Move some declarations to mdebugread.h
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2019 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "gdb-stabs.h"
33 #include "complaints.h"
34 #include "demangle.h"
35 #include "psympriv.h"
36 #include "filenames.h"
37 #include "probe.h"
38 #include "arch-utils.h"
39 #include "gdbtypes.h"
40 #include "value.h"
41 #include "infcall.h"
42 #include "gdbthread.h"
43 #include "inferior.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50 #include "mdebugread.h"
51
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_debug_names;
55 extern const struct sym_fns elf_sym_fns_lazy_psyms;
56
57 /* The struct elfinfo is available only during ELF symbol table and
58 psymtab reading. It is destroyed at the completion of psymtab-reading.
59 It's local to elf_symfile_read. */
60
61 struct elfinfo
62 {
63 asection *stabsect; /* Section pointer for .stab section */
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
66
67 /* Per-BFD data for probe info. */
68
69 static const struct bfd_data *probe_key = NULL;
70
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
78 /* Locate the segments in ABFD. */
79
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
82 {
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XCNEW (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCNEWVEC (int, num_sections);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
129
130 for (j = 0; j < num_segments; j++)
131 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
132 {
133 data->segment_info[i] = j + 1;
134 break;
135 }
136
137 /* We should have found a segment for every non-empty section.
138 If we haven't, we will not relocate this section by any
139 offsets we apply to the segments. As an exception, do not
140 warn about SHT_NOBITS sections; in normal ELF execution
141 environments, SHT_NOBITS means zero-initialized and belongs
142 in a segment, but in no-OS environments some tools (e.g. ARM
143 RealView) use SHT_NOBITS for uninitialized data. Since it is
144 uninitialized, it doesn't need a program header. Such
145 binaries are not relocatable. */
146 if (bfd_get_section_size (sect) > 0 && j == num_segments
147 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
148 warning (_("Loadable section \"%s\" outside of ELF segments"),
149 bfd_section_name (abfd, sect));
150 }
151
152 return data;
153 }
154
155 /* We are called once per section from elf_symfile_read. We
156 need to examine each section we are passed, check to see
157 if it is something we are interested in processing, and
158 if so, stash away some access information for the section.
159
160 For now we recognize the dwarf debug information sections and
161 line number sections from matching their section names. The
162 ELF definition is no real help here since it has no direct
163 knowledge of DWARF (by design, so any debugging format can be
164 used).
165
166 We also recognize the ".stab" sections used by the Sun compilers
167 released with Solaris 2.
168
169 FIXME: The section names should not be hardwired strings (what
170 should they be? I don't think most object file formats have enough
171 section flags to specify what kind of debug section it is.
172 -kingdon). */
173
174 static void
175 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
176 {
177 struct elfinfo *ei;
178
179 ei = (struct elfinfo *) eip;
180 if (strcmp (sectp->name, ".stab") == 0)
181 {
182 ei->stabsect = sectp;
183 }
184 else if (strcmp (sectp->name, ".mdebug") == 0)
185 {
186 ei->mdebugsect = sectp;
187 }
188 }
189
190 static struct minimal_symbol *
191 record_minimal_symbol (minimal_symbol_reader &reader,
192 const char *name, int name_len, bool copy_name,
193 CORE_ADDR address,
194 enum minimal_symbol_type ms_type,
195 asection *bfd_section, struct objfile *objfile)
196 {
197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
198
199 if (ms_type == mst_text || ms_type == mst_file_text
200 || ms_type == mst_text_gnu_ifunc)
201 address = gdbarch_addr_bits_remove (gdbarch, address);
202
203 return reader.record_full (name, name_len, copy_name, address,
204 ms_type,
205 gdb_bfd_section_index (objfile->obfd,
206 bfd_section));
207 }
208
209 /* Read the symbol table of an ELF file.
210
211 Given an objfile, a symbol table, and a flag indicating whether the
212 symbol table contains regular, dynamic, or synthetic symbols, add all
213 the global function and data symbols to the minimal symbol table.
214
215 In stabs-in-ELF, as implemented by Sun, there are some local symbols
216 defined in the ELF symbol table, which can be used to locate
217 the beginnings of sections from each ".o" file that was linked to
218 form the executable objfile. We gather any such info and record it
219 in data structures hung off the objfile's private data. */
220
221 #define ST_REGULAR 0
222 #define ST_DYNAMIC 1
223 #define ST_SYNTHETIC 2
224
225 static void
226 elf_symtab_read (minimal_symbol_reader &reader,
227 struct objfile *objfile, int type,
228 long number_of_symbols, asymbol **symbol_table,
229 bool copy_names)
230 {
231 struct gdbarch *gdbarch = get_objfile_arch (objfile);
232 asymbol *sym;
233 long i;
234 CORE_ADDR symaddr;
235 enum minimal_symbol_type ms_type;
236 /* Name of the last file symbol. This is either a constant string or is
237 saved on the objfile's filename cache. */
238 const char *filesymname = "";
239 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
240 int elf_make_msymbol_special_p
241 = gdbarch_elf_make_msymbol_special_p (gdbarch);
242
243 for (i = 0; i < number_of_symbols; i++)
244 {
245 sym = symbol_table[i];
246 if (sym->name == NULL || *sym->name == '\0')
247 {
248 /* Skip names that don't exist (shouldn't happen), or names
249 that are null strings (may happen). */
250 continue;
251 }
252
253 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
254 symbols which do not correspond to objects in the symbol table,
255 but have some other target-specific meaning. */
256 if (bfd_is_target_special_symbol (objfile->obfd, sym))
257 {
258 if (gdbarch_record_special_symbol_p (gdbarch))
259 gdbarch_record_special_symbol (gdbarch, objfile, sym);
260 continue;
261 }
262
263 if (type == ST_DYNAMIC
264 && sym->section == bfd_und_section_ptr
265 && (sym->flags & BSF_FUNCTION))
266 {
267 struct minimal_symbol *msym;
268 bfd *abfd = objfile->obfd;
269 asection *sect;
270
271 /* Symbol is a reference to a function defined in
272 a shared library.
