Convert generic probe interface to C++ (and perform some cleanups)
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2017 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_lazy_psyms;
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
64
65 /* Per-BFD data for probe info. */
66
67 static const struct bfd_data *probe_key = NULL;
68
69 /* Minimal symbols located at the GOT entries for .plt - that is the real
70 pointer where the given entry will jump to. It gets updated by the real
71 function address during lazy ld.so resolving in the inferior. These
72 minimal symbols are indexed for <tab>-completion. */
73
74 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
75
76 /* Locate the segments in ABFD. */
77
78 static struct symfile_segment_data *
79 elf_symfile_segments (bfd *abfd)
80 {
81 Elf_Internal_Phdr *phdrs, **segments;
82 long phdrs_size;
83 int num_phdrs, num_segments, num_sections, i;
84 asection *sect;
85 struct symfile_segment_data *data;
86
87 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
88 if (phdrs_size == -1)
89 return NULL;
90
91 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
92 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
93 if (num_phdrs == -1)
94 return NULL;
95
96 num_segments = 0;
97 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
98 for (i = 0; i < num_phdrs; i++)
99 if (phdrs[i].p_type == PT_LOAD)
100 segments[num_segments++] = &phdrs[i];
101
102 if (num_segments == 0)
103 return NULL;
104
105 data = XCNEW (struct symfile_segment_data);
106 data->num_segments = num_segments;
107 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
108 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
109
110 for (i = 0; i < num_segments; i++)
111 {
112 data->segment_bases[i] = segments[i]->p_vaddr;
113 data->segment_sizes[i] = segments[i]->p_memsz;
114 }
115
116 num_sections = bfd_count_sections (abfd);
117 data->segment_info = XCNEWVEC (int, num_sections);
118
119 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
120 {
121 int j;
122 CORE_ADDR vma;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 vma = bfd_get_section_vma (abfd, sect);
128
129 for (j = 0; j < num_segments; j++)
130 if (segments[j]->p_memsz > 0
131 && vma >= segments[j]->p_vaddr
132 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
133 {
134 data->segment_info[i] = j + 1;
135 break;
136 }
137
138 /* We should have found a segment for every non-empty section.
139 If we haven't, we will not relocate this section by any
140 offsets we apply to the segments. As an exception, do not
141 warn about SHT_NOBITS sections; in normal ELF execution
142 environments, SHT_NOBITS means zero-initialized and belongs
143 in a segment, but in no-OS environments some tools (e.g. ARM
144 RealView) use SHT_NOBITS for uninitialized data. Since it is
145 uninitialized, it doesn't need a program header. Such
146 binaries are not relocatable. */
147 if (bfd_get_section_size (sect) > 0 && j == num_segments
148 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
149 warning (_("Loadable section \"%s\" outside of ELF segments"),
150 bfd_section_name (abfd, sect));
151 }
152
153 return data;
154 }
155
156 /* We are called once per section from elf_symfile_read. We
157 need to examine each section we are passed, check to see
158 if it is something we are interested in processing, and
159 if so, stash away some access information for the section.
160
161 For now we recognize the dwarf debug information sections and
162 line number sections from matching their section names. The
163 ELF definition is no real help here since it has no direct
164 knowledge of DWARF (by design, so any debugging format can be
165 used).
166
167 We also recognize the ".stab" sections used by the Sun compilers
168 released with Solaris 2.
169
170 FIXME: The section names should not be hardwired strings (what
171 should they be? I don't think most object file formats have enough
172 section flags to specify what kind of debug section it is.
173 -kingdon). */
174
175 static void
176 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
177 {
178 struct elfinfo *ei;
179
180 ei = (struct elfinfo *) eip;
181 if (strcmp (sectp->name, ".stab") == 0)
182 {
183 ei->stabsect = sectp;
184 }
185 else if (strcmp (sectp->name, ".mdebug") == 0)
186 {
187 ei->mdebugsect = sectp;
188 }
189 }
190
191 static struct minimal_symbol *
192 record_minimal_symbol (minimal_symbol_reader &reader,
193 const char *name, int name_len, bool copy_name,
194 CORE_ADDR address,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
197 {
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_addr_bits_remove (gdbarch, address);
203
204 return reader.record_full (name, name_len, copy_name, address,
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section));
208 }
209
210 /* Read the symbol table of an ELF file.
211
212 Given an objfile, a symbol table, and a flag indicating whether the
213 symbol table contains regular, dynamic, or synthetic symbols, add all
214 the global function and data symbols to the minimal symbol table.
