Generate NT_PROCSTAT_{AUXV,VMMAP,PS_STRINGS} in FreeBSD coredumps
[deliverable/binutils-gdb.git] / gdb / fbsd-nat.c
1 /* Native-dependent code for FreeBSD.
2
3 Copyright (C) 2002-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "byte-vector.h"
22 #include "gdbcore.h"
23 #include "inferior.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbcmd.h"
27 #include "gdbthread.h"
28 #include "gdb_wait.h"
29 #include "inf-ptrace.h"
30 #include <sys/types.h>
31 #include <sys/procfs.h>
32 #include <sys/ptrace.h>
33 #include <sys/signal.h>
34 #include <sys/sysctl.h>
35 #include <sys/user.h>
36 #if defined(HAVE_KINFO_GETFILE) || defined(HAVE_KINFO_GETVMMAP)
37 #include <libutil.h>
38 #endif
39 #if !defined(HAVE_KINFO_GETVMMAP)
40 #include "filestuff.h"
41 #endif
42
43 #include "elf-bfd.h"
44 #include "fbsd-nat.h"
45 #include "fbsd-tdep.h"
46
47 #include <list>
48
49 /* Return the name of a file that can be opened to get the symbols for
50 the child process identified by PID. */
51
52 char *
53 fbsd_nat_target::pid_to_exec_file (int pid)
54 {
55 ssize_t len;
56 static char buf[PATH_MAX];
57 char name[PATH_MAX];
58
59 #ifdef KERN_PROC_PATHNAME
60 size_t buflen;
61 int mib[4];
62
63 mib[0] = CTL_KERN;
64 mib[1] = KERN_PROC;
65 mib[2] = KERN_PROC_PATHNAME;
66 mib[3] = pid;
67 buflen = sizeof buf;
68 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
69 /* The kern.proc.pathname.<pid> sysctl returns a length of zero
70 for processes without an associated executable such as kernel
71 processes. */
72 return buflen == 0 ? NULL : buf;
73 #endif
74
75 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
76 len = readlink (name, buf, PATH_MAX - 1);
77 if (len != -1)
78 {
79 buf[len] = '\0';
80 return buf;
81 }
82
83 return NULL;
84 }
85
86 #ifdef HAVE_KINFO_GETVMMAP
87 /* Iterate over all the memory regions in the current inferior,
88 calling FUNC for each memory region. OBFD is passed as the last
89 argument to FUNC. */
90
91 int
92 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
93 void *obfd)
94 {
95 pid_t pid = inferior_ptid.pid ();
96 struct kinfo_vmentry *kve;
97 uint64_t size;
98 int i, nitems;
99
100 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
101 vmentl (kinfo_getvmmap (pid, &nitems));
102 if (vmentl == NULL)
103 perror_with_name (_("Couldn't fetch VM map entries."));
104
105 for (i = 0, kve = vmentl.get (); i < nitems; i++, kve++)
106 {
107 /* Skip unreadable segments and those where MAP_NOCORE has been set. */
108 if (!(kve->kve_protection & KVME_PROT_READ)
109 || kve->kve_flags & KVME_FLAG_NOCOREDUMP)
110 continue;
111
112 /* Skip segments with an invalid type. */
113 if (kve->kve_type != KVME_TYPE_DEFAULT
114 && kve->kve_type != KVME_TYPE_VNODE
115 && kve->kve_type != KVME_TYPE_SWAP
116 && kve->kve_type != KVME_TYPE_PHYS)
117 continue;
118
119 size = kve->kve_end - kve->kve_start;
120 if (info_verbose)
121 {
122 fprintf_filtered (gdb_stdout,
123 "Save segment, %ld bytes at %s (%c%c%c)\n",
124 (long) size,
125 paddress (target_gdbarch (), kve->kve_start),
126 kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
127 kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
128 kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
129 }
130
131 /* Invoke the callback function to create the corefile segment.
132 Pass MODIFIED as true, we do not know the real modification state. */
133 func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
134 kve->kve_protection & KVME_PROT_WRITE,
135 kve->kve_protection & KVME_PROT_EXEC, 1, obfd);
136 }
137 return 0;
138 }
139 #else
140 static int
141 fbsd_read_mapping (FILE *mapfile, unsigned long *start, unsigned long *end,
142 char *protection)
143 {
144 /* FreeBSD 5.1-RELEASE uses a 256-byte buffer. */
145 char buf[256];
146 int resident, privateresident;
147 unsigned long obj;
148 int ret = EOF;
149
150 /* As of FreeBSD 5.0-RELEASE, the layout is described in
151 /usr/src/sys/fs/procfs/procfs_map.c. Somewhere in 5.1-CURRENT a
152 new column was added to the procfs map. Therefore we can't use
153 fscanf since we need to support older releases too. */
154 if (fgets (buf, sizeof buf, mapfile) != NULL)
155 ret = sscanf (buf, "%lx %lx %d %d %lx %s", start, end,
156 &resident, &privateresident, &obj, protection);
157
158 return (ret != 0 && ret != EOF);
159 }
160
161 /* Iterate over all the memory regions in the current inferior,
162 calling FUNC for each memory region. OBFD is passed as the last
163 argument to FUNC. */
164
165 int
166 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
167 void *obfd)
168 {
169 pid_t pid = inferior_ptid.pid ();
170 unsigned long start, end, size;
171 char protection[4];
172 int read, write, exec;
173
174 std::string mapfilename = string_printf ("/proc/%ld/map", (long) pid);
175 gdb_file_up mapfile (fopen (mapfilename.c_str (), "r"));
176 if (mapfile == NULL)
177 error (_("Couldn't open %s."), mapfilename.c_str ());
178
179 if (info_verbose)
180 fprintf_filtered (gdb_stdout,
181 "Reading memory regions from %s\n", mapfilename.c_str ());
182
183 /* Now iterate until end-of-file. */
184 while (fbsd_read_mapping (mapfile.get (), &start, &end, &protection[0]))
185 {
186 size = end - start;
187
188 read = (strchr (protection, 'r') != 0);
189 write = (strchr (protection, 'w') != 0);
190 exec = (strchr (protection, 'x') != 0);
191
192 if (info_verbose)
193 {
194 fprintf_filtered (gdb_stdout,
195 "Save segment, %ld bytes at %s (%c%c%c)\n",
196 size, paddress (target_gdbarch (), start),
197 read ? 'r' : '-',
198 write ? 'w' : '-',
199 exec ? 'x' : '-');
200 }
201
202 /* Invoke the callback function to create the corefile segment.
