Remove ptid_get_lwp
[deliverable/binutils-gdb.git] / gdb / fbsd-nat.c
1 /* Native-dependent code for FreeBSD.
2
3 Copyright (C) 2002-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "byte-vector.h"
22 #include "gdbcore.h"
23 #include "inferior.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbcmd.h"
27 #include "gdbthread.h"
28 #include "gdb_wait.h"
29 #include "inf-ptrace.h"
30 #include <sys/types.h>
31 #include <sys/procfs.h>
32 #include <sys/ptrace.h>
33 #include <sys/signal.h>
34 #include <sys/sysctl.h>
35 #include <sys/user.h>
36 #if defined(HAVE_KINFO_GETFILE) || defined(HAVE_KINFO_GETVMMAP)
37 #include <libutil.h>
38 #endif
39 #if !defined(HAVE_KINFO_GETVMMAP)
40 #include "filestuff.h"
41 #endif
42
43 #include "elf-bfd.h"
44 #include "fbsd-nat.h"
45 #include "fbsd-tdep.h"
46
47 #include <list>
48
49 /* Return the name of a file that can be opened to get the symbols for
50 the child process identified by PID. */
51
52 char *
53 fbsd_nat_target::pid_to_exec_file (int pid)
54 {
55 ssize_t len;
56 static char buf[PATH_MAX];
57 char name[PATH_MAX];
58
59 #ifdef KERN_PROC_PATHNAME
60 size_t buflen;
61 int mib[4];
62
63 mib[0] = CTL_KERN;
64 mib[1] = KERN_PROC;
65 mib[2] = KERN_PROC_PATHNAME;
66 mib[3] = pid;
67 buflen = sizeof buf;
68 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
69 /* The kern.proc.pathname.<pid> sysctl returns a length of zero
70 for processes without an associated executable such as kernel
71 processes. */
72 return buflen == 0 ? NULL : buf;
73 #endif
74
75 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
76 len = readlink (name, buf, PATH_MAX - 1);
77 if (len != -1)
78 {
79 buf[len] = '\0';
80 return buf;
81 }
82
83 return NULL;
84 }
85
86 #ifdef HAVE_KINFO_GETVMMAP
87 /* Iterate over all the memory regions in the current inferior,
88 calling FUNC for each memory region. OBFD is passed as the last
89 argument to FUNC. */
90
91 int
92 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
93 void *obfd)
94 {
95 pid_t pid = inferior_ptid.pid ();
96 struct kinfo_vmentry *kve;
97 uint64_t size;
98 int i, nitems;
99
100 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
101 vmentl (kinfo_getvmmap (pid, &nitems));
102 if (vmentl == NULL)
103 perror_with_name (_("Couldn't fetch VM map entries."));
104
105 for (i = 0, kve = vmentl.get (); i < nitems; i++, kve++)
106 {
107 /* Skip unreadable segments and those where MAP_NOCORE has been set. */
108 if (!(kve->kve_protection & KVME_PROT_READ)
109 || kve->kve_flags & KVME_FLAG_NOCOREDUMP)
110 continue;
111
112 /* Skip segments with an invalid type. */
113 if (kve->kve_type != KVME_TYPE_DEFAULT
114 && kve->kve_type != KVME_TYPE_VNODE
115 && kve->kve_type != KVME_TYPE_SWAP
116 && kve->kve_type != KVME_TYPE_PHYS)
117 continue;
118
119 size = kve->kve_end - kve->kve_start;
120 if (info_verbose)
121 {
122 fprintf_filtered (gdb_stdout,
123 "Save segment, %ld bytes at %s (%c%c%c)\n",
124 (long) size,
125 paddress (target_gdbarch (), kve->kve_start),
126 kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
127 kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
128 kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
129 }
130
131 /* Invoke the callback function to create the corefile segment.
132 Pass MODIFIED as true, we do not know the real modification state. */
133 func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
134 kve->kve_protection & KVME_PROT_WRITE,
135 kve->kve_protection & KVME_PROT_EXEC, 1, obfd);
136 }
137 return 0;
138 }
139 #else
140 static int
141 fbsd_read_mapping (FILE *mapfile, unsigned long *start, unsigned long *end,
142 char *protection)
143 {
144 /* FreeBSD 5.1-RELEASE uses a 256-byte buffer. */
145 char buf[256];
146 int resident, privateresident;
147 unsigned long obj;
148 int ret = EOF;
149
150 /* As of FreeBSD 5.0-RELEASE, the layout is described in
151 /usr/src/sys/fs/procfs/procfs_map.c. Somewhere in 5.1-CURRENT a
152 new column was added to the procfs map. Therefore we can't use
153 fscanf since we need to support older releases too. */
154 if (fgets (buf, sizeof buf, mapfile) != NULL)
155 ret = sscanf (buf, "%lx %lx %d %d %lx %s", start, end,
156 &resident, &privateresident, &obj, protection);
157
158 return (ret != 0 && ret != EOF);
159 }
160
161 /* Iterate over all the memory regions in the current inferior,
162 calling FUNC for each memory region. OBFD is passed as the last
163 argument to FUNC. */
164
165 int
166 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
167 void *obfd)
168 {
169 pid_t pid = inferior_ptid.pid ();
170 unsigned long start, end, size;
171 char protection[4];
172 int read, write, exec;
173
174 std::string mapfilename = string_printf ("/proc/%ld/map", (long) pid);
175 gdb_file_up mapfile (fopen (mapfilename.c_str (), "r"));
176 if (mapfile == NULL)
177 error (_("Couldn't open %s."), mapfilename.c_str ());
178
179 if (info_verbose)
180 fprintf_filtered (gdb_stdout,
181 "Reading memory regions from %s\n", mapfilename.c_str ());
182
183 /* Now iterate until end-of-file. */
184 while (fbsd_read_mapping (mapfile.get (), &start, &end, &protection[0]))
185 {
186 size = end - start;
187
188 read = (strchr (protection, 'r') != 0);
189 write = (strchr (protection, 'w') != 0);
190 exec = (strchr (protection, 'x') != 0);
191
192 if (info_verbose)
193 {
194 fprintf_filtered (gdb_stdout,
195 "Save segment, %ld bytes at %s (%c%c%c)\n",
196 size, paddress (target_gdbarch (), start),
197 read ? 'r' : '-',
198 write ? 'w' : '-',
199 exec ? 'x' : '-');
200 }
201
202 /* Invoke the callback function to create the corefile segment.
