-Wwrite-strings: The Rest
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2017 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static char *top_level_prompt (void);
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef STOP_SIGNAL
72 static void async_stop_sig (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef STOP_SIGNAL
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. This must be
161 noexcept in order to avoid problems with mixing sjlj and
162 (sjlj-based) C++ exceptions. */
163
164 static struct gdb_exception
165 gdb_rl_callback_read_char_wrapper_noexcept () noexcept
166 {
167 struct gdb_exception gdb_expt = exception_none;
168
169 /* C++ exceptions can't normally be thrown across readline (unless
170 it is built with -fexceptions, but it won't by default on many
171 ABIs). So we instead wrap the readline call with a sjlj-based
172 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
173 TRY_SJLJ
174 {
175 rl_callback_read_char ();
176 if (after_char_processing_hook)
177 (*after_char_processing_hook) ();
178 }
179 CATCH_SJLJ (ex, RETURN_MASK_ALL)
180 {
181 gdb_expt = ex;
182 }
183 END_CATCH_SJLJ
184
185 return gdb_expt;
186 }
187
188 static void
189 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
190 {
191 struct gdb_exception gdb_expt
192 = gdb_rl_callback_read_char_wrapper_noexcept ();
193
194 /* Rethrow using the normal EH mechanism. */
195 if (gdb_expt.reason < 0)
196 throw_exception (gdb_expt);
197 }
198
199 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
200 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
201 across readline. See gdb_rl_callback_read_char_wrapper. This must
202 be noexcept in order to avoid problems with mixing sjlj and
203 (sjlj-based) C++ exceptions. */
204
205 static void
206 gdb_rl_callback_handler (char *rl) noexcept
207 {
208 struct gdb_exception gdb_rl_expt = exception_none;
209 struct ui *ui = current_ui;
210
211 TRY
212 {
213 ui->input_handler (rl);
214 }
215 CATCH (ex, RETURN_MASK_ALL)
216 {
217 gdb_rl_expt = ex;
218 }
219 END_CATCH
220
221 /* If we caught a GDB exception, longjmp out of the readline
222 callback. There's no other way for the callback to signal to
223 readline that an error happened. A normal return would have
224 readline potentially continue processing further input, redisplay
225 the prompt, etc. (This is what GDB historically did when it was
226 a C program.) Note that since we're long jumping, local variable
227 dtors are NOT run automatically. */
228 if (gdb_rl_expt.reason < 0)
229 throw_exception_sjlj (gdb_rl_expt);
230 }
231
232 /* Change the function to be invoked every time there is a character
233 ready on stdin. This is used when the user sets the editing off,
234 therefore bypassing readline, and letting gdb handle the input
235 itself, via gdb_readline_no_editing_callback. Also it is used in
236 the opposite case in which the user sets editing on again, by
237 restoring readline handling of the input.
238
239 NOTE: this operates on input_fd, not instream. If we are reading
240 commands from a file, instream will point to the file. However, we
241 always read commands from a file with editing off. This means that
242 the 'set editing on/off' will have effect only on the interactive
243 session. */
244
245 void
246 change_line_handler (int editing)
247 {
248 struct ui *ui = current_ui;
249
250 /* We can only have one instance of readline, so we only allow
251 editing on the main UI. */
252 if (ui != main_ui)
253 return;
254
255 /* Don't try enabling editing if the interpreter doesn't support it
256 (e.g., MI). */
257 if (!interp_supports_command_editing (top_level_interpreter ())
258 || !interp_supports_command_editing (command_interp ()))
259 return;
260
261 if (editing)
262 {
263 gdb_assert (ui == main_ui);
264
265 /* Turn on editing by using readline. */
266 ui->call_readline = gdb_rl_callback_read_char_wrapper;
267 }
268 else
269 {
270 /* Turn off editing by using gdb_readline_no_editing_callback. */
271 if (ui->command_editing)
272 gdb_rl_callback_handler_remove ();
273 ui->call_readline = gdb_readline_no_editing_callback;
274 }
275 ui->command_editing = editing;
276 }
277
278 /* The functions below are wrappers for rl_callback_handler_remove and
279 rl_callback_handler_install that keep track of whether the callback
280 handler is installed in readline. This is necessary because after
281 handling a target event of a background execution command, we may
282 need to reinstall the callback handler if it was removed due to a
283 secondary prompt. See gdb_readline_wrapper_line. We don't
284 unconditionally install the handler for every target event because
285 that also clears the line buffer, thus installing it while the user
286 is typing would lose input. */
287
288 /* Whether we've registered a callback handler with readline. */
289 static int callback_handler_installed;
