Make SJLJ exceptions more efficient
[deliverable/binutils-gdb.git] / gdb / event-top.c
1 /* Top level stuff for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
4
5 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "top.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "target.h"
27 #include "terminal.h" /* for job_control */
28 #include "event-loop.h"
29 #include "event-top.h"
30 #include "interps.h"
31 #include <signal.h>
32 #include "cli/cli-script.h" /* for reset_command_nest_depth */
33 #include "main.h"
34 #include "gdbthread.h"
35 #include "observable.h"
36 #include "continuations.h"
37 #include "gdbcmd.h" /* for dont_repeat() */
38 #include "annotate.h"
39 #include "maint.h"
40 #include "common/buffer.h"
41 #include "ser-event.h"
42 #include "gdb_select.h"
43
44 /* readline include files. */
45 #include "readline/readline.h"
46 #include "readline/history.h"
47
48 /* readline defines this. */
49 #undef savestring
50
51 static std::string top_level_prompt ();
52
53 /* Signal handlers. */
54 #ifdef SIGQUIT
55 static void handle_sigquit (int sig);
56 #endif
57 #ifdef SIGHUP
58 static void handle_sighup (int sig);
59 #endif
60 static void handle_sigfpe (int sig);
61
62 /* Functions to be invoked by the event loop in response to
63 signals. */
64 #if defined (SIGQUIT) || defined (SIGHUP)
65 static void async_do_nothing (gdb_client_data);
66 #endif
67 #ifdef SIGHUP
68 static void async_disconnect (gdb_client_data);
69 #endif
70 static void async_float_handler (gdb_client_data);
71 #ifdef SIGTSTP
72 static void async_sigtstp_handler (gdb_client_data);
73 #endif
74 static void async_sigterm_handler (gdb_client_data arg);
75
76 /* Instead of invoking (and waiting for) readline to read the command
77 line and pass it back for processing, we use readline's alternate
78 interface, via callback functions, so that the event loop can react
79 to other event sources while we wait for input. */
80
81 /* Important variables for the event loop. */
82
83 /* This is used to determine if GDB is using the readline library or
84 its own simplified form of readline. It is used by the asynchronous
85 form of the set editing command.
86 ezannoni: as of 1999-04-29 I expect that this
87 variable will not be used after gdb is changed to use the event
88 loop as default engine, and event-top.c is merged into top.c. */
89 int set_editing_cmd_var;
90
91 /* This is used to display the notification of the completion of an
92 asynchronous execution command. */
93 int exec_done_display_p = 0;
94
95 /* Used by the stdin event handler to compensate for missed stdin events.
96 Setting this to a non-zero value inside an stdin callback makes the callback
97 run again. */
98 int call_stdin_event_handler_again_p;
99
100 /* Signal handling variables. */
101 /* Each of these is a pointer to a function that the event loop will
102 invoke if the corresponding signal has received. The real signal
103 handlers mark these functions as ready to be executed and the event
104 loop, in a later iteration, calls them. See the function
105 invoke_async_signal_handler. */
106 static struct async_signal_handler *sigint_token;
107 #ifdef SIGHUP
108 static struct async_signal_handler *sighup_token;
109 #endif
110 #ifdef SIGQUIT
111 static struct async_signal_handler *sigquit_token;
112 #endif
113 static struct async_signal_handler *sigfpe_token;
114 #ifdef SIGTSTP
115 static struct async_signal_handler *sigtstp_token;
116 #endif
117 static struct async_signal_handler *async_sigterm_token;
118
119 /* This hook is called by gdb_rl_callback_read_char_wrapper after each
120 character is processed. */
121 void (*after_char_processing_hook) (void);
122 \f
123
124 /* Wrapper function for calling into the readline library. This takes
125 care of a couple things:
126
127 - The event loop expects the callback function to have a parameter,
128 while readline expects none.
129
130 - Propagation of GDB exceptions/errors thrown from INPUT_HANDLER
131 across readline requires special handling.
132
133 On the exceptions issue:
134
135 DWARF-based unwinding cannot cross code built without -fexceptions.
136 Any exception that tries to propagate through such code will fail
137 and the result is a call to std::terminate. While some ABIs, such
138 as x86-64, require all code to be built with exception tables,
139 others don't.
140
141 This is a problem when GDB calls some non-EH-aware C library code,
142 that calls into GDB again through a callback, and that GDB callback
143 code throws a C++ exception. Turns out this is exactly what
144 happens with GDB's readline callback.
145
146 In such cases, we must catch and save any C++ exception that might
147 be thrown from the GDB callback before returning to the
148 non-EH-aware code. When the non-EH-aware function itself returns
149 back to GDB, we then rethrow the original C++ exception.
