1cd8ebeb047f160757dd3d7f76480b0b7eb27100
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 /*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF,
28 also known as DWARF-1.
29
30 DWARF-1 is slowly headed for obsoletion.
31
32 In gcc 3.4.0, support for dwarf-1 has been removed.
33
34 In gcc 3.3.2, these targets prefer dwarf-1:
35
36 i[34567]86-sequent-ptx4*
37 i[34567]86-sequent-sysv4*
38 mips-sni-sysv4
39 sparc-hal-solaris2*
40
41 In gcc 3.2.2, these targets prefer dwarf-1:
42
43 i[34567]86-dg-dgux*
44 i[34567]86-sequent-ptx4*
45 i[34567]86-sequent-sysv4*
46 m88k-dg-dgux*
47 mips-sni-sysv4
48 sparc-hal-solaris2*
49
50 In gcc 2.95.3, these targets prefer dwarf-1:
51
52 i[34567]86-dg-dgux*
53 i[34567]86-ncr-sysv4*
54 i[34567]86-sequent-ptx4*
55 i[34567]86-sequent-sysv4*
56 i[34567]86-*-osf1*
57 i[34567]86-*-sco3.2v5*
58 i[34567]86-*-sysv4*
59 i860-alliant-*
60 i860-*-sysv4*
61 m68k-atari-sysv4*
62 m68k-cbm-sysv4*
63 m68k-*-sysv4*
64 m88k-dg-dgux*
65 m88k-*-sysv4*
66 mips-sni-sysv4
67 mips-*-gnu*
68 sh-*-elf*
69 sh-*-rtemself*
70 sparc-hal-solaris2*
71 sparc-*-sysv4*
72
73 Some non-gcc compilers produce dwarf-1:
74
75 PR gdb/1179 was from a user with Diab C++ 4.3.
76 On 2003-07-25 the gdb list received a report from a user
77 with Diab Compiler 4.4b.
78 Other users have also reported using Diab compilers with dwarf-1.
79
80 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++.
81 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00,
82 Wind River Systems, 2002-07-31).
83
84 On 2003-06-09 the gdb list received a report from a user
85 with Absoft ProFortran f77 which is dwarf-1.
86
87 Absoft ProFortran Linux Fortran User Guide (no version,
88 but copyright dates are 1991-2001) says that Absoft ProFortran
89 supports -gdwarf1 and -gdwarf2.
90
91 -- chastain 2004-04-24
92 */
93
94 /*
95
96 FIXME: Do we need to generate dependencies in partial symtabs?
97 (Perhaps we don't need to).
98
99 FIXME: Resolve minor differences between what information we put in the
100 partial symbol table and what dbxread puts in. For example, we don't yet
101 put enum constants there. And dbxread seems to invent a lot of typedefs
102 we never see. Use the new printpsym command to see the partial symbol table
103 contents.
104
105 FIXME: Figure out a better way to tell gdb about the name of the function
106 contain the user's entry point (I.E. main())
107
108 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
109 other things to work on, if you get bored. :-)
110
111 */
112
113 #include "defs.h"
114 #include "symtab.h"
115 #include "gdbtypes.h"
116 #include "objfiles.h"
117 #include "elf/dwarf.h"
118 #include "buildsym.h"
119 #include "demangle.h"
120 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
121 #include "language.h"
122 #include "complaints.h"
123
124 #include <fcntl.h>
125 #include "gdb_string.h"
126
127 /* Some macros to provide DIE info for complaints. */
128
129 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
130 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
131
132 /* Complaints that can be issued during DWARF debug info reading. */
133
134 static void
135 bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
136 {
137 complaint (&symfile_complaints,
138 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
139 arg1, arg2, arg3);
140 }
141
142 static void
143 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
144 {
145 complaint (&symfile_complaints,
146 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
147 arg3);
148 }
149
150 static void
151 dup_user_type_definition_complaint (int arg1, const char *arg2)
152 {
153 complaint (&symfile_complaints,
154 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
155 arg1, arg2);
156 }
157
158 static void
159 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
160 {
161 complaint (&symfile_complaints,
162 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
163 arg2, arg3);
164 }
165
166 typedef unsigned int DIE_REF; /* Reference to a DIE */
167
168 #ifndef GCC_PRODUCER
169 #define GCC_PRODUCER "GNU C "
170 #endif
171
172 #ifndef GPLUS_PRODUCER
173 #define GPLUS_PRODUCER "GNU C++ "
174 #endif
175
176 #ifndef LCC_PRODUCER
177 #define LCC_PRODUCER "NCR C/C++"
178 #endif
179
180 /* Flags to target_to_host() that tell whether or not the data object is
181 expected to be signed. Used, for example, when fetching a signed
182 integer in the target environment which is used as a signed integer
183 in the host environment, and the two environments have different sized
184 ints. In this case, *somebody* has to sign extend the smaller sized
185 int. */
186
187 #define GET_UNSIGNED 0 /* No sign extension required */
188 #define GET_SIGNED 1 /* Sign extension required */
189
190 /* Defines for things which are specified in the document "DWARF Debugging
191 Information Format" published by UNIX International, Programming Languages
192 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
193
194 #define SIZEOF_DIE_LENGTH 4
195 #define SIZEOF_DIE_TAG 2
196 #define SIZEOF_ATTRIBUTE 2
197 #define SIZEOF_FORMAT_SPECIFIER 1
198 #define SIZEOF_FMT_FT 2
199 #define SIZEOF_LINETBL_LENGTH 4
200 #define SIZEOF_LINETBL_LINENO 4
201 #define SIZEOF_LINETBL_STMT 2
202 #define SIZEOF_LINETBL_DELTA 4
203 #define SIZEOF_LOC_ATOM_CODE 1
204
205 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
206
207 /* Macros that return the sizes of various types of data in the target
208 environment.
209
210 FIXME: Currently these are just compile time constants (as they are in
211 other parts of gdb as well). They need to be able to get the right size
212 either from the bfd or possibly from the DWARF info. It would be nice if
213 the DWARF producer inserted DIES that describe the fundamental types in
214 the target environment into the DWARF info, similar to the way dbx stabs
215 producers produce information about their fundamental types. */
216
217 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
218 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
219
220 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
221 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
222 However, the Issue 2 DWARF specification from AT&T defines it as
223 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
224 For backwards compatibility with the AT&T compiler produced executables
225 we define AT_short_element_list for this variant. */
226
227 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
228
229 /* The DWARF debugging information consists of two major pieces,
230 one is a block of DWARF Information Entries (DIE's) and the other
231 is a line number table. The "struct dieinfo" structure contains
232 the information for a single DIE, the one currently being processed.
233
234 In order to make it easier to randomly access the attribute fields
235 of the current DIE, which are specifically unordered within the DIE,
236 each DIE is scanned and an instance of the "struct dieinfo"
237 structure is initialized.
238
239 Initialization is done in two levels. The first, done by basicdieinfo(),
240 just initializes those fields that are vital to deciding whether or not
241 to use this DIE, how to skip past it, etc. The second, done by the
242 function completedieinfo(), fills in the rest of the information.
243
244 Attributes which have block forms are not interpreted at the time
245 the DIE is scanned, instead we just save pointers to the start
246 of their value fields.
247
248 Some fields have a flag <name>_p that is set when the value of the
249 field is valid (I.E. we found a matching attribute in the DIE). Since
250 we may want to test for the presence of some attributes in the DIE,
251 such as AT_low_pc, without restricting the values of the field,
252 we need someway to note that we found such an attribute.
253
254 */
255
256 typedef char BLOCK;
257
258 struct dieinfo
259 {
260 char *die; /* Pointer to the raw DIE data */
261 unsigned long die_length; /* Length of the raw DIE data */
262 DIE_REF die_ref; /* Offset of this DIE */
263 unsigned short die_tag; /* Tag for this DIE */
264 unsigned long at_padding;
265 unsigned long at_sibling;
266 BLOCK *at_location;
267 char *at_name;
268 unsigned short at_fund_type;
269 BLOCK *at_mod_fund_type;
270 unsigned long at_user_def_type;
271 BLOCK *at_mod_u_d_type;
272 unsigned short at_ordering;
273 BLOCK *at_subscr_data;
274 unsigned long at_byte_size;
275 unsigned short at_bit_offset;
276 unsigned long at_bit_size;
277 BLOCK *at_element_list;
278 unsigned long at_stmt_list;
279 CORE_ADDR at_low_pc;
280 CORE_ADDR at_high_pc;
281 unsigned long at_language;
282 unsigned long at_member;
283 unsigned long at_discr;
284 BLOCK *at_discr_value;
285 BLOCK *at_string_length;
286 char *at_comp_dir;
287 char *at_producer;
288 unsigned long at_start_scope;
289 unsigned long at_stride_size;
290 unsigned long at_src_info;
291 char *at_prototyped;
292 unsigned int has_at_low_pc:1;
293 unsigned int has_at_stmt_list:1;
294 unsigned int has_at_byte_size:1;
295 unsigned int short_element_list:1;
296
297 /* Kludge to identify register variables */
298
299 unsigned int isreg;
300
301 /* Kludge to identify optimized out variables */
302
303 unsigned int optimized_out;
304
305 /* Kludge to identify basereg references.
306 Nonzero if we have an offset relative to a basereg. */
307
308 unsigned int offreg;
309
310 /* Kludge to identify which base register is it relative to. */
311
312 unsigned int basereg;
313 };
314
315 static int diecount; /* Approximate count of dies for compilation unit */
316 static struct dieinfo *curdie; /* For warnings and such */
317
318 static char *dbbase; /* Base pointer to dwarf info */
319 static int dbsize; /* Size of dwarf info in bytes */
320 static int dbroff; /* Relative offset from start of .debug section */
321 static char *lnbase; /* Base pointer to line section */
322
323 /* This value is added to each symbol value. FIXME: Generalize to
324 the section_offsets structure used by dbxread (once this is done,
325 pass the appropriate section number to end_symtab). */
326 static CORE_ADDR baseaddr; /* Add to each symbol value */
327
328 /* The section offsets used in the current psymtab or symtab. FIXME,
329 only used to pass one value (baseaddr) at the moment. */
330 static struct section_offsets *base_section_offsets;
331
332 /* We put a pointer to this structure in the read_symtab_private field
333 of the psymtab. */
334
335 struct dwfinfo
336 {
337 /* Always the absolute file offset to the start of the ".debug"
338 section for the file containing the DIE's being accessed. */
339 file_ptr dbfoff;
340 /* Relative offset from the start of the ".debug" section to the
341 first DIE to be accessed. When building the partial symbol
342 table, this value will be zero since we are accessing the
343 entire ".debug" section. When expanding a partial symbol
344 table entry, this value will be the offset to the first
345 DIE for the compilation unit containing the symbol that
346 triggers the expansion. */
347 int dbroff;
348 /* The size of the chunk of DIE's being examined, in bytes. */
349 int dblength;
350 /* The absolute file offset to the line table fragment. Ignored
351 when building partial symbol tables, but used when expanding
352 them, and contains the absolute file offset to the fragment
353 of the ".line" section containing the line numbers for the
354 current compilation unit. */
355 file_ptr lnfoff;
356 };
357
358 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
359 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
360 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
361 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
362
363 /* The generic symbol table building routines have separate lists for
364 file scope symbols and all all other scopes (local scopes). So
365 we need to select the right one to pass to add_symbol_to_list().
366 We do it by keeping a pointer to the correct list in list_in_scope.
367
368 FIXME: The original dwarf code just treated the file scope as the first
369 local scope, and all other local scopes as nested local scopes, and worked
370 fine. Check to see if we really need to distinguish these in buildsym.c */
371
372 struct pending **list_in_scope = &file_symbols;
373
374 /* DIES which have user defined types or modified user defined types refer to
375 other DIES for the type information. Thus we need to associate the offset
376 of a DIE for a user defined type with a pointer to the type information.
377
378 Originally this was done using a simple but expensive algorithm, with an
379 array of unsorted structures, each containing an offset/type-pointer pair.
380 This array was scanned linearly each time a lookup was done. The result
381 was that gdb was spending over half it's startup time munging through this
382 array of pointers looking for a structure that had the right offset member.
383
384 The second attempt used the same array of structures, but the array was
385 sorted using qsort each time a new offset/type was recorded, and a binary
386 search was used to find the type pointer for a given DIE offset. This was
387 even slower, due to the overhead of sorting the array each time a new
388 offset/type pair was entered.
389
390 The third attempt uses a fixed size array of type pointers, indexed by a
391 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
392 we can divide any DIE offset by 4 to obtain a unique index into this fixed
393 size array. Since each element is a 4 byte pointer, it takes exactly as
394 much memory to hold this array as to hold the DWARF info for a given
395 compilation unit. But it gets freed as soon as we are done with it.
396 This has worked well in practice, as a reasonable tradeoff between memory
397 consumption and speed, without having to resort to much more complicated
398 algorithms. */
399
400 static struct type **utypes; /* Pointer to array of user type pointers */
401 static int numutypes; /* Max number of user type pointers */
402
403 /* Maintain an array of referenced fundamental types for the current
404 compilation unit being read. For DWARF version 1, we have to construct
405 the fundamental types on the fly, since no information about the
406 fundamental types is supplied. Each such fundamental type is created by
407 calling a language dependent routine to create the type, and then a
408 pointer to that type is then placed in the array at the index specified
409 by it's FT_<TYPENAME> value. The array has a fixed size set by the
410 FT_NUM_MEMBERS compile time constant, which is the number of predefined
411 fundamental types gdb knows how to construct. */
412
413 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
414
415 /* Record the language for the compilation unit which is currently being
416 processed. We know it once we have seen the TAG_compile_unit DIE,
417 and we need it while processing the DIE's for that compilation unit.
