_symtab_includes (iter);
10273 }
10274
10275 dwarf2_per_objfile->just_read_cus.clear ();
10276 }
10277
10278 /* Generate full symbol information for PER_CU, whose DIEs have
10279 already been loaded into memory. */
10280
10281 static void
10282 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10283 enum language pretend_language)
10284 {
10285 struct dwarf2_cu *cu = per_cu->cu;
10286 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10287 struct objfile *objfile = dwarf2_per_objfile->objfile;
10288 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10289 CORE_ADDR lowpc, highpc;
10290 struct compunit_symtab *cust;
10291 CORE_ADDR baseaddr;
10292 struct block *static_block;
10293 CORE_ADDR addr;
10294
10295 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10296
10297 /* Clear the list here in case something was left over. */
10298 cu->method_list.clear ();
10299
10300 cu->language = pretend_language;
10301 cu->language_defn = language_def (cu->language);
10302
10303 /* Do line number decoding in read_file_scope () */
10304 process_die (cu->dies, cu);
10305
10306 /* For now fudge the Go package. */
10307 if (cu->language == language_go)
10308 fixup_go_packaging (cu);
10309
10310 /* Now that we have processed all the DIEs in the CU, all the types
10311 should be complete, and it should now be safe to compute all of the
10312 physnames. */
10313 compute_delayed_physnames (cu);
10314
10315 if (cu->language == language_rust)
10316 rust_union_quirks (cu);
10317
10318 /* Some compilers don't define a DW_AT_high_pc attribute for the
10319 compilation unit. If the DW_AT_high_pc is missing, synthesize
10320 it, by scanning the DIE's below the compilation unit. */
10321 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10322
10323 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10324 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10325
10326 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10327 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10328 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10329 addrmap to help ensure it has an accurate map of pc values belonging to
10330 this comp unit. */
10331 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10332
10333 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10334 SECT_OFF_TEXT (objfile),
10335 0);
10336
10337 if (cust != NULL)
10338 {
10339 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10340
10341 /* Set symtab language to language from DW_AT_language. If the
10342 compilation is from a C file generated by language preprocessors, do
10343 not set the language if it was already deduced by start_subfile. */
10344 if (!(cu->language == language_c
10345 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10346 COMPUNIT_FILETABS (cust)->language = cu->language;
10347
10348 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10349 produce DW_AT_location with location lists but it can be possibly
10350 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10351 there were bugs in prologue debug info, fixed later in GCC-4.5
10352 by "unwind info for epilogues" patch (which is not directly related).
10353
10354 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10355 needed, it would be wrong due to missing DW_AT_producer there.
10356
10357 Still one can confuse GDB by using non-standard GCC compilation
10358 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10359 */
10360 if (cu->has_loclist && gcc_4_minor >= 5)
10361 cust->locations_valid = 1;
10362
10363 if (gcc_4_minor >= 5)
10364 cust->epilogue_unwind_valid = 1;
10365
10366 cust->call_site_htab = cu->call_site_htab;
10367 }
10368
10369 if (dwarf2_per_objfile->using_index)
10370 per_cu->v.quick->compunit_symtab = cust;
10371 else
10372 {
10373 struct partial_symtab *pst = per_cu->v.psymtab;
10374 pst->compunit_symtab = cust;
10375 pst->readin = 1;
10376 }
10377
10378 /* Push it for inclusion processing later. */
10379 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10380
10381 /* Not needed any more. */
10382 cu->reset_builder ();
10383 }
10384
10385 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10386 already been loaded into memory. */
10387
10388 static void
10389 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10390 enum language pretend_language)
10391 {
10392 struct dwarf2_cu *cu = per_cu->cu;
10393 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10394 struct objfile *objfile = dwarf2_per_objfile->objfile;
10395 struct compunit_symtab *cust;
10396 struct signatured_type *sig_type;
10397
10398 gdb_assert (per_cu->is_debug_types);
10399 sig_type = (struct signatured_type *) per_cu;
10400
10401 /* Clear the list here in case something was left over. */
10402 cu->method_list.clear ();
10403
10404 cu->language = pretend_language;
10405 cu->language_defn = language_def (cu->language);
10406
10407 /* The symbol tables are set up in read_type_unit_scope. */
10408 process_die (cu->dies, cu);
10409
10410 /* For now fudge the Go package. */
10411 if (cu->language == language_go)
10412 fixup_go_packaging (cu);
10413
10414 /* Now that we have processed all the DIEs in the CU, all the types
10415 should be complete, and it should now be safe to compute all of the
10416 physnames. */
10417 compute_delayed_physnames (cu);
10418
10419 if (cu->language == language_rust)
10420 rust_union_quirks (cu);
10421
10422 /* TUs share symbol tables.
10423 If this is the first TU to use this symtab, complete the construction
10424 of it with end_expandable_symtab. Otherwise, complete the addition of
10425 this TU's symbols to the existing symtab. */
10426 if (sig_type->type_unit_group->compunit_symtab == NULL)
10427 {
10428 buildsym_compunit *builder = cu->get_builder ();
10429 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10430 sig_type->type_unit_group->compunit_symtab = cust;
10431
10432 if (cust != NULL)
10433 {
10434 /* Set symtab language to language from DW_AT_language. If the
10435 compilation is from a C file generated by language preprocessors,
10436 do not set the language if it was already deduced by
10437 start_subfile. */
10438 if (!(cu->language == language_c
10439 && COMPUNIT_FILETABS (cust)->language != language_c))
10440 COMPUNIT_FILETABS (cust)->language = cu->language;
10441 }
10442 }
10443 else
10444 {
10445 cu->get_builder ()->augment_type_symtab ();
10446 cust = sig_type->type_unit_group->compunit_symtab;
10447 }
10448
10449 if (dwarf2_per_objfile->using_index)
10450 per_cu->v.quick->compunit_symtab = cust;
10451 else
10452 {
10453 struct partial_symtab *pst = per_cu->v.psymtab;
10454 pst->compunit_symtab = cust;
10455 pst->readin = 1;
10456 }
10457
10458 /* Not needed any more. */
10459 cu->reset_builder ();
10460 }
10461
10462 /* Process an imported unit DIE. */
10463
10464 static void
10465 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10466 {
10467 struct attribute *attr;
10468
10469 /* For now we don't handle imported units in type units. */
10470 if (cu->per_cu->is_debug_types)
10471 {
10472 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10473 " supported in type units [in module %s]"),
10474 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10475 }
10476
10477 attr = dwarf2_attr (die, DW_AT_import, cu);
10478 if (attr != NULL)
10479 {
10480 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10481 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10482 dwarf2_per_cu_data *per_cu
10483 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10484 cu->per_cu->dwarf2_per_objfile);
10485
10486 /* If necessary, add it to the queue and load its DIEs. */
10487 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10488 load_full_comp_unit (per_cu, false, cu->language);
10489
10490 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10491 per_cu);
10492 }
10493 }
10494
10495 /* RAII object that represents a process_die scope: i.e.,
10496 starts/finishes processing a DIE. */
10497 class process_die_scope
10498 {
10499 public:
10500 process_die_scope (die_info *die, dwarf2_cu *cu)
10501 : m_die (die), m_cu (cu)
10502 {
10503 /* We should only be processing DIEs not already in process. */
10504 gdb_assert (!m_die->in_process);
10505 m_die->in_process = true;
10506 }
10507
10508 ~process_die_scope ()
10509 {
10510 m_die->in_process = false;
10511
10512 /* If we're done processing the DIE for the CU that owns the line
10513 header, we don't need the line header anymore. */
10514 if (m_cu->line_header_die_owner == m_die)
10515 {
10516 delete m_cu->line_header;
10517 m_cu->line_header = NULL;
10518 m_cu->line_header_die_owner = NULL;
10519 }
10520 }
10521
10522 private:
10523 die_info *m_die;
10524 dwarf2_cu *m_cu;
10525 };
10526
10527 /* Process a die and its children. */
10528
10529 static void
10530 process_die (struct die_info *die, struct dwarf2_cu *cu)
10531 {
10532 process_die_scope scope (die, cu);
10533
10534 switch (die->tag)
10535 {
10536 case DW_TAG_padding:
10537 break;
10538 case DW_TAG_compile_unit:
10539 case DW_TAG_partial_unit:
10540 read_file_scope (die, cu);
10541 break;
10542 case DW_TAG_type_unit:
10543 read_type_unit_scope (die, cu);
10544 break;
10545 case DW_TAG_subprogram:
10546 case DW_TAG_inlined_subroutine:
10547 read_func_scope (die, cu);
10548 break;
10549 case DW_TAG_lexical_block:
10550 case DW_TAG_try_block:
10551 case DW_TAG_catch_block:
10552 read_lexical_block_scope (die, cu);
10553 break;
10554 case DW_TAG_call_site:
10555 case DW_TAG_GNU_call_site:
10556 read_call_site_scope (die, cu);
10557 break;
10558 case DW_TAG_class_type:
10559 case DW_TAG_interface_type:
10560 case DW_TAG_structure_type:
10561 case DW_TAG_union_type:
10562 process_structure_scope (die, cu);
10563 break;
10564 case DW_TAG_enumeration_type:
10565 process_enumeration_scope (die, cu);
10566 break;
10567
10568 /* These dies have a type, but processing them does not create
10569 a symbol or recurse to process the children. Therefore we can
10570 read them on-demand through read_type_die. */
10571 case DW_TAG_subroutine_type:
10572 case DW_TAG_set_type:
10573 case DW_TAG_array_type:
10574 case DW_TAG_pointer_type:
10575 case DW_TAG_ptr_to_member_type:
10576 case DW_TAG_reference_type:
10577 case DW_TAG_rvalue_reference_type:
10578 case DW_TAG_string_type:
10579 break;
10580
10581 case DW_TAG_base_type:
10582 case DW_TAG_subrange_type:
10583 case DW_TAG_typedef:
10584 /* Add a typedef symbol for the type definition, if it has a
10585 DW_AT_name. */
10586 new_symbol (die, read_type_die (die, cu), cu);
10587 break;
10588 case DW_TAG_common_block:
10589 read_common_block (die, cu);
10590 break;
10591 case DW_TAG_common_inclusion:
10592 break;
10593 case DW_TAG_namespace:
10594 cu->processing_has_namespace_info = true;
10595 read_namespace (die, cu);
10596 break;
10597 case DW_TAG_module:
10598 cu->processing_has_namespace_info = true;
10599 read_module (die, cu);
10600 break;
10601 case DW_TAG_imported_declaration:
10602 cu->processing_has_namespace_info = true;
10603 if (read_namespace_alias (die, cu))
10604 break;
10605 /* The declaration is not a global namespace alias. */
10606 /* Fall through. */
10607 case DW_TAG_imported_module:
10608 cu->processing_has_namespace_info = true;
10609 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10610 || cu->language != language_fortran))
10611 complaint (_("Tag '%s' has unexpected children"),
10612 dwarf_tag_name (die->tag));
10613 read_import_statement (die, cu);
10614 break;
10615
10616 case DW_TAG_imported_unit:
10617 process_imported_unit_die (die, cu);
10618 break;
10619
10620 case DW_TAG_variable:
10621 read_variable (die, cu);
10622 break;
10623
10624 default:
10625 new_symbol (die, NULL, cu);
10626 break;
10627 }
10628 }
10629 \f
10630 /* DWARF name computation. */
10631
10632 /* A helper function for dwarf2_compute_name which determines whether DIE
10633 needs to have the name of the scope prepended to the name listed in the
10634 die. */
10635
10636 static int
10637 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10638 {
10639 struct attribute *attr;
10640
10641 switch (die->tag)
10642 {
10643 case DW_TAG_namespace:
10644 case DW_TAG_typedef:
10645 case DW_TAG_class_type:
10646 case DW_TAG_interface_type:
10647 case DW_TAG_structure_type:
10648 case DW_TAG_union_type:
10649 case DW_TAG_enumeration_type:
10650 case DW_TAG_enumerator:
10651 case DW_TAG_subprogram:
10652 case DW_TAG_inlined_subroutine:
10653 case DW_TAG_member:
10654 case DW_TAG_imported_declaration:
10655 return 1;
10656
10657 case DW_TAG_variable:
10658 case DW_TAG_constant:
10659 /* We only need to prefix "globally" visible variables. These include
10660 any variable marked with DW_AT_external or any variable that
10661 lives in a namespace. [Variables in anonymous namespaces
10662 require prefixing, but they are not DW_AT_external.] */
10663
10664 if (dwarf2_attr (die, DW_AT_specification, cu))
10665 {
10666 struct dwarf2_cu *spec_cu = cu;
10667
10668 return die_needs_namespace (die_specification (die, &spec_cu),
10669 spec_cu);
10670 }
10671
10672 attr = dwarf2_attr (die, DW_AT_external, cu);
10673 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10674 && die->parent->tag != DW_TAG_module)
10675 return 0;
10676 /* A variable in a lexical block of some kind does not need a
10677 namespace, even though in C++ such variables may be external
10678 and have a mangled name. */
10679 if (die->parent->tag == DW_TAG_lexical_block
10680 || die->parent->tag == DW_TAG_try_block
10681 || die->parent->tag == DW_TAG_catch_block
10682 || die->parent->tag == DW_TAG_subprogram)
10683 return 0;
10684 return 1;
10685
10686 default:
10687 return 0;
10688 }
10689 }
10690
10691 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10692 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10693 defined for the given DIE. */
10694
10695 static struct attribute *
10696 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10697 {
10698 struct attribute *attr;
10699
10700 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10701 if (attr == NULL)
10702 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10703
10704 return attr;
10705 }
10706
10707 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10708 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10709 defined for the given DIE. */
10710
10711 static const char *
10712 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10713 {
10714 const char *linkage_name;
10715
10716 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10717 if (linkage_name == NULL)
10718 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10719
10720 return linkage_name;
10721 }
10722
10723 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10724 compute the physname for the object, which include a method's:
10725 - formal parameters (C++),
10726 - receiver type (Go),
10727
10728 The term "physname" is a bit confusing.
10729 For C++, for example, it is the demangled name.
10730 For Go, for example, it's the mangled name.
10731
10732 For Ada, return the DIE's linkage name rather than the fully qualified
10733 name. PHYSNAME is ignored..
10734
10735 The result is allocated on the objfile_obstack and canonicalized. */
10736
10737 static const char *
10738 dwarf2_compute_name (const char *name,
10739 struct die_info *die, struct dwarf2_cu *cu,
10740 int physname)
10741 {
10742 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10743
10744 if (name == NULL)
10745 name = dwarf2_name (die, cu);
10746
10747 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10748 but otherwise compute it by typename_concat inside GDB.
10749 FIXME: Actually this is not really true, or at least not always true.
10750 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10751 Fortran names because there is no mangling standard. So new_symbol
10752 will set the demangled name to the result of dwarf2_full_name, and it is
10753 the demangled name that GDB uses if it exists. */
10754 if (cu->language == language_ada
10755 || (cu->language == language_fortran && physname))
10756 {
10757 /* For Ada unit, we prefer the linkage name over the name, as
10758 the former contains the exported name, which the user expects
10759 to be able to reference. Ideally, we want the user to be able
10760 to reference this entity using either natural or linkage name,
10761 but we haven't started looking at this enhancement yet. */
10762 const char *linkage_name = dw2_linkage_name (die, cu);
10763
10764 if (linkage_name != NULL)
10765 return linkage_name;
10766 }
10767
10768 /* These are the only languages we know how to qualify names in. */
10769 if (name != NULL
10770 && (cu->language == language_cplus
10771 || cu->language == language_fortran || cu->language == language_d
10772 || cu->language == language_rust))
10773 {
10774 if (die_needs_namespace (die, cu))
10775 {
10776 const char *prefix;
10777 const char *canonical_name = NULL;
10778
10779 string_file buf;
10780
10781 prefix = determine_prefix (die, cu);
10782 if (*prefix != '\0')
10783 {
10784 char *prefixed_name = typename_concat (NULL, prefix, name,
10785 physname, cu);
10786
10787 buf.puts (prefixed_name);
10788 xfree (prefixed_name);
10789 }
10790 else
10791 buf.puts (name);
10792
10793 /* Template parameters may be specified in the DIE's DW_AT_name, or
10794 as children with DW_TAG_template_type_param or
10795 DW_TAG_value_type_param. If the latter, add them to the name
10796 here. If the name already has template parameters, then
10797 skip this step; some versions of GCC emit both, and
10798 it is more efficient to use the pre-computed name.
10799
10800 Something to keep in mind about this process: it is very
10801 unlikely, or in some cases downright impossible, to produce
10802 something that will match the mangled name of a function.
10803 If the definition of the function has the same debug info,
10804 we should be able to match up with it anyway. But fallbacks
10805 using the minimal symbol, for instance to find a method
10806 implemented in a stripped copy of libstdc++, will not work.
10807 If we do not have debug info for the definition, we will have to
10808 match them up some other way.
10809
10810 When we do name matching there is a related problem with function
10811 templates; two instantiated function templates are allowed to
10812 differ only by their return types, which we do not add here. */
10813
10814 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10815 {
10816 struct attribute *attr;
10817 struct die_info *child;
10818 int first = 1;
10819
10820 die->building_fullname = 1;
10821
10822 for (child = die->child; child != NULL; child = child->sibling)
10823 {
10824 struct type *type;
10825 LONGEST value;
10826 const gdb_byte *bytes;
10827 struct dwarf2_locexpr_baton *baton;
10828 struct value *v;
10829
10830 if (child->tag != DW_TAG_template_type_param
10831 && child->tag != DW_TAG_template_value_param)
10832 continue;
10833
10834 if (first)
10835 {
10836 buf.puts ("<");
10837 first = 0;
10838 }
10839 else
10840 buf.puts (", ");
10841
10842 attr = dwarf2_attr (child, DW_AT_type, cu);
10843 if (attr == NULL)
10844 {
10845 complaint (_("template parameter missing DW_AT_type"));
10846 buf.puts ("UNKNOWN_TYPE");
10847 continue;
10848 }
10849 type = die_type (child, cu);
10850
10851 if (child->tag == DW_TAG_template_type_param)
10852 {
10853 c_print_type (type, "", &buf, -1, 0, cu->language,
10854 &type_print_raw_options);
10855 continue;
10856 }
10857
10858 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10859 if (attr == NULL)
10860 {
10861 complaint (_("template parameter missing "
10862 "DW_AT_const_value"));
10863 buf.puts ("UNKNOWN_VALUE");
10864 continue;
10865 }
10866
10867 dwarf2_const_value_attr (attr, type, name,
10868 &cu->comp_unit_obstack, cu,
10869 &value, &bytes, &baton);
10870
10871 if (TYPE_NOSIGN (type))
10872 /* GDB prints characters as NUMBER 'CHAR'. If that's
10873 changed, this can use value_print instead. */
10874 c_printchar (value, type, &buf);
10875 else
10876 {
10877 struct value_print_options opts;
10878
10879 if (baton != NULL)
10880 v = dwarf2_evaluate_loc_desc (type, NULL,
10881 baton->data,
10882 baton->size,
10883 baton->per_cu);
10884 else if (bytes != NULL)
10885 {
10886 v = allocate_value (type);
10887 memcpy (value_contents_writeable (v), bytes,
10888 TYPE_LENGTH (type));
10889 }
10890 else
10891 v = value_from_longest (type, value);
10892
10893 /* Specify decimal so that we do not depend on
10894 the radix. */
10895 get_formatted_print_options (&opts, 'd');
10896 opts.raw = 1;
10897 value_print (v, &buf, &opts);
10898 release_value (v);
10899 }
10900 }
10901
10902 die->building_fullname = 0;
10903
10904 if (!first)
10905 {
10906 /* Close the argument list, with a space if necessary
10907 (nested templates). */
10908 if (!buf.empty () && buf.string ().back () == '>')
10909 buf.puts (" >");
10910 else
10911 buf.puts (">");
10912 }
10913 }
10914
10915 /* For C++ methods, append formal parameter type
10916 information, if PHYSNAME. */
10917
10918 if (physname && die->tag == DW_TAG_subprogram
10919 && cu->language == language_cplus)
10920 {
10921 struct type *type = read_type_die (die, cu);
10922
10923 c_type_print_args (type, &buf, 1, cu->language,
10924 &type_print_raw_options);
10925
10926 if (cu->language == language_cplus)
10927 {
10928 /* Assume that an artificial first parameter is
10929 "this", but do not crash if it is not. RealView
10930 marks unnamed (and thus unused) parameters as
10931 artificial; there is no way to differentiate
10932 the two cases. */
10933 if (TYPE_NFIELDS (type) > 0
10934 && TYPE_FIELD_ARTIFICIAL (type, 0)
10935 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10936 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10937 0))))
10938 buf.puts (" const");
10939 }
10940 }
10941
10942 const std::string &intermediate_name = buf.string ();
10943
10944 if (cu->language == language_cplus)
10945 canonical_name
10946 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10947 &objfile->per_bfd->storage_obstack);
10948
10949 /* If we only computed INTERMEDIATE_NAME, or if
10950 INTERMEDIATE_NAME is already canonical, then we need to
10951 copy it to the appropriate obstack. */
10952 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10953 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10954 intermediate_name);
10955 else
10956 name = canonical_name;
10957 }
10958 }
10959
10960 return name;
10961 }
10962
10963 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10964 If scope qualifiers are appropriate they will be added. The result
10965 will be allocated on the storage_obstack, or NULL if the DIE does
10966 not have a name. NAME may either be from a previous call to
10967 dwarf2_name or NULL.
10968
10969 The output string will be canonicalized (if C++). */
10970
10971 static const char *
10972 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10973 {
10974 return dwarf2_compute_name (name, die, cu, 0);
10975 }
10976
10977 /* Construct a physname for the given DIE in CU. NAME may either be
10978 from a previous call to dwarf2_name or NULL. The result will be
10979 allocated on the objfile_objstack or NULL if the DIE does not have a
10980 name.
10981
10982 The output string will be canonicalized (if C++). */
10983
10984 static const char *
10985 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10986 {
10987 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10988 const char *retval, *mangled = NULL, *canon = NULL;
10989 int need_copy = 1;
10990
10991 /* In this case dwarf2_compute_name is just a shortcut not building anything
10992 on its own. */
10993 if (!die_needs_namespace (die, cu))
10994 return dwarf2_compute_name (name, die, cu, 1);
10995
10996 mangled = dw2_linkage_name (die, cu);
10997
10998 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10999 See https://github.com/rust-lang/rust/issues/32925. */
11000 if (cu->language == language_rust && mangled != NULL
11001 && strchr (mangled, '{') != NULL)
11002 mangled = NULL;
11003
11004 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11005 has computed. */
11006 gdb::unique_xmalloc_ptr<char> demangled;
11007 if (mangled != NULL)
11008 {
11009
11010 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11011 {
11012 /* Do nothing (do not demangle the symbol name). */
11013 }
11014 else if (cu->language == language_go)
11015 {
11016 /* This is a lie, but we already lie to the caller new_symbol.
11017 new_symbol assumes we return the mangled name.
11018 This just undoes that lie until things are cleaned up. */
11019 }
11020 else
11021 {
11022 /* Use DMGL_RET_DROP for C++ template functions to suppress
11023 their return type. It is easier for GDB users to search
11024 for such functions as `name(params)' than `long name(params)'.
11025 In such case the minimal symbol names do not match the full
11026 symbol names but for template functions there is never a need
11027 to look up their definition from their declaration so
11028 the only disadvantage remains the minimal symbol variant
11029 `long name(params)' does not have the proper inferior type. */
11030 demangled.reset (gdb_demangle (mangled,
11031 (DMGL_PARAMS | DMGL_ANSI
11032 | DMGL_RET_DROP)));
11033 }
11034 if (demangled)
11035 canon = demangled.get ();
11036 else
11037 {
11038 canon = mangled;
11039 need_copy = 0;
11040 }
11041 }
11042
11043 if (canon == NULL || check_physname)
11044 {
11045 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11046
11047 if (canon != NULL && strcmp (physname, canon) != 0)
11048 {
11049 /* It may not mean a bug in GDB. The compiler could also
11050 compute DW_AT_linkage_name incorrectly. But in such case
11051 GDB would need to be bug-to-bug compatible. */
11052
11053 complaint (_("Computed physname <%s> does not match demangled <%s> "
11054 "(from linkage <%s>) - DIE at %s [in module %s]"),
11055 physname, canon, mangled, sect_offset_str (die->sect_off),
11056 objfile_name (objfile));
11057
11058 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11059 is available here - over computed PHYSNAME. It is safer
11060 against both buggy GDB and buggy compilers. */
11061
11062 retval = canon;
11063 }
11064 else
11065 {
11066 retval = physname;
11067 need_copy = 0;
11068 }
11069 }
11070 else
11071 retval = canon;
11072
11073 if (need_copy)
11074 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11075
11076 return retval;
11077 }
11078
11079 /* Inspect DIE in CU for a namespace alias. If one exists, record
11080 a new symbol for it.
11081
11082 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11083
11084 static int
11085 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11086 {
11087 struct attribute *attr;
11088
11089 /* If the die does not have a name, this is not a namespace
11090 alias. */
11091 attr = dwarf2_attr (die, DW_AT_name, cu);
11092 if (attr != NULL)
11093 {
11094 int num;
11095 struct die_info *d = die;
11096 struct dwarf2_cu *imported_cu = cu;
11097
11098 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11099 keep inspecting DIEs until we hit the underlying import. */
11100 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11101 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11102 {
11103 attr = dwarf2_attr (d, DW_AT_import, cu);
11104 if (attr == NULL)
11105 break;
11106
11107 d = follow_die_ref (d, attr, &imported_cu);
11108 if (d->tag != DW_TAG_imported_declaration)
11109 break;
11110 }
11111
11112 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11113 {
11114 complaint (_("DIE at %s has too many recursively imported "
11115 "declarations"), sect_offset_str (d->sect_off));
11116 return 0;
11117 }
11118
11119 if (attr != NULL)
11120 {
11121 struct type *type;
11122 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11123
11124 type = get_die_type_at_offset (sect_off, cu->per_cu);
11125 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11126 {
11127 /* This declaration is a global namespace alias. Add
11128 a symbol for it whose type is the aliased namespace. */
11129 new_symbol (die, type, cu);
11130 return 1;
11131 }
11132 }
11133 }
11134
11135 return 0;
11136 }
11137
11138 /* Return the using directives repository (global or local?) to use in the
11139 current context for CU.
11140
11141 For Ada, imported declarations can materialize renamings, which *may* be
11142 global. However it is impossible (for now?) in DWARF to distinguish
11143 "external" imported declarations and "static" ones. As all imported
11144 declarations seem to be static in all other languages, make them all CU-wide
11145 global only in Ada. */
11146
11147 static struct using_direct **
11148 using_directives (struct dwarf2_cu *cu)
11149 {
11150 if (cu->language == language_ada
11151 && cu->get_builder ()->outermost_context_p ())
11152 return cu->get_builder ()->get_global_using_directives ();
11153 else
11154 return cu->get_builder ()->get_local_using_directives ();
11155 }
11156
11157 /* Read the import statement specified by the given die and record it. */
11158
11159 static void
11160 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11161 {
11162 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11163 struct attribute *import_attr;
11164 struct die_info *imported_die, *child_die;
11165 struct dwarf2_cu *imported_cu;
11166 const char *imported_name;
11167 const char *imported_name_prefix;
11168 const char *canonical_name;
11169 const char *import_alias;
11170 const char *imported_declaration = NULL;
11171 const char *import_prefix;
11172 std::vector<const char *> excludes;
11173
11174 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11175 if (import_attr == NULL)
11176 {
11177 complaint (_("Tag '%s' has no DW_AT_import"),
11178 dwarf_tag_name (die->tag));
11179 return;
11180 }
11181
11182 imported_cu = cu;
11183 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11184 imported_name = dwarf2_name (imported_die, imported_cu);
11185 if (imported_name == NULL)
11186 {
11187 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11188
11189 The import in the following code:
11190 namespace A
11191 {
11192 typedef int B;
11193 }
11194
11195 int main ()
11196 {
11197 using A::B;
11198 B b;
11199 return b;
11200 }
11201
11202 ...
11203 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11204 <52> DW_AT_decl_file : 1
11205 <53> DW_AT_decl_line : 6
11206 <54> DW_AT_import : <0x75>
11207 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11208 <59> DW_AT_name : B
11209 <5b> DW_AT_decl_file : 1
11210 <5c> DW_AT_decl_line : 2
11211 <5d> DW_AT_type : <0x6e>
11212 ...
11213 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11214 <76> DW_AT_byte_size : 4
11215 <77> DW_AT_encoding : 5 (signed)
11216
11217 imports the wrong die ( 0x75 instead of 0x58 ).
11218 This case will be ignored until the gcc bug is fixed. */
11219 return;
11220 }
11221
11222 /* Figure out the local name after import. */
11223 import_alias = dwarf2_name (die, cu);
11224
11225 /* Figure out where the statement is being imported to. */
11226 import_prefix = determine_prefix (die, cu);
11227
11228 /* Figure out what the scope of the imported die is and prepend it
11229 to the name of the imported die. */
11230 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11231
11232 if (imported_die->tag != DW_TAG_namespace
11233 && imported_die->tag != DW_TAG_module)
11234 {
11235 imported_declaration = imported_name;
11236 canonical_name = imported_name_prefix;
11237 }
11238 else if (strlen (imported_name_prefix) > 0)
11239 canonical_name = obconcat (&objfile->objfile_obstack,
11240 imported_name_prefix,
11241 (cu->language == language_d ? "." : "::"),
11242 imported_name, (char *) NULL);
11243 else
11244 canonical_name = imported_name;
11245
11246 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11247 for (child_die = die->child; child_die && child_die->tag;
11248 child_die = sibling_die (child_die))
11249 {
11250 /* DWARF-4: A Fortran use statement with a “rename list” may be
11251 represented by an imported module entry with an import attribute
11252 referring to the module and owned entries corresponding to those
11253 entities that are renamed as part of being imported. */
11254
11255 if (child_die->tag != DW_TAG_imported_declaration)
11256 {
11257 complaint (_("child DW_TAG_imported_declaration expected "
11258 "- DIE at %s [in module %s]"),
11259 sect_offset_str (child_die->sect_off),
11260 objfile_name (objfile));
11261 continue;
11262 }
11263
11264 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11265 if (import_attr == NULL)
11266 {
11267 complaint (_("Tag '%s' has no DW_AT_import"),
11268 dwarf_tag_name (child_die->tag));
11269 continue;
11270 }
11271
11272 imported_cu = cu;
11273 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11274 &imported_cu);
11275 imported_name = dwarf2_name (imported_die, imported_cu);
11276 if (imported_name == NULL)
11277 {
11278 complaint (_("child DW_TAG_imported_declaration has unknown "
11279 "imported name - DIE at %s [in module %s]"),
11280 sect_offset_str (child_die->sect_off),
11281 objfile_name (objfile));
11282 continue;
11283 }
11284
11285 excludes.push_back (imported_name);
11286
11287 process_die (child_die, cu);
11288 }
11289
11290 add_using_directive (using_directives (cu),
11291 import_prefix,
11292 canonical_name,
11293 import_alias,
11294 imported_declaration,
11295 excludes,
11296 0,
11297 &objfile->objfile_obstack);
11298 }
11299
11300 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11301 types, but gives them a size of zero. Starting with version 14,
11302 ICC is compatible with GCC. */
11303
11304 static bool
11305 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11306 {
11307 if (!cu->checked_producer)
11308 check_producer (cu);
11309
11310 return cu->producer_is_icc_lt_14;
11311 }
11312
11313 /* ICC generates a DW_AT_type for C void functions. This was observed on
11314 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11315 which says that void functions should not have a DW_AT_type. */
11316
11317 static bool
11318 producer_is_icc (struct dwarf2_cu *cu)
11319 {
11320 if (!cu->checked_producer)
11321 check_producer (cu);
11322
11323 return cu->producer_is_icc;
11324 }
11325
11326 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11327 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11328 this, it was first present in GCC release 4.3.0. */
11329
11330 static bool
11331 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11332 {
11333 if (!cu->checked_producer)
11334 check_producer (cu);
11335
11336 return cu->producer_is_gcc_lt_4_3;
11337 }
11338
11339 static file_and_directory
11340 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11341 {
11342 file_and_directory res;
11343
11344 /* Find the filename. Do not use dwarf2_name here, since the filename
11345 is not a source language identifier. */
11346 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11347 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11348
11349 if (res.comp_dir == NULL
11350 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11351 && IS_ABSOLUTE_PATH (res.name))
11352 {
11353 res.comp_dir_storage = ldirname (res.name);
11354 if (!res.comp_dir_storage.empty ())
11355 res.comp_dir = res.comp_dir_storage.c_str ();
11356 }
11357 if (res.comp_dir != NULL)
11358 {
11359 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11360 directory, get rid of it. */
11361 const char *cp = strchr (res.comp_dir, ':');
11362
11363 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11364 res.comp_dir = cp + 1;
11365 }
11366
11367 if (res.name == NULL)
11368 res.name = "<unknown>";
11369
11370 return res;
11371 }
11372
11373 /* Handle DW_AT_stmt_list for a compilation unit.
11374 DIE is the DW_TAG_compile_unit die for CU.
11375 COMP_DIR is the compilation directory. LOWPC is passed to
11376 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11377
11378 static void
11379 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11380 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11381 {
11382 struct dwarf2_per_objfile *dwarf2_per_objfile
11383 = cu->per_cu->dwarf2_per_objfile;
11384 struct objfile *objfile = dwarf2_per_objfile->objfile;
11385 struct attribute *attr;
11386 struct line_header line_header_local;
11387 hashval_t line_header_local_hash;
11388 void **slot;
11389 int decode_mapping;
11390
11391 gdb_assert (! cu->per_cu->is_debug_types);
11392
11393 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11394 if (attr == NULL)
11395 return;
11396
11397 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11398
11399 /* The line header hash table is only created if needed (it exists to
11400 prevent redundant reading of the line table for partial_units).
11401 If we're given a partial_unit, we'll need it. If we're given a
11402 compile_unit, then use the line header hash table if it's already
11403 created, but don't create one just yet. */
11404
11405 if (dwarf2_per_objfile->line_header_hash == NULL
11406 && die->tag == DW_TAG_partial_unit)
11407 {
11408 dwarf2_per_objfile->line_header_hash
11409 = htab_create_alloc_ex (127, line_header_hash_voidp,
11410 line_header_eq_voidp,
11411 free_line_header_voidp,
11412 &objfile->objfile_obstack,
11413 hashtab_obstack_allocate,
11414 dummy_obstack_deallocate);
11415 }
11416
11417 line_header_local.sect_off = line_offset;
11418 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11419 line_header_local_hash = line_header_hash (&line_header_local);
11420 if (dwarf2_per_objfile->line_header_hash != NULL)
11421 {
11422 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11423 &line_header_local,
11424 line_header_local_hash, NO_INSERT);
11425
11426 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11427 is not present in *SLOT (since if there is something in *SLOT then
11428 it will be for a partial_unit). */
11429 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11430 {
11431 gdb_assert (*slot != NULL);
11432 cu->line_header = (struct line_header *) *slot;
11433 return;
11434 }
11435 }
11436
11437 /* dwarf_decode_line_header does not yet provide sufficient information.
11438 We always have to call also dwarf_decode_lines for it. */
11439 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11440 if (lh == NULL)
11441 return;
11442
11443 cu->line_header = lh.release ();
11444 cu->line_header_die_owner = die;
11445
11446 if (dwarf2_per_objfile->line_header_hash == NULL)
11447 slot = NULL;
11448 else
11449 {
11450 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11451 &line_header_local,
11452 line_header_local_hash, INSERT);
11453 gdb_assert (slot != NULL);
11454 }
11455 if (slot != NULL && *slot == NULL)
11456 {
11457 /* This newly decoded line number information unit will be owned
11458 by line_header_hash hash table. */
11459 *slot = cu->line_header;
11460 cu->line_header_die_owner = NULL;
11461 }
11462 else
11463 {
11464 /* We cannot free any current entry in (*slot) as that struct line_header
11465 may be already used by multiple CUs. Create only temporary decoded
11466 line_header for this CU - it may happen at most once for each line
11467 number information unit. And if we're not using line_header_hash
11468 then this is what we want as well. */
11469 gdb_assert (die->tag != DW_TAG_partial_unit);
11470 }
11471 decode_mapping = (die->tag != DW_TAG_partial_unit);
11472 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11473 decode_mapping);
11474
11475 }
11476
11477 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11478
11479 static void
11480 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11481 {
11482 struct dwarf2_per_objfile *dwarf2_per_objfile
11483 = cu->per_cu->dwarf2_per_objfile;
11484 struct objfile *objfile = dwarf2_per_objfile->objfile;
11485 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11486 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11487 CORE_ADDR highpc = ((CORE_ADDR) 0);
11488 struct attribute *attr;
11489 struct die_info *child_die;
11490 CORE_ADDR baseaddr;
11491
11492 prepare_one_comp_unit (cu, die, cu->language);
11493 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11494
11495 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11496
11497 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11498 from finish_block. */
11499 if (lowpc == ((CORE_ADDR) -1))
11500 lowpc = highpc;
11501 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11502
11503 file_and_directory fnd = find_file_and_directory (die, cu);
11504
11505 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11506 standardised yet. As a workaround for the language detection we fall
11507 back to the DW_AT_producer string. */
11508 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11509 cu->language = language_opencl;
11510
11511 /* Similar hack for Go. */
11512 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11513 set_cu_language (DW_LANG_Go, cu);
11514
11515 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11516
11517 /* Decode line number information if present. We do this before
11518 processing child DIEs, so that the line header table is available
11519 for DW_AT_decl_file. */
11520 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11521
11522 /* Process all dies in compilation unit. */
11523 if (die->child != NULL)
11524 {
11525 child_die = die->child;
11526 while (child_die && child_die->tag)
11527 {
11528 process_die (child_die, cu);
11529 child_die = sibling_die (child_die);
11530 }
11531 }
11532
11533 /* Decode macro information, if present. Dwarf 2 macro information
11534 refers to information in the line number info statement program
11535 header, so we can only read it if we've read the header
11536 successfully. */
11537 attr = dwarf2_attr (die, DW_AT_macros, cu);
11538 if (attr == NULL)
11539 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11540 if (attr && cu->line_header)
11541 {
11542 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11543 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11544
11545 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11546 }
11547 else
11548 {
11549 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11550 if (attr && cu->line_header)
11551 {
11552 unsigned int macro_offset = DW_UNSND (attr);
11553
11554 dwarf_decode_macros (cu, macro_offset, 0);
11555 }
11556 }
11557 }
11558
11559 void
11560 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11561 {
11562 struct type_unit_group *tu_group;
11563 int first_time;
11564 struct attribute *attr;
11565 unsigned int i;
11566 struct signatured_type *sig_type;
11567
11568 gdb_assert (per_cu->is_debug_types);
11569 sig_type = (struct signatured_type *) per_cu;
11570
11571 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11572
11573 /* If we're using .gdb_index (includes -readnow) then
11574 per_cu->type_unit_group may not have been set up yet. */
11575 if (sig_type->type_unit_group == NULL)
11576 sig_type->type_unit_group = get_type_unit_group (this, attr);
11577 tu_group = sig_type->type_unit_group;
11578
11579 /* If we've already processed this stmt_list there's no real need to
11580 do it again, we could fake it and just recreate the part we need
11581 (file name,index -> symtab mapping). If data shows this optimization
11582 is useful we can do it then. */
11583 first_time = tu_group->compunit_symtab == NULL;
11584
11585 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11586 debug info. */
11587 line_header_up lh;
11588 if (attr != NULL)
11589 {
11590 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11591 lh = dwarf_decode_line_header (line_offset, this);
11592 }
11593 if (lh == NULL)
11594 {
11595 if (first_time)
11596 start_symtab ("", NULL, 0);
11597 else
11598 {
11599 gdb_assert (tu_group->symtabs == NULL);
11600 gdb_assert (m_builder == nullptr);
11601 struct compunit_symtab *cust = tu_group->compunit_symtab;
11602 m_builder.reset (new struct buildsym_compunit
11603 (COMPUNIT_OBJFILE (cust), "",
11604 COMPUNIT_DIRNAME (cust),
11605 compunit_language (cust),
11606 0, cust));
11607 }
11608 return;
11609 }
11610
11611 line_header = lh.release ();
11612 line_header_die_owner = die;
11613
11614 if (first_time)
11615 {
11616 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11617
11618 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11619 still initializing it, and our caller (a few levels up)
11620 process_full_type_unit still needs to know if this is the first
11621 time. */
11622
11623 tu_group->num_symtabs = line_header->file_names.size ();
11624 tu_group->symtabs = XNEWVEC (struct symtab *,
11625 line_header->file_names.size ());
11626
11627 for (i = 0; i < line_header->file_names.size (); ++i)
11628 {
11629 file_entry &fe = line_header->file_names[i];
11630
11631 dwarf2_start_subfile (this, fe.name,
11632 fe.include_dir (line_header));
11633 buildsym_compunit *b = get_builder ();
11634 if (b->get_current_subfile ()->symtab == NULL)
11635 {
11636 /* NOTE: start_subfile will recognize when it's been
11637 passed a file it has already seen. So we can't
11638 assume there's a simple mapping from
11639 cu->line_header->file_names to subfiles, plus
11640 cu->line_header->file_names may contain dups. */
11641 b->get_current_subfile ()->symtab
11642 = allocate_symtab (cust, b->get_current_subfile ()->name);
11643 }
11644
11645 fe.symtab = b->get_current_subfile ()->symtab;
11646 tu_group->symtabs[i] = fe.symtab;
11647 }
11648 }
11649 else
11650 {
11651 gdb_assert (m_builder == nullptr);
11652 struct compunit_symtab *cust = tu_group->compunit_symtab;
11653 m_builder.reset (new struct buildsym_compunit
11654 (COMPUNIT_OBJFILE (cust), "",
11655 COMPUNIT_DIRNAME (cust),
11656 compunit_language (cust),
11657 0, cust));
11658
11659 for (i = 0; i < line_header->file_names.size (); ++i)
11660 {
11661 file_entry &fe = line_header->file_names[i];
11662
11663 fe.symtab = tu_group->symtabs[i];
11664 }
11665 }
11666
11667 /* The main symtab is allocated last. Type units don't have DW_AT_name
11668 so they don't have a "real" (so to speak) symtab anyway.
11669 There is later code that will assign the main symtab to all symbols
11670 that don't have one. We need to handle the case of a symbol with a
11671 missing symtab (DW_AT_decl_file) anyway. */
11672 }
11673
11674 /* Process DW_TAG_type_unit.
11675 For TUs we want to skip the first top level sibling if it's not the
11676 actual type being defined by this TU. In this case the first top
11677 level sibling is there to provide context only. */
11678
11679 static void
11680 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11681 {
11682 struct die_info *child_die;
11683
11684 prepare_one_comp_unit (cu, die, language_minimal);
11685
11686 /* Initialize (or reinitialize) the machinery for building symtabs.
11687 We do this before processing child DIEs, so that the line header table
11688 is available for DW_AT_decl_file. */
11689 cu->setup_type_unit_groups (die);
11690
11691 if (die->child != NULL)
11692 {
11693 child_die = die->child;
11694 while (child_die && child_die->tag)
11695 {
11696 process_die (child_die, cu);
11697 child_die = sibling_die (child_die);
11698 }
11699 }
11700 }
11701 \f
11702 /* DWO/DWP files.
11703
11704 http://gcc.gnu.org/wiki/DebugFission
11705 http://gcc.gnu.org/wiki/DebugFissionDWP
11706
11707 To simplify handling of both DWO files ("object" files with the DWARF info)
11708 and DWP files (a file with the DWOs packaged up into one file), we treat
11709 DWP files as having a collection of virtual DWO files. */
11710
11711 static hashval_t
11712 hash_dwo_file (const void *item)
11713 {
11714 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11715 hashval_t hash;
11716
11717 hash = htab_hash_string (dwo_file->dwo_name);
11718 if (dwo_file->comp_dir != NULL)
11719 hash += htab_hash_string (dwo_file->comp_dir);
11720 return hash;
11721 }
11722
11723 static int
11724 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11725 {
11726 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11727 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11728
11729 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11730 return 0;
11731 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11732 return lhs->comp_dir == rhs->comp_dir;
11733 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11734 }
11735
11736 /* Allocate a hash table for DWO files. */
11737
11738 static htab_up
11739 allocate_dwo_file_hash_table (struct objfile *objfile)
11740 {
11741 auto delete_dwo_file = [] (void *item)
11742 {
11743 struct dwo_file *dwo_file = (struct dwo_file *) item;
11744
11745 delete dwo_file;
11746 };
11747
11748 return htab_up (htab_create_alloc_ex (41,
11749 hash_dwo_file,
11750 eq_dwo_file,
11751 delete_dwo_file,
11752 &objfile->objfile_obstack,
11753 hashtab_obstack_allocate,
11754 dummy_obstack_deallocate));
11755 }
11756
11757 /* Lookup DWO file DWO_NAME. */
11758
11759 static void **
11760 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11761 const char *dwo_name,
11762 const char *comp_dir)
11763 {
11764 struct dwo_file find_entry;
11765 void **slot;
11766
11767 if (dwarf2_per_objfile->dwo_files == NULL)
11768 dwarf2_per_objfile->dwo_files
11769 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11770
11771 find_entry.dwo_name = dwo_name;
11772 find_entry.comp_dir = comp_dir;
11773 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11774 INSERT);
11775
11776 return slot;
11777 }
11778
11779 static hashval_t
11780 hash_dwo_unit (const void *item)
11781 {
11782 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11783
11784 /* This drops the top 32 bits of the id, but is ok for a hash. */
11785 return dwo_unit->signature;
11786 }
11787
11788 static int
11789 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11790 {
11791 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11792 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11793
11794 /* The signature is assumed to be unique within the DWO file.
11795 So while object file CU dwo_id's always have the value zero,
11796 that's OK, assuming each object file DWO file has only one CU,
11797 and that's the rule for now. */
11798 return lhs->signature == rhs->signature;
11799 }
11800
11801 /* Allocate a hash table for DWO CUs,TUs.
11802 There is one of these tables for each of CUs,TUs for each DWO file. */
11803
11804 static htab_t
11805 allocate_dwo_unit_table (struct objfile *objfile)
11806 {
11807 /* Start out with a pretty small number.
11808 Generally DWO files contain only one CU and maybe some TUs. */
11809 return htab_create_alloc_ex (3,
11810 hash_dwo_unit,
11811 eq_dwo_unit,
11812 NULL,
11813 &objfile->objfile_obstack,
11814 hashtab_obstack_allocate,
11815 dummy_obstack_deallocate);
11816 }
11817
11818 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11819
11820 struct create_dwo_cu_data
11821 {
11822 struct dwo_file *dwo_file;
11823 struct dwo_unit dwo_unit;
11824 };
11825
11826 /* die_reader_func for create_dwo_cu. */
11827
11828 static void
11829 create_dwo_cu_reader (const struct die_reader_specs *reader,
11830 const gdb_byte *info_ptr,
11831 struct die_info *comp_unit_die,
11832 int has_children,
11833 void *datap)
11834 {
11835 struct dwarf2_cu *cu = reader->cu;
11836 sect_offset sect_off = cu->per_cu->sect_off;
11837 struct dwarf2_section_info *section = cu->per_cu->section;
11838 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11839 struct dwo_file *dwo_file = data->dwo_file;
11840 struct dwo_unit *dwo_unit = &data->dwo_unit;
11841 struct attribute *attr;
11842
11843 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11844 if (attr == NULL)
11845 {
11846 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11847 " its dwo_id [in module %s]"),
11848 sect_offset_str (sect_off), dwo_file->dwo_name);
11849 return;
11850 }
11851
11852 dwo_unit->dwo_file = dwo_file;
11853 dwo_unit->signature = DW_UNSND (attr);
11854 dwo_unit->section = section;
11855 dwo_unit->sect_off = sect_off;
11856 dwo_unit->length = cu->per_cu->length;
11857
11858 if (dwarf_read_debug)
11859 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11860 sect_offset_str (sect_off),
11861 hex_string (dwo_unit->signature));
11862 }
11863
11864 /* Create the dwo_units for the CUs in a DWO_FILE.
11865 Note: This function processes DWO files only, not DWP files. */
11866
11867 static void
11868 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11869 struct dwo_file &dwo_file, dwarf2_section_info &section,
11870 htab_t &cus_htab)
11871 {
11872 struct objfile *objfile = dwarf2_per_objfile->objfile;
11873 const gdb_byte *info_ptr, *end_ptr;
11874
11875 dwarf2_read_section (objfile, &section);
11876 info_ptr = section.buffer;
11877
11878 if (info_ptr == NULL)
11879 return;
11880
11881 if (dwarf_read_debug)
11882 {
11883 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11884 get_section_name (&section),
11885 get_section_file_name (&section));
11886 }
11887
11888 end_ptr = info_ptr + section.size;
11889 while (info_ptr < end_ptr)
11890 {
11891 struct dwarf2_per_cu_data per_cu;
11892 struct create_dwo_cu_data create_dwo_cu_data;
11893 struct dwo_unit *dwo_unit;
11894 void **slot;
11895 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11896
11897 memset (&create_dwo_cu_data.dwo_unit, 0,
11898 sizeof (create_dwo_cu_data.dwo_unit));
11899 memset (&per_cu, 0, sizeof (per_cu));
11900 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11901 per_cu.is_debug_types = 0;
11902 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11903 per_cu.section = &section;
11904 create_dwo_cu_data.dwo_file = &dwo_file;
11905
11906 init_cutu_and_read_dies_no_follow (
11907 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11908 info_ptr += per_cu.length;
11909
11910 // If the unit could not be parsed, skip it.
11911 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11912 continue;
11913
11914 if (cus_htab == NULL)
11915 cus_htab = allocate_dwo_unit_table (objfile);
11916
11917 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11918 *dwo_unit = create_dwo_cu_data.dwo_unit;
11919 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11920 gdb_assert (slot != NULL);
11921 if (*slot != NULL)
11922 {
11923 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11924 sect_offset dup_sect_off = dup_cu->sect_off;
11925
11926 complaint (_("debug cu entry at offset %s is duplicate to"
11927 " the entry at offset %s, signature %s"),
11928 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11929 hex_string (dwo_unit->signature));
11930 }
11931 *slot = (void *)dwo_unit;
11932 }
11933 }
11934
11935 /* DWP file .debug_{cu,tu}_index section format:
11936 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11937
11938 DWP Version 1:
11939
11940 Both index sections have the same format, and serve to map a 64-bit
11941 signature to a set of section numbers. Each section begins with a header,
11942 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11943 indexes, and a pool of 32-bit section numbers. The index sections will be
11944 aligned at 8-byte boundaries in the file.
11945
11946 The index section header consists of:
11947
11948 V, 32 bit version number
11949 -, 32 bits unused
11950 N, 32 bit number of compilation units or type units in the index
11951 M, 32 bit number of slots in the hash table
11952
11953 Numbers are recorded using the byte order of the application binary.
11954
11955 The hash table begins at offset 16 in the section, and consists of an array
11956 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11957 order of the application binary). Unused slots in the hash table are 0.
11958 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11959
11960 The parallel table begins immediately after the hash table
11961 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11962 array of 32-bit indexes (using the byte order of the application binary),
11963 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11964 table contains a 32-bit index into the pool of section numbers. For unused
11965 hash table slots, the corresponding entry in the parallel table will be 0.
11966
11967 The pool of section numbers begins immediately following the hash table
11968 (at offset 16 + 12 * M from the beginning of the section). The pool of
11969 section numbers consists of an array of 32-bit words (using the byte order
11970 of the application binary). Each item in the array is indexed starting
11971 from 0. The hash table entry provides the index of the first section
11972 number in the set. Additional section numbers in the set follow, and the
11973 set is terminated by a 0 entry (section number 0 is not used in ELF).
11974
11975 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11976 section must be the first entry in the set, and the .debug_abbrev.dwo must
11977 be the second entry. Other members of the set may follow in any order.
11978
11979 ---
11980
11981 DWP Version 2:
11982
11983 DWP Version 2 combines all the .debug_info, etc. sections into one,
11984 and the entries in the index tables are now offsets into these sections.
11985 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11986 section.
11987
11988 Index Section Contents:
11989 Header
11990 Hash Table of Signatures dwp_hash_table.hash_table
11991 Parallel Table of Indices dwp_hash_table.unit_table
11992 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11993 Table of Section Sizes dwp_hash_table.v2.sizes
11994
11995 The index section header consists of:
11996
11997 V, 32 bit version number
11998 L, 32 bit number of columns in the table of section offsets
11999 N, 32 bit number of compilation units or type units in the index
12000 M, 32 bit number of slots in the hash table
12001
12002 Numbers are recorded using the byte order of the application binary.
12003
12004 The hash table has the same format as version 1.
12005 The parallel table of indices has the same format as version 1,
12006 except that the entries are origin-1 indices into the table of sections
12007 offsets and the table of section sizes.
12008
12009 The table of offsets begins immediately following the parallel table
12010 (at offset 16 + 12 * M from the beginning of the section). The table is
12011 a two-dimensional array of 32-bit words (using the byte order of the
12012 application binary), with L columns and N+1 rows, in row-major order.
12013 Each row in the array is indexed starting from 0. The first row provides
12014 a key to the remaining rows: each column in this row provides an identifier
12015 for a debug section, and the offsets in the same column of subsequent rows
12016 refer to that section. The section identifiers are:
12017
12018 DW_SECT_INFO 1 .debug_info.dwo
12019 DW_SECT_TYPES 2 .debug_types.dwo
12020 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12021 DW_SECT_LINE 4 .debug_line.dwo
12022 DW_SECT_LOC 5 .debug_loc.dwo
12023 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12024 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12025 DW_SECT_MACRO 8 .debug_macro.dwo
12026
12027 The offsets provided by the CU and TU index sections are the base offsets
12028 for the contributions made by each CU or TU to the corresponding section
12029 in the package file. Each CU and TU header contains an abbrev_offset
12030 field, used to find the abbreviations table for that CU or TU within the
12031 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12032 be interpreted as relative to the base offset given in the index section.
12033 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12034 should be interpreted as relative to the base offset for .debug_line.dwo,
12035 and offsets into other debug sections obtained from DWARF attributes should
12036 also be interpreted as relative to the corresponding base offset.
12037
12038 The table of sizes begins immediately following the table of offsets.
12039 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12040 with L columns and N rows, in row-major order. Each row in the array is
12041 indexed starting from 1 (row 0 is shared by the two tables).
12042
12043 ---
12044
12045 Hash table lookup is handled the same in version 1 and 2:
12046
12047 We assume that N and M will not exceed 2^32 - 1.
12048 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12049
12050 Given a 64-bit compilation unit signature or a type signature S, an entry
12051 in the hash table is located as follows:
12052
12053 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12054 the low-order k bits all set to 1.
12055
12056 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12057
12058 3) If the hash table entry at index H matches the signature, use that
12059 entry. If the hash table entry at index H is unused (all zeroes),
12060 terminate the search: the signature is not present in the table.
12061
12062 4) Let H = (H + H') modulo M. Repeat at Step 3.
12063
12064 Because M > N and H' and M are relatively prime, the search is guaranteed
12065 to stop at an unused slot or find the match. */
12066
12067 /* Create a hash table to map DWO IDs to their CU/TU entry in
12068 .debug_{info,types}.dwo in DWP_FILE.
12069 Returns NULL if there isn't one.
12070 Note: This function processes DWP files only, not DWO files. */
12071
12072 static struct dwp_hash_table *
12073 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12074 struct dwp_file *dwp_file, int is_debug_types)
12075 {
12076 struct objfile *objfile = dwarf2_per_objfile->objfile;
12077 bfd *dbfd = dwp_file->dbfd.get ();
12078 const gdb_byte *index_ptr, *index_end;
12079 struct dwarf2_section_info *index;
12080 uint32_t version, nr_columns, nr_units, nr_slots;
12081 struct dwp_hash_table *htab;
12082
12083 if (is_debug_types)
12084 index = &dwp_file->sections.tu_index;
12085 else
12086 index = &dwp_file->sections.cu_index;
12087
12088 if (dwarf2_section_empty_p (index))
12089 return NULL;
12090 dwarf2_read_section (objfile, index);
12091
12092 index_ptr = index->buffer;
12093 index_end = index_ptr + index->size;
12094
12095 version = read_4_bytes (dbfd, index_ptr);
12096 index_ptr += 4;
12097 if (version == 2)
12098 nr_columns = read_4_bytes (dbfd, index_ptr);
12099 else
12100 nr_columns = 0;
12101 index_ptr += 4;
12102 nr_units = read_4_bytes (dbfd, index_ptr);
12103 index_ptr += 4;
12104 nr_slots = read_4_bytes (dbfd, index_ptr);
12105 index_ptr += 4;
12106
12107 if (version != 1 && version != 2)
12108 {
12109 error (_("Dwarf Error: unsupported DWP file version (%s)"
12110 " [in module %s]"),
12111 pulongest (version), dwp_file->name);
12112 }
12113 if (nr_slots != (nr_slots & -nr_slots))
12114 {
12115 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12116 " is not power of 2 [in module %s]"),
12117 pulongest (nr_slots), dwp_file->name);
12118 }
12119
12120 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12121 htab->version = version;
12122 htab->nr_columns = nr_columns;
12123 htab->nr_units = nr_units;
12124 htab->nr_slots = nr_slots;
12125 htab->hash_table = index_ptr;
12126 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12127
12128 /* Exit early if the table is empty. */
12129 if (nr_slots == 0 || nr_units == 0
12130 || (version == 2 && nr_columns == 0))
12131 {
12132 /* All must be zero. */
12133 if (nr_slots != 0 || nr_units != 0
12134 || (version == 2 && nr_columns != 0))
12135 {
12136 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12137 " all zero [in modules %s]"),
12138 dwp_file->name);
12139 }
12140 return htab;
12141 }
12142
12143 if (version == 1)
12144 {
12145 htab->section_pool.v1.indices =
12146 htab->unit_table + sizeof (uint32_t) * nr_slots;
12147 /* It's harder to decide whether the section is too small in v1.
