2011-08-04 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file,
185 _("Whether backtraces should "
186 "continue past \"main\" is %s.\n"),
187 value);
188 }
189
190 static int backtrace_past_entry;
191 static void
192 show_backtrace_past_entry (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Whether backtraces should continue past the "
196 "entry point of a program is %s.\n"),
197 value);
198 }
199
200 static int backtrace_limit = INT_MAX;
201 static void
202 show_backtrace_limit (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file,
206 _("An upper bound on the number "
207 "of backtrace levels is %s.\n"),
208 value);
209 }
210
211
212 static void
213 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
214 {
215 if (p)
216 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 else
218 fprintf_unfiltered (file, "!%s", name);
219 }
220
221 void
222 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 {
224 fprintf_unfiltered (file, "{");
225 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "code", id.code_addr_p, id.code_addr);
228 fprintf_unfiltered (file, ",");
229 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 if (id.inline_depth)
231 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
232 fprintf_unfiltered (file, "}");
233 }
234
235 static void
236 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 {
238 switch (type)
239 {
240 case NORMAL_FRAME:
241 fprintf_unfiltered (file, "NORMAL_FRAME");
242 return;
243 case DUMMY_FRAME:
244 fprintf_unfiltered (file, "DUMMY_FRAME");
245 return;
246 case INLINE_FRAME:
247 fprintf_unfiltered (file, "INLINE_FRAME");
248 return;
249 case SENTINEL_FRAME:
250 fprintf_unfiltered (file, "SENTINEL_FRAME");
251 return;
252 case SIGTRAMP_FRAME:
253 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
254 return;
255 case ARCH_FRAME:
256 fprintf_unfiltered (file, "ARCH_FRAME");
257 return;
258 default:
259 fprintf_unfiltered (file, "<unknown type>");
260 return;
261 };
262 }
263
264 static void
265 fprint_frame (struct ui_file *file, struct frame_info *fi)
266 {
267 if (fi == NULL)
268 {
269 fprintf_unfiltered (file, "<NULL frame>");
270 return;
271 }
272 fprintf_unfiltered (file, "{");
273 fprintf_unfiltered (file, "level=%d", fi->level);
274 fprintf_unfiltered (file, ",");
275 fprintf_unfiltered (file, "type=");
276 if (fi->unwind != NULL)
277 fprint_frame_type (file, fi->unwind->type);
278 else
279 fprintf_unfiltered (file, "<unknown>");
280 fprintf_unfiltered (file, ",");
281 fprintf_unfiltered (file, "unwind=");
282 if (fi->unwind != NULL)
283 gdb_print_host_address (fi->unwind, file);
284 else
285 fprintf_unfiltered (file, "<unknown>");
286 fprintf_unfiltered (file, ",");
287 fprintf_unfiltered (file, "pc=");
288 if (fi->next != NULL && fi->next->prev_pc.p)
289 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 else
291 fprintf_unfiltered (file, "<unknown>");
292 fprintf_unfiltered (file, ",");
293 fprintf_unfiltered (file, "id=");
294 if (fi->this_id.p)
295 fprint_frame_id (file, fi->this_id.value);
296 else
297 fprintf_unfiltered (file, "<unknown>");
298 fprintf_unfiltered (file, ",");
299 fprintf_unfiltered (file, "func=");
300 if (fi->next != NULL && fi->next->prev_func.p)
301 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 else
303 fprintf_unfiltered (file, "<unknown>");
304 fprintf_unfiltered (file, "}");
305 }
306
307 /* Given FRAME, return the enclosing normal frame for inlined
308 function frames. Otherwise return the original frame. */
309
310 static struct frame_info *
311 skip_inlined_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_inlined_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_inlined_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_inlined_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_inlined_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.inline_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.inline_depth != r.inline_depth)
477 /* If inline depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.inline_depth > r.inline_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static int
623 frame_unwind_pc_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
628 {
629 volatile struct gdb_exception ex;
630 struct gdbarch *prev_gdbarch;
631 CORE_ADDR pc = 0;
632
633 /* The right way. The `pure' way. The one true way. This
634 method depends solely on the register-unwind code to
635 determine the value of registers in THIS frame, and hence
636 the value of this frame's PC (resume address). A typical
637 implementation is no more than:
638
639 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
640 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
641
642 Note: this method is very heavily dependent on a correct
643 register-unwind implementation, it pays to fix that
644 method first; this method is frame type agnostic, since
645 it only deals with register values, it works with any
646 frame. This is all in stark contrast to the old
647 FRAME_SAVED_PC which would try to directly handle all the
648 different ways that a PC could be unwound. */
649 prev_gdbarch = frame_unwind_arch (this_frame);
650
651 TRY_CATCH (ex, RETURN_MASK_ERROR)
652 {
653 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
654 }
655 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
656 {
657 this_frame->prev_pc.p = -1;
658
659 if (frame_debug)
660 fprintf_unfiltered (gdb_stdlog,
661 "{ frame_unwind_pc (this_frame=%d)"
662 " -> <unavailable> }\n",
663 this_frame->level);
664 }
665 else if (ex.reason < 0)
666 {
667 throw_exception (ex);
668 }
669 else
670 {
671 this_frame->prev_pc.value = pc;
672 this_frame->prev_pc.p = 1;
673 if (frame_debug)
674 fprintf_unfiltered (gdb_stdlog,
675 "{ frame_unwind_pc (this_frame=%d) "
676 "-> %s }\n",
677 this_frame->level,
678 hex_string (this_frame->prev_pc.value));
679 }
680 }
681 else
682 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
683 }
684 if (this_frame->prev_pc.p < 0)
685 {
686 *pc = -1;
687 return 0;
688 }
689 else
690 {
691 *pc = this_frame->prev_pc.value;
692 return 1;
693 }
694 }
695
696 static CORE_ADDR
697 frame_unwind_pc (struct frame_info *this_frame)
698 {
699 CORE_ADDR pc;
700
701 if (!frame_unwind_pc_if_available (this_frame, &pc))
702 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
703 else
704 return pc;
705 }
706
707 CORE_ADDR
708 frame_unwind_caller_pc (struct frame_info *this_frame)
709 {
710 return frame_unwind_pc (skip_inlined_frames (this_frame));
711 }
712
713 int
714 frame_unwind_caller_pc_if_available (struct frame_info *this_frame,
715 CORE_ADDR *pc)
716 {
717 return frame_unwind_pc_if_available (skip_inlined_frames (this_frame), pc);
718 }
719
720 int
721 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
722 {
723 struct frame_info *next_frame = this_frame->next;
724
725 if (!next_frame->prev_func.p)
726 {
727 CORE_ADDR addr_in_block;
728
729 /* Make certain that this, and not the adjacent, function is
730 found. */
731 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
732 {
733 next_frame->prev_func.p = -1;
734 if (frame_debug)
735 fprintf_unfiltered (gdb_stdlog,
736 "{ get_frame_func (this_frame=%d)"
737 " -> unavailable }\n",
738 this_frame->level);
739 }
740 else
741 {
742 next_frame->prev_func.p = 1;
743 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
744 if (frame_debug)
745 fprintf_unfiltered (gdb_stdlog,
746 "{ get_frame_func (this_frame=%d) -> %s }\n",
747 this_frame->level,
748 hex_string (next_frame->prev_func.addr));
749 }
750 }
751
752 if (next_frame->prev_func.p < 0)
753 {
754 *pc = -1;
755 return 0;
756 }
757 else
758 {
759 *pc = next_frame->prev_func.addr;
760 return 1;
761 }
762 }
763
764 CORE_ADDR
765 get_frame_func (struct frame_info *this_frame)
766 {
767 CORE_ADDR pc;
768
769 if (!get_frame_func_if_available (this_frame, &pc))
770 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
771
772 return pc;
773 }
774
775 static enum register_status
776 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
777 {
778 if (!frame_register_read (src, regnum, buf))
779 return REG_UNAVAILABLE;
780 else
781 return REG_VALID;
782 }
783
784 struct regcache *
785 frame_save_as_regcache (struct frame_info *this_frame)
786 {
787 struct address_space *aspace = get_frame_address_space (this_frame);
788 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
789 aspace);
790 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
791
792 regcache_save (regcache, do_frame_register_read, this_frame);
793 discard_cleanups (cleanups);
794 return regcache;
795 }
796
797 void
798 frame_pop (struct frame_info *this_frame)
799 {
800 struct frame_info *prev_frame;
801 struct regcache *scratch;
802 struct cleanup *cleanups;
803
804 if (get_frame_type (this_frame) == DUMMY_FRAME)
805 {
806 /* Popping a dummy frame involves restoring more than just registers.
