Remove la_error
[deliverable/binutils-gdb.git] / gdb / f-exp.y
1
2 /* YACC parser for Fortran expressions, for GDB.
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This was blantantly ripped off the C expression parser, please
24 be aware of that as you look at its basic structure -FMB */
25
26 /* Parse a F77 expression from text in a string,
27 and return the result as a struct expression pointer.
28 That structure contains arithmetic operations in reverse polish,
29 with constants represented by operations that are followed by special data.
30 See expression.h for the details of the format.
31 What is important here is that it can be built up sequentially
32 during the process of parsing; the lower levels of the tree always
33 come first in the result.
34
35 Note that malloc's and realloc's in this file are transformed to
36 xmalloc and xrealloc respectively by the same sed command in the
37 makefile that remaps any other malloc/realloc inserted by the parser
38 generator. Doing this with #defines and trying to control the interaction
39 with include files (<malloc.h> and <stdlib.h> for example) just became
40 too messy, particularly when such includes can be inserted at random
41 times by the parser generator. */
42
43 %{
44
45 #include "defs.h"
46 #include "expression.h"
47 #include "value.h"
48 #include "parser-defs.h"
49 #include "language.h"
50 #include "f-lang.h"
51 #include "bfd.h" /* Required by objfiles.h. */
52 #include "symfile.h" /* Required by objfiles.h. */
53 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
54 #include "block.h"
55 #include <ctype.h>
56 #include <algorithm>
57
58 #define parse_type(ps) builtin_type (parse_gdbarch (ps))
59 #define parse_f_type(ps) builtin_f_type (parse_gdbarch (ps))
60
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
62 etc). */
63 #define GDB_YY_REMAP_PREFIX f_
64 #include "yy-remap.h"
65
66 /* The state of the parser, used internally when we are parsing the
67 expression. */
68
69 static struct parser_state *pstate = NULL;
70
71 int yyparse (void);
72
73 static int yylex (void);
74
75 static void yyerror (const char *);
76
77 static void growbuf_by_size (int);
78
79 static int match_string_literal (void);
80
81 %}
82
83 /* Although the yacc "value" of an expression is not used,
84 since the result is stored in the structure being created,
85 other node types do have values. */
86
87 %union
88 {
89 LONGEST lval;
90 struct {
91 LONGEST val;
92 struct type *type;
93 } typed_val;
94 struct {
95 gdb_byte val[16];
96 struct type *type;
97 } typed_val_float;
98 struct symbol *sym;
99 struct type *tval;
100 struct stoken sval;
101 struct ttype tsym;
102 struct symtoken ssym;
103 int voidval;
104 struct block *bval;
105 enum exp_opcode opcode;
106 struct internalvar *ivar;
107
108 struct type **tvec;
109 int *ivec;
110 }
111
112 %{
113 /* YYSTYPE gets defined by %union */
114 static int parse_number (struct parser_state *, const char *, int,
115 int, YYSTYPE *);
116 %}
117
118 %type <voidval> exp type_exp start variable
119 %type <tval> type typebase
120 %type <tvec> nonempty_typelist
121 /* %type <bval> block */
122
123 /* Fancy type parsing. */
124 %type <voidval> func_mod direct_abs_decl abs_decl
125 %type <tval> ptype
126
127 %token <typed_val> INT
128 %token <typed_val_float> FLOAT
129
130 /* Both NAME and TYPENAME tokens represent symbols in the input,
131 and both convey their data as strings.
132 But a TYPENAME is a string that happens to be defined as a typedef
133 or builtin type name (such as int or char)
134 and a NAME is any other symbol.
135 Contexts where this distinction is not important can use the
136 nonterminal "name", which matches either NAME or TYPENAME. */
137
138 %token <sval> STRING_LITERAL
139 %token <lval> BOOLEAN_LITERAL
140 %token <ssym> NAME
141 %token <tsym> TYPENAME
142 %type <sval> name
143 %type <ssym> name_not_typename
144
145 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
146 but which would parse as a valid number in the current input radix.
147 E.g. "c" when input_radix==16. Depending on the parse, it will be
148 turned into a name or into a number. */
149
150 %token <ssym> NAME_OR_INT
151
152 %token SIZEOF
153 %token ERROR
154
155 /* Special type cases, put in to allow the parser to distinguish different
156 legal basetypes. */
157 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
158 %token LOGICAL_S8_KEYWORD
159 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
160 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
161 %token BOOL_AND BOOL_OR BOOL_NOT
162 %token <lval> CHARACTER
163
164 %token <voidval> VARIABLE
165
166 %token <opcode> ASSIGN_MODIFY
167
168 %left ','
169 %left ABOVE_COMMA
170 %right '=' ASSIGN_MODIFY
171 %right '?'