290
291 /* See event-top.h, and above. */
292
293 void
294 gdb_rl_callback_handler_remove (void)
295 {
296 gdb_assert (current_ui == main_ui);
297
298 rl_callback_handler_remove ();
299 callback_handler_installed = 0;
300 }
301
302 /* See event-top.h, and above. Note this wrapper doesn't have an
303 actual callback parameter because we always install
304 INPUT_HANDLER. */
305
306 void
307 gdb_rl_callback_handler_install (const char *prompt)
308 {
309 gdb_assert (current_ui == main_ui);
310
311 /* Calling rl_callback_handler_install resets readline's input
312 buffer. Calling this when we were already processing input
313 therefore loses input. */
314 gdb_assert (!callback_handler_installed);
315
316 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
317 callback_handler_installed = 1;
318 }
319
320 /* See event-top.h, and above. */
321
322 void
323 gdb_rl_callback_handler_reinstall (void)
324 {
325 gdb_assert (current_ui == main_ui);
326
327 if (!callback_handler_installed)
328 {
329 /* Passing NULL as prompt argument tells readline to not display
330 a prompt. */
331 gdb_rl_callback_handler_install (NULL);
332 }
333 }
334
335 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
336 prompt that is displayed is the current top level prompt.
337 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
338 prompt.
339
340 This is used after each gdb command has completed, and in the
341 following cases:
342
343 1. When the user enters a command line which is ended by '\'
344 indicating that the command will continue on the next line. In
345 that case the prompt that is displayed is the empty string.
346
347 2. When the user is entering 'commands' for a breakpoint, or
348 actions for a tracepoint. In this case the prompt will be '>'
349
350 3. On prompting for pagination. */
351
352 void
353 display_gdb_prompt (const char *new_prompt)
354 {
355 char *actual_gdb_prompt = NULL;
356 struct cleanup *old_chain;
357
358 annotate_display_prompt ();
359
360 /* Reset the nesting depth used when trace-commands is set. */
361 reset_command_nest_depth ();
362
363 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
364
365 /* Do not call the python hook on an explicit prompt change as
366 passed to this function, as this forms a secondary/local prompt,
367 IE, displayed but not set. */
368 if (! new_prompt)
369 {
370 struct ui *ui = current_ui;
371
372 if (ui->prompt_state == PROMPTED)
373 internal_error (__FILE__, __LINE__, _("double prompt"));
374 else if (ui->prompt_state == PROMPT_BLOCKED)
375 {
376 /* This is to trick readline into not trying to display the
377 prompt. Even though we display the prompt using this
378 function, readline still tries to do its own display if
379 we don't call rl_callback_handler_install and
380 rl_callback_handler_remove (which readline detects
381 because a global variable is not set). If readline did
382 that, it could mess up gdb signal handlers for SIGINT.
383 Readline assumes that between calls to rl_set_signals and
384 rl_clear_signals gdb doesn't do anything with the signal
385 handlers. Well, that's not the case, because when the
386 target executes we change the SIGINT signal handler. If
387 we allowed readline to display the prompt, the signal
388 handler change would happen exactly between the calls to
389 the above two functions. Calling
390 rl_callback_handler_remove(), does the job. */
391
392 if (current_ui->command_editing)
393 gdb_rl_callback_handler_remove ();
394 do_cleanups (old_chain);
395 return;
396 }
397 else if (ui->prompt_state == PROMPT_NEEDED)
398 {
399 /* Display the top level prompt. */
400 actual_gdb_prompt = top_level_prompt ();
401 ui->prompt_state = PROMPTED;
402 }
403 }
404 else
405 actual_gdb_prompt = xstrdup (new_prompt);
406
407 if (current_ui->command_editing)
408 {
409 gdb_rl_callback_handler_remove ();
410 gdb_rl_callback_handler_install (actual_gdb_prompt);
411 }
412 /* new_prompt at this point can be the top of the stack or the one
413 passed in. It can't be NULL. */
414 else
415 {
416 /* Don't use a _filtered function here. It causes the assumed
417 character position to be off, since the newline we read from
418 the user is not accounted for. */
419 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
420 gdb_flush (gdb_stdout);
421 }
422
423 do_cleanups (old_chain);
424 }
425
426 /* Return the top level prompt, as specified by "set prompt", possibly
427 overriden by the python gdb.prompt_hook hook, and then composed
428 with the prompt prefix and suffix (annotations). The caller is
429 responsible for freeing the returned string. */
430
431 static char *
432 top_level_prompt (void)
433 {
434 char *prompt;
435
436 /* Give observers a chance of changing the prompt. E.g., the python
437 `gdb.prompt_hook' is installed as an observer. */
438 observer_notify_before_prompt (get_prompt ());
439
440 prompt = get_prompt ();
