gdb/fortran: Allow for matching symbols with missing scope
[deliverable/binutils-gdb.git] / gdb / f-lang.c
1 /* Fortran language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "parser-defs.h"
28 #include "language.h"
29 #include "varobj.h"
30 #include "gdbcore.h"
31 #include "f-lang.h"
32 #include "valprint.h"
33 #include "value.h"
34 #include "cp-support.h"
35 #include "charset.h"
36 #include "c-lang.h"
37 #include "target-float.h"
38 #include "gdbarch.h"
39
40 #include <math.h>
41
42 /* Local functions */
43
44 static void f_printchar (int c, struct type *type, struct ui_file * stream);
45 static void f_emit_char (int c, struct type *type,
46 struct ui_file * stream, int quoter);
47
48 /* Return the encoding that should be used for the character type
49 TYPE. */
50
51 static const char *
52 f_get_encoding (struct type *type)
53 {
54 const char *encoding;
55
56 switch (TYPE_LENGTH (type))
57 {
58 case 1:
59 encoding = target_charset (get_type_arch (type));
60 break;
61 case 4:
62 if (gdbarch_byte_order (get_type_arch (type)) == BFD_ENDIAN_BIG)
63 encoding = "UTF-32BE";
64 else
65 encoding = "UTF-32LE";
66 break;
67
68 default:
69 error (_("unrecognized character type"));
70 }
71
72 return encoding;
73 }
74
75 /* Print the character C on STREAM as part of the contents of a literal
76 string whose delimiter is QUOTER. Note that that format for printing
77 characters and strings is language specific.
78 FIXME: This is a copy of the same function from c-exp.y. It should
79 be replaced with a true F77 version. */
80
81 static void
82 f_emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
83 {
84 const char *encoding = f_get_encoding (type);
85
86 generic_emit_char (c, type, stream, quoter, encoding);
87 }
88
89 /* Implementation of la_printchar. */
90
91 static void
92 f_printchar (int c, struct type *type, struct ui_file *stream)
93 {
94 fputs_filtered ("'", stream);
95 LA_EMIT_CHAR (c, type, stream, '\'');
96 fputs_filtered ("'", stream);
97 }
98
99 /* Print the character string STRING, printing at most LENGTH characters.
100 Printing stops early if the number hits print_max; repeat counts
101 are printed as appropriate. Print ellipses at the end if we
102 had to stop before printing LENGTH characters, or if FORCE_ELLIPSES.
103 FIXME: This is a copy of the same function from c-exp.y. It should
104 be replaced with a true F77 version. */
105
106 static void
107 f_printstr (struct ui_file *stream, struct type *type, const gdb_byte *string,
108 unsigned int length, const char *encoding, int force_ellipses,
109 const struct value_print_options *options)
110 {
111 const char *type_encoding = f_get_encoding (type);
112
113 if (TYPE_LENGTH (type) == 4)
114 fputs_filtered ("4_", stream);
115
116 if (!encoding || !*encoding)
117 encoding = type_encoding;
118
119 generic_printstr (stream, type, string, length, encoding,
120 force_ellipses, '\'', 0, options);
121 }
122 \f
123
124 /* Table of operators and their precedences for printing expressions. */
125
126 static const struct op_print f_op_print_tab[] =
127 {
128 {"+", BINOP_ADD, PREC_ADD, 0},
129 {"+", UNOP_PLUS, PREC_PREFIX, 0},
130 {"-", BINOP_SUB, PREC_ADD, 0},
131 {"-", UNOP_NEG, PREC_PREFIX, 0},
132 {"*", BINOP_MUL, PREC_MUL, 0},
133 {"/", BINOP_DIV, PREC_MUL, 0},
134 {"DIV", BINOP_INTDIV, PREC_MUL, 0},
135 {"MOD", BINOP_REM, PREC_MUL, 0},
136 {"=", BINOP_ASSIGN, PREC_ASSIGN, 1},
137 {".OR.", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
138 {".AND.", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
139 {".NOT.", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
140 {".EQ.", BINOP_EQUAL, PREC_EQUAL, 0},
141 {".NE.", BINOP_NOTEQUAL, PREC_EQUAL, 0},