807 dummy_frame_pop does all the work. */
808 dummy_frame_pop (get_frame_id (this_frame));
809 return;
810 }
811
812 /* Ensure that we have a frame to pop to. */
813 prev_frame = get_prev_frame_1 (this_frame);
814
815 if (!prev_frame)
816 error (_("Cannot pop the initial frame."));
817
818 /* Make a copy of all the register values unwound from this frame.
819 Save them in a scratch buffer so that there isn't a race between
820 trying to extract the old values from the current regcache while
821 at the same time writing new values into that same cache. */
822 scratch = frame_save_as_regcache (prev_frame);
823 cleanups = make_cleanup_regcache_xfree (scratch);
824
825 /* FIXME: cagney/2003-03-16: It should be possible to tell the
826 target's register cache that it is about to be hit with a burst
827 register transfer and that the sequence of register writes should
828 be batched. The pair target_prepare_to_store() and
829 target_store_registers() kind of suggest this functionality.
830 Unfortunately, they don't implement it. Their lack of a formal
831 definition can lead to targets writing back bogus values
832 (arguably a bug in the target code mind). */
833 /* Now copy those saved registers into the current regcache.
834 Here, regcache_cpy() calls regcache_restore(). */
835 regcache_cpy (get_current_regcache (), scratch);
836 do_cleanups (cleanups);
837
838 /* We've made right mess of GDB's local state, just discard
839 everything. */
840 reinit_frame_cache ();
841 }
842
843 void
844 frame_register_unwind (struct frame_info *frame, int regnum,
845 int *optimizedp, int *unavailablep,
846 enum lval_type *lvalp, CORE_ADDR *addrp,
847 int *realnump, gdb_byte *bufferp)
848 {
849 struct value *value;
850
851 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
852 that the value proper does not need to be fetched. */
853 gdb_assert (optimizedp != NULL);
854 gdb_assert (lvalp != NULL);
855 gdb_assert (addrp != NULL);
856 gdb_assert (realnump != NULL);
857 /* gdb_assert (bufferp != NULL); */
858
859 value = frame_unwind_register_value (frame, regnum);
860
861 gdb_assert (value != NULL);
862
863 *optimizedp = value_optimized_out (value);
864 *unavailablep = !value_entirely_available (value);
865 *lvalp = VALUE_LVAL (value);
866 *addrp = value_address (value);
867 *realnump = VALUE_REGNUM (value);
868
869 if (bufferp)
870 {
871 if (!*optimizedp && !*unavailablep)
872 memcpy (bufferp, value_contents_all (value),
873 TYPE_LENGTH (value_type (value)));
874 else
875 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
876 }
877
878 /* Dispose of the new value. This prevents watchpoints from
879 trying to watch the saved frame pointer. */
880 release_value (value);
881 value_free (value);
882 }
883
884 void
885 frame_register (struct frame_info *frame, int regnum,
886 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
887 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
888 {
889 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
890 that the value proper does not need to be fetched. */
891 gdb_assert (optimizedp != NULL);
892 gdb_assert (lvalp != NULL);
893 gdb_assert (addrp != NULL);
894 gdb_assert (realnump != NULL);
895 /* gdb_assert (bufferp != NULL); */
896
897 /* Obtain the register value by unwinding the register from the next
898 (more inner frame). */
899 gdb_assert (frame != NULL && frame->next != NULL);
900 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
901 lvalp, addrp, realnump, bufferp);
902 }
903
904 void
905 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
906 {
907 int optimized;
908 int unavailable;
909 CORE_ADDR addr;
910 int realnum;
911 enum lval_type lval;
912
913 frame_register_unwind (frame, regnum, &optimized, &unavailable,
914 &lval, &addr, &realnum, buf);
915
916 if (optimized)
917 error (_("Register %d was optimized out"), regnum);
918 if (unavailable)
919 throw_error (NOT_AVAILABLE_ERROR,
920 _("Register %d is not available"), regnum);
921 }
922
923 void
924 get_frame_register (struct frame_info *frame,
925 int regnum, gdb_byte *buf)
926 {
927 frame_unwind_register (frame->next, regnum, buf);
928 }
929
930 struct value *
931 frame_unwind_register_value (struct frame_info *frame, int regnum)
932 {
933 struct gdbarch *gdbarch;
934 struct value *value;
935
936 gdb_assert (frame != NULL);
937 gdbarch = frame_unwind_arch (frame);
938
939 if (frame_debug)
940 {
941 fprintf_unfiltered (gdb_stdlog,
942 "{ frame_unwind_register_value "
943 "(frame=%d,regnum=%d(%s),...) ",
944 frame->level, regnum,
945 user_reg_map_regnum_to_name (gdbarch, regnum));
946 }
947
948 /* Find the unwinder. */
949 if (frame->unwind == NULL)
950 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
951
952 /* Ask this frame to unwind its register. */
953 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
954
955 if (frame_debug)
956 {
957 fprintf_unfiltered (gdb_stdlog, "->");
958 if (value_optimized_out (value))
959 fprintf_unfiltered (gdb_stdlog, " optimized out");
960 else
961 {
962 if (VALUE_LVAL (value) == lval_register)
963 fprintf_unfiltered (gdb_stdlog, " register=%d",
964 VALUE_REGNUM (value));
965 else if (VALUE_LVAL (value) == lval_memory)
966 fprintf_unfiltered (gdb_stdlog, " address=%s",
967 paddress (gdbarch,
968 value_address (value)));
969 else
970 fprintf_unfiltered (gdb_stdlog, " computed");
971
972 if (value_lazy (value))
973 fprintf_unfiltered (gdb_stdlog, " lazy");
974 else
975 {
976 int i;
977 const gdb_byte *buf = value_contents (value);
978
979 fprintf_unfiltered (gdb_stdlog, " bytes=");
980 fprintf_unfiltered (gdb_stdlog, "[");
981 for (i = 0; i < register_size (gdbarch, regnum); i++)
982 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
983 fprintf_unfiltered (gdb_stdlog, "]");
984 }
985 }
986
987 fprintf_unfiltered (gdb_stdlog, " }\n");
988 }
989
990 return value;
991 }
992
993 struct value *
994 get_frame_register_value (struct frame_info *frame, int regnum)
995 {
996 return frame_unwind_register_value (frame->next, regnum);
997 }
998
999 LONGEST
1000 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1001 {
1002 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1003 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1004 int size = register_size (gdbarch, regnum);
1005 gdb_byte buf[MAX_REGISTER_SIZE];
1006
1007 frame_unwind_register (frame, regnum, buf);
1008 return extract_signed_integer (buf, size, byte_order);
1009 }
1010
1011 LONGEST
1012 get_frame_register_signed (struct frame_info *frame, int regnum)
1013 {
1014 return frame_unwind_register_signed (frame->next, regnum);
1015 }
1016
1017 ULONGEST
1018 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1019 {
1020 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1022 int size = register_size (gdbarch, regnum);
1023 gdb_byte buf[MAX_REGISTER_SIZE];
1024
1025 frame_unwind_register (frame, regnum, buf);
1026 return extract_unsigned_integer (buf, size, byte_order);
1027 }
1028
1029 ULONGEST
1030 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1031 {
1032 return frame_unwind_register_unsigned (frame->next, regnum);
1033 }
1034
1035 void
1036 put_frame_register (struct frame_info *frame, int regnum,
1037 const gdb_byte *buf)
1038 {
1039 struct gdbarch *gdbarch = get_frame_arch (frame);
1040 int realnum;
1041 int optim;
1042 int unavail;
1043 enum lval_type lval;
1044 CORE_ADDR addr;
1045
1046 frame_register (frame, regnum, &optim, &unavail,
1047 &lval, &addr, &realnum, NULL);
1048 if (optim)
1049 error (_("Attempt to assign to a value that was optimized out."));
1050 switch (lval)
1051 {
1052 case lval_memory:
1053 {
1054 /* FIXME: write_memory doesn't yet take constant buffers.