12148 V1 is deprecated anyway so we punt. */
12149 }
12150 else
12151 {
12152 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12153 int *ids = htab->section_pool.v2.section_ids;
12154 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12155 /* Reverse map for error checking. */
12156 int ids_seen[DW_SECT_MAX + 1];
12157 int i;
12158
12159 if (nr_columns < 2)
12160 {
12161 error (_("Dwarf Error: bad DWP hash table, too few columns"
12162 " in section table [in module %s]"),
12163 dwp_file->name);
12164 }
12165 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12166 {
12167 error (_("Dwarf Error: bad DWP hash table, too many columns"
12168 " in section table [in module %s]"),
12169 dwp_file->name);
12170 }
12171 memset (ids, 255, sizeof_ids);
12172 memset (ids_seen, 255, sizeof (ids_seen));
12173 for (i = 0; i < nr_columns; ++i)
12174 {
12175 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12176
12177 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12178 {
12179 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12180 " in section table [in module %s]"),
12181 id, dwp_file->name);
12182 }
12183 if (ids_seen[id] != -1)
12184 {
12185 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12186 " id %d in section table [in module %s]"),
12187 id, dwp_file->name);
12188 }
12189 ids_seen[id] = i;
12190 ids[i] = id;
12191 }
12192 /* Must have exactly one info or types section. */
12193 if (((ids_seen[DW_SECT_INFO] != -1)
12194 + (ids_seen[DW_SECT_TYPES] != -1))
12195 != 1)
12196 {
12197 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12198 " DWO info/types section [in module %s]"),
12199 dwp_file->name);
12200 }
12201 /* Must have an abbrev section. */
12202 if (ids_seen[DW_SECT_ABBREV] == -1)
12203 {
12204 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12205 " section [in module %s]"),
12206 dwp_file->name);
12207 }
12208 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12209 htab->section_pool.v2.sizes =
12210 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12211 * nr_units * nr_columns);
12212 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12213 * nr_units * nr_columns))
12214 > index_end)
12215 {
12216 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12217 " [in module %s]"),
12218 dwp_file->name);
12219 }
12220 }
12221
12222 return htab;
12223 }
12224
12225 /* Update SECTIONS with the data from SECTP.
12226
12227 This function is like the other "locate" section routines that are
12228 passed to bfd_map_over_sections, but in this context the sections to
12229 read comes from the DWP V1 hash table, not the full ELF section table.
12230
12231 The result is non-zero for success, or zero if an error was found. */
12232
12233 static int
12234 locate_v1_virtual_dwo_sections (asection *sectp,
12235 struct virtual_v1_dwo_sections *sections)
12236 {
12237 const struct dwop_section_names *names = &dwop_section_names;
12238
12239 if (section_is_p (sectp->name, &names->abbrev_dwo))
12240 {
12241 /* There can be only one. */
12242 if (sections->abbrev.s.section != NULL)
12243 return 0;
12244 sections->abbrev.s.section = sectp;
12245 sections->abbrev.size = bfd_get_section_size (sectp);
12246 }
12247 else if (section_is_p (sectp->name, &names->info_dwo)
12248 || section_is_p (sectp->name, &names->types_dwo))
12249 {
12250 /* There can be only one. */
12251 if (sections->info_or_types.s.section != NULL)
12252 return 0;
12253 sections->info_or_types.s.section = sectp;
12254 sections->info_or_types.size = bfd_get_section_size (sectp);
12255 }
12256 else if (section_is_p (sectp->name, &names->line_dwo))
12257 {
12258 /* There can be only one. */
12259 if (sections->line.s.section != NULL)
12260 return 0;
12261 sections->line.s.section = sectp;
12262 sections->line.size = bfd_get_section_size (sectp);
12263 }
12264 else if (section_is_p (sectp->name, &names->loc_dwo))
12265 {
12266 /* There can be only one. */
12267 if (sections->loc.s.section != NULL)
12268 return 0;
12269 sections->loc.s.section = sectp;
12270 sections->loc.size = bfd_get_section_size (sectp);
12271 }
12272 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12273 {
12274 /* There can be only one. */
12275 if (sections->macinfo.s.section != NULL)
12276 return 0;
12277 sections->macinfo.s.section = sectp;
12278 sections->macinfo.size = bfd_get_section_size (sectp);
12279 }
12280 else if (section_is_p (sectp->name, &names->macro_dwo))
12281 {
12282 /* There can be only one. */
12283 if (sections->macro.s.section != NULL)
12284 return 0;
12285 sections->macro.s.section = sectp;
12286 sections->macro.size = bfd_get_section_size (sectp);
12287 }
12288 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12289 {
12290 /* There can be only one. */
12291 if (sections->str_offsets.s.section != NULL)
12292 return 0;
12293 sections->str_offsets.s.section = sectp;
12294 sections->str_offsets.size = bfd_get_section_size (sectp);
12295 }
12296 else
12297 {
12298 /* No other kind of section is valid. */
12299 return 0;
12300 }
12301
12302 return 1;
12303 }
12304
12305 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12306 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12307 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12308 This is for DWP version 1 files. */
12309
12310 static struct dwo_unit *
12311 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12312 struct dwp_file *dwp_file,
12313 uint32_t unit_index,
12314 const char *comp_dir,
12315 ULONGEST signature, int is_debug_types)
12316 {
12317 struct objfile *objfile = dwarf2_per_objfile->objfile;
12318 const struct dwp_hash_table *dwp_htab =
12319 is_debug_types ? dwp_file->tus : dwp_file->cus;
12320 bfd *dbfd = dwp_file->dbfd.get ();
12321 const char *kind = is_debug_types ? "TU" : "CU";
12322 struct dwo_file *dwo_file;
12323 struct dwo_unit *dwo_unit;
12324 struct virtual_v1_dwo_sections sections;
12325 void **dwo_file_slot;
12326 int i;
12327
12328 gdb_assert (dwp_file->version == 1);
12329
12330 if (dwarf_read_debug)
12331 {
12332 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12333 kind,
12334 pulongest (unit_index), hex_string (signature),
12335 dwp_file->name);
12336 }
12337
12338 /* Fetch the sections of this DWO unit.
12339 Put a limit on the number of sections we look for so that bad data
12340 doesn't cause us to loop forever. */
12341
12342 #define MAX_NR_V1_DWO_SECTIONS \
12343 (1 /* .debug_info or .debug_types */ \
12344 + 1 /* .debug_abbrev */ \
12345 + 1 /* .debug_line */ \
12346 + 1 /* .debug_loc */ \
12347 + 1 /* .debug_str_offsets */ \
12348 + 1 /* .debug_macro or .debug_macinfo */ \
12349 + 1 /* trailing zero */)
12350
12351 memset (&sections, 0, sizeof (sections));
12352
12353 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12354 {
12355 asection *sectp;
12356 uint32_t section_nr =
12357 read_4_bytes (dbfd,
12358 dwp_htab->section_pool.v1.indices
12359 + (unit_index + i) * sizeof (uint32_t));
12360
12361 if (section_nr == 0)
12362 break;
12363 if (section_nr >= dwp_file->num_sections)
12364 {
12365 error (_("Dwarf Error: bad DWP hash table, section number too large"
12366 " [in module %s]"),
12367 dwp_file->name);
12368 }
12369
12370 sectp = dwp_file->elf_sections[section_nr];
12371 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12372 {
12373 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12374 " [in module %s]"),
12375 dwp_file->name);
12376 }
12377 }
12378
12379 if (i < 2
12380 || dwarf2_section_empty_p (&sections.info_or_types)
12381 || dwarf2_section_empty_p (&sections.abbrev))
12382 {
12383 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12384 " [in module %s]"),
12385 dwp_file->name);
12386 }
12387 if (i == MAX_NR_V1_DWO_SECTIONS)
12388 {
12389 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12390 " [in module %s]"),
12391 dwp_file->name);
12392 }
12393
12394 /* It's easier for the rest of the code if we fake a struct dwo_file and
12395 have dwo_unit "live" in that. At least for now.
12396
12397 The DWP file can be made up of a random collection of CUs and TUs.
12398 However, for each CU + set of TUs that came from the same original DWO
12399 file, we can combine them back into a virtual DWO file to save space
12400 (fewer struct dwo_file objects to allocate). Remember that for really
12401 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12402
12403 std::string virtual_dwo_name =
12404 string_printf ("virtual-dwo/%d-%d-%d-%d",
12405 get_section_id (&sections.abbrev),
12406 get_section_id (&sections.line),
12407 get_section_id (&sections.loc),
12408 get_section_id (&sections.str_offsets));
12409 /* Can we use an existing virtual DWO file? */
12410 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12411 virtual_dwo_name.c_str (),
12412 comp_dir);
12413 /* Create one if necessary. */
12414 if (*dwo_file_slot == NULL)
12415 {
12416 if (dwarf_read_debug)
12417 {
12418 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12419 virtual_dwo_name.c_str ());
12420 }
12421 dwo_file = new struct dwo_file;
12422 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12423 virtual_dwo_name);
12424 dwo_file->comp_dir = comp_dir;
12425 dwo_file->sections.abbrev = sections.abbrev;
12426 dwo_file->sections.line = sections.line;
12427 dwo_file->sections.loc = sections.loc;
12428 dwo_file->sections.macinfo = sections.macinfo;
12429 dwo_file->sections.macro = sections.macro;
12430 dwo_file->sections.str_offsets = sections.str_offsets;
12431 /* The "str" section is global to the entire DWP file. */
12432 dwo_file->sections.str = dwp_file->sections.str;
12433 /* The info or types section is assigned below to dwo_unit,
12434 there's no need to record it in dwo_file.
12435 Also, we can't simply record type sections in dwo_file because
12436 we record a pointer into the vector in dwo_unit. As we collect more
12437 types we'll grow the vector and eventually have to reallocate space
12438 for it, invalidating all copies of pointers into the previous
12439 contents. */
12440 *dwo_file_slot = dwo_file;
12441 }
12442 else
12443 {
12444 if (dwarf_read_debug)
12445 {
12446 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12447 virtual_dwo_name.c_str ());
12448 }
12449 dwo_file = (struct dwo_file *) *dwo_file_slot;
12450 }
12451
12452 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12453 dwo_unit->dwo_file = dwo_file;
12454 dwo_unit->signature = signature;
12455 dwo_unit->section =
12456 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12457 *dwo_unit->section = sections.info_or_types;
12458 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12459
12460 return dwo_unit;
12461 }
12462
12463 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12464 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12465 piece within that section used by a TU/CU, return a virtual section
12466 of just that piece. */
12467
12468 static struct dwarf2_section_info
12469 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12470 struct dwarf2_section_info *section,
12471 bfd_size_type offset, bfd_size_type size)
12472 {
12473 struct dwarf2_section_info result;
12474 asection *sectp;
12475
12476 gdb_assert (section != NULL);
12477 gdb_assert (!section->is_virtual);
12478
12479 memset (&result, 0, sizeof (result));
12480 result.s.containing_section = section;
12481 result.is_virtual = true;
12482
12483 if (size == 0)
12484 return result;
12485
12486 sectp = get_section_bfd_section (section);
12487
12488 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12489 bounds of the real section. This is a pretty-rare event, so just
12490 flag an error (easier) instead of a warning and trying to cope. */
12491 if (sectp == NULL
12492 || offset + size > bfd_get_section_size (sectp))
12493 {
12494 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12495 " in section %s [in module %s]"),
12496 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12497 objfile_name (dwarf2_per_objfile->objfile));
12498 }
12499
12500 result.virtual_offset = offset;
12501 result.size = size;
12502 return result;
12503 }
12504
12505 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12506 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12507 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12508 This is for DWP version 2 files. */
12509
12510 static struct dwo_unit *
12511 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12512 struct dwp_file *dwp_file,
12513 uint32_t unit_index,
12514 const char *comp_dir,
12515 ULONGEST signature, int is_debug_types)
12516 {
12517 struct objfile *objfile = dwarf2_per_objfile->objfile;
12518 const struct dwp_hash_table *dwp_htab =
12519 is_debug_types ? dwp_file->tus : dwp_file->cus;
12520 bfd *dbfd = dwp_file->dbfd.get ();
12521 const char *kind = is_debug_types ? "TU" : "CU";
12522 struct dwo_file *dwo_file;
12523 struct dwo_unit *dwo_unit;
12524 struct virtual_v2_dwo_sections sections;
12525 void **dwo_file_slot;
12526 int i;
12527
12528 gdb_assert (dwp_file->version == 2);
12529
12530 if (dwarf_read_debug)
12531 {
12532 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12533 kind,
12534 pulongest (unit_index), hex_string (signature),
12535 dwp_file->name);
12536 }
12537
12538 /* Fetch the section offsets of this DWO unit. */
12539
12540 memset (&sections, 0, sizeof (sections));
12541
12542 for (i = 0; i < dwp_htab->nr_columns; ++i)
12543 {
12544 uint32_t offset = read_4_bytes (dbfd,
12545 dwp_htab->section_pool.v2.offsets
12546 + (((unit_index - 1) * dwp_htab->nr_columns
12547 + i)
12548 * sizeof (uint32_t)));
12549 uint32_t size = read_4_bytes (dbfd,
12550 dwp_htab->section_pool.v2.sizes
12551 + (((unit_index - 1) * dwp_htab->nr_columns
12552 + i)
12553 * sizeof (uint32_t)));
12554
12555 switch (dwp_htab->section_pool.v2.section_ids[i])
12556 {
12557 case DW_SECT_INFO:
12558 case DW_SECT_TYPES:
12559 sections.info_or_types_offset = offset;
12560 sections.info_or_types_size = size;
12561 break;
12562 case DW_SECT_ABBREV:
12563 sections.abbrev_offset = offset;
12564 sections.abbrev_size = size;
12565 break;
12566 case DW_SECT_LINE:
12567 sections.line_offset = offset;
12568 sections.line_size = size;
12569 break;
12570 case DW_SECT_LOC:
12571 sections.loc_offset = offset;
12572 sections.loc_size = size;
12573 break;
12574 case DW_SECT_STR_OFFSETS:
12575 sections.str_offsets_offset = offset;
12576 sections.str_offsets_size = size;
12577 break;
12578 case DW_SECT_MACINFO:
12579 sections.macinfo_offset = offset;
12580 sections.macinfo_size = size;
12581 break;
12582 case DW_SECT_MACRO:
12583 sections.macro_offset = offset;
12584 sections.macro_size = size;
12585 break;
12586 }
12587 }
12588
12589 /* It's easier for the rest of the code if we fake a struct dwo_file and
12590 have dwo_unit "live" in that. At least for now.
12591
12592 The DWP file can be made up of a random collection of CUs and TUs.
12593 However, for each CU + set of TUs that came from the same original DWO
12594 file, we can combine them back into a virtual DWO file to save space
12595 (fewer struct dwo_file objects to allocate). Remember that for really
12596 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12597
12598 std::string virtual_dwo_name =
12599 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12600 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12601 (long) (sections.line_size ? sections.line_offset : 0),
12602 (long) (sections.loc_size ? sections.loc_offset : 0),
12603 (long) (sections.str_offsets_size
12604 ? sections.str_offsets_offset : 0));
12605 /* Can we use an existing virtual DWO file? */
12606 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12607 virtual_dwo_name.c_str (),
12608 comp_dir);
12609 /* Create one if necessary. */
12610 if (*dwo_file_slot == NULL)
12611 {
12612 if (dwarf_read_debug)
12613 {
12614 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12615 virtual_dwo_name.c_str ());
12616 }
12617 dwo_file = new struct dwo_file;
12618 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12619 virtual_dwo_name);
12620 dwo_file->comp_dir = comp_dir;
12621 dwo_file->sections.abbrev =
12622 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12623 sections.abbrev_offset, sections.abbrev_size);
12624 dwo_file->sections.line =
12625 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12626 sections.line_offset, sections.line_size);
12627 dwo_file->sections.loc =
12628 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12629 sections.loc_offset, sections.loc_size);
12630 dwo_file->sections.macinfo =
12631 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12632 sections.macinfo_offset, sections.macinfo_size);
12633 dwo_file->sections.macro =
12634 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12635 sections.macro_offset, sections.macro_size);
12636 dwo_file->sections.str_offsets =
12637 create_dwp_v2_section (dwarf2_per_objfile,
12638 &dwp_file->sections.str_offsets,
12639 sections.str_offsets_offset,
12640 sections.str_offsets_size);
12641 /* The "str" section is global to the entire DWP file. */
12642 dwo_file->sections.str = dwp_file->sections.str;
12643 /* The info or types section is assigned below to dwo_unit,
12644 there's no need to record it in dwo_file.
12645 Also, we can't simply record type sections in dwo_file because
12646 we record a pointer into the vector in dwo_unit. As we collect more
12647 types we'll grow the vector and eventually have to reallocate space
12648 for it, invalidating all copies of pointers into the previous
12649 contents. */
12650 *dwo_file_slot = dwo_file;
12651 }
12652 else
12653 {
12654 if (dwarf_read_debug)
12655 {
12656 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12657 virtual_dwo_name.c_str ());
12658 }
12659 dwo_file = (struct dwo_file *) *dwo_file_slot;
12660 }
12661
12662 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12663 dwo_unit->dwo_file = dwo_file;
12664 dwo_unit->signature = signature;
12665 dwo_unit->section =
12666 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12667 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12668 is_debug_types
12669 ? &dwp_file->sections.types
12670 : &dwp_file->sections.info,
12671 sections.info_or_types_offset,
12672 sections.info_or_types_size);
12673 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12674
12675 return dwo_unit;
12676 }
12677
12678 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12679 Returns NULL if the signature isn't found. */
12680
12681 static struct dwo_unit *
12682 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12683 struct dwp_file *dwp_file, const char *comp_dir,
12684 ULONGEST signature, int is_debug_types)
12685 {
12686 const struct dwp_hash_table *dwp_htab =
12687 is_debug_types ? dwp_file->tus : dwp_file->cus;
12688 bfd *dbfd = dwp_file->dbfd.get ();
12689 uint32_t mask = dwp_htab->nr_slots - 1;
12690 uint32_t hash = signature & mask;
12691 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12692 unsigned int i;
12693 void **slot;
12694 struct dwo_unit find_dwo_cu;
12695
12696 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12697 find_dwo_cu.signature = signature;
12698 slot = htab_find_slot (is_debug_types
12699 ? dwp_file->loaded_tus
12700 : dwp_file->loaded_cus,
12701 &find_dwo_cu, INSERT);
12702
12703 if (*slot != NULL)
12704 return (struct dwo_unit *) *slot;
12705
12706 /* Use a for loop so that we don't loop forever on bad debug info. */
12707 for (i = 0; i < dwp_htab->nr_slots; ++i)
12708 {
12709 ULONGEST signature_in_table;
12710
12711 signature_in_table =
12712 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12713 if (signature_in_table == signature)
12714 {
12715 uint32_t unit_index =
12716 read_4_bytes (dbfd,
12717 dwp_htab->unit_table + hash * sizeof (uint32_t));
12718
12719 if (dwp_file->version == 1)
12720 {
12721 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12722 dwp_file, unit_index,
12723 comp_dir, signature,
12724 is_debug_types);
12725 }
12726 else
12727 {
12728 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12729 dwp_file, unit_index,
12730 comp_dir, signature,
12731 is_debug_types);
12732 }
12733 return (struct dwo_unit *) *slot;
12734 }
12735 if (signature_in_table == 0)
12736 return NULL;
12737 hash = (hash + hash2) & mask;
12738 }
12739
12740 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12741 " [in module %s]"),
12742 dwp_file->name);
12743 }
12744
12745 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12746 Open the file specified by FILE_NAME and hand it off to BFD for
12747 preliminary analysis. Return a newly initialized bfd *, which
12748 includes a canonicalized copy of FILE_NAME.
12749 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12750 SEARCH_CWD is true if the current directory is to be searched.
12751 It will be searched before debug-file-directory.
12752 If successful, the file is added to the bfd include table of the
12753 objfile's bfd (see gdb_bfd_record_inclusion).
12754 If unable to find/open the file, return NULL.
12755 NOTE: This function is derived from symfile_bfd_open. */
12756
12757 static gdb_bfd_ref_ptr
12758 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12759 const char *file_name, int is_dwp, int search_cwd)
12760 {
12761 int desc;
12762 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12763 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12764 to debug_file_directory. */
12765 const char *search_path;
12766 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12767
12768 gdb::unique_xmalloc_ptr<char> search_path_holder;
12769 if (search_cwd)
12770 {
12771 if (*debug_file_directory != '\0')
12772 {
12773 search_path_holder.reset (concat (".", dirname_separator_string,
12774 debug_file_directory,
12775 (char *) NULL));
12776 search_path = search_path_holder.get ();
12777 }
12778 else
12779 search_path = ".";
12780 }
12781 else
12782 search_path = debug_file_directory;
12783
12784 openp_flags flags = OPF_RETURN_REALPATH;
12785 if (is_dwp)
12786 flags |= OPF_SEARCH_IN_PATH;
12787
12788 gdb::unique_xmalloc_ptr<char> absolute_name;
12789 desc = openp (search_path, flags, file_name,
12790 O_RDONLY | O_BINARY, &absolute_name);
12791 if (desc < 0)
12792 return NULL;
12793
12794 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12795 gnutarget, desc));
12796 if (sym_bfd == NULL)
12797 return NULL;
12798 bfd_set_cacheable (sym_bfd.get (), 1);
12799
12800 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12801 return NULL;
12802
12803 /* Success. Record the bfd as having been included by the objfile's bfd.
12804 This is important because things like demangled_names_hash lives in the
12805 objfile's per_bfd space and may have references to things like symbol
12806 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12807 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12808
12809 return sym_bfd;
12810 }
12811
12812 /* Try to open DWO file FILE_NAME.
12813 COMP_DIR is the DW_AT_comp_dir attribute.
12814 The result is the bfd handle of the file.
12815 If there is a problem finding or opening the file, return NULL.
12816 Upon success, the canonicalized path of the file is stored in the bfd,
12817 same as symfile_bfd_open. */
12818
12819 static gdb_bfd_ref_ptr
12820 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12821 const char *file_name, const char *comp_dir)
12822 {
12823 if (IS_ABSOLUTE_PATH (file_name))
12824 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12825 0 /*is_dwp*/, 0 /*search_cwd*/);
12826
12827 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12828
12829 if (comp_dir != NULL)
12830 {
12831 char *path_to_try = concat (comp_dir, SLASH_STRING,
12832 file_name, (char *) NULL);
12833
12834 /* NOTE: If comp_dir is a relative path, this will also try the
12835 search path, which seems useful. */
12836 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12837 path_to_try,
12838 0 /*is_dwp*/,
12839 1 /*search_cwd*/));
12840 xfree (path_to_try);
12841 if (abfd != NULL)
12842 return abfd;
12843 }
12844
12845 /* That didn't work, try debug-file-directory, which, despite its name,
12846 is a list of paths. */
12847
12848 if (*debug_file_directory == '\0')
12849 return NULL;
12850
12851 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12852 0 /*is_dwp*/, 1 /*search_cwd*/);
12853 }
12854
12855 /* This function is mapped across the sections and remembers the offset and
12856 size of each of the DWO debugging sections we are interested in. */
12857
12858 static void
12859 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12860 {
12861 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12862 const struct dwop_section_names *names = &dwop_section_names;
12863
12864 if (section_is_p (sectp->name, &names->abbrev_dwo))
12865 {
12866 dwo_sections->abbrev.s.section = sectp;
12867 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12868 }
12869 else if (section_is_p (sectp->name, &names->info_dwo))
12870 {
12871 dwo_sections->info.s.section = sectp;
12872 dwo_sections->info.size = bfd_get_section_size (sectp);
12873 }
12874 else if (section_is_p (sectp->name, &names->line_dwo))
12875 {
12876 dwo_sections->line.s.section = sectp;
12877 dwo_sections->line.size = bfd_get_section_size (sectp);
12878 }
12879 else if (section_is_p (sectp->name, &names->loc_dwo))
12880 {
12881 dwo_sections->loc.s.section = sectp;
12882 dwo_sections->loc.size = bfd_get_section_size (sectp);
12883 }
12884 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12885 {
12886 dwo_sections->macinfo.s.section = sectp;
12887 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12888 }
12889 else if (section_is_p (sectp->name, &names->macro_dwo))
12890 {
12891 dwo_sections->macro.s.section = sectp;
12892 dwo_sections->macro.size = bfd_get_section_size (sectp);
12893 }
12894 else if (section_is_p (sectp->name, &names->str_dwo))
12895 {
12896 dwo_sections->str.s.section = sectp;
12897 dwo_sections->str.size = bfd_get_section_size (sectp);
12898 }
12899 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12900 {
12901 dwo_sections->str_offsets.s.section = sectp;
12902 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12903 }
12904 else if (section_is_p (sectp->name, &names->types_dwo))
12905 {
12906 struct dwarf2_section_info type_section;
12907
12908 memset (&type_section, 0, sizeof (type_section));
12909 type_section.s.section = sectp;
12910 type_section.size = bfd_get_section_size (sectp);
12911 dwo_sections->types.push_back (type_section);
12912 }
12913 }
12914
12915 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12916 by PER_CU. This is for the non-DWP case.
12917 The result is NULL if DWO_NAME can't be found. */
12918
12919 static struct dwo_file *
12920 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12921 const char *dwo_name, const char *comp_dir)
12922 {
12923 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12924
12925 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12926 if (dbfd == NULL)
12927 {
12928 if (dwarf_read_debug)
12929 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12930 return NULL;
12931 }
12932
12933 dwo_file_up dwo_file (new struct dwo_file);
12934 dwo_file->dwo_name = dwo_name;
12935 dwo_file->comp_dir = comp_dir;
12936 dwo_file->dbfd = std::move (dbfd);
12937
12938 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12939 &dwo_file->sections);
12940
12941 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12942 dwo_file->cus);
12943
12944 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12945 dwo_file->sections.types, dwo_file->tus);
12946
12947 if (dwarf_read_debug)
12948 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12949
12950 return dwo_file.release ();
12951 }
12952
12953 /* This function is mapped across the sections and remembers the offset and
12954 size of each of the DWP debugging sections common to version 1 and 2 that
12955 we are interested in. */
12956
12957 static void
12958 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12959 void *dwp_file_ptr)
12960 {
12961 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12962 const struct dwop_section_names *names = &dwop_section_names;
12963 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12964
12965 /* Record the ELF section number for later lookup: this is what the
12966 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12967 gdb_assert (elf_section_nr < dwp_file->num_sections);
12968 dwp_file->elf_sections[elf_section_nr] = sectp;
12969
12970 /* Look for specific sections that we need. */
12971 if (section_is_p (sectp->name, &names->str_dwo))
12972 {
12973 dwp_file->sections.str.s.section = sectp;
12974 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12975 }
12976 else if (section_is_p (sectp->name, &names->cu_index))
12977 {
12978 dwp_file->sections.cu_index.s.section = sectp;
12979 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12980 }
12981 else if (section_is_p (sectp->name, &names->tu_index))
12982 {
12983 dwp_file->sections.tu_index.s.section = sectp;
12984 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
12985 }
12986 }
12987
12988 /* This function is mapped across the sections and remembers the offset and
12989 size of each of the DWP version 2 debugging sections that we are interested
12990 in. This is split into a separate function because we don't know if we
12991 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12992
12993 static void
12994 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12995 {
12996 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12997 const struct dwop_section_names *names = &dwop_section_names;
12998 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12999
13000 /* Record the ELF section number for later lookup: this is what the
13001 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13002 gdb_assert (elf_section_nr < dwp_file->num_sections);
13003 dwp_file->elf_sections[elf_section_nr] = sectp;
13004
13005 /* Look for specific sections that we need. */
13006 if (section_is_p (sectp->name, &names->abbrev_dwo))
13007 {
13008 dwp_file->sections.abbrev.s.section = sectp;
13009 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13010 }
13011 else if (section_is_p (sectp->name, &names->info_dwo))
13012 {
13013 dwp_file->sections.info.s.section = sectp;
13014 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13015 }
13016 else if (section_is_p (sectp->name, &names->line_dwo))
13017 {
13018 dwp_file->sections.line.s.section = sectp;
13019 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13020 }
13021 else if (section_is_p (sectp->name, &names->loc_dwo))
13022 {
13023 dwp_file->sections.loc.s.section = sectp;
13024 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13025 }
13026 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13027 {
13028 dwp_file->sections.macinfo.s.section = sectp;
13029 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13030 }
13031 else if (section_is_p (sectp->name, &names->macro_dwo))
13032 {
13033 dwp_file->sections.macro.s.section = sectp;
13034 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13035 }
13036 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13037 {
13038 dwp_file->sections.str_offsets.s.section = sectp;
13039 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13040 }
13041 else if (section_is_p (sectp->name, &names->types_dwo))
13042 {
13043 dwp_file->sections.types.s.section = sectp;
13044 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13045 }
13046 }
13047
13048 /* Hash function for dwp_file loaded CUs/TUs. */
13049
13050 static hashval_t
13051 hash_dwp_loaded_cutus (const void *item)
13052 {
13053 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13054
13055 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13056 return dwo_unit->signature;
13057 }
13058
13059 /* Equality function for dwp_file loaded CUs/TUs. */
13060
13061 static int
13062 eq_dwp_loaded_cutus (const void *a, const void *b)
13063 {
13064 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13065 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13066
13067 return dua->signature == dub->signature;
13068 }
13069
13070 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13071
13072 static htab_t
13073 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13074 {
13075 return htab_create_alloc_ex (3,
13076 hash_dwp_loaded_cutus,
13077 eq_dwp_loaded_cutus,
13078 NULL,
13079 &objfile->objfile_obstack,
13080 hashtab_obstack_allocate,
13081 dummy_obstack_deallocate);
13082 }
13083
13084 /* Try to open DWP file FILE_NAME.
13085 The result is the bfd handle of the file.
13086 If there is a problem finding or opening the file, return NULL.
13087 Upon success, the canonicalized path of the file is stored in the bfd,
13088 same as symfile_bfd_open. */
13089
13090 static gdb_bfd_ref_ptr
13091 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13092 const char *file_name)
13093 {
13094 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13095 1 /*is_dwp*/,
13096 1 /*search_cwd*/));
13097 if (abfd != NULL)
13098 return abfd;
13099
13100 /* Work around upstream bug 15652.
13101 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13102 [Whether that's a "bug" is debatable, but it is getting in our way.]
13103 We have no real idea where the dwp file is, because gdb's realpath-ing
13104 of the executable's path may have discarded the needed info.
13105 [IWBN if the dwp file name was recorded in the executable, akin to
13106 .gnu_debuglink, but that doesn't exist yet.]
13107 Strip the directory from FILE_NAME and search again. */
13108 if (*debug_file_directory != '\0')
13109 {
13110 /* Don't implicitly search the current directory here.
13111 If the user wants to search "." to handle this case,
13112 it must be added to debug-file-directory. */
13113 return try_open_dwop_file (dwarf2_per_objfile,
13114 lbasename (file_name), 1 /*is_dwp*/,
13115 0 /*search_cwd*/);
13116 }
13117
13118 return NULL;
13119 }
13120
13121 /* Initialize the use of the DWP file for the current objfile.
13122 By convention the name of the DWP file is ${objfile}.dwp.
13123 The result is NULL if it can't be found. */
13124
13125 static std::unique_ptr<struct dwp_file>
13126 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13127 {
13128 struct objfile *objfile = dwarf2_per_objfile->objfile;
13129
13130 /* Try to find first .dwp for the binary file before any symbolic links
13131 resolving. */
13132
13133 /* If the objfile is a debug file, find the name of the real binary
13134 file and get the name of dwp file from there. */
13135 std::string dwp_name;
13136 if (objfile->separate_debug_objfile_backlink != NULL)
13137 {
13138 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13139 const char *backlink_basename = lbasename (backlink->original_name);
13140
13141 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13142 }
13143 else
13144 dwp_name = objfile->original_name;
13145
13146 dwp_name += ".dwp";
13147
13148 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13149 if (dbfd == NULL
13150 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13151 {
13152 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13153 dwp_name = objfile_name (objfile);
13154 dwp_name += ".dwp";
13155 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13156 }
13157
13158 if (dbfd == NULL)
13159 {
13160 if (dwarf_read_debug)
13161 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13162 return std::unique_ptr<dwp_file> ();
13163 }
13164
13165 const char *name = bfd_get_filename (dbfd.get ());
13166 std::unique_ptr<struct dwp_file> dwp_file
13167 (new struct dwp_file (name, std::move (dbfd)));
13168
13169 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13170 dwp_file->elf_sections =
13171 OBSTACK_CALLOC (&objfile->objfile_obstack,
13172 dwp_file->num_sections, asection *);
13173
13174 bfd_map_over_sections (dwp_file->dbfd.get (),
13175 dwarf2_locate_common_dwp_sections,
13176 dwp_file.get ());
13177
13178 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13179 0);
13180
13181 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13182 1);
13183
13184 /* The DWP file version is stored in the hash table. Oh well. */
13185 if (dwp_file->cus && dwp_file->tus
13186 && dwp_file->cus->version != dwp_file->tus->version)
13187 {
13188 /* Technically speaking, we should try to limp along, but this is
13189 pretty bizarre. We use pulongest here because that's the established
13190 portability solution (e.g, we cannot use %u for uint32_t). */
13191 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13192 " TU version %s [in DWP file %s]"),
13193 pulongest (dwp_file->cus->version),
13194 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13195 }
13196
13197 if (dwp_file->cus)
13198 dwp_file->version = dwp_file->cus->version;
13199 else if (dwp_file->tus)
13200 dwp_file->version = dwp_file->tus->version;
13201 else
13202 dwp_file->version = 2;
13203
13204 if (dwp_file->version == 2)
13205 bfd_map_over_sections (dwp_file->dbfd.get (),
13206 dwarf2_locate_v2_dwp_sections,
13207 dwp_file.get ());
13208
13209 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13210 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13211
13212 if (dwarf_read_debug)
13213 {
13214 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13215 fprintf_unfiltered (gdb_stdlog,
13216 " %s CUs, %s TUs\n",
13217 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13218 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13219 }
13220
13221 return dwp_file;
13222 }
13223
13224 /* Wrapper around open_and_init_dwp_file, only open it once. */
13225
13226 static struct dwp_file *
13227 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13228 {
13229 if (! dwarf2_per_objfile->dwp_checked)
13230 {
13231 dwarf2_per_objfile->dwp_file
13232 = open_and_init_dwp_file (dwarf2_per_objfile);
13233 dwarf2_per_objfile->dwp_checked = 1;
13234 }
13235 return dwarf2_per_objfile->dwp_file.get ();
13236 }
13237
13238 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13239 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13240 or in the DWP file for the objfile, referenced by THIS_UNIT.
13241 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13242 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13243
13244 This is called, for example, when wanting to read a variable with a
13245 complex location. Therefore we don't want to do file i/o for every call.
13246 Therefore we don't want to look for a DWO file on every call.
13247 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13248 then we check if we've already seen DWO_NAME, and only THEN do we check
13249 for a DWO file.
13250
13251 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13252 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13253
13254 static struct dwo_unit *
13255 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13256 const char *dwo_name, const char *comp_dir,
13257 ULONGEST signature, int is_debug_types)
13258 {
13259 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13260 struct objfile *objfile = dwarf2_per_objfile->objfile;
13261 const char *kind = is_debug_types ? "TU" : "CU";
13262 void **dwo_file_slot;
13263 struct dwo_file *dwo_file;
13264 struct dwp_file *dwp_file;
13265
13266 /* First see if there's a DWP file.
13267 If we have a DWP file but didn't find the DWO inside it, don't
13268 look for the original DWO file. It makes gdb behave differently
13269 depending on whether one is debugging in the build tree. */
13270
13271 dwp_file = get_dwp_file (dwarf2_per_objfile);
13272 if (dwp_file != NULL)
13273 {
13274 const struct dwp_hash_table *dwp_htab =
13275 is_debug_types ? dwp_file->tus : dwp_file->cus;
13276
13277 if (dwp_htab != NULL)
13278 {
13279 struct dwo_unit *dwo_cutu =
13280 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13281 signature, is_debug_types);
13282
13283 if (dwo_cutu != NULL)
13284 {
13285 if (dwarf_read_debug)
13286 {
13287 fprintf_unfiltered (gdb_stdlog,
13288 "Virtual DWO %s %s found: @%s\n",
13289 kind, hex_string (signature),
13290 host_address_to_string (dwo_cutu));
13291 }
13292 return dwo_cutu;
13293 }
13294 }
13295 }
13296 else
13297 {
13298 /* No DWP file, look for the DWO file. */
13299
13300 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13301 dwo_name, comp_dir);
13302 if (*dwo_file_slot == NULL)
13303 {
13304 /* Read in the file and build a table of the CUs/TUs it contains. */
13305 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13306 }
13307 /* NOTE: This will be NULL if unable to open the file. */
13308 dwo_file = (struct dwo_file *) *dwo_file_slot;
13309
13310 if (dwo_file != NULL)
13311 {
13312 struct dwo_unit *dwo_cutu = NULL;
13313
13314 if (is_debug_types && dwo_file->tus)
13315 {
13316 struct dwo_unit find_dwo_cutu;
13317
13318 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13319 find_dwo_cutu.signature = signature;
13320 dwo_cutu
13321 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13322 }
13323 else if (!is_debug_types && dwo_file->cus)
13324 {
13325 struct dwo_unit find_dwo_cutu;
13326
13327 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13328 find_dwo_cutu.signature = signature;
13329 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13330 &find_dwo_cutu);
13331 }
13332
13333 if (dwo_cutu != NULL)
13334 {
13335 if (dwarf_read_debug)
13336 {
13337 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13338 kind, dwo_name, hex_string (signature),
13339 host_address_to_string (dwo_cutu));
13340 }
13341 return dwo_cutu;
13342 }
13343 }
13344 }
13345
13346 /* We didn't find it. This could mean a dwo_id mismatch, or
13347 someone deleted the DWO/DWP file, or the search path isn't set up
13348 correctly to find the file. */
13349
13350 if (dwarf_read_debug)
13351 {
13352 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13353 kind, dwo_name, hex_string (signature));
13354 }
13355
13356 /* This is a warning and not a complaint because it can be caused by
13357 pilot error (e.g., user accidentally deleting the DWO). */
13358 {
13359 /* Print the name of the DWP file if we looked there, helps the user
13360 better diagnose the problem. */
13361 std::string dwp_text;
13362
13363 if (dwp_file != NULL)
13364 dwp_text = string_printf (" [in DWP file %s]",
13365 lbasename (dwp_file->name));
13366
13367 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13368 " [in module %s]"),
13369 kind, dwo_name, hex_string (signature),
13370 dwp_text.c_str (),
13371 this_unit->is_debug_types ? "TU" : "CU",
13372 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13373 }
13374 return NULL;
13375 }
13376
13377 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13378 See lookup_dwo_cutu_unit for details. */
13379
13380 static struct dwo_unit *
13381 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13382 const char *dwo_name, const char *comp_dir,
13383 ULONGEST signature)
13384 {
13385 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13386 }
13387
13388 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13389 See lookup_dwo_cutu_unit for details. */
13390
13391 static struct dwo_unit *
13392 lookup_dwo_type_unit (struct signatured_type *this_tu,
13393 const char *dwo_name, const char *comp_dir)
13394 {
13395 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13396 }
13397
13398 /* Traversal function for queue_and_load_all_dwo_tus. */
13399
13400 static int
13401 queue_and_load_dwo_tu (void **slot, void *info)
13402 {
13403 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13404 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13405 ULONGEST signature = dwo_unit->signature;
13406 struct signatured_type *sig_type =
13407 lookup_dwo_signatured_type (per_cu->cu, signature);
13408
13409 if (sig_type != NULL)
13410 {
13411 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13412
13413 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13414 a real dependency of PER_CU on SIG_TYPE. That is detected later
13415 while processing PER_CU. */
13416 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13417 load_full_type_unit (sig_cu);
13418 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13419 }
13420
13421 return 1;
13422 }
13423
13424 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13425 The DWO may have the only definition of the type, though it may not be
13426 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13427 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13428
13429 static void
13430 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13431 {
13432 struct dwo_unit *dwo_unit;
13433 struct dwo_file *dwo_file;
13434
13435 gdb_assert (!per_cu->is_debug_types);
13436 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13437 gdb_assert (per_cu->cu != NULL);
13438
13439 dwo_unit = per_cu->cu->dwo_unit;
13440 gdb_assert (dwo_unit != NULL);
13441
13442 dwo_file = dwo_unit->dwo_file;
13443 if (dwo_file->tus != NULL)
13444 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13445 }
13446
13447 /* Read in various DIEs. */
13448
13449 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13450 Inherit only the children of the DW_AT_abstract_origin DIE not being
13451 already referenced by DW_AT_abstract_origin from the children of the
13452 current DIE. */
13453
13454 static void
13455 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13456 {
13457 struct die_info *child_die;
13458 sect_offset *offsetp;
13459 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13460 struct die_info *origin_die;
13461 /* Iterator of the ORIGIN_DIE children. */
13462 struct die_info *origin_child_die;
13463 struct attribute *attr;
13464 struct dwarf2_cu *origin_cu;
13465 struct pending **origin_previous_list_in_scope;
13466
13467 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13468 if (!attr)
13469 return;
13470
13471 /* Note that following die references may follow to a die in a
13472 different cu. */
13473
13474 origin_cu = cu;
13475 origin_die = follow_die_ref (die, attr, &origin_cu);
13476
13477 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13478 symbols in. */
13479 origin_previous_list_in_scope = origin_cu->list_in_scope;
13480 origin_cu->list_in_scope = cu->list_in_scope;
13481
13482 if (die->tag != origin_die->tag
13483 && !(die->tag == DW_TAG_inlined_subroutine
13484 && origin_die->tag == DW_TAG_subprogram))
13485 complaint (_("DIE %s and its abstract origin %s have different tags"),
13486 sect_offset_str (die->sect_off),
13487 sect_offset_str (origin_die->sect_off));
13488
13489 std::vector<sect_offset> offsets;
13490
13491 for (child_die = die->child;
13492 child_die && child_die->tag;
13493 child_die = sibling_die (child_die))
13494 {
13495 struct die_info *child_origin_die;
13496 struct dwarf2_cu *child_origin_cu;
13497
13498 /* We are trying to process concrete instance entries:
13499 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13500 it's not relevant to our analysis here. i.e. detecting DIEs that are
13501 present in the abstract instance but not referenced in the concrete
13502 one. */
13503 if (child_die->tag == DW_TAG_call_site
13504 || child_die->tag == DW_TAG_GNU_call_site)
13505 continue;
13506
13507 /* For each CHILD_DIE, find the corresponding child of
13508 ORIGIN_DIE. If there is more than one layer of
13509 DW_AT_abstract_origin, follow them all; there shouldn't be,
13510 but GCC versions at least through 4.4 generate this (GCC PR
13511 40573). */
13512 child_origin_die = child_die;
13513 child_origin_cu = cu;
13514 while (1)
13515 {
13516 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13517 child_origin_cu);
13518 if (attr == NULL)
13519 break;
13520 child_origin_die = follow_die_ref (child_origin_die, attr,
13521 &child_origin_cu);
13522 }
13523
13524 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13525 counterpart may exist. */
13526 if (child_origin_die != child_die)
13527 {
13528 if (child_die->tag != child_origin_die->tag
13529 && !(child_die->tag == DW_TAG_inlined_subroutine
13530 && child_origin_die->tag == DW_TAG_subprogram))
13531 complaint (_("Child DIE %s and its abstract origin %s have "
13532 "different tags"),
13533 sect_offset_str (child_die->sect_off),
13534 sect_offset_str (child_origin_die->sect_off));
13535 if (child_origin_die->parent != origin_die)
13536 complaint (_("Child DIE %s and its abstract origin %s have "
13537 "different parents"),
13538 sect_offset_str (child_die->sect_off),
13539 sect_offset_str (child_origin_die->sect_off));
13540 else
13541 offsets.push_back (child_origin_die->sect_off);
13542 }
13543 }
13544 std::sort (offsets.begin (), offsets.end ());
13545 sect_offset *offsets_end = offsets.data () + offsets.size ();
13546 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13547 if (offsetp[-1] == *offsetp)
13548 complaint (_("Multiple children of DIE %s refer "
13549 "to DIE %s as their abstract origin"),
13550 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13551
13552 offsetp = offsets.data ();
13553 origin_child_die = origin_die->child;
13554 while (origin_child_die && origin_child_die->tag)
13555 {
13556 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13557 while (offsetp < offsets_end
13558 && *offsetp < origin_child_die->sect_off)
13559 offsetp++;
13560 if (offsetp >= offsets_end
13561 || *offsetp > origin_child_die->sect_off)
13562 {
13563 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13564 Check whether we're already processing ORIGIN_CHILD_DIE.
13565 This can happen with mutually referenced abstract_origins.
13566 PR 16581. */
13567 if (!origin_child_die->in_process)
13568 process_die (origin_child_die, origin_cu);
13569 }
13570 origin_child_die = sibling_die (origin_child_die);
13571 }
13572 origin_cu->list_in_scope = origin_previous_list_in_scope;
13573 }
13574
13575 static void
13576 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13577 {
13578 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13579 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13580 struct context_stack *newobj;
13581 CORE_ADDR lowpc;
13582 CORE_ADDR highpc;
13583 struct die_info *child_die;
13584 struct attribute *attr, *call_line, *call_file;
13585 const char *name;
13586 CORE_ADDR baseaddr;
13587 struct block *block;
13588 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13589 std::vector<struct symbol *> template_args;
13590 struct template_symbol *templ_func = NULL;
13591
13592 if (inlined_func)
13593 {
13594 /* If we do not have call site information, we can't show the
13595 caller of this inlined function. That's too confusing, so
13596 only use the scope for local variables. */
13597 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13598 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13599 if (call_line == NULL || call_file == NULL)
13600 {
13601 read_lexical_block_scope (die, cu);
13602 return;
13603 }
13604 }
13605
13606 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13607
13608 name = dwarf2_name (die, cu);
13609
13610 /* Ignore functions with missing or empty names. These are actually
13611 illegal according to the DWARF standard. */
13612 if (name == NULL)
13613 {
13614 complaint (_("missing name for subprogram DIE at %s"),
13615 sect_offset_str (die->sect_off));
13616 return;
13617 }
13618
13619 /* Ignore functions with missing or invalid low and high pc attributes. */
13620 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13621 <= PC_BOUNDS_INVALID)
13622 {
13623 attr = dwarf2_attr (die, DW_AT_external, cu);
13624 if (!attr || !DW_UNSND (attr))
13625 complaint (_("cannot get low and high bounds "
13626 "for subprogram DIE at %s"),
13627 sect_offset_str (die->sect_off));
13628 return;
13629 }
13630
13631 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13632 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13633
13634 /* If we have any template arguments, then we must allocate a
13635 different sort of symbol. */
13636 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13637 {
13638 if (child_die->tag == DW_TAG_template_type_param
13639 || child_die->tag == DW_TAG_template_value_param)
13640 {
13641 templ_func = allocate_template_symbol (objfile);
13642 templ_func->subclass = SYMBOL_TEMPLATE;
13643 break;
13644 }
13645 }
13646
13647 newobj = cu->get_builder ()->push_context (0, lowpc);
13648 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13649 (struct symbol *) templ_func);
13650
13651 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13652 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13653 cu->language);
13654
13655 /* If there is a location expression for DW_AT_frame_base, record
13656 it. */
13657 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13658 if (attr)
13659 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13660
13661 /* If there is a location for the static link, record it. */
13662 newobj->static_link = NULL;
13663 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13664 if (attr)
13665 {
13666 newobj->static_link
13667 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13668 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13669 dwarf2_per_cu_addr_type (cu->per_cu));
13670 }
13671
13672 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13673
13674 if (die->child != NULL)
13675 {
13676 child_die = die->child;
13677 while (child_die && child_die->tag)
13678 {
13679 if (child_die->tag == DW_TAG_template_type_param
13680 || child_die->tag == DW_TAG_template_value_param)
13681 {
13682 struct symbol *arg = new_symbol (child_die, NULL, cu);
13683
13684 if (arg != NULL)
13685 template_args.push_back (arg);
13686 }
13687 else
13688 process_die (child_die, cu);
13689 child_die = sibling_die (child_die);
13690 }
13691 }
13692
13693 inherit_abstract_dies (die, cu);
13694
13695 /* If we have a DW_AT_specification, we might need to import using
13696 directives from the context of the specification DIE. See the
13697 comment in determine_prefix. */
13698 if (cu->language == language_cplus
13699 && dwarf2_attr (die, DW_AT_specification, cu))
13700 {
13701 struct dwarf2_cu *spec_cu = cu;
13702 struct die_info *spec_die = die_specification (die, &spec_cu);
13703
13704 while (spec_die)
13705 {
13706 child_die = spec_die->child;
13707 while (child_die && child_die->tag)
13708 {
13709 if (child_die->tag == DW_TAG_imported_module)
13710 process_die (child_die, spec_cu);
13711 child_die = sibling_die (child_die);
13712 }
13713
13714 /* In some cases, GCC generates specification DIEs that
13715 themselves contain DW_AT_specification attributes. */
13716 spec_die = die_specification (spec_die, &spec_cu);
13717 }
13718 }
13719
13720 struct context_stack cstk = cu->get_builder ()->pop_context ();
13721 /* Make a block for the local symbols within. */
13722 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13723 cstk.static_link, lowpc, highpc);
13724
13725 /* For C++, set the block's scope. */
13726 if ((cu->language == language_cplus
13727 || cu->language == language_fortran
13728 || cu->language == language_d
13729 || cu->language == language_rust)
13730 && cu->processing_has_namespace_info)
13731 block_set_scope (block, determine_prefix (die, cu),
13732 &objfile->objfile_obstack);
13733
13734 /* If we have address ranges, record them. */
13735 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13736
13737 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13738
13739 /* Attach template arguments to function. */
13740 if (!template_args.empty ())
13741 {
13742 gdb_assert (templ_func != NULL);
13743
13744 templ_func->n_template_arguments = template_args.size ();
13745 templ_func->template_arguments
13746 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13747 templ_func->n_template_arguments);
13748 memcpy (templ_func->template_arguments,
13749 template_args.data (),
13750 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13751
13752 /* Make sure that the symtab is set on the new symbols. Even
13753 though they don't appear in this symtab directly, other parts
13754 of gdb assume that symbols do, and this is reasonably
13755 true. */
13756 for (symbol *sym : template_args)
13757 symbol_set_symtab (sym, symbol_symtab (templ_func));
13758 }
13759
13760 /* In C++, we can have functions nested inside functions (e.g., when
13761 a function declares a class that has methods). This means that
13762 when we finish processing a function scope, we may need to go
13763 back to building a containing block's symbol lists. */
13764 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13765 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13766
13767 /* If we've finished processing a top-level function, subsequent
13768 symbols go in the file symbol list. */
13769 if (cu->get_builder ()->outermost_context_p ())
13770 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13771 }
13772
13773 /* Process all the DIES contained within a lexical block scope. Start
13774 a new scope, process the dies, and then close the scope. */
13775
13776 static void
13777 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13778 {
13779 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13780 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13781 CORE_ADDR lowpc, highpc;
13782 struct die_info *child_die;
13783 CORE_ADDR baseaddr;
13784
13785 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13786
13787 /* Ignore blocks with missing or invalid low and high pc attributes. */
13788 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13789 as multiple lexical blocks? Handling children in a sane way would
13790 be nasty. Might be easier to properly extend generic blocks to
13791 describe ranges. */
13792 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13793 {
13794 case PC_BOUNDS_NOT_PRESENT:
13795 /* DW_TAG_lexical_block has no attributes, process its children as if
13796 there was no wrapping by that DW_TAG_lexical_block.
13797 GCC does no longer produces such DWARF since GCC r224161. */
13798 for (child_die = die->child;
13799 child_die != NULL && child_die->tag;
13800 child_die = sibling_die (child_die))
13801 process_die (child_die, cu);
13802 return;
13803 case PC_BOUNDS_INVALID:
13804 return;
13805 }
13806 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13807 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13808
13809 cu->get_builder ()->push_context (0, lowpc);
13810 if (die->child != NULL)
13811 {
13812 child_die = die->child;
13813 while (child_die && child_die->tag)
13814 {
13815 process_die (child_die, cu);
13816 child_die = sibling_die (child_die);
13817 }
13818 }
13819 inherit_abstract_dies (die, cu);
13820 struct context_stack cstk = cu->get_builder ()->pop_context ();
13821
13822 if (*cu->get_builder ()->get_local_symbols () != NULL
13823 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13824 {
13825 struct block *block
13826 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13827 cstk.start_addr, highpc);
13828
13829 /* Note that recording ranges after traversing children, as we
13830 do here, means that recording a parent's ranges entails
13831 walking across all its children's ranges as they appear in
13832 the address map, which is quadratic behavior.
