Simplify starting the command event loop
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static char *top_level_prompt (void);
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef STOP_SIGNAL
72 static void async_stop_sig (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef STOP_SIGNAL
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. */
161
162 static void
163 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
164 {
165 struct gdb_exception gdb_expt = exception_none;
166
167 /* C++ exceptions can't normally be thrown across readline (unless
168 it is built with -fexceptions, but it won't by default on many
169 ABIs). So we instead wrap the readline call with a sjlj-based
170 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
171 TRY_SJLJ
172 {
173 rl_callback_read_char ();
174 if (after_char_processing_hook)
175 (*after_char_processing_hook) ();
176 }
177 CATCH_SJLJ (ex, RETURN_MASK_ALL)
178 {
179 gdb_expt = ex;
180 }
181 END_CATCH_SJLJ
182
183 /* Rethrow using the normal EH mechanism. */
184 if (gdb_expt.reason < 0)
185 throw_exception (gdb_expt);
186 }
187
188 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
189 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
190 across readline. See gdb_rl_callback_read_char_wrapper. */
191
192 static void
193 gdb_rl_callback_handler (char *rl)
194 {
195 struct gdb_exception gdb_rl_expt = exception_none;
196 struct ui *ui = current_ui;
197
198 TRY
199 {
200 ui->input_handler (rl);
201 }
202 CATCH (ex, RETURN_MASK_ALL)
203 {
204 gdb_rl_expt = ex;
205 }
206 END_CATCH
207
208 /* If we caught a GDB exception, longjmp out of the readline
209 callback. There's no other way for the callback to signal to
210 readline that an error happened. A normal return would have
211 readline potentially continue processing further input, redisplay
212 the prompt, etc. (This is what GDB historically did when it was
213 a C program.) Note that since we're long jumping, local variable
214 dtors are NOT run automatically. */
215 if (gdb_rl_expt.reason < 0)
216 throw_exception_sjlj (gdb_rl_expt);
217 }
218
219 /* Change the function to be invoked every time there is a character
220 ready on stdin. This is used when the user sets the editing off,
221 therefore bypassing readline, and letting gdb handle the input
222 itself, via gdb_readline_no_editing_callback. Also it is used in
223 the opposite case in which the user sets editing on again, by
224 restoring readline handling of the input.
225
226 NOTE: this operates on input_fd, not instream. If we are reading
227 commands from a file, instream will point to the file. However, we
228 always read commands from a file with editing off. This means that
229 the 'set editing on/off' will have effect only on the interactive
230 session. */
231
232 void
233 change_line_handler (int editing)
234 {
235 struct ui *ui = current_ui;
236
237 /* We can only have one instance of readline, so we only allow
238 editing on the main UI. */
239 if (ui != main_ui)
240 return;
241
242 /* Don't try enabling editing if the interpreter doesn't support it
243 (e.g., MI). */
244 if (!interp_supports_command_editing (top_level_interpreter ())
245 || !interp_supports_command_editing (command_interp ()))
246 return;
247
248 if (editing)
249 {
250 gdb_assert (ui == main_ui);
251
252 /* Turn on editing by using readline. */
253 ui->call_readline = gdb_rl_callback_read_char_wrapper;
254 }
255 else
256 {
257 /* Turn off editing by using gdb_readline_no_editing_callback. */
258 if (ui->command_editing)
259 gdb_rl_callback_handler_remove ();
260 ui->call_readline = gdb_readline_no_editing_callback;
261 }
262 ui->command_editing = editing;
263 }
264
265 /* The functions below are wrappers for rl_callback_handler_remove and
266 rl_callback_handler_install that keep track of whether the callback
267 handler is installed in readline. This is necessary because after
268 handling a target event of a background execution command, we may
269 need to reinstall the callback handler if it was removed due to a
270 secondary prompt. See gdb_readline_wrapper_line. We don't
271 unconditionally install the handler for every target event because
272 that also clears the line buffer, thus installing it while the user
273 is typing would lose input. */
274
275 /* Whether we've registered a callback handler with readline. */
276 static int callback_handler_installed;
277
278 /* See event-top.h, and above. */
279
280 void
281 gdb_rl_callback_handler_remove (void)
282 {
283 gdb_assert (current_ui == main_ui);
284
285 rl_callback_handler_remove ();
286 callback_handler_installed = 0;
287 }
288
289 /* See event-top.h, and above. Note this wrapper doesn't have an
290 actual callback parameter because we always install
291 INPUT_HANDLER. */
292
293 void
294 gdb_rl_callback_handler_install (const char *prompt)
295 {
296 gdb_assert (current_ui == main_ui);
297
298 /* Calling rl_callback_handler_install resets readline's input
299 buffer. Calling this when we were already processing input
300 therefore loses input. */
301 gdb_assert (!callback_handler_installed);
302
303 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
304 callback_handler_installed = 1;
305 }
306
307 /* See event-top.h, and above. */
308
309 void
310 gdb_rl_callback_handler_reinstall (void)
311 {
312 gdb_assert (current_ui == main_ui);
313
314 if (!callback_handler_installed)
315 {
316 /* Passing NULL as prompt argument tells readline to not display
317 a prompt. */
318 gdb_rl_callback_handler_install (NULL);
319 }
320 }
321
322 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
323 prompt that is displayed is the current top level prompt.