203 Pass MODIFIED as true, we do not know the real modification state. */
204 func (start, size, read, write, exec, 1, obfd);
205 }
206
207 return 0;
208 }
209 #endif
210
211 /* Fetch the command line for a running process. */
212
213 static gdb::unique_xmalloc_ptr<char>
214 fbsd_fetch_cmdline (pid_t pid)
215 {
216 size_t len;
217 int mib[4];
218
219 len = 0;
220 mib[0] = CTL_KERN;
221 mib[1] = KERN_PROC;
222 mib[2] = KERN_PROC_ARGS;
223 mib[3] = pid;
224 if (sysctl (mib, 4, NULL, &len, NULL, 0) == -1)
225 return nullptr;
226
227 if (len == 0)
228 return nullptr;
229
230 gdb::unique_xmalloc_ptr<char> cmdline ((char *) xmalloc (len));
231 if (sysctl (mib, 4, cmdline.get (), &len, NULL, 0) == -1)
232 return nullptr;
233
234 return cmdline;
235 }
236
237 /* Fetch the external variant of the kernel's internal process
238 structure for the process PID into KP. */
239
240 static bool
241 fbsd_fetch_kinfo_proc (pid_t pid, struct kinfo_proc *kp)
242 {
243 size_t len;
244 int mib[4];
245
246 len = sizeof *kp;
247 mib[0] = CTL_KERN;
248 mib[1] = KERN_PROC;
249 mib[2] = KERN_PROC_PID;
250 mib[3] = pid;
251 return (sysctl (mib, 4, kp, &len, NULL, 0) == 0);
252 }
253
254 /* Implement the "info_proc" target_ops method. */
255
256 bool
257 fbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
258 {
259 #ifdef HAVE_KINFO_GETFILE
260 gdb::unique_xmalloc_ptr<struct kinfo_file> fdtbl;
261 int nfd = 0;
262 #endif
263 struct kinfo_proc kp;
264 char *tmp;
265 pid_t pid;
266 bool do_cmdline = false;
267 bool do_cwd = false;
268 bool do_exe = false;
269 #ifdef HAVE_KINFO_GETVMMAP
270 bool do_mappings = false;
271 #endif
272 bool do_status = false;
273
274 switch (what)
275 {
276 case IP_MINIMAL:
277 do_cmdline = true;
278 do_cwd = true;
279 do_exe = true;
280 break;
281 #ifdef HAVE_KINFO_GETVMMAP
282 case IP_MAPPINGS:
283 do_mappings = true;
284 break;
285 #endif
286 case IP_STATUS:
287 case IP_STAT:
288 do_status = true;
289 break;
290 case IP_CMDLINE:
291 do_cmdline = true;
292 break;
293 case IP_EXE:
294 do_exe = true;
295 break;
296 case IP_CWD:
297 do_cwd = true;
298 break;
299 case IP_ALL:
300 do_cmdline = true;
301 do_cwd = true;
302 do_exe = true;
303 #ifdef HAVE_KINFO_GETVMMAP
304 do_mappings = true;
305 #endif
306 do_status = true;
307 break;
308 default:
309 error (_("Not supported on this target."));
310 }
311
312 gdb_argv built_argv (args);
313 if (built_argv.count () == 0)
314 {
315 pid = inferior_ptid.pid ();
316 if (pid == 0)
317 error (_("No current process: you must name one."));
318 }
319 else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
320 pid = strtol (built_argv[0], NULL, 10);
321 else
322 error (_("Invalid arguments."));
323
324 printf_filtered (_("process %d\n"), pid);
325 #ifdef HAVE_KINFO_GETFILE
326 if (do_cwd || do_exe)
327 fdtbl.reset (kinfo_getfile (pid, &nfd));
328 #endif
329
330 if (do_cmdline)
331 {
332 gdb::unique_xmalloc_ptr<char> cmdline = fbsd_fetch_cmdline (pid);
333 if (cmdline != nullptr)
334 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
335 else
336 warning (_("unable to fetch command line"));
337 }
338 if (do_cwd)
339 {
340 const char *cwd = NULL;
341 #ifdef HAVE_KINFO_GETFILE
342 struct kinfo_file *kf = fdtbl.get ();
343 for (int i = 0; i < nfd; i++, kf++)
344 {
345 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_CWD)
346 {
347 cwd = kf->kf_path;
348 break;
349 }
350 }
351 #endif
352 if (cwd != NULL)
353 printf_filtered ("cwd = '%s'\n", cwd);
354 else
355 warning (_("unable to fetch current working directory"));
356 }
357 if (do_exe)
358 {
359 const char *exe = NULL;
360 #ifdef HAVE_KINFO_GETFILE
361 struct kinfo_file *kf = fdtbl.get ();
362 for (int i = 0; i < nfd; i++, kf++)
363 {
364 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_TEXT)
365 {
366 exe = kf->kf_path;
367 break;
368 }
369 }
370 #endif
371 if (exe == NULL)
372 exe = pid_to_exec_file (pid);
373 if (exe != NULL)
374 printf_filtered ("exe = '%s'\n", exe);
375 else
376 warning (_("unable to fetch executable path name"));
377 }
378 #ifdef HAVE_KINFO_GETVMMAP
379 if (do_mappings)
380 {
381 int nvment;
382 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
383 vmentl (kinfo_getvmmap (pid, &nvment));
384
385 if (vmentl != nullptr)
386 {
387 printf_filtered (_("Mapped address spaces:\n\n"));
388 #ifdef __LP64__
389 printf_filtered (" %18s %18s %10s %10s %9s %s\n",
390 "Start Addr",
391 " End Addr",
392 " Size", " Offset", "Flags ", "File");
393 #else
394 printf_filtered ("\t%10s %10s %10s %10s %9s %s\n",
395 "Start Addr",
396 " End Addr",
397 " Size", " Offset", "Flags ", "File");
398 #endif
399
400 struct kinfo_vmentry *kve = vmentl.get ();
401 for (int i = 0; i < nvment; i++, kve++)
402 {
403 ULONGEST start, end;
404
405 start = kve->kve_start;
406 end = kve->kve_end;
407 #ifdef __LP64__
408 printf_filtered (" %18s %18s %10s %10s %9s %s\n",
409 hex_string (start),
410 hex_string (end),
411 hex_string (end - start),
412 hex_string (kve->kve_offset),
413 fbsd_vm_map_entry_flags (kve->kve_flags,
414 kve->kve_protection),
415 kve->kve_path);
416 #else
417 printf_filtered ("\t%10s %10s %10s %10s %9s %s\n",
418 hex_string (start),
419 hex_string (end),
420 hex_string (end - start),
421 hex_string (kve->kve_offset),
422 fbsd_vm_map_entry_flags (kve->kve_flags,
423 kve->kve_protection),
424 kve->kve_path);
425 #endif
426 }
427 }
428 else