150
151 In the readline case however, the right thing to do is to longjmp
152 out of the callback, rather than do a normal return -- there's no
153 way for the callback to return to readline an indication that an
154 error happened, so a normal return would have rl_callback_read_char
155 potentially continue processing further input, redisplay the
156 prompt, etc. Instead of raw setjmp/longjmp however, we use our
157 sjlj-based TRY/CATCH mechanism, which knows to handle multiple
158 levels of active setjmp/longjmp frames, needed in order to handle
159 the readline callback recursing, as happens with e.g., secondary
160 prompts / queries, through gdb_readline_wrapper. This must be
161 noexcept in order to avoid problems with mixing sjlj and
162 (sjlj-based) C++ exceptions. */
163
164 static struct gdb_exception
165 gdb_rl_callback_read_char_wrapper_noexcept () noexcept
166 {
167 struct gdb_exception gdb_expt;
168
169 /* C++ exceptions can't normally be thrown across readline (unless
170 it is built with -fexceptions, but it won't by default on many
171 ABIs). So we instead wrap the readline call with a sjlj-based
172 TRY/CATCH, and rethrow the GDB exception once back in GDB. */
173 TRY_SJLJ
174 {
175 rl_callback_read_char ();
176 if (after_char_processing_hook)
177 (*after_char_processing_hook) ();
178 }
179 CATCH_SJLJ (ex, RETURN_MASK_ALL)
180 {
181 gdb_expt = std::move (ex);
182 }
183 END_CATCH_SJLJ
184
185 return gdb_expt;
186 }
187
188 static void
189 gdb_rl_callback_read_char_wrapper (gdb_client_data client_data)
190 {
191 struct gdb_exception gdb_expt
192 = gdb_rl_callback_read_char_wrapper_noexcept ();
193
194 /* Rethrow using the normal EH mechanism. */
195 if (gdb_expt.reason < 0)
196 throw_exception (gdb_expt);
197 }
198
199 /* GDB's readline callback handler. Calls the current INPUT_HANDLER,
200 and propagates GDB exceptions/errors thrown from INPUT_HANDLER back
201 across readline. See gdb_rl_callback_read_char_wrapper. This must
202 be noexcept in order to avoid problems with mixing sjlj and
203 (sjlj-based) C++ exceptions. */
204
205 static void
206 gdb_rl_callback_handler (char *rl) noexcept
207 {
208 struct gdb_exception gdb_rl_expt;
209 struct ui *ui = current_ui;
210
211 try
212 {
213 ui->input_handler (gdb::unique_xmalloc_ptr<char> (rl));
214 }
215 catch (gdb_exception &ex)
216 {
217 gdb_rl_expt = std::move (ex);
218 }
219
220 /* If we caught a GDB exception, longjmp out of the readline
221 callback. There's no other way for the callback to signal to
222 readline that an error happened. A normal return would have
223 readline potentially continue processing further input, redisplay
224 the prompt, etc. (This is what GDB historically did when it was
225 a C program.) Note that since we're long jumping, local variable
226 dtors are NOT run automatically. */
227 if (gdb_rl_expt.reason < 0)
228 throw_exception_sjlj (gdb_rl_expt);
229 }
230
231 /* Change the function to be invoked every time there is a character
232 ready on stdin. This is used when the user sets the editing off,
233 therefore bypassing readline, and letting gdb handle the input
234 itself, via gdb_readline_no_editing_callback. Also it is used in
235 the opposite case in which the user sets editing on again, by
236 restoring readline handling of the input.
237
238 NOTE: this operates on input_fd, not instream. If we are reading
239 commands from a file, instream will point to the file. However, we
240 always read commands from a file with editing off. This means that
241 the 'set editing on/off' will have effect only on the interactive
242 session. */
243
244 void
245 change_line_handler (int editing)
246 {
247 struct ui *ui = current_ui;
248
249 /* We can only have one instance of readline, so we only allow
250 editing on the main UI. */
251 if (ui != main_ui)
252 return;
253
254 /* Don't try enabling editing if the interpreter doesn't support it
255 (e.g., MI). */
256 if (!interp_supports_command_editing (top_level_interpreter ())
257 || !interp_supports_command_editing (command_interp ()))
258 return;
259
260 if (editing)
261 {
262 gdb_assert (ui == main_ui);
263
264 /* Turn on editing by using readline. */
265 ui->call_readline = gdb_rl_callback_read_char_wrapper;
266 }
267 else
268 {
269 /* Turn off editing by using gdb_readline_no_editing_callback. */
270 if (ui->command_editing)
271 gdb_rl_callback_handler_remove ();
272 ui->call_readline = gdb_readline_no_editing_callback;
273 }
274 ui->command_editing = editing;
275 }
276
277 /* The functions below are wrappers for rl_callback_handler_remove and
278 rl_callback_handler_install that keep track of whether the callback
279 handler is installed in readline. This is necessary because after
280 handling a target event of a background execution command, we may
281 need to reinstall the callback handler if it was removed due to a
282 secondary prompt. See gdb_readline_wrapper_line. We don't
283 unconditionally install the handler for every target event because
284 that also clears the line buffer, thus installing it while the user
285 is typing would lose input. */
286
287 /* Whether we've registered a callback handler with readline. */
288 static int callback_handler_installed;
289
290 /* See event-top.h, and above. */
291
292 void
293 gdb_rl_callback_handler_remove (void)
294 {
295 gdb_assert (current_ui == main_ui);
296
297 rl_callback_handler_remove ();
298 callback_handler_installed = 0;
299 }
300
301 /* See event-top.h, and above. Note this wrapper doesn't have an
302 actual callback parameter because we always install
303 INPUT_HANDLER. */
304
305 void
306 gdb_rl_callback_handler_install (const char *prompt)
307 {
308 gdb_assert (current_ui == main_ui);
309
310 /* Calling rl_callback_handler_install resets readline's input
311 buffer. Calling this when we were already processing input
312 therefore loses input. */
313 gdb_assert (!callback_handler_installed);
314
315 rl_callback_handler_install (prompt, gdb_rl_callback_handler);
316 callback_handler_installed = 1;
317 }
318
319 /* See event-top.h, and above. */
320
321 void
322 gdb_rl_callback_handler_reinstall (void)
323 {
324 gdb_assert (current_ui == main_ui);
325
326 if (!callback_handler_installed)
327 {
328 /* Passing NULL as prompt argument tells readline to not display
329 a prompt. */
330 gdb_rl_callback_handler_install (NULL);
331 }
332 }
333
334 /* Displays the prompt. If the argument NEW_PROMPT is NULL, the
335 prompt that is displayed is the current top level prompt.
