Use ELF_SECTION_IN_SEGMENT to map segments
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2018 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 /* Forward declarations. */
52 extern const struct sym_fns elf_sym_fns_gdb_index;
53 extern const struct sym_fns elf_sym_fns_debug_names;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123
124 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
125 continue;
126
127 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
128
129 for (j = 0; j < num_segments; j++)
130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
131 {
132 data->segment_info[i] = j + 1;
133 break;
134 }
135
136 /* We should have found a segment for every non-empty section.
137 If we haven't, we will not relocate this section by any
138 offsets we apply to the segments. As an exception, do not
139 warn about SHT_NOBITS sections; in normal ELF execution
140 environments, SHT_NOBITS means zero-initialized and belongs
141 in a segment, but in no-OS environments some tools (e.g. ARM
142 RealView) use SHT_NOBITS for uninitialized data. Since it is
143 uninitialized, it doesn't need a program header. Such
144 binaries are not relocatable. */
145 if (bfd_get_section_size (sect) > 0 && j == num_segments
146 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
147 warning (_("Loadable section \"%s\" outside of ELF segments"),
148 bfd_section_name (abfd, sect));
149 }
150
151 return data;
152 }
153
154 /* We are called once per section from elf_symfile_read. We
155 need to examine each section we are passed, check to see
156 if it is something we are interested in processing, and
157 if so, stash away some access information for the section.
158
159 For now we recognize the dwarf debug information sections and
160 line number sections from matching their section names. The
161 ELF definition is no real help here since it has no direct
162 knowledge of DWARF (by design, so any debugging format can be
163 used).
164
165 We also recognize the ".stab" sections used by the Sun compilers
166 released with Solaris 2.
167
168 FIXME: The section names should not be hardwired strings (what
169 should they be? I don't think most object file formats have enough
170 section flags to specify what kind of debug section it is.
171 -kingdon). */
172
173 static void
174 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
175 {
176 struct elfinfo *ei;
177
178 ei = (struct elfinfo *) eip;
179 if (strcmp (sectp->name, ".stab") == 0)
180 {
181 ei->stabsect = sectp;
182 }
183 else if (strcmp (sectp->name, ".mdebug") == 0)
184 {
185 ei->mdebugsect = sectp;
186 }
187 }
188
189 static struct minimal_symbol *
190 record_minimal_symbol (minimal_symbol_reader &reader,
191 const char *name, int name_len, bool copy_name,
192 CORE_ADDR address,
193 enum minimal_symbol_type ms_type,
194 asection *bfd_section, struct objfile *objfile)
195 {
196 struct gdbarch *gdbarch = get_objfile_arch (objfile);
197
198 if (ms_type == mst_text || ms_type == mst_file_text
199 || ms_type == mst_text_gnu_ifunc)
200 address = gdbarch_addr_bits_remove (gdbarch, address);
201
202 return reader.record_full (name, name_len, copy_name, address,
203 ms_type,
204 gdb_bfd_section_index (objfile->obfd,
205 bfd_section));
206 }
207
208 /* Read the symbol table of an ELF file.
209
210 Given an objfile, a symbol table, and a flag indicating whether the
211 symbol table contains regular, dynamic, or synthetic symbols, add all
212 the global function and data symbols to the minimal symbol table.
213
214 In stabs-in-ELF, as implemented by Sun, there are some local symbols
215 defined in the ELF symbol table, which can be used to locate
216 the beginnings of sections from each ".o" file that was linked to
217 form the executable objfile. We gather any such info and record it
218 in data structures hung off the objfile's private data. */
219
220 #define ST_REGULAR 0
221 #define ST_DYNAMIC 1
222 #define ST_SYNTHETIC 2
223
224 static void
225 elf_symtab_read (minimal_symbol_reader &reader,
226 struct objfile *objfile, int type,
227 long number_of_symbols, asymbol **symbol_table,
228 bool copy_names)
229 {
230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
231 asymbol *sym;
232 long i;
233 CORE_ADDR symaddr;
234 enum minimal_symbol_type ms_type;
235 /* Name of the last file symbol. This is either a constant string or is
236 saved on the objfile's filename cache. */
237 const char *filesymname = "";
238 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
239 int elf_make_msymbol_special_p
240 = gdbarch_elf_make_msymbol_special_p (gdbarch);
241
242 for (i = 0; i < number_of_symbols; i++)
243 {
244 sym = symbol_table[i];
245 if (sym->name == NULL || *sym->name == '\0')
246 {
247 /* Skip names that don't exist (shouldn't happen), or names
248 that are null strings (may happen). */
249 continue;
250 }
251
252 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
253 symbols which do not correspond to objects in the symbol table,
254 but have some other target-specific meaning. */
255 if (bfd_is_target_special_symbol (objfile->obfd, sym))
256 {
257 if (gdbarch_record_special_symbol_p (gdbarch))
258 gdbarch_record_special_symbol (gdbarch, objfile, sym);
259 continue;
260 }
261
262 if (type == ST_DYNAMIC
263 && sym->section == bfd_und_section_ptr
264 && (sym->flags & BSF_FUNCTION))
265 {
266 struct minimal_symbol *msym;
267 bfd *abfd = objfile->obfd;
268 asection *sect;
269
270 /* Symbol is a reference to a function defined in
271 a shared library.
