split out elf_read_minimal_symbols
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2014 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include <string.h>
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48 #include "build-id.h"
49
50 extern void _initialize_elfread (void);
51
52 /* Forward declarations. */
53 static const struct sym_fns elf_sym_fns_gdb_index;
54 static const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-objfile data for probe info. */
67
68 static const struct objfile_data *probe_key = NULL;
69
70 static void free_elfinfo (void *);
71
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
79 /* Locate the segments in ABFD. */
80
81 static struct symfile_segment_data *
82 elf_symfile_segments (bfd *abfd)
83 {
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XCNEW (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
111 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCNEWVEC (int, num_sections);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".mdebug") == 0)
189 {
190 ei->mdebugsect = sectp;
191 }
192 }
193
194 static struct minimal_symbol *
195 record_minimal_symbol (const char *name, int name_len, int copy_name,
196 CORE_ADDR address,
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
199 {
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
204 address = gdbarch_addr_bits_remove (gdbarch, address);
205
206 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section),
210 objfile);
211 }
212
213 /* Read the symbol table of an ELF file.
214
215 Given an objfile, a symbol table, and a flag indicating whether the
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
218
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
223 in data structures hung off the objfile's private data. */
224
225 #define ST_REGULAR 0
226 #define ST_DYNAMIC 1
227 #define ST_SYNTHETIC 2
228
229 static void
230 elf_symtab_read (struct objfile *objfile, int type,
231 long number_of_symbols, asymbol **symbol_table,
232 int copy_names)
233 {
234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
235 asymbol *sym;
236 long i;
237 CORE_ADDR symaddr;
238 CORE_ADDR offset;
239 enum minimal_symbol_type ms_type;
240 /* If sectinfo is nonNULL, it contains section info that should end up
241 filed in the objfile. */
242 struct stab_section_info *sectinfo = NULL;
243 /* If filesym is nonzero, it points to a file symbol, but we haven't
244 seen any section info for it yet. */
245 asymbol *filesym = 0;
246 /* Name of filesym. This is either a constant string or is saved on
247 the objfile's filename cache. */
248 const char *filesymname = "";
249 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
250 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
251
252 for (i = 0; i < number_of_symbols; i++)
253 {
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
256 {
257 /* Skip names that don't exist (shouldn't happen), or names
258 that are null strings (may happen). */
259 continue;
260 }
261
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
271
272 offset = ANOFFSET (objfile->section_offsets,
273 gdb_bfd_section_index (objfile->obfd, sym->section));
274 if (type == ST_DYNAMIC
275 && sym->section == bfd_und_section_ptr
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
279 bfd *abfd = objfile->obfd;
280 asection *sect;
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
288 the symbol. We are unable to find any meaningful address
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
328 msym = record_minimal_symbol
329 (sym->name, strlen (sym->name), copy_names,
330 symaddr, mst_solib_trampoline, sect, objfile);
331 if (msym != NULL)
332 msym->filename = filesymname;
333 continue;
334 }
335
336 /* If it is a nonstripped executable, do not enter dynamic
337 symbols, as the dynamic symbol table is usually a subset
338 of the main symbol table. */
339 if (type == ST_DYNAMIC && !stripped)
340 continue;
341 if (sym->flags & BSF_FILE)
342 {
343 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
344 Chain any old one onto the objfile; remember new sym. */
345 if (sectinfo != NULL)
346 {
347 sectinfo->next = dbx->stab_section_info;
348 dbx->stab_section_info = sectinfo;
349 sectinfo = NULL;
350 }
351 filesym = sym;
352 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
353 objfile->per_bfd->filename_cache);
354 }
355 else if (sym->flags & BSF_SECTION_SYM)
356 continue;
357 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
358 | BSF_GNU_UNIQUE))
359 {
360 struct minimal_symbol *msym;
361
362 /* Select global/local/weak symbols. Note that bfd puts abs
363 symbols in their own section, so all symbols we are
364 interested in will have a section. */
365 /* Bfd symbols are section relative. */
366 symaddr = sym->value + sym->section->vma;
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
369 no way of figuring this out for absolute symbols. */
370 if (sym->section == bfd_abs_section_ptr)
371 {
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
374 with special section indices for dynamic symbols.
375
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
379 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381 switch (shndx)
382 {
383 case SHN_MIPS_TEXT:
384 ms_type = mst_text;
385 break;
386 case SHN_MIPS_DATA:
387 ms_type = mst_data;
388 break;
389 case SHN_MIPS_ACOMMON:
390 ms_type = mst_bss;
391 break;
392 default:
393 ms_type = mst_abs;
394 }
395
396 /* If it is an Irix dynamic symbol, skip section name
397 symbols, relocate all others by section offset. */
398 if (ms_type != mst_abs)
399 {
400 if (sym->name[0] == '.')
401 continue;
402 }
403 }
404 else if (sym->section->flags & SEC_CODE)
405 {
406 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
407 {
408 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
409 ms_type = mst_text_gnu_ifunc;
410 else
411 ms_type = mst_text;
412 }
413 /* The BSF_SYNTHETIC check is there to omit ppc64 function
414 descriptors mistaken for static functions starting with 'L'.