429 warning (_("unable to fetch virtual memory map"));
430 }
431 #endif
432 if (do_status)
433 {
434 if (!fbsd_fetch_kinfo_proc (pid, &kp))
435 warning (_("Failed to fetch process information"));
436 else
437 {
438 const char *state;
439 int pgtok;
440
441 printf_filtered ("Name: %s\n", kp.ki_comm);
442 switch (kp.ki_stat)
443 {
444 case SIDL:
445 state = "I (idle)";
446 break;
447 case SRUN:
448 state = "R (running)";
449 break;
450 case SSTOP:
451 state = "T (stopped)";
452 break;
453 case SZOMB:
454 state = "Z (zombie)";
455 break;
456 case SSLEEP:
457 state = "S (sleeping)";
458 break;
459 case SWAIT:
460 state = "W (interrupt wait)";
461 break;
462 case SLOCK:
463 state = "L (blocked on lock)";
464 break;
465 default:
466 state = "? (unknown)";
467 break;
468 }
469 printf_filtered ("State: %s\n", state);
470 printf_filtered ("Parent process: %d\n", kp.ki_ppid);
471 printf_filtered ("Process group: %d\n", kp.ki_pgid);
472 printf_filtered ("Session id: %d\n", kp.ki_sid);
473 printf_filtered ("TTY: %ju\n", (uintmax_t) kp.ki_tdev);
474 printf_filtered ("TTY owner process group: %d\n", kp.ki_tpgid);
475 printf_filtered ("User IDs (real, effective, saved): %d %d %d\n",
476 kp.ki_ruid, kp.ki_uid, kp.ki_svuid);
477 printf_filtered ("Group IDs (real, effective, saved): %d %d %d\n",
478 kp.ki_rgid, kp.ki_groups[0], kp.ki_svgid);
479 printf_filtered ("Groups: ");
480 for (int i = 0; i < kp.ki_ngroups; i++)
481 printf_filtered ("%d ", kp.ki_groups[i]);
482 printf_filtered ("\n");
483 printf_filtered ("Minor faults (no memory page): %ld\n",
484 kp.ki_rusage.ru_minflt);
485 printf_filtered ("Minor faults, children: %ld\n",
486 kp.ki_rusage_ch.ru_minflt);
487 printf_filtered ("Major faults (memory page faults): %ld\n",
488 kp.ki_rusage.ru_majflt);
489 printf_filtered ("Major faults, children: %ld\n",
490 kp.ki_rusage_ch.ru_majflt);
491 printf_filtered ("utime: %jd.%06ld\n",
492 (intmax_t) kp.ki_rusage.ru_utime.tv_sec,
493 kp.ki_rusage.ru_utime.tv_usec);
494 printf_filtered ("stime: %jd.%06ld\n",
495 (intmax_t) kp.ki_rusage.ru_stime.tv_sec,
496 kp.ki_rusage.ru_stime.tv_usec);
497 printf_filtered ("utime, children: %jd.%06ld\n",
498 (intmax_t) kp.ki_rusage_ch.ru_utime.tv_sec,
499 kp.ki_rusage_ch.ru_utime.tv_usec);
500 printf_filtered ("stime, children: %jd.%06ld\n",
501 (intmax_t) kp.ki_rusage_ch.ru_stime.tv_sec,
502 kp.ki_rusage_ch.ru_stime.tv_usec);
503 printf_filtered ("'nice' value: %d\n", kp.ki_nice);
504 printf_filtered ("Start time: %jd.%06ld\n", kp.ki_start.tv_sec,
505 kp.ki_start.tv_usec);
506 pgtok = getpagesize () / 1024;
507 printf_filtered ("Virtual memory size: %ju kB\n",
508 (uintmax_t) kp.ki_size / 1024);
509 printf_filtered ("Data size: %ju kB\n",
510 (uintmax_t) kp.ki_dsize * pgtok);
511 printf_filtered ("Stack size: %ju kB\n",
512 (uintmax_t) kp.ki_ssize * pgtok);
513 printf_filtered ("Text size: %ju kB\n",
514 (uintmax_t) kp.ki_tsize * pgtok);
515 printf_filtered ("Resident set size: %ju kB\n",
516 (uintmax_t) kp.ki_rssize * pgtok);
517 printf_filtered ("Maximum RSS: %ju kB\n",
518 (uintmax_t) kp.ki_rusage.ru_maxrss);
519 printf_filtered ("Pending Signals: ");
520 for (int i = 0; i < _SIG_WORDS; i++)
521 printf_filtered ("%08x ", kp.ki_siglist.__bits[i]);
522 printf_filtered ("\n");
523 printf_filtered ("Ignored Signals: ");
524 for (int i = 0; i < _SIG_WORDS; i++)
525 printf_filtered ("%08x ", kp.ki_sigignore.__bits[i]);
526 printf_filtered ("\n");
527 printf_filtered ("Caught Signals: ");
528 for (int i = 0; i < _SIG_WORDS; i++)
529 printf_filtered ("%08x ", kp.ki_sigcatch.__bits[i]);
530 printf_filtered ("\n");
531 }
532 }
533
534 return true;
535 }
536
537 #ifdef KERN_PROC_AUXV
538
539 #ifdef PT_LWPINFO
540 /* Return the size of siginfo for the current inferior. */
541
542 #ifdef __LP64__
543 union sigval32 {
544 int sival_int;
545 uint32_t sival_ptr;
546 };
547
548 /* This structure matches the naming and layout of `siginfo_t' in
549 <sys/signal.h>. In particular, the `si_foo' macros defined in that
550 header can be used with both types to copy fields in the `_reason'
551 union. */
552
553 struct siginfo32
554 {
555 int si_signo;
556 int si_errno;
557 int si_code;
558 __pid_t si_pid;
559 __uid_t si_uid;
560 int si_status;
561 uint32_t si_addr;
562 union sigval32 si_value;
563 union
564 {
565 struct
566 {
567 int _trapno;
568 } _fault;
569 struct
570 {
571 int _timerid;
572 int _overrun;
573 } _timer;
574 struct
575 {
576 int _mqd;
577 } _mesgq;
578 struct
579 {
580 int32_t _band;
581 } _poll;
582 struct
583 {
584 int32_t __spare1__;
585 int __spare2__[7];
586 } __spare__;
587 } _reason;
588 };
589 #endif
590
591 static size_t
592 fbsd_siginfo_size ()
593 {
594 #ifdef __LP64__
595 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
596
597 /* Is the inferior 32-bit? If so, use the 32-bit siginfo size. */
598 if (gdbarch_long_bit (gdbarch) == 32)
599 return sizeof (struct siginfo32);
600 #endif
601 return sizeof (siginfo_t);
602 }
603
604 /* Convert a native 64-bit siginfo object to a 32-bit object. Note
605 that FreeBSD doesn't support writing to $_siginfo, so this only
606 needs to convert one way. */
607
608 static void
609 fbsd_convert_siginfo (siginfo_t *si)
610 {
611 #ifdef __LP64__
612 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
613
614 /* Is the inferior 32-bit? If not, nothing to do. */
615 if (gdbarch_long_bit (gdbarch) != 32)
