gdb/
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION. */
31 #include "f-lang.h" /* For array bound stuff. */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46 #include "wrapper.h"
47
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* This is defined in valops.c */
53 extern int overload_resolution;
54
55 /* Prototypes for local functions. */
56
57 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
58
59 static struct value *evaluate_subexp_for_address (struct expression *,
60 int *, enum noside);
61
62 static char *get_label (struct expression *, int *);
63
64 static struct value *evaluate_struct_tuple (struct value *,
65 struct expression *, int *,
66 enum noside, int);
67
68 static LONGEST init_array_element (struct value *, struct value *,
69 struct expression *, int *, enum noside,
70 LONGEST, LONGEST);
71
72 struct value *
73 evaluate_subexp (struct type *expect_type, struct expression *exp,
74 int *pos, enum noside noside)
75 {
76 return (*exp->language_defn->la_exp_desc->evaluate_exp)
77 (expect_type, exp, pos, noside);
78 }
79 \f
80 /* Parse the string EXP as a C expression, evaluate it,
81 and return the result as a number. */
82
83 CORE_ADDR
84 parse_and_eval_address (char *exp)
85 {
86 struct expression *expr = parse_expression (exp);
87 CORE_ADDR addr;
88 struct cleanup *old_chain =
89 make_cleanup (free_current_contents, &expr);
90
91 addr = value_as_address (evaluate_expression (expr));
92 do_cleanups (old_chain);
93 return addr;
94 }
95
96 /* Like parse_and_eval_address, but treats the value of the expression
97 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
98 LONGEST
99 parse_and_eval_long (char *exp)
100 {
101 struct expression *expr = parse_expression (exp);
102 LONGEST retval;
103 struct cleanup *old_chain =
104 make_cleanup (free_current_contents, &expr);
105
106 retval = value_as_long (evaluate_expression (expr));
107 do_cleanups (old_chain);
108 return (retval);
109 }
110
111 struct value *
112 parse_and_eval (char *exp)
113 {
114 struct expression *expr = parse_expression (exp);
115 struct value *val;
116 struct cleanup *old_chain =
117 make_cleanup (free_current_contents, &expr);
118
119 val = evaluate_expression (expr);
120 do_cleanups (old_chain);
121 return val;
122 }
123
124 /* Parse up to a comma (or to a closeparen)
125 in the string EXPP as an expression, evaluate it, and return the value.
126 EXPP is advanced to point to the comma. */
127
128 struct value *
129 parse_to_comma_and_eval (char **expp)
130 {
131 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
132 struct value *val;
133 struct cleanup *old_chain =
134 make_cleanup (free_current_contents, &expr);
135
136 val = evaluate_expression (expr);
137 do_cleanups (old_chain);
138 return val;
139 }
140 \f
141 /* Evaluate an expression in internal prefix form
142 such as is constructed by parse.y.
143
144 See expression.h for info on the format of an expression. */
145
146 struct value *
147 evaluate_expression (struct expression *exp)
148 {
149 int pc = 0;
150
151 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
152 }
153
154 /* Evaluate an expression, avoiding all memory references
155 and getting a value whose type alone is correct. */
156
157 struct value *
158 evaluate_type (struct expression *exp)
159 {
160 int pc = 0;
161
162 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
163 }
164
165 /* Evaluate a subexpression, avoiding all memory references and
166 getting a value whose type alone is correct. */
167
168 struct value *
169 evaluate_subexpression_type (struct expression *exp, int subexp)
170 {
171 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
172 }
173
174 /* Find the current value of a watchpoint on EXP. Return the value in
175 *VALP and *RESULTP and the chain of intermediate and final values
176 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
177 not need them.
178
179 If a memory error occurs while evaluating the expression, *RESULTP will
180 be set to NULL. *RESULTP may be a lazy value, if the result could
181 not be read from memory. It is used to determine whether a value
182 is user-specified (we should watch the whole value) or intermediate
183 (we should watch only the bit used to locate the final value).
184
185 If the final value, or any intermediate value, could not be read
186 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
187 set to any referenced values. *VALP will never be a lazy value.
188 This is the value which we store in struct breakpoint.
189
190 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
191 value chain. The caller must free the values individually. If
192 VAL_CHAIN is NULL, all generated values will be left on the value
193 chain. */
194
195 void
196 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
197 struct value **resultp, struct value **val_chain)
198 {
199 struct value *mark, *new_mark, *result;
200 volatile struct gdb_exception ex;
201
202 *valp = NULL;
203 if (resultp)
204 *resultp = NULL;
205 if (val_chain)
206 *val_chain = NULL;
207
208 /* Evaluate the expression. */
209 mark = value_mark ();
210 result = NULL;
211
212 TRY_CATCH (ex, RETURN_MASK_ALL)
213 {
214 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
215 }
216 if (ex.reason < 0)
217 {
218 /* Ignore memory errors, we want watchpoints pointing at
219 inaccessible memory to still be created; otherwise, throw the
220 error to some higher catcher. */
221 switch (ex.error)
222 {
223 case MEMORY_ERROR:
224 break;
225 default:
226 throw_exception (ex);
227 break;
228 }
229 }
230
231 new_mark = value_mark ();
232 if (mark == new_mark)
233 return;
234 if (resultp)
235 *resultp = result;
236
237 /* Make sure it's not lazy, so that after the target stops again we
238 have a non-lazy previous value to compare with. */
239 if (result != NULL
240 && (!value_lazy (result) || gdb_value_fetch_lazy (result)))
241 *valp = result;
242
243 if (val_chain)
244 {
245 /* Return the chain of intermediate values. We use this to
246 decide which addresses to watch. */
247 *val_chain = new_mark;
248 value_release_to_mark (mark);
249 }
250 }
251
252 /* Extract a field operation from an expression. If the subexpression
253 of EXP starting at *SUBEXP is not a structure dereference
254 operation, return NULL. Otherwise, return the name of the
255 dereferenced field, and advance *SUBEXP to point to the
256 subexpression of the left-hand-side of the dereference. This is
257 used when completing field names. */
258
259 char *
260 extract_field_op (struct expression *exp, int *subexp)
261 {
262 int tem;
263 char *result;
264
265 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
266 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
267 return NULL;
268 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
269 result = &exp->elts[*subexp + 2].string;
270 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
271 return result;
272 }
273
274 /* If the next expression is an OP_LABELED, skips past it,
275 returning the label. Otherwise, does nothing and returns NULL. */
276
277 static char *
278 get_label (struct expression *exp, int *pos)
279 {
280 if (exp->elts[*pos].opcode == OP_LABELED)
281 {
282 int pc = (*pos)++;
283 char *name = &exp->elts[pc + 2].string;
284 int tem = longest_to_int (exp->elts[pc + 1].longconst);
285
286 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
287 return name;
288 }
289 else
290 return NULL;
291 }
292
293 /* This function evaluates tuples (in (the deleted) Chill) or
294 brace-initializers (in C/C++) for structure types. */
295
296 static struct value *
297 evaluate_struct_tuple (struct value *struct_val,
298 struct expression *exp,
299 int *pos, enum noside noside, int nargs)
300 {
301 struct type *struct_type = check_typedef (value_type (struct_val));
302 struct type *substruct_type = struct_type;
303 struct type *field_type;
304 int fieldno = -1;
305 int variantno = -1;
306 int subfieldno = -1;
307
308 while (--nargs >= 0)
309 {
310 int pc = *pos;
311 struct value *val = NULL;
312 int nlabels = 0;
313 int bitpos, bitsize;
314 bfd_byte *addr;
315
316 /* Skip past the labels, and count them. */
317 while (get_label (exp, pos) != NULL)
318 nlabels++;
319
320 do
321 {
322 char *label = get_label (exp, &pc);
323
324 if (label)
325 {
326 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
327 fieldno++)
328 {
329 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
330
331 if (field_name != NULL && strcmp (field_name, label) == 0)
332 {
333 variantno = -1;
334 subfieldno = fieldno;
335 substruct_type = struct_type;
336 goto found;
337 }
338 }
339 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
340 fieldno++)
341 {
342 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
343
344 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
345 if ((field_name == 0 || *field_name == '\0')
346 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
347 {
348 variantno = 0;
349 for (; variantno < TYPE_NFIELDS (field_type);
350 variantno++)
351 {
352 substruct_type
353 = TYPE_FIELD_TYPE (field_type, variantno);
354 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
355 {
356 for (subfieldno = 0;
357 subfieldno < TYPE_NFIELDS (substruct_type);
358 subfieldno++)
359 {
360 if (strcmp(TYPE_FIELD_NAME (substruct_type,
361 subfieldno),
362 label) == 0)
363 {
364 goto found;
365 }
366 }
367 }
368 }
369 }
370 }
371 error (_("there is no field named %s"), label);
372 found:
373 ;
374 }
375 else
376 {
377 /* Unlabelled tuple element - go to next field. */
378 if (variantno >= 0)
379 {
380 subfieldno++;
381 if (subfieldno >= TYPE_NFIELDS (substruct_type))
382 {
383 variantno = -1;
384 substruct_type = struct_type;
385 }
386 }
387 if (variantno < 0)
388 {
389 fieldno++;
390 /* Skip static fields. */
391 while (fieldno < TYPE_NFIELDS (struct_type)
392 && field_is_static (&TYPE_FIELD (struct_type,
393 fieldno)))
394 fieldno++;
395 subfieldno = fieldno;
396 if (fieldno >= TYPE_NFIELDS (struct_type))
397 error (_("too many initializers"));
398 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
399 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
400 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
401 error (_("don't know which variant you want to set"));
402 }
403 }
404
405 /* Here, struct_type is the type of the inner struct,
406 while substruct_type is the type of the inner struct.
407 These are the same for normal structures, but a variant struct
408 contains anonymous union fields that contain substruct fields.