1055 Arrrg! */
1056 gdb_byte tmp[MAX_REGISTER_SIZE];
1057
1058 memcpy (tmp, buf, register_size (gdbarch, regnum));
1059 write_memory (addr, tmp, register_size (gdbarch, regnum));
1060 break;
1061 }
1062 case lval_register:
1063 regcache_cooked_write (get_current_regcache (), realnum, buf);
1064 break;
1065 default:
1066 error (_("Attempt to assign to an unmodifiable value."));
1067 }
1068 }
1069
1070 /* frame_register_read ()
1071
1072 Find and return the value of REGNUM for the specified stack frame.
1073 The number of bytes copied is REGISTER_SIZE (REGNUM).
1074
1075 Returns 0 if the register value could not be found. */
1076
1077 int
1078 frame_register_read (struct frame_info *frame, int regnum,
1079 gdb_byte *myaddr)
1080 {
1081 int optimized;
1082 int unavailable;
1083 enum lval_type lval;
1084 CORE_ADDR addr;
1085 int realnum;
1086
1087 frame_register (frame, regnum, &optimized, &unavailable,
1088 &lval, &addr, &realnum, myaddr);
1089
1090 return !optimized && !unavailable;
1091 }
1092
1093 int
1094 get_frame_register_bytes (struct frame_info *frame, int regnum,
1095 CORE_ADDR offset, int len, gdb_byte *myaddr,
1096 int *optimizedp, int *unavailablep)
1097 {
1098 struct gdbarch *gdbarch = get_frame_arch (frame);
1099 int i;
1100 int maxsize;
1101 int numregs;
1102
1103 /* Skip registers wholly inside of OFFSET. */
1104 while (offset >= register_size (gdbarch, regnum))
1105 {
1106 offset -= register_size (gdbarch, regnum);
1107 regnum++;
1108 }
1109
1110 /* Ensure that we will not read beyond the end of the register file.
1111 This can only ever happen if the debug information is bad. */
1112 maxsize = -offset;
1113 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1114 for (i = regnum; i < numregs; i++)
1115 {
1116 int thissize = register_size (gdbarch, i);
1117
1118 if (thissize == 0)
1119 break; /* This register is not available on this architecture. */
1120 maxsize += thissize;
1121 }
1122 if (len > maxsize)
1123 error (_("Bad debug information detected: "
1124 "Attempt to read %d bytes from registers."), len);
1125
1126 /* Copy the data. */
1127 while (len > 0)
1128 {
1129 int curr_len = register_size (gdbarch, regnum) - offset;
1130
1131 if (curr_len > len)
1132 curr_len = len;
1133
1134 if (curr_len == register_size (gdbarch, regnum))
1135 {
1136 enum lval_type lval;
1137 CORE_ADDR addr;
1138 int realnum;
1139
1140 frame_register (frame, regnum, optimizedp, unavailablep,
1141 &lval, &addr, &realnum, myaddr);
1142 if (*optimizedp || *unavailablep)
1143 return 0;
1144 }
1145 else
1146 {
1147 gdb_byte buf[MAX_REGISTER_SIZE];
1148 enum lval_type lval;
1149 CORE_ADDR addr;
1150 int realnum;
1151
1152 frame_register (frame, regnum, optimizedp, unavailablep,
1153 &lval, &addr, &realnum, buf);
1154 if (*optimizedp || *unavailablep)
1155 return 0;
1156 memcpy (myaddr, buf + offset, curr_len);
1157 }
1158
1159 myaddr += curr_len;
1160 len -= curr_len;
1161 offset = 0;
1162 regnum++;
1163 }
1164
1165 *optimizedp = 0;
1166 *unavailablep = 0;
1167 return 1;
1168 }
1169
1170 void
1171 put_frame_register_bytes (struct frame_info *frame, int regnum,
1172 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1173 {
1174 struct gdbarch *gdbarch = get_frame_arch (frame);
1175
1176 /* Skip registers wholly inside of OFFSET. */
1177 while (offset >= register_size (gdbarch, regnum))
1178 {
1179 offset -= register_size (gdbarch, regnum);
1180 regnum++;
1181 }
1182
1183 /* Copy the data. */
1184 while (len > 0)
1185 {
1186 int curr_len = register_size (gdbarch, regnum) - offset;
1187
1188 if (curr_len > len)
1189 curr_len = len;
1190
1191 if (curr_len == register_size (gdbarch, regnum))
1192 {
1193 put_frame_register (frame, regnum, myaddr);
1194 }
1195 else
1196 {
1197 gdb_byte buf[MAX_REGISTER_SIZE];
1198
1199 frame_register_read (frame, regnum, buf);
1200 memcpy (buf + offset, myaddr, curr_len);
1201 put_frame_register (frame, regnum, buf);
1202 }
1203
1204 myaddr += curr_len;
1205 len -= curr_len;
1206 offset = 0;
1207 regnum++;
1208 }
1209 }
1210
1211 /* Create a sentinel frame. */
1212
1213 static struct frame_info *
1214 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1215 {
1216 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1217
1218 frame->level = -1;
1219 frame->pspace = pspace;
1220 frame->aspace = get_regcache_aspace (regcache);
1221 /* Explicitly initialize the sentinel frame's cache. Provide it
1222 with the underlying regcache. In the future additional
1223 information, such as the frame's thread will be added. */
1224 frame->prologue_cache = sentinel_frame_cache (regcache);
1225 /* For the moment there is only one sentinel frame implementation. */
1226 frame->unwind = &sentinel_frame_unwind;
1227 /* Link this frame back to itself. The frame is self referential
1228 (the unwound PC is the same as the pc), so make it so. */
1229 frame->next = frame;
1230 /* Make the sentinel frame's ID valid, but invalid. That way all
1231 comparisons with it should fail. */
1232 frame->this_id.p = 1;
1233 frame->this_id.value = null_frame_id;
1234 if (frame_debug)
1235 {
1236 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1237 fprint_frame (gdb_stdlog, frame);
1238 fprintf_unfiltered (gdb_stdlog, " }\n");
1239 }
1240 return frame;
1241 }
1242
1243 /* Info about the innermost stack frame (contents of FP register). */
1244
1245 static struct frame_info *current_frame;
1246
1247 /* Cache for frame addresses already read by gdb. Valid only while
1248 inferior is stopped. Control variables for the frame cache should
1249 be local to this module. */
1250
1251 static struct obstack frame_cache_obstack;
1252
1253 void *
1254 frame_obstack_zalloc (unsigned long size)
1255 {
1256 void *data = obstack_alloc (&frame_cache_obstack, size);
1257
1258 memset (data, 0, size);
1259 return data;
1260 }
1261
1262 /* Return the innermost (currently executing) stack frame. This is
1263 split into two functions. The function unwind_to_current_frame()
1264 is wrapped in catch exceptions so that, even when the unwind of the
1265 sentinel frame fails, the function still returns a stack frame. */
1266
1267 static int
1268 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1269 {
1270 struct frame_info *frame = get_prev_frame (args);
1271
1272 /* A sentinel frame can fail to unwind, e.g., because its PC value
1273 lands in somewhere like start. */
1274 if (frame == NULL)
1275 return 1;
1276 current_frame = frame;
1277 return 0;
1278 }
1279
1280 struct frame_info *
1281 get_current_frame (void)
1282 {
1283 /* First check, and report, the lack of registers. Having GDB
1284 report "No stack!" or "No memory" when the target doesn't even
1285 have registers is very confusing. Besides, "printcmd.exp"
1286 explicitly checks that ``print $pc'' with no registers prints "No
1287 registers". */
1288 if (!target_has_registers)
1289 error (_("No registers."));
1290 if (!target_has_stack)
1291 error (_("No stack."));
1292 if (!target_has_memory)
1293 error (_("No memory."));
1294 /* Traceframes are effectively a substitute for the live inferior. */
1295 if (get_traceframe_number () < 0)
1296 {
1297 if (ptid_equal (inferior_ptid, null_ptid))
1298 error (_("No selected thread."));
1299 if (is_exited (inferior_ptid))
1300 error (_("Invalid selected thread."));