272 If its value is non zero then it is usually the address
273 of the corresponding entry in the procedure linkage table,
274 plus the desired section offset.
275 If its value is zero then the dynamic linker has to resolve
276 the symbol. We are unable to find any meaningful address
277 for this symbol in the executable file, so we skip it. */
278 symaddr = sym->value;
279 if (symaddr == 0)
280 continue;
281
282 /* sym->section is the undefined section. However, we want to
283 record the section where the PLT stub resides with the
284 minimal symbol. Search the section table for the one that
285 covers the stub's address. */
286 for (sect = abfd->sections; sect != NULL; sect = sect->next)
287 {
288 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
289 continue;
290
291 if (symaddr >= bfd_get_section_vma (abfd, sect)
292 && symaddr < bfd_get_section_vma (abfd, sect)
293 + bfd_get_section_size (sect))
294 break;
295 }
296 if (!sect)
297 continue;
298
299 /* On ia64-hpux, we have discovered that the system linker
300 adds undefined symbols with nonzero addresses that cannot
301 be right (their address points inside the code of another
302 function in the .text section). This creates problems
303 when trying to determine which symbol corresponds to
304 a given address.
305
306 We try to detect those buggy symbols by checking which
307 section we think they correspond to. Normally, PLT symbols
308 are stored inside their own section, and the typical name
309 for that section is ".plt". So, if there is a ".plt"
310 section, and yet the section name of our symbol does not
311 start with ".plt", we ignore that symbol. */
312 if (!startswith (sect->name, ".plt")
313 && bfd_get_section_by_name (abfd, ".plt") != NULL)
314 continue;
315
316 msym = record_minimal_symbol
317 (reader, sym->name, strlen (sym->name), copy_names,
318 symaddr, mst_solib_trampoline, sect, objfile);
319 if (msym != NULL)
320 {
321 msym->filename = filesymname;
322 if (elf_make_msymbol_special_p)
323 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
324 }
325 continue;
326 }
327
328 /* If it is a nonstripped executable, do not enter dynamic
329 symbols, as the dynamic symbol table is usually a subset
330 of the main symbol table. */
331 if (type == ST_DYNAMIC && !stripped)
332 continue;
333 if (sym->flags & BSF_FILE)
334 {
335 filesymname
336 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
337 objfile->per_bfd->filename_cache);
338 }
339 else if (sym->flags & BSF_SECTION_SYM)
340 continue;
341 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
342 | BSF_GNU_UNIQUE))
343 {
344 struct minimal_symbol *msym;
345
346 /* Select global/local/weak symbols. Note that bfd puts abs
347 symbols in their own section, so all symbols we are
348 interested in will have a section. */
349 /* Bfd symbols are section relative. */
350 symaddr = sym->value + sym->section->vma;
351 /* For non-absolute symbols, use the type of the section
352 they are relative to, to intuit text/data. Bfd provides
353 no way of figuring this out for absolute symbols. */
354 if (sym->section == bfd_abs_section_ptr)
355 {
356 /* This is a hack to get the minimal symbol type
357 right for Irix 5, which has absolute addresses
358 with special section indices for dynamic symbols.
359
360 NOTE: uweigand-20071112: Synthetic symbols do not
361 have an ELF-private part, so do not touch those. */
362 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
363 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
364
365 switch (shndx)
366 {
367 case SHN_MIPS_TEXT:
368 ms_type = mst_text;
369 break;
370 case SHN_MIPS_DATA:
371 ms_type = mst_data;
372 break;
373 case SHN_MIPS_ACOMMON:
374 ms_type = mst_bss;
375 break;
376 default:
377 ms_type = mst_abs;
378 }
379
380 /* If it is an Irix dynamic symbol, skip section name
381 symbols, relocate all others by section offset. */
382 if (ms_type != mst_abs)
383 {
384 if (sym->name[0] == '.')
385 continue;
386 }
387 }
388 else if (sym->section->flags & SEC_CODE)
389 {
390 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
391 {
392 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
393 ms_type = mst_text_gnu_ifunc;
394 else
395 ms_type = mst_text;
396 }
397 /* The BSF_SYNTHETIC check is there to omit ppc64 function
398 descriptors mistaken for static functions starting with 'L'.
399 */
400 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
401 && (sym->flags & BSF_SYNTHETIC) == 0)
402 || ((sym->flags & BSF_LOCAL)
403 && sym->name[0] == '$'
404 && sym->name[1] == 'L'))
405 /* Looks like a compiler-generated label. Skip
406 it. The assembler should be skipping these (to
407 keep executables small), but apparently with
408 gcc on the (deleted) delta m88k SVR4, it loses.
