cb98b83f74b772cf0ffae2bb89af04b2f5c03627
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "gdb-stabs.h"
33 #include "complaints.h"
34 #include "demangle.h"
35 #include "psympriv.h"
36 #include "filenames.h"
37 #include "probe.h"
38 #include "arch-utils.h"
39 #include "gdbtypes.h"
40 #include "value.h"
41 #include "infcall.h"
42 #include "gdbthread.h"
43 #include "inferior.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50 #include "mdebugread.h"
51
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_debug_names;
55 extern const struct sym_fns elf_sym_fns_lazy_psyms;
56
57 /* The struct elfinfo is available only during ELF symbol table and
58 psymtab reading. It is destroyed at the completion of psymtab-reading.
59 It's local to elf_symfile_read. */
60
61 struct elfinfo
62 {
63 asection *stabsect; /* Section pointer for .stab section */
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
66
67 /* Type for per-BFD data. */
68
69 typedef std::vector<std::unique_ptr<probe>> elfread_data;
70
71 /* Per-BFD data for probe info. */
72
73 static const struct bfd_key<elfread_data> probe_key;
74
75 /* Minimal symbols located at the GOT entries for .plt - that is the real
76 pointer where the given entry will jump to. It gets updated by the real
77 function address during lazy ld.so resolving in the inferior. These
78 minimal symbols are indexed for <tab>-completion. */
79
80 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
81
82 /* Locate the segments in ABFD. */
83
84 static struct symfile_segment_data *
85 elf_symfile_segments (bfd *abfd)
86 {
87 Elf_Internal_Phdr *phdrs, **segments;
88 long phdrs_size;
89 int num_phdrs, num_segments, num_sections, i;
90 asection *sect;
91 struct symfile_segment_data *data;
92
93 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
94 if (phdrs_size == -1)
95 return NULL;
96
97 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
98 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
99 if (num_phdrs == -1)
100 return NULL;
101
102 num_segments = 0;
103 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
104 for (i = 0; i < num_phdrs; i++)
105 if (phdrs[i].p_type == PT_LOAD)
106 segments[num_segments++] = &phdrs[i];
107
108 if (num_segments == 0)
109 return NULL;
110
111 data = XCNEW (struct symfile_segment_data);
112 data->num_segments = num_segments;
113 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
114 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
115
116 for (i = 0; i < num_segments; i++)
117 {
118 data->segment_bases[i] = segments[i]->p_vaddr;
119 data->segment_sizes[i] = segments[i]->p_memsz;
120 }
121
122 num_sections = bfd_count_sections (abfd);
123 data->segment_info = XCNEWVEC (int, num_sections);
124
125 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
126 {
127 int j;
128
129 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
130 continue;
131
132 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
133
134 for (j = 0; j < num_segments; j++)
135 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".mdebug") == 0)
189 {
190 ei->mdebugsect = sectp;
191 }
192 }
193
194 static struct minimal_symbol *
195 record_minimal_symbol (minimal_symbol_reader &reader,
196 const char *name, int name_len, bool copy_name,
197 CORE_ADDR address,
198 enum minimal_symbol_type ms_type,
199 asection *bfd_section, struct objfile *objfile)
200 {
201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
202
203 if (ms_type == mst_text || ms_type == mst_file_text
204 || ms_type == mst_text_gnu_ifunc)
205 address = gdbarch_addr_bits_remove (gdbarch, address);
206
207 return reader.record_full (name, name_len, copy_name, address,
208 ms_type,
209 gdb_bfd_section_index (objfile->obfd,
210 bfd_section));
211 }
212
213 /* Read the symbol table of an ELF file.
214
215 Given an objfile, a symbol table, and a flag indicating whether the
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
218
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
223 in data structures hung off the objfile's private data. */
224
225 #define ST_REGULAR 0
226 #define ST_DYNAMIC 1
227 #define ST_SYNTHETIC 2
228
229 static void
230 elf_symtab_read (minimal_symbol_reader &reader,
231 struct objfile *objfile, int type,
232 long number_of_symbols, asymbol **symbol_table,
233 bool copy_names)
234 {
235 struct gdbarch *gdbarch = get_objfile_arch (objfile);
236 asymbol *sym;
237 long i;
238 CORE_ADDR symaddr;
239 enum minimal_symbol_type ms_type;
240 /* Name of the last file symbol. This is either a constant string or is
241 saved on the objfile's filename cache. */
242 const char *filesymname = "";
243 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
244 int elf_make_msymbol_special_p
245 = gdbarch_elf_make_msymbol_special_p (gdbarch);
246
247 for (i = 0; i < number_of_symbols; i++)
248 {
249 sym = symbol_table[i];
250 if (sym->name == NULL || *sym->name == '\0')
251 {
252 /* Skip names that don't exist (shouldn't happen), or names
253 that are null strings (may happen). */
254 continue;
255 }
256
257 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
258 symbols which do not correspond to objects in the symbol table,
259 but have some other target-specific meaning. */
260 if (bfd_is_target_special_symbol (objfile->obfd, sym))
261 {
262 if (gdbarch_record_special_symbol_p (gdbarch))
263 gdbarch_record_special_symbol (gdbarch, objfile, sym);
264 continue;
265 }
266
267 if (type == ST_DYNAMIC
268 && sym->section == bfd_und_section_ptr
269 && (sym->flags & BSF_FUNCTION))
270 {
271 struct minimal_symbol *msym;
272 bfd *abfd = objfile->obfd;
273 asection *sect;
274
275 /* Symbol is a reference to a function defined in
276 a shared library.