415 */
416 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
417 && (sym->flags & BSF_SYNTHETIC) == 0)
418 || ((sym->flags & BSF_LOCAL)
419 && sym->name[0] == '$'
420 && sym->name[1] == 'L'))
421 /* Looks like a compiler-generated label. Skip
422 it. The assembler should be skipping these (to
423 keep executables small), but apparently with
424 gcc on the (deleted) delta m88k SVR4, it loses.
425 So to have us check too should be harmless (but
426 I encourage people to fix this in the assembler
427 instead of adding checks here). */
428 continue;
429 else
430 {
431 ms_type = mst_file_text;
432 }
433 }
434 else if (sym->section->flags & SEC_ALLOC)
435 {
436 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
437 {
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_data;
441 }
442 else
443 {
444 ms_type = mst_bss;
445 }
446 }
447 else if (sym->flags & BSF_LOCAL)
448 {
449 /* Named Local variable in a Data section.
450 Check its name for stabs-in-elf. */
451 int special_local_sect;
452
453 if (strcmp ("Bbss.bss", sym->name) == 0)
454 special_local_sect = SECT_OFF_BSS (objfile);
455 else if (strcmp ("Ddata.data", sym->name) == 0)
456 special_local_sect = SECT_OFF_DATA (objfile);
457 else if (strcmp ("Drodata.rodata", sym->name) == 0)
458 special_local_sect = SECT_OFF_RODATA (objfile);
459 else
460 special_local_sect = -1;
461 if (special_local_sect >= 0)
462 {
463 /* Found a special local symbol. Allocate a
464 sectinfo, if needed, and fill it in. */
465 if (sectinfo == NULL)
466 {
467 int max_index;
468 size_t size;
469
470 max_index = SECT_OFF_BSS (objfile);
471 if (objfile->sect_index_data > max_index)
472 max_index = objfile->sect_index_data;
473 if (objfile->sect_index_rodata > max_index)
474 max_index = objfile->sect_index_rodata;
475
476 /* max_index is the largest index we'll
477 use into this array, so we must
478 allocate max_index+1 elements for it.
479 However, 'struct stab_section_info'
480 already includes one element, so we
481 need to allocate max_index aadditional
482 elements. */
483 size = (sizeof (struct stab_section_info)
484 + (sizeof (CORE_ADDR) * max_index));
485 sectinfo = (struct stab_section_info *)
486 xmalloc (size);
487 memset (sectinfo, 0, size);
488 sectinfo->num_sections = max_index;
489 if (filesym == NULL)
490 {
491 complaint (&symfile_complaints,
492 _("elf/stab section information %s "
493 "without a preceding file symbol"),
494 sym->name);
495 }
496 else
497 {
498 sectinfo->filename =
499 (char *) filesym->name;
500 }
501 }
502 if (sectinfo->sections[special_local_sect] != 0)
503 complaint (&symfile_complaints,
504 _("duplicated elf/stab section "
505 "information for %s"),
506 sectinfo->filename);
507 /* BFD symbols are section relative. */
508 symaddr = sym->value + sym->section->vma;
509 /* Relocate non-absolute symbols by the
510 section offset. */
511 if (sym->section != bfd_abs_section_ptr)
512 symaddr += offset;
513 sectinfo->sections[special_local_sect] = symaddr;
514 /* The special local symbols don't go in the
515 minimal symbol table, so ignore this one. */
516 continue;
517 }
518 /* Not a special stabs-in-elf symbol, do regular
519 symbol processing. */
520 if (sym->section->flags & SEC_LOAD)
521 {
522 ms_type = mst_file_data;
523 }
524 else
525 {
526 ms_type = mst_file_bss;
527 }
528 }
529 else
530 {
531 ms_type = mst_unknown;
532 }
533 }
534 else
535 {
536 /* FIXME: Solaris2 shared libraries include lots of
537 odd "absolute" and "undefined" symbols, that play
538 hob with actions like finding what function the PC
539 is in. Ignore them if they aren't text, data, or bss. */
540 /* ms_type = mst_unknown; */
541 continue; /* Skip this symbol. */
542 }
543 msym = record_minimal_symbol
544 (sym->name, strlen (sym->name), copy_names, symaddr,
545 ms_type, sym->section, objfile);
546
547 if (msym)
548 {
549 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
550 ELF-private part. */
551 if (type != ST_SYNTHETIC)
552 {
553 /* Pass symbol size field in via BFD. FIXME!!! */
554 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
555 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
556 }
557
558 msym->filename = filesymname;
559 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
560 }
561
562 /* If we see a default versioned symbol, install it under
563 its version-less name. */
564 if (msym != NULL)
565 {
566 const char *atsign = strchr (sym->name, '@');
567
568 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
569 {
570 int len = atsign - sym->name;
571
572 record_minimal_symbol (sym->name, len, 1, symaddr,
573 ms_type, sym->section, objfile);
574 }
575 }
576
577 /* For @plt symbols, also record a trampoline to the
578 destination symbol. The @plt symbol will be used in
579 disassembly, and the trampoline will be used when we are
580 trying to find the target. */
581 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
582 {
583 int len = strlen (sym->name);
584
585 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
586 {
587 struct minimal_symbol *mtramp;
588
589 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
590 symaddr,
591 mst_solib_trampoline,
592 sym->section, objfile);
593 if (mtramp)
594 {
595 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
596 mtramp->created_by_gdb = 1;
597 mtramp->filename = filesymname;
598 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
599 }
600 }
601 }
602 }
603 }
604 }
605
606 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
607 for later look ups of which function to call when user requests
608 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
609 library defining `function' we cannot yet know while reading OBJFILE which
610 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
611 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
612
613 static void
614 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
615 {
616 bfd *obfd = objfile->obfd;
617 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
618 asection *plt, *relplt, *got_plt;
619 int plt_elf_idx;
620 bfd_size_type reloc_count, reloc;
