[gdb] Fix more typos in comments
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "regcache.h"
38 #include "user-regs.h"
39 #include "valprint.h"
40 #include "gdb_obstack.h"
41 #include "objfiles.h"
42 #include "typeprint.h"
43 #include <ctype.h>
44
45 /* Prototypes for local functions. */
46
47 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
48 enum noside);
49
50 static struct value *evaluate_subexp_for_address (struct expression *,
51 int *, enum noside);
52
53 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
54 enum noside noside,
55 struct type *type);
56
57 static struct value *evaluate_struct_tuple (struct value *,
58 struct expression *, int *,
59 enum noside, int);
60
61 static LONGEST init_array_element (struct value *, struct value *,
62 struct expression *, int *, enum noside,
63 LONGEST, LONGEST);
64
65 struct value *
66 evaluate_subexp (struct type *expect_type, struct expression *exp,
67 int *pos, enum noside noside)
68 {
69 struct value *retval;
70
71 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
72 if (*pos == 0 && target_has_execution
73 && exp->language_defn->la_language == language_cplus
74 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
75 stack_temporaries.emplace (inferior_thread ());
76
77 retval = (*exp->language_defn->la_exp_desc->evaluate_exp)
78 (expect_type, exp, pos, noside);
79
80 if (stack_temporaries.has_value ()
81 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
82 retval = value_non_lval (retval);
83
84 return retval;
85 }
86 \f
87 /* Parse the string EXP as a C expression, evaluate it,
88 and return the result as a number. */
89
90 CORE_ADDR
91 parse_and_eval_address (const char *exp)
92 {
93 expression_up expr = parse_expression (exp);
94
95 return value_as_address (evaluate_expression (expr.get ()));
96 }
97
98 /* Like parse_and_eval_address, but treats the value of the expression
99 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
100 LONGEST
101 parse_and_eval_long (const char *exp)
102 {
103 expression_up expr = parse_expression (exp);
104
105 return value_as_long (evaluate_expression (expr.get ()));
106 }
107
108 struct value *
109 parse_and_eval (const char *exp)
110 {
111 expression_up expr = parse_expression (exp);
112
113 return evaluate_expression (expr.get ());
114 }
115
116 /* Parse up to a comma (or to a closeparen)
117 in the string EXPP as an expression, evaluate it, and return the value.
118 EXPP is advanced to point to the comma. */
119
120 struct value *
121 parse_to_comma_and_eval (const char **expp)
122 {
123 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
124
125 return evaluate_expression (expr.get ());
126 }
127 \f
128 /* Evaluate an expression in internal prefix form
129 such as is constructed by parse.y.
130
131 See expression.h for info on the format of an expression. */
132
133 struct value *
134 evaluate_expression (struct expression *exp)
135 {
136 int pc = 0;
137
138 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
139 }
140
141 /* Evaluate an expression, avoiding all memory references
142 and getting a value whose type alone is correct. */
143
144 struct value *
145 evaluate_type (struct expression *exp)
146 {
147 int pc = 0;
148
149 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
150 }
151
152 /* Evaluate a subexpression, avoiding all memory references and
153 getting a value whose type alone is correct. */
154
155 struct value *
156 evaluate_subexpression_type (struct expression *exp, int subexp)
157 {
158 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
159 }
160
161 /* Find the current value of a watchpoint on EXP. Return the value in
162 *VALP and *RESULTP and the chain of intermediate and final values
163 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
164 not need them.
165
166 If PRESERVE_ERRORS is true, then exceptions are passed through.
167 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
168 occurs while evaluating the expression, *RESULTP will be set to
169 NULL. *RESULTP may be a lazy value, if the result could not be
170 read from memory. It is used to determine whether a value is
171 user-specified (we should watch the whole value) or intermediate
172 (we should watch only the bit used to locate the final value).
173
174 If the final value, or any intermediate value, could not be read
175 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
176 set to any referenced values. *VALP will never be a lazy value.
177 This is the value which we store in struct breakpoint.
178
179 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
180 released from the value chain. If VAL_CHAIN is NULL, all generated
181 values will be left on the value chain. */
182
183 void
184 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
185 struct value **resultp,
186 std::vector<value_ref_ptr> *val_chain,
187 int preserve_errors)
188 {
189 struct value *mark, *new_mark, *result;
190
191 *valp = NULL;
192 if (resultp)
193 *resultp = NULL;
194 if (val_chain)
195 val_chain->clear ();
196
197 /* Evaluate the expression. */
198 mark = value_mark ();
199 result = NULL;
200
201 try
202 {
203 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
204 }
205 catch (const gdb_exception &ex)
206 {
207 /* Ignore memory errors if we want watchpoints pointing at
208 inaccessible memory to still be created; otherwise, throw the
209 error to some higher catcher. */
210 switch (ex.error)
211 {
212 case MEMORY_ERROR:
213 if (!preserve_errors)
214 break;
215 /* Fall through. */
216 default:
217 throw;
218 break;
219 }
220 }
221
222 new_mark = value_mark ();
223 if (mark == new_mark)
224 return;
225 if (resultp)
226 *resultp = result;
227
228 /* Make sure it's not lazy, so that after the target stops again we
229 have a non-lazy previous value to compare with. */
230 if (result != NULL)
231 {
232 if (!value_lazy (result))
233 *valp = result;
234 else
235 {
236
237 try
238 {
239 value_fetch_lazy (result);
240 *valp = result;
241 }
242 catch (const gdb_exception_error &except)
243 {
244 }
245 }
246 }
247
248 if (val_chain)
249 {
250 /* Return the chain of intermediate values. We use this to
251 decide which addresses to watch. */
252 *val_chain = value_release_to_mark (mark);
253 }
254 }
255
256 /* Extract a field operation from an expression. If the subexpression
257 of EXP starting at *SUBEXP is not a structure dereference
258 operation, return NULL. Otherwise, return the name of the
259 dereferenced field, and advance *SUBEXP to point to the
260 subexpression of the left-hand-side of the dereference. This is
261 used when completing field names. */
262
263 const char *
264 extract_field_op (struct expression *exp, int *subexp)
265 {
266 int tem;
267 char *result;
268
269 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
270 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
271 return NULL;
272 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
273 result = &exp->elts[*subexp + 2].string;
274 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
275 return result;
276 }
277
278 /* This function evaluates brace-initializers (in C/C++) for
279 structure types. */
280
281 static struct value *
282 evaluate_struct_tuple (struct value *struct_val,
283 struct expression *exp,
284 int *pos, enum noside noside, int nargs)
285 {
286 struct type *struct_type = check_typedef (value_type (struct_val));
287 struct type *field_type;
288 int fieldno = -1;
289
290 while (--nargs >= 0)
291 {
292 struct value *val = NULL;
293 int bitpos, bitsize;
294 bfd_byte *addr;
295
296 fieldno++;
297 /* Skip static fields. */
298 while (fieldno < TYPE_NFIELDS (struct_type)
299 && field_is_static (&TYPE_FIELD (struct_type,
300 fieldno)))
301 fieldno++;
302 if (fieldno >= TYPE_NFIELDS (struct_type))
303 error (_("too many initializers"));
304 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
305 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
306 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
307 error (_("don't know which variant you want to set"));
308
309 /* Here, struct_type is the type of the inner struct,
310 while substruct_type is the type of the inner struct.
311 These are the same for normal structures, but a variant struct
312 contains anonymous union fields that contain substruct fields.
313 The value fieldno is the index of the top-level (normal or
314 anonymous union) field in struct_field, while the value
315 subfieldno is the index of the actual real (named inner) field
316 in substruct_type. */
317
318 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
319 if (val == 0)
320 val = evaluate_subexp (field_type, exp, pos, noside);
321
322 /* Now actually set the field in struct_val. */
323
324 /* Assign val to field fieldno. */
325 if (value_type (val) != field_type)
326 val = value_cast (field_type, val);
327
328 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
329 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
330 addr = value_contents_writeable (struct_val) + bitpos / 8;
331 if (bitsize)
332 modify_field (struct_type, addr,
333 value_as_long (val), bitpos % 8, bitsize);
334 else
335 memcpy (addr, value_contents (val),
336 TYPE_LENGTH (value_type (val)));
337
338 }
339 return struct_val;
340 }
341
342 /* Recursive helper function for setting elements of array tuples.
343 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
344 element value is ELEMENT; EXP, POS and NOSIDE are as usual.
345 Evaluates index expresions and sets the specified element(s) of
346 ARRAY to ELEMENT. Returns last index value. */
347
348 static LONGEST
349 init_array_element (struct value *array, struct value *element,
350 struct expression *exp, int *pos,
351 enum noside noside, LONGEST low_bound, LONGEST high_bound)
352 {
353 LONGEST index;
354 int element_size = TYPE_LENGTH (value_type (element));
355
356 if (exp->elts[*pos].opcode == BINOP_COMMA)
357 {
358 (*pos)++;
359 init_array_element (array, element, exp, pos, noside,
360 low_bound, high_bound);
361 return init_array_element (array, element,
362 exp, pos, noside, low_bound, high_bound);
363 }
364 else
365 {
366 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
367 if (index < low_bound || index > high_bound)
368 error (_("tuple index out of range"));
369 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
370 value_contents (element), element_size);
371 }
372 return index;
373 }
374
375 static struct value *
376 value_f90_subarray (struct value *array,
377 struct expression *exp, int *pos, enum noside noside)
378 {
379 int pc = (*pos) + 1;
380 LONGEST low_bound, high_bound;
381 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
382 enum range_type range_type
383 = (enum range_type) longest_to_int (exp->elts[pc].longconst);
384
385 *pos += 3;
386
387 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
388 low_bound = TYPE_LOW_BOUND (range);
389 else
390 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
391
392 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
393 high_bound = TYPE_HIGH_BOUND (range);
394 else
395 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
396
397 return value_slice (array, low_bound, high_bound - low_bound + 1);
398 }
399
400
401 /* Promote value ARG1 as appropriate before performing a unary operation
402 on this argument.
403 If the result is not appropriate for any particular language then it
404 needs to patch this function. */
405
406 void
407 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
408 struct value **arg1)
409 {
410 struct type *type1;
411
412 *arg1 = coerce_ref (*arg1);
413 type1 = check_typedef (value_type (*arg1));
414
415 if (is_integral_type (type1))
416 {
417 switch (language->la_language)
418 {
419 default:
420 /* Perform integral promotion for ANSI C/C++.
421 If not appropriate for any particular language
422 it needs to modify this function. */
423 {
424 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
425
426 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
427 *arg1 = value_cast (builtin_int, *arg1);
428 }
429 break;
430 }
431 }
432 }
433
434 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
435 operation on those two operands.
436 If the result is not appropriate for any particular language then it
437 needs to patch this function. */
438
439 void
440 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
441 struct value **arg1, struct value **arg2)
442 {
443 struct type *promoted_type = NULL;
444 struct type *type1;
445 struct type *type2;
446
447 *arg1 = coerce_ref (*arg1);
448 *arg2 = coerce_ref (*arg2);
449
450 type1 = check_typedef (value_type (*arg1));
451 type2 = check_typedef (value_type (*arg2));
452
453 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
454 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
455 && !is_integral_type (type1))
456 || (TYPE_CODE (type2) != TYPE_CODE_FLT
457 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
458 && !is_integral_type (type2)))
459 return;
460
461 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
462 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
463 {
464 /* No promotion required. */
465 }
466 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
467 || TYPE_CODE (type2) == TYPE_CODE_FLT)
468 {
469 switch (language->la_language)
470 {
471 case language_c:
472 case language_cplus:
473 case language_asm:
474 case language_objc:
475 case language_opencl:
476 /* No promotion required. */
477 break;
478
479 default:
480 /* For other languages the result type is unchanged from gdb
481 version 6.7 for backward compatibility.
