Turn parse_language into a method
[deliverable/binutils-gdb.git] / gdb / f-exp.y
1
2 /* YACC parser for Fortran expressions, for GDB.
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* This was blantantly ripped off the C expression parser, please
24 be aware of that as you look at its basic structure -FMB */
25
26 /* Parse a F77 expression from text in a string,
27 and return the result as a struct expression pointer.
28 That structure contains arithmetic operations in reverse polish,
29 with constants represented by operations that are followed by special data.
30 See expression.h for the details of the format.
31 What is important here is that it can be built up sequentially
32 during the process of parsing; the lower levels of the tree always
33 come first in the result.
34
35 Note that malloc's and realloc's in this file are transformed to
36 xmalloc and xrealloc respectively by the same sed command in the
37 makefile that remaps any other malloc/realloc inserted by the parser
38 generator. Doing this with #defines and trying to control the interaction
39 with include files (<malloc.h> and <stdlib.h> for example) just became
40 too messy, particularly when such includes can be inserted at random
41 times by the parser generator. */
42
43 %{
44
45 #include "defs.h"
46 #include "expression.h"
47 #include "value.h"
48 #include "parser-defs.h"
49 #include "language.h"
50 #include "f-lang.h"
51 #include "bfd.h" /* Required by objfiles.h. */
52 #include "symfile.h" /* Required by objfiles.h. */
53 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
54 #include "block.h"
55 #include <ctype.h>
56 #include <algorithm>
57
58 #define parse_type(ps) builtin_type (ps->gdbarch ())
59 #define parse_f_type(ps) builtin_f_type (ps->gdbarch ())
60
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
62 etc). */
63 #define GDB_YY_REMAP_PREFIX f_
64 #include "yy-remap.h"
65
66 /* The state of the parser, used internally when we are parsing the
67 expression. */
68
69 static struct parser_state *pstate = NULL;
70
71 int yyparse (void);
72
73 static int yylex (void);
74
75 static void yyerror (const char *);
76
77 static void growbuf_by_size (int);
78
79 static int match_string_literal (void);
80
81 static void push_kind_type (LONGEST val, struct type *type);
82
83 static struct type *convert_to_kind_type (struct type *basetype, int kind);
84
85 %}
86
87 /* Although the yacc "value" of an expression is not used,
88 since the result is stored in the structure being created,
89 other node types do have values. */
90
91 %union
92 {
93 LONGEST lval;
94 struct {
95 LONGEST val;
96 struct type *type;
97 } typed_val;
98 struct {
99 gdb_byte val[16];
100 struct type *type;
101 } typed_val_float;
102 struct symbol *sym;
103 struct type *tval;
104 struct stoken sval;
105 struct ttype tsym;
106 struct symtoken ssym;
107 int voidval;
108 enum exp_opcode opcode;
109 struct internalvar *ivar;
110
111 struct type **tvec;
112 int *ivec;
113 }
114
115 %{
116 /* YYSTYPE gets defined by %union */
117 static int parse_number (struct parser_state *, const char *, int,
118 int, YYSTYPE *);
119 %}
120
121 %type <voidval> exp type_exp start variable
122 %type <tval> type typebase
123 %type <tvec> nonempty_typelist
124 /* %type <bval> block */
125
126 /* Fancy type parsing. */
127 %type <voidval> func_mod direct_abs_decl abs_decl
128 %type <tval> ptype
129
130 %token <typed_val> INT
131 %token <typed_val_float> FLOAT
132
133 /* Both NAME and TYPENAME tokens represent symbols in the input,
134 and both convey their data as strings.
135 But a TYPENAME is a string that happens to be defined as a typedef
136 or builtin type name (such as int or char)
137 and a NAME is any other symbol.
138 Contexts where this distinction is not important can use the
139 nonterminal "name", which matches either NAME or TYPENAME. */
140
141 %token <sval> STRING_LITERAL
142 %token <lval> BOOLEAN_LITERAL
143 %token <ssym> NAME
144 %token <tsym> TYPENAME
145 %type <sval> name
146 %type <ssym> name_not_typename
147
148 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
149 but which would parse as a valid number in the current input radix.
150 E.g. "c" when input_radix==16. Depending on the parse, it will be
151 turned into a name or into a number. */
152
153 %token <ssym> NAME_OR_INT
154
155 %token SIZEOF KIND
156 %token ERROR
157
158 /* Special type cases, put in to allow the parser to distinguish different
159 legal basetypes. */
160 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
161 %token LOGICAL_S8_KEYWORD
162 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
163 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
164 %token BOOL_AND BOOL_OR BOOL_NOT
165 %token <lval> CHARACTER
166
167 %token <voidval> DOLLAR_VARIABLE
168
169 %token <opcode> ASSIGN_MODIFY
170 %token <opcode> UNOP_INTRINSIC
171
172 %left ','
173 %left ABOVE_COMMA
174 %right '=' ASSIGN_MODIFY
175 %right '?'