215
216 In stabs-in-ELF, as implemented by Sun, there are some local symbols
217 defined in the ELF symbol table, which can be used to locate
218 the beginnings of sections from each ".o" file that was linked to
219 form the executable objfile. We gather any such info and record it
220 in data structures hung off the objfile's private data. */
221
222 #define ST_REGULAR 0
223 #define ST_DYNAMIC 1
224 #define ST_SYNTHETIC 2
225
226 static void
227 elf_symtab_read (minimal_symbol_reader &reader,
228 struct objfile *objfile, int type,
229 long number_of_symbols, asymbol **symbol_table,
230 bool copy_names)
231 {
232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
233 asymbol *sym;
234 long i;
235 CORE_ADDR symaddr;
236 enum minimal_symbol_type ms_type;
237 /* Name of the last file symbol. This is either a constant string or is
238 saved on the objfile's filename cache. */
239 const char *filesymname = "";
240 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
241 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
242 int elf_make_msymbol_special_p
243 = gdbarch_elf_make_msymbol_special_p (gdbarch);
244
245 for (i = 0; i < number_of_symbols; i++)
246 {
247 sym = symbol_table[i];
248 if (sym->name == NULL || *sym->name == '\0')
249 {
250 /* Skip names that don't exist (shouldn't happen), or names
251 that are null strings (may happen). */
252 continue;
253 }
254
255 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
256 symbols which do not correspond to objects in the symbol table,
257 but have some other target-specific meaning. */
258 if (bfd_is_target_special_symbol (objfile->obfd, sym))
259 {
260 if (gdbarch_record_special_symbol_p (gdbarch))
261 gdbarch_record_special_symbol (gdbarch, objfile, sym);
262 continue;
263 }
264
265 if (type == ST_DYNAMIC
266 && sym->section == bfd_und_section_ptr
267 && (sym->flags & BSF_FUNCTION))
268 {
269 struct minimal_symbol *msym;
270 bfd *abfd = objfile->obfd;
271 asection *sect;
272
273 /* Symbol is a reference to a function defined in
274 a shared library.
275 If its value is non zero then it is usually the address
276 of the corresponding entry in the procedure linkage table,
277 plus the desired section offset.
278 If its value is zero then the dynamic linker has to resolve
279 the symbol. We are unable to find any meaningful address
280 for this symbol in the executable file, so we skip it. */
281 symaddr = sym->value;
282 if (symaddr == 0)
283 continue;
284
285 /* sym->section is the undefined section. However, we want to
286 record the section where the PLT stub resides with the
287 minimal symbol. Search the section table for the one that
288 covers the stub's address. */
289 for (sect = abfd->sections; sect != NULL; sect = sect->next)
290 {
291 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
292 continue;
293
294 if (symaddr >= bfd_get_section_vma (abfd, sect)
295 && symaddr < bfd_get_section_vma (abfd, sect)
296 + bfd_get_section_size (sect))
297 break;
298 }
299 if (!sect)
300 continue;
301
302 /* On ia64-hpux, we have discovered that the system linker
303 adds undefined symbols with nonzero addresses that cannot
304 be right (their address points inside the code of another
305 function in the .text section). This creates problems
306 when trying to determine which symbol corresponds to
307 a given address.
308
309 We try to detect those buggy symbols by checking which
310 section we think they correspond to. Normally, PLT symbols
311 are stored inside their own section, and the typical name
312 for that section is ".plt". So, if there is a ".plt"
313 section, and yet the section name of our symbol does not
314 start with ".plt", we ignore that symbol. */
315 if (!startswith (sect->name, ".plt")
316 && bfd_get_section_by_name (abfd, ".plt") != NULL)
317 continue;
318
319 msym = record_minimal_symbol
320 (reader, sym->name, strlen (sym->name), copy_names,
321 symaddr, mst_solib_trampoline, sect, objfile);
322 if (msym != NULL)
323 {
324 msym->filename = filesymname;
325 if (elf_make_msymbol_special_p)
326 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
327 }
328 continue;
329 }
330
331 /* If it is a nonstripped executable, do not enter dynamic
332 symbols, as the dynamic symbol table is usually a subset
333 of the main symbol table. */
334 if (type == ST_DYNAMIC && !stripped)
335 continue;
336 if (sym->flags & BSF_FILE)
337 {
338 filesymname
339 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
340 objfile->per_bfd->filename_cache);
341 }
342 else if (sym->flags & BSF_SECTION_SYM)
343 continue;
344 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
345 | BSF_GNU_UNIQUE))
346 {
347 struct minimal_symbol *msym;
348
349 /* Select global/local/weak symbols. Note that bfd puts abs
350 symbols in their own section, so all symbols we are
351 interested in will have a section. */
352 /* Bfd symbols are section relative. */
353 symaddr = sym->value + sym->section->vma;
354 /* For non-absolute symbols, use the type of the section
355 they are relative to, to intuit text/data. Bfd provides
356 no way of figuring this out for absolute symbols. */
357 if (sym->section == bfd_abs_section_ptr)
358 {
359 /* This is a hack to get the minimal symbol type
360 right for Irix 5, which has absolute addresses
361 with special section indices for dynamic symbols.
362
363 NOTE: uweigand-20071112: Synthetic symbols do not
364 have an ELF-private part, so do not touch those. */
365 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
366 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
367
368 switch (shndx)
369 {
370 case SHN_MIPS_TEXT:
371 ms_type = mst_text;
372 break;
373 case SHN_MIPS_DATA:
374 ms_type = mst_data;
375 break;
376 case SHN_MIPS_ACOMMON:
377 ms_type = mst_bss;
378 break;
379 default:
380 ms_type = mst_abs;
381 }
382
383 /* If it is an Irix dynamic symbol, skip section name
384 symbols, relocate all others by section offset. */
385 if (ms_type != mst_abs)
386 {
387 if (sym->name[0] == '.')