273 If its value is non zero then it is usually the address
274 of the corresponding entry in the procedure linkage table,
275 plus the desired section offset.
276 If its value is zero then the dynamic linker has to resolve
277 the symbol. We are unable to find any meaningful address
278 for this symbol in the executable file, so we skip it. */
279 symaddr = sym->value;
280 if (symaddr == 0)
281 continue;
282
283 /* sym->section is the undefined section. However, we want to
284 record the section where the PLT stub resides with the
285 minimal symbol. Search the section table for the one that
286 covers the stub's address. */
287 for (sect = abfd->sections; sect != NULL; sect = sect->next)
288 {
289 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
290 continue;
291
292 if (symaddr >= bfd_get_section_vma (abfd, sect)
293 && symaddr < bfd_get_section_vma (abfd, sect)
294 + bfd_get_section_size (sect))
295 break;
296 }
297 if (!sect)
298 continue;
299
300 /* On ia64-hpux, we have discovered that the system linker
301 adds undefined symbols with nonzero addresses that cannot
302 be right (their address points inside the code of another
303 function in the .text section). This creates problems
304 when trying to determine which symbol corresponds to
305 a given address.
306
307 We try to detect those buggy symbols by checking which
308 section we think they correspond to. Normally, PLT symbols
309 are stored inside their own section, and the typical name
310 for that section is ".plt". So, if there is a ".plt"
311 section, and yet the section name of our symbol does not
312 start with ".plt", we ignore that symbol. */
313 if (!startswith (sect->name, ".plt")
314 && bfd_get_section_by_name (abfd, ".plt") != NULL)
315 continue;
316
317 msym = record_minimal_symbol
318 (reader, sym->name, strlen (sym->name), copy_names,
319 symaddr, mst_solib_trampoline, sect, objfile);
320 if (msym != NULL)
321 {
322 msym->filename = filesymname;
323 if (elf_make_msymbol_special_p)
324 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
325 }
326 continue;
327 }
328
329 /* If it is a nonstripped executable, do not enter dynamic
330 symbols, as the dynamic symbol table is usually a subset
331 of the main symbol table. */
332 if (type == ST_DYNAMIC && !stripped)
333 continue;
334 if (sym->flags & BSF_FILE)
335 {
336 filesymname
337 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
338 objfile->per_bfd->filename_cache);
339 }
340 else if (sym->flags & BSF_SECTION_SYM)
341 continue;
342 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
343 | BSF_GNU_UNIQUE))
344 {
345 struct minimal_symbol *msym;
346
347 /* Select global/local/weak symbols. Note that bfd puts abs
348 symbols in their own section, so all symbols we are
349 interested in will have a section. */
350 /* Bfd symbols are section relative. */
351 symaddr = sym->value + sym->section->vma;
352 /* For non-absolute symbols, use the type of the section
353 they are relative to, to intuit text/data. Bfd provides
354 no way of figuring this out for absolute symbols. */
355 if (sym->section == bfd_abs_section_ptr)
356 {
357 /* This is a hack to get the minimal symbol type
358 right for Irix 5, which has absolute addresses
359 with special section indices for dynamic symbols.
360
361 NOTE: uweigand-20071112: Synthetic symbols do not
362 have an ELF-private part, so do not touch those. */
363 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
364 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
365
366 switch (shndx)
367 {
368 case SHN_MIPS_TEXT:
369 ms_type = mst_text;
370 break;
371 case SHN_MIPS_DATA:
372 ms_type = mst_data;
373 break;
374 case SHN_MIPS_ACOMMON:
375 ms_type = mst_bss;
376 break;
377 default:
378 ms_type = mst_abs;
379 }
380
381 /* If it is an Irix dynamic symbol, skip section name
382 symbols, relocate all others by section offset. */
383 if (ms_type != mst_abs)
384 {
385 if (sym->name[0] == '.')
386 continue;
387 }
388 }
389 else if (sym->section->flags & SEC_CODE)
390 {
391 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
392 {
393 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
394 ms_type = mst_text_gnu_ifunc;
395 else
396 ms_type = mst_text;
397 }
398 /* The BSF_SYNTHETIC check is there to omit ppc64 function
399 descriptors mistaken for static functions starting with 'L'.