621 char *string_buffer = NULL;
622 size_t string_buffer_size = 0;
623 struct cleanup *back_to;
624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
625 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
626 size_t ptr_size = TYPE_LENGTH (ptr_type);
627
628 if (objfile->separate_debug_objfile_backlink)
629 return;
630
631 plt = bfd_get_section_by_name (obfd, ".plt");
632 if (plt == NULL)
633 return;
634 plt_elf_idx = elf_section_data (plt)->this_idx;
635
636 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
637 if (got_plt == NULL)
638 {
639 /* For platforms where there is no separate .got.plt. */
640 got_plt = bfd_get_section_by_name (obfd, ".got");
641 if (got_plt == NULL)
642 return;
643 }
644
645 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
646 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
647 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
648 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
649 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
650 break;
651 if (relplt == NULL)
652 return;
653
654 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
655 return;
656
657 back_to = make_cleanup (free_current_contents, &string_buffer);
658
659 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
660 for (reloc = 0; reloc < reloc_count; reloc++)
661 {
662 const char *name;
663 struct minimal_symbol *msym;
664 CORE_ADDR address;
665 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
666 size_t name_len;
667
668 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
669 name_len = strlen (name);
670 address = relplt->relocation[reloc].address;
671
672 /* Does the pointer reside in the .got.plt section? */
673 if (!(bfd_get_section_vma (obfd, got_plt) <= address
674 && address < bfd_get_section_vma (obfd, got_plt)
675 + bfd_get_section_size (got_plt)))
676 continue;
677
678 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
679 OBJFILE the symbol is undefined and the objfile having NAME defined
680 may not yet have been loaded. */
681
682 if (string_buffer_size < name_len + got_suffix_len + 1)
683 {
684 string_buffer_size = 2 * (name_len + got_suffix_len);
685 string_buffer = xrealloc (string_buffer, string_buffer_size);
686 }
687 memcpy (string_buffer, name, name_len);
688 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
689 got_suffix_len + 1);
690
691 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
692 1, address, mst_slot_got_plt, got_plt,
693 objfile);
694 if (msym)
695 SET_MSYMBOL_SIZE (msym, ptr_size);
696 }
697
698 do_cleanups (back_to);
699 }
700
701 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
702
703 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
704
705 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
706
707 struct elf_gnu_ifunc_cache
708 {
709 /* This is always a function entry address, not a function descriptor. */
710 CORE_ADDR addr;
711
712 char name[1];
713 };
714
715 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
716
717 static hashval_t
718 elf_gnu_ifunc_cache_hash (const void *a_voidp)
719 {
720 const struct elf_gnu_ifunc_cache *a = a_voidp;
721
722 return htab_hash_string (a->name);
723 }
724
725 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
726
727 static int
728 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
729 {
730 const struct elf_gnu_ifunc_cache *a = a_voidp;
731 const struct elf_gnu_ifunc_cache *b = b_voidp;
732
733 return strcmp (a->name, b->name) == 0;
734 }
735
736 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
737 function entry address ADDR. Return 1 if NAME and ADDR are considered as
738 valid and therefore they were successfully recorded, return 0 otherwise.
739
740 Function does not expect a duplicate entry. Use
741 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
742 exists. */
743
744 static int
745 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
746 {
747 struct bound_minimal_symbol msym;
748 asection *sect;
749 struct objfile *objfile;
750 htab_t htab;
751 struct elf_gnu_ifunc_cache entry_local, *entry_p;
752 void **slot;
753
754 msym = lookup_minimal_symbol_by_pc (addr);
755 if (msym.minsym == NULL)
756 return 0;
757 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
758 return 0;
759 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
760 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
761 objfile = msym.objfile;
762
763 /* If .plt jumps back to .plt the symbol is still deferred for later
764 resolution and it has no use for GDB. Besides ".text" this symbol can
765 reside also in ".opd" for ppc64 function descriptor. */
766 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
767 return 0;
768
769 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
770 if (htab == NULL)
771 {
772 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
773 elf_gnu_ifunc_cache_eq,
774 NULL, &objfile->objfile_obstack,
775 hashtab_obstack_allocate,
776 dummy_obstack_deallocate);
777 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
778 }
779
780 entry_local.addr = addr;
781 obstack_grow (&objfile->objfile_obstack, &entry_local,
782 offsetof (struct elf_gnu_ifunc_cache, name));
783 obstack_grow_str0 (&objfile->objfile_obstack, name);
784 entry_p = obstack_finish (&objfile->objfile_obstack);
785
786 slot = htab_find_slot (htab, entry_p, INSERT);
787 if (*slot != NULL)
788 {
789 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
791
792 if (entry_found_p->addr != addr)
793 {
794 /* This case indicates buggy inferior program, the resolved address
795 should never change. */
796
797 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
798 "function_address from %s to %s"),
799 name, paddress (gdbarch, entry_found_p->addr),
800 paddress (gdbarch, addr));
801 }
802
803 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
804 }
805 *slot = entry_p;
806
807 return 1;
808 }
809
810 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
811 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
812 is not NULL) and the function returns 1. It returns 0 otherwise.