482 If either arg was long double, make sure that value is also long
483 double. Otherwise use double. */
484 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
485 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
486 promoted_type = builtin_type (gdbarch)->builtin_long_double;
487 else
488 promoted_type = builtin_type (gdbarch)->builtin_double;
489 break;
490 }
491 }
492 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
493 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
494 {
495 /* No promotion required. */
496 }
497 else
498 /* Integral operations here. */
499 /* FIXME: Also mixed integral/booleans, with result an integer. */
500 {
501 const struct builtin_type *builtin = builtin_type (gdbarch);
502 unsigned int promoted_len1 = TYPE_LENGTH (type1);
503 unsigned int promoted_len2 = TYPE_LENGTH (type2);
504 int is_unsigned1 = TYPE_UNSIGNED (type1);
505 int is_unsigned2 = TYPE_UNSIGNED (type2);
506 unsigned int result_len;
507 int unsigned_operation;
508
509 /* Determine type length and signedness after promotion for
510 both operands. */
511 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
512 {
513 is_unsigned1 = 0;
514 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
515 }
516 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
517 {
518 is_unsigned2 = 0;
519 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
520 }
521
522 if (promoted_len1 > promoted_len2)
523 {
524 unsigned_operation = is_unsigned1;
525 result_len = promoted_len1;
526 }
527 else if (promoted_len2 > promoted_len1)
528 {
529 unsigned_operation = is_unsigned2;
530 result_len = promoted_len2;
531 }
532 else
533 {
534 unsigned_operation = is_unsigned1 || is_unsigned2;
535 result_len = promoted_len1;
536 }
537
538 switch (language->la_language)
539 {
540 case language_c:
541 case language_cplus:
542 case language_asm:
543 case language_objc:
544 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
545 {
546 promoted_type = (unsigned_operation
547 ? builtin->builtin_unsigned_int
548 : builtin->builtin_int);
549 }
550 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
551 {
552 promoted_type = (unsigned_operation
553 ? builtin->builtin_unsigned_long
554 : builtin->builtin_long);
555 }
556 else
557 {
558 promoted_type = (unsigned_operation
559 ? builtin->builtin_unsigned_long_long
560 : builtin->builtin_long_long);
561 }
562 break;
563 case language_opencl:
564 if (result_len <= TYPE_LENGTH (lookup_signed_typename
565 (language, gdbarch, "int")))
566 {
567 promoted_type =
568 (unsigned_operation
569 ? lookup_unsigned_typename (language, gdbarch, "int")
570 : lookup_signed_typename (language, gdbarch, "int"));
571 }
572 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
573 (language, gdbarch, "long")))
574 {
575 promoted_type =
576 (unsigned_operation
577 ? lookup_unsigned_typename (language, gdbarch, "long")
578 : lookup_signed_typename (language, gdbarch,"long"));
579 }
580 break;
581 default:
582 /* For other languages the result type is unchanged from gdb
583 version 6.7 for backward compatibility.
584 If either arg was long long, make sure that value is also long
585 long. Otherwise use long. */
586 if (unsigned_operation)
587 {
588 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
589 promoted_type = builtin->builtin_unsigned_long_long;
590 else
591 promoted_type = builtin->builtin_unsigned_long;
592 }
593 else
594 {
595 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
596 promoted_type = builtin->builtin_long_long;
597 else
598 promoted_type = builtin->builtin_long;
599 }
600 break;
601 }
602 }
603
604 if (promoted_type)
605 {
606 /* Promote both operands to common type. */
607 *arg1 = value_cast (promoted_type, *arg1);
608 *arg2 = value_cast (promoted_type, *arg2);
609 }
610 }
611
612 static int
613 ptrmath_type_p (const struct language_defn *lang, struct type *type)
614 {
615 type = check_typedef (type);
616 if (TYPE_IS_REFERENCE (type))
617 type = TYPE_TARGET_TYPE (type);
618
619 switch (TYPE_CODE (type))
620 {
621 case TYPE_CODE_PTR:
622 case TYPE_CODE_FUNC:
623 return 1;
624
625 case TYPE_CODE_ARRAY:
626 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
627
628 default:
629 return 0;
630 }
631 }
632
633 /* Represents a fake method with the given parameter types. This is
634 used by the parser to construct a temporary "expected" type for
635 method overload resolution. FLAGS is used as instance flags of the
636 new type, in order to be able to make the new type represent a
637 const/volatile overload. */
638
639 class fake_method
640 {
641 public:
642 fake_method (type_instance_flags flags,
643 int num_types, struct type **param_types);
644 ~fake_method ();
645
646 /* The constructed type. */
647 struct type *type () { return &m_type; }
648
649 private:
650 struct type m_type {};
651 main_type m_main_type {};
652 };
653
654 fake_method::fake_method (type_instance_flags flags,
655 int num_types, struct type **param_types)
656 {
657 struct type *type = &m_type;
658
659 TYPE_MAIN_TYPE (type) = &m_main_type;
660 TYPE_LENGTH (type) = 1;
661 TYPE_CODE (type) = TYPE_CODE_METHOD;
662 TYPE_CHAIN (type) = type;
663 TYPE_INSTANCE_FLAGS (type) = flags;
664 if (num_types > 0)
665 {
666 if (param_types[num_types - 1] == NULL)
667 {
668 --num_types;
669 TYPE_VARARGS (type) = 1;
670 }
671 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
672 == TYPE_CODE_VOID)
673 {
674 --num_types;
675 /* Caller should have ensured this. */
676 gdb_assert (num_types == 0);
677 TYPE_PROTOTYPED (type) = 1;
678 }
679 }
680
681 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
682 neither an objfile nor a gdbarch. As a result we must manually
683 allocate memory for auxiliary fields, and free the memory ourselves
684 when we are done with it. */
685 TYPE_NFIELDS (type) = num_types;
686 TYPE_FIELDS (type) = (struct field *)
687 xzalloc (sizeof (struct field) * num_types);
688
689 while (num_types-- > 0)
690 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
691 }
692
693 fake_method::~fake_method ()
694 {
695 xfree (TYPE_FIELDS (&m_type));
696 }
697
698 /* Helper for evaluating an OP_VAR_VALUE. */
699
700 value *
701 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
702 {
703 /* JYG: We used to just return value_zero of the symbol type if
704 we're asked to avoid side effects. Otherwise we return
705 value_of_variable (...). However I'm not sure if
706 value_of_variable () has any side effect. We need a full value
707 object returned here for whatis_exp () to call evaluate_type ()
708 and then pass the full value to value_rtti_target_type () if we
709 are dealing with a pointer or reference to a base class and print
710 object is on. */
711
712 struct value *ret = NULL;
713
714 try
715 {
716 ret = value_of_variable (var, blk);
717 }
718
719 catch (const gdb_exception_error &except)
720 {
721 if (noside != EVAL_AVOID_SIDE_EFFECTS)
722 throw;
723
724 ret = value_zero (SYMBOL_TYPE (var), not_lval);
725 }
726
727 return ret;
728 }
729
730 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
731
732 value *
733 evaluate_var_msym_value (enum noside noside,
734 struct objfile *objfile, minimal_symbol *msymbol)
735 {
736 CORE_ADDR address;
737 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
738
739 if (noside == EVAL_AVOID_SIDE_EFFECTS && !TYPE_GNU_IFUNC (the_type))
740 return value_zero (the_type, not_lval);
741 else
742 return value_at_lazy (the_type, address);
743 }
744
745 /* Helper for returning a value when handling EVAL_SKIP. */
746
747 value *
748 eval_skip_value (expression *exp)
749 {
750 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
751 }
752
753 /* Evaluate a function call. The function to be called is in
754 ARGVEC[0] and the arguments passed to the function are in
755 ARGVEC[1..NARGS]. FUNCTION_NAME is the name of the function, if
756 known. DEFAULT_RETURN_TYPE is used as the function's return type
757 if the return type is unknown. */
758
759 static value *
760 eval_call (expression *exp, enum noside noside,
761 int nargs, value **argvec,
762 const char *function_name,
763 type *default_return_type)
764 {
765 if (argvec[0] == NULL)
766 error (_("Cannot evaluate function -- may be inlined"));
767 if (noside == EVAL_AVOID_SIDE_EFFECTS)
768 {
769 /* If the return type doesn't look like a function type,
770 call an error. This can happen if somebody tries to turn
771 a variable into a function call. */
772
773 type *ftype = value_type (argvec[0]);
774
775 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
776 {
777 /* We don't know anything about what the internal
778 function might return, but we have to return
779 something. */
780 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
781 not_lval);
782 }
783 else if (TYPE_CODE (ftype) == TYPE_CODE_XMETHOD)
784 {
785 type *return_type
786 = result_type_of_xmethod (argvec[0],
787 gdb::make_array_view (argvec + 1,
788 nargs));
789
790 if (return_type == NULL)
791 error (_("Xmethod is missing return type."));
792 return value_zero (return_type, not_lval);
793 }
794 else if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
795 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
796 {
797 if (TYPE_GNU_IFUNC (ftype))
798 {
799 CORE_ADDR address = value_address (argvec[0]);
800 type *resolved_type = find_gnu_ifunc_target_type (address);
801
802 if (resolved_type != NULL)
803 ftype = resolved_type;
804 }
805
806 type *return_type = TYPE_TARGET_TYPE (ftype);
807
808 if (return_type == NULL)
809 return_type = default_return_type;
810
811 if (return_type == NULL)
812 error_call_unknown_return_type (function_name);
813
814 return allocate_value (return_type);
815 }
816 else
817 error (_("Expression of type other than "
818 "\"Function returning ...\" used as function"));
819 }
820 switch (TYPE_CODE (value_type (argvec[0])))
821 {
822 case TYPE_CODE_INTERNAL_FUNCTION:
823 return call_internal_function (exp->gdbarch, exp->language_defn,
824 argvec[0], nargs, argvec + 1);
825 case TYPE_CODE_XMETHOD:
826 return call_xmethod (argvec[0], gdb::make_array_view (argvec + 1, nargs));
827 default:
828 return call_function_by_hand (argvec[0], default_return_type,
829 gdb::make_array_view (argvec + 1, nargs));
830 }
831 }
832
833 /* Helper for evaluating an OP_FUNCALL. */
834
835 static value *
836 evaluate_funcall (type *expect_type, expression *exp, int *pos,
837 enum noside noside)
838 {
839 int tem;
840 int pc2 = 0;
841 value *arg1 = NULL;
842 value *arg2 = NULL;
843 int save_pos1;
844 symbol *function = NULL;
845 char *function_name = NULL;
846 const char *var_func_name = NULL;
847
848 int pc = (*pos);
849 (*pos) += 2;
850
851 exp_opcode op = exp->elts[*pos].opcode;
852 int nargs = longest_to_int (exp->elts[pc].longconst);
853 /* Allocate arg vector, including space for the function to be
854 called in argvec[0], a potential `this', and a terminating
855 NULL. */
856 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
857 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
858 {
859 /* First, evaluate the structure into arg2. */
860 pc2 = (*pos)++;
861
862 if (op == STRUCTOP_MEMBER)
863 {
864 arg2 = evaluate_subexp_for_address (exp, pos, noside);
865 }
866 else
867 {
868 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
869 }
870
871 /* If the function is a virtual function, then the aggregate
872 value (providing the structure) plays its part by providing
873 the vtable. Otherwise, it is just along for the ride: call
874 the function directly. */
875
876 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
877
878 type *a1_type = check_typedef (value_type (arg1));
879 if (noside == EVAL_SKIP)
880 tem = 1; /* Set it to the right arg index so that all
881 arguments can also be skipped. */
882 else if (TYPE_CODE (a1_type) == TYPE_CODE_METHODPTR)
883 {
884 if (noside == EVAL_AVOID_SIDE_EFFECTS)
885 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
886 else
887 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
888
889 /* Now, say which argument to start evaluating from. */
890 nargs++;
891 tem = 2;
892 argvec[1] = arg2;
893 }
894 else if (TYPE_CODE (a1_type) == TYPE_CODE_MEMBERPTR)
895 {
896 struct type *type_ptr
897 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
898 struct type *target_type_ptr
899 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
900
901 /* Now, convert these values to an address. */
902 arg2 = value_cast (type_ptr, arg2);
903
904 long mem_offset = value_as_long (arg1);
905
906 arg1 = value_from_pointer (target_type_ptr,
907 value_as_long (arg2) + mem_offset);
908 arg1 = value_ind (arg1);
909 tem = 1;
910 }
911 else
912 error (_("Non-pointer-to-member value used in pointer-to-member "
913 "construct"));
914 }
915 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
916 {
917 /* Hair for method invocations. */
918 int tem2;
919
920 nargs++;
921 /* First, evaluate the structure into arg2. */
922 pc2 = (*pos)++;
923 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
924 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
925
926 if (op == STRUCTOP_STRUCT)
927 {
928 /* If v is a variable in a register, and the user types
929 v.method (), this will produce an error, because v has no
930 address.