418 It is eventually saved in the symtab structure, but we don't finalize
419 the symtab struct until we have processed all the DIE's for the
420 compilation unit. We also need to get and save a pointer to the
421 language struct for this language, so we can call the language
422 dependent routines for doing things such as creating fundamental
423 types. */
424
425 static enum language cu_language;
426 static const struct language_defn *cu_language_defn;
427
428 /* Forward declarations of static functions so we don't have to worry
429 about ordering within this file. */
430
431 static void free_utypes (void *);
432
433 static int attribute_size (unsigned int);
434
435 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
436
437 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
438
439 static void handle_producer (char *);
440
441 static void read_file_scope (struct dieinfo *, char *, char *,
442 struct objfile *);
443
444 static void read_func_scope (struct dieinfo *, char *, char *,
445 struct objfile *);
446
447 static void read_lexical_block_scope (struct dieinfo *, char *, char *,
448 struct objfile *);
449
450 static void scan_partial_symbols (char *, char *, struct objfile *);
451
452 static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
453 struct objfile *);
454
455 static void add_partial_symbol (struct dieinfo *, struct objfile *);
456
457 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
458
459 static void completedieinfo (struct dieinfo *, struct objfile *);
460
461 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
462
463 static void psymtab_to_symtab_1 (struct partial_symtab *);
464
465 static void read_ofile_symtab (struct partial_symtab *);
466
467 static void process_dies (char *, char *, struct objfile *);
468
469 static void read_structure_scope (struct dieinfo *, char *, char *,
470 struct objfile *);
471
472 static struct type *decode_array_element_type (char *);
473
474 static struct type *decode_subscript_data_item (char *, char *);
475
476 static void dwarf_read_array_type (struct dieinfo *);
477
478 static void read_tag_pointer_type (struct dieinfo *dip);
479
480 static void read_tag_string_type (struct dieinfo *dip);
481
482 static void read_subroutine_type (struct dieinfo *, char *, char *);
483
484 static void read_enumeration (struct dieinfo *, char *, char *,
485 struct objfile *);
486
487 static struct type *struct_type (struct dieinfo *, char *, char *,
488 struct objfile *);
489
490 static struct type *enum_type (struct dieinfo *, struct objfile *);
491
492 static void decode_line_numbers (char *);
493
494 static struct type *decode_die_type (struct dieinfo *);
495
496 static struct type *decode_mod_fund_type (char *);
497
498 static struct type *decode_mod_u_d_type (char *);
499
500 static struct type *decode_modified_type (char *, unsigned int, int);
501
502 static struct type *decode_fund_type (unsigned int);
503
504 static char *create_name (char *, struct obstack *);
505
506 static struct type *lookup_utype (DIE_REF);
507
508 static struct type *alloc_utype (DIE_REF, struct type *);
509
510 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
511
512 static void synthesize_typedef (struct dieinfo *, struct objfile *,
513 struct type *);
514
515 static int locval (struct dieinfo *);
516
517 static void set_cu_language (struct dieinfo *);
518
519 static struct type *dwarf_fundamental_type (struct objfile *, int);
520
521
522 /*
523
524 LOCAL FUNCTION
525
526 dwarf_fundamental_type -- lookup or create a fundamental type
527
528 SYNOPSIS
529
530 struct type *
531 dwarf_fundamental_type (struct objfile *objfile, int typeid)
532
533 DESCRIPTION
534
535 DWARF version 1 doesn't supply any fundamental type information,
536 so gdb has to construct such types. It has a fixed number of
537 fundamental types that it knows how to construct, which is the
538 union of all types that it knows how to construct for all languages
539 that it knows about. These are enumerated in gdbtypes.h.
540
541 As an example, assume we find a DIE that references a DWARF
542 fundamental type of FT_integer. We first look in the ftypes
543 array to see if we already have such a type, indexed by the
544 gdb internal value of FT_INTEGER. If so, we simply return a
545 pointer to that type. If not, then we ask an appropriate
546 language dependent routine to create a type FT_INTEGER, using
547 defaults reasonable for the current target machine, and install
548 that type in ftypes for future reference.
549
550 RETURNS
551
552 Pointer to a fundamental type.
553
554 */
555
556 static struct type *
557 dwarf_fundamental_type (struct objfile *objfile, int typeid)
558 {
559 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
560 {
561 error ("internal error - invalid fundamental type id %d", typeid);
562 }
563
564 /* Look for this particular type in the fundamental type vector. If one is
565 not found, create and install one appropriate for the current language
566 and the current target machine. */
567
568 if (ftypes[typeid] == NULL)
569 {
570 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
571 }
572
573 return (ftypes[typeid]);
574 }
575
576 /*
577
578 LOCAL FUNCTION
579
580 set_cu_language -- set local copy of language for compilation unit
581
582 SYNOPSIS
583
584 void
585 set_cu_language (struct dieinfo *dip)
586
587 DESCRIPTION
588
589 Decode the language attribute for a compilation unit DIE and
590 remember what the language was. We use this at various times
591 when processing DIE's for a given compilation unit.
592
593 RETURNS
594
595 No return value.
596
597 */
598
599 static void
600 set_cu_language (struct dieinfo *dip)
601 {
602 switch (dip->at_language)
603 {
604 case LANG_C89:
605 case LANG_C:
606 cu_language = language_c;
607 break;
608 case LANG_C_PLUS_PLUS:
609 cu_language = language_cplus;
610 break;
611 case LANG_MODULA2:
612 cu_language = language_m2;
613 break;
614 case LANG_FORTRAN77:
615 case LANG_FORTRAN90:
616 cu_language = language_fortran;
617 break;
618 case LANG_ADA83:
619 case LANG_COBOL74:
620 case LANG_COBOL85:
621 case LANG_PASCAL83:
622 /* We don't know anything special about these yet. */
623 cu_language = language_unknown;
624 break;
625 default:
626 /* If no at_language, try to deduce one from the filename */
627 cu_language = deduce_language_from_filename (dip->at_name);
628 break;
629 }
630 cu_language_defn = language_def (cu_language);
631 }
632
633 /*
634
635 GLOBAL FUNCTION
636
637 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
638
639 SYNOPSIS
640
641 void dwarf_build_psymtabs (struct objfile *objfile,
642 int mainline, file_ptr dbfoff, unsigned int dbfsize,
643 file_ptr lnoffset, unsigned int lnsize)
644
645 DESCRIPTION
646
647 This function is called upon to build partial symtabs from files
648 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
649
650 It is passed a bfd* containing the DIES
651 and line number information, the corresponding filename for that
652 file, a base address for relocating the symbols, a flag indicating
653 whether or not this debugging information is from a "main symbol
654 table" rather than a shared library or dynamically linked file,
655 and file offset/size pairs for the DIE information and line number
656 information.
657
658 RETURNS
659
660 No return value.
661
662 */
663
664 void
665 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
666 unsigned int dbfsize, file_ptr lnoffset,
667 unsigned int lnsize)
668 {
669 bfd *abfd = objfile->obfd;
670 struct cleanup *back_to;
671
672 current_objfile = objfile;
673 dbsize = dbfsize;
674 dbbase = xmalloc (dbsize);
675 dbroff = 0;
676 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
677 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
678 {
679 xfree (dbbase);
680 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
681 }
682 back_to = make_cleanup (xfree, dbbase);
683
684 /* If we are reinitializing, or if we have never loaded syms yet, init.
685 Since we have no idea how many DIES we are looking at, we just guess
686 some arbitrary value. */
687
688 if (mainline
689 || (objfile->global_psymbols.size == 0
690 && objfile->static_psymbols.size == 0))
691 {
692 init_psymbol_list (objfile, 1024);
693 }
694
695 /* Save the relocation factor where everybody can see it. */
696
697 base_section_offsets = objfile->section_offsets;
698 baseaddr = ANOFFSET (objfile->section_offsets, 0);
699
700 /* Follow the compilation unit sibling chain, building a partial symbol
701 table entry for each one. Save enough information about each compilation
702 unit to locate the full DWARF information later. */
703
704 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
705
706 do_cleanups (back_to);
707 current_objfile = NULL;
708 }
709
710 /*
711
712 LOCAL FUNCTION
713
714 read_lexical_block_scope -- process all dies in a lexical block
715
716 SYNOPSIS
717
718 static void read_lexical_block_scope (struct dieinfo *dip,
719 char *thisdie, char *enddie)
720
721 DESCRIPTION
722
723 Process all the DIES contained within a lexical block scope.
724 Start a new scope, process the dies, and then close the scope.
725
726 */
727
728 static void
729 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
730 struct objfile *objfile)
731 {
732 struct context_stack *new;
733
734 push_context (0, dip->at_low_pc);
735 process_dies (thisdie + dip->die_length, enddie, objfile);
736 new = pop_context ();
737 if (local_symbols != NULL)
738 {
739 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
740 dip->at_high_pc, objfile);
741 }
742 local_symbols = new->locals;
743 }
744
745 /*
746
747 LOCAL FUNCTION
748
749 lookup_utype -- look up a user defined type from die reference
750
751 SYNOPSIS
752
753 static type *lookup_utype (DIE_REF die_ref)
754
755 DESCRIPTION
756
757 Given a DIE reference, lookup the user defined type associated with
758 that DIE, if it has been registered already. If not registered, then
759 return NULL. Alloc_utype() can be called to register an empty
760 type for this reference, which will be filled in later when the
761 actual referenced DIE is processed.
762 */
763
764 static struct type *
765 lookup_utype (DIE_REF die_ref)
766 {
767 struct type *type = NULL;
768 int utypeidx;
769
770 utypeidx = (die_ref - dbroff) / 4;
771 if ((utypeidx < 0) || (utypeidx >= numutypes))
772 {
773 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
774 }
775 else
776 {
777 type = *(utypes + utypeidx);
778 }
779 return (type);
780 }
781
782
783 /*
784
785 LOCAL FUNCTION
786
787 alloc_utype -- add a user defined type for die reference
788
789 SYNOPSIS
790
791 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
792
793 DESCRIPTION
794
795 Given a die reference DIE_REF, and a possible pointer to a user
796 defined type UTYPEP, register that this reference has a user
797 defined type and either use the specified type in UTYPEP or
798 make a new empty type that will be filled in later.
799
800 We should only be called after calling lookup_utype() to verify that
801 there is not currently a type registered for DIE_REF.
802 */
803
804 static struct type *
805 alloc_utype (DIE_REF die_ref, struct type *utypep)
806 {
807 struct type **typep;
808 int utypeidx;
809
810 utypeidx = (die_ref - dbroff) / 4;
811 typep = utypes + utypeidx;
812 if ((utypeidx < 0) || (utypeidx >= numutypes))
813 {
814 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
815 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
816 }
817 else if (*typep != NULL)
818 {
819 utypep = *typep;
820 complaint (&symfile_complaints,
821 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
822 DIE_ID, DIE_NAME);
823 }
824 else
825 {
826 if (utypep == NULL)
827 {
828 utypep = alloc_type (current_objfile);
829 }
830 *typep = utypep;
831 }
832 return (utypep);
833 }
834
835 /*
836
837 LOCAL FUNCTION
838
839 free_utypes -- free the utypes array and reset pointer & count
840
841 SYNOPSIS
842
843 static void free_utypes (void *dummy)
844
845 DESCRIPTION
846
847 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
848 and set numutypes back to zero. This ensures that the utypes does not get
849 referenced after being freed.
850 */
851
852 static void
853 free_utypes (void *dummy)
854 {
855 xfree (utypes);
856 utypes = NULL;
857 numutypes = 0;
858 }
859
860
861 /*
862
863 LOCAL FUNCTION
864
865 decode_die_type -- return a type for a specified die
866
867 SYNOPSIS
868
869 static struct type *decode_die_type (struct dieinfo *dip)
870
871 DESCRIPTION
872
873 Given a pointer to a die information structure DIP, decode the
874 type of the die and return a pointer to the decoded type. All
875 dies without specific types default to type int.
876 */
877
878 static struct type *
879 decode_die_type (struct dieinfo *dip)
880 {
881 struct type *type = NULL;
882
883 if (dip->at_fund_type != 0)
884 {
885 type = decode_fund_type (dip->at_fund_type);
886 }
887 else if (dip->at_mod_fund_type != NULL)
888 {
889 type = decode_mod_fund_type (dip->at_mod_fund_type);
890 }
891 else if (dip->at_user_def_type)
892 {
893 type = lookup_utype (dip->at_user_def_type);
894 if (type == NULL)
895 {
896 type = alloc_utype (dip->at_user_def_type, NULL);
897 }
898 }
899 else if (dip->at_mod_u_d_type)
900 {
901 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
902 }
903 else
904 {
905 type = dwarf_fundamental_type (current_objfile, FT_VOID);
906 }
907 return (type);
908 }
909
910 /*
911
912 LOCAL FUNCTION
913
914 struct_type -- compute and return the type for a struct or union
915
916 SYNOPSIS
917
918 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
919 char *enddie, struct objfile *objfile)
920
921 DESCRIPTION
922
923 Given pointer to a die information structure for a die which
924 defines a union or structure (and MUST define one or the other),
925 and pointers to the raw die data that define the range of dies which
926 define the members, compute and return the user defined type for the
927 structure or union.
