Change minimal_symbol_reader to store objfile
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2016 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49 #include "auxv.h"
50
51 extern void _initialize_elfread (void);
52
53 /* Forward declarations. */
54 extern const struct sym_fns elf_sym_fns_gdb_index;
55 extern const struct sym_fns elf_sym_fns_lazy_psyms;
56
57 /* The struct elfinfo is available only during ELF symbol table and
58 psymtab reading. It is destroyed at the completion of psymtab-reading.
59 It's local to elf_symfile_read. */
60
61 struct elfinfo
62 {
63 asection *stabsect; /* Section pointer for .stab section */
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
66
67 /* Per-BFD data for probe info. */
68
69 static const struct bfd_data *probe_key = NULL;
70
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
78 /* Locate the segments in ABFD. */
79
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
82 {
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XCNEW (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCNEWVEC (int, num_sections);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
151 warning (_("Loadable section \"%s\" outside of ELF segments"),
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156 }
157
158 /* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
174 section flags to specify what kind of debug section it is.
175 -kingdon). */
176
177 static void
178 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 {
180 struct elfinfo *ei;
181
182 ei = (struct elfinfo *) eip;
183 if (strcmp (sectp->name, ".stab") == 0)
184 {
185 ei->stabsect = sectp;
186 }
187 else if (strcmp (sectp->name, ".mdebug") == 0)
188 {
189 ei->mdebugsect = sectp;
190 }
191 }
192
193 static struct minimal_symbol *
194 record_minimal_symbol (const char *name, int name_len, int copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198 {
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section),
209 objfile);
210 }
211
212 /* Read the symbol table of an ELF file.
213
214 Given an objfile, a symbol table, and a flag indicating whether the
215 symbol table contains regular, dynamic, or synthetic symbols, add all
216 the global function and data symbols to the minimal symbol table.
217
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
222 in data structures hung off the objfile's private data. */
223
224 #define ST_REGULAR 0
225 #define ST_DYNAMIC 1
226 #define ST_SYNTHETIC 2
227
228 static void
229 elf_symtab_read (struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 int copy_names)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
242 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
243 int elf_make_msymbol_special_p
244 = gdbarch_elf_make_msymbol_special_p (gdbarch);
245
246 for (i = 0; i < number_of_symbols; i++)
247 {
248 sym = symbol_table[i];
249 if (sym->name == NULL || *sym->name == '\0')
250 {
251 /* Skip names that don't exist (shouldn't happen), or names
252 that are null strings (may happen). */
253 continue;
254 }
255
256 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
257 symbols which do not correspond to objects in the symbol table,
258 but have some other target-specific meaning. */
259 if (bfd_is_target_special_symbol (objfile->obfd, sym))
260 {
261 if (gdbarch_record_special_symbol_p (gdbarch))
262 gdbarch_record_special_symbol (gdbarch, objfile, sym);
263 continue;
264 }
265
266 if (type == ST_DYNAMIC
267 && sym->section == bfd_und_section_ptr
268 && (sym->flags & BSF_FUNCTION))
269 {
270 struct minimal_symbol *msym;
271 bfd *abfd = objfile->obfd;
272 asection *sect;
273
274 /* Symbol is a reference to a function defined in
275 a shared library.
276 If its value is non zero then it is usually the address
277 of the corresponding entry in the procedure linkage table,
278 plus the desired section offset.
279 If its value is zero then the dynamic linker has to resolve
280 the symbol. We are unable to find any meaningful address
281 for this symbol in the executable file, so we skip it. */
282 symaddr = sym->value;
283 if (symaddr == 0)
284 continue;
285
286 /* sym->section is the undefined section. However, we want to
287 record the section where the PLT stub resides with the
288 minimal symbol. Search the section table for the one that
289 covers the stub's address. */
290 for (sect = abfd->sections; sect != NULL; sect = sect->next)
291 {
292 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
293 continue;
294
295 if (symaddr >= bfd_get_section_vma (abfd, sect)
296 && symaddr < bfd_get_section_vma (abfd, sect)
297 + bfd_get_section_size (sect))
298 break;
299 }
300 if (!sect)
301 continue;
302
303 /* On ia64-hpux, we have discovered that the system linker
304 adds undefined symbols with nonzero addresses that cannot
305 be right (their address points inside the code of another
306 function in the .text section). This creates problems
307 when trying to determine which symbol corresponds to
308 a given address.