441
442 if (annotation_level >= 2)
443 {
444 /* Prefix needs to have new line at end. */
445 const char prefix[] = "\n\032\032pre-prompt\n";
446
447 /* Suffix needs to have a new line at end and \032 \032 at
448 beginning. */
449 const char suffix[] = "\n\032\032prompt\n";
450
451 return concat (prefix, prompt, suffix, (char *) NULL);
452 }
453
454 return xstrdup (prompt);
455 }
456
457 /* See top.h. */
458
459 struct ui *main_ui;
460 struct ui *current_ui;
461 struct ui *ui_list;
462
463 /* Get a pointer to the current UI's line buffer. This is used to
464 construct a whole line of input from partial input. */
465
466 static struct buffer *
467 get_command_line_buffer (void)
468 {
469 return &current_ui->line_buffer;
470 }
471
472 /* When there is an event ready on the stdin file descriptor, instead
473 of calling readline directly throught the callback function, or
474 instead of calling gdb_readline_no_editing_callback, give gdb a
475 chance to detect errors and do something. */
476
477 void
478 stdin_event_handler (int error, gdb_client_data client_data)
479 {
480 struct ui *ui = (struct ui *) client_data;
481
482 if (error)
483 {
484 /* Switch to the main UI, so diagnostics always go there. */
485 current_ui = main_ui;
486
487 delete_file_handler (ui->input_fd);
488 if (main_ui == ui)
489 {
490 /* If stdin died, we may as well kill gdb. */
491 printf_unfiltered (_("error detected on stdin\n"));
492 quit_command ((char *) 0, 0);
493 }
494 else
495 {
496 /* Simply delete the UI. */
497 delete_ui (ui);
498 }
499 }
500 else
501 {
502 /* Switch to the UI whose input descriptor woke up the event
503 loop. */
504 current_ui = ui;
505
506 /* This makes sure a ^C immediately followed by further input is
507 always processed in that order. E.g,. with input like
508 "^Cprint 1\n", the SIGINT handler runs, marks the async
509 signal handler, and then select/poll may return with stdin
510 ready, instead of -1/EINTR. The
511 gdb.base/double-prompt-target-event-error.exp test exercises
512 this. */
513 QUIT;
514
515 do
516 {
517 call_stdin_event_handler_again_p = 0;
518 ui->call_readline (client_data);
519 }
520 while (call_stdin_event_handler_again_p != 0);
521 }
522 }
523
524 /* See top.h. */
525
526 void
527 ui_register_input_event_handler (struct ui *ui)
528 {
529 add_file_handler (ui->input_fd, stdin_event_handler, ui);
530 }
531
532 /* See top.h. */
533
534 void
535 ui_unregister_input_event_handler (struct ui *ui)
536 {
537 delete_file_handler (ui->input_fd);
538 }
539
540 /* Re-enable stdin after the end of an execution command in
541 synchronous mode, or after an error from the target, and we aborted
542 the exec operation. */
543
544 void
545 async_enable_stdin (void)
546 {
547 struct ui *ui = current_ui;
548
549 if (ui->prompt_state == PROMPT_BLOCKED)
550 {
551 target_terminal_ours ();
552 ui_register_input_event_handler (ui);
553 ui->prompt_state = PROMPT_NEEDED;
554 }
555 }
556
557 /* Disable reads from stdin (the console) marking the command as
558 synchronous. */
559
560 void
561 async_disable_stdin (void)
562 {
563 struct ui *ui = current_ui;
564
565 ui->prompt_state = PROMPT_BLOCKED;
566 delete_file_handler (ui->input_fd);
567 }
568 \f
569
570 /* Handle a gdb command line. This function is called when
571 handle_line_of_input has concatenated one or more input lines into
572 a whole command. */
573
574 void
575 command_handler (char *command)
576 {
577 struct ui *ui = current_ui;
578 char *c;
579
580 if (ui->instream == ui->stdin_stream)
581 reinitialize_more_filter ();
582
583 scoped_command_stats stat_reporter (true);
584
585 /* Do not execute commented lines. */
586 for (c = command; *c == ' ' || *c == '\t'; c++)
587 ;
588 if (c[0] != '#')
589 {
590 execute_command (command, ui->instream == ui->stdin_stream);
591
592 /* Do any commands attached to breakpoint we stopped at. */
593 bpstat_do_actions ();
594 }
595 }
596
597 /* Append RL, an input line returned by readline or one of its
598 emulations, to CMD_LINE_BUFFER. Returns the command line if we
599 have a whole command line ready to be processed by the command
600 interpreter or NULL if the command line isn't complete yet (input
601 line ends in a backslash). Takes ownership of RL. */
602
603 static char *
604 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
605 {
606 char *cmd;
607 size_t len;
608
609 len = strlen (rl);
610
611 if (len > 0 && rl[len - 1] == '\\')
612 {
613 /* Don't copy the backslash and wait for more. */
614 buffer_grow (cmd_line_buffer, rl, len - 1);
615 cmd = NULL;
616 }
617 else
618 {
619 /* Copy whole line including terminating null, and we're
620 done. */
621 buffer_grow (cmd_line_buffer, rl, len + 1);
622 cmd = cmd_line_buffer->buffer;
623 }
624
625 /* Allocated in readline. */
626 xfree (rl);
627
628 return cmd;
629 }
630
631 /* Handle a line of input coming from readline.
