2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / f-exp.y
1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C parser by Farooq Butt
7 (fmbutt@engage.sps.mot.com).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This was blantantly ripped off the C expression parser, please
25 be aware of that as you look at its basic structure -FMB */
26
27 /* Parse a F77 expression from text in a string,
28 and return the result as a struct expression pointer.
29 That structure contains arithmetic operations in reverse polish,
30 with constants represented by operations that are followed by special data.
31 See expression.h for the details of the format.
32 What is important here is that it can be built up sequentially
33 during the process of parsing; the lower levels of the tree always
34 come first in the result.
35
36 Note that malloc's and realloc's in this file are transformed to
37 xmalloc and xrealloc respectively by the same sed command in the
38 makefile that remaps any other malloc/realloc inserted by the parser
39 generator. Doing this with #defines and trying to control the interaction
40 with include files (<malloc.h> and <stdlib.h> for example) just became
41 too messy, particularly when such includes can be inserted at random
42 times by the parser generator. */
43
44 %{
45
46 #include "defs.h"
47 #include "gdb_string.h"
48 #include "expression.h"
49 #include "value.h"
50 #include "parser-defs.h"
51 #include "language.h"
52 #include "f-lang.h"
53 #include "bfd.h" /* Required by objfiles.h. */
54 #include "symfile.h" /* Required by objfiles.h. */
55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
56 #include "block.h"
57 #include <ctype.h>
58
59 #define parse_type builtin_type (parse_gdbarch)
60 #define parse_f_type builtin_f_type (parse_gdbarch)
61
62 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
63 as well as gratuitiously global symbol names, so we can have multiple
64 yacc generated parsers in gdb. Note that these are only the variables
65 produced by yacc. If other parser generators (bison, byacc, etc) produce
66 additional global names that conflict at link time, then those parser
67 generators need to be fixed instead of adding those names to this list. */
68
69 #define yymaxdepth f_maxdepth
70 #define yyparse f_parse
71 #define yylex f_lex
72 #define yyerror f_error
73 #define yylval f_lval
74 #define yychar f_char
75 #define yydebug f_debug
76 #define yypact f_pact
77 #define yyr1 f_r1
78 #define yyr2 f_r2
79 #define yydef f_def
80 #define yychk f_chk
81 #define yypgo f_pgo
82 #define yyact f_act
83 #define yyexca f_exca
84 #define yyerrflag f_errflag
85 #define yynerrs f_nerrs
86 #define yyps f_ps
87 #define yypv f_pv
88 #define yys f_s
89 #define yy_yys f_yys
90 #define yystate f_state
91 #define yytmp f_tmp
92 #define yyv f_v
93 #define yy_yyv f_yyv
94 #define yyval f_val
95 #define yylloc f_lloc
96 #define yyreds f_reds /* With YYDEBUG defined */
97 #define yytoks f_toks /* With YYDEBUG defined */
98 #define yyname f_name /* With YYDEBUG defined */
99 #define yyrule f_rule /* With YYDEBUG defined */
100 #define yylhs f_yylhs
101 #define yylen f_yylen
102 #define yydefred f_yydefred
103 #define yydgoto f_yydgoto
104 #define yysindex f_yysindex
105 #define yyrindex f_yyrindex
106 #define yygindex f_yygindex
107 #define yytable f_yytable
108 #define yycheck f_yycheck
109
110 #ifndef YYDEBUG
111 #define YYDEBUG 1 /* Default to yydebug support */
112 #endif
113
114 #define YYFPRINTF parser_fprintf
115
116 int yyparse (void);
117
118 static int yylex (void);
119
120 void yyerror (char *);
121
122 static void growbuf_by_size (int);
123
124 static int match_string_literal (void);
125
126 %}
127
128 /* Although the yacc "value" of an expression is not used,
129 since the result is stored in the structure being created,
130 other node types do have values. */
131
132 %union
133 {
134 LONGEST lval;
135 struct {
136 LONGEST val;
137 struct type *type;
138 } typed_val;
139 DOUBLEST dval;
140 struct symbol *sym;
141 struct type *tval;
142 struct stoken sval;
143 struct ttype tsym;
144 struct symtoken ssym;
145 int voidval;
146 struct block *bval;
147 enum exp_opcode opcode;
148 struct internalvar *ivar;
149
150 struct type **tvec;
151 int *ivec;
152 }
153
154 %{
155 /* YYSTYPE gets defined by %union */
156 static int parse_number (char *, int, int, YYSTYPE *);
157 %}
158
159 %type <voidval> exp type_exp start variable
160 %type <tval> type typebase
161 %type <tvec> nonempty_typelist
162 /* %type <bval> block */
163
164 /* Fancy type parsing. */
165 %type <voidval> func_mod direct_abs_decl abs_decl
166 %type <tval> ptype
167
168 %token <typed_val> INT
169 %token <dval> FLOAT
170
171 /* Both NAME and TYPENAME tokens represent symbols in the input,
172 and both convey their data as strings.
