Code cleanup: Add objfile_name accessor
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2013 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "gdb_string.h"
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48
49 extern void _initialize_elfread (void);
50
51 /* Forward declarations. */
52 static const struct sym_fns elf_sym_fns_gdb_index;
53 static const struct sym_fns elf_sym_fns_lazy_psyms;
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *stabindexsect; /* Section pointer for .stab.index section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-objfile data for probe info. */
67
68 static const struct objfile_data *probe_key = NULL;
69
70 static void free_elfinfo (void *);
71
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
79 /* Locate the segments in ABFD. */
80
81 static struct symfile_segment_data *
82 elf_symfile_segments (bfd *abfd)
83 {
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XZALLOC (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
111 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCALLOC (num_sections, int);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".stab.index") == 0)
189 {
190 ei->stabindexsect = sectp;
191 }
192 else if (strcmp (sectp->name, ".mdebug") == 0)
193 {
194 ei->mdebugsect = sectp;
195 }
196 }
197
198 static struct minimal_symbol *
199 record_minimal_symbol (const char *name, int name_len, int copy_name,
200 CORE_ADDR address,
201 enum minimal_symbol_type ms_type,
202 asection *bfd_section, struct objfile *objfile)
203 {
204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
205
206 if (ms_type == mst_text || ms_type == mst_file_text
207 || ms_type == mst_text_gnu_ifunc)
208 address = gdbarch_addr_bits_remove (gdbarch, address);
209
210 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
211 ms_type,
212 gdb_bfd_section_index (objfile->obfd,
213 bfd_section),
214 objfile);
215 }
216
217 /* Read the symbol table of an ELF file.
218
219 Given an objfile, a symbol table, and a flag indicating whether the
220 symbol table contains regular, dynamic, or synthetic symbols, add all
221 the global function and data symbols to the minimal symbol table.
222
223 In stabs-in-ELF, as implemented by Sun, there are some local symbols
224 defined in the ELF symbol table, which can be used to locate
225 the beginnings of sections from each ".o" file that was linked to
226 form the executable objfile. We gather any such info and record it
227 in data structures hung off the objfile's private data. */
228
229 #define ST_REGULAR 0
230 #define ST_DYNAMIC 1
231 #define ST_SYNTHETIC 2
232
233 static void
234 elf_symtab_read (struct objfile *objfile, int type,
235 long number_of_symbols, asymbol **symbol_table,
236 int copy_names)
237 {
238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
239 asymbol *sym;
240 long i;
241 CORE_ADDR symaddr;
242 CORE_ADDR offset;
243 enum minimal_symbol_type ms_type;
244 /* If sectinfo is nonNULL, it contains section info that should end up
245 filed in the objfile. */
246 struct stab_section_info *sectinfo = NULL;
247 /* If filesym is nonzero, it points to a file symbol, but we haven't
248 seen any section info for it yet. */
249 asymbol *filesym = 0;
250 /* Name of filesym. This is either a constant string or is saved on
251 the objfile's filename cache. */
252 const char *filesymname = "";
253 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
254 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
255
256 for (i = 0; i < number_of_symbols; i++)
257 {
258 sym = symbol_table[i];
259 if (sym->name == NULL || *sym->name == '\0')
260 {
261 /* Skip names that don't exist (shouldn't happen), or names
262 that are null strings (may happen). */
263 continue;
264 }
265
266 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
267 symbols which do not correspond to objects in the symbol table,
268 but have some other target-specific meaning. */
269 if (bfd_is_target_special_symbol (objfile->obfd, sym))
270 {
271 if (gdbarch_record_special_symbol_p (gdbarch))
272 gdbarch_record_special_symbol (gdbarch, objfile, sym);
273 continue;
274 }
275
276 offset = ANOFFSET (objfile->section_offsets,
277 gdb_bfd_section_index (objfile->obfd, sym->section));
278 if (type == ST_DYNAMIC
279 && sym->section == bfd_und_section_ptr
280 && (sym->flags & BSF_FUNCTION))
281 {
282 struct minimal_symbol *msym;
283 bfd *abfd = objfile->obfd;
284 asection *sect;
285
286 /* Symbol is a reference to a function defined in
287 a shared library.
288 If its value is non zero then it is usually the address
289 of the corresponding entry in the procedure linkage table,
290 plus the desired section offset.
291 If its value is zero then the dynamic linker has to resolve
292 the symbol. We are unable to find any meaningful address
293 for this symbol in the executable file, so we skip it. */
294 symaddr = sym->value;
295 if (symaddr == 0)
296 continue;
297
298 /* sym->section is the undefined section. However, we want to
299 record the section where the PLT stub resides with the
300 minimal symbol. Search the section table for the one that
301 covers the stub's address. */
302 for (sect = abfd->sections; sect != NULL; sect = sect->next)
303 {
304 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
305 continue;
306
307 if (symaddr >= bfd_get_section_vma (abfd, sect)
308 && symaddr < bfd_get_section_vma (abfd, sect)
309 + bfd_get_section_size (sect))
310 break;
311 }
312 if (!sect)
313 continue;
314
315 /* On ia64-hpux, we have discovered that the system linker
316 adds undefined symbols with nonzero addresses that cannot
317 be right (their address points inside the code of another
318 function in the .text section). This creates problems
319 when trying to determine which symbol corresponds to
320 a given address.
