Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include "symfile.h" /* for overlay functions */
29 #include "regcache.h"
30 #include "user-regs.h"
31 #include "block.h"
32 #include "objfiles.h"
33 #include "language.h"
34 #include "dwarf2/loc.h"
35 #include "gdbsupport/selftest.h"
36
37 /* Basic byte-swapping routines. All 'extract' functions return a
38 host-format integer from a target-format integer at ADDR which is
39 LEN bytes long. */
40
41 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
42 /* 8 bit characters are a pretty safe assumption these days, so we
43 assume it throughout all these swapping routines. If we had to deal with
44 9 bit characters, we would need to make len be in bits and would have
45 to re-write these routines... */
46 you lose
47 #endif
48
49 template<typename T, typename>
50 T
51 extract_integer (const gdb_byte *addr, int len, enum bfd_endian byte_order)
52 {
53 typename std::make_unsigned<T>::type retval = 0;
54 const unsigned char *p;
55 const unsigned char *startaddr = addr;
56 const unsigned char *endaddr = startaddr + len;
57
58 if (len > (int) sizeof (T))
59 error (_("\
60 That operation is not available on integers of more than %d bytes."),
61 (int) sizeof (T));
62
63 /* Start at the most significant end of the integer, and work towards
64 the least significant. */
65 if (byte_order == BFD_ENDIAN_BIG)
66 {
67 p = startaddr;
68 if (std::is_signed<T>::value)
69 {
70 /* Do the sign extension once at the start. */
71 retval = ((LONGEST) * p ^ 0x80) - 0x80;
72 ++p;
73 }
74 for (; p < endaddr; ++p)
75 retval = (retval << 8) | *p;
76 }
77 else
78 {
79 p = endaddr - 1;
80 if (std::is_signed<T>::value)
81 {
82 /* Do the sign extension once at the start. */
83 retval = ((LONGEST) * p ^ 0x80) - 0x80;
84 --p;
85 }
86 for (; p >= startaddr; --p)
87 retval = (retval << 8) | *p;
88 }
89 return retval;
90 }
91
92 /* Explicit instantiations. */
93 template LONGEST extract_integer<LONGEST> (const gdb_byte *addr, int len,
94 enum bfd_endian byte_order);
95 template ULONGEST extract_integer<ULONGEST> (const gdb_byte *addr, int len,
96 enum bfd_endian byte_order);
97
98 /* Sometimes a long long unsigned integer can be extracted as a
99 LONGEST value. This is done so that we can print these values
100 better. If this integer can be converted to a LONGEST, this
101 function returns 1 and sets *PVAL. Otherwise it returns 0. */
102
103 int
104 extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
105 enum bfd_endian byte_order, LONGEST *pval)
106 {
107 const gdb_byte *p;
108 const gdb_byte *first_addr;
109 int len;
110
111 len = orig_len;
112 if (byte_order == BFD_ENDIAN_BIG)
113 {
114 for (p = addr;
115 len > (int) sizeof (LONGEST) && p < addr + orig_len;
116 p++)
117 {
118 if (*p == 0)
119 len--;
120 else
121 break;
122 }
123 first_addr = p;
124 }
125 else
126 {
127 first_addr = addr;
128 for (p = addr + orig_len - 1;
129 len > (int) sizeof (LONGEST) && p >= addr;
130 p--)
131 {
132 if (*p == 0)
133 len--;
134 else
135 break;
136 }
137 }
138
139 if (len <= (int) sizeof (LONGEST))
140 {
141 *pval = (LONGEST) extract_unsigned_integer (first_addr,
142 sizeof (LONGEST),
143 byte_order);
144 return 1;
145 }
146
147 return 0;
148 }
149
150
151 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
152 address it represents. */
153 CORE_ADDR
154 extract_typed_address (const gdb_byte *buf, struct type *type)
155 {
156 if (type->code () != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
157 internal_error (__FILE__, __LINE__,
158 _("extract_typed_address: "
159 "type is not a pointer or reference"));
160
161 return gdbarch_pointer_to_address (type->arch (), type, buf);
162 }
163
164 /* All 'store' functions accept a host-format integer and store a
165 target-format integer at ADDR which is LEN bytes long. */
166 template<typename T, typename>
167 void
168 store_integer (gdb_byte *addr, int len, enum bfd_endian byte_order,
169 T val)
170 {
171 gdb_byte *p;
172 gdb_byte *startaddr = addr;
173 gdb_byte *endaddr = startaddr + len;
174
175 /* Start at the least significant end of the integer, and work towards
176 the most significant. */
177 if (byte_order == BFD_ENDIAN_BIG)
178 {
179 for (p = endaddr - 1; p >= startaddr; --p)
180 {
181 *p = val & 0xff;
182 val >>= 8;
183 }
184 }
185 else
186 {
187 for (p = startaddr; p < endaddr; ++p)
188 {
189 *p = val & 0xff;
190 val >>= 8;
191 }
192 }
193 }
194
195 /* Explicit instantiations. */
196 template void store_integer (gdb_byte *addr, int len,