172 %left BOOL_OR
173 %right BOOL_NOT
174 %left BOOL_AND
175 %left '|'
176 %left '^'
177 %left '&'
178 %left EQUAL NOTEQUAL
179 %left LESSTHAN GREATERTHAN LEQ GEQ
180 %left LSH RSH
181 %left '@'
182 %left '+' '-'
183 %left '*' '/'
184 %right STARSTAR
185 %right '%'
186 %right UNARY
187 %right '('
188
189 \f
190 %%
191
192 start : exp
193 | type_exp
194 ;
195
196 type_exp: type
197 { write_exp_elt_opcode (pstate, OP_TYPE);
198 write_exp_elt_type (pstate, $1);
199 write_exp_elt_opcode (pstate, OP_TYPE); }
200 ;
201
202 exp : '(' exp ')'
203 { }
204 ;
205
206 /* Expressions, not including the comma operator. */
207 exp : '*' exp %prec UNARY
208 { write_exp_elt_opcode (pstate, UNOP_IND); }
209 ;
210
211 exp : '&' exp %prec UNARY
212 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
213 ;
214
215 exp : '-' exp %prec UNARY
216 { write_exp_elt_opcode (pstate, UNOP_NEG); }
217 ;
218
219 exp : BOOL_NOT exp %prec UNARY
220 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
221 ;
222
223 exp : '~' exp %prec UNARY
224 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
225 ;
226
227 exp : SIZEOF exp %prec UNARY
228 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
229 ;
230
231 /* No more explicit array operators, we treat everything in F77 as
232 a function call. The disambiguation as to whether we are
233 doing a subscript operation or a function call is done
234 later in eval.c. */
235
236 exp : exp '('
237 { start_arglist (); }
238 arglist ')'
239 { write_exp_elt_opcode (pstate,
240 OP_F77_UNDETERMINED_ARGLIST);
241 write_exp_elt_longcst (pstate,
242 (LONGEST) end_arglist ());
243 write_exp_elt_opcode (pstate,
244 OP_F77_UNDETERMINED_ARGLIST); }
245 ;
246
247 arglist :
248 ;
249
250 arglist : exp
251 { arglist_len = 1; }
252 ;
253
254 arglist : subrange
255 { arglist_len = 1; }
256 ;
257
258 arglist : arglist ',' exp %prec ABOVE_COMMA
259 { arglist_len++; }
260 ;
261
262 /* There are four sorts of subrange types in F90. */
263
264 subrange: exp ':' exp %prec ABOVE_COMMA
265 { write_exp_elt_opcode (pstate, OP_RANGE);
266 write_exp_elt_longcst (pstate, NONE_BOUND_DEFAULT);
267 write_exp_elt_opcode (pstate, OP_RANGE); }
268 ;
269
270 subrange: exp ':' %prec ABOVE_COMMA
271 { write_exp_elt_opcode (pstate, OP_RANGE);
272 write_exp_elt_longcst (pstate, HIGH_BOUND_DEFAULT);
273 write_exp_elt_opcode (pstate, OP_RANGE); }
274 ;
275
276 subrange: ':' exp %prec ABOVE_COMMA
277 { write_exp_elt_opcode (pstate, OP_RANGE);
278 write_exp_elt_longcst (pstate, LOW_BOUND_DEFAULT);
279 write_exp_elt_opcode (pstate, OP_RANGE); }
280 ;
281
282 subrange: ':' %prec ABOVE_COMMA
283 { write_exp_elt_opcode (pstate, OP_RANGE);
284 write_exp_elt_longcst (pstate, BOTH_BOUND_DEFAULT);
285 write_exp_elt_opcode (pstate, OP_RANGE); }
286 ;
287
288 complexnum: exp ',' exp
289 { }
290 ;
291
292 exp : '(' complexnum ')'
293 { write_exp_elt_opcode (pstate, OP_COMPLEX);
294 write_exp_elt_type (pstate,
295 parse_f_type (pstate)
296 ->builtin_complex_s16);
297 write_exp_elt_opcode (pstate, OP_COMPLEX); }
298 ;
299
300 exp : '(' type ')' exp %prec UNARY
301 { write_exp_elt_opcode (pstate, UNOP_CAST);
302 write_exp_elt_type (pstate, $2);
303 write_exp_elt_opcode (pstate, UNOP_CAST); }
304 ;
305
306 exp : exp '%' name
307 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
308 write_exp_string (pstate, $3);
309 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
310 ;
311
312 /* Binary operators in order of decreasing precedence. */
313
314 exp : exp '@' exp
315 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
316 ;
317
318 exp : exp STARSTAR exp
319 { write_exp_elt_opcode (pstate, BINOP_EXP); }
320 ;
321
322 exp : exp '*' exp
323 { write_exp_elt_opcode (pstate, BINOP_MUL); }
324 ;
325
326 exp : exp '/' exp
