3d3d6275d75883f371189b366e11a9dd92a18b27
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observable.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static std::string top_level_prompt ();
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef SIGTSTP
72 static void async_sigtstp_handler (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef SIGTSTP
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. This must be
161 noexcept in order to avoid problems with mixing sjlj and
162 (sjlj-based) C++ exceptions. */
163
164 static struct gdb_exception
165 gdb_rl_callback_read_char_wrapper_noexcept () noexcept
166 {
167 struct gdb_exception gdb_expt = exception_none;
168
169 /* C++ exceptions can't normally be thrown across readline (unless
170 it is built with -fexceptions, but it won't by default on many
171 ABIs). So we instead wrap the readline call with a sjlj-based
172 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
173 TRY_SJLJ
174 {
175 rl_callback_read_char ();
176 if (after_char_processing_hook)
177 (*after_char_processing_hook) ();
178 }
179 CATCH_SJLJ (ex, RETURN_MASK_ALL)
180 {
181 gdb_expt = ex;
182 }
183 END_CATCH_SJLJ
184
185 return gdb_expt;
186 }
187
188 static void
189 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
190 {
191 struct gdb_exception gdb_expt
192 = gdb_rl_callback_read_char_wrapper_noexcept ();
193
194 /* Rethrow using the normal EH mechanism. */
195 if (gdb_expt.reason < 0)
196 throw_exception (gdb_expt);
197 }
198
199 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
200 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
201 across readline. See gdb_rl_callback_read_char_wrapper. This must
202 be noexcept in order to avoid problems with mixing sjlj and
203 (sjlj-based) C++ exceptions. */
204
205 static void
206 gdb_rl_callback_handler (char *rl) noexcept
207 {
208 struct gdb_exception gdb_rl_expt = exception_none;
209 struct ui *ui = current_ui;
210
211 TRY
212 {
213 ui->input_handler (gdb::unique_xmalloc_ptr<char> (rl));
214 }
215 CATCH (ex, RETURN_MASK_ALL)
216 {
217 gdb_rl_expt = ex;
218 }
219 END_CATCH
220
221 /* If we caught a GDB exception, longjmp out of the readline
222 callback. There's no other way for the callback to signal to
223 readline that an error happened. A normal return would have
224 readline potentially continue processing further input, redisplay
225 the prompt, etc. (This is what GDB historically did when it was
226 a C program.) Note that since we're long jumping, local variable
227 dtors are NOT run automatically. */
228 if (gdb_rl_expt.reason < 0)
229 throw_exception_sjlj (gdb_rl_expt);
230 }
231
232 /* Change the function to be invoked every time there is a character
233 ready on stdin. This is used when the user sets the editing off,
234 therefore bypassing readline, and letting gdb handle the input
235 itself, via gdb_readline_no_editing_callback. Also it is used in
236 the opposite case in which the user sets editing on again, by
237 restoring readline handling of the input.
238
239 NOTE: this operates on input_fd, not instream. If we are reading
240 commands from a file, instream will point to the file. However, we
241 always read commands from a file with editing off. This means that
242 the 'set editing on/off' will have effect only on the interactive
243 session. */
244
245 void
246 change_line_handler (int editing)
247 {
248 struct ui *ui = current_ui;
249
250 /* We can only have one instance of readline, so we only allow
251 editing on the main UI. */
252 if (ui != main_ui)
253 return;
254
255 /* Don't try enabling editing if the interpreter doesn't support it
256 (e.g., MI). */
257 if (!interp_supports_command_editing (top_level_interpreter ())
258 || !interp_supports_command_editing (command_interp ()))
259 return;
260
261 if (editing)
262 {
263 gdb_assert (ui == main_ui);
264
265 /* Turn on editing by using readline. */