616 return;
617
618 struct siginfo32 si32;
619
620 si32.si_signo = si->si_signo;
621 si32.si_errno = si->si_errno;
622 si32.si_code = si->si_code;
623 si32.si_pid = si->si_pid;
624 si32.si_uid = si->si_uid;
625 si32.si_status = si->si_status;
626 si32.si_addr = (uintptr_t) si->si_addr;
627
628 /* If sival_ptr is being used instead of sival_int on a big-endian
629 platform, then sival_int will be zero since it holds the upper
630 32-bits of the pointer value. */
631 #if _BYTE_ORDER == _BIG_ENDIAN
632 if (si->si_value.sival_int == 0)
633 si32.si_value.sival_ptr = (uintptr_t) si->si_value.sival_ptr;
634 else
635 si32.si_value.sival_int = si->si_value.sival_int;
636 #else
637 si32.si_value.sival_int = si->si_value.sival_int;
638 #endif
639
640 /* Always copy the spare fields and then possibly overwrite them for
641 signal-specific or code-specific fields. */
642 si32._reason.__spare__.__spare1__ = si->_reason.__spare__.__spare1__;
643 for (int i = 0; i < 7; i++)
644 si32._reason.__spare__.__spare2__[i] = si->_reason.__spare__.__spare2__[i];
645 switch (si->si_signo) {
646 case SIGILL:
647 case SIGFPE:
648 case SIGSEGV:
649 case SIGBUS:
650 si32.si_trapno = si->si_trapno;
651 break;
652 }
653 switch (si->si_code) {
654 case SI_TIMER:
655 si32.si_timerid = si->si_timerid;
656 si32.si_overrun = si->si_overrun;
657 break;
658 case SI_MESGQ:
659 si32.si_mqd = si->si_mqd;
660 break;
661 }
662
663 memcpy(si, &si32, sizeof (si32));
664 #endif
665 }
666 #endif
667
668 /* Implement the "xfer_partial" target_ops method. */
669
670 enum target_xfer_status
671 fbsd_nat_target::xfer_partial (enum target_object object,
672 const char *annex, gdb_byte *readbuf,
673 const gdb_byte *writebuf,
674 ULONGEST offset, ULONGEST len,
675 ULONGEST *xfered_len)
676 {
677 pid_t pid = inferior_ptid.pid ();
678
679 switch (object)
680 {
681 #ifdef PT_LWPINFO
682 case TARGET_OBJECT_SIGNAL_INFO:
683 {
684 struct ptrace_lwpinfo pl;
685 size_t siginfo_size;
686
687 /* FreeBSD doesn't support writing to $_siginfo. */
688 if (writebuf != NULL)
689 return TARGET_XFER_E_IO;
690
691 if (inferior_ptid.lwp_p ())
692 pid = inferior_ptid.lwp ();
693
694 siginfo_size = fbsd_siginfo_size ();
695 if (offset > siginfo_size)
696 return TARGET_XFER_E_IO;
697
698 if (ptrace (PT_LWPINFO, pid, (PTRACE_TYPE_ARG3) &pl, sizeof (pl)) == -1)
699 return TARGET_XFER_E_IO;
700
701 if (!(pl.pl_flags & PL_FLAG_SI))
702 return TARGET_XFER_E_IO;
703
704 fbsd_convert_siginfo (&pl.pl_siginfo);
705 if (offset + len > siginfo_size)
706 len = siginfo_size - offset;
707
708 memcpy (readbuf, ((gdb_byte *) &pl.pl_siginfo) + offset, len);
709 *xfered_len = len;
710 return TARGET_XFER_OK;
711 }
712 #endif
713 case TARGET_OBJECT_AUXV:
714 {
715 gdb::byte_vector buf_storage;
716 gdb_byte *buf;
717 size_t buflen;
718 int mib[4];
719
720 if (writebuf != NULL)
721 return TARGET_XFER_E_IO;
722 mib[0] = CTL_KERN;
723 mib[1] = KERN_PROC;
724 mib[2] = KERN_PROC_AUXV;
725 mib[3] = pid;
726 if (offset == 0)
727 {
728 buf = readbuf;
729 buflen = len;
730 }
731 else
732 {
733 buflen = offset + len;
734 buf_storage.resize (buflen);
735 buf = buf_storage.data ();
736 }
737 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
738 {
739 if (offset != 0)
740 {
741 if (buflen > offset)
742 {
743 buflen -= offset;
744 memcpy (readbuf, buf + offset, buflen);
745 }
746 else
747 buflen = 0;
748 }
749 *xfered_len = buflen;
750 return (buflen == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
751 }
752 return TARGET_XFER_E_IO;
753 }
754 default:
755 return inf_ptrace_target::xfer_partial (object, annex,
756 readbuf, writebuf, offset,
757 len, xfered_len);
758 }
759 }
760 #endif
761
762 #ifdef PT_LWPINFO
763 static int debug_fbsd_lwp;
764 static int debug_fbsd_nat;
765
766 static void
767 show_fbsd_lwp_debug (struct ui_file *file, int from_tty,
768 struct cmd_list_element *c, const char *value)
769 {
770 fprintf_filtered (file, _("Debugging of FreeBSD lwp module is %s.\n"), value);
771 }
772
773 static void
774 show_fbsd_nat_debug (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 fprintf_filtered (file, _("Debugging of FreeBSD native target is %s.\n"),
778 value);
779 }
780
781 /*
782 FreeBSD's first thread support was via a "reentrant" version of libc
783 (libc_r) that first shipped in 2.2.7. This library multiplexed all
784 of the threads in a process onto a single kernel thread. This
785 library was supported via the bsd-uthread target.
786
787 FreeBSD 5.1 introduced two new threading libraries that made use of
788 multiple kernel threads. The first (libkse) scheduled M user
789 threads onto N (<= M) kernel threads (LWPs). The second (libthr)
790 bound each user thread to a dedicated kernel thread. libkse shipped
791 as the default threading library (libpthread).
792
793 FreeBSD 5.3 added a libthread_db to abstract the interface across
794 the various thread libraries (libc_r, libkse, and libthr).
795
796 FreeBSD 7.0 switched the default threading library from from libkse
797 to libpthread and removed libc_r.
798
799 FreeBSD 8.0 removed libkse and the in-kernel support for it. The
800 only threading library supported by 8.0 and later is libthr which
801 ties each user thread directly to an LWP. To simplify the
802 implementation, this target only supports LWP-backed threads using
803 ptrace directly rather than libthread_db.
