2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "target.h"
25 #include "value.h"
26 #include "inferior.h" /* for inferior_ptid */
27 #include "regcache.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "user-regs.h"
31 #include "gdb_obstack.h"
32 #include "dummy-frame.h"
33 #include "sentinel-frame.h"
34 #include "gdbcore.h"
35 #include "annotate.h"
36 #include "language.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "observer.h"
42 #include "objfiles.h"
43 #include "exceptions.h"
44 #include "gdbthread.h"
45 #include "block.h"
46 #include "inline-frame.h"
47 #include "tracepoint.h"
48
49 static struct frame_info *get_prev_frame_1 (struct frame_info *this_frame);
50 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
51
52 /* We keep a cache of stack frames, each of which is a "struct
53 frame_info". The innermost one gets allocated (in
54 wait_for_inferior) each time the inferior stops; current_frame
55 points to it. Additional frames get allocated (in get_prev_frame)
56 as needed, and are chained through the next and prev fields. Any
57 time that the frame cache becomes invalid (most notably when we
58 execute something, but also if we change how we interpret the
59 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
60 which reads new symbols)), we should call reinit_frame_cache. */
61
62 struct frame_info
63 {
64 /* Level of this frame. The inner-most (youngest) frame is at level
65 0. As you move towards the outer-most (oldest) frame, the level
66 increases. This is a cached value. It could just as easily be
67 computed by counting back from the selected frame to the inner
68 most frame. */
69 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
70 reserved to indicate a bogus frame - one that has been created
71 just to keep GDB happy (GDB always needs a frame). For the
72 moment leave this as speculation. */
73 int level;
74
75 /* The frame's program space. */
76 struct program_space *pspace;
77
78 /* The frame's address space. */
79 struct address_space *aspace;
80
81 /* The frame's low-level unwinder and corresponding cache. The
82 low-level unwinder is responsible for unwinding register values
83 for the previous frame. The low-level unwind methods are
84 selected based on the presence, or otherwise, of register unwind
85 information such as CFI. */
86 void *prologue_cache;
87 const struct frame_unwind *unwind;
88
89 /* Cached copy of the previous frame's architecture. */
90 struct
91 {
92 int p;
93 struct gdbarch *arch;
94 } prev_arch;
95
96 /* Cached copy of the previous frame's resume address. */
97 struct {
98 int p;
99 CORE_ADDR value;
100 } prev_pc;
101
102 /* Cached copy of the previous frame's function address. */
103 struct
104 {
105 CORE_ADDR addr;
106 int p;
107 } prev_func;
108
109 /* This frame's ID. */
110 struct
111 {
112 int p;
113 struct frame_id value;
114 } this_id;
115
116 /* The frame's high-level base methods, and corresponding cache.
117 The high level base methods are selected based on the frame's
118 debug info. */
119 const struct frame_base *base;
120 void *base_cache;
121
122 /* Pointers to the next (down, inner, younger) and previous (up,
123 outer, older) frame_info's in the frame cache. */
124 struct frame_info *next; /* down, inner, younger */
125 int prev_p;
126 struct frame_info *prev; /* up, outer, older */
127
128 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
129 could. Only valid when PREV_P is set. */
130 enum unwind_stop_reason stop_reason;
131 };
132
133 /* A frame stash used to speed up frame lookups. */
134
135 /* We currently only stash one frame at a time, as this seems to be
136 sufficient for now. */
137 static struct frame_info *frame_stash = NULL;
138
139 /* Add the following FRAME to the frame stash. */
140
141 static void
142 frame_stash_add (struct frame_info *frame)
143 {
144 frame_stash = frame;
145 }
146
147 /* Search the frame stash for an entry with the given frame ID.
148 If found, return that frame. Otherwise return NULL. */
149
150 static struct frame_info *
151 frame_stash_find (struct frame_id id)
152 {
153 if (frame_stash && frame_id_eq (frame_stash->this_id.value, id))
154 return frame_stash;
155
156 return NULL;
157 }
158
159 /* Invalidate the frame stash by removing all entries in it. */
160
161 static void
162 frame_stash_invalidate (void)
163 {
164 frame_stash = NULL;
165 }
166
167 /* Flag to control debugging. */
168
169 int frame_debug;
170 static void
171 show_frame_debug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
175 }
176
177 /* Flag to indicate whether backtraces should stop at main et.al. */
178
179 static int backtrace_past_main;
180 static void
181 show_backtrace_past_main (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file,
185 _("Whether backtraces should "
186 "continue past \"main\" is %s.\n"),
187 value);
188 }
189
190 static int backtrace_past_entry;
191 static void
192 show_backtrace_past_entry (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194 {
195 fprintf_filtered (file, _("Whether backtraces should continue past the "
196 "entry point of a program is %s.\n"),
197 value);
198 }
199
200 static int backtrace_limit = INT_MAX;
201 static void
202 show_backtrace_limit (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file,
206 _("An upper bound on the number "
207 "of backtrace levels is %s.\n"),
208 value);
209 }
210
211
212 static void
213 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
214 {
215 if (p)
216 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
217 else
218 fprintf_unfiltered (file, "!%s", name);
219 }
220
221 void
222 fprint_frame_id (struct ui_file *file, struct frame_id id)
223 {
224 fprintf_unfiltered (file, "{");
225 fprint_field (file, "stack", id.stack_addr_p, id.stack_addr);
226 fprintf_unfiltered (file, ",");
227 fprint_field (file, "code", id.code_addr_p, id.code_addr);
228 fprintf_unfiltered (file, ",");
229 fprint_field (file, "special", id.special_addr_p, id.special_addr);
230 if (id.inline_depth)
231 fprintf_unfiltered (file, ",inlined=%d", id.inline_depth);
232 fprintf_unfiltered (file, "}");
233 }
234
235 static void
236 fprint_frame_type (struct ui_file *file, enum frame_type type)
237 {
238 switch (type)
239 {
240 case NORMAL_FRAME:
241 fprintf_unfiltered (file, "NORMAL_FRAME");
242 return;
243 case DUMMY_FRAME:
244 fprintf_unfiltered (file, "DUMMY_FRAME");
245 return;
246 case INLINE_FRAME:
247 fprintf_unfiltered (file, "INLINE_FRAME");
248 return;
249 case SENTINEL_FRAME:
250 fprintf_unfiltered (file, "SENTINEL_FRAME");
251 return;
252 case SIGTRAMP_FRAME:
253 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
254 return;
255 case ARCH_FRAME:
256 fprintf_unfiltered (file, "ARCH_FRAME");
257 return;
258 default:
259 fprintf_unfiltered (file, "<unknown type>");
260 return;
261 };
262 }
263
264 static void
265 fprint_frame (struct ui_file *file, struct frame_info *fi)
266 {
267 if (fi == NULL)
268 {
269 fprintf_unfiltered (file, "<NULL frame>");
270 return;
271 }
272 fprintf_unfiltered (file, "{");
273 fprintf_unfiltered (file, "level=%d", fi->level);
274 fprintf_unfiltered (file, ",");
275 fprintf_unfiltered (file, "type=");
276 if (fi->unwind != NULL)
277 fprint_frame_type (file, fi->unwind->type);
278 else
279 fprintf_unfiltered (file, "<unknown>");
280 fprintf_unfiltered (file, ",");
281 fprintf_unfiltered (file, "unwind=");
282 if (fi->unwind != NULL)
283 gdb_print_host_address (fi->unwind, file);
284 else
285 fprintf_unfiltered (file, "<unknown>");
286 fprintf_unfiltered (file, ",");
287 fprintf_unfiltered (file, "pc=");
288 if (fi->next != NULL && fi->next->prev_pc.p)
289 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_pc.value));
290 else
291 fprintf_unfiltered (file, "<unknown>");
292 fprintf_unfiltered (file, ",");
293 fprintf_unfiltered (file, "id=");
294 if (fi->this_id.p)
295 fprint_frame_id (file, fi->this_id.value);
296 else
297 fprintf_unfiltered (file, "<unknown>");
298 fprintf_unfiltered (file, ",");
299 fprintf_unfiltered (file, "func=");
300 if (fi->next != NULL && fi->next->prev_func.p)
301 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
302 else
303 fprintf_unfiltered (file, "<unknown>");
304 fprintf_unfiltered (file, "}");
305 }
306
307 /* Given FRAME, return the enclosing normal frame for inlined
308 function frames. Otherwise return the original frame. */
309
310 static struct frame_info *
311 skip_inlined_frames (struct frame_info *frame)
312 {
313 while (get_frame_type (frame) == INLINE_FRAME)
314 frame = get_prev_frame (frame);
315
316 return frame;
317 }
318
319 /* Return a frame uniq ID that can be used to, later, re-find the
320 frame. */
321
322 struct frame_id
323 get_frame_id (struct frame_info *fi)
324 {
325 if (fi == NULL)
326 return null_frame_id;
327
328 if (!fi->this_id.p)
329 {
330 if (frame_debug)
331 fprintf_unfiltered (gdb_stdlog, "{ get_frame_id (fi=%d) ",
332 fi->level);
333 /* Find the unwinder. */
334 if (fi->unwind == NULL)
335 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
336 /* Find THIS frame's ID. */
337 /* Default to outermost if no ID is found. */
338 fi->this_id.value = outer_frame_id;
339 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
340 gdb_assert (frame_id_p (fi->this_id.value));
341 fi->this_id.p = 1;
342 if (frame_debug)
343 {
344 fprintf_unfiltered (gdb_stdlog, "-> ");
345 fprint_frame_id (gdb_stdlog, fi->this_id.value);
346 fprintf_unfiltered (gdb_stdlog, " }\n");
347 }
348 }
349
350 frame_stash_add (fi);
351
352 return fi->this_id.value;
353 }
354
355 struct frame_id
356 get_stack_frame_id (struct frame_info *next_frame)
357 {
358 return get_frame_id (skip_inlined_frames (next_frame));
359 }
360
361 struct frame_id
362 frame_unwind_caller_id (struct frame_info *next_frame)
363 {
364 struct frame_info *this_frame;
365
366 /* Use get_prev_frame_1, and not get_prev_frame. The latter will truncate
367 the frame chain, leading to this function unintentionally
368 returning a null_frame_id (e.g., when a caller requests the frame
369 ID of "main()"s caller. */
370
371 next_frame = skip_inlined_frames (next_frame);
372 this_frame = get_prev_frame_1 (next_frame);
373 if (this_frame)
374 return get_frame_id (skip_inlined_frames (this_frame));
375 else
376 return null_frame_id;
377 }
378
379 const struct frame_id null_frame_id; /* All zeros. */
380 const struct frame_id outer_frame_id = { 0, 0, 0, 0, 0, 1, 0 };
381
382 struct frame_id
383 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
384 CORE_ADDR special_addr)
385 {
386 struct frame_id id = null_frame_id;
387
388 id.stack_addr = stack_addr;
389 id.stack_addr_p = 1;
390 id.code_addr = code_addr;
391 id.code_addr_p = 1;