931
932 A possible way around this would be to allocate a copy of
933 the variable on the stack, copy in the contents, call the
934 function, and copy out the contents. I.e. convert this
935 from call by reference to call by copy-return (or
936 whatever it's called). However, this does not work
937 because it is not the same: the method being called could
938 stash a copy of the address, and then future uses through
939 that address (after the method returns) would be expected
940 to use the variable itself, not some copy of it. */
941 arg2 = evaluate_subexp_for_address (exp, pos, noside);
942 }
943 else
944 {
945 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
946
947 /* Check to see if the operator '->' has been overloaded.
948 If the operator has been overloaded replace arg2 with the
949 value returned by the custom operator and continue
950 evaluation. */
951 while (unop_user_defined_p (op, arg2))
952 {
953 struct value *value = NULL;
954 try
955 {
956 value = value_x_unop (arg2, op, noside);
957 }
958
959 catch (const gdb_exception_error &except)
960 {
961 if (except.error == NOT_FOUND_ERROR)
962 break;
963 else
964 throw;
965 }
966
967 arg2 = value;
968 }
969 }
970 /* Now, say which argument to start evaluating from. */
971 tem = 2;
972 }
973 else if (op == OP_SCOPE
974 && overload_resolution
975 && (exp->language_defn->la_language == language_cplus))
976 {
977 /* Unpack it locally so we can properly handle overload
978 resolution. */
979 char *name;
980 int local_tem;
981
982 pc2 = (*pos)++;
983 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
984 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
985 struct type *type = exp->elts[pc2 + 1].type;
986 name = &exp->elts[pc2 + 3].string;
987
988 function = NULL;
989 function_name = NULL;
990 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
991 {
992 function = cp_lookup_symbol_namespace (TYPE_NAME (type),
993 name,
994 get_selected_block (0),
995 VAR_DOMAIN).symbol;
996 if (function == NULL)
997 error (_("No symbol \"%s\" in namespace \"%s\"."),
998 name, TYPE_NAME (type));
999
1000 tem = 1;
1001 /* arg2 is left as NULL on purpose. */
1002 }
1003 else
1004 {
1005 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1006 || TYPE_CODE (type) == TYPE_CODE_UNION);
1007 function_name = name;
1008
1009 /* We need a properly typed value for method lookup. For
1010 static methods arg2 is otherwise unused. */
1011 arg2 = value_zero (type, lval_memory);
1012 ++nargs;
1013 tem = 2;
1014 }
1015 }
1016 else if (op == OP_ADL_FUNC)
1017 {
1018 /* Save the function position and move pos so that the arguments
1019 can be evaluated. */
1020 int func_name_len;
1021
1022 save_pos1 = *pos;
1023 tem = 1;
1024
1025 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1026 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1027 }
1028 else
1029 {
1030 /* Non-method function call. */
1031 save_pos1 = *pos;
1032 tem = 1;
1033
1034 /* If this is a C++ function wait until overload resolution. */
1035 if (op == OP_VAR_VALUE
1036 && overload_resolution
1037 && (exp->language_defn->la_language == language_cplus))
1038 {
1039 (*pos) += 4; /* Skip the evaluation of the symbol. */
1040 argvec[0] = NULL;
1041 }
1042 else
1043 {
1044 if (op == OP_VAR_MSYM_VALUE)
1045 {
1046 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
1047 var_func_name = MSYMBOL_PRINT_NAME (msym);
1048 }
1049 else if (op == OP_VAR_VALUE)
1050 {
1051 symbol *sym = exp->elts[*pos + 2].symbol;
1052 var_func_name = SYMBOL_PRINT_NAME (sym);
1053 }
1054
1055 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1056 type *type = value_type (argvec[0]);
1057 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1058 type = TYPE_TARGET_TYPE (type);
1059 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1060 {
1061 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1062 {
1063 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1064 tem - 1),
1065 exp, pos, noside);
1066 }
1067 }
1068 }
1069 }
1070
1071 /* Evaluate arguments (if not already done, e.g., namespace::func()
1072 and overload-resolution is off). */
1073 for (; tem <= nargs; tem++)
1074 {
1075 /* Ensure that array expressions are coerced into pointer
1076 objects. */
1077 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1078 }
1079
1080 /* Signal end of arglist. */
1081 argvec[tem] = 0;
1082
1083 if (noside == EVAL_SKIP)
1084 return eval_skip_value (exp);
1085
1086 if (op == OP_ADL_FUNC)
1087 {
1088 struct symbol *symp;
1089 char *func_name;
1090 int name_len;
1091 int string_pc = save_pos1 + 3;
1092
1093 /* Extract the function name. */
1094 name_len = longest_to_int (exp->elts[string_pc].longconst);
1095 func_name = (char *) alloca (name_len + 1);
1096 strcpy (func_name, &exp->elts[string_pc + 1].string);
1097
1098 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1099 func_name,
1100 NON_METHOD, /* not method */
1101 NULL, NULL, /* pass NULL symbol since
1102 symbol is unknown */
1103 NULL, &symp, NULL, 0, noside);
1104
1105 /* Now fix the expression being evaluated. */
1106 exp->elts[save_pos1 + 2].symbol = symp;
1107 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1108 }
1109
1110 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1111 || (op == OP_SCOPE && function_name != NULL))
1112 {
1113 int static_memfuncp;
1114 char *tstr;
1115
1116 /* Method invocation: stuff "this" as first parameter. If the
1117 method turns out to be static we undo this below. */
1118 argvec[1] = arg2;
1119
1120 if (op != OP_SCOPE)
1121 {
1122 /* Name of method from expression. */
1123 tstr = &exp->elts[pc2 + 2].string;
1124 }
1125 else
1126 tstr = function_name;
1127
1128 if (overload_resolution && (exp->language_defn->la_language
1129 == language_cplus))
1130 {
1131 /* Language is C++, do some overload resolution before
1132 evaluation. */
1133 struct value *valp = NULL;
1134
1135 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1136 tstr,
1137 METHOD, /* method */
1138 &arg2, /* the object */
1139 NULL, &valp, NULL,
1140 &static_memfuncp, 0, noside);
1141
1142 if (op == OP_SCOPE && !static_memfuncp)
1143 {
1144 /* For the time being, we don't handle this. */
1145 error (_("Call to overloaded function %s requires "
1146 "`this' pointer"),
1147 function_name);
1148 }
1149 argvec[1] = arg2; /* the ``this'' pointer */
1150 argvec[0] = valp; /* Use the method found after overload
1151 resolution. */
1152 }
1153 else
1154 /* Non-C++ case -- or no overload resolution. */
1155 {
1156 struct value *temp = arg2;
1157
1158 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1159 &static_memfuncp,
1160 op == STRUCTOP_STRUCT
1161 ? "structure" : "structure pointer");
1162 /* value_struct_elt updates temp with the correct value of
1163 the ``this'' pointer if necessary, so modify argvec[1] to
1164 reflect any ``this'' changes. */
1165 arg2
1166 = value_from_longest (lookup_pointer_type(value_type (temp)),
1167 value_address (temp)
1168 + value_embedded_offset (temp));
1169 argvec[1] = arg2; /* the ``this'' pointer */
1170 }
1171
1172 /* Take out `this' if needed. */
1173 if (static_memfuncp)
1174 {
1175 argvec[1] = argvec[0];
1176 nargs--;
1177 argvec++;
1178 }
1179 }
1180 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1181 {
1182 /* Pointer to member. argvec[1] is already set up. */
1183 argvec[0] = arg1;
1184 }
1185 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1186 {
1187 /* Non-member function being called. */
1188 /* fn: This can only be done for C++ functions. A C-style
1189 function in a C++ program, for instance, does not have the
1190 fields that are expected here. */
1191
1192 if (overload_resolution && (exp->language_defn->la_language
1193 == language_cplus))
1194 {
1195 /* Language is C++, do some overload resolution before
1196 evaluation. */
1197 struct symbol *symp;
1198 int no_adl = 0;
1199
1200 /* If a scope has been specified disable ADL. */
1201 if (op == OP_SCOPE)
1202 no_adl = 1;
1203
1204 if (op == OP_VAR_VALUE)
1205 function = exp->elts[save_pos1+2].symbol;
1206
1207 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1208 NULL, /* no need for name */
1209 NON_METHOD, /* not method */
1210 NULL, function, /* the function */
1211 NULL, &symp, NULL, no_adl, noside);
1212
1213 if (op == OP_VAR_VALUE)
1214 {
1215 /* Now fix the expression being evaluated. */
1216 exp->elts[save_pos1+2].symbol = symp;
1217 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1218 noside);
1219 }
1220 else
1221 argvec[0] = value_of_variable (symp, get_selected_block (0));
1222 }
1223 else
1224 {
1225 /* Not C++, or no overload resolution allowed. */
1226 /* Nothing to be done; argvec already correctly set up. */
1227 }
1228 }
1229 else
1230 {
1231 /* It is probably a C-style function. */
1232 /* Nothing to be done; argvec already correctly set up. */
1233 }
1234
1235 return eval_call (exp, noside, nargs, argvec, var_func_name, expect_type);
1236 }
1237
1238 /* Helper for skipping all the arguments in an undetermined argument list.