321
322 We try to detect those buggy symbols by checking which
323 section we think they correspond to. Normally, PLT symbols
324 are stored inside their own section, and the typical name
325 for that section is ".plt". So, if there is a ".plt"
326 section, and yet the section name of our symbol does not
327 start with ".plt", we ignore that symbol. */
328 if (strncmp (sect->name, ".plt", 4) != 0
329 && bfd_get_section_by_name (abfd, ".plt") != NULL)
330 continue;
331
332 symaddr += ANOFFSET (objfile->section_offsets,
333 gdb_bfd_section_index (objfile->obfd, sect));
334
335 msym = record_minimal_symbol
336 (sym->name, strlen (sym->name), copy_names,
337 symaddr, mst_solib_trampoline, sect, objfile);
338 if (msym != NULL)
339 msym->filename = filesymname;
340 continue;
341 }
342
343 /* If it is a nonstripped executable, do not enter dynamic
344 symbols, as the dynamic symbol table is usually a subset
345 of the main symbol table. */
346 if (type == ST_DYNAMIC && !stripped)
347 continue;
348 if (sym->flags & BSF_FILE)
349 {
350 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
351 Chain any old one onto the objfile; remember new sym. */
352 if (sectinfo != NULL)
353 {
354 sectinfo->next = dbx->stab_section_info;
355 dbx->stab_section_info = sectinfo;
356 sectinfo = NULL;
357 }
358 filesym = sym;
359 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
360 objfile->per_bfd->filename_cache);
361 }
362 else if (sym->flags & BSF_SECTION_SYM)
363 continue;
364 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
365 | BSF_GNU_UNIQUE))
366 {
367 struct minimal_symbol *msym;
368
369 /* Select global/local/weak symbols. Note that bfd puts abs
370 symbols in their own section, so all symbols we are
371 interested in will have a section. */
372 /* Bfd symbols are section relative. */
373 symaddr = sym->value + sym->section->vma;
374 /* Relocate all non-absolute and non-TLS symbols by the
375 section offset. */
376 if (sym->section != bfd_abs_section_ptr
377 && !(sym->section->flags & SEC_THREAD_LOCAL))
378 {
379 symaddr += offset;
380 }
381 /* For non-absolute symbols, use the type of the section
382 they are relative to, to intuit text/data. Bfd provides
383 no way of figuring this out for absolute symbols. */
384 if (sym->section == bfd_abs_section_ptr)
385 {
386 /* This is a hack to get the minimal symbol type
387 right for Irix 5, which has absolute addresses
388 with special section indices for dynamic symbols.
389
390 NOTE: uweigand-20071112: Synthetic symbols do not
391 have an ELF-private part, so do not touch those. */
392 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
393 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
394
395 switch (shndx)
396 {
397 case SHN_MIPS_TEXT:
398 ms_type = mst_text;
399 break;
400 case SHN_MIPS_DATA:
401 ms_type = mst_data;
402 break;
403 case SHN_MIPS_ACOMMON:
404 ms_type = mst_bss;
405 break;
406 default:
407 ms_type = mst_abs;
408 }
409
410 /* If it is an Irix dynamic symbol, skip section name
411 symbols, relocate all others by section offset. */
412 if (ms_type != mst_abs)
413 {
414 if (sym->name[0] == '.')
415 continue;
416 symaddr += offset;
417 }
418 }
419 else if (sym->section->flags & SEC_CODE)
420 {
421 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
422 {
423 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
424 ms_type = mst_text_gnu_ifunc;
425 else
426 ms_type = mst_text;
427 }
428 /* The BSF_SYNTHETIC check is there to omit ppc64 function
429 descriptors mistaken for static functions starting with 'L'.
430 */
431 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
432 && (sym->flags & BSF_SYNTHETIC) == 0)
433 || ((sym->flags & BSF_LOCAL)
434 && sym->name[0] == '$'
435 && sym->name[1] == 'L'))
436 /* Looks like a compiler-generated label. Skip
437 it. The assembler should be skipping these (to
438 keep executables small), but apparently with
439 gcc on the (deleted) delta m88k SVR4, it loses.
440 So to have us check too should be harmless (but
441 I encourage people to fix this in the assembler
442 instead of adding checks here). */
443 continue;
444 else
445 {
446 ms_type = mst_file_text;
447 }
448 }
449 else if (sym->section->flags & SEC_ALLOC)
450 {
451 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
452 {
453 if (sym->section->flags & SEC_LOAD)
454 {
455 ms_type = mst_data;
456 }
457 else
458 {
459 ms_type = mst_bss;
460 }
461 }
462 else if (sym->flags & BSF_LOCAL)
463 {
464 /* Named Local variable in a Data section.
465 Check its name for stabs-in-elf. */
466 int special_local_sect;
467
468 if (strcmp ("Bbss.bss", sym->name) == 0)
469 special_local_sect = SECT_OFF_BSS (objfile);
470 else if (strcmp ("Ddata.data", sym->name) == 0)
471 special_local_sect = SECT_OFF_DATA (objfile);
472 else if (strcmp ("Drodata.rodata", sym->name) == 0)
473 special_local_sect = SECT_OFF_RODATA (objfile);
474 else
475 special_local_sect = -1;
476 if (special_local_sect >= 0)
477 {
478 /* Found a special local symbol. Allocate a
479 sectinfo, if needed, and fill it in. */
480 if (sectinfo == NULL)
481 {
482 int max_index;
483 size_t size;
484
485 max_index = SECT_OFF_BSS (objfile);
486 if (objfile->sect_index_data > max_index)
487 max_index = objfile->sect_index_data;
488 if (objfile->sect_index_rodata > max_index)
489 max_index = objfile->sect_index_rodata;
490
491 /* max_index is the largest index we'll
492 use into this array, so we must
493 allocate max_index+1 elements for it.
