2004-02-07 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2
3 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25 /*
26 If you are looking for DWARF-2 support, you are in the wrong file.
27 Go look in dwarf2read.c. This file is for the original DWARF,
28 also known as DWARF-1.
29
30 DWARF-1 is slowly headed for obsoletion.
31
32 In gcc HEAD 2003-11-29 16:28:31 UTC, no targets prefer dwarf-1.
33
34 In gcc 3.3.2, these targets prefer dwarf-1:
35
36 i[34567]86-sequent-ptx4*
37 i[34567]86-sequent-sysv4*
38 mips-sni-sysv4
39 sparc-hal-solaris2*
40
41 In gcc 3.2.2, these targets prefer dwarf-1:
42
43 i[34567]86-dg-dgux*
44 i[34567]86-sequent-ptx4*
45 i[34567]86-sequent-sysv4*
46 m88k-dg-dgux*
47 mips-sni-sysv4
48 sparc-hal-solaris2*
49
50 In gcc 2.95.3, these targets prefer dwarf-1:
51
52 i[34567]86-dg-dgux*
53 i[34567]86-ncr-sysv4*
54 i[34567]86-sequent-ptx4*
55 i[34567]86-sequent-sysv4*
56 i[34567]86-*-osf1*
57 i[34567]86-*-sco3.2v5*
58 i[34567]86-*-sysv4*
59 i860-alliant-*
60 i860-*-sysv4*
61 m68k-atari-sysv4*
62 m68k-cbm-sysv4*
63 m68k-*-sysv4*
64 m88k-dg-dgux*
65 m88k-*-sysv4*
66 mips-sni-sysv4
67 mips-*-gnu*
68 sh-*-elf*
69 sh-*-rtemself*
70 sparc-hal-solaris2*
71 sparc-*-sysv4*
72
73 Some non-gcc compilers produce dwarf-1:
74
75 PR gdb/1179 was from a user with Diab C++ 4.3.
76 Other users have also reported using Diab compilers with dwarf-1.
77 On 2003-06-09 the gdb list received a report from a user
78 with Absoft ProFortran f77 which is dwarf-1.
79
80 -- chastain 2003-12-01
81 */
82
83 /*
84
85 FIXME: Do we need to generate dependencies in partial symtabs?
86 (Perhaps we don't need to).
87
88 FIXME: Resolve minor differences between what information we put in the
89 partial symbol table and what dbxread puts in. For example, we don't yet
90 put enum constants there. And dbxread seems to invent a lot of typedefs
91 we never see. Use the new printpsym command to see the partial symbol table
92 contents.
93
94 FIXME: Figure out a better way to tell gdb about the name of the function
95 contain the user's entry point (I.E. main())
96
97 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
98 other things to work on, if you get bored. :-)
99
100 */
101
102 #include "defs.h"
103 #include "symtab.h"
104 #include "gdbtypes.h"
105 #include "symfile.h"
106 #include "objfiles.h"
107 #include "elf/dwarf.h"
108 #include "buildsym.h"
109 #include "demangle.h"
110 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
111 #include "language.h"
112 #include "complaints.h"
113
114 #include <fcntl.h>
115 #include "gdb_string.h"
116
117 /* Some macros to provide DIE info for complaints. */
118
119 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
120 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
121
122 /* Complaints that can be issued during DWARF debug info reading. */
123
124 static void
125 bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
126 {
127 complaint (&symfile_complaints,
128 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit",
129 arg1, arg2, arg3);
130 }
131
132 static void
133 unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
134 {
135 complaint (&symfile_complaints,
136 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", arg1, arg2,
137 arg3);
138 }
139
140 static void
141 dup_user_type_definition_complaint (int arg1, const char *arg2)
142 {
143 complaint (&symfile_complaints,
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition",
145 arg1, arg2);
146 }
147
148 static void
149 bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
150 {
151 complaint (&symfile_complaints,
152 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", arg1,
153 arg2, arg3);
154 }
155
156 typedef unsigned int DIE_REF; /* Reference to a DIE */
157
158 #ifndef GCC_PRODUCER
159 #define GCC_PRODUCER "GNU C "
160 #endif
161
162 #ifndef GPLUS_PRODUCER
163 #define GPLUS_PRODUCER "GNU C++ "
164 #endif
165
166 #ifndef LCC_PRODUCER
167 #define LCC_PRODUCER "NCR C/C++"
168 #endif
169
170 /* Flags to target_to_host() that tell whether or not the data object is
171 expected to be signed. Used, for example, when fetching a signed
172 integer in the target environment which is used as a signed integer
173 in the host environment, and the two environments have different sized
174 ints. In this case, *somebody* has to sign extend the smaller sized
175 int. */
176
177 #define GET_UNSIGNED 0 /* No sign extension required */
178 #define GET_SIGNED 1 /* Sign extension required */
179
180 /* Defines for things which are specified in the document "DWARF Debugging
181 Information Format" published by UNIX International, Programming Languages
182 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
183
184 #define SIZEOF_DIE_LENGTH 4
185 #define SIZEOF_DIE_TAG 2
186 #define SIZEOF_ATTRIBUTE 2
187 #define SIZEOF_FORMAT_SPECIFIER 1
188 #define SIZEOF_FMT_FT 2
189 #define SIZEOF_LINETBL_LENGTH 4
190 #define SIZEOF_LINETBL_LINENO 4
191 #define SIZEOF_LINETBL_STMT 2
192 #define SIZEOF_LINETBL_DELTA 4
193 #define SIZEOF_LOC_ATOM_CODE 1
194
195 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
196
197 /* Macros that return the sizes of various types of data in the target
198 environment.
199
200 FIXME: Currently these are just compile time constants (as they are in
201 other parts of gdb as well). They need to be able to get the right size
202 either from the bfd or possibly from the DWARF info. It would be nice if
203 the DWARF producer inserted DIES that describe the fundamental types in
204 the target environment into the DWARF info, similar to the way dbx stabs
205 producers produce information about their fundamental types. */
206
207 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
208 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
209
210 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
211 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
212 However, the Issue 2 DWARF specification from AT&T defines it as
213 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
214 For backwards compatibility with the AT&T compiler produced executables
215 we define AT_short_element_list for this variant. */
216
217 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
218
219 /* The DWARF debugging information consists of two major pieces,
220 one is a block of DWARF Information Entries (DIE's) and the other
221 is a line number table. The "struct dieinfo" structure contains
222 the information for a single DIE, the one currently being processed.
223
224 In order to make it easier to randomly access the attribute fields
225 of the current DIE, which are specifically unordered within the DIE,
226 each DIE is scanned and an instance of the "struct dieinfo"
227 structure is initialized.
228
229 Initialization is done in two levels. The first, done by basicdieinfo(),
230 just initializes those fields that are vital to deciding whether or not
231 to use this DIE, how to skip past it, etc. The second, done by the
232 function completedieinfo(), fills in the rest of the information.
233
234 Attributes which have block forms are not interpreted at the time
235 the DIE is scanned, instead we just save pointers to the start
236 of their value fields.
237
238 Some fields have a flag <name>_p that is set when the value of the
239 field is valid (I.E. we found a matching attribute in the DIE). Since
240 we may want to test for the presence of some attributes in the DIE,
241 such as AT_low_pc, without restricting the values of the field,
242 we need someway to note that we found such an attribute.
243
244 */
245
246 typedef char BLOCK;
247
248 struct dieinfo
249 {
250 char *die; /* Pointer to the raw DIE data */
251 unsigned long die_length; /* Length of the raw DIE data */
252 DIE_REF die_ref; /* Offset of this DIE */
253 unsigned short die_tag; /* Tag for this DIE */
254 unsigned long at_padding;
255 unsigned long at_sibling;
256 BLOCK *at_location;
257 char *at_name;
258 unsigned short at_fund_type;
259 BLOCK *at_mod_fund_type;
260 unsigned long at_user_def_type;
261 BLOCK *at_mod_u_d_type;
262 unsigned short at_ordering;
263 BLOCK *at_subscr_data;
264 unsigned long at_byte_size;
265 unsigned short at_bit_offset;
266 unsigned long at_bit_size;
267 BLOCK *at_element_list;
268 unsigned long at_stmt_list;
269 CORE_ADDR at_low_pc;
270 CORE_ADDR at_high_pc;
271 unsigned long at_language;
272 unsigned long at_member;
273 unsigned long at_discr;
274 BLOCK *at_discr_value;
275 BLOCK *at_string_length;
276 char *at_comp_dir;
277 char *at_producer;
278 unsigned long at_start_scope;
279 unsigned long at_stride_size;
280 unsigned long at_src_info;
281 char *at_prototyped;
282 unsigned int has_at_low_pc:1;
283 unsigned int has_at_stmt_list:1;
284 unsigned int has_at_byte_size:1;
285 unsigned int short_element_list:1;
286
287 /* Kludge to identify register variables */
288
289 unsigned int isreg;
290
291 /* Kludge to identify optimized out variables */
292
293 unsigned int optimized_out;
294
295 /* Kludge to identify basereg references.
296 Nonzero if we have an offset relative to a basereg. */
297
298 unsigned int offreg;
299
300 /* Kludge to identify which base register is it relative to. */
301
302 unsigned int basereg;
303 };
304
305 static int diecount; /* Approximate count of dies for compilation unit */
306 static struct dieinfo *curdie; /* For warnings and such */
307
308 static char *dbbase; /* Base pointer to dwarf info */
309 static int dbsize; /* Size of dwarf info in bytes */
310 static int dbroff; /* Relative offset from start of .debug section */
311 static char *lnbase; /* Base pointer to line section */
312
313 /* This value is added to each symbol value. FIXME: Generalize to
314 the section_offsets structure used by dbxread (once this is done,
315 pass the appropriate section number to end_symtab). */
316 static CORE_ADDR baseaddr; /* Add to each symbol value */
317
318 /* The section offsets used in the current psymtab or symtab. FIXME,
319 only used to pass one value (baseaddr) at the moment. */
320 static struct section_offsets *base_section_offsets;
321
322 /* We put a pointer to this structure in the read_symtab_private field
323 of the psymtab. */
324
325 struct dwfinfo
326 {
327 /* Always the absolute file offset to the start of the ".debug"
328 section for the file containing the DIE's being accessed. */
329 file_ptr dbfoff;
330 /* Relative offset from the start of the ".debug" section to the
331 first DIE to be accessed. When building the partial symbol
332 table, this value will be zero since we are accessing the
333 entire ".debug" section. When expanding a partial symbol
334 table entry, this value will be the offset to the first
335 DIE for the compilation unit containing the symbol that
336 triggers the expansion. */
337 int dbroff;
338 /* The size of the chunk of DIE's being examined, in bytes. */
339 int dblength;
340 /* The absolute file offset to the line table fragment. Ignored
341 when building partial symbol tables, but used when expanding
342 them, and contains the absolute file offset to the fragment
343 of the ".line" section containing the line numbers for the
344 current compilation unit. */
345 file_ptr lnfoff;
346 };
347
348 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
349 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
350 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
351 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
352
353 /* The generic symbol table building routines have separate lists for
354 file scope symbols and all all other scopes (local scopes). So
355 we need to select the right one to pass to add_symbol_to_list().
356 We do it by keeping a pointer to the correct list in list_in_scope.
357
358 FIXME: The original dwarf code just treated the file scope as the first
359 local scope, and all other local scopes as nested local scopes, and worked
360 fine. Check to see if we really need to distinguish these in buildsym.c */
361
362 struct pending **list_in_scope = &file_symbols;
363
364 /* DIES which have user defined types or modified user defined types refer to
365 other DIES for the type information. Thus we need to associate the offset
366 of a DIE for a user defined type with a pointer to the type information.
367
368 Originally this was done using a simple but expensive algorithm, with an
369 array of unsorted structures, each containing an offset/type-pointer pair.
370 This array was scanned linearly each time a lookup was done. The result
371 was that gdb was spending over half it's startup time munging through this
372 array of pointers looking for a structure that had the right offset member.
373
374 The second attempt used the same array of structures, but the array was
375 sorted using qsort each time a new offset/type was recorded, and a binary
376 search was used to find the type pointer for a given DIE offset. This was
377 even slower, due to the overhead of sorting the array each time a new
378 offset/type pair was entered.
379
380 The third attempt uses a fixed size array of type pointers, indexed by a
381 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
382 we can divide any DIE offset by 4 to obtain a unique index into this fixed
383 size array. Since each element is a 4 byte pointer, it takes exactly as
384 much memory to hold this array as to hold the DWARF info for a given
385 compilation unit. But it gets freed as soon as we are done with it.
386 This has worked well in practice, as a reasonable tradeoff between memory
387 consumption and speed, without having to resort to much more complicated
388 algorithms. */
389
390 static struct type **utypes; /* Pointer to array of user type pointers */
391 static int numutypes; /* Max number of user type pointers */
392
393 /* Maintain an array of referenced fundamental types for the current
394 compilation unit being read. For DWARF version 1, we have to construct
395 the fundamental types on the fly, since no information about the
396 fundamental types is supplied. Each such fundamental type is created by
397 calling a language dependent routine to create the type, and then a
398 pointer to that type is then placed in the array at the index specified
399 by it's FT_<TYPENAME> value. The array has a fixed size set by the
400 FT_NUM_MEMBERS compile time constant, which is the number of predefined
401 fundamental types gdb knows how to construct. */
402
403 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
404
405 /* Record the language for the compilation unit which is currently being
406 processed. We know it once we have seen the TAG_compile_unit DIE,
407 and we need it while processing the DIE's for that compilation unit.