324 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
325 prompt.
326
327 This is used after each gdb command has completed, and in the
328 following cases:
329
330 1. When the user enters a command line which is ended by '\'
331 indicating that the command will continue on the next line. In
332 that case the prompt that is displayed is the empty string.
333
334 2. When the user is entering 'commands' for a breakpoint, or
335 actions for a tracepoint. In this case the prompt will be '>'
336
337 3. On prompting for pagination. */
338
339 void
340 display_gdb_prompt (const char *new_prompt)
341 {
342 char *actual_gdb_prompt = NULL;
343 struct cleanup *old_chain;
344
345 annotate_display_prompt ();
346
347 /* Reset the nesting depth used when trace-commands is set. */
348 reset_command_nest_depth ();
349
350 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
351
352 /* Do not call the python hook on an explicit prompt change as
353 passed to this function, as this forms a secondary/local prompt,
354 IE, displayed but not set. */
355 if (! new_prompt)
356 {
357 if (sync_execution)
358 {
359 /* This is to trick readline into not trying to display the
360 prompt. Even though we display the prompt using this
361 function, readline still tries to do its own display if
362 we don't call rl_callback_handler_install and
363 rl_callback_handler_remove (which readline detects
364 because a global variable is not set). If readline did
365 that, it could mess up gdb signal handlers for SIGINT.
366 Readline assumes that between calls to rl_set_signals and
367 rl_clear_signals gdb doesn't do anything with the signal
368 handlers. Well, that's not the case, because when the
369 target executes we change the SIGINT signal handler. If
370 we allowed readline to display the prompt, the signal
371 handler change would happen exactly between the calls to
372 the above two functions. Calling
373 rl_callback_handler_remove(), does the job. */
374
375 if (current_ui->command_editing)
376 gdb_rl_callback_handler_remove ();
377 do_cleanups (old_chain);
378 return;
379 }
380 else
381 {
382 /* Display the top level prompt. */
383 actual_gdb_prompt = top_level_prompt ();
384 }
385 }
386 else
387 actual_gdb_prompt = xstrdup (new_prompt);
388
389 if (current_ui->command_editing)
390 {
391 gdb_rl_callback_handler_remove ();
392 gdb_rl_callback_handler_install (actual_gdb_prompt);
393 }
394 /* new_prompt at this point can be the top of the stack or the one
395 passed in. It can't be NULL. */
396 else
397 {
398 /* Don't use a _filtered function here. It causes the assumed
399 character position to be off, since the newline we read from
400 the user is not accounted for. */
401 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
402 gdb_flush (gdb_stdout);
403 }
404
405 do_cleanups (old_chain);
406 }
407
408 /* Return the top level prompt, as specified by "set prompt", possibly
409 overriden by the python gdb.prompt_hook hook, and then composed
410 with the prompt prefix and suffix (annotations). The caller is
411 responsible for freeing the returned string. */
412
413 static char *
414 top_level_prompt (void)
415 {
416 char *prompt;
417
418 /* Give observers a chance of changing the prompt. E.g., the python
419 `gdb.prompt_hook' is installed as an observer. */
420 observer_notify_before_prompt (get_prompt ());
421
422 prompt = get_prompt ();
423
424 if (annotation_level >= 2)
425 {
426 /* Prefix needs to have new line at end. */
427 const char prefix[] = "\n\032\032pre-prompt\n";
428
429 /* Suffix needs to have a new line at end and \032 \032 at
430 beginning. */
431 const char suffix[] = "\n\032\032prompt\n";
432
433 return concat (prefix, prompt, suffix, (char *) NULL);
434 }
435
436 return xstrdup (prompt);
437 }
438
439 /* The main UI. */
440 static struct ui main_ui_;
441
442 struct ui *main_ui = &main_ui_;
443 struct ui *current_ui = &main_ui_;
444 struct ui *ui_list = &main_ui_;
445
446 /* See top.h. */
447
448 void
449 restore_ui_cleanup (void *data)
450 {
451 current_ui = (struct ui *) data;
452 }
453
454 /* See top.h. */
455
456 void
457 switch_thru_all_uis_init (struct switch_thru_all_uis *state)
458 {
459 state->iter = ui_list;
460 state->old_chain = make_cleanup (restore_ui_cleanup, current_ui);
461 }
462
463 /* See top.h. */
464
465 int