336 Otherwise, it displays whatever NEW_PROMPT is as a local/secondary
337 prompt.
338
339 This is used after each gdb command has completed, and in the
340 following cases:
341
342 1. When the user enters a command line which is ended by '\'
343 indicating that the command will continue on the next line. In
344 that case the prompt that is displayed is the empty string.
345
346 2. When the user is entering 'commands' for a breakpoint, or
347 actions for a tracepoint. In this case the prompt will be '>'
348
349 3. On prompting for pagination. */
350
351 void
352 display_gdb_prompt (const char *new_prompt)
353 {
354 std::string actual_gdb_prompt;
355
356 annotate_display_prompt ();
357
358 /* Reset the nesting depth used when trace-commands is set. */
359 reset_command_nest_depth ();
360
361 /* Do not call the python hook on an explicit prompt change as
362 passed to this function, as this forms a secondary/local prompt,
363 IE, displayed but not set. */
364 if (! new_prompt)
365 {
366 struct ui *ui = current_ui;
367
368 if (ui->prompt_state == PROMPTED)
369 internal_error (__FILE__, __LINE__, _("double prompt"));
370 else if (ui->prompt_state == PROMPT_BLOCKED)
371 {
372 /* This is to trick readline into not trying to display the
373 prompt. Even though we display the prompt using this
374 function, readline still tries to do its own display if
375 we don't call rl_callback_handler_install and
376 rl_callback_handler_remove (which readline detects
377 because a global variable is not set). If readline did
378 that, it could mess up gdb signal handlers for SIGINT.
379 Readline assumes that between calls to rl_set_signals and
380 rl_clear_signals gdb doesn't do anything with the signal
381 handlers. Well, that's not the case, because when the
382 target executes we change the SIGINT signal handler. If
383 we allowed readline to display the prompt, the signal
384 handler change would happen exactly between the calls to
385 the above two functions. Calling
386 rl_callback_handler_remove(), does the job. */
387
388 if (current_ui->command_editing)
389 gdb_rl_callback_handler_remove ();
390 return;
391 }
392 else if (ui->prompt_state == PROMPT_NEEDED)
393 {
394 /* Display the top level prompt. */
395 actual_gdb_prompt = top_level_prompt ();
396 ui->prompt_state = PROMPTED;
397 }
398 }
399 else
400 actual_gdb_prompt = new_prompt;
401
402 if (current_ui->command_editing)
403 {
404 gdb_rl_callback_handler_remove ();
405 gdb_rl_callback_handler_install (actual_gdb_prompt.c_str ());
406 }
407 /* new_prompt at this point can be the top of the stack or the one
408 passed in. It can't be NULL. */
409 else
410 {
411 /* Don't use a _filtered function here. It causes the assumed
412 character position to be off, since the newline we read from
413 the user is not accounted for. */
414 fputs_unfiltered (actual_gdb_prompt.c_str (), gdb_stdout);
415 gdb_flush (gdb_stdout);
416 }
417 }
418
419 /* Return the top level prompt, as specified by "set prompt", possibly
420 overriden by the python gdb.prompt_hook hook, and then composed
421 with the prompt prefix and suffix (annotations). */
422
423 static std::string
424 top_level_prompt (void)
425 {
426 char *prompt;
427
428 /* Give observers a chance of changing the prompt. E.g., the python
429 `gdb.prompt_hook' is installed as an observer. */
430 gdb::observers::before_prompt.notify (get_prompt ());
431
432 prompt = get_prompt ();
433
434 if (annotation_level >= 2)
435 {
436 /* Prefix needs to have new line at end. */
437 const char prefix[] = "\n\032\032pre-prompt\n";
438
439 /* Suffix needs to have a new line at end and \032 \032 at
440 beginning. */
441 const char suffix[] = "\n\032\032prompt\n";
442
443 return std::string (prefix) + prompt + suffix;
444 }
445
446 return prompt;
447 }
448
449 /* See top.h. */
450
451 struct ui *main_ui;
452 struct ui *current_ui;
453 struct ui *ui_list;
454
455 /* Get a pointer to the current UI's line buffer. This is used to
456 construct a whole line of input from partial input. */
457
458 static struct buffer *
459 get_command_line_buffer (void)
460 {
461 return &current_ui->line_buffer;
462 }
463
464 /* When there is an event ready on the stdin file descriptor, instead
465 of calling readline directly throught the callback function, or