813
814 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
815 function. */
816
817 static int
818 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
819 {
820 struct objfile *objfile;
821
822 ALL_PSPACE_OBJFILES (current_program_space, objfile)
823 {
824 htab_t htab;
825 struct elf_gnu_ifunc_cache *entry_p;
826 void **slot;
827
828 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
829 if (htab == NULL)
830 continue;
831
832 entry_p = alloca (sizeof (*entry_p) + strlen (name));
833 strcpy (entry_p->name, name);
834
835 slot = htab_find_slot (htab, entry_p, NO_INSERT);
836 if (slot == NULL)
837 continue;
838 entry_p = *slot;
839 gdb_assert (entry_p != NULL);
840
841 if (addr_p)
842 *addr_p = entry_p->addr;
843 return 1;
844 }
845
846 return 0;
847 }
848
849 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
850 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
851 is not NULL) and the function returns 1. It returns 0 otherwise.
852
853 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
854 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
855 prevent cache entries duplicates. */
856
857 static int
858 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
859 {
860 char *name_got_plt;
861 struct objfile *objfile;
862 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
863
864 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
865 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
866
867 ALL_PSPACE_OBJFILES (current_program_space, objfile)
868 {
869 bfd *obfd = objfile->obfd;
870 struct gdbarch *gdbarch = get_objfile_arch (objfile);
871 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
872 size_t ptr_size = TYPE_LENGTH (ptr_type);
873 CORE_ADDR pointer_address, addr;
874 asection *plt;
875 gdb_byte *buf = alloca (ptr_size);
876 struct bound_minimal_symbol msym;
877
878 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
879 if (msym.minsym == NULL)
880 continue;
881 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
882 continue;
883 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
884
885 plt = bfd_get_section_by_name (obfd, ".plt");
886 if (plt == NULL)
887 continue;
888
889 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
890 continue;
891 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
892 continue;
893 addr = extract_typed_address (buf, ptr_type);
894 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
895 &current_target);
896 addr = gdbarch_addr_bits_remove (gdbarch, addr);
897
898 if (addr_p)
899 *addr_p = addr;
900 if (elf_gnu_ifunc_record_cache (name, addr))
901 return 1;
902 }
903
904 return 0;
905 }
906
907 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
908 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
909 is not NULL) and the function returns 1. It returns 0 otherwise.
910
911 Both the elf_objfile_gnu_ifunc_cache_data hash table and
912 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
913
914 static int
915 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
916 {
917 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
918 return 1;
919
920 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
921 return 1;
922
923 return 0;
924 }
925
926 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
927 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
928 is the entry point of the resolved STT_GNU_IFUNC target function to call.
929 */
930
931 static CORE_ADDR
932 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
933 {
934 const char *name_at_pc;
935 CORE_ADDR start_at_pc, address;
936 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
937 struct value *function, *address_val;
938
939 /* Try first any non-intrusive methods without an inferior call. */
940
941 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
942 && start_at_pc == pc)
943 {
944 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
945 return address;
946 }
947 else
948 name_at_pc = NULL;
949
950 function = allocate_value (func_func_type);
951 set_value_address (function, pc);
952
953 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
954 function entry address. ADDRESS may be a function descriptor. */
955
956 address_val = call_function_by_hand (function, 0, NULL);
957 address = value_as_address (address_val);
958 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
959 &current_target);
960 address = gdbarch_addr_bits_remove (gdbarch, address);
961
962 if (name_at_pc)
963 elf_gnu_ifunc_record_cache (name_at_pc, address);
964
965 return address;
966 }
967
968 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
969
970 static void
971 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
972 {
973 struct breakpoint *b_return;
974 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
975 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
976 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
977 int thread_id = pid_to_thread_id (inferior_ptid);
978
979 gdb_assert (b->type == bp_gnu_ifunc_resolver);
980
981 for (b_return = b->related_breakpoint; b_return != b;
982 b_return = b_return->related_breakpoint)
983 {
984 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
985 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
986 gdb_assert (frame_id_p (b_return->frame_id));
987
988 if (b_return->thread == thread_id
989 && b_return->loc->requested_address == prev_pc
990 && frame_id_eq (b_return->frame_id, prev_frame_id))
991 break;
992 }
993
994 if (b_return == b)
995 {
996 struct symtab_and_line sal;
997
998 /* No need to call find_pc_line for symbols resolving as this is only
999 a helper breakpointer never shown to the user. */
1000
1001 init_sal (&sal);
1002 sal.pspace = current_inferior ()->pspace;