1301 if (is_executing (inferior_ptid))
1302 error (_("Target is executing."));
1303 }
1304
1305 if (current_frame == NULL)
1306 {
1307 struct frame_info *sentinel_frame =
1308 create_sentinel_frame (current_program_space, get_current_regcache ());
1309 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1310 sentinel_frame, RETURN_MASK_ERROR) != 0)
1311 {
1312 /* Oops! Fake a current frame? Is this useful? It has a PC
1313 of zero, for instance. */
1314 current_frame = sentinel_frame;
1315 }
1316 }
1317 return current_frame;
1318 }
1319
1320 /* The "selected" stack frame is used by default for local and arg
1321 access. May be zero, for no selected frame. */
1322
1323 static struct frame_info *selected_frame;
1324
1325 int
1326 has_stack_frames (void)
1327 {
1328 if (!target_has_registers || !target_has_stack || !target_has_memory)
1329 return 0;
1330
1331 /* No current inferior, no frame. */
1332 if (ptid_equal (inferior_ptid, null_ptid))
1333 return 0;
1334
1335 /* Don't try to read from a dead thread. */
1336 if (is_exited (inferior_ptid))
1337 return 0;
1338
1339 /* ... or from a spinning thread. */
1340 if (is_executing (inferior_ptid))
1341 return 0;
1342
1343 return 1;
1344 }
1345
1346 /* Return the selected frame. Always non-NULL (unless there isn't an
1347 inferior sufficient for creating a frame) in which case an error is
1348 thrown. */
1349
1350 struct frame_info *
1351 get_selected_frame (const char *message)
1352 {
1353 if (selected_frame == NULL)
1354 {
1355 if (message != NULL && !has_stack_frames ())
1356 error (("%s"), message);
1357 /* Hey! Don't trust this. It should really be re-finding the
1358 last selected frame of the currently selected thread. This,
1359 though, is better than nothing. */
1360 select_frame (get_current_frame ());
1361 }
1362 /* There is always a frame. */
1363 gdb_assert (selected_frame != NULL);
1364 return selected_frame;
1365 }
1366
1367 /* If there is a selected frame, return it. Otherwise, return NULL. */
1368
1369 struct frame_info *
1370 get_selected_frame_if_set (void)
1371 {
1372 return selected_frame;
1373 }
1374
1375 /* This is a variant of get_selected_frame() which can be called when
1376 the inferior does not have a frame; in that case it will return
1377 NULL instead of calling error(). */
1378
1379 struct frame_info *
1380 deprecated_safe_get_selected_frame (void)
1381 {
1382 if (!has_stack_frames ())
1383 return NULL;
1384 return get_selected_frame (NULL);
1385 }
1386
1387 /* Select frame FI (or NULL - to invalidate the current frame). */
1388
1389 void
1390 select_frame (struct frame_info *fi)
1391 {
1392 selected_frame = fi;
1393 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1394 frame is being invalidated. */
1395 if (deprecated_selected_frame_level_changed_hook)
1396 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1397
1398 /* FIXME: kseitz/2002-08-28: It would be nice to call
1399 selected_frame_level_changed_event() right here, but due to limitations
1400 in the current interfaces, we would end up flooding UIs with events
1401 because select_frame() is used extensively internally.
1402
1403 Once we have frame-parameterized frame (and frame-related) commands,
1404 the event notification can be moved here, since this function will only
1405 be called when the user's selected frame is being changed. */
1406
1407 /* Ensure that symbols for this frame are read in. Also, determine the
1408 source language of this frame, and switch to it if desired. */
1409 if (fi)
1410 {
1411 CORE_ADDR pc;
1412
1413 /* We retrieve the frame's symtab by using the frame PC.
1414 However we cannot use the frame PC as-is, because it usually
1415 points to the instruction following the "call", which is
1416 sometimes the first instruction of another function. So we
1417 rely on get_frame_address_in_block() which provides us with a
1418 PC which is guaranteed to be inside the frame's code
1419 block. */
1420 if (get_frame_address_in_block_if_available (fi, &pc))
1421 {
1422 struct symtab *s = find_pc_symtab (pc);
1423
1424 if (s
1425 && s->language != current_language->la_language
1426 && s->language != language_unknown
1427 && language_mode == language_mode_auto)
1428 set_language (s->language);
1429 }
1430 }
1431 }
1432
1433 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1434 Always returns a non-NULL value. */
1435
1436 struct frame_info *
1437 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1438 {
1439 struct frame_info *fi;
1440
1441 if (frame_debug)
1442 {
1443 fprintf_unfiltered (gdb_stdlog,
1444 "{ create_new_frame (addr=%s, pc=%s) ",
1445 hex_string (addr), hex_string (pc));
1446 }
1447
1448 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1449
1450 fi->next = create_sentinel_frame (current_program_space,
1451 get_current_regcache ());
1452
1453 /* Set/update this frame's cached PC value, found in the next frame.
1454 Do this before looking for this frame's unwinder. A sniffer is
1455 very likely to read this, and the corresponding unwinder is
1456 entitled to rely that the PC doesn't magically change. */
1457 fi->next->prev_pc.value = pc;
1458 fi->next->prev_pc.p = 1;
1459
1460 /* We currently assume that frame chain's can't cross spaces. */
1461 fi->pspace = fi->next->pspace;
1462 fi->aspace = fi->next->aspace;
1463
1464 /* Select/initialize both the unwind function and the frame's type
1465 based on the PC. */
1466 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1467
1468 fi->this_id.p = 1;
1469 fi->this_id.value = frame_id_build (addr, pc);
1470
1471 if (frame_debug)
1472 {
1473 fprintf_unfiltered (gdb_stdlog, "-> ");
1474 fprint_frame (gdb_stdlog, fi);
1475 fprintf_unfiltered (gdb_stdlog, " }\n");
1476 }
1477
1478 return fi;
1479 }
1480
1481 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1482 innermost frame). Be careful to not fall off the bottom of the
1483 frame chain and onto the sentinel frame. */
1484
1485 struct frame_info *
1486 get_next_frame (struct frame_info *this_frame)
1487 {
1488 if (this_frame->level > 0)
1489 return this_frame->next;
1490 else
1491 return NULL;
1492 }
1493
1494 /* Observer for the target_changed event. */
1495
1496 static void
1497 frame_observer_target_changed (struct target_ops *target)
1498 {
1499 reinit_frame_cache ();
1500 }
1501
1502 /* Flush the entire frame cache. */
1503
1504 void
1505 reinit_frame_cache (void)
1506 {
1507 struct frame_info *fi;
1508
1509 /* Tear down all frame caches. */
1510 for (fi = current_frame; fi != NULL; fi = fi->prev)
1511 {
1512 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1513 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1514 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1515 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1516 }
1517
1518 /* Since we can't really be sure what the first object allocated was. */
1519 obstack_free (&frame_cache_obstack, 0);
1520 obstack_init (&frame_cache_obstack);
1521
1522 if (current_frame != NULL)
1523 annotate_frames_invalid ();
1524
1525 current_frame = NULL; /* Invalidate cache */
1526 select_frame (NULL);
1527 frame_stash_invalidate ();
1528 if (frame_debug)
1529 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1530 }
1531
1532 /* Find where a register is saved (in memory or another register).
