eval.c:evaluate_subexp_standard: Factor out function call handling
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "regcache.h"
38 #include "user-regs.h"
39 #include "valprint.h"
40 #include "gdb_obstack.h"
41 #include "objfiles.h"
42 #include "typeprint.h"
43 #include <ctype.h>
44
45 /* This is defined in valops.c */
46 extern int overload_resolution;
47
48 /* Prototypes for local functions. */
49
50 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
51 enum noside);
52
53 static struct value *evaluate_subexp_for_address (struct expression *,
54 int *, enum noside);
55
56 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
57 enum noside noside,
58 struct type *type);
59
60 static struct value *evaluate_struct_tuple (struct value *,
61 struct expression *, int *,
62 enum noside, int);
63
64 static LONGEST init_array_element (struct value *, struct value *,
65 struct expression *, int *, enum noside,
66 LONGEST, LONGEST);
67
68 struct value *
69 evaluate_subexp (struct type *expect_type, struct expression *exp,
70 int *pos, enum noside noside)
71 {
72 struct cleanup *cleanups;
73 struct value *retval;
74 int cleanup_temps = 0;
75
76 if (*pos == 0 && target_has_execution
77 && exp->language_defn->la_language == language_cplus
78 && !thread_stack_temporaries_enabled_p (inferior_ptid))
79 {
80 cleanups = enable_thread_stack_temporaries (inferior_ptid);
81 cleanup_temps = 1;
82 }
83
84 retval = (*exp->language_defn->la_exp_desc->evaluate_exp)
85 (expect_type, exp, pos, noside);
86
87 if (cleanup_temps)
88 {
89 if (value_in_thread_stack_temporaries (retval, inferior_ptid))
90 retval = value_non_lval (retval);
91 do_cleanups (cleanups);
92 }
93
94 return retval;
95 }
96 \f
97 /* Parse the string EXP as a C expression, evaluate it,
98 and return the result as a number. */
99
100 CORE_ADDR
101 parse_and_eval_address (const char *exp)
102 {
103 expression_up expr = parse_expression (exp);
104
105 return value_as_address (evaluate_expression (expr.get ()));
106 }
107
108 /* Like parse_and_eval_address, but treats the value of the expression
109 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
110 LONGEST
111 parse_and_eval_long (const char *exp)
112 {
113 expression_up expr = parse_expression (exp);
114
115 return value_as_long (evaluate_expression (expr.get ()));
116 }
117
118 struct value *
119 parse_and_eval (const char *exp)
120 {
121 expression_up expr = parse_expression (exp);
122
123 return evaluate_expression (expr.get ());
124 }
125
126 /* Parse up to a comma (or to a closeparen)
127 in the string EXPP as an expression, evaluate it, and return the value.
128 EXPP is advanced to point to the comma. */
129
130 struct value *
131 parse_to_comma_and_eval (const char **expp)
132 {
133 expression_up expr = parse_exp_1 (expp, 0, (struct block *) 0, 1);
134
135 return evaluate_expression (expr.get ());
136 }
137 \f
138 /* Evaluate an expression in internal prefix form
139 such as is constructed by parse.y.
140
141 See expression.h for info on the format of an expression. */
142
143 struct value *
144 evaluate_expression (struct expression *exp)
145 {
146 int pc = 0;
147
148 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
149 }
150
151 /* Evaluate an expression, avoiding all memory references
152 and getting a value whose type alone is correct. */
153
154 struct value *
155 evaluate_type (struct expression *exp)
156 {
157 int pc = 0;
158
159 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
160 }
161
162 /* Evaluate a subexpression, avoiding all memory references and
163 getting a value whose type alone is correct. */
164
165 struct value *
166 evaluate_subexpression_type (struct expression *exp, int subexp)
167 {
168 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
169 }
170
171 /* Find the current value of a watchpoint on EXP. Return the value in
172 *VALP and *RESULTP and the chain of intermediate and final values
173 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
174 not need them.
175
176 If PRESERVE_ERRORS is true, then exceptions are passed through.
177 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
178 occurs while evaluating the expression, *RESULTP will be set to
179 NULL. *RESULTP may be a lazy value, if the result could not be
180 read from memory. It is used to determine whether a value is
181 user-specified (we should watch the whole value) or intermediate
182 (we should watch only the bit used to locate the final value).
183
184 If the final value, or any intermediate value, could not be read
185 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
186 set to any referenced values. *VALP will never be a lazy value.
187 This is the value which we store in struct breakpoint.
188
189 If VAL_CHAIN is non-NULL, *VAL_CHAIN will be released from the
190 value chain. The caller must free the values individually. If
191 VAL_CHAIN is NULL, all generated values will be left on the value
192 chain. */
193
194 void
195 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
196 struct value **resultp, struct value **val_chain,
197 int preserve_errors)
198 {
199 struct value *mark, *new_mark, *result;
200
201 *valp = NULL;
202 if (resultp)
203 *resultp = NULL;
204 if (val_chain)
205 *val_chain = NULL;
206
207 /* Evaluate the expression. */
208 mark = value_mark ();
209 result = NULL;
210
211 TRY
212 {
213 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
214 }
215 CATCH (ex, RETURN_MASK_ALL)
216 {
217 /* Ignore memory errors if we want watchpoints pointing at
218 inaccessible memory to still be created; otherwise, throw the
219 error to some higher catcher. */
220 switch (ex.error)
221 {
222 case MEMORY_ERROR:
223 if (!preserve_errors)
224 break;
225 default:
226 throw_exception (ex);
227 break;
228 }
229 }
230 END_CATCH
231
232 new_mark = value_mark ();
233 if (mark == new_mark)
234 return;
235 if (resultp)
236 *resultp = result;
237
238 /* Make sure it's not lazy, so that after the target stops again we
239 have a non-lazy previous value to compare with. */
240 if (result != NULL)
241 {
242 if (!value_lazy (result))
243 *valp = result;
244 else
245 {
246
247 TRY
248 {
249 value_fetch_lazy (result);
250 *valp = result;
251 }
252 CATCH (except, RETURN_MASK_ERROR)
253 {
254 }
255 END_CATCH
256 }
257 }
258
259 if (val_chain)
260 {
261 /* Return the chain of intermediate values. We use this to
262 decide which addresses to watch. */
263 *val_chain = new_mark;
264 value_release_to_mark (mark);
265 }
266 }
267
268 /* Extract a field operation from an expression. If the subexpression
269 of EXP starting at *SUBEXP is not a structure dereference
270 operation, return NULL. Otherwise, return the name of the
271 dereferenced field, and advance *SUBEXP to point to the
272 subexpression of the left-hand-side of the dereference. This is
273 used when completing field names. */
274
275 char *
276 extract_field_op (struct expression *exp, int *subexp)
277 {
278 int tem;
279 char *result;
280
281 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
282 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
283 return NULL;
284 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
285 result = &exp->elts[*subexp + 2].string;
286 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
287 return result;
288 }
289
290 /* This function evaluates brace-initializers (in C/C++) for
291 structure types. */
292
293 static struct value *
294 evaluate_struct_tuple (struct value *struct_val,
295 struct expression *exp,
296 int *pos, enum noside noside, int nargs)
297 {
298 struct type *struct_type = check_typedef (value_type (struct_val));
299 struct type *field_type;
300 int fieldno = -1;
301
302 while (--nargs >= 0)
303 {
304 struct value *val = NULL;
305 int bitpos, bitsize;
306 bfd_byte *addr;
307
308 fieldno++;
309 /* Skip static fields. */
310 while (fieldno < TYPE_NFIELDS (struct_type)
311 && field_is_static (&TYPE_FIELD (struct_type,
312 fieldno)))
313 fieldno++;
314 if (fieldno >= TYPE_NFIELDS (struct_type))
315 error (_("too many initializers"));
316 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
317 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
318 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
319 error (_("don't know which variant you want to set"));
320
321 /* Here, struct_type is the type of the inner struct,
322 while substruct_type is the type of the inner struct.
323 These are the same for normal structures, but a variant struct
324 contains anonymous union fields that contain substruct fields.
325 The value fieldno is the index of the top-level (normal or
326 anonymous union) field in struct_field, while the value
327 subfieldno is the index of the actual real (named inner) field
328 in substruct_type. */
329
330 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
331 if (val == 0)
332 val = evaluate_subexp (field_type, exp, pos, noside);
333
334 /* Now actually set the field in struct_val. */
335
336 /* Assign val to field fieldno. */
337 if (value_type (val) != field_type)
338 val = value_cast (field_type, val);
339
340 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
341 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
342 addr = value_contents_writeable (struct_val) + bitpos / 8;
343 if (bitsize)
344 modify_field (struct_type, addr,
345 value_as_long (val), bitpos % 8, bitsize);
346 else
347 memcpy (addr, value_contents (val),
348 TYPE_LENGTH (value_type (val)));
349
350 }
351 return struct_val;
352 }
353
354 /* Recursive helper function for setting elements of array tuples.
355 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
356 element value is ELEMENT; EXP, POS and NOSIDE are as usual.
357 Evaluates index expresions and sets the specified element(s) of
358 ARRAY to ELEMENT. Returns last index value. */
359
360 static LONGEST
361 init_array_element (struct value *array, struct value *element,
362 struct expression *exp, int *pos,
363 enum noside noside, LONGEST low_bound, LONGEST high_bound)
364 {
365 LONGEST index;
366 int element_size = TYPE_LENGTH (value_type (element));
367
368 if (exp->elts[*pos].opcode == BINOP_COMMA)
369 {
370 (*pos)++;
371 init_array_element (array, element, exp, pos, noside,
372 low_bound, high_bound);
373 return init_array_element (array, element,
374 exp, pos, noside, low_bound, high_bound);
375 }
376 else
377 {
378 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
379 if (index < low_bound || index > high_bound)
380 error (_("tuple index out of range"));
381 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
382 value_contents (element), element_size);
383 }
384 return index;
385 }
386
387 static struct value *
388 value_f90_subarray (struct value *array,
389 struct expression *exp, int *pos, enum noside noside)
390 {
391 int pc = (*pos) + 1;
392 LONGEST low_bound, high_bound;
393 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
394 enum range_type range_type
395 = (enum range_type) longest_to_int (exp->elts[pc].longconst);
396
397 *pos += 3;
398
399 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
400 low_bound = TYPE_LOW_BOUND (range);
401 else
402 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
403
404 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
405 high_bound = TYPE_HIGH_BOUND (range);
406 else
407 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
408
409 return value_slice (array, low_bound, high_bound - low_bound + 1);
410 }
411
412
413 /* Promote value ARG1 as appropriate before performing a unary operation
414 on this argument.
415 If the result is not appropriate for any particular language then it
416 needs to patch this function. */
417
418 void
419 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
420 struct value **arg1)
421 {
422 struct type *type1;
423
424 *arg1 = coerce_ref (*arg1);
425 type1 = check_typedef (value_type (*arg1));
426
427 if (is_integral_type (type1))
428 {
429 switch (language->la_language)
430 {
431 default:
432 /* Perform integral promotion for ANSI C/C++.
433 If not appropropriate for any particular language
434 it needs to modify this function. */
435 {
436 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
437
438 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
439 *arg1 = value_cast (builtin_int, *arg1);
440 }
441 break;
442 }
443 }
444 }
445
446 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
447 operation on those two operands.