203 Pass MODIFIED as true, we do not know the real modification state. */
204 func (start, size, read, write, exec, 1, obfd);
205 }
206
207 return 0;
208 }
209 #endif
210
211 /* Fetch the command line for a running process. */
212
213 static gdb::unique_xmalloc_ptr<char>
214 fbsd_fetch_cmdline (pid_t pid)
215 {
216 size_t len;
217 int mib[4];
218
219 len = 0;
220 mib[0] = CTL_KERN;
221 mib[1] = KERN_PROC;
222 mib[2] = KERN_PROC_ARGS;
223 mib[3] = pid;
224 if (sysctl (mib, 4, NULL, &len, NULL, 0) == -1)
225 return nullptr;
226
227 if (len == 0)
228 return nullptr;
229
230 gdb::unique_xmalloc_ptr<char> cmdline ((char *) xmalloc (len));
231 if (sysctl (mib, 4, cmdline.get (), &len, NULL, 0) == -1)
232 return nullptr;
233
234 return cmdline;
235 }
236
237 /* Fetch the external variant of the kernel's internal process
238 structure for the process PID into KP. */
239
240 static bool
241 fbsd_fetch_kinfo_proc (pid_t pid, struct kinfo_proc *kp)
242 {
243 size_t len;
244 int mib[4];
245
246 len = sizeof *kp;
247 mib[0] = CTL_KERN;
248 mib[1] = KERN_PROC;
249 mib[2] = KERN_PROC_PID;
250 mib[3] = pid;
251 return (sysctl (mib, 4, kp, &len, NULL, 0) == 0);
252 }
253
254 /* Implement the "info_proc" target_ops method. */
255
256 bool
257 fbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
258 {
259 #ifdef HAVE_KINFO_GETFILE
260 gdb::unique_xmalloc_ptr<struct kinfo_file> fdtbl;
261 int nfd = 0;
262 #endif
263 struct kinfo_proc kp;
264 char *tmp;
265 pid_t pid;
266 bool do_cmdline = false;
267 bool do_cwd = false;
268 bool do_exe = false;
269 #ifdef HAVE_KINFO_GETVMMAP
270 bool do_mappings = false;
271 #endif
272 bool do_status = false;
273
274 switch (what)
275 {
276 case IP_MINIMAL:
277 do_cmdline = true;
278 do_cwd = true;
279 do_exe = true;
280 break;
281 #ifdef HAVE_KINFO_GETVMMAP
282 case IP_MAPPINGS:
283 do_mappings = true;
284 break;
285 #endif
286 case IP_STATUS:
287 case IP_STAT:
288 do_status = true;
289 break;
290 case IP_CMDLINE:
291 do_cmdline = true;
292 break;
293 case IP_EXE:
294 do_exe = true;
295 break;
296 case IP_CWD:
297 do_cwd = true;
298 break;
299 case IP_ALL:
300 do_cmdline = true;
301 do_cwd = true;
302 do_exe = true;
303 #ifdef HAVE_KINFO_GETVMMAP
304 do_mappings = true;
305 #endif
306 do_status = true;
307 break;
308 default:
309 error (_("Not supported on this target."));
310 }
311
312 gdb_argv built_argv (args);
313 if (built_argv.count () == 0)
314 {
315 pid = inferior_ptid.pid ();
316 if (pid == 0)
317 error (_("No current process: you must name one."));
318 }
319 else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
320 pid = strtol (built_argv[0], NULL, 10);
321 else
322 error (_("Invalid arguments."));
323
324 printf_filtered (_("process %d\n"), pid);
325 #ifdef HAVE_KINFO_GETFILE
326 if (do_cwd || do_exe)
327 fdtbl.reset (kinfo_getfile (pid, &nfd));
328 #endif
329
330 if (do_cmdline)
331 {
332 gdb::unique_xmalloc_ptr<char> cmdline = fbsd_fetch_cmdline (pid);
333 if (cmdline != nullptr)
334 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
335 else
336 warning (_("unable to fetch command line"));
337 }
338 if (do_cwd)
339 {
340 const char *cwd = NULL;
341 #ifdef HAVE_KINFO_GETFILE
342 struct kinfo_file *kf = fdtbl.get ();
343 for (int i = 0; i < nfd; i++, kf++)
344 {
345 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_CWD)
346 {
347 cwd = kf->kf_path;
348 break;
349 }
350 }
351 #endif
352 if (cwd != NULL)
353 printf_filtered ("cwd = '%s'\n", cwd);
354 else
355 warning (_("unable to fetch current working directory"));
356 }
357 if (do_exe)
358 {
359 const char *exe = NULL;
360 #ifdef HAVE_KINFO_GETFILE
361 struct kinfo_file *kf = fdtbl.get ();
362 for (int i = 0; i < nfd; i++, kf++)
363 {
364 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_TEXT)
365 {
366 exe = kf->kf_path;
367 break;
368 }
369 }
370 #endif
371 if (exe == NULL)
372 exe = pid_to_exec_file (pid);
373 if (exe != NULL)
374 printf_filtered ("exe = '%s'\n", exe);
375 else
376 warning (_("unable to fetch executable path name"));
377 }
378 #ifdef HAVE_KINFO_GETVMMAP
379 if (do_mappings)
380 {
381 int nvment;
382 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
383 vmentl (kinfo_getvmmap (pid, &nvment));
384
385 if (vmentl != nullptr)
386 {
387 printf_filtered (_("Mapped address spaces:\n\n"));
388 #ifdef __LP64__
389 printf_filtered (" %18s %18s %10s %10s %9s %s\n",
390 "Start Addr",
391 " End Addr",
392 " Size", " Offset", "Flags ", "File");
393 #else
394 printf_filtered ("\t%10s %10s %10s %10s %9s %s\n",
395 "Start Addr",
396 " End Addr",
397 " Size", " Offset", "Flags ", "File");
398 #endif
399
400 struct kinfo_vmentry *kve = vmentl.get ();
401 for (int i = 0; i < nvment; i++, kve++)
402 {
403 ULONGEST start, end;
404
405 start = kve->kve_start;
406 end = kve->kve_end;
407 #ifdef __LP64__
408 printf_filtered (" %18s %18s %10s %10s %9s %s\n",
409 hex_string (start),
410 hex_string (end),
411 hex_string (end - start),
412 hex_string (kve->kve_offset),
413 fbsd_vm_map_entry_flags (kve->kve_flags,
414 kve->kve_protection),
415 kve->kve_path);
416 #else
417 printf_filtered ("\t%10s %10s %10s %10s %9s %s\n",
418 hex_string (start),
419 hex_string (end),
420 hex_string (end - start),
421 hex_string (kve->kve_offset),
422 fbsd_vm_map_entry_flags (kve->kve_flags,
423 kve->kve_protection),
424 kve->kve_path);
425 #endif
426 }
427 }
428 else
429 warning (_("unable to fetch virtual memory map"));
430 }
431 #endif
432 if (do_status)
433 {
434 if (!fbsd_fetch_kinfo_proc (pid, &kp))
435 warning (_("Failed to fetch process information"));
436 else
437 {
438 const char *state;
439 int pgtok;
440
441 printf_filtered ("Name: %s\n", kp.ki_comm);
442 switch (kp.ki_stat)
443 {
444 case SIDL:
445 state = "I (idle)";
446 break;
447 case SRUN:
448 state = "R (running)";
449 break;
450 case SSTOP:
451 state = "T (stopped)";