1003 sal.pc = prev_pc;
1004 sal.section = find_pc_overlay (sal.pc);
1005 sal.explicit_pc = 1;
1006 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1007 prev_frame_id,
1008 bp_gnu_ifunc_resolver_return);
1009
1010 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1011 prev_frame = NULL;
1012
1013 /* Add new b_return to the ring list b->related_breakpoint. */
1014 gdb_assert (b_return->related_breakpoint == b_return);
1015 b_return->related_breakpoint = b->related_breakpoint;
1016 b->related_breakpoint = b_return;
1017 }
1018 }
1019
1020 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1021
1022 static void
1023 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1024 {
1025 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1026 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1027 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1028 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1029 struct value *func_func;
1030 struct value *value;
1031 CORE_ADDR resolved_address, resolved_pc;
1032 struct symtab_and_line sal;
1033 struct symtabs_and_lines sals, sals_end;
1034
1035 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1036
1037 while (b->related_breakpoint != b)
1038 {
1039 struct breakpoint *b_next = b->related_breakpoint;
1040
1041 switch (b->type)
1042 {
1043 case bp_gnu_ifunc_resolver:
1044 break;
1045 case bp_gnu_ifunc_resolver_return:
1046 delete_breakpoint (b);
1047 break;
1048 default:
1049 internal_error (__FILE__, __LINE__,
1050 _("handle_inferior_event: Invalid "
1051 "gnu-indirect-function breakpoint type %d"),
1052 (int) b->type);
1053 }
1054 b = b_next;
1055 }
1056 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1057 gdb_assert (b->loc->next == NULL);
1058
1059 func_func = allocate_value (func_func_type);
1060 set_value_address (func_func, b->loc->related_address);
1061
1062 value = allocate_value (value_type);
1063 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1064 value_contents_raw (value), NULL);
1065 resolved_address = value_as_address (value);
1066 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1067 resolved_address,
1068 &current_target);
1069 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1070
1071 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1072 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1073
1074 sal = find_pc_line (resolved_pc, 0);
1075 sals.nelts = 1;
1076 sals.sals = &sal;
1077 sals_end.nelts = 0;
1078
1079 b->type = bp_breakpoint;
1080 update_breakpoint_locations (b, sals, sals_end);
1081 }
1082
1083 /* A helper function for elf_symfile_read that reads the minimal
1084 symbols. */
1085
1086 static void
1087 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags)
1088 {
1089 bfd *synth_abfd, *abfd = objfile->obfd;
1090 struct cleanup *back_to;
1091 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1092 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1093 asymbol *synthsyms;
1094 struct dbx_symfile_info *dbx;
1095
1096 if (symtab_create_debug)
1097 {
1098 fprintf_unfiltered (gdb_stdlog,
1099 "Reading minimal symbols of objfile %s ...\n",
1100 objfile_name (objfile));
1101 }
1102
1103 init_minimal_symbol_collection ();
1104 back_to = make_cleanup_discard_minimal_symbols ();
1105
1106 /* Allocate struct to keep track of the symfile. */
1107 dbx = XCNEW (struct dbx_symfile_info);
1108 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1109 make_cleanup (free_elfinfo, (void *) objfile);
1110
1111 /* Process the normal ELF symbol table first. This may write some
1112 chain of info into the dbx_symfile_info of the objfile, which can
1113 later be used by elfstab_offset_sections. */
1114
1115 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1116 if (storage_needed < 0)
1117 error (_("Can't read symbols from %s: %s"),
1118 bfd_get_filename (objfile->obfd),
1119 bfd_errmsg (bfd_get_error ()));
1120
1121 if (storage_needed > 0)
1122 {
1123 symbol_table = (asymbol **) xmalloc (storage_needed);
1124 make_cleanup (xfree, symbol_table);
1125 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1126
1127 if (symcount < 0)
1128 error (_("Can't read symbols from %s: %s"),
1129 bfd_get_filename (objfile->obfd),
1130 bfd_errmsg (bfd_get_error ()));
1131
1132 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1133 }
1134
1135 /* Add the dynamic symbols. */
1136
1137 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1138
1139 if (storage_needed > 0)
1140 {
1141 /* Memory gets permanently referenced from ABFD after
1142 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1143 It happens only in the case when elf_slurp_reloc_table sees
1144 asection->relocation NULL. Determining which section is asection is
1145 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1146 implementation detail, though. */
1147
1148 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1149 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1150 dyn_symbol_table);
1151
1152 if (dynsymcount < 0)
1153 error (_("Can't read symbols from %s: %s"),
1154 bfd_get_filename (objfile->obfd),
1155 bfd_errmsg (bfd_get_error ()));
1156
1157 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1158
1159 elf_rel_plt_read (objfile, dyn_symbol_table);
1160 }
1161
1162 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1163 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1164
1165 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1166 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1167 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1168 read the code address from .opd while it reads the .symtab section from
1169 a separate debug info file as the .opd section is SHT_NOBITS there.