448 If the result is not appropriate for any particular language then it
449 needs to patch this function. */
450
451 void
452 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
453 struct value **arg1, struct value **arg2)
454 {
455 struct type *promoted_type = NULL;
456 struct type *type1;
457 struct type *type2;
458
459 *arg1 = coerce_ref (*arg1);
460 *arg2 = coerce_ref (*arg2);
461
462 type1 = check_typedef (value_type (*arg1));
463 type2 = check_typedef (value_type (*arg2));
464
465 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
466 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
467 && !is_integral_type (type1))
468 || (TYPE_CODE (type2) != TYPE_CODE_FLT
469 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
470 && !is_integral_type (type2)))
471 return;
472
473 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
474 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
475 {
476 /* No promotion required. */
477 }
478 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
479 || TYPE_CODE (type2) == TYPE_CODE_FLT)
480 {
481 switch (language->la_language)
482 {
483 case language_c:
484 case language_cplus:
485 case language_asm:
486 case language_objc:
487 case language_opencl:
488 /* No promotion required. */
489 break;
490
491 default:
492 /* For other languages the result type is unchanged from gdb
493 version 6.7 for backward compatibility.
494 If either arg was long double, make sure that value is also long
495 double. Otherwise use double. */
496 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
497 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
498 promoted_type = builtin_type (gdbarch)->builtin_long_double;
499 else
500 promoted_type = builtin_type (gdbarch)->builtin_double;
501 break;
502 }
503 }
504 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
505 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
506 {
507 /* No promotion required. */
508 }
509 else
510 /* Integral operations here. */
511 /* FIXME: Also mixed integral/booleans, with result an integer. */
512 {
513 const struct builtin_type *builtin = builtin_type (gdbarch);
514 unsigned int promoted_len1 = TYPE_LENGTH (type1);
515 unsigned int promoted_len2 = TYPE_LENGTH (type2);
516 int is_unsigned1 = TYPE_UNSIGNED (type1);
517 int is_unsigned2 = TYPE_UNSIGNED (type2);
518 unsigned int result_len;
519 int unsigned_operation;
520
521 /* Determine type length and signedness after promotion for
522 both operands. */
523 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
524 {
525 is_unsigned1 = 0;
526 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
527 }
528 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
529 {
530 is_unsigned2 = 0;
531 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
532 }
533
534 if (promoted_len1 > promoted_len2)
535 {
536 unsigned_operation = is_unsigned1;
537 result_len = promoted_len1;
538 }
539 else if (promoted_len2 > promoted_len1)
540 {
541 unsigned_operation = is_unsigned2;
542 result_len = promoted_len2;
543 }
544 else
545 {
546 unsigned_operation = is_unsigned1 || is_unsigned2;
547 result_len = promoted_len1;
548 }
549
550 switch (language->la_language)
551 {
552 case language_c:
553 case language_cplus:
554 case language_asm:
555 case language_objc:
556 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
557 {
558 promoted_type = (unsigned_operation
559 ? builtin->builtin_unsigned_int
560 : builtin->builtin_int);
561 }
562 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
563 {
564 promoted_type = (unsigned_operation
565 ? builtin->builtin_unsigned_long
566 : builtin->builtin_long);
567 }
568 else
569 {
570 promoted_type = (unsigned_operation
571 ? builtin->builtin_unsigned_long_long
572 : builtin->builtin_long_long);
573 }
574 break;
575 case language_opencl:
576 if (result_len <= TYPE_LENGTH (lookup_signed_typename
577 (language, gdbarch, "int")))
578 {
579 promoted_type =
580 (unsigned_operation
581 ? lookup_unsigned_typename (language, gdbarch, "int")
582 : lookup_signed_typename (language, gdbarch, "int"));
583 }
584 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
585 (language, gdbarch, "long")))
586 {
587 promoted_type =
588 (unsigned_operation
589 ? lookup_unsigned_typename (language, gdbarch, "long")
590 : lookup_signed_typename (language, gdbarch,"long"));
591 }
592 break;
593 default:
594 /* For other languages the result type is unchanged from gdb
595 version 6.7 for backward compatibility.
596 If either arg was long long, make sure that value is also long
597 long. Otherwise use long. */
598 if (unsigned_operation)
599 {
600 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
601 promoted_type = builtin->builtin_unsigned_long_long;
602 else
603 promoted_type = builtin->builtin_unsigned_long;
604 }
605 else
606 {
607 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
608 promoted_type = builtin->builtin_long_long;
609 else
610 promoted_type = builtin->builtin_long;
611 }
612 break;
613 }
614 }
615
616 if (promoted_type)
617 {
618 /* Promote both operands to common type. */
619 *arg1 = value_cast (promoted_type, *arg1);
620 *arg2 = value_cast (promoted_type, *arg2);
621 }
622 }
623
624 static int
625 ptrmath_type_p (const struct language_defn *lang, struct type *type)
626 {
627 type = check_typedef (type);
628 if (TYPE_IS_REFERENCE (type))
629 type = TYPE_TARGET_TYPE (type);
630
631 switch (TYPE_CODE (type))
632 {
633 case TYPE_CODE_PTR:
634 case TYPE_CODE_FUNC:
635 return 1;
636
637 case TYPE_CODE_ARRAY:
638 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
639
640 default:
641 return 0;
642 }
643 }
644
645 /* Constructs a fake method with the given parameter types. This
646 function is used by the parser to construct an "expected" type for
647 method overload resolution. FLAGS is used as instance flags of the
648 new type, in order to be able to make the new type represent a
649 const/volatile overload. */
650
651 static struct type *
652 make_params (type_instance_flags flags,
653 int num_types, struct type **param_types)
654 {
655 struct type *type = XCNEW (struct type);
656 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
657 TYPE_LENGTH (type) = 1;
658 TYPE_CODE (type) = TYPE_CODE_METHOD;
659 TYPE_CHAIN (type) = type;
660 TYPE_INSTANCE_FLAGS (type) = flags;
661 if (num_types > 0)
662 {
663 if (param_types[num_types - 1] == NULL)
664 {
665 --num_types;
666 TYPE_VARARGS (type) = 1;
667 }
668 else if (TYPE_CODE (check_typedef (param_types[num_types - 1]))
669 == TYPE_CODE_VOID)
670 {
671 --num_types;
672 /* Caller should have ensured this. */
673 gdb_assert (num_types == 0);
674 TYPE_PROTOTYPED (type) = 1;
675 }
676 }
677
678 TYPE_NFIELDS (type) = num_types;
679 TYPE_FIELDS (type) = (struct field *)
680 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
681
682 while (num_types-- > 0)
683 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
684
685 return type;
686 }
687
688 /* Helper for evaluating an OP_VAR_VALUE. */
689
690 static value *
691 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
692 {
693 /* JYG: We used to just return value_zero of the symbol type if
694 we're asked to avoid side effects. Otherwise we return
695 value_of_variable (...). However I'm not sure if
696 value_of_variable () has any side effect. We need a full value
697 object returned here for whatis_exp () to call evaluate_type ()
698 and then pass the full value to value_rtti_target_type () if we
699 are dealing with a pointer or reference to a base class and print
700 object is on. */
701
702 struct value *ret = NULL;
703
704 TRY
705 {
706 ret = value_of_variable (var, blk);
707 }
708
709 CATCH (except, RETURN_MASK_ERROR)
710 {
711 if (noside != EVAL_AVOID_SIDE_EFFECTS)
712 throw_exception (except);
713
714 ret = value_zero (SYMBOL_TYPE (var), not_lval);
715 }
716 END_CATCH
717
718 return ret;
719 }
720
721 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
722
723 static value *
724 evaluate_var_msym_value (enum noside noside,
725 struct objfile *objfile, minimal_symbol *msymbol)
726 {
727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
728 {
729 type *the_type = find_minsym_type_and_address (msymbol, objfile, NULL);
730 return value_zero (the_type, not_lval);
731 }
732 else
733 {
734 CORE_ADDR address;
735 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
736 return value_at_lazy (the_type, address);
737 }
738 }
739
740 /* Helper for returning a value when handling EVAL_SKIP. */
741
742 static value *
743 eval_skip_value (expression *exp)
744 {
745 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
746 }
747
748 /* Evaluate a function call. The function to be called is in
749 ARGVEC[0] and the arguments passed to the function are in
750 ARGVEC[1..NARGS]. FUNCTION_NAME is the name of the function, if
751 known. DEFAULT_RETURN_TYPE is used as the function's return type
752 if the return type is unknown. */
753
754 static value *
755 eval_call (expression *exp, enum noside noside,
756 int nargs, value **argvec,
757 const char *function_name,
758 type *default_return_type)
759 {
760 if (argvec[0] == NULL)
761 error (_("Cannot evaluate function -- may be inlined"));
762 if (noside == EVAL_AVOID_SIDE_EFFECTS)
763 {
764 /* If the return type doesn't look like a function type,
765 call an error. This can happen if somebody tries to turn
766 a variable into a function call. */
767
768 type *ftype = value_type (argvec[0]);
769
770 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
771 {
772 /* We don't know anything about what the internal
773 function might return, but we have to return
774 something. */
775 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
776 not_lval);
777 }
778 else if (TYPE_CODE (ftype) == TYPE_CODE_XMETHOD)
779 {
780 type *return_type
781 = result_type_of_xmethod (argvec[0], nargs, argvec + 1);
782
783 if (return_type == NULL)
784 error (_("Xmethod is missing return type."));
785 return value_zero (return_type, not_lval);
786 }
787 else if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
788 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
789 {
790 type *return_type = TYPE_TARGET_TYPE (ftype);
791
792 if (return_type == NULL)
793 return_type = default_return_type;
794
795 if (return_type == NULL)
796 error_call_unknown_return_type (function_name);
797
798 return allocate_value (return_type);
799 }
800 else
801 error (_("Expression of type other than "
802 "\"Function returning ...\" used as function"));
803 }
804 switch (TYPE_CODE (value_type (argvec[0])))
805 {
806 case TYPE_CODE_INTERNAL_FUNCTION:
807 return call_internal_function (exp->gdbarch, exp->language_defn,
808 argvec[0], nargs, argvec + 1);
809 case TYPE_CODE_XMETHOD:
810 return call_xmethod (argvec[0], nargs, argvec + 1);
811 default:
812 return call_function_by_hand (argvec[0], default_return_type,
813 nargs, argvec + 1);
814 }
815 }
816
817 /* Helper for evaluating an OP_FUNCALL. */
818
819 static value *
820 evaluate_funcall (type *expect_type, expression *exp, int *pos,
821 enum noside noside)
822 {
823 int tem;
824 int pc2 = 0;
825 value *arg1 = NULL;
826 value *arg2 = NULL;
827 int save_pos1;
828 symbol *function = NULL;
829 char *function_name = NULL;
830 const char *var_func_name = NULL;
831
832 int pc = (*pos);
833 (*pos) += 2;
834
835 exp_opcode op = exp->elts[*pos].opcode;
836 int nargs = longest_to_int (exp->elts[pc].longconst);
837 /* Allocate arg vector, including space for the function to be
838 called in argvec[0], a potential `this', and a terminating
839 NULL. */
840 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
841 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
842 {
843 /* First, evaluate the structure into arg2. */
844 pc2 = (*pos)++;
845
846 if (op == STRUCTOP_MEMBER)
847 {
848 arg2 = evaluate_subexp_for_address (exp, pos, noside);
849 }
850 else
851 {
852 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
853 }
854
855 /* If the function is a virtual function, then the aggregate
856 value (providing the structure) plays its part by providing
857 the vtable. Otherwise, it is just along for the ride: call
858 the function directly. */
859
860 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
861
862 type *a1_type = check_typedef (value_type (arg1));
863 if (noside == EVAL_SKIP)
864 tem = 1; /* Set it to the right arg index so that all
865 arguments can also be skipped. */
866 else if (TYPE_CODE (a1_type) == TYPE_CODE_METHODPTR)
867 {
868 if (noside == EVAL_AVOID_SIDE_EFFECTS)
869 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
870 else
871 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
872
873 /* Now, say which argument to start evaluating from. */
874 nargs++;
875 tem = 2;
876 argvec[1] = arg2;
877 }
878 else if (TYPE_CODE (a1_type) == TYPE_CODE_MEMBERPTR)
879 {
880 struct type *type_ptr
881 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
882 struct type *target_type_ptr
883 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
884
885 /* Now, convert these values to an address. */
886 arg2 = value_cast (type_ptr, arg2);
887
888 long mem_offset = value_as_long (arg1);
889
890 arg1 = value_from_pointer (target_type_ptr,
891 value_as_long (arg2) + mem_offset);
892 arg1 = value_ind (arg1);
893 tem = 1;
894 }
895 else
896 error (_("Non-pointer-to-member value used in pointer-to-member "
897 "construct"));
898 }
899 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
900 {
901 /* Hair for method invocations. */
902 int tem2;
903
904 nargs++;
905 /* First, evaluate the structure into arg2. */
906 pc2 = (*pos)++;
907 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
908 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
909
910 if (op == STRUCTOP_STRUCT)
911 {
912 /* If v is a variable in a register, and the user types
913 v.method (), this will produce an error, because v has no
914 address.