13833
13834 It would be nicer to record the parent's ranges before
13835 traversing its children, simply overriding whatever you find
13836 there. But since we don't even decide whether to create a
13837 block until after we've traversed its children, that's hard
13838 to do. */
13839 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13840 }
13841 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13842 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13843 }
13844
13845 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13846
13847 static void
13848 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13849 {
13850 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13852 CORE_ADDR pc, baseaddr;
13853 struct attribute *attr;
13854 struct call_site *call_site, call_site_local;
13855 void **slot;
13856 int nparams;
13857 struct die_info *child_die;
13858
13859 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13860
13861 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13862 if (attr == NULL)
13863 {
13864 /* This was a pre-DWARF-5 GNU extension alias
13865 for DW_AT_call_return_pc. */
13866 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13867 }
13868 if (!attr)
13869 {
13870 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13871 "DIE %s [in module %s]"),
13872 sect_offset_str (die->sect_off), objfile_name (objfile));
13873 return;
13874 }
13875 pc = attr_value_as_address (attr) + baseaddr;
13876 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13877
13878 if (cu->call_site_htab == NULL)
13879 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13880 NULL, &objfile->objfile_obstack,
13881 hashtab_obstack_allocate, NULL);
13882 call_site_local.pc = pc;
13883 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13884 if (*slot != NULL)
13885 {
13886 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13887 "DIE %s [in module %s]"),
13888 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13889 objfile_name (objfile));
13890 return;
13891 }
13892
13893 /* Count parameters at the caller. */
13894
13895 nparams = 0;
13896 for (child_die = die->child; child_die && child_die->tag;
13897 child_die = sibling_die (child_die))
13898 {
13899 if (child_die->tag != DW_TAG_call_site_parameter
13900 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13901 {
13902 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13903 "DW_TAG_call_site child DIE %s [in module %s]"),
13904 child_die->tag, sect_offset_str (child_die->sect_off),
13905 objfile_name (objfile));
13906 continue;
13907 }
13908
13909 nparams++;
13910 }
13911
13912 call_site
13913 = ((struct call_site *)
13914 obstack_alloc (&objfile->objfile_obstack,
13915 sizeof (*call_site)
13916 + (sizeof (*call_site->parameter) * (nparams - 1))));
13917 *slot = call_site;
13918 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13919 call_site->pc = pc;
13920
13921 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13922 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13923 {
13924 struct die_info *func_die;
13925
13926 /* Skip also over DW_TAG_inlined_subroutine. */
13927 for (func_die = die->parent;
13928 func_die && func_die->tag != DW_TAG_subprogram
13929 && func_die->tag != DW_TAG_subroutine_type;
13930 func_die = func_die->parent);
13931
13932 /* DW_AT_call_all_calls is a superset
13933 of DW_AT_call_all_tail_calls. */
13934 if (func_die
13935 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13936 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13937 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13938 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13939 {
13940 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13941 not complete. But keep CALL_SITE for look ups via call_site_htab,
13942 both the initial caller containing the real return address PC and
13943 the final callee containing the current PC of a chain of tail
13944 calls do not need to have the tail call list complete. But any
13945 function candidate for a virtual tail call frame searched via
13946 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13947 determined unambiguously. */
13948 }
13949 else
13950 {
13951 struct type *func_type = NULL;
13952
13953 if (func_die)
13954 func_type = get_die_type (func_die, cu);
13955 if (func_type != NULL)
13956 {
13957 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13958
13959 /* Enlist this call site to the function. */
13960 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13961 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13962 }
13963 else
13964 complaint (_("Cannot find function owning DW_TAG_call_site "
13965 "DIE %s [in module %s]"),
13966 sect_offset_str (die->sect_off), objfile_name (objfile));
13967 }
13968 }
13969
13970 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13971 if (attr == NULL)
13972 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13973 if (attr == NULL)
13974 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13975 if (attr == NULL)
13976 {
13977 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13978 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13979 }
13980 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13981 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13982 /* Keep NULL DWARF_BLOCK. */;
13983 else if (attr_form_is_block (attr))
13984 {
13985 struct dwarf2_locexpr_baton *dlbaton;
13986
13987 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13988 dlbaton->data = DW_BLOCK (attr)->data;
13989 dlbaton->size = DW_BLOCK (attr)->size;
13990 dlbaton->per_cu = cu->per_cu;
13991
13992 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13993 }
13994 else if (attr_form_is_ref (attr))
13995 {
13996 struct dwarf2_cu *target_cu = cu;
13997 struct die_info *target_die;
13998
13999 target_die = follow_die_ref (die, attr, &target_cu);
14000 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14001 if (die_is_declaration (target_die, target_cu))
14002 {
14003 const char *target_physname;
14004
14005 /* Prefer the mangled name; otherwise compute the demangled one. */
14006 target_physname = dw2_linkage_name (target_die, target_cu);
14007 if (target_physname == NULL)
14008 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14009 if (target_physname == NULL)
14010 complaint (_("DW_AT_call_target target DIE has invalid "
14011 "physname, for referencing DIE %s [in module %s]"),
14012 sect_offset_str (die->sect_off), objfile_name (objfile));
14013 else
14014 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14015 }
14016 else
14017 {
14018 CORE_ADDR lowpc;
14019
14020 /* DW_AT_entry_pc should be preferred. */
14021 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14022 <= PC_BOUNDS_INVALID)
14023 complaint (_("DW_AT_call_target target DIE has invalid "
14024 "low pc, for referencing DIE %s [in module %s]"),
14025 sect_offset_str (die->sect_off), objfile_name (objfile));
14026 else
14027 {
14028 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14029 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14030 }
14031 }
14032 }
14033 else
14034 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14035 "block nor reference, for DIE %s [in module %s]"),
14036 sect_offset_str (die->sect_off), objfile_name (objfile));
14037
14038 call_site->per_cu = cu->per_cu;
14039
14040 for (child_die = die->child;
14041 child_die && child_die->tag;
14042 child_die = sibling_die (child_die))
14043 {
14044 struct call_site_parameter *parameter;
14045 struct attribute *loc, *origin;
14046
14047 if (child_die->tag != DW_TAG_call_site_parameter
14048 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14049 {
14050 /* Already printed the complaint above. */
14051 continue;
14052 }
14053
14054 gdb_assert (call_site->parameter_count < nparams);
14055 parameter = &call_site->parameter[call_site->parameter_count];
14056
14057 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14058 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14059 register is contained in DW_AT_call_value. */
14060
14061 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14062 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14063 if (origin == NULL)
14064 {
14065 /* This was a pre-DWARF-5 GNU extension alias
14066 for DW_AT_call_parameter. */
14067 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14068 }
14069 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14070 {
14071 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14072
14073 sect_offset sect_off
14074 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14075 if (!offset_in_cu_p (&cu->header, sect_off))
14076 {
14077 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14078 binding can be done only inside one CU. Such referenced DIE
14079 therefore cannot be even moved to DW_TAG_partial_unit. */
14080 complaint (_("DW_AT_call_parameter offset is not in CU for "
14081 "DW_TAG_call_site child DIE %s [in module %s]"),
14082 sect_offset_str (child_die->sect_off),
14083 objfile_name (objfile));
14084 continue;
14085 }
14086 parameter->u.param_cu_off
14087 = (cu_offset) (sect_off - cu->header.sect_off);
14088 }
14089 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14090 {
14091 complaint (_("No DW_FORM_block* DW_AT_location for "
14092 "DW_TAG_call_site child DIE %s [in module %s]"),
14093 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14094 continue;
14095 }
14096 else
14097 {
14098 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14099 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14100 if (parameter->u.dwarf_reg != -1)
14101 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14102 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14103 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14104 &parameter->u.fb_offset))
14105 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14106 else
14107 {
14108 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14109 "for DW_FORM_block* DW_AT_location is supported for "
14110 "DW_TAG_call_site child DIE %s "
14111 "[in module %s]"),
14112 sect_offset_str (child_die->sect_off),
14113 objfile_name (objfile));
14114 continue;
14115 }
14116 }
14117
14118 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14119 if (attr == NULL)
14120 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14121 if (!attr_form_is_block (attr))
14122 {
14123 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14124 "DW_TAG_call_site child DIE %s [in module %s]"),
14125 sect_offset_str (child_die->sect_off),
14126 objfile_name (objfile));
14127 continue;
14128 }
14129 parameter->value = DW_BLOCK (attr)->data;
14130 parameter->value_size = DW_BLOCK (attr)->size;
14131
14132 /* Parameters are not pre-cleared by memset above. */
14133 parameter->data_value = NULL;
14134 parameter->data_value_size = 0;
14135 call_site->parameter_count++;
14136
14137 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14138 if (attr == NULL)
14139 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14140 if (attr)
14141 {
14142 if (!attr_form_is_block (attr))
14143 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14144 "DW_TAG_call_site child DIE %s [in module %s]"),
14145 sect_offset_str (child_die->sect_off),
14146 objfile_name (objfile));
14147 else
14148 {
14149 parameter->data_value = DW_BLOCK (attr)->data;
14150 parameter->data_value_size = DW_BLOCK (attr)->size;
14151 }
14152 }
14153 }
14154 }
14155
14156 /* Helper function for read_variable. If DIE represents a virtual
14157 table, then return the type of the concrete object that is
14158 associated with the virtual table. Otherwise, return NULL. */
14159
14160 static struct type *
14161 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14162 {
14163 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14164 if (attr == NULL)
14165 return NULL;
14166
14167 /* Find the type DIE. */
14168 struct die_info *type_die = NULL;
14169 struct dwarf2_cu *type_cu = cu;
14170
14171 if (attr_form_is_ref (attr))
14172 type_die = follow_die_ref (die, attr, &type_cu);
14173 if (type_die == NULL)
14174 return NULL;
14175
14176 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14177 return NULL;
14178 return die_containing_type (type_die, type_cu);
14179 }
14180
14181 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14182
14183 static void
14184 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14185 {
14186 struct rust_vtable_symbol *storage = NULL;
14187
14188 if (cu->language == language_rust)
14189 {
14190 struct type *containing_type = rust_containing_type (die, cu);
14191
14192 if (containing_type != NULL)
14193 {
14194 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14195
14196 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14197 struct rust_vtable_symbol);
14198 initialize_objfile_symbol (storage);
14199 storage->concrete_type = containing_type;
14200 storage->subclass = SYMBOL_RUST_VTABLE;
14201 }
14202 }
14203
14204 struct symbol *res = new_symbol (die, NULL, cu, storage);
14205 struct attribute *abstract_origin
14206 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14207 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14208 if (res == NULL && loc && abstract_origin)
14209 {
14210 /* We have a variable without a name, but with a location and an abstract
14211 origin. This may be a concrete instance of an abstract variable
14212 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14213 later. */
14214 struct dwarf2_cu *origin_cu = cu;
14215 struct die_info *origin_die
14216 = follow_die_ref (die, abstract_origin, &origin_cu);
14217 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14218 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14219 }
14220 }
14221
14222 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14223 reading .debug_rnglists.
14224 Callback's type should be:
14225 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14226 Return true if the attributes are present and valid, otherwise,
14227 return false. */
14228
14229 template <typename Callback>
14230 static bool
14231 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14232 Callback &&callback)
14233 {
14234 struct dwarf2_per_objfile *dwarf2_per_objfile
14235 = cu->per_cu->dwarf2_per_objfile;
14236 struct objfile *objfile = dwarf2_per_objfile->objfile;
14237 bfd *obfd = objfile->obfd;
14238 /* Base address selection entry. */
14239 CORE_ADDR base;
14240 int found_base;
14241 const gdb_byte *buffer;
14242 CORE_ADDR baseaddr;
14243 bool overflow = false;
14244
14245 found_base = cu->base_known;
14246 base = cu->base_address;
14247
14248 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14249 if (offset >= dwarf2_per_objfile->rnglists.size)
14250 {
14251 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14252 offset);
14253 return false;
14254 }
14255 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14256
14257 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14258
14259 while (1)
14260 {
14261 /* Initialize it due to a false compiler warning. */
14262 CORE_ADDR range_beginning = 0, range_end = 0;
14263 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14264 + dwarf2_per_objfile->rnglists.size);
14265 unsigned int bytes_read;
14266
14267 if (buffer == buf_end)
14268 {
14269 overflow = true;
14270 break;
14271 }
14272 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14273 switch (rlet)
14274 {
14275 case DW_RLE_end_of_list:
14276 break;
14277 case DW_RLE_base_address:
14278 if (buffer + cu->header.addr_size > buf_end)
14279 {
14280 overflow = true;
14281 break;
14282 }
14283 base = read_address (obfd, buffer, cu, &bytes_read);
14284 found_base = 1;
14285 buffer += bytes_read;
14286 break;
14287 case DW_RLE_start_length:
14288 if (buffer + cu->header.addr_size > buf_end)
14289 {
14290 overflow = true;
14291 break;
14292 }
14293 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14294 buffer += bytes_read;
14295 range_end = (range_beginning
14296 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14297 buffer += bytes_read;
14298 if (buffer > buf_end)
14299 {
14300 overflow = true;
14301 break;
14302 }
14303 break;
14304 case DW_RLE_offset_pair:
14305 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14306 buffer += bytes_read;
14307 if (buffer > buf_end)
14308 {
14309 overflow = true;
14310 break;
14311 }
14312 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14313 buffer += bytes_read;
14314 if (buffer > buf_end)
14315 {
14316 overflow = true;
14317 break;
14318 }
14319 break;
14320 case DW_RLE_start_end:
14321 if (buffer + 2 * cu->header.addr_size > buf_end)
14322 {
14323 overflow = true;
14324 break;
14325 }
14326 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14327 buffer += bytes_read;
14328 range_end = read_address (obfd, buffer, cu, &bytes_read);
14329 buffer += bytes_read;
14330 break;
14331 default:
14332 complaint (_("Invalid .debug_rnglists data (no base address)"));
14333 return false;
14334 }
14335 if (rlet == DW_RLE_end_of_list || overflow)
14336 break;
14337 if (rlet == DW_RLE_base_address)
14338 continue;
14339
14340 if (!found_base)
14341 {
14342 /* We have no valid base address for the ranges
14343 data. */
14344 complaint (_("Invalid .debug_rnglists data (no base address)"));
14345 return false;
14346 }
14347
14348 if (range_beginning > range_end)
14349 {
14350 /* Inverted range entries are invalid. */
14351 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14352 return false;
14353 }
14354
14355 /* Empty range entries have no effect. */
14356 if (range_beginning == range_end)
14357 continue;
14358
14359 range_beginning += base;
14360 range_end += base;
14361
14362 /* A not-uncommon case of bad debug info.
14363 Don't pollute the addrmap with bad data. */
14364 if (range_beginning + baseaddr == 0
14365 && !dwarf2_per_objfile->has_section_at_zero)
14366 {
14367 complaint (_(".debug_rnglists entry has start address of zero"
14368 " [in module %s]"), objfile_name (objfile));
14369 continue;
14370 }
14371
14372 callback (range_beginning, range_end);
14373 }
14374
14375 if (overflow)
14376 {
14377 complaint (_("Offset %d is not terminated "
14378 "for DW_AT_ranges attribute"),
14379 offset);
14380 return false;
14381 }
14382
14383 return true;
14384 }
14385
14386 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14387 Callback's type should be:
14388 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14389 Return 1 if the attributes are present and valid, otherwise, return 0. */
14390
14391 template <typename Callback>
14392 static int
14393 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14394 Callback &&callback)
14395 {
14396 struct dwarf2_per_objfile *dwarf2_per_objfile
14397 = cu->per_cu->dwarf2_per_objfile;
14398 struct objfile *objfile = dwarf2_per_objfile->objfile;
14399 struct comp_unit_head *cu_header = &cu->header;
14400 bfd *obfd = objfile->obfd;
14401 unsigned int addr_size = cu_header->addr_size;
14402 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14403 /* Base address selection entry. */
14404 CORE_ADDR base;
14405 int found_base;
14406 unsigned int dummy;
14407 const gdb_byte *buffer;
14408 CORE_ADDR baseaddr;
14409
14410 if (cu_header->version >= 5)
14411 return dwarf2_rnglists_process (offset, cu, callback);
14412
14413 found_base = cu->base_known;
14414 base = cu->base_address;
14415
14416 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14417 if (offset >= dwarf2_per_objfile->ranges.size)
14418 {
14419 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14420 offset);
14421 return 0;
14422 }
14423 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14424
14425 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14426
14427 while (1)
14428 {
14429 CORE_ADDR range_beginning, range_end;
14430
14431 range_beginning = read_address (obfd, buffer, cu, &dummy);
14432 buffer += addr_size;
14433 range_end = read_address (obfd, buffer, cu, &dummy);
14434 buffer += addr_size;
14435 offset += 2 * addr_size;
14436
14437 /* An end of list marker is a pair of zero addresses. */
14438 if (range_beginning == 0 && range_end == 0)
14439 /* Found the end of list entry. */
14440 break;
14441
14442 /* Each base address selection entry is a pair of 2 values.
14443 The first is the largest possible address, the second is
14444 the base address. Check for a base address here. */
14445 if ((range_beginning & mask) == mask)
14446 {
14447 /* If we found the largest possible address, then we already
14448 have the base address in range_end. */
14449 base = range_end;
14450 found_base = 1;
14451 continue;
14452 }
14453
14454 if (!found_base)
14455 {
14456 /* We have no valid base address for the ranges
14457 data. */
14458 complaint (_("Invalid .debug_ranges data (no base address)"));
14459 return 0;
14460 }
14461
14462 if (range_beginning > range_end)
14463 {
14464 /* Inverted range entries are invalid. */
14465 complaint (_("Invalid .debug_ranges data (inverted range)"));
14466 return 0;
14467 }
14468
14469 /* Empty range entries have no effect. */
14470 if (range_beginning == range_end)
14471 continue;
14472
14473 range_beginning += base;
14474 range_end += base;
14475
14476 /* A not-uncommon case of bad debug info.
14477 Don't pollute the addrmap with bad data. */
14478 if (range_beginning + baseaddr == 0
14479 && !dwarf2_per_objfile->has_section_at_zero)
14480 {
14481 complaint (_(".debug_ranges entry has start address of zero"
14482 " [in module %s]"), objfile_name (objfile));
14483 continue;
14484 }
14485
14486 callback (range_beginning, range_end);
14487 }
14488
14489 return 1;
14490 }
14491
14492 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14493 Return 1 if the attributes are present and valid, otherwise, return 0.
14494 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14495
14496 static int
14497 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14498 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14499 struct partial_symtab *ranges_pst)
14500 {
14501 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14503 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14504 SECT_OFF_TEXT (objfile));
14505 int low_set = 0;
14506 CORE_ADDR low = 0;
14507 CORE_ADDR high = 0;
14508 int retval;
14509
14510 retval = dwarf2_ranges_process (offset, cu,
14511 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14512 {
14513 if (ranges_pst != NULL)
14514 {
14515 CORE_ADDR lowpc;
14516 CORE_ADDR highpc;
14517
14518 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14519 range_beginning + baseaddr)
14520 - baseaddr);
14521 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14522 range_end + baseaddr)
14523 - baseaddr);
14524 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14525 lowpc, highpc - 1, ranges_pst);
14526 }
14527
14528 /* FIXME: This is recording everything as a low-high
14529 segment of consecutive addresses. We should have a
14530 data structure for discontiguous block ranges
14531 instead. */
14532 if (! low_set)
14533 {
14534 low = range_beginning;
14535 high = range_end;
14536 low_set = 1;
14537 }
14538 else
14539 {
14540 if (range_beginning < low)
14541 low = range_beginning;
14542 if (range_end > high)
14543 high = range_end;
14544 }
14545 });
14546 if (!retval)
14547 return 0;
14548
14549 if (! low_set)
14550 /* If the first entry is an end-of-list marker, the range
14551 describes an empty scope, i.e. no instructions. */
14552 return 0;
14553
14554 if (low_return)
14555 *low_return = low;
14556 if (high_return)
14557 *high_return = high;
14558 return 1;
14559 }
14560
14561 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14562 definition for the return value. *LOWPC and *HIGHPC are set iff
14563 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14564
14565 static enum pc_bounds_kind
14566 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14567 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14568 struct partial_symtab *pst)
14569 {
14570 struct dwarf2_per_objfile *dwarf2_per_objfile
14571 = cu->per_cu->dwarf2_per_objfile;
14572 struct attribute *attr;
14573 struct attribute *attr_high;
14574 CORE_ADDR low = 0;
14575 CORE_ADDR high = 0;
14576 enum pc_bounds_kind ret;
14577
14578 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14579 if (attr_high)
14580 {
14581 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14582 if (attr)
14583 {
14584 low = attr_value_as_address (attr);
14585 high = attr_value_as_address (attr_high);
14586 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14587 high += low;
14588 }
14589 else
14590 /* Found high w/o low attribute. */
14591 return PC_BOUNDS_INVALID;
14592
14593 /* Found consecutive range of addresses. */
14594 ret = PC_BOUNDS_HIGH_LOW;
14595 }
14596 else
14597 {
14598 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14599 if (attr != NULL)
14600 {
14601 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14602 We take advantage of the fact that DW_AT_ranges does not appear
14603 in DW_TAG_compile_unit of DWO files. */
14604 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14605 unsigned int ranges_offset = (DW_UNSND (attr)
14606 + (need_ranges_base
14607 ? cu->ranges_base
14608 : 0));
14609
14610 /* Value of the DW_AT_ranges attribute is the offset in the
14611 .debug_ranges section. */
14612 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14613 return PC_BOUNDS_INVALID;
14614 /* Found discontinuous range of addresses. */
14615 ret = PC_BOUNDS_RANGES;
14616 }
14617 else
14618 return PC_BOUNDS_NOT_PRESENT;
14619 }
14620
14621 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14622 if (high <= low)
14623 return PC_BOUNDS_INVALID;
14624
14625 /* When using the GNU linker, .gnu.linkonce. sections are used to
14626 eliminate duplicate copies of functions and vtables and such.
14627 The linker will arbitrarily choose one and discard the others.
14628 The AT_*_pc values for such functions refer to local labels in
14629 these sections. If the section from that file was discarded, the
14630 labels are not in the output, so the relocs get a value of 0.
14631 If this is a discarded function, mark the pc bounds as invalid,
14632 so that GDB will ignore it. */
14633 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14634 return PC_BOUNDS_INVALID;
14635
14636 *lowpc = low;
14637 if (highpc)
14638 *highpc = high;
14639 return ret;
14640 }
14641
14642 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14643 its low and high PC addresses. Do nothing if these addresses could not
14644 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14645 and HIGHPC to the high address if greater than HIGHPC. */
14646
14647 static void
14648 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14649 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14650 struct dwarf2_cu *cu)
14651 {
14652 CORE_ADDR low, high;
14653 struct die_info *child = die->child;
14654
14655 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14656 {
14657 *lowpc = std::min (*lowpc, low);
14658 *highpc = std::max (*highpc, high);
14659 }
14660
14661 /* If the language does not allow nested subprograms (either inside
14662 subprograms or lexical blocks), we're done. */
14663 if (cu->language != language_ada)
14664 return;
14665
14666 /* Check all the children of the given DIE. If it contains nested
14667 subprograms, then check their pc bounds. Likewise, we need to
14668 check lexical blocks as well, as they may also contain subprogram
14669 definitions. */
14670 while (child && child->tag)
14671 {
14672 if (child->tag == DW_TAG_subprogram
14673 || child->tag == DW_TAG_lexical_block)
14674 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14675 child = sibling_die (child);
14676 }
14677 }
14678
14679 /* Get the low and high pc's represented by the scope DIE, and store
14680 them in *LOWPC and *HIGHPC. If the correct values can't be
14681 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14682
14683 static void
14684 get_scope_pc_bounds (struct die_info *die,
14685 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14686 struct dwarf2_cu *cu)
14687 {
14688 CORE_ADDR best_low = (CORE_ADDR) -1;
14689 CORE_ADDR best_high = (CORE_ADDR) 0;
14690 CORE_ADDR current_low, current_high;
14691
14692 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14693 >= PC_BOUNDS_RANGES)
14694 {
14695 best_low = current_low;
14696 best_high = current_high;
14697 }
14698 else
14699 {
14700 struct die_info *child = die->child;
14701
14702 while (child && child->tag)
14703 {
14704 switch (child->tag) {
14705 case DW_TAG_subprogram:
14706 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14707 break;
14708 case DW_TAG_namespace:
14709 case DW_TAG_module:
14710 /* FIXME: carlton/2004-01-16: Should we do this for
14711 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14712 that current GCC's always emit the DIEs corresponding
14713 to definitions of methods of classes as children of a
14714 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14715 the DIEs giving the declarations, which could be
14716 anywhere). But I don't see any reason why the
14717 standards says that they have to be there. */
14718 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14719
14720 if (current_low != ((CORE_ADDR) -1))
14721 {
14722 best_low = std::min (best_low, current_low);
14723 best_high = std::max (best_high, current_high);
14724 }
14725 break;
14726 default:
14727 /* Ignore. */
14728 break;
14729 }
14730
14731 child = sibling_die (child);
14732 }
14733 }
14734
14735 *lowpc = best_low;
14736 *highpc = best_high;
14737 }
14738
14739 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14740 in DIE. */
14741
14742 static void
14743 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14744 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14745 {
14746 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14747 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14748 struct attribute *attr;
14749 struct attribute *attr_high;
14750
14751 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14752 if (attr_high)
14753 {
14754 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14755 if (attr)
14756 {
14757 CORE_ADDR low = attr_value_as_address (attr);
14758 CORE_ADDR high = attr_value_as_address (attr_high);
14759
14760 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14761 high += low;
14762
14763 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14764 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14765 cu->get_builder ()->record_block_range (block, low, high - 1);
14766 }
14767 }
14768
14769 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14770 if (attr)
14771 {
14772 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14773 We take advantage of the fact that DW_AT_ranges does not appear
14774 in DW_TAG_compile_unit of DWO files. */
14775 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14776
14777 /* The value of the DW_AT_ranges attribute is the offset of the
14778 address range list in the .debug_ranges section. */
14779 unsigned long offset = (DW_UNSND (attr)
14780 + (need_ranges_base ? cu->ranges_base : 0));
14781
14782 std::vector<blockrange> blockvec;
14783 dwarf2_ranges_process (offset, cu,
14784 [&] (CORE_ADDR start, CORE_ADDR end)
14785 {
14786 start += baseaddr;
14787 end += baseaddr;
14788 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14789 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14790 cu->get_builder ()->record_block_range (block, start, end - 1);
14791 blockvec.emplace_back (start, end);
14792 });
14793
14794 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14795 }
14796 }
14797
14798 /* Check whether the producer field indicates either of GCC < 4.6, or the
14799 Intel C/C++ compiler, and cache the result in CU. */
14800
14801 static void
14802 check_producer (struct dwarf2_cu *cu)
14803 {
14804 int major, minor;
14805
14806 if (cu->producer == NULL)
14807 {
14808 /* For unknown compilers expect their behavior is DWARF version
14809 compliant.
14810
14811 GCC started to support .debug_types sections by -gdwarf-4 since
14812 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14813 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14814 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14815 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14816 }
14817 else if (producer_is_gcc (cu->producer, &major, &minor))
14818 {
14819 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14820 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14821 }
14822 else if (producer_is_icc (cu->producer, &major, &minor))
14823 {
14824 cu->producer_is_icc = true;
14825 cu->producer_is_icc_lt_14 = major < 14;
14826 }
14827 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14828 cu->producer_is_codewarrior = true;
14829 else
14830 {
14831 /* For other non-GCC compilers, expect their behavior is DWARF version
14832 compliant. */
14833 }
14834
14835 cu->checked_producer = true;
14836 }
14837
14838 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14839 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14840 during 4.6.0 experimental. */
14841
14842 static bool
14843 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14844 {
14845 if (!cu->checked_producer)
14846 check_producer (cu);
14847
14848 return cu->producer_is_gxx_lt_4_6;
14849 }
14850
14851
14852 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14853 with incorrect is_stmt attributes. */
14854
14855 static bool
14856 producer_is_codewarrior (struct dwarf2_cu *cu)
14857 {
14858 if (!cu->checked_producer)
14859 check_producer (cu);
14860
14861 return cu->producer_is_codewarrior;
14862 }
14863
14864 /* Return the default accessibility type if it is not overriden by
14865 DW_AT_accessibility. */
14866
14867 static enum dwarf_access_attribute
14868 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14869 {
14870 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14871 {
14872 /* The default DWARF 2 accessibility for members is public, the default
14873 accessibility for inheritance is private. */
14874
14875 if (die->tag != DW_TAG_inheritance)
14876 return DW_ACCESS_public;
14877 else
14878 return DW_ACCESS_private;
14879 }
14880 else
14881 {
14882 /* DWARF 3+ defines the default accessibility a different way. The same
14883 rules apply now for DW_TAG_inheritance as for the members and it only
14884 depends on the container kind. */
14885
14886 if (die->parent->tag == DW_TAG_class_type)
14887 return DW_ACCESS_private;
14888 else
14889 return DW_ACCESS_public;
14890 }
14891 }
14892
14893 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14894 offset. If the attribute was not found return 0, otherwise return
14895 1. If it was found but could not properly be handled, set *OFFSET
14896 to 0. */
14897
14898 static int
14899 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14900 LONGEST *offset)
14901 {
14902 struct attribute *attr;
14903
14904 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14905 if (attr != NULL)
14906 {
14907 *offset = 0;
14908
14909 /* Note that we do not check for a section offset first here.
14910 This is because DW_AT_data_member_location is new in DWARF 4,
14911 so if we see it, we can assume that a constant form is really
14912 a constant and not a section offset. */
14913 if (attr_form_is_constant (attr))
14914 *offset = dwarf2_get_attr_constant_value (attr, 0);
14915 else if (attr_form_is_section_offset (attr))
14916 dwarf2_complex_location_expr_complaint ();
14917 else if (attr_form_is_block (attr))
14918 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14919 else
14920 dwarf2_complex_location_expr_complaint ();
14921
14922 return 1;
14923 }
14924
14925 return 0;
14926 }
14927
14928 /* Add an aggregate field to the field list. */
14929
14930 static void
14931 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14932 struct dwarf2_cu *cu)
14933 {
14934 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14935 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14936 struct nextfield *new_field;
14937 struct attribute *attr;
14938 struct field *fp;
14939 const char *fieldname = "";
14940
14941 if (die->tag == DW_TAG_inheritance)
14942 {
14943 fip->baseclasses.emplace_back ();
14944 new_field = &fip->baseclasses.back ();
14945 }
14946 else
14947 {
14948 fip->fields.emplace_back ();
14949 new_field = &fip->fields.back ();
14950 }
14951
14952 fip->nfields++;
14953
14954 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14955 if (attr)
14956 new_field->accessibility = DW_UNSND (attr);
14957 else
14958 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14959 if (new_field->accessibility != DW_ACCESS_public)
14960 fip->non_public_fields = 1;
14961
14962 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14963 if (attr)
14964 new_field->virtuality = DW_UNSND (attr);
14965 else
14966 new_field->virtuality = DW_VIRTUALITY_none;
14967
14968 fp = &new_field->field;
14969
14970 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14971 {
14972 LONGEST offset;
14973
14974 /* Data member other than a C++ static data member. */
14975
14976 /* Get type of field. */
14977 fp->type = die_type (die, cu);
14978
14979 SET_FIELD_BITPOS (*fp, 0);
14980
14981 /* Get bit size of field (zero if none). */
14982 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14983 if (attr)
14984 {
14985 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14986 }
14987 else
14988 {
14989 FIELD_BITSIZE (*fp) = 0;
14990 }
14991
14992 /* Get bit offset of field. */
14993 if (handle_data_member_location (die, cu, &offset))
14994 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14995 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14996 if (attr)
14997 {
14998 if (gdbarch_bits_big_endian (gdbarch))
14999 {
15000 /* For big endian bits, the DW_AT_bit_offset gives the
15001 additional bit offset from the MSB of the containing
15002 anonymous object to the MSB of the field. We don't
15003 have to do anything special since we don't need to
15004 know the size of the anonymous object. */
15005 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15006 }
15007 else
15008 {
15009 /* For little endian bits, compute the bit offset to the
15010 MSB of the anonymous object, subtract off the number of
15011 bits from the MSB of the field to the MSB of the
15012 object, and then subtract off the number of bits of
15013 the field itself. The result is the bit offset of
15014 the LSB of the field. */
15015 int anonymous_size;
15016 int bit_offset = DW_UNSND (attr);
15017
15018 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15019 if (attr)
15020 {
15021 /* The size of the anonymous object containing
15022 the bit field is explicit, so use the
15023 indicated size (in bytes). */
15024 anonymous_size = DW_UNSND (attr);
15025 }
15026 else
15027 {
15028 /* The size of the anonymous object containing
15029 the bit field must be inferred from the type
15030 attribute of the data member containing the
15031 bit field. */
15032 anonymous_size = TYPE_LENGTH (fp->type);
15033 }
15034 SET_FIELD_BITPOS (*fp,
15035 (FIELD_BITPOS (*fp)
15036 + anonymous_size * bits_per_byte
15037 - bit_offset - FIELD_BITSIZE (*fp)));
15038 }
15039 }
15040 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15041 if (attr != NULL)
15042 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15043 + dwarf2_get_attr_constant_value (attr, 0)));
15044
15045 /* Get name of field. */
15046 fieldname = dwarf2_name (die, cu);
15047 if (fieldname == NULL)
15048 fieldname = "";
15049
15050 /* The name is already allocated along with this objfile, so we don't
15051 need to duplicate it for the type. */
15052 fp->name = fieldname;
15053
15054 /* Change accessibility for artificial fields (e.g. virtual table
15055 pointer or virtual base class pointer) to private. */
15056 if (dwarf2_attr (die, DW_AT_artificial, cu))
15057 {
15058 FIELD_ARTIFICIAL (*fp) = 1;
15059 new_field->accessibility = DW_ACCESS_private;
15060 fip->non_public_fields = 1;
15061 }
15062 }
15063 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15064 {
15065 /* C++ static member. */
15066
15067 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15068 is a declaration, but all versions of G++ as of this writing
15069 (so through at least 3.2.1) incorrectly generate
15070 DW_TAG_variable tags. */
15071
15072 const char *physname;
15073
15074 /* Get name of field. */
15075 fieldname = dwarf2_name (die, cu);
15076 if (fieldname == NULL)
15077 return;
15078
15079 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15080 if (attr
15081 /* Only create a symbol if this is an external value.
15082 new_symbol checks this and puts the value in the global symbol
15083 table, which we want. If it is not external, new_symbol
15084 will try to put the value in cu->list_in_scope which is wrong. */
15085 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15086 {
15087 /* A static const member, not much different than an enum as far as
15088 we're concerned, except that we can support more types. */
15089 new_symbol (die, NULL, cu);
15090 }
15091
15092 /* Get physical name. */
15093 physname = dwarf2_physname (fieldname, die, cu);
15094
15095 /* The name is already allocated along with this objfile, so we don't
15096 need to duplicate it for the type. */
15097 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15098 FIELD_TYPE (*fp) = die_type (die, cu);
15099 FIELD_NAME (*fp) = fieldname;
15100 }
15101 else if (die->tag == DW_TAG_inheritance)
15102 {
15103 LONGEST offset;
15104
15105 /* C++ base class field. */
15106 if (handle_data_member_location (die, cu, &offset))
15107 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15108 FIELD_BITSIZE (*fp) = 0;
15109 FIELD_TYPE (*fp) = die_type (die, cu);
15110 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15111 }
15112 else if (die->tag == DW_TAG_variant_part)
15113 {
15114 /* process_structure_scope will treat this DIE as a union. */
15115 process_structure_scope (die, cu);
15116
15117 /* The variant part is relative to the start of the enclosing
15118 structure. */
15119 SET_FIELD_BITPOS (*fp, 0);
15120 fp->type = get_die_type (die, cu);
15121 fp->artificial = 1;
15122 fp->name = "<<variant>>";
15123
15124 /* Normally a DW_TAG_variant_part won't have a size, but our
15125 representation requires one, so set it to the maximum of the
15126 child sizes. */
15127 if (TYPE_LENGTH (fp->type) == 0)
15128 {
15129 unsigned max = 0;
15130 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15131 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15132 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15133 TYPE_LENGTH (fp->type) = max;
15134 }
15135 }
15136 else
15137 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15138 }
15139
15140 /* Can the type given by DIE define another type? */
15141
15142 static bool
15143 type_can_define_types (const struct die_info *die)
15144 {
15145 switch (die->tag)
15146 {
15147 case DW_TAG_typedef:
15148 case DW_TAG_class_type:
15149 case DW_TAG_structure_type:
15150 case DW_TAG_union_type:
15151 case DW_TAG_enumeration_type:
15152 return true;
15153
15154 default:
15155 return false;
15156 }
15157 }
15158
15159 /* Add a type definition defined in the scope of the FIP's class. */
15160
15161 static void
15162 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15163 struct dwarf2_cu *cu)
15164 {
15165 struct decl_field fp;
15166 memset (&fp, 0, sizeof (fp));
15167
15168 gdb_assert (type_can_define_types (die));
15169
15170 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15171 fp.name = dwarf2_name (die, cu);
15172 fp.type = read_type_die (die, cu);
15173
15174 /* Save accessibility. */
15175 enum dwarf_access_attribute accessibility;
15176 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15177 if (attr != NULL)
15178 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15179 else
15180 accessibility = dwarf2_default_access_attribute (die, cu);
15181 switch (accessibility)
15182 {
15183 case DW_ACCESS_public:
15184 /* The assumed value if neither private nor protected. */
15185 break;
15186 case DW_ACCESS_private:
15187 fp.is_private = 1;
15188 break;
15189 case DW_ACCESS_protected:
15190 fp.is_protected = 1;
15191 break;
15192 default:
15193 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15194 }
15195
15196 if (die->tag == DW_TAG_typedef)
15197 fip->typedef_field_list.push_back (fp);
15198 else
15199 fip->nested_types_list.push_back (fp);
15200 }
15201
15202 /* Create the vector of fields, and attach it to the type. */
15203
15204 static void
15205 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15206 struct dwarf2_cu *cu)
15207 {
15208 int nfields = fip->nfields;
15209
15210 /* Record the field count, allocate space for the array of fields,
15211 and create blank accessibility bitfields if necessary. */
15212 TYPE_NFIELDS (type) = nfields;
15213 TYPE_FIELDS (type) = (struct field *)
15214 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15215
15216 if (fip->non_public_fields && cu->language != language_ada)
15217 {
15218 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15219
15220 TYPE_FIELD_PRIVATE_BITS (type) =
15221 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15222 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15223
15224 TYPE_FIELD_PROTECTED_BITS (type) =
15225 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15226 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15227
15228 TYPE_FIELD_IGNORE_BITS (type) =
15229 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15230 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15231 }
15232
15233 /* If the type has baseclasses, allocate and clear a bit vector for
15234 TYPE_FIELD_VIRTUAL_BITS. */
15235 if (!fip->baseclasses.empty () && cu->language != language_ada)
15236 {
15237 int num_bytes = B_BYTES (fip->baseclasses.size ());
15238 unsigned char *pointer;
15239
15240 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15241 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15242 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15243 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15244 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15245 }
15246
15247 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15248 {
15249 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15250
15251 for (int index = 0; index < nfields; ++index)
15252 {
15253 struct nextfield &field = fip->fields[index];
15254
15255 if (field.variant.is_discriminant)
15256 di->discriminant_index = index;
15257 else if (field.variant.default_branch)
15258 di->default_index = index;
15259 else
15260 di->discriminants[index] = field.variant.discriminant_value;
15261 }
15262 }
15263
15264 /* Copy the saved-up fields into the field vector. */
15265 for (int i = 0; i < nfields; ++i)
15266 {
15267 struct nextfield &field
15268 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15269 : fip->fields[i - fip->baseclasses.size ()]);
15270
15271 TYPE_FIELD (type, i) = field.field;
15272 switch (field.accessibility)
15273 {
15274 case DW_ACCESS_private:
15275 if (cu->language != language_ada)
15276 SET_TYPE_FIELD_PRIVATE (type, i);
15277 break;
15278
15279 case DW_ACCESS_protected:
15280 if (cu->language != language_ada)
15281 SET_TYPE_FIELD_PROTECTED (type, i);
15282 break;
15283
15284 case DW_ACCESS_public:
15285 break;
15286
15287 default:
15288 /* Unknown accessibility. Complain and treat it as public. */
15289 {
15290 complaint (_("unsupported accessibility %d"),
15291 field.accessibility);
15292 }
15293 break;
15294 }
15295 if (i < fip->baseclasses.size ())
15296 {
15297 switch (field.virtuality)
15298 {
15299 case DW_VIRTUALITY_virtual:
15300 case DW_VIRTUALITY_pure_virtual:
15301 if (cu->language == language_ada)
15302 error (_("unexpected virtuality in component of Ada type"));
15303 SET_TYPE_FIELD_VIRTUAL (type, i);
15304 break;
15305 }
15306 }
15307 }
15308 }
15309
15310 /* Return true if this member function is a constructor, false
15311 otherwise. */
15312
15313 static int
15314 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15315 {
15316 const char *fieldname;
15317 const char *type_name;
15318 int len;
15319
15320 if (die->parent == NULL)
15321 return 0;
15322
15323 if (die->parent->tag != DW_TAG_structure_type
15324 && die->parent->tag != DW_TAG_union_type
15325 && die->parent->tag != DW_TAG_class_type)
15326 return 0;
15327
15328 fieldname = dwarf2_name (die, cu);
15329 type_name = dwarf2_name (die->parent, cu);
15330 if (fieldname == NULL || type_name == NULL)
15331 return 0;
15332
15333 len = strlen (fieldname);
15334 return (strncmp (fieldname, type_name, len) == 0
15335 && (type_name[len] == '\0' || type_name[len] == '<'));
15336 }
15337
15338 /* Add a member function to the proper fieldlist. */
15339
15340 static void
15341 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15342 struct type *type, struct dwarf2_cu *cu)
15343 {
15344 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15345 struct attribute *attr;
15346 int i;
15347 struct fnfieldlist *flp = nullptr;
15348 struct fn_field *fnp;
15349 const char *fieldname;
15350 struct type *this_type;
15351 enum dwarf_access_attribute accessibility;
15352
15353 if (cu->language == language_ada)
15354 error (_("unexpected member function in Ada type"));
15355
15356 /* Get name of member function. */
15357 fieldname = dwarf2_name (die, cu);
15358 if (fieldname == NULL)
15359 return;
15360
15361 /* Look up member function name in fieldlist. */
15362 for (i = 0; i < fip->fnfieldlists.size (); i++)
15363 {
15364 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15365 {
15366 flp = &fip->fnfieldlists[i];
15367 break;
15368 }
15369 }
15370
15371 /* Create a new fnfieldlist if necessary. */
15372 if (flp == nullptr)
15373 {
15374 fip->fnfieldlists.emplace_back ();
15375 flp = &fip->fnfieldlists.back ();
15376 flp->name = fieldname;
15377 i = fip->fnfieldlists.size () - 1;
15378 }
15379
15380 /* Create a new member function field and add it to the vector of
15381 fnfieldlists. */
15382 flp->fnfields.emplace_back ();
15383 fnp = &flp->fnfields.back ();
15384
15385 /* Delay processing of the physname until later. */
15386 if (cu->language == language_cplus)
15387 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15388 die, cu);
15389 else
15390 {
15391 const char *physname = dwarf2_physname (fieldname, die, cu);
15392 fnp->physname = physname ? physname : "";
15393 }
15394
15395 fnp->type = alloc_type (objfile);
15396 this_type = read_type_die (die, cu);
15397 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15398 {
15399 int nparams = TYPE_NFIELDS (this_type);
15400
15401 /* TYPE is the domain of this method, and THIS_TYPE is the type
15402 of the method itself (TYPE_CODE_METHOD). */
15403 smash_to_method_type (fnp->type, type,
15404 TYPE_TARGET_TYPE (this_type),
15405 TYPE_FIELDS (this_type),
15406 TYPE_NFIELDS (this_type),
15407 TYPE_VARARGS (this_type));
15408
15409 /* Handle static member functions.
15410 Dwarf2 has no clean way to discern C++ static and non-static
15411 member functions. G++ helps GDB by marking the first
15412 parameter for non-static member functions (which is the this
15413 pointer) as artificial. We obtain this information from
15414 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15415 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15416 fnp->voffset = VOFFSET_STATIC;
15417 }
15418 else
15419 complaint (_("member function type missing for '%s'"),
15420 dwarf2_full_name (fieldname, die, cu));
15421
15422 /* Get fcontext from DW_AT_containing_type if present. */
15423 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15424 fnp->fcontext = die_containing_type (die, cu);
15425
15426 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15427 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15428
15429 /* Get accessibility. */
15430 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15431 if (attr)
15432 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15433 else
15434 accessibility = dwarf2_default_access_attribute (die, cu);
15435 switch (accessibility)
15436 {
15437 case DW_ACCESS_private:
15438 fnp->is_private = 1;
15439 break;
15440 case DW_ACCESS_protected:
15441 fnp->is_protected = 1;
15442 break;
15443 }
15444
15445 /* Check for artificial methods. */
15446 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15447 if (attr && DW_UNSND (attr) != 0)
15448 fnp->is_artificial = 1;
15449
15450 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15451
15452 /* Get index in virtual function table if it is a virtual member
15453 function. For older versions of GCC, this is an offset in the
15454 appropriate virtual table, as specified by DW_AT_containing_type.
15455 For everyone else, it is an expression to be evaluated relative
15456 to the object address. */
15457
15458 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15459 if (attr)
15460 {
15461 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15462 {
15463 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15464 {
15465 /* Old-style GCC. */
15466 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15467 }
15468 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15469 || (DW_BLOCK (attr)->size > 1
15470 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15471 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15472 {
15473 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15474 if ((fnp->voffset % cu->header.addr_size) != 0)
15475 dwarf2_complex_location_expr_complaint ();
15476 else
15477 fnp->voffset /= cu->header.addr_size;
15478 fnp->voffset += 2;
15479 }
15480 else
15481 dwarf2_complex_location_expr_complaint ();
15482
15483 if (!fnp->fcontext)
15484 {
15485 /* If there is no `this' field and no DW_AT_containing_type,
15486 we cannot actually find a base class context for the
15487 vtable! */
15488 if (TYPE_NFIELDS (this_type) == 0
15489 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15490 {
15491 complaint (_("cannot determine context for virtual member "
15492 "function \"%s\" (offset %s)"),
15493 fieldname, sect_offset_str (die->sect_off));
15494 }
15495 else
15496 {
15497 fnp->fcontext
15498 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15499 }
15500 }
15501 }
15502 else if (attr_form_is_section_offset (attr))
15503 {
15504 dwarf2_complex_location_expr_complaint ();
15505 }
15506 else
15507 {
15508 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15509 fieldname);
15510 }
15511 }
15512 else
15513 {
15514 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15515 if (attr && DW_UNSND (attr))
15516 {
15517 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15518 complaint (_("Member function \"%s\" (offset %s) is virtual "
15519 "but the vtable offset is not specified"),
15520 fieldname, sect_offset_str (die->sect_off));
15521 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15522 TYPE_CPLUS_DYNAMIC (type) = 1;
15523 }
15524 }
15525 }
15526
15527 /* Create the vector of member function fields, and attach it to the type. */
15528
15529 static void
15530 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15531 struct dwarf2_cu *cu)
15532 {
15533 if (cu->language == language_ada)
15534 error (_("unexpected member functions in Ada type"));
15535
15536 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15537 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15538 TYPE_ALLOC (type,
15539 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15540
15541 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15542 {
15543 struct fnfieldlist &nf = fip->fnfieldlists[i];
15544 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15545
15546 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15547 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15548 fn_flp->fn_fields = (struct fn_field *)
15549 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15550
15551 for (int k = 0; k < nf.fnfields.size (); ++k)
15552 fn_flp->fn_fields[k] = nf.fnfields[k];
15553 }
15554
15555 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15556 }
15557
15558 /* Returns non-zero if NAME is the name of a vtable member in CU's
15559 language, zero otherwise. */
15560 static int
15561 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15562 {
15563 static const char vptr[] = "_vptr";
15564
15565 /* Look for the C++ form of the vtable. */
15566 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15567 return 1;
15568
15569 return 0;
15570 }
15571
15572 /* GCC outputs unnamed structures that are really pointers to member
15573 functions, with the ABI-specified layout. If TYPE describes
15574 such a structure, smash it into a member function type.
15575
15576 GCC shouldn't do this; it should just output pointer to member DIEs.
15577 This is GCC PR debug/28767. */
15578
15579 static void
15580 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15581 {
15582 struct type *pfn_type, *self_type, *new_type;
15583
15584 /* Check for a structure with no name and two children. */
15585 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15586 return;
15587
15588 /* Check for __pfn and __delta members. */
15589 if (TYPE_FIELD_NAME (type, 0) == NULL
15590 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15591 || TYPE_FIELD_NAME (type, 1) == NULL
15592 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15593 return;
15594
15595 /* Find the type of the method. */
15596 pfn_type = TYPE_FIELD_TYPE (type, 0);
15597 if (pfn_type == NULL
15598 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15599 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15600 return;
15601
15602 /* Look for the "this" argument. */
15603 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15604 if (TYPE_NFIELDS (pfn_type) == 0
15605 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15606 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15607 return;
15608
15609 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15610 new_type = alloc_type (objfile);
15611 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15612 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15613 TYPE_VARARGS (pfn_type));
15614 smash_to_methodptr_type (type, new_type);
15615 }
15616
15617 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15618 appropriate error checking and issuing complaints if there is a
15619 problem. */
15620
15621 static ULONGEST
15622 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15623 {
15624 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15625
15626 if (attr == nullptr)
15627 return 0;
15628
15629 if (!attr_form_is_constant (attr))
15630 {
15631 complaint (_("DW_AT_alignment must have constant form"
15632 " - DIE at %s [in module %s]"),
15633 sect_offset_str (die->sect_off),
15634 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15635 return 0;
15636 }
15637
15638 ULONGEST align;
15639 if (attr->form == DW_FORM_sdata)
15640 {
15641 LONGEST val = DW_SND (attr);
15642 if (val < 0)
15643 {
15644 complaint (_("DW_AT_alignment value must not be negative"
15645 " - DIE at %s [in module %s]"),
15646 sect_offset_str (die->sect_off),
15647 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15648 return 0;
15649 }
15650 align = val;
15651 }
15652 else
15653 align = DW_UNSND (attr);
15654
15655 if (align == 0)
15656 {
15657 complaint (_("DW_AT_alignment value must not be zero"
15658 " - DIE at %s [in module %s]"),
15659 sect_offset_str (die->sect_off),
15660 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15661 return 0;
15662 }
15663 if ((align & (align - 1)) != 0)
15664 {
15665 complaint (_("DW_AT_alignment value must be a power of 2"
15666 " - DIE at %s [in module %s]"),
15667 sect_offset_str (die->sect_off),
15668 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15669 return 0;
15670 }
15671
15672 return align;
15673 }
15674
15675 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15676 the alignment for TYPE. */
15677
15678 static void
15679 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15680 struct type *type)
15681 {
15682 if (!set_type_align (type, get_alignment (cu, die)))
15683 complaint (_("DW_AT_alignment value too large"
15684 " - DIE at %s [in module %s]"),
15685 sect_offset_str (die->sect_off),
15686 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15687 }
15688
15689 /* Called when we find the DIE that starts a structure or union scope
15690 (definition) to create a type for the structure or union. Fill in
15691 the type's name and general properties; the members will not be
15692 processed until process_structure_scope. A symbol table entry for
15693 the type will also not be done until process_structure_scope (assuming
15694 the type has a name).
15695
15696 NOTE: we need to call these functions regardless of whether or not the
15697 DIE has a DW_AT_name attribute, since it might be an anonymous
15698 structure or union. This gets the type entered into our set of
15699 user defined types. */
15700
15701 static struct type *
15702 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15703 {
15704 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15705 struct type *type;
15706 struct attribute *attr;
15707 const char *name;
15708
15709 /* If the definition of this type lives in .debug_types, read that type.
15710 Don't follow DW_AT_specification though, that will take us back up
15711 the chain and we want to go down. */
15712 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15713 if (attr)
15714 {
15715 type = get_DW_AT_signature_type (die, attr, cu);
15716
15717 /* The type's CU may not be the same as CU.
15718 Ensure TYPE is recorded with CU in die_type_hash. */
15719 return set_die_type (die, type, cu);
15720 }
15721
15722 type = alloc_type (objfile);
15723 INIT_CPLUS_SPECIFIC (type);
15724
15725 name = dwarf2_name (die, cu);
15726 if (name != NULL)
15727 {
15728 if (cu->language == language_cplus
15729 || cu->language == language_d
15730 || cu->language == language_rust)
15731 {
15732 const char *full_name = dwarf2_full_name (name, die, cu);
15733
15734 /* dwarf2_full_name might have already finished building the DIE's
15735 type. If so, there is no need to continue. */
15736 if (get_die_type (die, cu) != NULL)
15737 return get_die_type (die, cu);
15738
15739 TYPE_NAME (type) = full_name;
15740 }
15741 else
15742 {
15743 /* The name is already allocated along with this objfile, so
15744 we don't need to duplicate it for the type. */
15745 TYPE_NAME (type) = name;
15746 }
15747 }
15748
15749 if (die->tag == DW_TAG_structure_type)
15750 {
15751 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15752 }
15753 else if (die->tag == DW_TAG_union_type)
15754 {
15755 TYPE_CODE (type) = TYPE_CODE_UNION;
15756 }
15757 else if (die->tag == DW_TAG_variant_part)
15758 {
15759 TYPE_CODE (type) = TYPE_CODE_UNION;
15760 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15761 }
15762 else
15763 {
15764 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15765 }
15766
15767 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15768 TYPE_DECLARED_CLASS (type) = 1;
15769
15770 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15771 if (attr)
15772 {
15773 if (attr_form_is_constant (attr))
15774 TYPE_LENGTH (type) = DW_UNSND (attr);
15775 else
15776 {
15777 /* For the moment, dynamic type sizes are not supported
15778 by GDB's struct type. The actual size is determined
15779 on-demand when resolving the type of a given object,
15780 so set the type's length to zero for now. Otherwise,
15781 we record an expression as the length, and that expression
15782 could lead to a very large value, which could eventually
15783 lead to us trying to allocate that much memory when creating
15784 a value of that type. */
15785 TYPE_LENGTH (type) = 0;
15786 }
15787 }
15788 else
15789 {
15790 TYPE_LENGTH (type) = 0;
15791 }
15792
15793 maybe_set_alignment (cu, die, type);
15794
15795 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15796 {
15797 /* ICC<14 does not output the required DW_AT_declaration on
15798 incomplete types, but gives them a size of zero. */
15799 TYPE_STUB (type) = 1;
15800 }
15801 else
15802 TYPE_STUB_SUPPORTED (type) = 1;
15803
15804 if (die_is_declaration (die, cu))
15805 TYPE_STUB (type) = 1;
15806 else if (attr == NULL && die->child == NULL
15807 && producer_is_realview (cu->producer))
15808 /* RealView does not output the required DW_AT_declaration
15809 on incomplete types. */
15810 TYPE_STUB (type) = 1;
15811
15812 /* We need to add the type field to the die immediately so we don't
15813 infinitely recurse when dealing with pointers to the structure
15814 type within the structure itself. */
15815 set_die_type (die, type, cu);
15816
15817 /* set_die_type should be already done. */
15818 set_descriptive_type (type, die, cu);
15819
15820 return type;
15821 }
15822
15823 /* A helper for process_structure_scope that handles a single member
15824 DIE. */
15825
15826 static void
15827 handle_struct_member_die (struct die_info *child_die, struct type *type,
15828 struct field_info *fi,
15829 std::vector<struct symbol *> *template_args,
15830 struct dwarf2_cu *cu)
15831 {
15832 if (child_die->tag == DW_TAG_member
15833 || child_die->tag == DW_TAG_variable
15834 || child_die->tag == DW_TAG_variant_part)
15835 {
15836 /* NOTE: carlton/2002-11-05: A C++ static data member
15837 should be a DW_TAG_member that is a declaration, but
15838 all versions of G++ as of this writing (so through at
15839 least 3.2.1) incorrectly generate DW_TAG_variable
15840 tags for them instead. */
15841 dwarf2_add_field (fi, child_die, cu);
15842 }
15843 else if (child_die->tag == DW_TAG_subprogram)
15844 {
15845 /* Rust doesn't have member functions in the C++ sense.
15846 However, it does emit ordinary functions as children
15847 of a struct DIE. */
15848 if (cu->language == language_rust)
15849 read_func_scope (child_die, cu);
15850 else
15851 {
15852 /* C++ member function. */
15853 dwarf2_add_member_fn (fi, child_die, type, cu);
15854 }
15855 }
15856 else if (child_die->tag == DW_TAG_inheritance)
15857 {
15858 /* C++ base class field. */
15859 dwarf2_add_field (fi, child_die, cu);
15860 }
15861 else if (type_can_define_types (child_die))
15862 dwarf2_add_type_defn (fi, child_die, cu);
15863 else if (child_die->tag == DW_TAG_template_type_param
15864 || child_die->tag == DW_TAG_template_value_param)
15865 {
15866 struct symbol *arg = new_symbol (child_die, NULL, cu);
15867
15868 if (arg != NULL)
15869 template_args->push_back (arg);
15870 }
15871 else if (child_die->tag == DW_TAG_variant)
15872 {
15873 /* In a variant we want to get the discriminant and also add a
15874 field for our sole member child. */
15875 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15876
15877 for (die_info *variant_child = child_die->child;
15878 variant_child != NULL;
15879 variant_child = sibling_die (variant_child))
15880 {
15881 if (variant_child->tag == DW_TAG_member)
15882 {
15883 handle_struct_member_die (variant_child, type, fi,
15884 template_args, cu);
15885 /* Only handle the one. */
15886 break;
15887 }
15888 }
15889
15890 /* We don't handle this but we might as well report it if we see
15891 it. */
15892 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15893 complaint (_("DW_AT_discr_list is not supported yet"
15894 " - DIE at %s [in module %s]"),
15895 sect_offset_str (child_die->sect_off),
15896 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15897
15898 /* The first field was just added, so we can stash the
15899 discriminant there. */
15900 gdb_assert (!fi->fields.empty ());
15901 if (discr == NULL)
15902 fi->fields.back ().variant.default_branch = true;
15903 else
15904 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15905 }
15906 }
15907
15908 /* Finish creating a structure or union type, including filling in
15909 its members and creating a symbol for it. */
15910
15911 static void
15912 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15913 {
15914 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15915 struct die_info *child_die;
15916 struct type *type;
15917
15918 type = get_die_type (die, cu);
15919 if (type == NULL)
15920 type = read_structure_type (die, cu);
15921
15922 /* When reading a DW_TAG_variant_part, we need to notice when we
15923 read the discriminant member, so we can record it later in the
15924 discriminant_info. */
15925 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15926 sect_offset discr_offset;
15927 bool has_template_parameters = false;
15928
15929 if (is_variant_part)
15930 {
15931 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15932 if (discr == NULL)
15933 {
15934 /* Maybe it's a univariant form, an extension we support.
15935 In this case arrange not to check the offset. */
15936 is_variant_part = false;
15937 }
15938 else if (attr_form_is_ref (discr))
15939 {
15940 struct dwarf2_cu *target_cu = cu;
15941 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15942
15943 discr_offset = target_die->sect_off;
15944 }
15945 else
15946 {
15947 complaint (_("DW_AT_discr does not have DIE reference form"
15948 " - DIE at %s [in module %s]"),
15949 sect_offset_str (die->sect_off),
15950 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15951 is_variant_part = false;
15952 }
15953 }
15954
15955 if (die->child != NULL && ! die_is_declaration (die, cu))
15956 {
15957 struct field_info fi;
15958 std::vector<struct symbol *> template_args;
15959
15960 child_die = die->child;
15961
15962 while (child_die && child_die->tag)
15963 {
15964 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15965
15966 if (is_variant_part && discr_offset == child_die->sect_off)
15967 fi.fields.back ().variant.is_discriminant = true;
15968
15969 child_die = sibling_die (child_die);
15970 }
15971
15972 /* Attach template arguments to type. */
15973 if (!template_args.empty ())
15974 {
15975 has_template_parameters = true;
15976 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15977 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15978 TYPE_TEMPLATE_ARGUMENTS (type)
15979 = XOBNEWVEC (&objfile->objfile_obstack,
15980 struct symbol *,
15981 TYPE_N_TEMPLATE_ARGUMENTS (type));
15982 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15983 template_args.data (),
15984 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15985 * sizeof (struct symbol *)));
15986 }
15987
15988 /* Attach fields and member functions to the type. */
15989 if (fi.nfields)
15990 dwarf2_attach_fields_to_type (&fi, type, cu);
15991 if (!fi.fnfieldlists.empty ())
15992 {
15993 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15994
15995 /* Get the type which refers to the base class (possibly this
15996 class itself) which contains the vtable pointer for the current
15997 class from the DW_AT_containing_type attribute. This use of
15998 DW_AT_containing_type is a GNU extension. */
15999
16000 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16001 {
16002 struct type *t = die_containing_type (die, cu);
16003
16004 set_type_vptr_basetype (type, t);
16005 if (type == t)
16006 {
16007 int i;
16008
16009 /* Our own class provides vtbl ptr. */
16010 for (i = TYPE_NFIELDS (t) - 1;
16011 i >= TYPE_N_BASECLASSES (t);
16012 --i)
16013 {
16014 const char *fieldname = TYPE_FIELD_NAME (t, i);
16015
16016 if (is_vtable_name (fieldname, cu))
16017 {
16018 set_type_vptr_fieldno (type, i);
16019 break;
16020 }
16021 }
16022
16023 /* Complain if virtual function table field not found. */
16024 if (i < TYPE_N_BASECLASSES (t))
16025 complaint (_("virtual function table pointer "
16026 "not found when defining class '%s'"),
16027 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16028 }
16029 else
16030 {
16031 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16032 }
16033 }
16034 else if (cu->producer
16035 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16036 {
16037 /* The IBM XLC compiler does not provide direct indication
16038 of the containing type, but the vtable pointer is
16039 always named __vfp. */
16040
16041 int i;
16042
16043 for (i = TYPE_NFIELDS (type) - 1;
16044 i >= TYPE_N_BASECLASSES (type);
16045 --i)
16046 {
16047 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16048 {
16049 set_type_vptr_fieldno (type, i);
16050 set_type_vptr_basetype (type, type);
16051 break;
16052 }
16053 }
16054 }
16055 }
16056
16057 /* Copy fi.typedef_field_list linked list elements content into the
16058 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16059 if (!fi.typedef_field_list.empty ())
16060 {
16061 int count = fi.typedef_field_list.size ();
16062
16063 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16064 TYPE_TYPEDEF_FIELD_ARRAY (type)
16065 = ((struct decl_field *)
16066 TYPE_ALLOC (type,
16067 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16068 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16069
16070 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16071 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16072 }
16073
16074 /* Copy fi.nested_types_list linked list elements content into the
16075 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16076 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16077 {
16078 int count = fi.nested_types_list.size ();
16079
16080 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16081 TYPE_NESTED_TYPES_ARRAY (type)
16082 = ((struct decl_field *)
16083 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16084 TYPE_NESTED_TYPES_COUNT (type) = count;
16085
16086 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16087 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16088 }
16089 }
16090
16091 quirk_gcc_member_function_pointer (type, objfile);
16092 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16093 cu->rust_unions.push_back (type);
16094
16095 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16096 snapshots) has been known to create a die giving a declaration
16097 for a class that has, as a child, a die giving a definition for a
16098 nested class. So we have to process our children even if the
16099 current die is a declaration. Normally, of course, a declaration
16100 won't have any children at all. */
16101
16102 child_die = die->child;
16103
16104 while (child_die != NULL && child_die->tag)
16105 {
16106 if (child_die->tag == DW_TAG_member
16107 || child_die->tag == DW_TAG_variable
16108 || child_die->tag == DW_TAG_inheritance
16109 || child_die->tag == DW_TAG_template_value_param
16110 || child_die->tag == DW_TAG_template_type_param)
16111 {
16112 /* Do nothing. */
16113 }
16114 else
16115 process_die (child_die, cu);
16116
16117 child_die = sibling_die (child_die);
16118 }
16119
16120 /* Do not consider external references. According to the DWARF standard,
16121 these DIEs are identified by the fact that they have no byte_size
16122 attribute, and a declaration attribute. */
16123 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16124 || !die_is_declaration (die, cu))
16125 {
16126 struct symbol *sym = new_symbol (die, type, cu);
16127
16128 if (has_template_parameters)
16129 {
16130 struct symtab *symtab;
16131 if (sym != nullptr)
16132 symtab = symbol_symtab (sym);
16133 else if (cu->line_header != nullptr)
16134 {
16135 /* Any related symtab will do. */
16136 symtab
16137 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16138 }
16139 else
16140 {
16141 symtab = nullptr;
16142 complaint (_("could not find suitable "
16143 "symtab for template parameter"
16144 " - DIE at %s [in module %s]"),
16145 sect_offset_str (die->sect_off),
16146 objfile_name (objfile));
16147 }
16148
16149 if (symtab != nullptr)
16150 {
16151 /* Make sure that the symtab is set on the new symbols.
