Always process target events in the main UI
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static char *top_level_prompt (void);
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef STOP_SIGNAL
72 static void async_stop_sig (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef STOP_SIGNAL
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. */
161
162 static void
163 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
164 {
165 struct gdb_exception gdb_expt = exception_none;
166
167 /* C++ exceptions can't normally be thrown across readline (unless
168 it is built with -fexceptions, but it won't by default on many
169 ABIs). So we instead wrap the readline call with a sjlj-based
170 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
171 TRY_SJLJ
172 {
173 rl_callback_read_char ();
174 if (after_char_processing_hook)
175 (*after_char_processing_hook) ();
176 }
177 CATCH_SJLJ (ex, RETURN_MASK_ALL)
178 {
179 gdb_expt = ex;
180 }
181 END_CATCH_SJLJ
182
183 /* Rethrow using the normal EH mechanism. */
184 if (gdb_expt.reason < 0)
185 throw_exception (gdb_expt);
186 }
187
188 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
189 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
190 across readline. See gdb_rl_callback_read_char_wrapper. */
191
192 static void
193 gdb_rl_callback_handler (char *rl)
194 {
195 struct gdb_exception gdb_rl_expt = exception_none;
196 struct ui *ui = current_ui;
197
198 TRY
199 {
200 ui->input_handler (rl);
201 }
202 CATCH (ex, RETURN_MASK_ALL)
203 {
204 gdb_rl_expt = ex;
205 }
206 END_CATCH
207
208 /* If we caught a GDB exception, longjmp out of the readline
209 callback. There's no other way for the callback to signal to
210 readline that an error happened. A normal return would have
211 readline potentially continue processing further input, redisplay
212 the prompt, etc. (This is what GDB historically did when it was
213 a C program.) Note that since we're long jumping, local variable
214 dtors are NOT run automatically. */
215 if (gdb_rl_expt.reason < 0)
216 throw_exception_sjlj (gdb_rl_expt);
217 }
218
219 /* Initialize all the necessary variables, start the event loop,
220 register readline, and stdin, start the loop. The DATA is the
221 interpreter data cookie, ignored for now. */
222
223 void
224 cli_command_loop (void *data)
225 {
226 display_gdb_prompt (0);
227
228 /* Now it's time to start the event loop. */
229 start_event_loop ();
230 }
231
232 /* Change the function to be invoked every time there is a character
233 ready on stdin. This is used when the user sets the editing off,
234 therefore bypassing readline, and letting gdb handle the input
235 itself, via gdb_readline_no_editing_callback. Also it is used in
236 the opposite case in which the user sets editing on again, by
237 restoring readline handling of the input.
238
239 NOTE: this operates on input_fd, not instream. If we are reading
240 commands from a file, instream will point to the file. However, we
241 always read commands from a file with editing off. This means that
242 the 'set editing on/off' will have effect only on the interactive
243 session. */
244
245 void
246 change_line_handler (int editing)
247 {
248 struct ui *ui = current_ui;
249
250 /* We can only have one instance of readline, so we only allow
251 editing on the main UI. */
252 if (ui != main_ui)
253 return;
254
255 /* Don't try enabling editing if the interpreter doesn't support it
256 (e.g., MI). */
257 if (!interp_supports_command_editing (top_level_interpreter ())
258 || !interp_supports_command_editing (command_interp ()))
259 return;
260
261 if (editing)
262 {
263 gdb_assert (ui == main_ui);
264
265 /* Turn on editing by using readline. */
266 ui->call_readline = gdb_rl_callback_read_char_wrapper;
267 }
268 else
269 {
270 /* Turn off editing by using gdb_readline_no_editing_callback. */
271 if (ui->command_editing)
272 gdb_rl_callback_handler_remove ();
273 ui->call_readline = gdb_readline_no_editing_callback;
274 }
275 ui->command_editing = editing;
276 }
277
278 /* The functions below are wrappers for rl_callback_handler_remove and
279 rl_callback_handler_install that keep track of whether the callback
280 handler is installed in readline. This is necessary because after
281 handling a target event of a background execution command, we may
282 need to reinstall the callback handler if it was removed due to a
283 secondary prompt. See gdb_readline_wrapper_line. We don't
284 unconditionally install the handler for every target event because
285 that also clears the line buffer, thus installing it while the user
286 is typing would lose input. */
287
288 /* Whether we've registered a callback handler with readline. */
289 static int callback_handler_installed;
290
291 /* See event-top.h, and above. */
292
293 void
294 gdb_rl_callback_handler_remove (void)
295 {
296 gdb_assert (current_ui == main_ui);
297
298 rl_callback_handler_remove ();
299 callback_handler_installed = 0;
300 }
301
302 /* See event-top.h, and above. Note this wrapper doesn't have an
303 actual callback parameter because we always install
304 INPUT_HANDLER. */
305
306 void
307 gdb_rl_callback_handler_install (const char *prompt)
308 {
309 gdb_assert (current_ui == main_ui);
310
311 /* Calling rl_callback_handler_install resets readline's input
312 buffer. Calling this when we were already processing input
313 therefore loses input. */
314 gdb_assert (!callback_handler_installed);
315
316 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
317 callback_handler_installed = 1;
318 }
319
320 /* See event-top.h, and above. */
321
322 void
323 gdb_rl_callback_handler_reinstall (void)
324 {
325 gdb_assert (current_ui == main_ui);
326
327 if (!callback_handler_installed)
328 {
329 /* Passing NULL as prompt argument tells readline to not display
330 a prompt. */
331 gdb_rl_callback_handler_install (NULL);
332 }
333 }
334
335 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
336 prompt that is displayed is the current top level prompt.