409 The value fieldno is the index of the top-level (normal or
410 anonymous union) field in struct_field, while the value
411 subfieldno is the index of the actual real (named inner) field
412 in substruct_type. */
413
414 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
415 if (val == 0)
416 val = evaluate_subexp (field_type, exp, pos, noside);
417
418 /* Now actually set the field in struct_val. */
419
420 /* Assign val to field fieldno. */
421 if (value_type (val) != field_type)
422 val = value_cast (field_type, val);
423
424 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
425 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
426 if (variantno >= 0)
427 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
428 addr = value_contents_writeable (struct_val) + bitpos / 8;
429 if (bitsize)
430 modify_field (struct_type, addr,
431 value_as_long (val), bitpos % 8, bitsize);
432 else
433 memcpy (addr, value_contents (val),
434 TYPE_LENGTH (value_type (val)));
435 }
436 while (--nlabels > 0);
437 }
438 return struct_val;
439 }
440
441 /* Recursive helper function for setting elements of array tuples for
442 (the deleted) Chill. The target is ARRAY (which has bounds
443 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
444 and NOSIDE are as usual. Evaluates index expresions and sets the
445 specified element(s) of ARRAY to ELEMENT. Returns last index
446 value. */
447
448 static LONGEST
449 init_array_element (struct value *array, struct value *element,
450 struct expression *exp, int *pos,
451 enum noside noside, LONGEST low_bound, LONGEST high_bound)
452 {
453 LONGEST index;
454 int element_size = TYPE_LENGTH (value_type (element));
455
456 if (exp->elts[*pos].opcode == BINOP_COMMA)
457 {
458 (*pos)++;
459 init_array_element (array, element, exp, pos, noside,
460 low_bound, high_bound);
461 return init_array_element (array, element,
462 exp, pos, noside, low_bound, high_bound);
463 }
464 else if (exp->elts[*pos].opcode == BINOP_RANGE)
465 {
466 LONGEST low, high;
467
468 (*pos)++;
469 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
470 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
471 if (low < low_bound || high > high_bound)
472 error (_("tuple range index out of range"));
473 for (index = low; index <= high; index++)
474 {
475 memcpy (value_contents_raw (array)
476 + (index - low_bound) * element_size,
477 value_contents (element), element_size);
478 }
479 }
480 else
481 {
482 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
483 if (index < low_bound || index > high_bound)
484 error (_("tuple index out of range"));
485 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
486 value_contents (element), element_size);
487 }
488 return index;
489 }
490
491 static struct value *
492 value_f90_subarray (struct value *array,
493 struct expression *exp, int *pos, enum noside noside)
494 {
495 int pc = (*pos) + 1;
496 LONGEST low_bound, high_bound;
497 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
498 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
499
500 *pos += 3;
501
502 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
503 low_bound = TYPE_LOW_BOUND (range);
504 else
505 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
506
507 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
508 high_bound = TYPE_HIGH_BOUND (range);
509 else
510 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
511
512 return value_slice (array, low_bound, high_bound - low_bound + 1);
513 }
514
515
516 /* Promote value ARG1 as appropriate before performing a unary operation
517 on this argument.
518 If the result is not appropriate for any particular language then it
519 needs to patch this function. */
520
521 void
522 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
523 struct value **arg1)
524 {
525 struct type *type1;
526
527 *arg1 = coerce_ref (*arg1);
528 type1 = check_typedef (value_type (*arg1));
529
530 if (is_integral_type (type1))
531 {
532 switch (language->la_language)
533 {
534 default:
535 /* Perform integral promotion for ANSI C/C++.
536 If not appropropriate for any particular language
537 it needs to modify this function. */
538 {
539 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
540
541 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
542 *arg1 = value_cast (builtin_int, *arg1);
543 }
544 break;
545 }
546 }
547 }
548
549 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
550 operation on those two operands.
551 If the result is not appropriate for any particular language then it
552 needs to patch this function. */
553
554 void
555 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
556 struct value **arg1, struct value **arg2)
557 {
558 struct type *promoted_type = NULL;
559 struct type *type1;
560 struct type *type2;
561
562 *arg1 = coerce_ref (*arg1);
563 *arg2 = coerce_ref (*arg2);
564
565 type1 = check_typedef (value_type (*arg1));
566 type2 = check_typedef (value_type (*arg2));
567
568 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
569 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
570 && !is_integral_type (type1))
571 || (TYPE_CODE (type2) != TYPE_CODE_FLT
572 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
573 && !is_integral_type (type2)))
574 return;
575
576 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
577 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
578 {
579 /* No promotion required. */
580 }
581 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
582 || TYPE_CODE (type2) == TYPE_CODE_FLT)
583 {
584 switch (language->la_language)
585 {
586 case language_c:
587 case language_cplus:
588 case language_asm:
589 case language_objc:
590 case language_opencl:
591 /* No promotion required. */
592 break;
593
594 default:
595 /* For other languages the result type is unchanged from gdb
596 version 6.7 for backward compatibility.
597 If either arg was long double, make sure that value is also long
598 double. Otherwise use double. */
599 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
600 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
601 promoted_type = builtin_type (gdbarch)->builtin_long_double;
602 else
603 promoted_type = builtin_type (gdbarch)->builtin_double;
604 break;
605 }
606 }
607 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
608 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
609 {
610 /* No promotion required. */
611 }
612 else
613 /* Integral operations here. */
614 /* FIXME: Also mixed integral/booleans, with result an integer. */
615 {
616 const struct builtin_type *builtin = builtin_type (gdbarch);
617 unsigned int promoted_len1 = TYPE_LENGTH (type1);
618 unsigned int promoted_len2 = TYPE_LENGTH (type2);
619 int is_unsigned1 = TYPE_UNSIGNED (type1);
620 int is_unsigned2 = TYPE_UNSIGNED (type2);
621 unsigned int result_len;
622 int unsigned_operation;
623
624 /* Determine type length and signedness after promotion for
625 both operands. */
626 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
627 {
628 is_unsigned1 = 0;
629 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
630 }
631 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
632 {
633 is_unsigned2 = 0;
634 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
635 }
636
637 if (promoted_len1 > promoted_len2)
638 {
639 unsigned_operation = is_unsigned1;
640 result_len = promoted_len1;
641 }
642 else if (promoted_len2 > promoted_len1)
643 {
644 unsigned_operation = is_unsigned2;
645 result_len = promoted_len2;
646 }
647 else
648 {
649 unsigned_operation = is_unsigned1 || is_unsigned2;
650 result_len = promoted_len1;
651 }
652
653 switch (language->la_language)
654 {
655 case language_c:
656 case language_cplus:
657 case language_asm:
658 case language_objc:
659 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
660 {
661 promoted_type = (unsigned_operation
662 ? builtin->builtin_unsigned_int
663 : builtin->builtin_int);
664 }
665 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
666 {
667 promoted_type = (unsigned_operation
668 ? builtin->builtin_unsigned_long
669 : builtin->builtin_long);
670 }
671 else
672 {
673 promoted_type = (unsigned_operation
674 ? builtin->builtin_unsigned_long_long
675 : builtin->builtin_long_long);
676 }
677 break;
678 case language_opencl:
679 if (result_len <= TYPE_LENGTH (lookup_signed_typename
680 (language, gdbarch, "int")))
681 {
682 promoted_type =
683 (unsigned_operation
684 ? lookup_unsigned_typename (language, gdbarch, "int")
685 : lookup_signed_typename (language, gdbarch, "int"));
686 }
687 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
688 (language, gdbarch, "long")))
689 {
690 promoted_type =
691 (unsigned_operation
692 ? lookup_unsigned_typename (language, gdbarch, "long")
693 : lookup_signed_typename (language, gdbarch,"long"));
694 }
695 break;
696 default:
697 /* For other languages the result type is unchanged from gdb
698 version 6.7 for backward compatibility.
699 If either arg was long long, make sure that value is also long
700 long. Otherwise use long. */
701 if (unsigned_operation)
702 {
703 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
704 promoted_type = builtin->builtin_unsigned_long_long;
705 else
706 promoted_type = builtin->builtin_unsigned_long;
707 }
708 else
709 {
710 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
711 promoted_type = builtin->builtin_long_long;
712 else
713 promoted_type = builtin->builtin_long;
714 }
715 break;
716 }
717 }
718
719 if (promoted_type)
720 {
721 /* Promote both operands to common type. */
722 *arg1 = value_cast (promoted_type, *arg1);
723 *arg2 = value_cast (promoted_type, *arg2);
724 }
725 }
726
727 static int
728 ptrmath_type_p (const struct language_defn *lang, struct type *type)
729 {
730 type = check_typedef (type);
731 if (TYPE_CODE (type) == TYPE_CODE_REF)
732 type = TYPE_TARGET_TYPE (type);
733
734 switch (TYPE_CODE (type))
735 {
736 case TYPE_CODE_PTR:
737 case TYPE_CODE_FUNC:
738 return 1;
739
740 case TYPE_CODE_ARRAY:
741 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
742
743 default:
744 return 0;
745 }
746 }
747
748 /* Constructs a fake method with the given parameter types.
749 This function is used by the parser to construct an "expected"
750 type for method overload resolution. */
751
752 static struct type *
753 make_params (int num_types, struct type **param_types)
754 {
755 struct type *type = XZALLOC (struct type);
756 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
757 TYPE_LENGTH (type) = 1;
758 TYPE_CODE (type) = TYPE_CODE_METHOD;
759 TYPE_VPTR_FIELDNO (type) = -1;
760 TYPE_CHAIN (type) = type;
761 TYPE_NFIELDS (type) = num_types;
762 TYPE_FIELDS (type) = (struct field *)
763 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
764
765 while (num_types-- > 0)
766 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
767
768 return type;
769 }
770
771 struct value *
772 evaluate_subexp_standard (struct type *expect_type,
773 struct expression *exp, int *pos,
774 enum noside noside)
775 {
776 enum exp_opcode op;
777 int tem, tem2, tem3;
778 int pc, pc2 = 0, oldpos;
779 struct value *arg1 = NULL;
780 struct value *arg2 = NULL;
781 struct value *arg3;
782 struct type *type;
783 int nargs;
784 struct value **argvec;
785 int upper, lower;
786 int code;
787 int ix;
788 long mem_offset;
789 struct type **arg_types;
790 int save_pos1;
791 struct symbol *function = NULL;
792 char *function_name = NULL;
793
794 pc = (*pos)++;
795 op = exp->elts[pc].opcode;
796
797 switch (op)
798 {
799 case OP_SCOPE:
800 tem = longest_to_int (exp->elts[pc + 2].longconst);
801 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
802 if (noside == EVAL_SKIP)
803 goto nosideret;
804 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
805 &exp->elts[pc + 3].string,
806 expect_type, 0, noside);
807 if (arg1 == NULL)
808 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
809 return arg1;
810
811 case OP_LONG:
812 (*pos) += 3;
813 return value_from_longest (exp->elts[pc + 1].type,
814 exp->elts[pc + 2].longconst);
815
816 case OP_DOUBLE:
817 (*pos) += 3;
818 return value_from_double (exp->elts[pc + 1].type,
819 exp->elts[pc + 2].doubleconst);
820
821 case OP_DECFLOAT:
822 (*pos) += 3;
823 return value_from_decfloat (exp->elts[pc + 1].type,
824 exp->elts[pc + 2].decfloatconst);
825
826 case OP_ADL_FUNC:
827 case OP_VAR_VALUE:
828 (*pos) += 3;
829 if (noside == EVAL_SKIP)
830 goto nosideret;
831
832 /* JYG: We used to just return value_zero of the symbol type
833 if we're asked to avoid side effects. Otherwise we return
834 value_of_variable (...). However I'm not sure if
835 value_of_variable () has any side effect.