632
633 If the read line ends with a continuation character (backslash),
634 save the partial input in CMD_LINE_BUFFER (except the backslash),
635 and return NULL. Otherwise, save the partial input and return a
636 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
637 whole command line is ready to be executed.
638
639 Returns EOF on end of file.
640
641 If REPEAT, handle command repetitions:
642
643 - If the input command line is NOT empty, the command returned is
644 copied into the global 'saved_command_line' var so that it can
645 be repeated later.
646
647 - OTOH, if the input command line IS empty, return the previously
648 saved command instead of the empty input line.
649 */
650
651 char *
652 handle_line_of_input (struct buffer *cmd_line_buffer,
653 char *rl, int repeat, const char *annotation_suffix)
654 {
655 struct ui *ui = current_ui;
656 int from_tty = ui->instream == ui->stdin_stream;
657 char *p1;
658 char *cmd;
659
660 if (rl == NULL)
661 return (char *) EOF;
662
663 cmd = command_line_append_input_line (cmd_line_buffer, rl);
664 if (cmd == NULL)
665 return NULL;
666
667 /* We have a complete command line now. Prepare for the next
668 command, but leave ownership of memory to the buffer . */
669 cmd_line_buffer->used_size = 0;
670
671 if (from_tty && annotation_level > 1)
672 {
673 printf_unfiltered (("\n\032\032post-"));
674 puts_unfiltered (annotation_suffix);
675 printf_unfiltered (("\n"));
676 }
677
678 #define SERVER_COMMAND_PREFIX "server "
679 if (startswith (cmd, SERVER_COMMAND_PREFIX))
680 {
681 /* Note that we don't set `saved_command_line'. Between this
682 and the check in dont_repeat, this insures that repeating
683 will still do the right thing. */
684 return cmd + strlen (SERVER_COMMAND_PREFIX);
685 }
686
687 /* Do history expansion if that is wished. */
688 if (history_expansion_p && from_tty && input_interactive_p (current_ui))
689 {
690 char *history_value;
691 int expanded;
692
693 expanded = history_expand (cmd, &history_value);
694 if (expanded)
695 {
696 size_t len;
697
698 /* Print the changes. */
699 printf_unfiltered ("%s\n", history_value);
700
701 /* If there was an error, call this function again. */
702 if (expanded < 0)
703 {
704 xfree (history_value);
705 return cmd;
706 }
707
708 /* history_expand returns an allocated string. Just replace
709 our buffer with it. */
710 len = strlen (history_value);
711 xfree (buffer_finish (cmd_line_buffer));
712 cmd_line_buffer->buffer = history_value;
713 cmd_line_buffer->buffer_size = len + 1;
714 cmd = history_value;
715 }
716 }
717
718 /* If we just got an empty line, and that is supposed to repeat the
719 previous command, return the previously saved command. */
720 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
721 ;
722 if (repeat && *p1 == '\0')
723 return saved_command_line;
724
725 /* Add command to history if appropriate. Note: lines consisting
726 solely of comments are also added to the command history. This
727 is useful when you type a command, and then realize you don't
728 want to execute it quite yet. You can comment out the command
729 and then later fetch it from the value history and remove the
730 '#'. The kill ring is probably better, but some people are in
731 the habit of commenting things out. */
732 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui))
733 gdb_add_history (cmd);
734
735 /* Save into global buffer if appropriate. */
736 if (repeat)
737 {
738 xfree (saved_command_line);
739 saved_command_line = xstrdup (cmd);
740 return saved_command_line;
741 }
742 else
743 return cmd;
744 }
745
746 /* Handle a complete line of input. This is called by the callback
747 mechanism within the readline library. Deal with incomplete
748 commands as well, by saving the partial input in a global
749 buffer.