452 break;
453 case SZOMB:
454 state = "Z (zombie)";
455 break;
456 case SSLEEP:
457 state = "S (sleeping)";
458 break;
459 case SWAIT:
460 state = "W (interrupt wait)";
461 break;
462 case SLOCK:
463 state = "L (blocked on lock)";
464 break;
465 default:
466 state = "? (unknown)";
467 break;
468 }
469 printf_filtered ("State: %s\n", state);
470 printf_filtered ("Parent process: %d\n", kp.ki_ppid);
471 printf_filtered ("Process group: %d\n", kp.ki_pgid);
472 printf_filtered ("Session id: %d\n", kp.ki_sid);
473 printf_filtered ("TTY: %ju\n", (uintmax_t) kp.ki_tdev);
474 printf_filtered ("TTY owner process group: %d\n", kp.ki_tpgid);
475 printf_filtered ("User IDs (real, effective, saved): %d %d %d\n",
476 kp.ki_ruid, kp.ki_uid, kp.ki_svuid);
477 printf_filtered ("Group IDs (real, effective, saved): %d %d %d\n",
478 kp.ki_rgid, kp.ki_groups[0], kp.ki_svgid);
479 printf_filtered ("Groups: ");
480 for (int i = 0; i < kp.ki_ngroups; i++)
481 printf_filtered ("%d ", kp.ki_groups[i]);
482 printf_filtered ("\n");
483 printf_filtered ("Minor faults (no memory page): %ld\n",
484 kp.ki_rusage.ru_minflt);
485 printf_filtered ("Minor faults, children: %ld\n",
486 kp.ki_rusage_ch.ru_minflt);
487 printf_filtered ("Major faults (memory page faults): %ld\n",
488 kp.ki_rusage.ru_majflt);
489 printf_filtered ("Major faults, children: %ld\n",
490 kp.ki_rusage_ch.ru_majflt);
491 printf_filtered ("utime: %jd.%06ld\n",
492 (intmax_t) kp.ki_rusage.ru_utime.tv_sec,
493 kp.ki_rusage.ru_utime.tv_usec);
494 printf_filtered ("stime: %jd.%06ld\n",
495 (intmax_t) kp.ki_rusage.ru_stime.tv_sec,
496 kp.ki_rusage.ru_stime.tv_usec);
497 printf_filtered ("utime, children: %jd.%06ld\n",
498 (intmax_t) kp.ki_rusage_ch.ru_utime.tv_sec,
499 kp.ki_rusage_ch.ru_utime.tv_usec);
500 printf_filtered ("stime, children: %jd.%06ld\n",
501 (intmax_t) kp.ki_rusage_ch.ru_stime.tv_sec,
502 kp.ki_rusage_ch.ru_stime.tv_usec);
503 printf_filtered ("'nice' value: %d\n", kp.ki_nice);
504 printf_filtered ("Start time: %jd.%06ld\n", kp.ki_start.tv_sec,
505 kp.ki_start.tv_usec);
506 pgtok = getpagesize () / 1024;
507 printf_filtered ("Virtual memory size: %ju kB\n",
508 (uintmax_t) kp.ki_size / 1024);
509 printf_filtered ("Data size: %ju kB\n",
510 (uintmax_t) kp.ki_dsize * pgtok);
511 printf_filtered ("Stack size: %ju kB\n",
512 (uintmax_t) kp.ki_ssize * pgtok);
513 printf_filtered ("Text size: %ju kB\n",
514 (uintmax_t) kp.ki_tsize * pgtok);
515 printf_filtered ("Resident set size: %ju kB\n",
516 (uintmax_t) kp.ki_rssize * pgtok);
517 printf_filtered ("Maximum RSS: %ju kB\n",
518 (uintmax_t) kp.ki_rusage.ru_maxrss);
519 printf_filtered ("Pending Signals: ");
520 for (int i = 0; i < _SIG_WORDS; i++)
521 printf_filtered ("%08x ", kp.ki_siglist.__bits[i]);
522 printf_filtered ("\n");
523 printf_filtered ("Ignored Signals: ");
524 for (int i = 0; i < _SIG_WORDS; i++)
525 printf_filtered ("%08x ", kp.ki_sigignore.__bits[i]);
526 printf_filtered ("\n");
527 printf_filtered ("Caught Signals: ");
528 for (int i = 0; i < _SIG_WORDS; i++)
529 printf_filtered ("%08x ", kp.ki_sigcatch.__bits[i]);
530 printf_filtered ("\n");
531 }
532 }
533
534 return true;
535 }
536
537 #ifdef KERN_PROC_AUXV
538
539 #ifdef PT_LWPINFO
540 /* Return the size of siginfo for the current inferior. */
541
542 #ifdef __LP64__
543 union sigval32 {
544 int sival_int;
545 uint32_t sival_ptr;
546 };
547
548 /* This structure matches the naming and layout of `siginfo_t' in
549 <sys/signal.h>. In particular, the `si_foo' macros defined in that
550 header can be used with both types to copy fields in the `_reason'
551 union. */
552
553 struct siginfo32
554 {
555 int si_signo;
556 int si_errno;
557 int si_code;
558 __pid_t si_pid;
559 __uid_t si_uid;
560 int si_status;
561 uint32_t si_addr;
562 union sigval32 si_value;
563 union
564 {
565 struct
566 {
567 int _trapno;
568 } _fault;
569 struct
570 {
571 int _timerid;
572 int _overrun;
573 } _timer;
574 struct
575 {
576 int _mqd;
577 } _mesgq;
578 struct
579 {
580 int32_t _band;
581 } _poll;
582 struct
583 {
584 int32_t __spare1__;
585 int __spare2__[7];
586 } __spare__;
587 } _reason;
588 };
589 #endif
590
591 static size_t
592 fbsd_siginfo_size ()
593 {
594 #ifdef __LP64__
595 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
596
597 /* Is the inferior 32-bit? If so, use the 32-bit siginfo size. */
598 if (gdbarch_long_bit (gdbarch) == 32)
599 return sizeof (struct siginfo32);
600 #endif
601 return sizeof (siginfo_t);
602 }
603
604 /* Convert a native 64-bit siginfo object to a 32-bit object. Note
605 that FreeBSD doesn't support writing to $_siginfo, so this only
606 needs to convert one way. */
607
608 static void
609 fbsd_convert_siginfo (siginfo_t *si)
610 {
611 #ifdef __LP64__
612 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
613
614 /* Is the inferior 32-bit? If not, nothing to do. */
615 if (gdbarch_long_bit (gdbarch) != 32)
616 return;
617
618 struct siginfo32 si32;
619
620 si32.si_signo = si->si_signo;
621 si32.si_errno = si->si_errno;
622 si32.si_code = si->si_code;
623 si32.si_pid = si->si_pid;
624 si32.si_uid = si->si_uid;
625 si32.si_status = si->si_status;
626 si32.si_addr = (uintptr_t) si->si_addr;
627
628 /* If sival_ptr is being used instead of sival_int on a big-endian
629 platform, then sival_int will be zero since it holds the upper
630 32-bits of the pointer value. */
631 #if _BYTE_ORDER == _BIG_ENDIAN
632 if (si->si_value.sival_int == 0)
633 si32.si_value.sival_ptr = (uintptr_t) si->si_value.sival_ptr;
634 else
635 si32.si_value.sival_int = si->si_value.sival_int;
636 #else
637 si32.si_value.sival_int = si->si_value.sival_int;
638 #endif
639
640 /* Always copy the spare fields and then possibly overwrite them for
641 signal-specific or code-specific fields. */
642 si32._reason.__spare__.__spare1__ = si->_reason.__spare__.__spare1__;