494 However, 'struct stab_section_info'
495 already includes one element, so we
496 need to allocate max_index aadditional
497 elements. */
498 size = (sizeof (struct stab_section_info)
499 + (sizeof (CORE_ADDR) * max_index));
500 sectinfo = (struct stab_section_info *)
501 xmalloc (size);
502 memset (sectinfo, 0, size);
503 sectinfo->num_sections = max_index;
504 if (filesym == NULL)
505 {
506 complaint (&symfile_complaints,
507 _("elf/stab section information %s "
508 "without a preceding file symbol"),
509 sym->name);
510 }
511 else
512 {
513 sectinfo->filename =
514 (char *) filesym->name;
515 }
516 }
517 if (sectinfo->sections[special_local_sect] != 0)
518 complaint (&symfile_complaints,
519 _("duplicated elf/stab section "
520 "information for %s"),
521 sectinfo->filename);
522 /* BFD symbols are section relative. */
523 symaddr = sym->value + sym->section->vma;
524 /* Relocate non-absolute symbols by the
525 section offset. */
526 if (sym->section != bfd_abs_section_ptr)
527 symaddr += offset;
528 sectinfo->sections[special_local_sect] = symaddr;
529 /* The special local symbols don't go in the
530 minimal symbol table, so ignore this one. */
531 continue;
532 }
533 /* Not a special stabs-in-elf symbol, do regular
534 symbol processing. */
535 if (sym->section->flags & SEC_LOAD)
536 {
537 ms_type = mst_file_data;
538 }
539 else
540 {
541 ms_type = mst_file_bss;
542 }
543 }
544 else
545 {
546 ms_type = mst_unknown;
547 }
548 }
549 else
550 {
551 /* FIXME: Solaris2 shared libraries include lots of
552 odd "absolute" and "undefined" symbols, that play
553 hob with actions like finding what function the PC
554 is in. Ignore them if they aren't text, data, or bss. */
555 /* ms_type = mst_unknown; */
556 continue; /* Skip this symbol. */
557 }
558 msym = record_minimal_symbol
559 (sym->name, strlen (sym->name), copy_names, symaddr,
560 ms_type, sym->section, objfile);
561
562 if (msym)
563 {
564 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
565 ELF-private part. */
566 if (type != ST_SYNTHETIC)
567 {
568 /* Pass symbol size field in via BFD. FIXME!!! */
569 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
570 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
571 }
572
573 msym->filename = filesymname;
574 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
575 }
576
577 /* If we see a default versioned symbol, install it under
578 its version-less name. */
579 if (msym != NULL)
580 {
581 const char *atsign = strchr (sym->name, '@');
582
583 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
584 {
585 int len = atsign - sym->name;
586
587 record_minimal_symbol (sym->name, len, 1, symaddr,
588 ms_type, sym->section, objfile);
589 }
590 }
591
592 /* For @plt symbols, also record a trampoline to the
593 destination symbol. The @plt symbol will be used in
594 disassembly, and the trampoline will be used when we are
595 trying to find the target. */
596 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
597 {
598 int len = strlen (sym->name);
599
600 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
601 {
602 struct minimal_symbol *mtramp;
603
604 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
605 symaddr,
606 mst_solib_trampoline,
607 sym->section, objfile);
608 if (mtramp)
609 {
610 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
611 mtramp->created_by_gdb = 1;
612 mtramp->filename = filesymname;
613 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
614 }
615 }
616 }
617 }
618 }
619 }
620
621 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
622 for later look ups of which function to call when user requests
623 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
624 library defining `function' we cannot yet know while reading OBJFILE which
625 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
626 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
627
628 static void
629 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
630 {
631 bfd *obfd = objfile->obfd;
632 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
633 asection *plt, *relplt, *got_plt;
634 int plt_elf_idx;
635 bfd_size_type reloc_count, reloc;
636 char *string_buffer = NULL;
637 size_t string_buffer_size = 0;
638 struct cleanup *back_to;
639 struct gdbarch *gdbarch = get_objfile_arch (objfile);
640 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
641 size_t ptr_size = TYPE_LENGTH (ptr_type);
642
643 if (objfile->separate_debug_objfile_backlink)
644 return;
645
646 plt = bfd_get_section_by_name (obfd, ".plt");
647 if (plt == NULL)
648 return;
649 plt_elf_idx = elf_section_data (plt)->this_idx;
650
651 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
652 if (got_plt == NULL)
653 return;
654
655 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
656 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
657 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
658 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
659 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
660 break;
661 if (relplt == NULL)
662 return;
663
664 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
665 return;
666
667 back_to = make_cleanup (free_current_contents, &string_buffer);
668
669 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
670 for (reloc = 0; reloc < reloc_count; reloc++)
671 {
672 const char *name;
673 struct minimal_symbol *msym;
674 CORE_ADDR address;
675 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
676 size_t name_len;
677
678 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
679 name_len = strlen (name);
680 address = relplt->relocation[reloc].address;
681
682 /* Does the pointer reside in the .got.plt section? */
683 if (!(bfd_get_section_vma (obfd, got_plt) <= address
684 && address < bfd_get_section_vma (obfd, got_plt)
685 + bfd_get_section_size (got_plt)))
686 continue;
687
688 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
689 OBJFILE the symbol is undefined and the objfile having NAME defined
690 may not yet have been loaded. */
691
692 if (string_buffer_size < name_len + got_suffix_len + 1)
693 {
694 string_buffer_size = 2 * (name_len + got_suffix_len);
695 string_buffer = xrealloc (string_buffer, string_buffer_size);
696 }
697 memcpy (string_buffer, name, name_len);
698 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
699 got_suffix_len + 1);
700
701 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
702 1, address, mst_slot_got_plt, got_plt,
703 objfile);
704 if (msym)
705 SET_MSYMBOL_SIZE (msym, ptr_size);
706 }
707
708 do_cleanups (back_to);
709 }
710
711 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
712
713 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
714
715 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
716
717 struct elf_gnu_ifunc_cache
718 {
719 /* This is always a function entry address, not a function descriptor. */
720 CORE_ADDR addr;
721
722 char name[1];
723 };
724
725 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
726
727 static hashval_t
728 elf_gnu_ifunc_cache_hash (const void *a_voidp)
729 {
730 const struct elf_gnu_ifunc_cache *a = a_voidp;
731
732 return htab_hash_string (a->name);
733 }
734
735 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
736
737 static int
738 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
739 {
740 const struct elf_gnu_ifunc_cache *a = a_voidp;
741 const struct elf_gnu_ifunc_cache *b = b_voidp;
742
743 return strcmp (a->name, b->name) == 0;
744 }
745
746 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
747 function entry address ADDR. Return 1 if NAME and ADDR are considered as
748 valid and therefore they were successfully recorded, return 0 otherwise.