266 ui->call_readline = gdb_rl_callback_read_char_wrapper;
267 }
268 else
269 {
270 /* Turn off editing by using gdb_readline_no_editing_callback. */
271 if (ui->command_editing)
272 gdb_rl_callback_handler_remove ();
273 ui->call_readline = gdb_readline_no_editing_callback;
274 }
275 ui->command_editing = editing;
276 }
277
278 /* The functions below are wrappers for rl_callback_handler_remove and
279 rl_callback_handler_install that keep track of whether the callback
280 handler is installed in readline. This is necessary because after
281 handling a target event of a background execution command, we may
282 need to reinstall the callback handler if it was removed due to a
283 secondary prompt. See gdb_readline_wrapper_line. We don't
284 unconditionally install the handler for every target event because
285 that also clears the line buffer, thus installing it while the user
286 is typing would lose input. */
287
288 /* Whether we've registered a callback handler with readline. */
289 static int callback_handler_installed;
290
291 /* See event-top.h, and above. */
292
293 void
294 gdb_rl_callback_handler_remove (void)
295 {
296 gdb_assert (current_ui == main_ui);
297
298 rl_callback_handler_remove ();
299 callback_handler_installed = 0;
300 }
301
302 /* See event-top.h, and above. Note this wrapper doesn't have an
303 actual callback parameter because we always install
304 INPUT_HANDLER. */
305
306 void
307 gdb_rl_callback_handler_install (const char *prompt)
308 {
309 gdb_assert (current_ui == main_ui);
310
311 /* Calling rl_callback_handler_install resets readline's input
312 buffer. Calling this when we were already processing input
313 therefore loses input. */
314 gdb_assert (!callback_handler_installed);
315
316 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
317 callback_handler_installed = 1;
318 }
319
320 /* See event-top.h, and above. */
321
322 void
323 gdb_rl_callback_handler_reinstall (void)
324 {
325 gdb_assert (current_ui == main_ui);
326
327 if (!callback_handler_installed)
328 {
329 /* Passing NULL as prompt argument tells readline to not display
330 a prompt. */
331 gdb_rl_callback_handler_install (NULL);
332 }
333 }
334
335 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
336 prompt that is displayed is the current top level prompt.
337 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
338 prompt.
339
340 This is used after each gdb command has completed, and in the
341 following cases:
342
343 1. When the user enters a command line which is ended by '\'
344 indicating that the command will continue on the next line. In
345 that case the prompt that is displayed is the empty string.
346
347 2. When the user is entering 'commands' for a breakpoint, or
348 actions for a tracepoint. In this case the prompt will be '>'
349
350 3. On prompting for pagination. */
351
352 void
353 display_gdb_prompt (const char *new_prompt)
354 {
355 std::string actual_gdb_prompt;
356
357 annotate_display_prompt ();
358
359 /* Reset the nesting depth used when trace-commands is set. */
360 reset_command_nest_depth ();
361
362 /* Do not call the python hook on an explicit prompt change as
363 passed to this function, as this forms a secondary/local prompt,
364 IE, displayed but not set. */
365 if (! new_prompt)
366 {
367 struct ui *ui = current_ui;
368
369 if (ui->prompt_state == PROMPTED)
370 internal_error (__FILE__, __LINE__, _("double prompt"));
371 else if (ui->prompt_state == PROMPT_BLOCKED)
372 {
373 /* This is to trick readline into not trying to display the
374 prompt. Even though we display the prompt using this
375 function, readline still tries to do its own display if
376 we don't call rl_callback_handler_install and
377 rl_callback_handler_remove (which readline detects
378 because a global variable is not set). If readline did
379 that, it could mess up gdb signal handlers for SIGINT.