197 enum bfd_endian byte_order,
198 LONGEST val);
199
200 template void store_integer (gdb_byte *addr, int len,
201 enum bfd_endian byte_order,
202 ULONGEST val);
203
204 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
205 form. */
206 void
207 store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
208 {
209 if (type->code () != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
210 internal_error (__FILE__, __LINE__,
211 _("store_typed_address: "
212 "type is not a pointer or reference"));
213
214 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
215 }
216
217 /* Copy a value from SOURCE of size SOURCE_SIZE bytes to DEST of size DEST_SIZE
218 bytes. If SOURCE_SIZE is greater than DEST_SIZE, then truncate the most
219 significant bytes. If SOURCE_SIZE is less than DEST_SIZE then either sign
220 or zero extended according to IS_SIGNED. Values are stored in memory with
221 endianness BYTE_ORDER. */
222
223 void
224 copy_integer_to_size (gdb_byte *dest, int dest_size, const gdb_byte *source,
225 int source_size, bool is_signed,
226 enum bfd_endian byte_order)
227 {
228 signed int size_diff = dest_size - source_size;
229
230 /* Copy across everything from SOURCE that can fit into DEST. */
231
232 if (byte_order == BFD_ENDIAN_BIG && size_diff > 0)
233 memcpy (dest + size_diff, source, source_size);
234 else if (byte_order == BFD_ENDIAN_BIG && size_diff < 0)
235 memcpy (dest, source - size_diff, dest_size);
236 else
237 memcpy (dest, source, std::min (source_size, dest_size));
238
239 /* Fill the remaining space in DEST by either zero extending or sign
240 extending. */
241
242 if (size_diff > 0)
243 {
244 gdb_byte extension = 0;
245 if (is_signed
246 && ((byte_order != BFD_ENDIAN_BIG && source[source_size - 1] & 0x80)
247 || (byte_order == BFD_ENDIAN_BIG && source[0] & 0x80)))
248 extension = 0xff;
249
250 /* Extend into MSBs of SOURCE. */
251 if (byte_order == BFD_ENDIAN_BIG)
252 memset (dest, extension, size_diff);
253 else
254 memset (dest + source_size, extension, size_diff);
255 }
256 }
257
258 /* Return a `value' with the contents of (virtual or cooked) register
259 REGNUM as found in the specified FRAME. The register's type is
260 determined by register_type (). */
261
262 struct value *
263 value_of_register (int regnum, struct frame_info *frame)
264 {
265 struct gdbarch *gdbarch = get_frame_arch (frame);
266 struct value *reg_val;
267
268 /* User registers lie completely outside of the range of normal
269 registers. Catch them early so that the target never sees them. */
270 if (regnum >= gdbarch_num_cooked_regs (gdbarch))
271 return value_of_user_reg (regnum, frame);
272
273 reg_val = value_of_register_lazy (frame, regnum);
274 value_fetch_lazy (reg_val);
275 return reg_val;
276 }
277
278 /* Return a `value' with the contents of (virtual or cooked) register
279 REGNUM as found in the specified FRAME. The register's type is
280 determined by register_type (). The value is not fetched. */
281
282 struct value *
283 value_of_register_lazy (struct frame_info *frame, int regnum)
284 {
285 struct gdbarch *gdbarch = get_frame_arch (frame);
286 struct value *reg_val;
287 struct frame_info *next_frame;
288
289 gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch));
290
291 gdb_assert (frame != NULL);
292
293 next_frame = get_next_frame_sentinel_okay (frame);
294
295 /* In some cases NEXT_FRAME may not have a valid frame-id yet. This can
296 happen if we end up trying to unwind a register as part of the frame
297 sniffer. The only time that we get here without a valid frame-id is
298 if NEXT_FRAME is an inline frame. If this is the case then we can
299 avoid getting into trouble here by skipping past the inline frames. */
300 while (get_frame_type (next_frame) == INLINE_FRAME)
301 next_frame = get_next_frame_sentinel_okay (next_frame);
302
303 /* We should have a valid next frame. */
304 gdb_assert (frame_id_p (get_frame_id (next_frame)));
305
306 reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
307 VALUE_LVAL (reg_val) = lval_register;
308 VALUE_REGNUM (reg_val) = regnum;
309 VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame);
310
311 return reg_val;
312 }
313
314 /* Given a pointer of type TYPE in target form in BUF, return the
315 address it represents. */
316 CORE_ADDR
317 unsigned_pointer_to_address (struct gdbarch *gdbarch,
318 struct type *type, const gdb_byte *buf)
319 {
320 enum bfd_endian byte_order = type_byte_order (type);
321
