Change get_objfile_arch to a method on objfile
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50 #include "ctfread.h"
51 #include "gdbsupport/gdb_string_view.h"
52 #include "gdbsupport/scoped_fd.h"
53 #include "debuginfod-support.h"
54
55 /* Forward declarations. */
56 extern const struct sym_fns elf_sym_fns_gdb_index;
57 extern const struct sym_fns elf_sym_fns_debug_names;
58 extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
60 /* The struct elfinfo is available only during ELF symbol table and
61 psymtab reading. It is destroyed at the completion of psymtab-reading.
62 It's local to elf_symfile_read. */
63
64 struct elfinfo
65 {
66 asection *stabsect; /* Section pointer for .stab section */
67 asection *mdebugsect; /* Section pointer for .mdebug section */
68 asection *ctfsect; /* Section pointer for .ctf section */
69 };
70
71 /* Type for per-BFD data. */
72
73 typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
75 /* Per-BFD data for probe info. */
76
77 static const struct bfd_key<elfread_data> probe_key;
78
79 /* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
86 /* Locate the segments in ABFD. */
87
88 static struct symfile_segment_data *
89 elf_symfile_segments (bfd *abfd)
90 {
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
95 struct symfile_segment_data *data;
96
97 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
98 if (phdrs_size == -1)
99 return NULL;
100
101 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
102 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
103 if (num_phdrs == -1)
104 return NULL;
105
106 num_segments = 0;
107 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
108 for (i = 0; i < num_phdrs; i++)
109 if (phdrs[i].p_type == PT_LOAD)
110 segments[num_segments++] = &phdrs[i];
111
112 if (num_segments == 0)
113 return NULL;
114
115 data = XCNEW (struct symfile_segment_data);
116 data->num_segments = num_segments;
117 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
118 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
119
120 for (i = 0; i < num_segments; i++)
121 {
122 data->segment_bases[i] = segments[i]->p_vaddr;
123 data->segment_sizes[i] = segments[i]->p_memsz;
124 }
125
126 num_sections = bfd_count_sections (abfd);
127 data->segment_info = XCNEWVEC (int, num_sections);
128
129 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
130 {
131 int j;
132
133 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
134 continue;
135
136 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
137
138 for (j = 0; j < num_segments; j++)
139 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
140 {
141 data->segment_info[i] = j + 1;
142 break;
143 }
144
145 /* We should have found a segment for every non-empty section.
146 If we haven't, we will not relocate this section by any
147 offsets we apply to the segments. As an exception, do not
148 warn about SHT_NOBITS sections; in normal ELF execution
149 environments, SHT_NOBITS means zero-initialized and belongs
150 in a segment, but in no-OS environments some tools (e.g. ARM
151 RealView) use SHT_NOBITS for uninitialized data. Since it is
152 uninitialized, it doesn't need a program header. Such
153 binaries are not relocatable. */
154 if (bfd_section_size (sect) > 0 && j == num_segments
155 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
156 warning (_("Loadable section \"%s\" outside of ELF segments"),
157 bfd_section_name (sect));
158 }
159
160 return data;
161 }
162
163 /* We are called once per section from elf_symfile_read. We
164 need to examine each section we are passed, check to see
165 if it is something we are interested in processing, and
166 if so, stash away some access information for the section.
167
168 For now we recognize the dwarf debug information sections and
169 line number sections from matching their section names. The
170 ELF definition is no real help here since it has no direct
171 knowledge of DWARF (by design, so any debugging format can be
172 used).
173
174 We also recognize the ".stab" sections used by the Sun compilers
175 released with Solaris 2.
176
177 FIXME: The section names should not be hardwired strings (what
178 should they be? I don't think most object file formats have enough
179 section flags to specify what kind of debug section it is.
180 -kingdon). */
181
182 static void
183 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
184 {
185 struct elfinfo *ei;
186
187 ei = (struct elfinfo *) eip;
188 if (strcmp (sectp->name, ".stab") == 0)
189 {
190 ei->stabsect = sectp;
191 }
192 else if (strcmp (sectp->name, ".mdebug") == 0)
193 {
194 ei->mdebugsect = sectp;
195 }
196 else if (strcmp (sectp->name, ".ctf") == 0)
197 {
198 ei->ctfsect = sectp;
199 }
200 }
201
202 static struct minimal_symbol *
203 record_minimal_symbol (minimal_symbol_reader &reader,
204 gdb::string_view name, bool copy_name,
205 CORE_ADDR address,
206 enum minimal_symbol_type ms_type,
207 asection *bfd_section, struct objfile *objfile)
208 {
209 struct gdbarch *gdbarch = objfile->arch ();
210
211 if (ms_type == mst_text || ms_type == mst_file_text
212 || ms_type == mst_text_gnu_ifunc)
213 address = gdbarch_addr_bits_remove (gdbarch, address);
214
215 /* We only setup section information for allocatable sections. Usually
216 we'd only expect to find msymbols for allocatable sections, but if the
217 ELF is malformed then this might not be the case. In that case don't
218 create an msymbol that references an uninitialised section object. */
219 int section_index = 0;
220 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
221 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
222
223 struct minimal_symbol *result
224 = reader.record_full (name, copy_name, address, ms_type, section_index);
225 if ((objfile->flags & OBJF_MAINLINE) == 0
226 && (ms_type == mst_data || ms_type == mst_bss))
227 result->maybe_copied = 1;
228
229 return result;
230 }
231
232 /* Read the symbol table of an ELF file.