277 If its value is non zero then it is usually the address
278 of the corresponding entry in the procedure linkage table,
279 plus the desired section offset.
280 If its value is zero then the dynamic linker has to resolve
281 the symbol. We are unable to find any meaningful address
282 for this symbol in the executable file, so we skip it. */
283 symaddr = sym->value;
284 if (symaddr == 0)
285 continue;
286
287 /* sym->section is the undefined section. However, we want to
288 record the section where the PLT stub resides with the
289 minimal symbol. Search the section table for the one that
290 covers the stub's address. */
291 for (sect = abfd->sections; sect != NULL; sect = sect->next)
292 {
293 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
294 continue;
295
296 if (symaddr >= bfd_get_section_vma (abfd, sect)
297 && symaddr < bfd_get_section_vma (abfd, sect)
298 + bfd_get_section_size (sect))
299 break;
300 }
301 if (!sect)
302 continue;
303
304 /* On ia64-hpux, we have discovered that the system linker
305 adds undefined symbols with nonzero addresses that cannot
306 be right (their address points inside the code of another
307 function in the .text section). This creates problems
308 when trying to determine which symbol corresponds to
309 a given address.
310
311 We try to detect those buggy symbols by checking which
312 section we think they correspond to. Normally, PLT symbols
313 are stored inside their own section, and the typical name
314 for that section is ".plt". So, if there is a ".plt"
315 section, and yet the section name of our symbol does not
316 start with ".plt", we ignore that symbol. */
317 if (!startswith (sect->name, ".plt")
318 && bfd_get_section_by_name (abfd, ".plt") != NULL)
319 continue;
320
321 msym = record_minimal_symbol
322 (reader, sym->name, strlen (sym->name), copy_names,
323 symaddr, mst_solib_trampoline, sect, objfile);
324 if (msym != NULL)
325 {
326 msym->filename = filesymname;
327 if (elf_make_msymbol_special_p)
328 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
329 }
330 continue;
331 }
332
333 /* If it is a nonstripped executable, do not enter dynamic
334 symbols, as the dynamic symbol table is usually a subset
335 of the main symbol table. */
336 if (type == ST_DYNAMIC && !stripped)
337 continue;
338 if (sym->flags & BSF_FILE)
339 {
340 filesymname
341 = ((const char *) objfile->per_bfd->filename_cache.insert
342 (sym->name, strlen (sym->name) + 1));
343 }
344 else if (sym->flags & BSF_SECTION_SYM)
345 continue;
346 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
347 | BSF_GNU_UNIQUE))
348 {
349 struct minimal_symbol *msym;
350
351 /* Select global/local/weak symbols. Note that bfd puts abs
352 symbols in their own section, so all symbols we are
353 interested in will have a section. */
354 /* Bfd symbols are section relative. */
355 symaddr = sym->value + sym->section->vma;
356 /* For non-absolute symbols, use the type of the section
357 they are relative to, to intuit text/data. Bfd provides
358 no way of figuring this out for absolute symbols. */
359 if (sym->section == bfd_abs_section_ptr)
360 {
361 /* This is a hack to get the minimal symbol type
362 right for Irix 5, which has absolute addresses
363 with special section indices for dynamic symbols.
364
365 NOTE: uweigand-20071112: Synthetic symbols do not
366 have an ELF-private part, so do not touch those. */
367 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
368 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
369
370 switch (shndx)
371 {
372 case SHN_MIPS_TEXT:
373 ms_type = mst_text;
374 break;
375 case SHN_MIPS_DATA:
376 ms_type = mst_data;
377 break;
378 case SHN_MIPS_ACOMMON:
379 ms_type = mst_bss;
380 break;
381 default:
382 ms_type = mst_abs;
383 }
384
385 /* If it is an Irix dynamic symbol, skip section name
386 symbols, relocate all others by section offset. */
387 if (ms_type != mst_abs)
388 {
389 if (sym->name[0] == '.')
390 continue;
391 }
392 }
393 else if (sym->section->flags & SEC_CODE)
394 {
395 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
396 {
397 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
398 ms_type = mst_text_gnu_ifunc;
399 else
400 ms_type = mst_text;
401 }
402 /* The BSF_SYNTHETIC check is there to omit ppc64 function
403 descriptors mistaken for static functions starting with 'L'.
404 */
405 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
406 && (sym->flags & BSF_SYNTHETIC) == 0)
407 || ((sym->flags & BSF_LOCAL)
408 && sym->name[0] == '$'
409 && sym->name[1] == 'L'))
410 /* Looks like a compiler-generated label. Skip
411 it. The assembler should be skipping these (to
412 keep executables small), but apparently with
413 gcc on the (deleted) delta m88k SVR4, it loses.