327 { write_exp_elt_opcode (pstate, BINOP_DIV); }
328 ;
329
330 exp : exp '+' exp
331 { write_exp_elt_opcode (pstate, BINOP_ADD); }
332 ;
333
334 exp : exp '-' exp
335 { write_exp_elt_opcode (pstate, BINOP_SUB); }
336 ;
337
338 exp : exp LSH exp
339 { write_exp_elt_opcode (pstate, BINOP_LSH); }
340 ;
341
342 exp : exp RSH exp
343 { write_exp_elt_opcode (pstate, BINOP_RSH); }
344 ;
345
346 exp : exp EQUAL exp
347 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
348 ;
349
350 exp : exp NOTEQUAL exp
351 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
352 ;
353
354 exp : exp LEQ exp
355 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
356 ;
357
358 exp : exp GEQ exp
359 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
360 ;
361
362 exp : exp LESSTHAN exp
363 { write_exp_elt_opcode (pstate, BINOP_LESS); }
364 ;
365
366 exp : exp GREATERTHAN exp
367 { write_exp_elt_opcode (pstate, BINOP_GTR); }
368 ;
369
370 exp : exp '&' exp
371 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
372 ;
373
374 exp : exp '^' exp
375 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
376 ;
377
378 exp : exp '|' exp
379 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
380 ;
381
382 exp : exp BOOL_AND exp
383 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
384 ;
385
386
387 exp : exp BOOL_OR exp
388 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
389 ;
390
391 exp : exp '=' exp
392 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
393 ;
394
395 exp : exp ASSIGN_MODIFY exp
396 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
397 write_exp_elt_opcode (pstate, $2);
398 write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
399 ;
400
401 exp : INT
402 { write_exp_elt_opcode (pstate, OP_LONG);
403 write_exp_elt_type (pstate, $1.type);
404 write_exp_elt_longcst (pstate, (LONGEST) ($1.val));
405 write_exp_elt_opcode (pstate, OP_LONG); }
406 ;
407
408 exp : NAME_OR_INT
409 { YYSTYPE val;
410 parse_number (pstate, $1.stoken.ptr,
411 $1.stoken.length, 0, &val);
412 write_exp_elt_opcode (pstate, OP_LONG);
413 write_exp_elt_type (pstate, val.typed_val.type);
414 write_exp_elt_longcst (pstate,
415 (LONGEST)val.typed_val.val);
416 write_exp_elt_opcode (pstate, OP_LONG); }
417 ;
418
419 exp : FLOAT
420 { write_exp_elt_opcode (pstate, OP_FLOAT);
421 write_exp_elt_type (pstate, $1.type);
422 write_exp_elt_floatcst (pstate, $1.val);
423 write_exp_elt_opcode (pstate, OP_FLOAT); }
424 ;
425
426 exp : variable
427 ;
428
429 exp : VARIABLE
430 ;
431
432 exp : SIZEOF '(' type ')' %prec UNARY
433 { write_exp_elt_opcode (pstate, OP_LONG);
434 write_exp_elt_type (pstate,
435 parse_f_type (pstate)
436 ->builtin_integer);
437 $3 = check_typedef ($3);
438 write_exp_elt_longcst (pstate,
439 (LONGEST) TYPE_LENGTH ($3));
440 write_exp_elt_opcode (pstate, OP_LONG); }
441 ;
442
443 exp : BOOLEAN_LITERAL
444 { write_exp_elt_opcode (pstate, OP_BOOL);
445 write_exp_elt_longcst (pstate, (LONGEST) $1);
446 write_exp_elt_opcode (pstate, OP_BOOL);
447 }
448 ;
449
450 exp : STRING_LITERAL
451 {
452 write_exp_elt_opcode (pstate, OP_STRING);
453 write_exp_string (pstate, $1);
454 write_exp_elt_opcode (pstate, OP_STRING);
455 }
456 ;
457
458 variable: name_not_typename
459 { struct block_symbol sym = $1.sym;
460
461 if (sym.symbol)
462 {
463 if (symbol_read_needs_frame (sym.symbol))
464 innermost_block.update (sym);
465 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
466 write_exp_elt_block (pstate, sym.block);
467 write_exp_elt_sym (pstate, sym.symbol);
468 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
469 break;
470 }
471 else
472 {
473 struct bound_minimal_symbol msymbol;
474 char *arg = copy_name ($1.stoken);
475
476 msymbol =
477 lookup_bound_minimal_symbol (arg);
478 if (msymbol.minsym != NULL)