233
234 Given an objfile, a symbol table, and a flag indicating whether the
235 symbol table contains regular, dynamic, or synthetic symbols, add all
236 the global function and data symbols to the minimal symbol table.
237
238 In stabs-in-ELF, as implemented by Sun, there are some local symbols
239 defined in the ELF symbol table, which can be used to locate
240 the beginnings of sections from each ".o" file that was linked to
241 form the executable objfile. We gather any such info and record it
242 in data structures hung off the objfile's private data. */
243
244 #define ST_REGULAR 0
245 #define ST_DYNAMIC 1
246 #define ST_SYNTHETIC 2
247
248 static void
249 elf_symtab_read (minimal_symbol_reader &reader,
250 struct objfile *objfile, int type,
251 long number_of_symbols, asymbol **symbol_table,
252 bool copy_names)
253 {
254 struct gdbarch *gdbarch = objfile->arch ();
255 asymbol *sym;
256 long i;
257 CORE_ADDR symaddr;
258 enum minimal_symbol_type ms_type;
259 /* Name of the last file symbol. This is either a constant string or is
260 saved on the objfile's filename cache. */
261 const char *filesymname = "";
262 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
263 int elf_make_msymbol_special_p
264 = gdbarch_elf_make_msymbol_special_p (gdbarch);
265
266 for (i = 0; i < number_of_symbols; i++)
267 {
268 sym = symbol_table[i];
269 if (sym->name == NULL || *sym->name == '\0')
270 {
271 /* Skip names that don't exist (shouldn't happen), or names
272 that are null strings (may happen). */
273 continue;
274 }
275
276 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
277 symbols which do not correspond to objects in the symbol table,
278 but have some other target-specific meaning. */
279 if (bfd_is_target_special_symbol (objfile->obfd, sym))
280 {
281 if (gdbarch_record_special_symbol_p (gdbarch))
282 gdbarch_record_special_symbol (gdbarch, objfile, sym);
283 continue;
284 }
285
286 if (type == ST_DYNAMIC
287 && sym->section == bfd_und_section_ptr
288 && (sym->flags & BSF_FUNCTION))
289 {
290 struct minimal_symbol *msym;
291 bfd *abfd = objfile->obfd;
292 asection *sect;
293
294 /* Symbol is a reference to a function defined in
295 a shared library.
296 If its value is non zero then it is usually the address
297 of the corresponding entry in the procedure linkage table,
298 plus the desired section offset.
299 If its value is zero then the dynamic linker has to resolve
300 the symbol. We are unable to find any meaningful address
301 for this symbol in the executable file, so we skip it. */
302 symaddr = sym->value;
303 if (symaddr == 0)
304 continue;
305
306 /* sym->section is the undefined section. However, we want to
307 record the section where the PLT stub resides with the
308 minimal symbol. Search the section table for the one that
309 covers the stub's address. */
310 for (sect = abfd->sections; sect != NULL; sect = sect->next)
311 {
312 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
313 continue;
314
315 if (symaddr >= bfd_section_vma (sect)
316 && symaddr < bfd_section_vma (sect)
317 + bfd_section_size (sect))
318 break;
319 }
320 if (!sect)
321 continue;
322
323 /* On ia64-hpux, we have discovered that the system linker
324 adds undefined symbols with nonzero addresses that cannot
325 be right (their address points inside the code of another
326 function in the .text section). This creates problems
327 when trying to determine which symbol corresponds to
328 a given address.
329
330 We try to detect those buggy symbols by checking which
331 section we think they correspond to. Normally, PLT symbols
332 are stored inside their own section, and the typical name
333 for that section is ".plt". So, if there is a ".plt"
334 section, and yet the section name of our symbol does not
335 start with ".plt", we ignore that symbol. */
336 if (!startswith (sect->name, ".plt")
337 && bfd_get_section_by_name (abfd, ".plt") != NULL)
338 continue;
339
340 msym = record_minimal_symbol
341 (reader, sym->name, copy_names,
342 symaddr, mst_solib_trampoline, sect, objfile);
343 if (msym != NULL)
344 {
345 msym->filename = filesymname;
346 if (elf_make_msymbol_special_p)
347 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
348 }
349 continue;
350 }
351
352 /* If it is a nonstripped executable, do not enter dynamic
353 symbols, as the dynamic symbol table is usually a subset
354 of the main symbol table. */
355 if (type == ST_DYNAMIC && !stripped)
356 continue;
357 if (sym->flags & BSF_FILE)
358 filesymname = objfile->intern (sym->name);
359 else if (sym->flags & BSF_SECTION_SYM)
360 continue;
361 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
362 | BSF_GNU_UNIQUE))
363 {
364 struct minimal_symbol *msym;
365
366 /* Select global/local/weak symbols. Note that bfd puts abs
367 symbols in their own section, so all symbols we are
368 interested in will have a section. */
369 /* Bfd symbols are section relative. */
370 symaddr = sym->value + sym->section->vma;
371 /* For non-absolute symbols, use the type of the section
372 they are relative to, to intuit text/data. Bfd provides
373 no way of figuring this out for absolute symbols. */
374 if (sym->section == bfd_abs_section_ptr)
375 {
376 /* This is a hack to get the minimal symbol type
377 right for Irix 5, which has absolute addresses
378 with special section indices for dynamic symbols.