337 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
338 prompt.
339
340 This is used after each gdb command has completed, and in the
341 following cases:
342
343 1. When the user enters a command line which is ended by '\'
344 indicating that the command will continue on the next line. In
345 that case the prompt that is displayed is the empty string.
346
347 2. When the user is entering 'commands' for a breakpoint, or
348 actions for a tracepoint. In this case the prompt will be '>'
349
350 3. On prompting for pagination. */
351
352 void
353 display_gdb_prompt (const char *new_prompt)
354 {
355 char *actual_gdb_prompt = NULL;
356 struct cleanup *old_chain;
357
358 annotate_display_prompt ();
359
360 /* Reset the nesting depth used when trace-commands is set. */
361 reset_command_nest_depth ();
362
363 old_chain = make_cleanup (free_current_contents, &actual_gdb_prompt);
364
365 /* Do not call the python hook on an explicit prompt change as
366 passed to this function, as this forms a secondary/local prompt,
367 IE, displayed but not set. */
368 if (! new_prompt)
369 {
370 if (sync_execution)
371 {
372 /* This is to trick readline into not trying to display the
373 prompt. Even though we display the prompt using this
374 function, readline still tries to do its own display if
375 we don't call rl_callback_handler_install and
376 rl_callback_handler_remove (which readline detects
377 because a global variable is not set). If readline did
378 that, it could mess up gdb signal handlers for SIGINT.
379 Readline assumes that between calls to rl_set_signals and
380 rl_clear_signals gdb doesn't do anything with the signal
381 handlers. Well, that's not the case, because when the
382 target executes we change the SIGINT signal handler. If
383 we allowed readline to display the prompt, the signal
384 handler change would happen exactly between the calls to
385 the above two functions. Calling
386 rl_callback_handler_remove(), does the job. */
387
388 if (current_ui->command_editing)
389 gdb_rl_callback_handler_remove ();
390 do_cleanups (old_chain);
391 return;
392 }
393 else
394 {
395 /* Display the top level prompt. */
396 actual_gdb_prompt = top_level_prompt ();
397 }
398 }
399 else
400 actual_gdb_prompt = xstrdup (new_prompt);
401
402 if (current_ui->command_editing)
403 {
404 gdb_rl_callback_handler_remove ();
405 gdb_rl_callback_handler_install (actual_gdb_prompt);
406 }
407 /* new_prompt at this point can be the top of the stack or the one
408 passed in. It can't be NULL. */
409 else
410 {
411 /* Don't use a _filtered function here. It causes the assumed
412 character position to be off, since the newline we read from
413 the user is not accounted for. */
414 fputs_unfiltered (actual_gdb_prompt, gdb_stdout);
415 gdb_flush (gdb_stdout);
416 }
417
418 do_cleanups (old_chain);
419 }
420
421 /* Return the top level prompt, as specified by "set prompt", possibly
422 overriden by the python gdb.prompt_hook hook, and then composed
423 with the prompt prefix and suffix (annotations). The caller is
424 responsible for freeing the returned string. */
425
426 static char *
427 top_level_prompt (void)
428 {
429 char *prompt;
430
431 /* Give observers a chance of changing the prompt. E.g., the python
432 `gdb.prompt_hook' is installed as an observer. */
433 observer_notify_before_prompt (get_prompt ());
434
435 prompt = get_prompt ();
436
437 if (annotation_level >= 2)
438 {
439 /* Prefix needs to have new line at end. */
440 const char prefix[] = "\n\032\032pre-prompt\n";
441
442 /* Suffix needs to have a new line at end and \032 \032 at
443 beginning. */
444 const char suffix[] = "\n\032\032prompt\n";
445
446 return concat (prefix, prompt, suffix, (char *) NULL);
447 }
448
449 return xstrdup (prompt);
450 }
451
452 /* The main UI. */
453 static struct ui main_ui_;
454
455 struct ui *main_ui = &main_ui_;
456 struct ui *current_ui = &main_ui_;
457 struct ui *ui_list = &main_ui_;
458
459 /* See top.h. */
460
461 void
462 restore_ui_cleanup (void *data)
463 {
464 current_ui = (struct ui *) data;
465 }
466
467 /* See top.h. */
468
469 void
470 switch_thru_all_uis_init (struct switch_thru_all_uis *state)