1239 This function was designed for use in the OP_F77_UNDETERMINED_ARGLIST
1240 case of evaluate_subexp_standard as multiple, but not all, code paths
1241 require a generic skip. */
1242
1243 static void
1244 skip_undetermined_arglist (int nargs, struct expression *exp, int *pos,
1245 enum noside noside)
1246 {
1247 for (int i = 0; i < nargs; ++i)
1248 evaluate_subexp (NULL_TYPE, exp, pos, noside);
1249 }
1250
1251 struct value *
1252 evaluate_subexp_standard (struct type *expect_type,
1253 struct expression *exp, int *pos,
1254 enum noside noside)
1255 {
1256 enum exp_opcode op;
1257 int tem, tem2, tem3;
1258 int pc, oldpos;
1259 struct value *arg1 = NULL;
1260 struct value *arg2 = NULL;
1261 struct value *arg3;
1262 struct type *type;
1263 int nargs;
1264 struct value **argvec;
1265 int code;
1266 int ix;
1267 long mem_offset;
1268 struct type **arg_types;
1269
1270 pc = (*pos)++;
1271 op = exp->elts[pc].opcode;
1272
1273 switch (op)
1274 {
1275 case OP_SCOPE:
1276 tem = longest_to_int (exp->elts[pc + 2].longconst);
1277 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1278 if (noside == EVAL_SKIP)
1279 return eval_skip_value (exp);
1280 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
1281 &exp->elts[pc + 3].string,
1282 expect_type, 0, noside);
1283 if (arg1 == NULL)
1284 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
1285 return arg1;
1286
1287 case OP_LONG:
1288 (*pos) += 3;
1289 return value_from_longest (exp->elts[pc + 1].type,
1290 exp->elts[pc + 2].longconst);
1291
1292 case OP_FLOAT:
1293 (*pos) += 3;
1294 return value_from_contents (exp->elts[pc + 1].type,
1295 exp->elts[pc + 2].floatconst);
1296
1297 case OP_ADL_FUNC:
1298 case OP_VAR_VALUE:
1299 {
1300 (*pos) += 3;
1301 symbol *var = exp->elts[pc + 2].symbol;
1302 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_ERROR)
1303 error_unknown_type (SYMBOL_PRINT_NAME (var));
1304 if (noside != EVAL_SKIP)
1305 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1306 else
1307 {
1308 /* Return a dummy value of the correct type when skipping, so
1309 that parent functions know what is to be skipped. */
1310 return allocate_value (SYMBOL_TYPE (var));
1311 }
1312 }
1313
1314 case OP_VAR_MSYM_VALUE:
1315 {
1316 (*pos) += 3;
1317
1318 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1319 value *val = evaluate_var_msym_value (noside,
1320 exp->elts[pc + 1].objfile,
1321 msymbol);
1322
1323 type = value_type (val);
1324 if (TYPE_CODE (type) == TYPE_CODE_ERROR
1325 && (noside != EVAL_AVOID_SIDE_EFFECTS || pc != 0))
1326 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol));
1327 return val;
1328 }
1329
1330 case OP_VAR_ENTRY_VALUE:
1331 (*pos) += 2;
1332 if (noside == EVAL_SKIP)
1333 return eval_skip_value (exp);
1334
1335 {
1336 struct symbol *sym = exp->elts[pc + 1].symbol;
1337 struct frame_info *frame;
1338
1339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1340 return value_zero (SYMBOL_TYPE (sym), not_lval);
1341
1342 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1343 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1344 error (_("Symbol \"%s\" does not have any specific entry value"),
1345 SYMBOL_PRINT_NAME (sym));
1346
1347 frame = get_selected_frame (NULL);
1348 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1349 }
1350
1351 case OP_FUNC_STATIC_VAR:
1352 tem = longest_to_int (exp->elts[pc + 1].longconst);
1353 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1354 if (noside == EVAL_SKIP)
1355 return eval_skip_value (exp);
1356
1357 {
1358 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1359 CORE_ADDR addr = value_address (func);
1360
1361 const block *blk = block_for_pc (addr);
1362 const char *var = &exp->elts[pc + 2].string;
1363
1364 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1365
1366 if (sym.symbol == NULL)
1367 error (_("No symbol \"%s\" in specified context."), var);
1368
1369 return evaluate_var_value (noside, sym.block, sym.symbol);
1370 }
1371
1372 case OP_LAST:
1373 (*pos) += 2;
1374 return
1375 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1376
1377 case OP_REGISTER:
1378 {
1379 const char *name = &exp->elts[pc + 2].string;
1380 int regno;
1381 struct value *val;
1382
1383 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1384 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1385 name, strlen (name));
1386 if (regno == -1)
1387 error (_("Register $%s not available."), name);
1388
1389 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1390 a value with the appropriate register type. Unfortunately,
1391 we don't have easy access to the type of user registers.
1392 So for these registers, we fetch the register value regardless
1393 of the evaluation mode. */
1394 if (noside == EVAL_AVOID_SIDE_EFFECTS
1395 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1396 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1397 else
1398 val = value_of_register (regno, get_selected_frame (NULL));
1399 if (val == NULL)
1400 error (_("Value of register %s not available."), name);
1401 else
1402 return val;
1403 }
1404 case OP_BOOL:
1405 (*pos) += 2;
1406 type = language_bool_type (exp->language_defn, exp->gdbarch);
1407 return value_from_longest (type, exp->elts[pc + 1].longconst);
1408
1409 case OP_INTERNALVAR:
1410 (*pos) += 2;
1411 return value_of_internalvar (exp->gdbarch,
1412 exp->elts[pc + 1].internalvar);
1413
1414 case OP_STRING:
1415 tem = longest_to_int (exp->elts[pc + 1].longconst);
1416 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1417 if (noside == EVAL_SKIP)
1418 return eval_skip_value (exp);
1419 type = language_string_char_type (exp->language_defn, exp->gdbarch);
1420 return value_string (&exp->elts[pc + 2].string, tem, type);
1421
1422 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1423 NSString constant. */
1424 tem = longest_to_int (exp->elts[pc + 1].longconst);
1425 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1426 if (noside == EVAL_SKIP)
1427 return eval_skip_value (exp);
1428 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1429
1430 case OP_ARRAY:
1431 (*pos) += 3;
1432 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1433 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1434 nargs = tem3 - tem2 + 1;
1435 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
1436
1437 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1438 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
1439 {
1440 struct value *rec = allocate_value (expect_type);
1441
1442 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1443 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1444 }
1445
1446 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1447 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
1448 {
1449 struct type *range_type = TYPE_INDEX_TYPE (type);
1450 struct type *element_type = TYPE_TARGET_TYPE (type);
1451 struct value *array = allocate_value (expect_type);
1452 int element_size = TYPE_LENGTH (check_typedef (element_type));
1453 LONGEST low_bound, high_bound, index;
1454
1455 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1456 {
1457 low_bound = 0;
1458 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1459 }
1460 index = low_bound;
1461 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1462 for (tem = nargs; --nargs >= 0;)
1463 {
1464 struct value *element;
1465 int index_pc = 0;
1466
1467 element = evaluate_subexp (element_type, exp, pos, noside);
1468 if (value_type (element) != element_type)
1469 element = value_cast (element_type, element);
1470 if (index_pc)
1471 {
1472 int continue_pc = *pos;
1473
1474 *pos = index_pc;
1475 index = init_array_element (array, element, exp, pos, noside,
1476 low_bound, high_bound);
1477 *pos = continue_pc;
1478 }
1479 else
1480 {
1481 if (index > high_bound)
1482 /* To avoid memory corruption. */
1483 error (_("Too many array elements"));
1484 memcpy (value_contents_raw (array)
1485 + (index - low_bound) * element_size,
1486 value_contents (element),
1487 element_size);
1488 }
1489 index++;
1490 }
1491 return array;
1492 }
1493
1494 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1495 && TYPE_CODE (type) == TYPE_CODE_SET)
1496 {
1497 struct value *set = allocate_value (expect_type);
1498 gdb_byte *valaddr = value_contents_raw (set);
1499 struct type *element_type = TYPE_INDEX_TYPE (type);
1500 struct type *check_type = element_type;
1501 LONGEST low_bound, high_bound;
1502
1503 /* Get targettype of elementtype. */
1504 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1505 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1506 check_type = TYPE_TARGET_TYPE (check_type);
1507
1508 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1509 error (_("(power)set type with unknown size"));
1510 memset (valaddr, '\0', TYPE_LENGTH (type));
1511 for (tem = 0; tem < nargs; tem++)
1512 {
1513 LONGEST range_low, range_high;
1514 struct type *range_low_type, *range_high_type;
1515 struct value *elem_val;
1516
1517 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1518 range_low_type = range_high_type = value_type (elem_val);
1519 range_low = range_high = value_as_long (elem_val);
1520
1521 /* Check types of elements to avoid mixture of elements from
1522 different types. Also check if type of element is "compatible"
1523 with element type of powerset. */
1524 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1525 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1526 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1527 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1528 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1529 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1530 && (range_low_type != range_high_type)))
1531 /* different element modes. */
1532 error (_("POWERSET tuple elements of different mode"));
1533 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1534 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1535 && range_low_type != check_type))
1536 error (_("incompatible POWERSET tuple elements"));
1537 if (range_low > range_high)
1538 {
1539 warning (_("empty POWERSET tuple range"));
1540 continue;
1541 }
1542 if (range_low < low_bound || range_high > high_bound)
1543 error (_("POWERSET tuple element out of range"));
1544 range_low -= low_bound;
1545 range_high -= low_bound;
1546 for (; range_low <= range_high; range_low++)
1547 {
1548 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1549
1550 if (gdbarch_bits_big_endian (exp->gdbarch))
1551 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1552 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1553 |= 1 << bit_index;
1554 }
1555 }
1556 return set;
1557 }
1558
1559 argvec = XALLOCAVEC (struct value *, nargs);
1560 for (tem = 0; tem < nargs; tem++)
1561 {
1562 /* Ensure that array expressions are coerced into pointer
1563 objects. */
1564 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1565 }
1566 if (noside == EVAL_SKIP)
1567 return eval_skip_value (exp);
1568 return value_array (tem2, tem3, argvec);
1569
1570 case TERNOP_SLICE:
1571 {
1572 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1573 int lowbound
1574 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1575 int upper
1576 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1577
1578 if (noside == EVAL_SKIP)
1579 return eval_skip_value (exp);
1580 return value_slice (array, lowbound, upper - lowbound + 1);
1581 }
1582
1583 case TERNOP_COND:
1584 /* Skip third and second args to evaluate the first one. */
1585 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1586 if (value_logical_not (arg1))
1587 {
1588 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1589 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1590 }
1591 else
1592 {
1593 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1594 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1595 return arg2;
1596 }
1597
1598 case OP_OBJC_SELECTOR:
1599 { /* Objective C @selector operator. */
1600 char *sel = &exp->elts[pc + 2].string;
1601 int len = longest_to_int (exp->elts[pc + 1].longconst);
1602 struct type *selector_type;
1603
1604 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1605 if (noside == EVAL_SKIP)
1606 return eval_skip_value (exp);
1607
1608 if (sel[len] != 0)
1609 sel[len] = 0; /* Make sure it's terminated. */
1610
1611 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1612 return value_from_longest (selector_type,
1613 lookup_child_selector (exp->gdbarch, sel));
1614 }
1615
1616 case OP_OBJC_MSGCALL:
1617 { /* Objective C message (method) call. */
1618
1619 CORE_ADDR responds_selector = 0;
1620 CORE_ADDR method_selector = 0;
1621
1622 CORE_ADDR selector = 0;
1623
1624 int struct_return = 0;
1625 enum noside sub_no_side = EVAL_NORMAL;
1626
1627 struct value *msg_send = NULL;
1628 struct value *msg_send_stret = NULL;
1629 int gnu_runtime = 0;
1630
1631 struct value *target = NULL;
1632 struct value *method = NULL;
1633 struct value *called_method = NULL;
1634
1635 struct type *selector_type = NULL;
1636 struct type *long_type;
1637
1638 struct value *ret = NULL;
1639 CORE_ADDR addr = 0;
1640
1641 selector = exp->elts[pc + 1].longconst;
1642 nargs = exp->elts[pc + 2].longconst;
1643 argvec = XALLOCAVEC (struct value *, nargs + 5);
1644
1645 (*pos) += 3;
1646
1647 long_type = builtin_type (exp->gdbarch)->builtin_long;
1648 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1649
1650 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1651 sub_no_side = EVAL_NORMAL;
1652 else
1653 sub_no_side = noside;
1654
1655 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1656
1657 if (value_as_long (target) == 0)
1658 return value_from_longest (long_type, 0);
1659
1660 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1661 gnu_runtime = 1;
1662
1663 /* Find the method dispatch (Apple runtime) or method lookup
1664 (GNU runtime) function for Objective-C. These will be used
1665 to lookup the symbol information for the method. If we
1666 can't find any symbol information, then we'll use these to
1667 call the method, otherwise we can call the method
1668 directly. The msg_send_stret function is used in the special
1669 case of a method that returns a structure (Apple runtime
1670 only). */
1671 if (gnu_runtime)
1672 {
1673 type = selector_type;
1674
1675 type = lookup_function_type (type);
1676 type = lookup_pointer_type (type);
1677 type = lookup_function_type (type);
1678 type = lookup_pointer_type (type);
1679
1680 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1681 msg_send_stret
1682 = find_function_in_inferior ("objc_msg_lookup", NULL);
1683
1684 msg_send = value_from_pointer (type, value_as_address (msg_send));
1685 msg_send_stret = value_from_pointer (type,
1686 value_as_address (msg_send_stret));
1687 }
1688 else
1689 {
1690 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1691 /* Special dispatcher for methods returning structs. */
1692 msg_send_stret
1693 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1694 }
1695
1696 /* Verify the target object responds to this method. The
1697 standard top-level 'Object' class uses a different name for
1698 the verification method than the non-standard, but more
1699 often used, 'NSObject' class. Make sure we check for both. */
1700
1701 responds_selector
1702 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1703 if (responds_selector == 0)
1704 responds_selector
1705 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1706
1707 if (responds_selector == 0)
1708 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1709
1710 method_selector
1711 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1712 if (method_selector == 0)
1713 method_selector
1714 = lookup_child_selector (exp->gdbarch, "methodFor:");
1715
1716 if (method_selector == 0)
1717 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1718
1719 /* Call the verification method, to make sure that the target
1720 class implements the desired method. */
1721
1722 argvec[0] = msg_send;
1723 argvec[1] = target;
1724 argvec[2] = value_from_longest (long_type, responds_selector);
1725 argvec[3] = value_from_longest (long_type, selector);
1726 argvec[4] = 0;
1727
1728 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1729 if (gnu_runtime)
1730 {
1731 /* Function objc_msg_lookup returns a pointer. */
1732 argvec[0] = ret;
1733 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1734 }
1735 if (value_as_long (ret) == 0)
1736 error (_("Target does not respond to this message selector."));
1737
1738 /* Call "methodForSelector:" method, to get the address of a
1739 function method that implements this selector for this
1740 class. If we can find a symbol at that address, then we
1741 know the return type, parameter types etc. (that's a good
1742 thing). */
1743
1744 argvec[0] = msg_send;
1745 argvec[1] = target;
1746 argvec[2] = value_from_longest (long_type, method_selector);
1747 argvec[3] = value_from_longest (long_type, selector);
1748 argvec[4] = 0;
1749
1750 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1751 if (gnu_runtime)
1752 {
1753 argvec[0] = ret;
1754 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1755 }
1756
1757 /* ret should now be the selector. */
1758
1759 addr = value_as_long (ret);
1760 if (addr)
1761 {
1762 struct symbol *sym = NULL;
1763
1764 /* The address might point to a function descriptor;
1765 resolve it to the actual code address instead. */
1766 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1767 current_top_target ());
1768
1769 /* Is it a high_level symbol? */
1770 sym = find_pc_function (addr);
1771 if (sym != NULL)
1772 method = value_of_variable (sym, 0);
1773 }
1774
1775 /* If we found a method with symbol information, check to see
1776 if it returns a struct. Otherwise assume it doesn't. */
1777
1778 if (method)
1779 {
1780 CORE_ADDR funaddr;
1781 struct type *val_type;
1782
1783 funaddr = find_function_addr (method, &val_type);
1784
1785 block_for_pc (funaddr);
1786
1787 val_type = check_typedef (val_type);
1788
1789 if ((val_type == NULL)
1790 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1791 {
1792 if (expect_type != NULL)
1793 val_type = expect_type;
1794 }
1795
1796 struct_return = using_struct_return (exp->gdbarch, method,
1797 val_type);
1798 }
1799 else if (expect_type != NULL)
1800 {
1801 struct_return = using_struct_return (exp->gdbarch, NULL,
1802 check_typedef (expect_type));
1803 }
1804
1805 /* Found a function symbol. Now we will substitute its
1806 value in place of the message dispatcher (obj_msgSend),
1807 so that we call the method directly instead of thru
1808 the dispatcher. The main reason for doing this is that
1809 we can now evaluate the return value and parameter values
1810 according to their known data types, in case we need to
1811 do things like promotion, dereferencing, special handling
1812 of structs and doubles, etc.