409 So to have us check too should be harmless (but
410 I encourage people to fix this in the assembler
411 instead of adding checks here). */
412 continue;
413 else
414 {
415 ms_type = mst_file_text;
416 }
417 }
418 else if (sym->section->flags & SEC_ALLOC)
419 {
420 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
421 {
422 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
423 {
424 ms_type = mst_data_gnu_ifunc;
425 }
426 else if (sym->section->flags & SEC_LOAD)
427 {
428 ms_type = mst_data;
429 }
430 else
431 {
432 ms_type = mst_bss;
433 }
434 }
435 else if (sym->flags & BSF_LOCAL)
436 {
437 if (sym->section->flags & SEC_LOAD)
438 {
439 ms_type = mst_file_data;
440 }
441 else
442 {
443 ms_type = mst_file_bss;
444 }
445 }
446 else
447 {
448 ms_type = mst_unknown;
449 }
450 }
451 else
452 {
453 /* FIXME: Solaris2 shared libraries include lots of
454 odd "absolute" and "undefined" symbols, that play
455 hob with actions like finding what function the PC
456 is in. Ignore them if they aren't text, data, or bss. */
457 /* ms_type = mst_unknown; */
458 continue; /* Skip this symbol. */
459 }
460 msym = record_minimal_symbol
461 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
462 ms_type, sym->section, objfile);
463
464 if (msym)
465 {
466 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
467 ELF-private part. */
468 if (type != ST_SYNTHETIC)
469 {
470 /* Pass symbol size field in via BFD. FIXME!!! */
471 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
472 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
473 }
474
475 msym->filename = filesymname;
476 if (elf_make_msymbol_special_p)
477 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
478 }
479
480 /* If we see a default versioned symbol, install it under
481 its version-less name. */
482 if (msym != NULL)
483 {
484 const char *atsign = strchr (sym->name, '@');
485
486 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
487 {
488 int len = atsign - sym->name;
489
490 record_minimal_symbol (reader, sym->name, len, true, symaddr,
491 ms_type, sym->section, objfile);
492 }
493 }
494
495 /* For @plt symbols, also record a trampoline to the
496 destination symbol. The @plt symbol will be used in
497 disassembly, and the trampoline will be used when we are
498 trying to find the target. */
499 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
500 {
501 int len = strlen (sym->name);
502
503 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
504 {
505 struct minimal_symbol *mtramp;
506
507 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
508 true, symaddr,
509 mst_solib_trampoline,
510 sym->section, objfile);
511 if (mtramp)
512 {
513 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
514 mtramp->created_by_gdb = 1;
515 mtramp->filename = filesymname;
516 if (elf_make_msymbol_special_p)
517 gdbarch_elf_make_msymbol_special (gdbarch,
518 sym, mtramp);
519 }
520 }
521 }
522 }
523 }
524 }
525
526 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
527 for later look ups of which function to call when user requests
528 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
529 library defining `function' we cannot yet know while reading OBJFILE which
530 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
531 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
532
533 static void
534 elf_rel_plt_read (minimal_symbol_reader &reader,
535 struct objfile *objfile, asymbol **dyn_symbol_table)
536 {
537 bfd *obfd = objfile->obfd;
538 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
539 asection *relplt, *got_plt;
540 bfd_size_type reloc_count, reloc;
541 struct gdbarch *gdbarch = get_objfile_arch (objfile);
542 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
543 size_t ptr_size = TYPE_LENGTH (ptr_type);
544
545 if (objfile->separate_debug_objfile_backlink)
546 return;
547
548 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
549 if (got_plt == NULL)
550 {
551 /* For platforms where there is no separate .got.plt. */
552 got_plt = bfd_get_section_by_name (obfd, ".got");
553 if (got_plt == NULL)
554 return;
555 }
556
557 /* Depending on system, we may find jump slots in a relocation
558 section for either .got.plt or .plt. */
559 asection *plt = bfd_get_section_by_name (obfd, ".plt");
560 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
561
562 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
563
564 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
565 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
566 {
567 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
568
569 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
570 {
571 if (this_hdr.sh_info == plt_elf_idx
572 || this_hdr.sh_info == got_plt_elf_idx)
573 break;
574 }
575 }
576 if (relplt == NULL)
577 return;
578
579 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
580 return;
581
582 std::string string_buffer;
583
584 /* Does ADDRESS reside in SECTION of OBFD? */
585 auto within_section = [obfd] (asection *section, CORE_ADDR address)
586 {
587 if (section == NULL)
588 return false;
589
590 return (bfd_get_section_vma (obfd, section) <= address
591 && (address < bfd_get_section_vma (obfd, section)
592 + bfd_get_section_size (section)));
593 };
594
595 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
596 for (reloc = 0; reloc < reloc_count; reloc++)
597 {
598 const char *name;
599 struct minimal_symbol *msym;
600 CORE_ADDR address;
601 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
602 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
603
604 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
605 address = relplt->relocation[reloc].address;
606
607 asection *msym_section;
608
609 /* Does the pointer reside in either the .got.plt or .plt
610 sections? */
611 if (within_section (got_plt, address))
612 msym_section = got_plt;
613 else if (within_section (plt, address))
614 msym_section = plt;
615 else
616 continue;
617
618 /* We cannot check if NAME is a reference to
619 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
620 symbol is undefined and the objfile having NAME defined may
621 not yet have been loaded. */
622
623 string_buffer.assign (name);
624 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
625
626 msym = record_minimal_symbol (reader, string_buffer.c_str (),
627 string_buffer.size (),
628 true, address, mst_slot_got_plt,
629 msym_section, objfile);
630 if (msym)
631 SET_MSYMBOL_SIZE (msym, ptr_size);
632 }
633 }
634
635 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
636
637 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
638
639 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
640
641 struct elf_gnu_ifunc_cache
642 {
643 /* This is always a function entry address, not a function descriptor. */
644 CORE_ADDR addr;
645
646 char name[1];
647 };
648
649 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
650
651 static hashval_t
652 elf_gnu_ifunc_cache_hash (const void *a_voidp)
653 {
654 const struct elf_gnu_ifunc_cache *a
655 = (const struct elf_gnu_ifunc_cache *) a_voidp;
656
657 return htab_hash_string (a->name);
658 }
659
660 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
661
662 static int
663 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
664 {
665 const struct elf_gnu_ifunc_cache *a
666 = (const struct elf_gnu_ifunc_cache *) a_voidp;
667 const struct elf_gnu_ifunc_cache *b
668 = (const struct elf_gnu_ifunc_cache *) b_voidp;
669
670 return strcmp (a->name, b->name) == 0;
671 }
672
673 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
674 function entry address ADDR. Return 1 if NAME and ADDR are considered as
675 valid and therefore they were successfully recorded, return 0 otherwise.