173 But a TYPENAME is a string that happens to be defined as a typedef
174 or builtin type name (such as int or char)
175 and a NAME is any other symbol.
176 Contexts where this distinction is not important can use the
177 nonterminal "name", which matches either NAME or TYPENAME. */
178
179 %token <sval> STRING_LITERAL
180 %token <lval> BOOLEAN_LITERAL
181 %token <ssym> NAME
182 %token <tsym> TYPENAME
183 %type <sval> name
184 %type <ssym> name_not_typename
185
186 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
187 but which would parse as a valid number in the current input radix.
188 E.g. "c" when input_radix==16. Depending on the parse, it will be
189 turned into a name or into a number. */
190
191 %token <ssym> NAME_OR_INT
192
193 %token SIZEOF
194 %token ERROR
195
196 /* Special type cases, put in to allow the parser to distinguish different
197 legal basetypes. */
198 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
199 %token LOGICAL_S8_KEYWORD
200 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
201 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
202 %token BOOL_AND BOOL_OR BOOL_NOT
203 %token <lval> CHARACTER
204
205 %token <voidval> VARIABLE
206
207 %token <opcode> ASSIGN_MODIFY
208
209 %left ','
210 %left ABOVE_COMMA
211 %right '=' ASSIGN_MODIFY
212 %right '?'
213 %left BOOL_OR
214 %right BOOL_NOT
215 %left BOOL_AND
216 %left '|'
217 %left '^'
218 %left '&'
219 %left EQUAL NOTEQUAL
220 %left LESSTHAN GREATERTHAN LEQ GEQ
221 %left LSH RSH
222 %left '@'
223 %left '+' '-'
224 %left '*' '/'
225 %right STARSTAR
226 %right '%'
227 %right UNARY
228 %right '('
229
230 \f
231 %%
232
233 start : exp
234 | type_exp
235 ;
236
237 type_exp: type
238 { write_exp_elt_opcode(OP_TYPE);
239 write_exp_elt_type($1);
240 write_exp_elt_opcode(OP_TYPE); }
241 ;
242
243 exp : '(' exp ')'
244 { }
245 ;
246
247 /* Expressions, not including the comma operator. */
248 exp : '*' exp %prec UNARY
249 { write_exp_elt_opcode (UNOP_IND); }
250 ;
251
252 exp : '&' exp %prec UNARY
253 { write_exp_elt_opcode (UNOP_ADDR); }
254 ;
255
256 exp : '-' exp %prec UNARY
257 { write_exp_elt_opcode (UNOP_NEG); }
258 ;
259
260 exp : BOOL_NOT exp %prec UNARY
261 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
262 ;
263
264 exp : '~' exp %prec UNARY
265 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
266 ;
267
268 exp : SIZEOF exp %prec UNARY
269 { write_exp_elt_opcode (UNOP_SIZEOF); }
270 ;
271
272 /* No more explicit array operators, we treat everything in F77 as
273 a function call. The disambiguation as to whether we are
274 doing a subscript operation or a function call is done
275 later in eval.c. */
276
277 exp : exp '('
278 { start_arglist (); }
279 arglist ')'
280 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
281 write_exp_elt_longcst ((LONGEST) end_arglist ());
282 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
283 ;
284
285 arglist :
286 ;
287
288 arglist : exp
289 { arglist_len = 1; }
290 ;
291
292 arglist : subrange
293 { arglist_len = 1; }
294 ;
295
296 arglist : arglist ',' exp %prec ABOVE_COMMA
297 { arglist_len++; }
298 ;
299
300 /* There are four sorts of subrange types in F90. */
301
302 subrange: exp ':' exp %prec ABOVE_COMMA
303 { write_exp_elt_opcode (OP_F90_RANGE);
304 write_exp_elt_longcst (NONE_BOUND_DEFAULT);
305 write_exp_elt_opcode (OP_F90_RANGE); }
306 ;
307
308 subrange: exp ':' %prec ABOVE_COMMA
309 { write_exp_elt_opcode (OP_F90_RANGE);
310 write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
311 write_exp_elt_opcode (OP_F90_RANGE); }
312 ;
313
314 subrange: ':' exp %prec ABOVE_COMMA
315 { write_exp_elt_opcode (OP_F90_RANGE);
