2009-10-19 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "target.h"
24 #include "value.h"
25 #include "inferior.h" /* for inferior_ptid */
26 #include "regcache.h"
27 #include "gdb_assert.h"
28 #include "gdb_string.h"
29 #include "user-regs.h"
30 #include "gdb_obstack.h"
31 #include "dummy-frame.h"
32 #include "sentinel-frame.h"
33 #include "gdbcore.h"
34 #include "annotate.h"
35 #include "language.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "command.h"
39 #include "gdbcmd.h"
40 #include "observer.h"
41 #include "objfiles.h"
42 #include "exceptions.h"
43 #include "gdbthread.h"
44 #include "block.h"
45 #include "inline-frame.h"
46
47 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
48 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
49
50 /* We keep a cache of stack frames, each of which is a "struct
51 frame_info". The innermost one gets allocated (in
52 wait_for_inferior) each time the inferior stops; current_frame
53 points to it. Additional frames get allocated (in get_prev_frame)
54 as needed, and are chained through the next and prev fields. Any
55 time that the frame cache becomes invalid (most notably when we
56 execute something, but also if we change how we interpret the
57 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
58 which reads new symbols)), we should call reinit_frame_cache. */
59
60 struct frame_info
61 {
62 /* Level of this frame. The inner-most (youngest) frame is at level
63 0. As you move towards the outer-most (oldest) frame, the level
64 increases. This is a cached value. It could just as easily be
65 computed by counting back from the selected frame to the inner
66 most frame. */
67 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
68 reserved to indicate a bogus frame - one that has been created
69 just to keep GDB happy (GDB always needs a frame). For the
70 moment leave this as speculation. */
71 int level;
72
73 /* The frame's program space. */
74 struct program_space *pspace;
75
76 /* The frame's address space. */
77 struct address_space *aspace;
78
79 /* The frame's low-level unwinder and corresponding cache. The
80 low-level unwinder is responsible for unwinding register values
81 for the previous frame. The low-level unwind methods are
82 selected based on the presence, or otherwise, of register unwind
83 information such as CFI. */
84 void *prologue_cache;
85 const struct frame_unwind *unwind;
86
87 /* Cached copy of the previous frame's architecture. */
88 struct
89 {
90 int p;
91 struct gdbarch *arch;
92 } prev_arch;
93
94 /* Cached copy of the previous frame's resume address. */
95 struct {
96 int p;
97 CORE_ADDR value;
98 } prev_pc;
99
100 /* Cached copy of the previous frame's function address. */
101 struct
102 {
103 CORE_ADDR addr;
104 int p;
105 } prev_func;
106
107 /* This frame's ID. */
108 struct
109 {
110 int p;
111 struct frame_id value;
112 } this_id;
113
114 /* The frame's high-level base methods, and corresponding cache.
115 The high level base methods are selected based on the frame's
116 debug info. */
117 const struct frame_base *base;
118 void *base_cache;
119
120 /* Pointers to the next (down, inner, younger) and previous (up,
121 outer, older) frame_info's in the frame cache. */
122 struct frame_info *next; /* down, inner, younger */
123 int prev_p;
124 struct frame_info *prev; /* up, outer, older */
125
126 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
127 could. Only valid when PREV_P is set. */
128 enum unwind_stop_reason stop_reason;
129 };
130
131 /* A frame stash used to speed up frame lookups. */
132
133 /* We currently only stash one frame at a time, as this seems to be
134 sufficient for now. */
135 static struct frame_info *frame_stash = NULL;
136
137 /* Add the following FRAME to the frame stash. */
138
139 static void
140 frame_stash_add (struct frame_info *frame)
141 {
142 frame_stash = frame;
143 }
144
145 /* Search the frame stash for an entry with the given frame ID.
146 If found, return that frame. Otherwise return NULL. */
147
148 static struct frame_info *
149 frame_stash_find (struct frame_id id)
150 {
151 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
152 return frame_stash;
153
154 return NULL;
155 }
156
157 /* Invalidate the frame stash by removing all entries in it. */
158
159 static void
160 frame_stash_invalidate (void)
161 {
162 frame_stash = NULL;
163 }
164
165 /* Flag to control debugging. */
166
167 int frame_debug;
168 static void
169 show_frame_debug (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
173 }
174
175 /* Flag to indicate whether backtraces should stop at main et.al. */
176
177 static int backtrace_past_main;
178 static void
179 show_backtrace_past_main (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("\
183 Whether backtraces should continue past \"main\" is %s.\n"),
184 value);
185 }
186
187 static int backtrace_past_entry;
188 static void
189 show_backtrace_past_entry (struct ui_file *file, int from_tty,
190 struct cmd_list_element *c, const char *value)
191 {
192 fprintf_filtered (file, _("\
193 Whether backtraces should continue past the entry point of a program is %s.\n"),
194 value);
195 }
196
197 static int backtrace_limit = INT_MAX;
198 static void
199 show_backtrace_limit (struct ui_file *file, int from_tty,
200 struct cmd_list_element *c, const char *value)
201 {
202 fprintf_filtered (file, _("\
203 An upper bound on the number of backtrace levels is %s.\n"),
204 value);
205 }
206
207
208 static void
209 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
210 {
211 if (p)
212 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
213 else
214 fprintf_unfiltered (file, "!%s", name);
215 }
216
217 void
218 fprint_frame_id (struct ui_file *file, struct frame_id id)
219 {
220 fprintf_unfiltered (file, "{");
221 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
222 fprintf_unfiltered (file, ",");
223 fprint_field (file, "code", id.code_addr_p, id.code_addr);
224 fprintf_unfiltered (file, ",");
225 fprint_field (file, "special", id.special_addr_p, id.special_addr);
226 if (id.inline_depth)
227 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
228 fprintf_unfiltered (file, "}");
229 }
230
231 static void
232 fprint_frame_type (struct ui_file *file, enum frame_type type)
233 {
234 switch (type)
235 {
236 case NORMAL_FRAME:
237 fprintf_unfiltered (file, "NORMAL_FRAME");
238 return;
239 case DUMMY_FRAME:
240 fprintf_unfiltered (file, "DUMMY_FRAME");
241 return;
242 case INLINE_FRAME:
243 fprintf_unfiltered (file, "INLINE_FRAME");
244 return;
245 case SENTINEL_FRAME:
246 fprintf_unfiltered (file, "SENTINEL_FRAME");
247 return;
248 case SIGTRAMP_FRAME:
249 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
250 return;
251 case ARCH_FRAME:
252 fprintf_unfiltered (file, "ARCH_FRAME");
253 return;
254 default:
255 fprintf_unfiltered (file, "<unknown type>");
256 return;
257 };
258 }
259
260 static void
261 fprint_frame (struct ui_file *file, struct frame_info *fi)
262 {
263 if (fi == NULL)
264 {
265 fprintf_unfiltered (file, "<NULL frame>");
266 return;
267 }
268 fprintf_unfiltered (file, "{");
269 fprintf_unfiltered (file, "level=%d", fi->level);
270 fprintf_unfiltered (file, ",");
271 fprintf_unfiltered (file, "type=");
272 if (fi->unwind != NULL)
273 fprint_frame_type (file, fi->unwind->type);
274 else
275 fprintf_unfiltered (file, "<unknown>");
276 fprintf_unfiltered (file, ",");
277 fprintf_unfiltered (file, "unwind=");
278 if (fi->unwind != NULL)
279 gdb_print_host_address (fi->unwind, file);
280 else
281 fprintf_unfiltered (file, "<unknown>");
282 fprintf_unfiltered (file, ",");
283 fprintf_unfiltered (file, "pc=");
284 if (fi->next != NULL && fi->next->prev_pc.p)
285 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
286 else
287 fprintf_unfiltered (file, "<unknown>");
288 fprintf_unfiltered (file, ",");
289 fprintf_unfiltered (file, "id=");
290 if (fi->this_id.p)
291 fprint_frame_id (file, fi->this_id.value);
292 else
293 fprintf_unfiltered (file, "<unknown>");
294 fprintf_unfiltered (file, ",");
295 fprintf_unfiltered (file, "func=");
296 if (fi->next != NULL && fi->next->prev_func.p)
297 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
298 else
299 fprintf_unfiltered (file, "<unknown>");
300 fprintf_unfiltered (file, "}");
301 }
302
303 /* Given FRAME, return the enclosing normal frame for inlined
304 function frames. Otherwise return the original frame. */
305
306 static struct frame_info *
307 skip_inlined_frames (struct frame_info *frame)
308 {
309 while (get_frame_type (frame) == INLINE_FRAME)
310 frame = get_prev_frame (frame);
311
312 return frame;
313 }
314
315 /* Return a frame uniq ID that can be used to, later, re-find the
316 frame. */
317
318 struct frame_id
319 get_frame_id (struct frame_info *fi)
320 {
321 if (fi == NULL)
322 return null_frame_id;
323
324 if (!fi->this_id.p)
325 {
326 if (frame_debug)
327 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
328 fi->level);
329 /* Find the unwinder. */
330 if (fi->unwind == NULL)
331 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
332 /* Find THIS frame's ID. */
333 /* Default to outermost if no ID is found. */
334 fi->this_id.value = outer_frame_id;
335 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
336 gdb_assert (frame_id_p (fi->this_id.value));
337 fi->this_id.p = 1;
338 if (frame_debug)
339 {
340 fprintf_unfiltered (gdb_stdlog, "-> ");
341 fprint_frame_id (gdb_stdlog, fi->this_id.value);
342 fprintf_unfiltered (gdb_stdlog, " }\n");
343 }
344 }
345
346 frame_stash_add (fi);
347
348 return fi->this_id.value;
349 }
350
351 struct frame_id
352 get_stack_frame_id (struct frame_info *next_frame)
353 {
354 return get_frame_id (skip_inlined_frames (next_frame));
355 }
356
357 struct frame_id
358 frame_unwind_caller_id (struct frame_info *next_frame)
359 {
360 struct frame_info *this_frame;
361
362 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
363 the frame chain, leading to this function unintentionally
364 returning a null_frame_id (e.g., when a caller requests the frame
365 ID of "main()"s caller. */
366
367 next_frame = skip_inlined_frames (next_frame);
368 this_frame = get_prev_frame_1 (next_frame);
369 if (this_frame)
370 return get_frame_id (skip_inlined_frames (this_frame));
371 else
372 return null_frame_id;
373 }
374
375 const struct frame_id null_frame_id; /* All zeros. */
376 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
377
378 struct frame_id
379 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
380 CORE_ADDR special_addr)
381 {
382 struct frame_id id = null_frame_id;
383 id.stack_addr = stack_addr;