309
310 We try to detect those buggy symbols by checking which
311 section we think they correspond to. Normally, PLT symbols
312 are stored inside their own section, and the typical name
313 for that section is ".plt". So, if there is a ".plt"
314 section, and yet the section name of our symbol does not
315 start with ".plt", we ignore that symbol. */
316 if (!startswith (sect->name, ".plt")
317 && bfd_get_section_by_name (abfd, ".plt") != NULL)
318 continue;
319
320 msym = record_minimal_symbol
321 (sym->name, strlen (sym->name), copy_names,
322 symaddr, mst_solib_trampoline, sect, objfile);
323 if (msym != NULL)
324 {
325 msym->filename = filesymname;
326 if (elf_make_msymbol_special_p)
327 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
328 }
329 continue;
330 }
331
332 /* If it is a nonstripped executable, do not enter dynamic
333 symbols, as the dynamic symbol table is usually a subset
334 of the main symbol table. */
335 if (type == ST_DYNAMIC && !stripped)
336 continue;
337 if (sym->flags & BSF_FILE)
338 {
339 filesymname
340 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
341 objfile->per_bfd->filename_cache);
342 }
343 else if (sym->flags & BSF_SECTION_SYM)
344 continue;
345 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
346 | BSF_GNU_UNIQUE))
347 {
348 struct minimal_symbol *msym;
349
350 /* Select global/local/weak symbols. Note that bfd puts abs
351 symbols in their own section, so all symbols we are
352 interested in will have a section. */
353 /* Bfd symbols are section relative. */
354 symaddr = sym->value + sym->section->vma;
355 /* For non-absolute symbols, use the type of the section
356 they are relative to, to intuit text/data. Bfd provides
357 no way of figuring this out for absolute symbols. */
358 if (sym->section == bfd_abs_section_ptr)
359 {
360 /* This is a hack to get the minimal symbol type
361 right for Irix 5, which has absolute addresses
362 with special section indices for dynamic symbols.
363
364 NOTE: uweigand-20071112: Synthetic symbols do not
365 have an ELF-private part, so do not touch those. */
366 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
367 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
368
369 switch (shndx)
370 {
371 case SHN_MIPS_TEXT:
372 ms_type = mst_text;
373 break;
374 case SHN_MIPS_DATA:
375 ms_type = mst_data;
376 break;
377 case SHN_MIPS_ACOMMON:
378 ms_type = mst_bss;
379 break;
380 default:
381 ms_type = mst_abs;
382 }
383
384 /* If it is an Irix dynamic symbol, skip section name
385 symbols, relocate all others by section offset. */
386 if (ms_type != mst_abs)
387 {
388 if (sym->name[0] == '.')
389 continue;
390 }
391 }
392 else if (sym->section->flags & SEC_CODE)
393 {
394 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
395 {
396 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
397 ms_type = mst_text_gnu_ifunc;
398 else
399 ms_type = mst_text;
400 }
401 /* The BSF_SYNTHETIC check is there to omit ppc64 function
402 descriptors mistaken for static functions starting with 'L'.
403 */
404 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
405 && (sym->flags & BSF_SYNTHETIC) == 0)
406 || ((sym->flags & BSF_LOCAL)
407 && sym->name[0] == '$'
408 && sym->name[1] == 'L'))
409 /* Looks like a compiler-generated label. Skip
410 it. The assembler should be skipping these (to
411 keep executables small), but apparently with
412 gcc on the (deleted) delta m88k SVR4, it loses.
413 So to have us check too should be harmless (but
414 I encourage people to fix this in the assembler
415 instead of adding checks here). */
416 continue;
417 else
418 {
419 ms_type = mst_file_text;
420 }
421 }
422 else if (sym->section->flags & SEC_ALLOC)
423 {
424 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
425 {
426 if (sym->section->flags & SEC_LOAD)
427 {
428 ms_type = mst_data;
429 }
430 else
431 {
432 ms_type = mst_bss;
433 }
434 }
435 else if (sym->flags & BSF_LOCAL)
436 {
437 if (sym->section->flags & SEC_LOAD)
438 {
439 ms_type = mst_file_data;
440 }
441 else
442 {
443 ms_type = mst_file_bss;
444 }
445 }
446 else
447 {
448 ms_type = mst_unknown;
449 }
450 }
451 else
452 {
453 /* FIXME: Solaris2 shared libraries include lots of
454 odd "absolute" and "undefined" symbols, that play
455 hob with actions like finding what function the PC
456 is in. Ignore them if they aren't text, data, or bss. */
457 /* ms_type = mst_unknown; */
458 continue; /* Skip this symbol. */
459 }
460 msym = record_minimal_symbol
461 (sym->name, strlen (sym->name), copy_names, symaddr,
462 ms_type, sym->section, objfile);
463
464 if (msym)
465 {
466 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
467 ELF-private part. */
468 if (type != ST_SYNTHETIC)
469 {
470 /* Pass symbol size field in via BFD. FIXME!!! */
471 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
472 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
473 }
474
475 msym->filename = filesymname;
476 if (elf_make_msymbol_special_p)
477 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
478 }
479
480 /* If we see a default versioned symbol, install it under
481 its version-less name. */
482 if (msym != NULL)
483 {
484 const char *atsign = strchr (sym->name, '@');
485
486 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
487 {
488 int len = atsign - sym->name;
489
490 record_minimal_symbol (sym->name, len, 1, symaddr,