380 Readline assumes that between calls to rl_set_signals and
381 rl_clear_signals gdb doesn't do anything with the signal
382 handlers. Well, that's not the case, because when the
383 target executes we change the SIGINT signal handler. If
384 we allowed readline to display the prompt, the signal
385 handler change would happen exactly between the calls to
386 the above two functions. Calling
387 rl_callback_handler_remove(), does the job. */
388
389 if (current_ui->command_editing)
390 gdb_rl_callback_handler_remove ();
391 return;
392 }
393 else if (ui->prompt_state == PROMPT_NEEDED)
394 {
395 /* Display the top level prompt. */
396 actual_gdb_prompt = top_level_prompt ();
397 ui->prompt_state = PROMPTED;
398 }
399 }
400 else
401 actual_gdb_prompt = new_prompt;
402
403 if (current_ui->command_editing)
404 {
405 gdb_rl_callback_handler_remove ();
406 gdb_rl_callback_handler_install (actual_gdb_prompt.c_str ());
407 }
408 /* new_prompt at this point can be the top of the stack or the one
409 passed in. It can't be NULL. */
410 else
411 {
412 /* Don't use a _filtered function here. It causes the assumed
413 character position to be off, since the newline we read from
414 the user is not accounted for. */
415 fputs_unfiltered (actual_gdb_prompt.c_str (), gdb_stdout);
416 gdb_flush (gdb_stdout);
417 }
418 }
419
420 /* Return the top level prompt, as specified by "set prompt", possibly
421 overriden by the python gdb.prompt_hook hook, and then composed
422 with the prompt prefix and suffix (annotations). */
423
424 static std::string
425 top_level_prompt (void)
426 {
427 char *prompt;
428
429 /* Give observers a chance of changing the prompt. E.g., the python
430 `gdb.prompt_hook' is installed as an observer. */
431 gdb::observers::before_prompt.notify (get_prompt ());
432
433 prompt = get_prompt ();
434
435 if (annotation_level >= 2)
436 {
437 /* Prefix needs to have new line at end. */
438 const char prefix[] = "\n\032\032pre-prompt\n";
439
440 /* Suffix needs to have a new line at end and \032 \032 at
441 beginning. */
442 const char suffix[] = "\n\032\032prompt\n";
443
444 return std::string (prefix) + prompt + suffix;
445 }
446
447 return prompt;
448 }
449
450 /* See top.h. */
451
452 struct ui *main_ui;
453 struct ui *current_ui;
454 struct ui *ui_list;
455
456 /* Get a pointer to the current UI's line buffer. This is used to
457 construct a whole line of input from partial input. */
458
459 static struct buffer *
460 get_command_line_buffer (void)
461 {
462 return &current_ui->line_buffer;
463 }
464
465 /* When there is an event ready on the stdin file descriptor, instead
466 of calling readline directly throught the callback function, or
467 instead of calling gdb_readline_no_editing_callback, give gdb a
468 chance to detect errors and do something. */
469
470 void
471 stdin_event_handler (int error, gdb_client_data client_data)
472 {
473 struct ui *ui = (struct ui *) client_data;
474
475 if (error)
476 {
477 /* Switch to the main UI, so diagnostics always go there. */
478 current_ui = main_ui;
479
480 delete_file_handler (ui->input_fd);
481 if (main_ui == ui)
482 {
483 /* If stdin died, we may as well kill gdb. */
484 printf_unfiltered (_("error detected on stdin\n"));
485 quit_command ((char *) 0, 0);
486 }
487 else
488 {
489 /* Simply delete the UI. */
490 delete ui;
491 }
492 }
493 else
494 {
495 /* Switch to the UI whose input descriptor woke up the event
496 loop. */
497 current_ui = ui;
498
499 /* This makes sure a ^C immediately followed by further input is
500 always processed in that order. E.g,. with input like
501 "^Cprint 1\n", the SIGINT handler runs, marks the async
502 signal handler, and then select/poll may return with stdin
503 ready, instead of -1/EINTR. The
504 gdb.base/double-prompt-target-event-error.exp test exercises
505 this. */
506 QUIT;
507
508 do
509 {
510 call_stdin_event_handler_again_p = 0;
511 ui->call_readline (client_data);
512 }
513 while (call_stdin_event_handler_again_p != 0);
514 }
515 }
516
517 /* See top.h. */
518
519 void
520 ui_register_input_event_handler (struct ui *ui)
521 {
522 add_file_handler (ui->input_fd, stdin_event_handler, ui);
523 }
524
525 /* See top.h. */
526
527 void
528 ui_unregister_input_event_handler (struct ui *ui)
529 {
530 delete_file_handler (ui->input_fd);