471 {
472 state->iter = ui_list;
473 state->old_chain = make_cleanup (restore_ui_cleanup, current_ui);
474 }
475
476 /* See top.h. */
477
478 int
479 switch_thru_all_uis_cond (struct switch_thru_all_uis *state)
480 {
481 if (state->iter != NULL)
482 {
483 current_ui = state->iter;
484 return 1;
485 }
486 else
487 {
488 do_cleanups (state->old_chain);
489 return 0;
490 }
491 }
492
493 /* See top.h. */
494
495 void
496 switch_thru_all_uis_next (struct switch_thru_all_uis *state)
497 {
498 state->iter = state->iter->next;
499 }
500
501 /* Get a pointer to the current UI's line buffer. This is used to
502 construct a whole line of input from partial input. */
503
504 static struct buffer *
505 get_command_line_buffer (void)
506 {
507 return &current_ui->line_buffer;
508 }
509
510 /* When there is an event ready on the stdin file descriptor, instead
511 of calling readline directly throught the callback function, or
512 instead of calling gdb_readline_no_editing_callback, give gdb a
513 chance to detect errors and do something. */
514
515 void
516 stdin_event_handler (int error, gdb_client_data client_data)
517 {
518 struct ui *ui = (struct ui *) client_data;
519
520 /* Switch to the UI whose input descriptor woke up the event
521 loop. */
522 current_ui = ui;
523
524 if (error)
525 {
526 printf_unfiltered (_("error detected on stdin\n"));
527 delete_file_handler (ui->input_fd);
528 /* If stdin died, we may as well kill gdb. */
529 quit_command ((char *) 0, stdin == ui->instream);
530 }
531 else
532 {
533 /* This makes sure a ^C immediately followed by further input is
534 always processed in that order. E.g,. with input like
535 "^Cprint 1\n", the SIGINT handler runs, marks the async signal
536 handler, and then select/poll may return with stdin ready,
537 instead of -1/EINTR. The
538 gdb.base/double-prompt-target-event-error.exp test exercises
539 this. */
540 QUIT;
541
542 do
543 {
544 call_stdin_event_handler_again_p = 0;
545 ui->call_readline (client_data);
546 } while (call_stdin_event_handler_again_p != 0);
547 }
548 }
549
550 /* Re-enable stdin after the end of an execution command in
551 synchronous mode, or after an error from the target, and we aborted
552 the exec operation. */
553
554 void
555 async_enable_stdin (void)
556 {
557 if (sync_execution)
558 {
559 /* See NOTE in async_disable_stdin(). */
560 /* FIXME: cagney/1999-09-27: Call this before clearing
561 sync_execution. Current target_terminal_ours() implementations
562 check for sync_execution before switching the terminal. */
563 target_terminal_ours ();
564 sync_execution = 0;
565 }
566 }
567
568 /* Disable reads from stdin (the console) marking the command as
569 synchronous. */
570
571 void
572 async_disable_stdin (void)
573 {
574 sync_execution = 1;
575 }
576 \f
577
578 /* Handle a gdb command line. This function is called when
579 handle_line_of_input has concatenated one or more input lines into
580 a whole command. */
581
582 void
583 command_handler (char *command)
584 {
585 struct ui *ui = current_ui;
586 struct cleanup *stat_chain;
587 char *c;
588
589 if (ui->instream == stdin)
590 reinitialize_more_filter ();
591
592 stat_chain = make_command_stats_cleanup (1);
593
594 /* Do not execute commented lines. */
595 for (c = command; *c == ' ' || *c == '\t'; c++)
596 ;
597 if (c[0] != '#')
598 {
599 execute_command (command, ui->instream == stdin);
600
601 /* Do any commands attached to breakpoint we stopped at. */
602 bpstat_do_actions ();
603 }
604
605 do_cleanups (stat_chain);
606 }
607
608 /* Append RL, an input line returned by readline or one of its
609 emulations, to CMD_LINE_BUFFER. Returns the command line if we
610 have a whole command line ready to be processed by the command
611 interpreter or NULL if the command line isn't complete yet (input
612 line ends in a backslash). Takes ownership of RL. */
613
614 static char *
615 command_line_append_input_line (struct buffer *cmd_line_buffer, char *rl)
616 {
617 char *cmd;
618 size_t len;
619
620 len = strlen (rl);
621
622 if (len > 0 && rl[len - 1] == '\\')
623 {
624 /* Don't copy the backslash and wait for more. */