915
916 A possible way around this would be to allocate a copy of
917 the variable on the stack, copy in the contents, call the
918 function, and copy out the contents. I.e. convert this
919 from call by reference to call by copy-return (or
920 whatever it's called). However, this does not work
921 because it is not the same: the method being called could
922 stash a copy of the address, and then future uses through
923 that address (after the method returns) would be expected
924 to use the variable itself, not some copy of it. */
925 arg2 = evaluate_subexp_for_address (exp, pos, noside);
926 }
927 else
928 {
929 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
930
931 /* Check to see if the operator '->' has been overloaded.
932 If the operator has been overloaded replace arg2 with the
933 value returned by the custom operator and continue
934 evaluation. */
935 while (unop_user_defined_p (op, arg2))
936 {
937 struct value *value = NULL;
938 TRY
939 {
940 value = value_x_unop (arg2, op, noside);
941 }
942
943 CATCH (except, RETURN_MASK_ERROR)
944 {
945 if (except.error == NOT_FOUND_ERROR)
946 break;
947 else
948 throw_exception (except);
949 }
950 END_CATCH
951
952 arg2 = value;
953 }
954 }
955 /* Now, say which argument to start evaluating from. */
956 tem = 2;
957 }
958 else if (op == OP_SCOPE
959 && overload_resolution
960 && (exp->language_defn->la_language == language_cplus))
961 {
962 /* Unpack it locally so we can properly handle overload
963 resolution. */
964 char *name;
965 int local_tem;
966
967 pc2 = (*pos)++;
968 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
969 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
970 struct type *type = exp->elts[pc2 + 1].type;
971 name = &exp->elts[pc2 + 3].string;
972
973 function = NULL;
974 function_name = NULL;
975 if (TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
976 {
977 function = cp_lookup_symbol_namespace (TYPE_TAG_NAME (type),
978 name,
979 get_selected_block (0),
980 VAR_DOMAIN).symbol;
981 if (function == NULL)
982 error (_("No symbol \"%s\" in namespace \"%s\"."),
983 name, TYPE_TAG_NAME (type));
984
985 tem = 1;
986 /* arg2 is left as NULL on purpose. */
987 }
988 else
989 {
990 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
991 || TYPE_CODE (type) == TYPE_CODE_UNION);
992 function_name = name;
993
994 /* We need a properly typed value for method lookup. For
995 static methods arg2 is otherwise unused. */
996 arg2 = value_zero (type, lval_memory);
997 ++nargs;
998 tem = 2;
999 }
1000 }
1001 else if (op == OP_ADL_FUNC)
1002 {
1003 /* Save the function position and move pos so that the arguments
1004 can be evaluated. */
1005 int func_name_len;
1006
1007 save_pos1 = *pos;
1008 tem = 1;
1009
1010 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1011 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1012 }
1013 else
1014 {
1015 /* Non-method function call. */
1016 save_pos1 = *pos;
1017 tem = 1;
1018
1019 /* If this is a C++ function wait until overload resolution. */
1020 if (op == OP_VAR_VALUE
1021 && overload_resolution
1022 && (exp->language_defn->la_language == language_cplus))
1023 {
1024 (*pos) += 4; /* Skip the evaluation of the symbol. */
1025 argvec[0] = NULL;
1026 }
1027 else
1028 {
1029 if (op == OP_VAR_MSYM_VALUE)
1030 {
1031 symbol *sym = exp->elts[*pos + 2].symbol;
1032 var_func_name = SYMBOL_PRINT_NAME (sym);
1033 }
1034 else if (op == OP_VAR_VALUE)
1035 {
1036 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
1037 var_func_name = MSYMBOL_PRINT_NAME (msym);
1038 }
1039
1040 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1041 type *type = value_type (argvec[0]);
1042 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1043 type = TYPE_TARGET_TYPE (type);
1044 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1045 {
1046 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1047 {
1048 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1049 tem - 1),
1050 exp, pos, noside);
1051 }
1052 }
1053 }
1054 }
1055
1056 /* Evaluate arguments (if not already done, e.g., namespace::func()
1057 and overload-resolution is off). */
1058 for (; tem <= nargs; tem++)
1059 {
1060 /* Ensure that array expressions are coerced into pointer
1061 objects. */
1062 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1063 }
1064
1065 /* Signal end of arglist. */
1066 argvec[tem] = 0;
1067
1068 if (noside == EVAL_SKIP)
1069 return eval_skip_value (exp);
1070
1071 if (op == OP_ADL_FUNC)
1072 {
1073 struct symbol *symp;
1074 char *func_name;
1075 int name_len;
1076 int string_pc = save_pos1 + 3;
1077
1078 /* Extract the function name. */
1079 name_len = longest_to_int (exp->elts[string_pc].longconst);
1080 func_name = (char *) alloca (name_len + 1);
1081 strcpy (func_name, &exp->elts[string_pc + 1].string);
1082
1083 find_overload_match (&argvec[1], nargs, func_name,
1084 NON_METHOD, /* not method */
1085 NULL, NULL, /* pass NULL symbol since
1086 symbol is unknown */
1087 NULL, &symp, NULL, 0, noside);
1088
1089 /* Now fix the expression being evaluated. */
1090 exp->elts[save_pos1 + 2].symbol = symp;
1091 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1092 }
1093
1094 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1095 || (op == OP_SCOPE && function_name != NULL))
1096 {
1097 int static_memfuncp;
1098 char *tstr;
1099
1100 /* Method invocation: stuff "this" as first parameter. If the
1101 method turns out to be static we undo this below. */
1102 argvec[1] = arg2;
1103
1104 if (op != OP_SCOPE)
1105 {
1106 /* Name of method from expression. */
1107 tstr = &exp->elts[pc2 + 2].string;
1108 }
1109 else
1110 tstr = function_name;
1111
1112 if (overload_resolution && (exp->language_defn->la_language
1113 == language_cplus))
1114 {
1115 /* Language is C++, do some overload resolution before
1116 evaluation. */
1117 struct value *valp = NULL;
1118
1119 (void) find_overload_match (&argvec[1], nargs, tstr,
1120 METHOD, /* method */
1121 &arg2, /* the object */
1122 NULL, &valp, NULL,
1123 &static_memfuncp, 0, noside);
1124
1125 if (op == OP_SCOPE && !static_memfuncp)
1126 {
1127 /* For the time being, we don't handle this. */
1128 error (_("Call to overloaded function %s requires "
1129 "`this' pointer"),
1130 function_name);
1131 }
1132 argvec[1] = arg2; /* the ``this'' pointer */
1133 argvec[0] = valp; /* Use the method found after overload
1134 resolution. */
1135 }
1136 else
1137 /* Non-C++ case -- or no overload resolution. */
1138 {
1139 struct value *temp = arg2;
1140
1141 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1142 &static_memfuncp,
1143 op == STRUCTOP_STRUCT
1144 ? "structure" : "structure pointer");
1145 /* value_struct_elt updates temp with the correct value of
1146 the ``this'' pointer if necessary, so modify argvec[1] to
1147 reflect any ``this'' changes. */
1148 arg2
1149 = value_from_longest (lookup_pointer_type(value_type (temp)),
1150 value_address (temp)
1151 + value_embedded_offset (temp));
1152 argvec[1] = arg2; /* the ``this'' pointer */
1153 }
1154
1155 /* Take out `this' if needed. */
1156 if (static_memfuncp)
1157 {
1158 argvec[1] = argvec[0];
1159 nargs--;
1160 argvec++;
1161 }
1162 }
1163 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1164 {
1165 /* Pointer to member. argvec[1] is already set up. */
1166 argvec[0] = arg1;
1167 }
1168 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1169 {
1170 /* Non-member function being called. */
1171 /* fn: This can only be done for C++ functions. A C-style
1172 function in a C++ program, for instance, does not have the
1173 fields that are expected here. */
1174
1175 if (overload_resolution && (exp->language_defn->la_language
1176 == language_cplus))
1177 {
1178 /* Language is C++, do some overload resolution before
1179 evaluation. */
1180 struct symbol *symp;
1181 int no_adl = 0;
1182
1183 /* If a scope has been specified disable ADL. */
1184 if (op == OP_SCOPE)
1185 no_adl = 1;
1186
1187 if (op == OP_VAR_VALUE)
1188 function = exp->elts[save_pos1+2].symbol;
1189
1190 (void) find_overload_match (&argvec[1], nargs,
1191 NULL, /* no need for name */
1192 NON_METHOD, /* not method */
1193 NULL, function, /* the function */
1194 NULL, &symp, NULL, no_adl, noside);
1195
1196 if (op == OP_VAR_VALUE)
1197 {
1198 /* Now fix the expression being evaluated. */
1199 exp->elts[save_pos1+2].symbol = symp;
1200 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1201 noside);
1202 }
1203 else
1204 argvec[0] = value_of_variable (symp, get_selected_block (0));
1205 }
1206 else
1207 {
1208 /* Not C++, or no overload resolution allowed. */
1209 /* Nothing to be done; argvec already correctly set up. */
1210 }
1211 }
1212 else
1213 {
1214 /* It is probably a C-style function. */
1215 /* Nothing to be done; argvec already correctly set up. */
1216 }
1217
1218 return eval_call (exp, noside, nargs, argvec, var_func_name, expect_type);
1219 }
1220
1221 struct value *
1222 evaluate_subexp_standard (struct type *expect_type,
1223 struct expression *exp, int *pos,
1224 enum noside noside)
1225 {
1226 enum exp_opcode op;
1227 int tem, tem2, tem3;
1228 int pc, oldpos;
1229 struct value *arg1 = NULL;
1230 struct value *arg2 = NULL;
1231 struct value *arg3;
1232 struct type *type;
1233 int nargs;
1234 struct value **argvec;
1235 int code;
1236 int ix;
1237 long mem_offset;
1238 struct type **arg_types;
1239
1240 pc = (*pos)++;
1241 op = exp->elts[pc].opcode;
1242
1243 switch (op)
1244 {
1245 case OP_SCOPE:
1246 tem = longest_to_int (exp->elts[pc + 2].longconst);
1247 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1248 if (noside == EVAL_SKIP)
1249 return eval_skip_value (exp);
1250 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
1251 &exp->elts[pc + 3].string,
1252 expect_type, 0, noside);
1253 if (arg1 == NULL)
1254 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
1255 return arg1;
1256
1257 case OP_LONG:
1258 (*pos) += 3;
1259 return value_from_longest (exp->elts[pc + 1].type,
1260 exp->elts[pc + 2].longconst);
1261
1262 case OP_DOUBLE:
1263 (*pos) += 3;
1264 return value_from_double (exp->elts[pc + 1].type,
1265 exp->elts[pc + 2].doubleconst);
1266
1267 case OP_DECFLOAT:
1268 (*pos) += 3;
1269 return value_from_decfloat (exp->elts[pc + 1].type,
1270 exp->elts[pc + 2].decfloatconst);
1271
1272 case OP_ADL_FUNC:
1273 case OP_VAR_VALUE:
1274 (*pos) += 3;
1275 if (noside == EVAL_SKIP)
1276 return eval_skip_value (exp);
1277
1278 {
1279 symbol *var = exp->elts[pc + 2].symbol;
1280 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_ERROR)
1281 error_unknown_type (SYMBOL_PRINT_NAME (var));
1282
1283 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1284 }
1285
1286 case OP_VAR_MSYM_VALUE:
1287 {
1288 (*pos) += 3;
1289
1290 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1291 value *val = evaluate_var_msym_value (noside,
1292 exp->elts[pc + 1].objfile,
1293 msymbol);
1294
1295 type = value_type (val);
1296 if (TYPE_CODE (type) == TYPE_CODE_ERROR
1297 && (noside != EVAL_AVOID_SIDE_EFFECTS || pc != 0))
1298 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol));
1299 return val;
1300 }
1301
1302 case OP_VAR_ENTRY_VALUE:
1303 (*pos) += 2;
1304 if (noside == EVAL_SKIP)
1305 return eval_skip_value (exp);
1306
1307 {
1308 struct symbol *sym = exp->elts[pc + 1].symbol;
1309 struct frame_info *frame;
1310
1311 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1312 return value_zero (SYMBOL_TYPE (sym), not_lval);
1313
1314 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1315 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1316 error (_("Symbol \"%s\" does not have any specific entry value"),
1317 SYMBOL_PRINT_NAME (sym));
1318
1319 frame = get_selected_frame (NULL);
1320 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1321 }
1322
1323 case OP_FUNC_STATIC_VAR:
1324 tem = longest_to_int (exp->elts[pc + 1].longconst);
1325 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1326 if (noside == EVAL_SKIP)
1327 return eval_skip_value (exp);
1328
1329 {
1330 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1331 CORE_ADDR addr = value_address (func);
1332
1333 const block *blk = block_for_pc (addr);
1334 const char *var = &exp->elts[pc + 2].string;
1335
1336 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1337
1338 if (sym.symbol == NULL)
1339 error (_("No symbol \"%s\" in specified context."), var);
1340
1341 return evaluate_var_value (noside, sym.block, sym.symbol);
1342 }
1343
1344 case OP_LAST:
1345 (*pos) += 2;
1346 return
1347 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1348
1349 case OP_REGISTER:
1350 {
1351 const char *name = &exp->elts[pc + 2].string;
1352 int regno;
1353 struct value *val;
1354
1355 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1356 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1357 name, strlen (name));
1358 if (regno == -1)
1359 error (_("Register $%s not available."), name);
1360
1361 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1362 a value with the appropriate register type. Unfortunately,
1363 we don't have easy access to the type of user registers.