466 instead of calling gdb_readline_no_editing_callback, give gdb a
467 chance to detect errors and do something. */
468
469 void
470 stdin_event_handler (int error, gdb_client_data client_data)
471 {
472 struct ui *ui = (struct ui *) client_data;
473
474 if (error)
475 {
476 /* Switch to the main UI, so diagnostics always go there. */
477 current_ui = main_ui;
478
479 delete_file_handler (ui->input_fd);
480 if (main_ui == ui)
481 {
482 /* If stdin died, we may as well kill gdb. */
483 printf_unfiltered (_("error detected on stdin\n"));
484 quit_command ((char *) 0, 0);
485 }
486 else
487 {
488 /* Simply delete the UI. */
489 delete ui;
490 }
491 }
492 else
493 {
494 /* Switch to the UI whose input descriptor woke up the event
495 loop. */
496 current_ui = ui;
497
498 /* This makes sure a ^C immediately followed by further input is
499 always processed in that order. E.g,. with input like
500 "^Cprint 1\n", the SIGINT handler runs, marks the async
501 signal handler, and then select/poll may return with stdin
502 ready, instead of -1/EINTR. The
503 gdb.base/double-prompt-target-event-error.exp test exercises
504 this. */
505 QUIT;
506
507 do
508 {
509 call_stdin_event_handler_again_p = 0;
510 ui->call_readline (client_data);
511 }
512 while (call_stdin_event_handler_again_p != 0);
513 }
514 }
515
516 /* See top.h. */
517
518 void
519 ui_register_input_event_handler (struct ui *ui)
520 {
521 add_file_handler (ui->input_fd, stdin_event_handler, ui);
522 }
523
524 /* See top.h. */
525
526 void
527 ui_unregister_input_event_handler (struct ui *ui)
528 {
529 delete_file_handler (ui->input_fd);
530 }
531
532 /* Re-enable stdin after the end of an execution command in
533 synchronous mode, or after an error from the target, and we aborted
534 the exec operation. */
535
536 void
537 async_enable_stdin (void)
538 {
539 struct ui *ui = current_ui;
540
541 if (ui->prompt_state == PROMPT_BLOCKED)
542 {
543 target_terminal::ours ();
544 ui_register_input_event_handler (ui);
545 ui->prompt_state = PROMPT_NEEDED;
546 }
547 }
548
549 /* Disable reads from stdin (the console) marking the command as
550 synchronous. */
551
552 void
553 async_disable_stdin (void)
554 {
555 struct ui *ui = current_ui;
556
557 ui->prompt_state = PROMPT_BLOCKED;
558 delete_file_handler (ui->input_fd);
559 }
560 \f
561
562 /* Handle a gdb command line. This function is called when
563 handle_line_of_input has concatenated one or more input lines into
564 a whole command. */
565
566 void
567 command_handler (const char *command)
568 {
569 struct ui *ui = current_ui;
570 const char *c;
571
572 if (ui->instream == ui->stdin_stream)
573 reinitialize_more_filter ();
574
575 scoped_command_stats stat_reporter (true);
576
577 /* Do not execute commented lines. */
578 for (c = command; *c == ' ' || *c == '\t'; c++)
579 ;
580 if (c[0] != '#')
581 {
582 execute_command (command, ui->instream == ui->stdin_stream);
583
584 /* Do any commands attached to breakpoint we stopped at. */
585 bpstat_do_actions ();
586 }
587 }
588
589 /* Append RL, an input line returned by readline or one of its
590 emulations, to CMD_LINE_BUFFER. Returns the command line if we
591 have a whole command line ready to be processed by the command
592 interpreter or NULL if the command line isn't complete yet (input
593 line ends in a backslash). */
594
595 static char *
596 command_line_append_input_line (struct buffer *cmd_line_buffer, const char *rl)
597 {
598 char *cmd;
599 size_t len;
600
601 len = strlen (rl);
602
603 if (len > 0 && rl[len - 1] == '\\')
604 {
605 /* Don't copy the backslash and wait for more. */
606 buffer_grow (cmd_line_buffer, rl, len - 1);
607 cmd = NULL;
608 }
609 else
610 {
611 /* Copy whole line including terminating null, and we're
612 done. */
613 buffer_grow (cmd_line_buffer, rl, len + 1);
614 cmd = cmd_line_buffer->buffer;
615 }
616
617 return cmd;
618 }
619
620 /* Handle a line of input coming from readline.
621
622 If the read line ends with a continuation character (backslash),
623 save the partial input in CMD_LINE_BUFFER (except the backslash),
624 and return NULL. Otherwise, save the partial input and return a
625 pointer to CMD_LINE_BUFFER's buffer (null terminated), indicating a
626 whole command line is ready to be executed.