379
380 NOTE: uweigand-20071112: Synthetic symbols do not
381 have an ELF-private part, so do not touch those. */
382 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
383 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
384
385 switch (shndx)
386 {
387 case SHN_MIPS_TEXT:
388 ms_type = mst_text;
389 break;
390 case SHN_MIPS_DATA:
391 ms_type = mst_data;
392 break;
393 case SHN_MIPS_ACOMMON:
394 ms_type = mst_bss;
395 break;
396 default:
397 ms_type = mst_abs;
398 }
399
400 /* If it is an Irix dynamic symbol, skip section name
401 symbols, relocate all others by section offset. */
402 if (ms_type != mst_abs)
403 {
404 if (sym->name[0] == '.')
405 continue;
406 }
407 }
408 else if (sym->section->flags & SEC_CODE)
409 {
410 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
411 {
412 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
413 ms_type = mst_text_gnu_ifunc;
414 else
415 ms_type = mst_text;
416 }
417 /* The BSF_SYNTHETIC check is there to omit ppc64 function
418 descriptors mistaken for static functions starting with 'L'.
419 */
420 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
421 && (sym->flags & BSF_SYNTHETIC) == 0)
422 || ((sym->flags & BSF_LOCAL)
423 && sym->name[0] == '$'
424 && sym->name[1] == 'L'))
425 /* Looks like a compiler-generated label. Skip
426 it. The assembler should be skipping these (to
427 keep executables small), but apparently with
428 gcc on the (deleted) delta m88k SVR4, it loses.
429 So to have us check too should be harmless (but
430 I encourage people to fix this in the assembler
431 instead of adding checks here). */
432 continue;
433 else
434 {
435 ms_type = mst_file_text;
436 }
437 }
438 else if (sym->section->flags & SEC_ALLOC)
439 {
440 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
441 {
442 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
443 {
444 ms_type = mst_data_gnu_ifunc;
445 }
446 else if (sym->section->flags & SEC_LOAD)
447 {
448 ms_type = mst_data;
449 }
450 else
451 {
452 ms_type = mst_bss;
453 }
454 }
455 else if (sym->flags & BSF_LOCAL)
456 {
457 if (sym->section->flags & SEC_LOAD)
458 {
459 ms_type = mst_file_data;
460 }
461 else
462 {
463 ms_type = mst_file_bss;
464 }
465 }
466 else
467 {
468 ms_type = mst_unknown;
469 }
470 }
471 else
472 {
473 /* FIXME: Solaris2 shared libraries include lots of
474 odd "absolute" and "undefined" symbols, that play
475 hob with actions like finding what function the PC
476 is in. Ignore them if they aren't text, data, or bss. */
477 /* ms_type = mst_unknown; */
478 continue; /* Skip this symbol. */
479 }
480 msym = record_minimal_symbol
481 (reader, sym->name, copy_names, symaddr,
482 ms_type, sym->section, objfile);
483
484 if (msym)
485 {
486 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
487 ELF-private part. */
488 if (type != ST_SYNTHETIC)
489 {
490 /* Pass symbol size field in via BFD. FIXME!!! */
491 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
492 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
493 }
494
495 msym->filename = filesymname;
496 if (elf_make_msymbol_special_p)
497 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
498 }
499
500 /* If we see a default versioned symbol, install it under
501 its version-less name. */
502 if (msym != NULL)
503 {
504 const char *atsign = strchr (sym->name, '@');
505
506 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
507 {
508 int len = atsign - sym->name;
509
510 record_minimal_symbol (reader,
511 gdb::string_view (sym->name, len),
512 true, symaddr, ms_type, sym->section,
513 objfile);
514 }
515 }
516
517 /* For @plt symbols, also record a trampoline to the
518 destination symbol. The @plt symbol will be used in
519 disassembly, and the trampoline will be used when we are
520 trying to find the target. */
521 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
522 {
523 int len = strlen (sym->name);
524
525 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
526 {
527 struct minimal_symbol *mtramp;
528
529 mtramp = record_minimal_symbol
530 (reader, gdb::string_view (sym->name, len - 4), true,
531 symaddr, mst_solib_trampoline, sym->section, objfile);
532 if (mtramp)
533 {
534 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
535 mtramp->created_by_gdb = 1;
536 mtramp->filename = filesymname;
537 if (elf_make_msymbol_special_p)
538 gdbarch_elf_make_msymbol_special (gdbarch,
539 sym, mtramp);
540 }
541 }
542 }
543 }
544 }
545 }
546
547 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
548 for later look ups of which function to call when user requests
549 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
550 library defining `function' we cannot yet know while reading OBJFILE which
551 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
552 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
553
554 static void
555 elf_rel_plt_read (minimal_symbol_reader &reader,
556 struct objfile *objfile, asymbol **dyn_symbol_table)
557 {
558 bfd *obfd = objfile->obfd;
559 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
560 asection *relplt, *got_plt;
561 bfd_size_type reloc_count, reloc;
562 struct gdbarch *gdbarch = objfile->arch ();
563 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
564 size_t ptr_size = TYPE_LENGTH (ptr_type);
565
566 if (objfile->separate_debug_objfile_backlink)
567 return;
568
569 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
570 if (got_plt == NULL)
571 {
572 /* For platforms where there is no separate .got.plt. */
573 got_plt = bfd_get_section_by_name (obfd, ".got");
574 if (got_plt == NULL)
575 return;
576 }
577
578 /* Depending on system, we may find jump slots in a relocation
579 section for either .got.plt or .plt. */
580 asection *plt = bfd_get_section_by_name (obfd, ".plt");
581 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