400 */
401 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
402 && (sym->flags & BSF_SYNTHETIC) == 0)
403 || ((sym->flags & BSF_LOCAL)
404 && sym->name[0] == '$'
405 && sym->name[1] == 'L'))
406 /* Looks like a compiler-generated label. Skip
407 it. The assembler should be skipping these (to
408 keep executables small), but apparently with
409 gcc on the (deleted) delta m88k SVR4, it loses.
410 So to have us check too should be harmless (but
411 I encourage people to fix this in the assembler
412 instead of adding checks here). */
413 continue;
414 else
415 {
416 ms_type = mst_file_text;
417 }
418 }
419 else if (sym->section->flags & SEC_ALLOC)
420 {
421 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
422 {
423 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
424 {
425 ms_type = mst_data_gnu_ifunc;
426 }
427 else if (sym->section->flags & SEC_LOAD)
428 {
429 ms_type = mst_data;
430 }
431 else
432 {
433 ms_type = mst_bss;
434 }
435 }
436 else if (sym->flags & BSF_LOCAL)
437 {
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_file_data;
441 }
442 else
443 {
444 ms_type = mst_file_bss;
445 }
446 }
447 else
448 {
449 ms_type = mst_unknown;
450 }
451 }
452 else
453 {
454 /* FIXME: Solaris2 shared libraries include lots of
455 odd "absolute" and "undefined" symbols, that play
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
459 continue; /* Skip this symbol. */
460 }
461 msym = record_minimal_symbol
462 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
463 ms_type, sym->section, objfile);
464
465 if (msym)
466 {
467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
468 ELF-private part. */
469 if (type != ST_SYNTHETIC)
470 {
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
474 }
475
476 msym->filename = filesymname;
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
479 }
480
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
483 if (msym != NULL)
484 {
485 const char *atsign = strchr (sym->name, '@');
486
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
488 {
489 int len = atsign - sym->name;
490
491 record_minimal_symbol (reader, sym->name, len, true, symaddr,
492 ms_type, sym->section, objfile);
493 }
494 }
495
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
501 {
502 int len = strlen (sym->name);
503
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
505 {
506 struct minimal_symbol *mtramp;
507
508 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
509 true, symaddr,
510 mst_solib_trampoline,
511 sym->section, objfile);
512 if (mtramp)
513 {
514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
515 mtramp->created_by_gdb = 1;
516 mtramp->filename = filesymname;
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
519 sym, mtramp);
520 }
521 }
522 }
523 }
524 }
525 }
526
527 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
533
534 static void
535 elf_rel_plt_read (minimal_symbol_reader &reader,
536 struct objfile *objfile, asymbol **dyn_symbol_table)
537 {
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
540 asection *relplt, *got_plt;
541 bfd_size_type reloc_count, reloc;
542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
543 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
544 size_t ptr_size = TYPE_LENGTH (ptr_type);
545
546 if (objfile->separate_debug_objfile_backlink)
547 return;
548
549 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
550 if (got_plt == NULL)
551 {
552 /* For platforms where there is no separate .got.plt. */
553 got_plt = bfd_get_section_by_name (obfd, ".got");
554 if (got_plt == NULL)
555 return;
556 }
557
558 /* Depending on system, we may find jump slots in a relocation
559 section for either .got.plt or .plt. */
560 asection *plt = bfd_get_section_by_name (obfd, ".plt");
561 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
562
563 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
564
565 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
566 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
567 {
568 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
569
570 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
571 {
572 if (this_hdr.sh_info == plt_elf_idx
573 || this_hdr.sh_info == got_plt_elf_idx)
574 break;
575 }
576 }
577 if (relplt == NULL)
578 return;
579
580 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
581 return;
582
583 std::string string_buffer;
584
585 /* Does ADDRESS reside in SECTION of OBFD? */
586 auto within_section = [obfd] (asection *section, CORE_ADDR address)
587 {
588 if (section == NULL)
589 return false;
590
591 return (bfd_get_section_vma (obfd, section) <= address
592 && (address < bfd_get_section_vma (obfd, section)
593 + bfd_get_section_size (section)));
594 };
595
596 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
597 for (reloc = 0; reloc < reloc_count; reloc++)
598 {
599 const char *name;
600 struct minimal_symbol *msym;
601 CORE_ADDR address;
602 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
603 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
604
605 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
606 address = relplt->relocation[reloc].address;
607
608 asection *msym_section;
609
610 /* Does the pointer reside in either the .got.plt or .plt
611 sections? */
612 if (within_section (got_plt, address))
613 msym_section = got_plt;
614 else if (within_section (plt, address))
615 msym_section = plt;
616 else
617 continue;
618
619 /* We cannot check if NAME is a reference to
620 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
621 symbol is undefined and the objfile having NAME defined may
622 not yet have been loaded. */
623
624 string_buffer.assign (name);
625 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
626
627 msym = record_minimal_symbol (reader, string_buffer.c_str (),
628 string_buffer.size (),
629 true, address, mst_slot_got_plt,
630 msym_section, objfile);
631 if (msym)
632 SET_MSYMBOL_SIZE (msym, ptr_size);
633 }
634 }
635
636 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
637
638 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
639
640 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
641
642 struct elf_gnu_ifunc_cache
643 {
644 /* This is always a function entry address, not a function descriptor. */
645 CORE_ADDR addr;
646
647 char name[1];
648 };
649
650 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
651
652 static hashval_t
653 elf_gnu_ifunc_cache_hash (const void *a_voidp)
654 {
655 const struct elf_gnu_ifunc_cache *a
656 = (const struct elf_gnu_ifunc_cache *) a_voidp;
657
658 return htab_hash_string (a->name);
659 }
660
661 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
662
663 static int
664 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
665 {
666 const struct elf_gnu_ifunc_cache *a
667 = (const struct elf_gnu_ifunc_cache *) a_voidp;
668 const struct elf_gnu_ifunc_cache *b
669 = (const struct elf_gnu_ifunc_cache *) b_voidp;
670
671 return strcmp (a->name, b->name) == 0;
672 }
673
674 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
675 function entry address ADDR. Return 1 if NAME and ADDR are considered as
676 valid and therefore they were successfully recorded, return 0 otherwise.