627
628 Returns EOF on end of file.
629
630 If REPEAT, handle command repetitions:
631
632 - If the input command line is NOT empty, the command returned is
633 copied into the global 'saved_command_line' var so that it can
634 be repeated later.
635
636 - OTOH, if the input command line IS empty, return the previously
637 saved command instead of the empty input line.
638 */
639
640 char *
641 handle_line_of_input (struct buffer *cmd_line_buffer,
642 const char *rl, int repeat,
643 const char *annotation_suffix)
644 {
645 struct ui *ui = current_ui;
646 int from_tty = ui->instream == ui->stdin_stream;
647 char *p1;
648 char *cmd;
649
650 if (rl == NULL)
651 return (char *) EOF;
652
653 cmd = command_line_append_input_line (cmd_line_buffer, rl);
654 if (cmd == NULL)
655 return NULL;
656
657 /* We have a complete command line now. Prepare for the next
658 command, but leave ownership of memory to the buffer . */
659 cmd_line_buffer->used_size = 0;
660
661 if (from_tty && annotation_level > 1)
662 {
663 printf_unfiltered (("\n\032\032post-"));
664 puts_unfiltered (annotation_suffix);
665 printf_unfiltered (("\n"));
666 }
667
668 #define SERVER_COMMAND_PREFIX "server "
669 server_command = startswith (cmd, SERVER_COMMAND_PREFIX);
670 if (server_command)
671 {
672 /* Note that we don't set `saved_command_line'. Between this
673 and the check in dont_repeat, this insures that repeating
674 will still do the right thing. */
675 return cmd + strlen (SERVER_COMMAND_PREFIX);
676 }
677
678 /* Do history expansion if that is wished. */
679 if (history_expansion_p && from_tty && input_interactive_p (current_ui))
680 {
681 char *cmd_expansion;
682 int expanded;
683
684 expanded = history_expand (cmd, &cmd_expansion);
685 gdb::unique_xmalloc_ptr<char> history_value (cmd_expansion);
686 if (expanded)
687 {
688 size_t len;
689
690 /* Print the changes. */
691 printf_unfiltered ("%s\n", history_value.get ());
692
693 /* If there was an error, call this function again. */
694 if (expanded < 0)
695 return cmd;
696
697 /* history_expand returns an allocated string. Just replace
698 our buffer with it. */
699 len = strlen (history_value.get ());
700 xfree (buffer_finish (cmd_line_buffer));
701 cmd_line_buffer->buffer = history_value.get ();
702 cmd_line_buffer->buffer_size = len + 1;
703 cmd = history_value.release ();
704 }
705 }
706
707 /* If we just got an empty line, and that is supposed to repeat the
708 previous command, return the previously saved command. */
709 for (p1 = cmd; *p1 == ' ' || *p1 == '\t'; p1++)
710 ;
711 if (repeat && *p1 == '\0')
712 return saved_command_line;
713
714 /* Add command to history if appropriate. Note: lines consisting
715 solely of comments are also added to the command history. This
716 is useful when you type a command, and then realize you don't
717 want to execute it quite yet. You can comment out the command
718 and then later fetch it from the value history and remove the
719 '#'. The kill ring is probably better, but some people are in
720 the habit of commenting things out. */
721 if (*cmd != '\0' && from_tty && input_interactive_p (current_ui))
722 gdb_add_history (cmd);
723
724 /* Save into global buffer if appropriate. */
725 if (repeat)
726 {
727 xfree (saved_command_line);
728 saved_command_line = xstrdup (cmd);
729 return saved_command_line;
730 }
731 else
732 return cmd;
733 }
734
735 /* Handle a complete line of input. This is called by the callback
736 mechanism within the readline library. Deal with incomplete
737 commands as well, by saving the partial input in a global
738 buffer.
739
740 NOTE: This is the asynchronous version of the command_line_input
741 function. */
742
743 void
744 command_line_handler (gdb::unique_xmalloc_ptr<char> &&rl)
745 {
746 struct buffer *line_buffer = get_command_line_buffer ();
747 struct ui *ui = current_ui;
748 char *cmd;
749
750 cmd = handle_line_of_input (line_buffer, rl.get (), 1, "prompt");
751 if (cmd == (char *) EOF)
752 {
753 /* stdin closed. The connection with the terminal is gone.