384 id.stack_addr_p = 1;
385 id.code_addr = code_addr;
386 id.code_addr_p = 1;
387 id.special_addr = special_addr;
388 id.special_addr_p = 1;
389 return id;
390 }
391
392 struct frame_id
393 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
394 {
395 struct frame_id id = null_frame_id;
396 id.stack_addr = stack_addr;
397 id.stack_addr_p = 1;
398 id.code_addr = code_addr;
399 id.code_addr_p = 1;
400 return id;
401 }
402
403 struct frame_id
404 frame_id_build_wild (CORE_ADDR stack_addr)
405 {
406 struct frame_id id = null_frame_id;
407 id.stack_addr = stack_addr;
408 id.stack_addr_p = 1;
409 return id;
410 }
411
412 int
413 frame_id_p (struct frame_id l)
414 {
415 int p;
416 /* The frame is valid iff it has a valid stack address. */
417 p = l.stack_addr_p;
418 /* outer_frame_id is also valid. */
419 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
420 p = 1;
421 if (frame_debug)
422 {
423 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
424 fprint_frame_id (gdb_stdlog, l);
425 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
426 }
427 return p;
428 }
429
430 int
431 frame_id_inlined_p (struct frame_id l)
432 {
433 if (!frame_id_p (l))
434 return 0;
435
436 return (l.inline_depth != 0);
437 }
438
439 int
440 frame_id_eq (struct frame_id l, struct frame_id r)
441 {
442 int eq;
443 if (!l.stack_addr_p && l.special_addr_p && !r.stack_addr_p && r.special_addr_p)
444 /* The outermost frame marker is equal to itself. This is the
445 dodgy thing about outer_frame_id, since between execution steps
446 we might step into another function - from which we can't
447 unwind either. More thought required to get rid of
448 outer_frame_id. */
449 eq = 1;
450 else if (!l.stack_addr_p || !r.stack_addr_p)
451 /* Like a NaN, if either ID is invalid, the result is false.
452 Note that a frame ID is invalid iff it is the null frame ID. */
453 eq = 0;
454 else if (l.stack_addr != r.stack_addr)
455 /* If .stack addresses are different, the frames are different. */
456 eq = 0;
457 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
458 /* An invalid code addr is a wild card. If .code addresses are
459 different, the frames are different. */
460 eq = 0;
461 else if (l.special_addr_p && r.special_addr_p
462 && l.special_addr != r.special_addr)
463 /* An invalid special addr is a wild card (or unused). Otherwise
464 if special addresses are different, the frames are different. */
465 eq = 0;
466 else if (l.inline_depth != r.inline_depth)
467 /* If inline depths are different, the frames must be different. */
468 eq = 0;
469 else
470 /* Frames are equal. */
471 eq = 1;
472
473 if (frame_debug)
474 {
475 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
476 fprint_frame_id (gdb_stdlog, l);
477 fprintf_unfiltered (gdb_stdlog, ",r=");
478 fprint_frame_id (gdb_stdlog, r);
479 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
480 }
481 return eq;
482 }
483
484 /* Safety net to check whether frame ID L should be inner to
485 frame ID R, according to their stack addresses.
486
487 This method cannot be used to compare arbitrary frames, as the
488 ranges of valid stack addresses may be discontiguous (e.g. due
489 to sigaltstack).
490
491 However, it can be used as safety net to discover invalid frame
492 IDs in certain circumstances. Assuming that NEXT is the immediate
493 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
494
495 * The stack address of NEXT must be inner-than-or-equal to the stack
496 address of THIS.
497
498 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
499 error has occurred.
500
501 * If NEXT and THIS have different stack addresses, no other frame
502 in the frame chain may have a stack address in between.
503
504 Therefore, if frame_id_inner (TEST, THIS) holds, but
505 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
506 to a valid frame in the frame chain.
507
508 The sanity checks above cannot be performed when a SIGTRAMP frame
509 is involved, because signal handlers might be executed on a different
510 stack than the stack used by the routine that caused the signal
511 to be raised. This can happen for instance when a thread exceeds
512 its maximum stack size. In this case, certain compilers implement
513 a stack overflow strategy that cause the handler to be run on a
514 different stack. */
515
516 static int
517 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
518 {
519 int inner;
520 if (!l.stack_addr_p || !r.stack_addr_p)
521 /* Like NaN, any operation involving an invalid ID always fails. */
522 inner = 0;
523 else if (l.inline_depth > r.inline_depth
524 && l.stack_addr == r.stack_addr
525 && l.code_addr_p == r.code_addr_p
526 && l.special_addr_p == r.special_addr_p
527 && l.special_addr == r.special_addr)
528 {
529 /* Same function, different inlined functions. */
530 struct block *lb, *rb;
531
532 gdb_assert (l.code_addr_p && r.code_addr_p);
533
534 lb = block_for_pc (l.code_addr);
535 rb = block_for_pc (r.code_addr);
536
537 if (lb == NULL || rb == NULL)
538 /* Something's gone wrong. */
539 inner = 0;
540 else
541 /* This will return true if LB and RB are the same block, or
542 if the block with the smaller depth lexically encloses the
543 block with the greater depth. */
544 inner = contained_in (lb, rb);
545 }
546 else
547 /* Only return non-zero when strictly inner than. Note that, per
548 comment in "frame.h", there is some fuzz here. Frameless
549 functions are not strictly inner than (same .stack but
550 different .code and/or .special address). */
551 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
552 if (frame_debug)
553 {
554 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
555 fprint_frame_id (gdb_stdlog, l);
556 fprintf_unfiltered (gdb_stdlog, ",r=");
557 fprint_frame_id (gdb_stdlog, r);
558 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
559 }
560 return inner;
561 }
562
563 struct frame_info *
564 frame_find_by_id (struct frame_id id)
565 {
566 struct frame_info *frame, *prev_frame;
567
568 /* ZERO denotes the null frame, let the caller decide what to do
569 about it. Should it instead return get_current_frame()? */
570 if (!frame_id_p (id))
571 return NULL;
572
573 /* Try using the frame stash first. Finding it there removes the need
574 to perform the search by looping over all frames, which can be very
575 CPU-intensive if the number of frames is very high (the loop is O(n)
576 and get_prev_frame performs a series of checks that are relatively
577 expensive). This optimization is particularly useful when this function
578 is called from another function (such as value_fetch_lazy, case
579 VALUE_LVAL (val) == lval_register) which already loops over all frames,
580 making the overall behavior O(n^2). */
581 frame = frame_stash_find (id);
582 if (frame)
583 return frame;
584
585 for (frame = get_current_frame (); ; frame = prev_frame)
586 {
587 struct frame_id this = get_frame_id (frame);
588 if (frame_id_eq (id, this))
589 /* An exact match. */
590 return frame;
591
592 prev_frame = get_prev_frame (frame);
593 if (!prev_frame)
594 return NULL;
595
596 /* As a safety net to avoid unnecessary backtracing while trying
597 to find an invalid ID, we check for a common situation where
598 we can detect from comparing stack addresses that no other
599 frame in the current frame chain can have this ID. See the
600 comment at frame_id_inner for details. */
601 if (get_frame_type (frame) == NORMAL_FRAME
602 && !frame_id_inner (get_frame_arch (frame), id, this)
603 && frame_id_inner (get_frame_arch (prev_frame), id,
604 get_frame_id (prev_frame)))
605 return NULL;
606 }
607 return NULL;
608 }
609
610 static CORE_ADDR
611 frame_unwind_pc (struct frame_info *this_frame)
612 {
613 if (!this_frame->prev_pc.p)
614 {
615 CORE_ADDR pc;
616 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
617 {
618 /* The right way. The `pure' way. The one true way. This
619 method depends solely on the register-unwind code to
620 determine the value of registers in THIS frame, and hence
621 the value of this frame's PC (resume address). A typical
622 implementation is no more than:
623
624 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
625 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
626
627 Note: this method is very heavily dependent on a correct
628 register-unwind implementation, it pays to fix that
629 method first; this method is frame type agnostic, since
630 it only deals with register values, it works with any
631 frame. This is all in stark contrast to the old
632 FRAME_SAVED_PC which would try to directly handle all the
633 different ways that a PC could be unwound. */
634 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
635 }
636 else
637 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
638 this_frame->prev_pc.value = pc;
639 this_frame->prev_pc.p = 1;
640 if (frame_debug)
641 fprintf_unfiltered (gdb_stdlog,
642 "{ frame_unwind_caller_pc (this_frame=%d) -> 0x%s }\n",
643 this_frame->level,
644 hex_string (this_frame->prev_pc.value));
645 }
646 return this_frame->prev_pc.value;
647 }
648
649 CORE_ADDR
650 frame_unwind_caller_pc (struct frame_info *this_frame)
651 {
652 return frame_unwind_pc (skip_inlined_frames (this_frame));
653 }
654
655 CORE_ADDR
656 get_frame_func (struct frame_info *this_frame)
657 {
658 struct frame_info *next_frame = this_frame->next;
659
660 if (!next_frame->prev_func.p)
661 {
662 /* Make certain that this, and not the adjacent, function is
663 found. */
664 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
665 next_frame->prev_func.p = 1;
666 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
667 if (frame_debug)
668 fprintf_unfiltered (gdb_stdlog,
669 "{ get_frame_func (this_frame=%d) -> %s }\n",
670 this_frame->level,
671 hex_string (next_frame->prev_func.addr));
672 }
673 return next_frame->prev_func.addr;
674 }
675
676 static int
677 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
678 {
679 return frame_register_read (src, regnum, buf);
680 }
681
682 struct regcache *
683 frame_save_as_regcache (struct frame_info *this_frame)
684 {
685 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame));
686 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
687 regcache_save (regcache, do_frame_register_read, this_frame);
688 discard_cleanups (cleanups);
689 return regcache;
690 }
691
692 void
693 frame_pop (struct frame_info *this_frame)
694 {
695 struct frame_info *prev_frame;
696 struct regcache *scratch;
697 struct cleanup *cleanups;
698
699 if (get_frame_type (this_frame) == DUMMY_FRAME)
700 {
701 /* Popping a dummy frame involves restoring more than just registers.