322 return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
323 }
324
325 CORE_ADDR
326 signed_pointer_to_address (struct gdbarch *gdbarch,
327 struct type *type, const gdb_byte *buf)
328 {
329 enum bfd_endian byte_order = type_byte_order (type);
330
331 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
332 }
333
334 /* Given an address, store it as a pointer of type TYPE in target
335 format in BUF. */
336 void
337 unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
338 gdb_byte *buf, CORE_ADDR addr)
339 {
340 enum bfd_endian byte_order = type_byte_order (type);
341
342 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
343 }
344
345 void
346 address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
347 gdb_byte *buf, CORE_ADDR addr)
348 {
349 enum bfd_endian byte_order = type_byte_order (type);
350
351 store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
352 }
353 \f
354 /* See value.h. */
355
356 enum symbol_needs_kind
357 symbol_read_needs (struct symbol *sym)
358 {
359 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
360 return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym);
361
362 switch (SYMBOL_CLASS (sym))
363 {
364 /* All cases listed explicitly so that gcc -Wall will detect it if
365 we failed to consider one. */
366 case LOC_COMPUTED:
367 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
368
369 case LOC_REGISTER:
370 case LOC_ARG:
371 case LOC_REF_ARG:
372 case LOC_REGPARM_ADDR:
373 case LOC_LOCAL:
374 return SYMBOL_NEEDS_FRAME;
375
376 case LOC_UNDEF:
377 case LOC_CONST:
378 case LOC_STATIC:
379 case LOC_TYPEDEF:
380
381 case LOC_LABEL:
382 /* Getting the address of a label can be done independently of the block,
383 even if some *uses* of that address wouldn't work so well without
384 the right frame. */
385
386 case LOC_BLOCK:
387 case LOC_CONST_BYTES:
388 case LOC_UNRESOLVED:
389 case LOC_OPTIMIZED_OUT:
390 return SYMBOL_NEEDS_NONE;
391 }
392 return SYMBOL_NEEDS_FRAME;
393 }
394
395 /* See value.h. */
396
397 int
398 symbol_read_needs_frame (struct symbol *sym)
399 {
400 return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
401 }
402
403 /* Private data to be used with minsym_lookup_iterator_cb. */
404
405 struct minsym_lookup_data
406 {
407 /* The name of the minimal symbol we are searching for. */
408 const char *name;
409
410 /* The field where the callback should store the minimal symbol
411 if found. It should be initialized to NULL before the search
412 is started. */
413 struct bound_minimal_symbol result;
414 };
415
416 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
417 It searches by name for a minimal symbol within the given OBJFILE.
418 The arguments are passed via CB_DATA, which in reality is a pointer
419 to struct minsym_lookup_data. */
420
421 static int
422 minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
423 {
424 struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
425
426 gdb_assert (data->result.minsym == NULL);
427
428 data->result = lookup_minimal_symbol (data->name, NULL, objfile);
429
430 /* The iterator should stop iff a match was found. */
431 return (data->result.minsym != NULL);
432 }
433
434 /* Given static link expression and the frame it lives in, look for the frame
435 the static links points to and return it. Return NULL if we could not find
436 such a frame. */
437
438 static struct frame_info *
439 follow_static_link (struct frame_info *frame,
440 const struct dynamic_prop *static_link)
441 {
442 CORE_ADDR upper_frame_base;
443
444 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
445 return NULL;
446
447 /* Now climb up the stack frame until we reach the frame we are interested
448 in. */
449 for (; frame != NULL; frame = get_prev_frame (frame))
450 {
451 struct symbol *framefunc = get_frame_function (frame);
452
453 /* Stacks can be quite deep: give the user a chance to stop this. */
454 QUIT;
455
456 /* If we don't know how to compute FRAME's base address, don't give up:
457 maybe the frame we are looking for is upper in the stack frame. */
458 if (framefunc != NULL
459 && SYMBOL_BLOCK_OPS (framefunc) != NULL
460 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
461 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
462 == upper_frame_base))
463 break;
464 }
465
466 return frame;
467 }
468
469 /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
470 rules, look for the frame that is actually hosting VAR and return it. If,
471 for some reason, we found no such frame, return NULL.