491 ms_type, sym->section, objfile);
492 }
493 }
494
495 /* For @plt symbols, also record a trampoline to the
496 destination symbol. The @plt symbol will be used in
497 disassembly, and the trampoline will be used when we are
498 trying to find the target. */
499 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
500 {
501 int len = strlen (sym->name);
502
503 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
504 {
505 struct minimal_symbol *mtramp;
506
507 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
508 symaddr,
509 mst_solib_trampoline,
510 sym->section, objfile);
511 if (mtramp)
512 {
513 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
514 mtramp->created_by_gdb = 1;
515 mtramp->filename = filesymname;
516 if (elf_make_msymbol_special_p)
517 gdbarch_elf_make_msymbol_special (gdbarch,
518 sym, mtramp);
519 }
520 }
521 }
522 }
523 }
524 }
525
526 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
527 for later look ups of which function to call when user requests
528 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
529 library defining `function' we cannot yet know while reading OBJFILE which
530 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
531 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
532
533 static void
534 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
535 {
536 bfd *obfd = objfile->obfd;
537 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
538 asection *plt, *relplt, *got_plt;
539 int plt_elf_idx;
540 bfd_size_type reloc_count, reloc;
541 char *string_buffer = NULL;
542 size_t string_buffer_size = 0;
543 struct cleanup *back_to;
544 struct gdbarch *gdbarch = get_objfile_arch (objfile);
545 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
546 size_t ptr_size = TYPE_LENGTH (ptr_type);
547
548 if (objfile->separate_debug_objfile_backlink)
549 return;
550
551 plt = bfd_get_section_by_name (obfd, ".plt");
552 if (plt == NULL)
553 return;
554 plt_elf_idx = elf_section_data (plt)->this_idx;
555
556 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
557 if (got_plt == NULL)
558 {
559 /* For platforms where there is no separate .got.plt. */
560 got_plt = bfd_get_section_by_name (obfd, ".got");
561 if (got_plt == NULL)
562 return;
563 }
564
565 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
566 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
567 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
568 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
569 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
570 break;
571 if (relplt == NULL)
572 return;
573
574 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
575 return;
576
577 back_to = make_cleanup (free_current_contents, &string_buffer);
578
579 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
580 for (reloc = 0; reloc < reloc_count; reloc++)
581 {
582 const char *name;
583 struct minimal_symbol *msym;
584 CORE_ADDR address;
585 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
586 size_t name_len;
587
588 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
589 name_len = strlen (name);
590 address = relplt->relocation[reloc].address;
591
592 /* Does the pointer reside in the .got.plt section? */
593 if (!(bfd_get_section_vma (obfd, got_plt) <= address
594 && address < bfd_get_section_vma (obfd, got_plt)
595 + bfd_get_section_size (got_plt)))
596 continue;
597
598 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
599 OBJFILE the symbol is undefined and the objfile having NAME defined
600 may not yet have been loaded. */
601
602 if (string_buffer_size < name_len + got_suffix_len + 1)
603 {
604 string_buffer_size = 2 * (name_len + got_suffix_len);
605 string_buffer = (char *) xrealloc (string_buffer, string_buffer_size);
606 }
607 memcpy (string_buffer, name, name_len);
608 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
609 got_suffix_len + 1);
610
611 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
612 1, address, mst_slot_got_plt, got_plt,
613 objfile);
614 if (msym)
615 SET_MSYMBOL_SIZE (msym, ptr_size);
616 }
617
618 do_cleanups (back_to);
619 }
620
621 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
622
623 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
624
625 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
626
627 struct elf_gnu_ifunc_cache
628 {
629 /* This is always a function entry address, not a function descriptor. */
630 CORE_ADDR addr;
631
632 char name[1];
633 };
634
635 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
636
637 static hashval_t
638 elf_gnu_ifunc_cache_hash (const void *a_voidp)
639 {
640 const struct elf_gnu_ifunc_cache *a
641 = (const struct elf_gnu_ifunc_cache *) a_voidp;
642
643 return htab_hash_string (a->name);
644 }
645
646 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
647
648 static int
649 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
650 {
651 const struct elf_gnu_ifunc_cache *a
652 = (const struct elf_gnu_ifunc_cache *) a_voidp;
653 const struct elf_gnu_ifunc_cache *b
654 = (const struct elf_gnu_ifunc_cache *) b_voidp;
655
656 return strcmp (a->name, b->name) == 0;
657 }
658
659 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
660 function entry address ADDR. Return 1 if NAME and ADDR are considered as
661 valid and therefore they were successfully recorded, return 0 otherwise.
