Propagate GDB/C++ exceptions across readline using sj/lj-based TRY/CATCH
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static void command_line_handler (char *rl);
52 static void change_line_handler (void);
53 static char *top_level_prompt (void);
54
55 /* Signal handlers. */
56 #ifdef SIGQUIT
57 static void handle_sigquit (int sig);
58 #endif
59 #ifdef SIGHUP
60 static void handle_sighup (int sig);
61 #endif
62 static void handle_sigfpe (int sig);
63
64 /* Functions to be invoked by the event loop in response to
65 signals. */
66 #if defined (SIGQUIT) || defined (SIGHUP)
67 static void async_do_nothing (gdb_client_data);
68 #endif
69 #ifdef SIGHUP
70 static void async_disconnect (gdb_client_data);
71 #endif
72 static void async_float_handler (gdb_client_data);
73 #ifdef STOP_SIGNAL
74 static void async_stop_sig (gdb_client_data);
75 #endif
76 static void async_sigterm_handler (gdb_client_data arg);
77
78 /* Readline offers an alternate interface, via callback
79 functions. These are all included in the file callback.c in the
80 readline distribution. This file provides (mainly) a function, which
81 the event loop uses as callback (i.e. event handler) whenever an event
82 is detected on the standard input file descriptor.
83 readline_callback_read_char is called (by the GDB event loop) whenever
84 there is a new character ready on the input stream. This function
85 incrementally builds a buffer internal to readline where it
86 accumulates the line read up to the point of invocation. In the
87 special case in which the character read is newline, the function
88 invokes a GDB supplied callback routine, which does the processing of
89 a full command line. This latter routine is the asynchronous analog
90 of the old command_line_input in gdb. Instead of invoking (and waiting
91 for) readline to read the command line and pass it back to
92 command_loop for processing, the new command_line_handler function has
93 the command line already available as its parameter. INPUT_HANDLER is
94 to be set to the function that readline will invoke when a complete
95 line of input is ready. CALL_READLINE is to be set to the function
96 that readline offers as callback to the event_loop. */
97
98 void (*input_handler) (char *);
99 void (*call_readline) (gdb_client_data);
100
101 /* Important variables for the event loop. */
102
103 /* This is used to determine if GDB is using the readline library or
104 its own simplified form of readline. It is used by the asynchronous
105 form of the set editing command.
106 ezannoni: as of 1999-04-29 I expect that this
107 variable will not be used after gdb is changed to use the event
108 loop as default engine, and event-top.c is merged into top.c. */
109 int async_command_editing_p;
110
111 /* This is used to display the notification of the completion of an
112 asynchronous execution command. */
113 int exec_done_display_p = 0;
114
115 /* This is the file descriptor for the input stream that GDB uses to
116 read commands from. */
117 int input_fd;
118
119 /* Used by the stdin event handler to compensate for missed stdin events.
120 Setting this to a non-zero value inside an stdin callback makes the callback
121 run again. */
122 int call_stdin_event_handler_again_p;
123
124 /* Signal handling variables. */
125 /* Each of these is a pointer to a function that the event loop will
126 invoke if the corresponding signal has received. The real signal
127 handlers mark these functions as ready to be executed and the event
128 loop, in a later iteration, calls them. See the function
129 invoke_async_signal_handler. */
130 static struct async_signal_handler *sigint_token;
131 #ifdef SIGHUP
132 static struct async_signal_handler *sighup_token;
133 #endif
134 #ifdef SIGQUIT
135 static struct async_signal_handler *sigquit_token;
136 #endif
137 static struct async_signal_handler *sigfpe_token;
138 #ifdef STOP_SIGNAL
139 static struct async_signal_handler *sigtstp_token;
140 #endif
141 static struct async_signal_handler *async_sigterm_token;
142
143 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
144 character is processed. */
145 void (*after_char_processing_hook) (void);
146 \f
147
148 /* Wrapper function for calling into the readline library. This takes
149 care of a couple things:
150
151 - The event loop expects the callback function to have a parameter,
152 while readline expects none.
153
154 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
155 across readline requires special handling.
156
157 On the exceptions issue:
158
159 DWARF-based unwinding cannot cross code built without -fexceptions.
160 Any exception that tries to propagate through such code will fail
161 and the result is a call to std::terminate. While some ABIs, such
162 as x86-64, require all code to be built with exception tables,
163 others don't.
164
165 This is a problem when GDB calls some non-EH-aware C library code,
166 that calls into GDB again through a callback, and that GDB callback
167 code throws a C++ exception. Turns out this is exactly what
168 happens with GDB's readline callback.
169
170 In such cases, we must catch and save any C++ exception that might
171 be thrown from the GDB callback before returning to the
172 non-EH-aware code. When the non-EH-aware function itself returns
173 back to GDB, we then rethrow the original C++ exception.