928 */
929
930 static struct type *
931 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
932 struct objfile *objfile)
933 {
934 struct type *type;
935 struct nextfield
936 {
937 struct nextfield *next;
938 struct field field;
939 };
940 struct nextfield *list = NULL;
941 struct nextfield *new;
942 int nfields = 0;
943 int n;
944 struct dieinfo mbr;
945 char *nextdie;
946 int anonymous_size;
947
948 type = lookup_utype (dip->die_ref);
949 if (type == NULL)
950 {
951 /* No forward references created an empty type, so install one now */
952 type = alloc_utype (dip->die_ref, NULL);
953 }
954 INIT_CPLUS_SPECIFIC (type);
955 switch (dip->die_tag)
956 {
957 case TAG_class_type:
958 TYPE_CODE (type) = TYPE_CODE_CLASS;
959 break;
960 case TAG_structure_type:
961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
962 break;
963 case TAG_union_type:
964 TYPE_CODE (type) = TYPE_CODE_UNION;
965 break;
966 default:
967 /* Should never happen */
968 TYPE_CODE (type) = TYPE_CODE_UNDEF;
969 complaint (&symfile_complaints,
970 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
971 DIE_ID, DIE_NAME);
972 break;
973 }
974 /* Some compilers try to be helpful by inventing "fake" names for
975 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
976 Thanks, but no thanks... */
977 if (dip->at_name != NULL
978 && *dip->at_name != '~'
979 && *dip->at_name != '.')
980 {
981 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
982 "", "", dip->at_name);
983 }
984 /* Use whatever size is known. Zero is a valid size. We might however
985 wish to check has_at_byte_size to make sure that some byte size was
986 given explicitly, but DWARF doesn't specify that explicit sizes of
987 zero have to present, so complaining about missing sizes should
988 probably not be the default. */
989 TYPE_LENGTH (type) = dip->at_byte_size;
990 thisdie += dip->die_length;
991 while (thisdie < enddie)
992 {
993 basicdieinfo (&mbr, thisdie, objfile);
994 completedieinfo (&mbr, objfile);
995 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
996 {
997 break;
998 }
999 else if (mbr.at_sibling != 0)
1000 {
1001 nextdie = dbbase + mbr.at_sibling - dbroff;
1002 }
1003 else
1004 {
1005 nextdie = thisdie + mbr.die_length;
1006 }
1007 switch (mbr.die_tag)
1008 {
1009 case TAG_member:
1010 /* Static fields can be either TAG_global_variable (GCC) or else
1011 TAG_member with no location (Diab). We could treat the latter like
1012 the former... but since we don't support the former, just avoid
1013 crashing on the latter for now. */
1014 if (mbr.at_location == NULL)
1015 break;
1016
1017 /* Get space to record the next field's data. */
1018 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1019 new->next = list;
1020 list = new;
1021 /* Save the data. */
1022 list->field.name =
1023 obsavestring (mbr.at_name, strlen (mbr.at_name),
1024 &objfile->objfile_obstack);
1025 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1026 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1027 FIELD_STATIC_KIND (list->field) = 0;
1028 /* Handle bit fields. */
1029 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1030 if (BITS_BIG_ENDIAN)
1031 {
1032 /* For big endian bits, the at_bit_offset gives the
1033 additional bit offset from the MSB of the containing
1034 anonymous object to the MSB of the field. We don't
1035 have to do anything special since we don't need to
1036 know the size of the anonymous object. */
1037 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1038 }
1039 else
1040 {
1041 /* For little endian bits, we need to have a non-zero
1042 at_bit_size, so that we know we are in fact dealing
1043 with a bitfield. Compute the bit offset to the MSB
1044 of the anonymous object, subtract off the number of
1045 bits from the MSB of the field to the MSB of the
1046 object, and then subtract off the number of bits of
1047 the field itself. The result is the bit offset of
1048 the LSB of the field. */
1049 if (mbr.at_bit_size > 0)
1050 {
1051 if (mbr.has_at_byte_size)
1052 {
1053 /* The size of the anonymous object containing
1054 the bit field is explicit, so use the
1055 indicated size (in bytes). */
1056 anonymous_size = mbr.at_byte_size;
1057 }
1058 else
1059 {
1060 /* The size of the anonymous object containing
1061 the bit field matches the size of an object
1062 of the bit field's type. DWARF allows
1063 at_byte_size to be left out in such cases, as
1064 a debug information size optimization. */
1065 anonymous_size = TYPE_LENGTH (list->field.type);
1066 }
1067 FIELD_BITPOS (list->field) +=
1068 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1069 }
1070 }
1071 nfields++;
1072 break;
1073 default:
1074 process_dies (thisdie, nextdie, objfile);
1075 break;
1076 }
1077 thisdie = nextdie;
1078 }
1079 /* Now create the vector of fields, and record how big it is. We may
1080 not even have any fields, if this DIE was generated due to a reference
1081 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1082 set, which clues gdb in to the fact that it needs to search elsewhere
1083 for the full structure definition. */
1084 if (nfields == 0)
1085 {
1086 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1087 }
1088 else
1089 {
1090 TYPE_NFIELDS (type) = nfields;
1091 TYPE_FIELDS (type) = (struct field *)
1092 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1093 /* Copy the saved-up fields into the field vector. */
1094 for (n = nfields; list; list = list->next)
1095 {
1096 TYPE_FIELD (type, --n) = list->field;
1097 }
1098 }
1099 return (type);
1100 }
1101
1102 /*
1103
1104 LOCAL FUNCTION
1105
1106 read_structure_scope -- process all dies within struct or union
1107
1108 SYNOPSIS
1109
1110 static void read_structure_scope (struct dieinfo *dip,
1111 char *thisdie, char *enddie, struct objfile *objfile)
1112
1113 DESCRIPTION
1114
1115 Called when we find the DIE that starts a structure or union
1116 scope (definition) to process all dies that define the members
1117 of the structure or union. DIP is a pointer to the die info
1118 struct for the DIE that names the structure or union.
1119
1120 NOTES
1121
1122 Note that we need to call struct_type regardless of whether or not
1123 the DIE has an at_name attribute, since it might be an anonymous
1124 structure or union. This gets the type entered into our set of
1125 user defined types.
1126
1127 However, if the structure is incomplete (an opaque struct/union)
1128 then suppress creating a symbol table entry for it since gdb only
1129 wants to find the one with the complete definition. Note that if
1130 it is complete, we just call new_symbol, which does it's own
1131 checking about whether the struct/union is anonymous or not (and
1132 suppresses creating a symbol table entry itself).
1133
1134 */
1135
1136 static void
1137 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1138 struct objfile *objfile)
1139 {
1140 struct type *type;
1141 struct symbol *sym;
1142
1143 type = struct_type (dip, thisdie, enddie, objfile);
1144 if (!TYPE_STUB (type))
1145 {
1146 sym = new_symbol (dip, objfile);
1147 if (sym != NULL)
1148 {
1149 SYMBOL_TYPE (sym) = type;
1150 if (cu_language == language_cplus)
1151 {
1152 synthesize_typedef (dip, objfile, type);
1153 }
1154 }
1155 }
1156 }
1157
1158 /*
1159
1160 LOCAL FUNCTION
1161
1162 decode_array_element_type -- decode type of the array elements
1163
1164 SYNOPSIS
1165
1166 static struct type *decode_array_element_type (char *scan, char *end)
1167
1168 DESCRIPTION
1169
1170 As the last step in decoding the array subscript information for an
1171 array DIE, we need to decode the type of the array elements. We are
1172 passed a pointer to this last part of the subscript information and
1173 must return the appropriate type. If the type attribute is not
1174 recognized, just warn about the problem and return type int.
1175 */
1176
1177 static struct type *
1178 decode_array_element_type (char *scan)
1179 {
1180 struct type *typep;
1181 DIE_REF die_ref;
1182 unsigned short attribute;
1183 unsigned short fundtype;
1184 int nbytes;
1185
1186 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1187 current_objfile);
1188 scan += SIZEOF_ATTRIBUTE;
1189 nbytes = attribute_size (attribute);
1190 if (nbytes == -1)
1191 {
1192 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1194 }
1195 else
1196 {
1197 switch (attribute)
1198 {
1199 case AT_fund_type:
1200 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1201 current_objfile);
1202 typep = decode_fund_type (fundtype);
1203 break;
1204 case AT_mod_fund_type:
1205 typep = decode_mod_fund_type (scan);
1206 break;
1207 case AT_user_def_type:
1208 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1209 current_objfile);
1210 typep = lookup_utype (die_ref);
1211 if (typep == NULL)
1212 {
1213 typep = alloc_utype (die_ref, NULL);
1214 }
1215 break;
1216 case AT_mod_u_d_type:
1217 typep = decode_mod_u_d_type (scan);
1218 break;
1219 default:
1220 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1221 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1222 break;
1223 }
1224 }
1225 return (typep);
1226 }
1227
1228 /*
1229
1230 LOCAL FUNCTION
1231
1232 decode_subscript_data_item -- decode array subscript item
1233
1234 SYNOPSIS
1235
1236 static struct type *
1237 decode_subscript_data_item (char *scan, char *end)
1238
1239 DESCRIPTION
1240
1241 The array subscripts and the data type of the elements of an
1242 array are described by a list of data items, stored as a block
1243 of contiguous bytes. There is a data item describing each array
1244 dimension, and a final data item describing the element type.
1245 The data items are ordered the same as their appearance in the
1246 source (I.E. leftmost dimension first, next to leftmost second,
1247 etc).
1248
1249 The data items describing each array dimension consist of four
1250 parts: (1) a format specifier, (2) type type of the subscript
1251 index, (3) a description of the low bound of the array dimension,
1252 and (4) a description of the high bound of the array dimension.
1253
1254 The last data item is the description of the type of each of
1255 the array elements.
1256
1257 We are passed a pointer to the start of the block of bytes
1258 containing the remaining data items, and a pointer to the first
1259 byte past the data. This function recursively decodes the
1260 remaining data items and returns a type.
1261
1262 If we somehow fail to decode some data, we complain about it
1263 and return a type "array of int".
1264
1265 BUGS
1266 FIXME: This code only implements the forms currently used
1267 by the AT&T and GNU C compilers.
1268
1269 The end pointer is supplied for error checking, maybe we should
1270 use it for that...
1271 */
1272
1273 static struct type *
1274 decode_subscript_data_item (char *scan, char *end)
1275 {
1276 struct type *typep = NULL; /* Array type we are building */
1277 struct type *nexttype; /* Type of each element (may be array) */
1278 struct type *indextype; /* Type of this index */
1279 struct type *rangetype;
1280 unsigned int format;
1281 unsigned short fundtype;
1282 unsigned long lowbound;
1283 unsigned long highbound;
1284 int nbytes;
1285
1286 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1287 current_objfile);
1288 scan += SIZEOF_FORMAT_SPECIFIER;
1289 switch (format)
1290 {
1291 case FMT_ET:
1292 typep = decode_array_element_type (scan);
1293 break;
1294 case FMT_FT_C_C:
1295 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1296 current_objfile);
1297 indextype = decode_fund_type (fundtype);
1298 scan += SIZEOF_FMT_FT;
1299 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1300 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1301 scan += nbytes;
1302 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1303 scan += nbytes;
1304 nexttype = decode_subscript_data_item (scan, end);
1305 if (nexttype == NULL)
1306 {
1307 /* Munged subscript data or other problem, fake it. */
1308 complaint (&symfile_complaints,
1309 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1310 DIE_ID, DIE_NAME);
1311 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1312 }
1313 rangetype = create_range_type ((struct type *) NULL, indextype,
1314 lowbound, highbound);
1315 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1316 break;
1317 case FMT_FT_C_X:
1318 case FMT_FT_X_C:
1319 case FMT_FT_X_X:
1320 case FMT_UT_C_C:
1321 case FMT_UT_C_X:
1322 case FMT_UT_X_C:
1323 case FMT_UT_X_X:
1324 complaint (&symfile_complaints,
1325 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1326 DIE_ID, DIE_NAME, format);
1327 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1328 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1329 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1330 break;
1331 default:
1332 complaint (&symfile_complaints,
1333 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1334 DIE_NAME, format);
1335 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1336 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1337 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1338 break;
1339 }
1340 return (typep);
1341 }
1342
1343 /*
1344
1345 LOCAL FUNCTION
1346
1347 dwarf_read_array_type -- read TAG_array_type DIE
1348
1349 SYNOPSIS
1350
1351 static void dwarf_read_array_type (struct dieinfo *dip)
1352
1353 DESCRIPTION
1354
1355 Extract all information from a TAG_array_type DIE and add to
1356 the user defined type vector.
1357 */
1358
1359 static void
1360 dwarf_read_array_type (struct dieinfo *dip)
1361 {
1362 struct type *type;
1363 struct type *utype;
1364 char *sub;
1365 char *subend;
1366 unsigned short blocksz;
1367 int nbytes;
1368
1369 if (dip->at_ordering != ORD_row_major)
1370 {
1371 /* FIXME: Can gdb even handle column major arrays? */
1372 complaint (&symfile_complaints,
1373 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1374 DIE_ID, DIE_NAME);
1375 }
1376 sub = dip->at_subscr_data;
1377 if (sub != NULL)
1378 {
1379 nbytes = attribute_size (AT_subscr_data);
1380 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1381 subend = sub + nbytes + blocksz;
1382 sub += nbytes;
1383 type = decode_subscript_data_item (sub, subend);
1384 utype = lookup_utype (dip->die_ref);
1385 if (utype == NULL)
1386 {
1387 /* Install user defined type that has not been referenced yet. */
1388 alloc_utype (dip->die_ref, type);
1389 }
1390 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1391 {
1392 /* Ick! A forward ref has already generated a blank type in our
1393 slot, and this type probably already has things pointing to it
1394 (which is what caused it to be created in the first place).