662
663 Function does not expect a duplicate entry. Use
664 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
665 exists. */
666
667 static int
668 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
669 {
670 struct bound_minimal_symbol msym;
671 asection *sect;
672 struct objfile *objfile;
673 htab_t htab;
674 struct elf_gnu_ifunc_cache entry_local, *entry_p;
675 void **slot;
676
677 msym = lookup_minimal_symbol_by_pc (addr);
678 if (msym.minsym == NULL)
679 return 0;
680 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
681 return 0;
682 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
683 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
684 objfile = msym.objfile;
685
686 /* If .plt jumps back to .plt the symbol is still deferred for later
687 resolution and it has no use for GDB. Besides ".text" this symbol can
688 reside also in ".opd" for ppc64 function descriptor. */
689 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
690 return 0;
691
692 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
693 if (htab == NULL)
694 {
695 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
696 elf_gnu_ifunc_cache_eq,
697 NULL, &objfile->objfile_obstack,
698 hashtab_obstack_allocate,
699 dummy_obstack_deallocate);
700 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
701 }
702
703 entry_local.addr = addr;
704 obstack_grow (&objfile->objfile_obstack, &entry_local,
705 offsetof (struct elf_gnu_ifunc_cache, name));
706 obstack_grow_str0 (&objfile->objfile_obstack, name);
707 entry_p
708 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
709
710 slot = htab_find_slot (htab, entry_p, INSERT);
711 if (*slot != NULL)
712 {
713 struct elf_gnu_ifunc_cache *entry_found_p
714 = (struct elf_gnu_ifunc_cache *) *slot;
715 struct gdbarch *gdbarch = get_objfile_arch (objfile);
716
717 if (entry_found_p->addr != addr)
718 {
719 /* This case indicates buggy inferior program, the resolved address
720 should never change. */
721
722 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
723 "function_address from %s to %s"),
724 name, paddress (gdbarch, entry_found_p->addr),
725 paddress (gdbarch, addr));
726 }
727
728 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
729 }
730 *slot = entry_p;
731
732 return 1;
733 }
734
735 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
736 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
737 is not NULL) and the function returns 1. It returns 0 otherwise.
738
739 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
740 function. */
741
742 static int
743 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
744 {
745 struct objfile *objfile;
746
747 ALL_PSPACE_OBJFILES (current_program_space, objfile)
748 {
749 htab_t htab;
750 struct elf_gnu_ifunc_cache *entry_p;
751 void **slot;
752
753 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
754 if (htab == NULL)
755 continue;
756
757 entry_p = ((struct elf_gnu_ifunc_cache *)
758 alloca (sizeof (*entry_p) + strlen (name)));
759 strcpy (entry_p->name, name);
760
761 slot = htab_find_slot (htab, entry_p, NO_INSERT);
762 if (slot == NULL)
763 continue;
764 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
765 gdb_assert (entry_p != NULL);
766
767 if (addr_p)
768 *addr_p = entry_p->addr;
769 return 1;
770 }
771
772 return 0;
773 }
774
775 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
776 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
777 is not NULL) and the function returns 1. It returns 0 otherwise.
778
779 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
780 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
781 prevent cache entries duplicates. */
782
783 static int
784 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
785 {
786 char *name_got_plt;
787 struct objfile *objfile;
788 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
789
790 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
791 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
792
793 ALL_PSPACE_OBJFILES (current_program_space, objfile)
794 {
795 bfd *obfd = objfile->obfd;
796 struct gdbarch *gdbarch = get_objfile_arch (objfile);
797 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
798 size_t ptr_size = TYPE_LENGTH (ptr_type);
799 CORE_ADDR pointer_address, addr;
800 asection *plt;
801 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
802 struct bound_minimal_symbol msym;
803
804 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
805 if (msym.minsym == NULL)
806 continue;
807 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
808 continue;
809 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
810
811 plt = bfd_get_section_by_name (obfd, ".plt");
812 if (plt == NULL)
813 continue;
814
815 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
816 continue;
817 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
818 continue;
819 addr = extract_typed_address (buf, ptr_type);
820 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
821 &current_target);
822 addr = gdbarch_addr_bits_remove (gdbarch, addr);
823
824 if (addr_p)
825 *addr_p = addr;
826 if (elf_gnu_ifunc_record_cache (name, addr))
827 return 1;
828 }
829
830 return 0;
831 }
832
833 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
834 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
835 is not NULL) and the function returns 1. It returns 0 otherwise.
836
837 Both the elf_objfile_gnu_ifunc_cache_data hash table and
838 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
839
840 static int
841 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
842 {
843 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
844 return 1;
845
846 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
847 return 1;
848
849 return 0;
850 }
851
852 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
853 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
854 is the entry point of the resolved STT_GNU_IFUNC target function to call.