1170
1171 With SYNTH_ABFD the .opd section will be read from the original
1172 backlinked binary where it is valid. */
1173
1174 if (objfile->separate_debug_objfile_backlink)
1175 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1176 else
1177 synth_abfd = abfd;
1178
1179 /* Add synthetic symbols - for instance, names for any PLT entries. */
1180
1181 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1182 dynsymcount, dyn_symbol_table,
1183 &synthsyms);
1184 if (synthcount > 0)
1185 {
1186 asymbol **synth_symbol_table;
1187 long i;
1188
1189 make_cleanup (xfree, synthsyms);
1190 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1191 for (i = 0; i < synthcount; i++)
1192 synth_symbol_table[i] = synthsyms + i;
1193 make_cleanup (xfree, synth_symbol_table);
1194 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1195 synth_symbol_table, 1);
1196 }
1197
1198 /* Install any minimal symbols that have been collected as the current
1199 minimal symbols for this objfile. The debug readers below this point
1200 should not generate new minimal symbols; if they do it's their
1201 responsibility to install them. "mdebug" appears to be the only one
1202 which will do this. */
1203
1204 install_minimal_symbols (objfile);
1205 do_cleanups (back_to);
1206
1207 if (symtab_create_debug)
1208 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1209 }
1210
1211 /* Scan and build partial symbols for a symbol file.
1212 We have been initialized by a call to elf_symfile_init, which
1213 currently does nothing.
1214
1215 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1216 in each section. We simplify it down to a single offset for all
1217 symbols. FIXME.
1218
1219 This function only does the minimum work necessary for letting the
1220 user "name" things symbolically; it does not read the entire symtab.
1221 Instead, it reads the external and static symbols and puts them in partial
1222 symbol tables. When more extensive information is requested of a
1223 file, the corresponding partial symbol table is mutated into a full
1224 fledged symbol table by going back and reading the symbols
1225 for real.
1226
1227 We look for sections with specific names, to tell us what debug
1228 format to look for: FIXME!!!
1229
1230 elfstab_build_psymtabs() handles STABS symbols;
1231 mdebug_build_psymtabs() handles ECOFF debugging information.
1232
1233 Note that ELF files have a "minimal" symbol table, which looks a lot
1234 like a COFF symbol table, but has only the minimal information necessary
1235 for linking. We process this also, and use the information to
1236 build gdb's minimal symbol table. This gives us some minimal debugging
1237 capability even for files compiled without -g. */
1238
1239 static void
1240 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1241 {
1242 bfd *abfd = objfile->obfd;
1243 struct elfinfo ei;
1244
1245 elf_read_minimal_symbols (objfile, symfile_flags);
1246
1247 memset ((char *) &ei, 0, sizeof (ei));
1248
1249 /* Now process debugging information, which is contained in
1250 special ELF sections. */
1251
1252 /* We first have to find them... */
1253 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1254
1255 /* ELF debugging information is inserted into the psymtab in the
1256 order of least informative first - most informative last. Since
1257 the psymtab table is searched `most recent insertion first' this
1258 increases the probability that more detailed debug information
1259 for a section is found.
1260
1261 For instance, an object file might contain both .mdebug (XCOFF)
1262 and .debug_info (DWARF2) sections then .mdebug is inserted first
1263 (searched last) and DWARF2 is inserted last (searched first). If
1264 we don't do this then the XCOFF info is found first - for code in
1265 an included file XCOFF info is useless. */
1266
1267 if (ei.mdebugsect)
1268 {
1269 const struct ecoff_debug_swap *swap;
1270
1271 /* .mdebug section, presumably holding ECOFF debugging
1272 information. */
1273 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1274 if (swap)
1275 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1276 }
1277 if (ei.stabsect)
1278 {
1279 asection *str_sect;
1280
1281 /* Stab sections have an associated string table that looks like
1282 a separate section. */
1283 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1284
1285 /* FIXME should probably warn about a stab section without a stabstr. */
1286 if (str_sect)
1287 elfstab_build_psymtabs (objfile,
1288 ei.stabsect,
1289 str_sect->filepos,
1290 bfd_section_size (abfd, str_sect));
1291 }
1292
1293 if (dwarf2_has_info (objfile, NULL))
1294 {
1295 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1296 information present in OBJFILE. If there is such debug info present
1297 never use .gdb_index. */
1298
1299 if (!objfile_has_partial_symbols (objfile)
1300 && dwarf2_initialize_objfile (objfile))
1301 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1302 else
1303 {
1304 /* It is ok to do this even if the stabs reader made some
1305 partial symbols, because OBJF_PSYMTABS_READ has not been
1306 set, and so our lazy reader function will still be called
1307 when needed. */
1308 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1309 }
1310 }
1311 /* If the file has its own symbol tables it has no separate debug
1312 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1313 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1314 `.note.gnu.build-id'.