1533 The result of frame_register_unwind is just where it is saved
1534 relative to this particular frame. */
1535
1536 static void
1537 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1538 int *optimizedp, enum lval_type *lvalp,
1539 CORE_ADDR *addrp, int *realnump)
1540 {
1541 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1542
1543 while (this_frame != NULL)
1544 {
1545 int unavailable;
1546
1547 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1548 lvalp, addrp, realnump, NULL);
1549
1550 if (*optimizedp)
1551 break;
1552
1553 if (*lvalp != lval_register)
1554 break;
1555
1556 regnum = *realnump;
1557 this_frame = get_next_frame (this_frame);
1558 }
1559 }
1560
1561 /* Return a "struct frame_info" corresponding to the frame that called
1562 THIS_FRAME. Returns NULL if there is no such frame.
1563
1564 Unlike get_prev_frame, this function always tries to unwind the
1565 frame. */
1566
1567 static struct frame_info *
1568 get_prev_frame_1 (struct frame_info *this_frame)
1569 {
1570 struct frame_id this_id;
1571 struct gdbarch *gdbarch;
1572
1573 gdb_assert (this_frame != NULL);
1574 gdbarch = get_frame_arch (this_frame);
1575
1576 if (frame_debug)
1577 {
1578 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1579 if (this_frame != NULL)
1580 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1581 else
1582 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1583 fprintf_unfiltered (gdb_stdlog, ") ");
1584 }
1585
1586 /* Only try to do the unwind once. */
1587 if (this_frame->prev_p)
1588 {
1589 if (frame_debug)
1590 {
1591 fprintf_unfiltered (gdb_stdlog, "-> ");
1592 fprint_frame (gdb_stdlog, this_frame->prev);
1593 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1594 }
1595 return this_frame->prev;
1596 }
1597
1598 /* If the frame unwinder hasn't been selected yet, we must do so
1599 before setting prev_p; otherwise the check for misbehaved
1600 sniffers will think that this frame's sniffer tried to unwind
1601 further (see frame_cleanup_after_sniffer). */
1602 if (this_frame->unwind == NULL)
1603 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1604
1605 this_frame->prev_p = 1;
1606 this_frame->stop_reason = UNWIND_NO_REASON;
1607
1608 /* If we are unwinding from an inline frame, all of the below tests
1609 were already performed when we unwound from the next non-inline
1610 frame. We must skip them, since we can not get THIS_FRAME's ID
1611 until we have unwound all the way down to the previous non-inline
1612 frame. */
1613 if (get_frame_type (this_frame) == INLINE_FRAME)
1614 return get_prev_frame_raw (this_frame);
1615
1616 /* Check that this frame is unwindable. If it isn't, don't try to
1617 unwind to the prev frame. */
1618 this_frame->stop_reason
1619 = this_frame->unwind->stop_reason (this_frame,
1620 &this_frame->prologue_cache);
1621
1622 if (this_frame->stop_reason != UNWIND_NO_REASON)
1623 return NULL;
1624
1625 /* Check that this frame's ID was valid. If it wasn't, don't try to
1626 unwind to the prev frame. Be careful to not apply this test to
1627 the sentinel frame. */
1628 this_id = get_frame_id (this_frame);
1629 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1630 {
1631 if (frame_debug)
1632 {
1633 fprintf_unfiltered (gdb_stdlog, "-> ");
1634 fprint_frame (gdb_stdlog, NULL);
1635 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1636 }
1637 this_frame->stop_reason = UNWIND_NULL_ID;
1638 return NULL;
1639 }
1640
1641 /* Check that this frame's ID isn't inner to (younger, below, next)
1642 the next frame. This happens when a frame unwind goes backwards.
1643 This check is valid only if this frame and the next frame are NORMAL.
1644 See the comment at frame_id_inner for details. */
1645 if (get_frame_type (this_frame) == NORMAL_FRAME
1646 && this_frame->next->unwind->type == NORMAL_FRAME
1647 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1648 get_frame_id (this_frame->next)))
1649 {
1650 CORE_ADDR this_pc_in_block;
1651 struct minimal_symbol *morestack_msym;
1652 const char *morestack_name = NULL;
1653
1654 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1655 this_pc_in_block = get_frame_address_in_block (this_frame);
1656 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1657 if (morestack_msym)
1658 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1659 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1660 {
1661 if (frame_debug)
1662 {
1663 fprintf_unfiltered (gdb_stdlog, "-> ");
1664 fprint_frame (gdb_stdlog, NULL);
1665 fprintf_unfiltered (gdb_stdlog,
1666 " // this frame ID is inner }\n");
1667 }
1668 this_frame->stop_reason = UNWIND_INNER_ID;
1669 return NULL;
1670 }
1671 }
1672
1673 /* Check that this and the next frame are not identical. If they
1674 are, there is most likely a stack cycle. As with the inner-than
1675 test above, avoid comparing the inner-most and sentinel frames. */
1676 if (this_frame->level > 0
1677 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1678 {
1679 if (frame_debug)
1680 {
1681 fprintf_unfiltered (gdb_stdlog, "-> ");
1682 fprint_frame (gdb_stdlog, NULL);
1683 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1684 }
1685 this_frame->stop_reason = UNWIND_SAME_ID;
1686 return NULL;
1687 }
1688
1689 /* Check that this and the next frame do not unwind the PC register
1690 to the same memory location. If they do, then even though they
1691 have different frame IDs, the new frame will be bogus; two
1692 functions can't share a register save slot for the PC. This can
1693 happen when the prologue analyzer finds a stack adjustment, but
1694 no PC save.
1695
1696 This check does assume that the "PC register" is roughly a
1697 traditional PC, even if the gdbarch_unwind_pc method adjusts
1698 it (we do not rely on the value, only on the unwound PC being
1699 dependent on this value). A potential improvement would be
1700 to have the frame prev_pc method and the gdbarch unwind_pc
1701 method set the same lval and location information as
1702 frame_register_unwind. */
1703 if (this_frame->level > 0
1704 && gdbarch_pc_regnum (gdbarch) >= 0
1705 && get_frame_type (this_frame) == NORMAL_FRAME
1706 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1707 || get_frame_type (this_frame->next) == INLINE_FRAME))
1708 {
1709 int optimized, realnum, nrealnum;
1710 enum lval_type lval, nlval;
1711 CORE_ADDR addr, naddr;
1712
1713 frame_register_unwind_location (this_frame,
1714 gdbarch_pc_regnum (gdbarch),
1715 &optimized, &lval, &addr, &realnum);
1716 frame_register_unwind_location (get_next_frame (this_frame),
1717 gdbarch_pc_regnum (gdbarch),
1718 &optimized, &nlval, &naddr, &nrealnum);
1719
1720 if ((lval == lval_memory && lval == nlval && addr == naddr)
1721 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1722 {
1723 if (frame_debug)
1724 {
1725 fprintf_unfiltered (gdb_stdlog, "-> ");
1726 fprint_frame (gdb_stdlog, NULL);
1727 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1728 }
1729
1730 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1731 this_frame->prev = NULL;
1732 return NULL;
1733 }
1734 }
1735
1736 return get_prev_frame_raw (this_frame);
1737 }
1738
1739 /* Construct a new "struct frame_info" and link it previous to
1740 this_frame. */
1741
1742 static struct frame_info *
1743 get_prev_frame_raw (struct frame_info *this_frame)
1744 {
1745 struct frame_info *prev_frame;
1746
1747 /* Allocate the new frame but do not wire it in to the frame chain.
1748 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1749 frame->next to pull some fancy tricks (of course such code is, by
1750 definition, recursive). Try to prevent it.
1751
1752 There is no reason to worry about memory leaks, should the
1753 remainder of the function fail. The allocated memory will be
1754 quickly reclaimed when the frame cache is flushed, and the `we've
1755 been here before' check above will stop repeated memory
1756 allocation calls. */
1757 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1758 prev_frame->level = this_frame->level + 1;
1759
1760 /* For now, assume we don't have frame chains crossing address
1761 spaces. */
1762 prev_frame->pspace = this_frame->pspace;
1763 prev_frame->aspace = this_frame->aspace;
1764
1765 /* Don't yet compute ->unwind (and hence ->type). It is computed
1766 on-demand in get_frame_type, frame_register_unwind, and
1767 get_frame_id. */
1768
1769 /* Don't yet compute the frame's ID. It is computed on-demand by
1770 get_frame_id(). */
1771
1772 /* The unwound frame ID is validate at the start of this function,
1773 as part of the logic to decide if that frame should be further
1774 unwound, and not here while the prev frame is being created.
1775 Doing this makes it possible for the user to examine a frame that
1776 has an invalid frame ID.