414 So to have us check too should be harmless (but
415 I encourage people to fix this in the assembler
416 instead of adding checks here). */
417 continue;
418 else
419 {
420 ms_type = mst_file_text;
421 }
422 }
423 else if (sym->section->flags & SEC_ALLOC)
424 {
425 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
426 {
427 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
428 {
429 ms_type = mst_data_gnu_ifunc;
430 }
431 else if (sym->section->flags & SEC_LOAD)
432 {
433 ms_type = mst_data;
434 }
435 else
436 {
437 ms_type = mst_bss;
438 }
439 }
440 else if (sym->flags & BSF_LOCAL)
441 {
442 if (sym->section->flags & SEC_LOAD)
443 {
444 ms_type = mst_file_data;
445 }
446 else
447 {
448 ms_type = mst_file_bss;
449 }
450 }
451 else
452 {
453 ms_type = mst_unknown;
454 }
455 }
456 else
457 {
458 /* FIXME: Solaris2 shared libraries include lots of
459 odd "absolute" and "undefined" symbols, that play
460 hob with actions like finding what function the PC
461 is in. Ignore them if they aren't text, data, or bss. */
462 /* ms_type = mst_unknown; */
463 continue; /* Skip this symbol. */
464 }
465 msym = record_minimal_symbol
466 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
467 ms_type, sym->section, objfile);
468
469 if (msym)
470 {
471 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
472 ELF-private part. */
473 if (type != ST_SYNTHETIC)
474 {
475 /* Pass symbol size field in via BFD. FIXME!!! */
476 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
477 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
478 }
479
480 msym->filename = filesymname;
481 if (elf_make_msymbol_special_p)
482 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
483 }
484
485 /* If we see a default versioned symbol, install it under
486 its version-less name. */
487 if (msym != NULL)
488 {
489 const char *atsign = strchr (sym->name, '@');
490
491 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
492 {
493 int len = atsign - sym->name;
494
495 record_minimal_symbol (reader, sym->name, len, true, symaddr,
496 ms_type, sym->section, objfile);
497 }
498 }
499
500 /* For @plt symbols, also record a trampoline to the
501 destination symbol. The @plt symbol will be used in
502 disassembly, and the trampoline will be used when we are
503 trying to find the target. */
504 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
505 {
506 int len = strlen (sym->name);
507
508 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
509 {
510 struct minimal_symbol *mtramp;
511
512 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
513 true, symaddr,
514 mst_solib_trampoline,
515 sym->section, objfile);
516 if (mtramp)
517 {
518 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
519 mtramp->created_by_gdb = 1;
520 mtramp->filename = filesymname;
521 if (elf_make_msymbol_special_p)
522 gdbarch_elf_make_msymbol_special (gdbarch,
523 sym, mtramp);
524 }
525 }
526 }
527 }
528 }
529 }
530
531 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
532 for later look ups of which function to call when user requests
533 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
534 library defining `function' we cannot yet know while reading OBJFILE which
535 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
536 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
537
538 static void
539 elf_rel_plt_read (minimal_symbol_reader &reader,
540 struct objfile *objfile, asymbol **dyn_symbol_table)
541 {
542 bfd *obfd = objfile->obfd;
543 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
544 asection *relplt, *got_plt;
545 bfd_size_type reloc_count, reloc;
546 struct gdbarch *gdbarch = get_objfile_arch (objfile);
547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548 size_t ptr_size = TYPE_LENGTH (ptr_type);
549
550 if (objfile->separate_debug_objfile_backlink)
551 return;
552
553 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
554 if (got_plt == NULL)
555 {
556 /* For platforms where there is no separate .got.plt. */
557 got_plt = bfd_get_section_by_name (obfd, ".got");
558 if (got_plt == NULL)
559 return;
560 }
561
562 /* Depending on system, we may find jump slots in a relocation
563 section for either .got.plt or .plt. */
564 asection *plt = bfd_get_section_by_name (obfd, ".plt");
565 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
566
567 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
568
569 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
570 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
571 {
572 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
573
574 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
575 {
576 if (this_hdr.sh_info == plt_elf_idx
577 || this_hdr.sh_info == got_plt_elf_idx)
578 break;
579 }
580 }
581 if (relplt == NULL)
582 return;
583
584 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
585 return;
586
587 std::string string_buffer;
588
589 /* Does ADDRESS reside in SECTION of OBFD? */
590 auto within_section = [obfd] (asection *section, CORE_ADDR address)
591 {
592 if (section == NULL)
593 return false;
594
595 return (bfd_get_section_vma (obfd, section) <= address
596 && (address < bfd_get_section_vma (obfd, section)
597 + bfd_get_section_size (section)));
598 };
599
600 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
601 for (reloc = 0; reloc < reloc_count; reloc++)
602 {
603 const char *name;
604 struct minimal_symbol *msym;
605 CORE_ADDR address;
606 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
607 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
608
609 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