479 write_exp_msymbol (pstate, msymbol);
480 else if (!have_full_symbols () && !have_partial_symbols ())
481 error (_("No symbol table is loaded. Use the \"file\" command."));
482 else
483 error (_("No symbol \"%s\" in current context."),
484 copy_name ($1.stoken));
485 }
486 }
487 ;
488
489
490 type : ptype
491 ;
492
493 ptype : typebase
494 | typebase abs_decl
495 {
496 /* This is where the interesting stuff happens. */
497 int done = 0;
498 int array_size;
499 struct type *follow_type = $1;
500 struct type *range_type;
501
502 while (!done)
503 switch (pop_type ())
504 {
505 case tp_end:
506 done = 1;
507 break;
508 case tp_pointer:
509 follow_type = lookup_pointer_type (follow_type);
510 break;
511 case tp_reference:
512 follow_type = lookup_lvalue_reference_type (follow_type);
513 break;
514 case tp_array:
515 array_size = pop_type_int ();
516 if (array_size != -1)
517 {
518 range_type =
519 create_static_range_type ((struct type *) NULL,
520 parse_f_type (pstate)
521 ->builtin_integer,
522 0, array_size - 1);
523 follow_type =
524 create_array_type ((struct type *) NULL,
525 follow_type, range_type);
526 }
527 else
528 follow_type = lookup_pointer_type (follow_type);
529 break;
530 case tp_function:
531 follow_type = lookup_function_type (follow_type);
532 break;
533 }
534 $$ = follow_type;
535 }
536 ;
537
538 abs_decl: '*'
539 { push_type (tp_pointer); $$ = 0; }
540 | '*' abs_decl
541 { push_type (tp_pointer); $$ = $2; }
542 | '&'
543 { push_type (tp_reference); $$ = 0; }
544 | '&' abs_decl
545 { push_type (tp_reference); $$ = $2; }
546 | direct_abs_decl
547 ;
548
549 direct_abs_decl: '(' abs_decl ')'
550 { $$ = $2; }
551 | direct_abs_decl func_mod
552 { push_type (tp_function); }
553 | func_mod
554 { push_type (tp_function); }
555 ;
556
557 func_mod: '(' ')'
558 { $$ = 0; }
559 | '(' nonempty_typelist ')'
560 { free ($2); $$ = 0; }
561 ;
562
563 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
564 : TYPENAME
565 { $$ = $1.type; }
566 | INT_KEYWORD
567 { $$ = parse_f_type (pstate)->builtin_integer; }
568 | INT_S2_KEYWORD
569 { $$ = parse_f_type (pstate)->builtin_integer_s2; }
570 | CHARACTER
571 { $$ = parse_f_type (pstate)->builtin_character; }
572 | LOGICAL_S8_KEYWORD
573 { $$ = parse_f_type (pstate)->builtin_logical_s8; }
574 | LOGICAL_KEYWORD
575 { $$ = parse_f_type (pstate)->builtin_logical; }
576 | LOGICAL_S2_KEYWORD
577 { $$ = parse_f_type (pstate)->builtin_logical_s2; }
578 | LOGICAL_S1_KEYWORD
579 { $$ = parse_f_type (pstate)->builtin_logical_s1; }
580 | REAL_KEYWORD
581 { $$ = parse_f_type (pstate)->builtin_real; }
582 | REAL_S8_KEYWORD
583 { $$ = parse_f_type (pstate)->builtin_real_s8; }
584 | REAL_S16_KEYWORD
585 { $$ = parse_f_type (pstate)->builtin_real_s16; }
586 | COMPLEX_S8_KEYWORD
587 { $$ = parse_f_type (pstate)->builtin_complex_s8; }
588 | COMPLEX_S16_KEYWORD
589 { $$ = parse_f_type (pstate)->builtin_complex_s16; }
590 | COMPLEX_S32_KEYWORD
591 { $$ = parse_f_type (pstate)->builtin_complex_s32; }
592 ;
593
594 nonempty_typelist
595 : type
596 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
597 $<ivec>$[0] = 1; /* Number of types in vector */
598 $$[1] = $1;
599 }
600 | nonempty_typelist ',' type
601 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
602 $$ = (struct type **) realloc ((char *) $1, len);
603 $$[$<ivec>$[0]] = $3;
604 }
605 ;
606
607 name : NAME
608 { $$ = $1.stoken; }
609 ;
610
611 name_not_typename : NAME
612 /* These would be useful if name_not_typename was useful, but it is just
613 a fake for "variable", so these cause reduce/reduce conflicts because
614 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
615 =exp) or just an exp. If name_not_typename was ever used in an lvalue
616 context where only a name could occur, this might be useful.