855 */
856
857 static CORE_ADDR
858 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
859 {
860 const char *name_at_pc;
861 CORE_ADDR start_at_pc, address;
862 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
863 struct value *function, *address_val;
864 CORE_ADDR hwcap = 0;
865 struct value *hwcap_val;
866
867 /* Try first any non-intrusive methods without an inferior call. */
868
869 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
870 && start_at_pc == pc)
871 {
872 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
873 return address;
874 }
875 else
876 name_at_pc = NULL;
877
878 function = allocate_value (func_func_type);
879 set_value_address (function, pc);
880
881 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
882 parameter. FUNCTION is the function entry address. ADDRESS may be a
883 function descriptor. */
884
885 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
886 hwcap_val = value_from_longest (builtin_type (gdbarch)
887 ->builtin_unsigned_long, hwcap);
888 address_val = call_function_by_hand (function, 1, &hwcap_val);
889 address = value_as_address (address_val);
890 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
891 &current_target);
892 address = gdbarch_addr_bits_remove (gdbarch, address);
893
894 if (name_at_pc)
895 elf_gnu_ifunc_record_cache (name_at_pc, address);
896
897 return address;
898 }
899
900 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
901
902 static void
903 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
904 {
905 struct breakpoint *b_return;
906 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
907 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
908 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
909 int thread_id = ptid_to_global_thread_id (inferior_ptid);
910
911 gdb_assert (b->type == bp_gnu_ifunc_resolver);
912
913 for (b_return = b->related_breakpoint; b_return != b;
914 b_return = b_return->related_breakpoint)
915 {
916 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
917 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
918 gdb_assert (frame_id_p (b_return->frame_id));
919
920 if (b_return->thread == thread_id
921 && b_return->loc->requested_address == prev_pc
922 && frame_id_eq (b_return->frame_id, prev_frame_id))
923 break;
924 }
925
926 if (b_return == b)
927 {
928 struct symtab_and_line sal;
929
930 /* No need to call find_pc_line for symbols resolving as this is only
931 a helper breakpointer never shown to the user. */
932
933 init_sal (&sal);
934 sal.pspace = current_inferior ()->pspace;
935 sal.pc = prev_pc;
936 sal.section = find_pc_overlay (sal.pc);
937 sal.explicit_pc = 1;
938 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
939 prev_frame_id,
940 bp_gnu_ifunc_resolver_return);
941
942 /* set_momentary_breakpoint invalidates PREV_FRAME. */
943 prev_frame = NULL;
944
945 /* Add new b_return to the ring list b->related_breakpoint. */
946 gdb_assert (b_return->related_breakpoint == b_return);
947 b_return->related_breakpoint = b->related_breakpoint;
948 b->related_breakpoint = b_return;
949 }
950 }
951
952 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
953
954 static void
955 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
956 {
957 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
958 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
959 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
960 struct regcache *regcache = get_thread_regcache (inferior_ptid);
961 struct value *func_func;
962 struct value *value;
963 CORE_ADDR resolved_address, resolved_pc;
964 struct symtab_and_line sal;
965 struct symtabs_and_lines sals, sals_end;
966
967 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
968
969 while (b->related_breakpoint != b)
970 {
971 struct breakpoint *b_next = b->related_breakpoint;
972
973 switch (b->type)
974 {
975 case bp_gnu_ifunc_resolver:
976 break;
977 case bp_gnu_ifunc_resolver_return:
978 delete_breakpoint (b);
979 break;
980 default:
981 internal_error (__FILE__, __LINE__,
982 _("handle_inferior_event: Invalid "
983 "gnu-indirect-function breakpoint type %d"),
984 (int) b->type);
985 }
986 b = b_next;
987 }
988 gdb_assert (b->type == bp_gnu_ifunc_resolver);
989 gdb_assert (b->loc->next == NULL);
990
991 func_func = allocate_value (func_func_type);
992 set_value_address (func_func, b->loc->related_address);
993
994 value = allocate_value (value_type);
995 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
996 value_contents_raw (value), NULL);
997 resolved_address = value_as_address (value);
998 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
999 resolved_address,
1000 &current_target);
1001 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1002
1003 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1004 elf_gnu_ifunc_record_cache (event_location_to_string (b->location),
1005 resolved_pc);
1006
1007 sal = find_pc_line (resolved_pc, 0);
1008 sals.nelts = 1;
1009 sals.sals = &sal;
1010 sals_end.nelts = 0;
1011
1012 b->type = bp_breakpoint;
1013 update_breakpoint_locations (b, current_program_space, sals, sals_end);
1014 }
1015
1016 /* A helper function for elf_symfile_read that reads the minimal
1017 symbols. */
1018
1019 static void
1020 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1021 const struct elfinfo *ei)
1022 {
1023 bfd *synth_abfd, *abfd = objfile->obfd;
1024 struct cleanup *back_to;
1025 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1026 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1027 asymbol *synthsyms;
1028 struct dbx_symfile_info *dbx;
1029
1030 if (symtab_create_debug)
1031 {
1032 fprintf_unfiltered (gdb_stdlog,
1033 "Reading minimal symbols of objfile %s ...\n",
1034 objfile_name (objfile));
1035 }
1036
1037 /* If we already have minsyms, then we can skip some work here.