531 }
532
533 /* Re-enable stdin after the end of an execution command in
534 synchronous mode, or after an error from the target, and we aborted
535 the exec operation. */
536
537 void
538 async_enable_stdin (void)
539 {
540 struct ui *ui = current_ui;
541
542 if (ui->prompt_state == PROMPT_BLOCKED)
543 {
544 target_terminal::ours ();
545 ui_register_input_event_handler (ui);
546 ui->prompt_state = PROMPT_NEEDED;
547 }
548 }
549
550 /* Disable reads from stdin (the console) marking the command as
551 synchronous. */
552
553 void
554 async_disable_stdin (void)
555 {
556 struct ui *ui = current_ui;
557
558 ui->prompt_state = PROMPT_BLOCKED;
559 delete_file_handler (ui->input_fd);
560 }
561 \f
562
563 /* Handle a gdb command line. This function is called when
564 handle_line_of_input has concatenated one or more input lines into
565 a whole command. */
566
567 void
568 command_handler (const char *command)
569 {
570 struct ui *ui = current_ui;
571 const char *c;
572
573 if (ui->instream == ui->stdin_stream)
574 reinitialize_more_filter ();
575
576 scoped_command_stats stat_reporter (true);
577
578 /* Do not execute commented lines. */
579 for (c = command; *c == ' ' || *c == '\t'; c++)
580 ;
581 if (c[0] != '#')
582 {
583 execute_command (command, ui->instream == ui->stdin_stream);
584
585 /* Do any commands attached to breakpoint we stopped at. */
586 bpstat_do_actions ();
587 }
588 }
589
590 /* Append RL, an input line returned by readline or one of its
591 emulations, to CMD_LINE_BUFFER. Returns the command line if we
592 have a whole command line ready to be processed by the command
593 interpreter or NULL if the command line isn't complete yet (input
594 line ends in a backslash). */
595
596 static char *
597 command_line_append_input_line (struct buffer *cmd_line_buffer, const char *rl)
598 {
599 char *cmd;
600 size_t len;
601
602 len = strlen (rl);
603
604 if (len > 0 && rl[len - 1] == '\\')
605 {
606 /* Don't copy the backslash and wait for more. */
607 buffer_grow (cmd_line_buffer, rl, len - 1);
608 cmd = NULL;
609 }
610 else
611 {
612 /* Copy whole line including terminating null, and we're
613 done. */
614 buffer_grow (cmd_line_buffer, rl, len + 1);
615 cmd = cmd_line_buffer->buffer;
616 }
617
618 return cmd;
619 }
620
621 /* Handle a line of input coming from readline.
622
623 If the read line ends with a continuation character (backslash),
624 save the partial input in CMD_LINE_BUFFER (except the backslash),
625 and return NULL. Otherwise, save the partial input and return a
626 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
627 whole command line is ready to be executed.
628
629 Returns EOF on end of file.
630
631 If REPEAT, handle command repetitions:
632
633 - If the input command line is NOT empty, the command returned is
634 copied into the global 'saved_command_line' var so that it can
635 be repeated later.
636
637 - OTOH, if the input command line IS empty, return the previously
638 saved command instead of the empty input line.
639 */
640
641 char *
642 handle_line_of_input (struct buffer *cmd_line_buffer,
643 const char *rl, int repeat,
644 const char *annotation_suffix)
645 {
646 struct ui *ui = current_ui;
647 int from_tty = ui->instream == ui->stdin_stream;
648 char *p1;
649 char *cmd;
650
651 if (rl == NULL)
652 return (char *) EOF;
653
654 cmd = command_line_append_input_line (cmd_line_buffer, rl);
655 if (cmd == NULL)
656 return NULL;
657
658 /* We have a complete command line now. Prepare for the next
659 command, but leave ownership of memory to the buffer . */
660 cmd_line_buffer->used_size = 0;
661
662 if (from_tty && annotation_level > 1)
663 {
664 printf_unfiltered (("\n\032\032post-"));
665 puts_unfiltered (annotation_suffix);
666 printf_unfiltered (("\n"));
667 }
668
669 #define SERVER_COMMAND_PREFIX "server "
670 server_command = startswith (cmd, SERVER_COMMAND_PREFIX);
671 if (server_command)
672 {
673 /* Note that we don't set `saved_command_line'. Between this
674 and the check in dont_repeat, this insures that repeating
675 will still do the right thing. */
676 return cmd + strlen (SERVER_COMMAND_PREFIX);
677 }
678
679 /* Do history expansion if that is wished. */
680 if (history_expansion_p && from_tty && input_interactive_p (current_ui))
681 {
682 char *history_value;