643 for (int i = 0; i < 7; i++)
644 si32._reason.__spare__.__spare2__[i] = si->_reason.__spare__.__spare2__[i];
645 switch (si->si_signo) {
646 case SIGILL:
647 case SIGFPE:
648 case SIGSEGV:
649 case SIGBUS:
650 si32.si_trapno = si->si_trapno;
651 break;
652 }
653 switch (si->si_code) {
654 case SI_TIMER:
655 si32.si_timerid = si->si_timerid;
656 si32.si_overrun = si->si_overrun;
657 break;
658 case SI_MESGQ:
659 si32.si_mqd = si->si_mqd;
660 break;
661 }
662
663 memcpy(si, &si32, sizeof (si32));
664 #endif
665 }
666 #endif
667
668 /* Implement the "xfer_partial" target_ops method. */
669
670 enum target_xfer_status
671 fbsd_nat_target::xfer_partial (enum target_object object,
672 const char *annex, gdb_byte *readbuf,
673 const gdb_byte *writebuf,
674 ULONGEST offset, ULONGEST len,
675 ULONGEST *xfered_len)
676 {
677 pid_t pid = inferior_ptid.pid ();
678
679 switch (object)
680 {
681 #ifdef PT_LWPINFO
682 case TARGET_OBJECT_SIGNAL_INFO:
683 {
684 struct ptrace_lwpinfo pl;
685 size_t siginfo_size;
686
687 /* FreeBSD doesn't support writing to $_siginfo. */
688 if (writebuf != NULL)
689 return TARGET_XFER_E_IO;
690
691 if (inferior_ptid.lwp_p ())
692 pid = inferior_ptid.lwp ();
693
694 siginfo_size = fbsd_siginfo_size ();
695 if (offset > siginfo_size)
696 return TARGET_XFER_E_IO;
697
698 if (ptrace (PT_LWPINFO, pid, (PTRACE_TYPE_ARG3) &pl, sizeof (pl)) == -1)
699 return TARGET_XFER_E_IO;
700
701 if (!(pl.pl_flags & PL_FLAG_SI))
702 return TARGET_XFER_E_IO;
703
704 fbsd_convert_siginfo (&pl.pl_siginfo);
705 if (offset + len > siginfo_size)
706 len = siginfo_size - offset;
707
708 memcpy (readbuf, ((gdb_byte *) &pl.pl_siginfo) + offset, len);
709 *xfered_len = len;
710 return TARGET_XFER_OK;
711 }
712 #endif
713 case TARGET_OBJECT_AUXV:
714 {
715 gdb::byte_vector buf_storage;
716 gdb_byte *buf;
717 size_t buflen;
718 int mib[4];
719
720 if (writebuf != NULL)
721 return TARGET_XFER_E_IO;
722 mib[0] = CTL_KERN;
723 mib[1] = KERN_PROC;
724 mib[2] = KERN_PROC_AUXV;
725 mib[3] = pid;
726 if (offset == 0)
727 {
728 buf = readbuf;
729 buflen = len;
730 }
731 else
732 {
733 buflen = offset + len;
734 buf_storage.resize (buflen);
735 buf = buf_storage.data ();
736 }
737 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
738 {
739 if (offset != 0)
740 {
741 if (buflen > offset)
742 {
743 buflen -= offset;
744 memcpy (readbuf, buf + offset, buflen);
745 }
746 else
747 buflen = 0;
748 }
749 *xfered_len = buflen;
750 return (buflen == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
751 }
752 return TARGET_XFER_E_IO;
753 }
754 case TARGET_OBJECT_FREEBSD_VMMAP:
755 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
756 {
757 gdb::byte_vector buf_storage;
758 gdb_byte *buf;
759 size_t buflen;
760 int mib[4];
761
762 int proc_target;
763 uint32_t struct_size;
764 switch (object)
765 {
766 case TARGET_OBJECT_FREEBSD_VMMAP:
767 proc_target = KERN_PROC_VMMAP;
768 struct_size = sizeof (struct kinfo_vmentry);
769 break;
770 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
771 proc_target = KERN_PROC_PS_STRINGS;
772 struct_size = sizeof (void *);
773 break;
774 }
775
776 if (writebuf != NULL)
777 return TARGET_XFER_E_IO;
778
779 mib[0] = CTL_KERN;
780 mib[1] = KERN_PROC;
781 mib[2] = proc_target;
782 mib[3] = pid;
783
784 if (sysctl (mib, 4, NULL, &buflen, NULL, 0) != 0)
785 return TARGET_XFER_E_IO;
786 buflen += sizeof (struct_size);
787
788 if (offset >= buflen)
789 {
790 *xfered_len = 0;
791 return TARGET_XFER_EOF;
792 }
793
794 buf_storage.resize (buflen);
795 buf = buf_storage.data ();
796
797 memcpy (buf, &struct_size, sizeof (struct_size));
798 buflen -= sizeof (struct_size);
799 if (sysctl (mib, 4, buf + sizeof (struct_size), &buflen, NULL, 0) != 0)
800 return TARGET_XFER_E_IO;
801 buflen += sizeof (struct_size);
802
803 if (buflen - offset < len)
804 len = buflen - offset;
805 memcpy (readbuf, buf + offset, len);
806 *xfered_len = len;
807 return TARGET_XFER_OK;
808 }
809 default:
810 return inf_ptrace_target::xfer_partial (object, annex,
811 readbuf, writebuf, offset,
812 len, xfered_len);
813 }
814 }
815 #endif
816
817 #ifdef PT_LWPINFO
818 static int debug_fbsd_lwp;
819 static int debug_fbsd_nat;
820
821 static void
822 show_fbsd_lwp_debug (struct ui_file *file, int from_tty,
823 struct cmd_list_element *c, const char *value)
824 {
825 fprintf_filtered (file, _("Debugging of FreeBSD lwp module is %s.\n"), value);
826 }
827
828 static void
829 show_fbsd_nat_debug (struct ui_file *file, int from_tty,
830 struct cmd_list_element *c, const char *value)
831 {
832 fprintf_filtered (file, _("Debugging of FreeBSD native target is %s.\n"),
833 value);
834 }
835
836 /*
837 FreeBSD's first thread support was via a "reentrant" version of libc
838 (libc_r) that first shipped in 2.2.7. This library multiplexed all
839 of the threads in a process onto a single kernel thread. This
840 library was supported via the bsd-uthread target.
841
842 FreeBSD 5.1 introduced two new threading libraries that made use of
843 multiple kernel threads. The first (libkse) scheduled M user
844 threads onto N (<= M) kernel threads (LWPs). The second (libthr)
845 bound each user thread to a dedicated kernel thread. libkse shipped
846 as the default threading library (libpthread).
847
848 FreeBSD 5.3 added a libthread_db to abstract the interface across
849 the various thread libraries (libc_r, libkse, and libthr).
850
851 FreeBSD 7.0 switched the default threading library from from libkse
852 to libpthread and removed libc_r.
853
854 FreeBSD 8.0 removed libkse and the in-kernel support for it. The
855 only threading library supported by 8.0 and later is libthr which
856 ties each user thread directly to an LWP. To simplify the
857 implementation, this target only supports LWP-backed threads using
858 ptrace directly rather than libthread_db.