408 It is eventually saved in the symtab structure, but we don't finalize
409 the symtab struct until we have processed all the DIE's for the
410 compilation unit. We also need to get and save a pointer to the
411 language struct for this language, so we can call the language
412 dependent routines for doing things such as creating fundamental
413 types. */
414
415 static enum language cu_language;
416 static const struct language_defn *cu_language_defn;
417
418 /* Forward declarations of static functions so we don't have to worry
419 about ordering within this file. */
420
421 static void free_utypes (void *);
422
423 static int attribute_size (unsigned int);
424
425 static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
426
427 static void add_enum_psymbol (struct dieinfo *, struct objfile *);
428
429 static void handle_producer (char *);
430
431 static void read_file_scope (struct dieinfo *, char *, char *,
432 struct objfile *);
433
434 static void read_func_scope (struct dieinfo *, char *, char *,
435 struct objfile *);
436
437 static void read_lexical_block_scope (struct dieinfo *, char *, char *,
438 struct objfile *);
439
440 static void scan_partial_symbols (char *, char *, struct objfile *);
441
442 static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
443 struct objfile *);
444
445 static void add_partial_symbol (struct dieinfo *, struct objfile *);
446
447 static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
448
449 static void completedieinfo (struct dieinfo *, struct objfile *);
450
451 static void dwarf_psymtab_to_symtab (struct partial_symtab *);
452
453 static void psymtab_to_symtab_1 (struct partial_symtab *);
454
455 static void read_ofile_symtab (struct partial_symtab *);
456
457 static void process_dies (char *, char *, struct objfile *);
458
459 static void read_structure_scope (struct dieinfo *, char *, char *,
460 struct objfile *);
461
462 static struct type *decode_array_element_type (char *);
463
464 static struct type *decode_subscript_data_item (char *, char *);
465
466 static void dwarf_read_array_type (struct dieinfo *);
467
468 static void read_tag_pointer_type (struct dieinfo *dip);
469
470 static void read_tag_string_type (struct dieinfo *dip);
471
472 static void read_subroutine_type (struct dieinfo *, char *, char *);
473
474 static void read_enumeration (struct dieinfo *, char *, char *,
475 struct objfile *);
476
477 static struct type *struct_type (struct dieinfo *, char *, char *,
478 struct objfile *);
479
480 static struct type *enum_type (struct dieinfo *, struct objfile *);
481
482 static void decode_line_numbers (char *);
483
484 static struct type *decode_die_type (struct dieinfo *);
485
486 static struct type *decode_mod_fund_type (char *);
487
488 static struct type *decode_mod_u_d_type (char *);
489
490 static struct type *decode_modified_type (char *, unsigned int, int);
491
492 static struct type *decode_fund_type (unsigned int);
493
494 static char *create_name (char *, struct obstack *);
495
496 static struct type *lookup_utype (DIE_REF);
497
498 static struct type *alloc_utype (DIE_REF, struct type *);
499
500 static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
501
502 static void synthesize_typedef (struct dieinfo *, struct objfile *,
503 struct type *);
504
505 static int locval (struct dieinfo *);
506
507 static void set_cu_language (struct dieinfo *);
508
509 static struct type *dwarf_fundamental_type (struct objfile *, int);
510
511
512 /*
513
514 LOCAL FUNCTION
515
516 dwarf_fundamental_type -- lookup or create a fundamental type
517
518 SYNOPSIS
519
520 struct type *
521 dwarf_fundamental_type (struct objfile *objfile, int typeid)
522
523 DESCRIPTION
524
525 DWARF version 1 doesn't supply any fundamental type information,
526 so gdb has to construct such types. It has a fixed number of
527 fundamental types that it knows how to construct, which is the
528 union of all types that it knows how to construct for all languages
529 that it knows about. These are enumerated in gdbtypes.h.
530
531 As an example, assume we find a DIE that references a DWARF
532 fundamental type of FT_integer. We first look in the ftypes
533 array to see if we already have such a type, indexed by the
534 gdb internal value of FT_INTEGER. If so, we simply return a
535 pointer to that type. If not, then we ask an appropriate
536 language dependent routine to create a type FT_INTEGER, using
537 defaults reasonable for the current target machine, and install
538 that type in ftypes for future reference.
539
540 RETURNS
541
542 Pointer to a fundamental type.
543
544 */
545
546 static struct type *
547 dwarf_fundamental_type (struct objfile *objfile, int typeid)
548 {
549 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
550 {
551 error ("internal error - invalid fundamental type id %d", typeid);
552 }
553
554 /* Look for this particular type in the fundamental type vector. If one is
555 not found, create and install one appropriate for the current language
556 and the current target machine. */
557
558 if (ftypes[typeid] == NULL)
559 {
560 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
561 }
562
563 return (ftypes[typeid]);
564 }
565
566 /*
567
568 LOCAL FUNCTION
569
570 set_cu_language -- set local copy of language for compilation unit
571
572 SYNOPSIS
573
574 void
575 set_cu_language (struct dieinfo *dip)
576
577 DESCRIPTION
578
579 Decode the language attribute for a compilation unit DIE and
580 remember what the language was. We use this at various times
581 when processing DIE's for a given compilation unit.
582
583 RETURNS
584
585 No return value.
586
587 */
588
589 static void
590 set_cu_language (struct dieinfo *dip)
591 {
592 switch (dip->at_language)
593 {
594 case LANG_C89:
595 case LANG_C:
596 cu_language = language_c;
597 break;
598 case LANG_C_PLUS_PLUS:
599 cu_language = language_cplus;
600 break;
601 case LANG_MODULA2:
602 cu_language = language_m2;
603 break;
604 case LANG_FORTRAN77:
605 case LANG_FORTRAN90:
606 cu_language = language_fortran;
607 break;
608 case LANG_ADA83:
609 case LANG_COBOL74:
610 case LANG_COBOL85:
611 case LANG_PASCAL83:
612 /* We don't know anything special about these yet. */
613 cu_language = language_unknown;
614 break;
615 default:
616 /* If no at_language, try to deduce one from the filename */
617 cu_language = deduce_language_from_filename (dip->at_name);
618 break;
619 }
620 cu_language_defn = language_def (cu_language);
621 }
622
623 /*
624
625 GLOBAL FUNCTION
626
627 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
628
629 SYNOPSIS
630
631 void dwarf_build_psymtabs (struct objfile *objfile,
632 int mainline, file_ptr dbfoff, unsigned int dbfsize,
633 file_ptr lnoffset, unsigned int lnsize)
634
635 DESCRIPTION
636
637 This function is called upon to build partial symtabs from files
638 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
639
640 It is passed a bfd* containing the DIES
641 and line number information, the corresponding filename for that
642 file, a base address for relocating the symbols, a flag indicating
643 whether or not this debugging information is from a "main symbol
644 table" rather than a shared library or dynamically linked file,
645 and file offset/size pairs for the DIE information and line number
646 information.
647
648 RETURNS
649
650 No return value.
651
652 */
653
654 void
655 dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
656 unsigned int dbfsize, file_ptr lnoffset,
657 unsigned int lnsize)
658 {
659 bfd *abfd = objfile->obfd;
660 struct cleanup *back_to;
661
662 current_objfile = objfile;
663 dbsize = dbfsize;
664 dbbase = xmalloc (dbsize);
665 dbroff = 0;
666 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
667 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
668 {
669 xfree (dbbase);
670 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
671 }
672 back_to = make_cleanup (xfree, dbbase);
673
674 /* If we are reinitializing, or if we have never loaded syms yet, init.
675 Since we have no idea how many DIES we are looking at, we just guess
676 some arbitrary value. */
677
678 if (mainline
679 || (objfile->global_psymbols.size == 0
680 && objfile->static_psymbols.size == 0))
681 {
682 init_psymbol_list (objfile, 1024);
683 }
684
685 /* Save the relocation factor where everybody can see it. */
686
687 base_section_offsets = objfile->section_offsets;
688 baseaddr = ANOFFSET (objfile->section_offsets, 0);
689
690 /* Follow the compilation unit sibling chain, building a partial symbol
691 table entry for each one. Save enough information about each compilation
692 unit to locate the full DWARF information later. */
693
694 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
695
696 do_cleanups (back_to);
697 current_objfile = NULL;
698 }
699
700 /*
701
702 LOCAL FUNCTION
703
704 read_lexical_block_scope -- process all dies in a lexical block
705
706 SYNOPSIS
707
708 static void read_lexical_block_scope (struct dieinfo *dip,
709 char *thisdie, char *enddie)
710
711 DESCRIPTION
712
713 Process all the DIES contained within a lexical block scope.
714 Start a new scope, process the dies, and then close the scope.
715
716 */
717
718 static void
719 read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
720 struct objfile *objfile)
721 {
722 struct context_stack *new;
723
724 push_context (0, dip->at_low_pc);
725 process_dies (thisdie + dip->die_length, enddie, objfile);
726 new = pop_context ();
727 if (local_symbols != NULL)
728 {
729 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
730 dip->at_high_pc, objfile);
731 }
732 local_symbols = new->locals;
733 }
734
735 /*
736
737 LOCAL FUNCTION
738
739 lookup_utype -- look up a user defined type from die reference
740
741 SYNOPSIS
742
743 static type *lookup_utype (DIE_REF die_ref)
744
745 DESCRIPTION
746
747 Given a DIE reference, lookup the user defined type associated with
748 that DIE, if it has been registered already. If not registered, then
749 return NULL. Alloc_utype() can be called to register an empty
750 type for this reference, which will be filled in later when the
751 actual referenced DIE is processed.
752 */
753
754 static struct type *
755 lookup_utype (DIE_REF die_ref)
756 {
757 struct type *type = NULL;
758 int utypeidx;
759
760 utypeidx = (die_ref - dbroff) / 4;
761 if ((utypeidx < 0) || (utypeidx >= numutypes))
762 {
763 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
764 }
765 else
766 {
767 type = *(utypes + utypeidx);
768 }
769 return (type);
770 }
771
772
773 /*
774
775 LOCAL FUNCTION
776
777 alloc_utype -- add a user defined type for die reference
778
779 SYNOPSIS
780
781 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
782
783 DESCRIPTION
784
785 Given a die reference DIE_REF, and a possible pointer to a user
786 defined type UTYPEP, register that this reference has a user
787 defined type and either use the specified type in UTYPEP or
788 make a new empty type that will be filled in later.
789
790 We should only be called after calling lookup_utype() to verify that
791 there is not currently a type registered for DIE_REF.
792 */
793
794 static struct type *
795 alloc_utype (DIE_REF die_ref, struct type *utypep)
796 {
797 struct type **typep;
798 int utypeidx;
799
800 utypeidx = (die_ref - dbroff) / 4;
801 typep = utypes + utypeidx;
802 if ((utypeidx < 0) || (utypeidx >= numutypes))
803 {
804 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
805 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
806 }
807 else if (*typep != NULL)
808 {
809 utypep = *typep;
810 complaint (&symfile_complaints,
811 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation",
812 DIE_ID, DIE_NAME);
813 }
814 else
815 {
816 if (utypep == NULL)
817 {
818 utypep = alloc_type (current_objfile);
819 }
820 *typep = utypep;
821 }
822 return (utypep);
823 }
824
825 /*
826
827 LOCAL FUNCTION
828
829 free_utypes -- free the utypes array and reset pointer & count
830
831 SYNOPSIS
832
833 static void free_utypes (void *dummy)
834
835 DESCRIPTION
836
837 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
838 and set numutypes back to zero. This ensures that the utypes does not get
839 referenced after being freed.
840 */
841
842 static void
843 free_utypes (void *dummy)
844 {
845 xfree (utypes);
846 utypes = NULL;
847 numutypes = 0;
848 }
849
850
851 /*
852
853 LOCAL FUNCTION
854
855 decode_die_type -- return a type for a specified die
856
857 SYNOPSIS
858
859 static struct type *decode_die_type (struct dieinfo *dip)
860
861 DESCRIPTION
862
863 Given a pointer to a die information structure DIP, decode the
864 type of the die and return a pointer to the decoded type. All
865 dies without specific types default to type int.
866 */
867
868 static struct type *
869 decode_die_type (struct dieinfo *dip)
870 {
871 struct type *type = NULL;
872
873 if (dip->at_fund_type != 0)
874 {
875 type = decode_fund_type (dip->at_fund_type);
876 }
877 else if (dip->at_mod_fund_type != NULL)
878 {
879 type = decode_mod_fund_type (dip->at_mod_fund_type);
880 }
881 else if (dip->at_user_def_type)
882 {
883 type = lookup_utype (dip->at_user_def_type);
884 if (type == NULL)
885 {
886 type = alloc_utype (dip->at_user_def_type, NULL);
887 }
888 }
889 else if (dip->at_mod_u_d_type)
890 {
891 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
892 }
893 else
894 {
895 type = dwarf_fundamental_type (current_objfile, FT_VOID);
896 }
897 return (type);
898 }
899
900 /*
901
902 LOCAL FUNCTION
903
904 struct_type -- compute and return the type for a struct or union
905
906 SYNOPSIS
907
908 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
909 char *enddie, struct objfile *objfile)
910
911 DESCRIPTION
912
913 Given pointer to a die information structure for a die which
914 defines a union or structure (and MUST define one or the other),
915 and pointers to the raw die data that define the range of dies which
916 define the members, compute and return the user defined type for the
917 structure or union.