617 | NAME_OR_INT
618 */
619 ;
620
621 %%
622
623 /* Take care of parsing a number (anything that starts with a digit).
624 Set yylval and return the token type; update lexptr.
625 LEN is the number of characters in it. */
626
627 /*** Needs some error checking for the float case ***/
628
629 static int
630 parse_number (struct parser_state *par_state,
631 const char *p, int len, int parsed_float, YYSTYPE *putithere)
632 {
633 LONGEST n = 0;
634 LONGEST prevn = 0;
635 int c;
636 int base = input_radix;
637 int unsigned_p = 0;
638 int long_p = 0;
639 ULONGEST high_bit;
640 struct type *signed_type;
641 struct type *unsigned_type;
642
643 if (parsed_float)
644 {
645 /* It's a float since it contains a point or an exponent. */
646 /* [dD] is not understood as an exponent by parse_float,
647 change it to 'e'. */
648 char *tmp, *tmp2;
649
650 tmp = xstrdup (p);
651 for (tmp2 = tmp; *tmp2; ++tmp2)
652 if (*tmp2 == 'd' || *tmp2 == 'D')
653 *tmp2 = 'e';
654
655 /* FIXME: Should this use different types? */
656 putithere->typed_val_float.type = parse_f_type (pstate)->builtin_real_s8;
657 bool parsed = parse_float (tmp, len,
658 putithere->typed_val_float.type,
659 putithere->typed_val_float.val);
660 free (tmp);
661 return parsed? FLOAT : ERROR;
662 }
663
664 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
665 if (p[0] == '0')
666 switch (p[1])
667 {
668 case 'x':
669 case 'X':
670 if (len >= 3)
671 {
672 p += 2;
673 base = 16;
674 len -= 2;
675 }
676 break;
677
678 case 't':
679 case 'T':
680 case 'd':
681 case 'D':
682 if (len >= 3)
683 {
684 p += 2;
685 base = 10;
686 len -= 2;
687 }
688 break;
689
690 default:
691 base = 8;
692 break;
693 }
694
695 while (len-- > 0)
696 {
697 c = *p++;
698 if (isupper (c))
699 c = tolower (c);
700 if (len == 0 && c == 'l')
701 long_p = 1;
702 else if (len == 0 && c == 'u')
703 unsigned_p = 1;
704 else
705 {
706 int i;
707 if (c >= '0' && c <= '9')
708 i = c - '0';
709 else if (c >= 'a' && c <= 'f')
710 i = c - 'a' + 10;
711 else
712 return ERROR; /* Char not a digit */
713 if (i >= base)
714 return ERROR; /* Invalid digit in this base */
715 n *= base;
716 n += i;
717 }
718 /* Portably test for overflow (only works for nonzero values, so make
719 a second check for zero). */
720 if ((prevn >= n) && n != 0)
721 unsigned_p=1; /* Try something unsigned */
722 /* If range checking enabled, portably test for unsigned overflow. */
723 if (RANGE_CHECK && n != 0)
724 {
725 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
726 range_error (_("Overflow on numeric constant."));
727 }
728 prevn = n;
729 }
730
731 /* If the number is too big to be an int, or it's got an l suffix
732 then it's a long. Work out if this has to be a long by
733 shifting right and seeing if anything remains, and the
734 target int size is different to the target long size.