582
583 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
584
585 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
586 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
587 {
588 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
589
590 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
591 {
592 if (this_hdr.sh_info == plt_elf_idx
593 || this_hdr.sh_info == got_plt_elf_idx)
594 break;
595 }
596 }
597 if (relplt == NULL)
598 return;
599
600 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
601 return;
602
603 std::string string_buffer;
604
605 /* Does ADDRESS reside in SECTION of OBFD? */
606 auto within_section = [obfd] (asection *section, CORE_ADDR address)
607 {
608 if (section == NULL)
609 return false;
610
611 return (bfd_section_vma (section) <= address
612 && (address < bfd_section_vma (section)
613 + bfd_section_size (section)));
614 };
615
616 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
617 for (reloc = 0; reloc < reloc_count; reloc++)
618 {
619 const char *name;
620 struct minimal_symbol *msym;
621 CORE_ADDR address;
622 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
623 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
624
625 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
626 address = relplt->relocation[reloc].address;
627
628 asection *msym_section;
629
630 /* Does the pointer reside in either the .got.plt or .plt
631 sections? */
632 if (within_section (got_plt, address))
633 msym_section = got_plt;
634 else if (within_section (plt, address))
635 msym_section = plt;
636 else
637 continue;
638
639 /* We cannot check if NAME is a reference to
640 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
641 symbol is undefined and the objfile having NAME defined may
642 not yet have been loaded. */
643
644 string_buffer.assign (name);
645 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
646
647 msym = record_minimal_symbol (reader, string_buffer,
648 true, address, mst_slot_got_plt,
649 msym_section, objfile);
650 if (msym)
651 SET_MSYMBOL_SIZE (msym, ptr_size);
652 }
653 }
654
655 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
656
657 static const struct objfile_key<htab, htab_deleter>
658 elf_objfile_gnu_ifunc_cache_data;
659
660 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
661
662 struct elf_gnu_ifunc_cache
663 {
664 /* This is always a function entry address, not a function descriptor. */
665 CORE_ADDR addr;
666
667 char name[1];
668 };
669
670 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
671
672 static hashval_t
673 elf_gnu_ifunc_cache_hash (const void *a_voidp)
674 {
675 const struct elf_gnu_ifunc_cache *a
676 = (const struct elf_gnu_ifunc_cache *) a_voidp;
677
678 return htab_hash_string (a->name);
679 }
680
681 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
682
683 static int
684 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
685 {
686 const struct elf_gnu_ifunc_cache *a
687 = (const struct elf_gnu_ifunc_cache *) a_voidp;
688 const struct elf_gnu_ifunc_cache *b
689 = (const struct elf_gnu_ifunc_cache *) b_voidp;
690
691 return strcmp (a->name, b->name) == 0;
692 }
693
694 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
695 function entry address ADDR. Return 1 if NAME and ADDR are considered as
696 valid and therefore they were successfully recorded, return 0 otherwise.
697
698 Function does not expect a duplicate entry. Use
699 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
700 exists. */
701
702 static int
703 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
704 {
705 struct bound_minimal_symbol msym;
706 struct objfile *objfile;
707 htab_t htab;
708 struct elf_gnu_ifunc_cache entry_local, *entry_p;
709 void **slot;
710
711 msym = lookup_minimal_symbol_by_pc (addr);
712 if (msym.minsym == NULL)
713 return 0;
714 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
715 return 0;
716 objfile = msym.objfile;
717
718 /* If .plt jumps back to .plt the symbol is still deferred for later
719 resolution and it has no use for GDB. */
720 const char *target_name = msym.minsym->linkage_name ();
721 size_t len = strlen (target_name);
722
723 /* Note we check the symbol's name instead of checking whether the
724 symbol is in the .plt section because some systems have @plt
725 symbols in the .text section. */
726 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
727 return 0;
728
729 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
730 if (htab == NULL)
731 {
732 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
733 elf_gnu_ifunc_cache_eq,
734 NULL, xcalloc, xfree);
735 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
736 }
737
738 entry_local.addr = addr;
739 obstack_grow (&objfile->objfile_obstack, &entry_local,
740 offsetof (struct elf_gnu_ifunc_cache, name));
741 obstack_grow_str0 (&objfile->objfile_obstack, name);
742 entry_p
743 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
744
745 slot = htab_find_slot (htab, entry_p, INSERT);
746 if (*slot != NULL)
747 {
748 struct elf_gnu_ifunc_cache *entry_found_p
749 = (struct elf_gnu_ifunc_cache *) *slot;
750 struct gdbarch *gdbarch = objfile->arch ();
751
752 if (entry_found_p->addr != addr)
753 {
754 /* This case indicates buggy inferior program, the resolved address
755 should never change. */
756
757 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
758 "function_address from %s to %s"),
759 name, paddress (gdbarch, entry_found_p->addr),
760 paddress (gdbarch, addr));
761 }
762
763 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
764 }
765 *slot = entry_p;
766
767 return 1;
768 }
769
770 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
771 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
772 is not NULL) and the function returns 1. It returns 0 otherwise.