750
751 NOTE: This is the asynchronous version of the command_line_input
752 function. */
753
754 void
755 command_line_handler (char *rl)
756 {
757 struct buffer *line_buffer = get_command_line_buffer ();
758 struct ui *ui = current_ui;
759 char *cmd;
760
761 cmd = handle_line_of_input (line_buffer, rl, 1, "prompt");
762 if (cmd == (char *) EOF)
763 {
764 /* stdin closed. The connection with the terminal is gone.
765 This happens at the end of a testsuite run, after Expect has
766 hung up but GDB is still alive. In such a case, we just quit
767 gdb killing the inferior program too. */
768 printf_unfiltered ("quit\n");
769 execute_command ((char *) "quit", 1);
770 }
771 else if (cmd == NULL)
772 {
773 /* We don't have a full line yet. Print an empty prompt. */
774 display_gdb_prompt ("");
775 }
776 else
777 {
778 ui->prompt_state = PROMPT_NEEDED;
779
780 command_handler (cmd);
781
782 if (ui->prompt_state != PROMPTED)
783 display_gdb_prompt (0);
784 }
785 }
786
787 /* Does reading of input from terminal w/o the editing features
788 provided by the readline library. Calls the line input handler
789 once we have a whole input line. */
790
791 void
792 gdb_readline_no_editing_callback (gdb_client_data client_data)
793 {
794 int c;
795 char *result;
796 struct buffer line_buffer;
797 static int done_once = 0;
798 struct ui *ui = current_ui;
799
800 buffer_init (&line_buffer);
801
802 /* Unbuffer the input stream, so that, later on, the calls to fgetc
803 fetch only one char at the time from the stream. The fgetc's will
804 get up to the first newline, but there may be more chars in the
805 stream after '\n'. If we buffer the input and fgetc drains the
806 stream, getting stuff beyond the newline as well, a select, done
807 afterwards will not trigger. */
808 if (!done_once && !ISATTY (ui->instream))
809 {
810 setbuf (ui->instream, NULL);
811 done_once = 1;
812 }
813
814 /* We still need the while loop here, even though it would seem
815 obvious to invoke gdb_readline_no_editing_callback at every
816 character entered. If not using the readline library, the
817 terminal is in cooked mode, which sends the characters all at
818 once. Poll will notice that the input fd has changed state only
819 after enter is pressed. At this point we still need to fetch all
820 the chars entered. */
821
822 while (1)
823 {
824 /* Read from stdin if we are executing a user defined command.
825 This is the right thing for prompt_for_continue, at least. */
826 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream);
827
828 if (c == EOF)
829 {
830 if (line_buffer.used_size > 0)
831 {
832 /* The last line does not end with a newline. Return it, and
833 if we are called again fgetc will still return EOF and
834 we'll return NULL then. */
835 break;
836 }
837 xfree (buffer_finish (&line_buffer));
838 ui->input_handler (NULL);
839 return;
840 }
841
842 if (c == '\n')
843 {
844 if (line_buffer.used_size > 0
845 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
846 line_buffer.used_size--;
847 break;
848 }
849
850 buffer_grow_char (&line_buffer, c);
851 }
852
853 buffer_grow_char (&line_buffer, '\0');
854 result = buffer_finish (&line_buffer);
855 ui->input_handler (result);
856 }
857 \f
858
859 /* The serial event associated with the QUIT flag. set_quit_flag sets
860 this, and check_quit_flag clears it. Used by interruptible_select
861 to be able to do interruptible I/O with no race with the SIGINT
862 handler. */
863 static struct serial_event *quit_serial_event;
864
865 /* Initialization of signal handlers and tokens. There is a function
866 handle_sig* for each of the signals GDB cares about. Specifically:
867 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
868 functions are the actual signal handlers associated to the signals
869 via calls to signal(). The only job for these functions is to
870 enqueue the appropriate event/procedure with the event loop. Such
871 procedures are the old signal handlers. The event loop will take
872 care of invoking the queued procedures to perform the usual tasks
873 associated with the reception of the signal. */
874 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