1038 However, if there were stabs or mdebug sections, we go ahead and
1039 redo all the work anyway, because the psym readers for those
1040 kinds of debuginfo need extra information found here. This can
1041 go away once all types of symbols are in the per-BFD object. */
1042 if (objfile->per_bfd->minsyms_read
1043 && ei->stabsect == NULL
1044 && ei->mdebugsect == NULL)
1045 {
1046 if (symtab_create_debug)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "... minimal symbols previously read\n");
1049 return;
1050 }
1051
1052 minimal_symbol_reader reader (objfile);
1053 back_to = make_cleanup (null_cleanup, NULL);
1054
1055 /* Allocate struct to keep track of the symfile. */
1056 dbx = XCNEW (struct dbx_symfile_info);
1057 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1058
1059 /* Process the normal ELF symbol table first. */
1060
1061 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1062 if (storage_needed < 0)
1063 error (_("Can't read symbols from %s: %s"),
1064 bfd_get_filename (objfile->obfd),
1065 bfd_errmsg (bfd_get_error ()));
1066
1067 if (storage_needed > 0)
1068 {
1069 /* Memory gets permanently referenced from ABFD after
1070 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1071
1072 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1073 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1074
1075 if (symcount < 0)
1076 error (_("Can't read symbols from %s: %s"),
1077 bfd_get_filename (objfile->obfd),
1078 bfd_errmsg (bfd_get_error ()));
1079
1080 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1081 }
1082
1083 /* Add the dynamic symbols. */
1084
1085 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1086
1087 if (storage_needed > 0)
1088 {
1089 /* Memory gets permanently referenced from ABFD after
1090 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1091 It happens only in the case when elf_slurp_reloc_table sees
1092 asection->relocation NULL. Determining which section is asection is
1093 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1094 implementation detail, though. */
1095
1096 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1097 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1098 dyn_symbol_table);
1099
1100 if (dynsymcount < 0)
1101 error (_("Can't read symbols from %s: %s"),
1102 bfd_get_filename (objfile->obfd),
1103 bfd_errmsg (bfd_get_error ()));
1104
1105 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1106
1107 elf_rel_plt_read (objfile, dyn_symbol_table);
1108 }
1109
1110 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1111 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1112
1113 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1114 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1115 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1116 read the code address from .opd while it reads the .symtab section from
1117 a separate debug info file as the .opd section is SHT_NOBITS there.
1118
1119 With SYNTH_ABFD the .opd section will be read from the original
1120 backlinked binary where it is valid. */
1121
1122 if (objfile->separate_debug_objfile_backlink)
1123 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1124 else
1125 synth_abfd = abfd;
1126
1127 /* Add synthetic symbols - for instance, names for any PLT entries. */
1128
1129 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1130 dynsymcount, dyn_symbol_table,
1131 &synthsyms);
1132 if (synthcount > 0)
1133 {
1134 asymbol **synth_symbol_table;
1135 long i;
1136
1137 make_cleanup (xfree, synthsyms);
1138 synth_symbol_table = XNEWVEC (asymbol *, synthcount);
1139 for (i = 0; i < synthcount; i++)
1140 synth_symbol_table[i] = synthsyms + i;
1141 make_cleanup (xfree, synth_symbol_table);
1142 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1143 synth_symbol_table, 1);
1144 }
1145
1146 /* Install any minimal symbols that have been collected as the current
1147 minimal symbols for this objfile. The debug readers below this point
1148 should not generate new minimal symbols; if they do it's their
1149 responsibility to install them. "mdebug" appears to be the only one
1150 which will do this. */
1151
1152 reader.install ();
1153 do_cleanups (back_to);
1154
1155 if (symtab_create_debug)
1156 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1157 }
1158
1159 /* Scan and build partial symbols for a symbol file.
1160 We have been initialized by a call to elf_symfile_init, which
1161 currently does nothing.
1162
1163 This function only does the minimum work necessary for letting the
1164 user "name" things symbolically; it does not read the entire symtab.
1165 Instead, it reads the external and static symbols and puts them in partial
1166 symbol tables. When more extensive information is requested of a
1167 file, the corresponding partial symbol table is mutated into a full
1168 fledged symbol table by going back and reading the symbols
1169 for real.
1170
1171 We look for sections with specific names, to tell us what debug
1172 format to look for: FIXME!!!