735
736 In the expression below, we could have tested
737 (n >> gdbarch_int_bit (parse_gdbarch))
738 to see if it was zero,
739 but too many compilers warn about that, when ints and longs
740 are the same size. So we shift it twice, with fewer bits
741 each time, for the same result. */
742
743 if ((gdbarch_int_bit (parse_gdbarch (par_state))
744 != gdbarch_long_bit (parse_gdbarch (par_state))
745 && ((n >> 2)
746 >> (gdbarch_int_bit (parse_gdbarch (par_state))-2))) /* Avoid
747 shift warning */
748 || long_p)
749 {
750 high_bit = ((ULONGEST)1)
751 << (gdbarch_long_bit (parse_gdbarch (par_state))-1);
752 unsigned_type = parse_type (par_state)->builtin_unsigned_long;
753 signed_type = parse_type (par_state)->builtin_long;
754 }
755 else
756 {
757 high_bit =
758 ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch (par_state)) - 1);
759 unsigned_type = parse_type (par_state)->builtin_unsigned_int;
760 signed_type = parse_type (par_state)->builtin_int;
761 }
762
763 putithere->typed_val.val = n;
764
765 /* If the high bit of the worked out type is set then this number
766 has to be unsigned. */
767
768 if (unsigned_p || (n & high_bit))
769 putithere->typed_val.type = unsigned_type;
770 else
771 putithere->typed_val.type = signed_type;
772
773 return INT;
774 }
775
776 struct token
777 {
778 const char *oper;
779 int token;
780 enum exp_opcode opcode;
781 };
782
783 static const struct token dot_ops[] =
784 {
785 { ".and.", BOOL_AND, BINOP_END },
786 { ".AND.", BOOL_AND, BINOP_END },
787 { ".or.", BOOL_OR, BINOP_END },
788 { ".OR.", BOOL_OR, BINOP_END },
789 { ".not.", BOOL_NOT, BINOP_END },
790 { ".NOT.", BOOL_NOT, BINOP_END },
791 { ".eq.", EQUAL, BINOP_END },
792 { ".EQ.", EQUAL, BINOP_END },
793 { ".eqv.", EQUAL, BINOP_END },
794 { ".NEQV.", NOTEQUAL, BINOP_END },
795 { ".neqv.", NOTEQUAL, BINOP_END },
796 { ".EQV.", EQUAL, BINOP_END },
797 { ".ne.", NOTEQUAL, BINOP_END },
798 { ".NE.", NOTEQUAL, BINOP_END },
799 { ".le.", LEQ, BINOP_END },
800 { ".LE.", LEQ, BINOP_END },
801 { ".ge.", GEQ, BINOP_END },
802 { ".GE.", GEQ, BINOP_END },
803 { ".gt.", GREATERTHAN, BINOP_END },
804 { ".GT.", GREATERTHAN, BINOP_END },
805 { ".lt.", LESSTHAN, BINOP_END },
806 { ".LT.", LESSTHAN, BINOP_END },
807 { NULL, 0, BINOP_END }
808 };
809
810 struct f77_boolean_val
811 {
812 const char *name;
813 int value;
814 };
815
816 static const struct f77_boolean_val boolean_values[] =
817 {
818 { ".true.", 1 },
819 { ".TRUE.", 1 },
820 { ".false.", 0 },
821 { ".FALSE.", 0 },
822 { NULL, 0 }
823 };
824
825 static const struct token f77_keywords[] =
826 {
827 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
828 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
829 { "character", CHARACTER, BINOP_END },
830 { "integer_2", INT_S2_KEYWORD, BINOP_END },
831 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
832 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
833 { "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
834 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
835 { "integer", INT_KEYWORD, BINOP_END },
836 { "logical", LOGICAL_KEYWORD, BINOP_END },
837 { "real_16", REAL_S16_KEYWORD, BINOP_END },
838 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
839 { "sizeof", SIZEOF, BINOP_END },
840 { "real_8", REAL_S8_KEYWORD, BINOP_END },
841 { "real", REAL_KEYWORD, BINOP_END },
842 { NULL, 0, BINOP_END }
843 };
844
845 /* Implementation of a dynamically expandable buffer for processing input
846 characters acquired through lexptr and building a value to return in
847 yylval. Ripped off from ch-exp.y */
848
849 static char *tempbuf; /* Current buffer contents */
850 static int tempbufsize; /* Size of allocated buffer */
851 static int tempbufindex; /* Current index into buffer */
852
853 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
854
855 #define CHECKBUF(size) \
856 do { \
857 if (tempbufindex + (size) >= tempbufsize) \
858 { \
859 growbuf_by_size (size); \
860 } \
861 } while (0);
862
863
864 /* Grow the static temp buffer if necessary, including allocating the
865 first one on demand. */
866
867 static void
868 growbuf_by_size (int count)
869 {
870 int growby;
871
872 growby = std::max (count, GROWBY_MIN_SIZE);
873 tempbufsize += growby;
874 if (tempbuf == NULL)
875 tempbuf = (char *) malloc (tempbufsize);
876 else
877 tempbuf = (char *) realloc (tempbuf, tempbufsize);
878 }
879
880 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
881 string-literals.