875 init_signals will become obsolete as we move to have to event loop
876 as the default for gdb. */
877 void
878 async_init_signals (void)
879 {
880 initialize_async_signal_handlers ();
881
882 quit_serial_event = make_serial_event ();
883
884 signal (SIGINT, handle_sigint);
885 sigint_token =
886 create_async_signal_handler (async_request_quit, NULL);
887 signal (SIGTERM, handle_sigterm);
888 async_sigterm_token
889 = create_async_signal_handler (async_sigterm_handler, NULL);
890
891 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
892 to the inferior and breakpoints will be ignored. */
893 #ifdef SIGTRAP
894 signal (SIGTRAP, SIG_DFL);
895 #endif
896
897 #ifdef SIGQUIT
898 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
899 passed to the inferior, which we don't want. It would be
900 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
901 on BSD4.3 systems using vfork, that can affect the
902 GDB process as well as the inferior (the signal handling tables
903 might be in memory, shared between the two). Since we establish
904 a handler for SIGQUIT, when we call exec it will set the signal
905 to SIG_DFL for us. */
906 signal (SIGQUIT, handle_sigquit);
907 sigquit_token =
908 create_async_signal_handler (async_do_nothing, NULL);
909 #endif
910 #ifdef SIGHUP
911 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
912 sighup_token =
913 create_async_signal_handler (async_disconnect, NULL);
914 else
915 sighup_token =
916 create_async_signal_handler (async_do_nothing, NULL);
917 #endif
918 signal (SIGFPE, handle_sigfpe);
919 sigfpe_token =
920 create_async_signal_handler (async_float_handler, NULL);
921
922 #ifdef STOP_SIGNAL
923 sigtstp_token =
924 create_async_signal_handler (async_stop_sig, NULL);
925 #endif
926 }
927
928 /* See defs.h. */
929
930 void
931 quit_serial_event_set (void)
932 {
933 serial_event_set (quit_serial_event);
934 }
935
936 /* See defs.h. */
937
938 void
939 quit_serial_event_clear (void)
940 {
941 serial_event_clear (quit_serial_event);
942 }
943
944 /* Return the selectable file descriptor of the serial event
945 associated with the quit flag. */
946
947 static int
948 quit_serial_event_fd (void)
949 {
950 return serial_event_fd (quit_serial_event);
951 }
952
953 /* See defs.h. */
954
955 void
956 default_quit_handler (void)
957 {
958 if (check_quit_flag ())
959 {
960 if (target_terminal_is_ours ())
961 quit ();
962 else
963 target_pass_ctrlc ();
964 }
965 }
966
967 /* See defs.h. */
968 quit_handler_ftype *quit_handler = default_quit_handler;
969
970 /* Data for make_cleanup_override_quit_handler. Wrap the previous
971 handler pointer in a data struct because it's not portable to cast
972 a function pointer to a data pointer, which is what make_cleanup
973 expects. */
974 struct quit_handler_cleanup_data
975 {
976 /* The previous quit handler. */
977 quit_handler_ftype *prev_handler;
978 };
979
980 /* Cleanup call that restores the previous quit handler. */
981
982 static void
983 restore_quit_handler (void *arg)
984 {
985 struct quit_handler_cleanup_data *data
986 = (struct quit_handler_cleanup_data *) arg;
987
988 quit_handler = data->prev_handler;
989 }
990
991 /* Destructor for the quit handler cleanup. */
992
993 static void
994 restore_quit_handler_dtor (void *arg)
995 {
996 xfree (arg);
997 }
998
999 /* See defs.h. */
1000
1001 struct cleanup *
1002 make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
1003 {
1004 struct cleanup *old_chain;
1005 struct quit_handler_cleanup_data *data;
1006
1007 data = XNEW (struct quit_handler_cleanup_data);
1008 data->prev_handler = quit_handler;
1009 old_chain = make_cleanup_dtor (restore_quit_handler, data,
1010 restore_quit_handler_dtor);
1011 quit_handler = new_quit_handler;
1012 return old_chain;
1013 }
1014
1015 /* Handle a SIGINT. */
1016
1017 void
1018 handle_sigint (int sig)
1019 {
1020 signal (sig, handle_sigint);
1021
1022 /* We could be running in a loop reading in symfiles or something so
1023 it may be quite a while before we get back to the event loop. So
1024 set quit_flag to 1 here. Then if QUIT is called before we get to
1025 the event loop, we will unwind as expected. */
1026 set_quit_flag ();