388 continue;
389 }
390 }
391 else if (sym->section->flags & SEC_CODE)
392 {
393 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
394 {
395 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
396 ms_type = mst_text_gnu_ifunc;
397 else
398 ms_type = mst_text;
399 }
400 /* The BSF_SYNTHETIC check is there to omit ppc64 function
401 descriptors mistaken for static functions starting with 'L'.
402 */
403 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
404 && (sym->flags & BSF_SYNTHETIC) == 0)
405 || ((sym->flags & BSF_LOCAL)
406 && sym->name[0] == '$'
407 && sym->name[1] == 'L'))
408 /* Looks like a compiler-generated label. Skip
409 it. The assembler should be skipping these (to
410 keep executables small), but apparently with
411 gcc on the (deleted) delta m88k SVR4, it loses.
412 So to have us check too should be harmless (but
413 I encourage people to fix this in the assembler
414 instead of adding checks here). */
415 continue;
416 else
417 {
418 ms_type = mst_file_text;
419 }
420 }
421 else if (sym->section->flags & SEC_ALLOC)
422 {
423 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
424 {
425 if (sym->section->flags & SEC_LOAD)
426 {
427 ms_type = mst_data;
428 }
429 else
430 {
431 ms_type = mst_bss;
432 }
433 }
434 else if (sym->flags & BSF_LOCAL)
435 {
436 if (sym->section->flags & SEC_LOAD)
437 {
438 ms_type = mst_file_data;
439 }
440 else
441 {
442 ms_type = mst_file_bss;
443 }
444 }
445 else
446 {
447 ms_type = mst_unknown;
448 }
449 }
450 else
451 {
452 /* FIXME: Solaris2 shared libraries include lots of
453 odd "absolute" and "undefined" symbols, that play
454 hob with actions like finding what function the PC
455 is in. Ignore them if they aren't text, data, or bss. */
456 /* ms_type = mst_unknown; */
457 continue; /* Skip this symbol. */
458 }
459 msym = record_minimal_symbol
460 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
461 ms_type, sym->section, objfile);
462
463 if (msym)
464 {
465 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
466 ELF-private part. */
467 if (type != ST_SYNTHETIC)
468 {
469 /* Pass symbol size field in via BFD. FIXME!!! */
470 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
471 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
472 }
473
474 msym->filename = filesymname;
475 if (elf_make_msymbol_special_p)
476 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
477 }
478
479 /* If we see a default versioned symbol, install it under
480 its version-less name. */
481 if (msym != NULL)
482 {
483 const char *atsign = strchr (sym->name, '@');
484
485 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
486 {
487 int len = atsign - sym->name;
488
489 record_minimal_symbol (reader, sym->name, len, true, symaddr,
490 ms_type, sym->section, objfile);
491 }
492 }
493
494 /* For @plt symbols, also record a trampoline to the
495 destination symbol. The @plt symbol will be used in
496 disassembly, and the trampoline will be used when we are
497 trying to find the target. */
498 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
499 {
500 int len = strlen (sym->name);
501
502 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
503 {
504 struct minimal_symbol *mtramp;
505
506 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
507 true, symaddr,
508 mst_solib_trampoline,
509 sym->section, objfile);
510 if (mtramp)
511 {
512 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
513 mtramp->created_by_gdb = 1;
514 mtramp->filename = filesymname;
515 if (elf_make_msymbol_special_p)
516 gdbarch_elf_make_msymbol_special (gdbarch,
517 sym, mtramp);
518 }
519 }
520 }
521 }
522 }
523 }
524
525 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
526 for later look ups of which function to call when user requests
527 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
528 library defining `function' we cannot yet know while reading OBJFILE which
529 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
530 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
531
532 static void
533 elf_rel_plt_read (minimal_symbol_reader &reader,
534 struct objfile *objfile, asymbol **dyn_symbol_table)
535 {
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
538 asection *plt, *relplt, *got_plt;
539 int plt_elf_idx;
540 bfd_size_type reloc_count, reloc;
541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
542 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
543 size_t ptr_size = TYPE_LENGTH (ptr_type);
544
545 if (objfile->separate_debug_objfile_backlink)
546 return;
547
548 plt = bfd_get_section_by_name (obfd, ".plt");
549 if (plt == NULL)
550 return;
551 plt_elf_idx = elf_section_data (plt)->this_idx;
552
553 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
554 if (got_plt == NULL)
555 {
556 /* For platforms where there is no separate .got.plt. */
557 got_plt = bfd_get_section_by_name (obfd, ".got");
558 if (got_plt == NULL)
559 return;
560 }
561
562 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
563 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
564 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
565 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
566 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
567 break;
568 if (relplt == NULL)
569 return;
570
571 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
572 return;
573
574 std::string string_buffer;
575
576 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
577 for (reloc = 0; reloc < reloc_count; reloc++)
578 {
579 const char *name;
580 struct minimal_symbol *msym;
581 CORE_ADDR address;
582 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