882
883 Recognize a string literal. A string literal is a nonzero sequence
884 of characters enclosed in matching single quotes, except that
885 a single character inside single quotes is a character literal, which
886 we reject as a string literal. To embed the terminator character inside
887 a string, it is simply doubled (I.E. 'this''is''one''string') */
888
889 static int
890 match_string_literal (void)
891 {
892 const char *tokptr = lexptr;
893
894 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
895 {
896 CHECKBUF (1);
897 if (*tokptr == *lexptr)
898 {
899 if (*(tokptr + 1) == *lexptr)
900 tokptr++;
901 else
902 break;
903 }
904 tempbuf[tempbufindex++] = *tokptr;
905 }
906 if (*tokptr == '\0' /* no terminator */
907 || tempbufindex == 0) /* no string */
908 return 0;
909 else
910 {
911 tempbuf[tempbufindex] = '\0';
912 yylval.sval.ptr = tempbuf;
913 yylval.sval.length = tempbufindex;
914 lexptr = ++tokptr;
915 return STRING_LITERAL;
916 }
917 }
918
919 /* Read one token, getting characters through lexptr. */
920
921 static int
922 yylex (void)
923 {
924 int c;
925 int namelen;
926 unsigned int i,token;
927 const char *tokstart;
928
929 retry:
930
931 prev_lexptr = lexptr;
932
933 tokstart = lexptr;
934
935 /* First of all, let us make sure we are not dealing with the
936 special tokens .true. and .false. which evaluate to 1 and 0. */
937
938 if (*lexptr == '.')
939 {
940 for (i = 0; boolean_values[i].name != NULL; i++)
941 {
942 if (strncmp (tokstart, boolean_values[i].name,
943 strlen (boolean_values[i].name)) == 0)
944 {
945 lexptr += strlen (boolean_values[i].name);
946 yylval.lval = boolean_values[i].value;
947 return BOOLEAN_LITERAL;
948 }
949 }
950 }
951
952 /* See if it is a special .foo. operator. */
953
954 for (i = 0; dot_ops[i].oper != NULL; i++)
955 if (strncmp (tokstart, dot_ops[i].oper,
956 strlen (dot_ops[i].oper)) == 0)
957 {
958 lexptr += strlen (dot_ops[i].oper);
959 yylval.opcode = dot_ops[i].opcode;
960 return dot_ops[i].token;
961 }
962
963 /* See if it is an exponentiation operator. */
964
965 if (strncmp (tokstart, "**", 2) == 0)
966 {
967 lexptr += 2;
968 yylval.opcode = BINOP_EXP;
969 return STARSTAR;
970 }
971
972 switch (c = *tokstart)
973 {
974 case 0:
975 return 0;
976
977 case ' ':
978 case '\t':
979 case '\n':
980 lexptr++;
981 goto retry;
982
983 case '\'':
984 token = match_string_literal ();
985 if (token != 0)
986 return (token);
987 break;
988
989 case '(':
990 paren_depth++;
991 lexptr++;
992 return c;
993
994 case ')':
995 if (paren_depth == 0)
996 return 0;
997 paren_depth--;
998 lexptr++;
999 return c;
1000
1001 case ',':
1002 if (comma_terminates && paren_depth == 0)
1003 return 0;
1004 lexptr++;
1005 return c;
1006
1007 case '.':
1008 /* Might be a floating point number. */
1009 if (lexptr[1] < '0' || lexptr[1] > '9')
1010 goto symbol; /* Nope, must be a symbol. */
1011 /* FALL THRU. */
1012
1013 case '0':
1014 case '1':
1015 case '2':
1016 case '3':
1017 case '4':
1018 case '5':
1019 case '6':
1020 case '7':
1021 case '8':
1022 case '9':
1023 {
1024 /* It's a number. */
1025 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1026 const char *p = tokstart;
1027 int hex = input_radix > 10;
1028
1029 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1030 {
1031 p += 2;
1032 hex = 1;
1033 }
1034 else if (c == '0' && (p[1]=='t' || p[1]=='T'
1035 || p[1]=='d' || p[1]=='D'))
1036 {
1037 p += 2;
1038 hex = 0;
1039 }
1040
1041 for (;; ++p)
1042 {
1043 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1044 got_dot = got_e = 1;
1045 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1046 got_dot = got_d = 1;
1047 else if (!hex && !got_dot && *p == '.')