16152 Even though they don't appear in this symtab directly,
16153 other parts of gdb assume that symbols do, and this is
16154 reasonably true. */
16155 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16156 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16157 }
16158 }
16159 }
16160 }
16161
16162 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16163 update TYPE using some information only available in DIE's children. */
16164
16165 static void
16166 update_enumeration_type_from_children (struct die_info *die,
16167 struct type *type,
16168 struct dwarf2_cu *cu)
16169 {
16170 struct die_info *child_die;
16171 int unsigned_enum = 1;
16172 int flag_enum = 1;
16173 ULONGEST mask = 0;
16174
16175 auto_obstack obstack;
16176
16177 for (child_die = die->child;
16178 child_die != NULL && child_die->tag;
16179 child_die = sibling_die (child_die))
16180 {
16181 struct attribute *attr;
16182 LONGEST value;
16183 const gdb_byte *bytes;
16184 struct dwarf2_locexpr_baton *baton;
16185 const char *name;
16186
16187 if (child_die->tag != DW_TAG_enumerator)
16188 continue;
16189
16190 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16191 if (attr == NULL)
16192 continue;
16193
16194 name = dwarf2_name (child_die, cu);
16195 if (name == NULL)
16196 name = "<anonymous enumerator>";
16197
16198 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16199 &value, &bytes, &baton);
16200 if (value < 0)
16201 {
16202 unsigned_enum = 0;
16203 flag_enum = 0;
16204 }
16205 else if ((mask & value) != 0)
16206 flag_enum = 0;
16207 else
16208 mask |= value;
16209
16210 /* If we already know that the enum type is neither unsigned, nor
16211 a flag type, no need to look at the rest of the enumerates. */
16212 if (!unsigned_enum && !flag_enum)
16213 break;
16214 }
16215
16216 if (unsigned_enum)
16217 TYPE_UNSIGNED (type) = 1;
16218 if (flag_enum)
16219 TYPE_FLAG_ENUM (type) = 1;
16220 }
16221
16222 /* Given a DW_AT_enumeration_type die, set its type. We do not
16223 complete the type's fields yet, or create any symbols. */
16224
16225 static struct type *
16226 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16227 {
16228 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16229 struct type *type;
16230 struct attribute *attr;
16231 const char *name;
16232
16233 /* If the definition of this type lives in .debug_types, read that type.
16234 Don't follow DW_AT_specification though, that will take us back up
16235 the chain and we want to go down. */
16236 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16237 if (attr)
16238 {
16239 type = get_DW_AT_signature_type (die, attr, cu);
16240
16241 /* The type's CU may not be the same as CU.
16242 Ensure TYPE is recorded with CU in die_type_hash. */
16243 return set_die_type (die, type, cu);
16244 }
16245
16246 type = alloc_type (objfile);
16247
16248 TYPE_CODE (type) = TYPE_CODE_ENUM;
16249 name = dwarf2_full_name (NULL, die, cu);
16250 if (name != NULL)
16251 TYPE_NAME (type) = name;
16252
16253 attr = dwarf2_attr (die, DW_AT_type, cu);
16254 if (attr != NULL)
16255 {
16256 struct type *underlying_type = die_type (die, cu);
16257
16258 TYPE_TARGET_TYPE (type) = underlying_type;
16259 }
16260
16261 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16262 if (attr)
16263 {
16264 TYPE_LENGTH (type) = DW_UNSND (attr);
16265 }
16266 else
16267 {
16268 TYPE_LENGTH (type) = 0;
16269 }
16270
16271 maybe_set_alignment (cu, die, type);
16272
16273 /* The enumeration DIE can be incomplete. In Ada, any type can be
16274 declared as private in the package spec, and then defined only
16275 inside the package body. Such types are known as Taft Amendment
16276 Types. When another package uses such a type, an incomplete DIE
16277 may be generated by the compiler. */
16278 if (die_is_declaration (die, cu))
16279 TYPE_STUB (type) = 1;
16280
16281 /* Finish the creation of this type by using the enum's children.
16282 We must call this even when the underlying type has been provided
16283 so that we can determine if we're looking at a "flag" enum. */
16284 update_enumeration_type_from_children (die, type, cu);
16285
16286 /* If this type has an underlying type that is not a stub, then we
16287 may use its attributes. We always use the "unsigned" attribute
16288 in this situation, because ordinarily we guess whether the type
16289 is unsigned -- but the guess can be wrong and the underlying type
16290 can tell us the reality. However, we defer to a local size
16291 attribute if one exists, because this lets the compiler override
16292 the underlying type if needed. */
16293 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16294 {
16295 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16296 if (TYPE_LENGTH (type) == 0)
16297 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16298 if (TYPE_RAW_ALIGN (type) == 0
16299 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16300 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16301 }
16302
16303 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16304
16305 return set_die_type (die, type, cu);
16306 }
16307
16308 /* Given a pointer to a die which begins an enumeration, process all
16309 the dies that define the members of the enumeration, and create the
16310 symbol for the enumeration type.
16311
16312 NOTE: We reverse the order of the element list. */
16313
16314 static void
16315 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16316 {
16317 struct type *this_type;
16318
16319 this_type = get_die_type (die, cu);
16320 if (this_type == NULL)
16321 this_type = read_enumeration_type (die, cu);
16322
16323 if (die->child != NULL)
16324 {
16325 struct die_info *child_die;
16326 struct symbol *sym;
16327 struct field *fields = NULL;
16328 int num_fields = 0;
16329 const char *name;
16330
16331 child_die = die->child;
16332 while (child_die && child_die->tag)
16333 {
16334 if (child_die->tag != DW_TAG_enumerator)
16335 {
16336 process_die (child_die, cu);
16337 }
16338 else
16339 {
16340 name = dwarf2_name (child_die, cu);
16341 if (name)
16342 {
16343 sym = new_symbol (child_die, this_type, cu);
16344
16345 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16346 {
16347 fields = (struct field *)
16348 xrealloc (fields,
16349 (num_fields + DW_FIELD_ALLOC_CHUNK)
16350 * sizeof (struct field));
16351 }
16352
16353 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16354 FIELD_TYPE (fields[num_fields]) = NULL;
16355 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16356 FIELD_BITSIZE (fields[num_fields]) = 0;
16357
16358 num_fields++;
16359 }
16360 }
16361
16362 child_die = sibling_die (child_die);
16363 }
16364
16365 if (num_fields)
16366 {
16367 TYPE_NFIELDS (this_type) = num_fields;
16368 TYPE_FIELDS (this_type) = (struct field *)
16369 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16370 memcpy (TYPE_FIELDS (this_type), fields,
16371 sizeof (struct field) * num_fields);
16372 xfree (fields);
16373 }
16374 }
16375
16376 /* If we are reading an enum from a .debug_types unit, and the enum
16377 is a declaration, and the enum is not the signatured type in the
16378 unit, then we do not want to add a symbol for it. Adding a
16379 symbol would in some cases obscure the true definition of the
16380 enum, giving users an incomplete type when the definition is
16381 actually available. Note that we do not want to do this for all
16382 enums which are just declarations, because C++0x allows forward
16383 enum declarations. */
16384 if (cu->per_cu->is_debug_types
16385 && die_is_declaration (die, cu))
16386 {
16387 struct signatured_type *sig_type;
16388
16389 sig_type = (struct signatured_type *) cu->per_cu;
16390 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16391 if (sig_type->type_offset_in_section != die->sect_off)
16392 return;
16393 }
16394
16395 new_symbol (die, this_type, cu);
16396 }
16397
16398 /* Extract all information from a DW_TAG_array_type DIE and put it in
16399 the DIE's type field. For now, this only handles one dimensional
16400 arrays. */
16401
16402 static struct type *
16403 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16404 {
16405 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16406 struct die_info *child_die;
16407 struct type *type;
16408 struct type *element_type, *range_type, *index_type;
16409 struct attribute *attr;
16410 const char *name;
16411 struct dynamic_prop *byte_stride_prop = NULL;
16412 unsigned int bit_stride = 0;
16413
16414 element_type = die_type (die, cu);
16415
16416 /* The die_type call above may have already set the type for this DIE. */
16417 type = get_die_type (die, cu);
16418 if (type)
16419 return type;
16420
16421 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16422 if (attr != NULL)
16423 {
16424 int stride_ok;
16425 struct type *prop_type
16426 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16427
16428 byte_stride_prop
16429 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16430 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16431 prop_type);
16432 if (!stride_ok)
16433 {
16434 complaint (_("unable to read array DW_AT_byte_stride "
16435 " - DIE at %s [in module %s]"),
16436 sect_offset_str (die->sect_off),
16437 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16438 /* Ignore this attribute. We will likely not be able to print
16439 arrays of this type correctly, but there is little we can do
16440 to help if we cannot read the attribute's value. */
16441 byte_stride_prop = NULL;
16442 }
16443 }
16444
16445 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16446 if (attr != NULL)
16447 bit_stride = DW_UNSND (attr);
16448
16449 /* Irix 6.2 native cc creates array types without children for
16450 arrays with unspecified length. */
16451 if (die->child == NULL)
16452 {
16453 index_type = objfile_type (objfile)->builtin_int;
16454 range_type = create_static_range_type (NULL, index_type, 0, -1);
16455 type = create_array_type_with_stride (NULL, element_type, range_type,
16456 byte_stride_prop, bit_stride);
16457 return set_die_type (die, type, cu);
16458 }
16459
16460 std::vector<struct type *> range_types;
16461 child_die = die->child;
16462 while (child_die && child_die->tag)
16463 {
16464 if (child_die->tag == DW_TAG_subrange_type)
16465 {
16466 struct type *child_type = read_type_die (child_die, cu);
16467
16468 if (child_type != NULL)
16469 {
16470 /* The range type was succesfully read. Save it for the
16471 array type creation. */
16472 range_types.push_back (child_type);
16473 }
16474 }
16475 child_die = sibling_die (child_die);
16476 }
16477
16478 /* Dwarf2 dimensions are output from left to right, create the
16479 necessary array types in backwards order. */
16480
16481 type = element_type;
16482
16483 if (read_array_order (die, cu) == DW_ORD_col_major)
16484 {
16485 int i = 0;
16486
16487 while (i < range_types.size ())
16488 type = create_array_type_with_stride (NULL, type, range_types[i++],
16489 byte_stride_prop, bit_stride);
16490 }
16491 else
16492 {
16493 size_t ndim = range_types.size ();
16494 while (ndim-- > 0)
16495 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16496 byte_stride_prop, bit_stride);
16497 }
16498
16499 /* Understand Dwarf2 support for vector types (like they occur on
16500 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16501 array type. This is not part of the Dwarf2/3 standard yet, but a
16502 custom vendor extension. The main difference between a regular
16503 array and the vector variant is that vectors are passed by value
16504 to functions. */
16505 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16506 if (attr)
16507 make_vector_type (type);
16508
16509 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16510 implementation may choose to implement triple vectors using this
16511 attribute. */
16512 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16513 if (attr)
16514 {
16515 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16516 TYPE_LENGTH (type) = DW_UNSND (attr);
16517 else
16518 complaint (_("DW_AT_byte_size for array type smaller "
16519 "than the total size of elements"));
16520 }
16521
16522 name = dwarf2_name (die, cu);
16523 if (name)
16524 TYPE_NAME (type) = name;
16525
16526 maybe_set_alignment (cu, die, type);
16527
16528 /* Install the type in the die. */
16529 set_die_type (die, type, cu);
16530
16531 /* set_die_type should be already done. */
16532 set_descriptive_type (type, die, cu);
16533
16534 return type;
16535 }
16536
16537 static enum dwarf_array_dim_ordering
16538 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16539 {
16540 struct attribute *attr;
16541
16542 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16543
16544 if (attr)
16545 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16546
16547 /* GNU F77 is a special case, as at 08/2004 array type info is the
16548 opposite order to the dwarf2 specification, but data is still
16549 laid out as per normal fortran.
16550
16551 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16552 version checking. */
16553
16554 if (cu->language == language_fortran
16555 && cu->producer && strstr (cu->producer, "GNU F77"))
16556 {
16557 return DW_ORD_row_major;
16558 }
16559
16560 switch (cu->language_defn->la_array_ordering)
16561 {
16562 case array_column_major:
16563 return DW_ORD_col_major;
16564 case array_row_major:
16565 default:
16566 return DW_ORD_row_major;
16567 };
16568 }
16569
16570 /* Extract all information from a DW_TAG_set_type DIE and put it in
16571 the DIE's type field. */
16572
16573 static struct type *
16574 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16575 {
16576 struct type *domain_type, *set_type;
16577 struct attribute *attr;
16578
16579 domain_type = die_type (die, cu);
16580
16581 /* The die_type call above may have already set the type for this DIE. */
16582 set_type = get_die_type (die, cu);
16583 if (set_type)
16584 return set_type;
16585
16586 set_type = create_set_type (NULL, domain_type);
16587
16588 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16589 if (attr)
16590 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16591
16592 maybe_set_alignment (cu, die, set_type);
16593
16594 return set_die_type (die, set_type, cu);
16595 }
16596
16597 /* A helper for read_common_block that creates a locexpr baton.
16598 SYM is the symbol which we are marking as computed.
16599 COMMON_DIE is the DIE for the common block.
16600 COMMON_LOC is the location expression attribute for the common
16601 block itself.
16602 MEMBER_LOC is the location expression attribute for the particular
16603 member of the common block that we are processing.
16604 CU is the CU from which the above come. */
16605
16606 static void
16607 mark_common_block_symbol_computed (struct symbol *sym,
16608 struct die_info *common_die,
16609 struct attribute *common_loc,
16610 struct attribute *member_loc,
16611 struct dwarf2_cu *cu)
16612 {
16613 struct dwarf2_per_objfile *dwarf2_per_objfile
16614 = cu->per_cu->dwarf2_per_objfile;
16615 struct objfile *objfile = dwarf2_per_objfile->objfile;
16616 struct dwarf2_locexpr_baton *baton;
16617 gdb_byte *ptr;
16618 unsigned int cu_off;
16619 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16620 LONGEST offset = 0;
16621
16622 gdb_assert (common_loc && member_loc);
16623 gdb_assert (attr_form_is_block (common_loc));
16624 gdb_assert (attr_form_is_block (member_loc)
16625 || attr_form_is_constant (member_loc));
16626
16627 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16628 baton->per_cu = cu->per_cu;
16629 gdb_assert (baton->per_cu);
16630
16631 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16632
16633 if (attr_form_is_constant (member_loc))
16634 {
16635 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16636 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16637 }
16638 else
16639 baton->size += DW_BLOCK (member_loc)->size;
16640
16641 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16642 baton->data = ptr;
16643
16644 *ptr++ = DW_OP_call4;
16645 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16646 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16647 ptr += 4;
16648
16649 if (attr_form_is_constant (member_loc))
16650 {
16651 *ptr++ = DW_OP_addr;
16652 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16653 ptr += cu->header.addr_size;
16654 }
16655 else
16656 {
16657 /* We have to copy the data here, because DW_OP_call4 will only
16658 use a DW_AT_location attribute. */
16659 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16660 ptr += DW_BLOCK (member_loc)->size;
16661 }
16662
16663 *ptr++ = DW_OP_plus;
16664 gdb_assert (ptr - baton->data == baton->size);
16665
16666 SYMBOL_LOCATION_BATON (sym) = baton;
16667 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16668 }
16669
16670 /* Create appropriate locally-scoped variables for all the
16671 DW_TAG_common_block entries. Also create a struct common_block
16672 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16673 is used to sepate the common blocks name namespace from regular
16674 variable names. */
16675
16676 static void
16677 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16678 {
16679 struct attribute *attr;
16680
16681 attr = dwarf2_attr (die, DW_AT_location, cu);
16682 if (attr)
16683 {
16684 /* Support the .debug_loc offsets. */
16685 if (attr_form_is_block (attr))
16686 {
16687 /* Ok. */
16688 }
16689 else if (attr_form_is_section_offset (attr))
16690 {
16691 dwarf2_complex_location_expr_complaint ();
16692 attr = NULL;
16693 }
16694 else
16695 {
16696 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16697 "common block member");
16698 attr = NULL;
16699 }
16700 }
16701
16702 if (die->child != NULL)
16703 {
16704 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16705 struct die_info *child_die;
16706 size_t n_entries = 0, size;
16707 struct common_block *common_block;
16708 struct symbol *sym;
16709
16710 for (child_die = die->child;
16711 child_die && child_die->tag;
16712 child_die = sibling_die (child_die))
16713 ++n_entries;
16714
16715 size = (sizeof (struct common_block)
16716 + (n_entries - 1) * sizeof (struct symbol *));
16717 common_block
16718 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16719 size);
16720 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16721 common_block->n_entries = 0;
16722
16723 for (child_die = die->child;
16724 child_die && child_die->tag;
16725 child_die = sibling_die (child_die))
16726 {
16727 /* Create the symbol in the DW_TAG_common_block block in the current
16728 symbol scope. */
16729 sym = new_symbol (child_die, NULL, cu);
16730 if (sym != NULL)
16731 {
16732 struct attribute *member_loc;
16733
16734 common_block->contents[common_block->n_entries++] = sym;
16735
16736 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16737 cu);
16738 if (member_loc)
16739 {
16740 /* GDB has handled this for a long time, but it is
16741 not specified by DWARF. It seems to have been
16742 emitted by gfortran at least as recently as:
16743 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16744 complaint (_("Variable in common block has "
16745 "DW_AT_data_member_location "
16746 "- DIE at %s [in module %s]"),
16747 sect_offset_str (child_die->sect_off),
16748 objfile_name (objfile));
16749
16750 if (attr_form_is_section_offset (member_loc))
16751 dwarf2_complex_location_expr_complaint ();
16752 else if (attr_form_is_constant (member_loc)
16753 || attr_form_is_block (member_loc))
16754 {
16755 if (attr)
16756 mark_common_block_symbol_computed (sym, die, attr,
16757 member_loc, cu);
16758 }
16759 else
16760 dwarf2_complex_location_expr_complaint ();
16761 }
16762 }
16763 }
16764
16765 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16766 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16767 }
16768 }
16769
16770 /* Create a type for a C++ namespace. */
16771
16772 static struct type *
16773 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16774 {
16775 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16776 const char *previous_prefix, *name;
16777 int is_anonymous;
16778 struct type *type;
16779
16780 /* For extensions, reuse the type of the original namespace. */
16781 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16782 {
16783 struct die_info *ext_die;
16784 struct dwarf2_cu *ext_cu = cu;
16785
16786 ext_die = dwarf2_extension (die, &ext_cu);
16787 type = read_type_die (ext_die, ext_cu);
16788
16789 /* EXT_CU may not be the same as CU.
16790 Ensure TYPE is recorded with CU in die_type_hash. */
16791 return set_die_type (die, type, cu);
16792 }
16793
16794 name = namespace_name (die, &is_anonymous, cu);
16795
16796 /* Now build the name of the current namespace. */
16797
16798 previous_prefix = determine_prefix (die, cu);
16799 if (previous_prefix[0] != '\0')
16800 name = typename_concat (&objfile->objfile_obstack,
16801 previous_prefix, name, 0, cu);
16802
16803 /* Create the type. */
16804 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16805
16806 return set_die_type (die, type, cu);
16807 }
16808
16809 /* Read a namespace scope. */
16810
16811 static void
16812 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16813 {
16814 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16815 int is_anonymous;
16816
16817 /* Add a symbol associated to this if we haven't seen the namespace
16818 before. Also, add a using directive if it's an anonymous
16819 namespace. */
16820
16821 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16822 {
16823 struct type *type;
16824
16825 type = read_type_die (die, cu);
16826 new_symbol (die, type, cu);
16827
16828 namespace_name (die, &is_anonymous, cu);
16829 if (is_anonymous)
16830 {
16831 const char *previous_prefix = determine_prefix (die, cu);
16832
16833 std::vector<const char *> excludes;
16834 add_using_directive (using_directives (cu),
16835 previous_prefix, TYPE_NAME (type), NULL,
16836 NULL, excludes, 0, &objfile->objfile_obstack);
16837 }
16838 }
16839
16840 if (die->child != NULL)
16841 {
16842 struct die_info *child_die = die->child;
16843
16844 while (child_die && child_die->tag)
16845 {
16846 process_die (child_die, cu);
16847 child_die = sibling_die (child_die);
16848 }
16849 }
16850 }
16851
16852 /* Read a Fortran module as type. This DIE can be only a declaration used for
16853 imported module. Still we need that type as local Fortran "use ... only"
16854 declaration imports depend on the created type in determine_prefix. */
16855
16856 static struct type *
16857 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16858 {
16859 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16860 const char *module_name;
16861 struct type *type;
16862
16863 module_name = dwarf2_name (die, cu);
16864 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16865
16866 return set_die_type (die, type, cu);
16867 }
16868
16869 /* Read a Fortran module. */
16870
16871 static void
16872 read_module (struct die_info *die, struct dwarf2_cu *cu)
16873 {
16874 struct die_info *child_die = die->child;
16875 struct type *type;
16876
16877 type = read_type_die (die, cu);
16878 new_symbol (die, type, cu);
16879
16880 while (child_die && child_die->tag)
16881 {
16882 process_die (child_die, cu);
16883 child_die = sibling_die (child_die);
16884 }
16885 }
16886
16887 /* Return the name of the namespace represented by DIE. Set
16888 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16889 namespace. */
16890
16891 static const char *
16892 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16893 {
16894 struct die_info *current_die;
16895 const char *name = NULL;
16896
16897 /* Loop through the extensions until we find a name. */
16898
16899 for (current_die = die;
16900 current_die != NULL;
16901 current_die = dwarf2_extension (die, &cu))
16902 {
16903 /* We don't use dwarf2_name here so that we can detect the absence
16904 of a name -> anonymous namespace. */
16905 name = dwarf2_string_attr (die, DW_AT_name, cu);
16906
16907 if (name != NULL)
16908 break;
16909 }
16910
16911 /* Is it an anonymous namespace? */
16912
16913 *is_anonymous = (name == NULL);
16914 if (*is_anonymous)
16915 name = CP_ANONYMOUS_NAMESPACE_STR;
16916
16917 return name;
16918 }
16919
16920 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16921 the user defined type vector. */
16922
16923 static struct type *
16924 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16925 {
16926 struct gdbarch *gdbarch
16927 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16928 struct comp_unit_head *cu_header = &cu->header;
16929 struct type *type;
16930 struct attribute *attr_byte_size;
16931 struct attribute *attr_address_class;
16932 int byte_size, addr_class;
16933 struct type *target_type;
16934
16935 target_type = die_type (die, cu);
16936
16937 /* The die_type call above may have already set the type for this DIE. */
16938 type = get_die_type (die, cu);
16939 if (type)
16940 return type;
16941
16942 type = lookup_pointer_type (target_type);
16943
16944 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16945 if (attr_byte_size)
16946 byte_size = DW_UNSND (attr_byte_size);
16947 else
16948 byte_size = cu_header->addr_size;
16949
16950 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16951 if (attr_address_class)
16952 addr_class = DW_UNSND (attr_address_class);
16953 else
16954 addr_class = DW_ADDR_none;
16955
16956 ULONGEST alignment = get_alignment (cu, die);
16957
16958 /* If the pointer size, alignment, or address class is different
16959 than the default, create a type variant marked as such and set
16960 the length accordingly. */
16961 if (TYPE_LENGTH (type) != byte_size
16962 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16963 && alignment != TYPE_RAW_ALIGN (type))
16964 || addr_class != DW_ADDR_none)
16965 {
16966 if (gdbarch_address_class_type_flags_p (gdbarch))
16967 {
16968 int type_flags;
16969
16970 type_flags = gdbarch_address_class_type_flags
16971 (gdbarch, byte_size, addr_class);
16972 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16973 == 0);
16974 type = make_type_with_address_space (type, type_flags);
16975 }
16976 else if (TYPE_LENGTH (type) != byte_size)
16977 {
16978 complaint (_("invalid pointer size %d"), byte_size);
16979 }
16980 else if (TYPE_RAW_ALIGN (type) != alignment)
16981 {
16982 complaint (_("Invalid DW_AT_alignment"
16983 " - DIE at %s [in module %s]"),
16984 sect_offset_str (die->sect_off),
16985 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16986 }
16987 else
16988 {
16989 /* Should we also complain about unhandled address classes? */
16990 }
16991 }
16992
16993 TYPE_LENGTH (type) = byte_size;
16994 set_type_align (type, alignment);
16995 return set_die_type (die, type, cu);
16996 }
16997
16998 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16999 the user defined type vector. */
17000
17001 static struct type *
17002 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17003 {
17004 struct type *type;
17005 struct type *to_type;
17006 struct type *domain;
17007
17008 to_type = die_type (die, cu);
17009 domain = die_containing_type (die, cu);
17010
17011 /* The calls above may have already set the type for this DIE. */
17012 type = get_die_type (die, cu);
17013 if (type)
17014 return type;
17015
17016 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17017 type = lookup_methodptr_type (to_type);
17018 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17019 {
17020 struct type *new_type
17021 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17022
17023 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17024 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17025 TYPE_VARARGS (to_type));
17026 type = lookup_methodptr_type (new_type);
17027 }
17028 else
17029 type = lookup_memberptr_type (to_type, domain);
17030
17031 return set_die_type (die, type, cu);
17032 }
17033
17034 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17035 the user defined type vector. */
17036
17037 static struct type *
17038 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17039 enum type_code refcode)
17040 {
17041 struct comp_unit_head *cu_header = &cu->header;
17042 struct type *type, *target_type;
17043 struct attribute *attr;
17044
17045 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17046
17047 target_type = die_type (die, cu);
17048
17049 /* The die_type call above may have already set the type for this DIE. */
17050 type = get_die_type (die, cu);
17051 if (type)
17052 return type;
17053
17054 type = lookup_reference_type (target_type, refcode);
17055 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17056 if (attr)
17057 {
17058 TYPE_LENGTH (type) = DW_UNSND (attr);
17059 }
17060 else
17061 {
17062 TYPE_LENGTH (type) = cu_header->addr_size;
17063 }
17064 maybe_set_alignment (cu, die, type);
17065 return set_die_type (die, type, cu);
17066 }
17067
17068 /* Add the given cv-qualifiers to the element type of the array. GCC
17069 outputs DWARF type qualifiers that apply to an array, not the
17070 element type. But GDB relies on the array element type to carry
17071 the cv-qualifiers. This mimics section 6.7.3 of the C99
17072 specification. */
17073
17074 static struct type *
17075 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17076 struct type *base_type, int cnst, int voltl)
17077 {
17078 struct type *el_type, *inner_array;
17079
17080 base_type = copy_type (base_type);
17081 inner_array = base_type;
17082
17083 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17084 {
17085 TYPE_TARGET_TYPE (inner_array) =
17086 copy_type (TYPE_TARGET_TYPE (inner_array));
17087 inner_array = TYPE_TARGET_TYPE (inner_array);
17088 }
17089
17090 el_type = TYPE_TARGET_TYPE (inner_array);
17091 cnst |= TYPE_CONST (el_type);
17092 voltl |= TYPE_VOLATILE (el_type);
17093 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17094
17095 return set_die_type (die, base_type, cu);
17096 }
17097
17098 static struct type *
17099 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17100 {
17101 struct type *base_type, *cv_type;
17102
17103 base_type = die_type (die, cu);
17104
17105 /* The die_type call above may have already set the type for this DIE. */
17106 cv_type = get_die_type (die, cu);
17107 if (cv_type)
17108 return cv_type;
17109
17110 /* In case the const qualifier is applied to an array type, the element type
17111 is so qualified, not the array type (section 6.7.3 of C99). */
17112 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17113 return add_array_cv_type (die, cu, base_type, 1, 0);
17114
17115 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17116 return set_die_type (die, cv_type, cu);
17117 }
17118
17119 static struct type *
17120 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17121 {
17122 struct type *base_type, *cv_type;
17123
17124 base_type = die_type (die, cu);
17125
17126 /* The die_type call above may have already set the type for this DIE. */
17127 cv_type = get_die_type (die, cu);
17128 if (cv_type)
17129 return cv_type;
17130
17131 /* In case the volatile qualifier is applied to an array type, the
17132 element type is so qualified, not the array type (section 6.7.3
17133 of C99). */
17134 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17135 return add_array_cv_type (die, cu, base_type, 0, 1);
17136
17137 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17138 return set_die_type (die, cv_type, cu);
17139 }
17140
17141 /* Handle DW_TAG_restrict_type. */
17142
17143 static struct type *
17144 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17145 {
17146 struct type *base_type, *cv_type;
17147
17148 base_type = die_type (die, cu);
17149
17150 /* The die_type call above may have already set the type for this DIE. */
17151 cv_type = get_die_type (die, cu);
17152 if (cv_type)
17153 return cv_type;
17154
17155 cv_type = make_restrict_type (base_type);
17156 return set_die_type (die, cv_type, cu);
17157 }
17158
17159 /* Handle DW_TAG_atomic_type. */
17160
17161 static struct type *
17162 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17163 {
17164 struct type *base_type, *cv_type;
17165
17166 base_type = die_type (die, cu);
17167
17168 /* The die_type call above may have already set the type for this DIE. */
17169 cv_type = get_die_type (die, cu);
17170 if (cv_type)
17171 return cv_type;
17172
17173 cv_type = make_atomic_type (base_type);
17174 return set_die_type (die, cv_type, cu);
17175 }
17176
17177 /* Extract all information from a DW_TAG_string_type DIE and add to
17178 the user defined type vector. It isn't really a user defined type,
17179 but it behaves like one, with other DIE's using an AT_user_def_type
17180 attribute to reference it. */
17181
17182 static struct type *
17183 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17184 {
17185 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17186 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17187 struct type *type, *range_type, *index_type, *char_type;
17188 struct attribute *attr;
17189 unsigned int length;
17190
17191 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17192 if (attr)
17193 {
17194 length = DW_UNSND (attr);
17195 }
17196 else
17197 {
17198 /* Check for the DW_AT_byte_size attribute. */
17199 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17200 if (attr)
17201 {
17202 length = DW_UNSND (attr);
17203 }
17204 else
17205 {
17206 length = 1;
17207 }
17208 }
17209
17210 index_type = objfile_type (objfile)->builtin_int;
17211 range_type = create_static_range_type (NULL, index_type, 1, length);
17212 char_type = language_string_char_type (cu->language_defn, gdbarch);
17213 type = create_string_type (NULL, char_type, range_type);
17214
17215 return set_die_type (die, type, cu);
17216 }
17217
17218 /* Assuming that DIE corresponds to a function, returns nonzero
17219 if the function is prototyped. */
17220
17221 static int
17222 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17223 {
17224 struct attribute *attr;
17225
17226 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17227 if (attr && (DW_UNSND (attr) != 0))
17228 return 1;
17229
17230 /* The DWARF standard implies that the DW_AT_prototyped attribute
17231 is only meaninful for C, but the concept also extends to other
17232 languages that allow unprototyped functions (Eg: Objective C).
17233 For all other languages, assume that functions are always
17234 prototyped. */
17235 if (cu->language != language_c
17236 && cu->language != language_objc
17237 && cu->language != language_opencl)
17238 return 1;
17239
17240 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17241 prototyped and unprototyped functions; default to prototyped,
17242 since that is more common in modern code (and RealView warns
17243 about unprototyped functions). */
17244 if (producer_is_realview (cu->producer))
17245 return 1;
17246
17247 return 0;
17248 }
17249
17250 /* Handle DIES due to C code like:
17251
17252 struct foo
17253 {
17254 int (*funcp)(int a, long l);
17255 int b;
17256 };
17257
17258 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17259
17260 static struct type *
17261 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17262 {
17263 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17264 struct type *type; /* Type that this function returns. */
17265 struct type *ftype; /* Function that returns above type. */
17266 struct attribute *attr;
17267
17268 type = die_type (die, cu);
17269
17270 /* The die_type call above may have already set the type for this DIE. */
17271 ftype = get_die_type (die, cu);
17272 if (ftype)
17273 return ftype;
17274
17275 ftype = lookup_function_type (type);
17276
17277 if (prototyped_function_p (die, cu))
17278 TYPE_PROTOTYPED (ftype) = 1;
17279
17280 /* Store the calling convention in the type if it's available in
17281 the subroutine die. Otherwise set the calling convention to
17282 the default value DW_CC_normal. */
17283 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17284 if (attr)
17285 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17286 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17287 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17288 else
17289 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17290
17291 /* Record whether the function returns normally to its caller or not
17292 if the DWARF producer set that information. */
17293 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17294 if (attr && (DW_UNSND (attr) != 0))
17295 TYPE_NO_RETURN (ftype) = 1;
17296
17297 /* We need to add the subroutine type to the die immediately so
17298 we don't infinitely recurse when dealing with parameters
17299 declared as the same subroutine type. */
17300 set_die_type (die, ftype, cu);
17301
17302 if (die->child != NULL)
17303 {
17304 struct type *void_type = objfile_type (objfile)->builtin_void;
17305 struct die_info *child_die;
17306 int nparams, iparams;
17307
17308 /* Count the number of parameters.
17309 FIXME: GDB currently ignores vararg functions, but knows about
17310 vararg member functions. */
17311 nparams = 0;
17312 child_die = die->child;
17313 while (child_die && child_die->tag)
17314 {
17315 if (child_die->tag == DW_TAG_formal_parameter)
17316 nparams++;
17317 else if (child_die->tag == DW_TAG_unspecified_parameters)
17318 TYPE_VARARGS (ftype) = 1;
17319 child_die = sibling_die (child_die);
17320 }
17321
17322 /* Allocate storage for parameters and fill them in. */
17323 TYPE_NFIELDS (ftype) = nparams;
17324 TYPE_FIELDS (ftype) = (struct field *)
17325 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17326
17327 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17328 even if we error out during the parameters reading below. */
17329 for (iparams = 0; iparams < nparams; iparams++)
17330 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17331
17332 iparams = 0;
17333 child_die = die->child;
17334 while (child_die && child_die->tag)
17335 {
17336 if (child_die->tag == DW_TAG_formal_parameter)
17337 {
17338 struct type *arg_type;
17339
17340 /* DWARF version 2 has no clean way to discern C++
17341 static and non-static member functions. G++ helps
17342 GDB by marking the first parameter for non-static
17343 member functions (which is the this pointer) as
17344 artificial. We pass this information to
17345 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17346
17347 DWARF version 3 added DW_AT_object_pointer, which GCC
17348 4.5 does not yet generate. */
17349 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17350 if (attr)
17351 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17352 else
17353 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17354 arg_type = die_type (child_die, cu);
17355
17356 /* RealView does not mark THIS as const, which the testsuite
17357 expects. GCC marks THIS as const in method definitions,
17358 but not in the class specifications (GCC PR 43053). */
17359 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17360 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17361 {
17362 int is_this = 0;
17363 struct dwarf2_cu *arg_cu = cu;
17364 const char *name = dwarf2_name (child_die, cu);
17365
17366 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17367 if (attr)
17368 {
17369 /* If the compiler emits this, use it. */
17370 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17371 is_this = 1;
17372 }
17373 else if (name && strcmp (name, "this") == 0)
17374 /* Function definitions will have the argument names. */
17375 is_this = 1;
17376 else if (name == NULL && iparams == 0)
17377 /* Declarations may not have the names, so like
17378 elsewhere in GDB, assume an artificial first
17379 argument is "this". */
17380 is_this = 1;
17381
17382 if (is_this)
17383 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17384 arg_type, 0);
17385 }
17386
17387 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17388 iparams++;
17389 }
17390 child_die = sibling_die (child_die);
17391 }
17392 }
17393
17394 return ftype;
17395 }
17396
17397 static struct type *
17398 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17399 {
17400 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17401 const char *name = NULL;
17402 struct type *this_type, *target_type;
17403
17404 name = dwarf2_full_name (NULL, die, cu);
17405 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17406 TYPE_TARGET_STUB (this_type) = 1;
17407 set_die_type (die, this_type, cu);
17408 target_type = die_type (die, cu);
17409 if (target_type != this_type)
17410 TYPE_TARGET_TYPE (this_type) = target_type;
17411 else
17412 {
17413 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17414 spec and cause infinite loops in GDB. */
17415 complaint (_("Self-referential DW_TAG_typedef "
17416 "- DIE at %s [in module %s]"),
17417 sect_offset_str (die->sect_off), objfile_name (objfile));
17418 TYPE_TARGET_TYPE (this_type) = NULL;
17419 }
17420 return this_type;
17421 }
17422
17423 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17424 (which may be different from NAME) to the architecture back-end to allow
17425 it to guess the correct format if necessary. */
17426
17427 static struct type *
17428 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17429 const char *name_hint)
17430 {
17431 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17432 const struct floatformat **format;
17433 struct type *type;
17434
17435 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17436 if (format)
17437 type = init_float_type (objfile, bits, name, format);
17438 else
17439 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17440
17441 return type;
17442 }
17443
17444 /* Allocate an integer type of size BITS and name NAME. */
17445
17446 static struct type *
17447 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17448 int bits, int unsigned_p, const char *name)
17449 {
17450 struct type *type;
17451
17452 /* Versions of Intel's C Compiler generate an integer type called "void"
17453 instead of using DW_TAG_unspecified_type. This has been seen on
17454 at least versions 14, 17, and 18. */
17455 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17456 && strcmp (name, "void") == 0)
17457 type = objfile_type (objfile)->builtin_void;
17458 else
17459 type = init_integer_type (objfile, bits, unsigned_p, name);
17460
17461 return type;
17462 }
17463
17464 /* Initialise and return a floating point type of size BITS suitable for
17465 use as a component of a complex number. The NAME_HINT is passed through
17466 when initialising the floating point type and is the name of the complex
17467 type.
17468
17469 As DWARF doesn't currently provide an explicit name for the components
17470 of a complex number, but it can be helpful to have these components
17471 named, we try to select a suitable name based on the size of the
17472 component. */
17473 static struct type *
17474 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17475 struct objfile *objfile,
17476 int bits, const char *name_hint)
17477 {
17478 gdbarch *gdbarch = get_objfile_arch (objfile);
17479 struct type *tt = nullptr;
17480
17481 /* Try to find a suitable floating point builtin type of size BITS.
17482 We're going to use the name of this type as the name for the complex
17483 target type that we are about to create. */
17484 switch (cu->language)
17485 {
17486 case language_fortran:
17487 switch (bits)
17488 {
17489 case 32:
17490 tt = builtin_f_type (gdbarch)->builtin_real;
17491 break;
17492 case 64:
17493 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17494 break;
17495 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17496 case 128:
17497 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17498 break;
17499 }
17500 break;
17501 default:
17502 switch (bits)
17503 {
17504 case 32:
17505 tt = builtin_type (gdbarch)->builtin_float;
17506 break;
17507 case 64:
17508 tt = builtin_type (gdbarch)->builtin_double;
17509 break;
17510 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17511 case 128:
17512 tt = builtin_type (gdbarch)->builtin_long_double;
17513 break;
17514 }
17515 break;
17516 }
17517
17518 /* If the type we found doesn't match the size we were looking for, then
17519 pretend we didn't find a type at all, the complex target type we
17520 create will then be nameless. */
17521 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17522 tt = nullptr;
17523
17524 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17525 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17526 }
17527
17528 /* Find a representation of a given base type and install
17529 it in the TYPE field of the die. */
17530
17531 static struct type *
17532 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17533 {
17534 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17535 struct type *type;
17536 struct attribute *attr;
17537 int encoding = 0, bits = 0;
17538 const char *name;
17539
17540 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17541 if (attr)
17542 {
17543 encoding = DW_UNSND (attr);
17544 }
17545 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17546 if (attr)
17547 {
17548 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17549 }
17550 name = dwarf2_name (die, cu);
17551 if (!name)
17552 {
17553 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17554 }
17555
17556 switch (encoding)
17557 {
17558 case DW_ATE_address:
17559 /* Turn DW_ATE_address into a void * pointer. */
17560 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17561 type = init_pointer_type (objfile, bits, name, type);
17562 break;
17563 case DW_ATE_boolean:
17564 type = init_boolean_type (objfile, bits, 1, name);
17565 break;
17566 case DW_ATE_complex_float:
17567 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17568 type = init_complex_type (objfile, name, type);
17569 break;
17570 case DW_ATE_decimal_float:
17571 type = init_decfloat_type (objfile, bits, name);
17572 break;
17573 case DW_ATE_float:
17574 type = dwarf2_init_float_type (objfile, bits, name, name);
17575 break;
17576 case DW_ATE_signed:
17577 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17578 break;
17579 case DW_ATE_unsigned:
17580 if (cu->language == language_fortran
17581 && name
17582 && startswith (name, "character("))
17583 type = init_character_type (objfile, bits, 1, name);
17584 else
17585 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17586 break;
17587 case DW_ATE_signed_char:
17588 if (cu->language == language_ada || cu->language == language_m2
17589 || cu->language == language_pascal
17590 || cu->language == language_fortran)
17591 type = init_character_type (objfile, bits, 0, name);
17592 else
17593 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17594 break;
17595 case DW_ATE_unsigned_char:
17596 if (cu->language == language_ada || cu->language == language_m2
17597 || cu->language == language_pascal
17598 || cu->language == language_fortran
17599 || cu->language == language_rust)
17600 type = init_character_type (objfile, bits, 1, name);
17601 else
17602 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17603 break;
17604 case DW_ATE_UTF:
17605 {
17606 gdbarch *arch = get_objfile_arch (objfile);
17607
17608 if (bits == 16)
17609 type = builtin_type (arch)->builtin_char16;
17610 else if (bits == 32)
17611 type = builtin_type (arch)->builtin_char32;
17612 else
17613 {
17614 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17615 bits);
17616 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17617 }
17618 return set_die_type (die, type, cu);
17619 }
17620 break;
17621
17622 default:
17623 complaint (_("unsupported DW_AT_encoding: '%s'"),
17624 dwarf_type_encoding_name (encoding));
17625 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17626 break;
17627 }
17628
17629 if (name && strcmp (name, "char") == 0)
17630 TYPE_NOSIGN (type) = 1;
17631
17632 maybe_set_alignment (cu, die, type);
17633
17634 return set_die_type (die, type, cu);
17635 }
17636
17637 /* Parse dwarf attribute if it's a block, reference or constant and put the
17638 resulting value of the attribute into struct bound_prop.
17639 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17640
17641 static int
17642 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17643 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17644 struct type *default_type)
17645 {
17646 struct dwarf2_property_baton *baton;
17647 struct obstack *obstack
17648 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17649
17650 gdb_assert (default_type != NULL);
17651
17652 if (attr == NULL || prop == NULL)
17653 return 0;
17654
17655 if (attr_form_is_block (attr))
17656 {
17657 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17658 baton->property_type = default_type;
17659 baton->locexpr.per_cu = cu->per_cu;
17660 baton->locexpr.size = DW_BLOCK (attr)->size;
17661 baton->locexpr.data = DW_BLOCK (attr)->data;
17662 baton->locexpr.is_reference = false;
17663 prop->data.baton = baton;
17664 prop->kind = PROP_LOCEXPR;
17665 gdb_assert (prop->data.baton != NULL);
17666 }
17667 else if (attr_form_is_ref (attr))
17668 {
17669 struct dwarf2_cu *target_cu = cu;
17670 struct die_info *target_die;
17671 struct attribute *target_attr;
17672
17673 target_die = follow_die_ref (die, attr, &target_cu);
17674 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17675 if (target_attr == NULL)
17676 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17677 target_cu);
17678 if (target_attr == NULL)
17679 return 0;
17680
17681 switch (target_attr->name)
17682 {
17683 case DW_AT_location:
17684 if (attr_form_is_section_offset (target_attr))
17685 {
17686 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17687 baton->property_type = die_type (target_die, target_cu);
17688 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17689 prop->data.baton = baton;
17690 prop->kind = PROP_LOCLIST;
17691 gdb_assert (prop->data.baton != NULL);
17692 }
17693 else if (attr_form_is_block (target_attr))
17694 {
17695 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17696 baton->property_type = die_type (target_die, target_cu);
17697 baton->locexpr.per_cu = cu->per_cu;
17698 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17699 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17700 baton->locexpr.is_reference = true;
17701 prop->data.baton = baton;
17702 prop->kind = PROP_LOCEXPR;
17703 gdb_assert (prop->data.baton != NULL);
17704 }
17705 else
17706 {
17707 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17708 "dynamic property");
17709 return 0;
17710 }
17711 break;
17712 case DW_AT_data_member_location:
17713 {
17714 LONGEST offset;
17715
17716 if (!handle_data_member_location (target_die, target_cu,
17717 &offset))
17718 return 0;
17719
17720 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17721 baton->property_type = read_type_die (target_die->parent,
17722 target_cu);
17723 baton->offset_info.offset = offset;
17724 baton->offset_info.type = die_type (target_die, target_cu);
17725 prop->data.baton = baton;
17726 prop->kind = PROP_ADDR_OFFSET;
17727 break;
17728 }
17729 }
17730 }
17731 else if (attr_form_is_constant (attr))
17732 {
17733 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17734 prop->kind = PROP_CONST;
17735 }
17736 else
17737 {
17738 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17739 dwarf2_name (die, cu));
17740 return 0;
17741 }
17742
17743 return 1;
17744 }
17745
17746 /* Find an integer type the same size as the address size given in the
17747 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17748 is unsigned or not. */
17749
17750 static struct type *
17751 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17752 bool unsigned_p)
17753 {
17754 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17755 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17756 struct type *int_type;
17757
17758 /* Helper macro to examine the various builtin types. */
17759 #define TRY_TYPE(F) \
17760 int_type = (unsigned_p \
17761 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17762 : objfile_type (objfile)->builtin_ ## F); \
17763 if (int_type != NULL && TYPE_LENGTH (int_type) == addr_size) \
17764 return int_type
17765
17766 TRY_TYPE (char);
17767 TRY_TYPE (short);
17768 TRY_TYPE (int);
17769 TRY_TYPE (long);
17770 TRY_TYPE (long_long);
17771
17772 #undef TRY_TYPE
17773
17774 gdb_assert_not_reached ("unable to find suitable integer type");
17775 }
17776
17777 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17778 present (which is valid) then compute the default type based on the
17779 compilation units address size. */
17780
17781 static struct type *
17782 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17783 {
17784 struct type *index_type = die_type (die, cu);
17785
17786 /* Dwarf-2 specifications explicitly allows to create subrange types
17787 without specifying a base type.
17788 In that case, the base type must be set to the type of
17789 the lower bound, upper bound or count, in that order, if any of these
17790 three attributes references an object that has a type.
17791 If no base type is found, the Dwarf-2 specifications say that
17792 a signed integer type of size equal to the size of an address should
17793 be used.
17794 For the following C code: `extern char gdb_int [];'
17795 GCC produces an empty range DIE.
17796 FIXME: muller/2010-05-28: Possible references to object for low bound,
17797 high bound or count are not yet handled by this code. */
17798 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17799 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17800
17801 return index_type;
17802 }
17803
17804 /* Read the given DW_AT_subrange DIE. */
17805
17806 static struct type *
17807 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17808 {
17809 struct type *base_type, *orig_base_type;
17810 struct type *range_type;
17811 struct attribute *attr;
17812 struct dynamic_prop low, high;
17813 int low_default_is_valid;
17814 int high_bound_is_count = 0;
17815 const char *name;
17816 ULONGEST negative_mask;
17817
17818 orig_base_type = read_subrange_index_type (die, cu);
17819
17820 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17821 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17822 creating the range type, but we use the result of check_typedef
17823 when examining properties of the type. */
17824 base_type = check_typedef (orig_base_type);
17825
17826 /* The die_type call above may have already set the type for this DIE. */
17827 range_type = get_die_type (die, cu);
17828 if (range_type)
17829 return range_type;
17830
17831 low.kind = PROP_CONST;
17832 high.kind = PROP_CONST;
17833 high.data.const_val = 0;
17834
17835 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17836 omitting DW_AT_lower_bound. */
17837 switch (cu->language)
17838 {
17839 case language_c:
17840 case language_cplus:
17841 low.data.const_val = 0;
17842 low_default_is_valid = 1;
17843 break;
17844 case language_fortran:
17845 low.data.const_val = 1;
17846 low_default_is_valid = 1;
17847 break;
17848 case language_d:
17849 case language_objc:
17850 case language_rust:
17851 low.data.const_val = 0;
17852 low_default_is_valid = (cu->header.version >= 4);
17853 break;
17854 case language_ada:
17855 case language_m2:
17856 case language_pascal:
17857 low.data.const_val = 1;
17858 low_default_is_valid = (cu->header.version >= 4);
17859 break;
17860 default:
17861 low.data.const_val = 0;
17862 low_default_is_valid = 0;
17863 break;
17864 }
17865
17866 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17867 if (attr)
17868 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17869 else if (!low_default_is_valid)
17870 complaint (_("Missing DW_AT_lower_bound "
17871 "- DIE at %s [in module %s]"),
17872 sect_offset_str (die->sect_off),
17873 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17874
17875 struct attribute *attr_ub, *attr_count;
17876 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17877 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17878 {
17879 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17880 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17881 {
17882 /* If bounds are constant do the final calculation here. */
17883 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17884 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17885 else
17886 high_bound_is_count = 1;
17887 }
17888 else
17889 {
17890 if (attr_ub != NULL)
17891 complaint (_("Unresolved DW_AT_upper_bound "
17892 "- DIE at %s [in module %s]"),
17893 sect_offset_str (die->sect_off),
17894 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17895 if (attr_count != NULL)
17896 complaint (_("Unresolved DW_AT_count "
17897 "- DIE at %s [in module %s]"),
17898 sect_offset_str (die->sect_off),
17899 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17900 }
17901 }
17902
17903 /* Normally, the DWARF producers are expected to use a signed
17904 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17905 But this is unfortunately not always the case, as witnessed
17906 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17907 is used instead. To work around that ambiguity, we treat
17908 the bounds as signed, and thus sign-extend their values, when
17909 the base type is signed. */
17910 negative_mask =
17911 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17912 if (low.kind == PROP_CONST
17913 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17914 low.data.const_val |= negative_mask;
17915 if (high.kind == PROP_CONST
17916 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17917 high.data.const_val |= negative_mask;
17918
17919 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17920
17921 if (high_bound_is_count)
17922 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17923
17924 /* Ada expects an empty array on no boundary attributes. */
17925 if (attr == NULL && cu->language != language_ada)
17926 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17927
17928 name = dwarf2_name (die, cu);
17929 if (name)
17930 TYPE_NAME (range_type) = name;
17931
17932 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17933 if (attr)
17934 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17935
17936 maybe_set_alignment (cu, die, range_type);
17937
17938 set_die_type (die, range_type, cu);
17939
17940 /* set_die_type should be already done. */
17941 set_descriptive_type (range_type, die, cu);
17942
17943 return range_type;
17944 }
17945
17946 static struct type *
17947 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17948 {
17949 struct type *type;
17950
17951 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17952 NULL);
17953 TYPE_NAME (type) = dwarf2_name (die, cu);
17954
17955 /* In Ada, an unspecified type is typically used when the description
17956 of the type is defered to a different unit. When encountering
17957 such a type, we treat it as a stub, and try to resolve it later on,
17958 when needed. */
17959 if (cu->language == language_ada)
17960 TYPE_STUB (type) = 1;
17961
17962 return set_die_type (die, type, cu);
17963 }
17964
17965 /* Read a single die and all its descendents. Set the die's sibling
17966 field to NULL; set other fields in the die correctly, and set all
17967 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17968 location of the info_ptr after reading all of those dies. PARENT
17969 is the parent of the die in question. */
17970
17971 static struct die_info *
17972 read_die_and_children (const struct die_reader_specs *reader,
17973 const gdb_byte *info_ptr,
17974 const gdb_byte **new_info_ptr,
17975 struct die_info *parent)
17976 {
17977 struct die_info *die;
17978 const gdb_byte *cur_ptr;
17979 int has_children;
17980
17981 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17982 if (die == NULL)
17983 {
17984 *new_info_ptr = cur_ptr;
17985 return NULL;
17986 }
17987 store_in_ref_table (die, reader->cu);
17988
17989 if (has_children)
17990 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17991 else
17992 {
17993 die->child = NULL;
17994 *new_info_ptr = cur_ptr;
17995 }
17996
17997 die->sibling = NULL;
17998 die->parent = parent;
17999 return die;
18000 }
18001
18002 /* Read a die, all of its descendents, and all of its siblings; set
18003 all of the fields of all of the dies correctly. Arguments are as
18004 in read_die_and_children. */
18005
18006 static struct die_info *
18007 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18008 const gdb_byte *info_ptr,
18009 const gdb_byte **new_info_ptr,
18010 struct die_info *parent)
18011 {
18012 struct die_info *first_die, *last_sibling;
18013 const gdb_byte *cur_ptr;
18014
18015 cur_ptr = info_ptr;
18016 first_die = last_sibling = NULL;
18017
18018 while (1)
18019 {
18020 struct die_info *die
18021 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18022
18023 if (die == NULL)
18024 {
18025 *new_info_ptr = cur_ptr;
18026 return first_die;
18027 }
18028
18029 if (!first_die)
18030 first_die = die;
18031 else
18032 last_sibling->sibling = die;
18033
18034 last_sibling = die;
18035 }
18036 }
18037
18038 /* Read a die, all of its descendents, and all of its siblings; set
18039 all of the fields of all of the dies correctly. Arguments are as
18040 in read_die_and_children.
18041 This the main entry point for reading a DIE and all its children. */
18042
18043 static struct die_info *
18044 read_die_and_siblings (const struct die_reader_specs *reader,
18045 const gdb_byte *info_ptr,
18046 const gdb_byte **new_info_ptr,
18047 struct die_info *parent)
18048 {
18049 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18050 new_info_ptr, parent);
18051
18052 if (dwarf_die_debug)
18053 {
18054 fprintf_unfiltered (gdb_stdlog,
18055 "Read die from %s@0x%x of %s:\n",
18056 get_section_name (reader->die_section),
18057 (unsigned) (info_ptr - reader->die_section->buffer),
18058 bfd_get_filename (reader->abfd));
18059 dump_die (die, dwarf_die_debug);
18060 }
18061
18062 return die;
18063 }
18064
18065 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18066 attributes.
18067 The caller is responsible for filling in the extra attributes
18068 and updating (*DIEP)->num_attrs.
18069 Set DIEP to point to a newly allocated die with its information,
18070 except for its child, sibling, and parent fields.
18071 Set HAS_CHILDREN to tell whether the die has children or not. */
18072
18073 static const gdb_byte *
18074 read_full_die_1 (const struct die_reader_specs *reader,
18075 struct die_info **diep, const gdb_byte *info_ptr,
18076 int *has_children, int num_extra_attrs)
18077 {
18078 unsigned int abbrev_number, bytes_read, i;
18079 struct abbrev_info *abbrev;
18080 struct die_info *die;
18081 struct dwarf2_cu *cu = reader->cu;
18082 bfd *abfd = reader->abfd;
18083
18084 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18085 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18086 info_ptr += bytes_read;
18087 if (!abbrev_number)
18088 {
18089 *diep = NULL;
18090 *has_children = 0;
18091 return info_ptr;
18092 }
18093
18094 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18095 if (!abbrev)
18096 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18097 abbrev_number,
18098 bfd_get_filename (abfd));
18099
18100 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18101 die->sect_off = sect_off;
18102 die->tag = abbrev->tag;
18103 die->abbrev = abbrev_number;
18104
18105 /* Make the result usable.
18106 The caller needs to update num_attrs after adding the extra
18107 attributes. */
18108 die->num_attrs = abbrev->num_attrs;
18109
18110 for (i = 0; i < abbrev->num_attrs; ++i)
18111 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18112 info_ptr);
18113
18114 *diep = die;
18115 *has_children = abbrev->has_children;
18116 return info_ptr;
18117 }
18118
18119 /* Read a die and all its attributes.
18120 Set DIEP to point to a newly allocated die with its information,
18121 except for its child, sibling, and parent fields.
18122 Set HAS_CHILDREN to tell whether the die has children or not. */
18123
18124 static const gdb_byte *
18125 read_full_die (const struct die_reader_specs *reader,
18126 struct die_info **diep, const gdb_byte *info_ptr,
18127 int *has_children)
18128 {
18129 const gdb_byte *result;
18130
18131 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18132
18133 if (dwarf_die_debug)
18134 {
18135 fprintf_unfiltered (gdb_stdlog,
18136 "Read die from %s@0x%x of %s:\n",
18137 get_section_name (reader->die_section),
18138 (unsigned) (info_ptr - reader->die_section->buffer),
18139 bfd_get_filename (reader->abfd));
18140 dump_die (*diep, dwarf_die_debug);
18141 }
18142
18143 return result;
18144 }
18145 \f
18146 /* Abbreviation tables.