142 {".LE.", BINOP_LEQ, PREC_ORDER, 0},
143 {".GE.", BINOP_GEQ, PREC_ORDER, 0},
144 {".GT.", BINOP_GTR, PREC_ORDER, 0},
145 {".LT.", BINOP_LESS, PREC_ORDER, 0},
146 {"**", UNOP_IND, PREC_PREFIX, 0},
147 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
148 {NULL, OP_NULL, PREC_REPEAT, 0}
149 };
150 \f
151 enum f_primitive_types {
152 f_primitive_type_character,
153 f_primitive_type_logical,
154 f_primitive_type_logical_s1,
155 f_primitive_type_logical_s2,
156 f_primitive_type_logical_s8,
157 f_primitive_type_integer,
158 f_primitive_type_integer_s2,
159 f_primitive_type_real,
160 f_primitive_type_real_s8,
161 f_primitive_type_real_s16,
162 f_primitive_type_complex_s8,
163 f_primitive_type_complex_s16,
164 f_primitive_type_void,
165 nr_f_primitive_types
166 };
167
168 static void
169 f_language_arch_info (struct gdbarch *gdbarch,
170 struct language_arch_info *lai)
171 {
172 const struct builtin_f_type *builtin = builtin_f_type (gdbarch);
173
174 lai->string_char_type = builtin->builtin_character;
175 lai->primitive_type_vector
176 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_f_primitive_types + 1,
177 struct type *);
178
179 lai->primitive_type_vector [f_primitive_type_character]
180 = builtin->builtin_character;
181 lai->primitive_type_vector [f_primitive_type_logical]
182 = builtin->builtin_logical;
183 lai->primitive_type_vector [f_primitive_type_logical_s1]
184 = builtin->builtin_logical_s1;
185 lai->primitive_type_vector [f_primitive_type_logical_s2]
186 = builtin->builtin_logical_s2;
187 lai->primitive_type_vector [f_primitive_type_logical_s8]
188 = builtin->builtin_logical_s8;
189 lai->primitive_type_vector [f_primitive_type_real]
190 = builtin->builtin_real;
191 lai->primitive_type_vector [f_primitive_type_real_s8]
192 = builtin->builtin_real_s8;
193 lai->primitive_type_vector [f_primitive_type_real_s16]
194 = builtin->builtin_real_s16;
195 lai->primitive_type_vector [f_primitive_type_complex_s8]
196 = builtin->builtin_complex_s8;
197 lai->primitive_type_vector [f_primitive_type_complex_s16]
198 = builtin->builtin_complex_s16;
199 lai->primitive_type_vector [f_primitive_type_void]
200 = builtin->builtin_void;
201
202 lai->bool_type_symbol = "logical";
203 lai->bool_type_default = builtin->builtin_logical_s2;
204 }
205
206 /* Remove the modules separator :: from the default break list. */
207
208 static const char *
209 f_word_break_characters (void)
210 {
211 static char *retval;
212
213 if (!retval)
214 {
215 char *s;
216
217 retval = xstrdup (default_word_break_characters ());
218 s = strchr (retval, ':');
219 if (s)
220 {
221 char *last_char = &s[strlen (s) - 1];
222
223 *s = *last_char;
224 *last_char = 0;
225 }
226 }
227 return retval;
228 }
229
230 /* Consider the modules separator :: as a valid symbol name character
231 class. */
232
233 static void
234 f_collect_symbol_completion_matches (completion_tracker &tracker,
235 complete_symbol_mode mode,
236 symbol_name_match_type compare_name,
237 const char *text, const char *word,
238 enum type_code code)
239 {
240 default_collect_symbol_completion_matches_break_on (tracker, mode,
241 compare_name,
242 text, word, ":", code);
243 }
244
245 /* Special expression evaluation cases for Fortran. */
246 struct value *
247 evaluate_subexp_f (struct type *expect_type, struct expression *exp,
248 int *pos, enum noside noside)
249 {
250 struct value *arg1 = NULL, *arg2 = NULL;
251 enum exp_opcode op;
252 int pc;
253 struct type *type;
254
255 pc = *pos;
256 *pos += 1;
257 op = exp->elts[pc].opcode;
258
259 switch (op)
260 {
261 default:
262 *pos -= 1;
263 return evaluate_subexp_standard (expect_type, exp, pos, noside);
264
265 case UNOP_ABS:
266 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
267 if (noside == EVAL_SKIP)
268 return eval_skip_value (exp);
269 type = value_type (arg1);
270 switch (TYPE_CODE (type))
271 {
272 case TYPE_CODE_FLT:
273 {
274 double d
275 = fabs (target_float_to_host_double (value_contents (arg1),
276 value_type (arg1)));
277 return value_from_host_double (type, d);
278 }
279 case TYPE_CODE_INT:
280 {
281 LONGEST l = value_as_long (arg1);
282 l = llabs (l);
283 return value_from_longest (type, l);
284 }
285 }
286 error (_("ABS of type %s not supported"), TYPE_SAFE_NAME (type));
287
288 case BINOP_MOD:
289 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
290 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
291 if (noside == EVAL_SKIP)
292 return eval_skip_value (exp);
293 type = value_type (arg1);
294 if (TYPE_CODE (type) != TYPE_CODE (value_type (arg2)))
295 error (_("non-matching types for parameters to MOD ()"));
296 switch (TYPE_CODE (type))
297 {
298 case TYPE_CODE_FLT:
299 {
300 double d1
301 = target_float_to_host_double (value_contents (arg1),
302 value_type (arg1));
303 double d2
304 = target_float_to_host_double (value_contents (arg2),
305 value_type (arg2));
306 double d3 = fmod (d1, d2);
307 return value_from_host_double (type, d3);
308 }
309 case TYPE_CODE_INT:
310 {
311 LONGEST v1 = value_as_long (arg1);
312 LONGEST v2 = value_as_long (arg2);
313 if (v2 == 0)
314 error (_("calling MOD (N, 0) is undefined"));
315 LONGEST v3 = v1 - (v1 / v2) * v2;
316 return value_from_longest (value_type (arg1), v3);
317 }
318 }
319 error (_("MOD of type %s not supported"), TYPE_SAFE_NAME (type));
320
321 case UNOP_FORTRAN_CEILING:
322 {
323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
324 if (noside == EVAL_SKIP)
325 return eval_skip_value (exp);
326 type = value_type (arg1);
327 if (TYPE_CODE (type) != TYPE_CODE_FLT)
328 error (_("argument to CEILING must be of type float"));
329 double val
330 = target_float_to_host_double (value_contents (arg1),
331 value_type (arg1));
332 val = ceil (val);
333 return value_from_host_double (type, val);
334 }
335
336 case UNOP_FORTRAN_FLOOR:
337 {
338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
339 if (noside == EVAL_SKIP)
340 return eval_skip_value (exp);
341 type = value_type (arg1);
342 if (TYPE_CODE (type) != TYPE_CODE_FLT)
343 error (_("argument to FLOOR must be of type float"));
344 double val
345 = target_float_to_host_double (value_contents (arg1),
346 value_type (arg1));
347 val = floor (val);
348 return value_from_host_double (type, val);
349 }
350
351 case BINOP_FORTRAN_MODULO:
352 {
353 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
354 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
355 if (noside == EVAL_SKIP)
356 return eval_skip_value (exp);
357 type = value_type (arg1);
358 if (TYPE_CODE (type) != TYPE_CODE (value_type (arg2)))
359 error (_("non-matching types for parameters to MODULO ()"));
360 /* MODULO(A, P) = A - FLOOR (A / P) * P */
361 switch (TYPE_CODE (type))
362 {
363 case TYPE_CODE_INT:
364 {
365 LONGEST a = value_as_long (arg1);
366 LONGEST p = value_as_long (arg2);
367 LONGEST result = a - (a / p) * p;
368 if (result != 0 && (a < 0) != (p < 0))
369 result += p;
370 return value_from_longest (value_type (arg1), result);
371 }
372 case TYPE_CODE_FLT:
373 {
374 double a
375 = target_float_to_host_double (value_contents (arg1),
376 value_type (arg1));
377 double p
378 = target_float_to_host_double (value_contents (arg2),
379 value_type (arg2));
380 double result = fmod (a, p);
381 if (result != 0 && (a < 0.0) != (p < 0.0))
382 result += p;
383 return value_from_host_double (type, result);
384 }
385 }