676
677 Function does not expect a duplicate entry. Use
678 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
679 exists. */
680
681 static int
682 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
683 {
684 struct bound_minimal_symbol msym;
685 struct objfile *objfile;
686 htab_t htab;
687 struct elf_gnu_ifunc_cache entry_local, *entry_p;
688 void **slot;
689
690 msym = lookup_minimal_symbol_by_pc (addr);
691 if (msym.minsym == NULL)
692 return 0;
693 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
694 return 0;
695 objfile = msym.objfile;
696
697 /* If .plt jumps back to .plt the symbol is still deferred for later
698 resolution and it has no use for GDB. */
699 const char *target_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
700 size_t len = strlen (target_name);
701
702 /* Note we check the symbol's name instead of checking whether the
703 symbol is in the .plt section because some systems have @plt
704 symbols in the .text section. */
705 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
706 return 0;
707
708 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
709 if (htab == NULL)
710 {
711 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
712 elf_gnu_ifunc_cache_eq,
713 NULL, &objfile->objfile_obstack,
714 hashtab_obstack_allocate,
715 dummy_obstack_deallocate);
716 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
717 }
718
719 entry_local.addr = addr;
720 obstack_grow (&objfile->objfile_obstack, &entry_local,
721 offsetof (struct elf_gnu_ifunc_cache, name));
722 obstack_grow_str0 (&objfile->objfile_obstack, name);
723 entry_p
724 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
725
726 slot = htab_find_slot (htab, entry_p, INSERT);
727 if (*slot != NULL)
728 {
729 struct elf_gnu_ifunc_cache *entry_found_p
730 = (struct elf_gnu_ifunc_cache *) *slot;
731 struct gdbarch *gdbarch = get_objfile_arch (objfile);
732
733 if (entry_found_p->addr != addr)
734 {
735 /* This case indicates buggy inferior program, the resolved address
736 should never change. */
737
738 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
739 "function_address from %s to %s"),
740 name, paddress (gdbarch, entry_found_p->addr),
741 paddress (gdbarch, addr));
742 }
743
744 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
745 }
746 *slot = entry_p;
747
748 return 1;
749 }
750
751 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
752 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
753 is not NULL) and the function returns 1. It returns 0 otherwise.
754
755 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
756 function. */
757
758 static int
759 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
760 {
761 struct objfile *objfile;
762
763 ALL_PSPACE_OBJFILES (current_program_space, objfile)
764 {
765 htab_t htab;
766 struct elf_gnu_ifunc_cache *entry_p;
767 void **slot;
768
769 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
770 if (htab == NULL)
771 continue;
772
773 entry_p = ((struct elf_gnu_ifunc_cache *)
774 alloca (sizeof (*entry_p) + strlen (name)));
775 strcpy (entry_p->name, name);
776
777 slot = htab_find_slot (htab, entry_p, NO_INSERT);
778 if (slot == NULL)
779 continue;
780 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
781 gdb_assert (entry_p != NULL);
782
783 if (addr_p)
784 *addr_p = entry_p->addr;
785 return 1;
786 }
787
788 return 0;
789 }
790
791 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
792 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
793 is not NULL) and the function returns 1. It returns 0 otherwise.
794
795 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
796 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
797 prevent cache entries duplicates. */
798
799 static int
800 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
801 {
802 char *name_got_plt;
803 struct objfile *objfile;
804 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
805
806 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
807 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
808
809 ALL_PSPACE_OBJFILES (current_program_space, objfile)
810 {
811 bfd *obfd = objfile->obfd;
812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
813 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
814 size_t ptr_size = TYPE_LENGTH (ptr_type);
815 CORE_ADDR pointer_address, addr;
816 asection *plt;
817 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
818 struct bound_minimal_symbol msym;
819
820 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
821 if (msym.minsym == NULL)
822 continue;
823 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
824 continue;
825 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
826
827 plt = bfd_get_section_by_name (obfd, ".plt");
828 if (plt == NULL)
829 continue;
830
831 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
832 continue;
833 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
834 continue;
835 addr = extract_typed_address (buf, ptr_type);
836 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, target_stack);
837 addr = gdbarch_addr_bits_remove (gdbarch, addr);
838
839 if (elf_gnu_ifunc_record_cache (name, addr))
840 {
841 if (addr_p != NULL)
842 *addr_p = addr;
843 return 1;
844 }
845 }
846
847 return 0;
848 }
849
850 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
851 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
852 is not NULL) and the function returns 1. It returns 0 otherwise.