174
175 In the readline case however, the right thing to do is to longjmp
176 out of the callback, rather than do a normal return -- there's no
177 way for the callback to return to readline an indication that an
178 error happened, so a normal return would have rl_callback_read_char
179 potentially continue processing further input, redisplay the
180 prompt, etc. Instead of raw setjmp/longjmp however, we use our
181 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
182 levels of active setjmp/longjmp frames, needed in order to handle
183 the readline callback recursing, as happens with e.g., secondary
184 prompts / queries, through gdb_readline_wrapper. */
185
186 static void
187 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
188 {
189 struct gdb_exception gdb_expt = exception_none;
190
191 /* C++ exceptions can't normally be thrown across readline (unless
192 it is built with -fexceptions, but it won't by default on many
193 ABIs). So we instead wrap the readline call with a sjlj-based
194 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
195 TRY_SJLJ
196 {
197 rl_callback_read_char ();
198 if (after_char_processing_hook)
199 (*after_char_processing_hook) ();
200 }
201 CATCH_SJLJ (ex, RETURN_MASK_ALL)
202 {
203 gdb_expt = ex;
204 }
205 END_CATCH_SJLJ
206
207 /* Rethrow using the normal EH mechanism. */
208 if (gdb_expt.reason < 0)
209 throw_exception (gdb_expt);
210 }
211
212 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
213 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
214 across readline. See gdb_rl_callback_read_char_wrapper. */
215
216 static void
217 gdb_rl_callback_handler (char *rl)
218 {
219 struct gdb_exception gdb_rl_expt = exception_none;
220
221 TRY
222 {
223 input_handler (rl);
224 }
225 CATCH (ex, RETURN_MASK_ALL)
226 {
227 gdb_rl_expt = ex;
228 }
229 END_CATCH
230
231 /* If we caught a GDB exception, longjmp out of the readline
232 callback. There's no other way for the callback to signal to
233 readline that an error happened. A normal return would have
234 readline potentially continue processing further input, redisplay
235 the prompt, etc. (This is what GDB historically did when it was
236 a C program.) Note that since we're long jumping, local variable
237 dtors are NOT run automatically. */
238 if (gdb_rl_expt.reason < 0)
239 throw_exception_sjlj (gdb_rl_expt);
240 }
241
242 /* Initialize all the necessary variables, start the event loop,
243 register readline, and stdin, start the loop. The DATA is the
244 interpreter data cookie, ignored for now. */
245
246 void
247 cli_command_loop (void *data)
248 {
249 display_gdb_prompt (0);
250
251 /* Now it's time to start the event loop. */
252 start_event_loop ();
253 }
254
255 /* Change the function to be invoked every time there is a character
256 ready on stdin. This is used when the user sets the editing off,
257 therefore bypassing readline, and letting gdb handle the input
258 itself, via gdb_readline_no_editing_callback. Also it is used in
259 the opposite case in which the user sets editing on again, by
260 restoring readline handling of the input. */
261 static void
262 change_line_handler (void)
263 {
264 /* NOTE: this operates on input_fd, not instream. If we are reading
265 commands from a file, instream will point to the file. However in
266 async mode, we always read commands from a file with editing
267 off. This means that the 'set editing on/off' will have effect
268 only on the interactive session. */
269
270 if (async_command_editing_p)
271 {
272 /* Turn on editing by using readline. */
273 call_readline = gdb_rl_callback_read_char_wrapper;
274 input_handler = command_line_handler;
275 }
276 else
277 {
278 /* Turn off editing by using gdb_readline_no_editing_callback. */
279 gdb_rl_callback_handler_remove ();
280 call_readline = gdb_readline_no_editing_callback;
281
282 /* Set up the command handler as well, in case we are called as
283 first thing from .gdbinit. */
284 input_handler = command_line_handler;
285 }
286 }
287
288 /* The functions below are wrappers for rl_callback_handler_remove and
289 rl_callback_handler_install that keep track of whether the callback
290 handler is installed in readline. This is necessary because after
291 handling a target event of a background execution command, we may
292 need to reinstall the callback handler if it was removed due to a
293 secondary prompt. See gdb_readline_wrapper_line. We don't
294 unconditionally install the handler for every target event because
295 that also clears the line buffer, thus installing it while the user
296 is typing would lose input. */
297
298 /* Whether we've registered a callback handler with readline. */
299 static int callback_handler_installed;
300
301 /* See event-top.h, and above. */
302
303 void
304 gdb_rl_callback_handler_remove (void)
305 {
306 rl_callback_handler_remove ();
307 callback_handler_installed = 0;
308 }
309
310 /* See event-top.h, and above. Note this wrapper doesn't have an
311 actual callback parameter because we always install
312 INPUT_HANDLER. */
313
314 void
315 gdb_rl_callback_handler_install (const char *prompt)
316 {
317 /* Calling rl_callback_handler_install resets readline's input
318 buffer. Calling this when we were already processing input
319 therefore loses input. */
320 gdb_assert (!callback_handler_installed);
321
322 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
323 callback_handler_installed = 1;
324 }
325
326 /* See event-top.h, and above. */
327
328 void
329 gdb_rl_callback_handler_reinstall (void)
330 {
331 if (!callback_handler_installed)
332 {
333 /* Passing NULL as prompt argument tells readline to not display
334 a prompt. */
335 gdb_rl_callback_handler_install (NULL);
336 }
337 }
338
339 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
340 prompt that is displayed is the current top level prompt.