18147
18148 In DWARF version 2, the description of the debugging information is
18149 stored in a separate .debug_abbrev section. Before we read any
18150 dies from a section we read in all abbreviations and install them
18151 in a hash table. */
18152
18153 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18154
18155 struct abbrev_info *
18156 abbrev_table::alloc_abbrev ()
18157 {
18158 struct abbrev_info *abbrev;
18159
18160 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18161 memset (abbrev, 0, sizeof (struct abbrev_info));
18162
18163 return abbrev;
18164 }
18165
18166 /* Add an abbreviation to the table. */
18167
18168 void
18169 abbrev_table::add_abbrev (unsigned int abbrev_number,
18170 struct abbrev_info *abbrev)
18171 {
18172 unsigned int hash_number;
18173
18174 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18175 abbrev->next = m_abbrevs[hash_number];
18176 m_abbrevs[hash_number] = abbrev;
18177 }
18178
18179 /* Look up an abbrev in the table.
18180 Returns NULL if the abbrev is not found. */
18181
18182 struct abbrev_info *
18183 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18184 {
18185 unsigned int hash_number;
18186 struct abbrev_info *abbrev;
18187
18188 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18189 abbrev = m_abbrevs[hash_number];
18190
18191 while (abbrev)
18192 {
18193 if (abbrev->number == abbrev_number)
18194 return abbrev;
18195 abbrev = abbrev->next;
18196 }
18197 return NULL;
18198 }
18199
18200 /* Read in an abbrev table. */
18201
18202 static abbrev_table_up
18203 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18204 struct dwarf2_section_info *section,
18205 sect_offset sect_off)
18206 {
18207 struct objfile *objfile = dwarf2_per_objfile->objfile;
18208 bfd *abfd = get_section_bfd_owner (section);
18209 const gdb_byte *abbrev_ptr;
18210 struct abbrev_info *cur_abbrev;
18211 unsigned int abbrev_number, bytes_read, abbrev_name;
18212 unsigned int abbrev_form;
18213 struct attr_abbrev *cur_attrs;
18214 unsigned int allocated_attrs;
18215
18216 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18217
18218 dwarf2_read_section (objfile, section);
18219 abbrev_ptr = section->buffer + to_underlying (sect_off);
18220 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18221 abbrev_ptr += bytes_read;
18222
18223 allocated_attrs = ATTR_ALLOC_CHUNK;
18224 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18225
18226 /* Loop until we reach an abbrev number of 0. */
18227 while (abbrev_number)
18228 {
18229 cur_abbrev = abbrev_table->alloc_abbrev ();
18230
18231 /* read in abbrev header */
18232 cur_abbrev->number = abbrev_number;
18233 cur_abbrev->tag
18234 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18235 abbrev_ptr += bytes_read;
18236 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18237 abbrev_ptr += 1;
18238
18239 /* now read in declarations */
18240 for (;;)
18241 {
18242 LONGEST implicit_const;
18243
18244 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18245 abbrev_ptr += bytes_read;
18246 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18247 abbrev_ptr += bytes_read;
18248 if (abbrev_form == DW_FORM_implicit_const)
18249 {
18250 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18251 &bytes_read);
18252 abbrev_ptr += bytes_read;
18253 }
18254 else
18255 {
18256 /* Initialize it due to a false compiler warning. */
18257 implicit_const = -1;
18258 }
18259
18260 if (abbrev_name == 0)
18261 break;
18262
18263 if (cur_abbrev->num_attrs == allocated_attrs)
18264 {
18265 allocated_attrs += ATTR_ALLOC_CHUNK;
18266 cur_attrs
18267 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18268 }
18269
18270 cur_attrs[cur_abbrev->num_attrs].name
18271 = (enum dwarf_attribute) abbrev_name;
18272 cur_attrs[cur_abbrev->num_attrs].form
18273 = (enum dwarf_form) abbrev_form;
18274 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18275 ++cur_abbrev->num_attrs;
18276 }
18277
18278 cur_abbrev->attrs =
18279 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18280 cur_abbrev->num_attrs);
18281 memcpy (cur_abbrev->attrs, cur_attrs,
18282 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18283
18284 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18285
18286 /* Get next abbreviation.
18287 Under Irix6 the abbreviations for a compilation unit are not
18288 always properly terminated with an abbrev number of 0.
18289 Exit loop if we encounter an abbreviation which we have
18290 already read (which means we are about to read the abbreviations
18291 for the next compile unit) or if the end of the abbreviation
18292 table is reached. */
18293 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18294 break;
18295 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18296 abbrev_ptr += bytes_read;
18297 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18298 break;
18299 }
18300
18301 xfree (cur_attrs);
18302 return abbrev_table;
18303 }
18304
18305 /* Returns nonzero if TAG represents a type that we might generate a partial
18306 symbol for. */
18307
18308 static int
18309 is_type_tag_for_partial (int tag)
18310 {
18311 switch (tag)
18312 {
18313 #if 0
18314 /* Some types that would be reasonable to generate partial symbols for,
18315 that we don't at present. */
18316 case DW_TAG_array_type:
18317 case DW_TAG_file_type:
18318 case DW_TAG_ptr_to_member_type:
18319 case DW_TAG_set_type:
18320 case DW_TAG_string_type:
18321 case DW_TAG_subroutine_type:
18322 #endif
18323 case DW_TAG_base_type:
18324 case DW_TAG_class_type:
18325 case DW_TAG_interface_type:
18326 case DW_TAG_enumeration_type:
18327 case DW_TAG_structure_type:
18328 case DW_TAG_subrange_type:
18329 case DW_TAG_typedef:
18330 case DW_TAG_union_type:
18331 return 1;
18332 default:
18333 return 0;
18334 }
18335 }
18336
18337 /* Load all DIEs that are interesting for partial symbols into memory. */
18338
18339 static struct partial_die_info *
18340 load_partial_dies (const struct die_reader_specs *reader,
18341 const gdb_byte *info_ptr, int building_psymtab)
18342 {
18343 struct dwarf2_cu *cu = reader->cu;
18344 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18345 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18346 unsigned int bytes_read;
18347 unsigned int load_all = 0;
18348 int nesting_level = 1;
18349
18350 parent_die = NULL;
18351 last_die = NULL;
18352
18353 gdb_assert (cu->per_cu != NULL);
18354 if (cu->per_cu->load_all_dies)
18355 load_all = 1;
18356
18357 cu->partial_dies
18358 = htab_create_alloc_ex (cu->header.length / 12,
18359 partial_die_hash,
18360 partial_die_eq,
18361 NULL,
18362 &cu->comp_unit_obstack,
18363 hashtab_obstack_allocate,
18364 dummy_obstack_deallocate);
18365
18366 while (1)
18367 {
18368 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18369
18370 /* A NULL abbrev means the end of a series of children. */
18371 if (abbrev == NULL)
18372 {
18373 if (--nesting_level == 0)
18374 return first_die;
18375
18376 info_ptr += bytes_read;
18377 last_die = parent_die;
18378 parent_die = parent_die->die_parent;
18379 continue;
18380 }
18381
18382 /* Check for template arguments. We never save these; if
18383 they're seen, we just mark the parent, and go on our way. */
18384 if (parent_die != NULL
18385 && cu->language == language_cplus
18386 && (abbrev->tag == DW_TAG_template_type_param
18387 || abbrev->tag == DW_TAG_template_value_param))
18388 {
18389 parent_die->has_template_arguments = 1;
18390
18391 if (!load_all)
18392 {
18393 /* We don't need a partial DIE for the template argument. */
18394 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18395 continue;
18396 }
18397 }
18398
18399 /* We only recurse into c++ subprograms looking for template arguments.
18400 Skip their other children. */
18401 if (!load_all
18402 && cu->language == language_cplus
18403 && parent_die != NULL
18404 && parent_die->tag == DW_TAG_subprogram)
18405 {
18406 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18407 continue;
18408 }
18409
18410 /* Check whether this DIE is interesting enough to save. Normally
18411 we would not be interested in members here, but there may be
18412 later variables referencing them via DW_AT_specification (for
18413 static members). */
18414 if (!load_all
18415 && !is_type_tag_for_partial (abbrev->tag)
18416 && abbrev->tag != DW_TAG_constant
18417 && abbrev->tag != DW_TAG_enumerator
18418 && abbrev->tag != DW_TAG_subprogram
18419 && abbrev->tag != DW_TAG_inlined_subroutine
18420 && abbrev->tag != DW_TAG_lexical_block
18421 && abbrev->tag != DW_TAG_variable
18422 && abbrev->tag != DW_TAG_namespace
18423 && abbrev->tag != DW_TAG_module
18424 && abbrev->tag != DW_TAG_member
18425 && abbrev->tag != DW_TAG_imported_unit
18426 && abbrev->tag != DW_TAG_imported_declaration)
18427 {
18428 /* Otherwise we skip to the next sibling, if any. */
18429 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18430 continue;
18431 }
18432
18433 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18434 abbrev);
18435
18436 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18437
18438 /* This two-pass algorithm for processing partial symbols has a
18439 high cost in cache pressure. Thus, handle some simple cases
18440 here which cover the majority of C partial symbols. DIEs
18441 which neither have specification tags in them, nor could have
18442 specification tags elsewhere pointing at them, can simply be
18443 processed and discarded.
18444
18445 This segment is also optional; scan_partial_symbols and
18446 add_partial_symbol will handle these DIEs if we chain
18447 them in normally. When compilers which do not emit large
18448 quantities of duplicate debug information are more common,
18449 this code can probably be removed. */
18450
18451 /* Any complete simple types at the top level (pretty much all
18452 of them, for a language without namespaces), can be processed
18453 directly. */
18454 if (parent_die == NULL
18455 && pdi.has_specification == 0
18456 && pdi.is_declaration == 0
18457 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18458 || pdi.tag == DW_TAG_base_type
18459 || pdi.tag == DW_TAG_subrange_type))
18460 {
18461 if (building_psymtab && pdi.name != NULL)
18462 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18463 VAR_DOMAIN, LOC_TYPEDEF, -1,
18464 psymbol_placement::STATIC,
18465 0, cu->language, objfile);
18466 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18467 continue;
18468 }
18469
18470 /* The exception for DW_TAG_typedef with has_children above is
18471 a workaround of GCC PR debug/47510. In the case of this complaint
18472 type_name_or_error will error on such types later.
18473
18474 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18475 it could not find the child DIEs referenced later, this is checked
18476 above. In correct DWARF DW_TAG_typedef should have no children. */
18477
18478 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18479 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18480 "- DIE at %s [in module %s]"),
18481 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18482
18483 /* If we're at the second level, and we're an enumerator, and
18484 our parent has no specification (meaning possibly lives in a
18485 namespace elsewhere), then we can add the partial symbol now
18486 instead of queueing it. */
18487 if (pdi.tag == DW_TAG_enumerator
18488 && parent_die != NULL
18489 && parent_die->die_parent == NULL
18490 && parent_die->tag == DW_TAG_enumeration_type
18491 && parent_die->has_specification == 0)
18492 {
18493 if (pdi.name == NULL)
18494 complaint (_("malformed enumerator DIE ignored"));
18495 else if (building_psymtab)
18496 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18497 VAR_DOMAIN, LOC_CONST, -1,
18498 cu->language == language_cplus
18499 ? psymbol_placement::GLOBAL
18500 : psymbol_placement::STATIC,
18501 0, cu->language, objfile);
18502
18503 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18504 continue;
18505 }
18506
18507 struct partial_die_info *part_die
18508 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18509
18510 /* We'll save this DIE so link it in. */
18511 part_die->die_parent = parent_die;
18512 part_die->die_sibling = NULL;
18513 part_die->die_child = NULL;
18514
18515 if (last_die && last_die == parent_die)
18516 last_die->die_child = part_die;
18517 else if (last_die)
18518 last_die->die_sibling = part_die;
18519
18520 last_die = part_die;
18521
18522 if (first_die == NULL)
18523 first_die = part_die;
18524
18525 /* Maybe add the DIE to the hash table. Not all DIEs that we
18526 find interesting need to be in the hash table, because we
18527 also have the parent/sibling/child chains; only those that we
18528 might refer to by offset later during partial symbol reading.
18529
18530 For now this means things that might have be the target of a
18531 DW_AT_specification, DW_AT_abstract_origin, or
18532 DW_AT_extension. DW_AT_extension will refer only to
18533 namespaces; DW_AT_abstract_origin refers to functions (and
18534 many things under the function DIE, but we do not recurse
18535 into function DIEs during partial symbol reading) and
18536 possibly variables as well; DW_AT_specification refers to
18537 declarations. Declarations ought to have the DW_AT_declaration
18538 flag. It happens that GCC forgets to put it in sometimes, but
18539 only for functions, not for types.
18540
18541 Adding more things than necessary to the hash table is harmless
18542 except for the performance cost. Adding too few will result in
18543 wasted time in find_partial_die, when we reread the compilation
18544 unit with load_all_dies set. */
18545
18546 if (load_all
18547 || abbrev->tag == DW_TAG_constant
18548 || abbrev->tag == DW_TAG_subprogram
18549 || abbrev->tag == DW_TAG_variable
18550 || abbrev->tag == DW_TAG_namespace
18551 || part_die->is_declaration)
18552 {
18553 void **slot;
18554
18555 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18556 to_underlying (part_die->sect_off),
18557 INSERT);
18558 *slot = part_die;
18559 }
18560
18561 /* For some DIEs we want to follow their children (if any). For C
18562 we have no reason to follow the children of structures; for other
18563 languages we have to, so that we can get at method physnames
18564 to infer fully qualified class names, for DW_AT_specification,
18565 and for C++ template arguments. For C++, we also look one level
18566 inside functions to find template arguments (if the name of the
18567 function does not already contain the template arguments).
18568
18569 For Ada, we need to scan the children of subprograms and lexical
18570 blocks as well because Ada allows the definition of nested
18571 entities that could be interesting for the debugger, such as
18572 nested subprograms for instance. */
18573 if (last_die->has_children
18574 && (load_all
18575 || last_die->tag == DW_TAG_namespace
18576 || last_die->tag == DW_TAG_module
18577 || last_die->tag == DW_TAG_enumeration_type
18578 || (cu->language == language_cplus
18579 && last_die->tag == DW_TAG_subprogram
18580 && (last_die->name == NULL
18581 || strchr (last_die->name, '<') == NULL))
18582 || (cu->language != language_c
18583 && (last_die->tag == DW_TAG_class_type
18584 || last_die->tag == DW_TAG_interface_type
18585 || last_die->tag == DW_TAG_structure_type
18586 || last_die->tag == DW_TAG_union_type))
18587 || (cu->language == language_ada
18588 && (last_die->tag == DW_TAG_subprogram
18589 || last_die->tag == DW_TAG_lexical_block))))
18590 {
18591 nesting_level++;
18592 parent_die = last_die;
18593 continue;
18594 }
18595
18596 /* Otherwise we skip to the next sibling, if any. */
18597 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18598
18599 /* Back to the top, do it again. */
18600 }
18601 }
18602
18603 partial_die_info::partial_die_info (sect_offset sect_off_,
18604 struct abbrev_info *abbrev)
18605 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18606 {
18607 }
18608
18609 /* Read a minimal amount of information into the minimal die structure.
18610 INFO_PTR should point just after the initial uleb128 of a DIE. */
18611
18612 const gdb_byte *
18613 partial_die_info::read (const struct die_reader_specs *reader,
18614 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18615 {
18616 struct dwarf2_cu *cu = reader->cu;
18617 struct dwarf2_per_objfile *dwarf2_per_objfile
18618 = cu->per_cu->dwarf2_per_objfile;
18619 unsigned int i;
18620 int has_low_pc_attr = 0;
18621 int has_high_pc_attr = 0;
18622 int high_pc_relative = 0;
18623
18624 for (i = 0; i < abbrev.num_attrs; ++i)
18625 {
18626 struct attribute attr;
18627
18628 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18629
18630 /* Store the data if it is of an attribute we want to keep in a
18631 partial symbol table. */
18632 switch (attr.name)
18633 {
18634 case DW_AT_name:
18635 switch (tag)
18636 {
18637 case DW_TAG_compile_unit:
18638 case DW_TAG_partial_unit:
18639 case DW_TAG_type_unit:
18640 /* Compilation units have a DW_AT_name that is a filename, not
18641 a source language identifier. */
18642 case DW_TAG_enumeration_type:
18643 case DW_TAG_enumerator:
18644 /* These tags always have simple identifiers already; no need
18645 to canonicalize them. */
18646 name = DW_STRING (&attr);
18647 break;
18648 default:
18649 {
18650 struct objfile *objfile = dwarf2_per_objfile->objfile;
18651
18652 name
18653 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18654 &objfile->per_bfd->storage_obstack);
18655 }
18656 break;
18657 }
18658 break;
18659 case DW_AT_linkage_name:
18660 case DW_AT_MIPS_linkage_name:
18661 /* Note that both forms of linkage name might appear. We
18662 assume they will be the same, and we only store the last
18663 one we see. */
18664 linkage_name = DW_STRING (&attr);
18665 break;
18666 case DW_AT_low_pc:
18667 has_low_pc_attr = 1;
18668 lowpc = attr_value_as_address (&attr);
18669 break;
18670 case DW_AT_high_pc:
18671 has_high_pc_attr = 1;
18672 highpc = attr_value_as_address (&attr);
18673 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18674 high_pc_relative = 1;
18675 break;
18676 case DW_AT_location:
18677 /* Support the .debug_loc offsets. */
18678 if (attr_form_is_block (&attr))
18679 {
18680 d.locdesc = DW_BLOCK (&attr);
18681 }
18682 else if (attr_form_is_section_offset (&attr))
18683 {
18684 dwarf2_complex_location_expr_complaint ();
18685 }
18686 else
18687 {
18688 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18689 "partial symbol information");
18690 }
18691 break;
18692 case DW_AT_external:
18693 is_external = DW_UNSND (&attr);
18694 break;
18695 case DW_AT_declaration:
18696 is_declaration = DW_UNSND (&attr);
18697 break;
18698 case DW_AT_type:
18699 has_type = 1;
18700 break;
18701 case DW_AT_abstract_origin:
18702 case DW_AT_specification:
18703 case DW_AT_extension:
18704 has_specification = 1;
18705 spec_offset = dwarf2_get_ref_die_offset (&attr);
18706 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18707 || cu->per_cu->is_dwz);
18708 break;
18709 case DW_AT_sibling:
18710 /* Ignore absolute siblings, they might point outside of
18711 the current compile unit. */
18712 if (attr.form == DW_FORM_ref_addr)
18713 complaint (_("ignoring absolute DW_AT_sibling"));
18714 else
18715 {
18716 const gdb_byte *buffer = reader->buffer;
18717 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18718 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18719
18720 if (sibling_ptr < info_ptr)
18721 complaint (_("DW_AT_sibling points backwards"));
18722 else if (sibling_ptr > reader->buffer_end)
18723 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18724 else
18725 sibling = sibling_ptr;
18726 }
18727 break;
18728 case DW_AT_byte_size:
18729 has_byte_size = 1;
18730 break;
18731 case DW_AT_const_value:
18732 has_const_value = 1;
18733 break;
18734 case DW_AT_calling_convention:
18735 /* DWARF doesn't provide a way to identify a program's source-level
18736 entry point. DW_AT_calling_convention attributes are only meant
18737 to describe functions' calling conventions.
18738
18739 However, because it's a necessary piece of information in
18740 Fortran, and before DWARF 4 DW_CC_program was the only
18741 piece of debugging information whose definition refers to
18742 a 'main program' at all, several compilers marked Fortran
18743 main programs with DW_CC_program --- even when those
18744 functions use the standard calling conventions.
18745
18746 Although DWARF now specifies a way to provide this
18747 information, we support this practice for backward
18748 compatibility. */
18749 if (DW_UNSND (&attr) == DW_CC_program
18750 && cu->language == language_fortran)
18751 main_subprogram = 1;
18752 break;
18753 case DW_AT_inline:
18754 if (DW_UNSND (&attr) == DW_INL_inlined
18755 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18756 may_be_inlined = 1;
18757 break;
18758
18759 case DW_AT_import:
18760 if (tag == DW_TAG_imported_unit)
18761 {
18762 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18763 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18764 || cu->per_cu->is_dwz);
18765 }
18766 break;
18767
18768 case DW_AT_main_subprogram:
18769 main_subprogram = DW_UNSND (&attr);
18770 break;
18771
18772 case DW_AT_ranges:
18773 {
18774 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18775 but that requires a full DIE, so instead we just
18776 reimplement it. */
18777 int need_ranges_base = tag != DW_TAG_compile_unit;
18778 unsigned int ranges_offset = (DW_UNSND (&attr)
18779 + (need_ranges_base
18780 ? cu->ranges_base
18781 : 0));
18782
18783 /* Value of the DW_AT_ranges attribute is the offset in the
18784 .debug_ranges section. */
18785 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18786 nullptr))
18787 has_pc_info = 1;
18788 }
18789 break;
18790
18791 default:
18792 break;
18793 }
18794 }
18795
18796 /* For Ada, if both the name and the linkage name appear, we prefer
18797 the latter. This lets "catch exception" work better, regardless
18798 of the order in which the name and linkage name were emitted.
18799 Really, though, this is just a workaround for the fact that gdb
18800 doesn't store both the name and the linkage name. */
18801 if (cu->language == language_ada && linkage_name != nullptr)
18802 name = linkage_name;
18803
18804 if (high_pc_relative)
18805 highpc += lowpc;
18806
18807 if (has_low_pc_attr && has_high_pc_attr)
18808 {
18809 /* When using the GNU linker, .gnu.linkonce. sections are used to
18810 eliminate duplicate copies of functions and vtables and such.
18811 The linker will arbitrarily choose one and discard the others.
18812 The AT_*_pc values for such functions refer to local labels in
18813 these sections. If the section from that file was discarded, the
18814 labels are not in the output, so the relocs get a value of 0.
18815 If this is a discarded function, mark the pc bounds as invalid,
18816 so that GDB will ignore it. */
18817 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18818 {
18819 struct objfile *objfile = dwarf2_per_objfile->objfile;
18820 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18821
18822 complaint (_("DW_AT_low_pc %s is zero "
18823 "for DIE at %s [in module %s]"),
18824 paddress (gdbarch, lowpc),
18825 sect_offset_str (sect_off),
18826 objfile_name (objfile));
18827 }
18828 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18829 else if (lowpc >= highpc)
18830 {
18831 struct objfile *objfile = dwarf2_per_objfile->objfile;
18832 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18833
18834 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18835 "for DIE at %s [in module %s]"),
18836 paddress (gdbarch, lowpc),
18837 paddress (gdbarch, highpc),
18838 sect_offset_str (sect_off),
18839 objfile_name (objfile));
18840 }
18841 else
18842 has_pc_info = 1;
18843 }
18844
18845 return info_ptr;
18846 }
18847
18848 /* Find a cached partial DIE at OFFSET in CU. */
18849
18850 struct partial_die_info *
18851 dwarf2_cu::find_partial_die (sect_offset sect_off)
18852 {
18853 struct partial_die_info *lookup_die = NULL;
18854 struct partial_die_info part_die (sect_off);
18855
18856 lookup_die = ((struct partial_die_info *)
18857 htab_find_with_hash (partial_dies, &part_die,
18858 to_underlying (sect_off)));
18859
18860 return lookup_die;
18861 }
18862
18863 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18864 except in the case of .debug_types DIEs which do not reference
18865 outside their CU (they do however referencing other types via
18866 DW_FORM_ref_sig8). */
18867
18868 static const struct cu_partial_die_info
18869 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18870 {
18871 struct dwarf2_per_objfile *dwarf2_per_objfile
18872 = cu->per_cu->dwarf2_per_objfile;
18873 struct objfile *objfile = dwarf2_per_objfile->objfile;
18874 struct dwarf2_per_cu_data *per_cu = NULL;
18875 struct partial_die_info *pd = NULL;
18876
18877 if (offset_in_dwz == cu->per_cu->is_dwz
18878 && offset_in_cu_p (&cu->header, sect_off))
18879 {
18880 pd = cu->find_partial_die (sect_off);
18881 if (pd != NULL)
18882 return { cu, pd };
18883 /* We missed recording what we needed.
18884 Load all dies and try again. */
18885 per_cu = cu->per_cu;
18886 }
18887 else
18888 {
18889 /* TUs don't reference other CUs/TUs (except via type signatures). */
18890 if (cu->per_cu->is_debug_types)
18891 {
18892 error (_("Dwarf Error: Type Unit at offset %s contains"
18893 " external reference to offset %s [in module %s].\n"),
18894 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18895 bfd_get_filename (objfile->obfd));
18896 }
18897 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18898 dwarf2_per_objfile);
18899
18900 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18901 load_partial_comp_unit (per_cu);
18902
18903 per_cu->cu->last_used = 0;
18904 pd = per_cu->cu->find_partial_die (sect_off);
18905 }
18906
18907 /* If we didn't find it, and not all dies have been loaded,
18908 load them all and try again. */
18909
18910 if (pd == NULL && per_cu->load_all_dies == 0)
18911 {
18912 per_cu->load_all_dies = 1;
18913
18914 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18915 THIS_CU->cu may already be in use. So we can't just free it and
18916 replace its DIEs with the ones we read in. Instead, we leave those
18917 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18918 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18919 set. */
18920 load_partial_comp_unit (per_cu);
18921
18922 pd = per_cu->cu->find_partial_die (sect_off);
18923 }
18924
18925 if (pd == NULL)
18926 internal_error (__FILE__, __LINE__,
18927 _("could not find partial DIE %s "
18928 "in cache [from module %s]\n"),
18929 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18930 return { per_cu->cu, pd };
18931 }
18932
18933 /* See if we can figure out if the class lives in a namespace. We do
18934 this by looking for a member function; its demangled name will
18935 contain namespace info, if there is any. */
18936
18937 static void
18938 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18939 struct dwarf2_cu *cu)
18940 {
18941 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18942 what template types look like, because the demangler
18943 frequently doesn't give the same name as the debug info. We
18944 could fix this by only using the demangled name to get the
18945 prefix (but see comment in read_structure_type). */
18946
18947 struct partial_die_info *real_pdi;
18948 struct partial_die_info *child_pdi;
18949
18950 /* If this DIE (this DIE's specification, if any) has a parent, then
18951 we should not do this. We'll prepend the parent's fully qualified
18952 name when we create the partial symbol. */
18953
18954 real_pdi = struct_pdi;
18955 while (real_pdi->has_specification)
18956 {
18957 auto res = find_partial_die (real_pdi->spec_offset,
18958 real_pdi->spec_is_dwz, cu);
18959 real_pdi = res.pdi;
18960 cu = res.cu;
18961 }
18962
18963 if (real_pdi->die_parent != NULL)
18964 return;
18965
18966 for (child_pdi = struct_pdi->die_child;
18967 child_pdi != NULL;
18968 child_pdi = child_pdi->die_sibling)
18969 {
18970 if (child_pdi->tag == DW_TAG_subprogram
18971 && child_pdi->linkage_name != NULL)
18972 {
18973 char *actual_class_name
18974 = language_class_name_from_physname (cu->language_defn,
18975 child_pdi->linkage_name);
18976 if (actual_class_name != NULL)
18977 {
18978 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18979 struct_pdi->name
18980 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18981 actual_class_name);
18982 xfree (actual_class_name);
18983 }
18984 break;
18985 }
18986 }
18987 }
18988
18989 void
18990 partial_die_info::fixup (struct dwarf2_cu *cu)
18991 {
18992 /* Once we've fixed up a die, there's no point in doing so again.
18993 This also avoids a memory leak if we were to call
18994 guess_partial_die_structure_name multiple times. */
18995 if (fixup_called)
18996 return;
18997
18998 /* If we found a reference attribute and the DIE has no name, try
18999 to find a name in the referred to DIE. */
19000
19001 if (name == NULL && has_specification)
19002 {
19003 struct partial_die_info *spec_die;
19004
19005 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19006 spec_die = res.pdi;
19007 cu = res.cu;
19008
19009 spec_die->fixup (cu);
19010
19011 if (spec_die->name)
19012 {
19013 name = spec_die->name;
19014
19015 /* Copy DW_AT_external attribute if it is set. */
19016 if (spec_die->is_external)
19017 is_external = spec_die->is_external;
19018 }
19019 }
19020
19021 /* Set default names for some unnamed DIEs. */
19022
19023 if (name == NULL && tag == DW_TAG_namespace)
19024 name = CP_ANONYMOUS_NAMESPACE_STR;
19025
19026 /* If there is no parent die to provide a namespace, and there are
19027 children, see if we can determine the namespace from their linkage
19028 name. */
19029 if (cu->language == language_cplus
19030 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19031 && die_parent == NULL
19032 && has_children
19033 && (tag == DW_TAG_class_type
19034 || tag == DW_TAG_structure_type
19035 || tag == DW_TAG_union_type))
19036 guess_partial_die_structure_name (this, cu);
19037
19038 /* GCC might emit a nameless struct or union that has a linkage
19039 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19040 if (name == NULL
19041 && (tag == DW_TAG_class_type
19042 || tag == DW_TAG_interface_type
19043 || tag == DW_TAG_structure_type
19044 || tag == DW_TAG_union_type)
19045 && linkage_name != NULL)
19046 {
19047 char *demangled;
19048
19049 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19050 if (demangled)
19051 {
19052 const char *base;
19053
19054 /* Strip any leading namespaces/classes, keep only the base name.
19055 DW_AT_name for named DIEs does not contain the prefixes. */
19056 base = strrchr (demangled, ':');
19057 if (base && base > demangled && base[-1] == ':')
19058 base++;
19059 else
19060 base = demangled;
19061
19062 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19063 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19064 xfree (demangled);
19065 }
19066 }
19067
19068 fixup_called = 1;
19069 }
19070
19071 /* Read an attribute value described by an attribute form. */
19072
19073 static const gdb_byte *
19074 read_attribute_value (const struct die_reader_specs *reader,
19075 struct attribute *attr, unsigned form,
19076 LONGEST implicit_const, const gdb_byte *info_ptr)
19077 {
19078 struct dwarf2_cu *cu = reader->cu;
19079 struct dwarf2_per_objfile *dwarf2_per_objfile
19080 = cu->per_cu->dwarf2_per_objfile;
19081 struct objfile *objfile = dwarf2_per_objfile->objfile;
19082 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19083 bfd *abfd = reader->abfd;
19084 struct comp_unit_head *cu_header = &cu->header;
19085 unsigned int bytes_read;
19086 struct dwarf_block *blk;
19087
19088 attr->form = (enum dwarf_form) form;
19089 switch (form)
19090 {
19091 case DW_FORM_ref_addr:
19092 if (cu->header.version == 2)
19093 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19094 else
19095 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19096 &cu->header, &bytes_read);
19097 info_ptr += bytes_read;
19098 break;
19099 case DW_FORM_GNU_ref_alt:
19100 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19101 info_ptr += bytes_read;
19102 break;
19103 case DW_FORM_addr:
19104 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19105 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19106 info_ptr += bytes_read;
19107 break;
19108 case DW_FORM_block2:
19109 blk = dwarf_alloc_block (cu);
19110 blk->size = read_2_bytes (abfd, info_ptr);
19111 info_ptr += 2;
19112 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19113 info_ptr += blk->size;
19114 DW_BLOCK (attr) = blk;
19115 break;
19116 case DW_FORM_block4:
19117 blk = dwarf_alloc_block (cu);
19118 blk->size = read_4_bytes (abfd, info_ptr);
19119 info_ptr += 4;
19120 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19121 info_ptr += blk->size;
19122 DW_BLOCK (attr) = blk;
19123 break;
19124 case DW_FORM_data2:
19125 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19126 info_ptr += 2;
19127 break;
19128 case DW_FORM_data4:
19129 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19130 info_ptr += 4;
19131 break;
19132 case DW_FORM_data8:
19133 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19134 info_ptr += 8;
19135 break;
19136 case DW_FORM_data16:
19137 blk = dwarf_alloc_block (cu);
19138 blk->size = 16;
19139 blk->data = read_n_bytes (abfd, info_ptr, 16);
19140 info_ptr += 16;
19141 DW_BLOCK (attr) = blk;
19142 break;
19143 case DW_FORM_sec_offset:
19144 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19145 info_ptr += bytes_read;
19146 break;
19147 case DW_FORM_string:
19148 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19149 DW_STRING_IS_CANONICAL (attr) = 0;
19150 info_ptr += bytes_read;
19151 break;
19152 case DW_FORM_strp:
19153 if (!cu->per_cu->is_dwz)
19154 {
19155 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19156 abfd, info_ptr, cu_header,
19157 &bytes_read);
19158 DW_STRING_IS_CANONICAL (attr) = 0;
19159 info_ptr += bytes_read;
19160 break;
19161 }
19162 /* FALLTHROUGH */
19163 case DW_FORM_line_strp:
19164 if (!cu->per_cu->is_dwz)
19165 {
19166 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19167 abfd, info_ptr,
19168 cu_header, &bytes_read);
19169 DW_STRING_IS_CANONICAL (attr) = 0;
19170 info_ptr += bytes_read;
19171 break;
19172 }
19173 /* FALLTHROUGH */
19174 case DW_FORM_GNU_strp_alt:
19175 {
19176 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19177 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19178 &bytes_read);
19179
19180 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19181 dwz, str_offset);
19182 DW_STRING_IS_CANONICAL (attr) = 0;
19183 info_ptr += bytes_read;
19184 }
19185 break;
19186 case DW_FORM_exprloc:
19187 case DW_FORM_block:
19188 blk = dwarf_alloc_block (cu);
19189 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19190 info_ptr += bytes_read;
19191 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19192 info_ptr += blk->size;
19193 DW_BLOCK (attr) = blk;
19194 break;
19195 case DW_FORM_block1:
19196 blk = dwarf_alloc_block (cu);
19197 blk->size = read_1_byte (abfd, info_ptr);
19198 info_ptr += 1;
19199 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19200 info_ptr += blk->size;
19201 DW_BLOCK (attr) = blk;
19202 break;
19203 case DW_FORM_data1:
19204 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19205 info_ptr += 1;
19206 break;
19207 case DW_FORM_flag:
19208 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19209 info_ptr += 1;
19210 break;
19211 case DW_FORM_flag_present:
19212 DW_UNSND (attr) = 1;
19213 break;
19214 case DW_FORM_sdata:
19215 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19216 info_ptr += bytes_read;
19217 break;
19218 case DW_FORM_udata:
19219 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19220 info_ptr += bytes_read;
19221 break;
19222 case DW_FORM_ref1:
19223 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19224 + read_1_byte (abfd, info_ptr));
19225 info_ptr += 1;
19226 break;
19227 case DW_FORM_ref2:
19228 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19229 + read_2_bytes (abfd, info_ptr));
19230 info_ptr += 2;
19231 break;
19232 case DW_FORM_ref4:
19233 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19234 + read_4_bytes (abfd, info_ptr));
19235 info_ptr += 4;
19236 break;
19237 case DW_FORM_ref8:
19238 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19239 + read_8_bytes (abfd, info_ptr));
19240 info_ptr += 8;
19241 break;
19242 case DW_FORM_ref_sig8:
19243 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19244 info_ptr += 8;
19245 break;
19246 case DW_FORM_ref_udata:
19247 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19248 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19249 info_ptr += bytes_read;
19250 break;
19251 case DW_FORM_indirect:
19252 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19253 info_ptr += bytes_read;
19254 if (form == DW_FORM_implicit_const)
19255 {
19256 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19257 info_ptr += bytes_read;
19258 }
19259 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19260 info_ptr);
19261 break;
19262 case DW_FORM_implicit_const:
19263 DW_SND (attr) = implicit_const;
19264 break;
19265 case DW_FORM_addrx:
19266 case DW_FORM_GNU_addr_index:
19267 if (reader->dwo_file == NULL)
19268 {
19269 /* For now flag a hard error.
19270 Later we can turn this into a complaint. */
19271 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19272 dwarf_form_name (form),
19273 bfd_get_filename (abfd));
19274 }
19275 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19276 info_ptr += bytes_read;
19277 break;
19278 case DW_FORM_strx:
19279 case DW_FORM_strx1:
19280 case DW_FORM_strx2:
19281 case DW_FORM_strx3:
19282 case DW_FORM_strx4:
19283 case DW_FORM_GNU_str_index:
19284 if (reader->dwo_file == NULL)
19285 {
19286 /* For now flag a hard error.
19287 Later we can turn this into a complaint if warranted. */
19288 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19289 dwarf_form_name (form),
19290 bfd_get_filename (abfd));
19291 }
19292 {
19293 ULONGEST str_index;
19294 if (form == DW_FORM_strx1)
19295 {
19296 str_index = read_1_byte (abfd, info_ptr);
19297 info_ptr += 1;
19298 }
19299 else if (form == DW_FORM_strx2)
19300 {
19301 str_index = read_2_bytes (abfd, info_ptr);
19302 info_ptr += 2;
19303 }
19304 else if (form == DW_FORM_strx3)
19305 {
19306 str_index = read_3_bytes (abfd, info_ptr);
19307 info_ptr += 3;
19308 }
19309 else if (form == DW_FORM_strx4)
19310 {
19311 str_index = read_4_bytes (abfd, info_ptr);
19312 info_ptr += 4;
19313 }
19314 else
19315 {
19316 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19317 info_ptr += bytes_read;
19318 }
19319 DW_STRING (attr) = read_str_index (reader, str_index);
19320 DW_STRING_IS_CANONICAL (attr) = 0;
19321 }
19322 break;
19323 default:
19324 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19325 dwarf_form_name (form),
19326 bfd_get_filename (abfd));
19327 }
19328
19329 /* Super hack. */
19330 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19331 attr->form = DW_FORM_GNU_ref_alt;
19332
19333 /* We have seen instances where the compiler tried to emit a byte
19334 size attribute of -1 which ended up being encoded as an unsigned
19335 0xffffffff. Although 0xffffffff is technically a valid size value,
19336 an object of this size seems pretty unlikely so we can relatively
19337 safely treat these cases as if the size attribute was invalid and
19338 treat them as zero by default. */
19339 if (attr->name == DW_AT_byte_size
19340 && form == DW_FORM_data4
19341 && DW_UNSND (attr) >= 0xffffffff)
19342 {
19343 complaint
19344 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19345 hex_string (DW_UNSND (attr)));
19346 DW_UNSND (attr) = 0;
19347 }
19348
19349 return info_ptr;
19350 }
19351
19352 /* Read an attribute described by an abbreviated attribute. */
19353
19354 static const gdb_byte *
19355 read_attribute (const struct die_reader_specs *reader,
19356 struct attribute *attr, struct attr_abbrev *abbrev,
19357 const gdb_byte *info_ptr)
19358 {
19359 attr->name = abbrev->name;
19360 return read_attribute_value (reader, attr, abbrev->form,
19361 abbrev->implicit_const, info_ptr);
19362 }
19363
19364 /* Read dwarf information from a buffer. */
19365
19366 static unsigned int
19367 read_1_byte (bfd *abfd, const gdb_byte *buf)
19368 {
19369 return bfd_get_8 (abfd, buf);
19370 }
19371
19372 static int
19373 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19374 {
19375 return bfd_get_signed_8 (abfd, buf);
19376 }
19377
19378 static unsigned int
19379 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19380 {
19381 return bfd_get_16 (abfd, buf);
19382 }
19383
19384 static int
19385 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19386 {
19387 return bfd_get_signed_16 (abfd, buf);
19388 }
19389
19390 static unsigned int
19391 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19392 {
19393 unsigned int result = 0;
19394 for (int i = 0; i < 3; ++i)
19395 {
19396 unsigned char byte = bfd_get_8 (abfd, buf);
19397 buf++;
19398 result |= ((unsigned int) byte << (i * 8));
19399 }
19400 return result;
19401 }
19402
19403 static unsigned int
19404 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19405 {
19406 return bfd_get_32 (abfd, buf);
19407 }
19408
19409 static int
19410 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19411 {
19412 return bfd_get_signed_32 (abfd, buf);
19413 }
19414
19415 static ULONGEST
19416 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19417 {
19418 return bfd_get_64 (abfd, buf);
19419 }
19420
19421 static CORE_ADDR
19422 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19423 unsigned int *bytes_read)
19424 {
19425 struct comp_unit_head *cu_header = &cu->header;
19426 CORE_ADDR retval = 0;
19427
19428 if (cu_header->signed_addr_p)
19429 {
19430 switch (cu_header->addr_size)
19431 {
19432 case 2:
19433 retval = bfd_get_signed_16 (abfd, buf);
19434 break;
19435 case 4:
19436 retval = bfd_get_signed_32 (abfd, buf);
19437 break;
19438 case 8:
19439 retval = bfd_get_signed_64 (abfd, buf);
19440 break;
19441 default:
19442 internal_error (__FILE__, __LINE__,
19443 _("read_address: bad switch, signed [in module %s]"),
19444 bfd_get_filename (abfd));
19445 }
19446 }
19447 else
19448 {
19449 switch (cu_header->addr_size)
19450 {
19451 case 2:
19452 retval = bfd_get_16 (abfd, buf);
19453 break;
19454 case 4:
19455 retval = bfd_get_32 (abfd, buf);
19456 break;
19457 case 8:
19458 retval = bfd_get_64 (abfd, buf);
19459 break;
19460 default:
19461 internal_error (__FILE__, __LINE__,
19462 _("read_address: bad switch, "
19463 "unsigned [in module %s]"),
19464 bfd_get_filename (abfd));
19465 }
19466 }
19467
19468 *bytes_read = cu_header->addr_size;
19469 return retval;
19470 }
19471
19472 /* Read the initial length from a section. The (draft) DWARF 3
19473 specification allows the initial length to take up either 4 bytes
19474 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19475 bytes describe the length and all offsets will be 8 bytes in length
19476 instead of 4.
19477
19478 An older, non-standard 64-bit format is also handled by this
19479 function. The older format in question stores the initial length
19480 as an 8-byte quantity without an escape value. Lengths greater
19481 than 2^32 aren't very common which means that the initial 4 bytes
19482 is almost always zero. Since a length value of zero doesn't make
19483 sense for the 32-bit format, this initial zero can be considered to
19484 be an escape value which indicates the presence of the older 64-bit
19485 format. As written, the code can't detect (old format) lengths
19486 greater than 4GB. If it becomes necessary to handle lengths
19487 somewhat larger than 4GB, we could allow other small values (such
19488 as the non-sensical values of 1, 2, and 3) to also be used as
19489 escape values indicating the presence of the old format.
19490
19491 The value returned via bytes_read should be used to increment the
19492 relevant pointer after calling read_initial_length().
19493
19494 [ Note: read_initial_length() and read_offset() are based on the
19495 document entitled "DWARF Debugging Information Format", revision
19496 3, draft 8, dated November 19, 2001. This document was obtained
19497 from:
19498
19499 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19500
19501 This document is only a draft and is subject to change. (So beware.)
19502
19503 Details regarding the older, non-standard 64-bit format were
19504 determined empirically by examining 64-bit ELF files produced by
19505 the SGI toolchain on an IRIX 6.5 machine.
19506
19507 - Kevin, July 16, 2002
19508 ] */
19509
19510 static LONGEST
19511 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19512 {
19513 LONGEST length = bfd_get_32 (abfd, buf);
19514
19515 if (length == 0xffffffff)
19516 {
19517 length = bfd_get_64 (abfd, buf + 4);
19518 *bytes_read = 12;
19519 }
19520 else if (length == 0)
19521 {
19522 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19523 length = bfd_get_64 (abfd, buf);
19524 *bytes_read = 8;
19525 }
19526 else
19527 {
19528 *bytes_read = 4;
19529 }
19530
19531 return length;
19532 }
19533
19534 /* Cover function for read_initial_length.
19535 Returns the length of the object at BUF, and stores the size of the
19536 initial length in *BYTES_READ and stores the size that offsets will be in
19537 *OFFSET_SIZE.
19538 If the initial length size is not equivalent to that specified in
19539 CU_HEADER then issue a complaint.
19540 This is useful when reading non-comp-unit headers. */
19541
19542 static LONGEST
19543 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19544 const struct comp_unit_head *cu_header,
19545 unsigned int *bytes_read,
19546 unsigned int *offset_size)
19547 {
19548 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19549
19550 gdb_assert (cu_header->initial_length_size == 4
19551 || cu_header->initial_length_size == 8
19552 || cu_header->initial_length_size == 12);
19553
19554 if (cu_header->initial_length_size != *bytes_read)
19555 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19556
19557 *offset_size = (*bytes_read == 4) ? 4 : 8;
19558 return length;
19559 }
19560
19561 /* Read an offset from the data stream. The size of the offset is
19562 given by cu_header->offset_size. */
19563
19564 static LONGEST
19565 read_offset (bfd *abfd, const gdb_byte *buf,
19566 const struct comp_unit_head *cu_header,
19567 unsigned int *bytes_read)
19568 {
19569 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19570
19571 *bytes_read = cu_header->offset_size;
19572 return offset;
19573 }
19574
19575 /* Read an offset from the data stream. */
19576
19577 static LONGEST
19578 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19579 {
19580 LONGEST retval = 0;
19581
19582 switch (offset_size)
19583 {
19584 case 4:
19585 retval = bfd_get_32 (abfd, buf);
19586 break;
19587 case 8:
19588 retval = bfd_get_64 (abfd, buf);
19589 break;
19590 default:
19591 internal_error (__FILE__, __LINE__,
19592 _("read_offset_1: bad switch [in module %s]"),
19593 bfd_get_filename (abfd));
19594 }
19595
19596 return retval;
19597 }
19598
19599 static const gdb_byte *
19600 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19601 {
19602 /* If the size of a host char is 8 bits, we can return a pointer
19603 to the buffer, otherwise we have to copy the data to a buffer
19604 allocated on the temporary obstack. */
19605 gdb_assert (HOST_CHAR_BIT == 8);
19606 return buf;
19607 }
19608
19609 static const char *
19610 read_direct_string (bfd *abfd, const gdb_byte *buf,
19611 unsigned int *bytes_read_ptr)
19612 {
19613 /* If the size of a host char is 8 bits, we can return a pointer
19614 to the string, otherwise we have to copy the string to a buffer
19615 allocated on the temporary obstack. */
19616 gdb_assert (HOST_CHAR_BIT == 8);
19617 if (*buf == '\0')
19618 {
19619 *bytes_read_ptr = 1;
19620 return NULL;
19621 }
19622 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19623 return (const char *) buf;
19624 }
19625
19626 /* Return pointer to string at section SECT offset STR_OFFSET with error
19627 reporting strings FORM_NAME and SECT_NAME. */
19628
19629 static const char *
19630 read_indirect_string_at_offset_from (struct objfile *objfile,
19631 bfd *abfd, LONGEST str_offset,
19632 struct dwarf2_section_info *sect,
19633 const char *form_name,
19634 const char *sect_name)
19635 {
19636 dwarf2_read_section (objfile, sect);
19637 if (sect->buffer == NULL)
19638 error (_("%s used without %s section [in module %s]"),
19639 form_name, sect_name, bfd_get_filename (abfd));
19640 if (str_offset >= sect->size)
19641 error (_("%s pointing outside of %s section [in module %s]"),
19642 form_name, sect_name, bfd_get_filename (abfd));
19643 gdb_assert (HOST_CHAR_BIT == 8);
19644 if (sect->buffer[str_offset] == '\0')
19645 return NULL;
19646 return (const char *) (sect->buffer + str_offset);
19647 }
19648
19649 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19650
19651 static const char *
19652 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19653 bfd *abfd, LONGEST str_offset)
19654 {
19655 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19656 abfd, str_offset,
19657 &dwarf2_per_objfile->str,
19658 "DW_FORM_strp", ".debug_str");
19659 }
19660
19661 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19662
19663 static const char *
19664 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19665 bfd *abfd, LONGEST str_offset)
19666 {
19667 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19668 abfd, str_offset,
19669 &dwarf2_per_objfile->line_str,
19670 "DW_FORM_line_strp",
19671 ".debug_line_str");
19672 }
19673
19674 /* Read a string at offset STR_OFFSET in the .debug_str section from
19675 the .dwz file DWZ. Throw an error if the offset is too large. If
19676 the string consists of a single NUL byte, return NULL; otherwise
19677 return a pointer to the string. */
19678
19679 static const char *
19680 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19681 LONGEST str_offset)
19682 {
19683 dwarf2_read_section (objfile, &dwz->str);
19684
19685 if (dwz->str.buffer == NULL)
19686 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19687 "section [in module %s]"),
19688 bfd_get_filename (dwz->dwz_bfd));
19689 if (str_offset >= dwz->str.size)
19690 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19691 ".debug_str section [in module %s]"),
19692 bfd_get_filename (dwz->dwz_bfd));
19693 gdb_assert (HOST_CHAR_BIT == 8);
19694 if (dwz->str.buffer[str_offset] == '\0')
19695 return NULL;
19696 return (const char *) (dwz->str.buffer + str_offset);
19697 }
19698
19699 /* Return pointer to string at .debug_str offset as read from BUF.
19700 BUF is assumed to be in a compilation unit described by CU_HEADER.
19701 Return *BYTES_READ_PTR count of bytes read from BUF. */
19702
19703 static const char *
19704 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19705 const gdb_byte *buf,
19706 const struct comp_unit_head *cu_header,
19707 unsigned int *bytes_read_ptr)
19708 {
19709 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19710
19711 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19712 }
19713
19714 /* Return pointer to string at .debug_line_str offset as read from BUF.
19715 BUF is assumed to be in a compilation unit described by CU_HEADER.
19716 Return *BYTES_READ_PTR count of bytes read from BUF. */
19717
19718 static const char *
19719 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19720 bfd *abfd, const gdb_byte *buf,
19721 const struct comp_unit_head *cu_header,
19722 unsigned int *bytes_read_ptr)
19723 {
19724 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19725
19726 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19727 str_offset);
19728 }
19729
19730 ULONGEST
19731 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19732 unsigned int *bytes_read_ptr)
19733 {
19734 ULONGEST result;
19735 unsigned int num_read;
19736 int shift;
19737 unsigned char byte;
19738
19739 result = 0;
19740 shift = 0;
19741 num_read = 0;
19742 while (1)
19743 {
19744 byte = bfd_get_8 (abfd, buf);
19745 buf++;
19746 num_read++;
19747 result |= ((ULONGEST) (byte & 127) << shift);
19748 if ((byte & 128) == 0)
19749 {
19750 break;
19751 }
19752 shift += 7;
19753 }
19754 *bytes_read_ptr = num_read;
19755 return result;
19756 }
19757
19758 static LONGEST
19759 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19760 unsigned int *bytes_read_ptr)
19761 {
19762 ULONGEST result;
19763 int shift, num_read;
19764 unsigned char byte;
19765
19766 result = 0;
19767 shift = 0;
19768 num_read = 0;
19769 while (1)
19770 {
19771 byte = bfd_get_8 (abfd, buf);
19772 buf++;
19773 num_read++;
19774 result |= ((ULONGEST) (byte & 127) << shift);
19775 shift += 7;
19776 if ((byte & 128) == 0)
19777 {
19778 break;
19779 }
19780 }
19781 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19782 result |= -(((ULONGEST) 1) << shift);
19783 *bytes_read_ptr = num_read;
19784 return result;
19785 }
19786
19787 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19788 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19789 ADDR_SIZE is the size of addresses from the CU header. */
19790
19791 static CORE_ADDR
19792 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19793 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19794 {
19795 struct objfile *objfile = dwarf2_per_objfile->objfile;
19796 bfd *abfd = objfile->obfd;
19797 const gdb_byte *info_ptr;
19798
19799 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19800 if (dwarf2_per_objfile->addr.buffer == NULL)
19801 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19802 objfile_name (objfile));
19803 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19804 error (_("DW_FORM_addr_index pointing outside of "
19805 ".debug_addr section [in module %s]"),
19806 objfile_name (objfile));
19807 info_ptr = (dwarf2_per_objfile->addr.buffer
19808 + addr_base + addr_index * addr_size);
19809 if (addr_size == 4)
19810 return bfd_get_32 (abfd, info_ptr);
19811 else
19812 return bfd_get_64 (abfd, info_ptr);
19813 }
19814
19815 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19816
19817 static CORE_ADDR
19818 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19819 {
19820 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19821 cu->addr_base, cu->header.addr_size);
19822 }
19823
19824 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19825
19826 static CORE_ADDR
19827 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19828 unsigned int *bytes_read)
19829 {
19830 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19831 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19832
19833 return read_addr_index (cu, addr_index);
19834 }
19835
19836 /* Data structure to pass results from dwarf2_read_addr_index_reader
19837 back to dwarf2_read_addr_index. */
19838
19839 struct dwarf2_read_addr_index_data
19840 {
19841 ULONGEST addr_base;
19842 int addr_size;
19843 };
19844
19845 /* die_reader_func for dwarf2_read_addr_index. */
19846
19847 static void
19848 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19849 const gdb_byte *info_ptr,
19850 struct die_info *comp_unit_die,
19851 int has_children,
19852 void *data)
19853 {
19854 struct dwarf2_cu *cu = reader->cu;
19855 struct dwarf2_read_addr_index_data *aidata =
19856 (struct dwarf2_read_addr_index_data *) data;
19857
19858 aidata->addr_base = cu->addr_base;
19859 aidata->addr_size = cu->header.addr_size;
19860 }
19861
19862 /* Given an index in .debug_addr, fetch the value.
19863 NOTE: This can be called during dwarf expression evaluation,
19864 long after the debug information has been read, and thus per_cu->cu
19865 may no longer exist. */
19866
19867 CORE_ADDR
19868 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19869 unsigned int addr_index)
19870 {
19871 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19872 struct dwarf2_cu *cu = per_cu->cu;
19873 ULONGEST addr_base;
19874 int addr_size;
19875
19876 /* We need addr_base and addr_size.
19877 If we don't have PER_CU->cu, we have to get it.
19878 Nasty, but the alternative is storing the needed info in PER_CU,
19879 which at this point doesn't seem justified: it's not clear how frequently
19880 it would get used and it would increase the size of every PER_CU.
19881 Entry points like dwarf2_per_cu_addr_size do a similar thing
19882 so we're not in uncharted territory here.
19883 Alas we need to be a bit more complicated as addr_base is contained
19884 in the DIE.
19885
19886 We don't need to read the entire CU(/TU).
19887 We just need the header and top level die.
19888
19889 IWBN to use the aging mechanism to let us lazily later discard the CU.
19890 For now we skip this optimization. */
19891
19892 if (cu != NULL)
19893 {
19894 addr_base = cu->addr_base;
19895 addr_size = cu->header.addr_size;
19896 }
19897 else
19898 {
19899 struct dwarf2_read_addr_index_data aidata;
19900
19901 /* Note: We can't use init_cutu_and_read_dies_simple here,
19902 we need addr_base. */
19903 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19904 dwarf2_read_addr_index_reader, &aidata);
19905 addr_base = aidata.addr_base;
19906 addr_size = aidata.addr_size;
19907 }
19908
19909 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19910 addr_size);
19911 }
19912
19913 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19914 This is only used by the Fission support. */
19915
19916 static const char *
19917 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19918 {
19919 struct dwarf2_cu *cu = reader->cu;
19920 struct dwarf2_per_objfile *dwarf2_per_objfile
19921 = cu->per_cu->dwarf2_per_objfile;
19922 struct objfile *objfile = dwarf2_per_objfile->objfile;
19923 const char *objf_name = objfile_name (objfile);
19924 bfd *abfd = objfile->obfd;
19925 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19926 struct dwarf2_section_info *str_offsets_section =
19927 &reader->dwo_file->sections.str_offsets;
19928 const gdb_byte *info_ptr;
19929 ULONGEST str_offset;
19930 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19931
19932 dwarf2_read_section (objfile, str_section);
19933 dwarf2_read_section (objfile, str_offsets_section);
19934 if (str_section->buffer == NULL)
19935 error (_("%s used without .debug_str.dwo section"
19936 " in CU at offset %s [in module %s]"),
19937 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19938 if (str_offsets_section->buffer == NULL)
19939 error (_("%s used without .debug_str_offsets.dwo section"
19940 " in CU at offset %s [in module %s]"),
19941 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19942 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19943 error (_("%s pointing outside of .debug_str_offsets.dwo"
19944 " section in CU at offset %s [in module %s]"),
19945 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19946 info_ptr = (str_offsets_section->buffer
19947 + str_index * cu->header.offset_size);
19948 if (cu->header.offset_size == 4)
19949 str_offset = bfd_get_32 (abfd, info_ptr);
19950 else
19951 str_offset = bfd_get_64 (abfd, info_ptr);
19952 if (str_offset >= str_section->size)
19953 error (_("Offset from %s pointing outside of"
19954 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19955 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19956 return (const char *) (str_section->buffer + str_offset);
19957 }
19958
19959 /* Return the length of an LEB128 number in BUF. */
19960
19961 static int
19962 leb128_size (const gdb_byte *buf)
19963 {
19964 const gdb_byte *begin = buf;
19965 gdb_byte byte;
19966
19967 while (1)
19968 {
19969 byte = *buf++;
19970 if ((byte & 128) == 0)
19971 return buf - begin;
19972 }
19973 }
19974
19975 static void
19976 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19977 {
19978 switch (lang)
19979 {
19980 case DW_LANG_C89:
19981 case DW_LANG_C99:
19982 case DW_LANG_C11:
19983 case DW_LANG_C:
19984 case DW_LANG_UPC:
19985 cu->language = language_c;
19986 break;
19987 case DW_LANG_Java:
19988 case DW_LANG_C_plus_plus:
19989 case DW_LANG_C_plus_plus_11:
19990 case DW_LANG_C_plus_plus_14:
19991 cu->language = language_cplus;
19992 break;
19993 case DW_LANG_D:
19994 cu->language = language_d;
19995 break;
19996 case DW_LANG_Fortran77:
19997 case DW_LANG_Fortran90:
19998 case DW_LANG_Fortran95:
19999 case DW_LANG_Fortran03:
20000 case DW_LANG_Fortran08:
20001 cu->language = language_fortran;
20002 break;
20003 case DW_LANG_Go:
20004 cu->language = language_go;
20005 break;
20006 case DW_LANG_Mips_Assembler:
20007 cu->language = language_asm;
20008 break;
20009 case DW_LANG_Ada83:
20010 case DW_LANG_Ada95:
20011 cu->language = language_ada;
20012 break;
20013 case DW_LANG_Modula2:
20014 cu->language = language_m2;
20015 break;
20016 case DW_LANG_Pascal83:
20017 cu->language = language_pascal;
20018 break;
20019 case DW_LANG_ObjC:
20020 cu->language = language_objc;
20021 break;
20022 case DW_LANG_Rust:
20023 case DW_LANG_Rust_old:
20024 cu->language = language_rust;
20025 break;
20026 case DW_LANG_Cobol74:
20027 case DW_LANG_Cobol85:
20028 default:
20029 cu->language = language_minimal;
20030 break;
20031 }
20032 cu->language_defn = language_def (cu->language);
20033 }
20034
20035 /* Return the named attribute or NULL if not there. */
20036
20037 static struct attribute *
20038 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20039 {
20040 for (;;)
20041 {
20042 unsigned int i;
20043 struct attribute *spec = NULL;
20044
20045 for (i = 0; i < die->num_attrs; ++i)
20046 {
20047 if (die->attrs[i].name == name)
20048 return &die->attrs[i];
20049 if (die->attrs[i].name == DW_AT_specification
20050 || die->attrs[i].name == DW_AT_abstract_origin)
20051 spec = &die->attrs[i];
20052 }
20053
20054 if (!spec)
20055 break;
20056
20057 die = follow_die_ref (die, spec, &cu);
20058 }
20059
20060 return NULL;
20061 }
20062
20063 /* Return the named attribute or NULL if not there,
20064 but do not follow DW_AT_specification, etc.