918 */
919
920 static struct type *
921 struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
922 struct objfile *objfile)
923 {
924 struct type *type;
925 struct nextfield
926 {
927 struct nextfield *next;
928 struct field field;
929 };
930 struct nextfield *list = NULL;
931 struct nextfield *new;
932 int nfields = 0;
933 int n;
934 struct dieinfo mbr;
935 char *nextdie;
936 int anonymous_size;
937
938 type = lookup_utype (dip->die_ref);
939 if (type == NULL)
940 {
941 /* No forward references created an empty type, so install one now */
942 type = alloc_utype (dip->die_ref, NULL);
943 }
944 INIT_CPLUS_SPECIFIC (type);
945 switch (dip->die_tag)
946 {
947 case TAG_class_type:
948 TYPE_CODE (type) = TYPE_CODE_CLASS;
949 break;
950 case TAG_structure_type:
951 TYPE_CODE (type) = TYPE_CODE_STRUCT;
952 break;
953 case TAG_union_type:
954 TYPE_CODE (type) = TYPE_CODE_UNION;
955 break;
956 default:
957 /* Should never happen */
958 TYPE_CODE (type) = TYPE_CODE_UNDEF;
959 complaint (&symfile_complaints,
960 "DIE @ 0x%x \"%s\", missing class, structure, or union tag",
961 DIE_ID, DIE_NAME);
962 break;
963 }
964 /* Some compilers try to be helpful by inventing "fake" names for
965 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
966 Thanks, but no thanks... */
967 if (dip->at_name != NULL
968 && *dip->at_name != '~'
969 && *dip->at_name != '.')
970 {
971 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
972 "", "", dip->at_name);
973 }
974 /* Use whatever size is known. Zero is a valid size. We might however
975 wish to check has_at_byte_size to make sure that some byte size was
976 given explicitly, but DWARF doesn't specify that explicit sizes of
977 zero have to present, so complaining about missing sizes should
978 probably not be the default. */
979 TYPE_LENGTH (type) = dip->at_byte_size;
980 thisdie += dip->die_length;
981 while (thisdie < enddie)
982 {
983 basicdieinfo (&mbr, thisdie, objfile);
984 completedieinfo (&mbr, objfile);
985 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
986 {
987 break;
988 }
989 else if (mbr.at_sibling != 0)
990 {
991 nextdie = dbbase + mbr.at_sibling - dbroff;
992 }
993 else
994 {
995 nextdie = thisdie + mbr.die_length;
996 }
997 switch (mbr.die_tag)
998 {
999 case TAG_member:
1000 /* Static fields can be either TAG_global_variable (GCC) or else
1001 TAG_member with no location (Diab). We could treat the latter like
1002 the former... but since we don't support the former, just avoid
1003 crashing on the latter for now. */
1004 if (mbr.at_location == NULL)
1005 break;
1006
1007 /* Get space to record the next field's data. */
1008 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1009 new->next = list;
1010 list = new;
1011 /* Save the data. */
1012 list->field.name =
1013 obsavestring (mbr.at_name, strlen (mbr.at_name),
1014 &objfile->objfile_obstack);
1015 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1016 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1017 FIELD_STATIC_KIND (list->field) = 0;
1018 /* Handle bit fields. */
1019 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1020 if (BITS_BIG_ENDIAN)
1021 {
1022 /* For big endian bits, the at_bit_offset gives the
1023 additional bit offset from the MSB of the containing
1024 anonymous object to the MSB of the field. We don't
1025 have to do anything special since we don't need to
1026 know the size of the anonymous object. */
1027 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1028 }
1029 else
1030 {
1031 /* For little endian bits, we need to have a non-zero
1032 at_bit_size, so that we know we are in fact dealing
1033 with a bitfield. Compute the bit offset to the MSB
1034 of the anonymous object, subtract off the number of
1035 bits from the MSB of the field to the MSB of the
1036 object, and then subtract off the number of bits of
1037 the field itself. The result is the bit offset of
1038 the LSB of the field. */
1039 if (mbr.at_bit_size > 0)
1040 {
1041 if (mbr.has_at_byte_size)
1042 {
1043 /* The size of the anonymous object containing
1044 the bit field is explicit, so use the
1045 indicated size (in bytes). */
1046 anonymous_size = mbr.at_byte_size;
1047 }
1048 else
1049 {
1050 /* The size of the anonymous object containing
1051 the bit field matches the size of an object
1052 of the bit field's type. DWARF allows
1053 at_byte_size to be left out in such cases, as
1054 a debug information size optimization. */
1055 anonymous_size = TYPE_LENGTH (list->field.type);
1056 }
1057 FIELD_BITPOS (list->field) +=
1058 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1059 }
1060 }
1061 nfields++;
1062 break;
1063 default:
1064 process_dies (thisdie, nextdie, objfile);
1065 break;
1066 }
1067 thisdie = nextdie;
1068 }
1069 /* Now create the vector of fields, and record how big it is. We may
1070 not even have any fields, if this DIE was generated due to a reference
1071 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1072 set, which clues gdb in to the fact that it needs to search elsewhere
1073 for the full structure definition. */
1074 if (nfields == 0)
1075 {
1076 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1077 }
1078 else
1079 {
1080 TYPE_NFIELDS (type) = nfields;
1081 TYPE_FIELDS (type) = (struct field *)
1082 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1083 /* Copy the saved-up fields into the field vector. */
1084 for (n = nfields; list; list = list->next)
1085 {
1086 TYPE_FIELD (type, --n) = list->field;
1087 }
1088 }
1089 return (type);
1090 }
1091
1092 /*
1093
1094 LOCAL FUNCTION
1095
1096 read_structure_scope -- process all dies within struct or union
1097
1098 SYNOPSIS
1099
1100 static void read_structure_scope (struct dieinfo *dip,
1101 char *thisdie, char *enddie, struct objfile *objfile)
1102
1103 DESCRIPTION
1104
1105 Called when we find the DIE that starts a structure or union
1106 scope (definition) to process all dies that define the members
1107 of the structure or union. DIP is a pointer to the die info
1108 struct for the DIE that names the structure or union.
1109
1110 NOTES
1111
1112 Note that we need to call struct_type regardless of whether or not
1113 the DIE has an at_name attribute, since it might be an anonymous
1114 structure or union. This gets the type entered into our set of
1115 user defined types.
1116
1117 However, if the structure is incomplete (an opaque struct/union)
1118 then suppress creating a symbol table entry for it since gdb only
1119 wants to find the one with the complete definition. Note that if
1120 it is complete, we just call new_symbol, which does it's own
1121 checking about whether the struct/union is anonymous or not (and
1122 suppresses creating a symbol table entry itself).
1123
1124 */
1125
1126 static void
1127 read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1128 struct objfile *objfile)
1129 {
1130 struct type *type;
1131 struct symbol *sym;
1132
1133 type = struct_type (dip, thisdie, enddie, objfile);
1134 if (!TYPE_STUB (type))
1135 {
1136 sym = new_symbol (dip, objfile);
1137 if (sym != NULL)
1138 {
1139 SYMBOL_TYPE (sym) = type;
1140 if (cu_language == language_cplus)
1141 {
1142 synthesize_typedef (dip, objfile, type);
1143 }
1144 }
1145 }
1146 }
1147
1148 /*
1149
1150 LOCAL FUNCTION
1151
1152 decode_array_element_type -- decode type of the array elements
1153
1154 SYNOPSIS
1155
1156 static struct type *decode_array_element_type (char *scan, char *end)
1157
1158 DESCRIPTION
1159
1160 As the last step in decoding the array subscript information for an
1161 array DIE, we need to decode the type of the array elements. We are
1162 passed a pointer to this last part of the subscript information and
1163 must return the appropriate type. If the type attribute is not
1164 recognized, just warn about the problem and return type int.
1165 */
1166
1167 static struct type *
1168 decode_array_element_type (char *scan)
1169 {
1170 struct type *typep;
1171 DIE_REF die_ref;
1172 unsigned short attribute;
1173 unsigned short fundtype;
1174 int nbytes;
1175
1176 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1177 current_objfile);
1178 scan += SIZEOF_ATTRIBUTE;
1179 nbytes = attribute_size (attribute);
1180 if (nbytes == -1)
1181 {
1182 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1183 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1184 }
1185 else
1186 {
1187 switch (attribute)
1188 {
1189 case AT_fund_type:
1190 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1191 current_objfile);
1192 typep = decode_fund_type (fundtype);
1193 break;
1194 case AT_mod_fund_type:
1195 typep = decode_mod_fund_type (scan);
1196 break;
1197 case AT_user_def_type:
1198 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1199 current_objfile);
1200 typep = lookup_utype (die_ref);
1201 if (typep == NULL)
1202 {
1203 typep = alloc_utype (die_ref, NULL);
1204 }
1205 break;
1206 case AT_mod_u_d_type:
1207 typep = decode_mod_u_d_type (scan);
1208 break;
1209 default:
1210 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
1211 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1212 break;
1213 }
1214 }
1215 return (typep);
1216 }
1217
1218 /*
1219
1220 LOCAL FUNCTION
1221
1222 decode_subscript_data_item -- decode array subscript item
1223
1224 SYNOPSIS
1225
1226 static struct type *
1227 decode_subscript_data_item (char *scan, char *end)
1228
1229 DESCRIPTION
1230
1231 The array subscripts and the data type of the elements of an
1232 array are described by a list of data items, stored as a block
1233 of contiguous bytes. There is a data item describing each array
1234 dimension, and a final data item describing the element type.
1235 The data items are ordered the same as their appearance in the
1236 source (I.E. leftmost dimension first, next to leftmost second,
1237 etc).
1238
1239 The data items describing each array dimension consist of four
1240 parts: (1) a format specifier, (2) type type of the subscript
1241 index, (3) a description of the low bound of the array dimension,
1242 and (4) a description of the high bound of the array dimension.
1243
1244 The last data item is the description of the type of each of
1245 the array elements.
1246
1247 We are passed a pointer to the start of the block of bytes
1248 containing the remaining data items, and a pointer to the first
1249 byte past the data. This function recursively decodes the
1250 remaining data items and returns a type.
1251
1252 If we somehow fail to decode some data, we complain about it
1253 and return a type "array of int".
1254
1255 BUGS
1256 FIXME: This code only implements the forms currently used
1257 by the AT&T and GNU C compilers.
1258
1259 The end pointer is supplied for error checking, maybe we should
1260 use it for that...
1261 */
1262
1263 static struct type *
1264 decode_subscript_data_item (char *scan, char *end)
1265 {
1266 struct type *typep = NULL; /* Array type we are building */
1267 struct type *nexttype; /* Type of each element (may be array) */
1268 struct type *indextype; /* Type of this index */
1269 struct type *rangetype;
1270 unsigned int format;
1271 unsigned short fundtype;
1272 unsigned long lowbound;
1273 unsigned long highbound;
1274 int nbytes;
1275
1276 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1277 current_objfile);
1278 scan += SIZEOF_FORMAT_SPECIFIER;
1279 switch (format)
1280 {
1281 case FMT_ET:
1282 typep = decode_array_element_type (scan);
1283 break;
1284 case FMT_FT_C_C:
1285 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1286 current_objfile);
1287 indextype = decode_fund_type (fundtype);
1288 scan += SIZEOF_FMT_FT;
1289 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1290 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1291 scan += nbytes;
1292 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1293 scan += nbytes;
1294 nexttype = decode_subscript_data_item (scan, end);
1295 if (nexttype == NULL)
1296 {
1297 /* Munged subscript data or other problem, fake it. */
1298 complaint (&symfile_complaints,
1299 "DIE @ 0x%x \"%s\", can't decode subscript data items",
1300 DIE_ID, DIE_NAME);
1301 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1302 }
1303 rangetype = create_range_type ((struct type *) NULL, indextype,
1304 lowbound, highbound);
1305 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1306 break;
1307 case FMT_FT_C_X:
1308 case FMT_FT_X_C:
1309 case FMT_FT_X_X:
1310 case FMT_UT_C_C:
1311 case FMT_UT_C_X:
1312 case FMT_UT_X_C:
1313 case FMT_UT_X_X:
1314 complaint (&symfile_complaints,
1315 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet",
1316 DIE_ID, DIE_NAME, format);
1317 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1318 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1319 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1320 break;
1321 default:
1322 complaint (&symfile_complaints,
1323 "DIE @ 0x%x \"%s\", unknown array subscript format %x", DIE_ID,
1324 DIE_NAME, format);
1325 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1326 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1327 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1328 break;
1329 }
1330 return (typep);
1331 }
1332
1333 /*
1334
1335 LOCAL FUNCTION
1336
1337 dwarf_read_array_type -- read TAG_array_type DIE
1338
1339 SYNOPSIS
1340
1341 static void dwarf_read_array_type (struct dieinfo *dip)
1342
1343 DESCRIPTION
1344
1345 Extract all information from a TAG_array_type DIE and add to
1346 the user defined type vector.
1347 */
1348
1349 static void
1350 dwarf_read_array_type (struct dieinfo *dip)
1351 {
1352 struct type *type;
1353 struct type *utype;
1354 char *sub;
1355 char *subend;
1356 unsigned short blocksz;
1357 int nbytes;
1358
1359 if (dip->at_ordering != ORD_row_major)
1360 {
1361 /* FIXME: Can gdb even handle column major arrays? */
1362 complaint (&symfile_complaints,
1363 "DIE @ 0x%x \"%s\", array not row major; not handled correctly",
1364 DIE_ID, DIE_NAME);
1365 }
1366 sub = dip->at_subscr_data;
1367 if (sub != NULL)
1368 {
1369 nbytes = attribute_size (AT_subscr_data);
1370 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1371 subend = sub + nbytes + blocksz;
1372 sub += nbytes;
1373 type = decode_subscript_data_item (sub, subend);
1374 utype = lookup_utype (dip->die_ref);
1375 if (utype == NULL)
1376 {
1377 /* Install user defined type that has not been referenced yet. */
1378 alloc_utype (dip->die_ref, type);
1379 }
1380 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1381 {
1382 /* Ick! A forward ref has already generated a blank type in our
1383 slot, and this type probably already has things pointing to it
1384 (which is what caused it to be created in the first place).