466 switch_thru_all_uis_cond (struct switch_thru_all_uis *state)
467 {
468 if (state->iter != NULL)
469 {
470 current_ui = state->iter;
471 return 1;
472 }
473 else
474 {
475 do_cleanups (state->old_chain);
476 return 0;
477 }
478 }
479
480 /* See top.h. */
481
482 void
483 switch_thru_all_uis_next (struct switch_thru_all_uis *state)
484 {
485 state->iter = state->iter->next;
486 }
487
488 /* Get a pointer to the current UI's line buffer. This is used to
489 construct a whole line of input from partial input. */
490
491 static struct buffer *
492 get_command_line_buffer (void)
493 {
494 return &current_ui->line_buffer;
495 }
496
497 /* When there is an event ready on the stdin file descriptor, instead
498 of calling readline directly throught the callback function, or
499 instead of calling gdb_readline_no_editing_callback, give gdb a
500 chance to detect errors and do something. */
501
502 void
503 stdin_event_handler (int error, gdb_client_data client_data)
504 {
505 struct ui *ui = (struct ui *) client_data;
506
507 /* Switch to the UI whose input descriptor woke up the event
508 loop. */
509 current_ui = ui;
510
511 if (error)
512 {
513 printf_unfiltered (_("error detected on stdin\n"));
514 delete_file_handler (ui->input_fd);
515 /* If stdin died, we may as well kill gdb. */
516 quit_command ((char *) 0, stdin == ui->instream);
517 }
518 else
519 {
520 /* This makes sure a ^C immediately followed by further input is
521 always processed in that order. E.g,. with input like
522 "^Cprint 1\n", the SIGINT handler runs, marks the async signal
523 handler, and then select/poll may return with stdin ready,
524 instead of -1/EINTR. The
525 gdb.base/double-prompt-target-event-error.exp test exercises
526 this. */
527 QUIT;
528
529 do
530 {
531 call_stdin_event_handler_again_p = 0;
532 ui->call_readline (client_data);
533 } while (call_stdin_event_handler_again_p != 0);
534 }
535 }
536
537 /* Re-enable stdin after the end of an execution command in
538 synchronous mode, or after an error from the target, and we aborted
539 the exec operation. */
540
541 void
542 async_enable_stdin (void)
543 {
544 if (sync_execution)
545 {
546 /* See NOTE in async_disable_stdin(). */
547 /* FIXME: cagney/1999-09-27: Call this before clearing
548 sync_execution. Current target_terminal_ours() implementations
549 check for sync_execution before switching the terminal. */
550 target_terminal_ours ();
551 sync_execution = 0;
552 }
553 }
554
555 /* Disable reads from stdin (the console) marking the command as
556 synchronous. */
557
558 void
559 async_disable_stdin (void)
560 {
561 sync_execution = 1;
562 }
563 \f
564
565 /* Handle a gdb command line. This function is called when
566 handle_line_of_input has concatenated one or more input lines into
567 a whole command. */
568
569 void
570 command_handler (char *command)
571 {
572 struct ui *ui = current_ui;
573 struct cleanup *stat_chain;
574 char *c;
575
576 if (ui->instream == stdin)
577 reinitialize_more_filter ();
578
579 stat_chain = make_command_stats_cleanup (1);
580
581 /* Do not execute commented lines. */
582 for (c = command; *c == ' ' || *c == '\t'; c++)
583 ;
584 if (c[0] != '#')
585 {
586 execute_command (command, ui->instream == stdin);
587
588 /* Do any commands attached to breakpoint we stopped at. */
589 bpstat_do_actions ();
590 }
591
592 do_cleanups (stat_chain);
593 }
594
595 /* Append RL, an input line returned by readline or one of its
596 emulations, to CMD_LINE_BUFFER. Returns the command line if we
597 have a whole command line ready to be processed by the command
598 interpreter or NULL if the command line isn't complete yet (input
599 line ends in a backslash). Takes ownership of RL. */
600
601 static char *
602 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
603 {
604 char *cmd;
605 size_t len;
606
607 len = strlen (rl);
608
609 if (len > 0 && rl[len - 1] == '\\')
610 {
611 /* Don't copy the backslash and wait for more. */
612 buffer_grow (cmd_line_buffer, rl, len - 1);
613 cmd = NULL;
614 }
615 else
616 {
617 /* Copy whole line including terminating null, and we're
618 done. */
619 buffer_grow (cmd_line_buffer, rl, len + 1);
620 cmd = cmd_line_buffer->buffer;
621 }
622
623 /* Allocated in readline. */
624 xfree (rl);
625
626 return cmd;
627 }
628
629 /* Handle a line of input coming from readline.