836 We need a full value object returned here for whatis_exp ()
837 to call evaluate_type () and then pass the full value to
838 value_rtti_target_type () if we are dealing with a pointer
839 or reference to a base class and print object is on. */
840
841 {
842 volatile struct gdb_exception except;
843 struct value *ret = NULL;
844
845 TRY_CATCH (except, RETURN_MASK_ERROR)
846 {
847 ret = value_of_variable (exp->elts[pc + 2].symbol,
848 exp->elts[pc + 1].block);
849 }
850
851 if (except.reason < 0)
852 {
853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
854 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol),
855 not_lval);
856 else
857 throw_exception (except);
858 }
859
860 return ret;
861 }
862
863 case OP_LAST:
864 (*pos) += 2;
865 return
866 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
867
868 case OP_REGISTER:
869 {
870 const char *name = &exp->elts[pc + 2].string;
871 int regno;
872 struct value *val;
873
874 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
875 regno = user_reg_map_name_to_regnum (exp->gdbarch,
876 name, strlen (name));
877 if (regno == -1)
878 error (_("Register $%s not available."), name);
879
880 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
881 a value with the appropriate register type. Unfortunately,
882 we don't have easy access to the type of user registers.
883 So for these registers, we fetch the register value regardless
884 of the evaluation mode. */
885 if (noside == EVAL_AVOID_SIDE_EFFECTS
886 && regno < gdbarch_num_regs (exp->gdbarch)
887 + gdbarch_num_pseudo_regs (exp->gdbarch))
888 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
889 else
890 val = value_of_register (regno, get_selected_frame (NULL));
891 if (val == NULL)
892 error (_("Value of register %s not available."), name);
893 else
894 return val;
895 }
896 case OP_BOOL:
897 (*pos) += 2;
898 type = language_bool_type (exp->language_defn, exp->gdbarch);
899 return value_from_longest (type, exp->elts[pc + 1].longconst);
900
901 case OP_INTERNALVAR:
902 (*pos) += 2;
903 return value_of_internalvar (exp->gdbarch,
904 exp->elts[pc + 1].internalvar);
905
906 case OP_STRING:
907 tem = longest_to_int (exp->elts[pc + 1].longconst);
908 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
909 if (noside == EVAL_SKIP)
910 goto nosideret;
911 type = language_string_char_type (exp->language_defn, exp->gdbarch);
912 return value_string (&exp->elts[pc + 2].string, tem, type);
913
914 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
915 NSString constant. */
916 tem = longest_to_int (exp->elts[pc + 1].longconst);
917 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
918 if (noside == EVAL_SKIP)
919 {
920 goto nosideret;
921 }
922 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
923
924 case OP_BITSTRING:
925 tem = longest_to_int (exp->elts[pc + 1].longconst);
926 (*pos)
927 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
928 if (noside == EVAL_SKIP)
929 goto nosideret;
930 return value_bitstring (&exp->elts[pc + 2].string, tem,
931 builtin_type (exp->gdbarch)->builtin_int);
932 break;
933
934 case OP_ARRAY:
935 (*pos) += 3;
936 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
937 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
938 nargs = tem3 - tem2 + 1;
939 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
940
941 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
942 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
943 {
944 struct value *rec = allocate_value (expect_type);
945
946 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
947 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
948 }
949
950 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
951 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
952 {
953 struct type *range_type = TYPE_INDEX_TYPE (type);
954 struct type *element_type = TYPE_TARGET_TYPE (type);
955 struct value *array = allocate_value (expect_type);
956 int element_size = TYPE_LENGTH (check_typedef (element_type));
957 LONGEST low_bound, high_bound, index;
958
959 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
960 {
961 low_bound = 0;
962 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
963 }
964 index = low_bound;
965 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
966 for (tem = nargs; --nargs >= 0;)
967 {
968 struct value *element;
969 int index_pc = 0;
970
971 if (exp->elts[*pos].opcode == BINOP_RANGE)
972 {
973 index_pc = ++(*pos);
974 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
975 }
976 element = evaluate_subexp (element_type, exp, pos, noside);
977 if (value_type (element) != element_type)
978 element = value_cast (element_type, element);
979 if (index_pc)
980 {
981 int continue_pc = *pos;
982
983 *pos = index_pc;
984 index = init_array_element (array, element, exp, pos, noside,
985 low_bound, high_bound);
986 *pos = continue_pc;
987 }
988 else
989 {
990 if (index > high_bound)
991 /* To avoid memory corruption. */
992 error (_("Too many array elements"));
993 memcpy (value_contents_raw (array)
994 + (index - low_bound) * element_size,
995 value_contents (element),
996 element_size);
997 }
998 index++;
999 }
1000 return array;
1001 }
1002
1003 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1004 && TYPE_CODE (type) == TYPE_CODE_SET)
1005 {
1006 struct value *set = allocate_value (expect_type);
1007 gdb_byte *valaddr = value_contents_raw (set);
1008 struct type *element_type = TYPE_INDEX_TYPE (type);
1009 struct type *check_type = element_type;
1010 LONGEST low_bound, high_bound;
1011
1012 /* Get targettype of elementtype. */
1013 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1014 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1015 check_type = TYPE_TARGET_TYPE (check_type);
1016
1017 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1018 error (_("(power)set type with unknown size"));
1019 memset (valaddr, '\0', TYPE_LENGTH (type));
1020 for (tem = 0; tem < nargs; tem++)
1021 {
1022 LONGEST range_low, range_high;
1023 struct type *range_low_type, *range_high_type;
1024 struct value *elem_val;
1025
1026 if (exp->elts[*pos].opcode == BINOP_RANGE)
1027 {
1028 (*pos)++;
1029 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1030 range_low_type = value_type (elem_val);
1031 range_low = value_as_long (elem_val);
1032 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1033 range_high_type = value_type (elem_val);
1034 range_high = value_as_long (elem_val);
1035 }
1036 else
1037 {
1038 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1039 range_low_type = range_high_type = value_type (elem_val);
1040 range_low = range_high = value_as_long (elem_val);
1041 }
1042 /* Check types of elements to avoid mixture of elements from
1043 different types. Also check if type of element is "compatible"
1044 with element type of powerset. */
1045 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1046 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1047 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1048 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1049 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1050 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1051 && (range_low_type != range_high_type)))
1052 /* different element modes. */
1053 error (_("POWERSET tuple elements of different mode"));
1054 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1055 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1056 && range_low_type != check_type))
1057 error (_("incompatible POWERSET tuple elements"));
1058 if (range_low > range_high)
1059 {
1060 warning (_("empty POWERSET tuple range"));
1061 continue;
1062 }
1063 if (range_low < low_bound || range_high > high_bound)
1064 error (_("POWERSET tuple element out of range"));
1065 range_low -= low_bound;
1066 range_high -= low_bound;
1067 for (; range_low <= range_high; range_low++)
1068 {
1069 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1070
1071 if (gdbarch_bits_big_endian (exp->gdbarch))
1072 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1073 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1074 |= 1 << bit_index;
1075 }
1076 }
1077 return set;
1078 }
1079
1080 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
1081 for (tem = 0; tem < nargs; tem++)
1082 {
1083 /* Ensure that array expressions are coerced into pointer
1084 objects. */
1085 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1086 }
1087 if (noside == EVAL_SKIP)
1088 goto nosideret;
1089 return value_array (tem2, tem3, argvec);
1090
1091 case TERNOP_SLICE:
1092 {
1093 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1094 int lowbound
1095 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1096 int upper
1097 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1098
1099 if (noside == EVAL_SKIP)
1100 goto nosideret;
1101 return value_slice (array, lowbound, upper - lowbound + 1);
1102 }
1103
1104 case TERNOP_SLICE_COUNT:
1105 {
1106 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1107 int lowbound
1108 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1109 int length
1110 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1111
1112 return value_slice (array, lowbound, length);
1113 }
1114
1115 case TERNOP_COND:
1116 /* Skip third and second args to evaluate the first one. */
1117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1118 if (value_logical_not (arg1))
1119 {
1120 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1121 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1122 }
1123 else
1124 {
1125 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1126 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1127 return arg2;
1128 }
1129
1130 case OP_OBJC_SELECTOR:
1131 { /* Objective C @selector operator. */
1132 char *sel = &exp->elts[pc + 2].string;
1133 int len = longest_to_int (exp->elts[pc + 1].longconst);
1134 struct type *selector_type;
1135
1136 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1137 if (noside == EVAL_SKIP)
1138 goto nosideret;
1139
1140 if (sel[len] != 0)
1141 sel[len] = 0; /* Make sure it's terminated. */
1142
1143 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1144 return value_from_longest (selector_type,
1145 lookup_child_selector (exp->gdbarch, sel));
1146 }
1147
1148 case OP_OBJC_MSGCALL:
1149 { /* Objective C message (method) call. */
1150
1151 CORE_ADDR responds_selector = 0;
1152 CORE_ADDR method_selector = 0;
1153
1154 CORE_ADDR selector = 0;
1155
1156 int struct_return = 0;
1157 int sub_no_side = 0;
1158
1159 struct value *msg_send = NULL;
1160 struct value *msg_send_stret = NULL;
1161 int gnu_runtime = 0;
1162
1163 struct value *target = NULL;
1164 struct value *method = NULL;
1165 struct value *called_method = NULL;
1166
1167 struct type *selector_type = NULL;
1168 struct type *long_type;
1169
1170 struct value *ret = NULL;
1171 CORE_ADDR addr = 0;
1172
1173 selector = exp->elts[pc + 1].longconst;
1174 nargs = exp->elts[pc + 2].longconst;
1175 argvec = (struct value **) alloca (sizeof (struct value *)