702 dummy_frame_pop does all the work. */
703 dummy_frame_pop (get_frame_id (this_frame));
704 return;
705 }
706
707 /* Ensure that we have a frame to pop to. */
708 prev_frame = get_prev_frame_1 (this_frame);
709
710 if (!prev_frame)
711 error (_("Cannot pop the initial frame."));
712
713 /* Make a copy of all the register values unwound from this frame.
714 Save them in a scratch buffer so that there isn't a race between
715 trying to extract the old values from the current regcache while
716 at the same time writing new values into that same cache. */
717 scratch = frame_save_as_regcache (prev_frame);
718 cleanups = make_cleanup_regcache_xfree (scratch);
719
720 /* FIXME: cagney/2003-03-16: It should be possible to tell the
721 target's register cache that it is about to be hit with a burst
722 register transfer and that the sequence of register writes should
723 be batched. The pair target_prepare_to_store() and
724 target_store_registers() kind of suggest this functionality.
725 Unfortunately, they don't implement it. Their lack of a formal
726 definition can lead to targets writing back bogus values
727 (arguably a bug in the target code mind). */
728 /* Now copy those saved registers into the current regcache.
729 Here, regcache_cpy() calls regcache_restore(). */
730 regcache_cpy (get_current_regcache (), scratch);
731 do_cleanups (cleanups);
732
733 /* We've made right mess of GDB's local state, just discard
734 everything. */
735 reinit_frame_cache ();
736 }
737
738 void
739 frame_register_unwind (struct frame_info *frame, int regnum,
740 int *optimizedp, enum lval_type *lvalp,
741 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
742 {
743 struct value *value;
744
745 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
746 that the value proper does not need to be fetched. */
747 gdb_assert (optimizedp != NULL);
748 gdb_assert (lvalp != NULL);
749 gdb_assert (addrp != NULL);
750 gdb_assert (realnump != NULL);
751 /* gdb_assert (bufferp != NULL); */
752
753 value = frame_unwind_register_value (frame, regnum);
754
755 gdb_assert (value != NULL);
756
757 *optimizedp = value_optimized_out (value);
758 *lvalp = VALUE_LVAL (value);
759 *addrp = value_address (value);
760 *realnump = VALUE_REGNUM (value);
761
762 if (bufferp)
763 memcpy (bufferp, value_contents_all (value),
764 TYPE_LENGTH (value_type (value)));
765
766 /* Dispose of the new value. This prevents watchpoints from
767 trying to watch the saved frame pointer. */
768 release_value (value);
769 value_free (value);
770 }
771
772 void
773 frame_register (struct frame_info *frame, int regnum,
774 int *optimizedp, enum lval_type *lvalp,
775 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
776 {
777 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
778 that the value proper does not need to be fetched. */
779 gdb_assert (optimizedp != NULL);
780 gdb_assert (lvalp != NULL);
781 gdb_assert (addrp != NULL);
782 gdb_assert (realnump != NULL);
783 /* gdb_assert (bufferp != NULL); */
784
785 /* Obtain the register value by unwinding the register from the next
786 (more inner frame). */
787 gdb_assert (frame != NULL && frame->next != NULL);
788 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
789 realnump, bufferp);
790 }
791
792 void
793 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
794 {
795 int optimized;
796 CORE_ADDR addr;
797 int realnum;
798 enum lval_type lval;
799 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
800 &realnum, buf);
801 }
802
803 void
804 get_frame_register (struct frame_info *frame,
805 int regnum, gdb_byte *buf)
806 {
807 frame_unwind_register (frame->next, regnum, buf);
808 }
809
810 struct value *
811 frame_unwind_register_value (struct frame_info *frame, int regnum)
812 {
813 struct gdbarch *gdbarch;
814 struct value *value;
815
816 gdb_assert (frame != NULL);
817 gdbarch = frame_unwind_arch (frame);
818
819 if (frame_debug)
820 {
821 fprintf_unfiltered (gdb_stdlog, "\
822 { frame_unwind_register_value (frame=%d,regnum=%d(%s),...) ",
823 frame->level, regnum,
824 user_reg_map_regnum_to_name (gdbarch, regnum));
825 }
826
827 /* Find the unwinder. */
828 if (frame->unwind == NULL)
829 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
830
831 /* Ask this frame to unwind its register. */
832 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
833
834 if (frame_debug)
835 {
836 fprintf_unfiltered (gdb_stdlog, "->");
837 if (value_optimized_out (value))
838 fprintf_unfiltered (gdb_stdlog, " optimized out");
839 else
840 {
841 if (VALUE_LVAL (value) == lval_register)
842 fprintf_unfiltered (gdb_stdlog, " register=%d",
843 VALUE_REGNUM (value));
844 else if (VALUE_LVAL (value) == lval_memory)
845 fprintf_unfiltered (gdb_stdlog, " address=%s",
846 paddress (gdbarch,
847 value_address (value)));
848 else
849 fprintf_unfiltered (gdb_stdlog, " computed");
850
851 if (value_lazy (value))
852 fprintf_unfiltered (gdb_stdlog, " lazy");
853 else
854 {
855 int i;
856 const gdb_byte *buf = value_contents (value);
857
858 fprintf_unfiltered (gdb_stdlog, " bytes=");
859 fprintf_unfiltered (gdb_stdlog, "[");
860 for (i = 0; i < register_size (gdbarch, regnum); i++)
861 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
862 fprintf_unfiltered (gdb_stdlog, "]");
863 }
864 }
865
866 fprintf_unfiltered (gdb_stdlog, " }\n");
867 }
868
869 return value;
870 }
871
872 struct value *
873 get_frame_register_value (struct frame_info *frame, int regnum)
874 {
875 return frame_unwind_register_value (frame->next, regnum);
876 }
877
878 LONGEST
879 frame_unwind_register_signed (struct frame_info *frame, int regnum)
880 {
881 struct gdbarch *gdbarch = frame_unwind_arch (frame);
882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
883 int size = register_size (gdbarch, regnum);
884 gdb_byte buf[MAX_REGISTER_SIZE];
885 frame_unwind_register (frame, regnum, buf);
886 return extract_signed_integer (buf, size, byte_order);
887 }
888
889 LONGEST
890 get_frame_register_signed (struct frame_info *frame, int regnum)
891 {
892 return frame_unwind_register_signed (frame->next, regnum);
893 }
894
895 ULONGEST
896 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
897 {
898 struct gdbarch *gdbarch = frame_unwind_arch (frame);
899 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
900 int size = register_size (gdbarch, regnum);
901 gdb_byte buf[MAX_REGISTER_SIZE];
902 frame_unwind_register (frame, regnum, buf);
903 return extract_unsigned_integer (buf, size, byte_order);
904 }
905
906 ULONGEST
907 get_frame_register_unsigned (struct frame_info *frame, int regnum)
908 {
909 return frame_unwind_register_unsigned (frame->next, regnum);
910 }
911
912 void
913 put_frame_register (struct frame_info *frame, int regnum,
914 const gdb_byte *buf)
915 {
916 struct gdbarch *gdbarch = get_frame_arch (frame);
917 int realnum;
918 int optim;
919 enum lval_type lval;
920 CORE_ADDR addr;
921 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
922 if (optim)
923 error (_("Attempt to assign to a value that was optimized out."));
924 switch (lval)
925 {
926 case lval_memory:
927 {
928 /* FIXME: write_memory doesn't yet take constant buffers.