20065 This is for use in contexts where we're reading .debug_types dies.
20066 Following DW_AT_specification, DW_AT_abstract_origin will take us
20067 back up the chain, and we want to go down. */
20068
20069 static struct attribute *
20070 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20071 {
20072 unsigned int i;
20073
20074 for (i = 0; i < die->num_attrs; ++i)
20075 if (die->attrs[i].name == name)
20076 return &die->attrs[i];
20077
20078 return NULL;
20079 }
20080
20081 /* Return the string associated with a string-typed attribute, or NULL if it
20082 is either not found or is of an incorrect type. */
20083
20084 static const char *
20085 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20086 {
20087 struct attribute *attr;
20088 const char *str = NULL;
20089
20090 attr = dwarf2_attr (die, name, cu);
20091
20092 if (attr != NULL)
20093 {
20094 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20095 || attr->form == DW_FORM_string
20096 || attr->form == DW_FORM_strx
20097 || attr->form == DW_FORM_GNU_str_index
20098 || attr->form == DW_FORM_GNU_strp_alt)
20099 str = DW_STRING (attr);
20100 else
20101 complaint (_("string type expected for attribute %s for "
20102 "DIE at %s in module %s"),
20103 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20104 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20105 }
20106
20107 return str;
20108 }
20109
20110 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20111 and holds a non-zero value. This function should only be used for
20112 DW_FORM_flag or DW_FORM_flag_present attributes. */
20113
20114 static int
20115 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20116 {
20117 struct attribute *attr = dwarf2_attr (die, name, cu);
20118
20119 return (attr && DW_UNSND (attr));
20120 }
20121
20122 static int
20123 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20124 {
20125 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20126 which value is non-zero. However, we have to be careful with
20127 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20128 (via dwarf2_flag_true_p) follows this attribute. So we may
20129 end up accidently finding a declaration attribute that belongs
20130 to a different DIE referenced by the specification attribute,
20131 even though the given DIE does not have a declaration attribute. */
20132 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20133 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20134 }
20135
20136 /* Return the die giving the specification for DIE, if there is
20137 one. *SPEC_CU is the CU containing DIE on input, and the CU
20138 containing the return value on output. If there is no
20139 specification, but there is an abstract origin, that is
20140 returned. */
20141
20142 static struct die_info *
20143 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20144 {
20145 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20146 *spec_cu);
20147
20148 if (spec_attr == NULL)
20149 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20150
20151 if (spec_attr == NULL)
20152 return NULL;
20153 else
20154 return follow_die_ref (die, spec_attr, spec_cu);
20155 }
20156
20157 /* Stub for free_line_header to match void * callback types. */
20158
20159 static void
20160 free_line_header_voidp (void *arg)
20161 {
20162 struct line_header *lh = (struct line_header *) arg;
20163
20164 delete lh;
20165 }
20166
20167 void
20168 line_header::add_include_dir (const char *include_dir)
20169 {
20170 if (dwarf_line_debug >= 2)
20171 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20172 include_dirs.size () + 1, include_dir);
20173
20174 include_dirs.push_back (include_dir);
20175 }
20176
20177 void
20178 line_header::add_file_name (const char *name,
20179 dir_index d_index,
20180 unsigned int mod_time,
20181 unsigned int length)
20182 {
20183 if (dwarf_line_debug >= 2)
20184 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20185 (unsigned) file_names.size () + 1, name);
20186
20187 file_names.emplace_back (name, d_index, mod_time, length);
20188 }
20189
20190 /* A convenience function to find the proper .debug_line section for a CU. */
20191
20192 static struct dwarf2_section_info *
20193 get_debug_line_section (struct dwarf2_cu *cu)
20194 {
20195 struct dwarf2_section_info *section;
20196 struct dwarf2_per_objfile *dwarf2_per_objfile
20197 = cu->per_cu->dwarf2_per_objfile;
20198
20199 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20200 DWO file. */
20201 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20202 section = &cu->dwo_unit->dwo_file->sections.line;
20203 else if (cu->per_cu->is_dwz)
20204 {
20205 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20206
20207 section = &dwz->line;
20208 }
20209 else
20210 section = &dwarf2_per_objfile->line;
20211
20212 return section;
20213 }
20214
20215 /* Read directory or file name entry format, starting with byte of
20216 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20217 entries count and the entries themselves in the described entry
20218 format. */
20219
20220 static void
20221 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20222 bfd *abfd, const gdb_byte **bufp,
20223 struct line_header *lh,
20224 const struct comp_unit_head *cu_header,
20225 void (*callback) (struct line_header *lh,
20226 const char *name,
20227 dir_index d_index,
20228 unsigned int mod_time,
20229 unsigned int length))
20230 {
20231 gdb_byte format_count, formati;
20232 ULONGEST data_count, datai;
20233 const gdb_byte *buf = *bufp;
20234 const gdb_byte *format_header_data;
20235 unsigned int bytes_read;
20236
20237 format_count = read_1_byte (abfd, buf);
20238 buf += 1;
20239 format_header_data = buf;
20240 for (formati = 0; formati < format_count; formati++)
20241 {
20242 read_unsigned_leb128 (abfd, buf, &bytes_read);
20243 buf += bytes_read;
20244 read_unsigned_leb128 (abfd, buf, &bytes_read);
20245 buf += bytes_read;
20246 }
20247
20248 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20249 buf += bytes_read;
20250 for (datai = 0; datai < data_count; datai++)
20251 {
20252 const gdb_byte *format = format_header_data;
20253 struct file_entry fe;
20254
20255 for (formati = 0; formati < format_count; formati++)
20256 {
20257 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20258 format += bytes_read;
20259
20260 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20261 format += bytes_read;
20262
20263 gdb::optional<const char *> string;
20264 gdb::optional<unsigned int> uint;
20265
20266 switch (form)
20267 {
20268 case DW_FORM_string:
20269 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20270 buf += bytes_read;
20271 break;
20272
20273 case DW_FORM_line_strp:
20274 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20275 abfd, buf,
20276 cu_header,
20277 &bytes_read));
20278 buf += bytes_read;
20279 break;
20280
20281 case DW_FORM_data1:
20282 uint.emplace (read_1_byte (abfd, buf));
20283 buf += 1;
20284 break;
20285
20286 case DW_FORM_data2:
20287 uint.emplace (read_2_bytes (abfd, buf));
20288 buf += 2;
20289 break;
20290
20291 case DW_FORM_data4:
20292 uint.emplace (read_4_bytes (abfd, buf));
20293 buf += 4;
20294 break;
20295
20296 case DW_FORM_data8:
20297 uint.emplace (read_8_bytes (abfd, buf));
20298 buf += 8;
20299 break;
20300
20301 case DW_FORM_udata:
20302 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20303 buf += bytes_read;
20304 break;
20305
20306 case DW_FORM_block:
20307 /* It is valid only for DW_LNCT_timestamp which is ignored by
20308 current GDB. */
20309 break;
20310 }
20311
20312 switch (content_type)
20313 {
20314 case DW_LNCT_path:
20315 if (string.has_value ())
20316 fe.name = *string;
20317 break;
20318 case DW_LNCT_directory_index:
20319 if (uint.has_value ())
20320 fe.d_index = (dir_index) *uint;
20321 break;
20322 case DW_LNCT_timestamp:
20323 if (uint.has_value ())
20324 fe.mod_time = *uint;
20325 break;
20326 case DW_LNCT_size:
20327 if (uint.has_value ())
20328 fe.length = *uint;
20329 break;
20330 case DW_LNCT_MD5:
20331 break;
20332 default:
20333 complaint (_("Unknown format content type %s"),
20334 pulongest (content_type));
20335 }
20336 }
20337
20338 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20339 }
20340
20341 *bufp = buf;
20342 }
20343
20344 /* Read the statement program header starting at OFFSET in
20345 .debug_line, or .debug_line.dwo. Return a pointer
20346 to a struct line_header, allocated using xmalloc.
20347 Returns NULL if there is a problem reading the header, e.g., if it
20348 has a version we don't understand.
20349
20350 NOTE: the strings in the include directory and file name tables of
20351 the returned object point into the dwarf line section buffer,
20352 and must not be freed. */
20353
20354 static line_header_up
20355 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20356 {
20357 const gdb_byte *line_ptr;
20358 unsigned int bytes_read, offset_size;
20359 int i;
20360 const char *cur_dir, *cur_file;
20361 struct dwarf2_section_info *section;
20362 bfd *abfd;
20363 struct dwarf2_per_objfile *dwarf2_per_objfile
20364 = cu->per_cu->dwarf2_per_objfile;
20365
20366 section = get_debug_line_section (cu);
20367 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20368 if (section->buffer == NULL)
20369 {
20370 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20371 complaint (_("missing .debug_line.dwo section"));
20372 else
20373 complaint (_("missing .debug_line section"));
20374 return 0;
20375 }
20376
20377 /* We can't do this until we know the section is non-empty.
20378 Only then do we know we have such a section. */
20379 abfd = get_section_bfd_owner (section);
20380
20381 /* Make sure that at least there's room for the total_length field.
20382 That could be 12 bytes long, but we're just going to fudge that. */
20383 if (to_underlying (sect_off) + 4 >= section->size)
20384 {
20385 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20386 return 0;
20387 }
20388
20389 line_header_up lh (new line_header ());
20390
20391 lh->sect_off = sect_off;
20392 lh->offset_in_dwz = cu->per_cu->is_dwz;
20393
20394 line_ptr = section->buffer + to_underlying (sect_off);
20395
20396 /* Read in the header. */
20397 lh->total_length =
20398 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20399 &bytes_read, &offset_size);
20400 line_ptr += bytes_read;
20401 if (line_ptr + lh->total_length > (section->buffer + section->size))
20402 {
20403 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20404 return 0;
20405 }
20406 lh->statement_program_end = line_ptr + lh->total_length;
20407 lh->version = read_2_bytes (abfd, line_ptr);
20408 line_ptr += 2;
20409 if (lh->version > 5)
20410 {
20411 /* This is a version we don't understand. The format could have
20412 changed in ways we don't handle properly so just punt. */
20413 complaint (_("unsupported version in .debug_line section"));
20414 return NULL;
20415 }
20416 if (lh->version >= 5)
20417 {
20418 gdb_byte segment_selector_size;
20419
20420 /* Skip address size. */
20421 read_1_byte (abfd, line_ptr);
20422 line_ptr += 1;
20423
20424 segment_selector_size = read_1_byte (abfd, line_ptr);
20425 line_ptr += 1;
20426 if (segment_selector_size != 0)
20427 {
20428 complaint (_("unsupported segment selector size %u "
20429 "in .debug_line section"),
20430 segment_selector_size);
20431 return NULL;
20432 }
20433 }
20434 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20435 line_ptr += offset_size;
20436 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20437 line_ptr += 1;
20438 if (lh->version >= 4)
20439 {
20440 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20441 line_ptr += 1;
20442 }
20443 else
20444 lh->maximum_ops_per_instruction = 1;
20445
20446 if (lh->maximum_ops_per_instruction == 0)
20447 {
20448 lh->maximum_ops_per_instruction = 1;
20449 complaint (_("invalid maximum_ops_per_instruction "
20450 "in `.debug_line' section"));
20451 }
20452
20453 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20454 line_ptr += 1;
20455 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20456 line_ptr += 1;
20457 lh->line_range = read_1_byte (abfd, line_ptr);
20458 line_ptr += 1;
20459 lh->opcode_base = read_1_byte (abfd, line_ptr);
20460 line_ptr += 1;
20461 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20462
20463 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20464 for (i = 1; i < lh->opcode_base; ++i)
20465 {
20466 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20467 line_ptr += 1;
20468 }
20469
20470 if (lh->version >= 5)
20471 {
20472 /* Read directory table. */
20473 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20474 &cu->header,
20475 [] (struct line_header *header, const char *name,
20476 dir_index d_index, unsigned int mod_time,
20477 unsigned int length)
20478 {
20479 header->add_include_dir (name);
20480 });
20481
20482 /* Read file name table. */
20483 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20484 &cu->header,
20485 [] (struct line_header *header, const char *name,
20486 dir_index d_index, unsigned int mod_time,
20487 unsigned int length)
20488 {
20489 header->add_file_name (name, d_index, mod_time, length);
20490 });
20491 }
20492 else
20493 {
20494 /* Read directory table. */
20495 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20496 {
20497 line_ptr += bytes_read;
20498 lh->add_include_dir (cur_dir);
20499 }
20500 line_ptr += bytes_read;
20501
20502 /* Read file name table. */
20503 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20504 {
20505 unsigned int mod_time, length;
20506 dir_index d_index;
20507
20508 line_ptr += bytes_read;
20509 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20510 line_ptr += bytes_read;
20511 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20512 line_ptr += bytes_read;
20513 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20514 line_ptr += bytes_read;
20515
20516 lh->add_file_name (cur_file, d_index, mod_time, length);
20517 }
20518 line_ptr += bytes_read;
20519 }
20520 lh->statement_program_start = line_ptr;
20521
20522 if (line_ptr > (section->buffer + section->size))
20523 complaint (_("line number info header doesn't "
20524 "fit in `.debug_line' section"));
20525
20526 return lh;
20527 }
20528
20529 /* Subroutine of dwarf_decode_lines to simplify it.
20530 Return the file name of the psymtab for included file FILE_INDEX
20531 in line header LH of PST.
20532 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20533 If space for the result is malloc'd, *NAME_HOLDER will be set.
20534 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20535
20536 static const char *
20537 psymtab_include_file_name (const struct line_header *lh, int file_index,
20538 const struct partial_symtab *pst,
20539 const char *comp_dir,
20540 gdb::unique_xmalloc_ptr<char> *name_holder)
20541 {
20542 const file_entry &fe = lh->file_names[file_index];
20543 const char *include_name = fe.name;
20544 const char *include_name_to_compare = include_name;
20545 const char *pst_filename;
20546 int file_is_pst;
20547
20548 const char *dir_name = fe.include_dir (lh);
20549
20550 gdb::unique_xmalloc_ptr<char> hold_compare;
20551 if (!IS_ABSOLUTE_PATH (include_name)
20552 && (dir_name != NULL || comp_dir != NULL))
20553 {
20554 /* Avoid creating a duplicate psymtab for PST.
20555 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20556 Before we do the comparison, however, we need to account
20557 for DIR_NAME and COMP_DIR.
20558 First prepend dir_name (if non-NULL). If we still don't
20559 have an absolute path prepend comp_dir (if non-NULL).
20560 However, the directory we record in the include-file's
20561 psymtab does not contain COMP_DIR (to match the
20562 corresponding symtab(s)).
20563
20564 Example:
20565
20566 bash$ cd /tmp
20567 bash$ gcc -g ./hello.c
20568 include_name = "hello.c"
20569 dir_name = "."
20570 DW_AT_comp_dir = comp_dir = "/tmp"
20571 DW_AT_name = "./hello.c"
20572
20573 */
20574
20575 if (dir_name != NULL)
20576 {
20577 name_holder->reset (concat (dir_name, SLASH_STRING,
20578 include_name, (char *) NULL));
20579 include_name = name_holder->get ();
20580 include_name_to_compare = include_name;
20581 }
20582 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20583 {
20584 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20585 include_name, (char *) NULL));
20586 include_name_to_compare = hold_compare.get ();
20587 }
20588 }
20589
20590 pst_filename = pst->filename;
20591 gdb::unique_xmalloc_ptr<char> copied_name;
20592 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20593 {
20594 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20595 pst_filename, (char *) NULL));
20596 pst_filename = copied_name.get ();
20597 }
20598
20599 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20600
20601 if (file_is_pst)
20602 return NULL;
20603 return include_name;
20604 }
20605
20606 /* State machine to track the state of the line number program. */
20607
20608 class lnp_state_machine
20609 {
20610 public:
20611 /* Initialize a machine state for the start of a line number
20612 program. */
20613 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20614 bool record_lines_p);
20615
20616 file_entry *current_file ()
20617 {
20618 /* lh->file_names is 0-based, but the file name numbers in the
20619 statement program are 1-based. */
20620 return m_line_header->file_name_at (m_file);
20621 }
20622
20623 /* Record the line in the state machine. END_SEQUENCE is true if
20624 we're processing the end of a sequence. */
20625 void record_line (bool end_sequence);
20626
20627 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20628 nop-out rest of the lines in this sequence. */
20629 void check_line_address (struct dwarf2_cu *cu,
20630 const gdb_byte *line_ptr,
20631 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20632
20633 void handle_set_discriminator (unsigned int discriminator)
20634 {
20635 m_discriminator = discriminator;
20636 m_line_has_non_zero_discriminator |= discriminator != 0;
20637 }
20638
20639 /* Handle DW_LNE_set_address. */
20640 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20641 {
20642 m_op_index = 0;
20643 address += baseaddr;
20644 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20645 }
20646
20647 /* Handle DW_LNS_advance_pc. */
20648 void handle_advance_pc (CORE_ADDR adjust);
20649
20650 /* Handle a special opcode. */
20651 void handle_special_opcode (unsigned char op_code);
20652
20653 /* Handle DW_LNS_advance_line. */
20654 void handle_advance_line (int line_delta)
20655 {
20656 advance_line (line_delta);
20657 }
20658
20659 /* Handle DW_LNS_set_file. */
20660 void handle_set_file (file_name_index file);
20661
20662 /* Handle DW_LNS_negate_stmt. */
20663 void handle_negate_stmt ()
20664 {
20665 m_is_stmt = !m_is_stmt;
20666 }
20667
20668 /* Handle DW_LNS_const_add_pc. */
20669 void handle_const_add_pc ();
20670
20671 /* Handle DW_LNS_fixed_advance_pc. */
20672 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20673 {
20674 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20675 m_op_index = 0;
20676 }
20677
20678 /* Handle DW_LNS_copy. */
20679 void handle_copy ()
20680 {
20681 record_line (false);
20682 m_discriminator = 0;
20683 }
20684
20685 /* Handle DW_LNE_end_sequence. */
20686 void handle_end_sequence ()
20687 {
20688 m_currently_recording_lines = true;
20689 }
20690
20691 private:
20692 /* Advance the line by LINE_DELTA. */
20693 void advance_line (int line_delta)
20694 {
20695 m_line += line_delta;
20696
20697 if (line_delta != 0)
20698 m_line_has_non_zero_discriminator = m_discriminator != 0;
20699 }
20700
20701 struct dwarf2_cu *m_cu;
20702
20703 gdbarch *m_gdbarch;
20704
20705 /* True if we're recording lines.
20706 Otherwise we're building partial symtabs and are just interested in
20707 finding include files mentioned by the line number program. */
20708 bool m_record_lines_p;
20709
20710 /* The line number header. */
20711 line_header *m_line_header;
20712
20713 /* These are part of the standard DWARF line number state machine,
20714 and initialized according to the DWARF spec. */
20715
20716 unsigned char m_op_index = 0;
20717 /* The line table index (1-based) of the current file. */
20718 file_name_index m_file = (file_name_index) 1;
20719 unsigned int m_line = 1;
20720
20721 /* These are initialized in the constructor. */
20722
20723 CORE_ADDR m_address;
20724 bool m_is_stmt;
20725 unsigned int m_discriminator;
20726
20727 /* Additional bits of state we need to track. */
20728
20729 /* The last file that we called dwarf2_start_subfile for.
20730 This is only used for TLLs. */
20731 unsigned int m_last_file = 0;
20732 /* The last file a line number was recorded for. */
20733 struct subfile *m_last_subfile = NULL;
20734
20735 /* When true, record the lines we decode. */
20736 bool m_currently_recording_lines = false;
20737
20738 /* The last line number that was recorded, used to coalesce
20739 consecutive entries for the same line. This can happen, for
20740 example, when discriminators are present. PR 17276. */
20741 unsigned int m_last_line = 0;
20742 bool m_line_has_non_zero_discriminator = false;
20743 };
20744
20745 void
20746 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20747 {
20748 CORE_ADDR addr_adj = (((m_op_index + adjust)
20749 / m_line_header->maximum_ops_per_instruction)
20750 * m_line_header->minimum_instruction_length);
20751 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20752 m_op_index = ((m_op_index + adjust)
20753 % m_line_header->maximum_ops_per_instruction);
20754 }
20755
20756 void
20757 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20758 {
20759 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20760 CORE_ADDR addr_adj = (((m_op_index
20761 + (adj_opcode / m_line_header->line_range))
20762 / m_line_header->maximum_ops_per_instruction)
20763 * m_line_header->minimum_instruction_length);
20764 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20765 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20766 % m_line_header->maximum_ops_per_instruction);
20767
20768 int line_delta = (m_line_header->line_base
20769 + (adj_opcode % m_line_header->line_range));
20770 advance_line (line_delta);
20771 record_line (false);
20772 m_discriminator = 0;
20773 }
20774
20775 void
20776 lnp_state_machine::handle_set_file (file_name_index file)
20777 {
20778 m_file = file;
20779
20780 const file_entry *fe = current_file ();
20781 if (fe == NULL)
20782 dwarf2_debug_line_missing_file_complaint ();
20783 else if (m_record_lines_p)
20784 {
20785 const char *dir = fe->include_dir (m_line_header);
20786
20787 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20788 m_line_has_non_zero_discriminator = m_discriminator != 0;
20789 dwarf2_start_subfile (m_cu, fe->name, dir);
20790 }
20791 }
20792
20793 void
20794 lnp_state_machine::handle_const_add_pc ()
20795 {
20796 CORE_ADDR adjust
20797 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20798
20799 CORE_ADDR addr_adj
20800 = (((m_op_index + adjust)
20801 / m_line_header->maximum_ops_per_instruction)
20802 * m_line_header->minimum_instruction_length);
20803
20804 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20805 m_op_index = ((m_op_index + adjust)
20806 % m_line_header->maximum_ops_per_instruction);
20807 }
20808
20809 /* Return non-zero if we should add LINE to the line number table.
20810 LINE is the line to add, LAST_LINE is the last line that was added,
20811 LAST_SUBFILE is the subfile for LAST_LINE.
20812 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20813 had a non-zero discriminator.
20814
20815 We have to be careful in the presence of discriminators.
20816 E.g., for this line:
20817
20818 for (i = 0; i < 100000; i++);
20819
20820 clang can emit four line number entries for that one line,
20821 each with a different discriminator.
20822 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20823
20824 However, we want gdb to coalesce all four entries into one.
20825 Otherwise the user could stepi into the middle of the line and
20826 gdb would get confused about whether the pc really was in the
20827 middle of the line.
20828
20829 Things are further complicated by the fact that two consecutive
20830 line number entries for the same line is a heuristic used by gcc
20831 to denote the end of the prologue. So we can't just discard duplicate
20832 entries, we have to be selective about it. The heuristic we use is
20833 that we only collapse consecutive entries for the same line if at least
20834 one of those entries has a non-zero discriminator. PR 17276.
20835
20836 Note: Addresses in the line number state machine can never go backwards
20837 within one sequence, thus this coalescing is ok. */
20838
20839 static int
20840 dwarf_record_line_p (struct dwarf2_cu *cu,
20841 unsigned int line, unsigned int last_line,
20842 int line_has_non_zero_discriminator,
20843 struct subfile *last_subfile)
20844 {
20845 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20846 return 1;
20847 if (line != last_line)
20848 return 1;
20849 /* Same line for the same file that we've seen already.
20850 As a last check, for pr 17276, only record the line if the line
20851 has never had a non-zero discriminator. */
20852 if (!line_has_non_zero_discriminator)
20853 return 1;
20854 return 0;
20855 }
20856
20857 /* Use the CU's builder to record line number LINE beginning at
20858 address ADDRESS in the line table of subfile SUBFILE. */
20859
20860 static void
20861 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20862 unsigned int line, CORE_ADDR address,
20863 struct dwarf2_cu *cu)
20864 {
20865 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20866
20867 if (dwarf_line_debug)
20868 {
20869 fprintf_unfiltered (gdb_stdlog,
20870 "Recording line %u, file %s, address %s\n",
20871 line, lbasename (subfile->name),
20872 paddress (gdbarch, address));
20873 }
20874
20875 if (cu != nullptr)
20876 cu->get_builder ()->record_line (subfile, line, addr);
20877 }
20878
20879 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20880 Mark the end of a set of line number records.
20881 The arguments are the same as for dwarf_record_line_1.
20882 If SUBFILE is NULL the request is ignored. */
20883
20884 static void
20885 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20886 CORE_ADDR address, struct dwarf2_cu *cu)
20887 {
20888 if (subfile == NULL)
20889 return;
20890
20891 if (dwarf_line_debug)
20892 {
20893 fprintf_unfiltered (gdb_stdlog,
20894 "Finishing current line, file %s, address %s\n",
20895 lbasename (subfile->name),
20896 paddress (gdbarch, address));
20897 }
20898
20899 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20900 }
20901
20902 void
20903 lnp_state_machine::record_line (bool end_sequence)
20904 {
20905 if (dwarf_line_debug)
20906 {
20907 fprintf_unfiltered (gdb_stdlog,
20908 "Processing actual line %u: file %u,"
20909 " address %s, is_stmt %u, discrim %u\n",
20910 m_line, to_underlying (m_file),
20911 paddress (m_gdbarch, m_address),
20912 m_is_stmt, m_discriminator);
20913 }
20914
20915 file_entry *fe = current_file ();
20916
20917 if (fe == NULL)
20918 dwarf2_debug_line_missing_file_complaint ();
20919 /* For now we ignore lines not starting on an instruction boundary.
20920 But not when processing end_sequence for compatibility with the
20921 previous version of the code. */
20922 else if (m_op_index == 0 || end_sequence)
20923 {
20924 fe->included_p = 1;
20925 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20926 {
20927 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20928 || end_sequence)
20929 {
20930 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20931 m_currently_recording_lines ? m_cu : nullptr);
20932 }
20933
20934 if (!end_sequence)
20935 {
20936 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20937 m_line_has_non_zero_discriminator,
20938 m_last_subfile))
20939 {
20940 buildsym_compunit *builder = m_cu->get_builder ();
20941 dwarf_record_line_1 (m_gdbarch,
20942 builder->get_current_subfile (),
20943 m_line, m_address,
20944 m_currently_recording_lines ? m_cu : nullptr);
20945 }
20946 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20947 m_last_line = m_line;
20948 }
20949 }
20950 }
20951 }
20952
20953 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20954 line_header *lh, bool record_lines_p)
20955 {
20956 m_cu = cu;
20957 m_gdbarch = arch;
20958 m_record_lines_p = record_lines_p;
20959 m_line_header = lh;
20960
20961 m_currently_recording_lines = true;
20962
20963 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20964 was a line entry for it so that the backend has a chance to adjust it
20965 and also record it in case it needs it. This is currently used by MIPS
20966 code, cf. `mips_adjust_dwarf2_line'. */
20967 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20968 m_is_stmt = lh->default_is_stmt;
20969 m_discriminator = 0;
20970 }
20971
20972 void
20973 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20974 const gdb_byte *line_ptr,
20975 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20976 {
20977 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20978 the pc range of the CU. However, we restrict the test to only ADDRESS
20979 values of zero to preserve GDB's previous behaviour which is to handle
20980 the specific case of a function being GC'd by the linker. */
20981
20982 if (address == 0 && address < unrelocated_lowpc)
20983 {
20984 /* This line table is for a function which has been
20985 GCd by the linker. Ignore it. PR gdb/12528 */
20986
20987 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20988 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20989
20990 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20991 line_offset, objfile_name (objfile));
20992 m_currently_recording_lines = false;
20993 /* Note: m_currently_recording_lines is left as false until we see
20994 DW_LNE_end_sequence. */
20995 }
20996 }
20997
20998 /* Subroutine of dwarf_decode_lines to simplify it.
20999 Process the line number information in LH.
21000 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21001 program in order to set included_p for every referenced header. */
21002
21003 static void
21004 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21005 const int decode_for_pst_p, CORE_ADDR lowpc)
21006 {
21007 const gdb_byte *line_ptr, *extended_end;
21008 const gdb_byte *line_end;
21009 unsigned int bytes_read, extended_len;
21010 unsigned char op_code, extended_op;
21011 CORE_ADDR baseaddr;
21012 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21013 bfd *abfd = objfile->obfd;
21014 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21015 /* True if we're recording line info (as opposed to building partial
21016 symtabs and just interested in finding include files mentioned by
21017 the line number program). */
21018 bool record_lines_p = !decode_for_pst_p;
21019
21020 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21021
21022 line_ptr = lh->statement_program_start;
21023 line_end = lh->statement_program_end;
21024
21025 /* Read the statement sequences until there's nothing left. */
21026 while (line_ptr < line_end)
21027 {
21028 /* The DWARF line number program state machine. Reset the state
21029 machine at the start of each sequence. */
21030 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21031 bool end_sequence = false;
21032
21033 if (record_lines_p)
21034 {
21035 /* Start a subfile for the current file of the state
21036 machine. */
21037 const file_entry *fe = state_machine.current_file ();
21038
21039 if (fe != NULL)
21040 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21041 }
21042
21043 /* Decode the table. */
21044 while (line_ptr < line_end && !end_sequence)
21045 {
21046 op_code = read_1_byte (abfd, line_ptr);
21047 line_ptr += 1;
21048
21049 if (op_code >= lh->opcode_base)
21050 {
21051 /* Special opcode. */
21052 state_machine.handle_special_opcode (op_code);
21053 }
21054 else switch (op_code)
21055 {
21056 case DW_LNS_extended_op:
21057 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21058 &bytes_read);
21059 line_ptr += bytes_read;
21060 extended_end = line_ptr + extended_len;
21061 extended_op = read_1_byte (abfd, line_ptr);
21062 line_ptr += 1;
21063 switch (extended_op)
21064 {
21065 case DW_LNE_end_sequence:
21066 state_machine.handle_end_sequence ();
21067 end_sequence = true;
21068 break;
21069 case DW_LNE_set_address:
21070 {
21071 CORE_ADDR address
21072 = read_address (abfd, line_ptr, cu, &bytes_read);
21073 line_ptr += bytes_read;
21074
21075 state_machine.check_line_address (cu, line_ptr,
21076 lowpc - baseaddr, address);
21077 state_machine.handle_set_address (baseaddr, address);
21078 }
21079 break;
21080 case DW_LNE_define_file:
21081 {
21082 const char *cur_file;
21083 unsigned int mod_time, length;
21084 dir_index dindex;
21085
21086 cur_file = read_direct_string (abfd, line_ptr,
21087 &bytes_read);
21088 line_ptr += bytes_read;
21089 dindex = (dir_index)
21090 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21091 line_ptr += bytes_read;
21092 mod_time =
21093 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21094 line_ptr += bytes_read;
21095 length =
21096 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21097 line_ptr += bytes_read;
21098 lh->add_file_name (cur_file, dindex, mod_time, length);
21099 }
21100 break;
21101 case DW_LNE_set_discriminator:
21102 {
21103 /* The discriminator is not interesting to the
21104 debugger; just ignore it. We still need to
21105 check its value though:
21106 if there are consecutive entries for the same
21107 (non-prologue) line we want to coalesce them.
21108 PR 17276. */
21109 unsigned int discr
21110 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21111 line_ptr += bytes_read;
21112
21113 state_machine.handle_set_discriminator (discr);
21114 }
21115 break;
21116 default:
21117 complaint (_("mangled .debug_line section"));
21118 return;
21119 }
21120 /* Make sure that we parsed the extended op correctly. If e.g.
21121 we expected a different address size than the producer used,
21122 we may have read the wrong number of bytes. */
21123 if (line_ptr != extended_end)
21124 {
21125 complaint (_("mangled .debug_line section"));
21126 return;
21127 }
21128 break;
21129 case DW_LNS_copy:
21130 state_machine.handle_copy ();
21131 break;
21132 case DW_LNS_advance_pc:
21133 {
21134 CORE_ADDR adjust
21135 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21136 line_ptr += bytes_read;
21137
21138 state_machine.handle_advance_pc (adjust);
21139 }
21140 break;
21141 case DW_LNS_advance_line:
21142 {
21143 int line_delta
21144 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21145 line_ptr += bytes_read;
21146
21147 state_machine.handle_advance_line (line_delta);
21148 }
21149 break;
21150 case DW_LNS_set_file:
21151 {
21152 file_name_index file
21153 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21154 &bytes_read);
21155 line_ptr += bytes_read;
21156
21157 state_machine.handle_set_file (file);
21158 }
21159 break;
21160 case DW_LNS_set_column:
21161 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21162 line_ptr += bytes_read;
21163 break;
21164 case DW_LNS_negate_stmt:
21165 state_machine.handle_negate_stmt ();
21166 break;
21167 case DW_LNS_set_basic_block:
21168 break;
21169 /* Add to the address register of the state machine the
21170 address increment value corresponding to special opcode
21171 255. I.e., this value is scaled by the minimum
21172 instruction length since special opcode 255 would have
21173 scaled the increment. */
21174 case DW_LNS_const_add_pc:
21175 state_machine.handle_const_add_pc ();
21176 break;
21177 case DW_LNS_fixed_advance_pc:
21178 {
21179 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21180 line_ptr += 2;
21181
21182 state_machine.handle_fixed_advance_pc (addr_adj);
21183 }
21184 break;
21185 default:
21186 {
21187 /* Unknown standard opcode, ignore it. */
21188 int i;
21189
21190 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21191 {
21192 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21193 line_ptr += bytes_read;
21194 }
21195 }
21196 }
21197 }
21198
21199 if (!end_sequence)
21200 dwarf2_debug_line_missing_end_sequence_complaint ();
21201
21202 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21203 in which case we still finish recording the last line). */
21204 state_machine.record_line (true);
21205 }
21206 }
21207
21208 /* Decode the Line Number Program (LNP) for the given line_header
21209 structure and CU. The actual information extracted and the type
21210 of structures created from the LNP depends on the value of PST.
21211
21212 1. If PST is NULL, then this procedure uses the data from the program
21213 to create all necessary symbol tables, and their linetables.
21214
21215 2. If PST is not NULL, this procedure reads the program to determine
21216 the list of files included by the unit represented by PST, and
21217 builds all the associated partial symbol tables.
21218
21219 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21220 It is used for relative paths in the line table.
21221 NOTE: When processing partial symtabs (pst != NULL),
21222 comp_dir == pst->dirname.
21223
21224 NOTE: It is important that psymtabs have the same file name (via strcmp)
21225 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21226 symtab we don't use it in the name of the psymtabs we create.
21227 E.g. expand_line_sal requires this when finding psymtabs to expand.
21228 A good testcase for this is mb-inline.exp.
21229
21230 LOWPC is the lowest address in CU (or 0 if not known).
21231
21232 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21233 for its PC<->lines mapping information. Otherwise only the filename
21234 table is read in. */
21235
21236 static void
21237 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21238 struct dwarf2_cu *cu, struct partial_symtab *pst,
21239 CORE_ADDR lowpc, int decode_mapping)
21240 {
21241 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21242 const int decode_for_pst_p = (pst != NULL);
21243
21244 if (decode_mapping)
21245 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21246
21247 if (decode_for_pst_p)
21248 {
21249 int file_index;
21250
21251 /* Now that we're done scanning the Line Header Program, we can
21252 create the psymtab of each included file. */
21253 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21254 if (lh->file_names[file_index].included_p == 1)
21255 {
21256 gdb::unique_xmalloc_ptr<char> name_holder;
21257 const char *include_name =
21258 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21259 &name_holder);
21260 if (include_name != NULL)
21261 dwarf2_create_include_psymtab (include_name, pst, objfile);
21262 }
21263 }
21264 else
21265 {
21266 /* Make sure a symtab is created for every file, even files
21267 which contain only variables (i.e. no code with associated
21268 line numbers). */
21269 buildsym_compunit *builder = cu->get_builder ();
21270 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21271 int i;
21272
21273 for (i = 0; i < lh->file_names.size (); i++)
21274 {
21275 file_entry &fe = lh->file_names[i];
21276
21277 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21278
21279 if (builder->get_current_subfile ()->symtab == NULL)
21280 {
21281 builder->get_current_subfile ()->symtab
21282 = allocate_symtab (cust,
21283 builder->get_current_subfile ()->name);
21284 }
21285 fe.symtab = builder->get_current_subfile ()->symtab;
21286 }
21287 }
21288 }
21289
21290 /* Start a subfile for DWARF. FILENAME is the name of the file and
21291 DIRNAME the name of the source directory which contains FILENAME
21292 or NULL if not known.
21293 This routine tries to keep line numbers from identical absolute and
21294 relative file names in a common subfile.
21295
21296 Using the `list' example from the GDB testsuite, which resides in
21297 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21298 of /srcdir/list0.c yields the following debugging information for list0.c:
21299
21300 DW_AT_name: /srcdir/list0.c
21301 DW_AT_comp_dir: /compdir
21302 files.files[0].name: list0.h
21303 files.files[0].dir: /srcdir
21304 files.files[1].name: list0.c
21305 files.files[1].dir: /srcdir
21306
21307 The line number information for list0.c has to end up in a single
21308 subfile, so that `break /srcdir/list0.c:1' works as expected.
21309 start_subfile will ensure that this happens provided that we pass the
21310 concatenation of files.files[1].dir and files.files[1].name as the
21311 subfile's name. */
21312
21313 static void
21314 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21315 const char *dirname)
21316 {
21317 char *copy = NULL;
21318
21319 /* In order not to lose the line information directory,
21320 we concatenate it to the filename when it makes sense.
21321 Note that the Dwarf3 standard says (speaking of filenames in line
21322 information): ``The directory index is ignored for file names
21323 that represent full path names''. Thus ignoring dirname in the
21324 `else' branch below isn't an issue. */
21325
21326 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21327 {
21328 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21329 filename = copy;
21330 }
21331
21332 cu->get_builder ()->start_subfile (filename);
21333
21334 if (copy != NULL)
21335 xfree (copy);
21336 }
21337
21338 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21339 buildsym_compunit constructor. */
21340
21341 struct compunit_symtab *
21342 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21343 CORE_ADDR low_pc)
21344 {
21345 gdb_assert (m_builder == nullptr);
21346
21347 m_builder.reset (new struct buildsym_compunit
21348 (per_cu->dwarf2_per_objfile->objfile,
21349 name, comp_dir, language, low_pc));
21350
21351 list_in_scope = get_builder ()->get_file_symbols ();
21352
21353 get_builder ()->record_debugformat ("DWARF 2");
21354 get_builder ()->record_producer (producer);
21355
21356 processing_has_namespace_info = false;
21357
21358 return get_builder ()->get_compunit_symtab ();
21359 }
21360
21361 static void
21362 var_decode_location (struct attribute *attr, struct symbol *sym,
21363 struct dwarf2_cu *cu)
21364 {
21365 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21366 struct comp_unit_head *cu_header = &cu->header;
21367
21368 /* NOTE drow/2003-01-30: There used to be a comment and some special
21369 code here to turn a symbol with DW_AT_external and a
21370 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21371 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21372 with some versions of binutils) where shared libraries could have
21373 relocations against symbols in their debug information - the
21374 minimal symbol would have the right address, but the debug info
21375 would not. It's no longer necessary, because we will explicitly
21376 apply relocations when we read in the debug information now. */
21377
21378 /* A DW_AT_location attribute with no contents indicates that a
21379 variable has been optimized away. */
21380 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21381 {
21382 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21383 return;
21384 }
21385
21386 /* Handle one degenerate form of location expression specially, to
21387 preserve GDB's previous behavior when section offsets are
21388 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21389 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21390
21391 if (attr_form_is_block (attr)
21392 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21393 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21394 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21395 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21396 && (DW_BLOCK (attr)->size
21397 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21398 {
21399 unsigned int dummy;
21400
21401 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21402 SYMBOL_VALUE_ADDRESS (sym) =
21403 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21404 else
21405 SYMBOL_VALUE_ADDRESS (sym) =
21406 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21407 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21408 fixup_symbol_section (sym, objfile);
21409 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21410 SYMBOL_SECTION (sym));
21411 return;
21412 }
21413
21414 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21415 expression evaluator, and use LOC_COMPUTED only when necessary
21416 (i.e. when the value of a register or memory location is
21417 referenced, or a thread-local block, etc.). Then again, it might
21418 not be worthwhile. I'm assuming that it isn't unless performance
21419 or memory numbers show me otherwise. */
21420
21421 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21422
21423 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21424 cu->has_loclist = true;
21425 }
21426
21427 /* Given a pointer to a DWARF information entry, figure out if we need
21428 to make a symbol table entry for it, and if so, create a new entry
21429 and return a pointer to it.
21430 If TYPE is NULL, determine symbol type from the die, otherwise
21431 used the passed type.
21432 If SPACE is not NULL, use it to hold the new symbol. If it is
21433 NULL, allocate a new symbol on the objfile's obstack. */
21434
21435 static struct symbol *
21436 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21437 struct symbol *space)
21438 {
21439 struct dwarf2_per_objfile *dwarf2_per_objfile
21440 = cu->per_cu->dwarf2_per_objfile;
21441 struct objfile *objfile = dwarf2_per_objfile->objfile;
21442 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21443 struct symbol *sym = NULL;
21444 const char *name;
21445 struct attribute *attr = NULL;
21446 struct attribute *attr2 = NULL;
21447 CORE_ADDR baseaddr;
21448 struct pending **list_to_add = NULL;
21449
21450 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21451
21452 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21453
21454 name = dwarf2_name (die, cu);
21455 if (name)
21456 {
21457 const char *linkagename;
21458 int suppress_add = 0;
21459
21460 if (space)
21461 sym = space;
21462 else
21463 sym = allocate_symbol (objfile);
21464 OBJSTAT (objfile, n_syms++);
21465
21466 /* Cache this symbol's name and the name's demangled form (if any). */
21467 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21468 linkagename = dwarf2_physname (name, die, cu);
21469 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21470
21471 /* Fortran does not have mangling standard and the mangling does differ
21472 between gfortran, iFort etc. */
21473 if (cu->language == language_fortran
21474 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21475 symbol_set_demangled_name (&(sym->ginfo),
21476 dwarf2_full_name (name, die, cu),
21477 NULL);
21478
21479 /* Default assumptions.
21480 Use the passed type or decode it from the die. */
21481 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21482 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21483 if (type != NULL)
21484 SYMBOL_TYPE (sym) = type;
21485 else
21486 SYMBOL_TYPE (sym) = die_type (die, cu);
21487 attr = dwarf2_attr (die,
21488 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21489 cu);
21490 if (attr)
21491 {
21492 SYMBOL_LINE (sym) = DW_UNSND (attr);
21493 }
21494
21495 attr = dwarf2_attr (die,
21496 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21497 cu);
21498 if (attr)
21499 {
21500 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21501 struct file_entry *fe;
21502
21503 if (cu->line_header != NULL)
21504 fe = cu->line_header->file_name_at (file_index);
21505 else
21506 fe = NULL;
21507
21508 if (fe == NULL)
21509 complaint (_("file index out of range"));
21510 else
21511 symbol_set_symtab (sym, fe->symtab);
21512 }
21513
21514 switch (die->tag)
21515 {
21516 case DW_TAG_label:
21517 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21518 if (attr)
21519 {
21520 CORE_ADDR addr;
21521
21522 addr = attr_value_as_address (attr);
21523 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21524 SYMBOL_VALUE_ADDRESS (sym) = addr;
21525 }
21526 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21527 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21528 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21529 add_symbol_to_list (sym, cu->list_in_scope);
21530 break;
21531 case DW_TAG_subprogram:
21532 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21533 finish_block. */
21534 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21535 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21536 if ((attr2 && (DW_UNSND (attr2) != 0))
21537 || cu->language == language_ada)
21538 {
21539 /* Subprograms marked external are stored as a global symbol.
21540 Ada subprograms, whether marked external or not, are always
21541 stored as a global symbol, because we want to be able to
21542 access them globally. For instance, we want to be able
21543 to break on a nested subprogram without having to
21544 specify the context. */
21545 list_to_add = cu->get_builder ()->get_global_symbols ();
21546 }
21547 else
21548 {
21549 list_to_add = cu->list_in_scope;
21550 }
21551 break;
21552 case DW_TAG_inlined_subroutine:
21553 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21554 finish_block. */
21555 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21556 SYMBOL_INLINED (sym) = 1;
21557 list_to_add = cu->list_in_scope;
21558 break;
21559 case DW_TAG_template_value_param:
21560 suppress_add = 1;
21561 /* Fall through. */
21562 case DW_TAG_constant:
21563 case DW_TAG_variable:
21564 case DW_TAG_member:
21565 /* Compilation with minimal debug info may result in
21566 variables with missing type entries. Change the
21567 misleading `void' type to something sensible. */
21568 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21569 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21570
21571 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21572 /* In the case of DW_TAG_member, we should only be called for
21573 static const members. */
21574 if (die->tag == DW_TAG_member)
21575 {
21576 /* dwarf2_add_field uses die_is_declaration,
21577 so we do the same. */
21578 gdb_assert (die_is_declaration (die, cu));
21579 gdb_assert (attr);
21580 }
21581 if (attr)
21582 {
21583 dwarf2_const_value (attr, sym, cu);
21584 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21585 if (!suppress_add)
21586 {
21587 if (attr2 && (DW_UNSND (attr2) != 0))
21588 list_to_add = cu->get_builder ()->get_global_symbols ();
21589 else
21590 list_to_add = cu->list_in_scope;
21591 }
21592 break;
21593 }
21594 attr = dwarf2_attr (die, DW_AT_location, cu);
21595 if (attr)
21596 {
21597 var_decode_location (attr, sym, cu);
21598 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21599
21600 /* Fortran explicitly imports any global symbols to the local
21601 scope by DW_TAG_common_block. */
21602 if (cu->language == language_fortran && die->parent
21603 && die->parent->tag == DW_TAG_common_block)
21604 attr2 = NULL;
21605
21606 if (SYMBOL_CLASS (sym) == LOC_STATIC
21607 && SYMBOL_VALUE_ADDRESS (sym) == 0
21608 && !dwarf2_per_objfile->has_section_at_zero)
21609 {
21610 /* When a static variable is eliminated by the linker,
21611 the corresponding debug information is not stripped
21612 out, but the variable address is set to null;
21613 do not add such variables into symbol table. */
21614 }
21615 else if (attr2 && (DW_UNSND (attr2) != 0))
21616 {
21617 /* Workaround gfortran PR debug/40040 - it uses
21618 DW_AT_location for variables in -fPIC libraries which may
21619 get overriden by other libraries/executable and get
21620 a different address. Resolve it by the minimal symbol
21621 which may come from inferior's executable using copy
21622 relocation. Make this workaround only for gfortran as for
21623 other compilers GDB cannot guess the minimal symbol
21624 Fortran mangling kind. */
21625 if (cu->language == language_fortran && die->parent
21626 && die->parent->tag == DW_TAG_module
21627 && cu->producer
21628 && startswith (cu->producer, "GNU Fortran"))
21629 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21630
21631 /* A variable with DW_AT_external is never static,
21632 but it may be block-scoped. */
21633 list_to_add
21634 = ((cu->list_in_scope
21635 == cu->get_builder ()->get_file_symbols ())
21636 ? cu->get_builder ()->get_global_symbols ()
21637 : cu->list_in_scope);
21638 }
21639 else
21640 list_to_add = cu->list_in_scope;
21641 }
21642 else
21643 {
21644 /* We do not know the address of this symbol.
21645 If it is an external symbol and we have type information
21646 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21647 The address of the variable will then be determined from
21648 the minimal symbol table whenever the variable is
21649 referenced. */
21650 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21651
21652 /* Fortran explicitly imports any global symbols to the local
21653 scope by DW_TAG_common_block. */
21654 if (cu->language == language_fortran && die->parent
21655 && die->parent->tag == DW_TAG_common_block)
21656 {
21657 /* SYMBOL_CLASS doesn't matter here because
21658 read_common_block is going to reset it. */
21659 if (!suppress_add)
21660 list_to_add = cu->list_in_scope;
21661 }
21662 else if (attr2 && (DW_UNSND (attr2) != 0)
21663 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21664 {
21665 /* A variable with DW_AT_external is never static, but it
21666 may be block-scoped. */
21667 list_to_add
21668 = ((cu->list_in_scope
21669 == cu->get_builder ()->get_file_symbols ())
21670 ? cu->get_builder ()->get_global_symbols ()
21671 : cu->list_in_scope);
21672
21673 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21674 }
21675 else if (!die_is_declaration (die, cu))
21676 {
21677 /* Use the default LOC_OPTIMIZED_OUT class. */
21678 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21679 if (!suppress_add)
21680 list_to_add = cu->list_in_scope;
21681 }
21682 }
21683 break;
21684 case DW_TAG_formal_parameter:
21685 {
21686 /* If we are inside a function, mark this as an argument. If
21687 not, we might be looking at an argument to an inlined function
21688 when we do not have enough information to show inlined frames;
21689 pretend it's a local variable in that case so that the user can
21690 still see it. */
21691 struct context_stack *curr
21692 = cu->get_builder ()->get_current_context_stack ();
21693 if (curr != nullptr && curr->name != nullptr)
21694 SYMBOL_IS_ARGUMENT (sym) = 1;
21695 attr = dwarf2_attr (die, DW_AT_location, cu);
21696 if (attr)
21697 {
21698 var_decode_location (attr, sym, cu);
21699 }
21700 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21701 if (attr)
21702 {
21703 dwarf2_const_value (attr, sym, cu);
21704 }
21705
21706 list_to_add = cu->list_in_scope;
21707 }
21708 break;
21709 case DW_TAG_unspecified_parameters:
21710 /* From varargs functions; gdb doesn't seem to have any
21711 interest in this information, so just ignore it for now.
21712 (FIXME?) */
21713 break;
21714 case DW_TAG_template_type_param:
21715 suppress_add = 1;
21716 /* Fall through. */
21717 case DW_TAG_class_type:
21718 case DW_TAG_interface_type:
21719 case DW_TAG_structure_type:
21720 case DW_TAG_union_type:
21721 case DW_TAG_set_type:
21722 case DW_TAG_enumeration_type:
21723 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21724 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21725
21726 {
21727 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21728 really ever be static objects: otherwise, if you try
21729 to, say, break of a class's method and you're in a file
21730 which doesn't mention that class, it won't work unless
21731 the check for all static symbols in lookup_symbol_aux
21732 saves you. See the OtherFileClass tests in
21733 gdb.c++/namespace.exp. */
21734
21735 if (!suppress_add)
21736 {
21737 buildsym_compunit *builder = cu->get_builder ();
21738 list_to_add
21739 = (cu->list_in_scope == builder->get_file_symbols ()
21740 && cu->language == language_cplus
21741 ? builder->get_global_symbols ()
21742 : cu->list_in_scope);
21743
21744 /* The semantics of C++ state that "struct foo {
21745 ... }" also defines a typedef for "foo". */
21746 if (cu->language == language_cplus
21747 || cu->language == language_ada
21748 || cu->language == language_d
21749 || cu->language == language_rust)
21750 {
21751 /* The symbol's name is already allocated along
21752 with this objfile, so we don't need to
21753 duplicate it for the type. */
21754 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21755 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21756 }
21757 }
21758 }
21759 break;
21760 case DW_TAG_typedef:
21761 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21762 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21763 list_to_add = cu->list_in_scope;
21764 break;
21765 case DW_TAG_base_type:
21766 case DW_TAG_subrange_type:
21767 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21768 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21769 list_to_add = cu->list_in_scope;
21770 break;
21771 case DW_TAG_enumerator:
21772 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21773 if (attr)
21774 {
21775 dwarf2_const_value (attr, sym, cu);
21776 }
21777 {
21778 /* NOTE: carlton/2003-11-10: See comment above in the
21779 DW_TAG_class_type, etc. block. */
21780
21781 list_to_add
21782 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21783 && cu->language == language_cplus
21784 ? cu->get_builder ()->get_global_symbols ()
21785 : cu->list_in_scope);
21786 }
21787 break;
21788 case DW_TAG_imported_declaration:
21789 case DW_TAG_namespace:
21790 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21791 list_to_add = cu->get_builder ()->get_global_symbols ();
21792 break;
21793 case DW_TAG_module:
21794 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21795 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21796 list_to_add = cu->get_builder ()->get_global_symbols ();
21797 break;
21798 case DW_TAG_common_block:
21799 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21800 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21801 add_symbol_to_list (sym, cu->list_in_scope);
21802 break;
21803 default:
21804 /* Not a tag we recognize. Hopefully we aren't processing
21805 trash data, but since we must specifically ignore things
21806 we don't recognize, there is nothing else we should do at
21807 this point. */
21808 complaint (_("unsupported tag: '%s'"),
21809 dwarf_tag_name (die->tag));
21810 break;
21811 }
21812
21813 if (suppress_add)
21814 {
21815 sym->hash_next = objfile->template_symbols;
21816 objfile->template_symbols = sym;
21817 list_to_add = NULL;
21818 }
21819
21820 if (list_to_add != NULL)
21821 add_symbol_to_list (sym, list_to_add);
21822
21823 /* For the benefit of old versions of GCC, check for anonymous
21824 namespaces based on the demangled name. */
21825 if (!cu->processing_has_namespace_info
21826 && cu->language == language_cplus)
21827 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21828 }
21829 return (sym);
21830 }
21831
21832 /* Given an attr with a DW_FORM_dataN value in host byte order,
21833 zero-extend it as appropriate for the symbol's type. The DWARF
21834 standard (v4) is not entirely clear about the meaning of using
21835 DW_FORM_dataN for a constant with a signed type, where the type is
21836 wider than the data. The conclusion of a discussion on the DWARF
21837 list was that this is unspecified. We choose to always zero-extend
21838 because that is the interpretation long in use by GCC. */
21839
21840 static gdb_byte *
21841 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21842 struct dwarf2_cu *cu, LONGEST *value, int bits)
21843 {
21844 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21845 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21846 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21847 LONGEST l = DW_UNSND (attr);
21848
21849 if (bits < sizeof (*value) * 8)
21850 {
21851 l &= ((LONGEST) 1 << bits) - 1;
21852 *value = l;
21853 }
21854 else if (bits == sizeof (*value) * 8)
21855 *value = l;
21856 else
21857 {
21858 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21859 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21860 return bytes;
21861 }
21862
21863 return NULL;
21864 }
21865
21866 /* Read a constant value from an attribute. Either set *VALUE, or if
21867 the value does not fit in *VALUE, set *BYTES - either already
21868 allocated on the objfile obstack, or newly allocated on OBSTACK,
21869 or, set *BATON, if we translated the constant to a location
21870 expression. */
21871
21872 static void
21873 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21874 const char *name, struct obstack *obstack,
21875 struct dwarf2_cu *cu,
21876 LONGEST *value, const gdb_byte **bytes,
21877 struct dwarf2_locexpr_baton **baton)
21878 {
21879 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21880 struct comp_unit_head *cu_header = &cu->header;
21881 struct dwarf_block *blk;
21882 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21883 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21884
21885 *value = 0;
21886 *bytes = NULL;
21887 *baton = NULL;
21888
21889 switch (attr->form)
21890 {
21891 case DW_FORM_addr:
21892 case DW_FORM_addrx:
21893 case DW_FORM_GNU_addr_index:
21894 {
21895 gdb_byte *data;
21896
21897 if (TYPE_LENGTH (type) != cu_header->addr_size)
21898 dwarf2_const_value_length_mismatch_complaint (name,
21899 cu_header->addr_size,
21900 TYPE_LENGTH (type));
21901 /* Symbols of this form are reasonably rare, so we just
21902 piggyback on the existing location code rather than writing
21903 a new implementation of symbol_computed_ops. */
21904 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21905 (*baton)->per_cu = cu->per_cu;
21906 gdb_assert ((*baton)->per_cu);
21907
21908 (*baton)->size = 2 + cu_header->addr_size;
21909 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21910 (*baton)->data = data;
21911
21912 data[0] = DW_OP_addr;
21913 store_unsigned_integer (&data[1], cu_header->addr_size,
21914 byte_order, DW_ADDR (attr));
21915 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21916 }
21917 break;
21918 case DW_FORM_string:
21919 case DW_FORM_strp:
21920 case DW_FORM_strx:
21921 case DW_FORM_GNU_str_index:
21922 case DW_FORM_GNU_strp_alt:
21923 /* DW_STRING is already allocated on the objfile obstack, point
21924 directly to it. */
21925 *bytes = (const gdb_byte *) DW_STRING (attr);
21926 break;
21927 case DW_FORM_block1:
21928 case DW_FORM_block2:
21929 case DW_FORM_block4:
21930 case DW_FORM_block:
21931 case DW_FORM_exprloc:
21932 case DW_FORM_data16:
21933 blk = DW_BLOCK (attr);
21934 if (TYPE_LENGTH (type) != blk->size)
21935 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21936 TYPE_LENGTH (type));
21937 *bytes = blk->data;
21938 break;
21939
21940 /* The DW_AT_const_value attributes are supposed to carry the
21941 symbol's value "represented as it would be on the target
21942 architecture." By the time we get here, it's already been
21943 converted to host endianness, so we just need to sign- or
21944 zero-extend it as appropriate. */
21945 case DW_FORM_data1:
21946 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21947 break;
21948 case DW_FORM_data2:
21949 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21950 break;
21951 case DW_FORM_data4:
21952 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21953 break;
21954 case DW_FORM_data8:
21955 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21956 break;
21957
21958 case DW_FORM_sdata:
21959 case DW_FORM_implicit_const:
21960 *value = DW_SND (attr);
21961 break;
21962
21963 case DW_FORM_udata:
21964 *value = DW_UNSND (attr);
21965 break;
21966
21967 default:
21968 complaint (_("unsupported const value attribute form: '%s'"),
21969 dwarf_form_name (attr->form));
21970 *value = 0;
21971 break;
21972 }
21973 }
21974
21975
21976 /* Copy constant value from an attribute to a symbol. */
21977
21978 static void
21979 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21980 struct dwarf2_cu *cu)
21981 {
21982 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21983 LONGEST value;
21984 const gdb_byte *bytes;
21985 struct dwarf2_locexpr_baton *baton;
21986
21987 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21988 SYMBOL_PRINT_NAME (sym),
21989 &objfile->objfile_obstack, cu,
21990 &value, &bytes, &baton);
21991
21992 if (baton != NULL)
21993 {
21994 SYMBOL_LOCATION_BATON (sym) = baton;
21995 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21996 }
21997 else if (bytes != NULL)
21998 {
21999 SYMBOL_VALUE_BYTES (sym) = bytes;
22000 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22001 }
22002 else
22003 {
22004 SYMBOL_VALUE (sym) = value;
22005 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22006 }
22007 }
22008
22009 /* Return the type of the die in question using its DW_AT_type attribute. */
22010
22011 static struct type *
22012 die_type (struct die_info *die, struct dwarf2_cu *cu)
22013 {
22014 struct attribute *type_attr;
22015
22016 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22017 if (!type_attr)
22018 {
22019 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22020 /* A missing DW_AT_type represents a void type. */
22021 return objfile_type (objfile)->builtin_void;
22022 }
22023
22024 return lookup_die_type (die, type_attr, cu);
22025 }
22026
22027 /* True iff CU's producer generates GNAT Ada auxiliary information
22028 that allows to find parallel types through that information instead
22029 of having to do expensive parallel lookups by type name. */
22030
22031 static int
22032 need_gnat_info (struct dwarf2_cu *cu)
22033 {
22034 /* Assume that the Ada compiler was GNAT, which always produces
22035 the auxiliary information. */
22036 return (cu->language == language_ada);
22037 }
22038
22039 /* Return the auxiliary type of the die in question using its
22040 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22041 attribute is not present. */
22042
22043 static struct type *
22044 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22045 {
22046 struct attribute *type_attr;
22047
22048 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22049 if (!type_attr)
22050 return NULL;
22051
22052 return lookup_die_type (die, type_attr, cu);
22053 }
22054
22055 /* If DIE has a descriptive_type attribute, then set the TYPE's
22056 descriptive type accordingly. */
22057
22058 static void
22059 set_descriptive_type (struct type *type, struct die_info *die,
22060 struct dwarf2_cu *cu)
22061 {
22062 struct type *descriptive_type = die_descriptive_type (die, cu);
22063
22064 if (descriptive_type)
22065 {
22066 ALLOCATE_GNAT_AUX_TYPE (type);
22067 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22068 }
22069 }
22070
22071 /* Return the containing type of the die in question using its
22072 DW_AT_containing_type attribute. */
22073
22074 static struct type *
22075 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22076 {
22077 struct attribute *type_attr;
22078 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22079
22080 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22081 if (!type_attr)
22082 error (_("Dwarf Error: Problem turning containing type into gdb type "
22083 "[in module %s]"), objfile_name (objfile));
22084
22085 return lookup_die_type (die, type_attr, cu);
22086 }
22087
22088 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22089
22090 static struct type *
22091 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22092 {
22093 struct dwarf2_per_objfile *dwarf2_per_objfile
22094 = cu->per_cu->dwarf2_per_objfile;
22095 struct objfile *objfile = dwarf2_per_objfile->objfile;
22096 char *saved;
22097
22098 std::string message
22099 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22100 objfile_name (objfile),
22101 sect_offset_str (cu->header.sect_off),
22102 sect_offset_str (die->sect_off));
22103 saved = obstack_strdup (&objfile->objfile_obstack, message);
22104
22105 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22106 }
22107
22108 /* Look up the type of DIE in CU using its type attribute ATTR.