1813
1814 We want to use the type signature of 'method', but still
1815 jump to objc_msgSend() or objc_msgSend_stret() to better
1816 mimic the behavior of the runtime. */
1817
1818 if (method)
1819 {
1820 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1821 error (_("method address has symbol information "
1822 "with non-function type; skipping"));
1823
1824 /* Create a function pointer of the appropriate type, and
1825 replace its value with the value of msg_send or
1826 msg_send_stret. We must use a pointer here, as
1827 msg_send and msg_send_stret are of pointer type, and
1828 the representation may be different on systems that use
1829 function descriptors. */
1830 if (struct_return)
1831 called_method
1832 = value_from_pointer (lookup_pointer_type (value_type (method)),
1833 value_as_address (msg_send_stret));
1834 else
1835 called_method
1836 = value_from_pointer (lookup_pointer_type (value_type (method)),
1837 value_as_address (msg_send));
1838 }
1839 else
1840 {
1841 if (struct_return)
1842 called_method = msg_send_stret;
1843 else
1844 called_method = msg_send;
1845 }
1846
1847 if (noside == EVAL_SKIP)
1848 return eval_skip_value (exp);
1849
1850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1851 {
1852 /* If the return type doesn't look like a function type,
1853 call an error. This can happen if somebody tries to
1854 turn a variable into a function call. This is here
1855 because people often want to call, eg, strcmp, which
1856 gdb doesn't know is a function. If gdb isn't asked for
1857 it's opinion (ie. through "whatis"), it won't offer
1858 it. */
1859
1860 struct type *callee_type = value_type (called_method);
1861
1862 if (callee_type && TYPE_CODE (callee_type) == TYPE_CODE_PTR)
1863 callee_type = TYPE_TARGET_TYPE (callee_type);
1864 callee_type = TYPE_TARGET_TYPE (callee_type);
1865
1866 if (callee_type)
1867 {
1868 if ((TYPE_CODE (callee_type) == TYPE_CODE_ERROR) && expect_type)
1869 return allocate_value (expect_type);
1870 else
1871 return allocate_value (callee_type);
1872 }
1873 else
1874 error (_("Expression of type other than "
1875 "\"method returning ...\" used as a method"));
1876 }
1877
1878 /* Now depending on whether we found a symbol for the method,
1879 we will either call the runtime dispatcher or the method
1880 directly. */
1881
1882 argvec[0] = called_method;
1883 argvec[1] = target;
1884 argvec[2] = value_from_longest (long_type, selector);
1885 /* User-supplied arguments. */
1886 for (tem = 0; tem < nargs; tem++)
1887 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1888 argvec[tem + 3] = 0;
1889
1890 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
1891
1892 if (gnu_runtime && (method != NULL))
1893 {
1894 /* Function objc_msg_lookup returns a pointer. */
1895 deprecated_set_value_type (argvec[0],
1896 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1897 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
1898 }
1899
1900 return call_function_by_hand (argvec[0], NULL, call_args);
1901 }
1902 break;
1903
1904 case OP_FUNCALL:
1905 return evaluate_funcall (expect_type, exp, pos, noside);
1906
1907 case OP_F77_UNDETERMINED_ARGLIST:
1908
1909 /* Remember that in F77, functions, substring ops and
1910 array subscript operations cannot be disambiguated
1911 at parse time. We have made all array subscript operations,
1912 substring operations as well as function calls come here
1913 and we now have to discover what the heck this thing actually was.
1914 If it is a function, we process just as if we got an OP_FUNCALL. */
1915
1916 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1917 (*pos) += 2;
1918
1919 /* First determine the type code we are dealing with. */
1920 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1921 type = check_typedef (value_type (arg1));
1922 code = TYPE_CODE (type);
1923
1924 if (code == TYPE_CODE_PTR)
1925 {
1926 /* Fortran always passes variable to subroutines as pointer.
1927 So we need to look into its target type to see if it is
1928 array, string or function. If it is, we need to switch
1929 to the target value the original one points to. */
1930 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1931
1932 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1933 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1934 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1935 {
1936 arg1 = value_ind (arg1);
1937 type = check_typedef (value_type (arg1));
1938 code = TYPE_CODE (type);
1939 }
1940 }
1941
1942 switch (code)
1943 {
1944 case TYPE_CODE_ARRAY:
1945 if (exp->elts[*pos].opcode == OP_RANGE)
1946 return value_f90_subarray (arg1, exp, pos, noside);
1947 else
1948 {
1949 if (noside == EVAL_SKIP)
1950 {
1951 skip_undetermined_arglist (nargs, exp, pos, noside);
1952 /* Return the dummy value with the correct type. */
1953 return arg1;
1954 }
1955 goto multi_f77_subscript;
1956 }
1957
1958 case TYPE_CODE_STRING:
1959 if (exp->elts[*pos].opcode == OP_RANGE)
1960 return value_f90_subarray (arg1, exp, pos, noside);
1961 else
1962 {
1963 if (noside == EVAL_SKIP)
1964 {
1965 skip_undetermined_arglist (nargs, exp, pos, noside);
1966 /* Return the dummy value with the correct type. */
1967 return arg1;
1968 }
1969 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1970 return value_subscript (arg1, value_as_long (arg2));
1971 }
1972
1973 case TYPE_CODE_PTR:
1974 case TYPE_CODE_FUNC:
1975 case TYPE_CODE_INTERNAL_FUNCTION:
1976 /* It's a function call. */
1977 /* Allocate arg vector, including space for the function to be
1978 called in argvec[0] and a terminating NULL. */
1979 argvec = (struct value **)
1980 alloca (sizeof (struct value *) * (nargs + 2));
1981 argvec[0] = arg1;
1982 tem = 1;
1983 for (; tem <= nargs; tem++)
1984 {
1985 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1986 /* Arguments in Fortran are passed by address. Coerce the
1987 arguments here rather than in value_arg_coerce as otherwise
1988 the call to malloc to place the non-lvalue parameters in
1989 target memory is hit by this Fortran specific logic. This
1990 results in malloc being called with a pointer to an integer
1991 followed by an attempt to malloc the arguments to malloc in
1992 target memory. Infinite recursion ensues. */
1993 if (code == TYPE_CODE_PTR || code == TYPE_CODE_FUNC)
1994 {
1995 bool is_artificial
1996 = TYPE_FIELD_ARTIFICIAL (value_type (arg1), tem - 1);
1997 argvec[tem] = fortran_argument_convert (argvec[tem],
1998 is_artificial);
1999 }
2000 }
2001 argvec[tem] = 0; /* signal end of arglist */
2002 if (noside == EVAL_SKIP)
2003 return eval_skip_value (exp);
2004 return eval_call (exp, noside, nargs, argvec, NULL, expect_type);
2005
2006 default:
2007 error (_("Cannot perform substring on this type"));
2008 }
2009
2010 case OP_COMPLEX:
2011 /* We have a complex number, There should be 2 floating
2012 point numbers that compose it. */
2013 (*pos) += 2;
2014 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2015 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2016
2017 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2018
2019 case STRUCTOP_STRUCT:
2020 tem = longest_to_int (exp->elts[pc + 1].longconst);
2021 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2022 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2023 if (noside == EVAL_SKIP)
2024 return eval_skip_value (exp);
2025 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
2026 NULL, "structure");
2027 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2028 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
2029 return arg3;
2030
2031 case STRUCTOP_PTR:
2032 tem = longest_to_int (exp->elts[pc + 1].longconst);
2033 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2035 if (noside == EVAL_SKIP)
2036 return eval_skip_value (exp);
2037
2038 /* Check to see if operator '->' has been overloaded. If so replace
2039 arg1 with the value returned by evaluating operator->(). */
2040 while (unop_user_defined_p (op, arg1))
2041 {
2042 struct value *value = NULL;
2043 try
2044 {
2045 value = value_x_unop (arg1, op, noside);
2046 }
2047
2048 catch (const gdb_exception_error &except)
2049 {
2050 if (except.error == NOT_FOUND_ERROR)
2051 break;
2052 else
2053 throw;
2054 }
2055
2056 arg1 = value;
2057 }
2058
2059 /* JYG: if print object is on we need to replace the base type
2060 with rtti type in order to continue on with successful
2061 lookup of member / method only available in the rtti type. */
2062 {
2063 struct type *arg_type = value_type (arg1);
2064 struct type *real_type;
2065 int full, using_enc;
2066 LONGEST top;
2067 struct value_print_options opts;
2068
2069 get_user_print_options (&opts);
2070 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
2071 && (TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_STRUCT))
2072 {
2073 real_type = value_rtti_indirect_type (arg1, &full, &top,
2074 &using_enc);
2075 if (real_type)
2076 arg1 = value_cast (real_type, arg1);
2077 }
2078 }
2079
2080 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
2081 NULL, "structure pointer");
2082 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2083 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
2084 return arg3;
2085
2086 case STRUCTOP_MEMBER:
2087 case STRUCTOP_MPTR:
2088 if (op == STRUCTOP_MEMBER)
2089 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2090 else
2091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2092
2093 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2094
2095 if (noside == EVAL_SKIP)
2096 return eval_skip_value (exp);
2097
2098 type = check_typedef (value_type (arg2));
2099 switch (TYPE_CODE (type))
2100 {
2101 case TYPE_CODE_METHODPTR:
2102 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2103 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2104 else
2105 {
2106 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2107 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2108 return value_ind (arg2);
2109 }
2110
2111 case TYPE_CODE_MEMBERPTR:
2112 /* Now, convert these values to an address. */
2113 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
2114 arg1, 1);
2115
2116 mem_offset = value_as_long (arg2);
2117
2118 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2119 value_as_long (arg1) + mem_offset);
2120 return value_ind (arg3);
2121
2122 default:
2123 error (_("non-pointer-to-member value used "
2124 "in pointer-to-member construct"));
2125 }
2126
2127 case TYPE_INSTANCE:
2128 {
2129 type_instance_flags flags
2130 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2131 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2132 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2133 for (ix = 0; ix < nargs; ++ix)
2134 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2135
2136 fake_method fake_expect_type (flags, nargs, arg_types);
2137 *(pos) += 4 + nargs;
2138 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2139 noside);
2140 }
2141
2142 case BINOP_CONCAT:
2143 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2144 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2145 if (noside == EVAL_SKIP)
2146 return eval_skip_value (exp);
2147 if (binop_user_defined_p (op, arg1, arg2))
2148 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2149 else
2150 return value_concat (arg1, arg2);
2151
2152 case BINOP_ASSIGN:
2153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2154 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2155
2156 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2157 return arg1;
2158 if (binop_user_defined_p (op, arg1, arg2))
2159 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2160 else
2161 return value_assign (arg1, arg2);
2162
2163 case BINOP_ASSIGN_MODIFY:
2164 (*pos) += 2;
2165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2166 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2167 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2168 return arg1;
2169 op = exp->elts[pc + 1].opcode;
2170 if (binop_user_defined_p (op, arg1, arg2))
2171 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2172 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2173 value_type (arg1))
2174 && is_integral_type (value_type (arg2)))
2175 arg2 = value_ptradd (arg1, value_as_long (arg2));
2176 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2177 value_type (arg1))
2178 && is_integral_type (value_type (arg2)))
