Change pid_to_str to return std::string
[deliverable/binutils-gdb.git] / gdb / fbsd-nat.c
1 /* Native-dependent code for FreeBSD.
2
3 Copyright (C) 2002-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "common/byte-vector.h"
22 #include "gdbcore.h"
23 #include "inferior.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbcmd.h"
27 #include "gdbthread.h"
28 #include "common/gdb_wait.h"
29 #include "inf-ptrace.h"
30 #include <sys/types.h>
31 #include <sys/procfs.h>
32 #include <sys/ptrace.h>
33 #include <sys/signal.h>
34 #include <sys/sysctl.h>
35 #include <sys/user.h>
36 #if defined(HAVE_KINFO_GETFILE) || defined(HAVE_KINFO_GETVMMAP)
37 #include <libutil.h>
38 #endif
39 #if !defined(HAVE_KINFO_GETVMMAP)
40 #include "common/filestuff.h"
41 #endif
42
43 #include "elf-bfd.h"
44 #include "fbsd-nat.h"
45 #include "fbsd-tdep.h"
46
47 #include <list>
48
49 /* Return the name of a file that can be opened to get the symbols for
50 the child process identified by PID. */
51
52 char *
53 fbsd_nat_target::pid_to_exec_file (int pid)
54 {
55 ssize_t len;
56 static char buf[PATH_MAX];
57 char name[PATH_MAX];
58
59 #ifdef KERN_PROC_PATHNAME
60 size_t buflen;
61 int mib[4];
62
63 mib[0] = CTL_KERN;
64 mib[1] = KERN_PROC;
65 mib[2] = KERN_PROC_PATHNAME;
66 mib[3] = pid;
67 buflen = sizeof buf;
68 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
69 /* The kern.proc.pathname.<pid> sysctl returns a length of zero
70 for processes without an associated executable such as kernel
71 processes. */
72 return buflen == 0 ? NULL : buf;
73 #endif
74
75 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
76 len = readlink (name, buf, PATH_MAX - 1);
77 if (len != -1)
78 {
79 buf[len] = '\0';
80 return buf;
81 }
82
83 return NULL;
84 }
85
86 #ifdef HAVE_KINFO_GETVMMAP
87 /* Iterate over all the memory regions in the current inferior,
88 calling FUNC for each memory region. OBFD is passed as the last
89 argument to FUNC. */
90
91 int
92 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
93 void *obfd)
94 {
95 pid_t pid = inferior_ptid.pid ();
96 struct kinfo_vmentry *kve;
97 uint64_t size;
98 int i, nitems;
99
100 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
101 vmentl (kinfo_getvmmap (pid, &nitems));
102 if (vmentl == NULL)
103 perror_with_name (_("Couldn't fetch VM map entries."));
104
105 for (i = 0, kve = vmentl.get (); i < nitems; i++, kve++)
106 {
107 /* Skip unreadable segments and those where MAP_NOCORE has been set. */
108 if (!(kve->kve_protection & KVME_PROT_READ)
109 || kve->kve_flags & KVME_FLAG_NOCOREDUMP)
110 continue;
111
112 /* Skip segments with an invalid type. */
113 if (kve->kve_type != KVME_TYPE_DEFAULT
114 && kve->kve_type != KVME_TYPE_VNODE
115 && kve->kve_type != KVME_TYPE_SWAP
116 && kve->kve_type != KVME_TYPE_PHYS)
117 continue;
118
119 size = kve->kve_end - kve->kve_start;
120 if (info_verbose)
121 {
122 fprintf_filtered (gdb_stdout,
123 "Save segment, %ld bytes at %s (%c%c%c)\n",
124 (long) size,
125 paddress (target_gdbarch (), kve->kve_start),
126 kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
127 kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
128 kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
129 }
130
131 /* Invoke the callback function to create the corefile segment.
132 Pass MODIFIED as true, we do not know the real modification state. */
133 func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
134 kve->kve_protection & KVME_PROT_WRITE,
135 kve->kve_protection & KVME_PROT_EXEC, 1, obfd);
136 }
137 return 0;
138 }
139 #else
140 static int
141 fbsd_read_mapping (FILE *mapfile, unsigned long *start, unsigned long *end,
142 char *protection)
143 {
144 /* FreeBSD 5.1-RELEASE uses a 256-byte buffer. */
145 char buf[256];
146 int resident, privateresident;
147 unsigned long obj;
148 int ret = EOF;
149
150 /* As of FreeBSD 5.0-RELEASE, the layout is described in
151 /usr/src/sys/fs/procfs/procfs_map.c. Somewhere in 5.1-CURRENT a
152 new column was added to the procfs map. Therefore we can't use
153 fscanf since we need to support older releases too. */
154 if (fgets (buf, sizeof buf, mapfile) != NULL)
155 ret = sscanf (buf, "%lx %lx %d %d %lx %s", start, end,
156 &resident, &privateresident, &obj, protection);
157
158 return (ret != 0 && ret != EOF);
159 }
160
161 /* Iterate over all the memory regions in the current inferior,
162 calling FUNC for each memory region. OBFD is passed as the last
163 argument to FUNC. */
164
165 int
166 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
167 void *obfd)
168 {
169 pid_t pid = inferior_ptid.pid ();
170 unsigned long start, end, size;
171 char protection[4];
172 int read, write, exec;
173
174 std::string mapfilename = string_printf ("/proc/%ld/map", (long) pid);
175 gdb_file_up mapfile (fopen (mapfilename.c_str (), "r"));
176 if (mapfile == NULL)
177 error (_("Couldn't open %s."), mapfilename.c_str ());
178
179 if (info_verbose)
180 fprintf_filtered (gdb_stdout,
181 "Reading memory regions from %s\n", mapfilename.c_str ());
182
183 /* Now iterate until end-of-file. */
184 while (fbsd_read_mapping (mapfile.get (), &start, &end, &protection[0]))
185 {
186 size = end - start;
187
188 read = (strchr (protection, 'r') != 0);
189 write = (strchr (protection, 'w') != 0);
190 exec = (strchr (protection, 'x') != 0);
191
192 if (info_verbose)
193 {
194 fprintf_filtered (gdb_stdout,
195 "Save segment, %ld bytes at %s (%c%c%c)\n",
196 size, paddress (target_gdbarch (), start),
197 read ? 'r' : '-',
198 write ? 'w' : '-',
199 exec ? 'x' : '-');
200 }
201
202 /* Invoke the callback function to create the corefile segment.