1176 * (nargs + 5));
1177
1178 (*pos) += 3;
1179
1180 long_type = builtin_type (exp->gdbarch)->builtin_long;
1181 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1182
1183 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1184 sub_no_side = EVAL_NORMAL;
1185 else
1186 sub_no_side = noside;
1187
1188 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1189
1190 if (value_as_long (target) == 0)
1191 return value_from_longest (long_type, 0);
1192
1193 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1194 gnu_runtime = 1;
1195
1196 /* Find the method dispatch (Apple runtime) or method lookup
1197 (GNU runtime) function for Objective-C. These will be used
1198 to lookup the symbol information for the method. If we
1199 can't find any symbol information, then we'll use these to
1200 call the method, otherwise we can call the method
1201 directly. The msg_send_stret function is used in the special
1202 case of a method that returns a structure (Apple runtime
1203 only). */
1204 if (gnu_runtime)
1205 {
1206 struct type *type = selector_type;
1207
1208 type = lookup_function_type (type);
1209 type = lookup_pointer_type (type);
1210 type = lookup_function_type (type);
1211 type = lookup_pointer_type (type);
1212
1213 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1214 msg_send_stret
1215 = find_function_in_inferior ("objc_msg_lookup", NULL);
1216
1217 msg_send = value_from_pointer (type, value_as_address (msg_send));
1218 msg_send_stret = value_from_pointer (type,
1219 value_as_address (msg_send_stret));
1220 }
1221 else
1222 {
1223 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1224 /* Special dispatcher for methods returning structs. */
1225 msg_send_stret
1226 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1227 }
1228
1229 /* Verify the target object responds to this method. The
1230 standard top-level 'Object' class uses a different name for
1231 the verification method than the non-standard, but more
1232 often used, 'NSObject' class. Make sure we check for both. */
1233
1234 responds_selector
1235 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1236 if (responds_selector == 0)
1237 responds_selector
1238 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1239
1240 if (responds_selector == 0)
1241 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1242
1243 method_selector
1244 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1245 if (method_selector == 0)
1246 method_selector
1247 = lookup_child_selector (exp->gdbarch, "methodFor:");
1248
1249 if (method_selector == 0)
1250 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1251
1252 /* Call the verification method, to make sure that the target
1253 class implements the desired method. */
1254
1255 argvec[0] = msg_send;
1256 argvec[1] = target;
1257 argvec[2] = value_from_longest (long_type, responds_selector);
1258 argvec[3] = value_from_longest (long_type, selector);
1259 argvec[4] = 0;
1260
1261 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1262 if (gnu_runtime)
1263 {
1264 /* Function objc_msg_lookup returns a pointer. */
1265 argvec[0] = ret;
1266 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1267 }
1268 if (value_as_long (ret) == 0)
1269 error (_("Target does not respond to this message selector."));
1270
1271 /* Call "methodForSelector:" method, to get the address of a
1272 function method that implements this selector for this
1273 class. If we can find a symbol at that address, then we
1274 know the return type, parameter types etc. (that's a good
1275 thing). */
1276
1277 argvec[0] = msg_send;
1278 argvec[1] = target;
1279 argvec[2] = value_from_longest (long_type, method_selector);
1280 argvec[3] = value_from_longest (long_type, selector);
1281 argvec[4] = 0;
1282
1283 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1284 if (gnu_runtime)
1285 {
1286 argvec[0] = ret;
1287 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1288 }
1289
1290 /* ret should now be the selector. */
1291
1292 addr = value_as_long (ret);
1293 if (addr)
1294 {
1295 struct symbol *sym = NULL;
1296
1297 /* The address might point to a function descriptor;
1298 resolve it to the actual code address instead. */
1299 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1300 &current_target);
1301
1302 /* Is it a high_level symbol? */
1303 sym = find_pc_function (addr);
1304 if (sym != NULL)
1305 method = value_of_variable (sym, 0);
1306 }
1307
1308 /* If we found a method with symbol information, check to see
1309 if it returns a struct. Otherwise assume it doesn't. */
1310
1311 if (method)
1312 {
1313 CORE_ADDR funaddr;
1314 struct type *val_type;
1315
1316 funaddr = find_function_addr (method, &val_type);
1317
1318 block_for_pc (funaddr);
1319
1320 CHECK_TYPEDEF (val_type);
1321
1322 if ((val_type == NULL)
1323 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1324 {
1325 if (expect_type != NULL)
1326 val_type = expect_type;
1327 }
1328
1329 struct_return = using_struct_return (exp->gdbarch,
1330 value_type (method),
1331 val_type);
1332 }
1333 else if (expect_type != NULL)
1334 {
1335 struct_return = using_struct_return (exp->gdbarch, NULL,
1336 check_typedef (expect_type));
1337 }
1338
1339 /* Found a function symbol. Now we will substitute its
1340 value in place of the message dispatcher (obj_msgSend),
1341 so that we call the method directly instead of thru
1342 the dispatcher. The main reason for doing this is that
1343 we can now evaluate the return value and parameter values
1344 according to their known data types, in case we need to
1345 do things like promotion, dereferencing, special handling
1346 of structs and doubles, etc.
1347
1348 We want to use the type signature of 'method', but still
1349 jump to objc_msgSend() or objc_msgSend_stret() to better
1350 mimic the behavior of the runtime. */
1351
1352 if (method)
1353 {
1354 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1355 error (_("method address has symbol information "
1356 "with non-function type; skipping"));
1357
1358 /* Create a function pointer of the appropriate type, and
1359 replace its value with the value of msg_send or
1360 msg_send_stret. We must use a pointer here, as
1361 msg_send and msg_send_stret are of pointer type, and
1362 the representation may be different on systems that use
1363 function descriptors. */
1364 if (struct_return)
1365 called_method
1366 = value_from_pointer (lookup_pointer_type (value_type (method)),
1367 value_as_address (msg_send_stret));
1368 else
1369 called_method
1370 = value_from_pointer (lookup_pointer_type (value_type (method)),
1371 value_as_address (msg_send));
1372 }
1373 else
1374 {
1375 if (struct_return)
1376 called_method = msg_send_stret;
1377 else
1378 called_method = msg_send;
1379 }
1380
1381 if (noside == EVAL_SKIP)
1382 goto nosideret;
1383
1384 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1385 {
1386 /* If the return type doesn't look like a function type,
1387 call an error. This can happen if somebody tries to
1388 turn a variable into a function call. This is here
1389 because people often want to call, eg, strcmp, which
1390 gdb doesn't know is a function. If gdb isn't asked for
1391 it's opinion (ie. through "whatis"), it won't offer
1392 it. */
1393
1394 struct type *type = value_type (called_method);
1395
1396 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1397 type = TYPE_TARGET_TYPE (type);
1398 type = TYPE_TARGET_TYPE (type);
1399
1400 if (type)
1401 {
1402 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1403 return allocate_value (expect_type);
1404 else
1405 return allocate_value (type);
1406 }
1407 else
1408 error (_("Expression of type other than "
1409 "\"method returning ...\" used as a method"));
1410 }
1411
1412 /* Now depending on whether we found a symbol for the method,
1413 we will either call the runtime dispatcher or the method
1414 directly. */
1415
1416 argvec[0] = called_method;
1417 argvec[1] = target;
1418 argvec[2] = value_from_longest (long_type, selector);
1419 /* User-supplied arguments. */
1420 for (tem = 0; tem < nargs; tem++)
1421 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1422 argvec[tem + 3] = 0;
1423
1424 if (gnu_runtime && (method != NULL))
1425 {
1426 /* Function objc_msg_lookup returns a pointer. */
1427 deprecated_set_value_type (argvec[0],
1428 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1429 argvec[0]
1430 = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1431 }
1432
1433 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1434 return ret;
1435 }
1436 break;
1437
1438 case OP_FUNCALL:
1439 (*pos) += 2;
1440 op = exp->elts[*pos].opcode;
1441 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1442 /* Allocate arg vector, including space for the function to be
1443 called in argvec[0] and a terminating NULL. */
1444 argvec = (struct value **)
1445 alloca (sizeof (struct value *) * (nargs + 3));
1446 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1447 {
1448 nargs++;
1449 /* First, evaluate the structure into arg2. */
1450 pc2 = (*pos)++;
1451
1452 if (noside == EVAL_SKIP)
1453 goto nosideret;
1454
1455 if (op == STRUCTOP_MEMBER)
1456 {
1457 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1458 }
1459 else
1460 {
1461 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1462 }
1463
1464 /* If the function is a virtual function, then the
1465 aggregate value (providing the structure) plays
1466 its part by providing the vtable. Otherwise,
1467 it is just along for the ride: call the function
1468 directly. */
1469
1470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1471
1472 if (TYPE_CODE (check_typedef (value_type (arg1)))
1473 != TYPE_CODE_METHODPTR)
1474 error (_("Non-pointer-to-member value used in pointer-to-member "
1475 "construct"));
1476
1477 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1478 {
1479 struct type *method_type = check_typedef (value_type (arg1));
1480
1481 arg1 = value_zero (method_type, not_lval);
1482 }
1483 else
1484 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1485
1486 /* Now, say which argument to start evaluating from. */
1487 tem = 2;
1488 }
1489 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1490 {
1491 /* Hair for method invocations. */
1492 int tem2;
1493
1494 nargs++;
1495 /* First, evaluate the structure into arg2. */
1496 pc2 = (*pos)++;
1497 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1498 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1499 if (noside == EVAL_SKIP)
1500 goto nosideret;
1501
1502 if (op == STRUCTOP_STRUCT)
1503 {
1504 /* If v is a variable in a register, and the user types
1505 v.method (), this will produce an error, because v has
1506 no address.
1507
1508 A possible way around this would be to allocate a
1509 copy of the variable on the stack, copy in the
1510 contents, call the function, and copy out the
1511 contents. I.e. convert this from call by reference
1512 to call by copy-return (or whatever it's called).