472
473 This kind of computation is necessary to correctly handle lexically nested
474 functions.
475
476 Note that in some cases, we know what scope VAR comes from but we cannot
477 reach the specific frame that hosts the instance of VAR we are looking for.
478 For backward compatibility purposes (with old compilers), we then look for
479 the first frame that can host it. */
480
481 static struct frame_info *
482 get_hosting_frame (struct symbol *var, const struct block *var_block,
483 struct frame_info *frame)
484 {
485 const struct block *frame_block = NULL;
486
487 if (!symbol_read_needs_frame (var))
488 return NULL;
489
490 /* Some symbols for local variables have no block: this happens when they are
491 not produced by a debug information reader, for instance when GDB creates
492 synthetic symbols. Without block information, we must assume they are
493 local to FRAME. In this case, there is nothing to do. */
494 else if (var_block == NULL)
495 return frame;
496
497 /* We currently assume that all symbols with a location list need a frame.
498 This is true in practice because selecting the location description
499 requires to compute the CFA, hence requires a frame. However we have
500 tests that embed global/static symbols with null location lists.
501 We want to get <optimized out> instead of <frame required> when evaluating
502 them so return a frame instead of raising an error. */
503 else if (var_block == block_global_block (var_block)
504 || var_block == block_static_block (var_block))
505 return frame;
506
507 /* We have to handle the "my_func::my_local_var" notation. This requires us
508 to look for upper frames when we find no block for the current frame: here
509 and below, handle when frame_block == NULL. */
510 if (frame != NULL)
511 frame_block = get_frame_block (frame, NULL);
512
513 /* Climb up the call stack until reaching the frame we are looking for. */
514 while (frame != NULL && frame_block != var_block)
515 {
516 /* Stacks can be quite deep: give the user a chance to stop this. */
517 QUIT;
518
519 if (frame_block == NULL)
520 {
521 frame = get_prev_frame (frame);
522 if (frame == NULL)
523 break;
524 frame_block = get_frame_block (frame, NULL);
525 }
526
527 /* If we failed to find the proper frame, fallback to the heuristic
528 method below. */
529 else if (frame_block == block_global_block (frame_block))
530 {
531 frame = NULL;
532 break;
533 }
534
535 /* Assuming we have a block for this frame: if we are at the function
536 level, the immediate upper lexical block is in an outer function:
537 follow the static link. */
538 else if (BLOCK_FUNCTION (frame_block))
539 {
540 const struct dynamic_prop *static_link
541 = block_static_link (frame_block);
542 int could_climb_up = 0;
543
544 if (static_link != NULL)
545 {
546 frame = follow_static_link (frame, static_link);
547 if (frame != NULL)
548 {
549 frame_block = get_frame_block (frame, NULL);
550 could_climb_up = frame_block != NULL;
551 }
552 }
553 if (!could_climb_up)
554 {
555 frame = NULL;
556 break;
557 }
558 }
559
560 else
561 /* We must be in some function nested lexical block. Just get the
562 outer block: both must share the same frame. */
563 frame_block = BLOCK_SUPERBLOCK (frame_block);
564 }
565
566 /* Old compilers may not provide a static link, or they may provide an
567 invalid one. For such cases, fallback on the old way to evaluate
568 non-local references: just climb up the call stack and pick the first
569 frame that contains the variable we are looking for. */
570 if (frame == NULL)
571 {
572 frame = block_innermost_frame (var_block);
573 if (frame == NULL)
574 {
575 if (BLOCK_FUNCTION (var_block)
576 && !block_inlined_p (var_block)
577 && BLOCK_FUNCTION (var_block)->print_name ())
578 error (_("No frame is currently executing in block %s."),
579 BLOCK_FUNCTION (var_block)->print_name ());
580 else
581 error (_("No frame is currently executing in specified"
582 " block"));
583 }
584 }
585
586 return frame;
587 }
588
589 /* See language.h. */
590
591 struct value *
592 language_defn::read_var_value (struct symbol *var,
593 const struct block *var_block,
594 struct frame_info *frame) const
595 {
596 struct value *v;
597 struct type *type = SYMBOL_TYPE (var);
598 CORE_ADDR addr;
599 enum symbol_needs_kind sym_need;
600
601 /* Call check_typedef on our type to make sure that, if TYPE is
602 a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
603 instead of zero. However, we do not replace the typedef type by the
604 target type, because we want to keep the typedef in order to be able to