1777
1778 Some very old VAX code noted: [...] For the sake of argument,
1779 suppose that the stack is somewhat trashed (which is one reason
1780 that "info frame" exists). So, return 0 (indicating we don't
1781 know the address of the arglist) if we don't know what frame this
1782 frame calls. */
1783
1784 /* Link it in. */
1785 this_frame->prev = prev_frame;
1786 prev_frame->next = this_frame;
1787
1788 if (frame_debug)
1789 {
1790 fprintf_unfiltered (gdb_stdlog, "-> ");
1791 fprint_frame (gdb_stdlog, prev_frame);
1792 fprintf_unfiltered (gdb_stdlog, " }\n");
1793 }
1794
1795 return prev_frame;
1796 }
1797
1798 /* Debug routine to print a NULL frame being returned. */
1799
1800 static void
1801 frame_debug_got_null_frame (struct frame_info *this_frame,
1802 const char *reason)
1803 {
1804 if (frame_debug)
1805 {
1806 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1807 if (this_frame != NULL)
1808 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1809 else
1810 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1811 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1812 }
1813 }
1814
1815 /* Is this (non-sentinel) frame in the "main"() function? */
1816
1817 static int
1818 inside_main_func (struct frame_info *this_frame)
1819 {
1820 struct minimal_symbol *msymbol;
1821 CORE_ADDR maddr;
1822
1823 if (symfile_objfile == 0)
1824 return 0;
1825 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1826 if (msymbol == NULL)
1827 return 0;
1828 /* Make certain that the code, and not descriptor, address is
1829 returned. */
1830 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1831 SYMBOL_VALUE_ADDRESS (msymbol),
1832 &current_target);
1833 return maddr == get_frame_func (this_frame);
1834 }
1835
1836 /* Test whether THIS_FRAME is inside the process entry point function. */
1837
1838 static int
1839 inside_entry_func (struct frame_info *this_frame)
1840 {
1841 CORE_ADDR entry_point;
1842
1843 if (!entry_point_address_query (&entry_point))
1844 return 0;
1845
1846 return get_frame_func (this_frame) == entry_point;
1847 }
1848
1849 /* Return a structure containing various interesting information about
1850 the frame that called THIS_FRAME. Returns NULL if there is entier
1851 no such frame or the frame fails any of a set of target-independent
1852 condition that should terminate the frame chain (e.g., as unwinding
1853 past main()).
1854
1855 This function should not contain target-dependent tests, such as
1856 checking whether the program-counter is zero. */
1857
1858 struct frame_info *
1859 get_prev_frame (struct frame_info *this_frame)
1860 {
1861 CORE_ADDR frame_pc;
1862 int frame_pc_p;
1863
1864 /* There is always a frame. If this assertion fails, suspect that
1865 something should be calling get_selected_frame() or
1866 get_current_frame(). */
1867 gdb_assert (this_frame != NULL);
1868 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
1869
1870 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1871 sense to stop unwinding at a dummy frame. One place where a dummy
1872 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1873 pcsqh register (space register for the instruction at the head of the
1874 instruction queue) cannot be written directly; the only way to set it
1875 is to branch to code that is in the target space. In order to implement
1876 frame dummies on HPUX, the called function is made to jump back to where
1877 the inferior was when the user function was called. If gdb was inside
1878 the main function when we created the dummy frame, the dummy frame will
1879 point inside the main function. */
1880 if (this_frame->level >= 0
1881 && get_frame_type (this_frame) == NORMAL_FRAME
1882 && !backtrace_past_main
1883 && frame_pc_p
1884 && inside_main_func (this_frame))
1885 /* Don't unwind past main(). Note, this is done _before_ the
1886 frame has been marked as previously unwound. That way if the
1887 user later decides to enable unwinds past main(), that will
1888 automatically happen. */
1889 {
1890 frame_debug_got_null_frame (this_frame, "inside main func");
1891 return NULL;
1892 }
1893
1894 /* If the user's backtrace limit has been exceeded, stop. We must
1895 add two to the current level; one of those accounts for backtrace_limit
1896 being 1-based and the level being 0-based, and the other accounts for
1897 the level of the new frame instead of the level of the current
1898 frame. */
1899 if (this_frame->level + 2 > backtrace_limit)
1900 {
1901 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1902 return NULL;
1903 }
1904
1905 /* If we're already inside the entry function for the main objfile,
1906 then it isn't valid. Don't apply this test to a dummy frame -
1907 dummy frame PCs typically land in the entry func. Don't apply
1908 this test to the sentinel frame. Sentinel frames should always
1909 be allowed to unwind. */
1910 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1911 wasn't checking for "main" in the minimal symbols. With that
1912 fixed asm-source tests now stop in "main" instead of halting the
1913 backtrace in weird and wonderful ways somewhere inside the entry
1914 file. Suspect that tests for inside the entry file/func were
1915 added to work around that (now fixed) case. */
1916 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1917 suggested having the inside_entry_func test use the
1918 inside_main_func() msymbol trick (along with entry_point_address()
1919 I guess) to determine the address range of the start function.
1920 That should provide a far better stopper than the current
1921 heuristics. */
1922 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1923 applied tail-call optimizations to main so that a function called
1924 from main returns directly to the caller of main. Since we don't
1925 stop at main, we should at least stop at the entry point of the
1926 application. */
1927 if (this_frame->level >= 0
1928 && get_frame_type (this_frame) == NORMAL_FRAME
1929 && !backtrace_past_entry
1930 && frame_pc_p
1931 && inside_entry_func (this_frame))
1932 {
1933 frame_debug_got_null_frame (this_frame, "inside entry func");
1934 return NULL;
1935 }
1936
1937 /* Assume that the only way to get a zero PC is through something
1938 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1939 will never unwind a zero PC. */
1940 if (this_frame->level > 0
1941 && (get_frame_type (this_frame) == NORMAL_FRAME
1942 || get_frame_type (this_frame) == INLINE_FRAME)
1943 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1944 && frame_pc_p && frame_pc == 0)
1945 {
1946 frame_debug_got_null_frame (this_frame, "zero PC");
1947 return NULL;
1948 }
1949
1950 return get_prev_frame_1 (this_frame);
1951 }
1952
1953 CORE_ADDR
1954 get_frame_pc (struct frame_info *frame)
1955 {
1956 gdb_assert (frame->next != NULL);
1957 return frame_unwind_pc (frame->next);
1958 }
1959
1960 int
1961 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
1962 {
1963 volatile struct gdb_exception ex;
1964
1965 gdb_assert (frame->next != NULL);
1966
1967 TRY_CATCH (ex, RETURN_MASK_ERROR)
1968 {
1969 *pc = frame_unwind_pc (frame->next);
1970 }
1971 if (ex.reason < 0)
1972 {
1973 if (ex.error == NOT_AVAILABLE_ERROR)
1974 return 0;
1975 else
1976 throw_exception (ex);
1977 }
1978
1979 return 1;
1980 }
1981
1982 /* Return an address that falls within THIS_FRAME's code block. */
1983
1984 CORE_ADDR
1985 get_frame_address_in_block (struct frame_info *this_frame)
1986 {
1987 /* A draft address. */
1988 CORE_ADDR pc = get_frame_pc (this_frame);
1989
1990 struct frame_info *next_frame = this_frame->next;
1991
1992 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1993 Normally the resume address is inside the body of the function
1994 associated with THIS_FRAME, but there is a special case: when
1995 calling a function which the compiler knows will never return
1996 (for instance abort), the call may be the very last instruction
1997 in the calling function. The resume address will point after the
1998 call and may be at the beginning of a different function
1999 entirely.
2000
2001 If THIS_FRAME is a signal frame or dummy frame, then we should
2002 not adjust the unwound PC. For a dummy frame, GDB pushed the
2003 resume address manually onto the stack. For a signal frame, the
2004 OS may have pushed the resume address manually and invoked the
2005 handler (e.g. GNU/Linux), or invoked the trampoline which called
2006 the signal handler - but in either case the signal handler is
2007 expected to return to the trampoline. So in both of these
2008 cases we know that the resume address is executable and
2009 related. So we only need to adjust the PC if THIS_FRAME
2010 is a normal function.