341 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
342 prompt.
343
344 This is used after each gdb command has completed, and in the
345 following cases:
346
347 1. When the user enters a command line which is ended by '\'
348 indicating that the command will continue on the next line. In
349 that case the prompt that is displayed is the empty string.
350
351 2. When the user is entering 'commands' for a breakpoint, or
352 actions for a tracepoint. In this case the prompt will be '>'
353
354 3. On prompting for pagination. */
355
356 void
357 display_gdb_prompt (const char *new_prompt)
358 {
359 char *actual_gdb_prompt = NULL;
360 struct cleanup *old_chain;
361
362 annotate_display_prompt ();
363
364 /* Reset the nesting depth used when trace-commands is set. */
365 reset_command_nest_depth ();
366
367 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
368
369 /* Do not call the python hook on an explicit prompt change as
370 passed to this function, as this forms a secondary/local prompt,
371 IE, displayed but not set. */
372 if (! new_prompt)
373 {
374 if (sync_execution)
375 {
376 /* This is to trick readline into not trying to display the
377 prompt. Even though we display the prompt using this
378 function, readline still tries to do its own display if
379 we don't call rl_callback_handler_install and
380 rl_callback_handler_remove (which readline detects
381 because a global variable is not set). If readline did
382 that, it could mess up gdb signal handlers for SIGINT.
383 Readline assumes that between calls to rl_set_signals and
384 rl_clear_signals gdb doesn't do anything with the signal
385 handlers. Well, that's not the case, because when the
386 target executes we change the SIGINT signal handler. If
387 we allowed readline to display the prompt, the signal
388 handler change would happen exactly between the calls to
389 the above two functions. Calling
390 rl_callback_handler_remove(), does the job. */
391
392 gdb_rl_callback_handler_remove ();
393 do_cleanups (old_chain);
394 return;
395 }
396 else
397 {
398 /* Display the top level prompt. */
399 actual_gdb_prompt = top_level_prompt ();
400 }
401 }
402 else
403 actual_gdb_prompt = xstrdup (new_prompt);
404
405 if (async_command_editing_p)
406 {
407 gdb_rl_callback_handler_remove ();
408 gdb_rl_callback_handler_install (actual_gdb_prompt);
409 }
410 /* new_prompt at this point can be the top of the stack or the one
411 passed in. It can't be NULL. */
412 else
413 {
414 /* Don't use a _filtered function here. It causes the assumed
415 character position to be off, since the newline we read from
416 the user is not accounted for. */
417 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
418 gdb_flush (gdb_stdout);
419 }
420
421 do_cleanups (old_chain);
422 }
423
424 /* Return the top level prompt, as specified by "set prompt", possibly
425 overriden by the python gdb.prompt_hook hook, and then composed
426 with the prompt prefix and suffix (annotations). The caller is
427 responsible for freeing the returned string. */
428
429 static char *
430 top_level_prompt (void)
431 {
432 char *prompt;
433
434 /* Give observers a chance of changing the prompt. E.g., the python
435 `gdb.prompt_hook' is installed as an observer. */
436 observer_notify_before_prompt (get_prompt ());
437
438 prompt = get_prompt ();
439
440 if (annotation_level >= 2)
441 {
442 /* Prefix needs to have new line at end. */
443 const char prefix[] = "\n\032\032pre-prompt\n";
444
445 /* Suffix needs to have a new line at end and \032 \032 at
446 beginning. */
447 const char suffix[] = "\n\032\032prompt\n";
448
449 return concat (prefix, prompt, suffix, (char *) NULL);
450 }
451
452 return xstrdup (prompt);
453 }
454
455 /* Get a pointer to the command line buffer. This is used to
456 construct a whole line of input from partial input. */
457
458 static struct buffer *
459 get_command_line_buffer (void)
460 {
461 static struct buffer line_buffer;
462 static int line_buffer_initialized;
463
464 if (!line_buffer_initialized)
465 {
466 buffer_init (&line_buffer);
467 line_buffer_initialized = 1;
468 }
469
470 return &line_buffer;
471 }
472