392 id.special_addr = special_addr;
393 id.special_addr_p = 1;
394 return id;
395 }
396
397 struct frame_id
398 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
399 {
400 struct frame_id id = null_frame_id;
401
402 id.stack_addr = stack_addr;
403 id.stack_addr_p = 1;
404 id.code_addr = code_addr;
405 id.code_addr_p = 1;
406 return id;
407 }
408
409 struct frame_id
410 frame_id_build_wild (CORE_ADDR stack_addr)
411 {
412 struct frame_id id = null_frame_id;
413
414 id.stack_addr = stack_addr;
415 id.stack_addr_p = 1;
416 return id;
417 }
418
419 int
420 frame_id_p (struct frame_id l)
421 {
422 int p;
423
424 /* The frame is valid iff it has a valid stack address. */
425 p = l.stack_addr_p;
426 /* outer_frame_id is also valid. */
427 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
428 p = 1;
429 if (frame_debug)
430 {
431 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
432 fprint_frame_id (gdb_stdlog, l);
433 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
434 }
435 return p;
436 }
437
438 int
439 frame_id_inlined_p (struct frame_id l)
440 {
441 if (!frame_id_p (l))
442 return 0;
443
444 return (l.inline_depth != 0);
445 }
446
447 int
448 frame_id_eq (struct frame_id l, struct frame_id r)
449 {
450 int eq;
451
452 if (!l.stack_addr_p && l.special_addr_p
453 && !r.stack_addr_p && r.special_addr_p)
454 /* The outermost frame marker is equal to itself. This is the
455 dodgy thing about outer_frame_id, since between execution steps
456 we might step into another function - from which we can't
457 unwind either. More thought required to get rid of
458 outer_frame_id. */
459 eq = 1;
460 else if (!l.stack_addr_p || !r.stack_addr_p)
461 /* Like a NaN, if either ID is invalid, the result is false.
462 Note that a frame ID is invalid iff it is the null frame ID. */
463 eq = 0;
464 else if (l.stack_addr != r.stack_addr)
465 /* If .stack addresses are different, the frames are different. */
466 eq = 0;
467 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
468 /* An invalid code addr is a wild card. If .code addresses are
469 different, the frames are different. */
470 eq = 0;
471 else if (l.special_addr_p && r.special_addr_p
472 && l.special_addr != r.special_addr)
473 /* An invalid special addr is a wild card (or unused). Otherwise
474 if special addresses are different, the frames are different. */
475 eq = 0;
476 else if (l.inline_depth != r.inline_depth)
477 /* If inline depths are different, the frames must be different. */
478 eq = 0;
479 else
480 /* Frames are equal. */
481 eq = 1;
482
483 if (frame_debug)
484 {
485 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
486 fprint_frame_id (gdb_stdlog, l);
487 fprintf_unfiltered (gdb_stdlog, ",r=");
488 fprint_frame_id (gdb_stdlog, r);
489 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
490 }
491 return eq;
492 }
493
494 /* Safety net to check whether frame ID L should be inner to
495 frame ID R, according to their stack addresses.
496
497 This method cannot be used to compare arbitrary frames, as the
498 ranges of valid stack addresses may be discontiguous (e.g. due
499 to sigaltstack).
500
501 However, it can be used as safety net to discover invalid frame
502 IDs in certain circumstances. Assuming that NEXT is the immediate
503 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
504
505 * The stack address of NEXT must be inner-than-or-equal to the stack
506 address of THIS.
507
508 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
509 error has occurred.
510
511 * If NEXT and THIS have different stack addresses, no other frame
512 in the frame chain may have a stack address in between.
513
514 Therefore, if frame_id_inner (TEST, THIS) holds, but
515 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
516 to a valid frame in the frame chain.
517
518 The sanity checks above cannot be performed when a SIGTRAMP frame
519 is involved, because signal handlers might be executed on a different
520 stack than the stack used by the routine that caused the signal
521 to be raised. This can happen for instance when a thread exceeds
522 its maximum stack size. In this case, certain compilers implement
523 a stack overflow strategy that cause the handler to be run on a
524 different stack. */
525
526 static int
527 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
528 {
529 int inner;
530
531 if (!l.stack_addr_p || !r.stack_addr_p)
532 /* Like NaN, any operation involving an invalid ID always fails. */
533 inner = 0;
534 else if (l.inline_depth > r.inline_depth
535 && l.stack_addr == r.stack_addr
536 && l.code_addr_p == r.code_addr_p
537 && l.special_addr_p == r.special_addr_p
538 && l.special_addr == r.special_addr)
539 {
540 /* Same function, different inlined functions. */
541 struct block *lb, *rb;
542
543 gdb_assert (l.code_addr_p && r.code_addr_p);
544
545 lb = block_for_pc (l.code_addr);
546 rb = block_for_pc (r.code_addr);
547
548 if (lb == NULL || rb == NULL)
549 /* Something's gone wrong. */
550 inner = 0;
551 else
552 /* This will return true if LB and RB are the same block, or
553 if the block with the smaller depth lexically encloses the
554 block with the greater depth. */
555 inner = contained_in (lb, rb);
556 }
557 else
558 /* Only return non-zero when strictly inner than. Note that, per
559 comment in "frame.h", there is some fuzz here. Frameless
560 functions are not strictly inner than (same .stack but
561 different .code and/or .special address). */
562 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
563 if (frame_debug)
564 {
565 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
566 fprint_frame_id (gdb_stdlog, l);
567 fprintf_unfiltered (gdb_stdlog, ",r=");
568 fprint_frame_id (gdb_stdlog, r);
569 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
570 }
571 return inner;
572 }
573
574 struct frame_info *
575 frame_find_by_id (struct frame_id id)
576 {
577 struct frame_info *frame, *prev_frame;
578
579 /* ZERO denotes the null frame, let the caller decide what to do
580 about it. Should it instead return get_current_frame()? */
581 if (!frame_id_p (id))
582 return NULL;
583
584 /* Try using the frame stash first. Finding it there removes the need
585 to perform the search by looping over all frames, which can be very
586 CPU-intensive if the number of frames is very high (the loop is O(n)
587 and get_prev_frame performs a series of checks that are relatively
588 expensive). This optimization is particularly useful when this function
589 is called from another function (such as value_fetch_lazy, case
590 VALUE_LVAL (val) == lval_register) which already loops over all frames,
591 making the overall behavior O(n^2). */
592 frame = frame_stash_find (id);
593 if (frame)
594 return frame;
595
596 for (frame = get_current_frame (); ; frame = prev_frame)
597 {
598 struct frame_id this = get_frame_id (frame);
599
600 if (frame_id_eq (id, this))
601 /* An exact match. */
602 return frame;
603
604 prev_frame = get_prev_frame (frame);
605 if (!prev_frame)
606 return NULL;
607
608 /* As a safety net to avoid unnecessary backtracing while trying
609 to find an invalid ID, we check for a common situation where
610 we can detect from comparing stack addresses that no other
611 frame in the current frame chain can have this ID. See the
612 comment at frame_id_inner for details. */
613 if (get_frame_type (frame) == NORMAL_FRAME
614 && !frame_id_inner (get_frame_arch (frame), id, this)
615 && frame_id_inner (get_frame_arch (prev_frame), id,
616 get_frame_id (prev_frame)))
617 return NULL;
618 }
619 return NULL;
620 }
621
622 static CORE_ADDR
623 frame_unwind_pc (struct frame_info *this_frame)
624 {
625 if (!this_frame->prev_pc.p)
626 {
627 CORE_ADDR pc;
628
629 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
630 {
631 /* The right way. The `pure' way. The one true way. This
632 method depends solely on the register-unwind code to
633 determine the value of registers in THIS frame, and hence
634 the value of this frame's PC (resume address). A typical
635 implementation is no more than:
636
637 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
638 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
639
640 Note: this method is very heavily dependent on a correct
641 register-unwind implementation, it pays to fix that
642 method first; this method is frame type agnostic, since
643 it only deals with register values, it works with any
644 frame. This is all in stark contrast to the old
645 FRAME_SAVED_PC which would try to directly handle all the
646 different ways that a PC could be unwound. */
647 pc = gdbarch_unwind_pc (frame_unwind_arch (this_frame), this_frame);
648 }
649 else
650 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
651 this_frame->prev_pc.value = pc;
652 this_frame->prev_pc.p = 1;
653 if (frame_debug)
654 fprintf_unfiltered (gdb_stdlog,
655 "{ frame_unwind_caller_pc "
656 "(this_frame=%d) -> %s }\n",
657 this_frame->level,
658 hex_string (this_frame->prev_pc.value));
659 }
660 return this_frame->prev_pc.value;
661 }
662
663 CORE_ADDR
664 frame_unwind_caller_pc (struct frame_info *this_frame)
665 {
666 return frame_unwind_pc (skip_inlined_frames (this_frame));
667 }
668
669 CORE_ADDR
670 get_frame_func (struct frame_info *this_frame)
671 {
672 struct frame_info *next_frame = this_frame->next;
673
674 if (!next_frame->prev_func.p)
675 {
676 /* Make certain that this, and not the adjacent, function is
677 found. */
678 CORE_ADDR addr_in_block = get_frame_address_in_block (this_frame);
679 next_frame->prev_func.p = 1;
680 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
681 if (frame_debug)
682 fprintf_unfiltered (gdb_stdlog,
683 "{ get_frame_func (this_frame=%d) -> %s }\n",
684 this_frame->level,
685 hex_string (next_frame->prev_func.addr));
686 }
687 return next_frame->prev_func.addr;
688 }
689
690 static int
691 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
692 {
693 return frame_register_read (src, regnum, buf);
694 }
695
696 struct regcache *
697 frame_save_as_regcache (struct frame_info *this_frame)
698 {
699 struct address_space *aspace = get_frame_address_space (this_frame);
700 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
701 aspace);
702 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
703
704 regcache_save (regcache, do_frame_register_read, this_frame);
705 discard_cleanups (cleanups);
706 return regcache;
707 }
708
709 void
710 frame_pop (struct frame_info *this_frame)
711 {
712 struct frame_info *prev_frame;
713 struct regcache *scratch;
714 struct cleanup *cleanups;
715
716 if (get_frame_type (this_frame) == DUMMY_FRAME)
717 {
718 /* Popping a dummy frame involves restoring more than just registers.