316 write_exp_elt_longcst (LOW_BOUND_DEFAULT);
317 write_exp_elt_opcode (OP_F90_RANGE); }
318 ;
319
320 subrange: ':' %prec ABOVE_COMMA
321 { write_exp_elt_opcode (OP_F90_RANGE);
322 write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
323 write_exp_elt_opcode (OP_F90_RANGE); }
324 ;
325
326 complexnum: exp ',' exp
327 { }
328 ;
329
330 exp : '(' complexnum ')'
331 { write_exp_elt_opcode(OP_COMPLEX);
332 write_exp_elt_type (parse_f_type->builtin_complex_s16);
333 write_exp_elt_opcode(OP_COMPLEX); }
334 ;
335
336 exp : '(' type ')' exp %prec UNARY
337 { write_exp_elt_opcode (UNOP_CAST);
338 write_exp_elt_type ($2);
339 write_exp_elt_opcode (UNOP_CAST); }
340 ;
341
342 exp : exp '%' name
343 { write_exp_elt_opcode (STRUCTOP_STRUCT);
344 write_exp_string ($3);
345 write_exp_elt_opcode (STRUCTOP_STRUCT); }
346 ;
347
348 /* Binary operators in order of decreasing precedence. */
349
350 exp : exp '@' exp
351 { write_exp_elt_opcode (BINOP_REPEAT); }
352 ;
353
354 exp : exp STARSTAR exp
355 { write_exp_elt_opcode (BINOP_EXP); }
356 ;
357
358 exp : exp '*' exp
359 { write_exp_elt_opcode (BINOP_MUL); }
360 ;
361
362 exp : exp '/' exp
363 { write_exp_elt_opcode (BINOP_DIV); }
364 ;
365
366 exp : exp '+' exp
367 { write_exp_elt_opcode (BINOP_ADD); }
368 ;
369
370 exp : exp '-' exp
371 { write_exp_elt_opcode (BINOP_SUB); }
372 ;
373
374 exp : exp LSH exp
375 { write_exp_elt_opcode (BINOP_LSH); }
376 ;
377
378 exp : exp RSH exp
379 { write_exp_elt_opcode (BINOP_RSH); }
380 ;
381
382 exp : exp EQUAL exp
383 { write_exp_elt_opcode (BINOP_EQUAL); }
384 ;
385
386 exp : exp NOTEQUAL exp
387 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
388 ;
389
390 exp : exp LEQ exp
391 { write_exp_elt_opcode (BINOP_LEQ); }
392 ;
393
394 exp : exp GEQ exp
395 { write_exp_elt_opcode (BINOP_GEQ); }
396 ;
397
398 exp : exp LESSTHAN exp
399 { write_exp_elt_opcode (BINOP_LESS); }
400 ;
401
402 exp : exp GREATERTHAN exp
403 { write_exp_elt_opcode (BINOP_GTR); }
404 ;
405
406 exp : exp '&' exp
407 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
408 ;
409
410 exp : exp '^' exp
411 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
412 ;
413
414 exp : exp '|' exp
415 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
416 ;
417
418 exp : exp BOOL_AND exp
419 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
420 ;
421
422
423 exp : exp BOOL_OR exp
424 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
425 ;
426
427 exp : exp '=' exp
428 { write_exp_elt_opcode (BINOP_ASSIGN); }
429 ;
430
431 exp : exp ASSIGN_MODIFY exp
432 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
433 write_exp_elt_opcode ($2);
434 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
435 ;
436
437 exp : INT
438 { write_exp_elt_opcode (OP_LONG);
439 write_exp_elt_type ($1.type);
440 write_exp_elt_longcst ((LONGEST)($1.val));
441 write_exp_elt_opcode (OP_LONG); }
442 ;
443
444 exp : NAME_OR_INT
445 { YYSTYPE val;
446 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
447 write_exp_elt_opcode (OP_LONG);
448 write_exp_elt_type (val.typed_val.type);
449 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
450 write_exp_elt_opcode (OP_LONG); }
451 ;
452
453 exp : FLOAT
454 { write_exp_elt_opcode (OP_DOUBLE);
455 write_exp_elt_type (parse_f_type->builtin_real_s8);
456 write_exp_elt_dblcst ($1);
457 write_exp_elt_opcode (OP_DOUBLE); }
458 ;
459
460 exp : variable
461 ;
462
463 exp : VARIABLE
464 ;
465
466 exp : SIZEOF '(' type ')' %prec UNARY
467 { write_exp_elt_opcode (OP_LONG);
468 write_exp_elt_type (parse_f_type->builtin_integer);
469 CHECK_TYPEDEF ($3);
470 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