22109 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22110 DW_AT_containing_type.
22111 If there is no type substitute an error marker. */
22112
22113 static struct type *
22114 lookup_die_type (struct die_info *die, const struct attribute *attr,
22115 struct dwarf2_cu *cu)
22116 {
22117 struct dwarf2_per_objfile *dwarf2_per_objfile
22118 = cu->per_cu->dwarf2_per_objfile;
22119 struct objfile *objfile = dwarf2_per_objfile->objfile;
22120 struct type *this_type;
22121
22122 gdb_assert (attr->name == DW_AT_type
22123 || attr->name == DW_AT_GNAT_descriptive_type
22124 || attr->name == DW_AT_containing_type);
22125
22126 /* First see if we have it cached. */
22127
22128 if (attr->form == DW_FORM_GNU_ref_alt)
22129 {
22130 struct dwarf2_per_cu_data *per_cu;
22131 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22132
22133 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22134 dwarf2_per_objfile);
22135 this_type = get_die_type_at_offset (sect_off, per_cu);
22136 }
22137 else if (attr_form_is_ref (attr))
22138 {
22139 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22140
22141 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22142 }
22143 else if (attr->form == DW_FORM_ref_sig8)
22144 {
22145 ULONGEST signature = DW_SIGNATURE (attr);
22146
22147 return get_signatured_type (die, signature, cu);
22148 }
22149 else
22150 {
22151 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22152 " at %s [in module %s]"),
22153 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22154 objfile_name (objfile));
22155 return build_error_marker_type (cu, die);
22156 }
22157
22158 /* If not cached we need to read it in. */
22159
22160 if (this_type == NULL)
22161 {
22162 struct die_info *type_die = NULL;
22163 struct dwarf2_cu *type_cu = cu;
22164
22165 if (attr_form_is_ref (attr))
22166 type_die = follow_die_ref (die, attr, &type_cu);
22167 if (type_die == NULL)
22168 return build_error_marker_type (cu, die);
22169 /* If we find the type now, it's probably because the type came
22170 from an inter-CU reference and the type's CU got expanded before
22171 ours. */
22172 this_type = read_type_die (type_die, type_cu);
22173 }
22174
22175 /* If we still don't have a type use an error marker. */
22176
22177 if (this_type == NULL)
22178 return build_error_marker_type (cu, die);
22179
22180 return this_type;
22181 }
22182
22183 /* Return the type in DIE, CU.
22184 Returns NULL for invalid types.
22185
22186 This first does a lookup in die_type_hash,
22187 and only reads the die in if necessary.
22188
22189 NOTE: This can be called when reading in partial or full symbols. */
22190
22191 static struct type *
22192 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22193 {
22194 struct type *this_type;
22195
22196 this_type = get_die_type (die, cu);
22197 if (this_type)
22198 return this_type;
22199
22200 return read_type_die_1 (die, cu);
22201 }
22202
22203 /* Read the type in DIE, CU.
22204 Returns NULL for invalid types. */
22205
22206 static struct type *
22207 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22208 {
22209 struct type *this_type = NULL;
22210
22211 switch (die->tag)
22212 {
22213 case DW_TAG_class_type:
22214 case DW_TAG_interface_type:
22215 case DW_TAG_structure_type:
22216 case DW_TAG_union_type:
22217 this_type = read_structure_type (die, cu);
22218 break;
22219 case DW_TAG_enumeration_type:
22220 this_type = read_enumeration_type (die, cu);
22221 break;
22222 case DW_TAG_subprogram:
22223 case DW_TAG_subroutine_type:
22224 case DW_TAG_inlined_subroutine:
22225 this_type = read_subroutine_type (die, cu);
22226 break;
22227 case DW_TAG_array_type:
22228 this_type = read_array_type (die, cu);
22229 break;
22230 case DW_TAG_set_type:
22231 this_type = read_set_type (die, cu);
22232 break;
22233 case DW_TAG_pointer_type:
22234 this_type = read_tag_pointer_type (die, cu);
22235 break;
22236 case DW_TAG_ptr_to_member_type:
22237 this_type = read_tag_ptr_to_member_type (die, cu);
22238 break;
22239 case DW_TAG_reference_type:
22240 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22241 break;
22242 case DW_TAG_rvalue_reference_type:
22243 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22244 break;
22245 case DW_TAG_const_type:
22246 this_type = read_tag_const_type (die, cu);
22247 break;
22248 case DW_TAG_volatile_type:
22249 this_type = read_tag_volatile_type (die, cu);
22250 break;
22251 case DW_TAG_restrict_type:
22252 this_type = read_tag_restrict_type (die, cu);
22253 break;
22254 case DW_TAG_string_type:
22255 this_type = read_tag_string_type (die, cu);
22256 break;
22257 case DW_TAG_typedef:
22258 this_type = read_typedef (die, cu);
22259 break;
22260 case DW_TAG_subrange_type:
22261 this_type = read_subrange_type (die, cu);
22262 break;
22263 case DW_TAG_base_type:
22264 this_type = read_base_type (die, cu);
22265 break;
22266 case DW_TAG_unspecified_type:
22267 this_type = read_unspecified_type (die, cu);
22268 break;
22269 case DW_TAG_namespace:
22270 this_type = read_namespace_type (die, cu);
22271 break;
22272 case DW_TAG_module:
22273 this_type = read_module_type (die, cu);
22274 break;
22275 case DW_TAG_atomic_type:
22276 this_type = read_tag_atomic_type (die, cu);
22277 break;
22278 default:
22279 complaint (_("unexpected tag in read_type_die: '%s'"),
22280 dwarf_tag_name (die->tag));
22281 break;
22282 }
22283
22284 return this_type;
22285 }
22286
22287 /* See if we can figure out if the class lives in a namespace. We do
22288 this by looking for a member function; its demangled name will
22289 contain namespace info, if there is any.
22290 Return the computed name or NULL.
22291 Space for the result is allocated on the objfile's obstack.
22292 This is the full-die version of guess_partial_die_structure_name.
22293 In this case we know DIE has no useful parent. */
22294
22295 static char *
22296 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22297 {
22298 struct die_info *spec_die;
22299 struct dwarf2_cu *spec_cu;
22300 struct die_info *child;
22301 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22302
22303 spec_cu = cu;
22304 spec_die = die_specification (die, &spec_cu);
22305 if (spec_die != NULL)
22306 {
22307 die = spec_die;
22308 cu = spec_cu;
22309 }
22310
22311 for (child = die->child;
22312 child != NULL;
22313 child = child->sibling)
22314 {
22315 if (child->tag == DW_TAG_subprogram)
22316 {
22317 const char *linkage_name = dw2_linkage_name (child, cu);
22318
22319 if (linkage_name != NULL)
22320 {
22321 char *actual_name
22322 = language_class_name_from_physname (cu->language_defn,
22323 linkage_name);
22324 char *name = NULL;
22325
22326 if (actual_name != NULL)
22327 {
22328 const char *die_name = dwarf2_name (die, cu);
22329
22330 if (die_name != NULL
22331 && strcmp (die_name, actual_name) != 0)
22332 {
22333 /* Strip off the class name from the full name.
22334 We want the prefix. */
22335 int die_name_len = strlen (die_name);
22336 int actual_name_len = strlen (actual_name);
22337
22338 /* Test for '::' as a sanity check. */
22339 if (actual_name_len > die_name_len + 2
22340 && actual_name[actual_name_len
22341 - die_name_len - 1] == ':')
22342 name = obstack_strndup (
22343 &objfile->per_bfd->storage_obstack,
22344 actual_name, actual_name_len - die_name_len - 2);
22345 }
22346 }
22347 xfree (actual_name);
22348 return name;
22349 }
22350 }
22351 }
22352
22353 return NULL;
22354 }
22355
22356 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22357 prefix part in such case. See
22358 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22359
22360 static const char *
22361 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22362 {
22363 struct attribute *attr;
22364 const char *base;
22365
22366 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22367 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22368 return NULL;
22369
22370 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22371 return NULL;
22372
22373 attr = dw2_linkage_name_attr (die, cu);
22374 if (attr == NULL || DW_STRING (attr) == NULL)
22375 return NULL;
22376
22377 /* dwarf2_name had to be already called. */
22378 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22379
22380 /* Strip the base name, keep any leading namespaces/classes. */
22381 base = strrchr (DW_STRING (attr), ':');
22382 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22383 return "";
22384
22385 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22386 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22387 DW_STRING (attr),
22388 &base[-1] - DW_STRING (attr));
22389 }
22390
22391 /* Return the name of the namespace/class that DIE is defined within,
22392 or "" if we can't tell. The caller should not xfree the result.
22393
22394 For example, if we're within the method foo() in the following
22395 code:
22396
22397 namespace N {
22398 class C {
22399 void foo () {
22400 }
22401 };
22402 }
22403
22404 then determine_prefix on foo's die will return "N::C". */
22405
22406 static const char *
22407 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22408 {
22409 struct dwarf2_per_objfile *dwarf2_per_objfile
22410 = cu->per_cu->dwarf2_per_objfile;
22411 struct die_info *parent, *spec_die;
22412 struct dwarf2_cu *spec_cu;
22413 struct type *parent_type;
22414 const char *retval;
22415
22416 if (cu->language != language_cplus
22417 && cu->language != language_fortran && cu->language != language_d
22418 && cu->language != language_rust)
22419 return "";
22420
22421 retval = anonymous_struct_prefix (die, cu);
22422 if (retval)
22423 return retval;
22424
22425 /* We have to be careful in the presence of DW_AT_specification.
22426 For example, with GCC 3.4, given the code
22427
22428 namespace N {
22429 void foo() {
22430 // Definition of N::foo.
22431 }
22432 }
22433
22434 then we'll have a tree of DIEs like this:
22435
22436 1: DW_TAG_compile_unit
22437 2: DW_TAG_namespace // N
22438 3: DW_TAG_subprogram // declaration of N::foo
22439 4: DW_TAG_subprogram // definition of N::foo
22440 DW_AT_specification // refers to die #3
22441
22442 Thus, when processing die #4, we have to pretend that we're in
22443 the context of its DW_AT_specification, namely the contex of die
22444 #3. */
22445 spec_cu = cu;
22446 spec_die = die_specification (die, &spec_cu);
22447 if (spec_die == NULL)
22448 parent = die->parent;
22449 else
22450 {
22451 parent = spec_die->parent;
22452 cu = spec_cu;
22453 }
22454
22455 if (parent == NULL)
22456 return "";
22457 else if (parent->building_fullname)
22458 {
22459 const char *name;
22460 const char *parent_name;
22461
22462 /* It has been seen on RealView 2.2 built binaries,
22463 DW_TAG_template_type_param types actually _defined_ as
22464 children of the parent class:
22465
22466 enum E {};
22467 template class <class Enum> Class{};
22468 Class<enum E> class_e;
22469
22470 1: DW_TAG_class_type (Class)
22471 2: DW_TAG_enumeration_type (E)
22472 3: DW_TAG_enumerator (enum1:0)
22473 3: DW_TAG_enumerator (enum2:1)
22474 ...
22475 2: DW_TAG_template_type_param
22476 DW_AT_type DW_FORM_ref_udata (E)
22477
22478 Besides being broken debug info, it can put GDB into an
22479 infinite loop. Consider:
22480
22481 When we're building the full name for Class<E>, we'll start
22482 at Class, and go look over its template type parameters,
22483 finding E. We'll then try to build the full name of E, and
22484 reach here. We're now trying to build the full name of E,
22485 and look over the parent DIE for containing scope. In the
22486 broken case, if we followed the parent DIE of E, we'd again
22487 find Class, and once again go look at its template type
22488 arguments, etc., etc. Simply don't consider such parent die
22489 as source-level parent of this die (it can't be, the language
22490 doesn't allow it), and break the loop here. */
22491 name = dwarf2_name (die, cu);
22492 parent_name = dwarf2_name (parent, cu);
22493 complaint (_("template param type '%s' defined within parent '%s'"),
22494 name ? name : "<unknown>",
22495 parent_name ? parent_name : "<unknown>");
22496 return "";
22497 }
22498 else
22499 switch (parent->tag)
22500 {
22501 case DW_TAG_namespace:
22502 parent_type = read_type_die (parent, cu);
22503 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22504 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22505 Work around this problem here. */
22506 if (cu->language == language_cplus
22507 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22508 return "";
22509 /* We give a name to even anonymous namespaces. */
22510 return TYPE_NAME (parent_type);
22511 case DW_TAG_class_type:
22512 case DW_TAG_interface_type:
22513 case DW_TAG_structure_type:
22514 case DW_TAG_union_type:
22515 case DW_TAG_module:
22516 parent_type = read_type_die (parent, cu);
22517 if (TYPE_NAME (parent_type) != NULL)
22518 return TYPE_NAME (parent_type);
22519 else
22520 /* An anonymous structure is only allowed non-static data
22521 members; no typedefs, no member functions, et cetera.
22522 So it does not need a prefix. */
22523 return "";
22524 case DW_TAG_compile_unit:
22525 case DW_TAG_partial_unit:
22526 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22527 if (cu->language == language_cplus
22528 && !dwarf2_per_objfile->types.empty ()
22529 && die->child != NULL
22530 && (die->tag == DW_TAG_class_type
22531 || die->tag == DW_TAG_structure_type
22532 || die->tag == DW_TAG_union_type))
22533 {
22534 char *name = guess_full_die_structure_name (die, cu);
22535 if (name != NULL)
22536 return name;
22537 }
22538 return "";
22539 case DW_TAG_enumeration_type:
22540 parent_type = read_type_die (parent, cu);
22541 if (TYPE_DECLARED_CLASS (parent_type))
22542 {
22543 if (TYPE_NAME (parent_type) != NULL)
22544 return TYPE_NAME (parent_type);
22545 return "";
22546 }
22547 /* Fall through. */
22548 default:
22549 return determine_prefix (parent, cu);
22550 }
22551 }
22552
22553 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22554 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22555 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22556 an obconcat, otherwise allocate storage for the result. The CU argument is
22557 used to determine the language and hence, the appropriate separator. */
22558
22559 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22560
22561 static char *
22562 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22563 int physname, struct dwarf2_cu *cu)
22564 {
22565 const char *lead = "";
22566 const char *sep;
22567
22568 if (suffix == NULL || suffix[0] == '\0'
22569 || prefix == NULL || prefix[0] == '\0')
22570 sep = "";
22571 else if (cu->language == language_d)
22572 {
22573 /* For D, the 'main' function could be defined in any module, but it
22574 should never be prefixed. */
22575 if (strcmp (suffix, "D main") == 0)
22576 {
22577 prefix = "";
22578 sep = "";
22579 }
22580 else
22581 sep = ".";
22582 }
22583 else if (cu->language == language_fortran && physname)
22584 {
22585 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22586 DW_AT_MIPS_linkage_name is preferred and used instead. */
22587
22588 lead = "__";
22589 sep = "_MOD_";
22590 }
22591 else
22592 sep = "::";
22593
22594 if (prefix == NULL)
22595 prefix = "";
22596 if (suffix == NULL)
22597 suffix = "";
22598
22599 if (obs == NULL)
22600 {
22601 char *retval
22602 = ((char *)
22603 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22604
22605 strcpy (retval, lead);
22606 strcat (retval, prefix);
22607 strcat (retval, sep);
22608 strcat (retval, suffix);
22609 return retval;
22610 }
22611 else
22612 {
22613 /* We have an obstack. */
22614 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22615 }
22616 }
22617
22618 /* Return sibling of die, NULL if no sibling. */
22619
22620 static struct die_info *
22621 sibling_die (struct die_info *die)
22622 {
22623 return die->sibling;
22624 }
22625
22626 /* Get name of a die, return NULL if not found. */
22627
22628 static const char *
22629 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22630 struct obstack *obstack)
22631 {
22632 if (name && cu->language == language_cplus)
22633 {
22634 std::string canon_name = cp_canonicalize_string (name);
22635
22636 if (!canon_name.empty ())
22637 {
22638 if (canon_name != name)
22639 name = obstack_strdup (obstack, canon_name);
22640 }
22641 }
22642
22643 return name;
22644 }
22645
22646 /* Get name of a die, return NULL if not found.
22647 Anonymous namespaces are converted to their magic string. */
22648
22649 static const char *
22650 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22651 {
22652 struct attribute *attr;
22653 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22654
22655 attr = dwarf2_attr (die, DW_AT_name, cu);
22656 if ((!attr || !DW_STRING (attr))
22657 && die->tag != DW_TAG_namespace
22658 && die->tag != DW_TAG_class_type
22659 && die->tag != DW_TAG_interface_type
22660 && die->tag != DW_TAG_structure_type
22661 && die->tag != DW_TAG_union_type)
22662 return NULL;
22663
22664 switch (die->tag)
22665 {
22666 case DW_TAG_compile_unit:
22667 case DW_TAG_partial_unit:
22668 /* Compilation units have a DW_AT_name that is a filename, not
22669 a source language identifier. */
22670 case DW_TAG_enumeration_type:
22671 case DW_TAG_enumerator:
22672 /* These tags always have simple identifiers already; no need
22673 to canonicalize them. */
22674 return DW_STRING (attr);
22675
22676 case DW_TAG_namespace:
22677 if (attr != NULL && DW_STRING (attr) != NULL)
22678 return DW_STRING (attr);
22679 return CP_ANONYMOUS_NAMESPACE_STR;
22680
22681 case DW_TAG_class_type:
22682 case DW_TAG_interface_type:
22683 case DW_TAG_structure_type:
22684 case DW_TAG_union_type:
22685 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22686 structures or unions. These were of the form "._%d" in GCC 4.1,
22687 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22688 and GCC 4.4. We work around this problem by ignoring these. */
22689 if (attr && DW_STRING (attr)
22690 && (startswith (DW_STRING (attr), "._")
22691 || startswith (DW_STRING (attr), "<anonymous")))
22692 return NULL;
22693
22694 /* GCC might emit a nameless typedef that has a linkage name. See
22695 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22696 if (!attr || DW_STRING (attr) == NULL)
22697 {
22698 char *demangled = NULL;
22699
22700 attr = dw2_linkage_name_attr (die, cu);
22701 if (attr == NULL || DW_STRING (attr) == NULL)
22702 return NULL;
22703
22704 /* Avoid demangling DW_STRING (attr) the second time on a second
22705 call for the same DIE. */
22706 if (!DW_STRING_IS_CANONICAL (attr))
22707 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22708
22709 if (demangled)
22710 {
22711 const char *base;
22712
22713 /* FIXME: we already did this for the partial symbol... */
22714 DW_STRING (attr)
22715 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22716 demangled);
22717 DW_STRING_IS_CANONICAL (attr) = 1;
22718 xfree (demangled);
22719
22720 /* Strip any leading namespaces/classes, keep only the base name.
22721 DW_AT_name for named DIEs does not contain the prefixes. */
22722 base = strrchr (DW_STRING (attr), ':');
22723 if (base && base > DW_STRING (attr) && base[-1] == ':')
22724 return &base[1];
22725 else
22726 return DW_STRING (attr);
22727 }
22728 }
22729 break;
22730
22731 default:
22732 break;
22733 }
22734
22735 if (!DW_STRING_IS_CANONICAL (attr))
22736 {
22737 DW_STRING (attr)
22738 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22739 &objfile->per_bfd->storage_obstack);
22740 DW_STRING_IS_CANONICAL (attr) = 1;
22741 }
22742 return DW_STRING (attr);
22743 }
22744
22745 /* Return the die that this die in an extension of, or NULL if there
22746 is none. *EXT_CU is the CU containing DIE on input, and the CU
22747 containing the return value on output. */
22748
22749 static struct die_info *
22750 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22751 {
22752 struct attribute *attr;
22753
22754 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22755 if (attr == NULL)
22756 return NULL;
22757
22758 return follow_die_ref (die, attr, ext_cu);
22759 }
22760
22761 /* A convenience function that returns an "unknown" DWARF name,
22762 including the value of V. STR is the name of the entity being
22763 printed, e.g., "TAG". */
22764
22765 static const char *
22766 dwarf_unknown (const char *str, unsigned v)
22767 {
22768 char *cell = get_print_cell ();
22769 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22770 return cell;
22771 }
22772
22773 /* Convert a DIE tag into its string name. */
22774
22775 static const char *
22776 dwarf_tag_name (unsigned tag)
22777 {
22778 const char *name = get_DW_TAG_name (tag);
22779
22780 if (name == NULL)
22781 return dwarf_unknown ("TAG", tag);
22782
22783 return name;
22784 }
22785
22786 /* Convert a DWARF attribute code into its string name. */
22787
22788 static const char *
22789 dwarf_attr_name (unsigned attr)
22790 {
22791 const char *name;
22792
22793 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22794 if (attr == DW_AT_MIPS_fde)
22795 return "DW_AT_MIPS_fde";
22796 #else
22797 if (attr == DW_AT_HP_block_index)
22798 return "DW_AT_HP_block_index";
22799 #endif
22800
22801 name = get_DW_AT_name (attr);
22802
22803 if (name == NULL)
22804 return dwarf_unknown ("AT", attr);
22805
22806 return name;
22807 }
22808
22809 /* Convert a DWARF value form code into its string name. */
22810
22811 static const char *
22812 dwarf_form_name (unsigned form)
22813 {
22814 const char *name = get_DW_FORM_name (form);
22815
22816 if (name == NULL)
22817 return dwarf_unknown ("FORM", form);
22818
22819 return name;
22820 }
22821
22822 static const char *
22823 dwarf_bool_name (unsigned mybool)
22824 {
22825 if (mybool)
22826 return "TRUE";
22827 else
22828 return "FALSE";
22829 }
22830
22831 /* Convert a DWARF type code into its string name. */
22832
22833 static const char *
22834 dwarf_type_encoding_name (unsigned enc)
22835 {
22836 const char *name = get_DW_ATE_name (enc);
22837
22838 if (name == NULL)
22839 return dwarf_unknown ("ATE", enc);
22840
22841 return name;
22842 }
22843
22844 static void
22845 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22846 {
22847 unsigned int i;
22848
22849 print_spaces (indent, f);
22850 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22851 dwarf_tag_name (die->tag), die->abbrev,
22852 sect_offset_str (die->sect_off));
22853
22854 if (die->parent != NULL)
22855 {
22856 print_spaces (indent, f);
22857 fprintf_unfiltered (f, " parent at offset: %s\n",
22858 sect_offset_str (die->parent->sect_off));
22859 }
22860
22861 print_spaces (indent, f);
22862 fprintf_unfiltered (f, " has children: %s\n",
22863 dwarf_bool_name (die->child != NULL));
22864
22865 print_spaces (indent, f);
22866 fprintf_unfiltered (f, " attributes:\n");
22867
22868 for (i = 0; i < die->num_attrs; ++i)
22869 {
22870 print_spaces (indent, f);
22871 fprintf_unfiltered (f, " %s (%s) ",
22872 dwarf_attr_name (die->attrs[i].name),
22873 dwarf_form_name (die->attrs[i].form));
22874
22875 switch (die->attrs[i].form)
22876 {
22877 case DW_FORM_addr:
22878 case DW_FORM_addrx:
22879 case DW_FORM_GNU_addr_index:
22880 fprintf_unfiltered (f, "address: ");
22881 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22882 break;
22883 case DW_FORM_block2:
22884 case DW_FORM_block4:
22885 case DW_FORM_block:
22886 case DW_FORM_block1:
22887 fprintf_unfiltered (f, "block: size %s",
22888 pulongest (DW_BLOCK (&die->attrs[i])->size));
22889 break;
22890 case DW_FORM_exprloc:
22891 fprintf_unfiltered (f, "expression: size %s",
22892 pulongest (DW_BLOCK (&die->attrs[i])->size));
22893 break;
22894 case DW_FORM_data16:
22895 fprintf_unfiltered (f, "constant of 16 bytes");
22896 break;
22897 case DW_FORM_ref_addr:
22898 fprintf_unfiltered (f, "ref address: ");
22899 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22900 break;
22901 case DW_FORM_GNU_ref_alt:
22902 fprintf_unfiltered (f, "alt ref address: ");
22903 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22904 break;
22905 case DW_FORM_ref1:
22906 case DW_FORM_ref2:
22907 case DW_FORM_ref4:
22908 case DW_FORM_ref8:
22909 case DW_FORM_ref_udata:
22910 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22911 (long) (DW_UNSND (&die->attrs[i])));
22912 break;
22913 case DW_FORM_data1:
22914 case DW_FORM_data2:
22915 case DW_FORM_data4:
22916 case DW_FORM_data8:
22917 case DW_FORM_udata:
22918 case DW_FORM_sdata:
22919 fprintf_unfiltered (f, "constant: %s",
22920 pulongest (DW_UNSND (&die->attrs[i])));
22921 break;
22922 case DW_FORM_sec_offset:
22923 fprintf_unfiltered (f, "section offset: %s",
22924 pulongest (DW_UNSND (&die->attrs[i])));
22925 break;
22926 case DW_FORM_ref_sig8:
22927 fprintf_unfiltered (f, "signature: %s",
22928 hex_string (DW_SIGNATURE (&die->attrs[i])));
22929 break;
22930 case DW_FORM_string:
22931 case DW_FORM_strp:
22932 case DW_FORM_line_strp:
22933 case DW_FORM_strx:
22934 case DW_FORM_GNU_str_index:
22935 case DW_FORM_GNU_strp_alt:
22936 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22937 DW_STRING (&die->attrs[i])
22938 ? DW_STRING (&die->attrs[i]) : "",
22939 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22940 break;
22941 case DW_FORM_flag:
22942 if (DW_UNSND (&die->attrs[i]))
22943 fprintf_unfiltered (f, "flag: TRUE");
22944 else
22945 fprintf_unfiltered (f, "flag: FALSE");
22946 break;
22947 case DW_FORM_flag_present:
22948 fprintf_unfiltered (f, "flag: TRUE");
22949 break;
22950 case DW_FORM_indirect:
22951 /* The reader will have reduced the indirect form to
22952 the "base form" so this form should not occur. */
22953 fprintf_unfiltered (f,
22954 "unexpected attribute form: DW_FORM_indirect");
22955 break;
22956 case DW_FORM_implicit_const:
22957 fprintf_unfiltered (f, "constant: %s",
22958 plongest (DW_SND (&die->attrs[i])));
22959 break;
22960 default:
22961 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22962 die->attrs[i].form);
22963 break;
22964 }
22965 fprintf_unfiltered (f, "\n");
22966 }
22967 }
22968
22969 static void
22970 dump_die_for_error (struct die_info *die)
22971 {
22972 dump_die_shallow (gdb_stderr, 0, die);
22973 }
22974
22975 static void
22976 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22977 {
22978 int indent = level * 4;
22979
22980 gdb_assert (die != NULL);
22981
22982 if (level >= max_level)
22983 return;
22984
22985 dump_die_shallow (f, indent, die);
22986
22987 if (die->child != NULL)
22988 {
22989 print_spaces (indent, f);
22990 fprintf_unfiltered (f, " Children:");
22991 if (level + 1 < max_level)
22992 {
22993 fprintf_unfiltered (f, "\n");
22994 dump_die_1 (f, level + 1, max_level, die->child);
22995 }
22996 else
22997 {
22998 fprintf_unfiltered (f,
22999 " [not printed, max nesting level reached]\n");
23000 }
23001 }
23002
23003 if (die->sibling != NULL && level > 0)
23004 {
23005 dump_die_1 (f, level, max_level, die->sibling);
23006 }
23007 }
23008
23009 /* This is called from the pdie macro in gdbinit.in.
23010 It's not static so gcc will keep a copy callable from gdb. */
23011
23012 void
23013 dump_die (struct die_info *die, int max_level)
23014 {
23015 dump_die_1 (gdb_stdlog, 0, max_level, die);
23016 }
23017
23018 static void
23019 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23020 {
23021 void **slot;
23022
23023 slot = htab_find_slot_with_hash (cu->die_hash, die,
23024 to_underlying (die->sect_off),
23025 INSERT);
23026
23027 *slot = die;
23028 }
23029
23030 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23031 required kind. */
23032
23033 static sect_offset
23034 dwarf2_get_ref_die_offset (const struct attribute *attr)
23035 {
23036 if (attr_form_is_ref (attr))
23037 return (sect_offset) DW_UNSND (attr);
23038
23039 complaint (_("unsupported die ref attribute form: '%s'"),
23040 dwarf_form_name (attr->form));
23041 return {};
23042 }
23043
23044 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23045 * the value held by the attribute is not constant. */
23046
23047 static LONGEST
23048 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23049 {
23050 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23051 return DW_SND (attr);
23052 else if (attr->form == DW_FORM_udata
23053 || attr->form == DW_FORM_data1
23054 || attr->form == DW_FORM_data2
23055 || attr->form == DW_FORM_data4
23056 || attr->form == DW_FORM_data8)
23057 return DW_UNSND (attr);
23058 else
23059 {
23060 /* For DW_FORM_data16 see attr_form_is_constant. */
23061 complaint (_("Attribute value is not a constant (%s)"),
23062 dwarf_form_name (attr->form));
23063 return default_value;
23064 }
23065 }
23066
23067 /* Follow reference or signature attribute ATTR of SRC_DIE.
23068 On entry *REF_CU is the CU of SRC_DIE.
23069 On exit *REF_CU is the CU of the result. */
23070
23071 static struct die_info *
23072 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23073 struct dwarf2_cu **ref_cu)
23074 {
23075 struct die_info *die;
23076
23077 if (attr_form_is_ref (attr))
23078 die = follow_die_ref (src_die, attr, ref_cu);
23079 else if (attr->form == DW_FORM_ref_sig8)
23080 die = follow_die_sig (src_die, attr, ref_cu);
23081 else
23082 {
23083 dump_die_for_error (src_die);
23084 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23085 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23086 }
23087
23088 return die;
23089 }
23090
23091 /* Follow reference OFFSET.
23092 On entry *REF_CU is the CU of the source die referencing OFFSET.
23093 On exit *REF_CU is the CU of the result.
23094 Returns NULL if OFFSET is invalid. */
23095
23096 static struct die_info *
23097 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23098 struct dwarf2_cu **ref_cu)
23099 {
23100 struct die_info temp_die;
23101 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23102 struct dwarf2_per_objfile *dwarf2_per_objfile
23103 = cu->per_cu->dwarf2_per_objfile;
23104
23105 gdb_assert (cu->per_cu != NULL);
23106
23107 target_cu = cu;
23108
23109 if (cu->per_cu->is_debug_types)
23110 {
23111 /* .debug_types CUs cannot reference anything outside their CU.
23112 If they need to, they have to reference a signatured type via
23113 DW_FORM_ref_sig8. */
23114 if (!offset_in_cu_p (&cu->header, sect_off))
23115 return NULL;
23116 }
23117 else if (offset_in_dwz != cu->per_cu->is_dwz
23118 || !offset_in_cu_p (&cu->header, sect_off))
23119 {
23120 struct dwarf2_per_cu_data *per_cu;
23121
23122 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23123 dwarf2_per_objfile);
23124
23125 /* If necessary, add it to the queue and load its DIEs. */
23126 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23127 load_full_comp_unit (per_cu, false, cu->language);
23128
23129 target_cu = per_cu->cu;
23130 }
23131 else if (cu->dies == NULL)
23132 {
23133 /* We're loading full DIEs during partial symbol reading. */
23134 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23135 load_full_comp_unit (cu->per_cu, false, language_minimal);
23136 }
23137
23138 *ref_cu = target_cu;
23139 temp_die.sect_off = sect_off;
23140
23141 if (target_cu != cu)
23142 target_cu->ancestor = cu;
23143
23144 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23145 &temp_die,
23146 to_underlying (sect_off));
23147 }
23148
23149 /* Follow reference attribute ATTR of SRC_DIE.
23150 On entry *REF_CU is the CU of SRC_DIE.
23151 On exit *REF_CU is the CU of the result. */
23152
23153 static struct die_info *
23154 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23155 struct dwarf2_cu **ref_cu)
23156 {
23157 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23158 struct dwarf2_cu *cu = *ref_cu;
23159 struct die_info *die;
23160
23161 die = follow_die_offset (sect_off,
23162 (attr->form == DW_FORM_GNU_ref_alt
23163 || cu->per_cu->is_dwz),
23164 ref_cu);
23165 if (!die)
23166 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23167 "at %s [in module %s]"),
23168 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23169 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23170
23171 return die;
23172 }
23173
23174 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23175 Returned value is intended for DW_OP_call*. Returned
23176 dwarf2_locexpr_baton->data has lifetime of
23177 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23178
23179 struct dwarf2_locexpr_baton
23180 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23181 struct dwarf2_per_cu_data *per_cu,
23182 CORE_ADDR (*get_frame_pc) (void *baton),
23183 void *baton, bool resolve_abstract_p)
23184 {
23185 struct dwarf2_cu *cu;
23186 struct die_info *die;
23187 struct attribute *attr;
23188 struct dwarf2_locexpr_baton retval;
23189 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23190 struct objfile *objfile = dwarf2_per_objfile->objfile;
23191
23192 if (per_cu->cu == NULL)
23193 load_cu (per_cu, false);
23194 cu = per_cu->cu;
23195 if (cu == NULL)
23196 {
23197 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23198 Instead just throw an error, not much else we can do. */
23199 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23200 sect_offset_str (sect_off), objfile_name (objfile));
23201 }
23202
23203 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23204 if (!die)
23205 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23206 sect_offset_str (sect_off), objfile_name (objfile));
23207
23208 attr = dwarf2_attr (die, DW_AT_location, cu);
23209 if (!attr && resolve_abstract_p
23210 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23211 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23212 {
23213 CORE_ADDR pc = (*get_frame_pc) (baton);
23214 CORE_ADDR baseaddr
23215 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23217
23218 for (const auto &cand_off
23219 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23220 {
23221 struct dwarf2_cu *cand_cu = cu;
23222 struct die_info *cand
23223 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23224 if (!cand
23225 || !cand->parent
23226 || cand->parent->tag != DW_TAG_subprogram)
23227 continue;
23228
23229 CORE_ADDR pc_low, pc_high;
23230 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23231 if (pc_low == ((CORE_ADDR) -1))
23232 continue;
23233 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23234 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23235 if (!(pc_low <= pc && pc < pc_high))
23236 continue;
23237
23238 die = cand;
23239 attr = dwarf2_attr (die, DW_AT_location, cu);
23240 break;
23241 }
23242 }
23243
23244 if (!attr)
23245 {
23246 /* DWARF: "If there is no such attribute, then there is no effect.".
23247 DATA is ignored if SIZE is 0. */
23248
23249 retval.data = NULL;
23250 retval.size = 0;
23251 }
23252 else if (attr_form_is_section_offset (attr))
23253 {
23254 struct dwarf2_loclist_baton loclist_baton;
23255 CORE_ADDR pc = (*get_frame_pc) (baton);
23256 size_t size;
23257
23258 fill_in_loclist_baton (cu, &loclist_baton, attr);
23259
23260 retval.data = dwarf2_find_location_expression (&loclist_baton,
23261 &size, pc);
23262 retval.size = size;
23263 }
23264 else
23265 {
23266 if (!attr_form_is_block (attr))
23267 error (_("Dwarf Error: DIE at %s referenced in module %s "
23268 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23269 sect_offset_str (sect_off), objfile_name (objfile));
23270
23271 retval.data = DW_BLOCK (attr)->data;
23272 retval.size = DW_BLOCK (attr)->size;
23273 }
23274 retval.per_cu = cu->per_cu;
23275
23276 age_cached_comp_units (dwarf2_per_objfile);
23277
23278 return retval;
23279 }
23280
23281 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23282 offset. */
23283
23284 struct dwarf2_locexpr_baton
23285 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23286 struct dwarf2_per_cu_data *per_cu,
23287 CORE_ADDR (*get_frame_pc) (void *baton),
23288 void *baton)
23289 {
23290 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23291
23292 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23293 }
23294
23295 /* Write a constant of a given type as target-ordered bytes into
23296 OBSTACK. */
23297
23298 static const gdb_byte *
23299 write_constant_as_bytes (struct obstack *obstack,
23300 enum bfd_endian byte_order,
23301 struct type *type,
23302 ULONGEST value,
23303 LONGEST *len)
23304 {
23305 gdb_byte *result;
23306
23307 *len = TYPE_LENGTH (type);
23308 result = (gdb_byte *) obstack_alloc (obstack, *len);
23309 store_unsigned_integer (result, *len, byte_order, value);
23310
23311 return result;
23312 }
23313
23314 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23315 pointer to the constant bytes and set LEN to the length of the
23316 data. If memory is needed, allocate it on OBSTACK. If the DIE
23317 does not have a DW_AT_const_value, return NULL. */
23318
23319 const gdb_byte *
23320 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23321 struct dwarf2_per_cu_data *per_cu,
23322 struct obstack *obstack,
23323 LONGEST *len)
23324 {
23325 struct dwarf2_cu *cu;
23326 struct die_info *die;
23327 struct attribute *attr;
23328 const gdb_byte *result = NULL;
23329 struct type *type;
23330 LONGEST value;
23331 enum bfd_endian byte_order;
23332 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23333
23334 if (per_cu->cu == NULL)
23335 load_cu (per_cu, false);
23336 cu = per_cu->cu;
23337 if (cu == NULL)
23338 {
23339 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23340 Instead just throw an error, not much else we can do. */
23341 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23342 sect_offset_str (sect_off), objfile_name (objfile));
23343 }
23344
23345 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23346 if (!die)
23347 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23348 sect_offset_str (sect_off), objfile_name (objfile));
23349
23350 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23351 if (attr == NULL)
23352 return NULL;
23353
23354 byte_order = (bfd_big_endian (objfile->obfd)
23355 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23356
23357 switch (attr->form)
23358 {
23359 case DW_FORM_addr:
23360 case DW_FORM_addrx:
23361 case DW_FORM_GNU_addr_index:
23362 {
23363 gdb_byte *tem;
23364
23365 *len = cu->header.addr_size;
23366 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23367 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23368 result = tem;
23369 }
23370 break;
23371 case DW_FORM_string:
23372 case DW_FORM_strp:
23373 case DW_FORM_strx:
23374 case DW_FORM_GNU_str_index:
23375 case DW_FORM_GNU_strp_alt:
23376 /* DW_STRING is already allocated on the objfile obstack, point
23377 directly to it. */
23378 result = (const gdb_byte *) DW_STRING (attr);
23379 *len = strlen (DW_STRING (attr));
23380 break;
23381 case DW_FORM_block1:
23382 case DW_FORM_block2:
23383 case DW_FORM_block4:
23384 case DW_FORM_block:
23385 case DW_FORM_exprloc:
23386 case DW_FORM_data16:
23387 result = DW_BLOCK (attr)->data;
23388 *len = DW_BLOCK (attr)->size;
23389 break;
23390
23391 /* The DW_AT_const_value attributes are supposed to carry the
23392 symbol's value "represented as it would be on the target
23393 architecture." By the time we get here, it's already been
23394 converted to host endianness, so we just need to sign- or
23395 zero-extend it as appropriate. */
23396 case DW_FORM_data1:
23397 type = die_type (die, cu);
23398 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23399 if (result == NULL)
23400 result = write_constant_as_bytes (obstack, byte_order,
23401 type, value, len);
23402 break;
23403 case DW_FORM_data2:
23404 type = die_type (die, cu);
23405 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23406 if (result == NULL)
23407 result = write_constant_as_bytes (obstack, byte_order,
23408 type, value, len);
23409 break;
23410 case DW_FORM_data4:
23411 type = die_type (die, cu);
23412 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23413 if (result == NULL)
23414 result = write_constant_as_bytes (obstack, byte_order,
23415 type, value, len);
23416 break;
23417 case DW_FORM_data8:
23418 type = die_type (die, cu);
23419 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23420 if (result == NULL)
23421 result = write_constant_as_bytes (obstack, byte_order,
23422 type, value, len);
23423 break;
23424
23425 case DW_FORM_sdata:
23426 case DW_FORM_implicit_const:
23427 type = die_type (die, cu);
23428 result = write_constant_as_bytes (obstack, byte_order,
23429 type, DW_SND (attr), len);
23430 break;
23431
23432 case DW_FORM_udata:
23433 type = die_type (die, cu);
23434 result = write_constant_as_bytes (obstack, byte_order,
23435 type, DW_UNSND (attr), len);
23436 break;
23437
23438 default:
23439 complaint (_("unsupported const value attribute form: '%s'"),
23440 dwarf_form_name (attr->form));
23441 break;
23442 }
23443
23444 return result;
23445 }
23446
23447 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23448 valid type for this die is found. */
23449
23450 struct type *
23451 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23452 struct dwarf2_per_cu_data *per_cu)
23453 {
23454 struct dwarf2_cu *cu;
23455 struct die_info *die;
23456
23457 if (per_cu->cu == NULL)
23458 load_cu (per_cu, false);
23459 cu = per_cu->cu;
23460 if (!cu)
23461 return NULL;
23462
23463 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23464 if (!die)
23465 return NULL;
23466
23467 return die_type (die, cu);
23468 }
23469
23470 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23471 PER_CU. */
23472
23473 struct type *
23474 dwarf2_get_die_type (cu_offset die_offset,
23475 struct dwarf2_per_cu_data *per_cu)
23476 {
23477 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23478 return get_die_type_at_offset (die_offset_sect, per_cu);
23479 }
23480
23481 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23482 On entry *REF_CU is the CU of SRC_DIE.
23483 On exit *REF_CU is the CU of the result.
23484 Returns NULL if the referenced DIE isn't found. */
23485
23486 static struct die_info *
23487 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23488 struct dwarf2_cu **ref_cu)
23489 {
23490 struct die_info temp_die;
23491 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23492 struct die_info *die;
23493
23494 /* While it might be nice to assert sig_type->type == NULL here,
23495 we can get here for DW_AT_imported_declaration where we need
23496 the DIE not the type. */
23497
23498 /* If necessary, add it to the queue and load its DIEs. */
23499
23500 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23501 read_signatured_type (sig_type);
23502
23503 sig_cu = sig_type->per_cu.cu;
23504 gdb_assert (sig_cu != NULL);
23505 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23506 temp_die.sect_off = sig_type->type_offset_in_section;
23507 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23508 to_underlying (temp_die.sect_off));
23509 if (die)
23510 {
23511 struct dwarf2_per_objfile *dwarf2_per_objfile
23512 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23513
23514 /* For .gdb_index version 7 keep track of included TUs.
23515 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23516 if (dwarf2_per_objfile->index_table != NULL
23517 && dwarf2_per_objfile->index_table->version <= 7)
23518 {
23519 VEC_safe_push (dwarf2_per_cu_ptr,
23520 (*ref_cu)->per_cu->imported_symtabs,
23521 sig_cu->per_cu);
23522 }
23523
23524 *ref_cu = sig_cu;
23525 if (sig_cu != cu)
23526 sig_cu->ancestor = cu;
23527
23528 return die;
23529 }
23530
23531 return NULL;
23532 }
23533
23534 /* Follow signatured type referenced by ATTR in SRC_DIE.
23535 On entry *REF_CU is the CU of SRC_DIE.
23536 On exit *REF_CU is the CU of the result.
23537 The result is the DIE of the type.
23538 If the referenced type cannot be found an error is thrown. */
23539
23540 static struct die_info *
23541 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23542 struct dwarf2_cu **ref_cu)
23543 {
23544 ULONGEST signature = DW_SIGNATURE (attr);
23545 struct signatured_type *sig_type;
23546 struct die_info *die;
23547
23548 gdb_assert (attr->form == DW_FORM_ref_sig8);
23549
23550 sig_type = lookup_signatured_type (*ref_cu, signature);
23551 /* sig_type will be NULL if the signatured type is missing from
23552 the debug info. */
23553 if (sig_type == NULL)
23554 {
23555 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23556 " from DIE at %s [in module %s]"),
23557 hex_string (signature), sect_offset_str (src_die->sect_off),
23558 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23559 }
23560
23561 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23562 if (die == NULL)
23563 {
23564 dump_die_for_error (src_die);
23565 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23566 " from DIE at %s [in module %s]"),
23567 hex_string (signature), sect_offset_str (src_die->sect_off),
23568 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23569 }
23570
23571 return die;
23572 }
23573
23574 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23575 reading in and processing the type unit if necessary. */
23576
23577 static struct type *
23578 get_signatured_type (struct die_info *die, ULONGEST signature,
23579 struct dwarf2_cu *cu)
23580 {
23581 struct dwarf2_per_objfile *dwarf2_per_objfile
23582 = cu->per_cu->dwarf2_per_objfile;
23583 struct signatured_type *sig_type;
23584 struct dwarf2_cu *type_cu;
23585 struct die_info *type_die;
23586 struct type *type;
23587
23588 sig_type = lookup_signatured_type (cu, signature);
23589 /* sig_type will be NULL if the signatured type is missing from
23590 the debug info. */
23591 if (sig_type == NULL)
23592 {
23593 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23594 " from DIE at %s [in module %s]"),
23595 hex_string (signature), sect_offset_str (die->sect_off),
23596 objfile_name (dwarf2_per_objfile->objfile));
23597 return build_error_marker_type (cu, die);
23598 }
23599
23600 /* If we already know the type we're done. */
23601 if (sig_type->type != NULL)
23602 return sig_type->type;
23603
23604 type_cu = cu;
23605 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23606 if (type_die != NULL)
23607 {
23608 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23609 is created. This is important, for example, because for c++ classes
23610 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23611 type = read_type_die (type_die, type_cu);
23612 if (type == NULL)
23613 {
23614 complaint (_("Dwarf Error: Cannot build signatured type %s"
23615 " referenced from DIE at %s [in module %s]"),
23616 hex_string (signature), sect_offset_str (die->sect_off),
23617 objfile_name (dwarf2_per_objfile->objfile));
23618 type = build_error_marker_type (cu, die);
23619 }
23620 }
23621 else
23622 {
23623 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23624 " from DIE at %s [in module %s]"),
23625 hex_string (signature), sect_offset_str (die->sect_off),
23626 objfile_name (dwarf2_per_objfile->objfile));
23627 type = build_error_marker_type (cu, die);
23628 }
23629 sig_type->type = type;
23630
23631 return type;
23632 }
23633
23634 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23635 reading in and processing the type unit if necessary. */
23636
23637 static struct type *
23638 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23639 struct dwarf2_cu *cu) /* ARI: editCase function */
23640 {
23641 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23642 if (attr_form_is_ref (attr))
23643 {
23644 struct dwarf2_cu *type_cu = cu;
23645 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23646
23647 return read_type_die (type_die, type_cu);
23648 }
23649 else if (attr->form == DW_FORM_ref_sig8)
23650 {
23651 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23652 }
23653 else
23654 {
23655 struct dwarf2_per_objfile *dwarf2_per_objfile
23656 = cu->per_cu->dwarf2_per_objfile;
23657
23658 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23659 " at %s [in module %s]"),
23660 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23661 objfile_name (dwarf2_per_objfile->objfile));
23662 return build_error_marker_type (cu, die);
23663 }
23664 }
23665
23666 /* Load the DIEs associated with type unit PER_CU into memory. */
23667
23668 static void
23669 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23670 {
23671 struct signatured_type *sig_type;
23672
23673 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23674 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23675
23676 /* We have the per_cu, but we need the signatured_type.
23677 Fortunately this is an easy translation. */
23678 gdb_assert (per_cu->is_debug_types);
23679 sig_type = (struct signatured_type *) per_cu;
23680
23681 gdb_assert (per_cu->cu == NULL);
23682
23683 read_signatured_type (sig_type);
23684
23685 gdb_assert (per_cu->cu != NULL);
23686 }
23687
23688 /* die_reader_func for read_signatured_type.
23689 This is identical to load_full_comp_unit_reader,
23690 but is kept separate for now. */
23691
23692 static void
23693 read_signatured_type_reader (const struct die_reader_specs *reader,
23694 const gdb_byte *info_ptr,
23695 struct die_info *comp_unit_die,
23696 int has_children,
23697 void *data)
23698 {
23699 struct dwarf2_cu *cu = reader->cu;
23700
23701 gdb_assert (cu->die_hash == NULL);
23702 cu->die_hash =
23703 htab_create_alloc_ex (cu->header.length / 12,
23704 die_hash,
23705 die_eq,
23706 NULL,
23707 &cu->comp_unit_obstack,
23708 hashtab_obstack_allocate,
23709 dummy_obstack_deallocate);
23710
23711 if (has_children)
23712 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23713 &info_ptr, comp_unit_die);
23714 cu->dies = comp_unit_die;
23715 /* comp_unit_die is not stored in die_hash, no need. */
23716
23717 /* We try not to read any attributes in this function, because not
23718 all CUs needed for references have been loaded yet, and symbol
23719 table processing isn't initialized. But we have to set the CU language,
23720 or we won't be able to build types correctly.
23721 Similarly, if we do not read the producer, we can not apply
23722 producer-specific interpretation. */
23723 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23724 }
23725
23726 /* Read in a signatured type and build its CU and DIEs.
23727 If the type is a stub for the real type in a DWO file,
23728 read in the real type from the DWO file as well. */
23729
23730 static void
23731 read_signatured_type (struct signatured_type *sig_type)
23732 {
23733 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23734
23735 gdb_assert (per_cu->is_debug_types);
23736 gdb_assert (per_cu->cu == NULL);
23737
23738 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23739 read_signatured_type_reader, NULL);
23740 sig_type->per_cu.tu_read = 1;
23741 }
23742
23743 /* Decode simple location descriptions.
23744 Given a pointer to a dwarf block that defines a location, compute
23745 the location and return the value.
23746
23747 NOTE drow/2003-11-18: This function is called in two situations
23748 now: for the address of static or global variables (partial symbols
23749 only) and for offsets into structures which are expected to be
23750 (more or less) constant. The partial symbol case should go away,
23751 and only the constant case should remain. That will let this
23752 function complain more accurately. A few special modes are allowed
23753 without complaint for global variables (for instance, global
23754 register values and thread-local values).
23755
23756 A location description containing no operations indicates that the
23757 object is optimized out. The return value is 0 for that case.
23758 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23759 callers will only want a very basic result and this can become a
23760 complaint.