683 int expanded;
684
685 expanded = history_expand (cmd, &history_value);
686 if (expanded)
687 {
688 size_t len;
689
690 /* Print the changes. */
691 printf_unfiltered ("%s\n", history_value);
692
693 /* If there was an error, call this function again. */
694 if (expanded < 0)
695 {
696 xfree (history_value);
697 return cmd;
698 }
699
700 /* history_expand returns an allocated string. Just replace
701 our buffer with it. */
702 len = strlen (history_value);
703 xfree (buffer_finish (cmd_line_buffer));
704 cmd_line_buffer->buffer = history_value;
705 cmd_line_buffer->buffer_size = len + 1;
706 cmd = history_value;
707 }
708 }
709
710 /* If we just got an empty line, and that is supposed to repeat the
711 previous command, return the previously saved command. */
712 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
713 ;
714 if (repeat && *p1 == '\0')
715 return saved_command_line;
716
717 /* Add command to history if appropriate. Note: lines consisting
718 solely of comments are also added to the command history. This
719 is useful when you type a command, and then realize you don't
720 want to execute it quite yet. You can comment out the command
721 and then later fetch it from the value history and remove the
722 '#'. The kill ring is probably better, but some people are in
723 the habit of commenting things out. */
724 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui))
725 gdb_add_history (cmd);
726
727 /* Save into global buffer if appropriate. */
728 if (repeat)
729 {
730 xfree (saved_command_line);
731 saved_command_line = xstrdup (cmd);
732 return saved_command_line;
733 }
734 else
735 return cmd;
736 }
737
738 /* Handle a complete line of input. This is called by the callback
739 mechanism within the readline library. Deal with incomplete
740 commands as well, by saving the partial input in a global
741 buffer.
742
743 NOTE: This is the asynchronous version of the command_line_input
744 function. */
745
746 void
747 command_line_handler (gdb::unique_xmalloc_ptr<char> &&rl)
748 {
749 struct buffer *line_buffer = get_command_line_buffer ();
750 struct ui *ui = current_ui;
751 char *cmd;
752
753 cmd = handle_line_of_input (line_buffer, rl.get (), 1, "prompt");
754 if (cmd == (char *) EOF)
755 {
756 /* stdin closed. The connection with the terminal is gone.
757 This happens at the end of a testsuite run, after Expect has
758 hung up but GDB is still alive. In such a case, we just quit
759 gdb killing the inferior program too. */
760 printf_unfiltered ("quit\n");
761 execute_command ("quit", 1);
762 }
763 else if (cmd == NULL)
764 {
765 /* We don't have a full line yet. Print an empty prompt. */
766 display_gdb_prompt ("");
767 }
768 else
769 {
770 ui->prompt_state = PROMPT_NEEDED;
771
772 command_handler (cmd);
773
774 if (ui->prompt_state != PROMPTED)
775 display_gdb_prompt (0);
776 }
777 }
778
779 /* Does reading of input from terminal w/o the editing features
780 provided by the readline library. Calls the line input handler
781 once we have a whole input line. */
782
783 void
784 gdb_readline_no_editing_callback (gdb_client_data client_data)
785 {
786 int c;
787 char *result;
788 struct buffer line_buffer;
789 static int done_once = 0;
790 struct ui *ui = current_ui;
791
792 buffer_init (&line_buffer);
793
794 /* Unbuffer the input stream, so that, later on, the calls to fgetc
795 fetch only one char at the time from the stream. The fgetc's will
796 get up to the first newline, but there may be more chars in the
797 stream after '\n'. If we buffer the input and fgetc drains the
798 stream, getting stuff beyond the newline as well, a select, done
799 afterwards will not trigger. */
800 if (!done_once && !ISATTY (ui->instream))
801 {
802 setbuf (ui->instream, NULL);
803 done_once = 1;
804 }
805
806 /* We still need the while loop here, even though it would seem
807 obvious to invoke gdb_readline_no_editing_callback at every
808 character entered. If not using the readline library, the
809 terminal is in cooked mode, which sends the characters all at
810 once. Poll will notice that the input fd has changed state only
811 after enter is pressed. At this point we still need to fetch all
812 the chars entered. */
813
814 while (1)
815 {
816 /* Read from stdin if we are executing a user defined command.