605 set the returned value type description correctly. */
606 check_typedef (type);
607
608 sym_need = symbol_read_needs (var);
609 if (sym_need == SYMBOL_NEEDS_FRAME)
610 gdb_assert (frame != NULL);
611 else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers ())
612 error (_("Cannot read `%s' without registers"), var->print_name ());
613
614 if (frame != NULL)
615 frame = get_hosting_frame (var, var_block, frame);
616
617 if (SYMBOL_COMPUTED_OPS (var) != NULL)
618 return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
619
620 switch (SYMBOL_CLASS (var))
621 {
622 case LOC_CONST:
623 if (is_dynamic_type (type))
624 {
625 /* Value is a constant byte-sequence and needs no memory access. */
626 type = resolve_dynamic_type (type, {}, /* Unused address. */ 0);
627 }
628 /* Put the constant back in target format. */
629 v = allocate_value (type);
630 store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
631 type_byte_order (type),
632 (LONGEST) SYMBOL_VALUE (var));
633 VALUE_LVAL (v) = not_lval;
634 return v;
635
636 case LOC_LABEL:
637 /* Put the constant back in target format. */
638 v = allocate_value (type);
639 if (overlay_debugging)
640 {
641 struct objfile *var_objfile = symbol_objfile (var);
642 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
643 var->obj_section (var_objfile));
644 store_typed_address (value_contents_raw (v), type, addr);
645 }
646 else
647 store_typed_address (value_contents_raw (v), type,
648 SYMBOL_VALUE_ADDRESS (var));
649 VALUE_LVAL (v) = not_lval;
650 return v;
651
652 case LOC_CONST_BYTES:
653 if (is_dynamic_type (type))
654 {
655 /* Value is a constant byte-sequence and needs no memory access. */
656 type = resolve_dynamic_type (type, {}, /* Unused address. */ 0);
657 }
658 v = allocate_value (type);
659 memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
660 TYPE_LENGTH (type));
661 VALUE_LVAL (v) = not_lval;
662 return v;
663
664 case LOC_STATIC:
665 if (overlay_debugging)
666 addr
667 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
668 var->obj_section (symbol_objfile (var)));
669 else
670 addr = SYMBOL_VALUE_ADDRESS (var);
671 break;
672
673 case LOC_ARG:
674 addr = get_frame_args_address (frame);
675 if (!addr)
676 error (_("Unknown argument list address for `%s'."),
677 var->print_name ());
678 addr += SYMBOL_VALUE (var);
679 break;
680
681 case LOC_REF_ARG:
682 {
683 struct value *ref;
684 CORE_ADDR argref;
685
686 argref = get_frame_args_address (frame);
687 if (!argref)
688 error (_("Unknown argument list address for `%s'."),
689 var->print_name ());
690 argref += SYMBOL_VALUE (var);
691 ref = value_at (lookup_pointer_type (type), argref);
692 addr = value_as_address (ref);
693 break;
694 }
695
696 case LOC_LOCAL:
697 addr = get_frame_locals_address (frame);
698 addr += SYMBOL_VALUE (var);
699 break;
700
701 case LOC_TYPEDEF:
702 error (_("Cannot look up value of a typedef `%s'."),
703 var->print_name ());
704 break;
705
706 case LOC_BLOCK:
707 if (overlay_debugging)
708 addr = symbol_overlayed_address
709 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)),
710 var->obj_section (symbol_objfile (var)));
711 else
712 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var));
713 break;
714
715 case LOC_REGISTER:
716 case LOC_REGPARM_ADDR:
717 {
718 int regno = SYMBOL_REGISTER_OPS (var)
719 ->register_number (var, get_frame_arch (frame));
720 struct value *regval;
721
722 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
723 {
724 regval = value_from_register (lookup_pointer_type (type),
725 regno,
726 frame);
727
728 if (regval == NULL)
729 error (_("Value of register variable not available for `%s'."),
730 var->print_name ());
731
732 addr = value_as_address (regval);
733 }
734 else
735 {
736 regval = value_from_register (type, regno, frame);
737
738 if (regval == NULL)
739 error (_("Value of register variable not available for `%s'."),
740 var->print_name ());
741 return regval;
742 }
743 }
744 break;
745
746 case LOC_COMPUTED:
747 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
748
749 case LOC_UNRESOLVED:
750 {
751 struct minsym_lookup_data lookup_data;
752 struct minimal_symbol *msym;
753 struct obj_section *obj_section;
754
755 memset (&lookup_data, 0, sizeof (lookup_data));
756 lookup_data.name = var->linkage_name ();
757
758 gdbarch_iterate_over_objfiles_in_search_order
759 (symbol_arch (var),
760 minsym_lookup_iterator_cb, &lookup_data,
761 symbol_objfile (var));
762 msym = lookup_data.result.minsym;
763
764 /* If we can't find the minsym there's a problem in the symbol info.