859
860 FreeBSD 11.0 introduced LWP event reporting via PT_LWP_EVENTS.
861 */
862
863 /* Return true if PTID is still active in the inferior. */
864
865 bool
866 fbsd_nat_target::thread_alive (ptid_t ptid)
867 {
868 if (ptid.lwp_p ())
869 {
870 struct ptrace_lwpinfo pl;
871
872 if (ptrace (PT_LWPINFO, ptid.lwp (), (caddr_t) &pl, sizeof pl)
873 == -1)
874 return false;
875 #ifdef PL_FLAG_EXITED
876 if (pl.pl_flags & PL_FLAG_EXITED)
877 return false;
878 #endif
879 }
880
881 return true;
882 }
883
884 /* Convert PTID to a string. Returns the string in a static
885 buffer. */
886
887 const char *
888 fbsd_nat_target::pid_to_str (ptid_t ptid)
889 {
890 lwpid_t lwp;
891
892 lwp = ptid.lwp ();
893 if (lwp != 0)
894 {
895 static char buf[64];
896 int pid = ptid.pid ();
897
898 xsnprintf (buf, sizeof buf, "LWP %d of process %d", lwp, pid);
899 return buf;
900 }
901
902 return normal_pid_to_str (ptid);
903 }
904
905 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME
906 /* Return the name assigned to a thread by an application. Returns
907 the string in a static buffer. */
908
909 const char *
910 fbsd_nat_target::thread_name (struct thread_info *thr)
911 {
912 struct ptrace_lwpinfo pl;
913 struct kinfo_proc kp;
914 int pid = thr->ptid.pid ();
915 long lwp = thr->ptid.lwp ();
916 static char buf[sizeof pl.pl_tdname + 1];
917
918 /* Note that ptrace_lwpinfo returns the process command in pl_tdname
919 if a name has not been set explicitly. Return a NULL name in
920 that case. */
921 if (!fbsd_fetch_kinfo_proc (pid, &kp))
922 perror_with_name (_("Failed to fetch process information"));
923 if (ptrace (PT_LWPINFO, lwp, (caddr_t) &pl, sizeof pl) == -1)
924 perror_with_name (("ptrace"));
925 if (strcmp (kp.ki_comm, pl.pl_tdname) == 0)
926 return NULL;
927 xsnprintf (buf, sizeof buf, "%s", pl.pl_tdname);
928 return buf;
929 }
930 #endif
931
932 /* Enable additional event reporting on new processes.
933
934 To catch fork events, PTRACE_FORK is set on every traced process
935 to enable stops on returns from fork or vfork. Note that both the
936 parent and child will always stop, even if system call stops are
937 not enabled.
938
939 To catch LWP events, PTRACE_EVENTS is set on every traced process.
940 This enables stops on the birth for new LWPs (excluding the "main" LWP)
941 and the death of LWPs (excluding the last LWP in a process). Note
942 that unlike fork events, the LWP that creates a new LWP does not
943 report an event. */
944
945 static void
946 fbsd_enable_proc_events (pid_t pid)
947 {
948 #ifdef PT_GET_EVENT_MASK
949 int events;
950
951 if (ptrace (PT_GET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
952 sizeof (events)) == -1)
953 perror_with_name (("ptrace"));
954 events |= PTRACE_FORK | PTRACE_LWP;
955 #ifdef PTRACE_VFORK
956 events |= PTRACE_VFORK;
957 #endif
958 if (ptrace (PT_SET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
959 sizeof (events)) == -1)
960 perror_with_name (("ptrace"));
961 #else
962 #ifdef TDP_RFPPWAIT
963 if (ptrace (PT_FOLLOW_FORK, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
964 perror_with_name (("ptrace"));
965 #endif
966 #ifdef PT_LWP_EVENTS
967 if (ptrace (PT_LWP_EVENTS, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
968 perror_with_name (("ptrace"));
969 #endif
970 #endif
971 }
972
973 /* Add threads for any new LWPs in a process.
974
975 When LWP events are used, this function is only used to detect existing
976 threads when attaching to a process. On older systems, this function is
977 called to discover new threads each time the thread list is updated. */
978
979 static void
980 fbsd_add_threads (pid_t pid)
981 {
982 int i, nlwps;
983
984 gdb_assert (!in_thread_list (ptid_t (pid)));
985 nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
986 if (nlwps == -1)
987 perror_with_name (("ptrace"));
988
989 gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
990
991 nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
992 if (nlwps == -1)
993 perror_with_name (("ptrace"));
994
995 for (i = 0; i < nlwps; i++)
996 {
997 ptid_t ptid = ptid_t (pid, lwps[i], 0);
998
999 if (!in_thread_list (ptid))
1000 {
1001 #ifdef PT_LWP_EVENTS
1002 struct ptrace_lwpinfo pl;
1003
1004 /* Don't add exited threads. Note that this is only called
1005 when attaching to a multi-threaded process. */
1006 if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof pl) == -1)
1007 perror_with_name (("ptrace"));
1008 if (pl.pl_flags & PL_FLAG_EXITED)
1009 continue;
1010 #endif
1011 if (debug_fbsd_lwp)
1012 fprintf_unfiltered (gdb_stdlog,
1013 "FLWP: adding thread for LWP %u\n",
1014 lwps[i]);
1015 add_thread (ptid);
1016 }
1017 }
1018 }
1019
1020 /* Implement the "update_thread_list" target_ops method. */
1021
1022 void
1023 fbsd_nat_target::update_thread_list ()
1024 {
1025 #ifdef PT_LWP_EVENTS
1026 /* With support for thread events, threads are added/deleted from the
1027 list as events are reported, so just try deleting exited threads. */
1028 delete_exited_threads ();
1029 #else
1030 prune_threads ();
1031
1032 fbsd_add_threads (inferior_ptid.pid ());
1033 #endif
1034 }
1035
1036 #ifdef TDP_RFPPWAIT
1037 /*
1038 To catch fork events, PT_FOLLOW_FORK is set on every traced process
1039 to enable stops on returns from fork or vfork. Note that both the
1040 parent and child will always stop, even if system call stops are not
1041 enabled.
1042
1043 After a fork, both the child and parent process will stop and report
1044 an event. However, there is no guarantee of order. If the parent
1045 reports its stop first, then fbsd_wait explicitly waits for the new
1046 child before returning. If the child reports its stop first, then
1047 the event is saved on a list and ignored until the parent's stop is
1048 reported. fbsd_wait could have been changed to fetch the parent PID
1049 of the new child and used that to wait for the parent explicitly.
1050 However, if two threads in the parent fork at the same time, then
1051 the wait on the parent might return the "wrong" fork event.
1052
1053 The initial version of PT_FOLLOW_FORK did not set PL_FLAG_CHILD for
1054 the new child process. This flag could be inferred by treating any
1055 events for an unknown pid as a new child.
1056
1057 In addition, the initial version of PT_FOLLOW_FORK did not report a
1058 stop event for the parent process of a vfork until after the child
1059 process executed a new program or exited. The kernel was changed to
1060 defer the wait for exit or exec of the child until after posting the
1061 stop event shortly after the change to introduce PL_FLAG_CHILD.
1062 This could be worked around by reporting a vfork event when the
1063 child event posted and ignoring the subsequent event from the
1064 parent.