625 buffer_grow (cmd_line_buffer, rl, len - 1);
626 cmd = NULL;
627 }
628 else
629 {
630 /* Copy whole line including terminating null, and we're
631 done. */
632 buffer_grow (cmd_line_buffer, rl, len + 1);
633 cmd = cmd_line_buffer->buffer;
634 }
635
636 /* Allocated in readline. */
637 xfree (rl);
638
639 return cmd;
640 }
641
642 /* Handle a line of input coming from readline.
643
644 If the read line ends with a continuation character (backslash),
645 save the partial input in CMD_LINE_BUFFER (except the backslash),
646 and return NULL. Otherwise, save the partial input and return a
647 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
648 whole command line is ready to be executed.
649
650 Returns EOF on end of file.
651
652 If REPEAT, handle command repetitions:
653
654 - If the input command line is NOT empty, the command returned is
655 copied into the global 'saved_command_line' var so that it can
656 be repeated later.
657
658 - OTOH, if the input command line IS empty, return the previously
659 saved command instead of the empty input line.
660 */
661
662 char *
663 handle_line_of_input (struct buffer *cmd_line_buffer,
664 char *rl, int repeat, char *annotation_suffix)
665 {
666 struct ui *ui = current_ui;
667 char *p1;
668 char *cmd;
669
670 if (rl == NULL)
671 return (char *) EOF;
672
673 cmd = command_line_append_input_line (cmd_line_buffer, rl);
674 if (cmd == NULL)
675 return NULL;
676
677 /* We have a complete command line now. Prepare for the next
678 command, but leave ownership of memory to the buffer . */
679 cmd_line_buffer->used_size = 0;
680
681 if (annotation_level > 1 && ui->instream == stdin)
682 {
683 printf_unfiltered (("\n\032\032post-"));
684 puts_unfiltered (annotation_suffix);
685 printf_unfiltered (("\n"));
686 }
687
688 #define SERVER_COMMAND_PREFIX "server "
689 if (startswith (cmd, SERVER_COMMAND_PREFIX))
690 {
691 /* Note that we don't set `saved_command_line'. Between this
692 and the check in dont_repeat, this insures that repeating
693 will still do the right thing. */
694 return cmd + strlen (SERVER_COMMAND_PREFIX);
695 }
696
697 /* Do history expansion if that is wished. */
698 if (history_expansion_p && ui->instream == stdin
699 && ISATTY (ui->instream))
700 {
701 char *history_value;
702 int expanded;
703
704 expanded = history_expand (cmd, &history_value);
705 if (expanded)
706 {
707 size_t len;
708
709 /* Print the changes. */
710 printf_unfiltered ("%s\n", history_value);
711
712 /* If there was an error, call this function again. */
713 if (expanded < 0)
714 {
715 xfree (history_value);
716 return cmd;
717 }
718
719 /* history_expand returns an allocated string. Just replace
720 our buffer with it. */
721 len = strlen (history_value);
722 xfree (buffer_finish (cmd_line_buffer));
723 cmd_line_buffer->buffer = history_value;
724 cmd_line_buffer->buffer_size = len + 1;
725 cmd = history_value;
726 }
727 }
728
729 /* If we just got an empty line, and that is supposed to repeat the
730 previous command, return the previously saved command. */
731 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
732 ;
733 if (repeat && *p1 == '\0')
734 return saved_command_line;
735
736 /* Add command to history if appropriate. Note: lines consisting
737 solely of comments are also added to the command history. This
738 is useful when you type a command, and then realize you don't
739 want to execute it quite yet. You can comment out the command
740 and then later fetch it from the value history and remove the
741 '#'. The kill ring is probably better, but some people are in
742 the habit of commenting things out. */
743 if (*cmd != '\0' && input_from_terminal_p ())
744 gdb_add_history (cmd);
745
746 /* Save into global buffer if appropriate. */
747 if (repeat)
748 {
749 xfree (saved_command_line);
750 saved_command_line = xstrdup (cmd);
751 return saved_command_line;
752 }
753 else
754 return cmd;
755 }
756
757 /* Handle a complete line of input. This is called by the callback
758 mechanism within the readline library. Deal with incomplete
759 commands as well, by saving the partial input in a global
760 buffer.