677
678 Function does not expect a duplicate entry. Use
679 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
680 exists. */
681
682 static int
683 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
684 {
685 struct bound_minimal_symbol msym;
686 struct objfile *objfile;
687 htab_t htab;
688 struct elf_gnu_ifunc_cache entry_local, *entry_p;
689 void **slot;
690
691 msym = lookup_minimal_symbol_by_pc (addr);
692 if (msym.minsym == NULL)
693 return 0;
694 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
695 return 0;
696 objfile = msym.objfile;
697
698 /* If .plt jumps back to .plt the symbol is still deferred for later
699 resolution and it has no use for GDB. */
700 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
701 size_t len = strlen (target_name);
702
703 /* Note we check the symbol's name instead of checking whether the
704 symbol is in the .plt section because some systems have @plt
705 symbols in the .text section. */
706 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
707 return 0;
708
709 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
710 if (htab == NULL)
711 {
712 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
713 elf_gnu_ifunc_cache_eq,
714 NULL, &objfile->objfile_obstack,
715 hashtab_obstack_allocate,
716 dummy_obstack_deallocate);
717 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
718 }
719
720 entry_local.addr = addr;
721 obstack_grow (&objfile->objfile_obstack, &entry_local,
722 offsetof (struct elf_gnu_ifunc_cache, name));
723 obstack_grow_str0 (&objfile->objfile_obstack, name);
724 entry_p
725 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
726
727 slot = htab_find_slot (htab, entry_p, INSERT);
728 if (*slot != NULL)
729 {
730 struct elf_gnu_ifunc_cache *entry_found_p
731 = (struct elf_gnu_ifunc_cache *) *slot;
732 struct gdbarch *gdbarch = get_objfile_arch (objfile);
733
734 if (entry_found_p->addr != addr)
735 {
736 /* This case indicates buggy inferior program, the resolved address
737 should never change. */
738
739 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
740 "function_address from %s to %s"),
741 name, paddress (gdbarch, entry_found_p->addr),
742 paddress (gdbarch, addr));
743 }
744
745 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
746 }
747 *slot = entry_p;
748
749 return 1;
750 }
751
752 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
753 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
754 is not NULL) and the function returns 1. It returns 0 otherwise.
755
756 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
757 function. */
758
759 static int
760 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
761 {
762 for (objfile *objfile : all_objfiles (current_program_space))
763 {
764 htab_t htab;
765 struct elf_gnu_ifunc_cache *entry_p;
766 void **slot;
767
768 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
769 if (htab == NULL)
770 continue;
771
772 entry_p = ((struct elf_gnu_ifunc_cache *)
773 alloca (sizeof (*entry_p) + strlen (name)));
774 strcpy (entry_p->name, name);
775
776 slot = htab_find_slot (htab, entry_p, NO_INSERT);
777 if (slot == NULL)
778 continue;
779 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
780 gdb_assert (entry_p != NULL);
781
782 if (addr_p)
783 *addr_p = entry_p->addr;
784 return 1;
785 }
786
787 return 0;
788 }
789
790 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
791 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
792 is not NULL) and the function returns 1. It returns 0 otherwise.
793
794 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
795 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
796 prevent cache entries duplicates. */
797
798 static int
799 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
800 {
801 char *name_got_plt;
802 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
803
804 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
805 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
806
807 for (objfile *objfile : all_objfiles (current_program_space))
808 {
809 bfd *obfd = objfile->obfd;
810 struct gdbarch *gdbarch = get_objfile_arch (objfile);
811 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
812 size_t ptr_size = TYPE_LENGTH (ptr_type);
813 CORE_ADDR pointer_address, addr;
814 asection *plt;
815 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
816 struct bound_minimal_symbol msym;
817
818 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
819 if (msym.minsym == NULL)
820 continue;
821 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
822 continue;
823 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
824
825 plt = bfd_get_section_by_name (obfd, ".plt");
826 if (plt == NULL)
827 continue;
828
829 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
830 continue;
831 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
832 continue;
833 addr = extract_typed_address (buf, ptr_type);
834 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
835 current_top_target ());
836 addr = gdbarch_addr_bits_remove (gdbarch, addr);
837
838 if (elf_gnu_ifunc_record_cache (name, addr))
839 {
840 if (addr_p != NULL)
841 *addr_p = addr;
842 return 1;
843 }
844 }
845
846 return 0;
847 }
848
849 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
850 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
851 is not NULL) and the function returns 1. It returns 0 otherwise.