765 The symbol exists in the debug info, but it's missing in the minsym
766 table. */
767 if (msym == NULL)
768 {
769 const char *flavour_name
770 = objfile_flavour_name (symbol_objfile (var));
771
772 /* We can't get here unless we've opened the file, so flavour_name
773 can't be NULL. */
774 gdb_assert (flavour_name != NULL);
775 error (_("Missing %s symbol \"%s\"."),
776 flavour_name, var->linkage_name ());
777 }
778 obj_section = msym->obj_section (lookup_data.result.objfile);
779 /* Relocate address, unless there is no section or the variable is
780 a TLS variable. */
781 if (obj_section == NULL
782 || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
783 addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
784 else
785 addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
786 if (overlay_debugging)
787 addr = symbol_overlayed_address (addr, obj_section);
788 /* Determine address of TLS variable. */
789 if (obj_section
790 && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
791 addr = target_translate_tls_address (obj_section->objfile, addr);
792 }
793 break;
794
795 case LOC_OPTIMIZED_OUT:
796 if (is_dynamic_type (type))
797 type = resolve_dynamic_type (type, {}, /* Unused address. */ 0);
798 return allocate_optimized_out_value (type);
799
800 default:
801 error (_("Cannot look up value of a botched symbol `%s'."),
802 var->print_name ());
803 break;
804 }
805
806 v = value_at_lazy (type, addr);
807 return v;
808 }
809
810 /* Calls VAR's language read_var_value hook with the given arguments. */
811
812 struct value *
813 read_var_value (struct symbol *var, const struct block *var_block,
814 struct frame_info *frame)
815 {
816 const struct language_defn *lang = language_def (var->language ());
817
818 gdb_assert (lang != NULL);
819
820 return lang->read_var_value (var, var_block, frame);
821 }
822
823 /* Install default attributes for register values. */
824
825 struct value *
826 default_value_from_register (struct gdbarch *gdbarch, struct type *type,
827 int regnum, struct frame_id frame_id)
828 {
829 int len = TYPE_LENGTH (type);
830 struct value *value = allocate_value (type);
831 struct frame_info *frame;
832
833 VALUE_LVAL (value) = lval_register;
834 frame = frame_find_by_id (frame_id);
835
836 if (frame == NULL)
837 frame_id = null_frame_id;
838 else
839 frame_id = get_frame_id (get_next_frame_sentinel_okay (frame));
840
841 VALUE_NEXT_FRAME_ID (value) = frame_id;
842 VALUE_REGNUM (value) = regnum;
843
844 /* Any structure stored in more than one register will always be
845 an integral number of registers. Otherwise, you need to do
846 some fiddling with the last register copied here for little
847 endian machines. */
848 if (type_byte_order (type) == BFD_ENDIAN_BIG
849 && len < register_size (gdbarch, regnum))
850 /* Big-endian, and we want less than full size. */
851 set_value_offset (value, register_size (gdbarch, regnum) - len);
852 else
853 set_value_offset (value, 0);
854
855 return value;
856 }
857
858 /* VALUE must be an lval_register value. If regnum is the value's
859 associated register number, and len the length of the values type,
860 read one or more registers in FRAME, starting with register REGNUM,
861 until we've read LEN bytes.