761
762 NOTE: This is the asynchronous version of the command_line_input
763 function. */
764
765 void
766 command_line_handler (char *rl)
767 {
768 struct buffer *line_buffer = get_command_line_buffer ();
769 struct ui *ui = current_ui;
770 char *cmd;
771
772 cmd = handle_line_of_input (line_buffer, rl, ui->instream == stdin,
773 "prompt");
774 if (cmd == (char *) EOF)
775 {
776 /* stdin closed. The connection with the terminal is gone.
777 This happens at the end of a testsuite run, after Expect has
778 hung up but GDB is still alive. In such a case, we just quit
779 gdb killing the inferior program too. */
780 printf_unfiltered ("quit\n");
781 execute_command ("quit", stdin == ui->instream);
782 }
783 else if (cmd == NULL)
784 {
785 /* We don't have a full line yet. Print an empty prompt. */
786 display_gdb_prompt ("");
787 }
788 else
789 {
790 command_handler (cmd);
791 display_gdb_prompt (0);
792 }
793 }
794
795 /* Does reading of input from terminal w/o the editing features
796 provided by the readline library. Calls the line input handler
797 once we have a whole input line. */
798
799 void
800 gdb_readline_no_editing_callback (gdb_client_data client_data)
801 {
802 int c;
803 char *result;
804 struct buffer line_buffer;
805 static int done_once = 0;
806 struct ui *ui = current_ui;
807
808 buffer_init (&line_buffer);
809
810 /* Unbuffer the input stream, so that, later on, the calls to fgetc
811 fetch only one char at the time from the stream. The fgetc's will
812 get up to the first newline, but there may be more chars in the
813 stream after '\n'. If we buffer the input and fgetc drains the
814 stream, getting stuff beyond the newline as well, a select, done
815 afterwards will not trigger. */
816 if (!done_once && !ISATTY (ui->instream))
817 {
818 setbuf (ui->instream, NULL);
819 done_once = 1;
820 }
821
822 /* We still need the while loop here, even though it would seem
823 obvious to invoke gdb_readline_no_editing_callback at every
824 character entered. If not using the readline library, the
825 terminal is in cooked mode, which sends the characters all at
826 once. Poll will notice that the input fd has changed state only
827 after enter is pressed. At this point we still need to fetch all
828 the chars entered. */
829
830 while (1)
831 {
832 /* Read from stdin if we are executing a user defined command.
833 This is the right thing for prompt_for_continue, at least. */
834 c = fgetc (ui->instream ? ui->instream : stdin);
835
836 if (c == EOF)
837 {
838 if (line_buffer.used_size > 0)
839 {
840 /* The last line does not end with a newline. Return it, and
841 if we are called again fgetc will still return EOF and
842 we'll return NULL then. */
843 break;
844 }
845 xfree (buffer_finish (&line_buffer));
846 ui->input_handler (NULL);
847 return;
848 }
849
850 if (c == '\n')
851 {
852 if (line_buffer.used_size > 0
853 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
854 line_buffer.used_size--;
855 break;
856 }
857
858 buffer_grow_char (&line_buffer, c);
859 }
860
861 buffer_grow_char (&line_buffer, '\0');
862 result = buffer_finish (&line_buffer);
863 ui->input_handler (result);
864 }
865 \f
866
867 /* The serial event associated with the QUIT flag. set_quit_flag sets
868 this, and check_quit_flag clears it. Used by interruptible_select
869 to be able to do interruptible I/O with no race with the SIGINT
870 handler. */
871 static struct serial_event *quit_serial_event;
872
873 /* Initialization of signal handlers and tokens. There is a function
874 handle_sig* for each of the signals GDB cares about. Specifically:
875 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
876 functions are the actual signal handlers associated to the signals
877 via calls to signal(). The only job for these functions is to
878 enqueue the appropriate event/procedure with the event loop. Such
879 procedures are the old signal handlers. The event loop will take
880 care of invoking the queued procedures to perform the usual tasks
881 associated with the reception of the signal. */
882 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
883 init_signals will become obsolete as we move to have to event loop