719 dummy_frame_pop does all the work. */
720 dummy_frame_pop (get_frame_id (this_frame));
721 return;
722 }
723
724 /* Ensure that we have a frame to pop to. */
725 prev_frame = get_prev_frame_1 (this_frame);
726
727 if (!prev_frame)
728 error (_("Cannot pop the initial frame."));
729
730 /* Make a copy of all the register values unwound from this frame.
731 Save them in a scratch buffer so that there isn't a race between
732 trying to extract the old values from the current regcache while
733 at the same time writing new values into that same cache. */
734 scratch = frame_save_as_regcache (prev_frame);
735 cleanups = make_cleanup_regcache_xfree (scratch);
736
737 /* FIXME: cagney/2003-03-16: It should be possible to tell the
738 target's register cache that it is about to be hit with a burst
739 register transfer and that the sequence of register writes should
740 be batched. The pair target_prepare_to_store() and
741 target_store_registers() kind of suggest this functionality.
742 Unfortunately, they don't implement it. Their lack of a formal
743 definition can lead to targets writing back bogus values
744 (arguably a bug in the target code mind). */
745 /* Now copy those saved registers into the current regcache.
746 Here, regcache_cpy() calls regcache_restore(). */
747 regcache_cpy (get_current_regcache (), scratch);
748 do_cleanups (cleanups);
749
750 /* We've made right mess of GDB's local state, just discard
751 everything. */
752 reinit_frame_cache ();
753 }
754
755 void
756 frame_register_unwind (struct frame_info *frame, int regnum,
757 int *optimizedp, enum lval_type *lvalp,
758 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
759 {
760 struct value *value;
761
762 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
763 that the value proper does not need to be fetched. */
764 gdb_assert (optimizedp != NULL);
765 gdb_assert (lvalp != NULL);
766 gdb_assert (addrp != NULL);
767 gdb_assert (realnump != NULL);
768 /* gdb_assert (bufferp != NULL); */
769
770 value = frame_unwind_register_value (frame, regnum);
771
772 gdb_assert (value != NULL);
773
774 *optimizedp = value_optimized_out (value);
775 *lvalp = VALUE_LVAL (value);
776 *addrp = value_address (value);
777 *realnump = VALUE_REGNUM (value);
778
779 if (bufferp && !*optimizedp)
780 memcpy (bufferp, value_contents_all (value),
781 TYPE_LENGTH (value_type (value)));
782
783 /* Dispose of the new value. This prevents watchpoints from
784 trying to watch the saved frame pointer. */
785 release_value (value);
786 value_free (value);
787 }
788
789 void
790 frame_register (struct frame_info *frame, int regnum,
791 int *optimizedp, enum lval_type *lvalp,
792 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
793 {
794 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
795 that the value proper does not need to be fetched. */
796 gdb_assert (optimizedp != NULL);
797 gdb_assert (lvalp != NULL);
798 gdb_assert (addrp != NULL);
799 gdb_assert (realnump != NULL);
800 /* gdb_assert (bufferp != NULL); */
801
802 /* Obtain the register value by unwinding the register from the next
803 (more inner frame). */
804 gdb_assert (frame != NULL && frame->next != NULL);
805 frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
806 realnump, bufferp);
807 }
808
809 void
810 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
811 {
812 int optimized;
813 CORE_ADDR addr;
814 int realnum;
815 enum lval_type lval;
816
817 frame_register_unwind (frame, regnum, &optimized, &lval, &addr,
818 &realnum, buf);
819 }
820
821 void
822 get_frame_register (struct frame_info *frame,
823 int regnum, gdb_byte *buf)
824 {
825 frame_unwind_register (frame->next, regnum, buf);
826 }
827
828 struct value *
829 frame_unwind_register_value (struct frame_info *frame, int regnum)
830 {
831 struct gdbarch *gdbarch;
832 struct value *value;
833
834 gdb_assert (frame != NULL);
835 gdbarch = frame_unwind_arch (frame);
836
837 if (frame_debug)
838 {
839 fprintf_unfiltered (gdb_stdlog,
840 "{ frame_unwind_register_value "
841 "(frame=%d,regnum=%d(%s),...) ",
842 frame->level, regnum,
843 user_reg_map_regnum_to_name (gdbarch, regnum));
844 }
845
846 /* Find the unwinder. */
847 if (frame->unwind == NULL)
848 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
849
850 /* Ask this frame to unwind its register. */
851 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
852
853 if (frame_debug)
854 {
855 fprintf_unfiltered (gdb_stdlog, "->");
856 if (value_optimized_out (value))
857 fprintf_unfiltered (gdb_stdlog, " optimized out");
858 else
859 {
860 if (VALUE_LVAL (value) == lval_register)
861 fprintf_unfiltered (gdb_stdlog, " register=%d",
862 VALUE_REGNUM (value));
863 else if (VALUE_LVAL (value) == lval_memory)
864 fprintf_unfiltered (gdb_stdlog, " address=%s",
865 paddress (gdbarch,
866 value_address (value)));
867 else
868 fprintf_unfiltered (gdb_stdlog, " computed");
869
870 if (value_lazy (value))
871 fprintf_unfiltered (gdb_stdlog, " lazy");
872 else
873 {
874 int i;
875 const gdb_byte *buf = value_contents (value);
876
877 fprintf_unfiltered (gdb_stdlog, " bytes=");
878 fprintf_unfiltered (gdb_stdlog, "[");
879 for (i = 0; i < register_size (gdbarch, regnum); i++)
880 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
881 fprintf_unfiltered (gdb_stdlog, "]");
882 }
883 }
884
885 fprintf_unfiltered (gdb_stdlog, " }\n");
886 }
887
888 return value;
889 }
890
891 struct value *
892 get_frame_register_value (struct frame_info *frame, int regnum)
893 {
894 return frame_unwind_register_value (frame->next, regnum);
895 }
896
897 LONGEST
898 frame_unwind_register_signed (struct frame_info *frame, int regnum)
899 {
900 struct gdbarch *gdbarch = frame_unwind_arch (frame);
901 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
902 int size = register_size (gdbarch, regnum);
903 gdb_byte buf[MAX_REGISTER_SIZE];
904
905 frame_unwind_register (frame, regnum, buf);
906 return extract_signed_integer (buf, size, byte_order);
907 }
908
909 LONGEST
910 get_frame_register_signed (struct frame_info *frame, int regnum)
911 {
912 return frame_unwind_register_signed (frame->next, regnum);
913 }
914
915 ULONGEST
916 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
917 {
918 struct gdbarch *gdbarch = frame_unwind_arch (frame);
919 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
920 int size = register_size (gdbarch, regnum);
921 gdb_byte buf[MAX_REGISTER_SIZE];
922
923 frame_unwind_register (frame, regnum, buf);
924 return extract_unsigned_integer (buf, size, byte_order);
925 }
926
927 ULONGEST
928 get_frame_register_unsigned (struct frame_info *frame, int regnum)
929 {
930 return frame_unwind_register_unsigned (frame->next, regnum);
931 }
932
933 void
934 put_frame_register (struct frame_info *frame, int regnum,
935 const gdb_byte *buf)
936 {
937 struct gdbarch *gdbarch = get_frame_arch (frame);
938 int realnum;
939 int optim;
940 enum lval_type lval;
941 CORE_ADDR addr;
942
943 frame_register (frame, regnum, &optim, &lval, &addr, &realnum, NULL);
944 if (optim)
945 error (_("Attempt to assign to a value that was optimized out."));
946 switch (lval)
947 {
948 case lval_memory:
949 {
950 /* FIXME: write_memory doesn't yet take constant buffers.