473 /* When there is an event ready on the stdin file descriptor, instead
474 of calling readline directly throught the callback function, or
475 instead of calling gdb_readline_no_editing_callback, give gdb a
476 chance to detect errors and do something. */
477
478 void
479 stdin_event_handler (int error, gdb_client_data client_data)
480 {
481 if (error)
482 {
483 printf_unfiltered (_("error detected on stdin\n"));
484 delete_file_handler (input_fd);
485 /* If stdin died, we may as well kill gdb. */
486 quit_command ((char *) 0, stdin == instream);
487 }
488 else
489 {
490 /* This makes sure a ^C immediately followed by further input is
491 always processed in that order. E.g,. with input like
492 "^Cprint 1\n", the SIGINT handler runs, marks the async signal
493 handler, and then select/poll may return with stdin ready,
494 instead of -1/EINTR. The
495 gdb.base/double-prompt-target-event-error.exp test exercises
496 this. */
497 QUIT;
498
499 do
500 {
501 call_stdin_event_handler_again_p = 0;
502 (*call_readline) (client_data);
503 } while (call_stdin_event_handler_again_p != 0);
504 }
505 }
506
507 /* Re-enable stdin after the end of an execution command in
508 synchronous mode, or after an error from the target, and we aborted
509 the exec operation. */
510
511 void
512 async_enable_stdin (void)
513 {
514 if (sync_execution)
515 {
516 /* See NOTE in async_disable_stdin(). */
517 /* FIXME: cagney/1999-09-27: Call this before clearing
518 sync_execution. Current target_terminal_ours() implementations
519 check for sync_execution before switching the terminal. */
520 target_terminal_ours ();
521 sync_execution = 0;
522 }
523 }
524
525 /* Disable reads from stdin (the console) marking the command as
526 synchronous. */
527
528 void
529 async_disable_stdin (void)
530 {
531 sync_execution = 1;
532 }
533 \f
534
535 /* Handle a gdb command line. This function is called when
536 handle_line_of_input has concatenated one or more input lines into
537 a whole command. */
538
539 void
540 command_handler (char *command)
541 {
542 struct cleanup *stat_chain;
543 char *c;
544
545 if (instream == stdin)
546 reinitialize_more_filter ();
547
548 stat_chain = make_command_stats_cleanup (1);
549
550 /* Do not execute commented lines. */
551 for (c = command; *c == ' ' || *c == '\t'; c++)
552 ;
553 if (c[0] != '#')
554 {
555 execute_command (command, instream == stdin);
556
557 /* Do any commands attached to breakpoint we stopped at. */
558 bpstat_do_actions ();
559 }
560
561 do_cleanups (stat_chain);
562 }
563
564 /* Append RL, an input line returned by readline or one of its
565 emulations, to CMD_LINE_BUFFER. Returns the command line if we
566 have a whole command line ready to be processed by the command
567 interpreter or NULL if the command line isn't complete yet (input
568 line ends in a backslash). Takes ownership of RL. */
569
570 static char *
571 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
572 {
573 char *cmd;
574 size_t len;
575
576 len = strlen (rl);
577
578 if (len > 0 && rl[len - 1] == '\\')
579 {
580 /* Don't copy the backslash and wait for more. */
581 buffer_grow (cmd_line_buffer, rl, len - 1);
582 cmd = NULL;
583 }
584 else
585 {
586 /* Copy whole line including terminating null, and we're
587 done. */
588 buffer_grow (cmd_line_buffer, rl, len + 1);
589 cmd = cmd_line_buffer->buffer;
590 }
591
592 /* Allocated in readline. */
593 xfree (rl);
594
595 return cmd;
596 }
597
598 /* Handle a line of input coming from readline.
599
600 If the read line ends with a continuation character (backslash),
601 save the partial input in CMD_LINE_BUFFER (except the backslash),
602 and return NULL. Otherwise, save the partial input and return a
603 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
604 whole command line is ready to be executed.
605
606 Returns EOF on end of file.
607
608 If REPEAT, handle command repetitions:
609
610 - If the input command line is NOT empty, the command returned is
611 copied into the global 'saved_command_line' var so that it can
612 be repeated later.
613
614 - OTOH, if the input command line IS empty, return the previously
615 saved command instead of the empty input line.