203 Pass MODIFIED as true, we do not know the real modification state. */
204 func (start, size, read, write, exec, 1, obfd);
205 }
206
207 return 0;
208 }
209 #endif
210
211 /* Fetch the command line for a running process. */
212
213 static gdb::unique_xmalloc_ptr<char>
214 fbsd_fetch_cmdline (pid_t pid)
215 {
216 size_t len;
217 int mib[4];
218
219 len = 0;
220 mib[0] = CTL_KERN;
221 mib[1] = KERN_PROC;
222 mib[2] = KERN_PROC_ARGS;
223 mib[3] = pid;
224 if (sysctl (mib, 4, NULL, &len, NULL, 0) == -1)
225 return nullptr;
226
227 if (len == 0)
228 return nullptr;
229
230 gdb::unique_xmalloc_ptr<char> cmdline ((char *) xmalloc (len));
231 if (sysctl (mib, 4, cmdline.get (), &len, NULL, 0) == -1)
232 return nullptr;
233
234 /* Join the arguments with spaces to form a single string. */
235 char *cp = cmdline.get ();
236 for (size_t i = 0; i < len - 1; i++)
237 if (cp[i] == '\0')
238 cp[i] = ' ';
239 cp[len - 1] = '\0';
240
241 return cmdline;
242 }
243
244 /* Fetch the external variant of the kernel's internal process
245 structure for the process PID into KP. */
246
247 static bool
248 fbsd_fetch_kinfo_proc (pid_t pid, struct kinfo_proc *kp)
249 {
250 size_t len;
251 int mib[4];
252
253 len = sizeof *kp;
254 mib[0] = CTL_KERN;
255 mib[1] = KERN_PROC;
256 mib[2] = KERN_PROC_PID;
257 mib[3] = pid;
258 return (sysctl (mib, 4, kp, &len, NULL, 0) == 0);
259 }
260
261 /* Implement the "info_proc" target_ops method. */
262
263 bool
264 fbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
265 {
266 #ifdef HAVE_KINFO_GETFILE
267 gdb::unique_xmalloc_ptr<struct kinfo_file> fdtbl;
268 int nfd = 0;
269 #endif
270 struct kinfo_proc kp;
271 pid_t pid;
272 bool do_cmdline = false;
273 bool do_cwd = false;
274 bool do_exe = false;
275 #ifdef HAVE_KINFO_GETFILE
276 bool do_files = false;
277 #endif
278 #ifdef HAVE_KINFO_GETVMMAP
279 bool do_mappings = false;
280 #endif
281 bool do_status = false;
282
283 switch (what)
284 {
285 case IP_MINIMAL:
286 do_cmdline = true;
287 do_cwd = true;
288 do_exe = true;
289 break;
290 #ifdef HAVE_KINFO_GETVMMAP
291 case IP_MAPPINGS:
292 do_mappings = true;
293 break;
294 #endif
295 case IP_STATUS:
296 case IP_STAT:
297 do_status = true;
298 break;
299 case IP_CMDLINE:
300 do_cmdline = true;
301 break;
302 case IP_EXE:
303 do_exe = true;
304 break;
305 case IP_CWD:
306 do_cwd = true;
307 break;
308 #ifdef HAVE_KINFO_GETFILE
309 case IP_FILES:
310 do_files = true;
311 break;
312 #endif
313 case IP_ALL:
314 do_cmdline = true;
315 do_cwd = true;
316 do_exe = true;
317 #ifdef HAVE_KINFO_GETFILE
318 do_files = true;
319 #endif
320 #ifdef HAVE_KINFO_GETVMMAP
321 do_mappings = true;
322 #endif
323 do_status = true;
324 break;
325 default:
326 error (_("Not supported on this target."));
327 }
328
329 gdb_argv built_argv (args);
330 if (built_argv.count () == 0)
331 {
332 pid = inferior_ptid.pid ();
333 if (pid == 0)
334 error (_("No current process: you must name one."));
335 }
336 else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
337 pid = strtol (built_argv[0], NULL, 10);
338 else
339 error (_("Invalid arguments."));
340
341 printf_filtered (_("process %d\n"), pid);
342 #ifdef HAVE_KINFO_GETFILE
343 if (do_cwd || do_exe || do_files)
344 fdtbl.reset (kinfo_getfile (pid, &nfd));
345 #endif
346
347 if (do_cmdline)
348 {
349 gdb::unique_xmalloc_ptr<char> cmdline = fbsd_fetch_cmdline (pid);
350 if (cmdline != nullptr)
351 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
352 else
353 warning (_("unable to fetch command line"));
354 }
355 if (do_cwd)
356 {
357 const char *cwd = NULL;
358 #ifdef HAVE_KINFO_GETFILE
359 struct kinfo_file *kf = fdtbl.get ();
360 for (int i = 0; i < nfd; i++, kf++)
361 {
362 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_CWD)
363 {
364 cwd = kf->kf_path;
365 break;
366 }
367 }
368 #endif
369 if (cwd != NULL)
370 printf_filtered ("cwd = '%s'\n", cwd);
371 else
372 warning (_("unable to fetch current working directory"));
373 }
374 if (do_exe)
375 {
376 const char *exe = NULL;
377 #ifdef HAVE_KINFO_GETFILE
378 struct kinfo_file *kf = fdtbl.get ();
379 for (int i = 0; i < nfd; i++, kf++)
380 {
381 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_TEXT)
382 {
383 exe = kf->kf_path;
384 break;
385 }
386 }
387 #endif
388 if (exe == NULL)
389 exe = pid_to_exec_file (pid);
390 if (exe != NULL)
391 printf_filtered ("exe = '%s'\n", exe);
392 else
393 warning (_("unable to fetch executable path name"));
394 }
395 #ifdef HAVE_KINFO_GETFILE
396 if (do_files)
397 {
398 struct kinfo_file *kf = fdtbl.get ();
399
400 if (nfd > 0)
401 {
402 fbsd_info_proc_files_header ();
403 for (int i = 0; i < nfd; i++, kf++)
404 fbsd_info_proc_files_entry (kf->kf_type, kf->kf_fd, kf->kf_flags,
405 kf->kf_offset, kf->kf_vnode_type,
406 kf->kf_sock_domain, kf->kf_sock_type,
407 kf->kf_sock_protocol, &kf->kf_sa_local,
408 &kf->kf_sa_peer, kf->kf_path);
409 }
410 else
411 warning (_("unable to fetch list of open files"));
412 }
413 #endif
414 #ifdef HAVE_KINFO_GETVMMAP
415 if (do_mappings)
416 {
417 int nvment;
418 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
419 vmentl (kinfo_getvmmap (pid, &nvment));
420
421 if (vmentl != nullptr)
422 {
423 int addr_bit = TARGET_CHAR_BIT * sizeof (void *);
424 fbsd_info_proc_mappings_header (addr_bit);
425
426 struct kinfo_vmentry *kve = vmentl.get ();
427 for (int i = 0; i < nvment; i++, kve++)
428 fbsd_info_proc_mappings_entry (addr_bit, kve->kve_start,
429 kve->kve_end, kve->kve_offset,
430 kve->kve_flags, kve->kve_protection,
431 kve->kve_path);
432 }
433 else
434 warning (_("unable to fetch virtual memory map"));
435 }
436 #endif
437 if (do_status)
438 {
439 if (!fbsd_fetch_kinfo_proc (pid, &kp))
440 warning (_("Failed to fetch process information"));
441 else
442 {
443 const char *state;
444 int pgtok;
445
446 printf_filtered ("Name: %s\n", kp.ki_comm);
447 switch (kp.ki_stat)
448 {
449 case SIDL:
450 state = "I (idle)";
451 break;
452 case SRUN:
453 state = "R (running)";
454 break;
455 case SSTOP:
456 state = "T (stopped)";
457 break;
458 case SZOMB:
459 state = "Z (zombie)";
460 break;
461 case SSLEEP:
462 state = "S (sleeping)";
463 break;
464 case SWAIT:
465 state = "W (interrupt wait)";
466 break;
467 case SLOCK:
468 state = "L (blocked on lock)";
469 break;
470 default:
471 state = "? (unknown)";
472 break;
473 }
474 printf_filtered ("State: %s\n", state);
475 printf_filtered ("Parent process: %d\n", kp.ki_ppid);
476 printf_filtered ("Process group: %d\n", kp.ki_pgid);
477 printf_filtered ("Session id: %d\n", kp.ki_sid);
478 printf_filtered ("TTY: %ju\n", (uintmax_t) kp.ki_tdev);
479 printf_filtered ("TTY owner process group: %d\n", kp.ki_tpgid);
480 printf_filtered ("User IDs (real, effective, saved): %d %d %d\n",
481 kp.ki_ruid, kp.ki_uid, kp.ki_svuid);
482 printf_filtered ("Group IDs (real, effective, saved): %d %d %d\n",
483 kp.ki_rgid, kp.ki_groups[0], kp.ki_svgid);
484 printf_filtered ("Groups: ");
485 for (int i = 0; i < kp.ki_ngroups; i++)
486 printf_filtered ("%d ", kp.ki_groups[i]);
487 printf_filtered ("\n");
488 printf_filtered ("Minor faults (no memory page): %ld\n",
489 kp.ki_rusage.ru_minflt);
490 printf_filtered ("Minor faults, children: %ld\n",
491 kp.ki_rusage_ch.ru_minflt);
492 printf_filtered ("Major faults (memory page faults): %ld\n",
493 kp.ki_rusage.ru_majflt);
494 printf_filtered ("Major faults, children: %ld\n",
495 kp.ki_rusage_ch.ru_majflt);
496 printf_filtered ("utime: %jd.%06ld\n",
497 (intmax_t) kp.ki_rusage.ru_utime.tv_sec,
498 kp.ki_rusage.ru_utime.tv_usec);
499 printf_filtered ("stime: %jd.%06ld\n",
500 (intmax_t) kp.ki_rusage.ru_stime.tv_sec,
501 kp.ki_rusage.ru_stime.tv_usec);
502 printf_filtered ("utime, children: %jd.%06ld\n",
503 (intmax_t) kp.ki_rusage_ch.ru_utime.tv_sec,
504 kp.ki_rusage_ch.ru_utime.tv_usec);
505 printf_filtered ("stime, children: %jd.%06ld\n",
506 (intmax_t) kp.ki_rusage_ch.ru_stime.tv_sec,
507 kp.ki_rusage_ch.ru_stime.tv_usec);
508 printf_filtered ("'nice' value: %d\n", kp.ki_nice);
509 printf_filtered ("Start time: %jd.%06ld\n", kp.ki_start.tv_sec,
510 kp.ki_start.tv_usec);
511 pgtok = getpagesize () / 1024;
512 printf_filtered ("Virtual memory size: %ju kB\n",
513 (uintmax_t) kp.ki_size / 1024);
514 printf_filtered ("Data size: %ju kB\n",
515 (uintmax_t) kp.ki_dsize * pgtok);
516 printf_filtered ("Stack size: %ju kB\n",
517 (uintmax_t) kp.ki_ssize * pgtok);
518 printf_filtered ("Text size: %ju kB\n",
519 (uintmax_t) kp.ki_tsize * pgtok);
520 printf_filtered ("Resident set size: %ju kB\n",
521 (uintmax_t) kp.ki_rssize * pgtok);
522 printf_filtered ("Maximum RSS: %ju kB\n",
523 (uintmax_t) kp.ki_rusage.ru_maxrss);
524 printf_filtered ("Pending Signals: ");
525 for (int i = 0; i < _SIG_WORDS; i++)
526 printf_filtered ("%08x ", kp.ki_siglist.__bits[i]);
527 printf_filtered ("\n");
528 printf_filtered ("Ignored Signals: ");
529 for (int i = 0; i < _SIG_WORDS; i++)
530 printf_filtered ("%08x ", kp.ki_sigignore.__bits[i]);
531 printf_filtered ("\n");
532 printf_filtered ("Caught Signals: ");
533 for (int i = 0; i < _SIG_WORDS; i++)
534 printf_filtered ("%08x ", kp.ki_sigcatch.__bits[i]);
535 printf_filtered ("\n");
536 }
537 }
538
539 return true;
540 }
541
542 /*
543 * The current layout of siginfo_t on FreeBSD was adopted in SVN
544 * revision 153154 which shipped in FreeBSD versions 7.0 and later.
545 * Don't bother supporting the older layout on older kernels. The
546 * older format was also never used in core dump notes.
547 */
548 #if __FreeBSD_version >= 700009
549 #define USE_SIGINFO
550 #endif
551
552 #ifdef USE_SIGINFO
553 /* Return the size of siginfo for the current inferior. */
554
555 #ifdef __LP64__
556 union sigval32 {
557 int sival_int;
558 uint32_t sival_ptr;
559 };
560
561 /* This structure matches the naming and layout of `siginfo_t' in
562 <sys/signal.h>. In particular, the `si_foo' macros defined in that
563 header can be used with both types to copy fields in the `_reason'
564 union. */
565
566 struct siginfo32
567 {
568 int si_signo;
569 int si_errno;
570 int si_code;
571 __pid_t si_pid;
572 __uid_t si_uid;
573 int si_status;
574 uint32_t si_addr;
575 union sigval32 si_value;
576 union
577 {
578 struct
579 {
580 int _trapno;
581 } _fault;
582 struct
583 {
584 int _timerid;
585 int _overrun;
586 } _timer;
587 struct
588 {
589 int _mqd;
590 } _mesgq;
591 struct
592 {
593 int32_t _band;
594 } _poll;
595 struct
596 {
597 int32_t __spare1__;
598 int __spare2__[7];
599 } __spare__;
600 } _reason;
601 };
602 #endif
603
604 static size_t
605 fbsd_siginfo_size ()
606 {
607 #ifdef __LP64__
608 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
609
610 /* Is the inferior 32-bit? If so, use the 32-bit siginfo size. */
611 if (gdbarch_long_bit (gdbarch) == 32)
612 return sizeof (struct siginfo32);
613 #endif
614 return sizeof (siginfo_t);
615 }
616
617 /* Convert a native 64-bit siginfo object to a 32-bit object. Note
618 that FreeBSD doesn't support writing to $_siginfo, so this only
619 needs to convert one way. */
620
621 static void
622 fbsd_convert_siginfo (siginfo_t *si)
623 {
624 #ifdef __LP64__
625 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
626
627 /* Is the inferior 32-bit? If not, nothing to do. */
628 if (gdbarch_long_bit (gdbarch) != 32)
629 return;
630
631 struct siginfo32 si32;
632
633 si32.si_signo = si->si_signo;
634 si32.si_errno = si->si_errno;
635 si32.si_code = si->si_code;
636 si32.si_pid = si->si_pid;
637 si32.si_uid = si->si_uid;
638 si32.si_status = si->si_status;
639 si32.si_addr = (uintptr_t) si->si_addr;
640
641 /* If sival_ptr is being used instead of sival_int on a big-endian
642 platform, then sival_int will be zero since it holds the upper
643 32-bits of the pointer value. */
644 #if _BYTE_ORDER == _BIG_ENDIAN
645 if (si->si_value.sival_int == 0)