852
853 Both the elf_objfile_gnu_ifunc_cache_data hash table and
854 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
855
856 static int
857 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
858 {
859 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
860 return 1;
861
862 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
863 return 1;
864
865 return 0;
866 }
867
868 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
869 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
870 is the entry point of the resolved STT_GNU_IFUNC target function to call.
871 */
872
873 static CORE_ADDR
874 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
875 {
876 const char *name_at_pc;
877 CORE_ADDR start_at_pc, address;
878 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
879 struct value *function, *address_val;
880 CORE_ADDR hwcap = 0;
881 struct value *hwcap_val;
882
883 /* Try first any non-intrusive methods without an inferior call. */
884
885 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
886 && start_at_pc == pc)
887 {
888 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
889 return address;
890 }
891 else
892 name_at_pc = NULL;
893
894 function = allocate_value (func_func_type);
895 VALUE_LVAL (function) = lval_memory;
896 set_value_address (function, pc);
897
898 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
899 parameter. FUNCTION is the function entry address. ADDRESS may be a
900 function descriptor. */
901
902 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
903 hwcap_val = value_from_longest (builtin_type (gdbarch)
904 ->builtin_unsigned_long, hwcap);
905 address_val = call_function_by_hand (function, NULL, hwcap_val);
906 address = value_as_address (address_val);
907 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
908 address = gdbarch_addr_bits_remove (gdbarch, address);
909
910 if (name_at_pc)
911 elf_gnu_ifunc_record_cache (name_at_pc, address);
912
913 return address;
914 }
915
916 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
917
918 static void
919 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
920 {
921 struct breakpoint *b_return;
922 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
923 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
924 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
925 int thread_id = inferior_thread ()->global_num;
926
927 gdb_assert (b->type == bp_gnu_ifunc_resolver);
928
929 for (b_return = b->related_breakpoint; b_return != b;
930 b_return = b_return->related_breakpoint)
931 {
932 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
933 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
934 gdb_assert (frame_id_p (b_return->frame_id));
935
936 if (b_return->thread == thread_id
937 && b_return->loc->requested_address == prev_pc
938 && frame_id_eq (b_return->frame_id, prev_frame_id))
939 break;
940 }
941
942 if (b_return == b)
943 {
944 /* No need to call find_pc_line for symbols resolving as this is only
945 a helper breakpointer never shown to the user. */
946
947 symtab_and_line sal;
948 sal.pspace = current_inferior ()->pspace;
949 sal.pc = prev_pc;
950 sal.section = find_pc_overlay (sal.pc);
951 sal.explicit_pc = 1;
952 b_return
953 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
954 prev_frame_id,
955 bp_gnu_ifunc_resolver_return).release ();
956
957 /* set_momentary_breakpoint invalidates PREV_FRAME. */
958 prev_frame = NULL;
959
960 /* Add new b_return to the ring list b->related_breakpoint. */
961 gdb_assert (b_return->related_breakpoint == b_return);
962 b_return->related_breakpoint = b->related_breakpoint;
963 b->related_breakpoint = b_return;
964 }
965 }
966
967 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
968
969 static void
970 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
971 {
972 thread_info *thread = inferior_thread ();
973 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
974 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
975 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
976 struct regcache *regcache = get_thread_regcache (thread);
977 struct value *func_func;
978 struct value *value;
979 CORE_ADDR resolved_address, resolved_pc;
980
981 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
982
983 while (b->related_breakpoint != b)
984 {
985 struct breakpoint *b_next = b->related_breakpoint;
986
987 switch (b->type)
988 {
989 case bp_gnu_ifunc_resolver:
990 break;
991 case bp_gnu_ifunc_resolver_return:
992 delete_breakpoint (b);
993 break;
994 default:
995 internal_error (__FILE__, __LINE__,
996 _("handle_inferior_event: Invalid "
997 "gnu-indirect-function breakpoint type %d"),
998 (int) b->type);
999 }
1000 b = b_next;
1001 }
1002 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1003 gdb_assert (b->loc->next == NULL);
1004
1005 func_func = allocate_value (func_func_type);
1006 VALUE_LVAL (func_func) = lval_memory;
1007 set_value_address (func_func, b->loc->related_address);
1008
1009 value = allocate_value (value_type);
1010 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1011 value_contents_raw (value), NULL);
1012 resolved_address = value_as_address (value);
1013 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1014 resolved_address,
1015 current_top_target ());
1016 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1017
1018 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1019 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1020 resolved_pc);
1021
1022 b->type = bp_breakpoint;
1023 update_breakpoint_locations (b, current_program_space,
1024 find_function_start_sal (resolved_pc, NULL, true),
1025 {});
1026 }
1027
1028 /* A helper function for elf_symfile_read that reads the minimal
1029 symbols. */
1030
1031 static void
1032 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1033 const struct elfinfo *ei)
1034 {
1035 bfd *synth_abfd, *abfd = objfile->obfd;
1036 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1037 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1038 asymbol *synthsyms;
1039 struct dbx_symfile_info *dbx;
1040
1041 if (symtab_create_debug)
1042 {
1043 fprintf_unfiltered (gdb_stdlog,
1044 "Reading minimal symbols of objfile %s ...\n",
1045 objfile_name (objfile));
1046 }
1047
1048 /* If we already have minsyms, then we can skip some work here.