1065
1066 This implementation requires both of these fixes for simplicity's
1067 sake. FreeBSD versions newer than 9.1 contain both fixes.
1068 */
1069
1070 static std::list<ptid_t> fbsd_pending_children;
1071
1072 /* Record a new child process event that is reported before the
1073 corresponding fork event in the parent. */
1074
1075 static void
1076 fbsd_remember_child (ptid_t pid)
1077 {
1078 fbsd_pending_children.push_front (pid);
1079 }
1080
1081 /* Check for a previously-recorded new child process event for PID.
1082 If one is found, remove it from the list and return the PTID. */
1083
1084 static ptid_t
1085 fbsd_is_child_pending (pid_t pid)
1086 {
1087 for (auto it = fbsd_pending_children.begin ();
1088 it != fbsd_pending_children.end (); it++)
1089 if (it->pid () == pid)
1090 {
1091 ptid_t ptid = *it;
1092 fbsd_pending_children.erase (it);
1093 return ptid;
1094 }
1095 return null_ptid;
1096 }
1097
1098 #ifndef PTRACE_VFORK
1099 static std::forward_list<ptid_t> fbsd_pending_vfork_done;
1100
1101 /* Record a pending vfork done event. */
1102
1103 static void
1104 fbsd_add_vfork_done (ptid_t pid)
1105 {
1106 fbsd_pending_vfork_done.push_front (pid);
1107 }
1108
1109 /* Check for a pending vfork done event for a specific PID. */
1110
1111 static int
1112 fbsd_is_vfork_done_pending (pid_t pid)
1113 {
1114 for (auto it = fbsd_pending_vfork_done.begin ();
1115 it != fbsd_pending_vfork_done.end (); it++)
1116 if (it->pid () == pid)
1117 return 1;
1118 return 0;
1119 }
1120
1121 /* Check for a pending vfork done event. If one is found, remove it
1122 from the list and return the PTID. */
1123
1124 static ptid_t
1125 fbsd_next_vfork_done (void)
1126 {
1127 if (!fbsd_pending_vfork_done.empty ())
1128 {
1129 ptid_t ptid = fbsd_pending_vfork_done.front ();
1130 fbsd_pending_vfork_done.pop_front ();
1131 return ptid;
1132 }
1133 return null_ptid;
1134 }
1135 #endif
1136 #endif
1137
1138 /* Implement the "resume" target_ops method. */
1139
1140 void
1141 fbsd_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1142 {
1143 #if defined(TDP_RFPPWAIT) && !defined(PTRACE_VFORK)
1144 pid_t pid;
1145
1146 /* Don't PT_CONTINUE a process which has a pending vfork done event. */
1147 if (minus_one_ptid == ptid)
1148 pid = inferior_ptid.pid ();
1149 else
1150 pid = ptid.pid ();
1151 if (fbsd_is_vfork_done_pending (pid))
1152 return;
1153 #endif
1154
1155 if (debug_fbsd_lwp)
1156 fprintf_unfiltered (gdb_stdlog,
1157 "FLWP: fbsd_resume for ptid (%d, %ld, %ld)\n",
1158 ptid.pid (), ptid.lwp (),
1159 ptid.tid ());
1160 if (ptid.lwp_p ())
1161 {
1162 /* If ptid is a specific LWP, suspend all other LWPs in the process. */
1163 struct thread_info *tp;
1164 int request;
1165
1166 ALL_NON_EXITED_THREADS (tp)
1167 {
1168 if (tp->ptid.pid () != ptid.pid ())
1169 continue;
1170
1171 if (tp->ptid.lwp () == ptid.lwp ())
1172 request = PT_RESUME;
1173 else
1174 request = PT_SUSPEND;
1175
1176 if (ptrace (request, tp->ptid.lwp (), NULL, 0) == -1)
1177 perror_with_name (("ptrace"));
1178 }
1179 }
1180 else
1181 {
1182 /* If ptid is a wildcard, resume all matching threads (they won't run
1183 until the process is continued however). */
1184 struct thread_info *tp;
1185
1186 ALL_NON_EXITED_THREADS (tp)
1187 {
1188 if (!tp->ptid.matches (ptid))
1189 continue;
1190
1191 if (ptrace (PT_RESUME, tp->ptid.lwp (), NULL, 0) == -1)
1192 perror_with_name (("ptrace"));
1193 }
1194 ptid = inferior_ptid;
1195 }
1196
1197 #if __FreeBSD_version < 1200052
1198 /* When multiple threads within a process wish to report STOPPED
1199 events from wait(), the kernel picks one thread event as the
1200 thread event to report. The chosen thread event is retrieved via
1201 PT_LWPINFO by passing the process ID as the request pid. If
1202 multiple events are pending, then the subsequent wait() after
1203 resuming a process will report another STOPPED event after
1204 resuming the process to handle the next thread event and so on.