616 */
617
618 char *
619 handle_line_of_input (struct buffer *cmd_line_buffer,
620 char *rl, int repeat, char *annotation_suffix)
621 {
622 char *p1;
623 char *cmd;
624
625 if (rl == NULL)
626 return (char *) EOF;
627
628 cmd = command_line_append_input_line (cmd_line_buffer, rl);
629 if (cmd == NULL)
630 return NULL;
631
632 /* We have a complete command line now. Prepare for the next
633 command, but leave ownership of memory to the buffer . */
634 cmd_line_buffer->used_size = 0;
635
636 if (annotation_level > 1 && instream == stdin)
637 {
638 printf_unfiltered (("\n\032\032post-"));
639 puts_unfiltered (annotation_suffix);
640 printf_unfiltered (("\n"));
641 }
642
643 #define SERVER_COMMAND_PREFIX "server "
644 if (startswith (cmd, SERVER_COMMAND_PREFIX))
645 {
646 /* Note that we don't set `saved_command_line'. Between this
647 and the check in dont_repeat, this insures that repeating
648 will still do the right thing. */
649 return cmd + strlen (SERVER_COMMAND_PREFIX);
650 }
651
652 /* Do history expansion if that is wished. */
653 if (history_expansion_p && instream == stdin
654 && ISATTY (instream))
655 {
656 char *history_value;
657 int expanded;
658
659 expanded = history_expand (cmd, &history_value);
660 if (expanded)
661 {
662 size_t len;
663
664 /* Print the changes. */
665 printf_unfiltered ("%s\n", history_value);
666
667 /* If there was an error, call this function again. */
668 if (expanded < 0)
669 {
670 xfree (history_value);
671 return cmd;
672 }
673
674 /* history_expand returns an allocated string. Just replace
675 our buffer with it. */
676 len = strlen (history_value);
677 xfree (buffer_finish (cmd_line_buffer));
678 cmd_line_buffer->buffer = history_value;
679 cmd_line_buffer->buffer_size = len + 1;
680 cmd = history_value;
681 }
682 }
683
684 /* If we just got an empty line, and that is supposed to repeat the
685 previous command, return the previously saved command. */
686 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
687 ;
688 if (repeat && *p1 == '\0')
689 return saved_command_line;
690
691 /* Add command to history if appropriate. Note: lines consisting
692 solely of comments are also added to the command history. This
693 is useful when you type a command, and then realize you don't
694 want to execute it quite yet. You can comment out the command
695 and then later fetch it from the value history and remove the
696 '#'. The kill ring is probably better, but some people are in
697 the habit of commenting things out. */
698 if (*cmd != '\0' && input_from_terminal_p ())
699 gdb_add_history (cmd);
700
701 /* Save into global buffer if appropriate. */
702 if (repeat)
703 {
704 xfree (saved_command_line);
705 saved_command_line = xstrdup (cmd);
706 return saved_command_line;
707 }
708 else
709 return cmd;
710 }
711
712 /* Handle a complete line of input. This is called by the callback
713 mechanism within the readline library. Deal with incomplete
714 commands as well, by saving the partial input in a global
715 buffer.
716
717 NOTE: This is the asynchronous version of the command_line_input
718 function. */
719
720 void
721 command_line_handler (char *rl)
722 {
723 struct buffer *line_buffer = get_command_line_buffer ();
724 char *cmd;
725
726 cmd = handle_line_of_input (line_buffer, rl, instream == stdin, "prompt");
727 if (cmd == (char *) EOF)
728 {
729 /* stdin closed. The connection with the terminal is gone.
730 This happens at the end of a testsuite run, after Expect has
731 hung up but GDB is still alive. In such a case, we just quit
732 gdb killing the inferior program too. */
733 printf_unfiltered ("quit\n");
734 execute_command ("quit", stdin == instream);
735 }
736 else if (cmd == NULL)
737 {
738 /* We don't have a full line yet. Print an empty prompt. */
739 display_gdb_prompt ("");
740 }
741 else
742 {
743 command_handler (cmd);
744 display_gdb_prompt (0);
745 }
746 }
747
748 /* Does reading of input from terminal w/o the editing features
749 provided by the readline library. Calls the line input handler
750 once we have a whole input line. */
751
752 void
753 gdb_readline_no_editing_callback (gdb_client_data client_data)
754 {
755 int c;
756 char *result;
757 struct buffer line_buffer;
758 static int done_once = 0;
759
760 buffer_init (&line_buffer);
761
762 /* Unbuffer the input stream, so that, later on, the calls to fgetc
763 fetch only one char at the time from the stream. The fgetc's will
764 get up to the first newline, but there may be more chars in the
765 stream after '\n'. If we buffer the input and fgetc drains the
766 stream, getting stuff beyond the newline as well, a select, done
767 afterwards will not trigger. */
768 if (!done_once && !ISATTY (instream))
769 {
770 setbuf (instream, NULL);
771 done_once = 1;
772 }
773
774 /* We still need the while loop here, even though it would seem
775 obvious to invoke gdb_readline_no_editing_callback at every
776 character entered. If not using the readline library, the
777 terminal is in cooked mode, which sends the characters all at
778 once. Poll will notice that the input fd has changed state only
779 after enter is pressed. At this point we still need to fetch all
780 the chars entered. */
781
782 while (1)
783 {
784 /* Read from stdin if we are executing a user defined command.