386 error (_("MODULO of type %s not supported"), TYPE_SAFE_NAME (type));
387 }
388
389 case BINOP_FORTRAN_CMPLX:
390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
391 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
392 if (noside == EVAL_SKIP)
393 return eval_skip_value (exp);
394 type = builtin_f_type(exp->gdbarch)->builtin_complex_s16;
395 return value_literal_complex (arg1, arg2, type);
396
397 case UNOP_FORTRAN_KIND:
398 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
399 type = value_type (arg1);
400
401 switch (TYPE_CODE (type))
402 {
403 case TYPE_CODE_STRUCT:
404 case TYPE_CODE_UNION:
405 case TYPE_CODE_MODULE:
406 case TYPE_CODE_FUNC:
407 error (_("argument to kind must be an intrinsic type"));
408 }
409
410 if (!TYPE_TARGET_TYPE (type))
411 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
412 TYPE_LENGTH (type));
413 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
414 TYPE_LENGTH (TYPE_TARGET_TYPE(type)));
415 }
416
417 /* Should be unreachable. */
418 return nullptr;
419 }
420
421 /* Return true if TYPE is a string. */
422
423 static bool
424 f_is_string_type_p (struct type *type)
425 {
426 type = check_typedef (type);
427 return (TYPE_CODE (type) == TYPE_CODE_STRING
428 || (TYPE_CODE (type) == TYPE_CODE_ARRAY
429 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CHAR));
430 }
431
432 /* Special expression lengths for Fortran. */
433
434 static void
435 operator_length_f (const struct expression *exp, int pc, int *oplenp,
436 int *argsp)
437 {
438 int oplen = 1;
439 int args = 0;
440
441 switch (exp->elts[pc - 1].opcode)
442 {
443 default:
444 operator_length_standard (exp, pc, oplenp, argsp);
445 return;
446
447 case UNOP_FORTRAN_KIND:
448 case UNOP_FORTRAN_FLOOR:
449 case UNOP_FORTRAN_CEILING:
450 oplen = 1;
451 args = 1;
452 break;
453
454 case BINOP_FORTRAN_CMPLX:
455 case BINOP_FORTRAN_MODULO:
456 oplen = 1;
457 args = 2;
458 break;
459 }
460
461 *oplenp = oplen;
462 *argsp = args;
463 }
464
465 /* Helper for PRINT_SUBEXP_F. Arguments are as for PRINT_SUBEXP_F, except
466 the extra argument NAME which is the text that should be printed as the
467 name of this operation. */
468
469 static void
470 print_unop_subexp_f (struct expression *exp, int *pos,
471 struct ui_file *stream, enum precedence prec,
472 const char *name)
473 {
474 (*pos)++;
475 fprintf_filtered (stream, "%s(", name);
476 print_subexp (exp, pos, stream, PREC_SUFFIX);
477 fputs_filtered (")", stream);
478 }
479
480 /* Helper for PRINT_SUBEXP_F. Arguments are as for PRINT_SUBEXP_F, except
481 the extra argument NAME which is the text that should be printed as the
482 name of this operation. */
483
484 static void
485 print_binop_subexp_f (struct expression *exp, int *pos,
486 struct ui_file *stream, enum precedence prec,
487 const char *name)
488 {
489 (*pos)++;
490 fprintf_filtered (stream, "%s(", name);
491 print_subexp (exp, pos, stream, PREC_SUFFIX);
492 fputs_filtered (",", stream);
493 print_subexp (exp, pos, stream, PREC_SUFFIX);
494 fputs_filtered (")", stream);
495 }
496
497 /* Special expression printing for Fortran. */
498
499 static void
500 print_subexp_f (struct expression *exp, int *pos,
501 struct ui_file *stream, enum precedence prec)
502 {
503 int pc = *pos;
504 enum exp_opcode op = exp->elts[pc].opcode;
505
506 switch (op)
507 {
508 default:
509 print_subexp_standard (exp, pos, stream, prec);
510 return;
511
512 case UNOP_FORTRAN_KIND:
513 print_unop_subexp_f (exp, pos, stream, prec, "KIND");
514 return;
515
516 case UNOP_FORTRAN_FLOOR:
517 print_unop_subexp_f (exp, pos, stream, prec, "FLOOR");
518 return;
519
520 case UNOP_FORTRAN_CEILING:
521 print_unop_subexp_f (exp, pos, stream, prec, "CEILING");