1027
1028 /* In case nothing calls QUIT before the event loop is reached, the
1029 event loop handles it. */
1030 mark_async_signal_handler (sigint_token);
1031 }
1032
1033 /* See gdb_select.h. */
1034
1035 int
1036 interruptible_select (int n,
1037 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1038 struct timeval *timeout)
1039 {
1040 fd_set my_readfds;
1041 int fd;
1042 int res;
1043
1044 if (readfds == NULL)
1045 {
1046 readfds = &my_readfds;
1047 FD_ZERO (&my_readfds);
1048 }
1049
1050 fd = quit_serial_event_fd ();
1051 FD_SET (fd, readfds);
1052 if (n <= fd)
1053 n = fd + 1;
1054
1055 do
1056 {
1057 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1058 }
1059 while (res == -1 && errno == EINTR);
1060
1061 if (res == 1 && FD_ISSET (fd, readfds))
1062 {
1063 errno = EINTR;
1064 return -1;
1065 }
1066 return res;
1067 }
1068
1069 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1070
1071 static void
1072 async_sigterm_handler (gdb_client_data arg)
1073 {
1074 quit_force (NULL, 0);
1075 }
1076
1077 /* See defs.h. */
1078 volatile int sync_quit_force_run;
1079
1080 /* Quit GDB if SIGTERM is received.
1081 GDB would quit anyway, but this way it will clean up properly. */
1082 void
1083 handle_sigterm (int sig)
1084 {
1085 signal (sig, handle_sigterm);
1086
1087 sync_quit_force_run = 1;
1088 set_quit_flag ();
1089
1090 mark_async_signal_handler (async_sigterm_token);
1091 }
1092
1093 /* Do the quit. All the checks have been done by the caller. */
1094 void
1095 async_request_quit (gdb_client_data arg)
1096 {
1097 /* If the quit_flag has gotten reset back to 0 by the time we get
1098 back here, that means that an exception was thrown to unwind the
1099 current command before we got back to the event loop. So there
1100 is no reason to call quit again here. */
1101 QUIT;
1102 }
1103
1104 #ifdef SIGQUIT
1105 /* Tell the event loop what to do if SIGQUIT is received.
1106 See event-signal.c. */
1107 static void
1108 handle_sigquit (int sig)
1109 {
1110 mark_async_signal_handler (sigquit_token);
1111 signal (sig, handle_sigquit);
1112 }
1113 #endif
1114
1115 #if defined (SIGQUIT) || defined (SIGHUP)
1116 /* Called by the event loop in response to a SIGQUIT or an
1117 ignored SIGHUP. */
1118 static void
1119 async_do_nothing (gdb_client_data arg)
1120 {
1121 /* Empty function body. */
1122 }
1123 #endif
1124
1125 #ifdef SIGHUP
1126 /* Tell the event loop what to do if SIGHUP is received.
1127 See event-signal.c. */
1128 static void
1129 handle_sighup (int sig)
1130 {
1131 mark_async_signal_handler (sighup_token);
1132 signal (sig, handle_sighup);
1133 }
1134
1135 /* Called by the event loop to process a SIGHUP. */
1136 static void
1137 async_disconnect (gdb_client_data arg)
1138 {
1139
1140 TRY
1141 {
1142 quit_cover ();
1143 }
1144
1145 CATCH (exception, RETURN_MASK_ALL)
1146 {
1147 fputs_filtered ("Could not kill the program being debugged",
1148 gdb_stderr);
1149 exception_print (gdb_stderr, exception);
1150 }
1151 END_CATCH
1152
1153 TRY
1154 {
1155 pop_all_targets ();
1156 }
1157 CATCH (exception, RETURN_MASK_ALL)
1158 {
1159 }
1160 END_CATCH
1161
1162 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1163 raise (SIGHUP);
1164 }
1165 #endif
1166
1167 #ifdef STOP_SIGNAL
1168 void
1169 handle_stop_sig (int sig)
1170 {
1171 mark_async_signal_handler (sigtstp_token);
1172 signal (sig, handle_stop_sig);
1173 }
1174
1175 static void
1176 async_stop_sig (gdb_client_data arg)
1177 {
1178 char *prompt = get_prompt ();
1179
1180 #if STOP_SIGNAL == SIGTSTP
1181 signal (SIGTSTP, SIG_DFL);
1182 #if HAVE_SIGPROCMASK
1183 {
1184 sigset_t zero;
1185
1186 sigemptyset (&zero);
1187 sigprocmask (SIG_SETMASK, &zero, 0);
1188 }
1189 #elif HAVE_SIGSETMASK
1190 sigsetmask (0);
1191 #endif
1192 raise (SIGTSTP);
1193 signal (SIGTSTP, handle_stop_sig);
1194 #else
1195 signal (STOP_SIGNAL, handle_stop_sig);
1196 #endif
1197 printf_unfiltered ("%s", prompt);
1198 gdb_flush (gdb_stdout);
1199
1200 /* Forget about any previous command -- null line now will do
1201 nothing. */
1202 dont_repeat ();
1203 }
1204 #endif /* STOP_SIGNAL */
1205
1206 /* Tell the event loop what to do if SIGFPE is received.