1385 If it's just a place holder we can plop our fully defined type
1386 on top of it. We can't recover the space allocated for our
1387 new type since it might be on an obstack, but we could reuse
1388 it if we kept a list of them, but it might not be worth it
1389 (FIXME). */
1390 *utype = *type;
1391 }
1392 else
1393 {
1394 /* Double ick! Not only is a type already in our slot, but
1395 someone has decorated it. Complain and leave it alone. */
1396 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1397 }
1398 }
1399 }
1400
1401 /*
1402
1403 LOCAL FUNCTION
1404
1405 read_tag_pointer_type -- read TAG_pointer_type DIE
1406
1407 SYNOPSIS
1408
1409 static void read_tag_pointer_type (struct dieinfo *dip)
1410
1411 DESCRIPTION
1412
1413 Extract all information from a TAG_pointer_type DIE and add to
1414 the user defined type vector.
1415 */
1416
1417 static void
1418 read_tag_pointer_type (struct dieinfo *dip)
1419 {
1420 struct type *type;
1421 struct type *utype;
1422
1423 type = decode_die_type (dip);
1424 utype = lookup_utype (dip->die_ref);
1425 if (utype == NULL)
1426 {
1427 utype = lookup_pointer_type (type);
1428 alloc_utype (dip->die_ref, utype);
1429 }
1430 else
1431 {
1432 TYPE_TARGET_TYPE (utype) = type;
1433 TYPE_POINTER_TYPE (type) = utype;
1434
1435 /* We assume the machine has only one representation for pointers! */
1436 /* FIXME: Possably a poor assumption */
1437 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1438 TYPE_CODE (utype) = TYPE_CODE_PTR;
1439 }
1440 }
1441
1442 /*
1443
1444 LOCAL FUNCTION
1445
1446 read_tag_string_type -- read TAG_string_type DIE
1447
1448 SYNOPSIS
1449
1450 static void read_tag_string_type (struct dieinfo *dip)
1451
1452 DESCRIPTION
1453
1454 Extract all information from a TAG_string_type DIE and add to
1455 the user defined type vector. It isn't really a user defined
1456 type, but it behaves like one, with other DIE's using an
1457 AT_user_def_type attribute to reference it.
1458 */
1459
1460 static void
1461 read_tag_string_type (struct dieinfo *dip)
1462 {
1463 struct type *utype;
1464 struct type *indextype;
1465 struct type *rangetype;
1466 unsigned long lowbound = 0;
1467 unsigned long highbound;
1468
1469 if (dip->has_at_byte_size)
1470 {
1471 /* A fixed bounds string */
1472 highbound = dip->at_byte_size - 1;
1473 }
1474 else
1475 {
1476 /* A varying length string. Stub for now. (FIXME) */
1477 highbound = 1;
1478 }
1479 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1480 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1481 highbound);
1482
1483 utype = lookup_utype (dip->die_ref);
1484 if (utype == NULL)
1485 {
1486 /* No type defined, go ahead and create a blank one to use. */
1487 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1488 }
1489 else
1490 {
1491 /* Already a type in our slot due to a forward reference. Make sure it
1492 is a blank one. If not, complain and leave it alone. */
1493 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1494 {
1495 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1496 return;
1497 }
1498 }
1499
1500 /* Create the string type using the blank type we either found or created. */
1501 utype = create_string_type (utype, rangetype);
1502 }
1503
1504 /*
1505
1506 LOCAL FUNCTION
1507
1508 read_subroutine_type -- process TAG_subroutine_type dies
1509
1510 SYNOPSIS
1511
1512 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1513 char *enddie)
1514
1515 DESCRIPTION
1516
1517 Handle DIES due to C code like:
1518
1519 struct foo {
1520 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1521 int b;
1522 };
1523
1524 NOTES
1525
1526 The parameter DIES are currently ignored. See if gdb has a way to
1527 include this info in it's type system, and decode them if so. Is
1528 this what the type structure's "arg_types" field is for? (FIXME)
1529 */
1530
1531 static void
1532 read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
1533 {
1534 struct type *type; /* Type that this function returns */
1535 struct type *ftype; /* Function that returns above type */
1536
1537 /* Decode the type that this subroutine returns */
1538
1539 type = decode_die_type (dip);
1540
1541 /* Check to see if we already have a partially constructed user
1542 defined type for this DIE, from a forward reference. */
1543
1544 ftype = lookup_utype (dip->die_ref);
1545 if (ftype == NULL)
1546 {
1547 /* This is the first reference to one of these types. Make
1548 a new one and place it in the user defined types. */
1549 ftype = lookup_function_type (type);
1550 alloc_utype (dip->die_ref, ftype);
1551 }
1552 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1553 {
1554 /* We have an existing partially constructed type, so bash it
1555 into the correct type. */
1556 TYPE_TARGET_TYPE (ftype) = type;
1557 TYPE_LENGTH (ftype) = 1;
1558 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1559 }
1560 else
1561 {
1562 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
1563 }
1564 }
1565
1566 /*
1567
1568 LOCAL FUNCTION
1569
1570 read_enumeration -- process dies which define an enumeration
1571
1572 SYNOPSIS
1573
1574 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1575 char *enddie, struct objfile *objfile)
1576
1577 DESCRIPTION
1578
1579 Given a pointer to a die which begins an enumeration, process all
1580 the dies that define the members of the enumeration.
1581
1582 NOTES
1583
1584 Note that we need to call enum_type regardless of whether or not we
1585 have a symbol, since we might have an enum without a tag name (thus
1586 no symbol for the tagname).
1587 */
1588
1589 static void
1590 read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1591 struct objfile *objfile)
1592 {
1593 struct type *type;
1594 struct symbol *sym;
1595
1596 type = enum_type (dip, objfile);
1597 sym = new_symbol (dip, objfile);
1598 if (sym != NULL)
1599 {
1600 SYMBOL_TYPE (sym) = type;
1601 if (cu_language == language_cplus)
1602 {
1603 synthesize_typedef (dip, objfile, type);
1604 }
1605 }
1606 }
1607
1608 /*
1609
1610 LOCAL FUNCTION
1611
1612 enum_type -- decode and return a type for an enumeration
1613
1614 SYNOPSIS
1615
1616 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1617
1618 DESCRIPTION
1619
1620 Given a pointer to a die information structure for the die which
1621 starts an enumeration, process all the dies that define the members
1622 of the enumeration and return a type pointer for the enumeration.
1623
1624 At the same time, for each member of the enumeration, create a
1625 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
1626 and give it the type of the enumeration itself.
1627
1628 NOTES
1629
1630 Note that the DWARF specification explicitly mandates that enum
1631 constants occur in reverse order from the source program order,
1632 for "consistency" and because this ordering is easier for many
1633 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1634 Entries). Because gdb wants to see the enum members in program
1635 source order, we have to ensure that the order gets reversed while
1636 we are processing them.
1637 */
1638
1639 static struct type *
1640 enum_type (struct dieinfo *dip, struct objfile *objfile)
1641 {
1642 struct type *type;
1643 struct nextfield
1644 {
1645 struct nextfield *next;
1646 struct field field;
1647 };
1648 struct nextfield *list = NULL;
1649 struct nextfield *new;
1650 int nfields = 0;
1651 int n;
1652 char *scan;
1653 char *listend;
1654 unsigned short blocksz;
1655 struct symbol *sym;
1656 int nbytes;
1657 int unsigned_enum = 1;
1658
1659 type = lookup_utype (dip->die_ref);
1660 if (type == NULL)
1661 {
1662 /* No forward references created an empty type, so install one now */
1663 type = alloc_utype (dip->die_ref, NULL);
1664 }
1665 TYPE_CODE (type) = TYPE_CODE_ENUM;
1666 /* Some compilers try to be helpful by inventing "fake" names for
1667 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1668 Thanks, but no thanks... */
1669 if (dip->at_name != NULL
1670 && *dip->at_name != '~'
1671 && *dip->at_name != '.')
1672 {
1673 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
1674 "", "", dip->at_name);
1675 }
1676 if (dip->at_byte_size != 0)
1677 {
1678 TYPE_LENGTH (type) = dip->at_byte_size;
1679 }
1680 scan = dip->at_element_list;
1681 if (scan != NULL)
1682 {
1683 if (dip->short_element_list)
1684 {
1685 nbytes = attribute_size (AT_short_element_list);
1686 }
1687 else
1688 {
1689 nbytes = attribute_size (AT_element_list);
1690 }
1691 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1692 listend = scan + nbytes + blocksz;
1693 scan += nbytes;
1694 while (scan < listend)
1695 {
1696 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1697 new->next = list;
1698 list = new;
1699 FIELD_TYPE (list->field) = NULL;
1700 FIELD_BITSIZE (list->field) = 0;
1701 FIELD_STATIC_KIND (list->field) = 0;
1702 FIELD_BITPOS (list->field) =
1703 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1704 objfile);
1705 scan += TARGET_FT_LONG_SIZE (objfile);
1706 list->field.name = obsavestring (scan, strlen (scan),
1707 &objfile->objfile_obstack);
1708 scan += strlen (scan) + 1;
1709 nfields++;
1710 /* Handcraft a new symbol for this enum member. */
1711 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
1712 sizeof (struct symbol));
1713 memset (sym, 0, sizeof (struct symbol));
1714 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
1715 &objfile->objfile_obstack);
1716 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1717 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1718 SYMBOL_CLASS (sym) = LOC_CONST;
1719 SYMBOL_TYPE (sym) = type;
1720 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1721 if (SYMBOL_VALUE (sym) < 0)
1722 unsigned_enum = 0;
1723 add_symbol_to_list (sym, list_in_scope);
1724 }
1725 /* Now create the vector of fields, and record how big it is. This is
1726 where we reverse the order, by pulling the members off the list in
1727 reverse order from how they were inserted. If we have no fields
1728 (this is apparently possible in C++) then skip building a field
1729 vector. */
1730 if (nfields > 0)
1731 {
1732 if (unsigned_enum)
1733 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1734 TYPE_NFIELDS (type) = nfields;
1735 TYPE_FIELDS (type) = (struct field *)
1736 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
1737 /* Copy the saved-up fields into the field vector. */
1738 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1739 {
1740 TYPE_FIELD (type, n++) = list->field;
1741 }
1742 }
1743 }
1744 return (type);
1745 }
1746
1747 /*
1748
1749 LOCAL FUNCTION
1750
1751 read_func_scope -- process all dies within a function scope
1752
1753 DESCRIPTION
1754
1755 Process all dies within a given function scope. We are passed
1756 a die information structure pointer DIP for the die which
1757 starts the function scope, and pointers into the raw die data
1758 that define the dies within the function scope.
1759
1760 For now, we ignore lexical block scopes within the function.
1761 The problem is that AT&T cc does not define a DWARF lexical
1762 block scope for the function itself, while gcc defines a
1763 lexical block scope for the function. We need to think about
1764 how to handle this difference, or if it is even a problem.
1765 (FIXME)
1766 */
1767
1768 static void
1769 read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1770 struct objfile *objfile)
1771 {
1772 struct context_stack *new;
1773
1774 /* AT_name is absent if the function is described with an
1775 AT_abstract_origin tag.
1776 Ignore the function description for now to avoid GDB core dumps.
1777 FIXME: Add code to handle AT_abstract_origin tags properly. */
1778 if (dip->at_name == NULL)
1779 {
1780 complaint (&symfile_complaints, "DIE @ 0x%x, AT_name tag missing",
1781 DIE_ID);
1782 return;
1783 }
1784
1785 if (objfile->ei.entry_point >= dip->at_low_pc &&
1786 objfile->ei.entry_point < dip->at_high_pc)
1787 {
1788 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1789 objfile->ei.entry_func_highpc = dip->at_high_pc;
1790 }
1791 new = push_context (0, dip->at_low_pc);
1792 new->name = new_symbol (dip, objfile);
1793 list_in_scope = &local_symbols;
1794 process_dies (thisdie + dip->die_length, enddie, objfile);
1795 new = pop_context ();
1796 /* Make a block for the local symbols within. */
1797 finish_block (new->name, &local_symbols, new->old_blocks,
1798 new->start_addr, dip->at_high_pc, objfile);
1799 list_in_scope = &file_symbols;
1800 }
1801
1802
1803 /*
1804
1805 LOCAL FUNCTION
1806
1807 handle_producer -- process the AT_producer attribute
1808
1809 DESCRIPTION
1810
1811 Perform any operations that depend on finding a particular
1812 AT_producer attribute.
1813
1814 */
1815
1816 static void
1817 handle_producer (char *producer)
1818 {
1819
1820 /* If this compilation unit was compiled with g++ or gcc, then set the
1821 processing_gcc_compilation flag. */
1822
1823 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1824 {
1825 char version = producer[strlen (GCC_PRODUCER)];
1826 processing_gcc_compilation = (version == '2' ? 2 : 1);
1827 }
1828 else
1829 {
1830 processing_gcc_compilation =
1831 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
1832 }
1833
1834 /* Select a demangling style if we can identify the producer and if
1835 the current style is auto. We leave the current style alone if it
1836 is not auto. We also leave the demangling style alone if we find a
1837 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1838
1839 if (AUTO_DEMANGLING)
1840 {
1841 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1842 {
1843 #if 0
1844 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1845 know whether it will use the old style or v3 mangling. */
1846 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1847 #endif
1848 }
1849 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1850 {
1851 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1852 }
1853 }
1854 }
1855
1856
1857 /*
1858
1859 LOCAL FUNCTION
1860
1861 read_file_scope -- process all dies within a file scope
1862
1863 DESCRIPTION
1864
1865 Process all dies within a given file scope. We are passed a
1866 pointer to the die information structure for the die which
1867 starts the file scope, and pointers into the raw die data which
1868 mark the range of dies within the file scope.
1869
1870 When the partial symbol table is built, the file offset for the line
1871 number table for each compilation unit is saved in the partial symbol
1872 table entry for that compilation unit. As the symbols for each
1873 compilation unit are read, the line number table is read into memory
1874 and the variable lnbase is set to point to it. Thus all we have to
1875 do is use lnbase to access the line number table for the current
1876 compilation unit.