773
774 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
775 function. */
776
777 static int
778 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
779 {
780 for (objfile *objfile : current_program_space->objfiles ())
781 {
782 htab_t htab;
783 struct elf_gnu_ifunc_cache *entry_p;
784 void **slot;
785
786 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
787 if (htab == NULL)
788 continue;
789
790 entry_p = ((struct elf_gnu_ifunc_cache *)
791 alloca (sizeof (*entry_p) + strlen (name)));
792 strcpy (entry_p->name, name);
793
794 slot = htab_find_slot (htab, entry_p, NO_INSERT);
795 if (slot == NULL)
796 continue;
797 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
798 gdb_assert (entry_p != NULL);
799
800 if (addr_p)
801 *addr_p = entry_p->addr;
802 return 1;
803 }
804
805 return 0;
806 }
807
808 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
809 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
810 is not NULL) and the function returns 1. It returns 0 otherwise.
811
812 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
813 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
814 prevent cache entries duplicates. */
815
816 static int
817 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
818 {
819 char *name_got_plt;
820 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
821
822 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
823 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
824
825 for (objfile *objfile : current_program_space->objfiles ())
826 {
827 bfd *obfd = objfile->obfd;
828 struct gdbarch *gdbarch = objfile->arch ();
829 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
830 size_t ptr_size = TYPE_LENGTH (ptr_type);
831 CORE_ADDR pointer_address, addr;
832 asection *plt;
833 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
834 struct bound_minimal_symbol msym;
835
836 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
837 if (msym.minsym == NULL)
838 continue;
839 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
840 continue;
841 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
842
843 plt = bfd_get_section_by_name (obfd, ".plt");
844 if (plt == NULL)
845 continue;
846
847 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
848 continue;
849 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
850 continue;
851 addr = extract_typed_address (buf, ptr_type);
852 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
853 current_top_target ());
854 addr = gdbarch_addr_bits_remove (gdbarch, addr);
855
856 if (elf_gnu_ifunc_record_cache (name, addr))
857 {
858 if (addr_p != NULL)
859 *addr_p = addr;
860 return 1;
861 }
862 }
863
864 return 0;
865 }
866
867 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
868 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
869 is not NULL) and the function returns true. It returns false otherwise.
870
871 Both the elf_objfile_gnu_ifunc_cache_data hash table and
872 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
873
874 static bool
875 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
876 {
877 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
878 return true;
879
880 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
881 return true;
882
883 return false;
884 }
885
886 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
887 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
888 is the entry point of the resolved STT_GNU_IFUNC target function to call.
889 */
890
891 static CORE_ADDR
892 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
893 {
894 const char *name_at_pc;
895 CORE_ADDR start_at_pc, address;
896 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
897 struct value *function, *address_val;
898 CORE_ADDR hwcap = 0;
899 struct value *hwcap_val;
900
901 /* Try first any non-intrusive methods without an inferior call. */
902
903 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
904 && start_at_pc == pc)
905 {
906 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
907 return address;
908 }
909 else
910 name_at_pc = NULL;
911
912 function = allocate_value (func_func_type);
913 VALUE_LVAL (function) = lval_memory;
914 set_value_address (function, pc);
915
916 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
917 parameter. FUNCTION is the function entry address. ADDRESS may be a
918 function descriptor. */
919
920 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
921 hwcap_val = value_from_longest (builtin_type (gdbarch)
922 ->builtin_unsigned_long, hwcap);
923 address_val = call_function_by_hand (function, NULL, hwcap_val);
924 address = value_as_address (address_val);
925 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
926 address = gdbarch_addr_bits_remove (gdbarch, address);
927
928 if (name_at_pc)
929 elf_gnu_ifunc_record_cache (name_at_pc, address);
930
931 return address;
932 }
933
934 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
935
936 static void
937 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
938 {
939 struct breakpoint *b_return;
940 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
941 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
942 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
943 int thread_id = inferior_thread ()->global_num;
944
945 gdb_assert (b->type == bp_gnu_ifunc_resolver);
946
947 for (b_return = b->related_breakpoint; b_return != b;
948 b_return = b_return->related_breakpoint)
949 {
950 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
951 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
952 gdb_assert (frame_id_p (b_return->frame_id));
953
954 if (b_return->thread == thread_id
955 && b_return->loc->requested_address == prev_pc
956 && frame_id_eq (b_return->frame_id, prev_frame_id))
957 break;
958 }
959
960 if (b_return == b)
961 {
962 /* No need to call find_pc_line for symbols resolving as this is only
963 a helper breakpointer never shown to the user. */
964
965 symtab_and_line sal;
966 sal.pspace = current_inferior ()->pspace;
967 sal.pc = prev_pc;
968 sal.section = find_pc_overlay (sal.pc);
969 sal.explicit_pc = 1;
970 b_return
971 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
972 prev_frame_id,
973 bp_gnu_ifunc_resolver_return).release ();
974
975 /* set_momentary_breakpoint invalidates PREV_FRAME. */
976 prev_frame = NULL;
977
978 /* Add new b_return to the ring list b->related_breakpoint. */
979 gdb_assert (b_return->related_breakpoint == b_return);
980 b_return->related_breakpoint = b->related_breakpoint;
981 b->related_breakpoint = b_return;
982 }
983 }
984
985 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
986
987 static void
988 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
989 {
990 thread_info *thread = inferior_thread ();
991 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