1513 However, this does not work because it is not the
1514 same: the method being called could stash a copy of
1515 the address, and then future uses through that address
1516 (after the method returns) would be expected to
1517 use the variable itself, not some copy of it. */
1518 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1519 }
1520 else
1521 {
1522 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1523
1524 /* Check to see if the operator '->' has been
1525 overloaded. If the operator has been overloaded
1526 replace arg2 with the value returned by the custom
1527 operator and continue evaluation. */
1528 while (unop_user_defined_p (op, arg2))
1529 {
1530 volatile struct gdb_exception except;
1531 struct value *value = NULL;
1532 TRY_CATCH (except, RETURN_MASK_ERROR)
1533 {
1534 value = value_x_unop (arg2, op, noside);
1535 }
1536
1537 if (except.reason < 0)
1538 {
1539 if (except.error == NOT_FOUND_ERROR)
1540 break;
1541 else
1542 throw_exception (except);
1543 }
1544 arg2 = value;
1545 }
1546 }
1547 /* Now, say which argument to start evaluating from. */
1548 tem = 2;
1549 }
1550 else if (op == OP_SCOPE
1551 && overload_resolution
1552 && (exp->language_defn->la_language == language_cplus))
1553 {
1554 /* Unpack it locally so we can properly handle overload
1555 resolution. */
1556 char *name;
1557 int local_tem;
1558
1559 pc2 = (*pos)++;
1560 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
1561 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
1562 type = exp->elts[pc2 + 1].type;
1563 name = &exp->elts[pc2 + 3].string;
1564
1565 function = NULL;
1566 function_name = NULL;
1567 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
1568 {
1569 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
1570 name,
1571 get_selected_block (0),
1572 VAR_DOMAIN);
1573 if (function == NULL)
1574 error (_("No symbol \"%s\" in namespace \"%s\"."),
1575 name, TYPE_TAG_NAME (type));
1576
1577 tem = 1;
1578 }
1579 else
1580 {
1581 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1582 || TYPE_CODE (type) == TYPE_CODE_UNION);
1583 function_name = name;
1584
1585 arg2 = value_zero (type, lval_memory);
1586 ++nargs;
1587 tem = 2;
1588 }
1589 }
1590 else if (op == OP_ADL_FUNC)
1591 {
1592 /* Save the function position and move pos so that the arguments
1593 can be evaluated. */
1594 int func_name_len;
1595
1596 save_pos1 = *pos;
1597 tem = 1;
1598
1599 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1600 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1601 }
1602 else
1603 {
1604 /* Non-method function call. */
1605 save_pos1 = *pos;
1606 tem = 1;
1607
1608 /* If this is a C++ function wait until overload resolution. */
1609 if (op == OP_VAR_VALUE
1610 && overload_resolution
1611 && (exp->language_defn->la_language == language_cplus))
1612 {
1613 (*pos) += 4; /* Skip the evaluation of the symbol. */
1614 argvec[0] = NULL;
1615 }
1616 else
1617 {
1618 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1619 type = value_type (argvec[0]);
1620 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1621 type = TYPE_TARGET_TYPE (type);
1622 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1623 {
1624 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1625 {
1626 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1627 tem - 1),
1628 exp, pos, noside);
1629 }
1630 }
1631 }
1632 }
1633
1634 /* Evaluate arguments. */
1635 for (; tem <= nargs; tem++)
1636 {
1637 /* Ensure that array expressions are coerced into pointer
1638 objects. */
1639 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1640 }
1641
1642 /* Signal end of arglist. */
1643 argvec[tem] = 0;
1644 if (op == OP_ADL_FUNC)
1645 {
1646 struct symbol *symp;
1647 char *func_name;
1648 int name_len;
1649 int string_pc = save_pos1 + 3;
1650
1651 /* Extract the function name. */
1652 name_len = longest_to_int (exp->elts[string_pc].longconst);
1653 func_name = (char *) alloca (name_len + 1);
1654 strcpy (func_name, &exp->elts[string_pc + 1].string);
1655
1656 /* Prepare list of argument types for overload resolution. */
1657 arg_types = (struct type **)
1658 alloca (nargs * (sizeof (struct type *)));
1659 for (ix = 1; ix <= nargs; ix++)
1660 arg_types[ix - 1] = value_type (argvec[ix]);
1661
1662 find_overload_match (arg_types, nargs, func_name,
1663 NON_METHOD, /* not method */
1664 0, /* strict match */
1665 NULL, NULL, /* pass NULL symbol since
1666 symbol is unknown */
1667 NULL, &symp, NULL, 0);
1668
1669 /* Now fix the expression being evaluated. */
1670 exp->elts[save_pos1 + 2].symbol = symp;
1671 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1672 }
1673
1674 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1675 || (op == OP_SCOPE && function_name != NULL))
1676 {
1677 int static_memfuncp;
1678 char *tstr;
1679
1680 /* Method invocation : stuff "this" as first parameter. */
1681 argvec[1] = arg2;
1682
1683 if (op != OP_SCOPE)
1684 {
1685 /* Name of method from expression. */
1686 tstr = &exp->elts[pc2 + 2].string;
1687 }
1688 else
1689 tstr = function_name;
1690
1691 if (overload_resolution && (exp->language_defn->la_language
1692 == language_cplus))
1693 {
1694 /* Language is C++, do some overload resolution before
1695 evaluation. */
1696 struct value *valp = NULL;
1697
1698 /* Prepare list of argument types for overload resolution. */
1699 arg_types = (struct type **)
1700 alloca (nargs * (sizeof (struct type *)));
1701 for (ix = 1; ix <= nargs; ix++)
1702 arg_types[ix - 1] = value_type (argvec[ix]);
1703
1704 (void) find_overload_match (arg_types, nargs, tstr,
1705 METHOD, /* method */
1706 0, /* strict match */
1707 &arg2, /* the object */
1708 NULL, &valp, NULL,
1709 &static_memfuncp, 0);
1710
1711 if (op == OP_SCOPE && !static_memfuncp)
1712 {
1713 /* For the time being, we don't handle this. */
1714 error (_("Call to overloaded function %s requires "
1715 "`this' pointer"),
1716 function_name);
1717 }
1718 argvec[1] = arg2; /* the ``this'' pointer */
1719 argvec[0] = valp; /* Use the method found after overload
1720 resolution. */
1721 }
1722 else
1723 /* Non-C++ case -- or no overload resolution. */
1724 {
1725 struct value *temp = arg2;
1726
1727 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1728 &static_memfuncp,
1729 op == STRUCTOP_STRUCT
1730 ? "structure" : "structure pointer");
1731 /* value_struct_elt updates temp with the correct value
1732 of the ``this'' pointer if necessary, so modify argvec[1] to
1733 reflect any ``this'' changes. */
1734 arg2
1735 = value_from_longest (lookup_pointer_type(value_type (temp)),
1736 value_address (temp)
1737 + value_embedded_offset (temp));
1738 argvec[1] = arg2; /* the ``this'' pointer */
1739 }
1740
1741 if (static_memfuncp)
1742 {
1743 argvec[1] = argvec[0];
1744 nargs--;
1745 argvec++;
1746 }
1747 }
1748 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1749 {
1750 argvec[1] = arg2;
1751 argvec[0] = arg1;
1752 }
1753 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1754 {
1755 /* Non-member function being called. */
1756 /* fn: This can only be done for C++ functions. A C-style function
1757 in a C++ program, for instance, does not have the fields that
1758 are expected here. */
1759
1760 if (overload_resolution && (exp->language_defn->la_language
1761 == language_cplus))
1762 {
1763 /* Language is C++, do some overload resolution before
1764 evaluation. */
1765 struct symbol *symp;
1766 int no_adl = 0;
1767
1768 /* If a scope has been specified disable ADL. */
1769 if (op == OP_SCOPE)
1770 no_adl = 1;
1771
1772 if (op == OP_VAR_VALUE)
1773 function = exp->elts[save_pos1+2].symbol;
1774
1775 /* Prepare list of argument types for overload resolution. */
1776 arg_types = (struct type **)
1777 alloca (nargs * (sizeof (struct type *)));
1778 for (ix = 1; ix <= nargs; ix++)
1779 arg_types[ix - 1] = value_type (argvec[ix]);
1780
1781 (void) find_overload_match (arg_types, nargs,
1782 NULL, /* no need for name */
1783 NON_METHOD, /* not method */
1784 0, /* strict match */
1785 NULL, function, /* the function */
1786 NULL, &symp, NULL, no_adl);
1787
1788 if (op == OP_VAR_VALUE)
1789 {
1790 /* Now fix the expression being evaluated. */
1791 exp->elts[save_pos1+2].symbol = symp;
1792 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1793 noside);
1794 }
1795 else
1796 argvec[0] = value_of_variable (symp, get_selected_block (0));
1797 }
1798 else
1799 {
1800 /* Not C++, or no overload resolution allowed. */
1801 /* Nothing to be done; argvec already correctly set up. */
1802 }
1803 }
1804 else
1805 {
1806 /* It is probably a C-style function. */
1807 /* Nothing to be done; argvec already correctly set up. */
1808 }
1809
1810 do_call_it:
1811
1812 if (noside == EVAL_SKIP)
1813 goto nosideret;
1814 if (argvec[0] == NULL)
1815 error (_("Cannot evaluate function -- may be inlined"));
1816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1817 {
1818 /* If the return type doesn't look like a function type, call an
1819 error. This can happen if somebody tries to turn a variable into
1820 a function call. This is here because people often want to
1821 call, eg, strcmp, which gdb doesn't know is a function. If
1822 gdb isn't asked for it's opinion (ie. through "whatis"),
1823 it won't offer it. */
1824
1825 struct type *ftype = value_type (argvec[0]);
1826
1827 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1828 {
1829 /* We don't know anything about what the internal
1830 function might return, but we have to return
1831 something. */
1832 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1833 not_lval);
1834 }
1835 else if (TYPE_GNU_IFUNC (ftype))
1836 return allocate_value (TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)));
1837 else if (TYPE_TARGET_TYPE (ftype))
1838 return allocate_value (TYPE_TARGET_TYPE (ftype));
1839 else
1840 error (_("Expression of type other than "
1841 "\"Function returning ...\" used as function"));
1842 }
1843 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1844 return call_internal_function (exp->gdbarch, exp->language_defn,
1845 argvec[0], nargs, argvec + 1);
1846
1847 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1848 /* pai: FIXME save value from call_function_by_hand, then adjust
1849 pc by adjust_fn_pc if +ve. */
1850
1851 case OP_F77_UNDETERMINED_ARGLIST:
1852
1853 /* Remember that in F77, functions, substring ops and
1854 array subscript operations cannot be disambiguated
1855 at parse time. We have made all array subscript operations,
1856 substring operations as well as function calls come here
1857 and we now have to discover what the heck this thing actually was.
1858 If it is a function, we process just as if we got an OP_FUNCALL. */
1859
1860 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1861 (*pos) += 2;
1862
1863 /* First determine the type code we are dealing with. */
1864 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1865 type = check_typedef (value_type (arg1));
1866 code = TYPE_CODE (type);
1867
1868 if (code == TYPE_CODE_PTR)
1869 {
1870 /* Fortran always passes variable to subroutines as pointer.