610 address = relplt->relocation[reloc].address;
611
612 asection *msym_section;
613
614 /* Does the pointer reside in either the .got.plt or .plt
615 sections? */
616 if (within_section (got_plt, address))
617 msym_section = got_plt;
618 else if (within_section (plt, address))
619 msym_section = plt;
620 else
621 continue;
622
623 /* We cannot check if NAME is a reference to
624 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
625 symbol is undefined and the objfile having NAME defined may
626 not yet have been loaded. */
627
628 string_buffer.assign (name);
629 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
630
631 msym = record_minimal_symbol (reader, string_buffer.c_str (),
632 string_buffer.size (),
633 true, address, mst_slot_got_plt,
634 msym_section, objfile);
635 if (msym)
636 SET_MSYMBOL_SIZE (msym, ptr_size);
637 }
638 }
639
640 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
641
642 static const struct objfile_key<htab, htab_deleter>
643 elf_objfile_gnu_ifunc_cache_data;
644
645 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
646
647 struct elf_gnu_ifunc_cache
648 {
649 /* This is always a function entry address, not a function descriptor. */
650 CORE_ADDR addr;
651
652 char name[1];
653 };
654
655 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
656
657 static hashval_t
658 elf_gnu_ifunc_cache_hash (const void *a_voidp)
659 {
660 const struct elf_gnu_ifunc_cache *a
661 = (const struct elf_gnu_ifunc_cache *) a_voidp;
662
663 return htab_hash_string (a->name);
664 }
665
666 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
667
668 static int
669 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
670 {
671 const struct elf_gnu_ifunc_cache *a
672 = (const struct elf_gnu_ifunc_cache *) a_voidp;
673 const struct elf_gnu_ifunc_cache *b
674 = (const struct elf_gnu_ifunc_cache *) b_voidp;
675
676 return strcmp (a->name, b->name) == 0;
677 }
678
679 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
680 function entry address ADDR. Return 1 if NAME and ADDR are considered as
681 valid and therefore they were successfully recorded, return 0 otherwise.
682
683 Function does not expect a duplicate entry. Use
684 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
685 exists. */
686
687 static int
688 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
689 {
690 struct bound_minimal_symbol msym;
691 struct objfile *objfile;
692 htab_t htab;
693 struct elf_gnu_ifunc_cache entry_local, *entry_p;
694 void **slot;
695
696 msym = lookup_minimal_symbol_by_pc (addr);
697 if (msym.minsym == NULL)
698 return 0;
699 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
700 return 0;
701 objfile = msym.objfile;
702
703 /* If .plt jumps back to .plt the symbol is still deferred for later
704 resolution and it has no use for GDB. */
705 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
706 size_t len = strlen (target_name);
707
708 /* Note we check the symbol's name instead of checking whether the
709 symbol is in the .plt section because some systems have @plt
710 symbols in the .text section. */
711 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
712 return 0;
713
714 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
715 if (htab == NULL)
716 {
717 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
718 elf_gnu_ifunc_cache_eq,
719 NULL, xcalloc, xfree);
720 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
721 }
722
723 entry_local.addr = addr;
724 obstack_grow (&objfile->objfile_obstack, &entry_local,
725 offsetof (struct elf_gnu_ifunc_cache, name));
726 obstack_grow_str0 (&objfile->objfile_obstack, name);
727 entry_p
728 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
729
730 slot = htab_find_slot (htab, entry_p, INSERT);
731 if (*slot != NULL)
732 {
733 struct elf_gnu_ifunc_cache *entry_found_p
734 = (struct elf_gnu_ifunc_cache *) *slot;
735 struct gdbarch *gdbarch = get_objfile_arch (objfile);
736
737 if (entry_found_p->addr != addr)
738 {
739 /* This case indicates buggy inferior program, the resolved address
740 should never change. */
741
742 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
743 "function_address from %s to %s"),
744 name, paddress (gdbarch, entry_found_p->addr),
745 paddress (gdbarch, addr));
746 }
747
748 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
749 }
750 *slot = entry_p;
751
752 return 1;
753 }
754
755 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
756 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
757 is not NULL) and the function returns 1. It returns 0 otherwise.
758
759 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
760 function. */
761
762 static int
763 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
764 {
765 for (objfile *objfile : current_program_space->objfiles ())
766 {
767 htab_t htab;
768 struct elf_gnu_ifunc_cache *entry_p;
769 void **slot;
770
771 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
772 if (htab == NULL)
773 continue;
774
775 entry_p = ((struct elf_gnu_ifunc_cache *)
776 alloca (sizeof (*entry_p) + strlen (name)));
777 strcpy (entry_p->name, name);
778
779 slot = htab_find_slot (htab, entry_p, NO_INSERT);
780 if (slot == NULL)
781 continue;
782 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
783 gdb_assert (entry_p != NULL);
784
785 if (addr_p)
786 *addr_p = entry_p->addr;
787 return 1;
788 }
789
790 return 0;
791 }
792
793 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
794 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
795 is not NULL) and the function returns 1. It returns 0 otherwise.