754 This happens at the end of a testsuite run, after Expect has
755 hung up but GDB is still alive. In such a case, we just quit
756 gdb killing the inferior program too. */
757 printf_unfiltered ("quit\n");
758 execute_command ("quit", 1);
759 }
760 else if (cmd == NULL)
761 {
762 /* We don't have a full line yet. Print an empty prompt. */
763 display_gdb_prompt ("");
764 }
765 else
766 {
767 ui->prompt_state = PROMPT_NEEDED;
768
769 command_handler (cmd);
770
771 if (ui->prompt_state != PROMPTED)
772 display_gdb_prompt (0);
773 }
774 }
775
776 /* Does reading of input from terminal w/o the editing features
777 provided by the readline library. Calls the line input handler
778 once we have a whole input line. */
779
780 void
781 gdb_readline_no_editing_callback (gdb_client_data client_data)
782 {
783 int c;
784 char *result;
785 struct buffer line_buffer;
786 static int done_once = 0;
787 struct ui *ui = current_ui;
788
789 buffer_init (&line_buffer);
790
791 /* Unbuffer the input stream, so that, later on, the calls to fgetc
792 fetch only one char at the time from the stream. The fgetc's will
793 get up to the first newline, but there may be more chars in the
794 stream after '\n'. If we buffer the input and fgetc drains the
795 stream, getting stuff beyond the newline as well, a select, done
796 afterwards will not trigger. */
797 if (!done_once && !ISATTY (ui->instream))
798 {
799 setbuf (ui->instream, NULL);
800 done_once = 1;
801 }
802
803 /* We still need the while loop here, even though it would seem
804 obvious to invoke gdb_readline_no_editing_callback at every
805 character entered. If not using the readline library, the
806 terminal is in cooked mode, which sends the characters all at
807 once. Poll will notice that the input fd has changed state only
808 after enter is pressed. At this point we still need to fetch all
809 the chars entered. */
810
811 while (1)
812 {
813 /* Read from stdin if we are executing a user defined command.
814 This is the right thing for prompt_for_continue, at least. */
815 c = fgetc (ui->instream != NULL ? ui->instream : ui->stdin_stream);
816
817 if (c == EOF)
818 {
819 if (line_buffer.used_size > 0)
820 {
821 /* The last line does not end with a newline. Return it, and
822 if we are called again fgetc will still return EOF and
823 we'll return NULL then. */
824 break;
825 }
826 xfree (buffer_finish (&line_buffer));
827 ui->input_handler (NULL);
828 return;
829 }
830
831 if (c == '\n')
832 {
833 if (line_buffer.used_size > 0
834 && line_buffer.buffer[line_buffer.used_size - 1] == '\r')
835 line_buffer.used_size--;
836 break;
837 }
838
839 buffer_grow_char (&line_buffer, c);
840 }
841
842 buffer_grow_char (&line_buffer, '\0');
843 result = buffer_finish (&line_buffer);
844 ui->input_handler (gdb::unique_xmalloc_ptr<char> (result));
845 }
846 \f
847
848 /* The serial event associated with the QUIT flag. set_quit_flag sets
849 this, and check_quit_flag clears it. Used by interruptible_select
850 to be able to do interruptible I/O with no race with the SIGINT
851 handler. */
852 static struct serial_event *quit_serial_event;
853
854 /* Initialization of signal handlers and tokens. There is a function
855 handle_sig* for each of the signals GDB cares about. Specifically:
856 SIGINT, SIGFPE, SIGQUIT, SIGTSTP, SIGHUP, SIGWINCH. These
857 functions are the actual signal handlers associated to the signals
858 via calls to signal(). The only job for these functions is to
859 enqueue the appropriate event/procedure with the event loop. Such
860 procedures are the old signal handlers. The event loop will take
861 care of invoking the queued procedures to perform the usual tasks
862 associated with the reception of the signal. */
863 /* NOTE: 1999-04-30 This is the asynchronous version of init_signals.
864 init_signals will become obsolete as we move to have to event loop
865 as the default for gdb. */
866 void
867 async_init_signals (void)
868 {
869 initialize_async_signal_handlers ();
870
871 quit_serial_event = make_serial_event ();
872
873 signal (SIGINT, handle_sigint);
874 sigint_token =
875 create_async_signal_handler (async_request_quit, NULL);
876 signal (SIGTERM, handle_sigterm);
877 async_sigterm_token
878 = create_async_signal_handler (async_sigterm_handler, NULL);
879
880 /* If SIGTRAP was set to SIG_IGN, then the SIG_IGN will get passed
881 to the inferior and breakpoints will be ignored. */
882 #ifdef SIGTRAP
883 signal (SIGTRAP, SIG_DFL);
884 #endif
885
886 #ifdef SIGQUIT
887 /* If we initialize SIGQUIT to SIG_IGN, then the SIG_IGN will get