1871 So we need to look into its target type to see if it is
1872 array, string or function. If it is, we need to switch
1873 to the target value the original one points to. */
1874 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1875
1876 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1877 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1878 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1879 {
1880 arg1 = value_ind (arg1);
1881 type = check_typedef (value_type (arg1));
1882 code = TYPE_CODE (type);
1883 }
1884 }
1885
1886 switch (code)
1887 {
1888 case TYPE_CODE_ARRAY:
1889 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1890 return value_f90_subarray (arg1, exp, pos, noside);
1891 else
1892 goto multi_f77_subscript;
1893
1894 case TYPE_CODE_STRING:
1895 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1896 return value_f90_subarray (arg1, exp, pos, noside);
1897 else
1898 {
1899 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1900 return value_subscript (arg1, value_as_long (arg2));
1901 }
1902
1903 case TYPE_CODE_PTR:
1904 case TYPE_CODE_FUNC:
1905 /* It's a function call. */
1906 /* Allocate arg vector, including space for the function to be
1907 called in argvec[0] and a terminating NULL. */
1908 argvec = (struct value **)
1909 alloca (sizeof (struct value *) * (nargs + 2));
1910 argvec[0] = arg1;
1911 tem = 1;
1912 for (; tem <= nargs; tem++)
1913 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1914 argvec[tem] = 0; /* signal end of arglist */
1915 goto do_call_it;
1916
1917 default:
1918 error (_("Cannot perform substring on this type"));
1919 }
1920
1921 case OP_COMPLEX:
1922 /* We have a complex number, There should be 2 floating
1923 point numbers that compose it. */
1924 (*pos) += 2;
1925 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1926 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1927
1928 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1929
1930 case STRUCTOP_STRUCT:
1931 tem = longest_to_int (exp->elts[pc + 1].longconst);
1932 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1933 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1934 if (noside == EVAL_SKIP)
1935 goto nosideret;
1936 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1937 return value_zero (lookup_struct_elt_type (value_type (arg1),
1938 &exp->elts[pc + 2].string,
1939 0),
1940 lval_memory);
1941 else
1942 {
1943 struct value *temp = arg1;
1944
1945 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1946 NULL, "structure");
1947 }
1948
1949 case STRUCTOP_PTR:
1950 tem = longest_to_int (exp->elts[pc + 1].longconst);
1951 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1953 if (noside == EVAL_SKIP)
1954 goto nosideret;
1955
1956 /* Check to see if operator '->' has been overloaded. If so replace
1957 arg1 with the value returned by evaluating operator->(). */
1958 while (unop_user_defined_p (op, arg1))
1959 {
1960 volatile struct gdb_exception except;
1961 struct value *value = NULL;
1962 TRY_CATCH (except, RETURN_MASK_ERROR)
1963 {
1964 value = value_x_unop (arg1, op, noside);
1965 }
1966
1967 if (except.reason < 0)
1968 {
1969 if (except.error == NOT_FOUND_ERROR)
1970 break;
1971 else
1972 throw_exception (except);
1973 }
1974 arg1 = value;
1975 }
1976
1977 /* JYG: if print object is on we need to replace the base type
1978 with rtti type in order to continue on with successful
1979 lookup of member / method only available in the rtti type. */
1980 {
1981 struct type *type = value_type (arg1);
1982 struct type *real_type;
1983 int full, top, using_enc;
1984 struct value_print_options opts;
1985
1986 get_user_print_options (&opts);
1987 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1988 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1989 {
1990 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1991 if (real_type)
1992 {
1993 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1994 real_type = lookup_pointer_type (real_type);
1995 else
1996 real_type = lookup_reference_type (real_type);
1997
1998 arg1 = value_cast (real_type, arg1);
1999 }
2000 }
2001 }
2002
2003 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2004 return value_zero (lookup_struct_elt_type (value_type (arg1),
2005 &exp->elts[pc + 2].string,
2006 0),
2007 lval_memory);
2008 else
2009 {
2010 struct value *temp = arg1;
2011
2012 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
2013 NULL, "structure pointer");
2014 }
2015
2016 case STRUCTOP_MEMBER:
2017 case STRUCTOP_MPTR:
2018 if (op == STRUCTOP_MEMBER)
2019 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2020 else
2021 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2022
2023 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2024
2025 if (noside == EVAL_SKIP)
2026 goto nosideret;
2027
2028 type = check_typedef (value_type (arg2));
2029 switch (TYPE_CODE (type))
2030 {
2031 case TYPE_CODE_METHODPTR:
2032 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2033 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2034 else
2035 {
2036 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2037 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2038 return value_ind (arg2);
2039 }
2040
2041 case TYPE_CODE_MEMBERPTR:
2042 /* Now, convert these values to an address. */
2043 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
2044 arg1);
2045
2046 mem_offset = value_as_long (arg2);
2047
2048 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2049 value_as_long (arg1) + mem_offset);
2050 return value_ind (arg3);
2051
2052 default:
2053 error (_("non-pointer-to-member value used "
2054 "in pointer-to-member construct"));
2055 }
2056
2057 case TYPE_INSTANCE:
2058 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2059 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2060 for (ix = 0; ix < nargs; ++ix)
2061 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
2062
2063 expect_type = make_params (nargs, arg_types);
2064 *(pos) += 3 + nargs;
2065 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2066 xfree (TYPE_FIELDS (expect_type));
2067 xfree (TYPE_MAIN_TYPE (expect_type));
2068 xfree (expect_type);
2069 return arg1;
2070
2071 case BINOP_CONCAT:
2072 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2073 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2074 if (noside == EVAL_SKIP)
2075 goto nosideret;
2076 if (binop_user_defined_p (op, arg1, arg2))
2077 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2078 else
2079 return value_concat (arg1, arg2);
2080
2081 case BINOP_ASSIGN:
2082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2083 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2084
2085 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2086 return arg1;
2087 if (binop_user_defined_p (op, arg1, arg2))
2088 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2089 else
2090 return value_assign (arg1, arg2);
2091
2092 case BINOP_ASSIGN_MODIFY:
2093 (*pos) += 2;
2094 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2095 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2096 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2097 return arg1;
2098 op = exp->elts[pc + 1].opcode;
2099 if (binop_user_defined_p (op, arg1, arg2))
2100 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2101 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2102 value_type (arg1))
2103 && is_integral_type (value_type (arg2)))
2104 arg2 = value_ptradd (arg1, value_as_long (arg2));
2105 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2106 value_type (arg1))
2107 && is_integral_type (value_type (arg2)))
2108 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2109 else
2110 {
2111 struct value *tmp = arg1;
2112
2113 /* For shift and integer exponentiation operations,
2114 only promote the first argument. */
2115 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2116 && is_integral_type (value_type (arg2)))
2117 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2118 else
2119 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2120
2121 arg2 = value_binop (tmp, arg2, op);
2122 }
2123 return value_assign (arg1, arg2);
2124
2125 case BINOP_ADD:
2126 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2127 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2128 if (noside == EVAL_SKIP)
2129 goto nosideret;
2130 if (binop_user_defined_p (op, arg1, arg2))
2131 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2132 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2133 && is_integral_type (value_type (arg2)))
2134 return value_ptradd (arg1, value_as_long (arg2));
2135 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2136 && is_integral_type (value_type (arg1)))
2137 return value_ptradd (arg2, value_as_long (arg1));
2138 else
2139 {
2140 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2141 return value_binop (arg1, arg2, BINOP_ADD);
2142 }
2143
2144 case BINOP_SUB:
2145 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2146 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2147 if (noside == EVAL_SKIP)
2148 goto nosideret;
2149 if (binop_user_defined_p (op, arg1, arg2))
2150 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2151 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2152 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2153 {
2154 /* FIXME -- should be ptrdiff_t */
2155 type = builtin_type (exp->gdbarch)->builtin_long;
2156 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2157 }
2158 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2159 && is_integral_type (value_type (arg2)))
2160 return value_ptradd (arg1, - value_as_long (arg2));
2161 else
2162 {
2163 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2164 return value_binop (arg1, arg2, BINOP_SUB);
2165 }
2166
2167 case BINOP_EXP:
2168 case BINOP_MUL:
2169 case BINOP_DIV:
2170 case BINOP_INTDIV:
2171 case BINOP_REM:
2172 case BINOP_MOD:
2173 case BINOP_LSH:
2174 case BINOP_RSH:
2175 case BINOP_BITWISE_AND:
2176 case BINOP_BITWISE_IOR:
2177 case BINOP_BITWISE_XOR:
2178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2179 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2180 if (noside == EVAL_SKIP)
2181 goto nosideret;
2182 if (binop_user_defined_p (op, arg1, arg2))
2183 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2184 else
2185 {
2186 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2187 fudge arg2 to avoid division-by-zero, the caller is
2188 (theoretically) only looking for the type of the result. */
2189 if (noside == EVAL_AVOID_SIDE_EFFECTS
2190 /* ??? Do we really want to test for BINOP_MOD here?
2191 The implementation of value_binop gives it a well-defined
2192 value. */
2193 && (op == BINOP_DIV
2194 || op == BINOP_INTDIV
2195 || op == BINOP_REM
2196 || op == BINOP_MOD)
2197 && value_logical_not (arg2))
2198 {
2199 struct value *v_one, *retval;
2200
2201 v_one = value_one (value_type (arg2), not_lval);
2202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2203 retval = value_binop (arg1, v_one, op);
2204 return retval;
2205 }
2206 else
2207 {
2208 /* For shift and integer exponentiation operations,
2209 only promote the first argument. */
2210 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2211 && is_integral_type (value_type (arg2)))
2212 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2213 else
2214 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2215
2216 return value_binop (arg1, arg2, op);
2217 }
2218 }
2219
2220 case BINOP_RANGE:
2221 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2222 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2223 if (noside == EVAL_SKIP)
2224 goto nosideret;
2225 error (_("':' operator used in invalid context"));
2226
2227 case BINOP_SUBSCRIPT:
2228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2230 if (noside == EVAL_SKIP)
2231 goto nosideret;
2232 if (binop_user_defined_p (op, arg1, arg2))
2233 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2234 else
2235 {
2236 /* If the user attempts to subscript something that is not an
2237 array or pointer type (like a plain int variable for example),
2238 then report this as an error. */
2239
2240 arg1 = coerce_ref (arg1);
2241 type = check_typedef (value_type (arg1));
2242 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2243 && TYPE_CODE (type) != TYPE_CODE_PTR)
2244 {
2245 if (TYPE_NAME (type))