1364 So for these registers, we fetch the register value regardless
1365 of the evaluation mode. */
1366 if (noside == EVAL_AVOID_SIDE_EFFECTS
1367 && regno < gdbarch_num_regs (exp->gdbarch)
1368 + gdbarch_num_pseudo_regs (exp->gdbarch))
1369 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1370 else
1371 val = value_of_register (regno, get_selected_frame (NULL));
1372 if (val == NULL)
1373 error (_("Value of register %s not available."), name);
1374 else
1375 return val;
1376 }
1377 case OP_BOOL:
1378 (*pos) += 2;
1379 type = language_bool_type (exp->language_defn, exp->gdbarch);
1380 return value_from_longest (type, exp->elts[pc + 1].longconst);
1381
1382 case OP_INTERNALVAR:
1383 (*pos) += 2;
1384 return value_of_internalvar (exp->gdbarch,
1385 exp->elts[pc + 1].internalvar);
1386
1387 case OP_STRING:
1388 tem = longest_to_int (exp->elts[pc + 1].longconst);
1389 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1390 if (noside == EVAL_SKIP)
1391 return eval_skip_value (exp);
1392 type = language_string_char_type (exp->language_defn, exp->gdbarch);
1393 return value_string (&exp->elts[pc + 2].string, tem, type);
1394
1395 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1396 NSString constant. */
1397 tem = longest_to_int (exp->elts[pc + 1].longconst);
1398 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1399 if (noside == EVAL_SKIP)
1400 return eval_skip_value (exp);
1401 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1402
1403 case OP_ARRAY:
1404 (*pos) += 3;
1405 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1406 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1407 nargs = tem3 - tem2 + 1;
1408 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
1409
1410 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1411 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
1412 {
1413 struct value *rec = allocate_value (expect_type);
1414
1415 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1416 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1417 }
1418
1419 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1420 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
1421 {
1422 struct type *range_type = TYPE_INDEX_TYPE (type);
1423 struct type *element_type = TYPE_TARGET_TYPE (type);
1424 struct value *array = allocate_value (expect_type);
1425 int element_size = TYPE_LENGTH (check_typedef (element_type));
1426 LONGEST low_bound, high_bound, index;
1427
1428 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1429 {
1430 low_bound = 0;
1431 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1432 }
1433 index = low_bound;
1434 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1435 for (tem = nargs; --nargs >= 0;)
1436 {
1437 struct value *element;
1438 int index_pc = 0;
1439
1440 element = evaluate_subexp (element_type, exp, pos, noside);
1441 if (value_type (element) != element_type)
1442 element = value_cast (element_type, element);
1443 if (index_pc)
1444 {
1445 int continue_pc = *pos;
1446
1447 *pos = index_pc;
1448 index = init_array_element (array, element, exp, pos, noside,
1449 low_bound, high_bound);
1450 *pos = continue_pc;
1451 }
1452 else
1453 {
1454 if (index > high_bound)
1455 /* To avoid memory corruption. */
1456 error (_("Too many array elements"));
1457 memcpy (value_contents_raw (array)
1458 + (index - low_bound) * element_size,
1459 value_contents (element),
1460 element_size);
1461 }
1462 index++;
1463 }
1464 return array;
1465 }
1466
1467 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1468 && TYPE_CODE (type) == TYPE_CODE_SET)
1469 {
1470 struct value *set = allocate_value (expect_type);
1471 gdb_byte *valaddr = value_contents_raw (set);
1472 struct type *element_type = TYPE_INDEX_TYPE (type);
1473 struct type *check_type = element_type;
1474 LONGEST low_bound, high_bound;
1475
1476 /* Get targettype of elementtype. */
1477 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
1478 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
1479 check_type = TYPE_TARGET_TYPE (check_type);
1480
1481 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1482 error (_("(power)set type with unknown size"));
1483 memset (valaddr, '\0', TYPE_LENGTH (type));
1484 for (tem = 0; tem < nargs; tem++)
1485 {
1486 LONGEST range_low, range_high;
1487 struct type *range_low_type, *range_high_type;
1488 struct value *elem_val;
1489
1490 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1491 range_low_type = range_high_type = value_type (elem_val);
1492 range_low = range_high = value_as_long (elem_val);
1493
1494 /* Check types of elements to avoid mixture of elements from
1495 different types. Also check if type of element is "compatible"
1496 with element type of powerset. */
1497 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
1498 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1499 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
1500 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1501 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
1502 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
1503 && (range_low_type != range_high_type)))
1504 /* different element modes. */
1505 error (_("POWERSET tuple elements of different mode"));
1506 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
1507 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
1508 && range_low_type != check_type))
1509 error (_("incompatible POWERSET tuple elements"));
1510 if (range_low > range_high)
1511 {
1512 warning (_("empty POWERSET tuple range"));
1513 continue;
1514 }
1515 if (range_low < low_bound || range_high > high_bound)
1516 error (_("POWERSET tuple element out of range"));
1517 range_low -= low_bound;
1518 range_high -= low_bound;
1519 for (; range_low <= range_high; range_low++)
1520 {
1521 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1522
1523 if (gdbarch_bits_big_endian (exp->gdbarch))
1524 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1525 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1526 |= 1 << bit_index;
1527 }
1528 }
1529 return set;
1530 }
1531
1532 argvec = XALLOCAVEC (struct value *, nargs);
1533 for (tem = 0; tem < nargs; tem++)
1534 {
1535 /* Ensure that array expressions are coerced into pointer
1536 objects. */
1537 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1538 }
1539 if (noside == EVAL_SKIP)
1540 return eval_skip_value (exp);
1541 return value_array (tem2, tem3, argvec);
1542
1543 case TERNOP_SLICE:
1544 {
1545 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1546 int lowbound
1547 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1548 int upper
1549 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1550
1551 if (noside == EVAL_SKIP)
1552 return eval_skip_value (exp);
1553 return value_slice (array, lowbound, upper - lowbound + 1);
1554 }
1555
1556 case TERNOP_COND:
1557 /* Skip third and second args to evaluate the first one. */
1558 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1559 if (value_logical_not (arg1))
1560 {
1561 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1562 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1563 }
1564 else
1565 {
1566 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1567 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1568 return arg2;
1569 }
1570
1571 case OP_OBJC_SELECTOR:
1572 { /* Objective C @selector operator. */
1573 char *sel = &exp->elts[pc + 2].string;
1574 int len = longest_to_int (exp->elts[pc + 1].longconst);
1575 struct type *selector_type;
1576
1577 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1578 if (noside == EVAL_SKIP)
1579 return eval_skip_value (exp);
1580
1581 if (sel[len] != 0)
1582 sel[len] = 0; /* Make sure it's terminated. */
1583
1584 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1585 return value_from_longest (selector_type,
1586 lookup_child_selector (exp->gdbarch, sel));
1587 }
1588
1589 case OP_OBJC_MSGCALL:
1590 { /* Objective C message (method) call. */
1591
1592 CORE_ADDR responds_selector = 0;
1593 CORE_ADDR method_selector = 0;
1594
1595 CORE_ADDR selector = 0;
1596
1597 int struct_return = 0;
1598 enum noside sub_no_side = EVAL_NORMAL;
1599
1600 struct value *msg_send = NULL;
1601 struct value *msg_send_stret = NULL;
1602 int gnu_runtime = 0;
1603
1604 struct value *target = NULL;
1605 struct value *method = NULL;
1606 struct value *called_method = NULL;
1607
1608 struct type *selector_type = NULL;
1609 struct type *long_type;
1610
1611 struct value *ret = NULL;
1612 CORE_ADDR addr = 0;
1613
1614 selector = exp->elts[pc + 1].longconst;
1615 nargs = exp->elts[pc + 2].longconst;
1616 argvec = XALLOCAVEC (struct value *, nargs + 5);
1617
1618 (*pos) += 3;
1619
1620 long_type = builtin_type (exp->gdbarch)->builtin_long;
1621 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1622
1623 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1624 sub_no_side = EVAL_NORMAL;
1625 else
1626 sub_no_side = noside;
1627
1628 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1629
1630 if (value_as_long (target) == 0)
1631 return value_from_longest (long_type, 0);
1632
1633 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1634 gnu_runtime = 1;
1635
1636 /* Find the method dispatch (Apple runtime) or method lookup
1637 (GNU runtime) function for Objective-C. These will be used
1638 to lookup the symbol information for the method. If we
1639 can't find any symbol information, then we'll use these to
1640 call the method, otherwise we can call the method
1641 directly. The msg_send_stret function is used in the special
1642 case of a method that returns a structure (Apple runtime
1643 only). */
1644 if (gnu_runtime)
1645 {
1646 struct type *type = selector_type;
1647
1648 type = lookup_function_type (type);
1649 type = lookup_pointer_type (type);
1650 type = lookup_function_type (type);
1651 type = lookup_pointer_type (type);
1652
1653 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1654 msg_send_stret
1655 = find_function_in_inferior ("objc_msg_lookup", NULL);
1656
1657 msg_send = value_from_pointer (type, value_as_address (msg_send));
1658 msg_send_stret = value_from_pointer (type,
1659 value_as_address (msg_send_stret));
1660 }
1661 else
1662 {
1663 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1664 /* Special dispatcher for methods returning structs. */
1665 msg_send_stret
1666 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1667 }
1668
1669 /* Verify the target object responds to this method. The
1670 standard top-level 'Object' class uses a different name for
1671 the verification method than the non-standard, but more
1672 often used, 'NSObject' class. Make sure we check for both. */
1673
1674 responds_selector
1675 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1676 if (responds_selector == 0)
1677 responds_selector
1678 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1679
1680 if (responds_selector == 0)
1681 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1682
1683 method_selector
1684 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1685 if (method_selector == 0)
1686 method_selector
1687 = lookup_child_selector (exp->gdbarch, "methodFor:");
1688
1689 if (method_selector == 0)
1690 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1691
1692 /* Call the verification method, to make sure that the target
1693 class implements the desired method. */
1694
1695 argvec[0] = msg_send;
1696 argvec[1] = target;
1697 argvec[2] = value_from_longest (long_type, responds_selector);
1698 argvec[3] = value_from_longest (long_type, selector);
1699 argvec[4] = 0;
1700
1701 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1702 if (gnu_runtime)
1703 {
1704 /* Function objc_msg_lookup returns a pointer. */
1705 argvec[0] = ret;
1706 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1707 }
1708 if (value_as_long (ret) == 0)
1709 error (_("Target does not respond to this message selector."));
1710
1711 /* Call "methodForSelector:" method, to get the address of a
1712 function method that implements this selector for this
1713 class. If we can find a symbol at that address, then we
1714 know the return type, parameter types etc. (that's a good
1715 thing). */
1716
1717 argvec[0] = msg_send;
1718 argvec[1] = target;
1719 argvec[2] = value_from_longest (long_type, method_selector);
1720 argvec[3] = value_from_longest (long_type, selector);
1721 argvec[4] = 0;
1722
1723 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1724 if (gnu_runtime)