796
797 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
798 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
799 prevent cache entries duplicates. */
800
801 static int
802 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
803 {
804 char *name_got_plt;
805 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
806
807 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
808 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
809
810 for (objfile *objfile : current_program_space->objfiles ())
811 {
812 bfd *obfd = objfile->obfd;
813 struct gdbarch *gdbarch = get_objfile_arch (objfile);
814 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
815 size_t ptr_size = TYPE_LENGTH (ptr_type);
816 CORE_ADDR pointer_address, addr;
817 asection *plt;
818 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
819 struct bound_minimal_symbol msym;
820
821 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
822 if (msym.minsym == NULL)
823 continue;
824 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
825 continue;
826 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
827
828 plt = bfd_get_section_by_name (obfd, ".plt");
829 if (plt == NULL)
830 continue;
831
832 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
833 continue;
834 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
835 continue;
836 addr = extract_typed_address (buf, ptr_type);
837 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
838 current_top_target ());
839 addr = gdbarch_addr_bits_remove (gdbarch, addr);
840
841 if (elf_gnu_ifunc_record_cache (name, addr))
842 {
843 if (addr_p != NULL)
844 *addr_p = addr;
845 return 1;
846 }
847 }
848
849 return 0;
850 }
851
852 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
853 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
854 is not NULL) and the function returns 1. It returns 0 otherwise.
855
856 Both the elf_objfile_gnu_ifunc_cache_data hash table and
857 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
858
859 static int
860 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
861 {
862 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
863 return 1;
864
865 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
866 return 1;
867
868 return 0;
869 }
870
871 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
872 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
873 is the entry point of the resolved STT_GNU_IFUNC target function to call.
874 */
875
876 static CORE_ADDR
877 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
878 {
879 const char *name_at_pc;
880 CORE_ADDR start_at_pc, address;
881 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
882 struct value *function, *address_val;
883 CORE_ADDR hwcap = 0;
884 struct value *hwcap_val;
885
886 /* Try first any non-intrusive methods without an inferior call. */
887
888 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
889 && start_at_pc == pc)
890 {
891 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
892 return address;
893 }
894 else
895 name_at_pc = NULL;
896
897 function = allocate_value (func_func_type);
898 VALUE_LVAL (function) = lval_memory;
899 set_value_address (function, pc);
900
901 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
902 parameter. FUNCTION is the function entry address. ADDRESS may be a
903 function descriptor. */
904
905 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
906 hwcap_val = value_from_longest (builtin_type (gdbarch)
907 ->builtin_unsigned_long, hwcap);
908 address_val = call_function_by_hand (function, NULL, hwcap_val);
909 address = value_as_address (address_val);
910 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
911 address = gdbarch_addr_bits_remove (gdbarch, address);
912
913 if (name_at_pc)
914 elf_gnu_ifunc_record_cache (name_at_pc, address);
915
916 return address;
917 }
918
919 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
920
921 static void
922 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
923 {
924 struct breakpoint *b_return;
925 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
926 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
927 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
928 int thread_id = inferior_thread ()->global_num;
929
930 gdb_assert (b->type == bp_gnu_ifunc_resolver);
931
932 for (b_return = b->related_breakpoint; b_return != b;
933 b_return = b_return->related_breakpoint)
934 {
935 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
936 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
937 gdb_assert (frame_id_p (b_return->frame_id));
938
939 if (b_return->thread == thread_id
940 && b_return->loc->requested_address == prev_pc
941 && frame_id_eq (b_return->frame_id, prev_frame_id))
942 break;
943 }
944
945 if (b_return == b)
946 {
947 /* No need to call find_pc_line for symbols resolving as this is only
948 a helper breakpointer never shown to the user. */
949
950 symtab_and_line sal;
951 sal.pspace = current_inferior ()->pspace;
952 sal.pc = prev_pc;
953 sal.section = find_pc_overlay (sal.pc);
954 sal.explicit_pc = 1;
955 b_return
956 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
957 prev_frame_id,
958 bp_gnu_ifunc_resolver_return).release ();
959
960 /* set_momentary_breakpoint invalidates PREV_FRAME. */
961 prev_frame = NULL;
962
963 /* Add new b_return to the ring list b->related_breakpoint. */
964 gdb_assert (b_return->related_breakpoint == b_return);
965 b_return->related_breakpoint = b->related_breakpoint;
966 b->related_breakpoint = b_return;
967 }
968 }
969
970 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
971
972 static void
973 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
974 {
975 thread_info *thread = inferior_thread ();
976 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
977 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
978 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
979 struct regcache *regcache = get_thread_regcache (thread);
980 struct value *func_func;
981 struct value *value;
982 CORE_ADDR resolved_address, resolved_pc;
983
984 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
985
986 while (b->related_breakpoint != b)
987 {
988 struct breakpoint *b_next = b->related_breakpoint;
989
990 switch (b->type)
991 {
992 case bp_gnu_ifunc_resolver:
993 break;
994 case bp_gnu_ifunc_resolver_return:
995 delete_breakpoint (b);
996 break;
997 default:
998 internal_error (__FILE__, __LINE__,
999 _("handle_inferior_event: Invalid "
1000 "gnu-indirect-function breakpoint type %d"),
1001 (int) b->type);
1002 }
1003 b = b_next;
1004 }
1005 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1006 gdb_assert (b->loc->next == NULL);
1007
1008 func_func = allocate_value (func_func_type);
1009 VALUE_LVAL (func_func) = lval_memory;
1010 set_value_address (func_func, b->loc->related_address);
1011
1012 value = allocate_value (value_type);
1013 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1014 value_contents_raw (value), NULL);
1015 resolved_address = value_as_address (value);
1016 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1017 resolved_address,
1018 current_top_target ());
1019 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1020
1021 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1022 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1023 resolved_pc);
1024
1025 b->type = bp_breakpoint;
1026 update_breakpoint_locations (b, current_program_space,
1027 find_function_start_sal (resolved_pc, NULL, true),
1028 {});
1029 }
1030
1031 /* A helper function for elf_symfile_read that reads the minimal
1032 symbols. */
1033
1034 static void
1035 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1036 const struct elfinfo *ei)
1037 {
1038 bfd *synth_abfd, *abfd = objfile->obfd;
1039 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1040 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1041 asymbol *synthsyms;
1042 struct dbx_symfile_info *dbx;
1043
1044 if (symtab_create_debug)
1045 {
1046 fprintf_unfiltered (gdb_stdlog,
1047 "Reading minimal symbols of objfile %s ...\n",
1048 objfile_name (objfile));
1049 }
1050
1051 /* If we already have minsyms, then we can skip some work here.