804
805 FreeBSD 11.0 introduced LWP event reporting via PT_LWP_EVENTS.
806 */
807
808 /* Return true if PTID is still active in the inferior. */
809
810 bool
811 fbsd_nat_target::thread_alive (ptid_t ptid)
812 {
813 if (ptid_lwp_p (ptid))
814 {
815 struct ptrace_lwpinfo pl;
816
817 if (ptrace (PT_LWPINFO, ptid.lwp (), (caddr_t) &pl, sizeof pl)
818 == -1)
819 return false;
820 #ifdef PL_FLAG_EXITED
821 if (pl.pl_flags & PL_FLAG_EXITED)
822 return false;
823 #endif
824 }
825
826 return true;
827 }
828
829 /* Convert PTID to a string. Returns the string in a static
830 buffer. */
831
832 const char *
833 fbsd_nat_target::pid_to_str (ptid_t ptid)
834 {
835 lwpid_t lwp;
836
837 lwp = ptid.lwp ();
838 if (lwp != 0)
839 {
840 static char buf[64];
841 int pid = ptid.pid ();
842
843 xsnprintf (buf, sizeof buf, "LWP %d of process %d", lwp, pid);
844 return buf;
845 }
846
847 return normal_pid_to_str (ptid);
848 }
849
850 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME
851 /* Return the name assigned to a thread by an application. Returns
852 the string in a static buffer. */
853
854 const char *
855 fbsd_nat_target::thread_name (struct thread_info *thr)
856 {
857 struct ptrace_lwpinfo pl;
858 struct kinfo_proc kp;
859 int pid = thr->ptid.pid ();
860 long lwp = thr->ptid.lwp ();
861 static char buf[sizeof pl.pl_tdname + 1];
862
863 /* Note that ptrace_lwpinfo returns the process command in pl_tdname
864 if a name has not been set explicitly. Return a NULL name in
865 that case. */
866 if (!fbsd_fetch_kinfo_proc (pid, &kp))
867 perror_with_name (_("Failed to fetch process information"));
868 if (ptrace (PT_LWPINFO, lwp, (caddr_t) &pl, sizeof pl) == -1)
869 perror_with_name (("ptrace"));
870 if (strcmp (kp.ki_comm, pl.pl_tdname) == 0)
871 return NULL;
872 xsnprintf (buf, sizeof buf, "%s", pl.pl_tdname);
873 return buf;
874 }
875 #endif
876
877 /* Enable additional event reporting on new processes.
878
879 To catch fork events, PTRACE_FORK is set on every traced process
880 to enable stops on returns from fork or vfork. Note that both the
881 parent and child will always stop, even if system call stops are
882 not enabled.
883
884 To catch LWP events, PTRACE_EVENTS is set on every traced process.
885 This enables stops on the birth for new LWPs (excluding the "main" LWP)
886 and the death of LWPs (excluding the last LWP in a process). Note
887 that unlike fork events, the LWP that creates a new LWP does not
888 report an event. */
889
890 static void
891 fbsd_enable_proc_events (pid_t pid)
892 {
893 #ifdef PT_GET_EVENT_MASK
894 int events;
895
896 if (ptrace (PT_GET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
897 sizeof (events)) == -1)
898 perror_with_name (("ptrace"));
899 events |= PTRACE_FORK | PTRACE_LWP;
900 #ifdef PTRACE_VFORK
901 events |= PTRACE_VFORK;
902 #endif
903 if (ptrace (PT_SET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
904 sizeof (events)) == -1)
905 perror_with_name (("ptrace"));
906 #else
907 #ifdef TDP_RFPPWAIT
908 if (ptrace (PT_FOLLOW_FORK, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
909 perror_with_name (("ptrace"));
910 #endif
911 #ifdef PT_LWP_EVENTS
912 if (ptrace (PT_LWP_EVENTS, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
913 perror_with_name (("ptrace"));
914 #endif
915 #endif
916 }
917
918 /* Add threads for any new LWPs in a process.
919
920 When LWP events are used, this function is only used to detect existing
921 threads when attaching to a process. On older systems, this function is
922 called to discover new threads each time the thread list is updated. */
923
924 static void
925 fbsd_add_threads (pid_t pid)
926 {
927 int i, nlwps;
928
929 gdb_assert (!in_thread_list (ptid_t (pid)));
930 nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
931 if (nlwps == -1)
932 perror_with_name (("ptrace"));
933
934 gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
935
936 nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
937 if (nlwps == -1)
938 perror_with_name (("ptrace"));
939
940 for (i = 0; i < nlwps; i++)
941 {
942 ptid_t ptid = ptid_t (pid, lwps[i], 0);
943
944 if (!in_thread_list (ptid))
945 {
946 #ifdef PT_LWP_EVENTS
947 struct ptrace_lwpinfo pl;
948
949 /* Don't add exited threads. Note that this is only called
950 when attaching to a multi-threaded process. */
951 if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof pl) == -1)
952 perror_with_name (("ptrace"));
953 if (pl.pl_flags & PL_FLAG_EXITED)
954 continue;
955 #endif
956 if (debug_fbsd_lwp)
957 fprintf_unfiltered (gdb_stdlog,
958 "FLWP: adding thread for LWP %u\n",
959 lwps[i]);
960 add_thread (ptid);
961 }
962 }
963 }
964
965 /* Implement the "update_thread_list" target_ops method. */
966
967 void
968 fbsd_nat_target::update_thread_list ()
969 {
970 #ifdef PT_LWP_EVENTS
971 /* With support for thread events, threads are added/deleted from the
972 list as events are reported, so just try deleting exited threads. */
973 delete_exited_threads ();
974 #else
975 prune_threads ();
976
977 fbsd_add_threads (inferior_ptid.pid ());
978 #endif
979 }
980
981 #ifdef TDP_RFPPWAIT
982 /*
983 To catch fork events, PT_FOLLOW_FORK is set on every traced process
984 to enable stops on returns from fork or vfork. Note that both the
985 parent and child will always stop, even if system call stops are not
986 enabled.
987
988 After a fork, both the child and parent process will stop and report
989 an event. However, there is no guarantee of order. If the parent
990 reports its stop first, then fbsd_wait explicitly waits for the new
991 child before returning. If the child reports its stop first, then
992 the event is saved on a list and ignored until the parent's stop is
993 reported. fbsd_wait could have been changed to fetch the parent PID
994 of the new child and used that to wait for the parent explicitly.
995 However, if two threads in the parent fork at the same time, then
996 the wait on the parent might return the "wrong" fork event.
997
998 The initial version of PT_FOLLOW_FORK did not set PL_FLAG_CHILD for
999 the new child process. This flag could be inferred by treating any
1000 events for an unknown pid as a new child.
1001
1002 In addition, the initial version of PT_FOLLOW_FORK did not report a
1003 stop event for the parent process of a vfork until after the child
1004 process executed a new program or exited. The kernel was changed to
1005 defer the wait for exit or exec of the child until after posting the
1006 stop event shortly after the change to introduce PL_FLAG_CHILD.
1007 This could be worked around by reporting a vfork event when the
1008 child event posted and ignoring the subsequent event from the
1009 parent.
1010
1011 This implementation requires both of these fixes for simplicity's
1012 sake. FreeBSD versions newer than 9.1 contain both fixes.
1013 */
1014
1015 static std::list<ptid_t> fbsd_pending_children;
1016
1017 /* Record a new child process event that is reported before the
1018 corresponding fork event in the parent. */
1019
1020 static void
1021 fbsd_remember_child (ptid_t pid)
1022 {
1023 fbsd_pending_children.push_front (pid);
1024 }
1025
1026 /* Check for a previously-recorded new child process event for PID.