646 si32.si_value.sival_ptr = (uintptr_t) si->si_value.sival_ptr;
647 else
648 si32.si_value.sival_int = si->si_value.sival_int;
649 #else
650 si32.si_value.sival_int = si->si_value.sival_int;
651 #endif
652
653 /* Always copy the spare fields and then possibly overwrite them for
654 signal-specific or code-specific fields. */
655 si32._reason.__spare__.__spare1__ = si->_reason.__spare__.__spare1__;
656 for (int i = 0; i < 7; i++)
657 si32._reason.__spare__.__spare2__[i] = si->_reason.__spare__.__spare2__[i];
658 switch (si->si_signo) {
659 case SIGILL:
660 case SIGFPE:
661 case SIGSEGV:
662 case SIGBUS:
663 si32.si_trapno = si->si_trapno;
664 break;
665 }
666 switch (si->si_code) {
667 case SI_TIMER:
668 si32.si_timerid = si->si_timerid;
669 si32.si_overrun = si->si_overrun;
670 break;
671 case SI_MESGQ:
672 si32.si_mqd = si->si_mqd;
673 break;
674 }
675
676 memcpy(si, &si32, sizeof (si32));
677 #endif
678 }
679 #endif
680
681 /* Implement the "xfer_partial" target_ops method. */
682
683 enum target_xfer_status
684 fbsd_nat_target::xfer_partial (enum target_object object,
685 const char *annex, gdb_byte *readbuf,
686 const gdb_byte *writebuf,
687 ULONGEST offset, ULONGEST len,
688 ULONGEST *xfered_len)
689 {
690 pid_t pid = inferior_ptid.pid ();
691
692 switch (object)
693 {
694 #ifdef USE_SIGINFO
695 case TARGET_OBJECT_SIGNAL_INFO:
696 {
697 struct ptrace_lwpinfo pl;
698 size_t siginfo_size;
699
700 /* FreeBSD doesn't support writing to $_siginfo. */
701 if (writebuf != NULL)
702 return TARGET_XFER_E_IO;
703
704 if (inferior_ptid.lwp_p ())
705 pid = inferior_ptid.lwp ();
706
707 siginfo_size = fbsd_siginfo_size ();
708 if (offset > siginfo_size)
709 return TARGET_XFER_E_IO;
710
711 if (ptrace (PT_LWPINFO, pid, (PTRACE_TYPE_ARG3) &pl, sizeof (pl)) == -1)
712 return TARGET_XFER_E_IO;
713
714 if (!(pl.pl_flags & PL_FLAG_SI))
715 return TARGET_XFER_E_IO;
716
717 fbsd_convert_siginfo (&pl.pl_siginfo);
718 if (offset + len > siginfo_size)
719 len = siginfo_size - offset;
720
721 memcpy (readbuf, ((gdb_byte *) &pl.pl_siginfo) + offset, len);
722 *xfered_len = len;
723 return TARGET_XFER_OK;
724 }
725 #endif
726 #ifdef KERN_PROC_AUXV
727 case TARGET_OBJECT_AUXV:
728 {
729 gdb::byte_vector buf_storage;
730 gdb_byte *buf;
731 size_t buflen;
732 int mib[4];
733
734 if (writebuf != NULL)
735 return TARGET_XFER_E_IO;
736 mib[0] = CTL_KERN;
737 mib[1] = KERN_PROC;
738 mib[2] = KERN_PROC_AUXV;
739 mib[3] = pid;
740 if (offset == 0)
741 {
742 buf = readbuf;
743 buflen = len;
744 }
745 else
746 {
747 buflen = offset + len;
748 buf_storage.resize (buflen);
749 buf = buf_storage.data ();
750 }
751 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
752 {
753 if (offset != 0)
754 {
755 if (buflen > offset)
756 {
757 buflen -= offset;
758 memcpy (readbuf, buf + offset, buflen);
759 }
760 else
761 buflen = 0;
762 }
763 *xfered_len = buflen;
764 return (buflen == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
765 }
766 return TARGET_XFER_E_IO;
767 }
768 #endif
769 #if defined(KERN_PROC_VMMAP) && defined(KERN_PROC_PS_STRINGS)
770 case TARGET_OBJECT_FREEBSD_VMMAP:
771 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
772 {
773 gdb::byte_vector buf_storage;
774 gdb_byte *buf;
775 size_t buflen;
776 int mib[4];
777
778 int proc_target;
779 uint32_t struct_size;
780 switch (object)
781 {
782 case TARGET_OBJECT_FREEBSD_VMMAP:
783 proc_target = KERN_PROC_VMMAP;
784 struct_size = sizeof (struct kinfo_vmentry);
785 break;
786 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
787 proc_target = KERN_PROC_PS_STRINGS;
788 struct_size = sizeof (void *);
789 break;
790 }
791
792 if (writebuf != NULL)
793 return TARGET_XFER_E_IO;
794
795 mib[0] = CTL_KERN;
796 mib[1] = KERN_PROC;
797 mib[2] = proc_target;
798 mib[3] = pid;
799
800 if (sysctl (mib, 4, NULL, &buflen, NULL, 0) != 0)
801 return TARGET_XFER_E_IO;
802 buflen += sizeof (struct_size);
803
804 if (offset >= buflen)
805 {
806 *xfered_len = 0;
807 return TARGET_XFER_EOF;
808 }
809
810 buf_storage.resize (buflen);
811 buf = buf_storage.data ();
812
813 memcpy (buf, &struct_size, sizeof (struct_size));
814 buflen -= sizeof (struct_size);
815 if (sysctl (mib, 4, buf + sizeof (struct_size), &buflen, NULL, 0) != 0)
816 return TARGET_XFER_E_IO;
817 buflen += sizeof (struct_size);
818
819 if (buflen - offset < len)
820 len = buflen - offset;
821 memcpy (readbuf, buf + offset, len);
822 *xfered_len = len;
823 return TARGET_XFER_OK;
824 }
825 #endif
826 default:
827 return inf_ptrace_target::xfer_partial (object, annex,
828 readbuf, writebuf, offset,
829 len, xfered_len);
830 }
831 }
832
833 #ifdef PT_LWPINFO
834 static int debug_fbsd_lwp;
835 static int debug_fbsd_nat;
836
837 static void
838 show_fbsd_lwp_debug (struct ui_file *file, int from_tty,
839 struct cmd_list_element *c, const char *value)
840 {
841 fprintf_filtered (file, _("Debugging of FreeBSD lwp module is %s.\n"), value);
842 }
843
844 static void
845 show_fbsd_nat_debug (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c, const char *value)
847 {
848 fprintf_filtered (file, _("Debugging of FreeBSD native target is %s.\n"),
849 value);
850 }
851
852 /*
853 FreeBSD's first thread support was via a "reentrant" version of libc
854 (libc_r) that first shipped in 2.2.7. This library multiplexed all
855 of the threads in a process onto a single kernel thread. This
856 library was supported via the bsd-uthread target.
857
858 FreeBSD 5.1 introduced two new threading libraries that made use of
859 multiple kernel threads. The first (libkse) scheduled M user
860 threads onto N (<= M) kernel threads (LWPs). The second (libthr)
861 bound each user thread to a dedicated kernel thread. libkse shipped
862 as the default threading library (libpthread).
863
864 FreeBSD 5.3 added a libthread_db to abstract the interface across
865 the various thread libraries (libc_r, libkse, and libthr).