884 as the default for gdb. */
885 void
886 async_init_signals (void)
887 {
888 initialize_async_signal_handlers ();
889
890 quit_serial_event = make_serial_event ();
891
892 signal (SIGINT, handle_sigint);
893 sigint_token =
894 create_async_signal_handler (async_request_quit, NULL);
895 signal (SIGTERM, handle_sigterm);
896 async_sigterm_token
897 = create_async_signal_handler (async_sigterm_handler, NULL);
898
899 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
900 to the inferior and breakpoints will be ignored. */
901 #ifdef SIGTRAP
902 signal (SIGTRAP, SIG_DFL);
903 #endif
904
905 #ifdef SIGQUIT
906 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
907 passed to the inferior, which we don't want. It would be
908 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
909 on BSD4.3 systems using vfork, that can affect the
910 GDB process as well as the inferior (the signal handling tables
911 might be in memory, shared between the two). Since we establish
912 a handler for SIGQUIT, when we call exec it will set the signal
913 to SIG_DFL for us. */
914 signal (SIGQUIT, handle_sigquit);
915 sigquit_token =
916 create_async_signal_handler (async_do_nothing, NULL);
917 #endif
918 #ifdef SIGHUP
919 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
920 sighup_token =
921 create_async_signal_handler (async_disconnect, NULL);
922 else
923 sighup_token =
924 create_async_signal_handler (async_do_nothing, NULL);
925 #endif
926 signal (SIGFPE, handle_sigfpe);
927 sigfpe_token =
928 create_async_signal_handler (async_float_handler, NULL);
929
930 #ifdef STOP_SIGNAL
931 sigtstp_token =
932 create_async_signal_handler (async_stop_sig, NULL);
933 #endif
934 }
935
936 /* See defs.h. */
937
938 void
939 quit_serial_event_set (void)
940 {
941 serial_event_set (quit_serial_event);
942 }
943
944 /* See defs.h. */
945
946 void
947 quit_serial_event_clear (void)
948 {
949 serial_event_clear (quit_serial_event);
950 }
951
952 /* Return the selectable file descriptor of the serial event
953 associated with the quit flag. */
954
955 static int
956 quit_serial_event_fd (void)
957 {
958 return serial_event_fd (quit_serial_event);
959 }
960
961 /* See defs.h. */
962
963 void
964 default_quit_handler (void)
965 {
966 if (check_quit_flag ())
967 {
968 if (target_terminal_is_ours ())
969 quit ();
970 else
971 target_pass_ctrlc ();
972 }
973 }
974
975 /* See defs.h. */
976 quit_handler_ftype *quit_handler = default_quit_handler;
977
978 /* Data for make_cleanup_override_quit_handler. Wrap the previous
979 handler pointer in a data struct because it's not portable to cast
980 a function pointer to a data pointer, which is what make_cleanup
981 expects. */
982 struct quit_handler_cleanup_data
983 {
984 /* The previous quit handler. */
985 quit_handler_ftype *prev_handler;
986 };
987
988 /* Cleanup call that restores the previous quit handler. */
989
990 static void
991 restore_quit_handler (void *arg)
992 {
993 struct quit_handler_cleanup_data *data
994 = (struct quit_handler_cleanup_data *) arg;
995
996 quit_handler = data->prev_handler;
997 }
998
999 /* Destructor for the quit handler cleanup. */
1000
1001 static void
1002 restore_quit_handler_dtor (void *arg)
1003 {
1004 xfree (arg);
1005 }
1006
1007 /* See defs.h. */
1008
1009 struct cleanup *
1010 make_cleanup_override_quit_handler (quit_handler_ftype *new_quit_handler)
1011 {
1012 struct cleanup *old_chain;
1013 struct quit_handler_cleanup_data *data;
1014
1015 data = XNEW (struct quit_handler_cleanup_data);
1016 data->prev_handler = quit_handler;
1017 old_chain = make_cleanup_dtor (restore_quit_handler, data,
1018 restore_quit_handler_dtor);
1019 quit_handler = new_quit_handler;
1020 return old_chain;
1021 }
1022
1023 /* Handle a SIGINT. */
1024
1025 void
1026 handle_sigint (int sig)
1027 {
1028 signal (sig, handle_sigint);
1029
1030 /* We could be running in a loop reading in symfiles or something so
1031 it may be quite a while before we get back to the event loop. So
1032 set quit_flag to 1 here. Then if QUIT is called before we get to
1033 the event loop, we will unwind as expected. */
1034 set_quit_flag ();
1035