1027 If one is found, remove it from the list and return the PTID. */
1028
1029 static ptid_t
1030 fbsd_is_child_pending (pid_t pid)
1031 {
1032 for (auto it = fbsd_pending_children.begin ();
1033 it != fbsd_pending_children.end (); it++)
1034 if (it->pid () == pid)
1035 {
1036 ptid_t ptid = *it;
1037 fbsd_pending_children.erase (it);
1038 return ptid;
1039 }
1040 return null_ptid;
1041 }
1042
1043 #ifndef PTRACE_VFORK
1044 static std::forward_list<ptid_t> fbsd_pending_vfork_done;
1045
1046 /* Record a pending vfork done event. */
1047
1048 static void
1049 fbsd_add_vfork_done (ptid_t pid)
1050 {
1051 fbsd_pending_vfork_done.push_front (pid);
1052 }
1053
1054 /* Check for a pending vfork done event for a specific PID. */
1055
1056 static int
1057 fbsd_is_vfork_done_pending (pid_t pid)
1058 {
1059 for (auto it = fbsd_pending_vfork_done.begin ();
1060 it != fbsd_pending_vfork_done.end (); it++)
1061 if (it->pid () == pid)
1062 return 1;
1063 return 0;
1064 }
1065
1066 /* Check for a pending vfork done event. If one is found, remove it
1067 from the list and return the PTID. */
1068
1069 static ptid_t
1070 fbsd_next_vfork_done (void)
1071 {
1072 if (!fbsd_pending_vfork_done.empty ())
1073 {
1074 ptid_t ptid = fbsd_pending_vfork_done.front ();
1075 fbsd_pending_vfork_done.pop_front ();
1076 return ptid;
1077 }
1078 return null_ptid;
1079 }
1080 #endif
1081 #endif
1082
1083 /* Implement the "resume" target_ops method. */
1084
1085 void
1086 fbsd_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1087 {
1088 #if defined(TDP_RFPPWAIT) && !defined(PTRACE_VFORK)
1089 pid_t pid;
1090
1091 /* Don't PT_CONTINUE a process which has a pending vfork done event. */
1092 if (ptid_equal (minus_one_ptid, ptid))
1093 pid = inferior_ptid.pid ();
1094 else
1095 pid = ptid.pid ();
1096 if (fbsd_is_vfork_done_pending (pid))
1097 return;
1098 #endif
1099
1100 if (debug_fbsd_lwp)
1101 fprintf_unfiltered (gdb_stdlog,
1102 "FLWP: fbsd_resume for ptid (%d, %ld, %ld)\n",
1103 ptid.pid (), ptid.lwp (),
1104 ptid_get_tid (ptid));
1105 if (ptid_lwp_p (ptid))
1106 {
1107 /* If ptid is a specific LWP, suspend all other LWPs in the process. */
1108 struct thread_info *tp;
1109 int request;
1110
1111 ALL_NON_EXITED_THREADS (tp)
1112 {
1113 if (tp->ptid.pid () != ptid.pid ())
1114 continue;
1115
1116 if (tp->ptid.lwp () == ptid.lwp ())
1117 request = PT_RESUME;
1118 else
1119 request = PT_SUSPEND;
1120
1121 if (ptrace (request, tp->ptid.lwp (), NULL, 0) == -1)
1122 perror_with_name (("ptrace"));
1123 }
1124 }
1125 else
1126 {
1127 /* If ptid is a wildcard, resume all matching threads (they won't run
1128 until the process is continued however). */
1129 struct thread_info *tp;
1130
1131 ALL_NON_EXITED_THREADS (tp)
1132 {
1133 if (!ptid_match (tp->ptid, ptid))
1134 continue;
1135
1136 if (ptrace (PT_RESUME, tp->ptid.lwp (), NULL, 0) == -1)
1137 perror_with_name (("ptrace"));
1138 }
1139 ptid = inferior_ptid;
1140 }
1141
1142 #if __FreeBSD_version < 1200052
1143 /* When multiple threads within a process wish to report STOPPED
1144 events from wait(), the kernel picks one thread event as the
1145 thread event to report. The chosen thread event is retrieved via
1146 PT_LWPINFO by passing the process ID as the request pid. If
1147 multiple events are pending, then the subsequent wait() after
1148 resuming a process will report another STOPPED event after
1149 resuming the process to handle the next thread event and so on.
1150
1151 A single thread event is cleared as a side effect of resuming the
1152 process with PT_CONTINUE, PT_STEP, etc. In older kernels,
1153 however, the request pid was used to select which thread's event
1154 was cleared rather than always clearing the event that was just
1155 reported. To avoid clearing the event of the wrong LWP, always
1156 pass the process ID instead of an LWP ID to PT_CONTINUE or
1157 PT_SYSCALL.
1158
1159 In the case of stepping, the process ID cannot be used with
1160 PT_STEP since it would step the thread that reported an event
1161 which may not be the thread indicated by PTID. For stepping, use
1162 PT_SETSTEP to enable stepping on the desired thread before
1163 resuming the process via PT_CONTINUE instead of using
1164 PT_STEP. */
1165 if (step)
1166 {
1167 if (ptrace (PT_SETSTEP, get_ptrace_pid (ptid), NULL, 0) == -1)
1168 perror_with_name (("ptrace"));
1169 step = 0;
1170 }
1171 ptid = ptid_t (ptid.pid ());
1172 #endif
1173 inf_ptrace_target::resume (ptid, step, signo);
1174 }
1175
1176 #ifdef USE_SIGTRAP_SIGINFO
1177 /* Handle breakpoint and trace traps reported via SIGTRAP. If the
1178 trap was a breakpoint or trace trap that should be reported to the
1179 core, return true. */
1180
1181 static bool
1182 fbsd_handle_debug_trap (ptid_t ptid, const struct ptrace_lwpinfo &pl)
1183 {
1184
1185 /* Ignore traps without valid siginfo or for signals other than
1186 SIGTRAP. */
1187 if (! (pl.pl_flags & PL_FLAG_SI) || pl.pl_siginfo.si_signo != SIGTRAP)
1188 return false;
1189
1190 /* Trace traps are either a single step or a hardware watchpoint or
1191 breakpoint. */
1192 if (pl.pl_siginfo.si_code == TRAP_TRACE)
1193 {
1194 if (debug_fbsd_nat)
1195 fprintf_unfiltered (gdb_stdlog,
1196 "FNAT: trace trap for LWP %ld\n", ptid.lwp ());
1197 return true;
1198 }
1199
1200 if (pl.pl_siginfo.si_code == TRAP_BRKPT)
1201 {
1202 /* Fixup PC for the software breakpoint. */
1203 struct regcache *regcache = get_thread_regcache (ptid);
1204 struct gdbarch *gdbarch = regcache->arch ();
1205 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1206
1207 if (debug_fbsd_nat)
1208 fprintf_unfiltered (gdb_stdlog,
1209 "FNAT: sw breakpoint trap for LWP %ld\n",
1210 ptid.lwp ());
1211 if (decr_pc != 0)
1212 {
1213 CORE_ADDR pc;
1214
1215 pc = regcache_read_pc (regcache);
1216 regcache_write_pc (regcache, pc - decr_pc);
1217 }
1218 return true;
1219 }
1220
1221 return false;
1222 }
1223 #endif
1224
1225 /* Wait for the child specified by PTID to do something. Return the
1226 process ID of the child, or MINUS_ONE_PTID in case of error; store
1227 the status in *OURSTATUS. */
1228
1229 ptid_t
1230 fbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
1231 int target_options)
1232 {
1233 ptid_t wptid;
1234
1235 while (1)
1236 {
1237 #ifndef PTRACE_VFORK
1238 wptid = fbsd_next_vfork_done ();
1239 if (!ptid_equal (wptid, null_ptid))
1240 {
1241 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1242 return wptid;
1243 }
1244 #endif
1245 wptid = inf_ptrace_target::wait (ptid, ourstatus, target_options);
1246 if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
1247 {
1248 struct ptrace_lwpinfo pl;
1249 pid_t pid;
1250 int status;
1251
1252 pid = wptid.pid ();
1253 if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
1254 perror_with_name (("ptrace"));
1255
1256 wptid = ptid_t (pid, pl.pl_lwpid, 0);
1257
1258 if (debug_fbsd_nat)
1259 {
1260 fprintf_unfiltered (gdb_stdlog,
1261 "FNAT: stop for LWP %u event %d flags %#x\n",
1262 pl.pl_lwpid, pl.pl_event, pl.pl_flags);
1263 if (pl.pl_flags & PL_FLAG_SI)
1264 fprintf_unfiltered (gdb_stdlog,
1265 "FNAT: si_signo %u si_code %u\n",
1266 pl.pl_siginfo.si_signo,
1267 pl.pl_siginfo.si_code);
1268 }
1269
1270 #ifdef PT_LWP_EVENTS
1271 if (pl.pl_flags & PL_FLAG_EXITED)
1272 {
1273 /* If GDB attaches to a multi-threaded process, exiting
1274 threads might be skipped during post_attach that
1275 have not yet reported their PL_FLAG_EXITED event.