992 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
993 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
994 struct regcache *regcache = get_thread_regcache (thread);
995 struct value *func_func;
996 struct value *value;
997 CORE_ADDR resolved_address, resolved_pc;
998
999 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1000
1001 while (b->related_breakpoint != b)
1002 {
1003 struct breakpoint *b_next = b->related_breakpoint;
1004
1005 switch (b->type)
1006 {
1007 case bp_gnu_ifunc_resolver:
1008 break;
1009 case bp_gnu_ifunc_resolver_return:
1010 delete_breakpoint (b);
1011 break;
1012 default:
1013 internal_error (__FILE__, __LINE__,
1014 _("handle_inferior_event: Invalid "
1015 "gnu-indirect-function breakpoint type %d"),
1016 (int) b->type);
1017 }
1018 b = b_next;
1019 }
1020 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1021 gdb_assert (b->loc->next == NULL);
1022
1023 func_func = allocate_value (func_func_type);
1024 VALUE_LVAL (func_func) = lval_memory;
1025 set_value_address (func_func, b->loc->related_address);
1026
1027 value = allocate_value (value_type);
1028 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1029 value_contents_raw (value), NULL);
1030 resolved_address = value_as_address (value);
1031 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1032 resolved_address,
1033 current_top_target ());
1034 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1035
1036 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1037 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1038 resolved_pc);
1039
1040 b->type = bp_breakpoint;
1041 update_breakpoint_locations (b, current_program_space,
1042 find_function_start_sal (resolved_pc, NULL, true),
1043 {});
1044 }
1045
1046 /* A helper function for elf_symfile_read that reads the minimal
1047 symbols. */
1048
1049 static void
1050 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1051 const struct elfinfo *ei)
1052 {
1053 bfd *synth_abfd, *abfd = objfile->obfd;
1054 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1055 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1056 asymbol *synthsyms;
1057
1058 if (symtab_create_debug)
1059 {
1060 fprintf_unfiltered (gdb_stdlog,
1061 "Reading minimal symbols of objfile %s ...\n",
1062 objfile_name (objfile));
1063 }
1064
1065 /* If we already have minsyms, then we can skip some work here.
1066 However, if there were stabs or mdebug sections, we go ahead and
1067 redo all the work anyway, because the psym readers for those
1068 kinds of debuginfo need extra information found here. This can
1069 go away once all types of symbols are in the per-BFD object. */
1070 if (objfile->per_bfd->minsyms_read
1071 && ei->stabsect == NULL
1072 && ei->mdebugsect == NULL
1073 && ei->ctfsect == NULL)
1074 {
1075 if (symtab_create_debug)
1076 fprintf_unfiltered (gdb_stdlog,
1077 "... minimal symbols previously read\n");
1078 return;
1079 }
1080
1081 minimal_symbol_reader reader (objfile);
1082
1083 /* Process the normal ELF symbol table first. */
1084
1085 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1086 if (storage_needed < 0)
1087 error (_("Can't read symbols from %s: %s"),
1088 bfd_get_filename (objfile->obfd),
1089 bfd_errmsg (bfd_get_error ()));
1090
1091 if (storage_needed > 0)
1092 {
1093 /* Memory gets permanently referenced from ABFD after
1094 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1095
1096 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1097 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1098
1099 if (symcount < 0)
1100 error (_("Can't read symbols from %s: %s"),
1101 bfd_get_filename (objfile->obfd),
1102 bfd_errmsg (bfd_get_error ()));
1103
1104 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1105 false);
1106 }
1107
1108 /* Add the dynamic symbols. */
1109
1110 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1111
1112 if (storage_needed > 0)
1113 {
1114 /* Memory gets permanently referenced from ABFD after
1115 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1116 It happens only in the case when elf_slurp_reloc_table sees
1117 asection->relocation NULL. Determining which section is asection is
1118 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1119 implementation detail, though. */
1120
1121 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1122 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1123 dyn_symbol_table);
1124
1125 if (dynsymcount < 0)
1126 error (_("Can't read symbols from %s: %s"),
1127 bfd_get_filename (objfile->obfd),
1128 bfd_errmsg (bfd_get_error ()));
1129
1130 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1131 dyn_symbol_table, false);
1132
1133 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1134 }
1135
1136 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1137 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1138
1139 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1140 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1141 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1142 read the code address from .opd while it reads the .symtab section from
1143 a separate debug info file as the .opd section is SHT_NOBITS there.
1144
1145 With SYNTH_ABFD the .opd section will be read from the original
1146 backlinked binary where it is valid. */
1147
1148 if (objfile->separate_debug_objfile_backlink)
1149 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1150 else
1151 synth_abfd = abfd;
1152
1153 /* Add synthetic symbols - for instance, names for any PLT entries. */
1154
1155 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1156 dynsymcount, dyn_symbol_table,
1157 &synthsyms);
1158 if (synthcount > 0)
1159 {
1160 long i;
1161
1162 std::unique_ptr<asymbol *[]>
1163 synth_symbol_table (new asymbol *[synthcount]);
1164 for (i = 0; i < synthcount; i++)
1165 synth_symbol_table[i] = synthsyms + i;
1166 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1167 synth_symbol_table.get (), true);
1168
1169 xfree (synthsyms);
1170 synthsyms = NULL;
1171 }
1172
1173 /* Install any minimal symbols that have been collected as the current
1174 minimal symbols for this objfile. The debug readers below this point
1175 should not generate new minimal symbols; if they do it's their
1176 responsibility to install them. "mdebug" appears to be the only one
1177 which will do this. */
1178
1179 reader.install ();
1180
1181 if (symtab_create_debug)
1182 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1183 }
1184
1185 /* Scan and build partial symbols for a symbol file.
1186 We have been initialized by a call to elf_symfile_init, which
1187 currently does nothing.
1188
1189 This function only does the minimum work necessary for letting the
1190 user "name" things symbolically; it does not read the entire symtab.