951 Arrrg! */
952 gdb_byte tmp[MAX_REGISTER_SIZE];
953
954 memcpy (tmp, buf, register_size (gdbarch, regnum));
955 write_memory (addr, tmp, register_size (gdbarch, regnum));
956 break;
957 }
958 case lval_register:
959 regcache_cooked_write (get_current_regcache (), realnum, buf);
960 break;
961 default:
962 error (_("Attempt to assign to an unmodifiable value."));
963 }
964 }
965
966 /* frame_register_read ()
967
968 Find and return the value of REGNUM for the specified stack frame.
969 The number of bytes copied is REGISTER_SIZE (REGNUM).
970
971 Returns 0 if the register value could not be found. */
972
973 int
974 frame_register_read (struct frame_info *frame, int regnum,
975 gdb_byte *myaddr)
976 {
977 int optimized;
978 enum lval_type lval;
979 CORE_ADDR addr;
980 int realnum;
981
982 frame_register (frame, regnum, &optimized, &lval, &addr, &realnum, myaddr);
983
984 return !optimized;
985 }
986
987 int
988 get_frame_register_bytes (struct frame_info *frame, int regnum,
989 CORE_ADDR offset, int len, gdb_byte *myaddr)
990 {
991 struct gdbarch *gdbarch = get_frame_arch (frame);
992 int i;
993 int maxsize;
994 int numregs;
995
996 /* Skip registers wholly inside of OFFSET. */
997 while (offset >= register_size (gdbarch, regnum))
998 {
999 offset -= register_size (gdbarch, regnum);
1000 regnum++;
1001 }
1002
1003 /* Ensure that we will not read beyond the end of the register file.
1004 This can only ever happen if the debug information is bad. */
1005 maxsize = -offset;
1006 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1007 for (i = regnum; i < numregs; i++)
1008 {
1009 int thissize = register_size (gdbarch, i);
1010
1011 if (thissize == 0)
1012 break; /* This register is not available on this architecture. */
1013 maxsize += thissize;
1014 }
1015 if (len > maxsize)
1016 {
1017 warning (_("Bad debug information detected: "
1018 "Attempt to read %d bytes from registers."), len);
1019 return 0;
1020 }
1021
1022 /* Copy the data. */
1023 while (len > 0)
1024 {
1025 int curr_len = register_size (gdbarch, regnum) - offset;
1026
1027 if (curr_len > len)
1028 curr_len = len;
1029
1030 if (curr_len == register_size (gdbarch, regnum))
1031 {
1032 if (!frame_register_read (frame, regnum, myaddr))
1033 return 0;
1034 }
1035 else
1036 {
1037 gdb_byte buf[MAX_REGISTER_SIZE];
1038
1039 if (!frame_register_read (frame, regnum, buf))
1040 return 0;
1041 memcpy (myaddr, buf + offset, curr_len);
1042 }
1043
1044 myaddr += curr_len;
1045 len -= curr_len;
1046 offset = 0;
1047 regnum++;
1048 }
1049
1050 return 1;
1051 }
1052
1053 void
1054 put_frame_register_bytes (struct frame_info *frame, int regnum,
1055 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1056 {
1057 struct gdbarch *gdbarch = get_frame_arch (frame);
1058
1059 /* Skip registers wholly inside of OFFSET. */
1060 while (offset >= register_size (gdbarch, regnum))
1061 {
1062 offset -= register_size (gdbarch, regnum);
1063 regnum++;
1064 }
1065
1066 /* Copy the data. */
1067 while (len > 0)
1068 {
1069 int curr_len = register_size (gdbarch, regnum) - offset;
1070
1071 if (curr_len > len)
1072 curr_len = len;
1073
1074 if (curr_len == register_size (gdbarch, regnum))
1075 {
1076 put_frame_register (frame, regnum, myaddr);
1077 }
1078 else
1079 {
1080 gdb_byte buf[MAX_REGISTER_SIZE];
1081
1082 frame_register_read (frame, regnum, buf);
1083 memcpy (buf + offset, myaddr, curr_len);
1084 put_frame_register (frame, regnum, buf);
1085 }
1086
1087 myaddr += curr_len;
1088 len -= curr_len;
1089 offset = 0;
1090 regnum++;
1091 }
1092 }
1093
1094 /* Create a sentinel frame. */
1095
1096 static struct frame_info *
1097 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1098 {
1099 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1100
1101 frame->level = -1;
1102 frame->pspace = pspace;
1103 frame->aspace = get_regcache_aspace (regcache);
1104 /* Explicitly initialize the sentinel frame's cache. Provide it
1105 with the underlying regcache. In the future additional
1106 information, such as the frame's thread will be added. */
1107 frame->prologue_cache = sentinel_frame_cache (regcache);
1108 /* For the moment there is only one sentinel frame implementation. */
1109 frame->unwind = &sentinel_frame_unwind;
1110 /* Link this frame back to itself. The frame is self referential
1111 (the unwound PC is the same as the pc), so make it so. */
1112 frame->next = frame;
1113 /* Make the sentinel frame's ID valid, but invalid. That way all
1114 comparisons with it should fail. */
1115 frame->this_id.p = 1;
1116 frame->this_id.value = null_frame_id;
1117 if (frame_debug)
1118 {
1119 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1120 fprint_frame (gdb_stdlog, frame);
1121 fprintf_unfiltered (gdb_stdlog, " }\n");
1122 }
1123 return frame;
1124 }
1125
1126 /* Info about the innermost stack frame (contents of FP register) */
1127
1128 static struct frame_info *current_frame;
1129
1130 /* Cache for frame addresses already read by gdb. Valid only while
1131 inferior is stopped. Control variables for the frame cache should
1132 be local to this module. */
1133
1134 static struct obstack frame_cache_obstack;
1135
1136 void *
1137 frame_obstack_zalloc (unsigned long size)
1138 {
1139 void *data = obstack_alloc (&frame_cache_obstack, size);
1140
1141 memset (data, 0, size);
1142 return data;
1143 }
1144
1145 /* Return the innermost (currently executing) stack frame. This is
1146 split into two functions. The function unwind_to_current_frame()
1147 is wrapped in catch exceptions so that, even when the unwind of the
1148 sentinel frame fails, the function still returns a stack frame. */
1149
1150 static int
1151 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1152 {
1153 struct frame_info *frame = get_prev_frame (args);
1154
1155 /* A sentinel frame can fail to unwind, e.g., because its PC value
1156 lands in somewhere like start. */
1157 if (frame == NULL)
1158 return 1;
1159 current_frame = frame;
1160 return 0;
1161 }
1162
1163 struct frame_info *
1164 get_current_frame (void)
1165 {
1166 /* First check, and report, the lack of registers. Having GDB
1167 report "No stack!" or "No memory" when the target doesn't even
1168 have registers is very confusing. Besides, "printcmd.exp"
1169 explicitly checks that ``print $pc'' with no registers prints "No
1170 registers". */
1171 if (!target_has_registers)
1172 error (_("No registers."));
1173 if (!target_has_stack)
1174 error (_("No stack."));
1175 if (!target_has_memory)
1176 error (_("No memory."));
1177 /* Traceframes are effectively a substitute for the live inferior. */
1178 if (get_traceframe_number () < 0)
1179 {
1180 if (ptid_equal (inferior_ptid, null_ptid))
1181 error (_("No selected thread."));
1182 if (is_exited (inferior_ptid))
1183 error (_("Invalid selected thread."));
1184 if (is_executing (inferior_ptid))
1185 error (_("Target is executing."));
1186 }
1187
1188 if (current_frame == NULL)
1189 {
1190 struct frame_info *sentinel_frame =
1191 create_sentinel_frame (current_program_space, get_current_regcache ());
1192 if (catch_exceptions (uiout, unwind_to_current_frame, sentinel_frame,
1193 RETURN_MASK_ERROR) != 0)
1194 {
1195 /* Oops! Fake a current frame? Is this useful? It has a PC
1196 of zero, for instance. */
1197 current_frame = sentinel_frame;
1198 }
1199 }
1200 return current_frame;
1201 }
1202
1203 /* The "selected" stack frame is used by default for local and arg
1204 access. May be zero, for no selected frame. */
1205
1206 static struct frame_info *selected_frame;
1207
1208 int
1209 has_stack_frames (void)
1210 {
1211 if (!target_has_registers || !target_has_stack || !target_has_memory)
1212 return 0;
1213
1214 /* No current inferior, no frame. */
1215 if (ptid_equal (inferior_ptid, null_ptid))
1216 return 0;
1217
1218 /* Don't try to read from a dead thread. */
1219 if (is_exited (inferior_ptid))
1220 return 0;
1221
1222 /* ... or from a spinning thread. */
1223 if (is_executing (inferior_ptid))
1224 return 0;
1225
1226 return 1;
1227 }
1228
1229 /* Return the selected frame. Always non-NULL (unless there isn't an
1230 inferior sufficient for creating a frame) in which case an error is
1231 thrown. */
1232
1233 struct frame_info *
1234 get_selected_frame (const char *message)
1235 {
1236 if (selected_frame == NULL)
1237 {
1238 if (message != NULL && !has_stack_frames ())
1239 error (("%s"), message);
1240 /* Hey! Don't trust this. It should really be re-finding the
1241 last selected frame of the currently selected thread. This,
1242 though, is better than nothing. */
1243 select_frame (get_current_frame ());
1244 }
1245 /* There is always a frame. */
1246 gdb_assert (selected_frame != NULL);
1247 return selected_frame;
1248 }
1249
1250 /* This is a variant of get_selected_frame() which can be called when
1251 the inferior does not have a frame; in that case it will return
1252 NULL instead of calling error(). */
1253
1254 struct frame_info *
1255 deprecated_safe_get_selected_frame (void)
1256 {
1257 if (!has_stack_frames ())
1258 return NULL;
1259 return get_selected_frame (NULL);
1260 }
1261
1262 /* Select frame FI (or NULL - to invalidate the current frame). */
1263
1264 void
1265 select_frame (struct frame_info *fi)
1266 {
1267 struct symtab *s;
1268
1269 selected_frame = fi;
1270 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1271 frame is being invalidated. */
1272 if (deprecated_selected_frame_level_changed_hook)
1273 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1274
1275 /* FIXME: kseitz/2002-08-28: It would be nice to call
1276 selected_frame_level_changed_event() right here, but due to limitations
1277 in the current interfaces, we would end up flooding UIs with events
1278 because select_frame() is used extensively internally.