630
631 If the read line ends with a continuation character (backslash),
632 save the partial input in CMD_LINE_BUFFER (except the backslash),
633 and return NULL. Otherwise, save the partial input and return a
634 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
635 whole command line is ready to be executed.
636
637 Returns EOF on end of file.
638
639 If REPEAT, handle command repetitions:
640
641 - If the input command line is NOT empty, the command returned is
642 copied into the global 'saved_command_line' var so that it can
643 be repeated later.
644
645 - OTOH, if the input command line IS empty, return the previously
646 saved command instead of the empty input line.
647 */
648
649 char *
650 handle_line_of_input (struct buffer *cmd_line_buffer,
651 char *rl, int repeat, char *annotation_suffix)
652 {
653 struct ui *ui = current_ui;
654 char *p1;
655 char *cmd;
656
657 if (rl == NULL)
658 return (char *) EOF;
659
660 cmd = command_line_append_input_line (cmd_line_buffer, rl);
661 if (cmd == NULL)
662 return NULL;
663
664 /* We have a complete command line now. Prepare for the next
665 command, but leave ownership of memory to the buffer . */
666 cmd_line_buffer->used_size = 0;
667
668 if (annotation_level > 1 && ui->instream == stdin)
669 {
670 printf_unfiltered (("\n\032\032post-"));
671 puts_unfiltered (annotation_suffix);
672 printf_unfiltered (("\n"));
673 }
674
675 #define SERVER_COMMAND_PREFIX "server "
676 if (startswith (cmd, SERVER_COMMAND_PREFIX))
677 {
678 /* Note that we don't set `saved_command_line'. Between this
679 and the check in dont_repeat, this insures that repeating
680 will still do the right thing. */
681 return cmd + strlen (SERVER_COMMAND_PREFIX);
682 }
683
684 /* Do history expansion if that is wished. */
685 if (history_expansion_p && ui->instream == stdin
686 && ISATTY (ui->instream))
687 {
688 char *history_value;
689 int expanded;
690
691 expanded = history_expand (cmd, &history_value);
692 if (expanded)
693 {
694 size_t len;
695
696 /* Print the changes. */
697 printf_unfiltered ("%s\n", history_value);
698
699 /* If there was an error, call this function again. */
700 if (expanded < 0)
701 {
702 xfree (history_value);
703 return cmd;
704 }
705
706 /* history_expand returns an allocated string. Just replace
707 our buffer with it. */
708 len = strlen (history_value);
709 xfree (buffer_finish (cmd_line_buffer));
710 cmd_line_buffer->buffer = history_value;
711 cmd_line_buffer->buffer_size = len + 1;
712 cmd = history_value;
713 }
714 }
715
716 /* If we just got an empty line, and that is supposed to repeat the
717 previous command, return the previously saved command. */
718 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
719 ;
720 if (repeat && *p1 == '\0')
721 return saved_command_line;
722
723 /* Add command to history if appropriate. Note: lines consisting
724 solely of comments are also added to the command history. This
725 is useful when you type a command, and then realize you don't
726 want to execute it quite yet. You can comment out the command
727 and then later fetch it from the value history and remove the
728 '#'. The kill ring is probably better, but some people are in
729 the habit of commenting things out. */
730 if (*cmd != '\0' && input_from_terminal_p ())
731 gdb_add_history (cmd);
732
733 /* Save into global buffer if appropriate. */
734 if (repeat)
735 {
736 xfree (saved_command_line);
737 saved_command_line = xstrdup (cmd);
738 return saved_command_line;
739 }
740 else
741 return cmd;
742 }
743
744 /* Handle a complete line of input. This is called by the callback
745 mechanism within the readline library. Deal with incomplete
746 commands as well, by saving the partial input in a global
747 buffer.