176 %left BOOL_OR
177 %right BOOL_NOT
178 %left BOOL_AND
179 %left '|'
180 %left '^'
181 %left '&'
182 %left EQUAL NOTEQUAL
183 %left LESSTHAN GREATERTHAN LEQ GEQ
184 %left LSH RSH
185 %left '@'
186 %left '+' '-'
187 %left '*' '/'
188 %right STARSTAR
189 %right '%'
190 %right UNARY
191 %right '('
192
193 \f
194 %%
195
196 start : exp
197 | type_exp
198 ;
199
200 type_exp: type
201 { write_exp_elt_opcode (pstate, OP_TYPE);
202 write_exp_elt_type (pstate, $1);
203 write_exp_elt_opcode (pstate, OP_TYPE); }
204 ;
205
206 exp : '(' exp ')'
207 { }
208 ;
209
210 /* Expressions, not including the comma operator. */
211 exp : '*' exp %prec UNARY
212 { write_exp_elt_opcode (pstate, UNOP_IND); }
213 ;
214
215 exp : '&' exp %prec UNARY
216 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
217 ;
218
219 exp : '-' exp %prec UNARY
220 { write_exp_elt_opcode (pstate, UNOP_NEG); }
221 ;
222
223 exp : BOOL_NOT exp %prec UNARY
224 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
225 ;
226
227 exp : '~' exp %prec UNARY
228 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
229 ;
230
231 exp : SIZEOF exp %prec UNARY
232 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
233 ;
234
235 exp : KIND '(' exp ')' %prec UNARY
236 { write_exp_elt_opcode (pstate, UNOP_KIND); }
237 ;
238
239 /* No more explicit array operators, we treat everything in F77 as
240 a function call. The disambiguation as to whether we are
241 doing a subscript operation or a function call is done
242 later in eval.c. */
243
244 exp : exp '('
245 { start_arglist (); }
246 arglist ')'
247 { write_exp_elt_opcode (pstate,
248 OP_F77_UNDETERMINED_ARGLIST);
249 write_exp_elt_longcst (pstate,
250 (LONGEST) end_arglist ());
251 write_exp_elt_opcode (pstate,
252 OP_F77_UNDETERMINED_ARGLIST); }
253 ;
254
255 exp : UNOP_INTRINSIC '(' exp ')'
256 { write_exp_elt_opcode (pstate, $1); }
257 ;
258
259 arglist :
260 ;
261
262 arglist : exp
263 { arglist_len = 1; }
264 ;
265
266 arglist : subrange
267 { arglist_len = 1; }
268 ;
269
270 arglist : arglist ',' exp %prec ABOVE_COMMA
271 { arglist_len++; }
272 ;
273
274 /* There are four sorts of subrange types in F90. */
275
276 subrange: exp ':' exp %prec ABOVE_COMMA
277 { write_exp_elt_opcode (pstate, OP_RANGE);
278 write_exp_elt_longcst (pstate, NONE_BOUND_DEFAULT);
279 write_exp_elt_opcode (pstate, OP_RANGE); }
280 ;
281
282 subrange: exp ':' %prec ABOVE_COMMA
283 { write_exp_elt_opcode (pstate, OP_RANGE);
284 write_exp_elt_longcst (pstate, HIGH_BOUND_DEFAULT);
285 write_exp_elt_opcode (pstate, OP_RANGE); }
286 ;
287
288 subrange: ':' exp %prec ABOVE_COMMA
289 { write_exp_elt_opcode (pstate, OP_RANGE);
290 write_exp_elt_longcst (pstate, LOW_BOUND_DEFAULT);
291 write_exp_elt_opcode (pstate, OP_RANGE); }
292 ;
293
294 subrange: ':' %prec ABOVE_COMMA
295 { write_exp_elt_opcode (pstate, OP_RANGE);
296 write_exp_elt_longcst (pstate, BOTH_BOUND_DEFAULT);
297 write_exp_elt_opcode (pstate, OP_RANGE); }
298 ;
299
300 complexnum: exp ',' exp
301 { }
302 ;
303
304 exp : '(' complexnum ')'
305 { write_exp_elt_opcode (pstate, OP_COMPLEX);
306 write_exp_elt_type (pstate,
307 parse_f_type (pstate)
308 ->builtin_complex_s16);
309 write_exp_elt_opcode (pstate, OP_COMPLEX); }
310 ;
311
312 exp : '(' type ')' exp %prec UNARY
313 { write_exp_elt_opcode (pstate, UNOP_CAST);
314 write_exp_elt_type (pstate, $2);
315 write_exp_elt_opcode (pstate, UNOP_CAST); }
316 ;
317
318 exp : exp '%' name
319 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
320 write_exp_string (pstate, $3);
321 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
322 ;
323
324 /* Binary operators in order of decreasing precedence. */
325
326 exp : exp '@' exp
327 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
328 ;
329
330 exp : exp STARSTAR exp
331 { write_exp_elt_opcode (pstate, BINOP_EXP); }
332 ;
333
334 exp : exp '*' exp
335 { write_exp_elt_opcode (pstate, BINOP_MUL); }
336 ;
337
338 exp : exp '/' exp