1191 Instead, it reads the external and static symbols and puts them in partial
1192 symbol tables. When more extensive information is requested of a
1193 file, the corresponding partial symbol table is mutated into a full
1194 fledged symbol table by going back and reading the symbols
1195 for real.
1196
1197 We look for sections with specific names, to tell us what debug
1198 format to look for: FIXME!!!
1199
1200 elfstab_build_psymtabs() handles STABS symbols;
1201 mdebug_build_psymtabs() handles ECOFF debugging information.
1202
1203 Note that ELF files have a "minimal" symbol table, which looks a lot
1204 like a COFF symbol table, but has only the minimal information necessary
1205 for linking. We process this also, and use the information to
1206 build gdb's minimal symbol table. This gives us some minimal debugging
1207 capability even for files compiled without -g. */
1208
1209 static void
1210 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1211 {
1212 bfd *abfd = objfile->obfd;
1213 struct elfinfo ei;
1214 bool has_dwarf2 = true;
1215
1216 memset ((char *) &ei, 0, sizeof (ei));
1217 if (!(objfile->flags & OBJF_READNEVER))
1218 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1219
1220 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1221
1222 /* ELF debugging information is inserted into the psymtab in the
1223 order of least informative first - most informative last. Since
1224 the psymtab table is searched `most recent insertion first' this
1225 increases the probability that more detailed debug information
1226 for a section is found.
1227
1228 For instance, an object file might contain both .mdebug (XCOFF)
1229 and .debug_info (DWARF2) sections then .mdebug is inserted first
1230 (searched last) and DWARF2 is inserted last (searched first). If
1231 we don't do this then the XCOFF info is found first - for code in
1232 an included file XCOFF info is useless. */
1233
1234 if (ei.mdebugsect)
1235 {
1236 const struct ecoff_debug_swap *swap;
1237
1238 /* .mdebug section, presumably holding ECOFF debugging
1239 information. */
1240 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1241 if (swap)
1242 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1243 }
1244 if (ei.stabsect)
1245 {
1246 asection *str_sect;
1247
1248 /* Stab sections have an associated string table that looks like
1249 a separate section. */
1250 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1251
1252 /* FIXME should probably warn about a stab section without a stabstr. */
1253 if (str_sect)
1254 elfstab_build_psymtabs (objfile,
1255 ei.stabsect,
1256 str_sect->filepos,
1257 bfd_section_size (str_sect));
1258 }
1259
1260 if (dwarf2_has_info (objfile, NULL, true))
1261 {
1262 dw_index_kind index_kind;
1263
1264 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1265 debug information present in OBJFILE. If there is such debug
1266 info present never use an index. */
1267 if (!objfile_has_partial_symbols (objfile)
1268 && dwarf2_initialize_objfile (objfile, &index_kind))
1269 {
1270 switch (index_kind)
1271 {
1272 case dw_index_kind::GDB_INDEX:
1273 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1274 break;
1275 case dw_index_kind::DEBUG_NAMES:
1276 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1277 break;
1278 }
1279 }
1280 else
1281 {
1282 /* It is ok to do this even if the stabs reader made some
1283 partial symbols, because OBJF_PSYMTABS_READ has not been
1284 set, and so our lazy reader function will still be called
1285 when needed. */
1286 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1287 }
1288 }
1289 /* If the file has its own symbol tables it has no separate debug
1290 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1291 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1292 `.note.gnu.build-id'.
1293
1294 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1295 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1296 an objfile via find_separate_debug_file_in_section there was no separate
1297 debug info available. Therefore do not attempt to search for another one,
1298 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1299 be NULL and we would possibly violate it. */
1300
1301 else if (!objfile_has_partial_symbols (objfile)
1302 && objfile->separate_debug_objfile == NULL
1303 && objfile->separate_debug_objfile_backlink == NULL)
1304 {
1305 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1306
1307 if (debugfile.empty ())
1308 debugfile = find_separate_debug_file_by_debuglink (objfile);
1309
1310 if (!debugfile.empty ())
1311 {
1312 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1313
1314 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1315 symfile_flags, objfile);
1316 }
1317 else
1318 {
1319 has_dwarf2 = false;
1320 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1321
1322 if (build_id != nullptr)
1323 {
1324 gdb::unique_xmalloc_ptr<char> symfile_path;
1325 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1326 build_id->size,
1327 objfile->original_name,
1328 &symfile_path));
1329
1330 if (fd.get () >= 0)
1331 {
1332 /* File successfully retrieved from server. */
1333 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1334
1335 if (debug_bfd == nullptr)
1336 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1337 objfile->original_name);
1338 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1339 {
1340 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1341 symfile_flags, objfile);
1342 has_dwarf2 = true;
1343 }
1344 }
1345 }
1346 }
1347 }
1348
1349 /* Read the CTF section only if there is no DWARF info. */