853
854 Both the elf_objfile_gnu_ifunc_cache_data hash table and
855 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
856
857 static int
858 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
859 {
860 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
861 return 1;
862
863 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
864 return 1;
865
866 return 0;
867 }
868
869 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
870 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
871 is the entry point of the resolved STT_GNU_IFUNC target function to call.
872 */
873
874 static CORE_ADDR
875 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
876 {
877 const char *name_at_pc;
878 CORE_ADDR start_at_pc, address;
879 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
880 struct value *function, *address_val;
881 CORE_ADDR hwcap = 0;
882 struct value *hwcap_val;
883
884 /* Try first any non-intrusive methods without an inferior call. */
885
886 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
887 && start_at_pc == pc)
888 {
889 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
890 return address;
891 }
892 else
893 name_at_pc = NULL;
894
895 function = allocate_value (func_func_type);
896 VALUE_LVAL (function) = lval_memory;
897 set_value_address (function, pc);
898
899 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
900 parameter. FUNCTION is the function entry address. ADDRESS may be a
901 function descriptor. */
902
903 target_auxv_search (target_stack, AT_HWCAP, &hwcap);
904 hwcap_val = value_from_longest (builtin_type (gdbarch)
905 ->builtin_unsigned_long, hwcap);
906 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
907 address = value_as_address (address_val);
908 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, target_stack);
909 address = gdbarch_addr_bits_remove (gdbarch, address);
910
911 if (name_at_pc)
912 elf_gnu_ifunc_record_cache (name_at_pc, address);
913
914 return address;
915 }
916
917 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
918
919 static void
920 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
921 {
922 struct breakpoint *b_return;
923 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
924 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
925 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
926 int thread_id = ptid_to_global_thread_id (inferior_ptid);
927
928 gdb_assert (b->type == bp_gnu_ifunc_resolver);
929
930 for (b_return = b->related_breakpoint; b_return != b;
931 b_return = b_return->related_breakpoint)
932 {
933 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
934 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
935 gdb_assert (frame_id_p (b_return->frame_id));
936
937 if (b_return->thread == thread_id
938 && b_return->loc->requested_address == prev_pc
939 && frame_id_eq (b_return->frame_id, prev_frame_id))
940 break;
941 }
942
943 if (b_return == b)
944 {
945 /* No need to call find_pc_line for symbols resolving as this is only
946 a helper breakpointer never shown to the user. */
947
948 symtab_and_line sal;
949 sal.pspace = current_inferior ()->pspace;
950 sal.pc = prev_pc;
951 sal.section = find_pc_overlay (sal.pc);
952 sal.explicit_pc = 1;
953 b_return
954 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
955 prev_frame_id,
956 bp_gnu_ifunc_resolver_return).release ();
957
958 /* set_momentary_breakpoint invalidates PREV_FRAME. */
959 prev_frame = NULL;
960
961 /* Add new b_return to the ring list b->related_breakpoint. */
962 gdb_assert (b_return->related_breakpoint == b_return);
963 b_return->related_breakpoint = b->related_breakpoint;
964 b->related_breakpoint = b_return;
965 }
966 }
967
968 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
969
970 static void
971 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
972 {
973 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
974 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
975 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
976 struct regcache *regcache = get_thread_regcache (inferior_ptid);
977 struct value *func_func;
978 struct value *value;
979 CORE_ADDR resolved_address, resolved_pc;
980
981 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
982
983 while (b->related_breakpoint != b)
984 {
985 struct breakpoint *b_next = b->related_breakpoint;
986
987 switch (b->type)
988 {
989 case bp_gnu_ifunc_resolver:
990 break;
991 case bp_gnu_ifunc_resolver_return:
992 delete_breakpoint (b);
993 break;
994 default:
995 internal_error (__FILE__, __LINE__,
996 _("handle_inferior_event: Invalid "
997 "gnu-indirect-function breakpoint type %d"),
998 (int) b->type);
999 }
1000 b = b_next;
1001 }
1002 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1003 gdb_assert (b->loc->next == NULL);
1004
1005 func_func = allocate_value (func_func_type);
1006 VALUE_LVAL (func_func) = lval_memory;
1007 set_value_address (func_func, b->loc->related_address);
1008
1009 value = allocate_value (value_type);
1010 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1011 value_contents_raw (value), NULL);
1012 resolved_address = value_as_address (value);
1013 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1014 resolved_address,
1015 target_stack);
1016 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1017
1018 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1019 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1020 resolved_pc);
1021
1022 b->type = bp_breakpoint;
1023 update_breakpoint_locations (b, current_program_space,
1024 find_function_start_sal (resolved_pc, NULL, true),
1025 {});
1026 }
1027
1028 /* A helper function for elf_symfile_read that reads the minimal
1029 symbols. */
1030
1031 static void
1032 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1033 const struct elfinfo *ei)
1034 {
1035 bfd *synth_abfd, *abfd = objfile->obfd;
1036 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1037 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1038 asymbol *synthsyms;
1039 struct dbx_symfile_info *dbx;
1040
1041 if (symtab_create_debug)
1042 {
1043 fprintf_unfiltered (gdb_stdlog,
1044 "Reading minimal symbols of objfile %s ...\n",
1045 objfile_name (objfile));
1046 }
1047
1048 /* If we already have minsyms, then we can skip some work here.