339 { write_exp_elt_opcode (pstate, BINOP_DIV); }
340 ;
341
342 exp : exp '+' exp
343 { write_exp_elt_opcode (pstate, BINOP_ADD); }
344 ;
345
346 exp : exp '-' exp
347 { write_exp_elt_opcode (pstate, BINOP_SUB); }
348 ;
349
350 exp : exp LSH exp
351 { write_exp_elt_opcode (pstate, BINOP_LSH); }
352 ;
353
354 exp : exp RSH exp
355 { write_exp_elt_opcode (pstate, BINOP_RSH); }
356 ;
357
358 exp : exp EQUAL exp
359 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
360 ;
361
362 exp : exp NOTEQUAL exp
363 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
364 ;
365
366 exp : exp LEQ exp
367 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
368 ;
369
370 exp : exp GEQ exp
371 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
372 ;
373
374 exp : exp LESSTHAN exp
375 { write_exp_elt_opcode (pstate, BINOP_LESS); }
376 ;
377
378 exp : exp GREATERTHAN exp
379 { write_exp_elt_opcode (pstate, BINOP_GTR); }
380 ;
381
382 exp : exp '&' exp
383 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
384 ;
385
386 exp : exp '^' exp
387 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
388 ;
389
390 exp : exp '|' exp
391 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
392 ;
393
394 exp : exp BOOL_AND exp
395 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
396 ;
397
398
399 exp : exp BOOL_OR exp
400 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
401 ;
402
403 exp : exp '=' exp
404 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
405 ;
406
407 exp : exp ASSIGN_MODIFY exp
408 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
409 write_exp_elt_opcode (pstate, $2);
410 write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
411 ;
412
413 exp : INT
414 { write_exp_elt_opcode (pstate, OP_LONG);
415 write_exp_elt_type (pstate, $1.type);
416 write_exp_elt_longcst (pstate, (LONGEST) ($1.val));
417 write_exp_elt_opcode (pstate, OP_LONG); }
418 ;
419
420 exp : NAME_OR_INT
421 { YYSTYPE val;
422 parse_number (pstate, $1.stoken.ptr,
423 $1.stoken.length, 0, &val);
424 write_exp_elt_opcode (pstate, OP_LONG);
425 write_exp_elt_type (pstate, val.typed_val.type);
426 write_exp_elt_longcst (pstate,
427 (LONGEST)val.typed_val.val);
428 write_exp_elt_opcode (pstate, OP_LONG); }
429 ;
430
431 exp : FLOAT
432 { write_exp_elt_opcode (pstate, OP_FLOAT);
433 write_exp_elt_type (pstate, $1.type);
434 write_exp_elt_floatcst (pstate, $1.val);
435 write_exp_elt_opcode (pstate, OP_FLOAT); }
436 ;
437
438 exp : variable
439 ;
440
441 exp : DOLLAR_VARIABLE
442 ;
443
444 exp : SIZEOF '(' type ')' %prec UNARY
445 { write_exp_elt_opcode (pstate, OP_LONG);
446 write_exp_elt_type (pstate,
447 parse_f_type (pstate)
448 ->builtin_integer);
449 $3 = check_typedef ($3);
450 write_exp_elt_longcst (pstate,
451 (LONGEST) TYPE_LENGTH ($3));
452 write_exp_elt_opcode (pstate, OP_LONG); }
453 ;
454
455 exp : BOOLEAN_LITERAL
456 { write_exp_elt_opcode (pstate, OP_BOOL);
457 write_exp_elt_longcst (pstate, (LONGEST) $1);
458 write_exp_elt_opcode (pstate, OP_BOOL);
459 }
460 ;
461
462 exp : STRING_LITERAL
463 {
464 write_exp_elt_opcode (pstate, OP_STRING);
465 write_exp_string (pstate, $1);
466 write_exp_elt_opcode (pstate, OP_STRING);
467 }
468 ;
469
470 variable: name_not_typename
471 { struct block_symbol sym = $1.sym;
472
473 if (sym.symbol)
474 {
475 if (symbol_read_needs_frame (sym.symbol))
476 innermost_block.update (sym);
477 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
478 write_exp_elt_block (pstate, sym.block);
479 write_exp_elt_sym (pstate, sym.symbol);
480 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
481 break;
482 }
483 else
484 {
485 struct bound_minimal_symbol msymbol;
486 char *arg = copy_name ($1.stoken);
487
488 msymbol =
489 lookup_bound_minimal_symbol (arg);
490 if (msymbol.minsym != NULL)
491 write_exp_msymbol (pstate, msymbol);
492 else if (!have_full_symbols () && !have_partial_symbols ())
493 error (_("No symbol table is loaded. Use the \"file\" command."));
494 else