862
863 If any of the registers we try to read are optimized out, then mark the
864 complete resulting value as optimized out. */
865
866 void
867 read_frame_register_value (struct value *value, struct frame_info *frame)
868 {
869 struct gdbarch *gdbarch = get_frame_arch (frame);
870 LONGEST offset = 0;
871 LONGEST reg_offset = value_offset (value);
872 int regnum = VALUE_REGNUM (value);
873 int len = type_length_units (check_typedef (value_type (value)));
874
875 gdb_assert (VALUE_LVAL (value) == lval_register);
876
877 /* Skip registers wholly inside of REG_OFFSET. */
878 while (reg_offset >= register_size (gdbarch, regnum))
879 {
880 reg_offset -= register_size (gdbarch, regnum);
881 regnum++;
882 }
883
884 /* Copy the data. */
885 while (len > 0)
886 {
887 struct value *regval = get_frame_register_value (frame, regnum);
888 int reg_len = type_length_units (value_type (regval)) - reg_offset;
889
890 /* If the register length is larger than the number of bytes
891 remaining to copy, then only copy the appropriate bytes. */
892 if (reg_len > len)
893 reg_len = len;
894
895 value_contents_copy (value, offset, regval, reg_offset, reg_len);
896
897 offset += reg_len;
898 len -= reg_len;
899 reg_offset = 0;
900 regnum++;
901 }
902 }
903
904 /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
905
906 struct value *
907 value_from_register (struct type *type, int regnum, struct frame_info *frame)
908 {
909 struct gdbarch *gdbarch = get_frame_arch (frame);
910 struct type *type1 = check_typedef (type);
911 struct value *v;
912
913 if (gdbarch_convert_register_p (gdbarch, regnum, type1))
914 {
915 int optim, unavail, ok;
916
917 /* The ISA/ABI need to something weird when obtaining the
918 specified value from this register. It might need to
919 re-order non-adjacent, starting with REGNUM (see MIPS and
920 i386). It might need to convert the [float] register into
921 the corresponding [integer] type (see Alpha). The assumption
922 is that gdbarch_register_to_value populates the entire value
923 including the location. */
924 v = allocate_value (type);
925 VALUE_LVAL (v) = lval_register;
926 VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame));
927 VALUE_REGNUM (v) = regnum;
928 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
929 value_contents_raw (v), &optim,
930 &unavail);
931
932 if (!ok)
933 {
934 if (optim)
935 mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
936 if (unavail)
937 mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
938 }
939 }
940 else
941 {
942 /* Construct the value. */
943 v = gdbarch_value_from_register (gdbarch, type,
944 regnum, get_frame_id (frame));
945
946 /* Get the data. */
947 read_frame_register_value (v, frame);
948 }
949
950 return v;
951 }
952
953 /* Return contents of register REGNUM in frame FRAME as address.
954 Will abort if register value is not available. */
955
956 CORE_ADDR
957 address_from_register (int regnum, struct frame_info *frame)
958 {
959 struct gdbarch *gdbarch = get_frame_arch (frame);
960 struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
961 struct value *value;
962 CORE_ADDR result;
963 int regnum_max_excl = gdbarch_num_cooked_regs (gdbarch);
964
965 if (regnum < 0 || regnum >= regnum_max_excl)
966 error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
967 regnum_max_excl);
968
969 /* This routine may be called during early unwinding, at a time
970 where the ID of FRAME is not yet known. Calling value_from_register
971 would therefore abort in get_frame_id. However, since we only need
972 a temporary value that is never used as lvalue, we actually do not
973 really need to set its VALUE_NEXT_FRAME_ID. Therefore, we re-implement
974 the core of value_from_register, but use the null_frame_id. */
975
976 /* Some targets require a special conversion routine even for plain
977 pointer types. Avoid constructing a value object in those cases. */
978 if (gdbarch_convert_register_p (gdbarch, regnum, type))
979 {
980 gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
981 int optim, unavail, ok;
982
983 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
984 buf, &optim, &unavail);
985 if (!ok)
986 {
987 /* This function is used while computing a location expression.
988 Complain about the value being optimized out, rather than
989 letting value_as_address complain about some random register
990 the expression depends on not being saved. */
991 error_value_optimized_out ();
992 }
993
994 return unpack_long (type, buf);
995 }
996
997 value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
998 read_frame_register_value (value, frame);
999
1000 if (value_optimized_out (value))
1001 {
1002 /* This function is used while computing a location expression.