866
867 FreeBSD 7.0 switched the default threading library from from libkse
868 to libpthread and removed libc_r.
869
870 FreeBSD 8.0 removed libkse and the in-kernel support for it. The
871 only threading library supported by 8.0 and later is libthr which
872 ties each user thread directly to an LWP. To simplify the
873 implementation, this target only supports LWP-backed threads using
874 ptrace directly rather than libthread_db.
875
876 FreeBSD 11.0 introduced LWP event reporting via PT_LWP_EVENTS.
877 */
878
879 /* Return true if PTID is still active in the inferior. */
880
881 bool
882 fbsd_nat_target::thread_alive (ptid_t ptid)
883 {
884 if (ptid.lwp_p ())
885 {
886 struct ptrace_lwpinfo pl;
887
888 if (ptrace (PT_LWPINFO, ptid.lwp (), (caddr_t) &pl, sizeof pl)
889 == -1)
890 return false;
891 #ifdef PL_FLAG_EXITED
892 if (pl.pl_flags & PL_FLAG_EXITED)
893 return false;
894 #endif
895 }
896
897 return true;
898 }
899
900 /* Convert PTID to a string. */
901
902 std::string
903 fbsd_nat_target::pid_to_str (ptid_t ptid)
904 {
905 lwpid_t lwp;
906
907 lwp = ptid.lwp ();
908 if (lwp != 0)
909 {
910 int pid = ptid.pid ();
911
912 return string_printf ("LWP %d of process %d", lwp, pid);
913 }
914
915 return normal_pid_to_str (ptid);
916 }
917
918 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME
919 /* Return the name assigned to a thread by an application. Returns
920 the string in a static buffer. */
921
922 const char *
923 fbsd_nat_target::thread_name (struct thread_info *thr)
924 {
925 struct ptrace_lwpinfo pl;
926 struct kinfo_proc kp;
927 int pid = thr->ptid.pid ();
928 long lwp = thr->ptid.lwp ();
929 static char buf[sizeof pl.pl_tdname + 1];
930
931 /* Note that ptrace_lwpinfo returns the process command in pl_tdname
932 if a name has not been set explicitly. Return a NULL name in
933 that case. */
934 if (!fbsd_fetch_kinfo_proc (pid, &kp))
935 perror_with_name (_("Failed to fetch process information"));
936 if (ptrace (PT_LWPINFO, lwp, (caddr_t) &pl, sizeof pl) == -1)
937 perror_with_name (("ptrace"));
938 if (strcmp (kp.ki_comm, pl.pl_tdname) == 0)
939 return NULL;
940 xsnprintf (buf, sizeof buf, "%s", pl.pl_tdname);
941 return buf;
942 }
943 #endif
944
945 /* Enable additional event reporting on new processes.
946
947 To catch fork events, PTRACE_FORK is set on every traced process
948 to enable stops on returns from fork or vfork. Note that both the
949 parent and child will always stop, even if system call stops are
950 not enabled.
951
952 To catch LWP events, PTRACE_EVENTS is set on every traced process.
953 This enables stops on the birth for new LWPs (excluding the "main" LWP)
954 and the death of LWPs (excluding the last LWP in a process). Note
955 that unlike fork events, the LWP that creates a new LWP does not
956 report an event. */
957
958 static void
959 fbsd_enable_proc_events (pid_t pid)
960 {
961 #ifdef PT_GET_EVENT_MASK
962 int events;
963
964 if (ptrace (PT_GET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
965 sizeof (events)) == -1)
966 perror_with_name (("ptrace"));
967 events |= PTRACE_FORK | PTRACE_LWP;
968 #ifdef PTRACE_VFORK
969 events |= PTRACE_VFORK;
970 #endif
971 if (ptrace (PT_SET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
972 sizeof (events)) == -1)
973 perror_with_name (("ptrace"));
974 #else
975 #ifdef TDP_RFPPWAIT
976 if (ptrace (PT_FOLLOW_FORK, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
977 perror_with_name (("ptrace"));
978 #endif
979 #ifdef PT_LWP_EVENTS
980 if (ptrace (PT_LWP_EVENTS, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
981 perror_with_name (("ptrace"));
982 #endif
983 #endif
984 }
985
986 /* Add threads for any new LWPs in a process.
987
988 When LWP events are used, this function is only used to detect existing
989 threads when attaching to a process. On older systems, this function is
990 called to discover new threads each time the thread list is updated. */
991
992 static void
993 fbsd_add_threads (pid_t pid)
994 {
995 int i, nlwps;
996
997 gdb_assert (!in_thread_list (ptid_t (pid)));
998 nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
999 if (nlwps == -1)
1000 perror_with_name (("ptrace"));
1001
1002 gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
1003
1004 nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
1005 if (nlwps == -1)
1006 perror_with_name (("ptrace"));
1007
1008 for (i = 0; i < nlwps; i++)
1009 {
1010 ptid_t ptid = ptid_t (pid, lwps[i], 0);
1011
1012 if (!in_thread_list (ptid))
1013 {
1014 #ifdef PT_LWP_EVENTS
1015 struct ptrace_lwpinfo pl;
1016
1017 /* Don't add exited threads. Note that this is only called
1018 when attaching to a multi-threaded process. */
1019 if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof pl) == -1)
1020 perror_with_name (("ptrace"));
1021 if (pl.pl_flags & PL_FLAG_EXITED)
1022 continue;
1023 #endif
1024 if (debug_fbsd_lwp)
1025 fprintf_unfiltered (gdb_stdlog,
1026 "FLWP: adding thread for LWP %u\n",
1027 lwps[i]);
1028 add_thread (ptid);
1029 }
1030 }
1031 }
1032
1033 /* Implement the "update_thread_list" target_ops method. */
1034
1035 void
1036 fbsd_nat_target::update_thread_list ()
1037 {
1038 #ifdef PT_LWP_EVENTS
1039 /* With support for thread events, threads are added/deleted from the
1040 list as events are reported, so just try deleting exited threads. */
1041 delete_exited_threads ();
1042 #else
1043 prune_threads ();
1044
1045 fbsd_add_threads (inferior_ptid.pid ());
1046 #endif
1047 }
1048
1049 #ifdef TDP_RFPPWAIT
1050 /*
1051 To catch fork events, PT_FOLLOW_FORK is set on every traced process
1052 to enable stops on returns from fork or vfork. Note that both the
1053 parent and child will always stop, even if system call stops are not
1054 enabled.
1055
1056 After a fork, both the child and parent process will stop and report
1057 an event. However, there is no guarantee of order. If the parent
1058 reports its stop first, then fbsd_wait explicitly waits for the new
1059 child before returning. If the child reports its stop first, then
1060 the event is saved on a list and ignored until the parent's stop is
1061 reported. fbsd_wait could have been changed to fetch the parent PID
1062 of the new child and used that to wait for the parent explicitly.
1063 However, if two threads in the parent fork at the same time, then
1064 the wait on the parent might return the "wrong" fork event.
1065
1066 The initial version of PT_FOLLOW_FORK did not set PL_FLAG_CHILD for
1067 the new child process. This flag could be inferred by treating any
1068 events for an unknown pid as a new child.
1069
1070 In addition, the initial version of PT_FOLLOW_FORK did not report a
1071 stop event for the parent process of a vfork until after the child
1072 process executed a new program or exited. The kernel was changed to
1073 defer the wait for exit or exec of the child until after posting the
1074 stop event shortly after the change to introduce PL_FLAG_CHILD.