583 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
584
585 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
586 address = relplt->relocation[reloc].address;
587
588 /* Does the pointer reside in the .got.plt section? */
589 if (!(bfd_get_section_vma (obfd, got_plt) <= address
590 && address < bfd_get_section_vma (obfd, got_plt)
591 + bfd_get_section_size (got_plt)))
592 continue;
593
594 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
595 OBJFILE the symbol is undefined and the objfile having NAME defined
596 may not yet have been loaded. */
597
598 string_buffer.assign (name);
599 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
600
601 msym = record_minimal_symbol (reader, string_buffer.c_str (),
602 string_buffer.size (),
603 true, address, mst_slot_got_plt, got_plt,
604 objfile);
605 if (msym)
606 SET_MSYMBOL_SIZE (msym, ptr_size);
607 }
608 }
609
610 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
611
612 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
613
614 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
615
616 struct elf_gnu_ifunc_cache
617 {
618 /* This is always a function entry address, not a function descriptor. */
619 CORE_ADDR addr;
620
621 char name[1];
622 };
623
624 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
625
626 static hashval_t
627 elf_gnu_ifunc_cache_hash (const void *a_voidp)
628 {
629 const struct elf_gnu_ifunc_cache *a
630 = (const struct elf_gnu_ifunc_cache *) a_voidp;
631
632 return htab_hash_string (a->name);
633 }
634
635 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
636
637 static int
638 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
639 {
640 const struct elf_gnu_ifunc_cache *a
641 = (const struct elf_gnu_ifunc_cache *) a_voidp;
642 const struct elf_gnu_ifunc_cache *b
643 = (const struct elf_gnu_ifunc_cache *) b_voidp;
644
645 return strcmp (a->name, b->name) == 0;
646 }
647
648 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
649 function entry address ADDR. Return 1 if NAME and ADDR are considered as
650 valid and therefore they were successfully recorded, return 0 otherwise.
651
652 Function does not expect a duplicate entry. Use
653 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
654 exists. */
655
656 static int
657 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
658 {
659 struct bound_minimal_symbol msym;
660 asection *sect;
661 struct objfile *objfile;
662 htab_t htab;
663 struct elf_gnu_ifunc_cache entry_local, *entry_p;
664 void **slot;
665
666 msym = lookup_minimal_symbol_by_pc (addr);
667 if (msym.minsym == NULL)
668 return 0;
669 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
670 return 0;
671 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
672 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
673 objfile = msym.objfile;
674
675 /* If .plt jumps back to .plt the symbol is still deferred for later
676 resolution and it has no use for GDB. Besides ".text" this symbol can
677 reside also in ".opd" for ppc64 function descriptor. */
678 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
679 return 0;
680
681 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
682 if (htab == NULL)
683 {
684 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
685 elf_gnu_ifunc_cache_eq,
686 NULL, &objfile->objfile_obstack,
687 hashtab_obstack_allocate,
688 dummy_obstack_deallocate);
689 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
690 }
691
692 entry_local.addr = addr;
693 obstack_grow (&objfile->objfile_obstack, &entry_local,
694 offsetof (struct elf_gnu_ifunc_cache, name));
695 obstack_grow_str0 (&objfile->objfile_obstack, name);
696 entry_p
697 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
698
699 slot = htab_find_slot (htab, entry_p, INSERT);
700 if (*slot != NULL)
701 {
702 struct elf_gnu_ifunc_cache *entry_found_p
703 = (struct elf_gnu_ifunc_cache *) *slot;
704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
705
706 if (entry_found_p->addr != addr)
707 {
708 /* This case indicates buggy inferior program, the resolved address
709 should never change. */
710
711 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
712 "function_address from %s to %s"),
713 name, paddress (gdbarch, entry_found_p->addr),
714 paddress (gdbarch, addr));
715 }
716
717 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
718 }
719 *slot = entry_p;
720
721 return 1;
722 }
723
724 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
725 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
726 is not NULL) and the function returns 1. It returns 0 otherwise.
727
728 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
729 function. */
730
731 static int
732 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
733 {
734 struct objfile *objfile;
735
736 ALL_PSPACE_OBJFILES (current_program_space, objfile)
737 {
738 htab_t htab;
739 struct elf_gnu_ifunc_cache *entry_p;
740 void **slot;
741
742 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
743 if (htab == NULL)
744 continue;
745
746 entry_p = ((struct elf_gnu_ifunc_cache *)
747 alloca (sizeof (*entry_p) + strlen (name)));
748 strcpy (entry_p->name, name);
749
750 slot = htab_find_slot (htab, entry_p, NO_INSERT);
751 if (slot == NULL)
752 continue;
753 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
754 gdb_assert (entry_p != NULL);
755
756 if (addr_p)
757 *addr_p = entry_p->addr;
758 return 1;
759 }
760
761 return 0;
762 }
763
764 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
765 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
766 is not NULL) and the function returns 1. It returns 0 otherwise.