495 error (_("No symbol \"%s\" in current context."),
496 copy_name ($1.stoken));
497 }
498 }
499 ;
500
501
502 type : ptype
503 ;
504
505 ptype : typebase
506 | typebase abs_decl
507 {
508 /* This is where the interesting stuff happens. */
509 int done = 0;
510 int array_size;
511 struct type *follow_type = $1;
512 struct type *range_type;
513
514 while (!done)
515 switch (pop_type ())
516 {
517 case tp_end:
518 done = 1;
519 break;
520 case tp_pointer:
521 follow_type = lookup_pointer_type (follow_type);
522 break;
523 case tp_reference:
524 follow_type = lookup_lvalue_reference_type (follow_type);
525 break;
526 case tp_array:
527 array_size = pop_type_int ();
528 if (array_size != -1)
529 {
530 range_type =
531 create_static_range_type ((struct type *) NULL,
532 parse_f_type (pstate)
533 ->builtin_integer,
534 0, array_size - 1);
535 follow_type =
536 create_array_type ((struct type *) NULL,
537 follow_type, range_type);
538 }
539 else
540 follow_type = lookup_pointer_type (follow_type);
541 break;
542 case tp_function:
543 follow_type = lookup_function_type (follow_type);
544 break;
545 case tp_kind:
546 {
547 int kind_val = pop_type_int ();
548 follow_type
549 = convert_to_kind_type (follow_type, kind_val);
550 }
551 break;
552 }
553 $$ = follow_type;
554 }
555 ;
556
557 abs_decl: '*'
558 { push_type (tp_pointer); $$ = 0; }
559 | '*' abs_decl
560 { push_type (tp_pointer); $$ = $2; }
561 | '&'
562 { push_type (tp_reference); $$ = 0; }
563 | '&' abs_decl
564 { push_type (tp_reference); $$ = $2; }
565 | direct_abs_decl
566 ;
567
568 direct_abs_decl: '(' abs_decl ')'
569 { $$ = $2; }
570 | '(' KIND '=' INT ')'
571 { push_kind_type ($4.val, $4.type); }
572 | '*' INT
573 { push_kind_type ($2.val, $2.type); }
574 | direct_abs_decl func_mod
575 { push_type (tp_function); }
576 | func_mod
577 { push_type (tp_function); }
578 ;
579
580 func_mod: '(' ')'
581 { $$ = 0; }
582 | '(' nonempty_typelist ')'
583 { free ($2); $$ = 0; }
584 ;
585
586 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
587 : TYPENAME
588 { $$ = $1.type; }
589 | INT_KEYWORD
590 { $$ = parse_f_type (pstate)->builtin_integer; }
591 | INT_S2_KEYWORD
592 { $$ = parse_f_type (pstate)->builtin_integer_s2; }
593 | CHARACTER
594 { $$ = parse_f_type (pstate)->builtin_character; }
595 | LOGICAL_S8_KEYWORD
596 { $$ = parse_f_type (pstate)->builtin_logical_s8; }
597 | LOGICAL_KEYWORD
598 { $$ = parse_f_type (pstate)->builtin_logical; }
599 | LOGICAL_S2_KEYWORD
600 { $$ = parse_f_type (pstate)->builtin_logical_s2; }
601 | LOGICAL_S1_KEYWORD
602 { $$ = parse_f_type (pstate)->builtin_logical_s1; }
603 | REAL_KEYWORD
604 { $$ = parse_f_type (pstate)->builtin_real; }
605 | REAL_S8_KEYWORD
606 { $$ = parse_f_type (pstate)->builtin_real_s8; }
607 | REAL_S16_KEYWORD
608 { $$ = parse_f_type (pstate)->builtin_real_s16; }
609 | COMPLEX_S8_KEYWORD
610 { $$ = parse_f_type (pstate)->builtin_complex_s8; }
611 | COMPLEX_S16_KEYWORD
612 { $$ = parse_f_type (pstate)->builtin_complex_s16; }
613 | COMPLEX_S32_KEYWORD
614 { $$ = parse_f_type (pstate)->builtin_complex_s32; }
615 ;
616
617 nonempty_typelist
618 : type
619 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
620 $<ivec>$[0] = 1; /* Number of types in vector */
621 $$[1] = $1;
622 }
623 | nonempty_typelist ',' type
624 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
625 $$ = (struct type **) realloc ((char *) $1, len);
626 $$[$<ivec>$[0]] = $3;
627 }
628 ;
629
630 name : NAME
631 { $$ = $1.stoken; }
632 ;
633
634 name_not_typename : NAME
635 /* These would be useful if name_not_typename was useful, but it is just
636 a fake for "variable", so these cause reduce/reduce conflicts because
637 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
638 =exp) or just an exp. If name_not_typename was ever used in an lvalue
639 context where only a name could occur, this might be useful.
640 | NAME_OR_INT
641 */
642 ;
643
644 %%
645
646 /* Take care of parsing a number (anything that starts with a digit).