2179 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2180 else
2181 {
2182 struct value *tmp = arg1;
2183
2184 /* For shift and integer exponentiation operations,
2185 only promote the first argument. */
2186 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2187 && is_integral_type (value_type (arg2)))
2188 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2189 else
2190 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2191
2192 arg2 = value_binop (tmp, arg2, op);
2193 }
2194 return value_assign (arg1, arg2);
2195
2196 case BINOP_ADD:
2197 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2198 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2199 if (noside == EVAL_SKIP)
2200 return eval_skip_value (exp);
2201 if (binop_user_defined_p (op, arg1, arg2))
2202 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2203 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2204 && is_integral_type (value_type (arg2)))
2205 return value_ptradd (arg1, value_as_long (arg2));
2206 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2207 && is_integral_type (value_type (arg1)))
2208 return value_ptradd (arg2, value_as_long (arg1));
2209 else
2210 {
2211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2212 return value_binop (arg1, arg2, BINOP_ADD);
2213 }
2214
2215 case BINOP_SUB:
2216 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2217 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2218 if (noside == EVAL_SKIP)
2219 return eval_skip_value (exp);
2220 if (binop_user_defined_p (op, arg1, arg2))
2221 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2222 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2223 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2224 {
2225 /* FIXME -- should be ptrdiff_t */
2226 type = builtin_type (exp->gdbarch)->builtin_long;
2227 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2228 }
2229 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2230 && is_integral_type (value_type (arg2)))
2231 return value_ptradd (arg1, - value_as_long (arg2));
2232 else
2233 {
2234 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2235 return value_binop (arg1, arg2, BINOP_SUB);
2236 }
2237
2238 case BINOP_EXP:
2239 case BINOP_MUL:
2240 case BINOP_DIV:
2241 case BINOP_INTDIV:
2242 case BINOP_REM:
2243 case BINOP_MOD:
2244 case BINOP_LSH:
2245 case BINOP_RSH:
2246 case BINOP_BITWISE_AND:
2247 case BINOP_BITWISE_IOR:
2248 case BINOP_BITWISE_XOR:
2249 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2250 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2251 if (noside == EVAL_SKIP)
2252 return eval_skip_value (exp);
2253 if (binop_user_defined_p (op, arg1, arg2))
2254 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2255 else
2256 {
2257 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2258 fudge arg2 to avoid division-by-zero, the caller is
2259 (theoretically) only looking for the type of the result. */
2260 if (noside == EVAL_AVOID_SIDE_EFFECTS
2261 /* ??? Do we really want to test for BINOP_MOD here?
2262 The implementation of value_binop gives it a well-defined
2263 value. */
2264 && (op == BINOP_DIV
2265 || op == BINOP_INTDIV
2266 || op == BINOP_REM
2267 || op == BINOP_MOD)
2268 && value_logical_not (arg2))
2269 {
2270 struct value *v_one, *retval;
2271
2272 v_one = value_one (value_type (arg2));
2273 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2274 retval = value_binop (arg1, v_one, op);
2275 return retval;
2276 }
2277 else
2278 {
2279 /* For shift and integer exponentiation operations,
2280 only promote the first argument. */
2281 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2282 && is_integral_type (value_type (arg2)))
2283 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2284 else
2285 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2286
2287 return value_binop (arg1, arg2, op);
2288 }
2289 }
2290
2291 case BINOP_SUBSCRIPT:
2292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2293 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2294 if (noside == EVAL_SKIP)
2295 return eval_skip_value (exp);
2296 if (binop_user_defined_p (op, arg1, arg2))
2297 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2298 else
2299 {
2300 /* If the user attempts to subscript something that is not an
2301 array or pointer type (like a plain int variable for example),
2302 then report this as an error. */
2303
2304 arg1 = coerce_ref (arg1);
2305 type = check_typedef (value_type (arg1));
2306 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2307 && TYPE_CODE (type) != TYPE_CODE_PTR)
2308 {
2309 if (TYPE_NAME (type))
2310 error (_("cannot subscript something of type `%s'"),
2311 TYPE_NAME (type));
2312 else
2313 error (_("cannot subscript requested type"));
2314 }
2315
2316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2317 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2318 else
2319 return value_subscript (arg1, value_as_long (arg2));
2320 }
2321 case MULTI_SUBSCRIPT:
2322 (*pos) += 2;
2323 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2324 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2325 while (nargs-- > 0)
2326 {
2327 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2328 /* FIXME: EVAL_SKIP handling may not be correct. */
2329 if (noside == EVAL_SKIP)
2330 {
2331 if (nargs > 0)
2332 continue;
2333 return eval_skip_value (exp);
2334 }
2335 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2336 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2337 {
2338 /* If the user attempts to subscript something that has no target
2339 type (like a plain int variable for example), then report this
2340 as an error. */
2341
2342 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2343 if (type != NULL)
2344 {
2345 arg1 = value_zero (type, VALUE_LVAL (arg1));
2346 noside = EVAL_SKIP;
2347 continue;
2348 }
2349 else
2350 {
2351 error (_("cannot subscript something of type `%s'"),
2352 TYPE_NAME (value_type (arg1)));
2353 }
2354 }
2355
2356 if (binop_user_defined_p (op, arg1, arg2))
2357 {
2358 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2359 }
2360 else
2361 {
2362 arg1 = coerce_ref (arg1);
2363 type = check_typedef (value_type (arg1));
2364
2365 switch (TYPE_CODE (type))
2366 {
2367 case TYPE_CODE_PTR:
2368 case TYPE_CODE_ARRAY:
2369 case TYPE_CODE_STRING:
2370 arg1 = value_subscript (arg1, value_as_long (arg2));
2371 break;
2372
2373 default:
2374 if (TYPE_NAME (type))
2375 error (_("cannot subscript something of type `%s'"),
2376 TYPE_NAME (type));
2377 else
2378 error (_("cannot subscript requested type"));
2379 }
2380 }
2381 }
2382 return (arg1);
2383
2384 multi_f77_subscript:
2385 {
2386 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2387 int ndimensions = 1, i;
2388 struct value *array = arg1;
2389
2390 if (nargs > MAX_FORTRAN_DIMS)
2391 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2392
2393 ndimensions = calc_f77_array_dims (type);
2394
2395 if (nargs != ndimensions)
2396 error (_("Wrong number of subscripts"));
2397
2398 gdb_assert (nargs > 0);
2399
2400 /* Now that we know we have a legal array subscript expression
2401 let us actually find out where this element exists in the array. */
2402
2403 /* Take array indices left to right. */
2404 for (i = 0; i < nargs; i++)
2405 {
2406 /* Evaluate each subscript; it must be a legal integer in F77. */
2407 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2408
2409 /* Fill in the subscript array. */
2410
2411 subscript_array[i] = value_as_long (arg2);
2412 }
2413
2414 /* Internal type of array is arranged right to left. */
2415 for (i = nargs; i > 0; i--)
2416 {
2417 struct type *array_type = check_typedef (value_type (array));
2418 LONGEST index = subscript_array[i - 1];
2419
2420 array = value_subscripted_rvalue (array, index,
2421 f77_get_lowerbound (array_type));
2422 }
2423
2424 return array;
2425 }
2426
2427 case BINOP_LOGICAL_AND:
2428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2429 if (noside == EVAL_SKIP)
2430 {
2431 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2432 return eval_skip_value (exp);
2433 }
2434
2435 oldpos = *pos;
2436 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2437 *pos = oldpos;
2438
2439 if (binop_user_defined_p (op, arg1, arg2))
2440 {
2441 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2442 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2443 }
2444 else
2445 {
2446 tem = value_logical_not (arg1);
2447 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2448 (tem ? EVAL_SKIP : noside));
2449 type = language_bool_type (exp->language_defn, exp->gdbarch);
2450 return value_from_longest (type,
2451 (LONGEST) (!tem && !value_logical_not (arg2)));
2452 }
2453
2454 case BINOP_LOGICAL_OR:
2455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2456 if (noside == EVAL_SKIP)
2457 {
2458 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2459 return eval_skip_value (exp);
2460 }
2461
2462 oldpos = *pos;
2463 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2464 *pos = oldpos;
2465
2466 if (binop_user_defined_p (op, arg1, arg2))
2467 {
2468 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2469 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2470 }
2471 else
2472 {
2473 tem = value_logical_not (arg1);
2474 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2475 (!tem ? EVAL_SKIP : noside));
2476 type = language_bool_type (exp->language_defn, exp->gdbarch);
2477 return value_from_longest (type,
2478 (LONGEST) (!tem || !value_logical_not (arg2)));
2479 }
2480
2481 case BINOP_EQUAL:
2482 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2483 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2484 if (noside == EVAL_SKIP)
2485 return eval_skip_value (exp);
2486 if (binop_user_defined_p (op, arg1, arg2))
2487 {
2488 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2489 }
2490 else
2491 {
2492 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2493 tem = value_equal (arg1, arg2);
2494 type = language_bool_type (exp->language_defn, exp->gdbarch);
2495 return value_from_longest (type, (LONGEST) tem);
2496 }
2497
2498 case BINOP_NOTEQUAL:
2499 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2500 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2501 if (noside == EVAL_SKIP)
2502 return eval_skip_value (exp);
2503 if (binop_user_defined_p (op, arg1, arg2))
2504 {
2505 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2506 }
2507 else
2508 {
2509 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2510 tem = value_equal (arg1, arg2);
2511 type = language_bool_type (exp->language_defn, exp->gdbarch);
2512 return value_from_longest (type, (LONGEST) ! tem);
2513 }
2514
2515 case BINOP_LESS:
2516 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2517 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2518 if (noside == EVAL_SKIP)
2519 return eval_skip_value (exp);
2520 if (binop_user_defined_p (op, arg1, arg2))
2521 {
2522 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2523 }
2524 else
2525 {
2526 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2527 tem = value_less (arg1, arg2);
2528 type = language_bool_type (exp->language_defn, exp->gdbarch);
2529 return value_from_longest (type, (LONGEST) tem);
2530 }
2531
2532 case BINOP_GTR:
2533 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2534 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2535 if (noside == EVAL_SKIP)
2536 return eval_skip_value (exp);
2537 if (binop_user_defined_p (op, arg1, arg2))
2538 {
2539 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2540 }
2541 else
2542 {
2543 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2544 tem = value_less (arg2, arg1);
2545 type = language_bool_type (exp->language_defn, exp->gdbarch);
2546 return value_from_longest (type, (LONGEST) tem);
2547 }
2548
2549 case BINOP_GEQ:
2550 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2551 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2552 if (noside == EVAL_SKIP)
2553 return eval_skip_value (exp);
2554 if (binop_user_defined_p (op, arg1, arg2))
2555 {
2556 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2557 }
2558 else
2559 {
2560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2561 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2562 type = language_bool_type (exp->language_defn, exp->gdbarch);