1049 However, if there were stabs or mdebug sections, we go ahead and
1050 redo all the work anyway, because the psym readers for those
1051 kinds of debuginfo need extra information found here. This can
1052 go away once all types of symbols are in the per-BFD object. */
1053 if (objfile->per_bfd->minsyms_read
1054 && ei->stabsect == NULL
1055 && ei->mdebugsect == NULL)
1056 {
1057 if (symtab_create_debug)
1058 fprintf_unfiltered (gdb_stdlog,
1059 "... minimal symbols previously read\n");
1060 return;
1061 }
1062
1063 minimal_symbol_reader reader (objfile);
1064
1065 /* Allocate struct to keep track of the symfile. */
1066 dbx = XCNEW (struct dbx_symfile_info);
1067 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1068
1069 /* Process the normal ELF symbol table first. */
1070
1071 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1072 if (storage_needed < 0)
1073 error (_("Can't read symbols from %s: %s"),
1074 bfd_get_filename (objfile->obfd),
1075 bfd_errmsg (bfd_get_error ()));
1076
1077 if (storage_needed > 0)
1078 {
1079 /* Memory gets permanently referenced from ABFD after
1080 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1081
1082 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1083 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1084
1085 if (symcount < 0)
1086 error (_("Can't read symbols from %s: %s"),
1087 bfd_get_filename (objfile->obfd),
1088 bfd_errmsg (bfd_get_error ()));
1089
1090 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1091 false);
1092 }
1093
1094 /* Add the dynamic symbols. */
1095
1096 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1097
1098 if (storage_needed > 0)
1099 {
1100 /* Memory gets permanently referenced from ABFD after
1101 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1102 It happens only in the case when elf_slurp_reloc_table sees
1103 asection->relocation NULL. Determining which section is asection is
1104 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1105 implementation detail, though. */
1106
1107 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1108 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1109 dyn_symbol_table);
1110
1111 if (dynsymcount < 0)
1112 error (_("Can't read symbols from %s: %s"),
1113 bfd_get_filename (objfile->obfd),
1114 bfd_errmsg (bfd_get_error ()));
1115
1116 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1117 dyn_symbol_table, false);
1118
1119 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1120 }
1121
1122 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1123 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1124
1125 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1126 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1127 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1128 read the code address from .opd while it reads the .symtab section from
1129 a separate debug info file as the .opd section is SHT_NOBITS there.
1130
1131 With SYNTH_ABFD the .opd section will be read from the original
1132 backlinked binary where it is valid. */
1133
1134 if (objfile->separate_debug_objfile_backlink)
1135 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1136 else
1137 synth_abfd = abfd;
1138
1139 /* Add synthetic symbols - for instance, names for any PLT entries. */
1140
1141 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1142 dynsymcount, dyn_symbol_table,
1143 &synthsyms);
1144 if (synthcount > 0)
1145 {
1146 long i;
1147
1148 std::unique_ptr<asymbol *[]>
1149 synth_symbol_table (new asymbol *[synthcount]);
1150 for (i = 0; i < synthcount; i++)
1151 synth_symbol_table[i] = synthsyms + i;
1152 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1153 synth_symbol_table.get (), true);
1154
1155 xfree (synthsyms);
1156 synthsyms = NULL;
1157 }
1158
1159 /* Install any minimal symbols that have been collected as the current
1160 minimal symbols for this objfile. The debug readers below this point
1161 should not generate new minimal symbols; if they do it's their
1162 responsibility to install them. "mdebug" appears to be the only one
1163 which will do this. */
1164
1165 reader.install ();
1166
1167 if (symtab_create_debug)
1168 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1169 }
1170
1171 /* Scan and build partial symbols for a symbol file.
1172 We have been initialized by a call to elf_symfile_init, which
1173 currently does nothing.
1174
1175 This function only does the minimum work necessary for letting the
1176 user "name" things symbolically; it does not read the entire symtab.
1177 Instead, it reads the external and static symbols and puts them in partial
1178 symbol tables. When more extensive information is requested of a
1179 file, the corresponding partial symbol table is mutated into a full
1180 fledged symbol table by going back and reading the symbols
1181 for real.
1182
1183 We look for sections with specific names, to tell us what debug
1184 format to look for: FIXME!!!