2246 error (_("cannot subscript something of type `%s'"),
2247 TYPE_NAME (type));
2248 else
2249 error (_("cannot subscript requested type"));
2250 }
2251
2252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2253 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2254 else
2255 return value_subscript (arg1, value_as_long (arg2));
2256 }
2257
2258 case BINOP_IN:
2259 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2260 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2261 if (noside == EVAL_SKIP)
2262 goto nosideret;
2263 type = language_bool_type (exp->language_defn, exp->gdbarch);
2264 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
2265
2266 case MULTI_SUBSCRIPT:
2267 (*pos) += 2;
2268 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2269 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2270 while (nargs-- > 0)
2271 {
2272 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2273 /* FIXME: EVAL_SKIP handling may not be correct. */
2274 if (noside == EVAL_SKIP)
2275 {
2276 if (nargs > 0)
2277 {
2278 continue;
2279 }
2280 else
2281 {
2282 goto nosideret;
2283 }
2284 }
2285 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2286 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2287 {
2288 /* If the user attempts to subscript something that has no target
2289 type (like a plain int variable for example), then report this
2290 as an error. */
2291
2292 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2293 if (type != NULL)
2294 {
2295 arg1 = value_zero (type, VALUE_LVAL (arg1));
2296 noside = EVAL_SKIP;
2297 continue;
2298 }
2299 else
2300 {
2301 error (_("cannot subscript something of type `%s'"),
2302 TYPE_NAME (value_type (arg1)));
2303 }
2304 }
2305
2306 if (binop_user_defined_p (op, arg1, arg2))
2307 {
2308 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2309 }
2310 else
2311 {
2312 arg1 = coerce_ref (arg1);
2313 type = check_typedef (value_type (arg1));
2314
2315 switch (TYPE_CODE (type))
2316 {
2317 case TYPE_CODE_PTR:
2318 case TYPE_CODE_ARRAY:
2319 case TYPE_CODE_STRING:
2320 arg1 = value_subscript (arg1, value_as_long (arg2));
2321 break;
2322
2323 case TYPE_CODE_BITSTRING:
2324 type = language_bool_type (exp->language_defn, exp->gdbarch);
2325 arg1 = value_bitstring_subscript (type, arg1,
2326 value_as_long (arg2));
2327 break;
2328
2329 default:
2330 if (TYPE_NAME (type))
2331 error (_("cannot subscript something of type `%s'"),
2332 TYPE_NAME (type));
2333 else
2334 error (_("cannot subscript requested type"));
2335 }
2336 }
2337 }
2338 return (arg1);
2339
2340 multi_f77_subscript:
2341 {
2342 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2343 int ndimensions = 1, i;
2344 struct value *array = arg1;
2345
2346 if (nargs > MAX_FORTRAN_DIMS)
2347 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2348
2349 ndimensions = calc_f77_array_dims (type);
2350
2351 if (nargs != ndimensions)
2352 error (_("Wrong number of subscripts"));
2353
2354 gdb_assert (nargs > 0);
2355
2356 /* Now that we know we have a legal array subscript expression
2357 let us actually find out where this element exists in the array. */
2358
2359 /* Take array indices left to right. */
2360 for (i = 0; i < nargs; i++)
2361 {
2362 /* Evaluate each subscript; it must be a legal integer in F77. */
2363 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2364
2365 /* Fill in the subscript array. */
2366
2367 subscript_array[i] = value_as_long (arg2);
2368 }
2369
2370 /* Internal type of array is arranged right to left. */
2371 for (i = nargs; i > 0; i--)
2372 {
2373 struct type *array_type = check_typedef (value_type (array));
2374 LONGEST index = subscript_array[i - 1];
2375
2376 lower = f77_get_lowerbound (array_type);
2377 array = value_subscripted_rvalue (array, index, lower);
2378 }
2379
2380 return array;
2381 }
2382
2383 case BINOP_LOGICAL_AND:
2384 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2385 if (noside == EVAL_SKIP)
2386 {
2387 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2388 goto nosideret;
2389 }
2390
2391 oldpos = *pos;
2392 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2393 *pos = oldpos;
2394
2395 if (binop_user_defined_p (op, arg1, arg2))
2396 {
2397 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2398 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2399 }
2400 else
2401 {
2402 tem = value_logical_not (arg1);
2403 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2404 (tem ? EVAL_SKIP : noside));
2405 type = language_bool_type (exp->language_defn, exp->gdbarch);
2406 return value_from_longest (type,
2407 (LONGEST) (!tem && !value_logical_not (arg2)));
2408 }
2409
2410 case BINOP_LOGICAL_OR:
2411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2412 if (noside == EVAL_SKIP)
2413 {
2414 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2415 goto nosideret;
2416 }
2417
2418 oldpos = *pos;
2419 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2420 *pos = oldpos;
2421
2422 if (binop_user_defined_p (op, arg1, arg2))
2423 {
2424 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2425 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2426 }
2427 else
2428 {
2429 tem = value_logical_not (arg1);
2430 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2431 (!tem ? EVAL_SKIP : noside));
2432 type = language_bool_type (exp->language_defn, exp->gdbarch);
2433 return value_from_longest (type,
2434 (LONGEST) (!tem || !value_logical_not (arg2)));
2435 }
2436
2437 case BINOP_EQUAL:
2438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2439 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2440 if (noside == EVAL_SKIP)
2441 goto nosideret;
2442 if (binop_user_defined_p (op, arg1, arg2))
2443 {
2444 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2445 }
2446 else
2447 {
2448 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2449 tem = value_equal (arg1, arg2);
2450 type = language_bool_type (exp->language_defn, exp->gdbarch);
2451 return value_from_longest (type, (LONGEST) tem);
2452 }
2453
2454 case BINOP_NOTEQUAL:
2455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2456 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2457 if (noside == EVAL_SKIP)
2458 goto nosideret;
2459 if (binop_user_defined_p (op, arg1, arg2))
2460 {
2461 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2462 }
2463 else
2464 {
2465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2466 tem = value_equal (arg1, arg2);
2467 type = language_bool_type (exp->language_defn, exp->gdbarch);
2468 return value_from_longest (type, (LONGEST) ! tem);
2469 }
2470
2471 case BINOP_LESS:
2472 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2473 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2474 if (noside == EVAL_SKIP)
2475 goto nosideret;
2476 if (binop_user_defined_p (op, arg1, arg2))
2477 {
2478 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2479 }
2480 else
2481 {
2482 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2483 tem = value_less (arg1, arg2);
2484 type = language_bool_type (exp->language_defn, exp->gdbarch);
2485 return value_from_longest (type, (LONGEST) tem);
2486 }
2487
2488 case BINOP_GTR:
2489 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2490 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2491 if (noside == EVAL_SKIP)
2492 goto nosideret;
2493 if (binop_user_defined_p (op, arg1, arg2))
2494 {
2495 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2496 }
2497 else
2498 {
2499 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2500 tem = value_less (arg2, arg1);
2501 type = language_bool_type (exp->language_defn, exp->gdbarch);
2502 return value_from_longest (type, (LONGEST) tem);
2503 }
2504
2505 case BINOP_GEQ:
2506 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2507 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2508 if (noside == EVAL_SKIP)
2509 goto nosideret;
2510 if (binop_user_defined_p (op, arg1, arg2))
2511 {
2512 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2513 }
2514 else
2515 {
2516 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2517 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2518 type = language_bool_type (exp->language_defn, exp->gdbarch);
2519 return value_from_longest (type, (LONGEST) tem);
2520 }
2521
2522 case BINOP_LEQ:
2523 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2524 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2525 if (noside == EVAL_SKIP)
2526 goto nosideret;
2527 if (binop_user_defined_p (op, arg1, arg2))
2528 {
2529 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2530 }
2531 else
2532 {
2533 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2534 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2535 type = language_bool_type (exp->language_defn, exp->gdbarch);
2536 return value_from_longest (type, (LONGEST) tem);
2537 }
2538
2539 case BINOP_REPEAT:
2540 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2541 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2542 if (noside == EVAL_SKIP)
2543 goto nosideret;
2544 type = check_typedef (value_type (arg2));
2545 if (TYPE_CODE (type) != TYPE_CODE_INT)
2546 error (_("Non-integral right operand for \"@\" operator."));
2547 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2548 {
2549 return allocate_repeat_value (value_type (arg1),
2550 longest_to_int (value_as_long (arg2)));
2551 }
2552 else
2553 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2554
2555 case BINOP_COMMA:
2556 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2557 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2558
2559 case UNOP_PLUS:
2560 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2561 if (noside == EVAL_SKIP)
2562 goto nosideret;
2563 if (unop_user_defined_p (op, arg1))
2564 return value_x_unop (arg1, op, noside);
2565 else
2566 {
2567 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2568 return value_pos (arg1);
2569 }
2570
2571 case UNOP_NEG:
2572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2573 if (noside == EVAL_SKIP)
2574 goto nosideret;
2575 if (unop_user_defined_p (op, arg1))
2576 return value_x_unop (arg1, op, noside);
2577 else
2578 {
2579 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2580 return value_neg (arg1);
2581 }
2582
2583 case UNOP_COMPLEMENT:
2584 /* C++: check for and handle destructor names. */
2585 op = exp->elts[*pos].opcode;
2586
2587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2588 if (noside == EVAL_SKIP)
2589 goto nosideret;
2590 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2591 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2592 else
2593 {
2594 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2595 return value_complement (arg1);
2596 }
2597
2598 case UNOP_LOGICAL_NOT:
2599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2600 if (noside == EVAL_SKIP)
2601 goto nosideret;
2602 if (unop_user_defined_p (op, arg1))
2603 return value_x_unop (arg1, op, noside);
2604 else
2605 {
2606 type = language_bool_type (exp->language_defn, exp->gdbarch);
2607 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2608 }
2609
2610 case UNOP_IND:
2611 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2612 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2613 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2614 type = check_typedef (value_type (arg1));
2615 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2616 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2617 error (_("Attempt to dereference pointer "
2618 "to member without an object"));
2619 if (noside == EVAL_SKIP)
2620 goto nosideret;
2621 if (unop_user_defined_p (op, arg1))
2622 return value_x_unop (arg1, op, noside);
2623 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2624 {
2625 type = check_typedef (value_type (arg1));
2626 if (TYPE_CODE (type) == TYPE_CODE_PTR
2627 || TYPE_CODE (type) == TYPE_CODE_REF
2628 /* In C you can dereference an array to get the 1st elt. */
2629 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2630 )
2631 return value_zero (TYPE_TARGET_TYPE (type),
2632 lval_memory);
2633 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2634 /* GDB allows dereferencing an int. */
2635 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2636 lval_memory);
2637 else
2638 error (_("Attempt to take contents of a non-pointer value."));
2639 }
2640
2641 /* Allow * on an integer so we can cast it to whatever we want.