23761
23762 Note that stack[0] is unused except as a default error return. */
23763
23764 static CORE_ADDR
23765 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23766 {
23767 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23768 size_t i;
23769 size_t size = blk->size;
23770 const gdb_byte *data = blk->data;
23771 CORE_ADDR stack[64];
23772 int stacki;
23773 unsigned int bytes_read, unsnd;
23774 gdb_byte op;
23775
23776 i = 0;
23777 stacki = 0;
23778 stack[stacki] = 0;
23779 stack[++stacki] = 0;
23780
23781 while (i < size)
23782 {
23783 op = data[i++];
23784 switch (op)
23785 {
23786 case DW_OP_lit0:
23787 case DW_OP_lit1:
23788 case DW_OP_lit2:
23789 case DW_OP_lit3:
23790 case DW_OP_lit4:
23791 case DW_OP_lit5:
23792 case DW_OP_lit6:
23793 case DW_OP_lit7:
23794 case DW_OP_lit8:
23795 case DW_OP_lit9:
23796 case DW_OP_lit10:
23797 case DW_OP_lit11:
23798 case DW_OP_lit12:
23799 case DW_OP_lit13:
23800 case DW_OP_lit14:
23801 case DW_OP_lit15:
23802 case DW_OP_lit16:
23803 case DW_OP_lit17:
23804 case DW_OP_lit18:
23805 case DW_OP_lit19:
23806 case DW_OP_lit20:
23807 case DW_OP_lit21:
23808 case DW_OP_lit22:
23809 case DW_OP_lit23:
23810 case DW_OP_lit24:
23811 case DW_OP_lit25:
23812 case DW_OP_lit26:
23813 case DW_OP_lit27:
23814 case DW_OP_lit28:
23815 case DW_OP_lit29:
23816 case DW_OP_lit30:
23817 case DW_OP_lit31:
23818 stack[++stacki] = op - DW_OP_lit0;
23819 break;
23820
23821 case DW_OP_reg0:
23822 case DW_OP_reg1:
23823 case DW_OP_reg2:
23824 case DW_OP_reg3:
23825 case DW_OP_reg4:
23826 case DW_OP_reg5:
23827 case DW_OP_reg6:
23828 case DW_OP_reg7:
23829 case DW_OP_reg8:
23830 case DW_OP_reg9:
23831 case DW_OP_reg10:
23832 case DW_OP_reg11:
23833 case DW_OP_reg12:
23834 case DW_OP_reg13:
23835 case DW_OP_reg14:
23836 case DW_OP_reg15:
23837 case DW_OP_reg16:
23838 case DW_OP_reg17:
23839 case DW_OP_reg18:
23840 case DW_OP_reg19:
23841 case DW_OP_reg20:
23842 case DW_OP_reg21:
23843 case DW_OP_reg22:
23844 case DW_OP_reg23:
23845 case DW_OP_reg24:
23846 case DW_OP_reg25:
23847 case DW_OP_reg26:
23848 case DW_OP_reg27:
23849 case DW_OP_reg28:
23850 case DW_OP_reg29:
23851 case DW_OP_reg30:
23852 case DW_OP_reg31:
23853 stack[++stacki] = op - DW_OP_reg0;
23854 if (i < size)
23855 dwarf2_complex_location_expr_complaint ();
23856 break;
23857
23858 case DW_OP_regx:
23859 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23860 i += bytes_read;
23861 stack[++stacki] = unsnd;
23862 if (i < size)
23863 dwarf2_complex_location_expr_complaint ();
23864 break;
23865
23866 case DW_OP_addr:
23867 stack[++stacki] = read_address (objfile->obfd, &data[i],
23868 cu, &bytes_read);
23869 i += bytes_read;
23870 break;
23871
23872 case DW_OP_const1u:
23873 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23874 i += 1;
23875 break;
23876
23877 case DW_OP_const1s:
23878 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23879 i += 1;
23880 break;
23881
23882 case DW_OP_const2u:
23883 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23884 i += 2;
23885 break;
23886
23887 case DW_OP_const2s:
23888 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23889 i += 2;
23890 break;
23891
23892 case DW_OP_const4u:
23893 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23894 i += 4;
23895 break;
23896
23897 case DW_OP_const4s:
23898 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23899 i += 4;
23900 break;
23901
23902 case DW_OP_const8u:
23903 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23904 i += 8;
23905 break;
23906
23907 case DW_OP_constu:
23908 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23909 &bytes_read);
23910 i += bytes_read;
23911 break;
23912
23913 case DW_OP_consts:
23914 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23915 i += bytes_read;
23916 break;
23917
23918 case DW_OP_dup:
23919 stack[stacki + 1] = stack[stacki];
23920 stacki++;
23921 break;
23922
23923 case DW_OP_plus:
23924 stack[stacki - 1] += stack[stacki];
23925 stacki--;
23926 break;
23927
23928 case DW_OP_plus_uconst:
23929 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23930 &bytes_read);
23931 i += bytes_read;
23932 break;
23933
23934 case DW_OP_minus:
23935 stack[stacki - 1] -= stack[stacki];
23936 stacki--;
23937 break;
23938
23939 case DW_OP_deref:
23940 /* If we're not the last op, then we definitely can't encode
23941 this using GDB's address_class enum. This is valid for partial
23942 global symbols, although the variable's address will be bogus
23943 in the psymtab. */
23944 if (i < size)
23945 dwarf2_complex_location_expr_complaint ();
23946 break;
23947
23948 case DW_OP_GNU_push_tls_address:
23949 case DW_OP_form_tls_address:
23950 /* The top of the stack has the offset from the beginning
23951 of the thread control block at which the variable is located. */
23952 /* Nothing should follow this operator, so the top of stack would
23953 be returned. */
23954 /* This is valid for partial global symbols, but the variable's
23955 address will be bogus in the psymtab. Make it always at least
23956 non-zero to not look as a variable garbage collected by linker
23957 which have DW_OP_addr 0. */
23958 if (i < size)
23959 dwarf2_complex_location_expr_complaint ();
23960 stack[stacki]++;
23961 break;
23962
23963 case DW_OP_GNU_uninit:
23964 break;
23965
23966 case DW_OP_addrx:
23967 case DW_OP_GNU_addr_index:
23968 case DW_OP_GNU_const_index:
23969 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23970 &bytes_read);
23971 i += bytes_read;
23972 break;
23973
23974 default:
23975 {
23976 const char *name = get_DW_OP_name (op);
23977
23978 if (name)
23979 complaint (_("unsupported stack op: '%s'"),
23980 name);
23981 else
23982 complaint (_("unsupported stack op: '%02x'"),
23983 op);
23984 }
23985
23986 return (stack[stacki]);
23987 }
23988
23989 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23990 outside of the allocated space. Also enforce minimum>0. */
23991 if (stacki >= ARRAY_SIZE (stack) - 1)
23992 {
23993 complaint (_("location description stack overflow"));
23994 return 0;
23995 }
23996
23997 if (stacki <= 0)
23998 {
23999 complaint (_("location description stack underflow"));
24000 return 0;
24001 }
24002 }
24003 return (stack[stacki]);
24004 }
24005
24006 /* memory allocation interface */
24007
24008 static struct dwarf_block *
24009 dwarf_alloc_block (struct dwarf2_cu *cu)
24010 {
24011 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24012 }
24013
24014 static struct die_info *
24015 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24016 {
24017 struct die_info *die;
24018 size_t size = sizeof (struct die_info);
24019
24020 if (num_attrs > 1)
24021 size += (num_attrs - 1) * sizeof (struct attribute);
24022
24023 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24024 memset (die, 0, sizeof (struct die_info));
24025 return (die);
24026 }
24027
24028 \f
24029 /* Macro support. */
24030
24031 /* Return file name relative to the compilation directory of file number I in
24032 *LH's file name table. The result is allocated using xmalloc; the caller is
24033 responsible for freeing it. */
24034
24035 static char *
24036 file_file_name (int file, struct line_header *lh)
24037 {
24038 /* Is the file number a valid index into the line header's file name
24039 table? Remember that file numbers start with one, not zero. */
24040 if (1 <= file && file <= lh->file_names.size ())
24041 {
24042 const file_entry &fe = lh->file_names[file - 1];
24043
24044 if (!IS_ABSOLUTE_PATH (fe.name))
24045 {
24046 const char *dir = fe.include_dir (lh);
24047 if (dir != NULL)
24048 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24049 }
24050 return xstrdup (fe.name);
24051 }
24052 else
24053 {
24054 /* The compiler produced a bogus file number. We can at least
24055 record the macro definitions made in the file, even if we
24056 won't be able to find the file by name. */
24057 char fake_name[80];
24058
24059 xsnprintf (fake_name, sizeof (fake_name),
24060 "<bad macro file number %d>", file);
24061
24062 complaint (_("bad file number in macro information (%d)"),
24063 file);
24064
24065 return xstrdup (fake_name);
24066 }
24067 }
24068
24069 /* Return the full name of file number I in *LH's file name table.
24070 Use COMP_DIR as the name of the current directory of the
24071 compilation. The result is allocated using xmalloc; the caller is
24072 responsible for freeing it. */
24073 static char *
24074 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24075 {
24076 /* Is the file number a valid index into the line header's file name
24077 table? Remember that file numbers start with one, not zero. */
24078 if (1 <= file && file <= lh->file_names.size ())
24079 {
24080 char *relative = file_file_name (file, lh);
24081
24082 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24083 return relative;
24084 return reconcat (relative, comp_dir, SLASH_STRING,
24085 relative, (char *) NULL);
24086 }
24087 else
24088 return file_file_name (file, lh);
24089 }
24090
24091
24092 static struct macro_source_file *
24093 macro_start_file (struct dwarf2_cu *cu,
24094 int file, int line,
24095 struct macro_source_file *current_file,
24096 struct line_header *lh)
24097 {
24098 /* File name relative to the compilation directory of this source file. */
24099 char *file_name = file_file_name (file, lh);
24100
24101 if (! current_file)
24102 {
24103 /* Note: We don't create a macro table for this compilation unit
24104 at all until we actually get a filename. */
24105 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24106
24107 /* If we have no current file, then this must be the start_file
24108 directive for the compilation unit's main source file. */
24109 current_file = macro_set_main (macro_table, file_name);
24110 macro_define_special (macro_table);
24111 }
24112 else
24113 current_file = macro_include (current_file, line, file_name);
24114
24115 xfree (file_name);
24116
24117 return current_file;
24118 }
24119
24120 static const char *
24121 consume_improper_spaces (const char *p, const char *body)
24122 {
24123 if (*p == ' ')
24124 {
24125 complaint (_("macro definition contains spaces "
24126 "in formal argument list:\n`%s'"),
24127 body);
24128
24129 while (*p == ' ')
24130 p++;
24131 }
24132
24133 return p;
24134 }
24135
24136
24137 static void
24138 parse_macro_definition (struct macro_source_file *file, int line,
24139 const char *body)
24140 {
24141 const char *p;
24142
24143 /* The body string takes one of two forms. For object-like macro
24144 definitions, it should be:
24145
24146 <macro name> " " <definition>
24147
24148 For function-like macro definitions, it should be:
24149
24150 <macro name> "() " <definition>
24151 or
24152 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24153
24154 Spaces may appear only where explicitly indicated, and in the
24155 <definition>.
24156
24157 The Dwarf 2 spec says that an object-like macro's name is always
24158 followed by a space, but versions of GCC around March 2002 omit
24159 the space when the macro's definition is the empty string.
24160
24161 The Dwarf 2 spec says that there should be no spaces between the
24162 formal arguments in a function-like macro's formal argument list,
24163 but versions of GCC around March 2002 include spaces after the
24164 commas. */
24165
24166
24167 /* Find the extent of the macro name. The macro name is terminated
24168 by either a space or null character (for an object-like macro) or
24169 an opening paren (for a function-like macro). */
24170 for (p = body; *p; p++)
24171 if (*p == ' ' || *p == '(')
24172 break;
24173
24174 if (*p == ' ' || *p == '\0')
24175 {
24176 /* It's an object-like macro. */
24177 int name_len = p - body;
24178 char *name = savestring (body, name_len);
24179 const char *replacement;
24180
24181 if (*p == ' ')
24182 replacement = body + name_len + 1;
24183 else
24184 {
24185 dwarf2_macro_malformed_definition_complaint (body);
24186 replacement = body + name_len;
24187 }
24188
24189 macro_define_object (file, line, name, replacement);
24190
24191 xfree (name);
24192 }
24193 else if (*p == '(')
24194 {
24195 /* It's a function-like macro. */
24196 char *name = savestring (body, p - body);
24197 int argc = 0;
24198 int argv_size = 1;
24199 char **argv = XNEWVEC (char *, argv_size);
24200
24201 p++;
24202
24203 p = consume_improper_spaces (p, body);
24204
24205 /* Parse the formal argument list. */
24206 while (*p && *p != ')')
24207 {
24208 /* Find the extent of the current argument name. */
24209 const char *arg_start = p;
24210
24211 while (*p && *p != ',' && *p != ')' && *p != ' ')
24212 p++;
24213
24214 if (! *p || p == arg_start)
24215 dwarf2_macro_malformed_definition_complaint (body);
24216 else
24217 {
24218 /* Make sure argv has room for the new argument. */
24219 if (argc >= argv_size)
24220 {
24221 argv_size *= 2;
24222 argv = XRESIZEVEC (char *, argv, argv_size);
24223 }
24224
24225 argv[argc++] = savestring (arg_start, p - arg_start);
24226 }
24227
24228 p = consume_improper_spaces (p, body);
24229
24230 /* Consume the comma, if present. */
24231 if (*p == ',')
24232 {
24233 p++;
24234
24235 p = consume_improper_spaces (p, body);
24236 }
24237 }
24238
24239 if (*p == ')')
24240 {
24241 p++;
24242
24243 if (*p == ' ')
24244 /* Perfectly formed definition, no complaints. */
24245 macro_define_function (file, line, name,
24246 argc, (const char **) argv,
24247 p + 1);
24248 else if (*p == '\0')
24249 {
24250 /* Complain, but do define it. */
24251 dwarf2_macro_malformed_definition_complaint (body);
24252 macro_define_function (file, line, name,
24253 argc, (const char **) argv,
24254 p);
24255 }
24256 else
24257 /* Just complain. */
24258 dwarf2_macro_malformed_definition_complaint (body);
24259 }
24260 else
24261 /* Just complain. */
24262 dwarf2_macro_malformed_definition_complaint (body);
24263
24264 xfree (name);
24265 {
24266 int i;
24267
24268 for (i = 0; i < argc; i++)
24269 xfree (argv[i]);
24270 }
24271 xfree (argv);
24272 }
24273 else
24274 dwarf2_macro_malformed_definition_complaint (body);
24275 }
24276
24277 /* Skip some bytes from BYTES according to the form given in FORM.
24278 Returns the new pointer. */
24279
24280 static const gdb_byte *
24281 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24282 enum dwarf_form form,
24283 unsigned int offset_size,
24284 struct dwarf2_section_info *section)
24285 {
24286 unsigned int bytes_read;
24287
24288 switch (form)
24289 {
24290 case DW_FORM_data1:
24291 case DW_FORM_flag:
24292 ++bytes;
24293 break;
24294
24295 case DW_FORM_data2:
24296 bytes += 2;
24297 break;
24298
24299 case DW_FORM_data4:
24300 bytes += 4;
24301 break;
24302
24303 case DW_FORM_data8:
24304 bytes += 8;
24305 break;
24306
24307 case DW_FORM_data16:
24308 bytes += 16;
24309 break;
24310
24311 case DW_FORM_string:
24312 read_direct_string (abfd, bytes, &bytes_read);
24313 bytes += bytes_read;
24314 break;
24315
24316 case DW_FORM_sec_offset:
24317 case DW_FORM_strp:
24318 case DW_FORM_GNU_strp_alt:
24319 bytes += offset_size;
24320 break;
24321
24322 case DW_FORM_block:
24323 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24324 bytes += bytes_read;
24325 break;
24326
24327 case DW_FORM_block1:
24328 bytes += 1 + read_1_byte (abfd, bytes);
24329 break;
24330 case DW_FORM_block2:
24331 bytes += 2 + read_2_bytes (abfd, bytes);
24332 break;
24333 case DW_FORM_block4:
24334 bytes += 4 + read_4_bytes (abfd, bytes);
24335 break;
24336
24337 case DW_FORM_addrx:
24338 case DW_FORM_sdata:
24339 case DW_FORM_strx:
24340 case DW_FORM_udata:
24341 case DW_FORM_GNU_addr_index:
24342 case DW_FORM_GNU_str_index:
24343 bytes = gdb_skip_leb128 (bytes, buffer_end);
24344 if (bytes == NULL)
24345 {
24346 dwarf2_section_buffer_overflow_complaint (section);
24347 return NULL;
24348 }
24349 break;
24350
24351 case DW_FORM_implicit_const:
24352 break;
24353
24354 default:
24355 {
24356 complaint (_("invalid form 0x%x in `%s'"),
24357 form, get_section_name (section));
24358 return NULL;
24359 }
24360 }
24361
24362 return bytes;
24363 }
24364
24365 /* A helper for dwarf_decode_macros that handles skipping an unknown
24366 opcode. Returns an updated pointer to the macro data buffer; or,
24367 on error, issues a complaint and returns NULL. */
24368
24369 static const gdb_byte *
24370 skip_unknown_opcode (unsigned int opcode,
24371 const gdb_byte **opcode_definitions,
24372 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24373 bfd *abfd,
24374 unsigned int offset_size,
24375 struct dwarf2_section_info *section)
24376 {
24377 unsigned int bytes_read, i;
24378 unsigned long arg;
24379 const gdb_byte *defn;
24380
24381 if (opcode_definitions[opcode] == NULL)
24382 {
24383 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24384 opcode);
24385 return NULL;
24386 }
24387
24388 defn = opcode_definitions[opcode];
24389 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24390 defn += bytes_read;
24391
24392 for (i = 0; i < arg; ++i)
24393 {
24394 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24395 (enum dwarf_form) defn[i], offset_size,
24396 section);
24397 if (mac_ptr == NULL)
24398 {
24399 /* skip_form_bytes already issued the complaint. */
24400 return NULL;
24401 }
24402 }
24403
24404 return mac_ptr;
24405 }
24406
24407 /* A helper function which parses the header of a macro section.
24408 If the macro section is the extended (for now called "GNU") type,
24409 then this updates *OFFSET_SIZE. Returns a pointer to just after
24410 the header, or issues a complaint and returns NULL on error. */
24411
24412 static const gdb_byte *
24413 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24414 bfd *abfd,
24415 const gdb_byte *mac_ptr,
24416 unsigned int *offset_size,
24417 int section_is_gnu)
24418 {
24419 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24420
24421 if (section_is_gnu)
24422 {
24423 unsigned int version, flags;
24424
24425 version = read_2_bytes (abfd, mac_ptr);
24426 if (version != 4 && version != 5)
24427 {
24428 complaint (_("unrecognized version `%d' in .debug_macro section"),
24429 version);
24430 return NULL;
24431 }
24432 mac_ptr += 2;
24433
24434 flags = read_1_byte (abfd, mac_ptr);
24435 ++mac_ptr;
24436 *offset_size = (flags & 1) ? 8 : 4;
24437
24438 if ((flags & 2) != 0)
24439 /* We don't need the line table offset. */
24440 mac_ptr += *offset_size;
24441
24442 /* Vendor opcode descriptions. */
24443 if ((flags & 4) != 0)
24444 {
24445 unsigned int i, count;
24446
24447 count = read_1_byte (abfd, mac_ptr);
24448 ++mac_ptr;
24449 for (i = 0; i < count; ++i)
24450 {
24451 unsigned int opcode, bytes_read;
24452 unsigned long arg;
24453
24454 opcode = read_1_byte (abfd, mac_ptr);
24455 ++mac_ptr;
24456 opcode_definitions[opcode] = mac_ptr;
24457 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24458 mac_ptr += bytes_read;
24459 mac_ptr += arg;
24460 }
24461 }
24462 }
24463
24464 return mac_ptr;
24465 }
24466
24467 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24468 including DW_MACRO_import. */
24469
24470 static void
24471 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24472 bfd *abfd,
24473 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24474 struct macro_source_file *current_file,
24475 struct line_header *lh,
24476 struct dwarf2_section_info *section,
24477 int section_is_gnu, int section_is_dwz,
24478 unsigned int offset_size,
24479 htab_t include_hash)
24480 {
24481 struct dwarf2_per_objfile *dwarf2_per_objfile
24482 = cu->per_cu->dwarf2_per_objfile;
24483 struct objfile *objfile = dwarf2_per_objfile->objfile;
24484 enum dwarf_macro_record_type macinfo_type;
24485 int at_commandline;
24486 const gdb_byte *opcode_definitions[256];
24487
24488 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24489 &offset_size, section_is_gnu);
24490 if (mac_ptr == NULL)
24491 {
24492 /* We already issued a complaint. */
24493 return;
24494 }
24495
24496 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24497 GDB is still reading the definitions from command line. First
24498 DW_MACINFO_start_file will need to be ignored as it was already executed
24499 to create CURRENT_FILE for the main source holding also the command line
24500 definitions. On first met DW_MACINFO_start_file this flag is reset to
24501 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24502
24503 at_commandline = 1;
24504
24505 do
24506 {
24507 /* Do we at least have room for a macinfo type byte? */
24508 if (mac_ptr >= mac_end)
24509 {
24510 dwarf2_section_buffer_overflow_complaint (section);
24511 break;
24512 }
24513
24514 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24515 mac_ptr++;
24516
24517 /* Note that we rely on the fact that the corresponding GNU and
24518 DWARF constants are the same. */
24519 DIAGNOSTIC_PUSH
24520 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24521 switch (macinfo_type)
24522 {
24523 /* A zero macinfo type indicates the end of the macro
24524 information. */
24525 case 0:
24526 break;
24527
24528 case DW_MACRO_define:
24529 case DW_MACRO_undef:
24530 case DW_MACRO_define_strp:
24531 case DW_MACRO_undef_strp:
24532 case DW_MACRO_define_sup:
24533 case DW_MACRO_undef_sup:
24534 {
24535 unsigned int bytes_read;
24536 int line;
24537 const char *body;
24538 int is_define;
24539
24540 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24541 mac_ptr += bytes_read;
24542
24543 if (macinfo_type == DW_MACRO_define
24544 || macinfo_type == DW_MACRO_undef)
24545 {
24546 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24547 mac_ptr += bytes_read;
24548 }
24549 else
24550 {
24551 LONGEST str_offset;
24552
24553 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24554 mac_ptr += offset_size;
24555
24556 if (macinfo_type == DW_MACRO_define_sup
24557 || macinfo_type == DW_MACRO_undef_sup
24558 || section_is_dwz)
24559 {
24560 struct dwz_file *dwz
24561 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24562
24563 body = read_indirect_string_from_dwz (objfile,
24564 dwz, str_offset);
24565 }
24566 else
24567 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24568 abfd, str_offset);
24569 }
24570
24571 is_define = (macinfo_type == DW_MACRO_define
24572 || macinfo_type == DW_MACRO_define_strp
24573 || macinfo_type == DW_MACRO_define_sup);
24574 if (! current_file)
24575 {
24576 /* DWARF violation as no main source is present. */
24577 complaint (_("debug info with no main source gives macro %s "
24578 "on line %d: %s"),
24579 is_define ? _("definition") : _("undefinition"),
24580 line, body);
24581 break;
24582 }
24583 if ((line == 0 && !at_commandline)
24584 || (line != 0 && at_commandline))
24585 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24586 at_commandline ? _("command-line") : _("in-file"),
24587 is_define ? _("definition") : _("undefinition"),
24588 line == 0 ? _("zero") : _("non-zero"), line, body);
24589
24590 if (body == NULL)
24591 {
24592 /* Fedora's rpm-build's "debugedit" binary
24593 corrupted .debug_macro sections.
24594
24595 For more info, see
24596 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24597 complaint (_("debug info gives %s invalid macro %s "
24598 "without body (corrupted?) at line %d "
24599 "on file %s"),
24600 at_commandline ? _("command-line") : _("in-file"),
24601 is_define ? _("definition") : _("undefinition"),
24602 line, current_file->filename);
24603 }
24604 else if (is_define)
24605 parse_macro_definition (current_file, line, body);
24606 else
24607 {
24608 gdb_assert (macinfo_type == DW_MACRO_undef
24609 || macinfo_type == DW_MACRO_undef_strp
24610 || macinfo_type == DW_MACRO_undef_sup);
24611 macro_undef (current_file, line, body);
24612 }
24613 }
24614 break;
24615
24616 case DW_MACRO_start_file:
24617 {
24618 unsigned int bytes_read;
24619 int line, file;
24620
24621 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24622 mac_ptr += bytes_read;
24623 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24624 mac_ptr += bytes_read;
24625
24626 if ((line == 0 && !at_commandline)
24627 || (line != 0 && at_commandline))
24628 complaint (_("debug info gives source %d included "
24629 "from %s at %s line %d"),
24630 file, at_commandline ? _("command-line") : _("file"),
24631 line == 0 ? _("zero") : _("non-zero"), line);
24632
24633 if (at_commandline)
24634 {
24635 /* This DW_MACRO_start_file was executed in the
24636 pass one. */
24637 at_commandline = 0;
24638 }
24639 else
24640 current_file = macro_start_file (cu, file, line, current_file,
24641 lh);
24642 }
24643 break;
24644
24645 case DW_MACRO_end_file:
24646 if (! current_file)
24647 complaint (_("macro debug info has an unmatched "
24648 "`close_file' directive"));
24649 else
24650 {
24651 current_file = current_file->included_by;
24652 if (! current_file)
24653 {
24654 enum dwarf_macro_record_type next_type;
24655
24656 /* GCC circa March 2002 doesn't produce the zero
24657 type byte marking the end of the compilation
24658 unit. Complain if it's not there, but exit no
24659 matter what. */
24660
24661 /* Do we at least have room for a macinfo type byte? */
24662 if (mac_ptr >= mac_end)
24663 {
24664 dwarf2_section_buffer_overflow_complaint (section);
24665 return;
24666 }
24667
24668 /* We don't increment mac_ptr here, so this is just
24669 a look-ahead. */
24670 next_type
24671 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24672 mac_ptr);
24673 if (next_type != 0)
24674 complaint (_("no terminating 0-type entry for "
24675 "macros in `.debug_macinfo' section"));
24676
24677 return;
24678 }
24679 }
24680 break;
24681
24682 case DW_MACRO_import:
24683 case DW_MACRO_import_sup:
24684 {
24685 LONGEST offset;
24686 void **slot;
24687 bfd *include_bfd = abfd;
24688 struct dwarf2_section_info *include_section = section;
24689 const gdb_byte *include_mac_end = mac_end;
24690 int is_dwz = section_is_dwz;
24691 const gdb_byte *new_mac_ptr;
24692
24693 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24694 mac_ptr += offset_size;
24695
24696 if (macinfo_type == DW_MACRO_import_sup)
24697 {
24698 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24699
24700 dwarf2_read_section (objfile, &dwz->macro);
24701
24702 include_section = &dwz->macro;
24703 include_bfd = get_section_bfd_owner (include_section);
24704 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24705 is_dwz = 1;
24706 }
24707
24708 new_mac_ptr = include_section->buffer + offset;
24709 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24710
24711 if (*slot != NULL)
24712 {
24713 /* This has actually happened; see
24714 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24715 complaint (_("recursive DW_MACRO_import in "
24716 ".debug_macro section"));
24717 }
24718 else
24719 {
24720 *slot = (void *) new_mac_ptr;
24721
24722 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24723 include_mac_end, current_file, lh,
24724 section, section_is_gnu, is_dwz,
24725 offset_size, include_hash);
24726
24727 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24728 }
24729 }
24730 break;
24731
24732 case DW_MACINFO_vendor_ext:
24733 if (!section_is_gnu)
24734 {
24735 unsigned int bytes_read;
24736
24737 /* This reads the constant, but since we don't recognize
24738 any vendor extensions, we ignore it. */
24739 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24740 mac_ptr += bytes_read;
24741 read_direct_string (abfd, mac_ptr, &bytes_read);
24742 mac_ptr += bytes_read;
24743
24744 /* We don't recognize any vendor extensions. */
24745 break;
24746 }
24747 /* FALLTHROUGH */
24748
24749 default:
24750 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24751 mac_ptr, mac_end, abfd, offset_size,
24752 section);
24753 if (mac_ptr == NULL)
24754 return;
24755 break;
24756 }
24757 DIAGNOSTIC_POP
24758 } while (macinfo_type != 0);
24759 }
24760
24761 static void
24762 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24763 int section_is_gnu)
24764 {
24765 struct dwarf2_per_objfile *dwarf2_per_objfile
24766 = cu->per_cu->dwarf2_per_objfile;
24767 struct objfile *objfile = dwarf2_per_objfile->objfile;
24768 struct line_header *lh = cu->line_header;
24769 bfd *abfd;
24770 const gdb_byte *mac_ptr, *mac_end;
24771 struct macro_source_file *current_file = 0;
24772 enum dwarf_macro_record_type macinfo_type;
24773 unsigned int offset_size = cu->header.offset_size;
24774 const gdb_byte *opcode_definitions[256];
24775 void **slot;
24776 struct dwarf2_section_info *section;
24777 const char *section_name;
24778
24779 if (cu->dwo_unit != NULL)
24780 {
24781 if (section_is_gnu)
24782 {
24783 section = &cu->dwo_unit->dwo_file->sections.macro;
24784 section_name = ".debug_macro.dwo";
24785 }
24786 else
24787 {
24788 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24789 section_name = ".debug_macinfo.dwo";
24790 }
24791 }
24792 else
24793 {
24794 if (section_is_gnu)
24795 {
24796 section = &dwarf2_per_objfile->macro;
24797 section_name = ".debug_macro";
24798 }
24799 else
24800 {
24801 section = &dwarf2_per_objfile->macinfo;
24802 section_name = ".debug_macinfo";
24803 }
24804 }
24805
24806 dwarf2_read_section (objfile, section);
24807 if (section->buffer == NULL)
24808 {
24809 complaint (_("missing %s section"), section_name);
24810 return;
24811 }
24812 abfd = get_section_bfd_owner (section);
24813
24814 /* First pass: Find the name of the base filename.
24815 This filename is needed in order to process all macros whose definition
24816 (or undefinition) comes from the command line. These macros are defined
24817 before the first DW_MACINFO_start_file entry, and yet still need to be
24818 associated to the base file.
24819
24820 To determine the base file name, we scan the macro definitions until we
24821 reach the first DW_MACINFO_start_file entry. We then initialize
24822 CURRENT_FILE accordingly so that any macro definition found before the
24823 first DW_MACINFO_start_file can still be associated to the base file. */
24824
24825 mac_ptr = section->buffer + offset;
24826 mac_end = section->buffer + section->size;
24827
24828 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24829 &offset_size, section_is_gnu);
24830 if (mac_ptr == NULL)
24831 {
24832 /* We already issued a complaint. */
24833 return;
24834 }
24835
24836 do
24837 {
24838 /* Do we at least have room for a macinfo type byte? */
24839 if (mac_ptr >= mac_end)
24840 {
24841 /* Complaint is printed during the second pass as GDB will probably
24842 stop the first pass earlier upon finding
24843 DW_MACINFO_start_file. */
24844 break;
24845 }
24846
24847 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24848 mac_ptr++;
24849
24850 /* Note that we rely on the fact that the corresponding GNU and
24851 DWARF constants are the same. */
24852 DIAGNOSTIC_PUSH
24853 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24854 switch (macinfo_type)
24855 {
24856 /* A zero macinfo type indicates the end of the macro
24857 information. */
24858 case 0:
24859 break;
24860
24861 case DW_MACRO_define:
24862 case DW_MACRO_undef:
24863 /* Only skip the data by MAC_PTR. */
24864 {
24865 unsigned int bytes_read;
24866
24867 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24868 mac_ptr += bytes_read;
24869 read_direct_string (abfd, mac_ptr, &bytes_read);
24870 mac_ptr += bytes_read;
24871 }
24872 break;
24873
24874 case DW_MACRO_start_file:
24875 {
24876 unsigned int bytes_read;
24877 int line, file;
24878
24879 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24880 mac_ptr += bytes_read;
24881 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24882 mac_ptr += bytes_read;
24883
24884 current_file = macro_start_file (cu, file, line, current_file, lh);
24885 }
24886 break;
24887
24888 case DW_MACRO_end_file:
24889 /* No data to skip by MAC_PTR. */
24890 break;
24891
24892 case DW_MACRO_define_strp:
24893 case DW_MACRO_undef_strp:
24894 case DW_MACRO_define_sup:
24895 case DW_MACRO_undef_sup:
24896 {
24897 unsigned int bytes_read;
24898
24899 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24900 mac_ptr += bytes_read;
24901 mac_ptr += offset_size;
24902 }
24903 break;
24904
24905 case DW_MACRO_import:
24906 case DW_MACRO_import_sup:
24907 /* Note that, according to the spec, a transparent include
24908 chain cannot call DW_MACRO_start_file. So, we can just
24909 skip this opcode. */
24910 mac_ptr += offset_size;
24911 break;
24912
24913 case DW_MACINFO_vendor_ext:
24914 /* Only skip the data by MAC_PTR. */
24915 if (!section_is_gnu)
24916 {
24917 unsigned int bytes_read;
24918
24919 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24920 mac_ptr += bytes_read;
24921 read_direct_string (abfd, mac_ptr, &bytes_read);
24922 mac_ptr += bytes_read;
24923 }
24924 /* FALLTHROUGH */
24925
24926 default:
24927 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24928 mac_ptr, mac_end, abfd, offset_size,
24929 section);
24930 if (mac_ptr == NULL)
24931 return;
24932 break;
24933 }
24934 DIAGNOSTIC_POP
24935 } while (macinfo_type != 0 && current_file == NULL);
24936
24937 /* Second pass: Process all entries.
24938
24939 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24940 command-line macro definitions/undefinitions. This flag is unset when we
24941 reach the first DW_MACINFO_start_file entry. */
24942
24943 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24944 htab_eq_pointer,
24945 NULL, xcalloc, xfree));
24946 mac_ptr = section->buffer + offset;
24947 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24948 *slot = (void *) mac_ptr;
24949 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24950 current_file, lh, section,
24951 section_is_gnu, 0, offset_size,
24952 include_hash.get ());
24953 }
24954
24955 /* Check if the attribute's form is a DW_FORM_block*
24956 if so return true else false. */
24957
24958 static int
24959 attr_form_is_block (const struct attribute *attr)
24960 {
24961 return (attr == NULL ? 0 :
24962 attr->form == DW_FORM_block1
24963 || attr->form == DW_FORM_block2
24964 || attr->form == DW_FORM_block4
24965 || attr->form == DW_FORM_block
24966 || attr->form == DW_FORM_exprloc);
24967 }
24968
24969 /* Return non-zero if ATTR's value is a section offset --- classes
24970 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24971 You may use DW_UNSND (attr) to retrieve such offsets.
24972
24973 Section 7.5.4, "Attribute Encodings", explains that no attribute
24974 may have a value that belongs to more than one of these classes; it
24975 would be ambiguous if we did, because we use the same forms for all
24976 of them. */
24977
24978 static int
24979 attr_form_is_section_offset (const struct attribute *attr)
24980 {
24981 return (attr->form == DW_FORM_data4
24982 || attr->form == DW_FORM_data8
24983 || attr->form == DW_FORM_sec_offset);
24984 }
24985
24986 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24987 zero otherwise. When this function returns true, you can apply
24988 dwarf2_get_attr_constant_value to it.
24989
24990 However, note that for some attributes you must check
24991 attr_form_is_section_offset before using this test. DW_FORM_data4
24992 and DW_FORM_data8 are members of both the constant class, and of
24993 the classes that contain offsets into other debug sections
24994 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24995 that, if an attribute's can be either a constant or one of the
24996 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24997 taken as section offsets, not constants.
24998
24999 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25000 cannot handle that. */
25001
25002 static int
25003 attr_form_is_constant (const struct attribute *attr)
25004 {
25005 switch (attr->form)
25006 {
25007 case DW_FORM_sdata:
25008 case DW_FORM_udata:
25009 case DW_FORM_data1:
25010 case DW_FORM_data2:
25011 case DW_FORM_data4:
25012 case DW_FORM_data8:
25013 case DW_FORM_implicit_const:
25014 return 1;
25015 default:
25016 return 0;
25017 }
25018 }
25019
25020
25021 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25022 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25023
25024 static int
25025 attr_form_is_ref (const struct attribute *attr)
25026 {
25027 switch (attr->form)
25028 {
25029 case DW_FORM_ref_addr:
25030 case DW_FORM_ref1:
25031 case DW_FORM_ref2:
25032 case DW_FORM_ref4:
25033 case DW_FORM_ref8:
25034 case DW_FORM_ref_udata:
25035 case DW_FORM_GNU_ref_alt:
25036 return 1;
25037 default:
25038 return 0;
25039 }
25040 }
25041
25042 /* Return the .debug_loc section to use for CU.
25043 For DWO files use .debug_loc.dwo. */
25044
25045 static struct dwarf2_section_info *
25046 cu_debug_loc_section (struct dwarf2_cu *cu)
25047 {
25048 struct dwarf2_per_objfile *dwarf2_per_objfile
25049 = cu->per_cu->dwarf2_per_objfile;
25050
25051 if (cu->dwo_unit)
25052 {
25053 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25054
25055 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25056 }
25057 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25058 : &dwarf2_per_objfile->loc);
25059 }
25060
25061 /* A helper function that fills in a dwarf2_loclist_baton. */
25062
25063 static void
25064 fill_in_loclist_baton (struct dwarf2_cu *cu,
25065 struct dwarf2_loclist_baton *baton,
25066 const struct attribute *attr)
25067 {
25068 struct dwarf2_per_objfile *dwarf2_per_objfile
25069 = cu->per_cu->dwarf2_per_objfile;
25070 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25071
25072 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25073
25074 baton->per_cu = cu->per_cu;
25075 gdb_assert (baton->per_cu);
25076 /* We don't know how long the location list is, but make sure we
25077 don't run off the edge of the section. */
25078 baton->size = section->size - DW_UNSND (attr);
25079 baton->data = section->buffer + DW_UNSND (attr);
25080 baton->base_address = cu->base_address;
25081 baton->from_dwo = cu->dwo_unit != NULL;
25082 }
25083
25084 static void
25085 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25086 struct dwarf2_cu *cu, int is_block)
25087 {
25088 struct dwarf2_per_objfile *dwarf2_per_objfile
25089 = cu->per_cu->dwarf2_per_objfile;
25090 struct objfile *objfile = dwarf2_per_objfile->objfile;
25091 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25092
25093 if (attr_form_is_section_offset (attr)
25094 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25095 the section. If so, fall through to the complaint in the
25096 other branch. */
25097 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25098 {
25099 struct dwarf2_loclist_baton *baton;
25100
25101 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25102
25103 fill_in_loclist_baton (cu, baton, attr);
25104
25105 if (cu->base_known == 0)
25106 complaint (_("Location list used without "
25107 "specifying the CU base address."));
25108
25109 SYMBOL_ACLASS_INDEX (sym) = (is_block
25110 ? dwarf2_loclist_block_index
25111 : dwarf2_loclist_index);
25112 SYMBOL_LOCATION_BATON (sym) = baton;
25113 }
25114 else
25115 {
25116 struct dwarf2_locexpr_baton *baton;
25117
25118 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25119 baton->per_cu = cu->per_cu;
25120 gdb_assert (baton->per_cu);
25121
25122 if (attr_form_is_block (attr))
25123 {
25124 /* Note that we're just copying the block's data pointer
25125 here, not the actual data. We're still pointing into the
25126 info_buffer for SYM's objfile; right now we never release
25127 that buffer, but when we do clean up properly this may
25128 need to change. */
25129 baton->size = DW_BLOCK (attr)->size;
25130 baton->data = DW_BLOCK (attr)->data;
25131 }
25132 else
25133 {
25134 dwarf2_invalid_attrib_class_complaint ("location description",
25135 SYMBOL_NATURAL_NAME (sym));
25136 baton->size = 0;
25137 }
25138
25139 SYMBOL_ACLASS_INDEX (sym) = (is_block
25140 ? dwarf2_locexpr_block_index
25141 : dwarf2_locexpr_index);
25142 SYMBOL_LOCATION_BATON (sym) = baton;
25143 }
25144 }
25145
25146 /* Return the OBJFILE associated with the compilation unit CU. If CU
25147 came from a separate debuginfo file, then the master objfile is
25148 returned. */
25149
25150 struct objfile *
25151 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25152 {
25153 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25154
25155 /* Return the master objfile, so that we can report and look up the
25156 correct file containing this variable. */
25157 if (objfile->separate_debug_objfile_backlink)
25158 objfile = objfile->separate_debug_objfile_backlink;
25159
25160 return objfile;
25161 }
25162
25163 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25164 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25165 CU_HEADERP first. */
25166
25167 static const struct comp_unit_head *
25168 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25169 struct dwarf2_per_cu_data *per_cu)
25170 {
25171 const gdb_byte *info_ptr;
25172
25173 if (per_cu->cu)
25174 return &per_cu->cu->header;
25175
25176 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25177
25178 memset (cu_headerp, 0, sizeof (*cu_headerp));
25179 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25180 rcuh_kind::COMPILE);
25181
25182 return cu_headerp;
25183 }
25184
25185 /* Return the address size given in the compilation unit header for CU. */
25186
25187 int
25188 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25189 {
25190 struct comp_unit_head cu_header_local;
25191 const struct comp_unit_head *cu_headerp;
25192
25193 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25194
25195 return cu_headerp->addr_size;
25196 }
25197
25198 /* Return the offset size given in the compilation unit header for CU. */
25199
25200 int
25201 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25202 {
25203 struct comp_unit_head cu_header_local;
25204 const struct comp_unit_head *cu_headerp;
25205
25206 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25207
25208 return cu_headerp->offset_size;
25209 }
25210
25211 /* See its dwarf2loc.h declaration. */
25212
25213 int
25214 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25215 {
25216 struct comp_unit_head cu_header_local;
25217 const struct comp_unit_head *cu_headerp;
25218
25219 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25220
25221 if (cu_headerp->version == 2)
25222 return cu_headerp->addr_size;
25223 else
25224 return cu_headerp->offset_size;
25225 }
25226
25227 /* Return the text offset of the CU. The returned offset comes from
25228 this CU's objfile. If this objfile came from a separate debuginfo
25229 file, then the offset may be different from the corresponding
25230 offset in the parent objfile. */
25231
25232 CORE_ADDR
25233 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25234 {
25235 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25236
25237 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25238 }
25239
25240 /* Return a type that is a generic pointer type, the size of which matches
25241 the address size given in the compilation unit header for PER_CU. */
25242 static struct type *
25243 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25244 {
25245 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25246 struct type *void_type = objfile_type (objfile)->builtin_void;
25247 struct type *addr_type = lookup_pointer_type (void_type);
25248 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25249
25250 if (TYPE_LENGTH (addr_type) == addr_size)
25251 return addr_type;
25252
25253 addr_type
25254 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25255 return addr_type;
25256 }
25257
25258 /* Return DWARF version number of PER_CU. */
25259
25260 short
25261 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25262 {
25263 return per_cu->dwarf_version;
25264 }
25265
25266 /* Locate the .debug_info compilation unit from CU's objfile which contains
25267 the DIE at OFFSET. Raises an error on failure. */
25268
25269 static struct dwarf2_per_cu_data *
25270 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25271 unsigned int offset_in_dwz,
25272 struct dwarf2_per_objfile *dwarf2_per_objfile)
25273 {
25274 struct dwarf2_per_cu_data *this_cu;
25275 int low, high;
25276
25277 low = 0;
25278 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25279 while (high > low)
25280 {
25281 struct dwarf2_per_cu_data *mid_cu;
25282 int mid = low + (high - low) / 2;
25283
25284 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25285 if (mid_cu->is_dwz > offset_in_dwz
25286 || (mid_cu->is_dwz == offset_in_dwz
25287 && mid_cu->sect_off + mid_cu->length >= sect_off))
25288 high = mid;
25289 else
25290 low = mid + 1;
25291 }
25292 gdb_assert (low == high);
25293 this_cu = dwarf2_per_objfile->all_comp_units[low];
25294 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25295 {
25296 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25297 error (_("Dwarf Error: could not find partial DIE containing "
25298 "offset %s [in module %s]"),
25299 sect_offset_str (sect_off),
25300 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25301
25302 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25303 <= sect_off);
25304 return dwarf2_per_objfile->all_comp_units[low-1];
25305 }
25306 else
25307 {
25308 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25309 && sect_off >= this_cu->sect_off + this_cu->length)
25310 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25311 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25312 return this_cu;
25313 }
25314 }
25315
25316 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25317
25318 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25319 : per_cu (per_cu_),
25320 mark (false),
25321 has_loclist (false),
25322 checked_producer (false),
25323 producer_is_gxx_lt_4_6 (false),
25324 producer_is_gcc_lt_4_3 (false),
25325 producer_is_icc (false),
25326 producer_is_icc_lt_14 (false),
25327 producer_is_codewarrior (false),
25328 processing_has_namespace_info (false)
25329 {
25330 per_cu->cu = this;
25331 }
25332
25333 /* Destroy a dwarf2_cu. */
25334
25335 dwarf2_cu::~dwarf2_cu ()
25336 {
25337 per_cu->cu = NULL;
25338 }
25339
25340 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25341
25342 static void
25343 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25344 enum language pretend_language)
25345 {
25346 struct attribute *attr;
25347
25348 /* Set the language we're debugging. */
25349 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25350 if (attr)
25351 set_cu_language (DW_UNSND (attr), cu);
25352 else
25353 {
25354 cu->language = pretend_language;
25355 cu->language_defn = language_def (cu->language);
25356 }
25357
25358 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25359 }
25360
25361 /* Increase the age counter on each cached compilation unit, and free
25362 any that are too old. */
25363
25364 static void
25365 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25366 {
25367 struct dwarf2_per_cu_data *per_cu, **last_chain;
25368
25369 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25370 per_cu = dwarf2_per_objfile->read_in_chain;
25371 while (per_cu != NULL)
25372 {
25373 per_cu->cu->last_used ++;
25374 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25375 dwarf2_mark (per_cu->cu);
25376 per_cu = per_cu->cu->read_in_chain;
25377 }
25378
25379 per_cu = dwarf2_per_objfile->read_in_chain;
25380 last_chain = &dwarf2_per_objfile->read_in_chain;
25381 while (per_cu != NULL)
25382 {
25383 struct dwarf2_per_cu_data *next_cu;
25384
25385 next_cu = per_cu->cu->read_in_chain;
25386
25387 if (!per_cu->cu->mark)
25388 {
25389 delete per_cu->cu;
25390 *last_chain = next_cu;
25391 }
25392 else
25393 last_chain = &per_cu->cu->read_in_chain;
25394
25395 per_cu = next_cu;
25396 }
25397 }
25398
25399 /* Remove a single compilation unit from the cache. */
25400
25401 static void
25402 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25403 {
25404 struct dwarf2_per_cu_data *per_cu, **last_chain;
25405 struct dwarf2_per_objfile *dwarf2_per_objfile
25406 = target_per_cu->dwarf2_per_objfile;
25407
25408 per_cu = dwarf2_per_objfile->read_in_chain;
25409 last_chain = &dwarf2_per_objfile->read_in_chain;
25410 while (per_cu != NULL)
25411 {
25412 struct dwarf2_per_cu_data *next_cu;
25413
25414 next_cu = per_cu->cu->read_in_chain;
25415
25416 if (per_cu == target_per_cu)
25417 {
25418 delete per_cu->cu;
25419 per_cu->cu = NULL;
25420 *last_chain = next_cu;
25421 break;
25422 }
25423 else
25424 last_chain = &per_cu->cu->read_in_chain;
25425
25426 per_cu = next_cu;
25427 }
25428 }
25429
25430 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25431 We store these in a hash table separate from the DIEs, and preserve them
25432 when the DIEs are flushed out of cache.
25433
25434 The CU "per_cu" pointer is needed because offset alone is not enough to
25435 uniquely identify the type. A file may have multiple .debug_types sections,
25436 or the type may come from a DWO file. Furthermore, while it's more logical
25437 to use per_cu->section+offset, with Fission the section with the data is in
25438 the DWO file but we don't know that section at the point we need it.
25439 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25440 because we can enter the lookup routine, get_die_type_at_offset, from
25441 outside this file, and thus won't necessarily have PER_CU->cu.
25442 Fortunately, PER_CU is stable for the life of the objfile. */
25443
25444 struct dwarf2_per_cu_offset_and_type
25445 {
25446 const struct dwarf2_per_cu_data *per_cu;
25447 sect_offset sect_off;
25448 struct type *type;
25449 };
25450
25451 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25452
25453 static hashval_t
25454 per_cu_offset_and_type_hash (const void *item)
25455 {
25456 const struct dwarf2_per_cu_offset_and_type *ofs
25457 = (const struct dwarf2_per_cu_offset_and_type *) item;
25458
25459 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25460 }
25461
25462 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25463
25464 static int
25465 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25466 {
25467 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25468 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25469 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25470 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25471
25472 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25473 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25474 }
25475
25476 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25477 table if necessary. For convenience, return TYPE.
25478
25479 The DIEs reading must have careful ordering to:
25480 * Not cause infite loops trying to read in DIEs as a prerequisite for
25481 reading current DIE.
25482 * Not trying to dereference contents of still incompletely read in types
25483 while reading in other DIEs.
25484 * Enable referencing still incompletely read in types just by a pointer to
25485 the type without accessing its fields.
25486
25487 Therefore caller should follow these rules:
25488 * Try to fetch any prerequisite types we may need to build this DIE type
25489 before building the type and calling set_die_type.
25490 * After building type call set_die_type for current DIE as soon as
25491 possible before fetching more types to complete the current type.
25492 * Make the type as complete as possible before fetching more types. */
25493
25494 static struct type *
25495 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25496 {
25497 struct dwarf2_per_objfile *dwarf2_per_objfile
25498 = cu->per_cu->dwarf2_per_objfile;
25499 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25500 struct objfile *objfile = dwarf2_per_objfile->objfile;
25501 struct attribute *attr;
25502 struct dynamic_prop prop;
25503
25504 /* For Ada types, make sure that the gnat-specific data is always
25505 initialized (if not already set). There are a few types where
25506 we should not be doing so, because the type-specific area is
25507 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25508 where the type-specific area is used to store the floatformat).
25509 But this is not a problem, because the gnat-specific information
25510 is actually not needed for these types. */
25511 if (need_gnat_info (cu)
25512 && TYPE_CODE (type) != TYPE_CODE_FUNC
25513 && TYPE_CODE (type) != TYPE_CODE_FLT
25514 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25515 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25516 && TYPE_CODE (type) != TYPE_CODE_METHOD
25517 && !HAVE_GNAT_AUX_INFO (type))
25518 INIT_GNAT_SPECIFIC (type);
25519
25520 /* Read DW_AT_allocated and set in type. */
25521 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25522 if (attr_form_is_block (attr))
25523 {
25524 struct type *prop_type
25525 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25526 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25527 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25528 }
25529 else if (attr != NULL)
25530 {
25531 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25532 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25533 sect_offset_str (die->sect_off));
25534 }
25535
25536 /* Read DW_AT_associated and set in type. */
25537 attr = dwarf2_attr (die, DW_AT_associated, cu);
25538 if (attr_form_is_block (attr))
25539 {
25540 struct type *prop_type
25541 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25542 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25543 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25544 }
25545 else if (attr != NULL)
25546 {
25547 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25548 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25549 sect_offset_str (die->sect_off));
25550 }
25551
25552 /* Read DW_AT_data_location and set in type. */
25553 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25554 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25555 dwarf2_per_cu_addr_type (cu->per_cu)))
25556 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25557
25558 if (dwarf2_per_objfile->die_type_hash == NULL)
25559 {
25560 dwarf2_per_objfile->die_type_hash =
25561 htab_create_alloc_ex (127,
25562 per_cu_offset_and_type_hash,
25563 per_cu_offset_and_type_eq,
25564 NULL,
25565 &objfile->objfile_obstack,
25566 hashtab_obstack_allocate,
25567 dummy_obstack_deallocate);
25568 }
25569
25570 ofs.per_cu = cu->per_cu;
25571 ofs.sect_off = die->sect_off;
25572 ofs.type = type;
25573 slot = (struct dwarf2_per_cu_offset_and_type **)
25574 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25575 if (*slot)
25576 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25577 sect_offset_str (die->sect_off));
25578 *slot = XOBNEW (&objfile->objfile_obstack,
25579 struct dwarf2_per_cu_offset_and_type);
25580 **slot = ofs;
25581 return type;
25582 }
25583
25584 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25585 or return NULL if the die does not have a saved type. */
25586
25587 static struct type *
25588 get_die_type_at_offset (sect_offset sect_off,
25589 struct dwarf2_per_cu_data *per_cu)
25590 {
25591 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25592 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25593
25594 if (dwarf2_per_objfile->die_type_hash == NULL)
25595 return NULL;
25596
25597 ofs.per_cu = per_cu;
25598 ofs.sect_off = sect_off;
25599 slot = ((struct dwarf2_per_cu_offset_and_type *)
25600 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25601 if (slot)
25602 return slot->type;
25603 else
25604 return NULL;
25605 }
25606
25607 /* Look up the type for DIE in CU in die_type_hash,
25608 or return NULL if DIE does not have a saved type. */
25609
25610 static struct type *
25611 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25612 {
25613 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25614 }
25615
25616 /* Add a dependence relationship from CU to REF_PER_CU. */
25617
25618 static void
25619 dwarf2_add_dependence (struct dwarf2_cu *cu,
25620 struct dwarf2_per_cu_data *ref_per_cu)
25621 {
25622 void **slot;
25623
25624 if (cu->dependencies == NULL)
25625 cu->dependencies
25626 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25627 NULL, &cu->comp_unit_obstack,
25628 hashtab_obstack_allocate,
25629 dummy_obstack_deallocate);
25630
25631 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25632 if (*slot == NULL)
25633 *slot = ref_per_cu;
25634 }
25635
25636 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25637 Set the mark field in every compilation unit in the
25638 cache that we must keep because we are keeping CU. */
25639
25640 static int
25641 dwarf2_mark_helper (void **slot, void *data)
25642 {
25643 struct dwarf2_per_cu_data *per_cu;
25644
25645 per_cu = (struct dwarf2_per_cu_data *) *slot;
25646
25647 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25648 reading of the chain. As such dependencies remain valid it is not much
25649 useful to track and undo them during QUIT cleanups. */
25650 if (per_cu->cu == NULL)
25651 return 1;
25652
25653 if (per_cu->cu->mark)
25654 return 1;
25655 per_cu->cu->mark = true;
25656
25657 if (per_cu->cu->dependencies != NULL)
25658 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25659
25660 return 1;
25661 }
25662
25663 /* Set the mark field in CU and in every other compilation unit in the
25664 cache that we must keep because we are keeping CU. */
25665
25666 static void
25667 dwarf2_mark (struct dwarf2_cu *cu)
25668 {
25669 if (cu->mark)
25670 return;
25671 cu->mark = true;
25672 if (cu->dependencies != NULL)
25673 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25674 }
25675
25676 static void
25677 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25678 {
25679 while (per_cu)
25680 {
25681 per_cu->cu->mark = false;
25682 per_cu = per_cu->cu->read_in_chain;
25683 }
25684 }
25685
25686 /* Trivial hash function for partial_die_info: the hash value of a DIE
25687 is its offset in .debug_info for this objfile. */
25688
25689 static hashval_t
25690 partial_die_hash (const void *item)
25691 {
25692 const struct partial_die_info *part_die
25693 = (const struct partial_die_info *) item;
25694
25695 return to_underlying (part_die->sect_off);
25696 }
25697
25698 /* Trivial comparison function for partial_die_info structures: two DIEs
25699 are equal if they have the same offset. */
25700
25701 static int
25702 partial_die_eq (const void *item_lhs, const void *item_rhs)
25703 {
25704 const struct partial_die_info *part_die_lhs
25705 = (const struct partial_die_info *) item_lhs;
25706 const struct partial_die_info *part_die_rhs
25707 = (const struct partial_die_info *) item_rhs;
25708
25709 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25710 }
25711
25712 struct cmd_list_element *set_dwarf_cmdlist;
25713 struct cmd_list_element *show_dwarf_cmdlist;
25714
25715 static void
25716 set_dwarf_cmd (const char *args, int from_tty)
25717 {
25718 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25719 gdb_stdout);
25720 }
25721
25722 static void
25723 show_dwarf_cmd (const char *args, int from_tty)
25724 {
25725 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25726 }
25727
25728 int dwarf_always_disassemble;
25729
25730 static void
25731 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25732 struct cmd_list_element *c, const char *value)
25733 {
25734 fprintf_filtered (file,
25735 _("Whether to always disassemble "
25736 "DWARF expressions is %s.\n"),
25737 value);
25738 }
25739
25740 static void
25741 show_check_physname (struct ui_file *file, int from_tty,
25742 struct cmd_list_element *c, const char *value)
25743 {
25744 fprintf_filtered (file,
25745 _("Whether to check \"physname\" is %s.\n"),
25746 value);
25747 }
25748
25749 void
25750 _initialize_dwarf2_read (void)
25751 {
25752 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25753 Set DWARF specific variables.\n\
25754 Configure DWARF variables such as the cache size."),
25755 &set_dwarf_cmdlist, "maintenance set dwarf ",
25756 0/*allow-unknown*/, &maintenance_set_cmdlist);
25757
25758 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25759 Show DWARF specific variables.\n\
25760 Show DWARF variables such as the cache size."),
25761 &show_dwarf_cmdlist, "maintenance show dwarf ",
25762 0/*allow-unknown*/, &maintenance_show_cmdlist);
25763
25764 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25765 &dwarf_max_cache_age, _("\
25766 Set the upper bound on the age of cached DWARF compilation units."), _("\
25767 Show the upper bound on the age of cached DWARF compilation units."), _("\
25768 A higher limit means that cached compilation units will be stored\n\
25769 in memory longer, and more total memory will be used. Zero disables\n\
25770 caching, which can slow down startup."),
25771 NULL,
25772 show_dwarf_max_cache_age,
25773 &set_dwarf_cmdlist,
25774 &show_dwarf_cmdlist);
25775
25776 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25777 &dwarf_always_disassemble, _("\
25778 Set whether `info address' always disassembles DWARF expressions."), _("\
25779 Show whether `info address' always disassembles DWARF expressions."), _("\
25780 When enabled, DWARF expressions are always printed in an assembly-like\n\
25781 syntax. When disabled, expressions will be printed in a more\n\
25782 conversational style, when possible."),
25783 NULL,
25784 show_dwarf_always_disassemble,
25785 &set_dwarf_cmdlist,
25786 &show_dwarf_cmdlist);
25787
25788 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25789 Set debugging of the DWARF reader."), _("\
25790 Show debugging of the DWARF reader."), _("\
25791 When enabled (non-zero), debugging messages are printed during DWARF\n\
25792 reading and symtab expansion. A value of 1 (one) provides basic\n\
25793 information. A value greater than 1 provides more verbose information."),
25794 NULL,
25795 NULL,
25796 &setdebuglist, &showdebuglist);
25797
25798 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25799 Set debugging of the DWARF DIE reader."), _("\
25800 Show debugging of the DWARF DIE reader."), _("\
25801 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25802 The value is the maximum depth to print."),
25803 NULL,
25804 NULL,
25805 &setdebuglist, &showdebuglist);
25806
25807 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25808 Set debugging of the dwarf line reader."), _("\
25809 Show debugging of the dwarf line reader."), _("\
25810 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25811 A value of 1 (one) provides basic information.\n\
25812 A value greater than 1 provides more verbose information."),
25813 NULL,
25814 NULL,
25815 &setdebuglist, &showdebuglist);
25816
25817 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25818 Set cross-checking of \"physname\" code against demangler."), _("\
25819 Show cross-checking of \"physname\" code against demangler."), _("\
25820 When enabled, GDB's internal \"physname\" code is checked against\n\
25821 the demangler."),
25822 NULL, show_check_physname,
25823 &setdebuglist, &showdebuglist);
25824
25825 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25826 no_class, &use_deprecated_index_sections, _("\
25827 Set whether to use deprecated gdb_index sections."), _("\
25828 Show whether to use deprecated gdb_index sections."), _("\
25829 When enabled, deprecated .gdb_index sections are used anyway.\n\
25830 Normally they are ignored either because of a missing feature or\n\
25831 performance issue.\n\
25832 Warning: This option must be enabled before gdb reads the file."),
25833 NULL,
25834 NULL,
25835 &setlist, &showlist);
25836
25837 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25838 &dwarf2_locexpr_funcs);
25839 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25840 &dwarf2_loclist_funcs);
25841
25842 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25843 &dwarf2_block_frame_base_locexpr_funcs);
25844 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25845 &dwarf2_block_frame_base_loclist_funcs);
25846
25847 #if GDB_SELF_TEST
25848 selftests::register_test ("dw2_expand_symtabs_matching",
25849 selftests::dw2_expand_symtabs_matching::run_test);
25850 #endif
25851 }
This page took 0.601627 seconds and 5 git commands to generate.