1725 {
1726 argvec[0] = ret;
1727 ret = call_function_by_hand (argvec[0], NULL, 3, argvec + 1);
1728 }
1729
1730 /* ret should now be the selector. */
1731
1732 addr = value_as_long (ret);
1733 if (addr)
1734 {
1735 struct symbol *sym = NULL;
1736
1737 /* The address might point to a function descriptor;
1738 resolve it to the actual code address instead. */
1739 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1740 &current_target);
1741
1742 /* Is it a high_level symbol? */
1743 sym = find_pc_function (addr);
1744 if (sym != NULL)
1745 method = value_of_variable (sym, 0);
1746 }
1747
1748 /* If we found a method with symbol information, check to see
1749 if it returns a struct. Otherwise assume it doesn't. */
1750
1751 if (method)
1752 {
1753 CORE_ADDR funaddr;
1754 struct type *val_type;
1755
1756 funaddr = find_function_addr (method, &val_type);
1757
1758 block_for_pc (funaddr);
1759
1760 val_type = check_typedef (val_type);
1761
1762 if ((val_type == NULL)
1763 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1764 {
1765 if (expect_type != NULL)
1766 val_type = expect_type;
1767 }
1768
1769 struct_return = using_struct_return (exp->gdbarch, method,
1770 val_type);
1771 }
1772 else if (expect_type != NULL)
1773 {
1774 struct_return = using_struct_return (exp->gdbarch, NULL,
1775 check_typedef (expect_type));
1776 }
1777
1778 /* Found a function symbol. Now we will substitute its
1779 value in place of the message dispatcher (obj_msgSend),
1780 so that we call the method directly instead of thru
1781 the dispatcher. The main reason for doing this is that
1782 we can now evaluate the return value and parameter values
1783 according to their known data types, in case we need to
1784 do things like promotion, dereferencing, special handling
1785 of structs and doubles, etc.
1786
1787 We want to use the type signature of 'method', but still
1788 jump to objc_msgSend() or objc_msgSend_stret() to better
1789 mimic the behavior of the runtime. */
1790
1791 if (method)
1792 {
1793 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1794 error (_("method address has symbol information "
1795 "with non-function type; skipping"));
1796
1797 /* Create a function pointer of the appropriate type, and
1798 replace its value with the value of msg_send or
1799 msg_send_stret. We must use a pointer here, as
1800 msg_send and msg_send_stret are of pointer type, and
1801 the representation may be different on systems that use
1802 function descriptors. */
1803 if (struct_return)
1804 called_method
1805 = value_from_pointer (lookup_pointer_type (value_type (method)),
1806 value_as_address (msg_send_stret));
1807 else
1808 called_method
1809 = value_from_pointer (lookup_pointer_type (value_type (method)),
1810 value_as_address (msg_send));
1811 }
1812 else
1813 {
1814 if (struct_return)
1815 called_method = msg_send_stret;
1816 else
1817 called_method = msg_send;
1818 }
1819
1820 if (noside == EVAL_SKIP)
1821 return eval_skip_value (exp);
1822
1823 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1824 {
1825 /* If the return type doesn't look like a function type,
1826 call an error. This can happen if somebody tries to
1827 turn a variable into a function call. This is here
1828 because people often want to call, eg, strcmp, which
1829 gdb doesn't know is a function. If gdb isn't asked for
1830 it's opinion (ie. through "whatis"), it won't offer
1831 it. */
1832
1833 struct type *type = value_type (called_method);
1834
1835 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1836 type = TYPE_TARGET_TYPE (type);
1837 type = TYPE_TARGET_TYPE (type);
1838
1839 if (type)
1840 {
1841 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1842 return allocate_value (expect_type);
1843 else
1844 return allocate_value (type);
1845 }
1846 else
1847 error (_("Expression of type other than "
1848 "\"method returning ...\" used as a method"));
1849 }
1850
1851 /* Now depending on whether we found a symbol for the method,
1852 we will either call the runtime dispatcher or the method
1853 directly. */
1854
1855 argvec[0] = called_method;
1856 argvec[1] = target;
1857 argvec[2] = value_from_longest (long_type, selector);
1858 /* User-supplied arguments. */
1859 for (tem = 0; tem < nargs; tem++)
1860 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1861 argvec[tem + 3] = 0;
1862
1863 if (gnu_runtime && (method != NULL))
1864 {
1865 /* Function objc_msg_lookup returns a pointer. */
1866 deprecated_set_value_type (argvec[0],
1867 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1868 argvec[0]
1869 = call_function_by_hand (argvec[0], NULL, nargs + 2, argvec + 1);
1870 }
1871
1872 ret = call_function_by_hand (argvec[0], NULL, nargs + 2, argvec + 1);
1873 return ret;
1874 }
1875 break;
1876
1877 case OP_FUNCALL:
1878 return evaluate_funcall (expect_type, exp, pos, noside);
1879
1880 case OP_F77_UNDETERMINED_ARGLIST:
1881
1882 /* Remember that in F77, functions, substring ops and
1883 array subscript operations cannot be disambiguated
1884 at parse time. We have made all array subscript operations,
1885 substring operations as well as function calls come here
1886 and we now have to discover what the heck this thing actually was.
1887 If it is a function, we process just as if we got an OP_FUNCALL. */
1888
1889 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1890 (*pos) += 2;
1891
1892 /* First determine the type code we are dealing with. */
1893 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1894 type = check_typedef (value_type (arg1));
1895 code = TYPE_CODE (type);
1896
1897 if (code == TYPE_CODE_PTR)
1898 {
1899 /* Fortran always passes variable to subroutines as pointer.
1900 So we need to look into its target type to see if it is
1901 array, string or function. If it is, we need to switch
1902 to the target value the original one points to. */
1903 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1904
1905 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1906 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1907 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1908 {
1909 arg1 = value_ind (arg1);
1910 type = check_typedef (value_type (arg1));
1911 code = TYPE_CODE (type);
1912 }
1913 }
1914
1915 switch (code)
1916 {
1917 case TYPE_CODE_ARRAY:
1918 if (exp->elts[*pos].opcode == OP_RANGE)
1919 return value_f90_subarray (arg1, exp, pos, noside);
1920 else
1921 goto multi_f77_subscript;
1922
1923 case TYPE_CODE_STRING:
1924 if (exp->elts[*pos].opcode == OP_RANGE)
1925 return value_f90_subarray (arg1, exp, pos, noside);
1926 else
1927 {
1928 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1929 return value_subscript (arg1, value_as_long (arg2));
1930 }
1931
1932 case TYPE_CODE_PTR:
1933 case TYPE_CODE_FUNC:
1934 /* It's a function call. */
1935 /* Allocate arg vector, including space for the function to be
1936 called in argvec[0] and a terminating NULL. */
1937 argvec = (struct value **)
1938 alloca (sizeof (struct value *) * (nargs + 2));
1939 argvec[0] = arg1;
1940 tem = 1;
1941 for (; tem <= nargs; tem++)
1942 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1943 argvec[tem] = 0; /* signal end of arglist */
1944 if (noside == EVAL_SKIP)
1945 return eval_skip_value (exp);
1946 return eval_call (exp, noside, nargs, argvec, NULL, expect_type);
1947
1948 default:
1949 error (_("Cannot perform substring on this type"));
1950 }
1951
1952 case OP_COMPLEX:
1953 /* We have a complex number, There should be 2 floating
1954 point numbers that compose it. */
1955 (*pos) += 2;
1956 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1957 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1958
1959 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1960
1961 case STRUCTOP_STRUCT:
1962 tem = longest_to_int (exp->elts[pc + 1].longconst);
1963 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1964 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1965 if (noside == EVAL_SKIP)
1966 return eval_skip_value (exp);
1967 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
1968 NULL, "structure");
1969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1970 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
1971 return arg3;
1972
1973 case STRUCTOP_PTR:
1974 tem = longest_to_int (exp->elts[pc + 1].longconst);
1975 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1977 if (noside == EVAL_SKIP)
1978 return eval_skip_value (exp);
1979
1980 /* Check to see if operator '->' has been overloaded. If so replace
1981 arg1 with the value returned by evaluating operator->(). */
1982 while (unop_user_defined_p (op, arg1))
1983 {
1984 struct value *value = NULL;
1985 TRY
1986 {
1987 value = value_x_unop (arg1, op, noside);
1988 }
1989
1990 CATCH (except, RETURN_MASK_ERROR)
1991 {
1992 if (except.error == NOT_FOUND_ERROR)
1993 break;
1994 else
1995 throw_exception (except);
1996 }
1997 END_CATCH
1998
1999 arg1 = value;
2000 }
2001
2002 /* JYG: if print object is on we need to replace the base type
2003 with rtti type in order to continue on with successful
2004 lookup of member / method only available in the rtti type. */
2005 {
2006 struct type *type = value_type (arg1);
2007 struct type *real_type;
2008 int full, using_enc;
2009 LONGEST top;
2010 struct value_print_options opts;
2011
2012 get_user_print_options (&opts);
2013 if (opts.objectprint && TYPE_TARGET_TYPE(type)
2014 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT))
2015 {
2016 real_type = value_rtti_indirect_type (arg1, &full, &top,
2017 &using_enc);
2018 if (real_type)
2019 arg1 = value_cast (real_type, arg1);
2020 }
2021 }
2022
2023 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
2024 NULL, "structure pointer");
2025 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2026 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
2027 return arg3;
2028
2029 case STRUCTOP_MEMBER:
2030 case STRUCTOP_MPTR:
2031 if (op == STRUCTOP_MEMBER)
2032 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2033 else
2034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2035
2036 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2037
2038 if (noside == EVAL_SKIP)
2039 return eval_skip_value (exp);
2040
2041 type = check_typedef (value_type (arg2));
2042 switch (TYPE_CODE (type))
2043 {
2044 case TYPE_CODE_METHODPTR:
2045 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2046 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2047 else
2048 {
2049 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2050 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
2051 return value_ind (arg2);
2052 }
2053
2054 case TYPE_CODE_MEMBERPTR:
2055 /* Now, convert these values to an address. */
2056 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
2057 arg1, 1);
2058
2059 mem_offset = value_as_long (arg2);
2060
2061 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2062 value_as_long (arg1) + mem_offset);
2063 return value_ind (arg3);
2064
2065 default:
2066 error (_("non-pointer-to-member value used "
2067 "in pointer-to-member construct"));
2068 }
2069
2070 case TYPE_INSTANCE:
2071 {
2072 type_instance_flags flags
2073 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2074 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2075 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2076 for (ix = 0; ix < nargs; ++ix)
2077 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2078
2079 expect_type = make_params (flags, nargs, arg_types);
2080 *(pos) += 4 + nargs;
2081 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
2082 xfree (TYPE_FIELDS (expect_type));
2083 xfree (TYPE_MAIN_TYPE (expect_type));
2084 xfree (expect_type);
2085 return arg1;
2086 }
2087
2088 case BINOP_CONCAT:
2089 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2090 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2091 if (noside == EVAL_SKIP)
2092 return eval_skip_value (exp);
2093 if (binop_user_defined_p (op, arg1, arg2))
2094 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2095 else
2096 return value_concat (arg1, arg2);
2097
2098 case BINOP_ASSIGN:
2099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2100 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2101
2102 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2103 return arg1;
2104 if (binop_user_defined_p (op, arg1, arg2))
2105 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2106 else
2107 return value_assign (arg1, arg2);
2108
2109 case BINOP_ASSIGN_MODIFY:
2110 (*pos) += 2;