1075 This could be worked around by reporting a vfork event when the
1076 child event posted and ignoring the subsequent event from the
1077 parent.
1078
1079 This implementation requires both of these fixes for simplicity's
1080 sake. FreeBSD versions newer than 9.1 contain both fixes.
1081 */
1082
1083 static std::list<ptid_t> fbsd_pending_children;
1084
1085 /* Record a new child process event that is reported before the
1086 corresponding fork event in the parent. */
1087
1088 static void
1089 fbsd_remember_child (ptid_t pid)
1090 {
1091 fbsd_pending_children.push_front (pid);
1092 }
1093
1094 /* Check for a previously-recorded new child process event for PID.
1095 If one is found, remove it from the list and return the PTID. */
1096
1097 static ptid_t
1098 fbsd_is_child_pending (pid_t pid)
1099 {
1100 for (auto it = fbsd_pending_children.begin ();
1101 it != fbsd_pending_children.end (); it++)
1102 if (it->pid () == pid)
1103 {
1104 ptid_t ptid = *it;
1105 fbsd_pending_children.erase (it);
1106 return ptid;
1107 }
1108 return null_ptid;
1109 }
1110
1111 #ifndef PTRACE_VFORK
1112 static std::forward_list<ptid_t> fbsd_pending_vfork_done;
1113
1114 /* Record a pending vfork done event. */
1115
1116 static void
1117 fbsd_add_vfork_done (ptid_t pid)
1118 {
1119 fbsd_pending_vfork_done.push_front (pid);
1120 }
1121
1122 /* Check for a pending vfork done event for a specific PID. */
1123
1124 static int
1125 fbsd_is_vfork_done_pending (pid_t pid)
1126 {
1127 for (auto it = fbsd_pending_vfork_done.begin ();
1128 it != fbsd_pending_vfork_done.end (); it++)
1129 if (it->pid () == pid)
1130 return 1;
1131 return 0;
1132 }
1133
1134 /* Check for a pending vfork done event. If one is found, remove it
1135 from the list and return the PTID. */
1136
1137 static ptid_t
1138 fbsd_next_vfork_done (void)
1139 {
1140 if (!fbsd_pending_vfork_done.empty ())
1141 {
1142 ptid_t ptid = fbsd_pending_vfork_done.front ();
1143 fbsd_pending_vfork_done.pop_front ();
1144 return ptid;
1145 }
1146 return null_ptid;
1147 }
1148 #endif
1149 #endif
1150
1151 /* Implement the "resume" target_ops method. */
1152
1153 void
1154 fbsd_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1155 {
1156 #if defined(TDP_RFPPWAIT) && !defined(PTRACE_VFORK)
1157 pid_t pid;
1158
1159 /* Don't PT_CONTINUE a process which has a pending vfork done event. */
1160 if (minus_one_ptid == ptid)
1161 pid = inferior_ptid.pid ();
1162 else
1163 pid = ptid.pid ();
1164 if (fbsd_is_vfork_done_pending (pid))
1165 return;
1166 #endif
1167
1168 if (debug_fbsd_lwp)
1169 fprintf_unfiltered (gdb_stdlog,
1170 "FLWP: fbsd_resume for ptid (%d, %ld, %ld)\n",
1171 ptid.pid (), ptid.lwp (),
1172 ptid.tid ());
1173 if (ptid.lwp_p ())
1174 {
1175 /* If ptid is a specific LWP, suspend all other LWPs in the process. */
1176 inferior *inf = find_inferior_ptid (ptid);
1177
1178 for (thread_info *tp : inf->non_exited_threads ())
1179 {
1180 int request;
1181
1182 if (tp->ptid.lwp () == ptid.lwp ())
1183 request = PT_RESUME;
1184 else
1185 request = PT_SUSPEND;
1186
1187 if (ptrace (request, tp->ptid.lwp (), NULL, 0) == -1)
1188 perror_with_name (("ptrace"));
1189 }
1190 }
1191 else
1192 {
1193 /* If ptid is a wildcard, resume all matching threads (they won't run
1194 until the process is continued however). */
1195 for (thread_info *tp : all_non_exited_threads (ptid))
1196 if (ptrace (PT_RESUME, tp->ptid.lwp (), NULL, 0) == -1)
1197 perror_with_name (("ptrace"));
1198 ptid = inferior_ptid;
1199 }
1200
1201 #if __FreeBSD_version < 1200052
1202 /* When multiple threads within a process wish to report STOPPED
1203 events from wait(), the kernel picks one thread event as the
1204 thread event to report. The chosen thread event is retrieved via
1205 PT_LWPINFO by passing the process ID as the request pid. If
1206 multiple events are pending, then the subsequent wait() after
1207 resuming a process will report another STOPPED event after
1208 resuming the process to handle the next thread event and so on.
1209
1210 A single thread event is cleared as a side effect of resuming the
1211 process with PT_CONTINUE, PT_STEP, etc. In older kernels,
1212 however, the request pid was used to select which thread's event
1213 was cleared rather than always clearing the event that was just
1214 reported. To avoid clearing the event of the wrong LWP, always
1215 pass the process ID instead of an LWP ID to PT_CONTINUE or
1216 PT_SYSCALL.
1217
1218 In the case of stepping, the process ID cannot be used with
1219 PT_STEP since it would step the thread that reported an event
1220 which may not be the thread indicated by PTID. For stepping, use
1221 PT_SETSTEP to enable stepping on the desired thread before
1222 resuming the process via PT_CONTINUE instead of using
1223 PT_STEP. */
1224 if (step)
1225 {
1226 if (ptrace (PT_SETSTEP, get_ptrace_pid (ptid), NULL, 0) == -1)
1227 perror_with_name (("ptrace"));
1228 step = 0;
1229 }
1230 ptid = ptid_t (ptid.pid ());
1231 #endif
1232 inf_ptrace_target::resume (ptid, step, signo);
1233 }
1234
1235 #ifdef USE_SIGTRAP_SIGINFO
1236 /* Handle breakpoint and trace traps reported via SIGTRAP. If the
1237 trap was a breakpoint or trace trap that should be reported to the
1238 core, return true. */
1239
1240 static bool
1241 fbsd_handle_debug_trap (ptid_t ptid, const struct ptrace_lwpinfo &pl)