767
768 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
769 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
770 prevent cache entries duplicates. */
771
772 static int
773 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
774 {
775 char *name_got_plt;
776 struct objfile *objfile;
777 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
778
779 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
780 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
781
782 ALL_PSPACE_OBJFILES (current_program_space, objfile)
783 {
784 bfd *obfd = objfile->obfd;
785 struct gdbarch *gdbarch = get_objfile_arch (objfile);
786 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
787 size_t ptr_size = TYPE_LENGTH (ptr_type);
788 CORE_ADDR pointer_address, addr;
789 asection *plt;
790 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
791 struct bound_minimal_symbol msym;
792
793 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
794 if (msym.minsym == NULL)
795 continue;
796 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
797 continue;
798 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
799
800 plt = bfd_get_section_by_name (obfd, ".plt");
801 if (plt == NULL)
802 continue;
803
804 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
805 continue;
806 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
807 continue;
808 addr = extract_typed_address (buf, ptr_type);
809 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
810 &current_target);
811 addr = gdbarch_addr_bits_remove (gdbarch, addr);
812
813 if (addr_p)
814 *addr_p = addr;
815 if (elf_gnu_ifunc_record_cache (name, addr))
816 return 1;
817 }
818
819 return 0;
820 }
821
822 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
823 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
824 is not NULL) and the function returns 1. It returns 0 otherwise.
825
826 Both the elf_objfile_gnu_ifunc_cache_data hash table and
827 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
828
829 static int
830 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
831 {
832 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
833 return 1;
834
835 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
836 return 1;
837
838 return 0;
839 }
840
841 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
842 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
843 is the entry point of the resolved STT_GNU_IFUNC target function to call.
844 */
845
846 static CORE_ADDR
847 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
848 {
849 const char *name_at_pc;
850 CORE_ADDR start_at_pc, address;
851 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
852 struct value *function, *address_val;
853 CORE_ADDR hwcap = 0;
854 struct value *hwcap_val;
855
856 /* Try first any non-intrusive methods without an inferior call. */
857
858 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
859 && start_at_pc == pc)
860 {
861 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
862 return address;
863 }
864 else
865 name_at_pc = NULL;
866
867 function = allocate_value (func_func_type);
868 VALUE_LVAL (function) = lval_memory;
869 set_value_address (function, pc);
870
871 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
872 parameter. FUNCTION is the function entry address. ADDRESS may be a
873 function descriptor. */
874
875 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
876 hwcap_val = value_from_longest (builtin_type (gdbarch)
877 ->builtin_unsigned_long, hwcap);
878 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
879 address = value_as_address (address_val);
880 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
881 &current_target);
882 address = gdbarch_addr_bits_remove (gdbarch, address);
883
884 if (name_at_pc)
885 elf_gnu_ifunc_record_cache (name_at_pc, address);
886
887 return address;
888 }
889
890 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
891
892 static void
893 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
894 {
895 struct breakpoint *b_return;
896 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
897 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
898 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
899 int thread_id = ptid_to_global_thread_id (inferior_ptid);
900
901 gdb_assert (b->type == bp_gnu_ifunc_resolver);
902
903 for (b_return = b->related_breakpoint; b_return != b;
904 b_return = b_return->related_breakpoint)
905 {
906 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
907 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
908 gdb_assert (frame_id_p (b_return->frame_id));
909
910 if (b_return->thread == thread_id
911 && b_return->loc->requested_address == prev_pc
912 && frame_id_eq (b_return->frame_id, prev_frame_id))
913 break;
914 }
915
916 if (b_return == b)
917 {
918 /* No need to call find_pc_line for symbols resolving as this is only
919 a helper breakpointer never shown to the user. */
920
921 symtab_and_line sal;
922 sal.pspace = current_inferior ()->pspace;
923 sal.pc = prev_pc;
924 sal.section = find_pc_overlay (sal.pc);
925 sal.explicit_pc = 1;
926 b_return
927 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
928 prev_frame_id,
929 bp_gnu_ifunc_resolver_return).release ();
930
931 /* set_momentary_breakpoint invalidates PREV_FRAME. */
932 prev_frame = NULL;
933
934 /* Add new b_return to the ring list b->related_breakpoint. */
935 gdb_assert (b_return->related_breakpoint == b_return);
936 b_return->related_breakpoint = b->related_breakpoint;
937 b->related_breakpoint = b_return;
938 }
939 }
940
941 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
942
943 static void
944 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
945 {
946 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
947 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
948 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
949 struct regcache *regcache = get_thread_regcache (inferior_ptid);
950 struct value *func_func;
951 struct value *value;
952 CORE_ADDR resolved_address, resolved_pc;
953
954 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
955
956 while (b->related_breakpoint != b)
957 {
958 struct breakpoint *b_next = b->related_breakpoint;