1877 */
1878
1879 static void
1880 read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1881 struct objfile *objfile)
1882 {
1883 struct cleanup *back_to;
1884 struct symtab *symtab;
1885
1886 if (objfile->ei.entry_point >= dip->at_low_pc &&
1887 objfile->ei.entry_point < dip->at_high_pc)
1888 {
1889 objfile->ei.deprecated_entry_file_lowpc = dip->at_low_pc;
1890 objfile->ei.deprecated_entry_file_highpc = dip->at_high_pc;
1891 }
1892 set_cu_language (dip);
1893 if (dip->at_producer != NULL)
1894 {
1895 handle_producer (dip->at_producer);
1896 }
1897 numutypes = (enddie - thisdie) / 4;
1898 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1899 back_to = make_cleanup (free_utypes, NULL);
1900 memset (utypes, 0, numutypes * sizeof (struct type *));
1901 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1902 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1903 record_debugformat ("DWARF 1");
1904 decode_line_numbers (lnbase);
1905 process_dies (thisdie + dip->die_length, enddie, objfile);
1906
1907 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1908 if (symtab != NULL)
1909 {
1910 symtab->language = cu_language;
1911 }
1912 do_cleanups (back_to);
1913 }
1914
1915 /*
1916
1917 LOCAL FUNCTION
1918
1919 process_dies -- process a range of DWARF Information Entries
1920
1921 SYNOPSIS
1922
1923 static void process_dies (char *thisdie, char *enddie,
1924 struct objfile *objfile)
1925
1926 DESCRIPTION
1927
1928 Process all DIE's in a specified range. May be (and almost
1929 certainly will be) called recursively.
1930 */
1931
1932 static void
1933 process_dies (char *thisdie, char *enddie, struct objfile *objfile)
1934 {
1935 char *nextdie;
1936 struct dieinfo di;
1937
1938 while (thisdie < enddie)
1939 {
1940 basicdieinfo (&di, thisdie, objfile);
1941 if (di.die_length < SIZEOF_DIE_LENGTH)
1942 {
1943 break;
1944 }
1945 else if (di.die_tag == TAG_padding)
1946 {
1947 nextdie = thisdie + di.die_length;
1948 }
1949 else
1950 {
1951 completedieinfo (&di, objfile);
1952 if (di.at_sibling != 0)
1953 {
1954 nextdie = dbbase + di.at_sibling - dbroff;
1955 }
1956 else
1957 {
1958 nextdie = thisdie + di.die_length;
1959 }
1960 /* I think that these are always text, not data, addresses. */
1961 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1962 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
1963 switch (di.die_tag)
1964 {
1965 case TAG_compile_unit:
1966 /* Skip Tag_compile_unit if we are already inside a compilation
1967 unit, we are unable to handle nested compilation units
1968 properly (FIXME). */
1969 if (current_subfile == NULL)
1970 read_file_scope (&di, thisdie, nextdie, objfile);
1971 else
1972 nextdie = thisdie + di.die_length;
1973 break;
1974 case TAG_global_subroutine:
1975 case TAG_subroutine:
1976 if (di.has_at_low_pc)
1977 {
1978 read_func_scope (&di, thisdie, nextdie, objfile);
1979 }
1980 break;
1981 case TAG_lexical_block:
1982 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1983 break;
1984 case TAG_class_type:
1985 case TAG_structure_type:
1986 case TAG_union_type:
1987 read_structure_scope (&di, thisdie, nextdie, objfile);
1988 break;
1989 case TAG_enumeration_type:
1990 read_enumeration (&di, thisdie, nextdie, objfile);
1991 break;
1992 case TAG_subroutine_type:
1993 read_subroutine_type (&di, thisdie, nextdie);
1994 break;
1995 case TAG_array_type:
1996 dwarf_read_array_type (&di);
1997 break;
1998 case TAG_pointer_type:
1999 read_tag_pointer_type (&di);
2000 break;
2001 case TAG_string_type:
2002 read_tag_string_type (&di);
2003 break;
2004 default:
2005 new_symbol (&di, objfile);
2006 break;
2007 }
2008 }
2009 thisdie = nextdie;
2010 }
2011 }
2012
2013 /*
2014
2015 LOCAL FUNCTION
2016
2017 decode_line_numbers -- decode a line number table fragment
2018
2019 SYNOPSIS
2020
2021 static void decode_line_numbers (char *tblscan, char *tblend,
2022 long length, long base, long line, long pc)
2023
2024 DESCRIPTION
2025
2026 Translate the DWARF line number information to gdb form.
2027
2028 The ".line" section contains one or more line number tables, one for
2029 each ".line" section from the objects that were linked.
2030
2031 The AT_stmt_list attribute for each TAG_source_file entry in the
2032 ".debug" section contains the offset into the ".line" section for the
2033 start of the table for that file.
2034
2035 The table itself has the following structure:
2036
2037 <table length><base address><source statement entry>
2038 4 bytes 4 bytes 10 bytes
2039
2040 The table length is the total size of the table, including the 4 bytes
2041 for the length information.
2042
2043 The base address is the address of the first instruction generated
2044 for the source file.
2045
2046 Each source statement entry has the following structure:
2047
2048 <line number><statement position><address delta>
2049 4 bytes 2 bytes 4 bytes
2050
2051 The line number is relative to the start of the file, starting with
2052 line 1.
2053
2054 The statement position either -1 (0xFFFF) or the number of characters
2055 from the beginning of the line to the beginning of the statement.
2056
2057 The address delta is the difference between the base address and
2058 the address of the first instruction for the statement.
2059
2060 Note that we must copy the bytes from the packed table to our local
2061 variables before attempting to use them, to avoid alignment problems
2062 on some machines, particularly RISC processors.
2063
2064 BUGS
2065
2066 Does gdb expect the line numbers to be sorted? They are now by
2067 chance/luck, but are not required to be. (FIXME)
2068
2069 The line with number 0 is unused, gdb apparently can discover the
2070 span of the last line some other way. How? (FIXME)
2071 */
2072
2073 static void
2074 decode_line_numbers (char *linetable)
2075 {
2076 char *tblscan;
2077 char *tblend;
2078 unsigned long length;
2079 unsigned long base;
2080 unsigned long line;
2081 unsigned long pc;
2082
2083 if (linetable != NULL)
2084 {
2085 tblscan = tblend = linetable;
2086 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2087 current_objfile);
2088 tblscan += SIZEOF_LINETBL_LENGTH;
2089 tblend += length;
2090 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2091 GET_UNSIGNED, current_objfile);
2092 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2093 base += baseaddr;
2094 while (tblscan < tblend)
2095 {
2096 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2097 current_objfile);
2098 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2099 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2100 current_objfile);
2101 tblscan += SIZEOF_LINETBL_DELTA;
2102 pc += base;
2103 if (line != 0)
2104 {
2105 record_line (current_subfile, line, pc);
2106 }
2107 }
2108 }
2109 }
2110
2111 /*
2112
2113 LOCAL FUNCTION
2114
2115 locval -- compute the value of a location attribute
2116
2117 SYNOPSIS
2118
2119 static int locval (struct dieinfo *dip)
2120
2121 DESCRIPTION
2122
2123 Given pointer to a string of bytes that define a location, compute
2124 the location and return the value.
2125 A location description containing no atoms indicates that the
2126 object is optimized out. The optimized_out flag is set for those,
2127 the return value is meaningless.
2128
2129 When computing values involving the current value of the frame pointer,
2130 the value zero is used, which results in a value relative to the frame
2131 pointer, rather than the absolute value. This is what GDB wants
2132 anyway.
2133
2134 When the result is a register number, the isreg flag is set, otherwise
2135 it is cleared. This is a kludge until we figure out a better
2136 way to handle the problem. Gdb's design does not mesh well with the
2137 DWARF notion of a location computing interpreter, which is a shame
2138 because the flexibility goes unused.
2139
2140 NOTES
2141
2142 Note that stack[0] is unused except as a default error return.
2143 Note that stack overflow is not yet handled.
2144 */
2145
2146 static int
2147 locval (struct dieinfo *dip)
2148 {
2149 unsigned short nbytes;
2150 unsigned short locsize;
2151 auto long stack[64];
2152 int stacki;
2153 char *loc;
2154 char *end;
2155 int loc_atom_code;
2156 int loc_value_size;
2157
2158 loc = dip->at_location;
2159 nbytes = attribute_size (AT_location);
2160 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2161 loc += nbytes;
2162 end = loc + locsize;
2163 stacki = 0;
2164 stack[stacki] = 0;
2165 dip->isreg = 0;
2166 dip->offreg = 0;
2167 dip->optimized_out = 1;
2168 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2169 while (loc < end)
2170 {
2171 dip->optimized_out = 0;
2172 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2173 current_objfile);
2174 loc += SIZEOF_LOC_ATOM_CODE;
2175 switch (loc_atom_code)
2176 {
2177 case 0:
2178 /* error */
2179 loc = end;
2180 break;
2181 case OP_REG:
2182 /* push register (number) */
2183 stack[++stacki]
2184 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2185 GET_UNSIGNED,
2186 current_objfile));
2187 loc += loc_value_size;
2188 dip->isreg = 1;
2189 break;
2190 case OP_BASEREG:
2191 /* push value of register (number) */
2192 /* Actually, we compute the value as if register has 0, so the
2193 value ends up being the offset from that register. */
2194 dip->offreg = 1;
2195 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2196 current_objfile);
2197 loc += loc_value_size;
2198 stack[++stacki] = 0;
2199 break;
2200 case OP_ADDR:
2201 /* push address (relocated address) */
2202 stack[++stacki] = target_to_host (loc, loc_value_size,
2203 GET_UNSIGNED, current_objfile);
2204 loc += loc_value_size;
2205 break;
2206 case OP_CONST:
2207 /* push constant (number) FIXME: signed or unsigned! */
2208 stack[++stacki] = target_to_host (loc, loc_value_size,
2209 GET_SIGNED, current_objfile);
2210 loc += loc_value_size;
2211 break;
2212 case OP_DEREF2:
2213 /* pop, deref and push 2 bytes (as a long) */
2214 complaint (&symfile_complaints,
2215 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled",
2216 DIE_ID, DIE_NAME, stack[stacki]);
2217 break;
2218 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2219 complaint (&symfile_complaints,
2220 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled",
2221 DIE_ID, DIE_NAME, stack[stacki]);
2222 break;
2223 case OP_ADD: /* pop top 2 items, add, push result */
2224 stack[stacki - 1] += stack[stacki];
2225 stacki--;
2226 break;
2227 }
2228 }
2229 return (stack[stacki]);
2230 }
2231
2232 /*
2233
2234 LOCAL FUNCTION
2235
2236 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2237
2238 SYNOPSIS
2239
2240 static void read_ofile_symtab (struct partial_symtab *pst)
2241
2242 DESCRIPTION
2243
2244 When expanding a partial symbol table entry to a full symbol table
2245 entry, this is the function that gets called to read in the symbols
2246 for the compilation unit. A pointer to the newly constructed symtab,
2247 which is now the new first one on the objfile's symtab list, is
2248 stashed in the partial symbol table entry.
2249 */
2250
2251 static void
2252 read_ofile_symtab (struct partial_symtab *pst)
2253 {
2254 struct cleanup *back_to;
2255 unsigned long lnsize;
2256 file_ptr foffset;
2257 bfd *abfd;
2258 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2259
2260 abfd = pst->objfile->obfd;
2261 current_objfile = pst->objfile;
2262
2263 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2264 unit, seek to the location in the file, and read in all the DIE's. */
2265
2266 diecount = 0;
2267 dbsize = DBLENGTH (pst);
2268 dbbase = xmalloc (dbsize);
2269 dbroff = DBROFF (pst);
2270 foffset = DBFOFF (pst) + dbroff;
2271 base_section_offsets = pst->section_offsets;
2272 baseaddr = ANOFFSET (pst->section_offsets, 0);
2273 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2274 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
2275 {
2276 xfree (dbbase);
2277 error ("can't read DWARF data");
2278 }
2279 back_to = make_cleanup (xfree, dbbase);
2280
2281 /* If there is a line number table associated with this compilation unit
2282 then read the size of this fragment in bytes, from the fragment itself.
2283 Allocate a buffer for the fragment and read it in for future
2284 processing. */
2285
2286 lnbase = NULL;
2287 if (LNFOFF (pst))
2288 {
2289 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2290 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
2291 != sizeof (lnsizedata)))
2292 {
2293 error ("can't read DWARF line number table size");
2294 }
2295 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2296 GET_UNSIGNED, pst->objfile);
2297 lnbase = xmalloc (lnsize);
2298 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2299 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
2300 {
2301 xfree (lnbase);
2302 error ("can't read DWARF line numbers");
2303 }
2304 make_cleanup (xfree, lnbase);
2305 }
2306
2307 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2308 do_cleanups (back_to);
2309 current_objfile = NULL;
2310 pst->symtab = pst->objfile->symtabs;
2311 }
2312
2313 /*
2314
2315 LOCAL FUNCTION
2316
2317 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2318
2319 SYNOPSIS
2320
2321 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2322
2323 DESCRIPTION
2324
2325 Called once for each partial symbol table entry that needs to be
2326 expanded into a full symbol table entry.