647 Set yylval and return the token type; update lexptr.
648 LEN is the number of characters in it. */
649
650 /*** Needs some error checking for the float case ***/
651
652 static int
653 parse_number (struct parser_state *par_state,
654 const char *p, int len, int parsed_float, YYSTYPE *putithere)
655 {
656 LONGEST n = 0;
657 LONGEST prevn = 0;
658 int c;
659 int base = input_radix;
660 int unsigned_p = 0;
661 int long_p = 0;
662 ULONGEST high_bit;
663 struct type *signed_type;
664 struct type *unsigned_type;
665
666 if (parsed_float)
667 {
668 /* It's a float since it contains a point or an exponent. */
669 /* [dD] is not understood as an exponent by parse_float,
670 change it to 'e'. */
671 char *tmp, *tmp2;
672
673 tmp = xstrdup (p);
674 for (tmp2 = tmp; *tmp2; ++tmp2)
675 if (*tmp2 == 'd' || *tmp2 == 'D')
676 *tmp2 = 'e';
677
678 /* FIXME: Should this use different types? */
679 putithere->typed_val_float.type = parse_f_type (pstate)->builtin_real_s8;
680 bool parsed = parse_float (tmp, len,
681 putithere->typed_val_float.type,
682 putithere->typed_val_float.val);
683 free (tmp);
684 return parsed? FLOAT : ERROR;
685 }
686
687 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
688 if (p[0] == '0')
689 switch (p[1])
690 {
691 case 'x':
692 case 'X':
693 if (len >= 3)
694 {
695 p += 2;
696 base = 16;
697 len -= 2;
698 }
699 break;
700
701 case 't':
702 case 'T':
703 case 'd':
704 case 'D':
705 if (len >= 3)
706 {
707 p += 2;
708 base = 10;
709 len -= 2;
710 }
711 break;
712
713 default:
714 base = 8;
715 break;
716 }
717
718 while (len-- > 0)
719 {
720 c = *p++;
721 if (isupper (c))
722 c = tolower (c);
723 if (len == 0 && c == 'l')
724 long_p = 1;
725 else if (len == 0 && c == 'u')
726 unsigned_p = 1;
727 else
728 {
729 int i;
730 if (c >= '0' && c <= '9')
731 i = c - '0';
732 else if (c >= 'a' && c <= 'f')
733 i = c - 'a' + 10;
734 else
735 return ERROR; /* Char not a digit */
736 if (i >= base)
737 return ERROR; /* Invalid digit in this base */
738 n *= base;
739 n += i;
740 }
741 /* Portably test for overflow (only works for nonzero values, so make
742 a second check for zero). */
743 if ((prevn >= n) && n != 0)
744 unsigned_p=1; /* Try something unsigned */
745 /* If range checking enabled, portably test for unsigned overflow. */
746 if (RANGE_CHECK && n != 0)
747 {
748 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
749 range_error (_("Overflow on numeric constant."));
750 }
751 prevn = n;
752 }
753
754 /* If the number is too big to be an int, or it's got an l suffix
755 then it's a long. Work out if this has to be a long by
756 shifting right and seeing if anything remains, and the
757 target int size is different to the target long size.
758
759 In the expression below, we could have tested
760 (n >> gdbarch_int_bit (parse_gdbarch))
761 to see if it was zero,
762 but too many compilers warn about that, when ints and longs
763 are the same size. So we shift it twice, with fewer bits
764 each time, for the same result. */
765
766 if ((gdbarch_int_bit (par_state->gdbarch ())
767 != gdbarch_long_bit (par_state->gdbarch ())
768 && ((n >> 2)
769 >> (gdbarch_int_bit (par_state->gdbarch ())-2))) /* Avoid
770 shift warning */
771 || long_p)
772 {
773 high_bit = ((ULONGEST)1)
774 << (gdbarch_long_bit (par_state->gdbarch ())-1);
775 unsigned_type = parse_type (par_state)->builtin_unsigned_long;
776 signed_type = parse_type (par_state)->builtin_long;
777 }
778 else
779 {
780 high_bit =
781 ((ULONGEST)1) << (gdbarch_int_bit (par_state->gdbarch ()) - 1);
782 unsigned_type = parse_type (par_state)->builtin_unsigned_int;
783 signed_type = parse_type (par_state)->builtin_int;
784 }
785
786 putithere->typed_val.val = n;
787
788 /* If the high bit of the worked out type is set then this number
789 has to be unsigned. */
790
791 if (unsigned_p || (n & high_bit))
792 putithere->typed_val.type = unsigned_type;
793 else
794 putithere->typed_val.type = signed_type;
795
796 return INT;
797 }
798
799 /* Called to setup the type stack when we encounter a '(kind=N)' type
800 modifier, performs some bounds checking on 'N' and then pushes this to
801 the type stack followed by the 'tp_kind' marker. */
802 static void
803 push_kind_type (LONGEST val, struct type *type)
804 {
805 int ival;
806
807 if (TYPE_UNSIGNED (type))
808 {
809 ULONGEST uval = static_cast <ULONGEST> (val);
810 if (uval > INT_MAX)
811 error (_("kind value out of range"));
812 ival = static_cast <int> (uval);
813 }
814 else
815 {
816 if (val > INT_MAX || val < 0)
817 error (_("kind value out of range"));
818 ival = static_cast <int> (val);
819 }
820
821 push_type_int (ival);
822 push_type (tp_kind);
823 }
824
825 /* Called when a type has a '(kind=N)' modifier after it, for example
826 'character(kind=1)'. The BASETYPE is the type described by 'character'
827 in our example, and KIND is the integer '1'. This function returns a
828 new type that represents the basetype of a specific kind. */
829 static struct type *
830 convert_to_kind_type (struct type *basetype, int kind)
831 {
832 if (basetype == parse_f_type (pstate)->builtin_character)
833 {
834 /* Character of kind 1 is a special case, this is the same as the
835 base character type. */
836 if (kind == 1)