1395 If it's just a place holder we can plop our fully defined type
1396 on top of it. We can't recover the space allocated for our
1397 new type since it might be on an obstack, but we could reuse
1398 it if we kept a list of them, but it might not be worth it
1399 (FIXME). */
1400 *utype = *type;
1401 }
1402 else
1403 {
1404 /* Double ick! Not only is a type already in our slot, but
1405 someone has decorated it. Complain and leave it alone. */
1406 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1407 }
1408 }
1409 }
1410
1411 /*
1412
1413 LOCAL FUNCTION
1414
1415 read_tag_pointer_type -- read TAG_pointer_type DIE
1416
1417 SYNOPSIS
1418
1419 static void read_tag_pointer_type (struct dieinfo *dip)
1420
1421 DESCRIPTION
1422
1423 Extract all information from a TAG_pointer_type DIE and add to
1424 the user defined type vector.
1425 */
1426
1427 static void
1428 read_tag_pointer_type (struct dieinfo *dip)
1429 {
1430 struct type *type;
1431 struct type *utype;
1432
1433 type = decode_die_type (dip);
1434 utype = lookup_utype (dip->die_ref);
1435 if (utype == NULL)
1436 {
1437 utype = lookup_pointer_type (type);
1438 alloc_utype (dip->die_ref, utype);
1439 }
1440 else
1441 {
1442 TYPE_TARGET_TYPE (utype) = type;
1443 TYPE_POINTER_TYPE (type) = utype;
1444
1445 /* We assume the machine has only one representation for pointers! */
1446 /* FIXME: Possably a poor assumption */
1447 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1448 TYPE_CODE (utype) = TYPE_CODE_PTR;
1449 }
1450 }
1451
1452 /*
1453
1454 LOCAL FUNCTION
1455
1456 read_tag_string_type -- read TAG_string_type DIE
1457
1458 SYNOPSIS
1459
1460 static void read_tag_string_type (struct dieinfo *dip)
1461
1462 DESCRIPTION
1463
1464 Extract all information from a TAG_string_type DIE and add to
1465 the user defined type vector. It isn't really a user defined
1466 type, but it behaves like one, with other DIE's using an
1467 AT_user_def_type attribute to reference it.
1468 */
1469
1470 static void
1471 read_tag_string_type (struct dieinfo *dip)
1472 {
1473 struct type *utype;
1474 struct type *indextype;
1475 struct type *rangetype;
1476 unsigned long lowbound = 0;
1477 unsigned long highbound;
1478
1479 if (dip->has_at_byte_size)
1480 {
1481 /* A fixed bounds string */
1482 highbound = dip->at_byte_size - 1;
1483 }
1484 else
1485 {
1486 /* A varying length string. Stub for now. (FIXME) */
1487 highbound = 1;
1488 }
1489 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1490 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1491 highbound);
1492
1493 utype = lookup_utype (dip->die_ref);
1494 if (utype == NULL)
1495 {
1496 /* No type defined, go ahead and create a blank one to use. */
1497 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1498 }
1499 else
1500 {
1501 /* Already a type in our slot due to a forward reference. Make sure it
1502 is a blank one. If not, complain and leave it alone. */
1503 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1504 {
1505 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1506 return;
1507 }
1508 }
1509
1510 /* Create the string type using the blank type we either found or created. */
1511 utype = create_string_type (utype, rangetype);
1512 }
1513
1514 /*
1515
1516 LOCAL FUNCTION
1517
1518 read_subroutine_type -- process TAG_subroutine_type dies
1519
1520 SYNOPSIS
1521
1522 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1523 char *enddie)
1524
1525 DESCRIPTION
1526
1527 Handle DIES due to C code like:
1528
1529 struct foo {
1530 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1531 int b;
1532 };
1533
1534 NOTES
1535
1536 The parameter DIES are currently ignored. See if gdb has a way to
1537 include this info in it's type system, and decode them if so. Is
1538 this what the type structure's "arg_types" field is for? (FIXME)
1539 */
1540
1541 static void
1542 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1543 {
1544 struct type *type; /* Type that this function returns */
1545 struct type *ftype; /* Function that returns above type */
1546
1547 /* Decode the type that this subroutine returns */
1548
1549 type = decode_die_type (dip);
1550
1551 /* Check to see if we already have a partially constructed user
1552 defined type for this DIE, from a forward reference. */
1553
1554 ftype = lookup_utype (dip->die_ref);
1555 if (ftype == NULL)
1556 {
1557 /* This is the first reference to one of these types. Make
1558 a new one and place it in the user defined types. */
1559 ftype = lookup_function_type (type);
1560 alloc_utype (dip->die_ref, ftype);
1561 }
1562 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1563 {
1564 /* We have an existing partially constructed type, so bash it
1565 into the correct type. */
1566 TYPE_TARGET_TYPE (ftype) = type;
1567 TYPE_LENGTH (ftype) = 1;
1568 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1569 }
1570 else
1571 {
1572 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1573 }
1574 }
1575
1576 /*
1577
1578 LOCAL FUNCTION
1579
1580 read_enumeration -- process dies which define an enumeration
1581
1582 SYNOPSIS
1583
1584 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1585 char *enddie, struct objfile *objfile)
1586
1587 DESCRIPTION
1588
1589 Given a pointer to a die which begins an enumeration, process all
1590 the dies that define the members of the enumeration.
1591
1592 NOTES
1593
1594 Note that we need to call enum_type regardless of whether or not we
1595 have a symbol, since we might have an enum without a tag name (thus
1596 no symbol for the tagname).
1597 */
1598
1599 static void
1600 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1601 struct objfile *objfile)
1602 {
1603 struct type *type;
1604 struct symbol *sym;
1605
1606 type = enum_type (dip, objfile);
1607 sym = new_symbol (dip, objfile);
1608 if (sym != NULL)
1609 {
1610 SYMBOL_TYPE (sym) = type;
1611 if (cu_language == language_cplus)
1612 {
1613 synthesize_typedef (dip, objfile, type);
1614 }
1615 }
1616 }
1617
1618 /*
1619
1620 LOCAL FUNCTION
1621
1622 enum_type -- decode and return a type for an enumeration
1623
1624 SYNOPSIS
1625
1626 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1627
1628 DESCRIPTION
1629
1630 Given a pointer to a die information structure for the die which
1631 starts an enumeration, process all the dies that define the members
1632 of the enumeration and return a type pointer for the enumeration.
1633
1634 At the same time, for each member of the enumeration, create a
1635 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1636 and give it the type of the enumeration itself.
1637
1638 NOTES
1639
1640 Note that the DWARF specification explicitly mandates that enum
1641 constants occur in reverse order from the source program order,
1642 for "consistency" and because this ordering is easier for many
1643 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1644 Entries). Because gdb wants to see the enum members in program
1645 source order, we have to ensure that the order gets reversed while
1646 we are processing them.
1647 */
1648
1649 static struct type *
1650 enum_type (struct dieinfo *dip, struct objfile *objfile)
1651 {
1652 struct type *type;
1653 struct nextfield
1654 {
1655 struct nextfield *next;
1656 struct field field;
1657 };
1658 struct nextfield *list = NULL;
1659 struct nextfield *new;
1660 int nfields = 0;
1661 int n;
1662 char *scan;
1663 char *listend;
1664 unsigned short blocksz;
1665 struct symbol *sym;
1666 int nbytes;
1667 int unsigned_enum = 1;
1668
1669 type = lookup_utype (dip->die_ref);
1670 if (type == NULL)
1671 {
1672 /* No forward references created an empty type, so install one now */
1673 type = alloc_utype (dip->die_ref, NULL);
1674 }
1675 TYPE_CODE (type) = TYPE_CODE_ENUM;
1676 /* Some compilers try to be helpful by inventing "fake" names for
1677 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1678 Thanks, but no thanks... */
1679 if (dip->at_name != NULL
1680 && *dip->at_name != '~'
1681 && *dip->at_name != '.')
1682 {
1683 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
1684 "", "", dip->at_name);
1685 }
1686 if (dip->at_byte_size != 0)
1687 {
1688 TYPE_LENGTH (type) = dip->at_byte_size;
1689 }
1690 scan = dip->at_element_list;
1691 if (scan != NULL)
1692 {
1693 if (dip->short_element_list)
1694 {
1695 nbytes = attribute_size (AT_short_element_list);
1696 }
1697 else
1698 {
1699 nbytes = attribute_size (AT_element_list);
1700 }
1701 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1702 listend = scan + nbytes + blocksz;
1703 scan += nbytes;
1704 while (scan < listend)
1705 {
1706 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1707 new->next = list;
1708 list = new;
1709 FIELD_TYPE (list->field) = NULL;
1710 FIELD_BITSIZE (list->field) = 0;
1711 FIELD_STATIC_KIND (list->field) = 0;
1712 FIELD_BITPOS (list->field) =
1713 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1714 objfile);
1715 scan += TARGET_FT_LONG_SIZE (objfile);
1716 list->field.name = obsavestring (scan, strlen (scan),
1717 &objfile->objfile_obstack);
1718 scan += strlen (scan) + 1;
1719 nfields++;
1720 /* Handcraft a new symbol for this enum member. */
1721 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
1722 sizeof (struct symbol));
1723 memset (sym, 0, sizeof (struct symbol));
1724 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1725 &objfile->objfile_obstack);
1726 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1727 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1728 SYMBOL_CLASS (sym) = LOC_CONST;
1729 SYMBOL_TYPE (sym) = type;
1730 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1731 if (SYMBOL_VALUE (sym) < 0)
1732 unsigned_enum = 0;
1733 add_symbol_to_list (sym, list_in_scope);
1734 }
1735 /* Now create the vector of fields, and record how big it is. This is
1736 where we reverse the order, by pulling the members off the list in
1737 reverse order from how they were inserted. If we have no fields
1738 (this is apparently possible in C++) then skip building a field
1739 vector. */
1740 if (nfields > 0)
1741 {
1742 if (unsigned_enum)
1743 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1744 TYPE_NFIELDS (type) = nfields;
1745 TYPE_FIELDS (type) = (struct field *)
1746 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
1747 /* Copy the saved-up fields into the field vector. */
1748 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1749 {
1750 TYPE_FIELD (type, n++) = list->field;
1751 }
1752 }
1753 }
1754 return (type);
1755 }
1756
1757 /*
1758
1759 LOCAL FUNCTION
1760
1761 read_func_scope -- process all dies within a function scope
1762
1763 DESCRIPTION
1764
1765 Process all dies within a given function scope. We are passed
1766 a die information structure pointer DIP for the die which
1767 starts the function scope, and pointers into the raw die data
1768 that define the dies within the function scope.
1769
1770 For now, we ignore lexical block scopes within the function.
1771 The problem is that AT&T cc does not define a DWARF lexical
1772 block scope for the function itself, while gcc defines a
1773 lexical block scope for the function. We need to think about
1774 how to handle this difference, or if it is even a problem.
1775 (FIXME)
1776 */
1777
1778 static void
1779 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1780 struct objfile *objfile)
1781 {
1782 struct context_stack *new;
1783
1784 /* AT_name is absent if the function is described with an
1785 AT_abstract_origin tag.
1786 Ignore the function description for now to avoid GDB core dumps.
1787 FIXME: Add code to handle AT_abstract_origin tags properly. */
1788 if (dip->at_name == NULL)
1789 {
1790 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1791 DIE_ID);
1792 return;
1793 }
1794
1795 if (objfile->ei.entry_point >= dip->at_low_pc &&
1796 objfile->ei.entry_point < dip->at_high_pc)
1797 {
1798 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1799 objfile->ei.entry_func_highpc = dip->at_high_pc;
1800 }
1801 new = push_context (0, dip->at_low_pc);
1802 new->name = new_symbol (dip, objfile);
1803 list_in_scope = &local_symbols;
1804 process_dies (thisdie + dip->die_length, enddie, objfile);
1805 new = pop_context ();
1806 /* Make a block for the local symbols within. */
1807 finish_block (new->name, &local_symbols, new->old_blocks,
1808 new->start_addr, dip->at_high_pc, objfile);
1809 list_in_scope = &file_symbols;
1810 }
1811
1812
1813 /*
1814
1815 LOCAL FUNCTION
1816
1817 handle_producer -- process the AT_producer attribute
1818
1819 DESCRIPTION
1820
1821 Perform any operations that depend on finding a particular
1822 AT_producer attribute.
1823
1824 */
1825
1826 static void
1827 handle_producer (char *producer)
1828 {
1829
1830 /* If this compilation unit was compiled with g++ or gcc, then set the
1831 processing_gcc_compilation flag. */
1832
1833 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1834 {
1835 char version = producer[strlen (GCC_PRODUCER)];
1836 processing_gcc_compilation = (version == '2' ? 2 : 1);
1837 }
1838 else
1839 {
1840 processing_gcc_compilation =
1841 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
1842 }
1843
1844 /* Select a demangling style if we can identify the producer and if
1845 the current style is auto. We leave the current style alone if it
1846 is not auto. We also leave the demangling style alone if we find a
1847 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1848
1849 if (AUTO_DEMANGLING)
1850 {
1851 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1852 {
1853 #if 0
1854 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1855 know whether it will use the old style or v3 mangling. */
1856 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1857 #endif
1858 }
1859 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1860 {
1861 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1862 }
1863 }
1864 }
1865
1866
1867 /*
1868
1869 LOCAL FUNCTION
1870
1871 read_file_scope -- process all dies within a file scope
1872
1873 DESCRIPTION
1874
1875 Process all dies within a given file scope. We are passed a
1876 pointer to the die information structure for the die which
1877 starts the file scope, and pointers into the raw die data which
1878 mark the range of dies within the file scope.
1879
1880 When the partial symbol table is built, the file offset for the line
1881 number table for each compilation unit is saved in the partial symbol
1882 table entry for that compilation unit. As the symbols for each
1883 compilation unit are read, the line number table is read into memory
1884 and the variable lnbase is set to point to it. Thus all we have to
1885 do is use lnbase to access the line number table for the current
1886 compilation unit.