2327
2328 */
2329
2330 static void
2331 psymtab_to_symtab_1 (struct partial_symtab *pst)
2332 {
2333 int i;
2334 struct cleanup *old_chain;
2335
2336 if (pst != NULL)
2337 {
2338 if (pst->readin)
2339 {
2340 warning ("psymtab for %s already read in. Shouldn't happen.",
2341 pst->filename);
2342 }
2343 else
2344 {
2345 /* Read in all partial symtabs on which this one is dependent */
2346 for (i = 0; i < pst->number_of_dependencies; i++)
2347 {
2348 if (!pst->dependencies[i]->readin)
2349 {
2350 /* Inform about additional files that need to be read in. */
2351 if (info_verbose)
2352 {
2353 fputs_filtered (" ", gdb_stdout);
2354 wrap_here ("");
2355 fputs_filtered ("and ", gdb_stdout);
2356 wrap_here ("");
2357 printf_filtered ("%s...",
2358 pst->dependencies[i]->filename);
2359 wrap_here ("");
2360 gdb_flush (gdb_stdout); /* Flush output */
2361 }
2362 psymtab_to_symtab_1 (pst->dependencies[i]);
2363 }
2364 }
2365 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2366 {
2367 buildsym_init ();
2368 old_chain = make_cleanup (really_free_pendings, 0);
2369 read_ofile_symtab (pst);
2370 if (info_verbose)
2371 {
2372 printf_filtered ("%d DIE's, sorting...", diecount);
2373 wrap_here ("");
2374 gdb_flush (gdb_stdout);
2375 }
2376 do_cleanups (old_chain);
2377 }
2378 pst->readin = 1;
2379 }
2380 }
2381 }
2382
2383 /*
2384
2385 LOCAL FUNCTION
2386
2387 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2388
2389 SYNOPSIS
2390
2391 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2392
2393 DESCRIPTION
2394
2395 This is the DWARF support entry point for building a full symbol
2396 table entry from a partial symbol table entry. We are passed a
2397 pointer to the partial symbol table entry that needs to be expanded.
2398
2399 */
2400
2401 static void
2402 dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2403 {
2404
2405 if (pst != NULL)
2406 {
2407 if (pst->readin)
2408 {
2409 warning ("psymtab for %s already read in. Shouldn't happen.",
2410 pst->filename);
2411 }
2412 else
2413 {
2414 if (DBLENGTH (pst) || pst->number_of_dependencies)
2415 {
2416 /* Print the message now, before starting serious work, to avoid
2417 disconcerting pauses. */
2418 if (info_verbose)
2419 {
2420 printf_filtered ("Reading in symbols for %s...",
2421 pst->filename);
2422 gdb_flush (gdb_stdout);
2423 }
2424
2425 psymtab_to_symtab_1 (pst);
2426
2427 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2428 we need to do an equivalent or is this something peculiar to
2429 stabs/a.out format.
2430 Match with global symbols. This only needs to be done once,
2431 after all of the symtabs and dependencies have been read in.
2432 */
2433 scan_file_globals (pst->objfile);
2434 #endif
2435
2436 /* Finish up the verbose info message. */
2437 if (info_verbose)
2438 {
2439 printf_filtered ("done.\n");
2440 gdb_flush (gdb_stdout);
2441 }
2442 }
2443 }
2444 }
2445 }
2446
2447 /*
2448
2449 LOCAL FUNCTION
2450
2451 add_enum_psymbol -- add enumeration members to partial symbol table
2452
2453 DESCRIPTION
2454
2455 Given pointer to a DIE that is known to be for an enumeration,
2456 extract the symbolic names of the enumeration members and add
2457 partial symbols for them.
2458 */
2459
2460 static void
2461 add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
2462 {
2463 char *scan;
2464 char *listend;
2465 unsigned short blocksz;
2466 int nbytes;
2467
2468 scan = dip->at_element_list;
2469 if (scan != NULL)
2470 {
2471 if (dip->short_element_list)
2472 {
2473 nbytes = attribute_size (AT_short_element_list);
2474 }
2475 else
2476 {
2477 nbytes = attribute_size (AT_element_list);
2478 }
2479 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2480 scan += nbytes;
2481 listend = scan + blocksz;
2482 while (scan < listend)
2483 {
2484 scan += TARGET_FT_LONG_SIZE (objfile);
2485 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
2486 &objfile->static_psymbols, 0, 0, cu_language,
2487 objfile);
2488 scan += strlen (scan) + 1;
2489 }
2490 }
2491 }
2492
2493 /*
2494
2495 LOCAL FUNCTION
2496
2497 add_partial_symbol -- add symbol to partial symbol table
2498
2499 DESCRIPTION
2500
2501 Given a DIE, if it is one of the types that we want to
2502 add to a partial symbol table, finish filling in the die info
2503 and then add a partial symbol table entry for it.
2504
2505 NOTES
2506
2507 The caller must ensure that the DIE has a valid name attribute.
2508 */
2509
2510 static void
2511 add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
2512 {
2513 switch (dip->die_tag)
2514 {
2515 case TAG_global_subroutine:
2516 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2517 VAR_DOMAIN, LOC_BLOCK,
2518 &objfile->global_psymbols,
2519 0, dip->at_low_pc, cu_language, objfile);
2520 break;
2521 case TAG_global_variable:
2522 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2523 VAR_DOMAIN, LOC_STATIC,
2524 &objfile->global_psymbols,
2525 0, 0, cu_language, objfile);
2526 break;
2527 case TAG_subroutine:
2528 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2529 VAR_DOMAIN, LOC_BLOCK,
2530 &objfile->static_psymbols,
2531 0, dip->at_low_pc, cu_language, objfile);
2532 break;
2533 case TAG_local_variable:
2534 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2535 VAR_DOMAIN, LOC_STATIC,
2536 &objfile->static_psymbols,
2537 0, 0, cu_language, objfile);
2538 break;
2539 case TAG_typedef:
2540 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2541 VAR_DOMAIN, LOC_TYPEDEF,
2542 &objfile->static_psymbols,
2543 0, 0, cu_language, objfile);
2544 break;
2545 case TAG_class_type:
2546 case TAG_structure_type:
2547 case TAG_union_type:
2548 case TAG_enumeration_type:
2549 /* Do not add opaque aggregate definitions to the psymtab. */
2550 if (!dip->has_at_byte_size)
2551 break;
2552 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2553 STRUCT_DOMAIN, LOC_TYPEDEF,
2554 &objfile->static_psymbols,
2555 0, 0, cu_language, objfile);
2556 if (cu_language == language_cplus)
2557 {
2558 /* For C++, these implicitly act as typedefs as well. */
2559 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2560 VAR_DOMAIN, LOC_TYPEDEF,
2561 &objfile->static_psymbols,
2562 0, 0, cu_language, objfile);
2563 }
2564 break;
2565 }
2566 }
2567 /* *INDENT-OFF* */
2568 /*
2569
2570 LOCAL FUNCTION
2571
2572 scan_partial_symbols -- scan DIE's within a single compilation unit
2573
2574 DESCRIPTION
2575
2576 Process the DIE's within a single compilation unit, looking for
2577 interesting DIE's that contribute to the partial symbol table entry
2578 for this compilation unit.
2579
2580 NOTES
2581
2582 There are some DIE's that may appear both at file scope and within
2583 the scope of a function. We are only interested in the ones at file
2584 scope, and the only way to tell them apart is to keep track of the
2585 scope. For example, consider the test case:
2586
2587 static int i;
2588 main () { int j; }
2589
2590 for which the relevant DWARF segment has the structure:
2591
2592 0x51:
2593 0x23 global subrtn sibling 0x9b
2594 name main
2595 fund_type FT_integer
2596 low_pc 0x800004cc
2597 high_pc 0x800004d4
2598
2599 0x74:
2600 0x23 local var sibling 0x97
2601 name j
2602 fund_type FT_integer
2603 location OP_BASEREG 0xe
2604 OP_CONST 0xfffffffc
2605 OP_ADD
2606 0x97:
2607 0x4
2608
2609 0x9b:
2610 0x1d local var sibling 0xb8
2611 name i
2612 fund_type FT_integer
2613 location OP_ADDR 0x800025dc
2614
2615 0xb8:
2616 0x4
2617
2618 We want to include the symbol 'i' in the partial symbol table, but
2619 not the symbol 'j'. In essence, we want to skip all the dies within
2620 the scope of a TAG_global_subroutine DIE.
2621
2622 Don't attempt to add anonymous structures or unions since they have
2623 no name. Anonymous enumerations however are processed, because we
2624 want to extract their member names (the check for a tag name is
2625 done later).
2626
2627 Also, for variables and subroutines, check that this is the place
2628 where the actual definition occurs, rather than just a reference
2629 to an external.
2630 */
2631 /* *INDENT-ON* */
2632
2633
2634
2635 static void
2636 scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
2637 {
2638 char *nextdie;
2639 char *temp;
2640 struct dieinfo di;
2641
2642 while (thisdie < enddie)
2643 {
2644 basicdieinfo (&di, thisdie, objfile);
2645 if (di.die_length < SIZEOF_DIE_LENGTH)
2646 {
2647 break;
2648 }
2649 else
2650 {
2651 nextdie = thisdie + di.die_length;
2652 /* To avoid getting complete die information for every die, we
2653 only do it (below) for the cases we are interested in. */
2654 switch (di.die_tag)
2655 {
2656 case TAG_global_subroutine:
2657 case TAG_subroutine:
2658 completedieinfo (&di, objfile);
2659 if (di.at_name && (di.has_at_low_pc || di.at_location))
2660 {
2661 add_partial_symbol (&di, objfile);
2662 /* If there is a sibling attribute, adjust the nextdie
2663 pointer to skip the entire scope of the subroutine.
2664 Apply some sanity checking to make sure we don't
2665 overrun or underrun the range of remaining DIE's */
2666 if (di.at_sibling != 0)
2667 {
2668 temp = dbbase + di.at_sibling - dbroff;
2669 if ((temp < thisdie) || (temp >= enddie))
2670 {
2671 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2672 di.at_sibling);
2673 }
2674 else
2675 {
2676 nextdie = temp;
2677 }
2678 }
2679 }
2680 break;
2681 case TAG_global_variable:
2682 case TAG_local_variable:
2683 completedieinfo (&di, objfile);
2684 if (di.at_name && (di.has_at_low_pc || di.at_location))
2685 {
2686 add_partial_symbol (&di, objfile);
2687 }
2688 break;
2689 case TAG_typedef:
2690 case TAG_class_type:
2691 case TAG_structure_type:
2692 case TAG_union_type:
2693 completedieinfo (&di, objfile);
2694 if (di.at_name)
2695 {
2696 add_partial_symbol (&di, objfile);
2697 }
2698 break;
2699 case TAG_enumeration_type:
2700 completedieinfo (&di, objfile);
2701 if (di.at_name)
2702 {
2703 add_partial_symbol (&di, objfile);
2704 }
2705 add_enum_psymbol (&di, objfile);
2706 break;
2707 }
2708 }
2709 thisdie = nextdie;
2710 }
2711 }
2712
2713 /*
2714
2715 LOCAL FUNCTION
2716
2717 scan_compilation_units -- build a psymtab entry for each compilation
2718
2719 DESCRIPTION
2720
2721 This is the top level dwarf parsing routine for building partial
2722 symbol tables.
2723
2724 It scans from the beginning of the DWARF table looking for the first
2725 TAG_compile_unit DIE, and then follows the sibling chain to locate
2726 each additional TAG_compile_unit DIE.
2727
2728 For each TAG_compile_unit DIE it creates a partial symtab structure,
2729 calls a subordinate routine to collect all the compilation unit's
2730 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2731 new partial symtab structure into the partial symbol table. It also
2732 records the appropriate information in the partial symbol table entry
2733 to allow the chunk of DIE's and line number table for this compilation
2734 unit to be located and re-read later, to generate a complete symbol
2735 table entry for the compilation unit.
2736
2737 Thus it effectively partitions up a chunk of DIE's for multiple
2738 compilation units into smaller DIE chunks and line number tables,
2739 and associates them with a partial symbol table entry.
2740
2741 NOTES
2742
2743 If any compilation unit has no line number table associated with
2744 it for some reason (a missing at_stmt_list attribute, rather than
2745 just one with a value of zero, which is valid) then we ensure that
2746 the recorded file offset is zero so that the routine which later
2747 reads line number table fragments knows that there is no fragment
2748 to read.
2749
2750 RETURNS
2751
2752 Returns no value.
2753
2754 */
2755
2756 static void
2757 scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2758 file_ptr lnoffset, struct objfile *objfile)
2759 {
2760 char *nextdie;
2761 struct dieinfo di;
2762 struct partial_symtab *pst;
2763 int culength;
2764 int curoff;
2765 file_ptr curlnoffset;
2766
2767 while (thisdie < enddie)
2768 {
2769 basicdieinfo (&di, thisdie, objfile);
2770 if (di.die_length < SIZEOF_DIE_LENGTH)
2771 {
2772 break;
2773 }
2774 else if (di.die_tag != TAG_compile_unit)
2775 {
2776 nextdie = thisdie + di.die_length;
2777 }
2778 else
2779 {
2780 completedieinfo (&di, objfile);
2781 set_cu_language (&di);
2782 if (di.at_sibling != 0)
2783 {
2784 nextdie = dbbase + di.at_sibling - dbroff;
2785 }
2786 else
2787 {
2788 nextdie = thisdie + di.die_length;
2789 }
2790 curoff = thisdie - dbbase;
2791 culength = nextdie - thisdie;
2792 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2793
2794 /* First allocate a new partial symbol table structure */
2795
2796 pst = start_psymtab_common (objfile, base_section_offsets,
2797 di.at_name, di.at_low_pc,
2798 objfile->global_psymbols.next,
2799 objfile->static_psymbols.next);
2800
2801 pst->texthigh = di.at_high_pc;
2802 pst->read_symtab_private = (char *)
2803 obstack_alloc (&objfile->objfile_obstack,
2804 sizeof (struct dwfinfo));
2805 DBFOFF (pst) = dbfoff;
2806 DBROFF (pst) = curoff;
2807 DBLENGTH (pst) = culength;
2808 LNFOFF (pst) = curlnoffset;
2809 pst->read_symtab = dwarf_psymtab_to_symtab;
2810
2811 /* Now look for partial symbols */
2812
2813 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2814
2815 pst->n_global_syms = objfile->global_psymbols.next -
2816 (objfile->global_psymbols.list + pst->globals_offset);
2817 pst->n_static_syms = objfile->static_psymbols.next -
2818 (objfile->static_psymbols.list + pst->statics_offset);
2819 sort_pst_symbols (pst);
2820 /* If there is already a psymtab or symtab for a file of this name,
2821 remove it. (If there is a symtab, more drastic things also
2822 happen.) This happens in VxWorks. */
2823 free_named_symtabs (pst->filename);
2824 }
2825 thisdie = nextdie;
2826 }
2827 }
2828
2829 /*
2830
2831 LOCAL FUNCTION
2832
2833 new_symbol -- make a symbol table entry for a new symbol
2834
2835 SYNOPSIS
2836
2837 static struct symbol *new_symbol (struct dieinfo *dip,
2838 struct objfile *objfile)
2839
2840 DESCRIPTION
2841
2842 Given a pointer to a DWARF information entry, figure out if we need
2843 to make a symbol table entry for it, and if so, create a new entry
2844 and return a pointer to it.