817 This is the right thing for prompt_for_continue, at least. */
818 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream);
819
820 if (c == EOF)
821 {
822 if (line_buffer.used_size > 0)
823 {
824 /* The last line does not end with a newline. Return it, and
825 if we are called again fgetc will still return EOF and
826 we'll return NULL then. */
827 break;
828 }
829 xfree (buffer_finish (&line_buffer));
830 ui->input_handler (NULL);
831 return;
832 }
833
834 if (c == '\n')
835 {
836 if (line_buffer.used_size > 0
837 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
838 line_buffer.used_size--;
839 break;
840 }
841
842 buffer_grow_char (&line_buffer, c);
843 }
844
845 buffer_grow_char (&line_buffer, '\0');
846 result = buffer_finish (&line_buffer);
847 ui->input_handler (gdb::unique_xmalloc_ptr<char> (result));
848 }
849 \f
850
851 /* The serial event associated with the QUIT flag. set_quit_flag sets
852 this, and check_quit_flag clears it. Used by interruptible_select
853 to be able to do interruptible I/O with no race with the SIGINT
854 handler. */
855 static struct serial_event *quit_serial_event;
856
857 /* Initialization of signal handlers and tokens. There is a function
858 handle_sig* for each of the signals GDB cares about. Specifically:
859 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
860 functions are the actual signal handlers associated to the signals
861 via calls to signal(). The only job for these functions is to
862 enqueue the appropriate event/procedure with the event loop. Such
863 procedures are the old signal handlers. The event loop will take
864 care of invoking the queued procedures to perform the usual tasks
865 associated with the reception of the signal. */
866 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
867 init_signals will become obsolete as we move to have to event loop
868 as the default for gdb. */
869 void
870 async_init_signals (void)
871 {
872 initialize_async_signal_handlers ();
873
874 quit_serial_event = make_serial_event ();
875
876 signal (SIGINT, handle_sigint);
877 sigint_token =
878 create_async_signal_handler (async_request_quit, NULL);
879 signal (SIGTERM, handle_sigterm);
880 async_sigterm_token
881 = create_async_signal_handler (async_sigterm_handler, NULL);
882
883 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
884 to the inferior and breakpoints will be ignored. */
885 #ifdef SIGTRAP
886 signal (SIGTRAP, SIG_DFL);
887 #endif
888
889 #ifdef SIGQUIT
890 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
891 passed to the inferior, which we don't want. It would be
892 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
893 on BSD4.3 systems using vfork, that can affect the
894 GDB process as well as the inferior (the signal handling tables
895 might be in memory, shared between the two). Since we establish
896 a handler for SIGQUIT, when we call exec it will set the signal
897 to SIG_DFL for us. */
898 signal (SIGQUIT, handle_sigquit);
899 sigquit_token =
900 create_async_signal_handler (async_do_nothing, NULL);
901 #endif
902 #ifdef SIGHUP
903 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
904 sighup_token =
905 create_async_signal_handler (async_disconnect, NULL);
906 else
907 sighup_token =
908 create_async_signal_handler (async_do_nothing, NULL);
909 #endif
910 signal (SIGFPE, handle_sigfpe);
911 sigfpe_token =
912 create_async_signal_handler (async_float_handler, NULL);
913
914 #ifdef SIGTSTP
915 sigtstp_token =
916 create_async_signal_handler (async_sigtstp_handler, NULL);
917 #endif
918 }
919
920 /* See defs.h. */
921
922 void
923 quit_serial_event_set (void)
924 {
925 serial_event_set (quit_serial_event);
926 }
927
928 /* See defs.h. */
929
930 void
931 quit_serial_event_clear (void)
932 {
933 serial_event_clear (quit_serial_event);
934 }
935
936 /* Return the selectable file descriptor of the serial event
937 associated with the quit flag. */
938
939 static int
940 quit_serial_event_fd (void)
941 {
942 return serial_event_fd (quit_serial_event);
943 }
944
945 /* See defs.h. */
946
947 void
948 default_quit_handler (void)
949 {
950 if (check_quit_flag ())
951 {
952 if (target_terminal::is_ours ())
953 quit ();
954 else
955 target_pass_ctrlc ();
956 }
957 }
958
959 /* See defs.h. */
960 quit_handler_ftype *quit_handler = default_quit_handler;
961
962 /* Handle a SIGINT. */
963
964 void
965 handle_sigint (int sig)
966 {
967 signal (sig, handle_sigint);
968
969 /* We could be running in a loop reading in symfiles or something so
970 it may be quite a while before we get back to the event loop. So
971 set quit_flag to 1 here. Then if QUIT is called before we get to
972 the event loop, we will unwind as expected. */
973 set_quit_flag ();
974
975 /* In case nothing calls QUIT before the event loop is reached, the
976 event loop handles it. */
977 mark_async_signal_handler (sigint_token);
978 }
979
980 /* See gdb_select.h. */
981
982 int
983 interruptible_select (int n,
984 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
985 struct timeval *timeout)
986 {
987 fd_set my_readfds;
988 int fd;
989 int res;
990
991 if (readfds == NULL)
992 {
993 readfds = &my_readfds;
994 FD_ZERO (&my_readfds);
995 }
996
997 fd = quit_serial_event_fd ();
998 FD_SET (fd, readfds);
999 if (n <= fd)
1000 n = fd + 1;
1001
1002 do
1003 {
1004 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1005 }
1006 while (res == -1 && errno == EINTR);
1007
1008 if (res == 1 && FD_ISSET (fd, readfds))
1009 {
1010 errno = EINTR;
1011 return -1;
1012 }
1013 return res;
1014 }
1015
1016 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1017
1018 static void
1019 async_sigterm_handler (gdb_client_data arg)
1020 {
1021 quit_force (NULL, 0);
1022 }
1023
1024 /* See defs.h. */
1025 volatile int sync_quit_force_run;
1026
1027 /* Quit GDB if SIGTERM is received.