1205
1206 A single thread event is cleared as a side effect of resuming the
1207 process with PT_CONTINUE, PT_STEP, etc. In older kernels,
1208 however, the request pid was used to select which thread's event
1209 was cleared rather than always clearing the event that was just
1210 reported. To avoid clearing the event of the wrong LWP, always
1211 pass the process ID instead of an LWP ID to PT_CONTINUE or
1212 PT_SYSCALL.
1213
1214 In the case of stepping, the process ID cannot be used with
1215 PT_STEP since it would step the thread that reported an event
1216 which may not be the thread indicated by PTID. For stepping, use
1217 PT_SETSTEP to enable stepping on the desired thread before
1218 resuming the process via PT_CONTINUE instead of using
1219 PT_STEP. */
1220 if (step)
1221 {
1222 if (ptrace (PT_SETSTEP, get_ptrace_pid (ptid), NULL, 0) == -1)
1223 perror_with_name (("ptrace"));
1224 step = 0;
1225 }
1226 ptid = ptid_t (ptid.pid ());
1227 #endif
1228 inf_ptrace_target::resume (ptid, step, signo);
1229 }
1230
1231 #ifdef USE_SIGTRAP_SIGINFO
1232 /* Handle breakpoint and trace traps reported via SIGTRAP. If the
1233 trap was a breakpoint or trace trap that should be reported to the
1234 core, return true. */
1235
1236 static bool
1237 fbsd_handle_debug_trap (ptid_t ptid, const struct ptrace_lwpinfo &pl)
1238 {
1239
1240 /* Ignore traps without valid siginfo or for signals other than
1241 SIGTRAP. */
1242 if (! (pl.pl_flags & PL_FLAG_SI) || pl.pl_siginfo.si_signo != SIGTRAP)
1243 return false;
1244
1245 /* Trace traps are either a single step or a hardware watchpoint or
1246 breakpoint. */
1247 if (pl.pl_siginfo.si_code == TRAP_TRACE)
1248 {
1249 if (debug_fbsd_nat)
1250 fprintf_unfiltered (gdb_stdlog,
1251 "FNAT: trace trap for LWP %ld\n", ptid.lwp ());
1252 return true;
1253 }
1254
1255 if (pl.pl_siginfo.si_code == TRAP_BRKPT)
1256 {
1257 /* Fixup PC for the software breakpoint. */
1258 struct regcache *regcache = get_thread_regcache (ptid);
1259 struct gdbarch *gdbarch = regcache->arch ();
1260 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1261
1262 if (debug_fbsd_nat)
1263 fprintf_unfiltered (gdb_stdlog,
1264 "FNAT: sw breakpoint trap for LWP %ld\n",
1265 ptid.lwp ());
1266 if (decr_pc != 0)
1267 {
1268 CORE_ADDR pc;
1269
1270 pc = regcache_read_pc (regcache);
1271 regcache_write_pc (regcache, pc - decr_pc);
1272 }
1273 return true;
1274 }
1275
1276 return false;
1277 }
1278 #endif
1279
1280 /* Wait for the child specified by PTID to do something. Return the
1281 process ID of the child, or MINUS_ONE_PTID in case of error; store
1282 the status in *OURSTATUS. */
1283
1284 ptid_t
1285 fbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
1286 int target_options)
1287 {
1288 ptid_t wptid;
1289
1290 while (1)
1291 {
1292 #ifndef PTRACE_VFORK
1293 wptid = fbsd_next_vfork_done ();
1294 if (wptid != null_ptid)
1295 {
1296 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1297 return wptid;
1298 }
1299 #endif
1300 wptid = inf_ptrace_target::wait (ptid, ourstatus, target_options);
1301 if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
1302 {
1303 struct ptrace_lwpinfo pl;
1304 pid_t pid;
1305 int status;
1306
1307 pid = wptid.pid ();
1308 if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
1309 perror_with_name (("ptrace"));
1310
1311 wptid = ptid_t (pid, pl.pl_lwpid, 0);
1312
1313 if (debug_fbsd_nat)
1314 {
1315 fprintf_unfiltered (gdb_stdlog,
1316 "FNAT: stop for LWP %u event %d flags %#x\n",
1317 pl.pl_lwpid, pl.pl_event, pl.pl_flags);
1318 if (pl.pl_flags & PL_FLAG_SI)
1319 fprintf_unfiltered (gdb_stdlog,
1320 "FNAT: si_signo %u si_code %u\n",
1321 pl.pl_siginfo.si_signo,
1322 pl.pl_siginfo.si_code);
1323 }
1324
1325 #ifdef PT_LWP_EVENTS
1326 if (pl.pl_flags & PL_FLAG_EXITED)
1327 {
1328 /* If GDB attaches to a multi-threaded process, exiting
1329 threads might be skipped during post_attach that
1330 have not yet reported their PL_FLAG_EXITED event.
1331 Ignore EXITED events for an unknown LWP. */
1332 thread_info *thr = find_thread_ptid (wptid);
1333 if (thr != nullptr)
1334 {
1335 if (debug_fbsd_lwp)
1336 fprintf_unfiltered (gdb_stdlog,
1337 "FLWP: deleting thread for LWP %u\n",
1338 pl.pl_lwpid);
1339 if (print_thread_events)
1340 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str
1341 (wptid));
1342 delete_thread (thr);
1343 }
1344 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1345 perror_with_name (("ptrace"));
1346 continue;
1347 }
1348 #endif
1349
1350 /* Switch to an LWP PTID on the first stop in a new process.
1351 This is done after handling PL_FLAG_EXITED to avoid
1352 switching to an exited LWP. It is done before checking
1353 PL_FLAG_BORN in case the first stop reported after
1354 attaching to an existing process is a PL_FLAG_BORN
1355 event. */
1356 if (in_thread_list (ptid_t (pid)))
1357 {
1358 if (debug_fbsd_lwp)
1359 fprintf_unfiltered (gdb_stdlog,
1360 "FLWP: using LWP %u for first thread\n",
1361 pl.pl_lwpid);
1362 thread_change_ptid (ptid_t (pid), wptid);
1363 }
1364
1365 #ifdef PT_LWP_EVENTS
1366 if (pl.pl_flags & PL_FLAG_BORN)
1367 {
1368 /* If GDB attaches to a multi-threaded process, newborn
1369 threads might be added by fbsd_add_threads that have
1370 not yet reported their PL_FLAG_BORN event. Ignore
1371 BORN events for an already-known LWP. */
1372 if (!in_thread_list (wptid))
1373 {
1374 if (debug_fbsd_lwp)
1375 fprintf_unfiltered (gdb_stdlog,
1376 "FLWP: adding thread for LWP %u\n",
1377 pl.pl_lwpid);
1378 add_thread (wptid);
1379 }
1380 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1381 return wptid;
1382 }
1383 #endif
1384
1385 #ifdef TDP_RFPPWAIT
1386 if (pl.pl_flags & PL_FLAG_FORKED)
1387 {
1388 #ifndef PTRACE_VFORK
1389 struct kinfo_proc kp;
1390 #endif
1391 ptid_t child_ptid;
1392 pid_t child;
1393
1394 child = pl.pl_child_pid;
1395 ourstatus->kind = TARGET_WAITKIND_FORKED;
1396 #ifdef PTRACE_VFORK
1397 if (pl.pl_flags & PL_FLAG_VFORKED)
1398 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1399 #endif
1400
1401 /* Make sure the other end of the fork is stopped too. */
1402 child_ptid = fbsd_is_child_pending (child);
1403 if (child_ptid == null_ptid)
1404 {
1405 pid = waitpid (child, &status, 0);
1406 if (pid == -1)
1407 perror_with_name (("waitpid"));
1408
1409 gdb_assert (pid == child);
1410
1411 if (ptrace (PT_LWPINFO, child, (caddr_t)&pl, sizeof pl) == -1)
1412 perror_with_name (("ptrace"));
1413
1414 gdb_assert (pl.pl_flags & PL_FLAG_CHILD);
1415 child_ptid = ptid_t (child, pl.pl_lwpid, 0);
1416 }
1417
1418 /* Enable additional events on the child process. */
1419 fbsd_enable_proc_events (child_ptid.pid ());
1420
1421 #ifndef PTRACE_VFORK
1422 /* For vfork, the child process will have the P_PPWAIT
1423 flag set. */
1424 if (fbsd_fetch_kinfo_proc (child, &kp))
1425 {
1426 if (kp.ki_flag & P_PPWAIT)
1427 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1428 }
1429 else
1430 warning (_("Failed to fetch process information"));
1431 #endif
1432 ourstatus->value.related_pid = child_ptid;