1036 /* In case nothing calls QUIT before the event loop is reached, the
1037 event loop handles it. */
1038 mark_async_signal_handler (sigint_token);
1039 }
1040
1041 /* See gdb_select.h. */
1042
1043 int
1044 interruptible_select (int n,
1045 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
1046 struct timeval *timeout)
1047 {
1048 fd_set my_readfds;
1049 int fd;
1050 int res;
1051
1052 if (readfds == NULL)
1053 {
1054 readfds = &my_readfds;
1055 FD_ZERO (&my_readfds);
1056 }
1057
1058 fd = quit_serial_event_fd ();
1059 FD_SET (fd, readfds);
1060 if (n <= fd)
1061 n = fd + 1;
1062
1063 do
1064 {
1065 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1066 }
1067 while (res == -1 && errno == EINTR);
1068
1069 if (res == 1 && FD_ISSET (fd, readfds))
1070 {
1071 errno = EINTR;
1072 return -1;
1073 }
1074 return res;
1075 }
1076
1077 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1078
1079 static void
1080 async_sigterm_handler (gdb_client_data arg)
1081 {
1082 quit_force (NULL, stdin == current_ui->instream);
1083 }
1084
1085 /* See defs.h. */
1086 volatile int sync_quit_force_run;
1087
1088 /* Quit GDB if SIGTERM is received.
1089 GDB would quit anyway, but this way it will clean up properly. */
1090 void
1091 handle_sigterm (int sig)
1092 {
1093 signal (sig, handle_sigterm);
1094
1095 sync_quit_force_run = 1;
1096 set_quit_flag ();
1097
1098 mark_async_signal_handler (async_sigterm_token);
1099 }
1100
1101 /* Do the quit. All the checks have been done by the caller. */
1102 void
1103 async_request_quit (gdb_client_data arg)
1104 {
1105 /* If the quit_flag has gotten reset back to 0 by the time we get
1106 back here, that means that an exception was thrown to unwind the
1107 current command before we got back to the event loop. So there
1108 is no reason to call quit again here. */
1109 QUIT;
1110 }
1111
1112 #ifdef SIGQUIT
1113 /* Tell the event loop what to do if SIGQUIT is received.
1114 See event-signal.c. */
1115 static void
1116 handle_sigquit (int sig)
1117 {
1118 mark_async_signal_handler (sigquit_token);
1119 signal (sig, handle_sigquit);
1120 }
1121 #endif
1122
1123 #if defined (SIGQUIT) || defined (SIGHUP)
1124 /* Called by the event loop in response to a SIGQUIT or an
1125 ignored SIGHUP. */
1126 static void
1127 async_do_nothing (gdb_client_data arg)
1128 {
1129 /* Empty function body. */
1130 }
1131 #endif
1132
1133 #ifdef SIGHUP
1134 /* Tell the event loop what to do if SIGHUP is received.
1135 See event-signal.c. */
1136 static void
1137 handle_sighup (int sig)
1138 {
1139 mark_async_signal_handler (sighup_token);
1140 signal (sig, handle_sighup);
1141 }
1142
1143 /* Called by the event loop to process a SIGHUP. */
1144 static void
1145 async_disconnect (gdb_client_data arg)
1146 {
1147
1148 TRY
1149 {
1150 quit_cover ();
1151 }
1152
1153 CATCH (exception, RETURN_MASK_ALL)
1154 {
1155 fputs_filtered ("Could not kill the program being debugged",
1156 gdb_stderr);
1157 exception_print (gdb_stderr, exception);
1158 }
1159 END_CATCH
1160
1161 TRY
1162 {
1163 pop_all_targets ();
1164 }
1165 CATCH (exception, RETURN_MASK_ALL)
1166 {
1167 }
1168 END_CATCH
1169
1170 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1171 raise (SIGHUP);
1172 }
1173 #endif
1174
1175 #ifdef STOP_SIGNAL
1176 void
1177 handle_stop_sig (int sig)
1178 {
1179 mark_async_signal_handler (sigtstp_token);
1180 signal (sig, handle_stop_sig);
1181 }
1182
1183 static void
1184 async_stop_sig (gdb_client_data arg)
1185 {
1186 char *prompt = get_prompt ();
1187
1188 #if STOP_SIGNAL == SIGTSTP
1189 signal (SIGTSTP, SIG_DFL);
1190 #if HAVE_SIGPROCMASK
1191 {
1192 sigset_t zero;
1193
1194 sigemptyset (&zero);
1195 sigprocmask (SIG_SETMASK, &zero, 0);
1196 }
1197 #elif HAVE_SIGSETMASK
1198 sigsetmask (0);
1199 #endif
1200 raise (SIGTSTP);
1201 signal (SIGTSTP, handle_stop_sig);
1202 #else
1203 signal (STOP_SIGNAL, handle_stop_sig);
1204 #endif
1205 printf_unfiltered ("%s", prompt);
1206 gdb_flush (gdb_stdout);
1207
1208 /* Forget about any previous command -- null line now will do
1209 nothing. */
1210 dont_repeat ();
1211 }
1212 #endif /* STOP_SIGNAL */
1213
1214 /* Tell the event loop what to do if SIGFPE is received.