1207 See event-signal.c. */
1208 static void
1209 handle_sigfpe (int sig)
1210 {
1211 mark_async_signal_handler (sigfpe_token);
1212 signal (sig, handle_sigfpe);
1213 }
1214
1215 /* Event loop will call this functin to process a SIGFPE. */
1216 static void
1217 async_float_handler (gdb_client_data arg)
1218 {
1219 /* This message is based on ANSI C, section 4.7. Note that integer
1220 divide by zero causes this, so "float" is a misnomer. */
1221 error (_("Erroneous arithmetic operation."));
1222 }
1223 \f
1224
1225 /* Set things up for readline to be invoked via the alternate
1226 interface, i.e. via a callback function
1227 (gdb_rl_callback_read_char), and hook up instream to the event
1228 loop. */
1229
1230 void
1231 gdb_setup_readline (int editing)
1232 {
1233 struct ui *ui = current_ui;
1234
1235 /* This function is a noop for the sync case. The assumption is
1236 that the sync setup is ALL done in gdb_init, and we would only
1237 mess it up here. The sync stuff should really go away over
1238 time. */
1239 if (!batch_silent)
1240 gdb_stdout = new stdio_file (ui->outstream);
1241 gdb_stderr = new stderr_file (ui->errstream);
1242 gdb_stdlog = gdb_stderr; /* for moment */
1243 gdb_stdtarg = gdb_stderr; /* for moment */
1244 gdb_stdtargerr = gdb_stderr; /* for moment */
1245
1246 /* If the input stream is connected to a terminal, turn on editing.
1247 However, that is only allowed on the main UI, as we can only have
1248 one instance of readline. */
1249 if (ISATTY (ui->instream) && editing && ui == main_ui)
1250 {
1251 /* Tell gdb that we will be using the readline library. This
1252 could be overwritten by a command in .gdbinit like 'set
1253 editing on' or 'off'. */
1254 ui->command_editing = 1;
1255
1256 /* When a character is detected on instream by select or poll,
1257 readline will be invoked via this callback function. */
1258 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1259
1260 /* Tell readline to use the same input stream that gdb uses. */
1261 rl_instream = ui->instream;
1262 }
1263 else
1264 {
1265 ui->command_editing = 0;
1266 ui->call_readline = gdb_readline_no_editing_callback;
1267 }
1268
1269 /* Now create the event source for this UI's input file descriptor.
1270 Another source is going to be the target program (inferior), but
1271 that must be registered only when it actually exists (I.e. after
1272 we say 'run' or after we connect to a remote target. */
1273 ui_register_input_event_handler (ui);
1274 }
1275
1276 /* Disable command input through the standard CLI channels. Used in
1277 the suspend proc for interpreters that use the standard gdb readline
1278 interface, like the cli & the mi. */
1279
1280 void
1281 gdb_disable_readline (void)
1282 {
1283 struct ui *ui = current_ui;
1284
1285 /* FIXME - It is too heavyweight to delete and remake these every
1286 time you run an interpreter that needs readline. It is probably
1287 better to have the interpreters cache these, which in turn means
1288 that this needs to be moved into interpreter specific code. */
1289
1290 #if 0
1291 ui_file_delete (gdb_stdout);
1292 ui_file_delete (gdb_stderr);
1293 gdb_stdlog = NULL;
1294 gdb_stdtarg = NULL;
1295 gdb_stdtargerr = NULL;
1296 #endif
1297
1298 if (ui->command_editing)
1299 gdb_rl_callback_handler_remove ();
1300 delete_file_handler (ui->input_fd);
1301 }
This page took 0.119108 seconds and 5 git commands to generate.