959
960 switch (b->type)
961 {
962 case bp_gnu_ifunc_resolver:
963 break;
964 case bp_gnu_ifunc_resolver_return:
965 delete_breakpoint (b);
966 break;
967 default:
968 internal_error (__FILE__, __LINE__,
969 _("handle_inferior_event: Invalid "
970 "gnu-indirect-function breakpoint type %d"),
971 (int) b->type);
972 }
973 b = b_next;
974 }
975 gdb_assert (b->type == bp_gnu_ifunc_resolver);
976 gdb_assert (b->loc->next == NULL);
977
978 func_func = allocate_value (func_func_type);
979 VALUE_LVAL (func_func) = lval_memory;
980 set_value_address (func_func, b->loc->related_address);
981
982 value = allocate_value (value_type);
983 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
984 value_contents_raw (value), NULL);
985 resolved_address = value_as_address (value);
986 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
987 resolved_address,
988 &current_target);
989 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
990
991 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
992 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
993 resolved_pc);
994
995 b->type = bp_breakpoint;
996 update_breakpoint_locations (b, current_program_space,
997 find_pc_line (resolved_pc, 0), {});
998 }
999
1000 /* A helper function for elf_symfile_read that reads the minimal
1001 symbols. */
1002
1003 static void
1004 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1005 const struct elfinfo *ei)
1006 {
1007 bfd *synth_abfd, *abfd = objfile->obfd;
1008 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1009 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1010 asymbol *synthsyms;
1011 struct dbx_symfile_info *dbx;
1012
1013 if (symtab_create_debug)
1014 {
1015 fprintf_unfiltered (gdb_stdlog,
1016 "Reading minimal symbols of objfile %s ...\n",
1017 objfile_name (objfile));
1018 }
1019
1020 /* If we already have minsyms, then we can skip some work here.
1021 However, if there were stabs or mdebug sections, we go ahead and
1022 redo all the work anyway, because the psym readers for those
1023 kinds of debuginfo need extra information found here. This can
1024 go away once all types of symbols are in the per-BFD object. */
1025 if (objfile->per_bfd->minsyms_read
1026 && ei->stabsect == NULL
1027 && ei->mdebugsect == NULL)
1028 {
1029 if (symtab_create_debug)
1030 fprintf_unfiltered (gdb_stdlog,
1031 "... minimal symbols previously read\n");
1032 return;
1033 }
1034
1035 minimal_symbol_reader reader (objfile);
1036
1037 /* Allocate struct to keep track of the symfile. */
1038 dbx = XCNEW (struct dbx_symfile_info);
1039 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1040
1041 /* Process the normal ELF symbol table first. */
1042
1043 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1044 if (storage_needed < 0)
1045 error (_("Can't read symbols from %s: %s"),
1046 bfd_get_filename (objfile->obfd),
1047 bfd_errmsg (bfd_get_error ()));
1048
1049 if (storage_needed > 0)
1050 {
1051 /* Memory gets permanently referenced from ABFD after
1052 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1053
1054 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1055 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1056
1057 if (symcount < 0)
1058 error (_("Can't read symbols from %s: %s"),
1059 bfd_get_filename (objfile->obfd),
1060 bfd_errmsg (bfd_get_error ()));
1061
1062 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1063 false);
1064 }
1065
1066 /* Add the dynamic symbols. */
1067
1068 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1069
1070 if (storage_needed > 0)
1071 {
1072 /* Memory gets permanently referenced from ABFD after
1073 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1074 It happens only in the case when elf_slurp_reloc_table sees
1075 asection->relocation NULL. Determining which section is asection is
1076 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1077 implementation detail, though. */
1078
1079 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1080 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1081 dyn_symbol_table);
1082
1083 if (dynsymcount < 0)
1084 error (_("Can't read symbols from %s: %s"),
1085 bfd_get_filename (objfile->obfd),
1086 bfd_errmsg (bfd_get_error ()));
1087
1088 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1089 dyn_symbol_table, false);
1090
1091 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1092 }
1093
1094 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1095 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1096
1097 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1098 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1099 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1100 read the code address from .opd while it reads the .symtab section from
1101 a separate debug info file as the .opd section is SHT_NOBITS there.
1102
1103 With SYNTH_ABFD the .opd section will be read from the original
1104 backlinked binary where it is valid. */
1105
1106 if (objfile->separate_debug_objfile_backlink)
1107 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1108 else
1109 synth_abfd = abfd;
1110
1111 /* Add synthetic symbols - for instance, names for any PLT entries. */
1112
1113 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1114 dynsymcount, dyn_symbol_table,
1115 &synthsyms);
1116 if (synthcount > 0)
1117 {
1118 long i;
1119
1120 std::unique_ptr<asymbol *[]>
1121 synth_symbol_table (new asymbol *[synthcount]);
1122 for (i = 0; i < synthcount; i++)
1123 synth_symbol_table[i] = synthsyms + i;
1124 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1125 synth_symbol_table.get (), true);
1126
1127 xfree (synthsyms);
1128 synthsyms = NULL;
1129 }
1130
1131 /* Install any minimal symbols that have been collected as the current
1132 minimal symbols for this objfile. The debug readers below this point
1133 should not generate new minimal symbols; if they do it's their
1134 responsibility to install them. "mdebug" appears to be the only one
1135 which will do this. */
1136
1137 reader.install ();
1138
1139 if (symtab_create_debug)
1140 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1141 }
1142
1143 /* Scan and build partial symbols for a symbol file.