929 Arrrg! */
930 gdb_byte tmp[MAX_REGISTER_SIZE];
931 memcpy (tmp, buf, register_size (gdbarch, regnum));
932 write_memory (addr, tmp, register_size (gdbarch, regnum));
933 break;
934 }
935 case lval_register:
936 regcache_cooked_write (get_current_regcache (), realnum, buf);
937 break;
938 default:
939 error (_("Attempt to assign to an unmodifiable value."));
940 }
941 }
942
943 /* frame_register_read ()
944
945 Find and return the value of REGNUM for the specified stack frame.
946 The number of bytes copied is REGISTER_SIZE (REGNUM).
947
948 Returns 0 if the register value could not be found. */
949
950 int
951 frame_register_read (struct frame_info *frame, int regnum,
952 gdb_byte *myaddr)
953 {
954 int optimized;
955 enum lval_type lval;
956 CORE_ADDR addr;
957 int realnum;
958 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
959
960 return !optimized;
961 }
962
963 int
964 get_frame_register_bytes (struct frame_info *frame, int regnum,
965 CORE_ADDR offset, int len, gdb_byte *myaddr)
966 {
967 struct gdbarch *gdbarch = get_frame_arch (frame);
968 int i;
969 int maxsize;
970 int numregs;
971
972 /* Skip registers wholly inside of OFFSET. */
973 while (offset >= register_size (gdbarch, regnum))
974 {
975 offset -= register_size (gdbarch, regnum);
976 regnum++;
977 }
978
979 /* Ensure that we will not read beyond the end of the register file.
980 This can only ever happen if the debug information is bad. */
981 maxsize = -offset;
982 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
983 for (i = regnum; i < numregs; i++)
984 {
985 int thissize = register_size (gdbarch, i);
986 if (thissize == 0)
987 break; /* This register is not available on this architecture. */
988 maxsize += thissize;
989 }
990 if (len > maxsize)
991 {
992 warning (_("Bad debug information detected: "
993 "Attempt to read %d bytes from registers."), len);
994 return 0;
995 }
996
997 /* Copy the data. */
998 while (len > 0)
999 {
1000 int curr_len = register_size (gdbarch, regnum) - offset;
1001 if (curr_len > len)
1002 curr_len = len;
1003
1004 if (curr_len == register_size (gdbarch, regnum))
1005 {
1006 if (!frame_register_read (frame, regnum, myaddr))
1007 return 0;
1008 }
1009 else
1010 {
1011 gdb_byte buf[MAX_REGISTER_SIZE];
1012 if (!frame_register_read (frame, regnum, buf))
1013 return 0;
1014 memcpy (myaddr, buf + offset, curr_len);
1015 }
1016
1017 myaddr += curr_len;
1018 len -= curr_len;
1019 offset = 0;
1020 regnum++;
1021 }
1022
1023 return 1;
1024 }
1025
1026 void
1027 put_frame_register_bytes (struct frame_info *frame, int regnum,
1028 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1029 {
1030 struct gdbarch *gdbarch = get_frame_arch (frame);
1031
1032 /* Skip registers wholly inside of OFFSET. */
1033 while (offset >= register_size (gdbarch, regnum))
1034 {
1035 offset -= register_size (gdbarch, regnum);
1036 regnum++;
1037 }
1038
1039 /* Copy the data. */
1040 while (len > 0)
1041 {
1042 int curr_len = register_size (gdbarch, regnum) - offset;
1043 if (curr_len > len)
1044 curr_len = len;
1045
1046 if (curr_len == register_size (gdbarch, regnum))
1047 {
1048 put_frame_register (frame, regnum, myaddr);
1049 }
1050 else
1051 {
1052 gdb_byte buf[MAX_REGISTER_SIZE];
1053 frame_register_read (frame, regnum, buf);
1054 memcpy (buf + offset, myaddr, curr_len);
1055 put_frame_register (frame, regnum, buf);
1056 }
1057
1058 myaddr += curr_len;
1059 len -= curr_len;
1060 offset = 0;
1061 regnum++;
1062 }
1063 }
1064
1065 /* Create a sentinel frame. */
1066
1067 static struct frame_info *
1068 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1069 {
1070 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1071 frame->level = -1;
1072 frame->pspace = pspace;
1073 frame->aspace = get_regcache_aspace (regcache);
1074 /* Explicitly initialize the sentinel frame's cache. Provide it
1075 with the underlying regcache. In the future additional
1076 information, such as the frame's thread will be added. */
1077 frame->prologue_cache = sentinel_frame_cache (regcache);
1078 /* For the moment there is only one sentinel frame implementation. */
1079 frame->unwind = sentinel_frame_unwind;
1080 /* Link this frame back to itself. The frame is self referential
1081 (the unwound PC is the same as the pc), so make it so. */
1082 frame->next = frame;
1083 /* Make the sentinel frame's ID valid, but invalid. That way all
1084 comparisons with it should fail. */
1085 frame->this_id.p = 1;
1086 frame->this_id.value = null_frame_id;
1087 if (frame_debug)
1088 {
1089 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1090 fprint_frame (gdb_stdlog, frame);
1091 fprintf_unfiltered (gdb_stdlog, " }\n");
1092 }
1093 return frame;
1094 }
1095
1096 /* Info about the innermost stack frame (contents of FP register) */
1097
1098 static struct frame_info *current_frame;
1099
1100 /* Cache for frame addresses already read by gdb. Valid only while
1101 inferior is stopped. Control variables for the frame cache should
1102 be local to this module. */
1103
1104 static struct obstack frame_cache_obstack;
1105
1106 void *
1107 frame_obstack_zalloc (unsigned long size)
1108 {
1109 void *data = obstack_alloc (&frame_cache_obstack, size);
1110 memset (data, 0, size);
1111 return data;
1112 }
1113
1114 /* Return the innermost (currently executing) stack frame. This is
1115 split into two functions. The function unwind_to_current_frame()
1116 is wrapped in catch exceptions so that, even when the unwind of the
1117 sentinel frame fails, the function still returns a stack frame. */
1118
1119 static int
1120 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1121 {
1122 struct frame_info *frame = get_prev_frame (args);
1123 /* A sentinel frame can fail to unwind, e.g., because its PC value
1124 lands in somewhere like start. */
1125 if (frame == NULL)
1126 return 1;
1127 current_frame = frame;
1128 return 0;
1129 }
1130
1131 struct frame_info *
1132 get_current_frame (void)
1133 {
1134 /* First check, and report, the lack of registers. Having GDB
1135 report "No stack!" or "No memory" when the target doesn't even
1136 have registers is very confusing. Besides, "printcmd.exp"
1137 explicitly checks that ``print $pc'' with no registers prints "No
1138 registers". */
1139 if (!target_has_registers)
1140 error (_("No registers."));
1141 if (!target_has_stack)
1142 error (_("No stack."));
1143 if (!target_has_memory)
1144 error (_("No memory."));
1145 if (ptid_equal (inferior_ptid, null_ptid))
1146 error (_("No selected thread."));
1147 if (is_exited (inferior_ptid))
1148 error (_("Invalid selected thread."));
1149 if (is_executing (inferior_ptid))
1150 error (_("Target is executing."));
1151
1152 if (current_frame == NULL)
1153 {
1154 struct frame_info *sentinel_frame =
1155 create_sentinel_frame (current_program_space, get_current_regcache ());
1156 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1157 RETURN_MASK_ERROR) != 0)
1158 {
1159 /* Oops! Fake a current frame? Is this useful? It has a PC
1160 of zero, for instance. */
1161 current_frame = sentinel_frame;
1162 }
1163 }
1164 return current_frame;
1165 }
1166
1167 /* The "selected" stack frame is used by default for local and arg
1168 access. May be zero, for no selected frame. */
1169
1170 static struct frame_info *selected_frame;
1171
1172 int
1173 has_stack_frames (void)
1174 {
1175 if (!target_has_registers || !target_has_stack || !target_has_memory)
1176 return 0;
1177
1178 /* No current inferior, no frame. */
1179 if (ptid_equal (inferior_ptid, null_ptid))
1180 return 0;
1181
1182 /* Don't try to read from a dead thread. */
1183 if (is_exited (inferior_ptid))
1184 return 0;
1185
1186 /* ... or from a spinning thread. */
1187 if (is_executing (inferior_ptid))
1188 return 0;
1189
1190 return 1;
1191 }
1192
1193 /* Return the selected frame. Always non-NULL (unless there isn't an
1194 inferior sufficient for creating a frame) in which case an error is
1195 thrown. */
1196
1197 struct frame_info *
1198 get_selected_frame (const char *message)
1199 {
1200 if (selected_frame == NULL)
1201 {
1202 if (message != NULL && !has_stack_frames ())
1203 error (("%s"), message);
1204 /* Hey! Don't trust this. It should really be re-finding the
1205 last selected frame of the currently selected thread. This,
1206 though, is better than nothing. */
1207 select_frame (get_current_frame ());
1208 }
1209 /* There is always a frame. */
1210 gdb_assert (selected_frame != NULL);
1211 return selected_frame;
1212 }
1213
1214 /* This is a variant of get_selected_frame() which can be called when
1215 the inferior does not have a frame; in that case it will return
1216 NULL instead of calling error(). */
1217
1218 struct frame_info *
1219 deprecated_safe_get_selected_frame (void)
1220 {
1221 if (!has_stack_frames ())
1222 return NULL;
1223 return get_selected_frame (NULL);
1224 }
1225
1226 /* Select frame FI (or NULL - to invalidate the current frame). */
1227
1228 void
1229 select_frame (struct frame_info *fi)
1230 {
1231 struct symtab *s;
1232
1233 selected_frame = fi;
1234 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1235 frame is being invalidated. */
1236 if (deprecated_selected_frame_level_changed_hook)
1237 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1238
1239 /* FIXME: kseitz/2002-08-28: It would be nice to call
1240 selected_frame_level_changed_event() right here, but due to limitations
1241 in the current interfaces, we would end up flooding UIs with events
1242 because select_frame() is used extensively internally.