1185
1186 elfstab_build_psymtabs() handles STABS symbols;
1187 mdebug_build_psymtabs() handles ECOFF debugging information.
1188
1189 Note that ELF files have a "minimal" symbol table, which looks a lot
1190 like a COFF symbol table, but has only the minimal information necessary
1191 for linking. We process this also, and use the information to
1192 build gdb's minimal symbol table. This gives us some minimal debugging
1193 capability even for files compiled without -g. */
1194
1195 static void
1196 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1197 {
1198 bfd *abfd = objfile->obfd;
1199 struct elfinfo ei;
1200
1201 memset ((char *) &ei, 0, sizeof (ei));
1202 if (!(objfile->flags & OBJF_READNEVER))
1203 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1204
1205 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1206
1207 /* ELF debugging information is inserted into the psymtab in the
1208 order of least informative first - most informative last. Since
1209 the psymtab table is searched `most recent insertion first' this
1210 increases the probability that more detailed debug information
1211 for a section is found.
1212
1213 For instance, an object file might contain both .mdebug (XCOFF)
1214 and .debug_info (DWARF2) sections then .mdebug is inserted first
1215 (searched last) and DWARF2 is inserted last (searched first). If
1216 we don't do this then the XCOFF info is found first - for code in
1217 an included file XCOFF info is useless. */
1218
1219 if (ei.mdebugsect)
1220 {
1221 const struct ecoff_debug_swap *swap;
1222
1223 /* .mdebug section, presumably holding ECOFF debugging
1224 information. */
1225 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1226 if (swap)
1227 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1228 }
1229 if (ei.stabsect)
1230 {
1231 asection *str_sect;
1232
1233 /* Stab sections have an associated string table that looks like
1234 a separate section. */
1235 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1236
1237 /* FIXME should probably warn about a stab section without a stabstr. */
1238 if (str_sect)
1239 elfstab_build_psymtabs (objfile,
1240 ei.stabsect,
1241 str_sect->filepos,
1242 bfd_section_size (abfd, str_sect));
1243 }
1244
1245 if (dwarf2_has_info (objfile, NULL))
1246 {
1247 dw_index_kind index_kind;
1248
1249 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1250 debug information present in OBJFILE. If there is such debug
1251 info present never use an index. */
1252 if (!objfile_has_partial_symbols (objfile)
1253 && dwarf2_initialize_objfile (objfile, &index_kind))
1254 {
1255 switch (index_kind)
1256 {
1257 case dw_index_kind::GDB_INDEX:
1258 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1259 break;
1260 case dw_index_kind::DEBUG_NAMES:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1262 break;
1263 }
1264 }
1265 else
1266 {
1267 /* It is ok to do this even if the stabs reader made some
1268 partial symbols, because OBJF_PSYMTABS_READ has not been
1269 set, and so our lazy reader function will still be called
1270 when needed. */
1271 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1272 }
1273 }
1274 /* If the file has its own symbol tables it has no separate debug
1275 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1276 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1277 `.note.gnu.build-id'.
1278
1279 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1280 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1281 an objfile via find_separate_debug_file_in_section there was no separate
1282 debug info available. Therefore do not attempt to search for another one,
1283 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1284 be NULL and we would possibly violate it. */
1285
1286 else if (!objfile_has_partial_symbols (objfile)
1287 && objfile->separate_debug_objfile == NULL
1288 && objfile->separate_debug_objfile_backlink == NULL)
1289 {
1290 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1291
1292 if (debugfile.empty ())
1293 debugfile = find_separate_debug_file_by_debuglink (objfile);
1294
1295 if (!debugfile.empty ())
1296 {
1297 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1298
1299 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1300 symfile_flags, objfile);
1301 }
1302 }
1303 }
1304
1305 /* Callback to lazily read psymtabs. */
1306
1307 static void
1308 read_psyms (struct objfile *objfile)
1309 {
1310 if (dwarf2_has_info (objfile, NULL))
1311 dwarf2_build_psymtabs (objfile);
1312 }
1313
1314 /* Initialize anything that needs initializing when a completely new symbol
1315 file is specified (not just adding some symbols from another file, e.g. a
1316 shared library).