1242 {
1243
1244 /* Ignore traps without valid siginfo or for signals other than
1245 SIGTRAP.
1246
1247 FreeBSD kernels prior to r341800 can return stale siginfo for at
1248 least some events, but those events can be identified by
1249 additional flags set in pl_flags. True breakpoint and
1250 single-step traps should not have other flags set in
1251 pl_flags. */
1252 if (pl.pl_flags != PL_FLAG_SI || pl.pl_siginfo.si_signo != SIGTRAP)
1253 return false;
1254
1255 /* Trace traps are either a single step or a hardware watchpoint or
1256 breakpoint. */
1257 if (pl.pl_siginfo.si_code == TRAP_TRACE)
1258 {
1259 if (debug_fbsd_nat)
1260 fprintf_unfiltered (gdb_stdlog,
1261 "FNAT: trace trap for LWP %ld\n", ptid.lwp ());
1262 return true;
1263 }
1264
1265 if (pl.pl_siginfo.si_code == TRAP_BRKPT)
1266 {
1267 /* Fixup PC for the software breakpoint. */
1268 struct regcache *regcache = get_thread_regcache (ptid);
1269 struct gdbarch *gdbarch = regcache->arch ();
1270 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1271
1272 if (debug_fbsd_nat)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "FNAT: sw breakpoint trap for LWP %ld\n",
1275 ptid.lwp ());
1276 if (decr_pc != 0)
1277 {
1278 CORE_ADDR pc;
1279
1280 pc = regcache_read_pc (regcache);
1281 regcache_write_pc (regcache, pc - decr_pc);
1282 }
1283 return true;
1284 }
1285
1286 return false;
1287 }
1288 #endif
1289
1290 /* Wait for the child specified by PTID to do something. Return the
1291 process ID of the child, or MINUS_ONE_PTID in case of error; store
1292 the status in *OURSTATUS. */
1293
1294 ptid_t
1295 fbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
1296 int target_options)
1297 {
1298 ptid_t wptid;
1299
1300 while (1)
1301 {
1302 #ifndef PTRACE_VFORK
1303 wptid = fbsd_next_vfork_done ();
1304 if (wptid != null_ptid)
1305 {
1306 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1307 return wptid;
1308 }
1309 #endif
1310 wptid = inf_ptrace_target::wait (ptid, ourstatus, target_options);
1311 if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
1312 {
1313 struct ptrace_lwpinfo pl;
1314 pid_t pid;
1315 int status;
1316
1317 pid = wptid.pid ();
1318 if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
1319 perror_with_name (("ptrace"));
1320
1321 wptid = ptid_t (pid, pl.pl_lwpid, 0);
1322
1323 if (debug_fbsd_nat)
1324 {
1325 fprintf_unfiltered (gdb_stdlog,
1326 "FNAT: stop for LWP %u event %d flags %#x\n",
1327 pl.pl_lwpid, pl.pl_event, pl.pl_flags);
1328 if (pl.pl_flags & PL_FLAG_SI)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "FNAT: si_signo %u si_code %u\n",
1331 pl.pl_siginfo.si_signo,
1332 pl.pl_siginfo.si_code);
1333 }
1334
1335 #ifdef PT_LWP_EVENTS
1336 if (pl.pl_flags & PL_FLAG_EXITED)
1337 {
1338 /* If GDB attaches to a multi-threaded process, exiting
1339 threads might be skipped during post_attach that
1340 have not yet reported their PL_FLAG_EXITED event.
1341 Ignore EXITED events for an unknown LWP. */
1342 thread_info *thr = find_thread_ptid (wptid);
1343 if (thr != nullptr)
1344 {
1345 if (debug_fbsd_lwp)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "FLWP: deleting thread for LWP %u\n",
1348 pl.pl_lwpid);
1349 if (print_thread_events)
1350 printf_unfiltered (_("[%s exited]\n"),
1351 target_pid_to_str (wptid).c_str ());
1352 delete_thread (thr);
1353 }
1354 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1355 perror_with_name (("ptrace"));
1356 continue;
1357 }
1358 #endif
1359
1360 /* Switch to an LWP PTID on the first stop in a new process.
1361 This is done after handling PL_FLAG_EXITED to avoid
1362 switching to an exited LWP. It is done before checking
1363 PL_FLAG_BORN in case the first stop reported after
1364 attaching to an existing process is a PL_FLAG_BORN
1365 event. */
1366 if (in_thread_list (ptid_t (pid)))
1367 {
1368 if (debug_fbsd_lwp)
1369 fprintf_unfiltered (gdb_stdlog,
1370 "FLWP: using LWP %u for first thread\n",
1371 pl.pl_lwpid);
1372 thread_change_ptid (ptid_t (pid), wptid);
1373 }
1374
1375 #ifdef PT_LWP_EVENTS
1376 if (pl.pl_flags & PL_FLAG_BORN)
1377 {
1378 /* If GDB attaches to a multi-threaded process, newborn
1379 threads might be added by fbsd_add_threads that have
1380 not yet reported their PL_FLAG_BORN event. Ignore
1381 BORN events for an already-known LWP. */
1382 if (!in_thread_list (wptid))
1383 {
1384 if (debug_fbsd_lwp)
1385 fprintf_unfiltered (gdb_stdlog,
1386 "FLWP: adding thread for LWP %u\n",
1387 pl.pl_lwpid);
1388 add_thread (wptid);
1389 }
1390 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1391 return wptid;
1392 }
1393 #endif
1394
1395 #ifdef TDP_RFPPWAIT
1396 if (pl.pl_flags & PL_FLAG_FORKED)
1397 {
1398 #ifndef PTRACE_VFORK
1399 struct kinfo_proc kp;
1400 #endif
1401 ptid_t child_ptid;
1402 pid_t child;
1403
1404 child = pl.pl_child_pid;
1405 ourstatus->kind = TARGET_WAITKIND_FORKED;
1406 #ifdef PTRACE_VFORK
1407 if (pl.pl_flags & PL_FLAG_VFORKED)
1408 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1409 #endif
1410
1411 /* Make sure the other end of the fork is stopped too. */
1412 child_ptid = fbsd_is_child_pending (child);
1413 if (child_ptid == null_ptid)
1414 {
1415 pid = waitpid (child, &status, 0);
1416 if (pid == -1)
1417 perror_with_name (("waitpid"));
1418
1419 gdb_assert (pid == child);
1420
1421 if (ptrace (PT_LWPINFO, child, (caddr_t)&pl, sizeof pl) == -1)
1422 perror_with_name (("ptrace"));
1423
1424 gdb_assert (pl.pl_flags & PL_FLAG_CHILD);
1425 child_ptid = ptid_t (child, pl.pl_lwpid, 0);
1426 }
1427
1428 /* Enable additional events on the child process. */
1429 fbsd_enable_proc_events (child_ptid.pid ());
1430
1431 #ifndef PTRACE_VFORK
1432 /* For vfork, the child process will have the P_PPWAIT
1433 flag set. */
1434 if (fbsd_fetch_kinfo_proc (child, &kp))
1435 {
1436 if (kp.ki_flag & P_PPWAIT)
1437 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1438 }
1439 else
1440 warning (_("Failed to fetch process information"));
1441 #endif
1442 ourstatus->value.related_pid = child_ptid;
1443
1444 return wptid;
1445 }
1446
1447 if (pl.pl_flags & PL_FLAG_CHILD)
1448 {
1449 /* Remember that this child forked, but do not report it
1450 until the parent reports its corresponding fork
1451 event. */
1452 fbsd_remember_child (wptid);
1453 continue;
1454 }
1455
1456 #ifdef PTRACE_VFORK
1457 if (pl.pl_flags & PL_FLAG_VFORK_DONE)
1458 {
1459 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1460 return wptid;
1461 }
1462 #endif
1463 #endif
1464
1465 #ifdef PL_FLAG_EXEC