1028 GDB would quit anyway, but this way it will clean up properly. */
1029 void
1030 handle_sigterm (int sig)
1031 {
1032 signal (sig, handle_sigterm);
1033
1034 sync_quit_force_run = 1;
1035 set_quit_flag ();
1036
1037 mark_async_signal_handler (async_sigterm_token);
1038 }
1039
1040 /* Do the quit. All the checks have been done by the caller. */
1041 void
1042 async_request_quit (gdb_client_data arg)
1043 {
1044 /* If the quit_flag has gotten reset back to 0 by the time we get
1045 back here, that means that an exception was thrown to unwind the
1046 current command before we got back to the event loop. So there
1047 is no reason to call quit again here. */
1048 QUIT;
1049 }
1050
1051 #ifdef SIGQUIT
1052 /* Tell the event loop what to do if SIGQUIT is received.
1053 See event-signal.c. */
1054 static void
1055 handle_sigquit (int sig)
1056 {
1057 mark_async_signal_handler (sigquit_token);
1058 signal (sig, handle_sigquit);
1059 }
1060 #endif
1061
1062 #if defined (SIGQUIT) || defined (SIGHUP)
1063 /* Called by the event loop in response to a SIGQUIT or an
1064 ignored SIGHUP. */
1065 static void
1066 async_do_nothing (gdb_client_data arg)
1067 {
1068 /* Empty function body. */
1069 }
1070 #endif
1071
1072 #ifdef SIGHUP
1073 /* Tell the event loop what to do if SIGHUP is received.
1074 See event-signal.c. */
1075 static void
1076 handle_sighup (int sig)
1077 {
1078 mark_async_signal_handler (sighup_token);
1079 signal (sig, handle_sighup);
1080 }
1081
1082 /* Called by the event loop to process a SIGHUP. */
1083 static void
1084 async_disconnect (gdb_client_data arg)
1085 {
1086
1087 TRY
1088 {
1089 quit_cover ();
1090 }
1091
1092 CATCH (exception, RETURN_MASK_ALL)
1093 {
1094 fputs_filtered ("Could not kill the program being debugged",
1095 gdb_stderr);
1096 exception_print (gdb_stderr, exception);
1097 }
1098 END_CATCH
1099
1100 TRY
1101 {
1102 pop_all_targets ();
1103 }
1104 CATCH (exception, RETURN_MASK_ALL)
1105 {
1106 }
1107 END_CATCH
1108
1109 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1110 raise (SIGHUP);
1111 }
1112 #endif
1113
1114 #ifdef SIGTSTP
1115 void
1116 handle_sigtstp (int sig)
1117 {
1118 mark_async_signal_handler (sigtstp_token);
1119 signal (sig, handle_sigtstp);
1120 }
1121
1122 static void
1123 async_sigtstp_handler (gdb_client_data arg)
1124 {
1125 char *prompt = get_prompt ();
1126
1127 signal (SIGTSTP, SIG_DFL);
1128 #if HAVE_SIGPROCMASK
1129 {
1130 sigset_t zero;
1131
1132 sigemptyset (&zero);
1133 sigprocmask (SIG_SETMASK, &zero, 0);
1134 }
1135 #elif HAVE_SIGSETMASK
1136 sigsetmask (0);
1137 #endif
1138 raise (SIGTSTP);
1139 signal (SIGTSTP, handle_sigtstp);
1140 printf_unfiltered ("%s", prompt);
1141 gdb_flush (gdb_stdout);
1142
1143 /* Forget about any previous command -- null line now will do
1144 nothing. */
1145 dont_repeat ();
1146 }
1147 #endif /* SIGTSTP */
1148
1149 /* Tell the event loop what to do if SIGFPE is received.