1052 However, if there were stabs or mdebug sections, we go ahead and
1053 redo all the work anyway, because the psym readers for those
1054 kinds of debuginfo need extra information found here. This can
1055 go away once all types of symbols are in the per-BFD object. */
1056 if (objfile->per_bfd->minsyms_read
1057 && ei->stabsect == NULL
1058 && ei->mdebugsect == NULL)
1059 {
1060 if (symtab_create_debug)
1061 fprintf_unfiltered (gdb_stdlog,
1062 "... minimal symbols previously read\n");
1063 return;
1064 }
1065
1066 minimal_symbol_reader reader (objfile);
1067
1068 /* Allocate struct to keep track of the symfile. */
1069 dbx = XCNEW (struct dbx_symfile_info);
1070 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1071
1072 /* Process the normal ELF symbol table first. */
1073
1074 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1075 if (storage_needed < 0)
1076 error (_("Can't read symbols from %s: %s"),
1077 bfd_get_filename (objfile->obfd),
1078 bfd_errmsg (bfd_get_error ()));
1079
1080 if (storage_needed > 0)
1081 {
1082 /* Memory gets permanently referenced from ABFD after
1083 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1084
1085 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1086 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1087
1088 if (symcount < 0)
1089 error (_("Can't read symbols from %s: %s"),
1090 bfd_get_filename (objfile->obfd),
1091 bfd_errmsg (bfd_get_error ()));
1092
1093 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1094 false);
1095 }
1096
1097 /* Add the dynamic symbols. */
1098
1099 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1100
1101 if (storage_needed > 0)
1102 {
1103 /* Memory gets permanently referenced from ABFD after
1104 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1105 It happens only in the case when elf_slurp_reloc_table sees
1106 asection->relocation NULL. Determining which section is asection is
1107 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1108 implementation detail, though. */
1109
1110 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1111 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1112 dyn_symbol_table);
1113
1114 if (dynsymcount < 0)
1115 error (_("Can't read symbols from %s: %s"),
1116 bfd_get_filename (objfile->obfd),
1117 bfd_errmsg (bfd_get_error ()));
1118
1119 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1120 dyn_symbol_table, false);
1121
1122 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1123 }
1124
1125 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1126 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1127
1128 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1129 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1130 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1131 read the code address from .opd while it reads the .symtab section from
1132 a separate debug info file as the .opd section is SHT_NOBITS there.
1133
1134 With SYNTH_ABFD the .opd section will be read from the original
1135 backlinked binary where it is valid. */
1136
1137 if (objfile->separate_debug_objfile_backlink)
1138 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1139 else
1140 synth_abfd = abfd;
1141
1142 /* Add synthetic symbols - for instance, names for any PLT entries. */
1143
1144 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1145 dynsymcount, dyn_symbol_table,
1146 &synthsyms);
1147 if (synthcount > 0)
1148 {
1149 long i;
1150
1151 std::unique_ptr<asymbol *[]>
1152 synth_symbol_table (new asymbol *[synthcount]);
1153 for (i = 0; i < synthcount; i++)
1154 synth_symbol_table[i] = synthsyms + i;
1155 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1156 synth_symbol_table.get (), true);
1157
1158 xfree (synthsyms);
1159 synthsyms = NULL;
1160 }
1161
1162 /* Install any minimal symbols that have been collected as the current
1163 minimal symbols for this objfile. The debug readers below this point
1164 should not generate new minimal symbols; if they do it's their
1165 responsibility to install them. "mdebug" appears to be the only one
1166 which will do this. */
1167
1168 reader.install ();
1169
1170 if (symtab_create_debug)
1171 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1172 }
1173
1174 /* Scan and build partial symbols for a symbol file.