1279
1280 Once we have frame-parameterized frame (and frame-related) commands,
1281 the event notification can be moved here, since this function will only
1282 be called when the user's selected frame is being changed. */
1283
1284 /* Ensure that symbols for this frame are read in. Also, determine the
1285 source language of this frame, and switch to it if desired. */
1286 if (fi)
1287 {
1288 /* We retrieve the frame's symtab by using the frame PC. However
1289 we cannot use the frame PC as-is, because it usually points to
1290 the instruction following the "call", which is sometimes the
1291 first instruction of another function. So we rely on
1292 get_frame_address_in_block() which provides us with a PC which
1293 is guaranteed to be inside the frame's code block. */
1294 s = find_pc_symtab (get_frame_address_in_block (fi));
1295 if (s
1296 && s->language != current_language->la_language
1297 && s->language != language_unknown
1298 && language_mode == language_mode_auto)
1299 {
1300 set_language (s->language);
1301 }
1302 }
1303 }
1304
1305 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1306 Always returns a non-NULL value. */
1307
1308 struct frame_info *
1309 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1310 {
1311 struct frame_info *fi;
1312
1313 if (frame_debug)
1314 {
1315 fprintf_unfiltered (gdb_stdlog,
1316 "{ create_new_frame (addr=%s, pc=%s) ",
1317 hex_string (addr), hex_string (pc));
1318 }
1319
1320 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1321
1322 fi->next = create_sentinel_frame (current_program_space,
1323 get_current_regcache ());
1324
1325 /* Set/update this frame's cached PC value, found in the next frame.
1326 Do this before looking for this frame's unwinder. A sniffer is
1327 very likely to read this, and the corresponding unwinder is
1328 entitled to rely that the PC doesn't magically change. */
1329 fi->next->prev_pc.value = pc;
1330 fi->next->prev_pc.p = 1;
1331
1332 /* We currently assume that frame chain's can't cross spaces. */
1333 fi->pspace = fi->next->pspace;
1334 fi->aspace = fi->next->aspace;
1335
1336 /* Select/initialize both the unwind function and the frame's type
1337 based on the PC. */
1338 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1339
1340 fi->this_id.p = 1;
1341 fi->this_id.value = frame_id_build (addr, pc);
1342
1343 if (frame_debug)
1344 {
1345 fprintf_unfiltered (gdb_stdlog, "-> ");
1346 fprint_frame (gdb_stdlog, fi);
1347 fprintf_unfiltered (gdb_stdlog, " }\n");
1348 }
1349
1350 return fi;
1351 }
1352
1353 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1354 innermost frame). Be careful to not fall off the bottom of the
1355 frame chain and onto the sentinel frame. */
1356
1357 struct frame_info *
1358 get_next_frame (struct frame_info *this_frame)
1359 {
1360 if (this_frame->level > 0)
1361 return this_frame->next;
1362 else
1363 return NULL;
1364 }
1365
1366 /* Observer for the target_changed event. */
1367
1368 static void
1369 frame_observer_target_changed (struct target_ops *target)
1370 {
1371 reinit_frame_cache ();
1372 }
1373
1374 /* Flush the entire frame cache. */
1375
1376 void
1377 reinit_frame_cache (void)
1378 {
1379 struct frame_info *fi;
1380
1381 /* Tear down all frame caches. */
1382 for (fi = current_frame; fi != NULL; fi = fi->prev)
1383 {
1384 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1385 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1386 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1387 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1388 }
1389
1390 /* Since we can't really be sure what the first object allocated was */
1391 obstack_free (&frame_cache_obstack, 0);
1392 obstack_init (&frame_cache_obstack);
1393
1394 if (current_frame != NULL)
1395 annotate_frames_invalid ();
1396
1397 current_frame = NULL; /* Invalidate cache */
1398 select_frame (NULL);
1399 frame_stash_invalidate ();
1400 if (frame_debug)
1401 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1402 }
1403
1404 /* Find where a register is saved (in memory or another register).
1405 The result of frame_register_unwind is just where it is saved
1406 relative to this particular frame. */
1407
1408 static void
1409 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1410 int *optimizedp, enum lval_type *lvalp,
1411 CORE_ADDR *addrp, int *realnump)
1412 {
1413 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1414
1415 while (this_frame != NULL)
1416 {
1417 frame_register_unwind (this_frame, regnum, optimizedp, lvalp,
1418 addrp, realnump, NULL);
1419
1420 if (*optimizedp)
1421 break;
1422
1423 if (*lvalp != lval_register)
1424 break;
1425
1426 regnum = *realnump;
1427 this_frame = get_next_frame (this_frame);
1428 }
1429 }
1430
1431 /* Return a "struct frame_info" corresponding to the frame that called
1432 THIS_FRAME. Returns NULL if there is no such frame.
1433
1434 Unlike get_prev_frame, this function always tries to unwind the
1435 frame. */
1436
1437 static struct frame_info *
1438 get_prev_frame_1 (struct frame_info *this_frame)
1439 {
1440 struct frame_id this_id;
1441 struct gdbarch *gdbarch;
1442
1443 gdb_assert (this_frame != NULL);
1444 gdbarch = get_frame_arch (this_frame);
1445
1446 if (frame_debug)
1447 {
1448 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_1 (this_frame=");
1449 if (this_frame != NULL)
1450 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1451 else
1452 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1453 fprintf_unfiltered (gdb_stdlog, ") ");
1454 }
1455
1456 /* Only try to do the unwind once. */
1457 if (this_frame->prev_p)
1458 {
1459 if (frame_debug)
1460 {
1461 fprintf_unfiltered (gdb_stdlog, "-> ");
1462 fprint_frame (gdb_stdlog, this_frame->prev);
1463 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1464 }
1465 return this_frame->prev;
1466 }
1467
1468 /* If the frame unwinder hasn't been selected yet, we must do so
1469 before setting prev_p; otherwise the check for misbehaved
1470 sniffers will think that this frame's sniffer tried to unwind
1471 further (see frame_cleanup_after_sniffer). */
1472 if (this_frame->unwind == NULL)
1473 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1474
1475 this_frame->prev_p = 1;
1476 this_frame->stop_reason = UNWIND_NO_REASON;
1477
1478 /* If we are unwinding from an inline frame, all of the below tests
1479 were already performed when we unwound from the next non-inline
1480 frame. We must skip them, since we can not get THIS_FRAME's ID
1481 until we have unwound all the way down to the previous non-inline
1482 frame. */
1483 if (get_frame_type (this_frame) == INLINE_FRAME)
1484 return get_prev_frame_raw (this_frame);
1485
1486 /* Check that this frame's ID was valid. If it wasn't, don't try to
1487 unwind to the prev frame. Be careful to not apply this test to
1488 the sentinel frame. */
1489 this_id = get_frame_id (this_frame);
1490 if (this_frame->level >= 0 && frame_id_eq (this_id, outer_frame_id))
1491 {
1492 if (frame_debug)
1493 {
1494 fprintf_unfiltered (gdb_stdlog, "-> ");
1495 fprint_frame (gdb_stdlog, NULL);
1496 fprintf_unfiltered (gdb_stdlog, " // this ID is NULL }\n");
1497 }
1498 this_frame->stop_reason = UNWIND_NULL_ID;
1499 return NULL;
1500 }
1501
1502 /* Check that this frame's ID isn't inner to (younger, below, next)
1503 the next frame. This happens when a frame unwind goes backwards.