749
750 Function does not expect a duplicate entry. Use
751 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
752 exists. */
753
754 static int
755 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
756 {
757 struct bound_minimal_symbol msym;
758 asection *sect;
759 struct objfile *objfile;
760 htab_t htab;
761 struct elf_gnu_ifunc_cache entry_local, *entry_p;
762 void **slot;
763
764 msym = lookup_minimal_symbol_by_pc (addr);
765 if (msym.minsym == NULL)
766 return 0;
767 if (SYMBOL_VALUE_ADDRESS (msym.minsym) != addr)
768 return 0;
769 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
770 sect = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
771 objfile = msym.objfile;
772
773 /* If .plt jumps back to .plt the symbol is still deferred for later
774 resolution and it has no use for GDB. Besides ".text" this symbol can
775 reside also in ".opd" for ppc64 function descriptor. */
776 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
777 return 0;
778
779 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
780 if (htab == NULL)
781 {
782 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
783 elf_gnu_ifunc_cache_eq,
784 NULL, &objfile->objfile_obstack,
785 hashtab_obstack_allocate,
786 dummy_obstack_deallocate);
787 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
788 }
789
790 entry_local.addr = addr;
791 obstack_grow (&objfile->objfile_obstack, &entry_local,
792 offsetof (struct elf_gnu_ifunc_cache, name));
793 obstack_grow_str0 (&objfile->objfile_obstack, name);
794 entry_p = obstack_finish (&objfile->objfile_obstack);
795
796 slot = htab_find_slot (htab, entry_p, INSERT);
797 if (*slot != NULL)
798 {
799 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801
802 if (entry_found_p->addr != addr)
803 {
804 /* This case indicates buggy inferior program, the resolved address
805 should never change. */
806
807 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
808 "function_address from %s to %s"),
809 name, paddress (gdbarch, entry_found_p->addr),
810 paddress (gdbarch, addr));
811 }
812
813 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
814 }
815 *slot = entry_p;
816
817 return 1;
818 }
819
820 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
821 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
822 is not NULL) and the function returns 1. It returns 0 otherwise.
823
824 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
825 function. */
826
827 static int
828 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
829 {
830 struct objfile *objfile;
831
832 ALL_PSPACE_OBJFILES (current_program_space, objfile)
833 {
834 htab_t htab;
835 struct elf_gnu_ifunc_cache *entry_p;
836 void **slot;
837
838 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
839 if (htab == NULL)
840 continue;
841
842 entry_p = alloca (sizeof (*entry_p) + strlen (name));
843 strcpy (entry_p->name, name);
844
845 slot = htab_find_slot (htab, entry_p, NO_INSERT);
846 if (slot == NULL)
847 continue;
848 entry_p = *slot;
849 gdb_assert (entry_p != NULL);
850
851 if (addr_p)
852 *addr_p = entry_p->addr;
853 return 1;
854 }
855
856 return 0;
857 }
858
859 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
860 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
861 is not NULL) and the function returns 1. It returns 0 otherwise.
862
863 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
864 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
865 prevent cache entries duplicates. */
866
867 static int
868 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
869 {
870 char *name_got_plt;
871 struct objfile *objfile;
872 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
873
874 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
875 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
876
877 ALL_PSPACE_OBJFILES (current_program_space, objfile)
878 {
879 bfd *obfd = objfile->obfd;
880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
881 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
882 size_t ptr_size = TYPE_LENGTH (ptr_type);
883 CORE_ADDR pointer_address, addr;
884 asection *plt;
885 gdb_byte *buf = alloca (ptr_size);
886 struct minimal_symbol *msym;
887
888 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
889 if (msym == NULL)
890 continue;
891 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
892 continue;
893 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
894
895 plt = bfd_get_section_by_name (obfd, ".plt");
896 if (plt == NULL)
897 continue;
898
899 if (MSYMBOL_SIZE (msym) != ptr_size)
900 continue;
901 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
902 continue;
903 addr = extract_typed_address (buf, ptr_type);
904 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
905 &current_target);
906
907 if (addr_p)
908 *addr_p = addr;
909 if (elf_gnu_ifunc_record_cache (name, addr))
910 return 1;
911 }
912
913 return 0;
914 }
915
916 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
917 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
918 is not NULL) and the function returns 1. It returns 0 otherwise.
919
920 Both the elf_objfile_gnu_ifunc_cache_data hash table and
921 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
922
923 static int
924 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
925 {
926 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
927 return 1;
928
929 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
930 return 1;
931
932 return 0;
933 }
934
935 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
936 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
937 is the entry point of the resolved STT_GNU_IFUNC target function to call.
938 */
939
940 static CORE_ADDR
941 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
942 {
943 const char *name_at_pc;
944 CORE_ADDR start_at_pc, address;
945 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
946 struct value *function, *address_val;
947
948 /* Try first any non-intrusive methods without an inferior call. */
949
950 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
951 && start_at_pc == pc)
952 {
953 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
954 return address;
955 }
956 else
957 name_at_pc = NULL;
958
959 function = allocate_value (func_func_type);
960 set_value_address (function, pc);
961
962 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
963 function entry address. ADDRESS may be a function descriptor. */
964
965 address_val = call_function_by_hand (function, 0, NULL);
966 address = value_as_address (address_val);
967 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
968 &current_target);
969
970 if (name_at_pc)
971 elf_gnu_ifunc_record_cache (name_at_pc, address);
972
973 return address;
974 }
975
976 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
977
978 static void
979 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
980 {
981 struct breakpoint *b_return;
982 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
983 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
984 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
985 int thread_id = pid_to_thread_id (inferior_ptid);
986
987 gdb_assert (b->type == bp_gnu_ifunc_resolver);
988
989 for (b_return = b->related_breakpoint; b_return != b;
990 b_return = b_return->related_breakpoint)
991 {
992 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
993 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