1173
1174 elfstab_build_psymtabs() handles STABS symbols;
1175 mdebug_build_psymtabs() handles ECOFF debugging information.
1176
1177 Note that ELF files have a "minimal" symbol table, which looks a lot
1178 like a COFF symbol table, but has only the minimal information necessary
1179 for linking. We process this also, and use the information to
1180 build gdb's minimal symbol table. This gives us some minimal debugging
1181 capability even for files compiled without -g. */
1182
1183 static void
1184 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1185 {
1186 bfd *abfd = objfile->obfd;
1187 struct elfinfo ei;
1188
1189 memset ((char *) &ei, 0, sizeof (ei));
1190 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1191
1192 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1193
1194 /* ELF debugging information is inserted into the psymtab in the
1195 order of least informative first - most informative last. Since
1196 the psymtab table is searched `most recent insertion first' this
1197 increases the probability that more detailed debug information
1198 for a section is found.
1199
1200 For instance, an object file might contain both .mdebug (XCOFF)
1201 and .debug_info (DWARF2) sections then .mdebug is inserted first
1202 (searched last) and DWARF2 is inserted last (searched first). If
1203 we don't do this then the XCOFF info is found first - for code in
1204 an included file XCOFF info is useless. */
1205
1206 if (ei.mdebugsect)
1207 {
1208 const struct ecoff_debug_swap *swap;
1209
1210 /* .mdebug section, presumably holding ECOFF debugging
1211 information. */
1212 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1213 if (swap)
1214 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1215 }
1216 if (ei.stabsect)
1217 {
1218 asection *str_sect;
1219
1220 /* Stab sections have an associated string table that looks like
1221 a separate section. */
1222 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1223
1224 /* FIXME should probably warn about a stab section without a stabstr. */
1225 if (str_sect)
1226 elfstab_build_psymtabs (objfile,
1227 ei.stabsect,
1228 str_sect->filepos,
1229 bfd_section_size (abfd, str_sect));
1230 }
1231
1232 if (dwarf2_has_info (objfile, NULL))
1233 {
1234 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1235 information present in OBJFILE. If there is such debug info present
1236 never use .gdb_index. */
1237
1238 if (!objfile_has_partial_symbols (objfile)
1239 && dwarf2_initialize_objfile (objfile))
1240 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1241 else
1242 {
1243 /* It is ok to do this even if the stabs reader made some
1244 partial symbols, because OBJF_PSYMTABS_READ has not been
1245 set, and so our lazy reader function will still be called
1246 when needed. */
1247 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1248 }
1249 }
1250 /* If the file has its own symbol tables it has no separate debug
1251 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1252 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1253 `.note.gnu.build-id'.
1254
1255 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1256 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1257 an objfile via find_separate_debug_file_in_section there was no separate
1258 debug info available. Therefore do not attempt to search for another one,
1259 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1260 be NULL and we would possibly violate it. */
1261
1262 else if (!objfile_has_partial_symbols (objfile)
1263 && objfile->separate_debug_objfile == NULL
1264 && objfile->separate_debug_objfile_backlink == NULL)
1265 {
1266 char *debugfile;
1267
1268 debugfile = find_separate_debug_file_by_buildid (objfile);
1269
1270 if (debugfile == NULL)
1271 debugfile = find_separate_debug_file_by_debuglink (objfile);
1272
1273 if (debugfile)
1274 {
1275 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1276 bfd *abfd = symfile_bfd_open (debugfile);
1277
1278 make_cleanup_bfd_unref (abfd);
1279 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1280 do_cleanups (cleanup);
1281 }
1282 }
1283 }
1284
1285 /* Callback to lazily read psymtabs. */
1286
1287 static void
1288 read_psyms (struct objfile *objfile)
1289 {
1290 if (dwarf2_has_info (objfile, NULL))
1291 dwarf2_build_psymtabs (objfile);
1292 }
1293
1294 /* Initialize anything that needs initializing when a completely new symbol
1295 file is specified (not just adding some symbols from another file, e.g. a
1296 shared library).