785 This is the right thing for prompt_for_continue, at least. */
786 c = fgetc (instream ? instream : stdin);
787
788 if (c == EOF)
789 {
790 if (line_buffer.used_size > 0)
791 {
792 /* The last line does not end with a newline. Return it, and
793 if we are called again fgetc will still return EOF and
794 we'll return NULL then. */
795 break;
796 }
797 xfree (buffer_finish (&line_buffer));
798 (*input_handler) (0);
799 return;
800 }
801
802 if (c == '\n')
803 {
804 if (line_buffer.used_size > 0
805 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
806 line_buffer.used_size--;
807 break;
808 }
809
810 buffer_grow_char (&line_buffer, c);
811 }
812
813 buffer_grow_char (&line_buffer, '\0');
814 result = buffer_finish (&line_buffer);
815 (*input_handler) (result);
816 }
817 \f
818
819 /* The serial event associated with the QUIT flag. set_quit_flag sets
820 this, and check_quit_flag clears it. Used by interruptible_select
821 to be able to do interruptible I/O with no race with the SIGINT
822 handler. */
823 static struct serial_event *quit_serial_event;
824
825 /* Initialization of signal handlers and tokens. There is a function
826 handle_sig* for each of the signals GDB cares about. Specifically:
827 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
828 functions are the actual signal handlers associated to the signals
829 via calls to signal(). The only job for these functions is to
830 enqueue the appropriate event/procedure with the event loop. Such
831 procedures are the old signal handlers. The event loop will take
832 care of invoking the queued procedures to perform the usual tasks
833 associated with the reception of the signal. */
834 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
835 init_signals will become obsolete as we move to have to event loop
836 as the default for gdb. */
837 void
838 async_init_signals (void)
839 {
840 initialize_async_signal_handlers ();
841
842 quit_serial_event = make_serial_event ();
843
844 signal (SIGINT, handle_sigint);
845 sigint_token =
846 create_async_signal_handler (async_request_quit, NULL);
847 signal (SIGTERM, handle_sigterm);
848 async_sigterm_token
849 = create_async_signal_handler (async_sigterm_handler, NULL);
850
851 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
852 to the inferior and breakpoints will be ignored. */
853 #ifdef SIGTRAP
854 signal (SIGTRAP, SIG_DFL);
855 #endif
856
857 #ifdef SIGQUIT
858 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
859 passed to the inferior, which we don't want. It would be
860 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
861 on BSD4.3 systems using vfork, that can affect the
862 GDB process as well as the inferior (the signal handling tables
863 might be in memory, shared between the two). Since we establish
864 a handler for SIGQUIT, when we call exec it will set the signal
865 to SIG_DFL for us. */
866 signal (SIGQUIT, handle_sigquit);
867 sigquit_token =
868 create_async_signal_handler (async_do_nothing, NULL);
869 #endif
870 #ifdef SIGHUP
871 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
872 sighup_token =
873 create_async_signal_handler (async_disconnect, NULL);
874 else
875 sighup_token =
876 create_async_signal_handler (async_do_nothing, NULL);
877 #endif
878 signal (SIGFPE, handle_sigfpe);
879 sigfpe_token =
880 create_async_signal_handler (async_float_handler, NULL);
881
882 #ifdef STOP_SIGNAL
883 sigtstp_token =
884 create_async_signal_handler (async_stop_sig, NULL);
885 #endif
886 }
887
888 /* See defs.h. */
889
890 void
891 quit_serial_event_set (void)
892 {
893 serial_event_set (quit_serial_event);
894 }
895
896 /* See defs.h. */
897
898 void
899 quit_serial_event_clear (void)
900 {
901 serial_event_clear (quit_serial_event);
902 }
903
904 /* Return the selectable file descriptor of the serial event
905 associated with the quit flag. */
906
907 static int
908 quit_serial_event_fd (void)
909 {
910 return serial_event_fd (quit_serial_event);
911 }
912
913 /* See defs.h. */
914
915 void
916 default_quit_handler (void)
917 {
918 if (check_quit_flag ())
919 {
920 if (target_terminal_is_ours ())
921 quit ();
922 else
923 target_pass_ctrlc ();
924 }
925 }
926
927 /* See defs.h. */
928 quit_handler_ftype *quit_handler = default_quit_handler;
929
930 /* Data for make_cleanup_override_quit_handler. Wrap the previous
931 handler pointer in a data struct because it's not portable to cast
932 a function pointer to a data pointer, which is what make_cleanup
933 expects. */
934 struct quit_handler_cleanup_data
935 {
936 /* The previous quit handler. */
937 quit_handler_ftype *prev_handler;
938 };
939
940 /* Cleanup call that restores the previous quit handler. */
941
942 static void
943 restore_quit_handler (void *arg)
944 {
945 struct quit_handler_cleanup_data *data
946 = (struct quit_handler_cleanup_data *) arg;
947
948 quit_handler = data->prev_handler;
949 }
950
951 /* Destructor for the quit handler cleanup. */
952
953 static void
954 restore_quit_handler_dtor (void *arg)
955 {
956 xfree (arg);