1317
1318 We reinitialize buildsym, since we may be reading stabs from an ELF
1319 file. */
1320
1321 static void
1322 elf_new_init (struct objfile *ignore)
1323 {
1324 stabsread_new_init ();
1325 }
1326
1327 /* Perform any local cleanups required when we are done with a particular
1328 objfile. I.E, we are in the process of discarding all symbol information
1329 for an objfile, freeing up all memory held for it, and unlinking the
1330 objfile struct from the global list of known objfiles. */
1331
1332 static void
1333 elf_symfile_finish (struct objfile *objfile)
1334 {
1335 }
1336
1337 /* ELF specific initialization routine for reading symbols. */
1338
1339 static void
1340 elf_symfile_init (struct objfile *objfile)
1341 {
1342 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1343 find this causes a significant slowdown in gdb then we could
1344 set it in the debug symbol readers only when necessary. */
1345 objfile->flags |= OBJF_REORDERED;
1346 }
1347
1348 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1349
1350 static const std::vector<probe *> &
1351 elf_get_probes (struct objfile *objfile)
1352 {
1353 std::vector<probe *> *probes_per_bfd;
1354
1355 /* Have we parsed this objfile's probes already? */
1356 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1357
1358 if (probes_per_bfd == NULL)
1359 {
1360 probes_per_bfd = new std::vector<probe *>;
1361
1362 /* Here we try to gather information about all types of probes from the
1363 objfile. */
1364 for (const static_probe_ops *ops : all_static_probe_ops)
1365 ops->get_probes (probes_per_bfd, objfile);
1366
1367 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1368 }
1369
1370 return *probes_per_bfd;
1371 }
1372
1373 /* Helper function used to free the space allocated for storing SystemTap
1374 probe information. */
1375
1376 static void
1377 probe_key_free (bfd *abfd, void *d)
1378 {
1379 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1380
1381 for (probe *p : *probes)
1382 delete p;
1383
1384 delete probes;
1385 }
1386
1387 \f
1388
1389 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1390
1391 static const struct sym_probe_fns elf_probe_fns =
1392 {
1393 elf_get_probes, /* sym_get_probes */
1394 };
1395
1396 /* Register that we are able to handle ELF object file formats. */
1397
1398 static const struct sym_fns elf_sym_fns =
1399 {
1400 elf_new_init, /* init anything gbl to entire symtab */
1401 elf_symfile_init, /* read initial info, setup for sym_read() */
1402 elf_symfile_read, /* read a symbol file into symtab */
1403 NULL, /* sym_read_psymbols */
1404 elf_symfile_finish, /* finished with file, cleanup */
1405 default_symfile_offsets, /* Translate ext. to int. relocation */
1406 elf_symfile_segments, /* Get segment information from a file. */
1407 NULL,
1408 default_symfile_relocate, /* Relocate a debug section. */
1409 &elf_probe_fns, /* sym_probe_fns */
1410 &psym_functions
1411 };
1412
1413 /* The same as elf_sym_fns, but not registered and lazily reads
1414 psymbols. */
1415
1416 const struct sym_fns elf_sym_fns_lazy_psyms =
1417 {
1418 elf_new_init, /* init anything gbl to entire symtab */
1419 elf_symfile_init, /* read initial info, setup for sym_read() */
1420 elf_symfile_read, /* read a symbol file into symtab */
1421 read_psyms, /* sym_read_psymbols */
1422 elf_symfile_finish, /* finished with file, cleanup */
1423 default_symfile_offsets, /* Translate ext. to int. relocation */
1424 elf_symfile_segments, /* Get segment information from a file. */
1425 NULL,
1426 default_symfile_relocate, /* Relocate a debug section. */
1427 &elf_probe_fns, /* sym_probe_fns */
1428 &psym_functions
1429 };
1430
1431 /* The same as elf_sym_fns, but not registered and uses the
1432 DWARF-specific GNU index rather than psymtab. */
1433 const struct sym_fns elf_sym_fns_gdb_index =
1434 {
1435 elf_new_init, /* init anything gbl to entire symab */
1436 elf_symfile_init, /* read initial info, setup for sym_red() */
1437 elf_symfile_read, /* read a symbol file into symtab */
1438 NULL, /* sym_read_psymbols */
1439 elf_symfile_finish, /* finished with file, cleanup */
1440 default_symfile_offsets, /* Translate ext. to int. relocatin */
1441 elf_symfile_segments, /* Get segment information from a file. */
1442 NULL,
1443 default_symfile_relocate, /* Relocate a debug section. */
1444 &elf_probe_fns, /* sym_probe_fns */
1445 &dwarf2_gdb_index_functions
1446 };
1447
1448 /* The same as elf_sym_fns, but not registered and uses the
1449 DWARF-specific .debug_names index rather than psymtab. */
1450 const struct sym_fns elf_sym_fns_debug_names =
1451 {
1452 elf_new_init, /* init anything gbl to entire symab */
1453 elf_symfile_init, /* read initial info, setup for sym_red() */
1454 elf_symfile_read, /* read a symbol file into symtab */
1455 NULL, /* sym_read_psymbols */
1456 elf_symfile_finish, /* finished with file, cleanup */
1457 default_symfile_offsets, /* Translate ext. to int. relocatin */
1458 elf_symfile_segments, /* Get segment information from a file. */
1459 NULL,
1460 default_symfile_relocate, /* Relocate a debug section. */
1461 &elf_probe_fns, /* sym_probe_fns */
1462 &dwarf2_debug_names_functions
1463 };
1464
1465 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1466
1467 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1468 {
1469 elf_gnu_ifunc_resolve_addr,
1470 elf_gnu_ifunc_resolve_name,
1471 elf_gnu_ifunc_resolver_stop,
1472 elf_gnu_ifunc_resolver_return_stop
1473 };
1474
1475 void
1476 _initialize_elfread (void)
1477 {
1478 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1479 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1480
1481 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1482 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1483 }
This page took 0.06482 seconds and 5 git commands to generate.