837 return parse_f_type (pstate)->builtin_character;
838 }
839 else if (basetype == parse_f_type (pstate)->builtin_complex_s8)
840 {
841 if (kind == 4)
842 return parse_f_type (pstate)->builtin_complex_s8;
843 else if (kind == 8)
844 return parse_f_type (pstate)->builtin_complex_s16;
845 else if (kind == 16)
846 return parse_f_type (pstate)->builtin_complex_s32;
847 }
848 else if (basetype == parse_f_type (pstate)->builtin_real)
849 {
850 if (kind == 4)
851 return parse_f_type (pstate)->builtin_real;
852 else if (kind == 8)
853 return parse_f_type (pstate)->builtin_real_s8;
854 else if (kind == 16)
855 return parse_f_type (pstate)->builtin_real_s16;
856 }
857 else if (basetype == parse_f_type (pstate)->builtin_logical)
858 {
859 if (kind == 1)
860 return parse_f_type (pstate)->builtin_logical_s1;
861 else if (kind == 2)
862 return parse_f_type (pstate)->builtin_logical_s2;
863 else if (kind == 4)
864 return parse_f_type (pstate)->builtin_logical;
865 else if (kind == 8)
866 return parse_f_type (pstate)->builtin_logical_s8;
867 }
868 else if (basetype == parse_f_type (pstate)->builtin_integer)
869 {
870 if (kind == 2)
871 return parse_f_type (pstate)->builtin_integer_s2;
872 else if (kind == 4)
873 return parse_f_type (pstate)->builtin_integer;
874 else if (kind == 8)
875 return parse_f_type (pstate)->builtin_integer_s8;
876 }
877
878 error (_("unsupported kind %d for type %s"),
879 kind, TYPE_SAFE_NAME (basetype));
880
881 /* Should never get here. */
882 return nullptr;
883 }
884
885 struct token
886 {
887 /* The string to match against. */
888 const char *oper;
889
890 /* The lexer token to return. */
891 int token;
892
893 /* The expression opcode to embed within the token. */
894 enum exp_opcode opcode;
895
896 /* When this is true the string in OPER is matched exactly including
897 case, when this is false OPER is matched case insensitively. */
898 bool case_sensitive;
899 };
900
901 static const struct token dot_ops[] =
902 {
903 { ".and.", BOOL_AND, BINOP_END, false },
904 { ".or.", BOOL_OR, BINOP_END, false },
905 { ".not.", BOOL_NOT, BINOP_END, false },
906 { ".eq.", EQUAL, BINOP_END, false },
907 { ".eqv.", EQUAL, BINOP_END, false },
908 { ".neqv.", NOTEQUAL, BINOP_END, false },
909 { ".ne.", NOTEQUAL, BINOP_END, false },
910 { ".le.", LEQ, BINOP_END, false },
911 { ".ge.", GEQ, BINOP_END, false },
912 { ".gt.", GREATERTHAN, BINOP_END, false },
913 { ".lt.", LESSTHAN, BINOP_END, false },
914 };
915
916 /* Holds the Fortran representation of a boolean, and the integer value we
917 substitute in when one of the matching strings is parsed. */
918 struct f77_boolean_val
919 {
920 /* The string representing a Fortran boolean. */
921 const char *name;
922
923 /* The integer value to replace it with. */
924 int value;
925 };
926
927 /* The set of Fortran booleans. These are matched case insensitively. */
928 static const struct f77_boolean_val boolean_values[] =
929 {
930 { ".true.", 1 },
931 { ".false.", 0 }
932 };
933
934 static const struct token f77_keywords[] =
935 {
936 /* Historically these have always been lowercase only in GDB. */
937 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END, true },
938 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END, true },
939 { "character", CHARACTER, BINOP_END, true },
940 { "integer_2", INT_S2_KEYWORD, BINOP_END, true },
941 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END, true },
942 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END, true },
943 { "logical_8", LOGICAL_S8_KEYWORD, BINOP_END, true },
944 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END, true },
945 { "integer", INT_KEYWORD, BINOP_END, true },
946 { "logical", LOGICAL_KEYWORD, BINOP_END, true },
947 { "real_16", REAL_S16_KEYWORD, BINOP_END, true },
948 { "complex", COMPLEX_S8_KEYWORD, BINOP_END, true },
949 { "sizeof", SIZEOF, BINOP_END, true },
950 { "real_8", REAL_S8_KEYWORD, BINOP_END, true },
951 { "real", REAL_KEYWORD, BINOP_END, true },
952 /* The following correspond to actual functions in Fortran and are case
953 insensitive. */
954 { "kind", KIND, BINOP_END, false },
955 { "abs", UNOP_INTRINSIC, UNOP_ABS, false }
956 };
957
958 /* Implementation of a dynamically expandable buffer for processing input
959 characters acquired through lexptr and building a value to return in
960 yylval. Ripped off from ch-exp.y */
961
962 static char *tempbuf; /* Current buffer contents */
963 static int tempbufsize; /* Size of allocated buffer */
964 static int tempbufindex; /* Current index into buffer */
965
966 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
967
968 #define CHECKBUF(size) \
969 do { \
970 if (tempbufindex + (size) >= tempbufsize) \
971 { \
972 growbuf_by_size (size); \
973 } \
974 } while (0);
975
976
977 /* Grow the static temp buffer if necessary, including allocating the
978 first one on demand. */
979
980 static void
981 growbuf_by_size (int count)
982 {
983 int growby;
984
985 growby = std::max (count, GROWBY_MIN_SIZE);
986 tempbufsize += growby;
987 if (tempbuf == NULL)
988 tempbuf = (char *) malloc (tempbufsize);
989 else
990 tempbuf = (char *) realloc (tempbuf, tempbufsize);
991 }
992
993 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
994 string-literals.