2845 */
2846
2847 static struct symbol *
2848 new_symbol (struct dieinfo *dip, struct objfile *objfile)
2849 {
2850 struct symbol *sym = NULL;
2851
2852 if (dip->at_name != NULL)
2853 {
2854 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
2855 sizeof (struct symbol));
2856 OBJSTAT (objfile, n_syms++);
2857 memset (sym, 0, sizeof (struct symbol));
2858 /* default assumptions */
2859 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2860 SYMBOL_CLASS (sym) = LOC_STATIC;
2861 SYMBOL_TYPE (sym) = decode_die_type (dip);
2862
2863 /* If this symbol is from a C++ compilation, then attempt to cache the
2864 demangled form for future reference. This is a typical time versus
2865 space tradeoff, that was decided in favor of time because it sped up
2866 C++ symbol lookups by a factor of about 20. */
2867
2868 SYMBOL_LANGUAGE (sym) = cu_language;
2869 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
2870 switch (dip->die_tag)
2871 {
2872 case TAG_label:
2873 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2874 SYMBOL_CLASS (sym) = LOC_LABEL;
2875 break;
2876 case TAG_global_subroutine:
2877 case TAG_subroutine:
2878 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2879 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2880 if (dip->at_prototyped)
2881 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2882 SYMBOL_CLASS (sym) = LOC_BLOCK;
2883 if (dip->die_tag == TAG_global_subroutine)
2884 {
2885 add_symbol_to_list (sym, &global_symbols);
2886 }
2887 else
2888 {
2889 add_symbol_to_list (sym, list_in_scope);
2890 }
2891 break;
2892 case TAG_global_variable:
2893 if (dip->at_location != NULL)
2894 {
2895 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2896 add_symbol_to_list (sym, &global_symbols);
2897 SYMBOL_CLASS (sym) = LOC_STATIC;
2898 SYMBOL_VALUE (sym) += baseaddr;
2899 }
2900 break;
2901 case TAG_local_variable:
2902 if (dip->at_location != NULL)
2903 {
2904 int loc = locval (dip);
2905 if (dip->optimized_out)
2906 {
2907 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2908 }
2909 else if (dip->isreg)
2910 {
2911 SYMBOL_CLASS (sym) = LOC_REGISTER;
2912 }
2913 else if (dip->offreg)
2914 {
2915 SYMBOL_CLASS (sym) = LOC_BASEREG;
2916 SYMBOL_BASEREG (sym) = dip->basereg;
2917 }
2918 else
2919 {
2920 SYMBOL_CLASS (sym) = LOC_STATIC;
2921 SYMBOL_VALUE (sym) += baseaddr;
2922 }
2923 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2924 {
2925 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2926 which may store to a bigger location than SYMBOL_VALUE. */
2927 SYMBOL_VALUE_ADDRESS (sym) = loc;
2928 }
2929 else
2930 {
2931 SYMBOL_VALUE (sym) = loc;
2932 }
2933 add_symbol_to_list (sym, list_in_scope);
2934 }
2935 break;
2936 case TAG_formal_parameter:
2937 if (dip->at_location != NULL)
2938 {
2939 SYMBOL_VALUE (sym) = locval (dip);
2940 }
2941 add_symbol_to_list (sym, list_in_scope);
2942 if (dip->isreg)
2943 {
2944 SYMBOL_CLASS (sym) = LOC_REGPARM;
2945 }
2946 else if (dip->offreg)
2947 {
2948 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2949 SYMBOL_BASEREG (sym) = dip->basereg;
2950 }
2951 else
2952 {
2953 SYMBOL_CLASS (sym) = LOC_ARG;
2954 }
2955 break;
2956 case TAG_unspecified_parameters:
2957 /* From varargs functions; gdb doesn't seem to have any interest in
2958 this information, so just ignore it for now. (FIXME?) */
2959 break;
2960 case TAG_class_type:
2961 case TAG_structure_type:
2962 case TAG_union_type:
2963 case TAG_enumeration_type:
2964 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2965 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
2966 add_symbol_to_list (sym, list_in_scope);
2967 break;
2968 case TAG_typedef:
2969 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2970 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
2971 add_symbol_to_list (sym, list_in_scope);
2972 break;
2973 default:
2974 /* Not a tag we recognize. Hopefully we aren't processing trash
2975 data, but since we must specifically ignore things we don't
2976 recognize, there is nothing else we should do at this point. */
2977 break;
2978 }
2979 }
2980 return (sym);
2981 }
2982
2983 /*
2984
2985 LOCAL FUNCTION
2986
2987 synthesize_typedef -- make a symbol table entry for a "fake" typedef
2988
2989 SYNOPSIS
2990
2991 static void synthesize_typedef (struct dieinfo *dip,
2992 struct objfile *objfile,
2993 struct type *type);
2994
2995 DESCRIPTION
2996
2997 Given a pointer to a DWARF information entry, synthesize a typedef
2998 for the name in the DIE, using the specified type.
2999
3000 This is used for C++ class, structs, unions, and enumerations to
3001 set up the tag name as a type.
3002
3003 */
3004
3005 static void
3006 synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3007 struct type *type)
3008 {
3009 struct symbol *sym = NULL;
3010
3011 if (dip->at_name != NULL)
3012 {
3013 sym = (struct symbol *)
3014 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3015 OBJSTAT (objfile, n_syms++);
3016 memset (sym, 0, sizeof (struct symbol));
3017 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
3018 &objfile->objfile_obstack);
3019 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3020 SYMBOL_TYPE (sym) = type;
3021 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3022 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3023 add_symbol_to_list (sym, list_in_scope);
3024 }
3025 }
3026
3027 /*
3028
3029 LOCAL FUNCTION
3030
3031 decode_mod_fund_type -- decode a modified fundamental type
3032
3033 SYNOPSIS
3034
3035 static struct type *decode_mod_fund_type (char *typedata)
3036
3037 DESCRIPTION
3038
3039 Decode a block of data containing a modified fundamental
3040 type specification. TYPEDATA is a pointer to the block,
3041 which starts with a length containing the size of the rest
3042 of the block. At the end of the block is a fundmental type
3043 code value that gives the fundamental type. Everything
3044 in between are type modifiers.
3045
3046 We simply compute the number of modifiers and call the general
3047 function decode_modified_type to do the actual work.
3048 */
3049
3050 static struct type *
3051 decode_mod_fund_type (char *typedata)
3052 {
3053 struct type *typep = NULL;
3054 unsigned short modcount;
3055 int nbytes;
3056
3057 /* Get the total size of the block, exclusive of the size itself */
3058
3059 nbytes = attribute_size (AT_mod_fund_type);
3060 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3061 typedata += nbytes;
3062
3063 /* Deduct the size of the fundamental type bytes at the end of the block. */
3064
3065 modcount -= attribute_size (AT_fund_type);
3066
3067 /* Now do the actual decoding */
3068
3069 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3070 return (typep);
3071 }
3072
3073 /*
3074
3075 LOCAL FUNCTION
3076
3077 decode_mod_u_d_type -- decode a modified user defined type
3078
3079 SYNOPSIS
3080
3081 static struct type *decode_mod_u_d_type (char *typedata)
3082
3083 DESCRIPTION
3084
3085 Decode a block of data containing a modified user defined
3086 type specification. TYPEDATA is a pointer to the block,
3087 which consists of a two byte length, containing the size
3088 of the rest of the block. At the end of the block is a
3089 four byte value that gives a reference to a user defined type.
3090 Everything in between are type modifiers.
3091
3092 We simply compute the number of modifiers and call the general
3093 function decode_modified_type to do the actual work.
3094 */
3095
3096 static struct type *
3097 decode_mod_u_d_type (char *typedata)
3098 {
3099 struct type *typep = NULL;
3100 unsigned short modcount;
3101 int nbytes;
3102
3103 /* Get the total size of the block, exclusive of the size itself */
3104
3105 nbytes = attribute_size (AT_mod_u_d_type);
3106 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3107 typedata += nbytes;
3108
3109 /* Deduct the size of the reference type bytes at the end of the block. */
3110
3111 modcount -= attribute_size (AT_user_def_type);
3112
3113 /* Now do the actual decoding */
3114
3115 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3116 return (typep);
3117 }
3118
3119 /*
3120
3121 LOCAL FUNCTION
3122
3123 decode_modified_type -- decode modified user or fundamental type
3124
3125 SYNOPSIS
3126
3127 static struct type *decode_modified_type (char *modifiers,
3128 unsigned short modcount, int mtype)
3129
3130 DESCRIPTION
3131
3132 Decode a modified type, either a modified fundamental type or
3133 a modified user defined type. MODIFIERS is a pointer to the
3134 block of bytes that define MODCOUNT modifiers. Immediately
3135 following the last modifier is a short containing the fundamental
3136 type or a long containing the reference to the user defined
3137 type. Which one is determined by MTYPE, which is either
3138 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3139 type we are generating.
3140
3141 We call ourself recursively to generate each modified type,`
3142 until MODCOUNT reaches zero, at which point we have consumed
3143 all the modifiers and generate either the fundamental type or
3144 user defined type. When the recursion unwinds, each modifier
3145 is applied in turn to generate the full modified type.
3146
3147 NOTES
3148
3149 If we find a modifier that we don't recognize, and it is not one
3150 of those reserved for application specific use, then we issue a
3151 warning and simply ignore the modifier.
3152
3153 BUGS
3154
3155 We currently ignore MOD_const and MOD_volatile. (FIXME)
3156
3157 */
3158
3159 static struct type *
3160 decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
3161 {
3162 struct type *typep = NULL;
3163 unsigned short fundtype;
3164 DIE_REF die_ref;
3165 char modifier;
3166 int nbytes;
3167
3168 if (modcount == 0)
3169 {
3170 switch (mtype)
3171 {
3172 case AT_mod_fund_type:
3173 nbytes = attribute_size (AT_fund_type);
3174 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3175 current_objfile);
3176 typep = decode_fund_type (fundtype);
3177 break;
3178 case AT_mod_u_d_type:
3179 nbytes = attribute_size (AT_user_def_type);
3180 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3181 current_objfile);
3182 typep = lookup_utype (die_ref);
3183 if (typep == NULL)
3184 {
3185 typep = alloc_utype (die_ref, NULL);
3186 }
3187 break;
3188 default:
3189 complaint (&symfile_complaints,
3190 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)",
3191 DIE_ID, DIE_NAME, mtype);
3192 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3193 break;
3194 }
3195 }
3196 else
3197 {
3198 modifier = *modifiers++;
3199 typep = decode_modified_type (modifiers, --modcount, mtype);
3200 switch (modifier)
3201 {
3202 case MOD_pointer_to:
3203 typep = lookup_pointer_type (typep);
3204 break;
3205 case MOD_reference_to:
3206 typep = lookup_reference_type (typep);
3207 break;
3208 case MOD_const:
3209 complaint (&symfile_complaints,
3210 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", DIE_ID,
3211 DIE_NAME); /* FIXME */
3212 break;
3213 case MOD_volatile:
3214 complaint (&symfile_complaints,
3215 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored",
3216 DIE_ID, DIE_NAME); /* FIXME */
3217 break;
3218 default:
3219 if (!(MOD_lo_user <= (unsigned char) modifier))
3220 #if 0
3221 /* This part of the test would always be true, and it triggers a compiler
3222 warning. */
3223 && (unsigned char) modifier <= MOD_hi_user))
3224 #endif
3225 {
3226 complaint (&symfile_complaints,
3227 "DIE @ 0x%x \"%s\", unknown type modifier %u", DIE_ID,
3228 DIE_NAME, modifier);
3229 }
3230 break;
3231 }
3232 }
3233 return (typep);
3234 }
3235
3236 /*
3237
3238 LOCAL FUNCTION
3239
3240 decode_fund_type -- translate basic DWARF type to gdb base type
3241
3242 DESCRIPTION
3243
3244 Given an integer that is one of the fundamental DWARF types,
3245 translate it to one of the basic internal gdb types and return
3246 a pointer to the appropriate gdb type (a "struct type *").
3247
3248 NOTES
3249
3250 For robustness, if we are asked to translate a fundamental
3251 type that we are unprepared to deal with, we return int so
3252 callers can always depend upon a valid type being returned,
3253 and so gdb may at least do something reasonable by default.
3254 If the type is not in the range of those types defined as
3255 application specific types, we also issue a warning.