1049 However, if there were stabs or mdebug sections, we go ahead and
1050 redo all the work anyway, because the psym readers for those
1051 kinds of debuginfo need extra information found here. This can
1052 go away once all types of symbols are in the per-BFD object. */
1053 if (objfile->per_bfd->minsyms_read
1054 && ei->stabsect == NULL
1055 && ei->mdebugsect == NULL)
1056 {
1057 if (symtab_create_debug)
1058 fprintf_unfiltered (gdb_stdlog,
1059 "... minimal symbols previously read\n");
1060 return;
1061 }
1062
1063 minimal_symbol_reader reader (objfile);
1064
1065 /* Allocate struct to keep track of the symfile. */
1066 dbx = XCNEW (struct dbx_symfile_info);
1067 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1068
1069 /* Process the normal ELF symbol table first. */
1070
1071 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1072 if (storage_needed < 0)
1073 error (_("Can't read symbols from %s: %s"),
1074 bfd_get_filename (objfile->obfd),
1075 bfd_errmsg (bfd_get_error ()));
1076
1077 if (storage_needed > 0)
1078 {
1079 /* Memory gets permanently referenced from ABFD after
1080 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1081
1082 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1083 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1084
1085 if (symcount < 0)
1086 error (_("Can't read symbols from %s: %s"),
1087 bfd_get_filename (objfile->obfd),
1088 bfd_errmsg (bfd_get_error ()));
1089
1090 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1091 false);
1092 }
1093
1094 /* Add the dynamic symbols. */
1095
1096 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1097
1098 if (storage_needed > 0)
1099 {
1100 /* Memory gets permanently referenced from ABFD after
1101 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1102 It happens only in the case when elf_slurp_reloc_table sees
1103 asection->relocation NULL. Determining which section is asection is
1104 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1105 implementation detail, though. */
1106
1107 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1108 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1109 dyn_symbol_table);
1110
1111 if (dynsymcount < 0)
1112 error (_("Can't read symbols from %s: %s"),
1113 bfd_get_filename (objfile->obfd),
1114 bfd_errmsg (bfd_get_error ()));
1115
1116 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1117 dyn_symbol_table, false);
1118
1119 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1120 }
1121
1122 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1123 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1124
1125 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1126 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1127 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1128 read the code address from .opd while it reads the .symtab section from
1129 a separate debug info file as the .opd section is SHT_NOBITS there.
1130
1131 With SYNTH_ABFD the .opd section will be read from the original
1132 backlinked binary where it is valid. */
1133
1134 if (objfile->separate_debug_objfile_backlink)
1135 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1136 else
1137 synth_abfd = abfd;
1138
1139 /* Add synthetic symbols - for instance, names for any PLT entries. */
1140
1141 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1142 dynsymcount, dyn_symbol_table,
1143 &synthsyms);
1144 if (synthcount > 0)
1145 {
1146 long i;
1147
1148 std::unique_ptr<asymbol *[]>
1149 synth_symbol_table (new asymbol *[synthcount]);
1150 for (i = 0; i < synthcount; i++)
1151 synth_symbol_table[i] = synthsyms + i;
1152 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1153 synth_symbol_table.get (), true);
1154
1155 xfree (synthsyms);
1156 synthsyms = NULL;
1157 }
1158
1159 /* Install any minimal symbols that have been collected as the current
1160 minimal symbols for this objfile. The debug readers below this point
1161 should not generate new minimal symbols; if they do it's their
1162 responsibility to install them. "mdebug" appears to be the only one
1163 which will do this. */
1164
1165 reader.install ();
1166
1167 if (symtab_create_debug)
1168 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1169 }
1170
1171 /* Scan and build partial symbols for a symbol file.
1172 We have been initialized by a call to elf_symfile_init, which
1173 currently does nothing.
1174
1175 This function only does the minimum work necessary for letting the
1176 user "name" things symbolically; it does not read the entire symtab.
1177 Instead, it reads the external and static symbols and puts them in partial
1178 symbol tables. When more extensive information is requested of a
1179 file, the corresponding partial symbol table is mutated into a full
1180 fledged symbol table by going back and reading the symbols
1181 for real.
1182
1183 We look for sections with specific names, to tell us what debug
1184 format to look for: FIXME!!!
1185
1186 elfstab_build_psymtabs() handles STABS symbols;
1187 mdebug_build_psymtabs() handles ECOFF debugging information.