2111 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2112 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2113 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2114 return arg1;
2115 op = exp->elts[pc + 1].opcode;
2116 if (binop_user_defined_p (op, arg1, arg2))
2117 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2118 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2119 value_type (arg1))
2120 && is_integral_type (value_type (arg2)))
2121 arg2 = value_ptradd (arg1, value_as_long (arg2));
2122 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2123 value_type (arg1))
2124 && is_integral_type (value_type (arg2)))
2125 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2126 else
2127 {
2128 struct value *tmp = arg1;
2129
2130 /* For shift and integer exponentiation operations,
2131 only promote the first argument. */
2132 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2133 && is_integral_type (value_type (arg2)))
2134 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2135 else
2136 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2137
2138 arg2 = value_binop (tmp, arg2, op);
2139 }
2140 return value_assign (arg1, arg2);
2141
2142 case BINOP_ADD:
2143 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2144 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2145 if (noside == EVAL_SKIP)
2146 return eval_skip_value (exp);
2147 if (binop_user_defined_p (op, arg1, arg2))
2148 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2149 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2150 && is_integral_type (value_type (arg2)))
2151 return value_ptradd (arg1, value_as_long (arg2));
2152 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2153 && is_integral_type (value_type (arg1)))
2154 return value_ptradd (arg2, value_as_long (arg1));
2155 else
2156 {
2157 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2158 return value_binop (arg1, arg2, BINOP_ADD);
2159 }
2160
2161 case BINOP_SUB:
2162 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2163 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2164 if (noside == EVAL_SKIP)
2165 return eval_skip_value (exp);
2166 if (binop_user_defined_p (op, arg1, arg2))
2167 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2168 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2169 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2170 {
2171 /* FIXME -- should be ptrdiff_t */
2172 type = builtin_type (exp->gdbarch)->builtin_long;
2173 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2174 }
2175 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2176 && is_integral_type (value_type (arg2)))
2177 return value_ptradd (arg1, - value_as_long (arg2));
2178 else
2179 {
2180 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2181 return value_binop (arg1, arg2, BINOP_SUB);
2182 }
2183
2184 case BINOP_EXP:
2185 case BINOP_MUL:
2186 case BINOP_DIV:
2187 case BINOP_INTDIV:
2188 case BINOP_REM:
2189 case BINOP_MOD:
2190 case BINOP_LSH:
2191 case BINOP_RSH:
2192 case BINOP_BITWISE_AND:
2193 case BINOP_BITWISE_IOR:
2194 case BINOP_BITWISE_XOR:
2195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2196 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2197 if (noside == EVAL_SKIP)
2198 return eval_skip_value (exp);
2199 if (binop_user_defined_p (op, arg1, arg2))
2200 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2201 else
2202 {
2203 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2204 fudge arg2 to avoid division-by-zero, the caller is
2205 (theoretically) only looking for the type of the result. */
2206 if (noside == EVAL_AVOID_SIDE_EFFECTS
2207 /* ??? Do we really want to test for BINOP_MOD here?
2208 The implementation of value_binop gives it a well-defined
2209 value. */
2210 && (op == BINOP_DIV
2211 || op == BINOP_INTDIV
2212 || op == BINOP_REM
2213 || op == BINOP_MOD)
2214 && value_logical_not (arg2))
2215 {
2216 struct value *v_one, *retval;
2217
2218 v_one = value_one (value_type (arg2));
2219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2220 retval = value_binop (arg1, v_one, op);
2221 return retval;
2222 }
2223 else
2224 {
2225 /* For shift and integer exponentiation operations,
2226 only promote the first argument. */
2227 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2228 && is_integral_type (value_type (arg2)))
2229 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2230 else
2231 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2232
2233 return value_binop (arg1, arg2, op);
2234 }
2235 }
2236
2237 case BINOP_SUBSCRIPT:
2238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2239 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2240 if (noside == EVAL_SKIP)
2241 return eval_skip_value (exp);
2242 if (binop_user_defined_p (op, arg1, arg2))
2243 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2244 else
2245 {
2246 /* If the user attempts to subscript something that is not an
2247 array or pointer type (like a plain int variable for example),
2248 then report this as an error. */
2249
2250 arg1 = coerce_ref (arg1);
2251 type = check_typedef (value_type (arg1));
2252 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2253 && TYPE_CODE (type) != TYPE_CODE_PTR)
2254 {
2255 if (TYPE_NAME (type))
2256 error (_("cannot subscript something of type `%s'"),
2257 TYPE_NAME (type));
2258 else
2259 error (_("cannot subscript requested type"));
2260 }
2261
2262 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2263 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2264 else
2265 return value_subscript (arg1, value_as_long (arg2));
2266 }
2267 case MULTI_SUBSCRIPT:
2268 (*pos) += 2;
2269 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2270 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2271 while (nargs-- > 0)
2272 {
2273 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2274 /* FIXME: EVAL_SKIP handling may not be correct. */
2275 if (noside == EVAL_SKIP)
2276 {
2277 if (nargs > 0)
2278 continue;
2279 return eval_skip_value (exp);
2280 }
2281 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2282 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2283 {
2284 /* If the user attempts to subscript something that has no target
2285 type (like a plain int variable for example), then report this
2286 as an error. */
2287
2288 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2289 if (type != NULL)
2290 {
2291 arg1 = value_zero (type, VALUE_LVAL (arg1));
2292 noside = EVAL_SKIP;
2293 continue;
2294 }
2295 else
2296 {
2297 error (_("cannot subscript something of type `%s'"),
2298 TYPE_NAME (value_type (arg1)));
2299 }
2300 }
2301
2302 if (binop_user_defined_p (op, arg1, arg2))
2303 {
2304 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2305 }
2306 else
2307 {
2308 arg1 = coerce_ref (arg1);
2309 type = check_typedef (value_type (arg1));
2310
2311 switch (TYPE_CODE (type))
2312 {
2313 case TYPE_CODE_PTR:
2314 case TYPE_CODE_ARRAY:
2315 case TYPE_CODE_STRING:
2316 arg1 = value_subscript (arg1, value_as_long (arg2));
2317 break;
2318
2319 default:
2320 if (TYPE_NAME (type))
2321 error (_("cannot subscript something of type `%s'"),
2322 TYPE_NAME (type));
2323 else
2324 error (_("cannot subscript requested type"));
2325 }
2326 }
2327 }
2328 return (arg1);
2329
2330 multi_f77_subscript:
2331 {
2332 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2333 int ndimensions = 1, i;
2334 struct value *array = arg1;
2335
2336 if (nargs > MAX_FORTRAN_DIMS)
2337 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2338
2339 ndimensions = calc_f77_array_dims (type);
2340
2341 if (nargs != ndimensions)
2342 error (_("Wrong number of subscripts"));
2343
2344 gdb_assert (nargs > 0);
2345
2346 /* Now that we know we have a legal array subscript expression
2347 let us actually find out where this element exists in the array. */
2348
2349 /* Take array indices left to right. */
2350 for (i = 0; i < nargs; i++)
2351 {
2352 /* Evaluate each subscript; it must be a legal integer in F77. */
2353 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2354
2355 /* Fill in the subscript array. */
2356
2357 subscript_array[i] = value_as_long (arg2);
2358 }
2359
2360 /* Internal type of array is arranged right to left. */
2361 for (i = nargs; i > 0; i--)
2362 {
2363 struct type *array_type = check_typedef (value_type (array));
2364 LONGEST index = subscript_array[i - 1];
2365
2366 array = value_subscripted_rvalue (array, index,
2367 f77_get_lowerbound (array_type));
2368 }
2369
2370 return array;
2371 }
2372
2373 case BINOP_LOGICAL_AND:
2374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2375 if (noside == EVAL_SKIP)
2376 {
2377 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2378 return eval_skip_value (exp);
2379 }
2380
2381 oldpos = *pos;
2382 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2383 *pos = oldpos;
2384
2385 if (binop_user_defined_p (op, arg1, arg2))
2386 {
2387 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2388 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2389 }
2390 else
2391 {
2392 tem = value_logical_not (arg1);
2393 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2394 (tem ? EVAL_SKIP : noside));
2395 type = language_bool_type (exp->language_defn, exp->gdbarch);
2396 return value_from_longest (type,
2397 (LONGEST) (!tem && !value_logical_not (arg2)));
2398 }
2399
2400 case BINOP_LOGICAL_OR:
2401 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2402 if (noside == EVAL_SKIP)
2403 {
2404 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2405 return eval_skip_value (exp);
2406 }
2407
2408 oldpos = *pos;
2409 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2410 *pos = oldpos;
2411
2412 if (binop_user_defined_p (op, arg1, arg2))
2413 {
2414 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2415 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2416 }
2417 else
2418 {
2419 tem = value_logical_not (arg1);
2420 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2421 (!tem ? EVAL_SKIP : noside));
2422 type = language_bool_type (exp->language_defn, exp->gdbarch);
2423 return value_from_longest (type,
2424 (LONGEST) (!tem || !value_logical_not (arg2)));
2425 }
2426
2427 case BINOP_EQUAL:
2428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2429 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2430 if (noside == EVAL_SKIP)
2431 return eval_skip_value (exp);
2432 if (binop_user_defined_p (op, arg1, arg2))
2433 {
2434 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2435 }
2436 else
2437 {
2438 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2439 tem = value_equal (arg1, arg2);
2440 type = language_bool_type (exp->language_defn, exp->gdbarch);
2441 return value_from_longest (type, (LONGEST) tem);
2442 }
2443
2444 case BINOP_NOTEQUAL:
2445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2446 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2447 if (noside == EVAL_SKIP)
2448 return eval_skip_value (exp);
2449 if (binop_user_defined_p (op, arg1, arg2))
2450 {
2451 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2452 }
2453 else
2454 {
2455 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2456 tem = value_equal (arg1, arg2);
2457 type = language_bool_type (exp->language_defn, exp->gdbarch);
2458 return value_from_longest (type, (LONGEST) ! tem);
2459 }
2460
2461 case BINOP_LESS:
2462 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2463 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2464 if (noside == EVAL_SKIP)
2465 return eval_skip_value (exp);
2466 if (binop_user_defined_p (op, arg1, arg2))
2467 {
2468 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2469 }
2470 else
2471 {
2472 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2473 tem = value_less (arg1, arg2);
2474 type = language_bool_type (exp->language_defn, exp->gdbarch);
2475 return value_from_longest (type, (LONGEST) tem);
2476 }
2477
2478 case BINOP_GTR:
2479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2480 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2481 if (noside == EVAL_SKIP)
2482 return eval_skip_value (exp);
2483 if (binop_user_defined_p (op, arg1, arg2))
2484 {
2485 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2486 }
2487 else
2488 {
2489 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2490 tem = value_less (arg2, arg1);
2491 type = language_bool_type (exp->language_defn, exp->gdbarch);
2492 return value_from_longest (type, (LONGEST) tem);
2493 }
2494
2495 case BINOP_GEQ:
2496 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2497 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2498 if (noside == EVAL_SKIP)
2499 return eval_skip_value (exp);
2500 if (binop_user_defined_p (op, arg1, arg2))
2501 {
2502 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2503 }
2504 else
2505 {
2506 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2507 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2508 type = language_bool_type (exp->language_defn, exp->gdbarch);
2509 return value_from_longest (type, (LONGEST) tem);
2510 }
2511
2512 case BINOP_LEQ:
2513 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2514 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2515 if (noside == EVAL_SKIP)
2516 return eval_skip_value (exp);
2517 if (binop_user_defined_p (op, arg1, arg2))
2518 {
2519 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2520 }
2521 else
2522 {
2523 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2524 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2525 type = language_bool_type (exp->language_defn, exp->gdbarch);
2526 return value_from_longest (type, (LONGEST) tem);
2527 }
2528
2529 case BINOP_REPEAT:
2530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2531 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2532 if (noside == EVAL_SKIP)
2533 return eval_skip_value (exp);
2534 type = check_typedef (value_type (arg2));
2535 if (TYPE_CODE (type) != TYPE_CODE_INT
2536 && TYPE_CODE (type) != TYPE_CODE_ENUM)
2537 error (_("Non-integral right operand for \"@\" operator."));
2538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2539 {
2540 return allocate_repeat_value (value_type (arg1),
2541 longest_to_int (value_as_long (arg2)));
2542 }
2543 else
2544 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2545
2546 case BINOP_COMMA:
2547 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2548 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2549
2550 case UNOP_PLUS:
2551 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2552 if (noside == EVAL_SKIP)
2553 return eval_skip_value (exp);
2554 if (unop_user_defined_p (op, arg1))
2555 return value_x_unop (arg1, op, noside);
2556 else
2557 {
2558 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2559 return value_pos (arg1);
2560 }
2561
2562 case UNOP_NEG:
2563 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2564 if (noside == EVAL_SKIP)
2565 return eval_skip_value (exp);
2566 if (unop_user_defined_p (op, arg1))
2567 return value_x_unop (arg1, op, noside);
2568 else
2569 {
2570 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2571 return value_neg (arg1);
2572 }
2573
2574 case UNOP_COMPLEMENT:
2575 /* C++: check for and handle destructor names. */
2576
2577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2578 if (noside == EVAL_SKIP)
2579 return eval_skip_value (exp);
2580 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2581 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2582 else
2583 {
2584 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2585 return value_complement (arg1);
2586 }
2587
2588 case UNOP_LOGICAL_NOT:
2589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2590 if (noside == EVAL_SKIP)
2591 return eval_skip_value (exp);
2592 if (unop_user_defined_p (op, arg1))
2593 return value_x_unop (arg1, op, noside);
2594 else
2595 {
2596 type = language_bool_type (exp->language_defn, exp->gdbarch);
2597 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2598 }
2599
2600 case UNOP_IND:
2601 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2602 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2603 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2604 type = check_typedef (value_type (arg1));
2605 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2606 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2607 error (_("Attempt to dereference pointer "
2608 "to member without an object"));
2609 if (noside == EVAL_SKIP)
2610 return eval_skip_value (exp);
2611 if (unop_user_defined_p (op, arg1))
2612 return value_x_unop (arg1, op, noside);
2613 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2614 {
2615 type = check_typedef (value_type (arg1));
2616 if (TYPE_CODE (type) == TYPE_CODE_PTR
2617 || TYPE_IS_REFERENCE (type)
2618 /* In C you can dereference an array to get the 1st elt. */
2619 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2620 )
2621 return value_zero (TYPE_TARGET_TYPE (type),
2622 lval_memory);
2623 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2624 /* GDB allows dereferencing an int. */
2625 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2626 lval_memory);
2627 else
2628 error (_("Attempt to take contents of a non-pointer value."));
2629 }
2630
2631 /* Allow * on an integer so we can cast it to whatever we want.
2632 This returns an int, which seems like the most C-like thing to
2633 do. "long long" variables are rare enough that
2634 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2635 if (TYPE_CODE (type) == TYPE_CODE_INT)
2636 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2637 (CORE_ADDR) value_as_address (arg1));
2638 return value_ind (arg1);
2639
2640 case UNOP_ADDR:
2641 /* C++: check for and handle pointer to members. */
2642
2643 if (noside == EVAL_SKIP)
2644 {
2645 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2646 return eval_skip_value (exp);
2647 }
2648 else
2649 {
2650 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2651 noside);
2652
2653 return retvalp;
2654 }
2655
2656 case UNOP_SIZEOF:
2657 if (noside == EVAL_SKIP)
2658 {
2659 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2660 return eval_skip_value (exp);
2661 }
2662 return evaluate_subexp_for_sizeof (exp, pos, noside);
2663
2664 case UNOP_CAST:
2665 (*pos) += 2;
2666 type = exp->elts[pc + 1].type;
2667 return evaluate_subexp_for_cast (exp, pos, noside, type);
2668
2669 case UNOP_CAST_TYPE:
2670 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2671 type = value_type (arg1);
2672 return evaluate_subexp_for_cast (exp, pos, noside, type);
2673
2674 case UNOP_DYNAMIC_CAST:
2675 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2676 type = value_type (arg1);
2677 arg1 = evaluate_subexp (type, exp, pos, noside);
2678 if (noside == EVAL_SKIP)
2679 return eval_skip_value (exp);
2680 return value_dynamic_cast (type, arg1);
2681
2682 case UNOP_REINTERPRET_CAST:
2683 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2684 type = value_type (arg1);
2685 arg1 = evaluate_subexp (type, exp, pos, noside);
2686 if (noside == EVAL_SKIP)
2687 return eval_skip_value (exp);
2688 return value_reinterpret_cast (type, arg1);
2689
2690 case UNOP_MEMVAL:
2691 (*pos) += 2;
2692 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2693 if (noside == EVAL_SKIP)
2694 return eval_skip_value (exp);
2695 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2696 return value_zero (exp->elts[pc + 1].type, lval_memory);
2697 else
2698 return value_at_lazy (exp->elts[pc + 1].type,
2699 value_as_address (arg1));
2700
2701 case UNOP_MEMVAL_TYPE:
2702 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2703 type = value_type (arg1);
2704 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2705 if (noside == EVAL_SKIP)
2706 return eval_skip_value (exp);
2707 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2708 return value_zero (type, lval_memory);
2709 else
2710 return value_at_lazy (type, value_as_address (arg1));
2711
2712 case UNOP_PREINCREMENT:
2713 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2714 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2715 return arg1;
2716 else if (unop_user_defined_p (op, arg1))
2717 {
2718 return value_x_unop (arg1, op, noside);
2719 }
2720 else
2721 {
2722 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2723 arg2 = value_ptradd (arg1, 1);
2724 else
2725 {
2726 struct value *tmp = arg1;
2727
2728 arg2 = value_one (value_type (arg1));
2729 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2730 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2731 }
2732
2733 return value_assign (arg1, arg2);
2734 }
2735
2736 case UNOP_PREDECREMENT:
2737 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2738 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2739 return arg1;
2740 else if (unop_user_defined_p (op, arg1))
2741 {
2742 return value_x_unop (arg1, op, noside);
2743 }
2744 else
2745 {
2746 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2747 arg2 = value_ptradd (arg1, -1);
2748 else
2749 {
2750 struct value *tmp = arg1;
2751
2752 arg2 = value_one (value_type (arg1));
2753 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2754 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2755 }
2756
2757 return value_assign (arg1, arg2);
2758 }
2759
2760 case UNOP_POSTINCREMENT:
2761 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2762 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2763 return arg1;
2764 else if (unop_user_defined_p (op, arg1))
2765 {
2766 return value_x_unop (arg1, op, noside);
2767 }
2768 else
2769 {
2770 arg3 = value_non_lval (arg1);
2771
2772 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2773 arg2 = value_ptradd (arg1, 1);
2774 else
2775 {
2776 struct value *tmp = arg1;
2777
2778 arg2 = value_one (value_type (arg1));
2779 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2780 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2781 }
2782
2783 value_assign (arg1, arg2);
2784 return arg3;
2785 }
2786
2787 case UNOP_POSTDECREMENT:
2788 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2789 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2790 return arg1;
2791 else if (unop_user_defined_p (op, arg1))
2792 {
2793 return value_x_unop (arg1, op, noside);
2794 }
2795 else
2796 {
2797 arg3 = value_non_lval (arg1);
2798
2799 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2800 arg2 = value_ptradd (arg1, -1);
2801 else
2802 {
2803 struct value *tmp = arg1;
2804
2805 arg2 = value_one (value_type (arg1));
2806 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2807 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2808 }
2809
2810 value_assign (arg1, arg2);
2811 return arg3;
2812 }
2813
2814 case OP_THIS:
2815 (*pos) += 1;
2816 return value_of_this (exp->language_defn);
2817
2818 case OP_TYPE:
2819 /* The value is not supposed to be used. This is here to make it
2820 easier to accommodate expressions that contain types. */
2821 (*pos) += 2;
2822 if (noside == EVAL_SKIP)
2823 return eval_skip_value (exp);
2824 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2825 return allocate_value (exp->elts[pc + 1].type);
2826 else
2827 error (_("Attempt to use a type name as an expression"));
2828
2829 case OP_TYPEOF:
2830 case OP_DECLTYPE:
2831 if (noside == EVAL_SKIP)
2832 {
2833 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2834 return eval_skip_value (exp);
2835 }
2836 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2837 {
2838 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2839 struct value *result;
2840
2841 result = evaluate_subexp (NULL_TYPE, exp, pos,
2842 EVAL_AVOID_SIDE_EFFECTS);
2843
2844 /* 'decltype' has special semantics for lvalues. */
2845 if (op == OP_DECLTYPE
2846 && (sub_op == BINOP_SUBSCRIPT
2847 || sub_op == STRUCTOP_MEMBER
2848 || sub_op == STRUCTOP_MPTR
2849 || sub_op == UNOP_IND
2850 || sub_op == STRUCTOP_STRUCT
2851 || sub_op == STRUCTOP_PTR
2852 || sub_op == OP_SCOPE))
2853 {
2854 struct type *type = value_type (result);
2855
2856 if (!TYPE_IS_REFERENCE (type))
2857 {
2858 type = lookup_lvalue_reference_type (type);
2859 result = allocate_value (type);
2860 }
2861 }
2862
2863 return result;
2864 }
2865 else
2866 error (_("Attempt to use a type as an expression"));
2867
2868 case OP_TYPEID:
2869 {
2870 struct value *result;
2871 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2872
2873 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2874 result = evaluate_subexp (NULL_TYPE, exp, pos,
2875 EVAL_AVOID_SIDE_EFFECTS);
2876 else
2877 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2878
2879 if (noside != EVAL_NORMAL)
2880 return allocate_value (cplus_typeid_type (exp->gdbarch));
2881
2882 return cplus_typeid (result);
2883 }
2884
2885 default:
2886 /* Removing this case and compiling with gcc -Wall reveals that
2887 a lot of cases are hitting this case. Some of these should
2888 probably be removed from expression.h; others are legitimate
2889 expressions which are (apparently) not fully implemented.