2563 return value_from_longest (type, (LONGEST) tem);
2564 }
2565
2566 case BINOP_LEQ:
2567 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2568 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2569 if (noside == EVAL_SKIP)
2570 return eval_skip_value (exp);
2571 if (binop_user_defined_p (op, arg1, arg2))
2572 {
2573 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2574 }
2575 else
2576 {
2577 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2578 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2579 type = language_bool_type (exp->language_defn, exp->gdbarch);
2580 return value_from_longest (type, (LONGEST) tem);
2581 }
2582
2583 case BINOP_REPEAT:
2584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2585 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2586 if (noside == EVAL_SKIP)
2587 return eval_skip_value (exp);
2588 type = check_typedef (value_type (arg2));
2589 if (TYPE_CODE (type) != TYPE_CODE_INT
2590 && TYPE_CODE (type) != TYPE_CODE_ENUM)
2591 error (_("Non-integral right operand for \"@\" operator."));
2592 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2593 {
2594 return allocate_repeat_value (value_type (arg1),
2595 longest_to_int (value_as_long (arg2)));
2596 }
2597 else
2598 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2599
2600 case BINOP_COMMA:
2601 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2602 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2603
2604 case UNOP_PLUS:
2605 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2606 if (noside == EVAL_SKIP)
2607 return eval_skip_value (exp);
2608 if (unop_user_defined_p (op, arg1))
2609 return value_x_unop (arg1, op, noside);
2610 else
2611 {
2612 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2613 return value_pos (arg1);
2614 }
2615
2616 case UNOP_NEG:
2617 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2618 if (noside == EVAL_SKIP)
2619 return eval_skip_value (exp);
2620 if (unop_user_defined_p (op, arg1))
2621 return value_x_unop (arg1, op, noside);
2622 else
2623 {
2624 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2625 return value_neg (arg1);
2626 }
2627
2628 case UNOP_COMPLEMENT:
2629 /* C++: check for and handle destructor names. */
2630
2631 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2632 if (noside == EVAL_SKIP)
2633 return eval_skip_value (exp);
2634 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2635 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2636 else
2637 {
2638 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2639 return value_complement (arg1);
2640 }
2641
2642 case UNOP_LOGICAL_NOT:
2643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2644 if (noside == EVAL_SKIP)
2645 return eval_skip_value (exp);
2646 if (unop_user_defined_p (op, arg1))
2647 return value_x_unop (arg1, op, noside);
2648 else
2649 {
2650 type = language_bool_type (exp->language_defn, exp->gdbarch);
2651 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2652 }
2653
2654 case UNOP_IND:
2655 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2656 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2657 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2658 type = check_typedef (value_type (arg1));
2659 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2660 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2661 error (_("Attempt to dereference pointer "
2662 "to member without an object"));
2663 if (noside == EVAL_SKIP)
2664 return eval_skip_value (exp);
2665 if (unop_user_defined_p (op, arg1))
2666 return value_x_unop (arg1, op, noside);
2667 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2668 {
2669 type = check_typedef (value_type (arg1));
2670 if (TYPE_CODE (type) == TYPE_CODE_PTR
2671 || TYPE_IS_REFERENCE (type)
2672 /* In C you can dereference an array to get the 1st elt. */
2673 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2674 )
2675 return value_zero (TYPE_TARGET_TYPE (type),
2676 lval_memory);
2677 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2678 /* GDB allows dereferencing an int. */
2679 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2680 lval_memory);
2681 else
2682 error (_("Attempt to take contents of a non-pointer value."));
2683 }
2684
2685 /* Allow * on an integer so we can cast it to whatever we want.
2686 This returns an int, which seems like the most C-like thing to
2687 do. "long long" variables are rare enough that
2688 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2689 if (TYPE_CODE (type) == TYPE_CODE_INT)
2690 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2691 (CORE_ADDR) value_as_address (arg1));
2692 return value_ind (arg1);
2693
2694 case UNOP_ADDR:
2695 /* C++: check for and handle pointer to members. */
2696
2697 if (noside == EVAL_SKIP)
2698 {
2699 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2700 return eval_skip_value (exp);
2701 }
2702 else
2703 {
2704 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2705 noside);
2706
2707 return retvalp;
2708 }
2709
2710 case UNOP_SIZEOF:
2711 if (noside == EVAL_SKIP)
2712 {
2713 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2714 return eval_skip_value (exp);
2715 }
2716 return evaluate_subexp_for_sizeof (exp, pos, noside);
2717
2718 case UNOP_ALIGNOF:
2719 {
2720 type = value_type (evaluate_subexp (NULL_TYPE, exp, pos,
2721 EVAL_AVOID_SIDE_EFFECTS));
2722 /* FIXME: This should be size_t. */
2723 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2724 ULONGEST align = type_align (type);
2725 if (align == 0)
2726 error (_("could not determine alignment of type"));
2727 return value_from_longest (size_type, align);
2728 }
2729
2730 case UNOP_CAST:
2731 (*pos) += 2;
2732 type = exp->elts[pc + 1].type;
2733 return evaluate_subexp_for_cast (exp, pos, noside, type);
2734
2735 case UNOP_CAST_TYPE:
2736 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2737 type = value_type (arg1);
2738 return evaluate_subexp_for_cast (exp, pos, noside, type);
2739
2740 case UNOP_DYNAMIC_CAST:
2741 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2742 type = value_type (arg1);
2743 arg1 = evaluate_subexp (type, exp, pos, noside);
2744 if (noside == EVAL_SKIP)
2745 return eval_skip_value (exp);
2746 return value_dynamic_cast (type, arg1);
2747
2748 case UNOP_REINTERPRET_CAST:
2749 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2750 type = value_type (arg1);
2751 arg1 = evaluate_subexp (type, exp, pos, noside);
2752 if (noside == EVAL_SKIP)
2753 return eval_skip_value (exp);
2754 return value_reinterpret_cast (type, arg1);
2755
2756 case UNOP_MEMVAL:
2757 (*pos) += 2;
2758 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2759 if (noside == EVAL_SKIP)
2760 return eval_skip_value (exp);
2761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2762 return value_zero (exp->elts[pc + 1].type, lval_memory);
2763 else
2764 return value_at_lazy (exp->elts[pc + 1].type,
2765 value_as_address (arg1));
2766
2767 case UNOP_MEMVAL_TYPE:
2768 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2769 type = value_type (arg1);
2770 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2771 if (noside == EVAL_SKIP)
2772 return eval_skip_value (exp);
2773 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2774 return value_zero (type, lval_memory);
2775 else
2776 return value_at_lazy (type, value_as_address (arg1));
2777
2778 case UNOP_PREINCREMENT:
2779 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2780 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2781 return arg1;
2782 else if (unop_user_defined_p (op, arg1))
2783 {
2784 return value_x_unop (arg1, op, noside);
2785 }
2786 else
2787 {
2788 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2789 arg2 = value_ptradd (arg1, 1);
2790 else
2791 {
2792 struct value *tmp = arg1;
2793
2794 arg2 = value_one (value_type (arg1));
2795 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2796 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2797 }
2798
2799 return value_assign (arg1, arg2);
2800 }
2801
2802 case UNOP_PREDECREMENT:
2803 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2804 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2805 return arg1;
2806 else if (unop_user_defined_p (op, arg1))
2807 {
2808 return value_x_unop (arg1, op, noside);
2809 }
2810 else
2811 {
2812 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2813 arg2 = value_ptradd (arg1, -1);
2814 else
2815 {
2816 struct value *tmp = arg1;
2817
2818 arg2 = value_one (value_type (arg1));
2819 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2820 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2821 }
2822
2823 return value_assign (arg1, arg2);
2824 }
2825
2826 case UNOP_POSTINCREMENT:
2827 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2828 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2829 return arg1;
2830 else if (unop_user_defined_p (op, arg1))
2831 {
2832 return value_x_unop (arg1, op, noside);
2833 }
2834 else
2835 {
2836 arg3 = value_non_lval (arg1);
2837
2838 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2839 arg2 = value_ptradd (arg1, 1);
2840 else
2841 {
2842 struct value *tmp = arg1;
2843
2844 arg2 = value_one (value_type (arg1));
2845 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2846 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2847 }
2848
2849 value_assign (arg1, arg2);
2850 return arg3;
2851 }
2852
2853 case UNOP_POSTDECREMENT:
2854 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2855 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2856 return arg1;
2857 else if (unop_user_defined_p (op, arg1))
2858 {
2859 return value_x_unop (arg1, op, noside);
2860 }
2861 else
2862 {
2863 arg3 = value_non_lval (arg1);
2864
2865 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2866 arg2 = value_ptradd (arg1, -1);
2867 else
2868 {
2869 struct value *tmp = arg1;
2870
2871 arg2 = value_one (value_type (arg1));
2872 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2873 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2874 }
2875
2876 value_assign (arg1, arg2);
2877 return arg3;
2878 }
2879
2880 case OP_THIS:
2881 (*pos) += 1;
2882 return value_of_this (exp->language_defn);
2883
2884 case OP_TYPE:
2885 /* The value is not supposed to be used. This is here to make it
2886 easier to accommodate expressions that contain types. */
2887 (*pos) += 2;
2888 if (noside == EVAL_SKIP)
2889 return eval_skip_value (exp);
2890 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2891 return allocate_value (exp->elts[pc + 1].type);
2892 else
2893 error (_("Attempt to use a type name as an expression"));
2894
2895 case OP_TYPEOF:
2896 case OP_DECLTYPE:
2897 if (noside == EVAL_SKIP)
2898 {
2899 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2900 return eval_skip_value (exp);
2901 }
2902 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2903 {
2904 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2905 struct value *result;
2906
2907 result = evaluate_subexp (NULL_TYPE, exp, pos,
2908 EVAL_AVOID_SIDE_EFFECTS);
2909
2910 /* 'decltype' has special semantics for lvalues. */
2911 if (op == OP_DECLTYPE
2912 && (sub_op == BINOP_SUBSCRIPT
2913 || sub_op == STRUCTOP_MEMBER
2914 || sub_op == STRUCTOP_MPTR
2915 || sub_op == UNOP_IND
2916 || sub_op == STRUCTOP_STRUCT
2917 || sub_op == STRUCTOP_PTR
2918 || sub_op == OP_SCOPE))
2919 {
2920 type = value_type (result);
2921
2922 if (!TYPE_IS_REFERENCE (type))
2923 {
2924 type = lookup_lvalue_reference_type (type);
2925 result = allocate_value (type);
2926 }
2927 }
2928
2929 return result;
2930 }
2931 else
2932 error (_("Attempt to use a type as an expression"));
2933
2934 case OP_TYPEID:
2935 {
2936 struct value *result;
2937 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2938
2939 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2940 result = evaluate_subexp (NULL_TYPE, exp, pos,
2941 EVAL_AVOID_SIDE_EFFECTS);
2942 else
2943 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2944
2945 if (noside != EVAL_NORMAL)
2946 return allocate_value (cplus_typeid_type (exp->gdbarch));
2947
2948 return cplus_typeid (result);
2949 }
2950
2951 default:
2952 /* Removing this case and compiling with gcc -Wall reveals that
2953 a lot of cases are hitting this case. Some of these should
2954 probably be removed from expression.h; others are legitimate
2955 expressions which are (apparently) not fully implemented.