1243
1244 Once we have frame-parameterized frame (and frame-related) commands,
1245 the event notification can be moved here, since this function will only
1246 be called when the user's selected frame is being changed. */
1247
1248 /* Ensure that symbols for this frame are read in. Also, determine the
1249 source language of this frame, and switch to it if desired. */
1250 if (fi)
1251 {
1252 /* We retrieve the frame's symtab by using the frame PC. However
1253 we cannot use the frame PC as-is, because it usually points to
1254 the instruction following the "call", which is sometimes the
1255 first instruction of another function. So we rely on
1256 get_frame_address_in_block() which provides us with a PC which
1257 is guaranteed to be inside the frame's code block. */
1258 s = find_pc_symtab (get_frame_address_in_block (fi));
1259 if (s
1260 && s->language != current_language->la_language
1261 && s->language != language_unknown
1262 && language_mode == language_mode_auto)
1263 {
1264 set_language (s->language);
1265 }
1266 }
1267 }
1268
1269 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1270 Always returns a non-NULL value. */
1271
1272 struct frame_info *
1273 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1274 {
1275 struct frame_info *fi;
1276
1277 if (frame_debug)
1278 {
1279 fprintf_unfiltered (gdb_stdlog,
1280 "{ create_new_frame (addr=%s, pc=%s) ",
1281 hex_string (addr), hex_string (pc));
1282 }
1283
1284 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1285
1286 fi->next = create_sentinel_frame (current_program_space, get_current_regcache ());
1287
1288 /* Set/update this frame's cached PC value, found in the next frame.
1289 Do this before looking for this frame's unwinder. A sniffer is
1290 very likely to read this, and the corresponding unwinder is
1291 entitled to rely that the PC doesn't magically change. */
1292 fi->next->prev_pc.value = pc;
1293 fi->next->prev_pc.p = 1;
1294
1295 /* We currently assume that frame chain's can't cross spaces. */
1296 fi->pspace = fi->next->pspace;
1297 fi->aspace = fi->next->aspace;
1298
1299 /* Select/initialize both the unwind function and the frame's type
1300 based on the PC. */
1301 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1302
1303 fi->this_id.p = 1;
1304 fi->this_id.value = frame_id_build (addr, pc);
1305
1306 if (frame_debug)
1307 {
1308 fprintf_unfiltered (gdb_stdlog, "-> ");
1309 fprint_frame (gdb_stdlog, fi);
1310 fprintf_unfiltered (gdb_stdlog, " }\n");
1311 }
1312
1313 return fi;
1314 }
1315
1316 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1317 innermost frame). Be careful to not fall off the bottom of the
1318 frame chain and onto the sentinel frame. */
1319
1320 struct frame_info *
1321 get_next_frame (struct frame_info *this_frame)
1322 {
1323 if (this_frame->level > 0)
1324 return this_frame->next;
1325 else
1326 return NULL;
1327 }
1328
1329 /* Observer for the target_changed event. */
1330
1331 static void
1332 frame_observer_target_changed (struct target_ops *target)
1333 {
1334 reinit_frame_cache ();
1335 }
1336
1337 /* Flush the entire frame cache. */
1338
1339 void
1340 reinit_frame_cache (void)
1341 {
1342 struct frame_info *fi;
1343
1344 /* Tear down all frame caches. */
1345 for (fi = current_frame; fi != NULL; fi = fi->prev)
1346 {
1347 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1348 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1349 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1350 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1351 }
1352
1353 /* Since we can't really be sure what the first object allocated was */
1354 obstack_free (&frame_cache_obstack, 0);
1355 obstack_init (&frame_cache_obstack);
1356
1357 if (current_frame != NULL)
1358 annotate_frames_invalid ();
1359
1360 current_frame = NULL; /* Invalidate cache */
1361 select_frame (NULL);
1362 frame_stash_invalidate ();
1363 if (frame_debug)
1364 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1365 }
1366
1367 /* Find where a register is saved (in memory or another register).
1368 The result of frame_register_unwind is just where it is saved
1369 relative to this particular frame. */
1370
1371 static void
1372 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1373 int *optimizedp, enum lval_type *lvalp,
1374 CORE_ADDR *addrp, int *realnump)
1375 {
1376 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1377
1378 while (this_frame != NULL)
1379 {
1380 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1381 addrp, realnump, NULL);
1382
1383 if (*optimizedp)
1384 break;
1385
1386 if (*lvalp != lval_register)
1387 break;
1388
1389 regnum = *realnump;
1390 this_frame = get_next_frame (this_frame);
1391 }
1392 }
1393
1394 /* Return a "struct frame_info" corresponding to the frame that called
1395 THIS_FRAME. Returns NULL if there is no such frame.
1396
1397 Unlike get_prev_frame, this function always tries to unwind the
1398 frame. */
1399
1400 static struct frame_info *
1401 get_prev_frame_1 (struct frame_info *this_frame)
1402 {
1403 struct frame_id this_id;
1404 struct gdbarch *gdbarch;
1405
1406 gdb_assert (this_frame != NULL);
1407 gdbarch = get_frame_arch (this_frame);
1408
1409 if (frame_debug)
1410 {
1411 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1412 if (this_frame != NULL)
1413 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1414 else
1415 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1416 fprintf_unfiltered (gdb_stdlog, ") ");
1417 }
1418
1419 /* Only try to do the unwind once. */
1420 if (this_frame->prev_p)
1421 {
1422 if (frame_debug)
1423 {
1424 fprintf_unfiltered (gdb_stdlog, "-> ");
1425 fprint_frame (gdb_stdlog, this_frame->prev);
1426 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1427 }
1428 return this_frame->prev;
1429 }
1430
1431 /* If the frame unwinder hasn't been selected yet, we must do so
1432 before setting prev_p; otherwise the check for misbehaved
1433 sniffers will think that this frame's sniffer tried to unwind
1434 further (see frame_cleanup_after_sniffer). */
1435 if (this_frame->unwind == NULL)
1436 this_frame->unwind
1437 = frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1438
1439 this_frame->prev_p = 1;
1440 this_frame->stop_reason = UNWIND_NO_REASON;
1441
1442 /* If we are unwinding from an inline frame, all of the below tests
1443 were already performed when we unwound from the next non-inline
1444 frame. We must skip them, since we can not get THIS_FRAME's ID
1445 until we have unwound all the way down to the previous non-inline
1446 frame. */
1447 if (get_frame_type (this_frame) == INLINE_FRAME)
1448 return get_prev_frame_raw (this_frame);
1449
1450 /* Check that this frame's ID was valid. If it wasn't, don't try to
1451 unwind to the prev frame. Be careful to not apply this test to
1452 the sentinel frame. */
1453 this_id = get_frame_id (this_frame);
1454 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1455 {
1456 if (frame_debug)
1457 {
1458 fprintf_unfiltered (gdb_stdlog, "-> ");
1459 fprint_frame (gdb_stdlog, NULL);
1460 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1461 }
1462 this_frame->stop_reason = UNWIND_NULL_ID;
1463 return NULL;
1464 }
1465
1466 /* Check that this frame's ID isn't inner to (younger, below, next)
1467 the next frame. This happens when a frame unwind goes backwards.