994 gdb_assert (frame_id_p (b_return->frame_id));
995
996 if (b_return->thread == thread_id
997 && b_return->loc->requested_address == prev_pc
998 && frame_id_eq (b_return->frame_id, prev_frame_id))
999 break;
1000 }
1001
1002 if (b_return == b)
1003 {
1004 struct symtab_and_line sal;
1005
1006 /* No need to call find_pc_line for symbols resolving as this is only
1007 a helper breakpointer never shown to the user. */
1008
1009 init_sal (&sal);
1010 sal.pspace = current_inferior ()->pspace;
1011 sal.pc = prev_pc;
1012 sal.section = find_pc_overlay (sal.pc);
1013 sal.explicit_pc = 1;
1014 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1015 prev_frame_id,
1016 bp_gnu_ifunc_resolver_return);
1017
1018 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1019 prev_frame = NULL;
1020
1021 /* Add new b_return to the ring list b->related_breakpoint. */
1022 gdb_assert (b_return->related_breakpoint == b_return);
1023 b_return->related_breakpoint = b->related_breakpoint;
1024 b->related_breakpoint = b_return;
1025 }
1026 }
1027
1028 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1029
1030 static void
1031 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1032 {
1033 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1034 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1035 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1036 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1037 struct value *func_func;
1038 struct value *value;
1039 CORE_ADDR resolved_address, resolved_pc;
1040 struct symtab_and_line sal;
1041 struct symtabs_and_lines sals, sals_end;
1042
1043 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1044
1045 while (b->related_breakpoint != b)
1046 {
1047 struct breakpoint *b_next = b->related_breakpoint;
1048
1049 switch (b->type)
1050 {
1051 case bp_gnu_ifunc_resolver:
1052 break;
1053 case bp_gnu_ifunc_resolver_return:
1054 delete_breakpoint (b);
1055 break;
1056 default:
1057 internal_error (__FILE__, __LINE__,
1058 _("handle_inferior_event: Invalid "
1059 "gnu-indirect-function breakpoint type %d"),
1060 (int) b->type);
1061 }
1062 b = b_next;
1063 }
1064 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1065 gdb_assert (b->loc->next == NULL);
1066
1067 func_func = allocate_value (func_func_type);
1068 set_value_address (func_func, b->loc->related_address);
1069
1070 value = allocate_value (value_type);
1071 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1072 value_contents_raw (value), NULL);
1073 resolved_address = value_as_address (value);
1074 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1075 resolved_address,
1076 &current_target);
1077
1078 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1079 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1080
1081 sal = find_pc_line (resolved_pc, 0);
1082 sals.nelts = 1;
1083 sals.sals = &sal;
1084 sals_end.nelts = 0;
1085
1086 b->type = bp_breakpoint;
1087 update_breakpoint_locations (b, sals, sals_end);
1088 }
1089
1090 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1091
1092 static const struct elf_build_id *
1093 build_id_bfd_get (bfd *abfd)
1094 {
1095 if (!bfd_check_format (abfd, bfd_object)
1096 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1097 || elf_tdata (abfd)->build_id == NULL)
1098 return NULL;
1099
1100 return elf_tdata (abfd)->build_id;
1101 }
1102
1103 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1104
1105 static int
1106 build_id_verify (const char *filename, const struct elf_build_id *check)
1107 {
1108 bfd *abfd;
1109 const struct elf_build_id *found;
1110 int retval = 0;
1111
1112 /* We expect to be silent on the non-existing files. */
1113 abfd = gdb_bfd_open_maybe_remote (filename);
1114 if (abfd == NULL)
1115 return 0;
1116
1117 found = build_id_bfd_get (abfd);
1118
1119 if (found == NULL)
1120 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1121 else if (found->size != check->size
1122 || memcmp (found->data, check->data, found->size) != 0)
1123 warning (_("File \"%s\" has a different build-id, file skipped"),
1124 filename);
1125 else
1126 retval = 1;
1127
1128 gdb_bfd_unref (abfd);
1129
1130 return retval;
1131 }
1132
1133 static char *
1134 build_id_to_debug_filename (const struct elf_build_id *build_id)
1135 {
1136 char *link, *debugdir, *retval = NULL;
1137 VEC (char_ptr) *debugdir_vec;
1138 struct cleanup *back_to;
1139 int ix;
1140
1141 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1142 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1143 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1144
1145 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1146 cause "/.build-id/..." lookups. */
1147
1148 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1149 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1150
1151 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1152 {
1153 size_t debugdir_len = strlen (debugdir);
1154 const gdb_byte *data = build_id->data;
1155 size_t size = build_id->size;
1156 char *s;
1157
1158 memcpy (link, debugdir, debugdir_len);
1159 s = &link[debugdir_len];
1160 s += sprintf (s, "/.build-id/");
1161 if (size > 0)
1162 {
1163 size--;
1164 s += sprintf (s, "%02x", (unsigned) *data++);
1165 }
1166 if (size > 0)
1167 *s++ = '/';
1168 while (size-- > 0)
1169 s += sprintf (s, "%02x", (unsigned) *data++);
1170 strcpy (s, ".debug");
1171
1172 /* lrealpath() is expensive even for the usually non-existent files. */
1173 if (access (link, F_OK) == 0)
1174 retval = lrealpath (link);
1175
1176 if (retval != NULL && !build_id_verify (retval, build_id))
1177 {
1178 xfree (retval);
1179 retval = NULL;
1180 }
1181
1182 if (retval != NULL)
1183 break;
1184 }
1185
1186 do_cleanups (back_to);
1187 return retval;
1188 }
1189
1190 static char *
1191 find_separate_debug_file_by_buildid (struct objfile *objfile)
1192 {
1193 const struct elf_build_id *build_id;
1194
1195 build_id = build_id_bfd_get (objfile->obfd);
1196 if (build_id != NULL)
1197 {
1198 char *build_id_name;
1199
1200 build_id_name = build_id_to_debug_filename (build_id);
1201 /* Prevent looping on a stripped .debug file. */
1202 if (build_id_name != NULL
1203 && filename_cmp (build_id_name, objfile_name (objfile)) == 0)
1204 {
1205 warning (_("\"%s\": separate debug info file has no debug info"),
1206 build_id_name);
1207 xfree (build_id_name);
1208 }
1209 else if (build_id_name != NULL)
1210 return build_id_name;
1211 }
1212 return NULL;
1213 }
1214
1215 /* Scan and build partial symbols for a symbol file.
1216 We have been initialized by a call to elf_symfile_init, which
1217 currently does nothing.
1218
1219 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1220 in each section. We simplify it down to a single offset for all
1221 symbols. FIXME.
1222
1223 This function only does the minimum work necessary for letting the
1224 user "name" things symbolically; it does not read the entire symtab.
1225 Instead, it reads the external and static symbols and puts them in partial
1226 symbol tables. When more extensive information is requested of a
1227 file, the corresponding partial symbol table is mutated into a full
1228 fledged symbol table by going back and reading the symbols
1229 for real.
1230
1231 We look for sections with specific names, to tell us what debug
1232 format to look for: FIXME!!!
1233
1234 elfstab_build_psymtabs() handles STABS symbols;
1235 mdebug_build_psymtabs() handles ECOFF debugging information.