2956
2957 If there are any cases landing here which mean a user error,
2958 then they should be separate cases, with more descriptive
2959 error messages. */
2960
2961 error (_("GDB does not (yet) know how to "
2962 "evaluate that kind of expression"));
2963 }
2964
2965 gdb_assert_not_reached ("missed return?");
2966 }
2967 \f
2968 /* Evaluate a subexpression of EXP, at index *POS,
2969 and return the address of that subexpression.
2970 Advance *POS over the subexpression.
2971 If the subexpression isn't an lvalue, get an error.
2972 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2973 then only the type of the result need be correct. */
2974
2975 static struct value *
2976 evaluate_subexp_for_address (struct expression *exp, int *pos,
2977 enum noside noside)
2978 {
2979 enum exp_opcode op;
2980 int pc;
2981 struct symbol *var;
2982 struct value *x;
2983 int tem;
2984
2985 pc = (*pos);
2986 op = exp->elts[pc].opcode;
2987
2988 switch (op)
2989 {
2990 case UNOP_IND:
2991 (*pos)++;
2992 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2993
2994 /* We can't optimize out "&*" if there's a user-defined operator*. */
2995 if (unop_user_defined_p (op, x))
2996 {
2997 x = value_x_unop (x, op, noside);
2998 goto default_case_after_eval;
2999 }
3000
3001 return coerce_array (x);
3002
3003 case UNOP_MEMVAL:
3004 (*pos) += 3;
3005 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3006 evaluate_subexp (NULL_TYPE, exp, pos, noside));
3007
3008 case UNOP_MEMVAL_TYPE:
3009 {
3010 struct type *type;
3011
3012 (*pos) += 1;
3013 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3014 type = value_type (x);
3015 return value_cast (lookup_pointer_type (type),
3016 evaluate_subexp (NULL_TYPE, exp, pos, noside));
3017 }
3018
3019 case OP_VAR_VALUE:
3020 var = exp->elts[pc + 2].symbol;
3021
3022 /* C++: The "address" of a reference should yield the address
3023 * of the object pointed to. Let value_addr() deal with it. */
3024 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3025 goto default_case;
3026
3027 (*pos) += 4;
3028 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3029 {
3030 struct type *type =
3031 lookup_pointer_type (SYMBOL_TYPE (var));
3032 enum address_class sym_class = SYMBOL_CLASS (var);
3033
3034 if (sym_class == LOC_CONST
3035 || sym_class == LOC_CONST_BYTES
3036 || sym_class == LOC_REGISTER)
3037 error (_("Attempt to take address of register or constant."));
3038
3039 return
3040 value_zero (type, not_lval);
3041 }
3042 else
3043 return address_of_variable (var, exp->elts[pc + 1].block);
3044
3045 case OP_VAR_MSYM_VALUE:
3046 {
3047 (*pos) += 4;
3048
3049 value *val = evaluate_var_msym_value (noside,
3050 exp->elts[pc + 1].objfile,
3051 exp->elts[pc + 2].msymbol);
3052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3053 {
3054 struct type *type = lookup_pointer_type (value_type (val));
3055 return value_zero (type, not_lval);
3056 }
3057 else
3058 return value_addr (val);
3059 }
3060
3061 case OP_SCOPE:
3062 tem = longest_to_int (exp->elts[pc + 2].longconst);
3063 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3064 x = value_aggregate_elt (exp->elts[pc + 1].type,
3065 &exp->elts[pc + 3].string,
3066 NULL, 1, noside);
3067 if (x == NULL)
3068 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3069 return x;
3070
3071 default:
3072 default_case:
3073 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3074 default_case_after_eval:
3075 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3076 {
3077 struct type *type = check_typedef (value_type (x));
3078
3079 if (TYPE_IS_REFERENCE (type))
3080 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3081 not_lval);
3082 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3083 return value_zero (lookup_pointer_type (value_type (x)),
3084 not_lval);
3085 else
3086 error (_("Attempt to take address of "
3087 "value not located in memory."));
3088 }
3089 return value_addr (x);
3090 }
3091 }
3092
3093 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3094 When used in contexts where arrays will be coerced anyway, this is
3095 equivalent to `evaluate_subexp' but much faster because it avoids
3096 actually fetching array contents (perhaps obsolete now that we have
3097 value_lazy()).
3098
3099 Note that we currently only do the coercion for C expressions, where
3100 arrays are zero based and the coercion is correct. For other languages,
3101 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3102 to decide if coercion is appropriate. */
3103
3104 struct value *
3105 evaluate_subexp_with_coercion (struct expression *exp,
3106 int *pos, enum noside noside)
3107 {
3108 enum exp_opcode op;
3109 int pc;
3110 struct value *val;
3111 struct symbol *var;
3112 struct type *type;
3113
3114 pc = (*pos);
3115 op = exp->elts[pc].opcode;
3116
3117 switch (op)
3118 {
3119 case OP_VAR_VALUE:
3120 var = exp->elts[pc + 2].symbol;
3121 type = check_typedef (SYMBOL_TYPE (var));
3122 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3123 && !TYPE_VECTOR (type)
3124 && CAST_IS_CONVERSION (exp->language_defn))
3125 {
3126 (*pos) += 4;
3127 val = address_of_variable (var, exp->elts[pc + 1].block);
3128 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3129 val);
3130 }
3131 /* FALLTHROUGH */
3132
3133 default:
3134 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3135 }
3136 }
3137
3138 /* Evaluate a subexpression of EXP, at index *POS,
3139 and return a value for the size of that subexpression.
3140 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3141 we allow side-effects on the operand if its type is a variable
3142 length array. */
3143
3144 static struct value *
3145 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3146 enum noside noside)
3147 {
3148 /* FIXME: This should be size_t. */
3149 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3150 enum exp_opcode op;
3151 int pc;
3152 struct type *type;
3153 struct value *val;
3154
3155 pc = (*pos);
3156 op = exp->elts[pc].opcode;
3157
3158 switch (op)
3159 {
3160 /* This case is handled specially
3161 so that we avoid creating a value for the result type.
3162 If the result type is very big, it's desirable not to
3163 create a value unnecessarily. */
3164 case UNOP_IND:
3165 (*pos)++;
3166 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3167 type = check_typedef (value_type (val));
3168 if (TYPE_CODE (type) != TYPE_CODE_PTR
3169 && !TYPE_IS_REFERENCE (type)
3170 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3171 error (_("Attempt to take contents of a non-pointer value."));
3172 type = TYPE_TARGET_TYPE (type);
3173 if (is_dynamic_type (type))
3174 type = value_type (value_ind (val));
3175 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3176
3177 case UNOP_MEMVAL:
3178 (*pos) += 3;
3179 type = exp->elts[pc + 1].type;
3180 break;
3181
3182 case UNOP_MEMVAL_TYPE:
3183 (*pos) += 1;
3184 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3185 type = value_type (val);
3186 break;
3187
3188 case OP_VAR_VALUE:
3189 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3190 if (is_dynamic_type (type))
3191 {
3192 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3193 type = value_type (val);
3194 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3195 && is_dynamic_type (TYPE_INDEX_TYPE (type))
3196 && TYPE_HIGH_BOUND_UNDEFINED (TYPE_INDEX_TYPE (type)))
3197 return allocate_optimized_out_value (size_type);
3198 }
3199 else
3200 (*pos) += 4;
3201 break;
3202
3203 case OP_VAR_MSYM_VALUE:
3204 {
3205 (*pos) += 4;
3206
3207 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3208 value *mval = evaluate_var_msym_value (noside,
3209 exp->elts[pc + 1].objfile,
3210 msymbol);
3211
3212 type = value_type (mval);
3213 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
3214 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol));
3215
3216 return value_from_longest (size_type, TYPE_LENGTH (type));
3217 }
3218 break;
3219
3220 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3221 type of the subscript is a variable length array type. In this case we
3222 must re-evaluate the right hand side of the subscription to allow
3223 side-effects. */
3224 case BINOP_SUBSCRIPT:
3225 if (noside == EVAL_NORMAL)
3226 {
3227 int npc = (*pos) + 1;
3228
3229 val = evaluate_subexp (NULL_TYPE, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3230 type = check_typedef (value_type (val));
3231 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3232 {
3233 type = check_typedef (TYPE_TARGET_TYPE (type));
3234 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3235 {
3236 type = TYPE_INDEX_TYPE (type);
3237 /* Only re-evaluate the right hand side if the resulting type
3238 is a variable length type. */
3239 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3240 {
3241 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3242 return value_from_longest
3243 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3244 }
3245 }
3246 }
3247 }
3248
3249 /* Fall through. */
3250
3251 default:
3252 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3253 type = value_type (val);
3254 break;
3255 }
3256
3257 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3258 "When applied to a reference or a reference type, the result is
3259 the size of the referenced type." */
3260 type = check_typedef (type);
3261 if (exp->language_defn->la_language == language_cplus
3262 && (TYPE_IS_REFERENCE (type)))
3263 type = check_typedef (TYPE_TARGET_TYPE (type));
3264 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3265 }
3266
3267 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3268 for that subexpression cast to TO_TYPE. Advance *POS over the
3269 subexpression. */
3270
3271 static value *
3272 evaluate_subexp_for_cast (expression *exp, int *pos,
3273 enum noside noside,
3274 struct type *to_type)
3275 {
3276 int pc = *pos;
3277
3278 /* Don't let symbols be evaluated with evaluate_subexp because that
3279 throws an "unknown type" error for no-debug data symbols.
3280 Instead, we want the cast to reinterpret the symbol. */
3281 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3282 || exp->elts[pc].opcode == OP_VAR_VALUE)
3283 {
3284 (*pos) += 4;
3285
3286 value *val;
3287 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3288 {
3289 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3290 return value_zero (to_type, not_lval);
3291
3292 val = evaluate_var_msym_value (noside,
3293 exp->elts[pc + 1].objfile,
3294 exp->elts[pc + 2].msymbol);
3295 }
3296 else
3297 val = evaluate_var_value (noside,
3298 exp->elts[pc + 1].block,
3299 exp->elts[pc + 2].symbol);
3300
3301 if (noside == EVAL_SKIP)
3302 return eval_skip_value (exp);
3303
3304 val = value_cast (to_type, val);
3305
3306 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3307 if (VALUE_LVAL (val) == lval_memory)
3308 {
3309 if (value_lazy (val))
3310 value_fetch_lazy (val);
3311 VALUE_LVAL (val) = not_lval;
3312 }
3313 return val;
3314 }
3315
3316 value *val = evaluate_subexp (to_type, exp, pos, noside);
3317 if (noside == EVAL_SKIP)
3318 return eval_skip_value (exp);
3319 return value_cast (to_type, val);
3320 }
3321
3322 /* Parse a type expression in the string [P..P+LENGTH). */
3323
3324 struct type *
3325 parse_and_eval_type (char *p, int length)
3326 {
3327 char *tmp = (char *) alloca (length + 4);
3328
3329 tmp[0] = '(';
3330 memcpy (tmp + 1, p, length);
3331 tmp[length + 1] = ')';
3332 tmp[length + 2] = '0';
3333 tmp[length + 3] = '\0';
3334 expression_up expr = parse_expression (tmp);
3335 if (expr->elts[0].opcode != UNOP_CAST)
3336 error (_("Internal error in eval_type."));
3337 return expr->elts[1].type;
3338 }
3339
3340 int
3341 calc_f77_array_dims (struct type *array_type)
3342 {
3343 int ndimen = 1;
3344 struct type *tmp_type;
3345
3346 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3347 error (_("Can't get dimensions for a non-array type"));
3348
3349 tmp_type = array_type;
3350
3351 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3352 {
3353 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3354 ++ndimen;
3355 }
3356 return ndimen;
3357 }
This page took 0.14488 seconds and 5 git commands to generate.