1887 */
1888
1889 static void
1890 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1891 struct objfile *objfile)
1892 {
1893 struct cleanup *back_to;
1894 struct symtab *symtab;
1895
1896 if (objfile->ei.entry_point >= dip->at_low_pc &&
1897 objfile->ei.entry_point < dip->at_high_pc)
1898 {
1899 objfile->ei.deprecated_entry_file_lowpc = dip->at_low_pc;
1900 objfile->ei.deprecated_entry_file_highpc = dip->at_high_pc;
1901 }
1902 set_cu_language (dip);
1903 if (dip->at_producer != NULL)
1904 {
1905 handle_producer (dip->at_producer);
1906 }
1907 numutypes = (enddie - thisdie) / 4;
1908 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1909 back_to = make_cleanup (free_utypes, NULL);
1910 memset (utypes, 0, numutypes * sizeof (struct type *));
1911 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1912 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1913 record_debugformat ("DWARF 1");
1914 decode_line_numbers (lnbase);
1915 process_dies (thisdie + dip->die_length, enddie, objfile);
1916
1917 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1918 if (symtab != NULL)
1919 {
1920 symtab->language = cu_language;
1921 }
1922 do_cleanups (back_to);
1923 }
1924
1925 /*
1926
1927 LOCAL FUNCTION
1928
1929 process_dies -- process a range of DWARF Information Entries
1930
1931 SYNOPSIS
1932
1933 static void process_dies (char *thisdie, char *enddie,
1934 struct objfile *objfile)
1935
1936 DESCRIPTION
1937
1938 Process all DIE's in a specified range. May be (and almost
1939 certainly will be) called recursively.
1940 */
1941
1942 static void
1943 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1944 {
1945 char *nextdie;
1946 struct dieinfo di;
1947
1948 while (thisdie < enddie)
1949 {
1950 basicdieinfo (&di, thisdie, objfile);
1951 if (di.die_length < SIZEOF_DIE_LENGTH)
1952 {
1953 break;
1954 }
1955 else if (di.die_tag == TAG_padding)
1956 {
1957 nextdie = thisdie + di.die_length;
1958 }
1959 else
1960 {
1961 completedieinfo (&di, objfile);
1962 if (di.at_sibling != 0)
1963 {
1964 nextdie = dbbase + di.at_sibling - dbroff;
1965 }
1966 else
1967 {
1968 nextdie = thisdie + di.die_length;
1969 }
1970 /* I think that these are always text, not data, addresses. */
1971 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1972 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1973 switch (di.die_tag)
1974 {
1975 case TAG_compile_unit:
1976 /* Skip Tag_compile_unit if we are already inside a compilation
1977 unit, we are unable to handle nested compilation units
1978 properly (FIXME). */
1979 if (current_subfile == NULL)
1980 read_file_scope (&di, thisdie, nextdie, objfile);
1981 else
1982 nextdie = thisdie + di.die_length;
1983 break;
1984 case TAG_global_subroutine:
1985 case TAG_subroutine:
1986 if (di.has_at_low_pc)
1987 {
1988 read_func_scope (&di, thisdie, nextdie, objfile);
1989 }
1990 break;
1991 case TAG_lexical_block:
1992 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1993 break;
1994 case TAG_class_type:
1995 case TAG_structure_type:
1996 case TAG_union_type:
1997 read_structure_scope (&di, thisdie, nextdie, objfile);
1998 break;
1999 case TAG_enumeration_type:
2000 read_enumeration (&di, thisdie, nextdie, objfile);
2001 break;
2002 case TAG_subroutine_type:
2003 read_subroutine_type (&di, thisdie, nextdie);
2004 break;
2005 case TAG_array_type:
2006 dwarf_read_array_type (&di);
2007 break;
2008 case TAG_pointer_type:
2009 read_tag_pointer_type (&di);
2010 break;
2011 case TAG_string_type:
2012 read_tag_string_type (&di);
2013 break;
2014 default:
2015 new_symbol (&di, objfile);
2016 break;
2017 }
2018 }
2019 thisdie = nextdie;
2020 }
2021 }
2022
2023 /*
2024
2025 LOCAL FUNCTION
2026
2027 decode_line_numbers -- decode a line number table fragment
2028
2029 SYNOPSIS
2030
2031 static void decode_line_numbers (char *tblscan, char *tblend,
2032 long length, long base, long line, long pc)
2033
2034 DESCRIPTION
2035
2036 Translate the DWARF line number information to gdb form.
2037
2038 The ".line" section contains one or more line number tables, one for
2039 each ".line" section from the objects that were linked.
2040
2041 The AT_stmt_list attribute for each TAG_source_file entry in the
2042 ".debug" section contains the offset into the ".line" section for the
2043 start of the table for that file.
2044
2045 The table itself has the following structure:
2046
2047 <table length><base address><source statement entry>
2048 4 bytes 4 bytes 10 bytes
2049
2050 The table length is the total size of the table, including the 4 bytes
2051 for the length information.
2052
2053 The base address is the address of the first instruction generated
2054 for the source file.
2055
2056 Each source statement entry has the following structure:
2057
2058 <line number><statement position><address delta>
2059 4 bytes 2 bytes 4 bytes
2060
2061 The line number is relative to the start of the file, starting with
2062 line 1.
2063
2064 The statement position either -1 (0xFFFF) or the number of characters
2065 from the beginning of the line to the beginning of the statement.
2066
2067 The address delta is the difference between the base address and
2068 the address of the first instruction for the statement.
2069
2070 Note that we must copy the bytes from the packed table to our local
2071 variables before attempting to use them, to avoid alignment problems
2072 on some machines, particularly RISC processors.
2073
2074 BUGS
2075
2076 Does gdb expect the line numbers to be sorted? They are now by
2077 chance/luck, but are not required to be. (FIXME)
2078
2079 The line with number 0 is unused, gdb apparently can discover the
2080 span of the last line some other way. How? (FIXME)
2081 */
2082
2083 static void
2084 decode_line_numbers (char *linetable)
2085 {
2086 char *tblscan;
2087 char *tblend;
2088 unsigned long length;
2089 unsigned long base;
2090 unsigned long line;
2091 unsigned long pc;
2092
2093 if (linetable != NULL)
2094 {
2095 tblscan = tblend = linetable;
2096 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2097 current_objfile);
2098 tblscan += SIZEOF_LINETBL_LENGTH;
2099 tblend += length;
2100 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2101 GET_UNSIGNED, current_objfile);
2102 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2103 base += baseaddr;
2104 while (tblscan < tblend)
2105 {
2106 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2107 current_objfile);
2108 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2109 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2110 current_objfile);
2111 tblscan += SIZEOF_LINETBL_DELTA;
2112 pc += base;
2113 if (line != 0)
2114 {
2115 record_line (current_subfile, line, pc);
2116 }
2117 }
2118 }
2119 }
2120
2121 /*
2122
2123 LOCAL FUNCTION
2124
2125 locval -- compute the value of a location attribute
2126
2127 SYNOPSIS
2128
2129 static int locval (struct dieinfo *dip)
2130
2131 DESCRIPTION
2132
2133 Given pointer to a string of bytes that define a location, compute
2134 the location and return the value.
2135 A location description containing no atoms indicates that the
2136 object is optimized out. The optimized_out flag is set for those,
2137 the return value is meaningless.
2138
2139 When computing values involving the current value of the frame pointer,
2140 the value zero is used, which results in a value relative to the frame
2141 pointer, rather than the absolute value. This is what GDB wants
2142 anyway.
2143
2144 When the result is a register number, the isreg flag is set, otherwise
2145 it is cleared. This is a kludge until we figure out a better
2146 way to handle the problem. Gdb's design does not mesh well with the
2147 DWARF notion of a location computing interpreter, which is a shame
2148 because the flexibility goes unused.
2149
2150 NOTES
2151
2152 Note that stack[0] is unused except as a default error return.
2153 Note that stack overflow is not yet handled.
2154 */
2155
2156 static int
2157 locval (struct dieinfo *dip)
2158 {
2159 unsigned short nbytes;
2160 unsigned short locsize;
2161 auto long stack[64];
2162 int stacki;
2163 char *loc;
2164 char *end;
2165 int loc_atom_code;
2166 int loc_value_size;
2167
2168 loc = dip->at_location;
2169 nbytes = attribute_size (AT_location);
2170 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2171 loc += nbytes;
2172 end = loc + locsize;
2173 stacki = 0;
2174 stack[stacki] = 0;
2175 dip->isreg = 0;
2176 dip->offreg = 0;
2177 dip->optimized_out = 1;
2178 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2179 while (loc < end)
2180 {
2181 dip->optimized_out = 0;
2182 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2183 current_objfile);
2184 loc += SIZEOF_LOC_ATOM_CODE;
2185 switch (loc_atom_code)
2186 {
2187 case 0:
2188 /* error */
2189 loc = end;
2190 break;
2191 case OP_REG:
2192 /* push register (number) */
2193 stack[++stacki]
2194 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2195 GET_UNSIGNED,
2196 current_objfile));
2197 loc += loc_value_size;
2198 dip->isreg = 1;
2199 break;
2200 case OP_BASEREG:
2201 /* push value of register (number) */
2202 /* Actually, we compute the value as if register has 0, so the
2203 value ends up being the offset from that register. */
2204 dip->offreg = 1;
2205 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2206 current_objfile);
2207 loc += loc_value_size;
2208 stack[++stacki] = 0;
2209 break;
2210 case OP_ADDR:
2211 /* push address (relocated address) */
2212 stack[++stacki] = target_to_host (loc, loc_value_size,
2213 GET_UNSIGNED, current_objfile);
2214 loc += loc_value_size;
2215 break;
2216 case OP_CONST:
2217 /* push constant (number) FIXME: signed or unsigned! */
2218 stack[++stacki] = target_to_host (loc, loc_value_size,
2219 GET_SIGNED, current_objfile);
2220 loc += loc_value_size;
2221 break;
2222 case OP_DEREF2:
2223 /* pop, deref and push 2 bytes (as a long) */
2224 complaint (&symfile_complaints,
2225 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2226 DIE_ID, DIE_NAME, stack[stacki]);
2227 break;
2228 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2229 complaint (&symfile_complaints,
2230 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2231 DIE_ID, DIE_NAME, stack[stacki]);
2232 break;
2233 case OP_ADD: /* pop top 2 items, add, push result */
2234 stack[stacki - 1] += stack[stacki];
2235 stacki--;
2236 break;
2237 }
2238 }
2239 return (stack[stacki]);
2240 }
2241
2242 /*
2243
2244 LOCAL FUNCTION
2245
2246 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2247
2248 SYNOPSIS
2249
2250 static void read_ofile_symtab (struct partial_symtab *pst)
2251
2252 DESCRIPTION
2253
2254 When expanding a partial symbol table entry to a full symbol table
2255 entry, this is the function that gets called to read in the symbols
2256 for the compilation unit. A pointer to the newly constructed symtab,
2257 which is now the new first one on the objfile's symtab list, is
2258 stashed in the partial symbol table entry.
2259 */
2260
2261 static void
2262 read_ofile_symtab (struct partial_symtab *pst)
2263 {
2264 struct cleanup *back_to;
2265 unsigned long lnsize;
2266 file_ptr foffset;
2267 bfd *abfd;
2268 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2269
2270 abfd = pst->objfile->obfd;
2271 current_objfile = pst->objfile;
2272
2273 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2274 unit, seek to the location in the file, and read in all the DIE's. */
2275
2276 diecount = 0;
2277 dbsize = DBLENGTH (pst);
2278 dbbase = xmalloc (dbsize);
2279 dbroff = DBROFF (pst);
2280 foffset = DBFOFF (pst) + dbroff;
2281 base_section_offsets = pst->section_offsets;
2282 baseaddr = ANOFFSET (pst->section_offsets, 0);
2283 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2284 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2285 {
2286 xfree (dbbase);
2287 error ("can't read DWARF data");
2288 }
2289 back_to = make_cleanup (xfree, dbbase);
2290
2291 /* If there is a line number table associated with this compilation unit
2292 then read the size of this fragment in bytes, from the fragment itself.
2293 Allocate a buffer for the fragment and read it in for future
2294 processing. */
2295
2296 lnbase = NULL;
2297 if (LNFOFF (pst))
2298 {
2299 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2300 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2301 != sizeof (lnsizedata)))
2302 {
2303 error ("can't read DWARF line number table size");
2304 }
2305 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2306 GET_UNSIGNED, pst->objfile);
2307 lnbase = xmalloc (lnsize);
2308 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2309 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2310 {
2311 xfree (lnbase);
2312 error ("can't read DWARF line numbers");
2313 }
2314 make_cleanup (xfree, lnbase);
2315 }
2316
2317 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2318 do_cleanups (back_to);
2319 current_objfile = NULL;
2320 pst->symtab = pst->objfile->symtabs;
2321 }
2322
2323 /*
2324
2325 LOCAL FUNCTION
2326
2327 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2328
2329 SYNOPSIS
2330
2331 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2332
2333 DESCRIPTION
2334
2335 Called once for each partial symbol table entry that needs to be
2336 expanded into a full symbol table entry.