748
749 NOTE: This is the asynchronous version of the command_line_input
750 function. */
751
752 void
753 command_line_handler (char *rl)
754 {
755 struct buffer *line_buffer = get_command_line_buffer ();
756 struct ui *ui = current_ui;
757 char *cmd;
758
759 cmd = handle_line_of_input (line_buffer, rl, ui->instream == stdin,
760 "prompt");
761 if (cmd == (char *) EOF)
762 {
763 /* stdin closed. The connection with the terminal is gone.
764 This happens at the end of a testsuite run, after Expect has
765 hung up but GDB is still alive. In such a case, we just quit
766 gdb killing the inferior program too. */
767 printf_unfiltered ("quit\n");
768 execute_command ("quit", stdin == ui->instream);
769 }
770 else if (cmd == NULL)
771 {
772 /* We don't have a full line yet. Print an empty prompt. */
773 display_gdb_prompt ("");
774 }
775 else
776 {
777 command_handler (cmd);
778 display_gdb_prompt (0);
779 }
780 }
781
782 /* Does reading of input from terminal w/o the editing features
783 provided by the readline library. Calls the line input handler
784 once we have a whole input line. */
785
786 void
787 gdb_readline_no_editing_callback (gdb_client_data client_data)
788 {
789 int c;
790 char *result;
791 struct buffer line_buffer;
792 static int done_once = 0;
793 struct ui *ui = current_ui;
794
795 buffer_init (&line_buffer);
796
797 /* Unbuffer the input stream, so that, later on, the calls to fgetc
798 fetch only one char at the time from the stream. The fgetc's will
799 get up to the first newline, but there may be more chars in the
800 stream after '\n'. If we buffer the input and fgetc drains the
801 stream, getting stuff beyond the newline as well, a select, done
802 afterwards will not trigger. */
803 if (!done_once && !ISATTY (ui->instream))
804 {
805 setbuf (ui->instream, NULL);
806 done_once = 1;
807 }
808
809 /* We still need the while loop here, even though it would seem
810 obvious to invoke gdb_readline_no_editing_callback at every
811 character entered. If not using the readline library, the
812 terminal is in cooked mode, which sends the characters all at
813 once. Poll will notice that the input fd has changed state only
814 after enter is pressed. At this point we still need to fetch all
815 the chars entered. */
816
817 while (1)
818 {
819 /* Read from stdin if we are executing a user defined command.
820 This is the right thing for prompt_for_continue, at least. */
821 c = fgetc (ui->instream ? ui->instream : stdin);
822
823 if (c == EOF)
824 {
825 if (line_buffer.used_size > 0)
826 {
827 /* The last line does not end with a newline. Return it, and
828 if we are called again fgetc will still return EOF and
829 we'll return NULL then. */
830 break;
831 }
832 xfree (buffer_finish (&line_buffer));
833 ui->input_handler (NULL);
834 return;
835 }
836
837 if (c == '\n')
838 {
839 if (line_buffer.used_size > 0
840 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
841 line_buffer.used_size--;
842 break;
843 }
844
845 buffer_grow_char (&line_buffer, c);
846 }
847
848 buffer_grow_char (&line_buffer, '\0');
849 result = buffer_finish (&line_buffer);
850 ui->input_handler (result);
851 }
852 \f
853
854 /* The serial event associated with the QUIT flag. set_quit_flag sets
855 this, and check_quit_flag clears it. Used by interruptible_select
856 to be able to do interruptible I/O with no race with the SIGINT
857 handler. */
858 static struct serial_event *quit_serial_event;
859
860 /* Initialization of signal handlers and tokens. There is a function
861 handle_sig* for each of the signals GDB cares about. Specifically:
862 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
863 functions are the actual signal handlers associated to the signals
864 via calls to signal(). The only job for these functions is to
865 enqueue the appropriate event/procedure with the event loop. Such
866 procedures are the old signal handlers. The event loop will take
867 care of invoking the queued procedures to perform the usual tasks
868 associated with the reception of the signal. */
869 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
870 init_signals will become obsolete as we move to have to event loop
871 as the default for gdb. */
872 void
873 async_init_signals (void)
874 {
875 initialize_async_signal_handlers ();
876
877 quit_serial_event = make_serial_event ();
878
879 signal (SIGINT, handle_sigint);
880 sigint_token =
881 create_async_signal_handler (async_request_quit, NULL);
882 signal (SIGTERM, handle_sigterm);
883 async_sigterm_token
884 = create_async_signal_handler (async_sigterm_handler, NULL);
885
886 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
887 to the inferior and breakpoints will be ignored. */
888 #ifdef SIGTRAP