995
996 Recognize a string literal. A string literal is a nonzero sequence
997 of characters enclosed in matching single quotes, except that
998 a single character inside single quotes is a character literal, which
999 we reject as a string literal. To embed the terminator character inside
1000 a string, it is simply doubled (I.E. 'this''is''one''string') */
1001
1002 static int
1003 match_string_literal (void)
1004 {
1005 const char *tokptr = lexptr;
1006
1007 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
1008 {
1009 CHECKBUF (1);
1010 if (*tokptr == *lexptr)
1011 {
1012 if (*(tokptr + 1) == *lexptr)
1013 tokptr++;
1014 else
1015 break;
1016 }
1017 tempbuf[tempbufindex++] = *tokptr;
1018 }
1019 if (*tokptr == '\0' /* no terminator */
1020 || tempbufindex == 0) /* no string */
1021 return 0;
1022 else
1023 {
1024 tempbuf[tempbufindex] = '\0';
1025 yylval.sval.ptr = tempbuf;
1026 yylval.sval.length = tempbufindex;
1027 lexptr = ++tokptr;
1028 return STRING_LITERAL;
1029 }
1030 }
1031
1032 /* Read one token, getting characters through lexptr. */
1033
1034 static int
1035 yylex (void)
1036 {
1037 int c;
1038 int namelen;
1039 unsigned int token;
1040 const char *tokstart;
1041
1042 retry:
1043
1044 prev_lexptr = lexptr;
1045
1046 tokstart = lexptr;
1047
1048 /* First of all, let us make sure we are not dealing with the
1049 special tokens .true. and .false. which evaluate to 1 and 0. */
1050
1051 if (*lexptr == '.')
1052 {
1053 for (int i = 0; i < ARRAY_SIZE (boolean_values); i++)
1054 {
1055 if (strncasecmp (tokstart, boolean_values[i].name,
1056 strlen (boolean_values[i].name)) == 0)
1057 {
1058 lexptr += strlen (boolean_values[i].name);
1059 yylval.lval = boolean_values[i].value;
1060 return BOOLEAN_LITERAL;
1061 }
1062 }
1063 }
1064
1065 /* See if it is a special .foo. operator. */
1066 for (int i = 0; i < ARRAY_SIZE (dot_ops); i++)
1067 if (strncasecmp (tokstart, dot_ops[i].oper,
1068 strlen (dot_ops[i].oper)) == 0)
1069 {
1070 gdb_assert (!dot_ops[i].case_sensitive);
1071 lexptr += strlen (dot_ops[i].oper);
1072 yylval.opcode = dot_ops[i].opcode;
1073 return dot_ops[i].token;
1074 }
1075
1076 /* See if it is an exponentiation operator. */
1077
1078 if (strncmp (tokstart, "**", 2) == 0)
1079 {
1080 lexptr += 2;
1081 yylval.opcode = BINOP_EXP;
1082 return STARSTAR;
1083 }
1084
1085 switch (c = *tokstart)
1086 {
1087 case 0:
1088 return 0;
1089
1090 case ' ':
1091 case '\t':
1092 case '\n':
1093 lexptr++;
1094 goto retry;
1095
1096 case '\'':
1097 token = match_string_literal ();
1098 if (token != 0)
1099 return (token);
1100 break;
1101
1102 case '(':
1103 paren_depth++;
1104 lexptr++;
1105 return c;
1106
1107 case ')':
1108 if (paren_depth == 0)
1109 return 0;
1110 paren_depth--;
1111 lexptr++;
1112 return c;
1113
1114 case ',':
1115 if (comma_terminates && paren_depth == 0)
1116 return 0;
1117 lexptr++;
1118 return c;
1119
1120 case '.':
1121 /* Might be a floating point number. */
1122 if (lexptr[1] < '0' || lexptr[1] > '9')
1123 goto symbol; /* Nope, must be a symbol. */
1124 /* FALL THRU. */
1125
1126 case '0':
1127 case '1':
1128 case '2':
1129 case '3':
1130 case '4':
1131 case '5':
1132 case '6':
1133 case '7':
1134 case '8':
1135 case '9':
1136 {
1137 /* It's a number. */
1138 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1139 const char *p = tokstart;
1140 int hex = input_radix > 10;
1141
1142 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1143 {
1144 p += 2;
1145 hex = 1;
1146 }
1147 else if (c == '0' && (p[1]=='t' || p[1]=='T'
1148 || p[1]=='d' || p[1]=='D'))
1149 {
1150 p += 2;
1151 hex = 0;
1152 }
1153
1154 for (;; ++p)
1155 {
1156 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1157 got_dot = got_e = 1;
1158 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1159 got_dot = got_d = 1;
1160 else if (!hex && !got_dot && *p == '.')