1003 Complain about the value being optimized out, rather than
1004 letting value_as_address complain about some random register
1005 the expression depends on not being saved. */
1006 error_value_optimized_out ();
1007 }
1008
1009 result = value_as_address (value);
1010 release_value (value);
1011
1012 return result;
1013 }
1014
1015 #if GDB_SELF_TEST
1016 namespace selftests {
1017 namespace findvar_tests {
1018
1019 /* Function to test copy_integer_to_size. Store SOURCE_VAL with size
1020 SOURCE_SIZE to a buffer, making sure no sign extending happens at this
1021 stage. Copy buffer to a new buffer using copy_integer_to_size. Extract
1022 copied value and compare to DEST_VALU. Copy again with a signed
1023 copy_integer_to_size and compare to DEST_VALS. Do everything for both
1024 LITTLE and BIG target endians. Use unsigned values throughout to make
1025 sure there are no implicit sign extensions. */
1026
1027 static void
1028 do_cint_test (ULONGEST dest_valu, ULONGEST dest_vals, int dest_size,
1029 ULONGEST src_val, int src_size)
1030 {
1031 for (int i = 0; i < 2 ; i++)
1032 {
1033 gdb_byte srcbuf[sizeof (ULONGEST)] = {};
1034 gdb_byte destbuf[sizeof (ULONGEST)] = {};
1035 enum bfd_endian byte_order = i ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1036
1037 /* Fill the src buffer (and later the dest buffer) with non-zero junk,
1038 to ensure zero extensions aren't hidden. */
1039 memset (srcbuf, 0xaa, sizeof (srcbuf));
1040
1041 /* Store (and later extract) using unsigned to ensure there are no sign
1042 extensions. */
1043 store_unsigned_integer (srcbuf, src_size, byte_order, src_val);
1044
1045 /* Test unsigned. */
1046 memset (destbuf, 0xaa, sizeof (destbuf));
1047 copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, false,
1048 byte_order);
1049 SELF_CHECK (dest_valu == extract_unsigned_integer (destbuf, dest_size,
1050 byte_order));
1051
1052 /* Test signed. */
1053 memset (destbuf, 0xaa, sizeof (destbuf));
1054 copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, true,
1055 byte_order);
1056 SELF_CHECK (dest_vals == extract_unsigned_integer (destbuf, dest_size,
1057 byte_order));
1058 }
1059 }
1060
1061 static void
1062 copy_integer_to_size_test ()
1063 {
1064 /* Destination is bigger than the source, which has the signed bit unset. */
1065 do_cint_test (0x12345678, 0x12345678, 8, 0x12345678, 4);
1066 do_cint_test (0x345678, 0x345678, 8, 0x12345678, 3);
1067
1068 /* Destination is bigger than the source, which has the signed bit set. */
1069 do_cint_test (0xdeadbeef, 0xffffffffdeadbeef, 8, 0xdeadbeef, 4);
1070 do_cint_test (0xadbeef, 0xffffffffffadbeef, 8, 0xdeadbeef, 3);
1071
1072 /* Destination is smaller than the source. */
1073 do_cint_test (0x5678, 0x5678, 2, 0x12345678, 3);
1074 do_cint_test (0xbeef, 0xbeef, 2, 0xdeadbeef, 3);
1075
1076 /* Destination and source are the same size. */
1077 do_cint_test (0x8765432112345678, 0x8765432112345678, 8, 0x8765432112345678,
1078 8);
1079 do_cint_test (0x432112345678, 0x432112345678, 6, 0x8765432112345678, 6);
1080 do_cint_test (0xfeedbeaddeadbeef, 0xfeedbeaddeadbeef, 8, 0xfeedbeaddeadbeef,
1081 8);
1082 do_cint_test (0xbeaddeadbeef, 0xbeaddeadbeef, 6, 0xfeedbeaddeadbeef, 6);
1083
1084 /* Destination is bigger than the source. Source is bigger than 32bits. */
1085 do_cint_test (0x3412345678, 0x3412345678, 8, 0x3412345678, 6);
1086 do_cint_test (0xff12345678, 0xff12345678, 8, 0xff12345678, 6);
1087 do_cint_test (0x432112345678, 0x432112345678, 8, 0x8765432112345678, 6);
1088 do_cint_test (0xff2112345678, 0xffffff2112345678, 8, 0xffffff2112345678, 6);
1089 }
1090
1091 } // namespace findvar_test
1092 } // namespace selftests
1093
1094 #endif
1095
1096 void _initialize_findvar ();
1097 void
1098 _initialize_findvar ()
1099 {
1100 #if GDB_SELF_TEST
1101 selftests::register_test
1102 ("copy_integer_to_size",
1103 selftests::findvar_tests::copy_integer_to_size_test);
1104 #endif
1105 }
This page took 0.062973 seconds and 4 git commands to generate.