1504 This check is valid only if this frame and the next frame are NORMAL.
1505 See the comment at frame_id_inner for details. */
1506 if (get_frame_type (this_frame) == NORMAL_FRAME
1507 && this_frame->next->unwind->type == NORMAL_FRAME
1508 && frame_id_inner (get_frame_arch (this_frame->next), this_id,
1509 get_frame_id (this_frame->next)))
1510 {
1511 CORE_ADDR this_pc_in_block;
1512 struct minimal_symbol *morestack_msym;
1513 const char *morestack_name = NULL;
1514
1515 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1516 this_pc_in_block = get_frame_address_in_block (this_frame);
1517 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block);
1518 if (morestack_msym)
1519 morestack_name = SYMBOL_LINKAGE_NAME (morestack_msym);
1520 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1521 {
1522 if (frame_debug)
1523 {
1524 fprintf_unfiltered (gdb_stdlog, "-> ");
1525 fprint_frame (gdb_stdlog, NULL);
1526 fprintf_unfiltered (gdb_stdlog,
1527 " // this frame ID is inner }\n");
1528 }
1529 this_frame->stop_reason = UNWIND_INNER_ID;
1530 return NULL;
1531 }
1532 }
1533
1534 /* Check that this and the next frame are not identical. If they
1535 are, there is most likely a stack cycle. As with the inner-than
1536 test above, avoid comparing the inner-most and sentinel frames. */
1537 if (this_frame->level > 0
1538 && frame_id_eq (this_id, get_frame_id (this_frame->next)))
1539 {
1540 if (frame_debug)
1541 {
1542 fprintf_unfiltered (gdb_stdlog, "-> ");
1543 fprint_frame (gdb_stdlog, NULL);
1544 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1545 }
1546 this_frame->stop_reason = UNWIND_SAME_ID;
1547 return NULL;
1548 }
1549
1550 /* Check that this and the next frame do not unwind the PC register
1551 to the same memory location. If they do, then even though they
1552 have different frame IDs, the new frame will be bogus; two
1553 functions can't share a register save slot for the PC. This can
1554 happen when the prologue analyzer finds a stack adjustment, but
1555 no PC save.
1556
1557 This check does assume that the "PC register" is roughly a
1558 traditional PC, even if the gdbarch_unwind_pc method adjusts
1559 it (we do not rely on the value, only on the unwound PC being
1560 dependent on this value). A potential improvement would be
1561 to have the frame prev_pc method and the gdbarch unwind_pc
1562 method set the same lval and location information as
1563 frame_register_unwind. */
1564 if (this_frame->level > 0
1565 && gdbarch_pc_regnum (gdbarch) >= 0
1566 && get_frame_type (this_frame) == NORMAL_FRAME
1567 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1568 || get_frame_type (this_frame->next) == INLINE_FRAME))
1569 {
1570 int optimized, realnum, nrealnum;
1571 enum lval_type lval, nlval;
1572 CORE_ADDR addr, naddr;
1573
1574 frame_register_unwind_location (this_frame,
1575 gdbarch_pc_regnum (gdbarch),
1576 &optimized, &lval, &addr, &realnum);
1577 frame_register_unwind_location (get_next_frame (this_frame),
1578 gdbarch_pc_regnum (gdbarch),
1579 &optimized, &nlval, &naddr, &nrealnum);
1580
1581 if ((lval == lval_memory && lval == nlval && addr == naddr)
1582 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1583 {
1584 if (frame_debug)
1585 {
1586 fprintf_unfiltered (gdb_stdlog, "-> ");
1587 fprint_frame (gdb_stdlog, NULL);
1588 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1589 }
1590
1591 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1592 this_frame->prev = NULL;
1593 return NULL;
1594 }
1595 }
1596
1597 return get_prev_frame_raw (this_frame);
1598 }
1599
1600 /* Construct a new "struct frame_info" and link it previous to
1601 this_frame. */
1602
1603 static struct frame_info *
1604 get_prev_frame_raw (struct frame_info *this_frame)
1605 {
1606 struct frame_info *prev_frame;
1607
1608 /* Allocate the new frame but do not wire it in to the frame chain.
1609 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
1610 frame->next to pull some fancy tricks (of course such code is, by
1611 definition, recursive). Try to prevent it.
1612
1613 There is no reason to worry about memory leaks, should the
1614 remainder of the function fail. The allocated memory will be
1615 quickly reclaimed when the frame cache is flushed, and the `we've
1616 been here before' check above will stop repeated memory
1617 allocation calls. */
1618 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1619 prev_frame->level = this_frame->level + 1;
1620
1621 /* For now, assume we don't have frame chains crossing address
1622 spaces. */
1623 prev_frame->pspace = this_frame->pspace;
1624 prev_frame->aspace = this_frame->aspace;
1625
1626 /* Don't yet compute ->unwind (and hence ->type). It is computed
1627 on-demand in get_frame_type, frame_register_unwind, and
1628 get_frame_id. */
1629
1630 /* Don't yet compute the frame's ID. It is computed on-demand by
1631 get_frame_id(). */
1632
1633 /* The unwound frame ID is validate at the start of this function,
1634 as part of the logic to decide if that frame should be further
1635 unwound, and not here while the prev frame is being created.
1636 Doing this makes it possible for the user to examine a frame that
1637 has an invalid frame ID.
1638
1639 Some very old VAX code noted: [...] For the sake of argument,
1640 suppose that the stack is somewhat trashed (which is one reason
1641 that "info frame" exists). So, return 0 (indicating we don't
1642 know the address of the arglist) if we don't know what frame this
1643 frame calls. */
1644
1645 /* Link it in. */
1646 this_frame->prev = prev_frame;
1647 prev_frame->next = this_frame;
1648
1649 if (frame_debug)
1650 {
1651 fprintf_unfiltered (gdb_stdlog, "-> ");
1652 fprint_frame (gdb_stdlog, prev_frame);
1653 fprintf_unfiltered (gdb_stdlog, " }\n");
1654 }
1655
1656 return prev_frame;
1657 }
1658
1659 /* Debug routine to print a NULL frame being returned. */
1660
1661 static void
1662 frame_debug_got_null_frame (struct frame_info *this_frame,
1663 const char *reason)
1664 {
1665 if (frame_debug)
1666 {
1667 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
1668 if (this_frame != NULL)
1669 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1670 else
1671 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1672 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
1673 }
1674 }
1675
1676 /* Is this (non-sentinel) frame in the "main"() function? */
1677
1678 static int
1679 inside_main_func (struct frame_info *this_frame)
1680 {
1681 struct minimal_symbol *msymbol;
1682 CORE_ADDR maddr;
1683
1684 if (symfile_objfile == 0)
1685 return 0;
1686 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
1687 if (msymbol == NULL)
1688 return 0;
1689 /* Make certain that the code, and not descriptor, address is
1690 returned. */
1691 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
1692 SYMBOL_VALUE_ADDRESS (msymbol),
1693 &current_target);
1694 return maddr == get_frame_func (this_frame);
1695 }
1696
1697 /* Test whether THIS_FRAME is inside the process entry point function. */
1698
1699 static int
1700 inside_entry_func (struct frame_info *this_frame)
1701 {
1702 CORE_ADDR entry_point;
1703
1704 if (!entry_point_address_query (&entry_point))
1705 return 0;
1706
1707 return get_frame_func (this_frame) == entry_point;
1708 }
1709
1710 /* Return a structure containing various interesting information about
1711 the frame that called THIS_FRAME. Returns NULL if there is entier
1712 no such frame or the frame fails any of a set of target-independent
1713 condition that should terminate the frame chain (e.g., as unwinding
1714 past main()).
1715
1716 This function should not contain target-dependent tests, such as
1717 checking whether the program-counter is zero. */
1718
1719 struct frame_info *
1720 get_prev_frame (struct frame_info *this_frame)
1721 {
1722 /* There is always a frame. If this assertion fails, suspect that
1723 something should be calling get_selected_frame() or
1724 get_current_frame(). */
1725 gdb_assert (this_frame != NULL);
1726
1727 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
1728 sense to stop unwinding at a dummy frame. One place where a dummy
1729 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
1730 pcsqh register (space register for the instruction at the head of the
1731 instruction queue) cannot be written directly; the only way to set it
1732 is to branch to code that is in the target space. In order to implement
1733 frame dummies on HPUX, the called function is made to jump back to where
1734 the inferior was when the user function was called. If gdb was inside
1735 the main function when we created the dummy frame, the dummy frame will
1736 point inside the main function. */
1737 if (this_frame->level >= 0
1738 && get_frame_type (this_frame) == NORMAL_FRAME
1739 && !backtrace_past_main
1740 && inside_main_func (this_frame))
1741 /* Don't unwind past main(). Note, this is done _before_ the
1742 frame has been marked as previously unwound. That way if the
1743 user later decides to enable unwinds past main(), that will
1744 automatically happen. */
1745 {
1746 frame_debug_got_null_frame (this_frame, "inside main func");
1747 return NULL;
1748 }
1749
1750 /* If the user's backtrace limit has been exceeded, stop. We must
1751 add two to the current level; one of those accounts for backtrace_limit
1752 being 1-based and the level being 0-based, and the other accounts for
1753 the level of the new frame instead of the level of the current
1754 frame. */
1755 if (this_frame->level + 2 > backtrace_limit)
1756 {
1757 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
1758 return NULL;
1759 }
1760
1761 /* If we're already inside the entry function for the main objfile,
1762 then it isn't valid. Don't apply this test to a dummy frame -
1763 dummy frame PCs typically land in the entry func. Don't apply
1764 this test to the sentinel frame. Sentinel frames should always
1765 be allowed to unwind. */
1766 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
1767 wasn't checking for "main" in the minimal symbols. With that
1768 fixed asm-source tests now stop in "main" instead of halting the
1769 backtrace in weird and wonderful ways somewhere inside the entry
1770 file. Suspect that tests for inside the entry file/func were
1771 added to work around that (now fixed) case. */
1772 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
1773 suggested having the inside_entry_func test use the
1774 inside_main_func() msymbol trick (along with entry_point_address()