1276 Ignore EXITED events for an unknown LWP. */
1277 thread_info *thr = find_thread_ptid (wptid);
1278 if (thr != nullptr)
1279 {
1280 if (debug_fbsd_lwp)
1281 fprintf_unfiltered (gdb_stdlog,
1282 "FLWP: deleting thread for LWP %u\n",
1283 pl.pl_lwpid);
1284 if (print_thread_events)
1285 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str
1286 (wptid));
1287 delete_thread (thr);
1288 }
1289 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1290 perror_with_name (("ptrace"));
1291 continue;
1292 }
1293 #endif
1294
1295 /* Switch to an LWP PTID on the first stop in a new process.
1296 This is done after handling PL_FLAG_EXITED to avoid
1297 switching to an exited LWP. It is done before checking
1298 PL_FLAG_BORN in case the first stop reported after
1299 attaching to an existing process is a PL_FLAG_BORN
1300 event. */
1301 if (in_thread_list (ptid_t (pid)))
1302 {
1303 if (debug_fbsd_lwp)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "FLWP: using LWP %u for first thread\n",
1306 pl.pl_lwpid);
1307 thread_change_ptid (ptid_t (pid), wptid);
1308 }
1309
1310 #ifdef PT_LWP_EVENTS
1311 if (pl.pl_flags & PL_FLAG_BORN)
1312 {
1313 /* If GDB attaches to a multi-threaded process, newborn
1314 threads might be added by fbsd_add_threads that have
1315 not yet reported their PL_FLAG_BORN event. Ignore
1316 BORN events for an already-known LWP. */
1317 if (!in_thread_list (wptid))
1318 {
1319 if (debug_fbsd_lwp)
1320 fprintf_unfiltered (gdb_stdlog,
1321 "FLWP: adding thread for LWP %u\n",
1322 pl.pl_lwpid);
1323 add_thread (wptid);
1324 }
1325 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1326 return wptid;
1327 }
1328 #endif
1329
1330 #ifdef TDP_RFPPWAIT
1331 if (pl.pl_flags & PL_FLAG_FORKED)
1332 {
1333 #ifndef PTRACE_VFORK
1334 struct kinfo_proc kp;
1335 #endif
1336 ptid_t child_ptid;
1337 pid_t child;
1338
1339 child = pl.pl_child_pid;
1340 ourstatus->kind = TARGET_WAITKIND_FORKED;
1341 #ifdef PTRACE_VFORK
1342 if (pl.pl_flags & PL_FLAG_VFORKED)
1343 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1344 #endif
1345
1346 /* Make sure the other end of the fork is stopped too. */
1347 child_ptid = fbsd_is_child_pending (child);
1348 if (ptid_equal (child_ptid, null_ptid))
1349 {
1350 pid = waitpid (child, &status, 0);
1351 if (pid == -1)
1352 perror_with_name (("waitpid"));
1353
1354 gdb_assert (pid == child);
1355
1356 if (ptrace (PT_LWPINFO, child, (caddr_t)&pl, sizeof pl) == -1)
1357 perror_with_name (("ptrace"));
1358
1359 gdb_assert (pl.pl_flags & PL_FLAG_CHILD);
1360 child_ptid = ptid_t (child, pl.pl_lwpid, 0);
1361 }
1362
1363 /* Enable additional events on the child process. */
1364 fbsd_enable_proc_events (child_ptid.pid ());
1365
1366 #ifndef PTRACE_VFORK
1367 /* For vfork, the child process will have the P_PPWAIT
1368 flag set. */
1369 if (fbsd_fetch_kinfo_proc (child, &kp))
1370 {
1371 if (kp.ki_flag & P_PPWAIT)
1372 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1373 }
1374 else
1375 warning (_("Failed to fetch process information"));
1376 #endif
1377 ourstatus->value.related_pid = child_ptid;
1378
1379 return wptid;
1380 }
1381
1382 if (pl.pl_flags & PL_FLAG_CHILD)
1383 {
1384 /* Remember that this child forked, but do not report it
1385 until the parent reports its corresponding fork
1386 event. */
1387 fbsd_remember_child (wptid);
1388 continue;
1389 }
1390
1391 #ifdef PTRACE_VFORK
1392 if (pl.pl_flags & PL_FLAG_VFORK_DONE)
1393 {
1394 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1395 return wptid;
1396 }
1397 #endif
1398 #endif
1399
1400 #ifdef PL_FLAG_EXEC
1401 if (pl.pl_flags & PL_FLAG_EXEC)
1402 {
1403 ourstatus->kind = TARGET_WAITKIND_EXECD;
1404 ourstatus->value.execd_pathname
1405 = xstrdup (pid_to_exec_file (pid));
1406 return wptid;
1407 }
1408 #endif
1409
1410 #ifdef USE_SIGTRAP_SIGINFO
1411 if (fbsd_handle_debug_trap (wptid, pl))
1412 return wptid;
1413 #endif
1414
1415 /* Note that PL_FLAG_SCE is set for any event reported while
1416 a thread is executing a system call in the kernel. In
1417 particular, signals that interrupt a sleep in a system
1418 call will report this flag as part of their event. Stops
1419 explicitly for system call entry and exit always use
1420 SIGTRAP, so only treat SIGTRAP events as system call
1421 entry/exit events. */
1422 if (pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)
1423 && ourstatus->value.sig == SIGTRAP)
1424 {
1425 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1426 if (catch_syscall_enabled ())
1427 {
1428 if (catching_syscall_number (pl.pl_syscall_code))
1429 {
1430 if (pl.pl_flags & PL_FLAG_SCE)
1431 ourstatus->kind = TARGET_WAITKIND_SYSCALL_ENTRY;
1432 else
1433 ourstatus->kind = TARGET_WAITKIND_SYSCALL_RETURN;
1434 ourstatus->value.syscall_number = pl.pl_syscall_code;
1435 return wptid;
1436 }
1437 }
1438 #endif
1439 /* If the core isn't interested in this event, just
1440 continue the process explicitly and wait for another
1441 event. Note that PT_SYSCALL is "sticky" on FreeBSD
1442 and once system call stops are enabled on a process