1161 got_dot = 1;
1162 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1163 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1164 && (*p == '-' || *p == '+'))
1165 /* This is the sign of the exponent, not the end of the
1166 number. */
1167 continue;
1168 /* We will take any letters or digits. parse_number will
1169 complain if past the radix, or if L or U are not final. */
1170 else if ((*p < '0' || *p > '9')
1171 && ((*p < 'a' || *p > 'z')
1172 && (*p < 'A' || *p > 'Z')))
1173 break;
1174 }
1175 toktype = parse_number (pstate, tokstart, p - tokstart,
1176 got_dot|got_e|got_d,
1177 &yylval);
1178 if (toktype == ERROR)
1179 {
1180 char *err_copy = (char *) alloca (p - tokstart + 1);
1181
1182 memcpy (err_copy, tokstart, p - tokstart);
1183 err_copy[p - tokstart] = 0;
1184 error (_("Invalid number \"%s\"."), err_copy);
1185 }
1186 lexptr = p;
1187 return toktype;
1188 }
1189
1190 case '+':
1191 case '-':
1192 case '*':
1193 case '/':
1194 case '%':
1195 case '|':
1196 case '&':
1197 case '^':
1198 case '~':
1199 case '!':
1200 case '@':
1201 case '<':
1202 case '>':
1203 case '[':
1204 case ']':
1205 case '?':
1206 case ':':
1207 case '=':
1208 case '{':
1209 case '}':
1210 symbol:
1211 lexptr++;
1212 return c;
1213 }
1214
1215 if (!(c == '_' || c == '$' || c ==':'
1216 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1217 /* We must have come across a bad character (e.g. ';'). */
1218 error (_("Invalid character '%c' in expression."), c);
1219
1220 namelen = 0;
1221 for (c = tokstart[namelen];
1222 (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
1223 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1224 c = tokstart[++namelen]);
1225
1226 /* The token "if" terminates the expression and is NOT
1227 removed from the input stream. */
1228
1229 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1230 return 0;
1231
1232 lexptr += namelen;
1233
1234 /* Catch specific keywords. */
1235
1236 for (int i = 0; i < ARRAY_SIZE (f77_keywords); i++)
1237 if (strlen (f77_keywords[i].oper) == namelen
1238 && ((!f77_keywords[i].case_sensitive
1239 && strncasecmp (tokstart, f77_keywords[i].oper, namelen) == 0)
1240 || (f77_keywords[i].case_sensitive
1241 && strncmp (tokstart, f77_keywords[i].oper, namelen) == 0)))
1242 {
1243 yylval.opcode = f77_keywords[i].opcode;
1244 return f77_keywords[i].token;
1245 }
1246
1247 yylval.sval.ptr = tokstart;
1248 yylval.sval.length = namelen;
1249
1250 if (*tokstart == '$')
1251 {
1252 write_dollar_variable (pstate, yylval.sval);
1253 return DOLLAR_VARIABLE;
1254 }
1255
1256 /* Use token-type TYPENAME for symbols that happen to be defined
1257 currently as names of types; NAME for other symbols.
1258 The caller is not constrained to care about the distinction. */
1259 {
1260 char *tmp = copy_name (yylval.sval);
1261 struct block_symbol result;
1262 struct field_of_this_result is_a_field_of_this;
1263 enum domain_enum_tag lookup_domains[] =
1264 {
1265 STRUCT_DOMAIN,
1266 VAR_DOMAIN,
1267 MODULE_DOMAIN
1268 };
1269 int hextype;
1270
1271 for (int i = 0; i < ARRAY_SIZE (lookup_domains); ++i)
1272 {
1273 /* Initialize this in case we *don't* use it in this call; that
1274 way we can refer to it unconditionally below. */
1275 memset (&is_a_field_of_this, 0, sizeof (is_a_field_of_this));
1276
1277 result = lookup_symbol (tmp, expression_context_block,
1278 lookup_domains[i],
1279 pstate->language ()->la_language
1280 == language_cplus
1281 ? &is_a_field_of_this : NULL);
1282 if (result.symbol && SYMBOL_CLASS (result.symbol) == LOC_TYPEDEF)
1283 {
1284 yylval.tsym.type = SYMBOL_TYPE (result.symbol);
1285 return TYPENAME;
1286 }
1287
1288 if (result.symbol)
1289 break;
1290 }
1291
1292 yylval.tsym.type
1293 = language_lookup_primitive_type (pstate->language (),
1294 pstate->gdbarch (), tmp);
1295 if (yylval.tsym.type != NULL)
1296 return TYPENAME;
1297
1298 /* Input names that aren't symbols but ARE valid hex numbers,
1299 when the input radix permits them, can be names or numbers
1300 depending on the parse. Note we support radixes > 16 here. */
1301 if (!result.symbol
1302 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1303 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1304 {
1305 YYSTYPE newlval; /* Its value is ignored. */
1306 hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
1307 if (hextype == INT)
1308 {
1309 yylval.ssym.sym = result;
1310 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1311 return NAME_OR_INT;
1312 }
1313 }
1314
1315 /* Any other kind of symbol */
1316 yylval.ssym.sym = result;
1317 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
1318 return NAME;
1319 }
1320 }
1321
1322 int
1323 f_parse (struct parser_state *par_state)
1324 {
1325 /* Setting up the parser state. */
1326 scoped_restore pstate_restore = make_scoped_restore (&pstate);
1327 scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
1328 parser_debug);
1329 gdb_assert (par_state != NULL);
1330 pstate = par_state;
1331
1332 return yyparse ();
1333 }
1334
1335 static void
1336 yyerror (const char *msg)
1337 {
1338 if (prev_lexptr)
1339 lexptr = prev_lexptr;
1340
1341 error (_("A %s in expression, near `%s'."), msg, lexptr);
1342 }
This page took 0.081283 seconds and 5 git commands to generate.