2337
2338 */
2339
2340 static void
2341 psymtab_to_symtab_1 (struct partial_symtab *pst)
2342 {
2343 int i;
2344 struct cleanup *old_chain;
2345
2346 if (pst != NULL)
2347 {
2348 if (pst->readin)
2349 {
2350 warning ("psymtab for %s already read in. Shouldn't happen.",
2351 pst->filename);
2352 }
2353 else
2354 {
2355 /* Read in all partial symtabs on which this one is dependent */
2356 for (i = 0; i < pst->number_of_dependencies; i++)
2357 {
2358 if (!pst->dependencies[i]->readin)
2359 {
2360 /* Inform about additional files that need to be read in. */
2361 if (info_verbose)
2362 {
2363 fputs_filtered (" ", gdb_stdout);
2364 wrap_here ("");
2365 fputs_filtered ("and ", gdb_stdout);
2366 wrap_here ("");
2367 printf_filtered ("%s...",
2368 pst->dependencies[i]->filename);
2369 wrap_here ("");
2370 gdb_flush (gdb_stdout); /* Flush output */
2371 }
2372 psymtab_to_symtab_1 (pst->dependencies[i]);
2373 }
2374 }
2375 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2376 {
2377 buildsym_init ();
2378 old_chain = make_cleanup (really_free_pendings, 0);
2379 read_ofile_symtab (pst);
2380 if (info_verbose)
2381 {
2382 printf_filtered ("%d DIE's, sorting...", diecount);
2383 wrap_here ("");
2384 gdb_flush (gdb_stdout);
2385 }
2386 do_cleanups (old_chain);
2387 }
2388 pst->readin = 1;
2389 }
2390 }
2391 }
2392
2393 /*
2394
2395 LOCAL FUNCTION
2396
2397 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2398
2399 SYNOPSIS
2400
2401 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2402
2403 DESCRIPTION
2404
2405 This is the DWARF support entry point for building a full symbol
2406 table entry from a partial symbol table entry. We are passed a
2407 pointer to the partial symbol table entry that needs to be expanded.
2408
2409 */
2410
2411 static void
2412 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2413 {
2414
2415 if (pst != NULL)
2416 {
2417 if (pst->readin)
2418 {
2419 warning ("psymtab for %s already read in. Shouldn't happen.",
2420 pst->filename);
2421 }
2422 else
2423 {
2424 if (DBLENGTH (pst) || pst->number_of_dependencies)
2425 {
2426 /* Print the message now, before starting serious work, to avoid
2427 disconcerting pauses. */
2428 if (info_verbose)
2429 {
2430 printf_filtered ("Reading in symbols for %s...",
2431 pst->filename);
2432 gdb_flush (gdb_stdout);
2433 }
2434
2435 psymtab_to_symtab_1 (pst);
2436
2437 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2438 we need to do an equivalent or is this something peculiar to
2439 stabs/a.out format.
2440 Match with global symbols. This only needs to be done once,
2441 after all of the symtabs and dependencies have been read in.
2442 */
2443 scan_file_globals (pst->objfile);
2444 #endif
2445
2446 /* Finish up the verbose info message. */
2447 if (info_verbose)
2448 {
2449 printf_filtered ("done.\n");
2450 gdb_flush (gdb_stdout);
2451 }
2452 }
2453 }
2454 }
2455 }
2456
2457 /*
2458
2459 LOCAL FUNCTION
2460
2461 add_enum_psymbol -- add enumeration members to partial symbol table
2462
2463 DESCRIPTION
2464
2465 Given pointer to a DIE that is known to be for an enumeration,
2466 extract the symbolic names of the enumeration members and add
2467 partial symbols for them.
2468 */
2469
2470 static void
2471 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2472 {
2473 char *scan;
2474 char *listend;
2475 unsigned short blocksz;
2476 int nbytes;
2477
2478 scan = dip->at_element_list;
2479 if (scan != NULL)
2480 {
2481 if (dip->short_element_list)
2482 {
2483 nbytes = attribute_size (AT_short_element_list);
2484 }
2485 else
2486 {
2487 nbytes = attribute_size (AT_element_list);
2488 }
2489 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2490 scan += nbytes;
2491 listend = scan + blocksz;
2492 while (scan < listend)
2493 {
2494 scan += TARGET_FT_LONG_SIZE (objfile);
2495 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
2496 &objfile->static_psymbols, 0, 0, cu_language,
2497 objfile);
2498 scan += strlen (scan) + 1;
2499 }
2500 }
2501 }
2502
2503 /*
2504
2505 LOCAL FUNCTION
2506
2507 add_partial_symbol -- add symbol to partial symbol table
2508
2509 DESCRIPTION
2510
2511 Given a DIE, if it is one of the types that we want to
2512 add to a partial symbol table, finish filling in the die info
2513 and then add a partial symbol table entry for it.
2514
2515 NOTES
2516
2517 The caller must ensure that the DIE has a valid name attribute.
2518 */
2519
2520 static void
2521 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2522 {
2523 switch (dip->die_tag)
2524 {
2525 case TAG_global_subroutine:
2526 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2527 VAR_DOMAIN, LOC_BLOCK,
2528 &objfile->global_psymbols,
2529 0, dip->at_low_pc, cu_language, objfile);
2530 break;
2531 case TAG_global_variable:
2532 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2533 VAR_DOMAIN, LOC_STATIC,
2534 &objfile->global_psymbols,
2535 0, 0, cu_language, objfile);
2536 break;
2537 case TAG_subroutine:
2538 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2539 VAR_DOMAIN, LOC_BLOCK,
2540 &objfile->static_psymbols,
2541 0, dip->at_low_pc, cu_language, objfile);
2542 break;
2543 case TAG_local_variable:
2544 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2545 VAR_DOMAIN, LOC_STATIC,
2546 &objfile->static_psymbols,
2547 0, 0, cu_language, objfile);
2548 break;
2549 case TAG_typedef:
2550 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2551 VAR_DOMAIN, LOC_TYPEDEF,
2552 &objfile->static_psymbols,
2553 0, 0, cu_language, objfile);
2554 break;
2555 case TAG_class_type:
2556 case TAG_structure_type:
2557 case TAG_union_type:
2558 case TAG_enumeration_type:
2559 /* Do not add opaque aggregate definitions to the psymtab. */
2560 if (!dip->has_at_byte_size)
2561 break;
2562 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2563 STRUCT_DOMAIN, LOC_TYPEDEF,
2564 &objfile->static_psymbols,
2565 0, 0, cu_language, objfile);
2566 if (cu_language == language_cplus)
2567 {
2568 /* For C++, these implicitly act as typedefs as well. */
2569 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2570 VAR_DOMAIN, LOC_TYPEDEF,
2571 &objfile->static_psymbols,
2572 0, 0, cu_language, objfile);
2573 }
2574 break;
2575 }
2576 }
2577 /* *INDENT-OFF* */
2578 /*
2579
2580 LOCAL FUNCTION
2581
2582 scan_partial_symbols -- scan DIE's within a single compilation unit
2583
2584 DESCRIPTION
2585
2586 Process the DIE's within a single compilation unit, looking for
2587 interesting DIE's that contribute to the partial symbol table entry
2588 for this compilation unit.
2589
2590 NOTES
2591
2592 There are some DIE's that may appear both at file scope and within
2593 the scope of a function. We are only interested in the ones at file
2594 scope, and the only way to tell them apart is to keep track of the
2595 scope. For example, consider the test case:
2596
2597 static int i;
2598 main () { int j; }
2599
2600 for which the relevant DWARF segment has the structure:
2601
2602 0x51:
2603 0x23 global subrtn sibling 0x9b
2604 name main
2605 fund_type FT_integer
2606 low_pc 0x800004cc
2607 high_pc 0x800004d4
2608
2609 0x74:
2610 0x23 local var sibling 0x97
2611 name j
2612 fund_type FT_integer
2613 location OP_BASEREG 0xe
2614 OP_CONST 0xfffffffc
2615 OP_ADD
2616 0x97:
2617 0x4
2618
2619 0x9b:
2620 0x1d local var sibling 0xb8
2621 name i
2622 fund_type FT_integer
2623 location OP_ADDR 0x800025dc
2624
2625 0xb8:
2626 0x4
2627
2628 We want to include the symbol 'i' in the partial symbol table, but
2629 not the symbol 'j'. In essence, we want to skip all the dies within
2630 the scope of a TAG_global_subroutine DIE.
2631
2632 Don't attempt to add anonymous structures or unions since they have
2633 no name. Anonymous enumerations however are processed, because we
2634 want to extract their member names (the check for a tag name is
2635 done later).
2636
2637 Also, for variables and subroutines, check that this is the place
2638 where the actual definition occurs, rather than just a reference
2639 to an external.
2640 */
2641 /* *INDENT-ON* */
2642
2643
2644
2645 static void
2646 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2647 {
2648 char *nextdie;
2649 char *temp;
2650 struct dieinfo di;
2651
2652 while (thisdie < enddie)
2653 {
2654 basicdieinfo (&di, thisdie, objfile);
2655 if (di.die_length < SIZEOF_DIE_LENGTH)
2656 {
2657 break;
2658 }
2659 else
2660 {
2661 nextdie = thisdie + di.die_length;
2662 /* To avoid getting complete die information for every die, we
2663 only do it (below) for the cases we are interested in. */
2664 switch (di.die_tag)
2665 {
2666 case TAG_global_subroutine:
2667 case TAG_subroutine:
2668 completedieinfo (&di, objfile);
2669 if (di.at_name && (di.has_at_low_pc || di.at_location))
2670 {
2671 add_partial_symbol (&di, objfile);
2672 /* If there is a sibling attribute, adjust the nextdie
2673 pointer to skip the entire scope of the subroutine.
2674 Apply some sanity checking to make sure we don't
2675 overrun or underrun the range of remaining DIE's */
2676 if (di.at_sibling != 0)
2677 {
2678 temp = dbbase + di.at_sibling - dbroff;
2679 if ((temp < thisdie) || (temp >= enddie))
2680 {
2681 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2682 di.at_sibling);
2683 }
2684 else
2685 {
2686 nextdie = temp;
2687 }
2688 }
2689 }
2690 break;
2691 case TAG_global_variable:
2692 case TAG_local_variable:
2693 completedieinfo (&di, objfile);
2694 if (di.at_name && (di.has_at_low_pc || di.at_location))
2695 {
2696 add_partial_symbol (&di, objfile);
2697 }
2698 break;
2699 case TAG_typedef:
2700 case TAG_class_type:
2701 case TAG_structure_type:
2702 case TAG_union_type:
2703 completedieinfo (&di, objfile);
2704 if (di.at_name)
2705 {
2706 add_partial_symbol (&di, objfile);
2707 }
2708 break;
2709 case TAG_enumeration_type:
2710 completedieinfo (&di, objfile);
2711 if (di.at_name)
2712 {
2713 add_partial_symbol (&di, objfile);
2714 }
2715 add_enum_psymbol (&di, objfile);
2716 break;
2717 }
2718 }
2719 thisdie = nextdie;
2720 }
2721 }
2722
2723 /*
2724
2725 LOCAL FUNCTION
2726
2727 scan_compilation_units -- build a psymtab entry for each compilation
2728
2729 DESCRIPTION
2730
2731 This is the top level dwarf parsing routine for building partial
2732 symbol tables.
2733
2734 It scans from the beginning of the DWARF table looking for the first
2735 TAG_compile_unit DIE, and then follows the sibling chain to locate
2736 each additional TAG_compile_unit DIE.
2737
2738 For each TAG_compile_unit DIE it creates a partial symtab structure,
2739 calls a subordinate routine to collect all the compilation unit's
2740 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2741 new partial symtab structure into the partial symbol table. It also
2742 records the appropriate information in the partial symbol table entry
2743 to allow the chunk of DIE's and line number table for this compilation
2744 unit to be located and re-read later, to generate a complete symbol
2745 table entry for the compilation unit.
2746
2747 Thus it effectively partitions up a chunk of DIE's for multiple
2748 compilation units into smaller DIE chunks and line number tables,
2749 and associates them with a partial symbol table entry.
2750
2751 NOTES
2752
2753 If any compilation unit has no line number table associated with
2754 it for some reason (a missing at_stmt_list attribute, rather than
2755 just one with a value of zero, which is valid) then we ensure that
2756 the recorded file offset is zero so that the routine which later
2757 reads line number table fragments knows that there is no fragment
2758 to read.
2759
2760 RETURNS
2761
2762 Returns no value.
2763
2764 */
2765
2766 static void
2767 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2768 file_ptr lnoffset, struct objfile *objfile)
2769 {
2770 char *nextdie;
2771 struct dieinfo di;
2772 struct partial_symtab *pst;
2773 int culength;
2774 int curoff;
2775 file_ptr curlnoffset;
2776
2777 while (thisdie < enddie)
2778 {
2779 basicdieinfo (&di, thisdie, objfile);
2780 if (di.die_length < SIZEOF_DIE_LENGTH)
2781 {
2782 break;
2783 }
2784 else if (di.die_tag != TAG_compile_unit)
2785 {
2786 nextdie = thisdie + di.die_length;
2787 }
2788 else
2789 {
2790 completedieinfo (&di, objfile);
2791 set_cu_language (&di);
2792 if (di.at_sibling != 0)
2793 {
2794 nextdie = dbbase + di.at_sibling - dbroff;
2795 }
2796 else
2797 {
2798 nextdie = thisdie + di.die_length;
2799 }
2800 curoff = thisdie - dbbase;
2801 culength = nextdie - thisdie;
2802 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2803
2804 /* First allocate a new partial symbol table structure */
2805
2806 pst = start_psymtab_common (objfile, base_section_offsets,
2807 di.at_name, di.at_low_pc,
2808 objfile->global_psymbols.next,
2809 objfile->static_psymbols.next);
2810
2811 pst->texthigh = di.at_high_pc;
2812 pst->read_symtab_private = (char *)
2813 obstack_alloc (&objfile->objfile_obstack,
2814 sizeof (struct dwfinfo));
2815 DBFOFF (pst) = dbfoff;
2816 DBROFF (pst) = curoff;
2817 DBLENGTH (pst) = culength;
2818 LNFOFF (pst) = curlnoffset;
2819 pst->read_symtab = dwarf_psymtab_to_symtab;
2820
2821 /* Now look for partial symbols */
2822
2823 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2824
2825 pst->n_global_syms = objfile->global_psymbols.next -
2826 (objfile->global_psymbols.list + pst->globals_offset);
2827 pst->n_static_syms = objfile->static_psymbols.next -
2828 (objfile->static_psymbols.list + pst->statics_offset);
2829 sort_pst_symbols (pst);
2830 /* If there is already a psymtab or symtab for a file of this name,
2831 remove it. (If there is a symtab, more drastic things also
2832 happen.) This happens in VxWorks. */
2833 free_named_symtabs (pst->filename);
2834 }
2835 thisdie = nextdie;
2836 }
2837 }
2838
2839 /*
2840
2841 LOCAL FUNCTION
2842
2843 new_symbol -- make a symbol table entry for a new symbol
2844
2845 SYNOPSIS
2846
2847 static struct symbol *new_symbol (struct dieinfo *dip,
2848 struct objfile *objfile)
2849
2850 DESCRIPTION
2851
2852 Given a pointer to a DWARF information entry, figure out if we need
2853 to make a symbol table entry for it, and if so, create a new entry
2854 and return a pointer to it.