1315
1316 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1317 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1318 an objfile via find_separate_debug_file_in_section there was no separate
1319 debug info available. Therefore do not attempt to search for another one,
1320 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1321 be NULL and we would possibly violate it. */
1322
1323 else if (!objfile_has_partial_symbols (objfile)
1324 && objfile->separate_debug_objfile == NULL
1325 && objfile->separate_debug_objfile_backlink == NULL)
1326 {
1327 char *debugfile;
1328
1329 debugfile = find_separate_debug_file_by_buildid (objfile);
1330
1331 if (debugfile == NULL)
1332 debugfile = find_separate_debug_file_by_debuglink (objfile);
1333
1334 if (debugfile)
1335 {
1336 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1337 bfd *abfd = symfile_bfd_open (debugfile);
1338
1339 make_cleanup_bfd_unref (abfd);
1340 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1341 do_cleanups (cleanup);
1342 }
1343 }
1344 }
1345
1346 /* Callback to lazily read psymtabs. */
1347
1348 static void
1349 read_psyms (struct objfile *objfile)
1350 {
1351 if (dwarf2_has_info (objfile, NULL))
1352 dwarf2_build_psymtabs (objfile);
1353 }
1354
1355 /* This cleans up the objfile's dbx symfile info, and the chain of
1356 stab_section_info's, that might be dangling from it. */
1357
1358 static void
1359 free_elfinfo (void *objp)
1360 {
1361 struct objfile *objfile = (struct objfile *) objp;
1362 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1363 struct stab_section_info *ssi, *nssi;
1364
1365 ssi = dbxinfo->stab_section_info;
1366 while (ssi)
1367 {
1368 nssi = ssi->next;
1369 xfree (ssi);
1370 ssi = nssi;
1371 }
1372
1373 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1374 }
1375
1376
1377 /* Initialize anything that needs initializing when a completely new symbol
1378 file is specified (not just adding some symbols from another file, e.g. a
1379 shared library).
1380
1381 We reinitialize buildsym, since we may be reading stabs from an ELF
1382 file. */
1383
1384 static void
1385 elf_new_init (struct objfile *ignore)
1386 {
1387 stabsread_new_init ();
1388 buildsym_new_init ();
1389 }
1390
1391 /* Perform any local cleanups required when we are done with a particular
1392 objfile. I.E, we are in the process of discarding all symbol information
1393 for an objfile, freeing up all memory held for it, and unlinking the
1394 objfile struct from the global list of known objfiles. */
1395
1396 static void
1397 elf_symfile_finish (struct objfile *objfile)
1398 {
1399 dwarf2_free_objfile (objfile);
1400 }
1401
1402 /* ELF specific initialization routine for reading symbols.
1403
1404 It is passed a pointer to a struct sym_fns which contains, among other
1405 things, the BFD for the file whose symbols are being read, and a slot for
1406 a pointer to "private data" which we can fill with goodies.
1407
1408 For now at least, we have nothing in particular to do, so this function is
1409 just a stub. */
1410
1411 static void
1412 elf_symfile_init (struct objfile *objfile)
1413 {
1414 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1415 find this causes a significant slowdown in gdb then we could
1416 set it in the debug symbol readers only when necessary. */
1417 objfile->flags |= OBJF_REORDERED;
1418 }
1419
1420 /* When handling an ELF file that contains Sun STABS debug info,
1421 some of the debug info is relative to the particular chunk of the
1422 section that was generated in its individual .o file. E.g.
1423 offsets to static variables are relative to the start of the data
1424 segment *for that module before linking*. This information is
1425 painfully squirreled away in the ELF symbol table as local symbols
1426 with wierd names. Go get 'em when needed. */
1427
1428 void
1429 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1430 {
1431 const char *filename = pst->filename;
1432 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1433 struct stab_section_info *maybe = dbx->stab_section_info;
1434 struct stab_section_info *questionable = 0;
1435 int i;
1436
1437 /* The ELF symbol info doesn't include path names, so strip the path
1438 (if any) from the psymtab filename. */
1439 filename = lbasename (filename);
1440
1441 /* FIXME: This linear search could speed up significantly
1442 if it was chained in the right order to match how we search it,
1443 and if we unchained when we found a match. */
1444 for (; maybe; maybe = maybe->next)
1445 {
1446 if (filename[0] == maybe->filename[0]
1447 && filename_cmp (filename, maybe->filename) == 0)
1448 {
1449 /* We found a match. But there might be several source files
1450 (from different directories) with the same name. */
1451 if (0 == maybe->found)
1452 break;
1453 questionable = maybe; /* Might use it later. */
1454 }
1455 }
1456
1457 if (maybe == 0 && questionable != 0)
1458 {
1459 complaint (&symfile_complaints,
1460 _("elf/stab section information questionable for %s"),
1461 filename);
1462 maybe = questionable;
1463 }
1464
1465 if (maybe)
1466 {
1467 /* Found it! Allocate a new psymtab struct, and fill it in. */
1468 maybe->found++;
1469 pst->section_offsets = (struct section_offsets *)
1470 obstack_alloc (&objfile->objfile_obstack,