1775 I guess) to determine the address range of the start function.
1776 That should provide a far better stopper than the current
1777 heuristics. */
1778 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
1779 applied tail-call optimizations to main so that a function called
1780 from main returns directly to the caller of main. Since we don't
1781 stop at main, we should at least stop at the entry point of the
1782 application. */
1783 if (this_frame->level >= 0
1784 && get_frame_type (this_frame) == NORMAL_FRAME
1785 && !backtrace_past_entry
1786 && inside_entry_func (this_frame))
1787 {
1788 frame_debug_got_null_frame (this_frame, "inside entry func");
1789 return NULL;
1790 }
1791
1792 /* Assume that the only way to get a zero PC is through something
1793 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
1794 will never unwind a zero PC. */
1795 if (this_frame->level > 0
1796 && (get_frame_type (this_frame) == NORMAL_FRAME
1797 || get_frame_type (this_frame) == INLINE_FRAME)
1798 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
1799 && get_frame_pc (this_frame) == 0)
1800 {
1801 frame_debug_got_null_frame (this_frame, "zero PC");
1802 return NULL;
1803 }
1804
1805 return get_prev_frame_1 (this_frame);
1806 }
1807
1808 CORE_ADDR
1809 get_frame_pc (struct frame_info *frame)
1810 {
1811 gdb_assert (frame->next != NULL);
1812 return frame_unwind_pc (frame->next);
1813 }
1814
1815 /* Return an address that falls within THIS_FRAME's code block. */
1816
1817 CORE_ADDR
1818 get_frame_address_in_block (struct frame_info *this_frame)
1819 {
1820 /* A draft address. */
1821 CORE_ADDR pc = get_frame_pc (this_frame);
1822
1823 struct frame_info *next_frame = this_frame->next;
1824
1825 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
1826 Normally the resume address is inside the body of the function
1827 associated with THIS_FRAME, but there is a special case: when
1828 calling a function which the compiler knows will never return
1829 (for instance abort), the call may be the very last instruction
1830 in the calling function. The resume address will point after the
1831 call and may be at the beginning of a different function
1832 entirely.
1833
1834 If THIS_FRAME is a signal frame or dummy frame, then we should
1835 not adjust the unwound PC. For a dummy frame, GDB pushed the
1836 resume address manually onto the stack. For a signal frame, the
1837 OS may have pushed the resume address manually and invoked the
1838 handler (e.g. GNU/Linux), or invoked the trampoline which called
1839 the signal handler - but in either case the signal handler is
1840 expected to return to the trampoline. So in both of these
1841 cases we know that the resume address is executable and
1842 related. So we only need to adjust the PC if THIS_FRAME
1843 is a normal function.
1844
1845 If the program has been interrupted while THIS_FRAME is current,
1846 then clearly the resume address is inside the associated
1847 function. There are three kinds of interruption: debugger stop
1848 (next frame will be SENTINEL_FRAME), operating system
1849 signal or exception (next frame will be SIGTRAMP_FRAME),
1850 or debugger-induced function call (next frame will be
1851 DUMMY_FRAME). So we only need to adjust the PC if
1852 NEXT_FRAME is a normal function.
1853
1854 We check the type of NEXT_FRAME first, since it is already
1855 known; frame type is determined by the unwinder, and since
1856 we have THIS_FRAME we've already selected an unwinder for
1857 NEXT_FRAME.
1858
1859 If the next frame is inlined, we need to keep going until we find
1860 the real function - for instance, if a signal handler is invoked
1861 while in an inlined function, then the code address of the
1862 "calling" normal function should not be adjusted either. */
1863
1864 while (get_frame_type (next_frame) == INLINE_FRAME)
1865 next_frame = next_frame->next;
1866
1867 if (get_frame_type (next_frame) == NORMAL_FRAME
1868 && (get_frame_type (this_frame) == NORMAL_FRAME
1869 || get_frame_type (this_frame) == INLINE_FRAME))
1870 return pc - 1;
1871
1872 return pc;
1873 }
1874
1875 void
1876 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
1877 {
1878 struct frame_info *next_frame;
1879 int notcurrent;
1880
1881 /* If the next frame represents an inlined function call, this frame's
1882 sal is the "call site" of that inlined function, which can not
1883 be inferred from get_frame_pc. */
1884 next_frame = get_next_frame (frame);
1885 if (frame_inlined_callees (frame) > 0)
1886 {
1887 struct symbol *sym;
1888
1889 if (next_frame)
1890 sym = get_frame_function (next_frame);
1891 else
1892 sym = inline_skipped_symbol (inferior_ptid);
1893
1894 init_sal (sal);
1895 if (SYMBOL_LINE (sym) != 0)
1896 {
1897 sal->symtab = SYMBOL_SYMTAB (sym);
1898 sal->line = SYMBOL_LINE (sym);
1899 }
1900 else
1901 /* If the symbol does not have a location, we don't know where
1902 the call site is. Do not pretend to. This is jarring, but
1903 we can't do much better. */
1904 sal->pc = get_frame_pc (frame);
1905
1906 return;
1907 }
1908
1909 /* If FRAME is not the innermost frame, that normally means that
1910 FRAME->pc points at the return instruction (which is *after* the
1911 call instruction), and we want to get the line containing the
1912 call (because the call is where the user thinks the program is).
1913 However, if the next frame is either a SIGTRAMP_FRAME or a
1914 DUMMY_FRAME, then the next frame will contain a saved interrupt
1915 PC and such a PC indicates the current (rather than next)
1916 instruction/line, consequently, for such cases, want to get the
1917 line containing fi->pc. */
1918 notcurrent = (get_frame_pc (frame) != get_frame_address_in_block (frame));
1919 (*sal) = find_pc_line (get_frame_pc (frame), notcurrent);
1920 }
1921
1922 /* Per "frame.h", return the ``address'' of the frame. Code should
1923 really be using get_frame_id(). */
1924 CORE_ADDR
1925 get_frame_base (struct frame_info *fi)
1926 {
1927 return get_frame_id (fi).stack_addr;
1928 }
1929
1930 /* High-level offsets into the frame. Used by the debug info. */
1931
1932 CORE_ADDR
1933 get_frame_base_address (struct frame_info *fi)
1934 {
1935 if (get_frame_type (fi) != NORMAL_FRAME)
1936 return 0;
1937 if (fi->base == NULL)
1938 fi->base = frame_base_find_by_frame (fi);
1939 /* Sneaky: If the low-level unwind and high-level base code share a
1940 common unwinder, let them share the prologue cache. */
1941 if (fi->base->unwind == fi->unwind)
1942 return fi->base->this_base (fi, &fi->prologue_cache);
1943 return fi->base->this_base (fi, &fi->base_cache);
1944 }
1945
1946 CORE_ADDR
1947 get_frame_locals_address (struct frame_info *fi)
1948 {
1949 if (get_frame_type (fi) != NORMAL_FRAME)
1950 return 0;
1951 /* If there isn't a frame address method, find it. */
1952 if (fi->base == NULL)
1953 fi->base = frame_base_find_by_frame (fi);
1954 /* Sneaky: If the low-level unwind and high-level base code share a
1955 common unwinder, let them share the prologue cache. */
1956 if (fi->base->unwind == fi->unwind)
1957 return fi->base->this_locals (fi, &fi->prologue_cache);
1958 return fi->base->this_locals (fi, &fi->base_cache);
1959 }
1960
1961 CORE_ADDR
1962 get_frame_args_address (struct frame_info *fi)
1963 {
1964 if (get_frame_type (fi) != NORMAL_FRAME)
1965 return 0;
1966 /* If there isn't a frame address method, find it. */
1967 if (fi->base == NULL)
1968 fi->base = frame_base_find_by_frame (fi);
1969 /* Sneaky: If the low-level unwind and high-level base code share a
1970 common unwinder, let them share the prologue cache. */
1971 if (fi->base->unwind == fi->unwind)
1972 return fi->base->this_args (fi, &fi->prologue_cache);
1973 return fi->base->this_args (fi, &fi->base_cache);
1974 }
1975
1976 /* Return true if the frame unwinder for frame FI is UNWINDER; false
1977 otherwise. */
1978
1979 int
1980 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
1981 {
1982 if (fi->unwind == NULL)
1983 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1984 return fi->unwind == unwinder;
1985 }
1986
1987 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
1988 or -1 for a NULL frame. */
1989
1990 int
1991 frame_relative_level (struct frame_info *fi)
1992 {
1993 if (fi == NULL)
1994 return -1;
1995 else
1996 return fi->level;
1997 }
1998
1999 enum frame_type
2000 get_frame_type (struct frame_info *frame)
2001 {
2002 if (frame->unwind == NULL)
2003 /* Initialize the frame's unwinder because that's what
2004 provides the frame's type. */
2005 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2006 return frame->unwind->type;
2007 }
2008
2009 struct program_space *
2010 get_frame_program_space (struct frame_info *frame)
2011 {
2012 return frame->pspace;
2013 }
2014
2015 struct program_space *
2016 frame_unwind_program_space (struct frame_info *this_frame)
2017 {
2018 gdb_assert (this_frame);
2019