2642 This returns an int, which seems like the most C-like thing to
2643 do. "long long" variables are rare enough that
2644 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2645 if (TYPE_CODE (type) == TYPE_CODE_INT)
2646 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2647 (CORE_ADDR) value_as_address (arg1));
2648 return value_ind (arg1);
2649
2650 case UNOP_ADDR:
2651 /* C++: check for and handle pointer to members. */
2652
2653 op = exp->elts[*pos].opcode;
2654
2655 if (noside == EVAL_SKIP)
2656 {
2657 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2658 goto nosideret;
2659 }
2660 else
2661 {
2662 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2663 noside);
2664
2665 return retvalp;
2666 }
2667
2668 case UNOP_SIZEOF:
2669 if (noside == EVAL_SKIP)
2670 {
2671 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2672 goto nosideret;
2673 }
2674 return evaluate_subexp_for_sizeof (exp, pos);
2675
2676 case UNOP_CAST:
2677 (*pos) += 2;
2678 type = exp->elts[pc + 1].type;
2679 arg1 = evaluate_subexp (type, exp, pos, noside);
2680 if (noside == EVAL_SKIP)
2681 goto nosideret;
2682 if (type != value_type (arg1))
2683 arg1 = value_cast (type, arg1);
2684 return arg1;
2685
2686 case UNOP_DYNAMIC_CAST:
2687 (*pos) += 2;
2688 type = exp->elts[pc + 1].type;
2689 arg1 = evaluate_subexp (type, exp, pos, noside);
2690 if (noside == EVAL_SKIP)
2691 goto nosideret;
2692 return value_dynamic_cast (type, arg1);
2693
2694 case UNOP_REINTERPRET_CAST:
2695 (*pos) += 2;
2696 type = exp->elts[pc + 1].type;
2697 arg1 = evaluate_subexp (type, exp, pos, noside);
2698 if (noside == EVAL_SKIP)
2699 goto nosideret;
2700 return value_reinterpret_cast (type, arg1);
2701
2702 case UNOP_MEMVAL:
2703 (*pos) += 2;
2704 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2705 if (noside == EVAL_SKIP)
2706 goto nosideret;
2707 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2708 return value_zero (exp->elts[pc + 1].type, lval_memory);
2709 else
2710 return value_at_lazy (exp->elts[pc + 1].type,
2711 value_as_address (arg1));
2712
2713 case UNOP_MEMVAL_TLS:
2714 (*pos) += 3;
2715 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2716 if (noside == EVAL_SKIP)
2717 goto nosideret;
2718 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2719 return value_zero (exp->elts[pc + 2].type, lval_memory);
2720 else
2721 {
2722 CORE_ADDR tls_addr;
2723
2724 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2725 value_as_address (arg1));
2726 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2727 }
2728
2729 case UNOP_PREINCREMENT:
2730 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2731 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2732 return arg1;
2733 else if (unop_user_defined_p (op, arg1))
2734 {
2735 return value_x_unop (arg1, op, noside);
2736 }
2737 else
2738 {
2739 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2740 arg2 = value_ptradd (arg1, 1);
2741 else
2742 {
2743 struct value *tmp = arg1;
2744
2745 arg2 = value_one (value_type (arg1), not_lval);
2746 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2747 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2748 }
2749
2750 return value_assign (arg1, arg2);
2751 }
2752
2753 case UNOP_PREDECREMENT:
2754 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2755 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2756 return arg1;
2757 else if (unop_user_defined_p (op, arg1))
2758 {
2759 return value_x_unop (arg1, op, noside);
2760 }
2761 else
2762 {
2763 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2764 arg2 = value_ptradd (arg1, -1);
2765 else
2766 {
2767 struct value *tmp = arg1;
2768
2769 arg2 = value_one (value_type (arg1), not_lval);
2770 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2771 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2772 }
2773
2774 return value_assign (arg1, arg2);
2775 }
2776
2777 case UNOP_POSTINCREMENT:
2778 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2779 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2780 return arg1;
2781 else if (unop_user_defined_p (op, arg1))
2782 {
2783 return value_x_unop (arg1, op, noside);
2784 }
2785 else
2786 {
2787 arg3 = value_non_lval (arg1);
2788
2789 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2790 arg2 = value_ptradd (arg1, 1);
2791 else
2792 {
2793 struct value *tmp = arg1;
2794
2795 arg2 = value_one (value_type (arg1), not_lval);
2796 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2797 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2798 }
2799
2800 value_assign (arg1, arg2);
2801 return arg3;
2802 }
2803
2804 case UNOP_POSTDECREMENT:
2805 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2806 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2807 return arg1;
2808 else if (unop_user_defined_p (op, arg1))
2809 {
2810 return value_x_unop (arg1, op, noside);
2811 }
2812 else
2813 {
2814 arg3 = value_non_lval (arg1);
2815
2816 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2817 arg2 = value_ptradd (arg1, -1);
2818 else
2819 {
2820 struct value *tmp = arg1;
2821
2822 arg2 = value_one (value_type (arg1), not_lval);
2823 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2824 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2825 }
2826
2827 value_assign (arg1, arg2);
2828 return arg3;
2829 }
2830
2831 case OP_THIS:
2832 (*pos) += 1;
2833 return value_of_this (1);
2834
2835 case OP_OBJC_SELF:
2836 (*pos) += 1;
2837 return value_of_local ("self", 1);
2838
2839 case OP_TYPE:
2840 /* The value is not supposed to be used. This is here to make it
2841 easier to accommodate expressions that contain types. */
2842 (*pos) += 2;
2843 if (noside == EVAL_SKIP)
2844 goto nosideret;
2845 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2846 {
2847 struct type *type = exp->elts[pc + 1].type;
2848
2849 /* If this is a typedef, then find its immediate target. We
2850 use check_typedef to resolve stubs, but we ignore its
2851 result because we do not want to dig past all
2852 typedefs. */
2853 check_typedef (type);
2854 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2855 type = TYPE_TARGET_TYPE (type);
2856 return allocate_value (type);
2857 }
2858 else
2859 error (_("Attempt to use a type name as an expression"));
2860
2861 default:
2862 /* Removing this case and compiling with gcc -Wall reveals that
2863 a lot of cases are hitting this case. Some of these should
2864 probably be removed from expression.h; others are legitimate
2865 expressions which are (apparently) not fully implemented.
2866
2867 If there are any cases landing here which mean a user error,
2868 then they should be separate cases, with more descriptive
2869 error messages. */
2870
2871 error (_("GDB does not (yet) know how to "
2872 "evaluate that kind of expression"));
2873 }
2874
2875 nosideret:
2876 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2877 }
2878 \f
2879 /* Evaluate a subexpression of EXP, at index *POS,
2880 and return the address of that subexpression.
2881 Advance *POS over the subexpression.
2882 If the subexpression isn't an lvalue, get an error.
2883 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2884 then only the type of the result need be correct. */
2885
2886 static struct value *
2887 evaluate_subexp_for_address (struct expression *exp, int *pos,
2888 enum noside noside)
2889 {
2890 enum exp_opcode op;
2891 int pc;
2892 struct symbol *var;
2893 struct value *x;
2894 int tem;
2895
2896 pc = (*pos);
2897 op = exp->elts[pc].opcode;
2898
2899 switch (op)
2900 {
2901 case UNOP_IND:
2902 (*pos)++;
2903 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2904
2905 /* We can't optimize out "&*" if there's a user-defined operator*. */
2906 if (unop_user_defined_p (op, x))
2907 {
2908 x = value_x_unop (x, op, noside);
2909 goto default_case_after_eval;
2910 }
2911
2912 return coerce_array (x);
2913
2914 case UNOP_MEMVAL:
2915 (*pos) += 3;
2916 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2917 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2918
2919 case OP_VAR_VALUE:
2920 var = exp->elts[pc + 2].symbol;
2921
2922 /* C++: The "address" of a reference should yield the address
2923 * of the object pointed to. Let value_addr() deal with it. */
2924 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2925 goto default_case;
2926
2927 (*pos) += 4;
2928 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2929 {
2930 struct type *type =
2931 lookup_pointer_type (SYMBOL_TYPE (var));
2932 enum address_class sym_class = SYMBOL_CLASS (var);
2933
2934 if (sym_class == LOC_CONST
2935 || sym_class == LOC_CONST_BYTES
2936 || sym_class == LOC_REGISTER)
2937 error (_("Attempt to take address of register or constant."));
2938
2939 return
2940 value_zero (type, not_lval);
2941 }
2942 else
2943 return address_of_variable (var, exp->elts[pc + 1].block);
2944
2945 case OP_SCOPE:
2946 tem = longest_to_int (exp->elts[pc + 2].longconst);
2947 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2948 x = value_aggregate_elt (exp->elts[pc + 1].type,
2949 &exp->elts[pc + 3].string,
2950 NULL, 1, noside);
2951 if (x == NULL)
2952 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2953 return x;
2954
2955 default:
2956 default_case:
2957 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2958 default_case_after_eval:
2959 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2960 {
2961 struct type *type = check_typedef (value_type (x));
2962
2963 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2964 return value_zero (lookup_pointer_type (value_type (x)),
2965 not_lval);
2966 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2967 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2968 not_lval);
2969 else
2970 error (_("Attempt to take address of "
2971 "value not located in memory."));
2972 }
2973 return value_addr (x);
2974 }
2975 }
2976
2977 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2978 When used in contexts where arrays will be coerced anyway, this is
2979 equivalent to `evaluate_subexp' but much faster because it avoids
2980 actually fetching array contents (perhaps obsolete now that we have
2981 value_lazy()).
2982
2983 Note that we currently only do the coercion for C expressions, where
2984 arrays are zero based and the coercion is correct. For other languages,
2985 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2986 to decide if coercion is appropriate. */
2987
2988 struct value *
2989 evaluate_subexp_with_coercion (struct expression *exp,
2990 int *pos, enum noside noside)
2991 {
2992 enum exp_opcode op;
2993 int pc;
2994 struct value *val;
2995 struct symbol *var;
2996 struct type *type;
2997
2998 pc = (*pos);
2999 op = exp->elts[pc].opcode;
3000
3001 switch (op)
3002 {
3003 case OP_VAR_VALUE:
3004 var = exp->elts[pc + 2].symbol;
3005 type = check_typedef (SYMBOL_TYPE (var));
3006 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3007 && !TYPE_VECTOR (type)
3008 && CAST_IS_CONVERSION (exp->language_defn))
3009 {
3010 (*pos) += 4;
3011 val = address_of_variable (var, exp->elts[pc + 1].block);
3012 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3013 val);
3014 }
3015 /* FALLTHROUGH */
3016
3017 default:
3018 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3019 }
3020 }
3021
3022 /* Evaluate a subexpression of EXP, at index *POS,
3023 and return a value for the size of that subexpression.
3024 Advance *POS over the subexpression. */
3025
3026 static struct value *
3027 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
3028 {
3029 /* FIXME: This should be size_t. */
3030 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3031 enum exp_opcode op;
3032 int pc;
3033 struct type *type;
3034 struct value *val;
3035
3036 pc = (*pos);
3037 op = exp->elts[pc].opcode;
3038
3039 switch (op)
3040 {
3041 /* This case is handled specially
3042 so that we avoid creating a value for the result type.
3043 If the result type is very big, it's desirable not to
3044 create a value unnecessarily. */
3045 case UNOP_IND:
3046 (*pos)++;
3047 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3048 type = check_typedef (value_type (val));
3049 if (TYPE_CODE (type) != TYPE_CODE_PTR
3050 && TYPE_CODE (type) != TYPE_CODE_REF
3051 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3052 error (_("Attempt to take contents of a non-pointer value."));
3053 type = check_typedef (TYPE_TARGET_TYPE (type));
3054 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3055
3056 case UNOP_MEMVAL:
3057 (*pos) += 3;
3058 type = check_typedef (exp->elts[pc + 1].type);
3059 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3060
3061 case OP_VAR_VALUE:
3062 (*pos) += 4;
3063 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
3064 return
3065 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3066
3067 default:
3068 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3069 return value_from_longest (size_type,
3070 (LONGEST) TYPE_LENGTH (value_type (val)));
3071 }
3072 }
3073
3074 /* Parse a type expression in the string [P..P+LENGTH). */
3075
3076 struct type *
3077 parse_and_eval_type (char *p, int length)
3078 {
3079 char *tmp = (char *) alloca (length + 4);
3080 struct expression *expr;
3081
3082 tmp[0] = '(';
3083 memcpy (tmp + 1, p, length);
3084 tmp[length + 1] = ')';
3085 tmp[length + 2] = '0';
3086 tmp[length + 3] = '\0';
3087 expr = parse_expression (tmp);
3088 if (expr->elts[0].opcode != UNOP_CAST)
3089 error (_("Internal error in eval_type."));
3090 return expr->elts[1].type;
3091 }
3092
3093 int
3094 calc_f77_array_dims (struct type *array_type)
3095 {
3096 int ndimen = 1;
3097 struct type *tmp_type;
3098
3099 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3100 error (_("Can't get dimensions for a non-array type"));
3101
3102 tmp_type = array_type;
3103
3104 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3105 {
3106 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3107 ++ndimen;
3108 }
3109 return ndimen;
3110 }
This page took 0.11124 seconds and 4 git commands to generate.