471 write_exp_elt_opcode (OP_LONG); }
472 ;
473
474 exp : BOOLEAN_LITERAL
475 { write_exp_elt_opcode (OP_BOOL);
476 write_exp_elt_longcst ((LONGEST) $1);
477 write_exp_elt_opcode (OP_BOOL);
478 }
479 ;
480
481 exp : STRING_LITERAL
482 {
483 write_exp_elt_opcode (OP_STRING);
484 write_exp_string ($1);
485 write_exp_elt_opcode (OP_STRING);
486 }
487 ;
488
489 variable: name_not_typename
490 { struct symbol *sym = $1.sym;
491
492 if (sym)
493 {
494 if (symbol_read_needs_frame (sym))
495 {
496 if (innermost_block == 0
497 || contained_in (block_found,
498 innermost_block))
499 innermost_block = block_found;
500 }
501 write_exp_elt_opcode (OP_VAR_VALUE);
502 /* We want to use the selected frame, not
503 another more inner frame which happens to
504 be in the same block. */
505 write_exp_elt_block (NULL);
506 write_exp_elt_sym (sym);
507 write_exp_elt_opcode (OP_VAR_VALUE);
508 break;
509 }
510 else
511 {
512 struct minimal_symbol *msymbol;
513 char *arg = copy_name ($1.stoken);
514
515 msymbol =
516 lookup_minimal_symbol (arg, NULL, NULL);
517 if (msymbol != NULL)
518 write_exp_msymbol (msymbol);
519 else if (!have_full_symbols () && !have_partial_symbols ())
520 error ("No symbol table is loaded. Use the \"file\" command.");
521 else
522 error ("No symbol \"%s\" in current context.",
523 copy_name ($1.stoken));
524 }
525 }
526 ;
527
528
529 type : ptype
530 ;
531
532 ptype : typebase
533 | typebase abs_decl
534 {
535 /* This is where the interesting stuff happens. */
536 int done = 0;
537 int array_size;
538 struct type *follow_type = $1;
539 struct type *range_type;
540
541 while (!done)
542 switch (pop_type ())
543 {
544 case tp_end:
545 done = 1;
546 break;
547 case tp_pointer:
548 follow_type = lookup_pointer_type (follow_type);
549 break;
550 case tp_reference:
551 follow_type = lookup_reference_type (follow_type);
552 break;
553 case tp_array:
554 array_size = pop_type_int ();
555 if (array_size != -1)
556 {
557 range_type =
558 create_range_type ((struct type *) NULL,
559 parse_f_type->builtin_integer,
560 0, array_size - 1);
561 follow_type =
562 create_array_type ((struct type *) NULL,
563 follow_type, range_type);
564 }
565 else
566 follow_type = lookup_pointer_type (follow_type);
567 break;
568 case tp_function:
569 follow_type = lookup_function_type (follow_type);
570 break;
571 }
572 $$ = follow_type;
573 }
574 ;
575
576 abs_decl: '*'
577 { push_type (tp_pointer); $$ = 0; }
578 | '*' abs_decl
579 { push_type (tp_pointer); $$ = $2; }
580 | '&'
581 { push_type (tp_reference); $$ = 0; }
582 | '&' abs_decl
583 { push_type (tp_reference); $$ = $2; }
584 | direct_abs_decl
585 ;
586
587 direct_abs_decl: '(' abs_decl ')'
588 { $$ = $2; }
589 | direct_abs_decl func_mod
590 { push_type (tp_function); }
591 | func_mod
592 { push_type (tp_function); }
593 ;
594
595 func_mod: '(' ')'
596 { $$ = 0; }
597 | '(' nonempty_typelist ')'
598 { free ($2); $$ = 0; }
599 ;
600
601 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
602 : TYPENAME
603 { $$ = $1.type; }
604 | INT_KEYWORD
605 { $$ = parse_f_type->builtin_integer; }
606 | INT_S2_KEYWORD
607 { $$ = parse_f_type->builtin_integer_s2; }
608 | CHARACTER
609 { $$ = parse_f_type->builtin_character; }
610 | LOGICAL_S8_KEYWORD
611 { $$ = parse_f_type->builtin_logical_s8; }
612 | LOGICAL_KEYWORD
613 { $$ = parse_f_type->builtin_logical; }
614 | LOGICAL_S2_KEYWORD
615 { $$ = parse_f_type->builtin_logical_s2; }
616 | LOGICAL_S1_KEYWORD
617 { $$ = parse_f_type->builtin_logical_s1; }
618 | REAL_KEYWORD
619 { $$ = parse_f_type->builtin_real; }
620 | REAL_S8_KEYWORD
621 { $$ = parse_f_type->builtin_real_s8; }
622 | REAL_S16_KEYWORD