1236
1237 Note that ELF files have a "minimal" symbol table, which looks a lot
1238 like a COFF symbol table, but has only the minimal information necessary
1239 for linking. We process this also, and use the information to
1240 build gdb's minimal symbol table. This gives us some minimal debugging
1241 capability even for files compiled without -g. */
1242
1243 static void
1244 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1245 {
1246 bfd *synth_abfd, *abfd = objfile->obfd;
1247 struct elfinfo ei;
1248 struct cleanup *back_to;
1249 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1250 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1251 asymbol *synthsyms;
1252 struct dbx_symfile_info *dbx;
1253
1254 if (symtab_create_debug)
1255 {
1256 fprintf_unfiltered (gdb_stdlog,
1257 "Reading minimal symbols of objfile %s ...\n",
1258 objfile_name (objfile));
1259 }
1260
1261 init_minimal_symbol_collection ();
1262 back_to = make_cleanup_discard_minimal_symbols ();
1263
1264 memset ((char *) &ei, 0, sizeof (ei));
1265
1266 /* Allocate struct to keep track of the symfile. */
1267 dbx = XCNEW (struct dbx_symfile_info);
1268 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1269 make_cleanup (free_elfinfo, (void *) objfile);
1270
1271 /* Process the normal ELF symbol table first. This may write some
1272 chain of info into the dbx_symfile_info of the objfile, which can
1273 later be used by elfstab_offset_sections. */
1274
1275 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1276 if (storage_needed < 0)
1277 error (_("Can't read symbols from %s: %s"),
1278 bfd_get_filename (objfile->obfd),
1279 bfd_errmsg (bfd_get_error ()));
1280
1281 if (storage_needed > 0)
1282 {
1283 symbol_table = (asymbol **) xmalloc (storage_needed);
1284 make_cleanup (xfree, symbol_table);
1285 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1286
1287 if (symcount < 0)
1288 error (_("Can't read symbols from %s: %s"),
1289 bfd_get_filename (objfile->obfd),
1290 bfd_errmsg (bfd_get_error ()));
1291
1292 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1293 }
1294
1295 /* Add the dynamic symbols. */
1296
1297 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1298
1299 if (storage_needed > 0)
1300 {
1301 /* Memory gets permanently referenced from ABFD after
1302 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1303 It happens only in the case when elf_slurp_reloc_table sees
1304 asection->relocation NULL. Determining which section is asection is
1305 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1306 implementation detail, though. */
1307
1308 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1309 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1310 dyn_symbol_table);
1311
1312 if (dynsymcount < 0)
1313 error (_("Can't read symbols from %s: %s"),
1314 bfd_get_filename (objfile->obfd),
1315 bfd_errmsg (bfd_get_error ()));
1316
1317 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1318
1319 elf_rel_plt_read (objfile, dyn_symbol_table);
1320 }
1321
1322 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1323 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1324
1325 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1326 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1327 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1328 read the code address from .opd while it reads the .symtab section from
1329 a separate debug info file as the .opd section is SHT_NOBITS there.
1330
1331 With SYNTH_ABFD the .opd section will be read from the original
1332 backlinked binary where it is valid. */
1333
1334 if (objfile->separate_debug_objfile_backlink)
1335 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1336 else
1337 synth_abfd = abfd;
1338
1339 /* Add synthetic symbols - for instance, names for any PLT entries. */
1340
1341 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1342 dynsymcount, dyn_symbol_table,
1343 &synthsyms);
1344 if (synthcount > 0)
1345 {
1346 asymbol **synth_symbol_table;
1347 long i;
1348
1349 make_cleanup (xfree, synthsyms);
1350 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1351 for (i = 0; i < synthcount; i++)
1352 synth_symbol_table[i] = synthsyms + i;
1353 make_cleanup (xfree, synth_symbol_table);
1354 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1355 synth_symbol_table, 1);
1356 }
1357
1358 /* Install any minimal symbols that have been collected as the current
1359 minimal symbols for this objfile. The debug readers below this point
1360 should not generate new minimal symbols; if they do it's their
1361 responsibility to install them. "mdebug" appears to be the only one
1362 which will do this. */
1363
1364 install_minimal_symbols (objfile);
1365 do_cleanups (back_to);
1366
1367 if (symtab_create_debug)
1368 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1369
1370 /* Now process debugging information, which is contained in
1371 special ELF sections. */
1372
1373 /* We first have to find them... */
1374 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1375
1376 /* ELF debugging information is inserted into the psymtab in the
1377 order of least informative first - most informative last. Since
1378 the psymtab table is searched `most recent insertion first' this
1379 increases the probability that more detailed debug information
1380 for a section is found.
1381
1382 For instance, an object file might contain both .mdebug (XCOFF)
1383 and .debug_info (DWARF2) sections then .mdebug is inserted first
1384 (searched last) and DWARF2 is inserted last (searched first). If
1385 we don't do this then the XCOFF info is found first - for code in
1386 an included file XCOFF info is useless. */
1387
1388 if (ei.mdebugsect)
1389 {
1390 const struct ecoff_debug_swap *swap;
1391
1392 /* .mdebug section, presumably holding ECOFF debugging
1393 information. */
1394 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1395 if (swap)
1396 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1397 }
1398 if (ei.stabsect)
1399 {
1400 asection *str_sect;
1401
1402 /* Stab sections have an associated string table that looks like
1403 a separate section. */
1404 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1405
1406 /* FIXME should probably warn about a stab section without a stabstr. */
1407 if (str_sect)
1408 elfstab_build_psymtabs (objfile,
1409 ei.stabsect,
1410 str_sect->filepos,
1411 bfd_section_size (abfd, str_sect));
1412 }
1413
1414 if (dwarf2_has_info (objfile, NULL))
1415 {
1416 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1417 information present in OBJFILE. If there is such debug info present
1418 never use .gdb_index. */
1419
1420 if (!objfile_has_partial_symbols (objfile)
1421 && dwarf2_initialize_objfile (objfile))
1422 objfile->sf = &elf_sym_fns_gdb_index;
1423 else
1424 {
1425 /* It is ok to do this even if the stabs reader made some
1426 partial symbols, because OBJF_PSYMTABS_READ has not been
1427 set, and so our lazy reader function will still be called
1428 when needed. */
1429 objfile->sf = &elf_sym_fns_lazy_psyms;
1430 }
1431 }
1432 /* If the file has its own symbol tables it has no separate debug
1433 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1434 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1435 `.note.gnu.build-id'.