2855 */
2856
2857 static struct symbol *
2858 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2859 {
2860 struct symbol *sym = NULL;
2861
2862 if (dip->at_name != NULL)
2863 {
2864 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
2865 sizeof (struct symbol));
2866 OBJSTAT (objfile, n_syms++);
2867 memset (sym, 0, sizeof (struct symbol));
2868 /* default assumptions */
2869 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2870 SYMBOL_CLASS (sym) = LOC_STATIC;
2871 SYMBOL_TYPE (sym) = decode_die_type (dip);
2872
2873 /* If this symbol is from a C++ compilation, then attempt to cache the
2874 demangled form for future reference. This is a typical time versus
2875 space tradeoff, that was decided in favor of time because it sped up
2876 C++ symbol lookups by a factor of about 20. */
2877
2878 SYMBOL_LANGUAGE (sym) = cu_language;
2879 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2880 switch (dip->die_tag)
2881 {
2882 case TAG_label:
2883 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2884 SYMBOL_CLASS (sym) = LOC_LABEL;
2885 break;
2886 case TAG_global_subroutine:
2887 case TAG_subroutine:
2888 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2889 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2890 if (dip->at_prototyped)
2891 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2892 SYMBOL_CLASS (sym) = LOC_BLOCK;
2893 if (dip->die_tag == TAG_global_subroutine)
2894 {
2895 add_symbol_to_list (sym, &global_symbols);
2896 }
2897 else
2898 {
2899 add_symbol_to_list (sym, list_in_scope);
2900 }
2901 break;
2902 case TAG_global_variable:
2903 if (dip->at_location != NULL)
2904 {
2905 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2906 add_symbol_to_list (sym, &global_symbols);
2907 SYMBOL_CLASS (sym) = LOC_STATIC;
2908 SYMBOL_VALUE (sym) += baseaddr;
2909 }
2910 break;
2911 case TAG_local_variable:
2912 if (dip->at_location != NULL)
2913 {
2914 int loc = locval (dip);
2915 if (dip->optimized_out)
2916 {
2917 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2918 }
2919 else if (dip->isreg)
2920 {
2921 SYMBOL_CLASS (sym) = LOC_REGISTER;
2922 }
2923 else if (dip->offreg)
2924 {
2925 SYMBOL_CLASS (sym) = LOC_BASEREG;
2926 SYMBOL_BASEREG (sym) = dip->basereg;
2927 }
2928 else
2929 {
2930 SYMBOL_CLASS (sym) = LOC_STATIC;
2931 SYMBOL_VALUE (sym) += baseaddr;
2932 }
2933 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2934 {
2935 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2936 which may store to a bigger location than SYMBOL_VALUE. */
2937 SYMBOL_VALUE_ADDRESS (sym) = loc;
2938 }
2939 else
2940 {
2941 SYMBOL_VALUE (sym) = loc;
2942 }
2943 add_symbol_to_list (sym, list_in_scope);
2944 }
2945 break;
2946 case TAG_formal_parameter:
2947 if (dip->at_location != NULL)
2948 {
2949 SYMBOL_VALUE (sym) = locval (dip);
2950 }
2951 add_symbol_to_list (sym, list_in_scope);
2952 if (dip->isreg)
2953 {
2954 SYMBOL_CLASS (sym) = LOC_REGPARM;
2955 }
2956 else if (dip->offreg)
2957 {
2958 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2959 SYMBOL_BASEREG (sym) = dip->basereg;
2960 }
2961 else
2962 {
2963 SYMBOL_CLASS (sym) = LOC_ARG;
2964 }
2965 break;
2966 case TAG_unspecified_parameters:
2967 /* From varargs functions; gdb doesn't seem to have any interest in
2968 this information, so just ignore it for now. (FIXME?) */
2969 break;
2970 case TAG_class_type:
2971 case TAG_structure_type:
2972 case TAG_union_type:
2973 case TAG_enumeration_type:
2974 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2975 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
2976 add_symbol_to_list (sym, list_in_scope);
2977 break;
2978 case TAG_typedef:
2979 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2980 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2981 add_symbol_to_list (sym, list_in_scope);
2982 break;
2983 default:
2984 /* Not a tag we recognize. Hopefully we aren't processing trash
2985 data, but since we must specifically ignore things we don't
2986 recognize, there is nothing else we should do at this point. */
2987 break;
2988 }
2989 }
2990 return (sym);
2991 }
2992
2993 /*
2994
2995 LOCAL FUNCTION
2996
2997 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2998
2999 SYNOPSIS
3000
3001 static void synthesize_typedef (struct dieinfo *dip,
3002 struct objfile *objfile,
3003 struct type *type);
3004
3005 DESCRIPTION
3006
3007 Given a pointer to a DWARF information entry, synthesize a typedef
3008 for the name in the DIE, using the specified type.
3009
3010 This is used for C++ class, structs, unions, and enumerations to
3011 set up the tag name as a type.
3012
3013 */
3014
3015 static void
3016 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3017 struct type *type)
3018 {
3019 struct symbol *sym = NULL;
3020
3021 if (dip->at_name != NULL)
3022 {
3023 sym = (struct symbol *)
3024 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3025 OBJSTAT (objfile, n_syms++);
3026 memset (sym, 0, sizeof (struct symbol));
3027 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
3028 &objfile->objfile_obstack);
3029 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3030 SYMBOL_TYPE (sym) = type;
3031 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3032 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3033 add_symbol_to_list (sym, list_in_scope);
3034 }
3035 }
3036
3037 /*
3038
3039 LOCAL FUNCTION
3040
3041 decode_mod_fund_type -- decode a modified fundamental type
3042
3043 SYNOPSIS
3044
3045 static struct type *decode_mod_fund_type (char *typedata)
3046
3047 DESCRIPTION
3048
3049 Decode a block of data containing a modified fundamental
3050 type specification. TYPEDATA is a pointer to the block,
3051 which starts with a length containing the size of the rest
3052 of the block. At the end of the block is a fundmental type
3053 code value that gives the fundamental type. Everything
3054 in between are type modifiers.
3055
3056 We simply compute the number of modifiers and call the general
3057 function decode_modified_type to do the actual work.
3058 */
3059
3060 static struct type *
3061 decode_mod_fund_type (char *typedata)
3062 {
3063 struct type *typep = NULL;
3064 unsigned short modcount;
3065 int nbytes;
3066
3067 /* Get the total size of the block, exclusive of the size itself */
3068
3069 nbytes = attribute_size (AT_mod_fund_type);
3070 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3071 typedata += nbytes;
3072
3073 /* Deduct the size of the fundamental type bytes at the end of the block. */
3074
3075 modcount -= attribute_size (AT_fund_type);
3076
3077 /* Now do the actual decoding */
3078
3079 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3080 return (typep);
3081 }
3082
3083 /*
3084
3085 LOCAL FUNCTION
3086
3087 decode_mod_u_d_type -- decode a modified user defined type
3088
3089 SYNOPSIS
3090
3091 static struct type *decode_mod_u_d_type (char *typedata)
3092
3093 DESCRIPTION
3094
3095 Decode a block of data containing a modified user defined
3096 type specification. TYPEDATA is a pointer to the block,
3097 which consists of a two byte length, containing the size
3098 of the rest of the block. At the end of the block is a
3099 four byte value that gives a reference to a user defined type.
3100 Everything in between are type modifiers.
3101
3102 We simply compute the number of modifiers and call the general
3103 function decode_modified_type to do the actual work.
3104 */
3105
3106 static struct type *
3107 decode_mod_u_d_type (char *typedata)
3108 {
3109 struct type *typep = NULL;
3110 unsigned short modcount;
3111 int nbytes;
3112
3113 /* Get the total size of the block, exclusive of the size itself */
3114
3115 nbytes = attribute_size (AT_mod_u_d_type);
3116 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3117 typedata += nbytes;
3118
3119 /* Deduct the size of the reference type bytes at the end of the block. */
3120
3121 modcount -= attribute_size (AT_user_def_type);
3122
3123 /* Now do the actual decoding */
3124
3125 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3126 return (typep);
3127 }
3128
3129 /*
3130
3131 LOCAL FUNCTION
3132
3133 decode_modified_type -- decode modified user or fundamental type
3134
3135 SYNOPSIS
3136
3137 static struct type *decode_modified_type (char *modifiers,
3138 unsigned short modcount, int mtype)
3139
3140 DESCRIPTION
3141
3142 Decode a modified type, either a modified fundamental type or
3143 a modified user defined type. MODIFIERS is a pointer to the
3144 block of bytes that define MODCOUNT modifiers. Immediately
3145 following the last modifier is a short containing the fundamental
3146 type or a long containing the reference to the user defined
3147 type. Which one is determined by MTYPE, which is either
3148 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3149 type we are generating.
3150
3151 We call ourself recursively to generate each modified type,`
3152 until MODCOUNT reaches zero, at which point we have consumed
3153 all the modifiers and generate either the fundamental type or
3154 user defined type. When the recursion unwinds, each modifier
3155 is applied in turn to generate the full modified type.
3156
3157 NOTES
3158
3159 If we find a modifier that we don't recognize, and it is not one
3160 of those reserved for application specific use, then we issue a
3161 warning and simply ignore the modifier.
3162
3163 BUGS
3164
3165 We currently ignore MOD_const and MOD_volatile. (FIXME)
3166
3167 */
3168
3169 static struct type *
3170 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3171 {
3172 struct type *typep = NULL;
3173 unsigned short fundtype;
3174 DIE_REF die_ref;
3175 char modifier;
3176 int nbytes;
3177
3178 if (modcount == 0)
3179 {
3180 switch (mtype)
3181 {
3182 case AT_mod_fund_type:
3183 nbytes = attribute_size (AT_fund_type);
3184 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3185 current_objfile);
3186 typep = decode_fund_type (fundtype);
3187 break;
3188 case AT_mod_u_d_type:
3189 nbytes = attribute_size (AT_user_def_type);
3190 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3191 current_objfile);
3192 typep = lookup_utype (die_ref);
3193 if (typep == NULL)
3194 {
3195 typep = alloc_utype (die_ref, NULL);
3196 }
3197 break;
3198 default:
3199 complaint (&symfile_complaints,
3200 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3201 DIE_ID, DIE_NAME, mtype);
3202 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3203 break;
3204 }
3205 }
3206 else
3207 {
3208 modifier = *modifiers++;
3209 typep = decode_modified_type (modifiers, --modcount, mtype);
3210 switch (modifier)
3211 {
3212 case MOD_pointer_to:
3213 typep = lookup_pointer_type (typep);
3214 break;
3215 case MOD_reference_to:
3216 typep = lookup_reference_type (typep);
3217 break;
3218 case MOD_const:
3219 complaint (&symfile_complaints,
3220 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3221 DIE_NAME); /* FIXME */
3222 break;
3223 case MOD_volatile:
3224 complaint (&symfile_complaints,
3225 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3226 DIE_ID, DIE_NAME); /* FIXME */
3227 break;
3228 default:
3229 if (!(MOD_lo_user <= (unsigned char) modifier))
3230 #if 0
3231 /* This part of the test would always be true, and it triggers a compiler
3232 warning. */
3233 && (unsigned char) modifier <= MOD_hi_user))
3234 #endif
3235 {
3236 complaint (&symfile_complaints,
3237 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3238 DIE_NAME, modifier);
3239 }
3240 break;
3241 }
3242 }
3243 return (typep);
3244 }
3245
3246 /*
3247
3248 LOCAL FUNCTION
3249
3250 decode_fund_type -- translate basic DWARF type to gdb base type
3251
3252 DESCRIPTION
3253
3254 Given an integer that is one of the fundamental DWARF types,
3255 translate it to one of the basic internal gdb types and return
3256 a pointer to the appropriate gdb type (a "struct type *").
3257
3258 NOTES
3259
3260 For robustness, if we are asked to translate a fundamental
3261 type that we are unprepared to deal with, we return int so
3262 callers can always depend upon a valid type being returned,
3263 and so gdb may at least do something reasonable by default.
3264 If the type is not in the range of those types defined as
3265 application specific types, we also issue a warning.