623 { $$ = parse_f_type->builtin_real_s16; }
624 | COMPLEX_S8_KEYWORD
625 { $$ = parse_f_type->builtin_complex_s8; }
626 | COMPLEX_S16_KEYWORD
627 { $$ = parse_f_type->builtin_complex_s16; }
628 | COMPLEX_S32_KEYWORD
629 { $$ = parse_f_type->builtin_complex_s32; }
630 ;
631
632 nonempty_typelist
633 : type
634 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
635 $<ivec>$[0] = 1; /* Number of types in vector */
636 $$[1] = $1;
637 }
638 | nonempty_typelist ',' type
639 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
640 $$ = (struct type **) realloc ((char *) $1, len);
641 $$[$<ivec>$[0]] = $3;
642 }
643 ;
644
645 name : NAME
646 { $$ = $1.stoken; }
647 ;
648
649 name_not_typename : NAME
650 /* These would be useful if name_not_typename was useful, but it is just
651 a fake for "variable", so these cause reduce/reduce conflicts because
652 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
653 =exp) or just an exp. If name_not_typename was ever used in an lvalue
654 context where only a name could occur, this might be useful.
655 | NAME_OR_INT
656 */
657 ;
658
659 %%
660
661 /* Take care of parsing a number (anything that starts with a digit).
662 Set yylval and return the token type; update lexptr.
663 LEN is the number of characters in it. */
664
665 /*** Needs some error checking for the float case ***/
666
667 static int
668 parse_number (p, len, parsed_float, putithere)
669 char *p;
670 int len;
671 int parsed_float;
672 YYSTYPE *putithere;
673 {
674 LONGEST n = 0;
675 LONGEST prevn = 0;
676 int c;
677 int base = input_radix;
678 int unsigned_p = 0;
679 int long_p = 0;
680 ULONGEST high_bit;
681 struct type *signed_type;
682 struct type *unsigned_type;
683
684 if (parsed_float)
685 {
686 /* It's a float since it contains a point or an exponent. */
687 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
688 char *tmp, *tmp2;
689
690 tmp = xstrdup (p);
691 for (tmp2 = tmp; *tmp2; ++tmp2)
692 if (*tmp2 == 'd' || *tmp2 == 'D')
693 *tmp2 = 'e';
694 putithere->dval = atof (tmp);
695 free (tmp);
696 return FLOAT;
697 }
698
699 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
700 if (p[0] == '0')
701 switch (p[1])
702 {
703 case 'x':
704 case 'X':
705 if (len >= 3)
706 {
707 p += 2;
708 base = 16;
709 len -= 2;
710 }
711 break;
712
713 case 't':
714 case 'T':
715 case 'd':
716 case 'D':
717 if (len >= 3)
718 {
719 p += 2;
720 base = 10;
721 len -= 2;
722 }
723 break;
724
725 default:
726 base = 8;
727 break;
728 }
729
730 while (len-- > 0)
731 {
732 c = *p++;
733 if (isupper (c))
734 c = tolower (c);
735 if (len == 0 && c == 'l')
736 long_p = 1;
737 else if (len == 0 && c == 'u')
738 unsigned_p = 1;
739 else
740 {
741 int i;
742 if (c >= '0' && c <= '9')
743 i = c - '0';
744 else if (c >= 'a' && c <= 'f')
745 i = c - 'a' + 10;
746 else
747 return ERROR; /* Char not a digit */
748 if (i >= base)
749 return ERROR; /* Invalid digit in this base */
750 n *= base;
751 n += i;
752 }
753 /* Portably test for overflow (only works for nonzero values, so make
754 a second check for zero). */
755 if ((prevn >= n) && n != 0)
756 unsigned_p=1; /* Try something unsigned */
757 /* If range checking enabled, portably test for unsigned overflow. */
758 if (RANGE_CHECK && n != 0)
759 {
760 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
761 range_error("Overflow on numeric constant.");
762 }
763 prevn = n;
764 }
765
766 /* If the number is too big to be an int, or it's got an l suffix
767 then it's a long. Work out if this has to be a long by
768 shifting right and and seeing if anything remains, and the
769 target int size is different to the target long size.