522 return;
523
524 case BINOP_FORTRAN_CMPLX:
525 print_binop_subexp_f (exp, pos, stream, prec, "CMPLX");
526 return;
527
528 case BINOP_FORTRAN_MODULO:
529 print_binop_subexp_f (exp, pos, stream, prec, "MODULO");
530 return;
531 }
532 }
533
534 /* Special expression names for Fortran. */
535
536 static const char *
537 op_name_f (enum exp_opcode opcode)
538 {
539 switch (opcode)
540 {
541 default:
542 return op_name_standard (opcode);
543
544 #define OP(name) \
545 case name: \
546 return #name ;
547 #include "fortran-operator.def"
548 #undef OP
549 }
550 }
551
552 /* Special expression dumping for Fortran. */
553
554 static int
555 dump_subexp_body_f (struct expression *exp,
556 struct ui_file *stream, int elt)
557 {
558 int opcode = exp->elts[elt].opcode;
559 int oplen, nargs, i;
560
561 switch (opcode)
562 {
563 default:
564 return dump_subexp_body_standard (exp, stream, elt);
565
566 case UNOP_FORTRAN_KIND:
567 case UNOP_FORTRAN_FLOOR:
568 case UNOP_FORTRAN_CEILING:
569 case BINOP_FORTRAN_CMPLX:
570 case BINOP_FORTRAN_MODULO:
571 operator_length_f (exp, (elt + 1), &oplen, &nargs);
572 break;
573 }
574
575 elt += oplen;
576 for (i = 0; i < nargs; i += 1)
577 elt = dump_subexp (exp, stream, elt);
578
579 return elt;
580 }
581
582 /* Special expression checking for Fortran. */
583
584 static int
585 operator_check_f (struct expression *exp, int pos,
586 int (*objfile_func) (struct objfile *objfile,
587 void *data),
588 void *data)
589 {
590 const union exp_element *const elts = exp->elts;
591
592 switch (elts[pos].opcode)
593 {
594 case UNOP_FORTRAN_KIND:
595 case UNOP_FORTRAN_FLOOR:
596 case UNOP_FORTRAN_CEILING:
597 case BINOP_FORTRAN_CMPLX:
598 case BINOP_FORTRAN_MODULO:
599 /* Any references to objfiles are held in the arguments to this
600 expression, not within the expression itself, so no additional
601 checking is required here, the outer expression iteration code
602 will take care of checking each argument. */
603 break;
604
605 default:
606 return operator_check_standard (exp, pos, objfile_func, data);
607 }
608
609 return 0;
610 }
611
612 static const char *f_extensions[] =
613 {
614 ".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP",
615 ".f90", ".F90", ".f95", ".F95", ".f03", ".F03", ".f08", ".F08",
616 NULL
617 };
618
619 /* Expression processing for Fortran. */
620 static const struct exp_descriptor exp_descriptor_f =
621 {
622 print_subexp_f,
623 operator_length_f,
624 operator_check_f,
625 op_name_f,
626 dump_subexp_body_f,
627 evaluate_subexp_f
628 };
629
630 extern const struct language_defn f_language_defn =
631 {
632 "fortran",
633 "Fortran",
634 language_fortran,
635 range_check_on,
636 case_sensitive_off,
637 array_column_major,
638 macro_expansion_no,
639 f_extensions,
640 &exp_descriptor_f,
641 f_parse, /* parser */
642 null_post_parser,
643 f_printchar, /* Print character constant */
644 f_printstr, /* function to print string constant */
645 f_emit_char, /* Function to print a single character */
646 f_print_type, /* Print a type using appropriate syntax */
647 f_print_typedef, /* Print a typedef using appropriate syntax */
648 f_val_print, /* Print a value using appropriate syntax */
649 c_value_print, /* FIXME */
650 default_read_var_value, /* la_read_var_value */
651 NULL, /* Language specific skip_trampoline */
652 NULL, /* name_of_this */
653 false, /* la_store_sym_names_in_linkage_form_p */
654 cp_lookup_symbol_nonlocal, /* lookup_symbol_nonlocal */
655 basic_lookup_transparent_type,/* lookup_transparent_type */
656
657 /* We could support demangling here to provide module namespaces
658 also for inferiors with only minimal symbol table (ELF symbols).