888 passed to the inferior, which we don't want. It would be
889 possible to do a "signal (SIGQUIT, SIG_DFL)" after we fork, but
890 on BSD4.3 systems using vfork, that can affect the
891 GDB process as well as the inferior (the signal handling tables
892 might be in memory, shared between the two). Since we establish
893 a handler for SIGQUIT, when we call exec it will set the signal
894 to SIG_DFL for us. */
895 signal (SIGQUIT, handle_sigquit);
896 sigquit_token =
897 create_async_signal_handler (async_do_nothing, NULL);
898 #endif
899 #ifdef SIGHUP
900 if (signal (SIGHUP, handle_sighup) != SIG_IGN)
901 sighup_token =
902 create_async_signal_handler (async_disconnect, NULL);
903 else
904 sighup_token =
905 create_async_signal_handler (async_do_nothing, NULL);
906 #endif
907 signal (SIGFPE, handle_sigfpe);
908 sigfpe_token =
909 create_async_signal_handler (async_float_handler, NULL);
910
911 #ifdef SIGTSTP
912 sigtstp_token =
913 create_async_signal_handler (async_sigtstp_handler, NULL);
914 #endif
915 }
916
917 /* See defs.h. */
918
919 void
920 quit_serial_event_set (void)
921 {
922 serial_event_set (quit_serial_event);
923 }
924
925 /* See defs.h. */
926
927 void
928 quit_serial_event_clear (void)
929 {
930 serial_event_clear (quit_serial_event);
931 }
932
933 /* Return the selectable file descriptor of the serial event
934 associated with the quit flag. */
935
936 static int
937 quit_serial_event_fd (void)
938 {
939 return serial_event_fd (quit_serial_event);
940 }
941
942 /* See defs.h. */
943
944 void
945 default_quit_handler (void)
946 {
947 if (check_quit_flag ())
948 {
949 if (target_terminal::is_ours ())
950 quit ();
951 else
952 target_pass_ctrlc ();
953 }
954 }
955
956 /* See defs.h. */
957 quit_handler_ftype *quit_handler = default_quit_handler;
958
959 /* Handle a SIGINT. */
960
961 void
962 handle_sigint (int sig)
963 {
964 signal (sig, handle_sigint);
965
966 /* We could be running in a loop reading in symfiles or something so
967 it may be quite a while before we get back to the event loop. So
968 set quit_flag to 1 here. Then if QUIT is called before we get to
969 the event loop, we will unwind as expected. */
970 set_quit_flag ();
971
972 /* In case nothing calls QUIT before the event loop is reached, the
973 event loop handles it. */
974 mark_async_signal_handler (sigint_token);
975 }
976
977 /* See gdb_select.h. */
978
979 int
980 interruptible_select (int n,
981 fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
982 struct timeval *timeout)
983 {
984 fd_set my_readfds;
985 int fd;
986 int res;
987
988 if (readfds == NULL)
989 {
990 readfds = &my_readfds;
991 FD_ZERO (&my_readfds);
992 }
993
994 fd = quit_serial_event_fd ();
995 FD_SET (fd, readfds);
996 if (n <= fd)
997 n = fd + 1;
998
999 do
1000 {
1001 res = gdb_select (n, readfds, writefds, exceptfds, timeout);
1002 }
1003 while (res == -1 && errno == EINTR);
1004
1005 if (res == 1 && FD_ISSET (fd, readfds))
1006 {
1007 errno = EINTR;
1008 return -1;
1009 }
1010 return res;
1011 }
1012
1013 /* Handle GDB exit upon receiving SIGTERM if target_can_async_p (). */
1014
1015 static void
1016 async_sigterm_handler (gdb_client_data arg)
1017 {
1018 quit_force (NULL, 0);
1019 }
1020
1021 /* See defs.h. */
1022 volatile int sync_quit_force_run;
1023
1024 /* Quit GDB if SIGTERM is received.
1025 GDB would quit anyway, but this way it will clean up properly. */
1026 void
1027 handle_sigterm (int sig)
1028 {
1029 signal (sig, handle_sigterm);
1030
1031 sync_quit_force_run = 1;
1032 set_quit_flag ();
1033
1034 mark_async_signal_handler (async_sigterm_token);
1035 }
1036
1037 /* Do the quit. All the checks have been done by the caller. */
1038 void
1039 async_request_quit (gdb_client_data arg)
1040 {
1041 /* If the quit_flag has gotten reset back to 0 by the time we get
1042 back here, that means that an exception was thrown to unwind the
1043 current command before we got back to the event loop. So there
1044 is no reason to call quit again here. */
1045 QUIT;
1046 }
1047
1048 #ifdef SIGQUIT
1049 /* Tell the event loop what to do if SIGQUIT is received.
1050 See event-signal.c. */
1051 static void
1052 handle_sigquit (int sig)
1053 {
1054 mark_async_signal_handler (sigquit_token);
1055 signal (sig, handle_sigquit);
1056 }
1057 #endif
1058
1059 #if defined (SIGQUIT) || defined (SIGHUP)
1060 /* Called by the event loop in response to a SIGQUIT or an
1061 ignored SIGHUP. */
1062 static void
1063 async_do_nothing (gdb_client_data arg)
1064 {
1065 /* Empty function body. */
1066 }
1067 #endif
1068
1069 #ifdef SIGHUP
1070 /* Tell the event loop what to do if SIGHUP is received.