1350 if (!has_dwarf2 && ei.ctfsect)
1351 {
1352 elfctf_build_psymtabs (objfile);
1353 }
1354 }
1355
1356 /* Callback to lazily read psymtabs. */
1357
1358 static void
1359 read_psyms (struct objfile *objfile)
1360 {
1361 if (dwarf2_has_info (objfile, NULL))
1362 dwarf2_build_psymtabs (objfile);
1363 }
1364
1365 /* Initialize anything that needs initializing when a completely new symbol
1366 file is specified (not just adding some symbols from another file, e.g. a
1367 shared library). */
1368
1369 static void
1370 elf_new_init (struct objfile *ignore)
1371 {
1372 }
1373
1374 /* Perform any local cleanups required when we are done with a particular
1375 objfile. I.E, we are in the process of discarding all symbol information
1376 for an objfile, freeing up all memory held for it, and unlinking the
1377 objfile struct from the global list of known objfiles. */
1378
1379 static void
1380 elf_symfile_finish (struct objfile *objfile)
1381 {
1382 }
1383
1384 /* ELF specific initialization routine for reading symbols. */
1385
1386 static void
1387 elf_symfile_init (struct objfile *objfile)
1388 {
1389 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1390 find this causes a significant slowdown in gdb then we could
1391 set it in the debug symbol readers only when necessary. */
1392 objfile->flags |= OBJF_REORDERED;
1393 }
1394
1395 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1396
1397 static const elfread_data &
1398 elf_get_probes (struct objfile *objfile)
1399 {
1400 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1401
1402 if (probes_per_bfd == NULL)
1403 {
1404 probes_per_bfd = probe_key.emplace (objfile->obfd);
1405
1406 /* Here we try to gather information about all types of probes from the
1407 objfile. */
1408 for (const static_probe_ops *ops : all_static_probe_ops)
1409 ops->get_probes (probes_per_bfd, objfile);
1410 }
1411
1412 return *probes_per_bfd;
1413 }
1414
1415 \f
1416
1417 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1418
1419 static const struct sym_probe_fns elf_probe_fns =
1420 {
1421 elf_get_probes, /* sym_get_probes */
1422 };
1423
1424 /* Register that we are able to handle ELF object file formats. */
1425
1426 static const struct sym_fns elf_sym_fns =
1427 {
1428 elf_new_init, /* init anything gbl to entire symtab */
1429 elf_symfile_init, /* read initial info, setup for sym_read() */
1430 elf_symfile_read, /* read a symbol file into symtab */
1431 NULL, /* sym_read_psymbols */
1432 elf_symfile_finish, /* finished with file, cleanup */
1433 default_symfile_offsets, /* Translate ext. to int. relocation */
1434 elf_symfile_segments, /* Get segment information from a file. */
1435 NULL,
1436 default_symfile_relocate, /* Relocate a debug section. */
1437 &elf_probe_fns, /* sym_probe_fns */
1438 &psym_functions
1439 };
1440
1441 /* The same as elf_sym_fns, but not registered and lazily reads
1442 psymbols. */
1443
1444 const struct sym_fns elf_sym_fns_lazy_psyms =
1445 {
1446 elf_new_init, /* init anything gbl to entire symtab */
1447 elf_symfile_init, /* read initial info, setup for sym_read() */
1448 elf_symfile_read, /* read a symbol file into symtab */
1449 read_psyms, /* sym_read_psymbols */
1450 elf_symfile_finish, /* finished with file, cleanup */
1451 default_symfile_offsets, /* Translate ext. to int. relocation */
1452 elf_symfile_segments, /* Get segment information from a file. */
1453 NULL,
1454 default_symfile_relocate, /* Relocate a debug section. */
1455 &elf_probe_fns, /* sym_probe_fns */
1456 &psym_functions
1457 };
1458
1459 /* The same as elf_sym_fns, but not registered and uses the
1460 DWARF-specific GNU index rather than psymtab. */
1461 const struct sym_fns elf_sym_fns_gdb_index =
1462 {
1463 elf_new_init, /* init anything gbl to entire symab */
1464 elf_symfile_init, /* read initial info, setup for sym_red() */
1465 elf_symfile_read, /* read a symbol file into symtab */
1466 NULL, /* sym_read_psymbols */
1467 elf_symfile_finish, /* finished with file, cleanup */
1468 default_symfile_offsets, /* Translate ext. to int. relocation */
1469 elf_symfile_segments, /* Get segment information from a file. */
1470 NULL,
1471 default_symfile_relocate, /* Relocate a debug section. */
1472 &elf_probe_fns, /* sym_probe_fns */
1473 &dwarf2_gdb_index_functions
1474 };
1475
1476 /* The same as elf_sym_fns, but not registered and uses the
1477 DWARF-specific .debug_names index rather than psymtab. */
1478 const struct sym_fns elf_sym_fns_debug_names =
1479 {
1480 elf_new_init, /* init anything gbl to entire symab */
1481 elf_symfile_init, /* read initial info, setup for sym_red() */
1482 elf_symfile_read, /* read a symbol file into symtab */
1483 NULL, /* sym_read_psymbols */
1484 elf_symfile_finish, /* finished with file, cleanup */
1485 default_symfile_offsets, /* Translate ext. to int. relocation */
1486 elf_symfile_segments, /* Get segment information from a file. */
1487 NULL,
1488 default_symfile_relocate, /* Relocate a debug section. */
1489 &elf_probe_fns, /* sym_probe_fns */
1490 &dwarf2_debug_names_functions
1491 };
1492
1493 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1494
1495 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1496 {
1497 elf_gnu_ifunc_resolve_addr,
1498 elf_gnu_ifunc_resolve_name,
1499 elf_gnu_ifunc_resolver_stop,
1500 elf_gnu_ifunc_resolver_return_stop
1501 };
1502
1503 void _initialize_elfread ();
1504 void
1505 _initialize_elfread ()
1506 {
1507 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1508
1509 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1510 }
This page took 0.061471 seconds and 5 git commands to generate.