3256 */
3257
3258 static struct type *
3259 decode_fund_type (unsigned int fundtype)
3260 {
3261 struct type *typep = NULL;
3262
3263 switch (fundtype)
3264 {
3265
3266 case FT_void:
3267 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3268 break;
3269
3270 case FT_boolean: /* Was FT_set in AT&T version */
3271 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3272 break;
3273
3274 case FT_pointer: /* (void *) */
3275 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3276 typep = lookup_pointer_type (typep);
3277 break;
3278
3279 case FT_char:
3280 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3281 break;
3282
3283 case FT_signed_char:
3284 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3285 break;
3286
3287 case FT_unsigned_char:
3288 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3289 break;
3290
3291 case FT_short:
3292 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3293 break;
3294
3295 case FT_signed_short:
3296 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3297 break;
3298
3299 case FT_unsigned_short:
3300 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3301 break;
3302
3303 case FT_integer:
3304 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3305 break;
3306
3307 case FT_signed_integer:
3308 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3309 break;
3310
3311 case FT_unsigned_integer:
3312 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3313 break;
3314
3315 case FT_long:
3316 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3317 break;
3318
3319 case FT_signed_long:
3320 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3321 break;
3322
3323 case FT_unsigned_long:
3324 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3325 break;
3326
3327 case FT_long_long:
3328 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3329 break;
3330
3331 case FT_signed_long_long:
3332 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3333 break;
3334
3335 case FT_unsigned_long_long:
3336 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3337 break;
3338
3339 case FT_float:
3340 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3341 break;
3342
3343 case FT_dbl_prec_float:
3344 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3345 break;
3346
3347 case FT_ext_prec_float:
3348 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3349 break;
3350
3351 case FT_complex:
3352 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3353 break;
3354
3355 case FT_dbl_prec_complex:
3356 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3357 break;
3358
3359 case FT_ext_prec_complex:
3360 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3361 break;
3362
3363 }
3364
3365 if (typep == NULL)
3366 {
3367 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3368 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3369 {
3370 complaint (&symfile_complaints,
3371 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x",
3372 DIE_ID, DIE_NAME, fundtype);
3373 }
3374 }
3375
3376 return (typep);
3377 }
3378
3379 /*
3380
3381 LOCAL FUNCTION
3382
3383 create_name -- allocate a fresh copy of a string on an obstack
3384
3385 DESCRIPTION
3386
3387 Given a pointer to a string and a pointer to an obstack, allocates
3388 a fresh copy of the string on the specified obstack.
3389
3390 */
3391
3392 static char *
3393 create_name (char *name, struct obstack *obstackp)
3394 {
3395 int length;
3396 char *newname;
3397
3398 length = strlen (name) + 1;
3399 newname = (char *) obstack_alloc (obstackp, length);
3400 strcpy (newname, name);
3401 return (newname);
3402 }
3403
3404 /*
3405
3406 LOCAL FUNCTION
3407
3408 basicdieinfo -- extract the minimal die info from raw die data
3409
3410 SYNOPSIS
3411
3412 void basicdieinfo (char *diep, struct dieinfo *dip,
3413 struct objfile *objfile)
3414
3415 DESCRIPTION
3416
3417 Given a pointer to raw DIE data, and a pointer to an instance of a
3418 die info structure, this function extracts the basic information
3419 from the DIE data required to continue processing this DIE, along
3420 with some bookkeeping information about the DIE.
3421
3422 The information we absolutely must have includes the DIE tag,
3423 and the DIE length. If we need the sibling reference, then we
3424 will have to call completedieinfo() to process all the remaining
3425 DIE information.
3426
3427 Note that since there is no guarantee that the data is properly
3428 aligned in memory for the type of access required (indirection
3429 through anything other than a char pointer), and there is no
3430 guarantee that it is in the same byte order as the gdb host,
3431 we call a function which deals with both alignment and byte
3432 swapping issues. Possibly inefficient, but quite portable.
3433
3434 We also take care of some other basic things at this point, such
3435 as ensuring that the instance of the die info structure starts
3436 out completely zero'd and that curdie is initialized for use
3437 in error reporting if we have a problem with the current die.
3438
3439 NOTES
3440
3441 All DIE's must have at least a valid length, thus the minimum
3442 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3443 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3444 are forced to be TAG_padding DIES.
3445
3446 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3447 that if a padding DIE is used for alignment and the amount needed is
3448 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3449 enough to align to the next alignment boundry.
3450
3451 We do some basic sanity checking here, such as verifying that the
3452 length of the die would not cause it to overrun the recorded end of
3453 the buffer holding the DIE info. If we find a DIE that is either
3454 too small or too large, we force it's length to zero which should
3455 cause the caller to take appropriate action.
3456 */
3457
3458 static void
3459 basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
3460 {
3461 curdie = dip;
3462 memset (dip, 0, sizeof (struct dieinfo));
3463 dip->die = diep;
3464 dip->die_ref = dbroff + (diep - dbbase);
3465 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3466 objfile);
3467 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3468 ((diep + dip->die_length) > (dbbase + dbsize)))
3469 {
3470 complaint (&symfile_complaints,
3471 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)",
3472 DIE_ID, DIE_NAME, dip->die_length);
3473 dip->die_length = 0;
3474 }
3475 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3476 {
3477 dip->die_tag = TAG_padding;
3478 }
3479 else
3480 {
3481 diep += SIZEOF_DIE_LENGTH;
3482 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3483 objfile);
3484 }
3485 }
3486
3487 /*
3488
3489 LOCAL FUNCTION
3490
3491 completedieinfo -- finish reading the information for a given DIE
3492
3493 SYNOPSIS
3494
3495 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3496
3497 DESCRIPTION
3498
3499 Given a pointer to an already partially initialized die info structure,
3500 scan the raw DIE data and finish filling in the die info structure
3501 from the various attributes found.
3502
3503 Note that since there is no guarantee that the data is properly
3504 aligned in memory for the type of access required (indirection
3505 through anything other than a char pointer), and there is no
3506 guarantee that it is in the same byte order as the gdb host,
3507 we call a function which deals with both alignment and byte
3508 swapping issues. Possibly inefficient, but quite portable.
3509
3510 NOTES
3511
3512 Each time we are called, we increment the diecount variable, which
3513 keeps an approximate count of the number of dies processed for
3514 each compilation unit. This information is presented to the user
3515 if the info_verbose flag is set.
3516
3517 */
3518
3519 static void
3520 completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3521 {
3522 char *diep; /* Current pointer into raw DIE data */
3523 char *end; /* Terminate DIE scan here */
3524 unsigned short attr; /* Current attribute being scanned */
3525 unsigned short form; /* Form of the attribute */
3526 int nbytes; /* Size of next field to read */
3527
3528 diecount++;
3529 diep = dip->die;
3530 end = diep + dip->die_length;
3531 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3532 while (diep < end)
3533 {
3534 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3535 diep += SIZEOF_ATTRIBUTE;
3536 nbytes = attribute_size (attr);
3537 if (nbytes == -1)
3538 {
3539 complaint (&symfile_complaints,
3540 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes",
3541 DIE_ID, DIE_NAME);
3542 diep = end;
3543 continue;
3544 }
3545 switch (attr)
3546 {
3547 case AT_fund_type:
3548 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3549 objfile);
3550 break;
3551 case AT_ordering:
3552 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3553 objfile);
3554 break;
3555 case AT_bit_offset:
3556 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3557 objfile);
3558 break;
3559 case AT_sibling:
3560 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3561 objfile);
3562 break;
3563 case AT_stmt_list:
3564 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3565 objfile);
3566 dip->has_at_stmt_list = 1;
3567 break;
3568 case AT_low_pc:
3569 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3570 objfile);
3571 dip->at_low_pc += baseaddr;
3572 dip->has_at_low_pc = 1;
3573 break;
3574 case AT_high_pc:
3575 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 objfile);
3577 dip->at_high_pc += baseaddr;
3578 break;
3579 case AT_language:
3580 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3581 objfile);
3582 break;
3583 case AT_user_def_type:
3584 dip->at_user_def_type = target_to_host (diep, nbytes,
3585 GET_UNSIGNED, objfile);
3586 break;
3587 case AT_byte_size:
3588 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3589 objfile);
3590 dip->has_at_byte_size = 1;
3591 break;
3592 case AT_bit_size:
3593 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3594 objfile);
3595 break;
3596 case AT_member:
3597 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3598 objfile);
3599 break;
3600 case AT_discr:
3601 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
3603 break;
3604 case AT_location:
3605 dip->at_location = diep;
3606 break;
3607 case AT_mod_fund_type:
3608 dip->at_mod_fund_type = diep;
3609 break;
3610 case AT_subscr_data:
3611 dip->at_subscr_data = diep;
3612 break;
3613 case AT_mod_u_d_type:
3614 dip->at_mod_u_d_type = diep;
3615 break;
3616 case AT_element_list:
3617 dip->at_element_list = diep;
3618 dip->short_element_list = 0;
3619 break;
3620 case AT_short_element_list:
3621 dip->at_element_list = diep;
3622 dip->short_element_list = 1;
3623 break;
3624 case AT_discr_value:
3625 dip->at_discr_value = diep;
3626 break;
3627 case AT_string_length:
3628 dip->at_string_length = diep;
3629 break;
3630 case AT_name:
3631 dip->at_name = diep;
3632 break;
3633 case AT_comp_dir:
3634 /* For now, ignore any "hostname:" portion, since gdb doesn't
3635 know how to deal with it. (FIXME). */
3636 dip->at_comp_dir = strrchr (diep, ':');
3637 if (dip->at_comp_dir != NULL)
3638 {
3639 dip->at_comp_dir++;
3640 }
3641 else
3642 {
3643 dip->at_comp_dir = diep;
3644 }
3645 break;
3646 case AT_producer:
3647 dip->at_producer = diep;
3648 break;
3649 case AT_start_scope:
3650 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3651 objfile);
3652 break;
3653 case AT_stride_size:
3654 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3655 objfile);
3656 break;
3657 case AT_src_info:
3658 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3659 objfile);
3660 break;
3661 case AT_prototyped:
3662 dip->at_prototyped = diep;
3663 break;
3664 default:
3665 /* Found an attribute that we are unprepared to handle. However
3666 it is specifically one of the design goals of DWARF that
3667 consumers should ignore unknown attributes. As long as the
3668 form is one that we recognize (so we know how to skip it),
3669 we can just ignore the unknown attribute. */
3670 break;
3671 }
3672 form = FORM_FROM_ATTR (attr);
3673 switch (form)
3674 {
3675 case FORM_DATA2:
3676 diep += 2;
3677 break;
3678 case FORM_DATA4:
3679 case FORM_REF:
3680 diep += 4;
3681 break;
3682 case FORM_DATA8:
3683 diep += 8;
3684 break;
3685 case FORM_ADDR:
3686 diep += TARGET_FT_POINTER_SIZE (objfile);
3687 break;
3688 case FORM_BLOCK2:
3689 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3690 break;
3691 case FORM_BLOCK4:
3692 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3693 break;
3694 case FORM_STRING:
3695 diep += strlen (diep) + 1;
3696 break;
3697 default:
3698 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3699 diep = end;
3700 break;
3701 }
3702 }
3703 }
3704
3705 /*
3706
3707 LOCAL FUNCTION
3708
3709 target_to_host -- swap in target data to host
3710
3711 SYNOPSIS
3712
3713 target_to_host (char *from, int nbytes, int signextend,
3714 struct objfile *objfile)
3715
3716 DESCRIPTION
3717
3718 Given pointer to data in target format in FROM, a byte count for
3719 the size of the data in NBYTES, a flag indicating whether or not
3720 the data is signed in SIGNEXTEND, and a pointer to the current
3721 objfile in OBJFILE, convert the data to host format and return
3722 the converted value.
3723
3724 NOTES
3725
3726 FIXME: If we read data that is known to be signed, and expect to
3727 use it as signed data, then we need to explicitly sign extend the
3728 result until the bfd library is able to do this for us.
3729
3730 FIXME: Would a 32 bit target ever need an 8 byte result?
3731
3732 */
3733
3734 static CORE_ADDR
3735 target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3736 struct objfile *objfile)
3737 {
3738 CORE_ADDR rtnval;
3739
3740 switch (nbytes)
3741 {
3742 case 8:
3743 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3744 break;
3745 case 4:
3746 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3747 break;
3748 case 2:
3749 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3750 break;
3751 case 1:
3752 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3753 break;
3754 default:
3755 complaint (&symfile_complaints,
3756 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object",
3757 DIE_ID, DIE_NAME, nbytes);
3758 rtnval = 0;
3759 break;
3760 }
3761 return (rtnval);
3762 }
3763
3764 /*
3765
3766 LOCAL FUNCTION
3767
3768 attribute_size -- compute size of data for a DWARF attribute
3769
3770 SYNOPSIS
3771
3772 static int attribute_size (unsigned int attr)
3773
3774 DESCRIPTION
3775
3776 Given a DWARF attribute in ATTR, compute the size of the first
3777 piece of data associated with this attribute and return that
3778 size.
3779
3780 Returns -1 for unrecognized attributes.
3781
3782 */
3783
3784 static int
3785 attribute_size (unsigned int attr)
3786 {
3787 int nbytes; /* Size of next data for this attribute */
3788 unsigned short form; /* Form of the attribute */
3789
3790 form = FORM_FROM_ATTR (attr);
3791 switch (form)
3792 {
3793 case FORM_STRING: /* A variable length field is next */
3794 nbytes = 0;
3795 break;
3796 case FORM_DATA2: /* Next 2 byte field is the data itself */
3797 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3798 nbytes = 2;
3799 break;
3800 case FORM_DATA4: /* Next 4 byte field is the data itself */
3801 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3802 case FORM_REF: /* Next 4 byte field is a DIE offset */
3803 nbytes = 4;
3804 break;
3805 case FORM_DATA8: /* Next 8 byte field is the data itself */
3806 nbytes = 8;
3807 break;
3808 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3809 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3810 break;
3811 default:
3812 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
3813 nbytes = -1;
3814 break;
3815 }
3816 return (nbytes);
3817 }
This page took 0.112508 seconds and 4 git commands to generate.