1150 See event-signal.c. */
1151 static void
1152 handle_sigfpe (int sig)
1153 {
1154 mark_async_signal_handler (sigfpe_token);
1155 signal (sig, handle_sigfpe);
1156 }
1157
1158 /* Event loop will call this functin to process a SIGFPE. */
1159 static void
1160 async_float_handler (gdb_client_data arg)
1161 {
1162 /* This message is based on ANSI C, section 4.7. Note that integer
1163 divide by zero causes this, so "float" is a misnomer. */
1164 error (_("Erroneous arithmetic operation."));
1165 }
1166 \f
1167
1168 /* Set things up for readline to be invoked via the alternate
1169 interface, i.e. via a callback function
1170 (gdb_rl_callback_read_char), and hook up instream to the event
1171 loop. */
1172
1173 void
1174 gdb_setup_readline (int editing)
1175 {
1176 struct ui *ui = current_ui;
1177
1178 /* This function is a noop for the sync case. The assumption is
1179 that the sync setup is ALL done in gdb_init, and we would only
1180 mess it up here. The sync stuff should really go away over
1181 time. */
1182 if (!batch_silent)
1183 gdb_stdout = new stdio_file (ui->outstream);
1184 gdb_stderr = new stderr_file (ui->errstream);
1185 gdb_stdlog = gdb_stderr; /* for moment */
1186 gdb_stdtarg = gdb_stderr; /* for moment */
1187 gdb_stdtargerr = gdb_stderr; /* for moment */
1188
1189 /* If the input stream is connected to a terminal, turn on editing.
1190 However, that is only allowed on the main UI, as we can only have
1191 one instance of readline. */
1192 if (ISATTY (ui->instream) && editing && ui == main_ui)
1193 {
1194 /* Tell gdb that we will be using the readline library. This
1195 could be overwritten by a command in .gdbinit like 'set
1196 editing on' or 'off'. */
1197 ui->command_editing = 1;
1198
1199 /* When a character is detected on instream by select or poll,
1200 readline will be invoked via this callback function. */
1201 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1202
1203 /* Tell readline to use the same input stream that gdb uses. */
1204 rl_instream = ui->instream;
1205 }
1206 else
1207 {
1208 ui->command_editing = 0;
1209 ui->call_readline = gdb_readline_no_editing_callback;
1210 }
1211
1212 /* Now create the event source for this UI's input file descriptor.
1213 Another source is going to be the target program (inferior), but
1214 that must be registered only when it actually exists (I.e. after
1215 we say 'run' or after we connect to a remote target. */
1216 ui_register_input_event_handler (ui);
1217 }
1218
1219 /* Disable command input through the standard CLI channels. Used in
1220 the suspend proc for interpreters that use the standard gdb readline
1221 interface, like the cli & the mi. */
1222
1223 void
1224 gdb_disable_readline (void)
1225 {
1226 struct ui *ui = current_ui;
1227
1228 /* FIXME - It is too heavyweight to delete and remake these every
1229 time you run an interpreter that needs readline. It is probably
1230 better to have the interpreters cache these, which in turn means
1231 that this needs to be moved into interpreter specific code. */
1232
1233 #if 0
1234 ui_file_delete (gdb_stdout);
1235 ui_file_delete (gdb_stderr);
1236 gdb_stdlog = NULL;
1237 gdb_stdtarg = NULL;
1238 gdb_stdtargerr = NULL;
1239 #endif
1240
1241 if (ui->command_editing)
1242 gdb_rl_callback_handler_remove ();
1243 delete_file_handler (ui->input_fd);
1244 }
This page took 0.053861 seconds and 3 git commands to generate.