659 Just the mangling standard is not standardized across compilers
660 and there is no DW_AT_producer available for inferiors with only
661 the ELF symbols to check the mangling kind. */
662 NULL, /* Language specific symbol demangler */
663 NULL,
664 NULL, /* Language specific
665 class_name_from_physname */
666 f_op_print_tab, /* expression operators for printing */
667 0, /* arrays are first-class (not c-style) */
668 1, /* String lower bound */
669 f_word_break_characters,
670 f_collect_symbol_completion_matches,
671 f_language_arch_info,
672 default_print_array_index,
673 default_pass_by_reference,
674 default_get_string,
675 c_watch_location_expression,
676 cp_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
677 iterate_over_symbols,
678 cp_search_name_hash,
679 &default_varobj_ops,
680 NULL,
681 NULL,
682 f_is_string_type_p,
683 "(...)" /* la_struct_too_deep_ellipsis */
684 };
685
686 static void *
687 build_fortran_types (struct gdbarch *gdbarch)
688 {
689 struct builtin_f_type *builtin_f_type
690 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_f_type);
691
692 builtin_f_type->builtin_void
693 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
694
695 builtin_f_type->builtin_character
696 = arch_type (gdbarch, TYPE_CODE_CHAR, TARGET_CHAR_BIT, "character");
697
698 builtin_f_type->builtin_logical_s1
699 = arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "logical*1");
700
701 builtin_f_type->builtin_integer_s2
702 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 0,
703 "integer*2");
704
705 builtin_f_type->builtin_integer_s8
706 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 0,
707 "integer*8");
708
709 builtin_f_type->builtin_logical_s2
710 = arch_boolean_type (gdbarch, gdbarch_short_bit (gdbarch), 1,
711 "logical*2");
712
713 builtin_f_type->builtin_logical_s8
714 = arch_boolean_type (gdbarch, gdbarch_long_long_bit (gdbarch), 1,
715 "logical*8");
716
717 builtin_f_type->builtin_integer
718 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 0,
719 "integer");
720
721 builtin_f_type->builtin_logical
722 = arch_boolean_type (gdbarch, gdbarch_int_bit (gdbarch), 1,
723 "logical*4");
724
725 builtin_f_type->builtin_real
726 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
727 "real", gdbarch_float_format (gdbarch));
728 builtin_f_type->builtin_real_s8
729 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
730 "real*8", gdbarch_double_format (gdbarch));
731 auto fmt = gdbarch_floatformat_for_type (gdbarch, "real(kind=16)", 128);
732 if (fmt != nullptr)
733 builtin_f_type->builtin_real_s16
734 = arch_float_type (gdbarch, 128, "real*16", fmt);
735 else if (gdbarch_long_double_bit (gdbarch) == 128)
736 builtin_f_type->builtin_real_s16
737 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
738 "real*16", gdbarch_long_double_format (gdbarch));
739 else
740 builtin_f_type->builtin_real_s16
741 = arch_type (gdbarch, TYPE_CODE_ERROR, 128, "real*16");
742
743 builtin_f_type->builtin_complex_s8
744 = arch_complex_type (gdbarch, "complex*8",
745 builtin_f_type->builtin_real);
746 builtin_f_type->builtin_complex_s16
747 = arch_complex_type (gdbarch, "complex*16",
748 builtin_f_type->builtin_real_s8);
749 builtin_f_type->builtin_complex_s32
750 = arch_complex_type (gdbarch, "complex*32",
751 builtin_f_type->builtin_real_s16);
752
753 return builtin_f_type;
754 }
755
756 static struct gdbarch_data *f_type_data;
757
758 const struct builtin_f_type *
759 builtin_f_type (struct gdbarch *gdbarch)
760 {
761 return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data);
762 }
763
764 void
765 _initialize_f_language (void)
766 {
767 f_type_data = gdbarch_data_register_post_init (build_fortran_types);
768 }
769
770 /* See f-lang.h. */
771
772 struct value *
773 fortran_argument_convert (struct value *value, bool is_artificial)
774 {
775 if (!is_artificial)
776 {
777 /* If the value is not in the inferior e.g. registers values,
778 convenience variables and user input. */
779 if (VALUE_LVAL (value) != lval_memory)
780 {
781 struct type *type = value_type (value);
782 const int length = TYPE_LENGTH (type);
783 const CORE_ADDR addr
784 = value_as_long (value_allocate_space_in_inferior (length));
785 write_memory (addr, value_contents (value), length);
786 struct value *val
787 = value_from_contents_and_address (type, value_contents (value),
788 addr);
789 return value_addr (val);
790 }
791 else
792 return value_addr (value); /* Program variables, e.g. arrays. */
793 }
794 return value;
795 }
796
797 /* See f-lang.h. */
798
799 struct type *
800 fortran_preserve_arg_pointer (struct value *arg, struct type *type)
801 {
802 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_PTR)
803 return value_type (arg);
804 return type;
805 }
This page took 0.045113 seconds and 4 git commands to generate.