770
771 In the expression below, we could have tested
772 (n >> gdbarch_int_bit (parse_gdbarch))
773 to see if it was zero,
774 but too many compilers warn about that, when ints and longs
775 are the same size. So we shift it twice, with fewer bits
776 each time, for the same result. */
777
778 if ((gdbarch_int_bit (parse_gdbarch) != gdbarch_long_bit (parse_gdbarch)
779 && ((n >> 2)
780 >> (gdbarch_int_bit (parse_gdbarch)-2))) /* Avoid shift warning */
781 || long_p)
782 {
783 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch)-1);
784 unsigned_type = parse_type->builtin_unsigned_long;
785 signed_type = parse_type->builtin_long;
786 }
787 else
788 {
789 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch)-1);
790 unsigned_type = parse_type->builtin_unsigned_int;
791 signed_type = parse_type->builtin_int;
792 }
793
794 putithere->typed_val.val = n;
795
796 /* If the high bit of the worked out type is set then this number
797 has to be unsigned. */
798
799 if (unsigned_p || (n & high_bit))
800 putithere->typed_val.type = unsigned_type;
801 else
802 putithere->typed_val.type = signed_type;
803
804 return INT;
805 }
806
807 struct token
808 {
809 char *operator;
810 int token;
811 enum exp_opcode opcode;
812 };
813
814 static const struct token dot_ops[] =
815 {
816 { ".and.", BOOL_AND, BINOP_END },
817 { ".AND.", BOOL_AND, BINOP_END },
818 { ".or.", BOOL_OR, BINOP_END },
819 { ".OR.", BOOL_OR, BINOP_END },
820 { ".not.", BOOL_NOT, BINOP_END },
821 { ".NOT.", BOOL_NOT, BINOP_END },
822 { ".eq.", EQUAL, BINOP_END },
823 { ".EQ.", EQUAL, BINOP_END },
824 { ".eqv.", EQUAL, BINOP_END },
825 { ".NEQV.", NOTEQUAL, BINOP_END },
826 { ".neqv.", NOTEQUAL, BINOP_END },
827 { ".EQV.", EQUAL, BINOP_END },
828 { ".ne.", NOTEQUAL, BINOP_END },
829 { ".NE.", NOTEQUAL, BINOP_END },
830 { ".le.", LEQ, BINOP_END },
831 { ".LE.", LEQ, BINOP_END },
832 { ".ge.", GEQ, BINOP_END },
833 { ".GE.", GEQ, BINOP_END },
834 { ".gt.", GREATERTHAN, BINOP_END },
835 { ".GT.", GREATERTHAN, BINOP_END },
836 { ".lt.", LESSTHAN, BINOP_END },
837 { ".LT.", LESSTHAN, BINOP_END },
838 { NULL, 0, 0 }
839 };
840
841 struct f77_boolean_val
842 {
843 char *name;
844 int value;
845 };
846
847 static const struct f77_boolean_val boolean_values[] =
848 {
849 { ".true.", 1 },
850 { ".TRUE.", 1 },
851 { ".false.", 0 },
852 { ".FALSE.", 0 },
853 { NULL, 0 }
854 };
855
856 static const struct token f77_keywords[] =
857 {
858 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
859 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
860 { "character", CHARACTER, BINOP_END },
861 { "integer_2", INT_S2_KEYWORD, BINOP_END },
862 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
863 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
864 { "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
865 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
866 { "integer", INT_KEYWORD, BINOP_END },
867 { "logical", LOGICAL_KEYWORD, BINOP_END },
868 { "real_16", REAL_S16_KEYWORD, BINOP_END },
869 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
870 { "sizeof", SIZEOF, BINOP_END },
871 { "real_8", REAL_S8_KEYWORD, BINOP_END },
872 { "real", REAL_KEYWORD, BINOP_END },
873 { NULL, 0, 0 }
874 };
875
876 /* Implementation of a dynamically expandable buffer for processing input
877 characters acquired through lexptr and building a value to return in
878 yylval. Ripped off from ch-exp.y */
879
880 static char *tempbuf; /* Current buffer contents */
881 static int tempbufsize; /* Size of allocated buffer */
882 static int tempbufindex; /* Current index into buffer */
883
884 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
885
886 #define CHECKBUF(size) \
887 do { \
888 if (tempbufindex + (size) >= tempbufsize) \
889 { \
890 growbuf_by_size (size); \
891 } \
892 } while (0);
893
894
895 /* Grow the static temp buffer if necessary, including allocating the
896 first one on demand. */
897
898 static void
899 growbuf_by_size (count)
900 int count;
901 {
902 int growby;
903
904 growby = max (count, GROWBY_MIN_SIZE);
905 tempbufsize += growby;
906 if (tempbuf == NULL)
907 tempbuf = (char *) malloc (tempbufsize);
908 else
909 tempbuf = (char *) realloc (tempbuf, tempbufsize);
910 }
911
912 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
913 string-literals.