1144 We have been initialized by a call to elf_symfile_init, which
1145 currently does nothing.
1146
1147 This function only does the minimum work necessary for letting the
1148 user "name" things symbolically; it does not read the entire symtab.
1149 Instead, it reads the external and static symbols and puts them in partial
1150 symbol tables. When more extensive information is requested of a
1151 file, the corresponding partial symbol table is mutated into a full
1152 fledged symbol table by going back and reading the symbols
1153 for real.
1154
1155 We look for sections with specific names, to tell us what debug
1156 format to look for: FIXME!!!
1157
1158 elfstab_build_psymtabs() handles STABS symbols;
1159 mdebug_build_psymtabs() handles ECOFF debugging information.
1160
1161 Note that ELF files have a "minimal" symbol table, which looks a lot
1162 like a COFF symbol table, but has only the minimal information necessary
1163 for linking. We process this also, and use the information to
1164 build gdb's minimal symbol table. This gives us some minimal debugging
1165 capability even for files compiled without -g. */
1166
1167 static void
1168 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1169 {
1170 bfd *abfd = objfile->obfd;
1171 struct elfinfo ei;
1172
1173 memset ((char *) &ei, 0, sizeof (ei));
1174 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1175
1176 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1177
1178 /* ELF debugging information is inserted into the psymtab in the
1179 order of least informative first - most informative last. Since
1180 the psymtab table is searched `most recent insertion first' this
1181 increases the probability that more detailed debug information
1182 for a section is found.
1183
1184 For instance, an object file might contain both .mdebug (XCOFF)
1185 and .debug_info (DWARF2) sections then .mdebug is inserted first
1186 (searched last) and DWARF2 is inserted last (searched first). If
1187 we don't do this then the XCOFF info is found first - for code in
1188 an included file XCOFF info is useless. */
1189
1190 if (ei.mdebugsect)
1191 {
1192 const struct ecoff_debug_swap *swap;
1193
1194 /* .mdebug section, presumably holding ECOFF debugging
1195 information. */
1196 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1197 if (swap)
1198 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1199 }
1200 if (ei.stabsect)
1201 {
1202 asection *str_sect;
1203
1204 /* Stab sections have an associated string table that looks like
1205 a separate section. */
1206 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1207
1208 /* FIXME should probably warn about a stab section without a stabstr. */
1209 if (str_sect)
1210 elfstab_build_psymtabs (objfile,
1211 ei.stabsect,
1212 str_sect->filepos,
1213 bfd_section_size (abfd, str_sect));
1214 }
1215
1216 if (dwarf2_has_info (objfile, NULL))
1217 {
1218 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1219 information present in OBJFILE. If there is such debug info present
1220 never use .gdb_index. */
1221
1222 if (!objfile_has_partial_symbols (objfile)
1223 && dwarf2_initialize_objfile (objfile))
1224 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1225 else
1226 {
1227 /* It is ok to do this even if the stabs reader made some
1228 partial symbols, because OBJF_PSYMTABS_READ has not been
1229 set, and so our lazy reader function will still be called
1230 when needed. */
1231 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1232 }
1233 }
1234 /* If the file has its own symbol tables it has no separate debug
1235 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1236 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1237 `.note.gnu.build-id'.
1238
1239 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1240 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1241 an objfile via find_separate_debug_file_in_section there was no separate
1242 debug info available. Therefore do not attempt to search for another one,
1243 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1244 be NULL and we would possibly violate it. */
1245
1246 else if (!objfile_has_partial_symbols (objfile)
1247 && objfile->separate_debug_objfile == NULL
1248 && objfile->separate_debug_objfile_backlink == NULL)
1249 {
1250 gdb::unique_xmalloc_ptr<char> debugfile
1251 (find_separate_debug_file_by_buildid (objfile));
1252
1253 if (debugfile == NULL)
1254 debugfile.reset (find_separate_debug_file_by_debuglink (objfile));
1255
1256 if (debugfile != NULL)
1257 {
1258 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.get ()));
1259
1260 symbol_file_add_separate (abfd.get (), debugfile.get (),
1261 symfile_flags, objfile);
1262 }
1263 }
1264 }
1265
1266 /* Callback to lazily read psymtabs. */
1267
1268 static void
1269 read_psyms (struct objfile *objfile)
1270 {
1271 if (dwarf2_has_info (objfile, NULL))
1272 dwarf2_build_psymtabs (objfile);
1273 }
1274
1275 /* Initialize anything that needs initializing when a completely new symbol
1276 file is specified (not just adding some symbols from another file, e.g. a
1277 shared library).