1468 This check is valid only if this frame and the next frame are NORMAL.
1469 See the comment at frame_id_inner for details. */
1470 if (get_frame_type (this_frame) == NORMAL_FRAME
1471 && this_frame->next->unwind->type == NORMAL_FRAME
1472 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1473 get_frame_id (this_frame->next)))
1474 {
1475 if (frame_debug)
1476 {
1477 fprintf_unfiltered (gdb_stdlog, "-> ");
1478 fprint_frame (gdb_stdlog, NULL);
1479 fprintf_unfiltered (gdb_stdlog, " // this frame ID is inner }\n");
1480 }
1481 this_frame->stop_reason = UNWIND_INNER_ID;
1482 return NULL;
1483 }
1484
1485 /* Check that this and the next frame are not identical. If they
1486 are, there is most likely a stack cycle. As with the inner-than
1487 test above, avoid comparing the inner-most and sentinel frames. */
1488 if (this_frame->level > 0
1489 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1490 {
1491 if (frame_debug)
1492 {
1493 fprintf_unfiltered (gdb_stdlog, "-> ");
1494 fprint_frame (gdb_stdlog, NULL);
1495 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1496 }
1497 this_frame->stop_reason = UNWIND_SAME_ID;
1498 return NULL;
1499 }
1500
1501 /* Check that this and the next frame do not unwind the PC register
1502 to the same memory location. If they do, then even though they
1503 have different frame IDs, the new frame will be bogus; two
1504 functions can't share a register save slot for the PC. This can
1505 happen when the prologue analyzer finds a stack adjustment, but
1506 no PC save.
1507
1508 This check does assume that the "PC register" is roughly a
1509 traditional PC, even if the gdbarch_unwind_pc method adjusts
1510 it (we do not rely on the value, only on the unwound PC being
1511 dependent on this value). A potential improvement would be
1512 to have the frame prev_pc method and the gdbarch unwind_pc
1513 method set the same lval and location information as
1514 frame_register_unwind. */
1515 if (this_frame->level > 0
1516 && gdbarch_pc_regnum (gdbarch) >= 0
1517 && get_frame_type (this_frame) == NORMAL_FRAME
1518 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1519 || get_frame_type (this_frame->next) == INLINE_FRAME))
1520 {
1521 int optimized, realnum, nrealnum;
1522 enum lval_type lval, nlval;
1523 CORE_ADDR addr, naddr;
1524
1525 frame_register_unwind_location (this_frame,
1526 gdbarch_pc_regnum (gdbarch),
1527 &optimized, &lval, &addr, &realnum);
1528 frame_register_unwind_location (get_next_frame (this_frame),
1529 gdbarch_pc_regnum (gdbarch),
1530 &optimized, &nlval, &naddr, &nrealnum);
1531
1532 if ((lval == lval_memory && lval == nlval && addr == naddr)
1533 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1534 {
1535 if (frame_debug)
1536 {
1537 fprintf_unfiltered (gdb_stdlog, "-> ");
1538 fprint_frame (gdb_stdlog, NULL);
1539 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1540 }
1541
1542 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1543 this_frame->prev = NULL;
1544 return NULL;
1545 }
1546 }
1547
1548 return get_prev_frame_raw (this_frame);
1549 }
1550
1551 /* Construct a new "struct frame_info" and link it previous to
1552 this_frame. */
1553
1554 static struct frame_info *
1555 get_prev_frame_raw (struct frame_info *this_frame)
1556 {
1557 struct frame_info *prev_frame;
1558
1559 /* Allocate the new frame but do not wire it in to the frame chain.
1560 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1561 frame->next to pull some fancy tricks (of course such code is, by
1562 definition, recursive). Try to prevent it.
1563
1564 There is no reason to worry about memory leaks, should the
1565 remainder of the function fail. The allocated memory will be
1566 quickly reclaimed when the frame cache is flushed, and the `we've
1567 been here before' check above will stop repeated memory
1568 allocation calls. */
1569 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1570 prev_frame->level = this_frame->level + 1;
1571
1572 /* For now, assume we don't have frame chains crossing address
1573 spaces. */
1574 prev_frame->pspace = this_frame->pspace;
1575 prev_frame->aspace = this_frame->aspace;
1576
1577 /* Don't yet compute ->unwind (and hence ->type). It is computed
1578 on-demand in get_frame_type, frame_register_unwind, and
1579 get_frame_id. */
1580
1581 /* Don't yet compute the frame's ID. It is computed on-demand by
1582 get_frame_id(). */
1583
1584 /* The unwound frame ID is validate at the start of this function,
1585 as part of the logic to decide if that frame should be further
1586 unwound, and not here while the prev frame is being created.
1587 Doing this makes it possible for the user to examine a frame that
1588 has an invalid frame ID.
1589
1590 Some very old VAX code noted: [...] For the sake of argument,
1591 suppose that the stack is somewhat trashed (which is one reason
1592 that "info frame" exists). So, return 0 (indicating we don't
1593 know the address of the arglist) if we don't know what frame this
1594 frame calls. */
1595
1596 /* Link it in. */
1597 this_frame->prev = prev_frame;
1598 prev_frame->next = this_frame;
1599
1600 if (frame_debug)
1601 {
1602 fprintf_unfiltered (gdb_stdlog, "-> ");
1603 fprint_frame (gdb_stdlog, prev_frame);
1604 fprintf_unfiltered (gdb_stdlog, " }\n");
1605 }
1606
1607 return prev_frame;
1608 }
1609
1610 /* Debug routine to print a NULL frame being returned. */
1611
1612 static void
1613 frame_debug_got_null_frame (struct frame_info *this_frame,
1614 const char *reason)
1615 {
1616 if (frame_debug)
1617 {
1618 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1619 if (this_frame != NULL)
1620 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1621 else
1622 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1623 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1624 }
1625 }
1626
1627 /* Is this (non-sentinel) frame in the "main"() function? */
1628
1629 static int
1630 inside_main_func (struct frame_info *this_frame)
1631 {
1632 struct minimal_symbol *msymbol;
1633 CORE_ADDR maddr;
1634
1635 if (symfile_objfile == 0)
1636 return 0;
1637 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1638 if (msymbol == NULL)
1639 return 0;
1640 /* Make certain that the code, and not descriptor, address is
1641 returned. */
1642 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1643 SYMBOL_VALUE_ADDRESS (msymbol),
1644 &current_target);
1645 return maddr == get_frame_func (this_frame);
1646 }
1647
1648 /* Test whether THIS_FRAME is inside the process entry point function. */
1649
1650 static int
1651 inside_entry_func (struct frame_info *this_frame)
1652 {
1653 return (get_frame_func (this_frame) == entry_point_address ());
1654 }
1655
1656 /* Return a structure containing various interesting information about
1657 the frame that called THIS_FRAME. Returns NULL if there is entier
1658 no such frame or the frame fails any of a set of target-independent
1659 condition that should terminate the frame chain (e.g., as unwinding
1660 past main()).
1661
1662 This function should not contain target-dependent tests, such as
1663 checking whether the program-counter is zero. */
1664
1665 struct frame_info *
1666 get_prev_frame (struct frame_info *this_frame)
1667 {
1668 struct frame_info *prev_frame;
1669
1670 /* There is always a frame. If this assertion fails, suspect that
1671 something should be calling get_selected_frame() or
1672 get_current_frame(). */
1673 gdb_assert (this_frame != NULL);
1674
1675 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1676 sense to stop unwinding at a dummy frame. One place where a dummy
1677 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1678 pcsqh register (space register for the instruction at the head of the
1679 instruction queue) cannot be written directly; the only way to set it
1680 is to branch to code that is in the target space. In order to implement
1681 frame dummies on HPUX, the called function is made to jump back to where
1682 the inferior was when the user function was called. If gdb was inside
1683 the main function when we created the dummy frame, the dummy frame will
1684 point inside the main function. */
1685 if (this_frame->level >= 0
1686 && get_frame_type (this_frame) == NORMAL_FRAME
1687 && !backtrace_past_main
1688 && inside_main_func (this_frame))
1689 /* Don't unwind past main(). Note, this is done _before_ the
1690 frame has been marked as previously unwound. That way if the
1691 user later decides to enable unwinds past main(), that will
1692 automatically happen. */
1693 {
1694 frame_debug_got_null_frame (this_frame, "inside main func");
1695 return NULL;
1696 }
1697
1698 /* If the user's backtrace limit has been exceeded, stop. We must
1699 add two to the current level; one of those accounts for backtrace_limit
1700 being 1-based and the level being 0-based, and the other accounts for
1701 the level of the new frame instead of the level of the current
1702 frame. */
1703 if (this_frame->level + 2 > backtrace_limit)
1704 {
1705 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1706 return NULL;
1707 }
1708
1709 /* If we're already inside the entry function for the main objfile,
1710 then it isn't valid. Don't apply this test to a dummy frame -
1711 dummy frame PCs typically land in the entry func. Don't apply
1712 this test to the sentinel frame. Sentinel frames should always
1713 be allowed to unwind. */
1714 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1715 wasn't checking for "main" in the minimal symbols. With that
1716 fixed asm-source tests now stop in "main" instead of halting the
1717 backtrace in weird and wonderful ways somewhere inside the entry
1718 file. Suspect that tests for inside the entry file/func were
1719 added to work around that (now fixed) case. */
1720 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1721 suggested having the inside_entry_func test use the
1722 inside_main_func() msymbol trick (along with entry_point_address()