914
915 Recognize a string literal. A string literal is a nonzero sequence
916 of characters enclosed in matching single quotes, except that
917 a single character inside single quotes is a character literal, which
918 we reject as a string literal. To embed the terminator character inside
919 a string, it is simply doubled (I.E. 'this''is''one''string') */
920
921 static int
922 match_string_literal ()
923 {
924 char *tokptr = lexptr;
925
926 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
927 {
928 CHECKBUF (1);
929 if (*tokptr == *lexptr)
930 {
931 if (*(tokptr + 1) == *lexptr)
932 tokptr++;
933 else
934 break;
935 }
936 tempbuf[tempbufindex++] = *tokptr;
937 }
938 if (*tokptr == '\0' /* no terminator */
939 || tempbufindex == 0) /* no string */
940 return 0;
941 else
942 {
943 tempbuf[tempbufindex] = '\0';
944 yylval.sval.ptr = tempbuf;
945 yylval.sval.length = tempbufindex;
946 lexptr = ++tokptr;
947 return STRING_LITERAL;
948 }
949 }
950
951 /* Read one token, getting characters through lexptr. */
952
953 static int
954 yylex ()
955 {
956 int c;
957 int namelen;
958 unsigned int i,token;
959 char *tokstart;
960
961 retry:
962
963 prev_lexptr = lexptr;
964
965 tokstart = lexptr;
966
967 /* First of all, let us make sure we are not dealing with the
968 special tokens .true. and .false. which evaluate to 1 and 0. */
969
970 if (*lexptr == '.')
971 {
972 for (i = 0; boolean_values[i].name != NULL; i++)
973 {
974 if (strncmp (tokstart, boolean_values[i].name,
975 strlen (boolean_values[i].name)) == 0)
976 {
977 lexptr += strlen (boolean_values[i].name);
978 yylval.lval = boolean_values[i].value;
979 return BOOLEAN_LITERAL;
980 }
981 }
982 }
983
984 /* See if it is a special .foo. operator. */
985
986 for (i = 0; dot_ops[i].operator != NULL; i++)
987 if (strncmp (tokstart, dot_ops[i].operator,
988 strlen (dot_ops[i].operator)) == 0)
989 {
990 lexptr += strlen (dot_ops[i].operator);
991 yylval.opcode = dot_ops[i].opcode;
992 return dot_ops[i].token;
993 }
994
995 /* See if it is an exponentiation operator. */
996
997 if (strncmp (tokstart, "**", 2) == 0)
998 {
999 lexptr += 2;
1000 yylval.opcode = BINOP_EXP;
1001 return STARSTAR;
1002 }
1003
1004 switch (c = *tokstart)
1005 {
1006 case 0:
1007 return 0;
1008
1009 case ' ':
1010 case '\t':
1011 case '\n':
1012 lexptr++;
1013 goto retry;
1014
1015 case '\'':
1016 token = match_string_literal ();
1017 if (token != 0)
1018 return (token);
1019 break;
1020
1021 case '(':
1022 paren_depth++;
1023 lexptr++;
1024 return c;
1025
1026 case ')':
1027 if (paren_depth == 0)
1028 return 0;
1029 paren_depth--;
1030 lexptr++;
1031 return c;
1032
1033 case ',':
1034 if (comma_terminates && paren_depth == 0)
1035 return 0;
1036 lexptr++;
1037 return c;
1038
1039 case '.':
1040 /* Might be a floating point number. */
1041 if (lexptr[1] < '0' || lexptr[1] > '9')
1042 goto symbol; /* Nope, must be a symbol. */
1043 /* FALL THRU into number case. */
1044
1045 case '0':
1046 case '1':
1047 case '2':
1048 case '3':
1049 case '4':
1050 case '5':
1051 case '6':
1052 case '7':
1053 case '8':
1054 case '9':
1055 {
1056 /* It's a number. */
1057 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1058 char *p = tokstart;
1059 int hex = input_radix > 10;
1060
1061 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1062 {
1063 p += 2;
1064 hex = 1;
1065 }
1066 else if (c == '0' && (p[1]=='t' || p[1]=='T'
1067 || p[1]=='d' || p[1]=='D'))
1068 {
1069 p += 2;
1070 hex = 0;
1071 }
1072
1073 for (;; ++p)
1074 {
1075 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1076 got_dot = got_e = 1;
1077 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1078 got_dot = got_d = 1;
1079 else if (!hex && !got_dot && *p == '.')