1278
1279 We reinitialize buildsym, since we may be reading stabs from an ELF
1280 file. */
1281
1282 static void
1283 elf_new_init (struct objfile *ignore)
1284 {
1285 stabsread_new_init ();
1286 buildsym_new_init ();
1287 }
1288
1289 /* Perform any local cleanups required when we are done with a particular
1290 objfile. I.E, we are in the process of discarding all symbol information
1291 for an objfile, freeing up all memory held for it, and unlinking the
1292 objfile struct from the global list of known objfiles. */
1293
1294 static void
1295 elf_symfile_finish (struct objfile *objfile)
1296 {
1297 dwarf2_free_objfile (objfile);
1298 }
1299
1300 /* ELF specific initialization routine for reading symbols. */
1301
1302 static void
1303 elf_symfile_init (struct objfile *objfile)
1304 {
1305 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1306 find this causes a significant slowdown in gdb then we could
1307 set it in the debug symbol readers only when necessary. */
1308 objfile->flags |= OBJF_REORDERED;
1309 }
1310
1311 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1312
1313 static const std::vector<probe *> &
1314 elf_get_probes (struct objfile *objfile)
1315 {
1316 std::vector<probe *> *probes_per_bfd;
1317
1318 /* Have we parsed this objfile's probes already? */
1319 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1320
1321 if (probes_per_bfd == NULL)
1322 {
1323 probes_per_bfd = new std::vector<probe *>;
1324
1325 /* Here we try to gather information about all types of probes from the
1326 objfile. */
1327 for (const static_probe_ops *ops : all_static_probe_ops)
1328 ops->get_probes (probes_per_bfd, objfile);
1329
1330 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1331 }
1332
1333 return *probes_per_bfd;
1334 }
1335
1336 /* Helper function used to free the space allocated for storing SystemTap
1337 probe information. */
1338
1339 static void
1340 probe_key_free (bfd *abfd, void *d)
1341 {
1342 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1343
1344 for (probe *p : *probes)
1345 delete p;
1346
1347 delete probes;
1348 }
1349
1350 \f
1351
1352 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1353
1354 static const struct sym_probe_fns elf_probe_fns =
1355 {
1356 elf_get_probes, /* sym_get_probes */
1357 };
1358
1359 /* Register that we are able to handle ELF object file formats. */
1360
1361 static const struct sym_fns elf_sym_fns =
1362 {
1363 elf_new_init, /* init anything gbl to entire symtab */
1364 elf_symfile_init, /* read initial info, setup for sym_read() */
1365 elf_symfile_read, /* read a symbol file into symtab */
1366 NULL, /* sym_read_psymbols */
1367 elf_symfile_finish, /* finished with file, cleanup */
1368 default_symfile_offsets, /* Translate ext. to int. relocation */
1369 elf_symfile_segments, /* Get segment information from a file. */
1370 NULL,
1371 default_symfile_relocate, /* Relocate a debug section. */
1372 &elf_probe_fns, /* sym_probe_fns */
1373 &psym_functions
1374 };
1375
1376 /* The same as elf_sym_fns, but not registered and lazily reads
1377 psymbols. */
1378
1379 const struct sym_fns elf_sym_fns_lazy_psyms =
1380 {
1381 elf_new_init, /* init anything gbl to entire symtab */
1382 elf_symfile_init, /* read initial info, setup for sym_read() */
1383 elf_symfile_read, /* read a symbol file into symtab */
1384 read_psyms, /* sym_read_psymbols */
1385 elf_symfile_finish, /* finished with file, cleanup */
1386 default_symfile_offsets, /* Translate ext. to int. relocation */
1387 elf_symfile_segments, /* Get segment information from a file. */
1388 NULL,
1389 default_symfile_relocate, /* Relocate a debug section. */
1390 &elf_probe_fns, /* sym_probe_fns */
1391 &psym_functions
1392 };
1393
1394 /* The same as elf_sym_fns, but not registered and uses the
1395 DWARF-specific GNU index rather than psymtab. */
1396 const struct sym_fns elf_sym_fns_gdb_index =
1397 {
1398 elf_new_init, /* init anything gbl to entire symab */
1399 elf_symfile_init, /* read initial info, setup for sym_red() */
1400 elf_symfile_read, /* read a symbol file into symtab */
1401 NULL, /* sym_read_psymbols */
1402 elf_symfile_finish, /* finished with file, cleanup */
1403 default_symfile_offsets, /* Translate ext. to int. relocatin */
1404 elf_symfile_segments, /* Get segment information from a file. */
1405 NULL,
1406 default_symfile_relocate, /* Relocate a debug section. */
1407 &elf_probe_fns, /* sym_probe_fns */
1408 &dwarf2_gdb_index_functions
1409 };
1410
1411 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1412
1413 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1414 {
1415 elf_gnu_ifunc_resolve_addr,
1416 elf_gnu_ifunc_resolve_name,
1417 elf_gnu_ifunc_resolver_stop,
1418 elf_gnu_ifunc_resolver_return_stop
1419 };
1420
1421 void
1422 _initialize_elfread (void)
1423 {
1424 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1425 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1426
1427 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1428 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1429 }
This page took 0.060471 seconds and 4 git commands to generate.