889 signal (SIGTRAP, SIG_DFL);
890 #endif
891
892 #ifdef SIGQUIT
893 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
894 passed to the inferior, which we don't want. It would be
895 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
896 on BSD4.3 systems using vfork, that can affect the
897 GDB process as well as the inferior (the signal handling tables
898 might be in memory, shared between the two). Since we establish
899 a handler for SIGQUIT, when we call exec it will set the signal
900 to SIG_DFL for us. */
901 signal (SIGQUIT, handle_sigquit);
902 sigquit_token =
903 create_async_signal_handler (async_do_nothing, NULL);
904 #endif
905 #ifdef SIGHUP
906 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
907 sighup_token =
908 create_async_signal_handler (async_disconnect, NULL);
909 else
910 sighup_token =
911 create_async_signal_handler (async_do_nothing, NULL);
912 #endif
913 signal (SIGFPE, handle_sigfpe);
914 sigfpe_token =
915 create_async_signal_handler (async_float_handler, NULL);
916
917 #ifdef STOP_SIGNAL
918 sigtstp_token =
919 create_async_signal_handler (async_stop_sig, NULL);
920 #endif
921 }
922
923 /* See defs.h. */
924
925 void
926 quit_serial_event_set (void)
927 {
928 serial_event_set (quit_serial_event);
929 }
930
931 /* See defs.h. */
932
933 void
934 quit_serial_event_clear (void)
935 {
936 serial_event_clear (quit_serial_event);
937 }
938
939 /* Return the selectable file descriptor of the serial event
940 associated with the quit flag. */
941
942 static int
943 quit_serial_event_fd (void)
944 {
945 return serial_event_fd (quit_serial_event);
946 }
947
948 /* See defs.h. */
949
950 void
951 default_quit_handler (void)
952 {
953 if (check_quit_flag ())
954 {
955 if (target_terminal_is_ours ())
956 quit ();
957 else
958 target_pass_ctrlc ();
959 }
960 }
961
962 /* See defs.h. */
963 quit_handler_ftype *quit_handler = default_quit_handler;
964
965 /* Data for make_cleanup_override_quit_handler. Wrap the previous
966 handler pointer in a data struct because it's not portable to cast
967 a function pointer to a data pointer, which is what make_cleanup
968 expects. */
969 struct quit_handler_cleanup_data
970 {
971 /* The previous quit handler. */
972 quit_handler_ftype *prev_handler;
973 };
974
975 /* Cleanup call that restores the previous quit handler. */
976
977 static void
978 restore_quit_handler (void *arg)
979 {
980 struct quit_handler_cleanup_data *data
981 = (struct quit_handler_cleanup_data *) arg;
982
983 quit_handler = data->prev_handler;
984 }
985
986 /* Destructor for the quit handler cleanup. */
987
988 static void
989 restore_quit_handler_dtor (void *arg)
990 {
991 xfree (arg);
992 }
993
994 /* See defs.h. */
995
996 struct cleanup *
997 make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
998 {
999 struct cleanup *old_chain;
1000 struct quit_handler_cleanup_data *data;
1001
1002 data = XNEW (struct quit_handler_cleanup_data);
1003 data->prev_handler = quit_handler;
1004 old_chain = make_cleanup_dtor (restore_quit_handler, data,
1005 restore_quit_handler_dtor);
1006 quit_handler = new_quit_handler;
1007 return old_chain;
1008 }
1009
1010 /* Handle a SIGINT. */
1011
1012 void
1013 handle_sigint (int sig)
1014 {
1015 signal (sig, handle_sigint);
1016
1017 /* We could be running in a loop reading in symfiles or something so
1018 it may be quite a while before we get back to the event loop. So
1019 set quit_flag to 1 here. Then if QUIT is called before we get to
1020 the event loop, we will unwind as expected. */
1021 set_quit_flag ();
1022
1023 /* In case nothing calls QUIT before the event loop is reached, the
1024 event loop handles it. */
1025 mark_async_signal_handler (sigint_token);
1026 }
1027
1028 /* See gdb_select.h. */
1029
1030 int
1031 interruptible_select (int n,
1032 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1033 struct timeval *timeout)
1034 {
1035 fd_set my_readfds;
1036 int fd;
1037 int res;
1038
1039 if (readfds == NULL)
1040 {
1041 readfds = &my_readfds;
1042 FD_ZERO (&my_readfds);
1043 }
1044
1045 fd = quit_serial_event_fd ();
1046 FD_SET (fd, readfds);
1047 if (n <= fd)
1048 n = fd + 1;
1049
1050 do
1051 {
1052 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1053 }
1054 while (res == -1 && errno == EINTR);
1055
1056 if (res == 1 && FD_ISSET (fd, readfds))
1057 {
1058 errno = EINTR;
1059 return -1;
1060 }
1061 return res;
1062 }
1063
1064 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1065
1066 static void
1067 async_sigterm_handler (gdb_client_data arg)
1068 {
1069 quit_force (NULL, stdin == current_ui->instream);
1070 }
1071
1072 /* See defs.h. */
1073 volatile int sync_quit_force_run;
1074
1075 /* Quit GDB if SIGTERM is received.