1723 I guess) to determine the address range of the start function.
1724 That should provide a far better stopper than the current
1725 heuristics. */
1726 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1727 applied tail-call optimizations to main so that a function called
1728 from main returns directly to the caller of main. Since we don't
1729 stop at main, we should at least stop at the entry point of the
1730 application. */
1731 if (this_frame->level >= 0
1732 && get_frame_type (this_frame) == NORMAL_FRAME
1733 && !backtrace_past_entry
1734 && inside_entry_func (this_frame))
1735 {
1736 frame_debug_got_null_frame (this_frame, "inside entry func");
1737 return NULL;
1738 }
1739
1740 /* Assume that the only way to get a zero PC is through something
1741 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1742 will never unwind a zero PC. */
1743 if (this_frame->level > 0
1744 && (get_frame_type (this_frame) == NORMAL_FRAME
1745 || get_frame_type (this_frame) == INLINE_FRAME)
1746 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1747 && get_frame_pc (this_frame) == 0)
1748 {
1749 frame_debug_got_null_frame (this_frame, "zero PC");
1750 return NULL;
1751 }
1752
1753 return get_prev_frame_1 (this_frame);
1754 }
1755
1756 CORE_ADDR
1757 get_frame_pc (struct frame_info *frame)
1758 {
1759 gdb_assert (frame->next != NULL);
1760 return frame_unwind_pc (frame->next);
1761 }
1762
1763 /* Return an address that falls within THIS_FRAME's code block. */
1764
1765 CORE_ADDR
1766 get_frame_address_in_block (struct frame_info *this_frame)
1767 {
1768 /* A draft address. */
1769 CORE_ADDR pc = get_frame_pc (this_frame);
1770
1771 struct frame_info *next_frame = this_frame->next;
1772
1773 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1774 Normally the resume address is inside the body of the function
1775 associated with THIS_FRAME, but there is a special case: when
1776 calling a function which the compiler knows will never return
1777 (for instance abort), the call may be the very last instruction
1778 in the calling function. The resume address will point after the
1779 call and may be at the beginning of a different function
1780 entirely.
1781
1782 If THIS_FRAME is a signal frame or dummy frame, then we should
1783 not adjust the unwound PC. For a dummy frame, GDB pushed the
1784 resume address manually onto the stack. For a signal frame, the
1785 OS may have pushed the resume address manually and invoked the
1786 handler (e.g. GNU/Linux), or invoked the trampoline which called
1787 the signal handler - but in either case the signal handler is
1788 expected to return to the trampoline. So in both of these
1789 cases we know that the resume address is executable and
1790 related. So we only need to adjust the PC if THIS_FRAME
1791 is a normal function.
1792
1793 If the program has been interrupted while THIS_FRAME is current,
1794 then clearly the resume address is inside the associated
1795 function. There are three kinds of interruption: debugger stop
1796 (next frame will be SENTINEL_FRAME), operating system
1797 signal or exception (next frame will be SIGTRAMP_FRAME),
1798 or debugger-induced function call (next frame will be
1799 DUMMY_FRAME). So we only need to adjust the PC if
1800 NEXT_FRAME is a normal function.
1801
1802 We check the type of NEXT_FRAME first, since it is already
1803 known; frame type is determined by the unwinder, and since
1804 we have THIS_FRAME we've already selected an unwinder for
1805 NEXT_FRAME.
1806
1807 If the next frame is inlined, we need to keep going until we find
1808 the real function - for instance, if a signal handler is invoked
1809 while in an inlined function, then the code address of the
1810 "calling" normal function should not be adjusted either. */
1811
1812 while (get_frame_type (next_frame) == INLINE_FRAME)
1813 next_frame = next_frame->next;
1814
1815 if (get_frame_type (next_frame) == NORMAL_FRAME
1816 && (get_frame_type (this_frame) == NORMAL_FRAME
1817 || get_frame_type (this_frame) == INLINE_FRAME))
1818 return pc - 1;
1819
1820 return pc;
1821 }
1822
1823 void
1824 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1825 {
1826 struct frame_info *next_frame;
1827 int notcurrent;
1828
1829 /* If the next frame represents an inlined function call, this frame's
1830 sal is the "call site" of that inlined function, which can not
1831 be inferred from get_frame_pc. */
1832 next_frame = get_next_frame (frame);
1833 if (frame_inlined_callees (frame) > 0)
1834 {
1835 struct symbol *sym;
1836
1837 if (next_frame)
1838 sym = get_frame_function (next_frame);
1839 else
1840 sym = inline_skipped_symbol (inferior_ptid);
1841
1842 init_sal (sal);
1843 if (SYMBOL_LINE (sym) != 0)
1844 {
1845 sal->symtab = SYMBOL_SYMTAB (sym);
1846 sal->line = SYMBOL_LINE (sym);
1847 }
1848 else
1849 /* If the symbol does not have a location, we don't know where
1850 the call site is. Do not pretend to. This is jarring, but
1851 we can't do much better. */
1852 sal->pc = get_frame_pc (frame);
1853
1854 return;
1855 }
1856
1857 /* If FRAME is not the innermost frame, that normally means that
1858 FRAME->pc points at the return instruction (which is *after* the
1859 call instruction), and we want to get the line containing the
1860 call (because the call is where the user thinks the program is).
1861 However, if the next frame is either a SIGTRAMP_FRAME or a
1862 DUMMY_FRAME, then the next frame will contain a saved interrupt
1863 PC and such a PC indicates the current (rather than next)
1864 instruction/line, consequently, for such cases, want to get the
1865 line containing fi->pc. */
1866 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1867 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1868 }
1869
1870 /* Per "frame.h", return the ``address'' of the frame. Code should
1871 really be using get_frame_id(). */
1872 CORE_ADDR
1873 get_frame_base (struct frame_info *fi)
1874 {
1875 return get_frame_id (fi).stack_addr;
1876 }
1877
1878 /* High-level offsets into the frame. Used by the debug info. */
1879
1880 CORE_ADDR
1881 get_frame_base_address (struct frame_info *fi)
1882 {
1883 if (get_frame_type (fi) != NORMAL_FRAME)
1884 return 0;
1885 if (fi->base == NULL)
1886 fi->base = frame_base_find_by_frame (fi);
1887 /* Sneaky: If the low-level unwind and high-level base code share a
1888 common unwinder, let them share the prologue cache. */
1889 if (fi->base->unwind == fi->unwind)
1890 return fi->base->this_base (fi, &fi->prologue_cache);
1891 return fi->base->this_base (fi, &fi->base_cache);
1892 }
1893
1894 CORE_ADDR
1895 get_frame_locals_address (struct frame_info *fi)
1896 {
1897 void **cache;
1898 if (get_frame_type (fi) != NORMAL_FRAME)
1899 return 0;
1900 /* If there isn't a frame address method, find it. */
1901 if (fi->base == NULL)
1902 fi->base = frame_base_find_by_frame (fi);
1903 /* Sneaky: If the low-level unwind and high-level base code share a
1904 common unwinder, let them share the prologue cache. */
1905 if (fi->base->unwind == fi->unwind)
1906 return fi->base->this_locals (fi, &fi->prologue_cache);
1907 return fi->base->this_locals (fi, &fi->base_cache);
1908 }
1909
1910 CORE_ADDR
1911 get_frame_args_address (struct frame_info *fi)
1912 {
1913 void **cache;
1914 if (get_frame_type (fi) != NORMAL_FRAME)
1915 return 0;
1916 /* If there isn't a frame address method, find it. */
1917 if (fi->base == NULL)
1918 fi->base = frame_base_find_by_frame (fi);
1919 /* Sneaky: If the low-level unwind and high-level base code share a
1920 common unwinder, let them share the prologue cache. */
1921 if (fi->base->unwind == fi->unwind)
1922 return fi->base->this_args (fi, &fi->prologue_cache);
1923 return fi->base->this_args (fi, &fi->base_cache);
1924 }
1925
1926 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1927 otherwise. */
1928
1929 int
1930 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1931 {
1932 if (fi->unwind == NULL)
1933 fi->unwind = frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1934 return fi->unwind == unwinder;
1935 }
1936
1937 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1938 or -1 for a NULL frame. */
1939
1940 int
1941 frame_relative_level (struct frame_info *fi)
1942 {
1943 if (fi == NULL)
1944 return -1;
1945 else
1946 return fi->level;
1947 }
1948
1949 enum frame_type
1950 get_frame_type (struct frame_info *frame)
1951 {
1952 if (frame->unwind == NULL)
1953 /* Initialize the frame's unwinder because that's what
1954 provides the frame's type. */
1955 frame->unwind = frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1956 return frame->unwind->type;
1957 }
1958
1959 struct program_space *
1960 get_frame_program_space (struct frame_info *frame)
1961 {
1962 return frame->pspace;
1963 }
1964
1965 struct program_space *
1966 frame_unwind_program_space (struct frame_info *this_frame)
1967 {
1968 gdb_assert (this_frame);