1466 if (pl.pl_flags & PL_FLAG_EXEC)
1467 {
1468 ourstatus->kind = TARGET_WAITKIND_EXECD;
1469 ourstatus->value.execd_pathname
1470 = xstrdup (pid_to_exec_file (pid));
1471 return wptid;
1472 }
1473 #endif
1474
1475 #ifdef USE_SIGTRAP_SIGINFO
1476 if (fbsd_handle_debug_trap (wptid, pl))
1477 return wptid;
1478 #endif
1479
1480 /* Note that PL_FLAG_SCE is set for any event reported while
1481 a thread is executing a system call in the kernel. In
1482 particular, signals that interrupt a sleep in a system
1483 call will report this flag as part of their event. Stops
1484 explicitly for system call entry and exit always use
1485 SIGTRAP, so only treat SIGTRAP events as system call
1486 entry/exit events. */
1487 if (pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)
1488 && ourstatus->value.sig == SIGTRAP)
1489 {
1490 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1491 if (catch_syscall_enabled ())
1492 {
1493 if (catching_syscall_number (pl.pl_syscall_code))
1494 {
1495 if (pl.pl_flags & PL_FLAG_SCE)
1496 ourstatus->kind = TARGET_WAITKIND_SYSCALL_ENTRY;
1497 else
1498 ourstatus->kind = TARGET_WAITKIND_SYSCALL_RETURN;
1499 ourstatus->value.syscall_number = pl.pl_syscall_code;
1500 return wptid;
1501 }
1502 }
1503 #endif
1504 /* If the core isn't interested in this event, just
1505 continue the process explicitly and wait for another
1506 event. Note that PT_SYSCALL is "sticky" on FreeBSD
1507 and once system call stops are enabled on a process
1508 it stops for all system call entries and exits. */
1509 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1510 perror_with_name (("ptrace"));
1511 continue;
1512 }
1513 }
1514 return wptid;
1515 }
1516 }
1517
1518 #ifdef USE_SIGTRAP_SIGINFO
1519 /* Implement the "stopped_by_sw_breakpoint" target_ops method. */
1520
1521 bool
1522 fbsd_nat_target::stopped_by_sw_breakpoint ()
1523 {
1524 struct ptrace_lwpinfo pl;
1525
1526 if (ptrace (PT_LWPINFO, get_ptrace_pid (inferior_ptid), (caddr_t) &pl,
1527 sizeof pl) == -1)
1528 return false;
1529
1530 return (pl.pl_flags == PL_FLAG_SI
1531 && pl.pl_siginfo.si_signo == SIGTRAP
1532 && pl.pl_siginfo.si_code == TRAP_BRKPT);
1533 }
1534
1535 /* Implement the "supports_stopped_by_sw_breakpoint" target_ops
1536 method. */
1537
1538 bool
1539 fbsd_nat_target::supports_stopped_by_sw_breakpoint ()
1540 {
1541 return true;
1542 }
1543 #endif
1544
1545 #ifdef TDP_RFPPWAIT
1546 /* Target hook for follow_fork. On entry and at return inferior_ptid is
1547 the ptid of the followed inferior. */
1548
1549 int
1550 fbsd_nat_target::follow_fork (int follow_child, int detach_fork)
1551 {
1552 if (!follow_child && detach_fork)
1553 {
1554 struct thread_info *tp = inferior_thread ();
1555 pid_t child_pid = tp->pending_follow.value.related_pid.pid ();
1556
1557 /* Breakpoints have already been detached from the child by
1558 infrun.c. */
1559
1560 if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
1561 perror_with_name (("ptrace"));
1562
1563 #ifndef PTRACE_VFORK
1564 if (tp->pending_follow.kind == TARGET_WAITKIND_VFORKED)
1565 {
1566 /* We can't insert breakpoints until the child process has
1567 finished with the shared memory region. The parent
1568 process doesn't wait for the child process to exit or
1569 exec until after it has been resumed from the ptrace stop
1570 to report the fork. Once it has been resumed it doesn't
1571 stop again before returning to userland, so there is no
1572 reliable way to wait on the parent.
1573
1574 We can't stay attached to the child to wait for an exec
1575 or exit because it may invoke ptrace(PT_TRACE_ME)
1576 (e.g. if the parent process is a debugger forking a new
1577 child process).
1578
1579 In the end, the best we can do is to make sure it runs
1580 for a little while. Hopefully it will be out of range of
1581 any breakpoints we reinsert. Usually this is only the
1582 single-step breakpoint at vfork's return point. */
1583
1584 usleep (10000);
1585
1586 /* Schedule a fake VFORK_DONE event to report on the next
1587 wait. */
1588 fbsd_add_vfork_done (inferior_ptid);
1589 }
1590 #endif
1591 }
1592
1593 return 0;
1594 }
1595
1596 int
1597 fbsd_nat_target::insert_fork_catchpoint (int pid)
1598 {
1599 return 0;
1600 }
1601
1602 int
1603 fbsd_nat_target::remove_fork_catchpoint (int pid)
1604 {
1605 return 0;
1606 }
1607
1608 int
1609 fbsd_nat_target::insert_vfork_catchpoint (int pid)
1610 {
1611 return 0;
1612 }
1613
1614 int
1615 fbsd_nat_target::remove_vfork_catchpoint (int pid)
1616 {
1617 return 0;
1618 }
1619 #endif
1620
1621 /* Implement the "post_startup_inferior" target_ops method. */
1622
1623 void
1624 fbsd_nat_target::post_startup_inferior (ptid_t pid)
1625 {
1626 fbsd_enable_proc_events (pid.pid ());
1627 }
1628
1629 /* Implement the "post_attach" target_ops method. */
1630
1631 void
1632 fbsd_nat_target::post_attach (int pid)
1633 {
1634 fbsd_enable_proc_events (pid);
1635 fbsd_add_threads (pid);
1636 }
1637
1638 #ifdef PL_FLAG_EXEC
1639 /* If the FreeBSD kernel supports PL_FLAG_EXEC, then traced processes
1640 will always stop after exec. */
1641
1642 int
1643 fbsd_nat_target::insert_exec_catchpoint (int pid)
1644 {
1645 return 0;
1646 }
1647
1648 int
1649 fbsd_nat_target::remove_exec_catchpoint (int pid)
1650 {
1651 return 0;
1652 }
1653 #endif
1654
1655 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1656 int
1657 fbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
1658 int any_count,
1659 gdb::array_view<const int> syscall_counts)
1660 {
1661
1662 /* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
1663 will catch all system call entries and exits. The system calls
1664 are filtered by GDB rather than the kernel. */
1665 return 0;
1666 }
1667 #endif
1668 #endif
1669
1670 void
1671 _initialize_fbsd_nat (void)
1672 {
1673 #ifdef PT_LWPINFO
1674 add_setshow_boolean_cmd ("fbsd-lwp", class_maintenance,
1675 &debug_fbsd_lwp, _("\
1676 Set debugging of FreeBSD lwp module."), _("\
1677 Show debugging of FreeBSD lwp module."), _("\
1678 Enables printf debugging output."),
1679 NULL,
1680 &show_fbsd_lwp_debug,
1681 &setdebuglist, &showdebuglist);
1682 add_setshow_boolean_cmd ("fbsd-nat", class_maintenance,
1683 &debug_fbsd_nat, _("\
1684 Set debugging of FreeBSD native target."), _("\
1685 Show debugging of FreeBSD native target."), _("\
1686 Enables printf debugging output."),
1687 NULL,
1688 &show_fbsd_nat_debug,
1689 &setdebuglist, &showdebuglist);
1690 #endif
1691 }
This page took 0.064971 seconds and 4 git commands to generate.