1076 GDB would quit anyway, but this way it will clean up properly. */
1077 void
1078 handle_sigterm (int sig)
1079 {
1080 signal (sig, handle_sigterm);
1081
1082 sync_quit_force_run = 1;
1083 set_quit_flag ();
1084
1085 mark_async_signal_handler (async_sigterm_token);
1086 }
1087
1088 /* Do the quit. All the checks have been done by the caller. */
1089 void
1090 async_request_quit (gdb_client_data arg)
1091 {
1092 /* If the quit_flag has gotten reset back to 0 by the time we get
1093 back here, that means that an exception was thrown to unwind the
1094 current command before we got back to the event loop. So there
1095 is no reason to call quit again here. */
1096 QUIT;
1097 }
1098
1099 #ifdef SIGQUIT
1100 /* Tell the event loop what to do if SIGQUIT is received.
1101 See event-signal.c. */
1102 static void
1103 handle_sigquit (int sig)
1104 {
1105 mark_async_signal_handler (sigquit_token);
1106 signal (sig, handle_sigquit);
1107 }
1108 #endif
1109
1110 #if defined (SIGQUIT) || defined (SIGHUP)
1111 /* Called by the event loop in response to a SIGQUIT or an
1112 ignored SIGHUP. */
1113 static void
1114 async_do_nothing (gdb_client_data arg)
1115 {
1116 /* Empty function body. */
1117 }
1118 #endif
1119
1120 #ifdef SIGHUP
1121 /* Tell the event loop what to do if SIGHUP is received.
1122 See event-signal.c. */
1123 static void
1124 handle_sighup (int sig)
1125 {
1126 mark_async_signal_handler (sighup_token);
1127 signal (sig, handle_sighup);
1128 }
1129
1130 /* Called by the event loop to process a SIGHUP. */
1131 static void
1132 async_disconnect (gdb_client_data arg)
1133 {
1134
1135 TRY
1136 {
1137 quit_cover ();
1138 }
1139
1140 CATCH (exception, RETURN_MASK_ALL)
1141 {
1142 fputs_filtered ("Could not kill the program being debugged",
1143 gdb_stderr);
1144 exception_print (gdb_stderr, exception);
1145 }
1146 END_CATCH
1147
1148 TRY
1149 {
1150 pop_all_targets ();
1151 }
1152 CATCH (exception, RETURN_MASK_ALL)
1153 {
1154 }
1155 END_CATCH
1156
1157 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1158 raise (SIGHUP);
1159 }
1160 #endif
1161
1162 #ifdef STOP_SIGNAL
1163 void
1164 handle_stop_sig (int sig)
1165 {
1166 mark_async_signal_handler (sigtstp_token);
1167 signal (sig, handle_stop_sig);
1168 }
1169
1170 static void
1171 async_stop_sig (gdb_client_data arg)
1172 {
1173 char *prompt = get_prompt ();
1174
1175 #if STOP_SIGNAL == SIGTSTP
1176 signal (SIGTSTP, SIG_DFL);
1177 #if HAVE_SIGPROCMASK
1178 {
1179 sigset_t zero;
1180
1181 sigemptyset (&zero);
1182 sigprocmask (SIG_SETMASK, &zero, 0);
1183 }
1184 #elif HAVE_SIGSETMASK
1185 sigsetmask (0);
1186 #endif
1187 raise (SIGTSTP);
1188 signal (SIGTSTP, handle_stop_sig);
1189 #else
1190 signal (STOP_SIGNAL, handle_stop_sig);
1191 #endif
1192 printf_unfiltered ("%s", prompt);
1193 gdb_flush (gdb_stdout);
1194
1195 /* Forget about any previous command -- null line now will do
1196 nothing. */
1197 dont_repeat ();
1198 }
1199 #endif /* STOP_SIGNAL */
1200
1201 /* Tell the event loop what to do if SIGFPE is received.