2011
2012 If the program has been interrupted while THIS_FRAME is current,
2013 then clearly the resume address is inside the associated
2014 function. There are three kinds of interruption: debugger stop
2015 (next frame will be SENTINEL_FRAME), operating system
2016 signal or exception (next frame will be SIGTRAMP_FRAME),
2017 or debugger-induced function call (next frame will be
2018 DUMMY_FRAME). So we only need to adjust the PC if
2019 NEXT_FRAME is a normal function.
2020
2021 We check the type of NEXT_FRAME first, since it is already
2022 known; frame type is determined by the unwinder, and since
2023 we have THIS_FRAME we've already selected an unwinder for
2024 NEXT_FRAME.
2025
2026 If the next frame is inlined, we need to keep going until we find
2027 the real function - for instance, if a signal handler is invoked
2028 while in an inlined function, then the code address of the
2029 "calling" normal function should not be adjusted either. */
2030
2031 while (get_frame_type (next_frame) == INLINE_FRAME)
2032 next_frame = next_frame->next;
2033
2034 if (get_frame_type (next_frame) == NORMAL_FRAME
2035 && (get_frame_type (this_frame) == NORMAL_FRAME
2036 || get_frame_type (this_frame) == INLINE_FRAME))
2037 return pc - 1;
2038
2039 return pc;
2040 }
2041
2042 int
2043 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2044 CORE_ADDR *pc)
2045 {
2046 volatile struct gdb_exception ex;
2047
2048 TRY_CATCH (ex, RETURN_MASK_ERROR)
2049 {
2050 *pc = get_frame_address_in_block (this_frame);
2051 }
2052 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2053 return 0;
2054 else if (ex.reason < 0)
2055 throw_exception (ex);
2056 else
2057 return 1;
2058 }
2059
2060 void
2061 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2062 {
2063 struct frame_info *next_frame;
2064 int notcurrent;
2065 CORE_ADDR pc;
2066
2067 /* If the next frame represents an inlined function call, this frame's
2068 sal is the "call site" of that inlined function, which can not
2069 be inferred from get_frame_pc. */
2070 next_frame = get_next_frame (frame);
2071 if (frame_inlined_callees (frame) > 0)
2072 {
2073 struct symbol *sym;
2074
2075 if (next_frame)
2076 sym = get_frame_function (next_frame);
2077 else
2078 sym = inline_skipped_symbol (inferior_ptid);
2079
2080 /* If frame is inline, it certainly has symbols. */
2081 gdb_assert (sym);
2082 init_sal (sal);
2083 if (SYMBOL_LINE (sym) != 0)
2084 {
2085 sal->symtab = SYMBOL_SYMTAB (sym);
2086 sal->line = SYMBOL_LINE (sym);
2087 }
2088 else
2089 /* If the symbol does not have a location, we don't know where
2090 the call site is. Do not pretend to. This is jarring, but
2091 we can't do much better. */
2092 sal->pc = get_frame_pc (frame);
2093
2094 return;
2095 }
2096
2097 /* If FRAME is not the innermost frame, that normally means that
2098 FRAME->pc points at the return instruction (which is *after* the
2099 call instruction), and we want to get the line containing the
2100 call (because the call is where the user thinks the program is).
2101 However, if the next frame is either a SIGTRAMP_FRAME or a
2102 DUMMY_FRAME, then the next frame will contain a saved interrupt
2103 PC and such a PC indicates the current (rather than next)
2104 instruction/line, consequently, for such cases, want to get the
2105 line containing fi->pc. */
2106 if (!get_frame_pc_if_available (frame, &pc))
2107 {
2108 init_sal (sal);
2109 return;
2110 }
2111
2112 notcurrent = (pc != get_frame_address_in_block (frame));
2113 (*sal) = find_pc_line (pc, notcurrent);
2114 }
2115
2116 /* Per "frame.h", return the ``address'' of the frame. Code should
2117 really be using get_frame_id(). */
2118 CORE_ADDR
2119 get_frame_base (struct frame_info *fi)
2120 {
2121 return get_frame_id (fi).stack_addr;
2122 }
2123
2124 /* High-level offsets into the frame. Used by the debug info. */
2125
2126 CORE_ADDR
2127 get_frame_base_address (struct frame_info *fi)
2128 {
2129 if (get_frame_type (fi) != NORMAL_FRAME)
2130 return 0;
2131 if (fi->base == NULL)
2132 fi->base = frame_base_find_by_frame (fi);
2133 /* Sneaky: If the low-level unwind and high-level base code share a
2134 common unwinder, let them share the prologue cache. */
2135 if (fi->base->unwind == fi->unwind)
2136 return fi->base->this_base (fi, &fi->prologue_cache);
2137 return fi->base->this_base (fi, &fi->base_cache);
2138 }
2139
2140 CORE_ADDR
2141 get_frame_locals_address (struct frame_info *fi)
2142 {
2143 if (get_frame_type (fi) != NORMAL_FRAME)
2144 return 0;
2145 /* If there isn't a frame address method, find it. */
2146 if (fi->base == NULL)
2147 fi->base = frame_base_find_by_frame (fi);
2148 /* Sneaky: If the low-level unwind and high-level base code share a
2149 common unwinder, let them share the prologue cache. */
2150 if (fi->base->unwind == fi->unwind)
2151 return fi->base->this_locals (fi, &fi->prologue_cache);
2152 return fi->base->this_locals (fi, &fi->base_cache);
2153 }
2154
2155 CORE_ADDR
2156 get_frame_args_address (struct frame_info *fi)
2157 {
2158 if (get_frame_type (fi) != NORMAL_FRAME)
2159 return 0;
2160 /* If there isn't a frame address method, find it. */
2161 if (fi->base == NULL)
2162 fi->base = frame_base_find_by_frame (fi);
2163 /* Sneaky: If the low-level unwind and high-level base code share a
2164 common unwinder, let them share the prologue cache. */
2165 if (fi->base->unwind == fi->unwind)
2166 return fi->base->this_args (fi, &fi->prologue_cache);
2167 return fi->base->this_args (fi, &fi->base_cache);
2168 }
2169
2170 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2171 otherwise. */
2172
2173 int
2174 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2175 {
2176 if (fi->unwind == NULL)
2177 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2178 return fi->unwind == unwinder;
2179 }
2180
2181 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2182 or -1 for a NULL frame. */
2183
2184 int
2185 frame_relative_level (struct frame_info *fi)
2186 {
2187 if (fi == NULL)
2188 return -1;
2189 else
2190 return fi->level;
2191 }
2192
2193 enum frame_type
2194 get_frame_type (struct frame_info *frame)
2195 {
2196 if (frame->unwind == NULL)
2197 /* Initialize the frame's unwinder because that's what
2198 provides the frame's type. */
2199 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2200 return frame->unwind->type;
2201 }
2202
2203 struct program_space *
2204 get_frame_program_space (struct frame_info *frame)
2205 {
2206 return frame->pspace;
2207 }
2208
2209 struct program_space *
2210 frame_unwind_program_space (struct frame_info *this_frame)
2211 {
2212 gdb_assert (this_frame);
2213
2214 /* This is really a placeholder to keep the API consistent --- we
2215 assume for now that we don't have frame chains crossing
2216 spaces. */
2217 return this_frame->pspace;
2218 }
2219
2220 struct address_space *
2221 get_frame_address_space (struct frame_info *frame)
2222 {
2223 return frame->aspace;
2224 }
2225
2226 /* Memory access methods. */
2227
2228 void
2229 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2230 gdb_byte *buf, int len)
2231 {
2232 read_memory (addr, buf, len);
2233 }
2234
2235 LONGEST
2236 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2237 int len)
2238 {
2239 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2240 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2241
2242 return read_memory_integer (addr, len, byte_order);
2243 }
2244
2245 ULONGEST
2246 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2247 int len)
2248 {
2249 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2251
2252 return read_memory_unsigned_integer (addr, len, byte_order);
2253 }
2254
2255 int
2256 safe_frame_unwind_memory (struct frame_info *this_frame,
2257 CORE_ADDR addr, gdb_byte *buf, int len)