1443 it stops for all system call entries and exits. */
1444 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1445 perror_with_name (("ptrace"));
1446 continue;
1447 }
1448 }
1449 return wptid;
1450 }
1451 }
1452
1453 #ifdef USE_SIGTRAP_SIGINFO
1454 /* Implement the "stopped_by_sw_breakpoint" target_ops method. */
1455
1456 bool
1457 fbsd_nat_target::stopped_by_sw_breakpoint ()
1458 {
1459 struct ptrace_lwpinfo pl;
1460
1461 if (ptrace (PT_LWPINFO, get_ptrace_pid (inferior_ptid), (caddr_t) &pl,
1462 sizeof pl) == -1)
1463 return false;
1464
1465 return ((pl.pl_flags & PL_FLAG_SI)
1466 && pl.pl_siginfo.si_signo == SIGTRAP
1467 && pl.pl_siginfo.si_code == TRAP_BRKPT);
1468 }
1469
1470 /* Implement the "supports_stopped_by_sw_breakpoint" target_ops
1471 method. */
1472
1473 bool
1474 fbsd_nat_target::supports_stopped_by_sw_breakpoint ()
1475 {
1476 return true;
1477 }
1478 #endif
1479
1480 #ifdef TDP_RFPPWAIT
1481 /* Target hook for follow_fork. On entry and at return inferior_ptid is
1482 the ptid of the followed inferior. */
1483
1484 int
1485 fbsd_nat_target::follow_fork (int follow_child, int detach_fork)
1486 {
1487 if (!follow_child && detach_fork)
1488 {
1489 struct thread_info *tp = inferior_thread ();
1490 pid_t child_pid = tp->pending_follow.value.related_pid.pid ();
1491
1492 /* Breakpoints have already been detached from the child by
1493 infrun.c. */
1494
1495 if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
1496 perror_with_name (("ptrace"));
1497
1498 #ifndef PTRACE_VFORK
1499 if (tp->pending_follow.kind == TARGET_WAITKIND_VFORKED)
1500 {
1501 /* We can't insert breakpoints until the child process has
1502 finished with the shared memory region. The parent
1503 process doesn't wait for the child process to exit or
1504 exec until after it has been resumed from the ptrace stop
1505 to report the fork. Once it has been resumed it doesn't
1506 stop again before returning to userland, so there is no
1507 reliable way to wait on the parent.
1508
1509 We can't stay attached to the child to wait for an exec
1510 or exit because it may invoke ptrace(PT_TRACE_ME)
1511 (e.g. if the parent process is a debugger forking a new
1512 child process).
1513
1514 In the end, the best we can do is to make sure it runs
1515 for a little while. Hopefully it will be out of range of
1516 any breakpoints we reinsert. Usually this is only the
1517 single-step breakpoint at vfork's return point. */
1518
1519 usleep (10000);
1520
1521 /* Schedule a fake VFORK_DONE event to report on the next
1522 wait. */
1523 fbsd_add_vfork_done (inferior_ptid);
1524 }
1525 #endif
1526 }
1527
1528 return 0;
1529 }
1530
1531 int
1532 fbsd_nat_target::insert_fork_catchpoint (int pid)
1533 {
1534 return 0;
1535 }
1536
1537 int
1538 fbsd_nat_target::remove_fork_catchpoint (int pid)
1539 {
1540 return 0;
1541 }
1542
1543 int
1544 fbsd_nat_target::insert_vfork_catchpoint (int pid)
1545 {
1546 return 0;
1547 }
1548
1549 int
1550 fbsd_nat_target::remove_vfork_catchpoint (int pid)
1551 {
1552 return 0;
1553 }
1554 #endif
1555
1556 /* Implement the "post_startup_inferior" target_ops method. */
1557
1558 void
1559 fbsd_nat_target::post_startup_inferior (ptid_t pid)
1560 {
1561 fbsd_enable_proc_events (pid.pid ());
1562 }
1563
1564 /* Implement the "post_attach" target_ops method. */
1565
1566 void
1567 fbsd_nat_target::post_attach (int pid)
1568 {
1569 fbsd_enable_proc_events (pid);
1570 fbsd_add_threads (pid);
1571 }
1572
1573 #ifdef PL_FLAG_EXEC
1574 /* If the FreeBSD kernel supports PL_FLAG_EXEC, then traced processes
1575 will always stop after exec. */
1576
1577 int
1578 fbsd_nat_target::insert_exec_catchpoint (int pid)
1579 {
1580 return 0;
1581 }
1582
1583 int
1584 fbsd_nat_target::remove_exec_catchpoint (int pid)
1585 {
1586 return 0;
1587 }
1588 #endif
1589
1590 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1591 int
1592 fbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
1593 int any_count,
1594 gdb::array_view<const int> syscall_counts)
1595 {
1596
1597 /* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
1598 will catch all system call entries and exits. The system calls
1599 are filtered by GDB rather than the kernel. */
1600 return 0;
1601 }
1602 #endif
1603 #endif
1604
1605 void
1606 _initialize_fbsd_nat (void)
1607 {
1608 #ifdef PT_LWPINFO
1609 add_setshow_boolean_cmd ("fbsd-lwp", class_maintenance,
1610 &debug_fbsd_lwp, _("\
1611 Set debugging of FreeBSD lwp module."), _("\
1612 Show debugging of FreeBSD lwp module."), _("\
1613 Enables printf debugging output."),
1614 NULL,
1615 &show_fbsd_lwp_debug,
1616 &setdebuglist, &showdebuglist);
1617 add_setshow_boolean_cmd ("fbsd-nat", class_maintenance,
1618 &debug_fbsd_nat, _("\
1619 Set debugging of FreeBSD native target."), _("\
1620 Show debugging of FreeBSD native target."), _("\
1621 Enables printf debugging output."),
1622 NULL,
1623 &show_fbsd_nat_debug,
1624 &setdebuglist, &showdebuglist);
1625 #endif
1626 }
This page took 0.087639 seconds and 5 git commands to generate.