1188
1189 Note that ELF files have a "minimal" symbol table, which looks a lot
1190 like a COFF symbol table, but has only the minimal information necessary
1191 for linking. We process this also, and use the information to
1192 build gdb's minimal symbol table. This gives us some minimal debugging
1193 capability even for files compiled without -g. */
1194
1195 static void
1196 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1197 {
1198 bfd *abfd = objfile->obfd;
1199 struct elfinfo ei;
1200
1201 memset ((char *) &ei, 0, sizeof (ei));
1202 if (!(objfile->flags & OBJF_READNEVER))
1203 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1204
1205 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1206
1207 /* ELF debugging information is inserted into the psymtab in the
1208 order of least informative first - most informative last. Since
1209 the psymtab table is searched `most recent insertion first' this
1210 increases the probability that more detailed debug information
1211 for a section is found.
1212
1213 For instance, an object file might contain both .mdebug (XCOFF)
1214 and .debug_info (DWARF2) sections then .mdebug is inserted first
1215 (searched last) and DWARF2 is inserted last (searched first). If
1216 we don't do this then the XCOFF info is found first - for code in
1217 an included file XCOFF info is useless. */
1218
1219 if (ei.mdebugsect)
1220 {
1221 const struct ecoff_debug_swap *swap;
1222
1223 /* .mdebug section, presumably holding ECOFF debugging
1224 information. */
1225 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1226 if (swap)
1227 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1228 }
1229 if (ei.stabsect)
1230 {
1231 asection *str_sect;
1232
1233 /* Stab sections have an associated string table that looks like
1234 a separate section. */
1235 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1236
1237 /* FIXME should probably warn about a stab section without a stabstr. */
1238 if (str_sect)
1239 elfstab_build_psymtabs (objfile,
1240 ei.stabsect,
1241 str_sect->filepos,
1242 bfd_section_size (abfd, str_sect));
1243 }
1244
1245 if (dwarf2_has_info (objfile, NULL))
1246 {
1247 dw_index_kind index_kind;
1248
1249 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1250 debug information present in OBJFILE. If there is such debug
1251 info present never use an index. */
1252 if (!objfile_has_partial_symbols (objfile)
1253 && dwarf2_initialize_objfile (objfile, &index_kind))
1254 {
1255 switch (index_kind)
1256 {
1257 case dw_index_kind::GDB_INDEX:
1258 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1259 break;
1260 case dw_index_kind::DEBUG_NAMES:
1261 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1262 break;
1263 }
1264 }
1265 else
1266 {
1267 /* It is ok to do this even if the stabs reader made some
1268 partial symbols, because OBJF_PSYMTABS_READ has not been
1269 set, and so our lazy reader function will still be called
1270 when needed. */
1271 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1272 }
1273 }
1274 /* If the file has its own symbol tables it has no separate debug
1275 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1276 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1277 `.note.gnu.build-id'.
1278
1279 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1280 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1281 an objfile via find_separate_debug_file_in_section there was no separate
1282 debug info available. Therefore do not attempt to search for another one,
1283 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1284 be NULL and we would possibly violate it. */
1285
1286 else if (!objfile_has_partial_symbols (objfile)
1287 && objfile->separate_debug_objfile == NULL
1288 && objfile->separate_debug_objfile_backlink == NULL)
1289 {
1290 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1291
1292 if (debugfile.empty ())
1293 debugfile = find_separate_debug_file_by_debuglink (objfile);
1294
1295 if (!debugfile.empty ())
1296 {
1297 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.c_str ()));
1298
1299 symbol_file_add_separate (abfd.get (), debugfile.c_str (),
1300 symfile_flags, objfile);
1301 }
1302 }
1303 }
1304
1305 /* Callback to lazily read psymtabs. */
1306
1307 static void
1308 read_psyms (struct objfile *objfile)
1309 {
1310 if (dwarf2_has_info (objfile, NULL))
1311 dwarf2_build_psymtabs (objfile);
1312 }
1313
1314 /* Initialize anything that needs initializing when a completely new symbol
1315 file is specified (not just adding some symbols from another file, e.g. a
1316 shared library).