2258 {
2259 /* NOTE: target_read_memory returns zero on success! */
2260 return !target_read_memory (addr, buf, len);
2261 }
2262
2263 /* Architecture methods. */
2264
2265 struct gdbarch *
2266 get_frame_arch (struct frame_info *this_frame)
2267 {
2268 return frame_unwind_arch (this_frame->next);
2269 }
2270
2271 struct gdbarch *
2272 frame_unwind_arch (struct frame_info *next_frame)
2273 {
2274 if (!next_frame->prev_arch.p)
2275 {
2276 struct gdbarch *arch;
2277
2278 if (next_frame->unwind == NULL)
2279 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2280
2281 if (next_frame->unwind->prev_arch != NULL)
2282 arch = next_frame->unwind->prev_arch (next_frame,
2283 &next_frame->prologue_cache);
2284 else
2285 arch = get_frame_arch (next_frame);
2286
2287 next_frame->prev_arch.arch = arch;
2288 next_frame->prev_arch.p = 1;
2289 if (frame_debug)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2292 next_frame->level,
2293 gdbarch_bfd_arch_info (arch)->printable_name);
2294 }
2295
2296 return next_frame->prev_arch.arch;
2297 }
2298
2299 struct gdbarch *
2300 frame_unwind_caller_arch (struct frame_info *next_frame)
2301 {
2302 return frame_unwind_arch (skip_inlined_frames (next_frame));
2303 }
2304
2305 /* Stack pointer methods. */
2306
2307 CORE_ADDR
2308 get_frame_sp (struct frame_info *this_frame)
2309 {
2310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2311
2312 /* Normality - an architecture that provides a way of obtaining any
2313 frame inner-most address. */
2314 if (gdbarch_unwind_sp_p (gdbarch))
2315 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2316 operate on THIS_FRAME now. */
2317 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2318 /* Now things are really are grim. Hope that the value returned by
2319 the gdbarch_sp_regnum register is meaningful. */
2320 if (gdbarch_sp_regnum (gdbarch) >= 0)
2321 return get_frame_register_unsigned (this_frame,
2322 gdbarch_sp_regnum (gdbarch));
2323 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2324 }
2325
2326 /* Return the reason why we can't unwind past FRAME. */
2327
2328 enum unwind_stop_reason
2329 get_frame_unwind_stop_reason (struct frame_info *frame)
2330 {
2331 /* If we haven't tried to unwind past this point yet, then assume
2332 that unwinding would succeed. */
2333 if (frame->prev_p == 0)
2334 return UNWIND_NO_REASON;
2335
2336 /* Otherwise, we set a reason when we succeeded (or failed) to
2337 unwind. */
2338 return frame->stop_reason;
2339 }
2340
2341 /* Return a string explaining REASON. */
2342
2343 const char *
2344 frame_stop_reason_string (enum unwind_stop_reason reason)
2345 {
2346 switch (reason)
2347 {
2348 case UNWIND_NULL_ID:
2349 return _("unwinder did not report frame ID");
2350
2351 case UNWIND_UNAVAILABLE:
2352 return _("Not enough registers or memory available to unwind further");
2353
2354 case UNWIND_INNER_ID:
2355 return _("previous frame inner to this frame (corrupt stack?)");
2356
2357 case UNWIND_SAME_ID:
2358 return _("previous frame identical to this frame (corrupt stack?)");
2359
2360 case UNWIND_NO_SAVED_PC:
2361 return _("frame did not save the PC");
2362
2363 case UNWIND_NO_REASON:
2364 case UNWIND_FIRST_ERROR:
2365 default:
2366 internal_error (__FILE__, __LINE__,
2367 "Invalid frame stop reason");
2368 }
2369 }
2370
2371 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2372 FRAME. */
2373
2374 static void
2375 frame_cleanup_after_sniffer (void *arg)
2376 {
2377 struct frame_info *frame = arg;
2378
2379 /* The sniffer should not allocate a prologue cache if it did not
2380 match this frame. */
2381 gdb_assert (frame->prologue_cache == NULL);
2382
2383 /* No sniffer should extend the frame chain; sniff based on what is
2384 already certain. */
2385 gdb_assert (!frame->prev_p);
2386
2387 /* The sniffer should not check the frame's ID; that's circular. */
2388 gdb_assert (!frame->this_id.p);
2389
2390 /* Clear cached fields dependent on the unwinder.
2391
2392 The previous PC is independent of the unwinder, but the previous
2393 function is not (see get_frame_address_in_block). */
2394 frame->prev_func.p = 0;
2395 frame->prev_func.addr = 0;
2396
2397 /* Discard the unwinder last, so that we can easily find it if an assertion
2398 in this function triggers. */
2399 frame->unwind = NULL;
2400 }
2401
2402 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2403 Return a cleanup which should be called if unwinding fails, and
2404 discarded if it succeeds. */
2405
2406 struct cleanup *
2407 frame_prepare_for_sniffer (struct frame_info *frame,
2408 const struct frame_unwind *unwind)
2409 {
2410 gdb_assert (frame->unwind == NULL);
2411 frame->unwind = unwind;
2412 return make_cleanup (frame_cleanup_after_sniffer, frame);
2413 }
2414
2415 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2416
2417 static struct cmd_list_element *set_backtrace_cmdlist;
2418 static struct cmd_list_element *show_backtrace_cmdlist;
2419
2420 static void
2421 set_backtrace_cmd (char *args, int from_tty)
2422 {
2423 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2424 }
2425
2426 static void
2427 show_backtrace_cmd (char *args, int from_tty)
2428 {
2429 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2430 }
2431
2432 void
2433 _initialize_frame (void)
2434 {
2435 obstack_init (&frame_cache_obstack);
2436
2437 observer_attach_target_changed (frame_observer_target_changed);
2438
2439 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2440 Set backtrace specific variables.\n\
2441 Configure backtrace variables such as the backtrace limit"),
2442 &set_backtrace_cmdlist, "set backtrace ",
2443 0/*allow-unknown*/, &setlist);
2444 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2445 Show backtrace specific variables\n\
2446 Show backtrace variables such as the backtrace limit"),
2447 &show_backtrace_cmdlist, "show backtrace ",
2448 0/*allow-unknown*/, &showlist);
2449
2450 add_setshow_boolean_cmd ("past-main", class_obscure,
2451 &backtrace_past_main, _("\
2452 Set whether backtraces should continue past \"main\"."), _("\
2453 Show whether backtraces should continue past \"main\"."), _("\
2454 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2455 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2456 of the stack trace."),
2457 NULL,
2458 show_backtrace_past_main,
2459 &set_backtrace_cmdlist,
2460 &show_backtrace_cmdlist);
2461
2462 add_setshow_boolean_cmd ("past-entry", class_obscure,
2463 &backtrace_past_entry, _("\
2464 Set whether backtraces should continue past the entry point of a program."),
2465 _("\
2466 Show whether backtraces should continue past the entry point of a program."),
2467 _("\
2468 Normally there are no callers beyond the entry point of a program, so GDB\n\
2469 will terminate the backtrace there. Set this variable if you need to see\n\
2470 the rest of the stack trace."),
2471 NULL,
2472 show_backtrace_past_entry,
2473 &set_backtrace_cmdlist,
2474 &show_backtrace_cmdlist);
2475
2476 add_setshow_integer_cmd ("limit", class_obscure,
2477 &backtrace_limit, _("\
2478 Set an upper bound on the number of backtrace levels."), _("\
2479 Show the upper bound on the number of backtrace levels."), _("\
2480 No more than the specified number of frames can be displayed or examined.\n\
2481 Zero is unlimited."),
2482 NULL,
2483 show_backtrace_limit,
2484 &set_backtrace_cmdlist,
2485 &show_backtrace_cmdlist);
2486
2487 /* Debug this files internals. */
2488 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2489 Set frame debugging."), _("\
2490 Show frame debugging."), _("\
2491 When non-zero, frame specific internal debugging is enabled."),
2492 NULL,
2493 show_frame_debug,
2494 &setdebuglist, &showdebuglist);
2495 }
This page took 0.119123 seconds and 4 git commands to generate.