1202 See event-signal.c. */
1203 static void
1204 handle_sigfpe (int sig)
1205 {
1206 mark_async_signal_handler (sigfpe_token);
1207 signal (sig, handle_sigfpe);
1208 }
1209
1210 /* Event loop will call this functin to process a SIGFPE. */
1211 static void
1212 async_float_handler (gdb_client_data arg)
1213 {
1214 /* This message is based on ANSI C, section 4.7. Note that integer
1215 divide by zero causes this, so "float" is a misnomer. */
1216 error (_("Erroneous arithmetic operation."));
1217 }
1218 \f
1219
1220 /* Set things up for readline to be invoked via the alternate
1221 interface, i.e. via a callback function
1222 (gdb_rl_callback_read_char), and hook up instream to the event
1223 loop. */
1224
1225 void
1226 gdb_setup_readline (int editing)
1227 {
1228 struct ui *ui = current_ui;
1229
1230 /* This function is a noop for the sync case. The assumption is
1231 that the sync setup is ALL done in gdb_init, and we would only
1232 mess it up here. The sync stuff should really go away over
1233 time. */
1234 if (!batch_silent)
1235 gdb_stdout = stdio_fileopen (ui->outstream);
1236 gdb_stderr = stderr_fileopen (ui->errstream);
1237 gdb_stdlog = gdb_stderr; /* for moment */
1238 gdb_stdtarg = gdb_stderr; /* for moment */
1239 gdb_stdtargerr = gdb_stderr; /* for moment */
1240
1241 /* If the input stream is connected to a terminal, turn on editing.
1242 However, that is only allowed on the main UI, as we can only have
1243 one instance of readline. */
1244 if (ISATTY (ui->instream) && editing && ui == main_ui)
1245 {
1246 /* Tell gdb that we will be using the readline library. This
1247 could be overwritten by a command in .gdbinit like 'set
1248 editing on' or 'off'. */
1249 ui->command_editing = 1;
1250
1251 /* When a character is detected on instream by select or poll,
1252 readline will be invoked via this callback function. */
1253 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1254
1255 /* Tell readline to use the same input stream that gdb uses. */
1256 rl_instream = ui->instream;
1257 }
1258 else
1259 {
1260 ui->command_editing = 0;
1261 ui->call_readline = gdb_readline_no_editing_callback;
1262 }
1263
1264 /* Now create the event source for this UI's input file descriptor.
1265 Another source is going to be the target program (inferior), but
1266 that must be registered only when it actually exists (I.e. after
1267 we say 'run' or after we connect to a remote target. */
1268 add_file_handler (ui->input_fd, stdin_event_handler, ui);
1269 }
1270
1271 /* Disable command input through the standard CLI channels. Used in
1272 the suspend proc for interpreters that use the standard gdb readline
1273 interface, like the cli & the mi. */
1274
1275 void
1276 gdb_disable_readline (void)
1277 {
1278 struct ui *ui = current_ui;
1279
1280 /* FIXME - It is too heavyweight to delete and remake these every
1281 time you run an interpreter that needs readline. It is probably
1282 better to have the interpreters cache these, which in turn means
1283 that this needs to be moved into interpreter specific code. */
1284
1285 #if 0
1286 ui_file_delete (gdb_stdout);
1287 ui_file_delete (gdb_stderr);
1288 gdb_stdlog = NULL;
1289 gdb_stdtarg = NULL;
1290 gdb_stdtargerr = NULL;
1291 #endif
1292
1293 if (ui->command_editing)
1294 gdb_rl_callback_handler_remove ();
1295 delete_file_handler (ui->input_fd);
1296 }
This page took 0.059377 seconds and 5 git commands to generate.