1215 See event-signal.c. */
1216 static void
1217 handle_sigfpe (int sig)
1218 {
1219 mark_async_signal_handler (sigfpe_token);
1220 signal (sig, handle_sigfpe);
1221 }
1222
1223 /* Event loop will call this functin to process a SIGFPE. */
1224 static void
1225 async_float_handler (gdb_client_data arg)
1226 {
1227 /* This message is based on ANSI C, section 4.7. Note that integer
1228 divide by zero causes this, so "float" is a misnomer. */
1229 error (_("Erroneous arithmetic operation."));
1230 }
1231 \f
1232
1233 /* Set things up for readline to be invoked via the alternate
1234 interface, i.e. via a callback function
1235 (gdb_rl_callback_read_char), and hook up instream to the event
1236 loop. */
1237
1238 void
1239 gdb_setup_readline (int editing)
1240 {
1241 struct ui *ui = current_ui;
1242
1243 /* This function is a noop for the sync case. The assumption is
1244 that the sync setup is ALL done in gdb_init, and we would only
1245 mess it up here. The sync stuff should really go away over
1246 time. */
1247 if (!batch_silent)
1248 gdb_stdout = stdio_fileopen (ui->outstream);
1249 gdb_stderr = stderr_fileopen (ui->errstream);
1250 gdb_stdlog = gdb_stderr; /* for moment */
1251 gdb_stdtarg = gdb_stderr; /* for moment */
1252 gdb_stdtargerr = gdb_stderr; /* for moment */
1253
1254 /* If the input stream is connected to a terminal, turn on editing.
1255 However, that is only allowed on the main UI, as we can only have
1256 one instance of readline. */
1257 if (ISATTY (ui->instream) && editing && ui == main_ui)
1258 {
1259 /* Tell gdb that we will be using the readline library. This
1260 could be overwritten by a command in .gdbinit like 'set
1261 editing on' or 'off'. */
1262 ui->command_editing = 1;
1263
1264 /* When a character is detected on instream by select or poll,
1265 readline will be invoked via this callback function. */
1266 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1267
1268 /* Tell readline to use the same input stream that gdb uses. */
1269 rl_instream = ui->instream;
1270 }
1271 else
1272 {
1273 ui->command_editing = 0;
1274 ui->call_readline = gdb_readline_no_editing_callback;
1275 }
1276
1277 /* Now create the event source for this UI's input file descriptor.
1278 Another source is going to be the target program (inferior), but
1279 that must be registered only when it actually exists (I.e. after
1280 we say 'run' or after we connect to a remote target. */
1281 add_file_handler (ui->input_fd, stdin_event_handler, ui);
1282 }
1283
1284 /* Disable command input through the standard CLI channels. Used in
1285 the suspend proc for interpreters that use the standard gdb readline
1286 interface, like the cli & the mi. */
1287
1288 void
1289 gdb_disable_readline (void)
1290 {
1291 struct ui *ui = current_ui;
1292
1293 /* FIXME - It is too heavyweight to delete and remake these every
1294 time you run an interpreter that needs readline. It is probably
1295 better to have the interpreters cache these, which in turn means
1296 that this needs to be moved into interpreter specific code. */
1297
1298 #if 0
1299 ui_file_delete (gdb_stdout);
1300 ui_file_delete (gdb_stderr);
1301 gdb_stdlog = NULL;
1302 gdb_stdtarg = NULL;
1303 gdb_stdtargerr = NULL;
1304 #endif
1305
1306 if (ui->command_editing)
1307 gdb_rl_callback_handler_remove ();
1308 delete_file_handler (ui->input_fd);
1309 }
This page took 0.079031 seconds and 5 git commands to generate.