1175 We have been initialized by a call to elf_symfile_init, which
1176 currently does nothing.
1177
1178 This function only does the minimum work necessary for letting the
1179 user "name" things symbolically; it does not read the entire symtab.
1180 Instead, it reads the external and static symbols and puts them in partial
1181 symbol tables. When more extensive information is requested of a
1182 file, the corresponding partial symbol table is mutated into a full
1183 fledged symbol table by going back and reading the symbols
1184 for real.
1185
1186 We look for sections with specific names, to tell us what debug
1187 format to look for: FIXME!!!
1188
1189 elfstab_build_psymtabs() handles STABS symbols;
1190 mdebug_build_psymtabs() handles ECOFF debugging information.
1191
1192 Note that ELF files have a "minimal" symbol table, which looks a lot
1193 like a COFF symbol table, but has only the minimal information necessary
1194 for linking. We process this also, and use the information to
1195 build gdb's minimal symbol table. This gives us some minimal debugging
1196 capability even for files compiled without -g. */
1197
1198 static void
1199 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1200 {
1201 bfd *abfd = objfile->obfd;
1202 struct elfinfo ei;
1203
1204 memset ((char *) &ei, 0, sizeof (ei));
1205 if (!(objfile->flags & OBJF_READNEVER))
1206 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1207
1208 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1209
1210 /* ELF debugging information is inserted into the psymtab in the
1211 order of least informative first - most informative last. Since
1212 the psymtab table is searched `most recent insertion first' this
1213 increases the probability that more detailed debug information
1214 for a section is found.
1215
1216 For instance, an object file might contain both .mdebug (XCOFF)
1217 and .debug_info (DWARF2) sections then .mdebug is inserted first
1218 (searched last) and DWARF2 is inserted last (searched first). If
1219 we don't do this then the XCOFF info is found first - for code in
1220 an included file XCOFF info is useless. */
1221
1222 if (ei.mdebugsect)
1223 {
1224 const struct ecoff_debug_swap *swap;
1225
1226 /* .mdebug section, presumably holding ECOFF debugging
1227 information. */
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229 if (swap)
1230 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1231 }
1232 if (ei.stabsect)
1233 {
1234 asection *str_sect;
1235
1236 /* Stab sections have an associated string table that looks like
1237 a separate section. */
1238 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1239
1240 /* FIXME should probably warn about a stab section without a stabstr. */
1241 if (str_sect)
1242 elfstab_build_psymtabs (objfile,
1243 ei.stabsect,
1244 str_sect->filepos,
1245 bfd_section_size (abfd, str_sect));
1246 }
1247
1248 if (dwarf2_has_info (objfile, NULL))
1249 {
1250 dw_index_kind index_kind;
1251
1252 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1253 debug information present in OBJFILE. If there is such debug
1254 info present never use an index. */
1255 if (!objfile_has_partial_symbols (objfile)
1256 && dwarf2_initialize_objfile (objfile, &index_kind))
1257 {
1258 switch (index_kind)
1259 {
1260 case dw_index_kind::GDB_INDEX:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1262 break;
1263 case dw_index_kind::DEBUG_NAMES:
1264 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1265 break;
1266 }
1267 }
1268 else
1269 {
1270 /* It is ok to do this even if the stabs reader made some
1271 partial symbols, because OBJF_PSYMTABS_READ has not been
1272 set, and so our lazy reader function will still be called
1273 when needed. */
1274 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1275 }
1276 }
1277 /* If the file has its own symbol tables it has no separate debug
1278 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1279 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1280 `.note.gnu.build-id'.
1281
1282 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1283 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1284 an objfile via find_separate_debug_file_in_section there was no separate
1285 debug info available. Therefore do not attempt to search for another one,
1286 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1287 be NULL and we would possibly violate it. */
1288
1289 else if (!objfile_has_partial_symbols (objfile)
1290 && objfile->separate_debug_objfile == NULL
1291 && objfile->separate_debug_objfile_backlink == NULL)
1292 {
1293 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1294
1295 if (debugfile.empty ())
1296 debugfile = find_separate_debug_file_by_debuglink (objfile);
1297
1298 if (!debugfile.empty ())
1299 {
1300 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1301
1302 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1303 symfile_flags, objfile);
1304 }
1305 }
1306 }
1307
1308 /* Callback to lazily read psymtabs. */
1309
1310 static void
1311 read_psyms (struct objfile *objfile)
1312 {
1313 if (dwarf2_has_info (objfile, NULL))
1314 dwarf2_build_psymtabs (objfile);
1315 }
1316
1317 /* Initialize anything that needs initializing when a completely new symbol
1318 file is specified (not just adding some symbols from another file, e.g. a
1319 shared library).