957 }
958
959 /* See defs.h. */
960
961 struct cleanup *
962 make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
963 {
964 struct cleanup *old_chain;
965 struct quit_handler_cleanup_data *data;
966
967 data = XNEW (struct quit_handler_cleanup_data);
968 data->prev_handler = quit_handler;
969 old_chain = make_cleanup_dtor (restore_quit_handler, data,
970 restore_quit_handler_dtor);
971 quit_handler = new_quit_handler;
972 return old_chain;
973 }
974
975 /* Handle a SIGINT. */
976
977 void
978 handle_sigint (int sig)
979 {
980 signal (sig, handle_sigint);
981
982 /* We could be running in a loop reading in symfiles or something so
983 it may be quite a while before we get back to the event loop. So
984 set quit_flag to 1 here. Then if QUIT is called before we get to
985 the event loop, we will unwind as expected. */
986 set_quit_flag ();
987
988 /* In case nothing calls QUIT before the event loop is reached, the
989 event loop handles it. */
990 mark_async_signal_handler (sigint_token);
991 }
992
993 /* See gdb_select.h. */
994
995 int
996 interruptible_select (int n,
997 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
998 struct timeval *timeout)
999 {
1000 fd_set my_readfds;
1001 int fd;
1002 int res;
1003
1004 if (readfds == NULL)
1005 {
1006 readfds = &my_readfds;
1007 FD_ZERO (&my_readfds);
1008 }
1009
1010 fd = quit_serial_event_fd ();
1011 FD_SET (fd, readfds);
1012 if (n <= fd)
1013 n = fd + 1;
1014
1015 do
1016 {
1017 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1018 }
1019 while (res == -1 && errno == EINTR);
1020
1021 if (res == 1 && FD_ISSET (fd, readfds))
1022 {
1023 errno = EINTR;
1024 return -1;
1025 }
1026 return res;
1027 }
1028
1029 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1030
1031 static void
1032 async_sigterm_handler (gdb_client_data arg)
1033 {
1034 quit_force (NULL, stdin == instream);
1035 }
1036
1037 /* See defs.h. */
1038 volatile int sync_quit_force_run;
1039
1040 /* Quit GDB if SIGTERM is received.
1041 GDB would quit anyway, but this way it will clean up properly. */
1042 void
1043 handle_sigterm (int sig)
1044 {
1045 signal (sig, handle_sigterm);
1046
1047 sync_quit_force_run = 1;
1048 set_quit_flag ();
1049
1050 mark_async_signal_handler (async_sigterm_token);
1051 }
1052
1053 /* Do the quit. All the checks have been done by the caller. */
1054 void
1055 async_request_quit (gdb_client_data arg)
1056 {
1057 /* If the quit_flag has gotten reset back to 0 by the time we get
1058 back here, that means that an exception was thrown to unwind the
1059 current command before we got back to the event loop. So there
1060 is no reason to call quit again here. */
1061 QUIT;
1062 }
1063
1064 #ifdef SIGQUIT
1065 /* Tell the event loop what to do if SIGQUIT is received.
1066 See event-signal.c. */
1067 static void
1068 handle_sigquit (int sig)
1069 {
1070 mark_async_signal_handler (sigquit_token);
1071 signal (sig, handle_sigquit);
1072 }
1073 #endif
1074
1075 #if defined (SIGQUIT) || defined (SIGHUP)
1076 /* Called by the event loop in response to a SIGQUIT or an
1077 ignored SIGHUP. */
1078 static void
1079 async_do_nothing (gdb_client_data arg)
1080 {
1081 /* Empty function body. */
1082 }
1083 #endif
1084
1085 #ifdef SIGHUP
1086 /* Tell the event loop what to do if SIGHUP is received.
1087 See event-signal.c. */
1088 static void
1089 handle_sighup (int sig)
1090 {
1091 mark_async_signal_handler (sighup_token);
1092 signal (sig, handle_sighup);
1093 }
1094
1095 /* Called by the event loop to process a SIGHUP. */
1096 static void
1097 async_disconnect (gdb_client_data arg)
1098 {
1099
1100 TRY
1101 {
1102 quit_cover ();
1103 }
1104
1105 CATCH (exception, RETURN_MASK_ALL)
1106 {
1107 fputs_filtered ("Could not kill the program being debugged",
1108 gdb_stderr);
1109 exception_print (gdb_stderr, exception);
1110 }
1111 END_CATCH
1112
1113 TRY
1114 {
1115 pop_all_targets ();
1116 }
1117 CATCH (exception, RETURN_MASK_ALL)
1118 {
1119 }
1120 END_CATCH
1121
1122 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1123 raise (SIGHUP);
1124 }
1125 #endif
1126
1127 #ifdef STOP_SIGNAL
1128 void
1129 handle_stop_sig (int sig)
1130 {
1131 mark_async_signal_handler (sigtstp_token);
1132 signal (sig, handle_stop_sig);
1133 }
1134
1135 static void
1136 async_stop_sig (gdb_client_data arg)
1137 {
1138 char *prompt = get_prompt ();
1139
1140 #if STOP_SIGNAL == SIGTSTP
1141 signal (SIGTSTP, SIG_DFL);
1142 #if HAVE_SIGPROCMASK
1143 {
1144 sigset_t zero;
1145
1146 sigemptyset (&zero);
1147 sigprocmask (SIG_SETMASK, &zero, 0);
1148 }
1149 #elif HAVE_SIGSETMASK
1150 sigsetmask (0);
1151 #endif
1152 raise (SIGTSTP);
1153 signal (SIGTSTP, handle_stop_sig);
1154 #else
1155 signal (STOP_SIGNAL, handle_stop_sig);
1156 #endif
1157 printf_unfiltered ("%s", prompt);
1158 gdb_flush (gdb_stdout);
1159
1160 /* Forget about any previous command -- null line now will do
1161 nothing. */
1162 dont_repeat ();
1163 }
1164 #endif /* STOP_SIGNAL */
1165
1166 /* Tell the event loop what to do if SIGFPE is received.