1080 got_dot = 1;
1081 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1082 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1083 && (*p == '-' || *p == '+'))
1084 /* This is the sign of the exponent, not the end of the
1085 number. */
1086 continue;
1087 /* We will take any letters or digits. parse_number will
1088 complain if past the radix, or if L or U are not final. */
1089 else if ((*p < '0' || *p > '9')
1090 && ((*p < 'a' || *p > 'z')
1091 && (*p < 'A' || *p > 'Z')))
1092 break;
1093 }
1094 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1095 &yylval);
1096 if (toktype == ERROR)
1097 {
1098 char *err_copy = (char *) alloca (p - tokstart + 1);
1099
1100 memcpy (err_copy, tokstart, p - tokstart);
1101 err_copy[p - tokstart] = 0;
1102 error ("Invalid number \"%s\".", err_copy);
1103 }
1104 lexptr = p;
1105 return toktype;
1106 }
1107
1108 case '+':
1109 case '-':
1110 case '*':
1111 case '/':
1112 case '%':
1113 case '|':
1114 case '&':
1115 case '^':
1116 case '~':
1117 case '!':
1118 case '@':
1119 case '<':
1120 case '>':
1121 case '[':
1122 case ']':
1123 case '?':
1124 case ':':
1125 case '=':
1126 case '{':
1127 case '}':
1128 symbol:
1129 lexptr++;
1130 return c;
1131 }
1132
1133 if (!(c == '_' || c == '$' || c ==':'
1134 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1135 /* We must have come across a bad character (e.g. ';'). */
1136 error ("Invalid character '%c' in expression.", c);
1137
1138 namelen = 0;
1139 for (c = tokstart[namelen];
1140 (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
1141 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1142 c = tokstart[++namelen]);
1143
1144 /* The token "if" terminates the expression and is NOT
1145 removed from the input stream. */
1146
1147 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1148 return 0;
1149
1150 lexptr += namelen;
1151
1152 /* Catch specific keywords. */
1153
1154 for (i = 0; f77_keywords[i].operator != NULL; i++)
1155 if (strlen (f77_keywords[i].operator) == namelen
1156 && strncmp (tokstart, f77_keywords[i].operator, namelen) == 0)
1157 {
1158 /* lexptr += strlen(f77_keywords[i].operator); */
1159 yylval.opcode = f77_keywords[i].opcode;
1160 return f77_keywords[i].token;
1161 }
1162
1163 yylval.sval.ptr = tokstart;
1164 yylval.sval.length = namelen;
1165
1166 if (*tokstart == '$')
1167 {
1168 write_dollar_variable (yylval.sval);
1169 return VARIABLE;
1170 }
1171
1172 /* Use token-type TYPENAME for symbols that happen to be defined
1173 currently as names of types; NAME for other symbols.
1174 The caller is not constrained to care about the distinction. */
1175 {
1176 char *tmp = copy_name (yylval.sval);
1177 struct symbol *sym;
1178 int is_a_field_of_this = 0;
1179 int hextype;
1180
1181 sym = lookup_symbol (tmp, expression_context_block,
1182 VAR_DOMAIN,
1183 parse_language->la_language == language_cplus
1184 ? &is_a_field_of_this : NULL);
1185 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1186 {
1187 yylval.tsym.type = SYMBOL_TYPE (sym);
1188 return TYPENAME;
1189 }
1190 yylval.tsym.type
1191 = language_lookup_primitive_type_by_name (parse_language,
1192 parse_gdbarch, tmp);
1193 if (yylval.tsym.type != NULL)
1194 return TYPENAME;
1195
1196 /* Input names that aren't symbols but ARE valid hex numbers,
1197 when the input radix permits them, can be names or numbers
1198 depending on the parse. Note we support radixes > 16 here. */
1199 if (!sym
1200 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1201 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1202 {
1203 YYSTYPE newlval; /* Its value is ignored. */
1204 hextype = parse_number (tokstart, namelen, 0, &newlval);
1205 if (hextype == INT)
1206 {
1207 yylval.ssym.sym = sym;
1208 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1209 return NAME_OR_INT;
1210 }
1211 }
1212
1213 /* Any other kind of symbol */
1214 yylval.ssym.sym = sym;
1215 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1216 return NAME;
1217 }
1218 }
1219
1220 void
1221 yyerror (msg)
1222 char *msg;
1223 {
1224 if (prev_lexptr)
1225 lexptr = prev_lexptr;
1226
1227 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1228 }
This page took 0.066911 seconds and 4 git commands to generate.