2890
2891 If there are any cases landing here which mean a user error,
2892 then they should be separate cases, with more descriptive
2893 error messages. */
2894
2895 error (_("GDB does not (yet) know how to "
2896 "evaluate that kind of expression"));
2897 }
2898
2899 gdb_assert_not_reached ("missed return?");
2900 }
2901 \f
2902 /* Evaluate a subexpression of EXP, at index *POS,
2903 and return the address of that subexpression.
2904 Advance *POS over the subexpression.
2905 If the subexpression isn't an lvalue, get an error.
2906 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2907 then only the type of the result need be correct. */
2908
2909 static struct value *
2910 evaluate_subexp_for_address (struct expression *exp, int *pos,
2911 enum noside noside)
2912 {
2913 enum exp_opcode op;
2914 int pc;
2915 struct symbol *var;
2916 struct value *x;
2917 int tem;
2918
2919 pc = (*pos);
2920 op = exp->elts[pc].opcode;
2921
2922 switch (op)
2923 {
2924 case UNOP_IND:
2925 (*pos)++;
2926 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2927
2928 /* We can't optimize out "&*" if there's a user-defined operator*. */
2929 if (unop_user_defined_p (op, x))
2930 {
2931 x = value_x_unop (x, op, noside);
2932 goto default_case_after_eval;
2933 }
2934
2935 return coerce_array (x);
2936
2937 case UNOP_MEMVAL:
2938 (*pos) += 3;
2939 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2940 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2941
2942 case UNOP_MEMVAL_TYPE:
2943 {
2944 struct type *type;
2945
2946 (*pos) += 1;
2947 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2948 type = value_type (x);
2949 return value_cast (lookup_pointer_type (type),
2950 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2951 }
2952
2953 case OP_VAR_VALUE:
2954 var = exp->elts[pc + 2].symbol;
2955
2956 /* C++: The "address" of a reference should yield the address
2957 * of the object pointed to. Let value_addr() deal with it. */
2958 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
2959 goto default_case;
2960
2961 (*pos) += 4;
2962 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2963 {
2964 struct type *type =
2965 lookup_pointer_type (SYMBOL_TYPE (var));
2966 enum address_class sym_class = SYMBOL_CLASS (var);
2967
2968 if (sym_class == LOC_CONST
2969 || sym_class == LOC_CONST_BYTES
2970 || sym_class == LOC_REGISTER)
2971 error (_("Attempt to take address of register or constant."));
2972
2973 return
2974 value_zero (type, not_lval);
2975 }
2976 else
2977 return address_of_variable (var, exp->elts[pc + 1].block);
2978
2979 case OP_VAR_MSYM_VALUE:
2980 {
2981 (*pos) += 4;
2982
2983 value *val = evaluate_var_msym_value (noside,
2984 exp->elts[pc + 1].objfile,
2985 exp->elts[pc + 2].msymbol);
2986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2987 {
2988 struct type *type = lookup_pointer_type (value_type (val));
2989 return value_zero (type, not_lval);
2990 }
2991 else
2992 return value_addr (val);
2993 }
2994
2995 case OP_SCOPE:
2996 tem = longest_to_int (exp->elts[pc + 2].longconst);
2997 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2998 x = value_aggregate_elt (exp->elts[pc + 1].type,
2999 &exp->elts[pc + 3].string,
3000 NULL, 1, noside);
3001 if (x == NULL)
3002 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3003 return x;
3004
3005 default:
3006 default_case:
3007 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3008 default_case_after_eval:
3009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3010 {
3011 struct type *type = check_typedef (value_type (x));
3012
3013 if (TYPE_IS_REFERENCE (type))
3014 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3015 not_lval);
3016 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3017 return value_zero (lookup_pointer_type (value_type (x)),
3018 not_lval);
3019 else
3020 error (_("Attempt to take address of "
3021 "value not located in memory."));
3022 }
3023 return value_addr (x);
3024 }
3025 }
3026
3027 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3028 When used in contexts where arrays will be coerced anyway, this is
3029 equivalent to `evaluate_subexp' but much faster because it avoids
3030 actually fetching array contents (perhaps obsolete now that we have
3031 value_lazy()).
3032
3033 Note that we currently only do the coercion for C expressions, where
3034 arrays are zero based and the coercion is correct. For other languages,
3035 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3036 to decide if coercion is appropriate. */
3037
3038 struct value *
3039 evaluate_subexp_with_coercion (struct expression *exp,
3040 int *pos, enum noside noside)
3041 {
3042 enum exp_opcode op;
3043 int pc;
3044 struct value *val;
3045 struct symbol *var;
3046 struct type *type;
3047
3048 pc = (*pos);
3049 op = exp->elts[pc].opcode;
3050
3051 switch (op)
3052 {
3053 case OP_VAR_VALUE:
3054 var = exp->elts[pc + 2].symbol;
3055 type = check_typedef (SYMBOL_TYPE (var));
3056 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3057 && !TYPE_VECTOR (type)
3058 && CAST_IS_CONVERSION (exp->language_defn))
3059 {
3060 (*pos) += 4;
3061 val = address_of_variable (var, exp->elts[pc + 1].block);
3062 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3063 val);
3064 }
3065 /* FALLTHROUGH */
3066
3067 default:
3068 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3069 }
3070 }
3071
3072 /* Evaluate a subexpression of EXP, at index *POS,
3073 and return a value for the size of that subexpression.
3074 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3075 we allow side-effects on the operand if its type is a variable
3076 length array. */
3077
3078 static struct value *
3079 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3080 enum noside noside)
3081 {
3082 /* FIXME: This should be size_t. */
3083 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3084 enum exp_opcode op;
3085 int pc;
3086 struct type *type;
3087 struct value *val;
3088
3089 pc = (*pos);
3090 op = exp->elts[pc].opcode;
3091
3092 switch (op)
3093 {
3094 /* This case is handled specially
3095 so that we avoid creating a value for the result type.
3096 If the result type is very big, it's desirable not to
3097 create a value unnecessarily. */
3098 case UNOP_IND:
3099 (*pos)++;
3100 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3101 type = check_typedef (value_type (val));
3102 if (TYPE_CODE (type) != TYPE_CODE_PTR
3103 && !TYPE_IS_REFERENCE (type)
3104 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
3105 error (_("Attempt to take contents of a non-pointer value."));
3106 type = TYPE_TARGET_TYPE (type);
3107 if (is_dynamic_type (type))
3108 type = value_type (value_ind (val));
3109 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3110
3111 case UNOP_MEMVAL:
3112 (*pos) += 3;
3113 type = exp->elts[pc + 1].type;
3114 break;
3115
3116 case UNOP_MEMVAL_TYPE:
3117 (*pos) += 1;
3118 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3119 type = value_type (val);
3120 break;
3121
3122 case OP_VAR_VALUE:
3123 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3124 if (is_dynamic_type (type))
3125 {
3126 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3127 type = value_type (val);
3128 }
3129 else
3130 (*pos) += 4;
3131 break;
3132
3133 case OP_VAR_MSYM_VALUE:
3134 {
3135 (*pos) += 4;
3136
3137 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3138 value *val = evaluate_var_msym_value (noside,
3139 exp->elts[pc + 1].objfile,
3140 msymbol);
3141
3142 type = value_type (val);
3143 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
3144 error_unknown_type (MSYMBOL_PRINT_NAME (msymbol));
3145
3146 return value_from_longest (size_type, TYPE_LENGTH (type));
3147 }
3148 break;
3149
3150 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3151 type of the subscript is a variable length array type. In this case we
3152 must re-evaluate the right hand side of the subcription to allow
3153 side-effects. */
3154 case BINOP_SUBSCRIPT:
3155 if (noside == EVAL_NORMAL)
3156 {
3157 int pc = (*pos) + 1;
3158
3159 val = evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
3160 type = check_typedef (value_type (val));
3161 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3162 {
3163 type = check_typedef (TYPE_TARGET_TYPE (type));
3164 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3165 {
3166 type = TYPE_INDEX_TYPE (type);
3167 /* Only re-evaluate the right hand side if the resulting type
3168 is a variable length type. */
3169 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3170 {
3171 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3172 return value_from_longest
3173 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3174 }
3175 }
3176 }
3177 }
3178
3179 /* Fall through. */
3180
3181 default:
3182 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3183 type = value_type (val);
3184 break;
3185 }
3186
3187 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3188 "When applied to a reference or a reference type, the result is
3189 the size of the referenced type." */
3190 type = check_typedef (type);
3191 if (exp->language_defn->la_language == language_cplus
3192 && (TYPE_IS_REFERENCE (type)))
3193 type = check_typedef (TYPE_TARGET_TYPE (type));
3194 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3195 }
3196
3197 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3198 for that subexpression cast to TO_TYPE. Advance *POS over the
3199 subexpression. */
3200
3201 static value *
3202 evaluate_subexp_for_cast (expression *exp, int *pos,
3203 enum noside noside,
3204 struct type *to_type)
3205 {
3206 int pc = *pos;
3207
3208 /* Don't let symbols be evaluated with evaluate_subexp because that
3209 throws an "unknown type" error for no-debug data symbols.
3210 Instead, we want the cast to reinterpret the symbol. */
3211 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3212 || exp->elts[pc].opcode == OP_VAR_VALUE)
3213 {
3214 (*pos) += 4;
3215
3216 value *val;
3217 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3218 {
3219 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3220 return value_zero (to_type, not_lval);
3221
3222 val = evaluate_var_msym_value (noside,
3223 exp->elts[pc + 1].objfile,
3224 exp->elts[pc + 2].msymbol);
3225 }
3226 else
3227 val = evaluate_var_value (noside,
3228 exp->elts[pc + 1].block,
3229 exp->elts[pc + 2].symbol);
3230
3231 if (noside == EVAL_SKIP)
3232 return eval_skip_value (exp);
3233
3234 val = value_cast (to_type, val);
3235
3236 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3237 if (VALUE_LVAL (val) == lval_memory)
3238 {
3239 if (value_lazy (val))
3240 value_fetch_lazy (val);
3241 VALUE_LVAL (val) = not_lval;
3242 }
3243 return val;
3244 }
3245
3246 value *val = evaluate_subexp (to_type, exp, pos, noside);
3247 if (noside == EVAL_SKIP)
3248 return eval_skip_value (exp);
3249 return value_cast (to_type, val);
3250 }
3251
3252 /* Parse a type expression in the string [P..P+LENGTH). */
3253
3254 struct type *
3255 parse_and_eval_type (char *p, int length)
3256 {
3257 char *tmp = (char *) alloca (length + 4);
3258
3259 tmp[0] = '(';
3260 memcpy (tmp + 1, p, length);
3261 tmp[length + 1] = ')';
3262 tmp[length + 2] = '0';
3263 tmp[length + 3] = '\0';
3264 expression_up expr = parse_expression (tmp);
3265 if (expr->elts[0].opcode != UNOP_CAST)
3266 error (_("Internal error in eval_type."));
3267 return expr->elts[1].type;
3268 }
3269
3270 int
3271 calc_f77_array_dims (struct type *array_type)
3272 {
3273 int ndimen = 1;
3274 struct type *tmp_type;
3275
3276 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
3277 error (_("Can't get dimensions for a non-array type"));
3278
3279 tmp_type = array_type;
3280
3281 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3282 {
3283 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
3284 ++ndimen;
3285 }
3286 return ndimen;
3287 }
This page took 0.098105 seconds and 5 git commands to generate.