1167 See event-signal.c. */
1168 static void
1169 handle_sigfpe (int sig)
1170 {
1171 mark_async_signal_handler (sigfpe_token);
1172 signal (sig, handle_sigfpe);
1173 }
1174
1175 /* Event loop will call this functin to process a SIGFPE. */
1176 static void
1177 async_float_handler (gdb_client_data arg)
1178 {
1179 /* This message is based on ANSI C, section 4.7. Note that integer
1180 divide by zero causes this, so "float" is a misnomer. */
1181 error (_("Erroneous arithmetic operation."));
1182 }
1183 \f
1184
1185 /* Called by do_setshow_command. */
1186 void
1187 set_async_editing_command (char *args, int from_tty,
1188 struct cmd_list_element *c)
1189 {
1190 change_line_handler ();
1191 }
1192
1193 /* Set things up for readline to be invoked via the alternate
1194 interface, i.e. via a callback function
1195 (gdb_rl_callback_read_char), and hook up instream to the event
1196 loop. */
1197
1198 void
1199 gdb_setup_readline (void)
1200 {
1201 /* This function is a noop for the sync case. The assumption is
1202 that the sync setup is ALL done in gdb_init, and we would only
1203 mess it up here. The sync stuff should really go away over
1204 time. */
1205 if (!batch_silent)
1206 gdb_stdout = stdio_fileopen (stdout);
1207 gdb_stderr = stderr_fileopen ();
1208 gdb_stdlog = gdb_stderr; /* for moment */
1209 gdb_stdtarg = gdb_stderr; /* for moment */
1210 gdb_stdtargerr = gdb_stderr; /* for moment */
1211
1212 /* If the input stream is connected to a terminal, turn on
1213 editing. */
1214 if (ISATTY (instream))
1215 {
1216 /* Tell gdb that we will be using the readline library. This
1217 could be overwritten by a command in .gdbinit like 'set
1218 editing on' or 'off'. */
1219 async_command_editing_p = 1;
1220
1221 /* When a character is detected on instream by select or poll,
1222 readline will be invoked via this callback function. */
1223 call_readline = gdb_rl_callback_read_char_wrapper;
1224 }
1225 else
1226 {
1227 async_command_editing_p = 0;
1228 call_readline = gdb_readline_no_editing_callback;
1229 }
1230
1231 /* When readline has read an end-of-line character, it passes the
1232 complete line to gdb for processing; command_line_handler is the
1233 function that does this. */
1234 input_handler = command_line_handler;
1235
1236 /* Tell readline to use the same input stream that gdb uses. */
1237 rl_instream = instream;
1238
1239 /* Get a file descriptor for the input stream, so that we can
1240 register it with the event loop. */
1241 input_fd = fileno (instream);
1242
1243 /* Now we need to create the event sources for the input file
1244 descriptor. */
1245 /* At this point in time, this is the only event source that we
1246 register with the even loop. Another source is going to be the
1247 target program (inferior), but that must be registered only when
1248 it actually exists (I.e. after we say 'run' or after we connect
1249 to a remote target. */
1250 add_file_handler (input_fd, stdin_event_handler, 0);
1251 }
1252
1253 /* Disable command input through the standard CLI channels. Used in
1254 the suspend proc for interpreters that use the standard gdb readline
1255 interface, like the cli & the mi. */
1256 void
1257 gdb_disable_readline (void)
1258 {
1259 /* FIXME - It is too heavyweight to delete and remake these every
1260 time you run an interpreter that needs readline. It is probably
1261 better to have the interpreters cache these, which in turn means
1262 that this needs to be moved into interpreter specific code. */
1263
1264 #if 0
1265 ui_file_delete (gdb_stdout);
1266 ui_file_delete (gdb_stderr);
1267 gdb_stdlog = NULL;
1268 gdb_stdtarg = NULL;
1269 gdb_stdtargerr = NULL;
1270 #endif
1271
1272 gdb_rl_callback_handler_remove ();
1273 delete_file_handler (input_fd);
1274 }
This page took 0.059702 seconds and 5 git commands to generate.