1433
1434 return wptid;
1435 }
1436
1437 if (pl.pl_flags & PL_FLAG_CHILD)
1438 {
1439 /* Remember that this child forked, but do not report it
1440 until the parent reports its corresponding fork
1441 event. */
1442 fbsd_remember_child (wptid);
1443 continue;
1444 }
1445
1446 #ifdef PTRACE_VFORK
1447 if (pl.pl_flags & PL_FLAG_VFORK_DONE)
1448 {
1449 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1450 return wptid;
1451 }
1452 #endif
1453 #endif
1454
1455 #ifdef PL_FLAG_EXEC
1456 if (pl.pl_flags & PL_FLAG_EXEC)
1457 {
1458 ourstatus->kind = TARGET_WAITKIND_EXECD;
1459 ourstatus->value.execd_pathname
1460 = xstrdup (pid_to_exec_file (pid));
1461 return wptid;
1462 }
1463 #endif
1464
1465 #ifdef USE_SIGTRAP_SIGINFO
1466 if (fbsd_handle_debug_trap (wptid, pl))
1467 return wptid;
1468 #endif
1469
1470 /* Note that PL_FLAG_SCE is set for any event reported while
1471 a thread is executing a system call in the kernel. In
1472 particular, signals that interrupt a sleep in a system
1473 call will report this flag as part of their event. Stops
1474 explicitly for system call entry and exit always use
1475 SIGTRAP, so only treat SIGTRAP events as system call
1476 entry/exit events. */
1477 if (pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)
1478 && ourstatus->value.sig == SIGTRAP)
1479 {
1480 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1481 if (catch_syscall_enabled ())
1482 {
1483 if (catching_syscall_number (pl.pl_syscall_code))
1484 {
1485 if (pl.pl_flags & PL_FLAG_SCE)
1486 ourstatus->kind = TARGET_WAITKIND_SYSCALL_ENTRY;
1487 else
1488 ourstatus->kind = TARGET_WAITKIND_SYSCALL_RETURN;
1489 ourstatus->value.syscall_number = pl.pl_syscall_code;
1490 return wptid;
1491 }
1492 }
1493 #endif
1494 /* If the core isn't interested in this event, just
1495 continue the process explicitly and wait for another
1496 event. Note that PT_SYSCALL is "sticky" on FreeBSD
1497 and once system call stops are enabled on a process
1498 it stops for all system call entries and exits. */
1499 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1500 perror_with_name (("ptrace"));
1501 continue;
1502 }
1503 }
1504 return wptid;
1505 }
1506 }
1507
1508 #ifdef USE_SIGTRAP_SIGINFO
1509 /* Implement the "stopped_by_sw_breakpoint" target_ops method. */
1510
1511 bool
1512 fbsd_nat_target::stopped_by_sw_breakpoint ()
1513 {
1514 struct ptrace_lwpinfo pl;
1515
1516 if (ptrace (PT_LWPINFO, get_ptrace_pid (inferior_ptid), (caddr_t) &pl,
1517 sizeof pl) == -1)
1518 return false;
1519
1520 return ((pl.pl_flags & PL_FLAG_SI)
1521 && pl.pl_siginfo.si_signo == SIGTRAP
1522 && pl.pl_siginfo.si_code == TRAP_BRKPT);
1523 }
1524
1525 /* Implement the "supports_stopped_by_sw_breakpoint" target_ops
1526 method. */
1527
1528 bool
1529 fbsd_nat_target::supports_stopped_by_sw_breakpoint ()
1530 {
1531 return true;
1532 }
1533 #endif
1534
1535 #ifdef TDP_RFPPWAIT
1536 /* Target hook for follow_fork. On entry and at return inferior_ptid is
1537 the ptid of the followed inferior. */
1538
1539 int
1540 fbsd_nat_target::follow_fork (int follow_child, int detach_fork)
1541 {
1542 if (!follow_child && detach_fork)
1543 {
1544 struct thread_info *tp = inferior_thread ();
1545 pid_t child_pid = tp->pending_follow.value.related_pid.pid ();
1546
1547 /* Breakpoints have already been detached from the child by
1548 infrun.c. */
1549
1550 if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
1551 perror_with_name (("ptrace"));
1552
1553 #ifndef PTRACE_VFORK
1554 if (tp->pending_follow.kind == TARGET_WAITKIND_VFORKED)
1555 {
1556 /* We can't insert breakpoints until the child process has
1557 finished with the shared memory region. The parent
1558 process doesn't wait for the child process to exit or
1559 exec until after it has been resumed from the ptrace stop
1560 to report the fork. Once it has been resumed it doesn't
1561 stop again before returning to userland, so there is no
1562 reliable way to wait on the parent.
1563
1564 We can't stay attached to the child to wait for an exec
1565 or exit because it may invoke ptrace(PT_TRACE_ME)
1566 (e.g. if the parent process is a debugger forking a new
1567 child process).
1568
1569 In the end, the best we can do is to make sure it runs
1570 for a little while. Hopefully it will be out of range of
1571 any breakpoints we reinsert. Usually this is only the
1572 single-step breakpoint at vfork's return point. */
1573
1574 usleep (10000);
1575
1576 /* Schedule a fake VFORK_DONE event to report on the next
1577 wait. */
1578 fbsd_add_vfork_done (inferior_ptid);
1579 }
1580 #endif
1581 }
1582
1583 return 0;
1584 }
1585
1586 int
1587 fbsd_nat_target::insert_fork_catchpoint (int pid)
1588 {
1589 return 0;
1590 }
1591
1592 int
1593 fbsd_nat_target::remove_fork_catchpoint (int pid)
1594 {
1595 return 0;
1596 }
1597
1598 int
1599 fbsd_nat_target::insert_vfork_catchpoint (int pid)
1600 {
1601 return 0;
1602 }
1603
1604 int
1605 fbsd_nat_target::remove_vfork_catchpoint (int pid)
1606 {
1607 return 0;
1608 }
1609 #endif
1610
1611 /* Implement the "post_startup_inferior" target_ops method. */
1612
1613 void
1614 fbsd_nat_target::post_startup_inferior (ptid_t pid)
1615 {
1616 fbsd_enable_proc_events (pid.pid ());
1617 }
1618
1619 /* Implement the "post_attach" target_ops method. */
1620
1621 void
1622 fbsd_nat_target::post_attach (int pid)
1623 {
1624 fbsd_enable_proc_events (pid);
1625 fbsd_add_threads (pid);
1626 }
1627
1628 #ifdef PL_FLAG_EXEC
1629 /* If the FreeBSD kernel supports PL_FLAG_EXEC, then traced processes
1630 will always stop after exec. */
1631
1632 int
1633 fbsd_nat_target::insert_exec_catchpoint (int pid)
1634 {
1635 return 0;
1636 }
1637
1638 int
1639 fbsd_nat_target::remove_exec_catchpoint (int pid)
1640 {
1641 return 0;
1642 }
1643 #endif
1644
1645 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1646 int
1647 fbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
1648 int any_count,
1649 gdb::array_view<const int> syscall_counts)
1650 {
1651
1652 /* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
1653 will catch all system call entries and exits. The system calls
1654 are filtered by GDB rather than the kernel. */
1655 return 0;
1656 }
1657 #endif
1658 #endif
1659
1660 void
1661 _initialize_fbsd_nat (void)
1662 {
1663 #ifdef PT_LWPINFO
1664 add_setshow_boolean_cmd ("fbsd-lwp", class_maintenance,
1665 &debug_fbsd_lwp, _("\
1666 Set debugging of FreeBSD lwp module."), _("\
1667 Show debugging of FreeBSD lwp module."), _("\
1668 Enables printf debugging output."),
1669 NULL,
1670 &show_fbsd_lwp_debug,
1671 &setdebuglist, &showdebuglist);
1672 add_setshow_boolean_cmd ("fbsd-nat", class_maintenance,
1673 &debug_fbsd_nat, _("\
1674 Set debugging of FreeBSD native target."), _("\
1675 Show debugging of FreeBSD native target."), _("\
1676 Enables printf debugging output."),
1677 NULL,
1678 &show_fbsd_nat_debug,
1679 &setdebuglist, &showdebuglist);
1680 #endif
1681 }
This page took 0.0867 seconds and 5 git commands to generate.