1969
1970 /* This is really a placeholder to keep the API consistent --- we
1971 assume for now that we don't have frame chains crossing
1972 spaces. */
1973 return this_frame->pspace;
1974 }
1975
1976 struct address_space *
1977 get_frame_address_space (struct frame_info *frame)
1978 {
1979 return frame->aspace;
1980 }
1981
1982 /* Memory access methods. */
1983
1984 void
1985 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
1986 gdb_byte *buf, int len)
1987 {
1988 read_memory (addr, buf, len);
1989 }
1990
1991 LONGEST
1992 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
1993 int len)
1994 {
1995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1997 return read_memory_integer (addr, len, byte_order);
1998 }
1999
2000 ULONGEST
2001 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2002 int len)
2003 {
2004 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2005 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2006 return read_memory_unsigned_integer (addr, len, byte_order);
2007 }
2008
2009 int
2010 safe_frame_unwind_memory (struct frame_info *this_frame,
2011 CORE_ADDR addr, gdb_byte *buf, int len)
2012 {
2013 /* NOTE: target_read_memory returns zero on success! */
2014 return !target_read_memory (addr, buf, len);
2015 }
2016
2017 /* Architecture methods. */
2018
2019 struct gdbarch *
2020 get_frame_arch (struct frame_info *this_frame)
2021 {
2022 return frame_unwind_arch (this_frame->next);
2023 }
2024
2025 struct gdbarch *
2026 frame_unwind_arch (struct frame_info *next_frame)
2027 {
2028 if (!next_frame->prev_arch.p)
2029 {
2030 struct gdbarch *arch;
2031
2032 if (next_frame->unwind == NULL)
2033 next_frame->unwind
2034 = frame_unwind_find_by_frame (next_frame,
2035 &next_frame->prologue_cache);
2036
2037 if (next_frame->unwind->prev_arch != NULL)
2038 arch = next_frame->unwind->prev_arch (next_frame,
2039 &next_frame->prologue_cache);
2040 else
2041 arch = get_frame_arch (next_frame);
2042
2043 next_frame->prev_arch.arch = arch;
2044 next_frame->prev_arch.p = 1;
2045 if (frame_debug)
2046 fprintf_unfiltered (gdb_stdlog,
2047 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2048 next_frame->level,
2049 gdbarch_bfd_arch_info (arch)->printable_name);
2050 }
2051
2052 return next_frame->prev_arch.arch;
2053 }
2054
2055 struct gdbarch *
2056 frame_unwind_caller_arch (struct frame_info *next_frame)
2057 {
2058 return frame_unwind_arch (skip_inlined_frames (next_frame));
2059 }
2060
2061 /* Stack pointer methods. */
2062
2063 CORE_ADDR
2064 get_frame_sp (struct frame_info *this_frame)
2065 {
2066 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2067 /* Normality - an architecture that provides a way of obtaining any
2068 frame inner-most address. */
2069 if (gdbarch_unwind_sp_p (gdbarch))
2070 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2071 operate on THIS_FRAME now. */
2072 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2073 /* Now things are really are grim. Hope that the value returned by
2074 the gdbarch_sp_regnum register is meaningful. */
2075 if (gdbarch_sp_regnum (gdbarch) >= 0)
2076 return get_frame_register_unsigned (this_frame,
2077 gdbarch_sp_regnum (gdbarch));
2078 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2079 }
2080
2081 /* Return the reason why we can't unwind past FRAME. */
2082
2083 enum unwind_stop_reason
2084 get_frame_unwind_stop_reason (struct frame_info *frame)
2085 {
2086 /* If we haven't tried to unwind past this point yet, then assume
2087 that unwinding would succeed. */
2088 if (frame->prev_p == 0)
2089 return UNWIND_NO_REASON;
2090
2091 /* Otherwise, we set a reason when we succeeded (or failed) to
2092 unwind. */
2093 return frame->stop_reason;
2094 }
2095
2096 /* Return a string explaining REASON. */
2097
2098 const char *
2099 frame_stop_reason_string (enum unwind_stop_reason reason)
2100 {
2101 switch (reason)
2102 {
2103 case UNWIND_NULL_ID:
2104 return _("unwinder did not report frame ID");
2105
2106 case UNWIND_INNER_ID:
2107 return _("previous frame inner to this frame (corrupt stack?)");
2108
2109 case UNWIND_SAME_ID:
2110 return _("previous frame identical to this frame (corrupt stack?)");
2111
2112 case UNWIND_NO_SAVED_PC:
2113 return _("frame did not save the PC");
2114
2115 case UNWIND_NO_REASON:
2116 case UNWIND_FIRST_ERROR:
2117 default:
2118 internal_error (__FILE__, __LINE__,
2119 "Invalid frame stop reason");
2120 }
2121 }
2122
2123 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2124 FRAME. */
2125
2126 static void
2127 frame_cleanup_after_sniffer (void *arg)
2128 {
2129 struct frame_info *frame = arg;
2130
2131 /* The sniffer should not allocate a prologue cache if it did not
2132 match this frame. */
2133 gdb_assert (frame->prologue_cache == NULL);
2134
2135 /* No sniffer should extend the frame chain; sniff based on what is
2136 already certain. */
2137 gdb_assert (!frame->prev_p);
2138
2139 /* The sniffer should not check the frame's ID; that's circular. */
2140 gdb_assert (!frame->this_id.p);
2141
2142 /* Clear cached fields dependent on the unwinder.
2143
2144 The previous PC is independent of the unwinder, but the previous
2145 function is not (see get_frame_address_in_block). */
2146 frame->prev_func.p = 0;
2147 frame->prev_func.addr = 0;
2148
2149 /* Discard the unwinder last, so that we can easily find it if an assertion
2150 in this function triggers. */
2151 frame->unwind = NULL;
2152 }
2153
2154 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2155 Return a cleanup which should be called if unwinding fails, and
2156 discarded if it succeeds. */
2157
2158 struct cleanup *
2159 frame_prepare_for_sniffer (struct frame_info *frame,
2160 const struct frame_unwind *unwind)
2161 {
2162 gdb_assert (frame->unwind == NULL);
2163 frame->unwind = unwind;
2164 return make_cleanup (frame_cleanup_after_sniffer, frame);
2165 }
2166
2167 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2168
2169 static struct cmd_list_element *set_backtrace_cmdlist;
2170 static struct cmd_list_element *show_backtrace_cmdlist;
2171
2172 static void
2173 set_backtrace_cmd (char *args, int from_tty)
2174 {
2175 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2176 }
2177
2178 static void
2179 show_backtrace_cmd (char *args, int from_tty)
2180 {
2181 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2182 }
2183
2184 void
2185 _initialize_frame (void)
2186 {
2187 obstack_init (&frame_cache_obstack);
2188
2189 observer_attach_target_changed (frame_observer_target_changed);
2190
2191 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2192 Set backtrace specific variables.\n\
2193 Configure backtrace variables such as the backtrace limit"),
2194 &set_backtrace_cmdlist, "set backtrace ",
2195 0/*allow-unknown*/, &setlist);
2196 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2197 Show backtrace specific variables\n\
2198 Show backtrace variables such as the backtrace limit"),
2199 &show_backtrace_cmdlist, "show backtrace ",
2200 0/*allow-unknown*/, &showlist);
2201
2202 add_setshow_boolean_cmd ("past-main", class_obscure,
2203 &backtrace_past_main, _("\
2204 Set whether backtraces should continue past \"main\"."), _("\
2205 Show whether backtraces should continue past \"main\"."), _("\
2206 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2207 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2208 of the stack trace."),
2209 NULL,
2210 show_backtrace_past_main,
2211 &set_backtrace_cmdlist,
2212 &show_backtrace_cmdlist);
2213
2214 add_setshow_boolean_cmd ("past-entry", class_obscure,
2215 &backtrace_past_entry, _("\
2216 Set whether backtraces should continue past the entry point of a program."),
2217 _("\
2218 Show whether backtraces should continue past the entry point of a program."),
2219 _("\
2220 Normally there are no callers beyond the entry point of a program, so GDB\n\
2221 will terminate the backtrace there. Set this variable if you need to see \n\
2222 the rest of the stack trace."),
2223 NULL,
2224 show_backtrace_past_entry,
2225 &set_backtrace_cmdlist,
2226 &show_backtrace_cmdlist);
2227
2228 add_setshow_integer_cmd ("limit", class_obscure,
2229 &backtrace_limit, _("\
2230 Set an upper bound on the number of backtrace levels."), _("\
2231 Show the upper bound on the number of backtrace levels."), _("\
2232 No more than the specified number of frames can be displayed or examined.\n\
2233 Zero is unlimited."),
2234 NULL,
2235 show_backtrace_limit,
2236 &set_backtrace_cmdlist,
2237 &show_backtrace_cmdlist);
2238
2239 /* Debug this files internals. */
2240 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2241 Set frame debugging."), _("\
2242 Show frame debugging."), _("\
2243 When non-zero, frame specific internal debugging is enabled."),
2244 NULL,
2245 show_frame_debug,
2246 &setdebuglist, &showdebuglist);
2247 }
This page took 0.118356 seconds and 4 git commands to generate.