2020 /* This is really a placeholder to keep the API consistent --- we
2021 assume for now that we don't have frame chains crossing
2022 spaces. */
2023 return this_frame->pspace;
2024 }
2025
2026 struct address_space *
2027 get_frame_address_space (struct frame_info *frame)
2028 {
2029 return frame->aspace;
2030 }
2031
2032 /* Memory access methods. */
2033
2034 void
2035 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2036 gdb_byte *buf, int len)
2037 {
2038 read_memory (addr, buf, len);
2039 }
2040
2041 LONGEST
2042 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2043 int len)
2044 {
2045 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2046 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2047
2048 return read_memory_integer (addr, len, byte_order);
2049 }
2050
2051 ULONGEST
2052 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2053 int len)
2054 {
2055 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2056 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2057
2058 return read_memory_unsigned_integer (addr, len, byte_order);
2059 }
2060
2061 int
2062 safe_frame_unwind_memory (struct frame_info *this_frame,
2063 CORE_ADDR addr, gdb_byte *buf, int len)
2064 {
2065 /* NOTE: target_read_memory returns zero on success! */
2066 return !target_read_memory (addr, buf, len);
2067 }
2068
2069 /* Architecture methods. */
2070
2071 struct gdbarch *
2072 get_frame_arch (struct frame_info *this_frame)
2073 {
2074 return frame_unwind_arch (this_frame->next);
2075 }
2076
2077 struct gdbarch *
2078 frame_unwind_arch (struct frame_info *next_frame)
2079 {
2080 if (!next_frame->prev_arch.p)
2081 {
2082 struct gdbarch *arch;
2083
2084 if (next_frame->unwind == NULL)
2085 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2086
2087 if (next_frame->unwind->prev_arch != NULL)
2088 arch = next_frame->unwind->prev_arch (next_frame,
2089 &next_frame->prologue_cache);
2090 else
2091 arch = get_frame_arch (next_frame);
2092
2093 next_frame->prev_arch.arch = arch;
2094 next_frame->prev_arch.p = 1;
2095 if (frame_debug)
2096 fprintf_unfiltered (gdb_stdlog,
2097 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2098 next_frame->level,
2099 gdbarch_bfd_arch_info (arch)->printable_name);
2100 }
2101
2102 return next_frame->prev_arch.arch;
2103 }
2104
2105 struct gdbarch *
2106 frame_unwind_caller_arch (struct frame_info *next_frame)
2107 {
2108 return frame_unwind_arch (skip_inlined_frames (next_frame));
2109 }
2110
2111 /* Stack pointer methods. */
2112
2113 CORE_ADDR
2114 get_frame_sp (struct frame_info *this_frame)
2115 {
2116 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2117
2118 /* Normality - an architecture that provides a way of obtaining any
2119 frame inner-most address. */
2120 if (gdbarch_unwind_sp_p (gdbarch))
2121 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2122 operate on THIS_FRAME now. */
2123 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2124 /* Now things are really are grim. Hope that the value returned by
2125 the gdbarch_sp_regnum register is meaningful. */
2126 if (gdbarch_sp_regnum (gdbarch) >= 0)
2127 return get_frame_register_unsigned (this_frame,
2128 gdbarch_sp_regnum (gdbarch));
2129 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2130 }
2131
2132 /* Return the reason why we can't unwind past FRAME. */
2133
2134 enum unwind_stop_reason
2135 get_frame_unwind_stop_reason (struct frame_info *frame)
2136 {
2137 /* If we haven't tried to unwind past this point yet, then assume
2138 that unwinding would succeed. */
2139 if (frame->prev_p == 0)
2140 return UNWIND_NO_REASON;
2141
2142 /* Otherwise, we set a reason when we succeeded (or failed) to
2143 unwind. */
2144 return frame->stop_reason;
2145 }
2146
2147 /* Return a string explaining REASON. */
2148
2149 const char *
2150 frame_stop_reason_string (enum unwind_stop_reason reason)
2151 {
2152 switch (reason)
2153 {
2154 case UNWIND_NULL_ID:
2155 return _("unwinder did not report frame ID");
2156
2157 case UNWIND_INNER_ID:
2158 return _("previous frame inner to this frame (corrupt stack?)");
2159
2160 case UNWIND_SAME_ID:
2161 return _("previous frame identical to this frame (corrupt stack?)");
2162
2163 case UNWIND_NO_SAVED_PC:
2164 return _("frame did not save the PC");
2165
2166 case UNWIND_NO_REASON:
2167 case UNWIND_FIRST_ERROR:
2168 default:
2169 internal_error (__FILE__, __LINE__,
2170 "Invalid frame stop reason");
2171 }
2172 }
2173
2174 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2175 FRAME. */
2176
2177 static void
2178 frame_cleanup_after_sniffer (void *arg)
2179 {
2180 struct frame_info *frame = arg;
2181
2182 /* The sniffer should not allocate a prologue cache if it did not
2183 match this frame. */
2184 gdb_assert (frame->prologue_cache == NULL);
2185
2186 /* No sniffer should extend the frame chain; sniff based on what is
2187 already certain. */
2188 gdb_assert (!frame->prev_p);
2189
2190 /* The sniffer should not check the frame's ID; that's circular. */
2191 gdb_assert (!frame->this_id.p);
2192
2193 /* Clear cached fields dependent on the unwinder.
2194
2195 The previous PC is independent of the unwinder, but the previous
2196 function is not (see get_frame_address_in_block). */
2197 frame->prev_func.p = 0;
2198 frame->prev_func.addr = 0;
2199
2200 /* Discard the unwinder last, so that we can easily find it if an assertion
2201 in this function triggers. */
2202 frame->unwind = NULL;
2203 }
2204
2205 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2206 Return a cleanup which should be called if unwinding fails, and
2207 discarded if it succeeds. */
2208
2209 struct cleanup *
2210 frame_prepare_for_sniffer (struct frame_info *frame,
2211 const struct frame_unwind *unwind)
2212 {
2213 gdb_assert (frame->unwind == NULL);
2214 frame->unwind = unwind;
2215 return make_cleanup (frame_cleanup_after_sniffer, frame);
2216 }
2217
2218 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2219
2220 static struct cmd_list_element *set_backtrace_cmdlist;
2221 static struct cmd_list_element *show_backtrace_cmdlist;
2222
2223 static void
2224 set_backtrace_cmd (char *args, int from_tty)
2225 {
2226 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2227 }
2228
2229 static void
2230 show_backtrace_cmd (char *args, int from_tty)
2231 {
2232 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2233 }
2234
2235 void
2236 _initialize_frame (void)
2237 {
2238 obstack_init (&frame_cache_obstack);
2239
2240 observer_attach_target_changed (frame_observer_target_changed);
2241
2242 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2243 Set backtrace specific variables.\n\
2244 Configure backtrace variables such as the backtrace limit"),
2245 &set_backtrace_cmdlist, "set backtrace ",
2246 0/*allow-unknown*/, &setlist);
2247 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2248 Show backtrace specific variables\n\
2249 Show backtrace variables such as the backtrace limit"),
2250 &show_backtrace_cmdlist, "show backtrace ",
2251 0/*allow-unknown*/, &showlist);
2252
2253 add_setshow_boolean_cmd ("past-main", class_obscure,
2254 &backtrace_past_main, _("\
2255 Set whether backtraces should continue past \"main\"."), _("\
2256 Show whether backtraces should continue past \"main\"."), _("\
2257 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2258 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2259 of the stack trace."),
2260 NULL,
2261 show_backtrace_past_main,
2262 &set_backtrace_cmdlist,
2263 &show_backtrace_cmdlist);
2264
2265 add_setshow_boolean_cmd ("past-entry", class_obscure,
2266 &backtrace_past_entry, _("\
2267 Set whether backtraces should continue past the entry point of a program."),
2268 _("\
2269 Show whether backtraces should continue past the entry point of a program."),
2270 _("\
2271 Normally there are no callers beyond the entry point of a program, so GDB\n\
2272 will terminate the backtrace there. Set this variable if you need to see\n\
2273 the rest of the stack trace."),
2274 NULL,
2275 show_backtrace_past_entry,
2276 &set_backtrace_cmdlist,
2277 &show_backtrace_cmdlist);
2278
2279 add_setshow_integer_cmd ("limit", class_obscure,
2280 &backtrace_limit, _("\
2281 Set an upper bound on the number of backtrace levels."), _("\
2282 Show the upper bound on the number of backtrace levels."), _("\
2283 No more than the specified number of frames can be displayed or examined.\n\
2284 Zero is unlimited."),
2285 NULL,
2286 show_backtrace_limit,
2287 &set_backtrace_cmdlist,
2288 &show_backtrace_cmdlist);
2289
2290 /* Debug this files internals. */
2291 add_setshow_zinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2292 Set frame debugging."), _("\
2293 Show frame debugging."), _("\
2294 When non-zero, frame specific internal debugging is enabled."),
2295 NULL,
2296 show_frame_debug,
2297 &setdebuglist, &showdebuglist);
2298 }
This page took 0.104729 seconds and 4 git commands to generate.