1317
1318 We reinitialize buildsym, since we may be reading stabs from an ELF
1319 file. */
1320
1321 static void
1322 elf_new_init (struct objfile *ignore)
1323 {
1324 stabsread_new_init ();
1325 buildsym_new_init ();
1326 }
1327
1328 /* Perform any local cleanups required when we are done with a particular
1329 objfile. I.E, we are in the process of discarding all symbol information
1330 for an objfile, freeing up all memory held for it, and unlinking the
1331 objfile struct from the global list of known objfiles. */
1332
1333 static void
1334 elf_symfile_finish (struct objfile *objfile)
1335 {
1336 dwarf2_free_objfile (objfile);
1337 }
1338
1339 /* ELF specific initialization routine for reading symbols. */
1340
1341 static void
1342 elf_symfile_init (struct objfile *objfile)
1343 {
1344 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1345 find this causes a significant slowdown in gdb then we could
1346 set it in the debug symbol readers only when necessary. */
1347 objfile->flags |= OBJF_REORDERED;
1348 }
1349
1350 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1351
1352 static const std::vector<probe *> &
1353 elf_get_probes (struct objfile *objfile)
1354 {
1355 std::vector<probe *> *probes_per_bfd;
1356
1357 /* Have we parsed this objfile's probes already? */
1358 probes_per_bfd = (std::vector<probe *> *) bfd_data (objfile->obfd, probe_key);
1359
1360 if (probes_per_bfd == NULL)
1361 {
1362 probes_per_bfd = new std::vector<probe *>;
1363
1364 /* Here we try to gather information about all types of probes from the
1365 objfile. */
1366 for (const static_probe_ops *ops : all_static_probe_ops)
1367 ops->get_probes (probes_per_bfd, objfile);
1368
1369 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1370 }
1371
1372 return *probes_per_bfd;
1373 }
1374
1375 /* Helper function used to free the space allocated for storing SystemTap
1376 probe information. */
1377
1378 static void
1379 probe_key_free (bfd *abfd, void *d)
1380 {
1381 std::vector<probe *> *probes = (std::vector<probe *> *) d;
1382
1383 for (probe *p : *probes)
1384 delete p;
1385
1386 delete probes;
1387 }
1388
1389 \f
1390
1391 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1392
1393 static const struct sym_probe_fns elf_probe_fns =
1394 {
1395 elf_get_probes, /* sym_get_probes */
1396 };
1397
1398 /* Register that we are able to handle ELF object file formats. */
1399
1400 static const struct sym_fns elf_sym_fns =
1401 {
1402 elf_new_init, /* init anything gbl to entire symtab */
1403 elf_symfile_init, /* read initial info, setup for sym_read() */
1404 elf_symfile_read, /* read a symbol file into symtab */
1405 NULL, /* sym_read_psymbols */
1406 elf_symfile_finish, /* finished with file, cleanup */
1407 default_symfile_offsets, /* Translate ext. to int. relocation */
1408 elf_symfile_segments, /* Get segment information from a file. */
1409 NULL,
1410 default_symfile_relocate, /* Relocate a debug section. */
1411 &elf_probe_fns, /* sym_probe_fns */
1412 &psym_functions
1413 };
1414
1415 /* The same as elf_sym_fns, but not registered and lazily reads
1416 psymbols. */
1417
1418 const struct sym_fns elf_sym_fns_lazy_psyms =
1419 {
1420 elf_new_init, /* init anything gbl to entire symtab */
1421 elf_symfile_init, /* read initial info, setup for sym_read() */
1422 elf_symfile_read, /* read a symbol file into symtab */
1423 read_psyms, /* sym_read_psymbols */
1424 elf_symfile_finish, /* finished with file, cleanup */
1425 default_symfile_offsets, /* Translate ext. to int. relocation */
1426 elf_symfile_segments, /* Get segment information from a file. */
1427 NULL,
1428 default_symfile_relocate, /* Relocate a debug section. */
1429 &elf_probe_fns, /* sym_probe_fns */
1430 &psym_functions
1431 };
1432
1433 /* The same as elf_sym_fns, but not registered and uses the
1434 DWARF-specific GNU index rather than psymtab. */
1435 const struct sym_fns elf_sym_fns_gdb_index =
1436 {
1437 elf_new_init, /* init anything gbl to entire symab */
1438 elf_symfile_init, /* read initial info, setup for sym_red() */
1439 elf_symfile_read, /* read a symbol file into symtab */
1440 NULL, /* sym_read_psymbols */
1441 elf_symfile_finish, /* finished with file, cleanup */
1442 default_symfile_offsets, /* Translate ext. to int. relocatin */
1443 elf_symfile_segments, /* Get segment information from a file. */
1444 NULL,
1445 default_symfile_relocate, /* Relocate a debug section. */
1446 &elf_probe_fns, /* sym_probe_fns */
1447 &dwarf2_gdb_index_functions
1448 };
1449
1450 /* The same as elf_sym_fns, but not registered and uses the
1451 DWARF-specific .debug_names index rather than psymtab. */
1452 const struct sym_fns elf_sym_fns_debug_names =
1453 {
1454 elf_new_init, /* init anything gbl to entire symab */
1455 elf_symfile_init, /* read initial info, setup for sym_red() */
1456 elf_symfile_read, /* read a symbol file into symtab */
1457 NULL, /* sym_read_psymbols */
1458 elf_symfile_finish, /* finished with file, cleanup */
1459 default_symfile_offsets, /* Translate ext. to int. relocatin */
1460 elf_symfile_segments, /* Get segment information from a file. */
1461 NULL,
1462 default_symfile_relocate, /* Relocate a debug section. */
1463 &elf_probe_fns, /* sym_probe_fns */
1464 &dwarf2_debug_names_functions
1465 };
1466
1467 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1468
1469 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1470 {
1471 elf_gnu_ifunc_resolve_addr,
1472 elf_gnu_ifunc_resolve_name,
1473 elf_gnu_ifunc_resolver_stop,
1474 elf_gnu_ifunc_resolver_return_stop
1475 };
1476
1477 void
1478 _initialize_elfread (void)
1479 {
1480 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1481 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1482
1483 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1484 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1485 }
This page took 0.060979 seconds and 5 git commands to generate.