1048 got_dot = 1;
1049 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1050 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1051 && (*p == '-' || *p == '+'))
1052 /* This is the sign of the exponent, not the end of the
1053 number. */
1054 continue;
1055 /* We will take any letters or digits. parse_number will
1056 complain if past the radix, or if L or U are not final. */
1057 else if ((*p < '0' || *p > '9')
1058 && ((*p < 'a' || *p > 'z')
1059 && (*p < 'A' || *p > 'Z')))
1060 break;
1061 }
1062 toktype = parse_number (pstate, tokstart, p - tokstart,
1063 got_dot|got_e|got_d,
1064 &yylval);
1065 if (toktype == ERROR)
1066 {
1067 char *err_copy = (char *) alloca (p - tokstart + 1);
1068
1069 memcpy (err_copy, tokstart, p - tokstart);
1070 err_copy[p - tokstart] = 0;
1071 error (_("Invalid number \"%s\"."), err_copy);
1072 }
1073 lexptr = p;
1074 return toktype;
1075 }
1076
1077 case '+':
1078 case '-':
1079 case '*':
1080 case '/':
1081 case '%':
1082 case '|':
1083 case '&':
1084 case '^':
1085 case '~':
1086 case '!':
1087 case '@':
1088 case '<':
1089 case '>':
1090 case '[':
1091 case ']':
1092 case '?':
1093 case ':':
1094 case '=':
1095 case '{':
1096 case '}':
1097 symbol:
1098 lexptr++;
1099 return c;
1100 }
1101
1102 if (!(c == '_' || c == '$' || c ==':'
1103 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1104 /* We must have come across a bad character (e.g. ';'). */
1105 error (_("Invalid character '%c' in expression."), c);
1106
1107 namelen = 0;
1108 for (c = tokstart[namelen];
1109 (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
1110 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1111 c = tokstart[++namelen]);
1112
1113 /* The token "if" terminates the expression and is NOT
1114 removed from the input stream. */
1115
1116 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1117 return 0;
1118
1119 lexptr += namelen;
1120
1121 /* Catch specific keywords. */
1122
1123 for (i = 0; f77_keywords[i].oper != NULL; i++)
1124 if (strlen (f77_keywords[i].oper) == namelen
1125 && strncmp (tokstart, f77_keywords[i].oper, namelen) == 0)
1126 {
1127 /* lexptr += strlen(f77_keywords[i].operator); */
1128 yylval.opcode = f77_keywords[i].opcode;
1129 return f77_keywords[i].token;
1130 }
1131
1132 yylval.sval.ptr = tokstart;
1133 yylval.sval.length = namelen;
1134
1135 if (*tokstart == '$')
1136 {
1137 write_dollar_variable (pstate, yylval.sval);
1138 return VARIABLE;
1139 }
1140
1141 /* Use token-type TYPENAME for symbols that happen to be defined
1142 currently as names of types; NAME for other symbols.
1143 The caller is not constrained to care about the distinction. */
1144 {
1145 char *tmp = copy_name (yylval.sval);
1146 struct block_symbol result;
1147 struct field_of_this_result is_a_field_of_this;
1148 enum domain_enum_tag lookup_domains[] =
1149 {
1150 STRUCT_DOMAIN,
1151 VAR_DOMAIN,
1152 MODULE_DOMAIN
1153 };
1154 int i;
1155 int hextype;
1156
1157 for (i = 0; i < ARRAY_SIZE (lookup_domains); ++i)
1158 {
1159 /* Initialize this in case we *don't* use it in this call; that
1160 way we can refer to it unconditionally below. */
1161 memset (&is_a_field_of_this, 0, sizeof (is_a_field_of_this));
1162
1163 result = lookup_symbol (tmp, expression_context_block,
1164 lookup_domains[i],
1165 parse_language (pstate)->la_language
1166 == language_cplus
1167 ? &is_a_field_of_this : NULL);
1168 if (result.symbol && SYMBOL_CLASS (result.symbol) == LOC_TYPEDEF)
1169 {
1170 yylval.tsym.type = SYMBOL_TYPE (result.symbol);
1171 return TYPENAME;
1172 }
1173
1174 if (result.symbol)
1175 break;
1176 }
1177
1178 yylval.tsym.type
1179 = language_lookup_primitive_type (parse_language (pstate),
1180 parse_gdbarch (pstate), tmp);
1181 if (yylval.tsym.type != NULL)
1182 return TYPENAME;
1183
1184 /* Input names that aren't symbols but ARE valid hex numbers,
1185 when the input radix permits them, can be names or numbers
1186 depending on the parse. Note we support radixes > 16 here. */
1187 if (!result.symbol
1188 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1189 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1190 {
1191 YYSTYPE newlval; /* Its value is ignored. */
1192 hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
1193 if (hextype == INT)
1194 {
1195 yylval.ssym.sym = result;
1196 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1197 return NAME_OR_INT;
1198 }
1199 }
1200
1201 /* Any other kind of symbol */
1202 yylval.ssym.sym = result;
1203 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1204 return NAME;
1205 }
1206 }
1207
1208 int
1209 f_parse (struct parser_state *par_state)
1210 {
1211 /* Setting up the parser state. */
1212 scoped_restore pstate_restore = make_scoped_restore (&pstate);
1213 gdb_assert (par_state != NULL);
1214 pstate = par_state;
1215
1216 return yyparse ();
1217 }
1218
1219 static void
1220 yyerror (const char *msg)
1221 {
1222 if (prev_lexptr)
1223 lexptr = prev_lexptr;
1224
1225 error (_("A %s in expression, near `%s'."), msg, lexptr);
1226 }
This page took 0.073219 seconds and 5 git commands to generate.