1471 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1472 for (i = 0; i < maybe->num_sections; i++)
1473 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1474 return;
1475 }
1476
1477 /* We were unable to find any offsets for this file. Complain. */
1478 if (dbx->stab_section_info) /* If there *is* any info, */
1479 complaint (&symfile_complaints,
1480 _("elf/stab section information missing for %s"), filename);
1481 }
1482
1483 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1484
1485 static VEC (probe_p) *
1486 elf_get_probes (struct objfile *objfile)
1487 {
1488 VEC (probe_p) *probes_per_objfile;
1489
1490 /* Have we parsed this objfile's probes already? */
1491 probes_per_objfile = objfile_data (objfile, probe_key);
1492
1493 if (!probes_per_objfile)
1494 {
1495 int ix;
1496 const struct probe_ops *probe_ops;
1497
1498 /* Here we try to gather information about all types of probes from the
1499 objfile. */
1500 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1501 ix++)
1502 probe_ops->get_probes (&probes_per_objfile, objfile);
1503
1504 if (probes_per_objfile == NULL)
1505 {
1506 VEC_reserve (probe_p, probes_per_objfile, 1);
1507 gdb_assert (probes_per_objfile != NULL);
1508 }
1509
1510 set_objfile_data (objfile, probe_key, probes_per_objfile);
1511 }
1512
1513 return probes_per_objfile;
1514 }
1515
1516 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1517
1518 static void
1519 elf_symfile_relocate_probe (struct objfile *objfile,
1520 const struct section_offsets *new_offsets,
1521 const struct section_offsets *delta)
1522 {
1523 int ix;
1524 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1525 struct probe *probe;
1526
1527 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1528 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1529 }
1530
1531 /* Helper function used to free the space allocated for storing SystemTap
1532 probe information. */
1533
1534 static void
1535 probe_key_free (struct objfile *objfile, void *d)
1536 {
1537 int ix;
1538 VEC (probe_p) *probes = d;
1539 struct probe *probe;
1540
1541 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1542 probe->pops->destroy (probe);
1543
1544 VEC_free (probe_p, probes);
1545 }
1546
1547 \f
1548
1549 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1550
1551 static const struct sym_probe_fns elf_probe_fns =
1552 {
1553 elf_get_probes, /* sym_get_probes */
1554 elf_symfile_relocate_probe, /* sym_relocate_probe */
1555 };
1556
1557 /* Register that we are able to handle ELF object file formats. */
1558
1559 static const struct sym_fns elf_sym_fns =
1560 {
1561 elf_new_init, /* init anything gbl to entire symtab */
1562 elf_symfile_init, /* read initial info, setup for sym_read() */
1563 elf_symfile_read, /* read a symbol file into symtab */
1564 NULL, /* sym_read_psymbols */
1565 elf_symfile_finish, /* finished with file, cleanup */
1566 default_symfile_offsets, /* Translate ext. to int. relocation */
1567 elf_symfile_segments, /* Get segment information from a file. */
1568 NULL,
1569 default_symfile_relocate, /* Relocate a debug section. */
1570 &elf_probe_fns, /* sym_probe_fns */
1571 &psym_functions
1572 };
1573
1574 /* The same as elf_sym_fns, but not registered and lazily reads
1575 psymbols. */
1576
1577 static const struct sym_fns elf_sym_fns_lazy_psyms =
1578 {
1579 elf_new_init, /* init anything gbl to entire symtab */
1580 elf_symfile_init, /* read initial info, setup for sym_read() */
1581 elf_symfile_read, /* read a symbol file into symtab */
1582 read_psyms, /* sym_read_psymbols */
1583 elf_symfile_finish, /* finished with file, cleanup */
1584 default_symfile_offsets, /* Translate ext. to int. relocation */
1585 elf_symfile_segments, /* Get segment information from a file. */
1586 NULL,
1587 default_symfile_relocate, /* Relocate a debug section. */
1588 &elf_probe_fns, /* sym_probe_fns */
1589 &psym_functions
1590 };
1591
1592 /* The same as elf_sym_fns, but not registered and uses the
1593 DWARF-specific GNU index rather than psymtab. */
1594 static const struct sym_fns elf_sym_fns_gdb_index =
1595 {
1596 elf_new_init, /* init anything gbl to entire symab */
1597 elf_symfile_init, /* read initial info, setup for sym_red() */
1598 elf_symfile_read, /* read a symbol file into symtab */
1599 NULL, /* sym_read_psymbols */
1600 elf_symfile_finish, /* finished with file, cleanup */
1601 default_symfile_offsets, /* Translate ext. to int. relocatin */
1602 elf_symfile_segments, /* Get segment information from a file. */
1603 NULL,
1604 default_symfile_relocate, /* Relocate a debug section. */
1605 &elf_probe_fns, /* sym_probe_fns */
1606 &dwarf2_gdb_index_functions
1607 };
1608
1609 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1610
1611 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1612 {
1613 elf_gnu_ifunc_resolve_addr,
1614 elf_gnu_ifunc_resolve_name,
1615 elf_gnu_ifunc_resolver_stop,
1616 elf_gnu_ifunc_resolver_return_stop
1617 };
1618
1619 void
1620 _initialize_elfread (void)
1621 {
1622 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1623 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1624
1625 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1626 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1627 }
This page took 0.074287 seconds and 5 git commands to generate.