1436
1437 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1438 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1439 an objfile via find_separate_debug_file_in_section there was no separate
1440 debug info available. Therefore do not attempt to search for another one,
1441 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1442 be NULL and we would possibly violate it. */
1443
1444 else if (!objfile_has_partial_symbols (objfile)
1445 && objfile->separate_debug_objfile == NULL
1446 && objfile->separate_debug_objfile_backlink == NULL)
1447 {
1448 char *debugfile;
1449
1450 debugfile = find_separate_debug_file_by_buildid (objfile);
1451
1452 if (debugfile == NULL)
1453 debugfile = find_separate_debug_file_by_debuglink (objfile);
1454
1455 if (debugfile)
1456 {
1457 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1458 bfd *abfd = symfile_bfd_open (debugfile);
1459
1460 make_cleanup_bfd_unref (abfd);
1461 symbol_file_add_separate (abfd, symfile_flags, objfile);
1462 do_cleanups (cleanup);
1463 }
1464 }
1465 }
1466
1467 /* Callback to lazily read psymtabs. */
1468
1469 static void
1470 read_psyms (struct objfile *objfile)
1471 {
1472 if (dwarf2_has_info (objfile, NULL))
1473 dwarf2_build_psymtabs (objfile);
1474 }
1475
1476 /* This cleans up the objfile's dbx symfile info, and the chain of
1477 stab_section_info's, that might be dangling from it. */
1478
1479 static void
1480 free_elfinfo (void *objp)
1481 {
1482 struct objfile *objfile = (struct objfile *) objp;
1483 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1484 struct stab_section_info *ssi, *nssi;
1485
1486 ssi = dbxinfo->stab_section_info;
1487 while (ssi)
1488 {
1489 nssi = ssi->next;
1490 xfree (ssi);
1491 ssi = nssi;
1492 }
1493
1494 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1495 }
1496
1497
1498 /* Initialize anything that needs initializing when a completely new symbol
1499 file is specified (not just adding some symbols from another file, e.g. a
1500 shared library).
1501
1502 We reinitialize buildsym, since we may be reading stabs from an ELF
1503 file. */
1504
1505 static void
1506 elf_new_init (struct objfile *ignore)
1507 {
1508 stabsread_new_init ();
1509 buildsym_new_init ();
1510 }
1511
1512 /* Perform any local cleanups required when we are done with a particular
1513 objfile. I.E, we are in the process of discarding all symbol information
1514 for an objfile, freeing up all memory held for it, and unlinking the
1515 objfile struct from the global list of known objfiles. */
1516
1517 static void
1518 elf_symfile_finish (struct objfile *objfile)
1519 {
1520 dwarf2_free_objfile (objfile);
1521 }
1522
1523 /* ELF specific initialization routine for reading symbols.
1524
1525 It is passed a pointer to a struct sym_fns which contains, among other
1526 things, the BFD for the file whose symbols are being read, and a slot for
1527 a pointer to "private data" which we can fill with goodies.
1528
1529 For now at least, we have nothing in particular to do, so this function is
1530 just a stub. */
1531
1532 static void
1533 elf_symfile_init (struct objfile *objfile)
1534 {
1535 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1536 find this causes a significant slowdown in gdb then we could
1537 set it in the debug symbol readers only when necessary. */
1538 objfile->flags |= OBJF_REORDERED;
1539 }
1540
1541 /* When handling an ELF file that contains Sun STABS debug info,
1542 some of the debug info is relative to the particular chunk of the
1543 section that was generated in its individual .o file. E.g.
1544 offsets to static variables are relative to the start of the data
1545 segment *for that module before linking*. This information is
1546 painfully squirreled away in the ELF symbol table as local symbols
1547 with wierd names. Go get 'em when needed. */
1548
1549 void
1550 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1551 {
1552 const char *filename = pst->filename;
1553 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1554 struct stab_section_info *maybe = dbx->stab_section_info;
1555 struct stab_section_info *questionable = 0;
1556 int i;
1557
1558 /* The ELF symbol info doesn't include path names, so strip the path
1559 (if any) from the psymtab filename. */
1560 filename = lbasename (filename);
1561
1562 /* FIXME: This linear search could speed up significantly
1563 if it was chained in the right order to match how we search it,
1564 and if we unchained when we found a match. */
1565 for (; maybe; maybe = maybe->next)
1566 {
1567 if (filename[0] == maybe->filename[0]
1568 && filename_cmp (filename, maybe->filename) == 0)
1569 {
1570 /* We found a match. But there might be several source files
1571 (from different directories) with the same name. */
1572 if (0 == maybe->found)
1573 break;
1574 questionable = maybe; /* Might use it later. */
1575 }
1576 }
1577
1578 if (maybe == 0 && questionable != 0)
1579 {
1580 complaint (&symfile_complaints,
1581 _("elf/stab section information questionable for %s"),
1582 filename);
1583 maybe = questionable;
1584 }
1585
1586 if (maybe)
1587 {
1588 /* Found it! Allocate a new psymtab struct, and fill it in. */
1589 maybe->found++;
1590 pst->section_offsets = (struct section_offsets *)
1591 obstack_alloc (&objfile->objfile_obstack,
1592 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1593 for (i = 0; i < maybe->num_sections; i++)
1594 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1595 return;
1596 }
1597
1598 /* We were unable to find any offsets for this file. Complain. */
1599 if (dbx->stab_section_info) /* If there *is* any info, */
1600 complaint (&symfile_complaints,
1601 _("elf/stab section information missing for %s"), filename);
1602 }
1603
1604 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1605
1606 static VEC (probe_p) *
1607 elf_get_probes (struct objfile *objfile)
1608 {
1609 VEC (probe_p) *probes_per_objfile;
1610
1611 /* Have we parsed this objfile's probes already? */