1071 See event-signal.c. */
1072 static void
1073 handle_sighup (int sig)
1074 {
1075 mark_async_signal_handler (sighup_token);
1076 signal (sig, handle_sighup);
1077 }
1078
1079 /* Called by the event loop to process a SIGHUP. */
1080 static void
1081 async_disconnect (gdb_client_data arg)
1082 {
1083
1084 try
1085 {
1086 quit_cover ();
1087 }
1088
1089 catch (const gdb_exception &exception)
1090 {
1091 fputs_filtered ("Could not kill the program being debugged",
1092 gdb_stderr);
1093 exception_print (gdb_stderr, exception);
1094 }
1095
1096 try
1097 {
1098 pop_all_targets ();
1099 }
1100 catch (const gdb_exception &exception)
1101 {
1102 }
1103
1104 signal (SIGHUP, SIG_DFL); /*FIXME: ??????????? */
1105 raise (SIGHUP);
1106 }
1107 #endif
1108
1109 #ifdef SIGTSTP
1110 void
1111 handle_sigtstp (int sig)
1112 {
1113 mark_async_signal_handler (sigtstp_token);
1114 signal (sig, handle_sigtstp);
1115 }
1116
1117 static void
1118 async_sigtstp_handler (gdb_client_data arg)
1119 {
1120 char *prompt = get_prompt ();
1121
1122 signal (SIGTSTP, SIG_DFL);
1123 #if HAVE_SIGPROCMASK
1124 {
1125 sigset_t zero;
1126
1127 sigemptyset (&zero);
1128 sigprocmask (SIG_SETMASK, &zero, 0);
1129 }
1130 #elif HAVE_SIGSETMASK
1131 sigsetmask (0);
1132 #endif
1133 raise (SIGTSTP);
1134 signal (SIGTSTP, handle_sigtstp);
1135 printf_unfiltered ("%s", prompt);
1136 gdb_flush (gdb_stdout);
1137
1138 /* Forget about any previous command -- null line now will do
1139 nothing. */
1140 dont_repeat ();
1141 }
1142 #endif /* SIGTSTP */
1143
1144 /* Tell the event loop what to do if SIGFPE is received.
1145 See event-signal.c. */
1146 static void
1147 handle_sigfpe (int sig)
1148 {
1149 mark_async_signal_handler (sigfpe_token);
1150 signal (sig, handle_sigfpe);
1151 }
1152
1153 /* Event loop will call this functin to process a SIGFPE. */
1154 static void
1155 async_float_handler (gdb_client_data arg)
1156 {
1157 /* This message is based on ANSI C, section 4.7. Note that integer
1158 divide by zero causes this, so "float" is a misnomer. */
1159 error (_("Erroneous arithmetic operation."));
1160 }
1161 \f
1162
1163 /* Set things up for readline to be invoked via the alternate
1164 interface, i.e. via a callback function
1165 (gdb_rl_callback_read_char), and hook up instream to the event
1166 loop. */
1167
1168 void
1169 gdb_setup_readline (int editing)
1170 {
1171 struct ui *ui = current_ui;
1172
1173 /* This function is a noop for the sync case. The assumption is
1174 that the sync setup is ALL done in gdb_init, and we would only
1175 mess it up here. The sync stuff should really go away over
1176 time. */
1177 if (!batch_silent)
1178 gdb_stdout = new stdio_file (ui->outstream);
1179 gdb_stderr = new stderr_file (ui->errstream);
1180 gdb_stdlog = gdb_stderr; /* for moment */
1181 gdb_stdtarg = gdb_stderr; /* for moment */
1182 gdb_stdtargerr = gdb_stderr; /* for moment */
1183
1184 /* If the input stream is connected to a terminal, turn on editing.
1185 However, that is only allowed on the main UI, as we can only have
1186 one instance of readline. */
1187 if (ISATTY (ui->instream) && editing && ui == main_ui)
1188 {
1189 /* Tell gdb that we will be using the readline library. This
1190 could be overwritten by a command in .gdbinit like 'set
1191 editing on' or 'off'. */
1192 ui->command_editing = 1;
1193
1194 /* When a character is detected on instream by select or poll,
1195 readline will be invoked via this callback function. */
1196 ui->call_readline = gdb_rl_callback_read_char_wrapper;
1197
1198 /* Tell readline to use the same input stream that gdb uses. */
1199 rl_instream = ui->instream;
1200 }
1201 else
1202 {
1203 ui->command_editing = 0;
1204 ui->call_readline = gdb_readline_no_editing_callback;
1205 }
1206
1207 /* Now create the event source for this UI's input file descriptor.
1208 Another source is going to be the target program (inferior), but
1209 that must be registered only when it actually exists (I.e. after
1210 we say 'run' or after we connect to a remote target. */
1211 ui_register_input_event_handler (ui);
1212 }
1213
1214 /* Disable command input through the standard CLI channels. Used in
1215 the suspend proc for interpreters that use the standard gdb readline
1216 interface, like the cli & the mi. */
1217
1218 void
1219 gdb_disable_readline (void)
1220 {
1221 struct ui *ui = current_ui;
1222
1223 /* FIXME - It is too heavyweight to delete and remake these every
1224 time you run an interpreter that needs readline. It is probably
1225 better to have the interpreters cache these, which in turn means
1226 that this needs to be moved into interpreter specific code. */
1227
1228 #if 0
1229 ui_file_delete (gdb_stdout);
1230 ui_file_delete (gdb_stderr);
1231 gdb_stdlog = NULL;
1232 gdb_stdtarg = NULL;
1233 gdb_stdtargerr = NULL;
1234 #endif
1235
1236 if (ui->command_editing)
1237 gdb_rl_callback_handler_remove ();
1238 delete_file_handler (ui->input_fd);
1239 }
This page took 0.076545 seconds and 5 git commands to generate.