1320
1321 We reinitialize buildsym, since we may be reading stabs from an ELF
1322 file. */
1323
1324 static void
1325 elf_new_init (struct objfile *ignore)
1326 {
1327 stabsread_new_init ();
1328 }
1329
1330 /* Perform any local cleanups required when we are done with a particular
1331 objfile. I.E, we are in the process of discarding all symbol information
1332 for an objfile, freeing up all memory held for it, and unlinking the
1333 objfile struct from the global list of known objfiles. */
1334
1335 static void
1336 elf_symfile_finish (struct objfile *objfile)
1337 {
1338 }
1339
1340 /* ELF specific initialization routine for reading symbols. */
1341
1342 static void
1343 elf_symfile_init (struct objfile *objfile)
1344 {
1345 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1346 find this causes a significant slowdown in gdb then we could
1347 set it in the debug symbol readers only when necessary. */
1348 objfile->flags |= OBJF_REORDERED;
1349 }
1350
1351 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1352
1353 static const elfread_data &
1354 elf_get_probes (struct objfile *objfile)
1355 {
1356 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1357
1358 if (probes_per_bfd == NULL)
1359 {
1360 probes_per_bfd = probe_key.emplace (objfile->obfd);
1361
1362 /* Here we try to gather information about all types of probes from the
1363 objfile. */
1364 for (const static_probe_ops *ops : all_static_probe_ops)
1365 ops->get_probes (probes_per_bfd, objfile);
1366 }
1367
1368 return *probes_per_bfd;
1369 }
1370
1371 \f
1372
1373 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1374
1375 static const struct sym_probe_fns elf_probe_fns =
1376 {
1377 elf_get_probes, /* sym_get_probes */
1378 };
1379
1380 /* Register that we are able to handle ELF object file formats. */
1381
1382 static const struct sym_fns elf_sym_fns =
1383 {
1384 elf_new_init, /* init anything gbl to entire symtab */
1385 elf_symfile_init, /* read initial info, setup for sym_read() */
1386 elf_symfile_read, /* read a symbol file into symtab */
1387 NULL, /* sym_read_psymbols */
1388 elf_symfile_finish, /* finished with file, cleanup */
1389 default_symfile_offsets, /* Translate ext. to int. relocation */
1390 elf_symfile_segments, /* Get segment information from a file. */
1391 NULL,
1392 default_symfile_relocate, /* Relocate a debug section. */
1393 &elf_probe_fns, /* sym_probe_fns */
1394 &psym_functions
1395 };
1396
1397 /* The same as elf_sym_fns, but not registered and lazily reads
1398 psymbols. */
1399
1400 const struct sym_fns elf_sym_fns_lazy_psyms =
1401 {
1402 elf_new_init, /* init anything gbl to entire symtab */
1403 elf_symfile_init, /* read initial info, setup for sym_read() */
1404 elf_symfile_read, /* read a symbol file into symtab */
1405 read_psyms, /* sym_read_psymbols */
1406 elf_symfile_finish, /* finished with file, cleanup */
1407 default_symfile_offsets, /* Translate ext. to int. relocation */
1408 elf_symfile_segments, /* Get segment information from a file. */
1409 NULL,
1410 default_symfile_relocate, /* Relocate a debug section. */
1411 &elf_probe_fns, /* sym_probe_fns */
1412 &psym_functions
1413 };
1414
1415 /* The same as elf_sym_fns, but not registered and uses the
1416 DWARF-specific GNU index rather than psymtab. */
1417 const struct sym_fns elf_sym_fns_gdb_index =
1418 {
1419 elf_new_init, /* init anything gbl to entire symab */
1420 elf_symfile_init, /* read initial info, setup for sym_red() */
1421 elf_symfile_read, /* read a symbol file into symtab */
1422 NULL, /* sym_read_psymbols */
1423 elf_symfile_finish, /* finished with file, cleanup */
1424 default_symfile_offsets, /* Translate ext. to int. relocatin */
1425 elf_symfile_segments, /* Get segment information from a file. */
1426 NULL,
1427 default_symfile_relocate, /* Relocate a debug section. */
1428 &elf_probe_fns, /* sym_probe_fns */
1429 &dwarf2_gdb_index_functions
1430 };
1431
1432 /* The same as elf_sym_fns, but not registered and uses the
1433 DWARF-specific .debug_names index rather than psymtab. */
1434 const struct sym_fns elf_sym_fns_debug_names =
1435 {
1436 elf_new_init, /* init anything gbl to entire symab */
1437 elf_symfile_init, /* read initial info, setup for sym_red() */
1438 elf_symfile_read, /* read a symbol file into symtab */
1439 NULL, /* sym_read_psymbols */
1440 elf_symfile_finish, /* finished with file, cleanup */
1441 default_symfile_offsets, /* Translate ext. to int. relocatin */
1442 elf_symfile_segments, /* Get segment information from a file. */
1443 NULL,
1444 default_symfile_relocate, /* Relocate a debug section. */
1445 &elf_probe_fns, /* sym_probe_fns */
1446 &dwarf2_debug_names_functions
1447 };
1448
1449 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1450
1451 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1452 {
1453 elf_gnu_ifunc_resolve_addr,
1454 elf_gnu_ifunc_resolve_name,
1455 elf_gnu_ifunc_resolver_stop,
1456 elf_gnu_ifunc_resolver_return_stop
1457 };
1458
1459 void
1460 _initialize_elfread (void)
1461 {
1462 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1463
1464 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1465 }
This page took 0.075653 seconds and 3 git commands to generate.