1612 probes_per_objfile = objfile_data (objfile, probe_key);
1613
1614 if (!probes_per_objfile)
1615 {
1616 int ix;
1617 const struct probe_ops *probe_ops;
1618
1619 /* Here we try to gather information about all types of probes from the
1620 objfile. */
1621 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1622 ix++)
1623 probe_ops->get_probes (&probes_per_objfile, objfile);
1624
1625 if (probes_per_objfile == NULL)
1626 {
1627 VEC_reserve (probe_p, probes_per_objfile, 1);
1628 gdb_assert (probes_per_objfile != NULL);
1629 }
1630
1631 set_objfile_data (objfile, probe_key, probes_per_objfile);
1632 }
1633
1634 return probes_per_objfile;
1635 }
1636
1637 /* Implementation of `sym_get_probe_argument_count', as documented in
1638 symfile.h. */
1639
1640 static unsigned
1641 elf_get_probe_argument_count (struct probe *probe)
1642 {
1643 return probe->pops->get_probe_argument_count (probe);
1644 }
1645
1646 /* Implementation of `sym_can_evaluate_probe_arguments', as documented in
1647 symfile.h. */
1648
1649 static int
1650 elf_can_evaluate_probe_arguments (struct probe *probe)
1651 {
1652 return probe->pops->can_evaluate_probe_arguments (probe);
1653 }
1654
1655 /* Implementation of `sym_evaluate_probe_argument', as documented in
1656 symfile.h. */
1657
1658 static struct value *
1659 elf_evaluate_probe_argument (struct probe *probe, unsigned n)
1660 {
1661 return probe->pops->evaluate_probe_argument (probe, n);
1662 }
1663
1664 /* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1665
1666 static void
1667 elf_compile_to_ax (struct probe *probe,
1668 struct agent_expr *expr,
1669 struct axs_value *value,
1670 unsigned n)
1671 {
1672 probe->pops->compile_to_ax (probe, expr, value, n);
1673 }
1674
1675 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1676
1677 static void
1678 elf_symfile_relocate_probe (struct objfile *objfile,
1679 const struct section_offsets *new_offsets,
1680 const struct section_offsets *delta)
1681 {
1682 int ix;
1683 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1684 struct probe *probe;
1685
1686 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1687 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1688 }
1689
1690 /* Helper function used to free the space allocated for storing SystemTap
1691 probe information. */
1692
1693 static void
1694 probe_key_free (struct objfile *objfile, void *d)
1695 {
1696 int ix;
1697 VEC (probe_p) *probes = d;
1698 struct probe *probe;
1699
1700 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1701 probe->pops->destroy (probe);
1702
1703 VEC_free (probe_p, probes);
1704 }
1705
1706 \f
1707
1708 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1709
1710 static const struct sym_probe_fns elf_probe_fns =
1711 {
1712 elf_get_probes, /* sym_get_probes */
1713 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1714 elf_can_evaluate_probe_arguments, /* sym_can_evaluate_probe_arguments */
1715 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1716 elf_compile_to_ax, /* sym_compile_to_ax */
1717 elf_symfile_relocate_probe, /* sym_relocate_probe */
1718 };
1719
1720 /* Register that we are able to handle ELF object file formats. */
1721
1722 static const struct sym_fns elf_sym_fns =
1723 {
1724 bfd_target_elf_flavour,
1725 elf_new_init, /* init anything gbl to entire symtab */
1726 elf_symfile_init, /* read initial info, setup for sym_read() */
1727 elf_symfile_read, /* read a symbol file into symtab */
1728 NULL, /* sym_read_psymbols */
1729 elf_symfile_finish, /* finished with file, cleanup */
1730 default_symfile_offsets, /* Translate ext. to int. relocation */
1731 elf_symfile_segments, /* Get segment information from a file. */
1732 NULL,
1733 default_symfile_relocate, /* Relocate a debug section. */
1734 &elf_probe_fns, /* sym_probe_fns */
1735 &psym_functions
1736 };
1737
1738 /* The same as elf_sym_fns, but not registered and lazily reads
1739 psymbols. */
1740
1741 static const struct sym_fns elf_sym_fns_lazy_psyms =
1742 {
1743 bfd_target_elf_flavour,
1744 elf_new_init, /* init anything gbl to entire symtab */
1745 elf_symfile_init, /* read initial info, setup for sym_read() */
1746 elf_symfile_read, /* read a symbol file into symtab */
1747 read_psyms, /* sym_read_psymbols */
1748 elf_symfile_finish, /* finished with file, cleanup */
1749 default_symfile_offsets, /* Translate ext. to int. relocation */
1750 elf_symfile_segments, /* Get segment information from a file. */
1751 NULL,
1752 default_symfile_relocate, /* Relocate a debug section. */
1753 &elf_probe_fns, /* sym_probe_fns */
1754 &psym_functions
1755 };
1756
1757 /* The same as elf_sym_fns, but not registered and uses the
1758 DWARF-specific GNU index rather than psymtab. */
1759 static const struct sym_fns elf_sym_fns_gdb_index =
1760 {
1761 bfd_target_elf_flavour,
1762 elf_new_init, /* init anything gbl to entire symab */
1763 elf_symfile_init, /* read initial info, setup for sym_red() */
1764 elf_symfile_read, /* read a symbol file into symtab */
1765 NULL, /* sym_read_psymbols */
1766 elf_symfile_finish, /* finished with file, cleanup */
1767 default_symfile_offsets, /* Translate ext. to int. relocatin */
1768 elf_symfile_segments, /* Get segment information from a file. */
1769 NULL,
1770 default_symfile_relocate, /* Relocate a debug section. */
1771 &elf_probe_fns, /* sym_probe_fns */
1772 &dwarf2_gdb_index_functions
1773 };
1774
1775 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1776
1777 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1778 {
1779 elf_gnu_ifunc_resolve_addr,
1780 elf_gnu_ifunc_resolve_name,
1781 elf_gnu_ifunc_resolver_stop,
1782 elf_gnu_ifunc_resolver_return_stop
1783 };
1784
1785 void
1786 _initialize_elfread (void)
1787 {
1788 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1789 add_symtab_fns (&elf_sym_fns);
1790
1791 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1792 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1793 }
This page took 0.079647 seconds and 4 git commands to generate.