1297
1298 We reinitialize buildsym, since we may be reading stabs from an ELF
1299 file. */
1300
1301 static void
1302 elf_new_init (struct objfile *ignore)
1303 {
1304 stabsread_new_init ();
1305 buildsym_new_init ();
1306 }
1307
1308 /* Perform any local cleanups required when we are done with a particular
1309 objfile. I.E, we are in the process of discarding all symbol information
1310 for an objfile, freeing up all memory held for it, and unlinking the
1311 objfile struct from the global list of known objfiles. */
1312
1313 static void
1314 elf_symfile_finish (struct objfile *objfile)
1315 {
1316 dwarf2_free_objfile (objfile);
1317 }
1318
1319 /* ELF specific initialization routine for reading symbols. */
1320
1321 static void
1322 elf_symfile_init (struct objfile *objfile)
1323 {
1324 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1325 find this causes a significant slowdown in gdb then we could
1326 set it in the debug symbol readers only when necessary. */
1327 objfile->flags |= OBJF_REORDERED;
1328 }
1329
1330 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1331
1332 static VEC (probe_p) *
1333 elf_get_probes (struct objfile *objfile)
1334 {
1335 VEC (probe_p) *probes_per_bfd;
1336
1337 /* Have we parsed this objfile's probes already? */
1338 probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key);
1339
1340 if (!probes_per_bfd)
1341 {
1342 int ix;
1343 const struct probe_ops *probe_ops;
1344
1345 /* Here we try to gather information about all types of probes from the
1346 objfile. */
1347 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1348 ix++)
1349 probe_ops->get_probes (&probes_per_bfd, objfile);
1350
1351 if (probes_per_bfd == NULL)
1352 {
1353 VEC_reserve (probe_p, probes_per_bfd, 1);
1354 gdb_assert (probes_per_bfd != NULL);
1355 }
1356
1357 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1358 }
1359
1360 return probes_per_bfd;
1361 }
1362
1363 /* Helper function used to free the space allocated for storing SystemTap
1364 probe information. */
1365
1366 static void
1367 probe_key_free (bfd *abfd, void *d)
1368 {
1369 int ix;
1370 VEC (probe_p) *probes = (VEC (probe_p) *) d;
1371 struct probe *probe;
1372
1373 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1374 probe->pops->destroy (probe);
1375
1376 VEC_free (probe_p, probes);
1377 }
1378
1379 \f
1380
1381 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1382
1383 static const struct sym_probe_fns elf_probe_fns =
1384 {
1385 elf_get_probes, /* sym_get_probes */
1386 };
1387
1388 /* Register that we are able to handle ELF object file formats. */
1389
1390 static const struct sym_fns elf_sym_fns =
1391 {
1392 elf_new_init, /* init anything gbl to entire symtab */
1393 elf_symfile_init, /* read initial info, setup for sym_read() */
1394 elf_symfile_read, /* read a symbol file into symtab */
1395 NULL, /* sym_read_psymbols */
1396 elf_symfile_finish, /* finished with file, cleanup */
1397 default_symfile_offsets, /* Translate ext. to int. relocation */
1398 elf_symfile_segments, /* Get segment information from a file. */
1399 NULL,
1400 default_symfile_relocate, /* Relocate a debug section. */
1401 &elf_probe_fns, /* sym_probe_fns */
1402 &psym_functions
1403 };
1404
1405 /* The same as elf_sym_fns, but not registered and lazily reads
1406 psymbols. */
1407
1408 const struct sym_fns elf_sym_fns_lazy_psyms =
1409 {
1410 elf_new_init, /* init anything gbl to entire symtab */
1411 elf_symfile_init, /* read initial info, setup for sym_read() */
1412 elf_symfile_read, /* read a symbol file into symtab */
1413 read_psyms, /* sym_read_psymbols */
1414 elf_symfile_finish, /* finished with file, cleanup */
1415 default_symfile_offsets, /* Translate ext. to int. relocation */
1416 elf_symfile_segments, /* Get segment information from a file. */
1417 NULL,
1418 default_symfile_relocate, /* Relocate a debug section. */
1419 &elf_probe_fns, /* sym_probe_fns */
1420 &psym_functions
1421 };
1422
1423 /* The same as elf_sym_fns, but not registered and uses the
1424 DWARF-specific GNU index rather than psymtab. */
1425 const struct sym_fns elf_sym_fns_gdb_index =
1426 {
1427 elf_new_init, /* init anything gbl to entire symab */
1428 elf_symfile_init, /* read initial info, setup for sym_red() */
1429 elf_symfile_read, /* read a symbol file into symtab */
1430 NULL, /* sym_read_psymbols */
1431 elf_symfile_finish, /* finished with file, cleanup */
1432 default_symfile_offsets, /* Translate ext. to int. relocatin */
1433 elf_symfile_segments, /* Get segment information from a file. */
1434 NULL,
1435 default_symfile_relocate, /* Relocate a debug section. */
1436 &elf_probe_fns, /* sym_probe_fns */
1437 &dwarf2_gdb_index_functions
1438 };
1439
1440 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1441
1442 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1443 {
1444 elf_gnu_ifunc_resolve_addr,
1445 elf_gnu_ifunc_resolve_name,
1446 elf_gnu_ifunc_resolver_stop,
1447 elf_gnu_ifunc_resolver_return_stop
1448 };
1449
1450 void
1451 _initialize_elfread (void)
1452 {
1453 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1454 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1455
1456 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1457 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1458 }
This page took 0.088004 seconds and 5 git commands to generate.