3266 */
3267
3268 static struct type *
3269 decode_fund_type (unsigned int fundtype)
3270 {
3271 struct type *typep = NULL;
3272
3273 switch (fundtype)
3274 {
3275
3276 case FT_void:
3277 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3278 break;
3279
3280 case FT_boolean: /* Was FT_set in AT&T version */
3281 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3282 break;
3283
3284 case FT_pointer: /* (void *) */
3285 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3286 typep = lookup_pointer_type (typep);
3287 break;
3288
3289 case FT_char:
3290 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3291 break;
3292
3293 case FT_signed_char:
3294 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3295 break;
3296
3297 case FT_unsigned_char:
3298 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3299 break;
3300
3301 case FT_short:
3302 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3303 break;
3304
3305 case FT_signed_short:
3306 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3307 break;
3308
3309 case FT_unsigned_short:
3310 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3311 break;
3312
3313 case FT_integer:
3314 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3315 break;
3316
3317 case FT_signed_integer:
3318 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3319 break;
3320
3321 case FT_unsigned_integer:
3322 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3323 break;
3324
3325 case FT_long:
3326 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3327 break;
3328
3329 case FT_signed_long:
3330 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3331 break;
3332
3333 case FT_unsigned_long:
3334 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3335 break;
3336
3337 case FT_long_long:
3338 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3339 break;
3340
3341 case FT_signed_long_long:
3342 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3343 break;
3344
3345 case FT_unsigned_long_long:
3346 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3347 break;
3348
3349 case FT_float:
3350 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3351 break;
3352
3353 case FT_dbl_prec_float:
3354 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3355 break;
3356
3357 case FT_ext_prec_float:
3358 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3359 break;
3360
3361 case FT_complex:
3362 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3363 break;
3364
3365 case FT_dbl_prec_complex:
3366 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3367 break;
3368
3369 case FT_ext_prec_complex:
3370 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3371 break;
3372
3373 }
3374
3375 if (typep == NULL)
3376 {
3377 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3378 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3379 {
3380 complaint (&symfile_complaints,
3381 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3382 DIE_ID, DIE_NAME, fundtype);
3383 }
3384 }
3385
3386 return (typep);
3387 }
3388
3389 /*
3390
3391 LOCAL FUNCTION
3392
3393 create_name -- allocate a fresh copy of a string on an obstack
3394
3395 DESCRIPTION
3396
3397 Given a pointer to a string and a pointer to an obstack, allocates
3398 a fresh copy of the string on the specified obstack.
3399
3400 */
3401
3402 static char *
3403 create_name (char *name, struct obstack *obstackp)
3404 {
3405 int length;
3406 char *newname;
3407
3408 length = strlen (name) + 1;
3409 newname = (char *) obstack_alloc (obstackp, length);
3410 strcpy (newname, name);
3411 return (newname);
3412 }
3413
3414 /*
3415
3416 LOCAL FUNCTION
3417
3418 basicdieinfo -- extract the minimal die info from raw die data
3419
3420 SYNOPSIS
3421
3422 void basicdieinfo (char *diep, struct dieinfo *dip,
3423 struct objfile *objfile)
3424
3425 DESCRIPTION
3426
3427 Given a pointer to raw DIE data, and a pointer to an instance of a
3428 die info structure, this function extracts the basic information
3429 from the DIE data required to continue processing this DIE, along
3430 with some bookkeeping information about the DIE.
3431
3432 The information we absolutely must have includes the DIE tag,
3433 and the DIE length. If we need the sibling reference, then we
3434 will have to call completedieinfo() to process all the remaining
3435 DIE information.
3436
3437 Note that since there is no guarantee that the data is properly
3438 aligned in memory for the type of access required (indirection
3439 through anything other than a char pointer), and there is no
3440 guarantee that it is in the same byte order as the gdb host,
3441 we call a function which deals with both alignment and byte
3442 swapping issues. Possibly inefficient, but quite portable.
3443
3444 We also take care of some other basic things at this point, such
3445 as ensuring that the instance of the die info structure starts
3446 out completely zero'd and that curdie is initialized for use
3447 in error reporting if we have a problem with the current die.
3448
3449 NOTES
3450
3451 All DIE's must have at least a valid length, thus the minimum
3452 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3453 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3454 are forced to be TAG_padding DIES.
3455
3456 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3457 that if a padding DIE is used for alignment and the amount needed is
3458 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3459 enough to align to the next alignment boundry.
3460
3461 We do some basic sanity checking here, such as verifying that the
3462 length of the die would not cause it to overrun the recorded end of
3463 the buffer holding the DIE info. If we find a DIE that is either
3464 too small or too large, we force it's length to zero which should
3465 cause the caller to take appropriate action.
3466 */
3467
3468 static void
3469 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3470 {
3471 curdie = dip;
3472 memset (dip, 0, sizeof (struct dieinfo));
3473 dip->die = diep;
3474 dip->die_ref = dbroff + (diep - dbbase);
3475 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3476 objfile);
3477 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3478 ((diep + dip->die_length) > (dbbase + dbsize)))
3479 {
3480 complaint (&symfile_complaints,
3481 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3482 DIE_ID, DIE_NAME, dip->die_length);
3483 dip->die_length = 0;
3484 }
3485 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3486 {
3487 dip->die_tag = TAG_padding;
3488 }
3489 else
3490 {
3491 diep += SIZEOF_DIE_LENGTH;
3492 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3493 objfile);
3494 }
3495 }
3496
3497 /*
3498
3499 LOCAL FUNCTION
3500
3501 completedieinfo -- finish reading the information for a given DIE
3502
3503 SYNOPSIS
3504
3505 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3506
3507 DESCRIPTION
3508
3509 Given a pointer to an already partially initialized die info structure,
3510 scan the raw DIE data and finish filling in the die info structure
3511 from the various attributes found.
3512
3513 Note that since there is no guarantee that the data is properly
3514 aligned in memory for the type of access required (indirection
3515 through anything other than a char pointer), and there is no
3516 guarantee that it is in the same byte order as the gdb host,
3517 we call a function which deals with both alignment and byte
3518 swapping issues. Possibly inefficient, but quite portable.
3519
3520 NOTES
3521
3522 Each time we are called, we increment the diecount variable, which
3523 keeps an approximate count of the number of dies processed for
3524 each compilation unit. This information is presented to the user
3525 if the info_verbose flag is set.
3526
3527 */
3528
3529 static void
3530 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3531 {
3532 char *diep; /* Current pointer into raw DIE data */
3533 char *end; /* Terminate DIE scan here */
3534 unsigned short attr; /* Current attribute being scanned */
3535 unsigned short form; /* Form of the attribute */
3536 int nbytes; /* Size of next field to read */
3537
3538 diecount++;
3539 diep = dip->die;
3540 end = diep + dip->die_length;
3541 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3542 while (diep < end)
3543 {
3544 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3545 diep += SIZEOF_ATTRIBUTE;
3546 nbytes = attribute_size (attr);
3547 if (nbytes == -1)
3548 {
3549 complaint (&symfile_complaints,
3550 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3551 DIE_ID, DIE_NAME);
3552 diep = end;
3553 continue;
3554 }
3555 switch (attr)
3556 {
3557 case AT_fund_type:
3558 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3559 objfile);
3560 break;
3561 case AT_ordering:
3562 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3563 objfile);
3564 break;
3565 case AT_bit_offset:
3566 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3567 objfile);
3568 break;
3569 case AT_sibling:
3570 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3571 objfile);
3572 break;
3573 case AT_stmt_list:
3574 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3575 objfile);
3576 dip->has_at_stmt_list = 1;
3577 break;
3578 case AT_low_pc:
3579 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3580 objfile);
3581 dip->at_low_pc += baseaddr;
3582 dip->has_at_low_pc = 1;
3583 break;
3584 case AT_high_pc:
3585 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3586 objfile);
3587 dip->at_high_pc += baseaddr;
3588 break;
3589 case AT_language:
3590 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3591 objfile);
3592 break;
3593 case AT_user_def_type:
3594 dip->at_user_def_type = target_to_host (diep, nbytes,
3595 GET_UNSIGNED, objfile);
3596 break;
3597 case AT_byte_size:
3598 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3599 objfile);
3600 dip->has_at_byte_size = 1;
3601 break;
3602 case AT_bit_size:
3603 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3604 objfile);
3605 break;
3606 case AT_member:
3607 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3608 objfile);
3609 break;
3610 case AT_discr:
3611 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3612 objfile);
3613 break;
3614 case AT_location:
3615 dip->at_location = diep;
3616 break;
3617 case AT_mod_fund_type:
3618 dip->at_mod_fund_type = diep;
3619 break;
3620 case AT_subscr_data:
3621 dip->at_subscr_data = diep;
3622 break;
3623 case AT_mod_u_d_type:
3624 dip->at_mod_u_d_type = diep;
3625 break;
3626 case AT_element_list:
3627 dip->at_element_list = diep;
3628 dip->short_element_list = 0;
3629 break;
3630 case AT_short_element_list:
3631 dip->at_element_list = diep;
3632 dip->short_element_list = 1;
3633 break;
3634 case AT_discr_value:
3635 dip->at_discr_value = diep;
3636 break;
3637 case AT_string_length:
3638 dip->at_string_length = diep;
3639 break;
3640 case AT_name:
3641 dip->at_name = diep;
3642 break;
3643 case AT_comp_dir:
3644 /* For now, ignore any "hostname:" portion, since gdb doesn't
3645 know how to deal with it. (FIXME). */
3646 dip->at_comp_dir = strrchr (diep, ':');
3647 if (dip->at_comp_dir != NULL)
3648 {
3649 dip->at_comp_dir++;
3650 }
3651 else
3652 {
3653 dip->at_comp_dir = diep;
3654 }
3655 break;
3656 case AT_producer:
3657 dip->at_producer = diep;
3658 break;
3659 case AT_start_scope:
3660 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3661 objfile);
3662 break;
3663 case AT_stride_size:
3664 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3665 objfile);
3666 break;
3667 case AT_src_info:
3668 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3669 objfile);
3670 break;
3671 case AT_prototyped:
3672 dip->at_prototyped = diep;
3673 break;
3674 default:
3675 /* Found an attribute that we are unprepared to handle. However
3676 it is specifically one of the design goals of DWARF that
3677 consumers should ignore unknown attributes. As long as the
3678 form is one that we recognize (so we know how to skip it),
3679 we can just ignore the unknown attribute. */
3680 break;
3681 }
3682 form = FORM_FROM_ATTR (attr);
3683 switch (form)
3684 {
3685 case FORM_DATA2:
3686 diep += 2;
3687 break;
3688 case FORM_DATA4:
3689 case FORM_REF:
3690 diep += 4;
3691 break;
3692 case FORM_DATA8:
3693 diep += 8;
3694 break;
3695 case FORM_ADDR:
3696 diep += TARGET_FT_POINTER_SIZE (objfile);
3697 break;
3698 case FORM_BLOCK2:
3699 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3700 break;
3701 case FORM_BLOCK4:
3702 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3703 break;
3704 case FORM_STRING:
3705 diep += strlen (diep) + 1;
3706 break;
3707 default:
3708 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3709 diep = end;
3710 break;
3711 }
3712 }
3713 }
3714
3715 /*
3716
3717 LOCAL FUNCTION
3718
3719 target_to_host -- swap in target data to host
3720
3721 SYNOPSIS
3722
3723 target_to_host (char *from, int nbytes, int signextend,
3724 struct objfile *objfile)
3725
3726 DESCRIPTION
3727
3728 Given pointer to data in target format in FROM, a byte count for
3729 the size of the data in NBYTES, a flag indicating whether or not
3730 the data is signed in SIGNEXTEND, and a pointer to the current
3731 objfile in OBJFILE, convert the data to host format and return
3732 the converted value.
3733
3734 NOTES
3735
3736 FIXME: If we read data that is known to be signed, and expect to
3737 use it as signed data, then we need to explicitly sign extend the
3738 result until the bfd library is able to do this for us.
3739
3740 FIXME: Would a 32 bit target ever need an 8 byte result?
3741
3742 */
3743
3744 static CORE_ADDR
3745 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3746 struct objfile *objfile)
3747 {
3748 CORE_ADDR rtnval;
3749
3750 switch (nbytes)
3751 {
3752 case 8:
3753 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3754 break;
3755 case 4:
3756 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3757 break;
3758 case 2:
3759 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3760 break;
3761 case 1:
3762 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3763 break;
3764 default:
3765 complaint (&symfile_complaints,
3766 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3767 DIE_ID, DIE_NAME, nbytes);
3768 rtnval = 0;
3769 break;
3770 }
3771 return (rtnval);
3772 }
3773
3774 /*
3775
3776 LOCAL FUNCTION
3777
3778 attribute_size -- compute size of data for a DWARF attribute
3779
3780 SYNOPSIS
3781
3782 static int attribute_size (unsigned int attr)
3783
3784 DESCRIPTION
3785
3786 Given a DWARF attribute in ATTR, compute the size of the first
3787 piece of data associated with this attribute and return that
3788 size.
3789
3790 Returns -1 for unrecognized attributes.
3791
3792 */
3793
3794 static int
3795 attribute_size (unsigned int attr)
3796 {
3797 int nbytes; /* Size of next data for this attribute */
3798 unsigned short form; /* Form of the attribute */
3799
3800 form = FORM_FROM_ATTR (attr);
3801 switch (form)
3802 {
3803 case FORM_STRING: /* A variable length field is next */
3804 nbytes = 0;
3805 break;
3806 case FORM_DATA2: /* Next 2 byte field is the data itself */
3807 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3808 nbytes = 2;
3809 break;
3810 case FORM_DATA4: /* Next 4 byte field is the data itself */
3811 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3812 case FORM_REF: /* Next 4 byte field is a DIE offset */
3813 nbytes = 4;
3814 break;
3815 case FORM_DATA8: /* Next 8 byte field is the data itself */
3816 nbytes = 8;
3817 break;
3818 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3819 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3820 break;
3821 default:
3822 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3823 nbytes = -1;
3824 break;
3825 }
3826 return (nbytes);
3827 }
This page took 0.122109 seconds and 3 git commands to generate.