Rename some frame unwind function parameters
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 const address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* See frame.h */
273 scoped_restore_selected_frame::scoped_restore_selected_frame ()
274 {
275 m_fid = get_frame_id (get_selected_frame (NULL));
276 }
277
278 /* See frame.h */
279 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
280 {
281 frame_info *frame = frame_find_by_id (m_fid);
282 if (frame == NULL)
283 warning (_("Unable to restore previously selected frame."));
284 else
285 select_frame (frame);
286 }
287
288 /* Flag to control debugging. */
289
290 unsigned int frame_debug;
291 static void
292 show_frame_debug (struct ui_file *file, int from_tty,
293 struct cmd_list_element *c, const char *value)
294 {
295 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
296 }
297
298 /* Flag to indicate whether backtraces should stop at main et.al. */
299
300 static int backtrace_past_main;
301 static void
302 show_backtrace_past_main (struct ui_file *file, int from_tty,
303 struct cmd_list_element *c, const char *value)
304 {
305 fprintf_filtered (file,
306 _("Whether backtraces should "
307 "continue past \"main\" is %s.\n"),
308 value);
309 }
310
311 static int backtrace_past_entry;
312 static void
313 show_backtrace_past_entry (struct ui_file *file, int from_tty,
314 struct cmd_list_element *c, const char *value)
315 {
316 fprintf_filtered (file, _("Whether backtraces should continue past the "
317 "entry point of a program is %s.\n"),
318 value);
319 }
320
321 static unsigned int backtrace_limit = UINT_MAX;
322 static void
323 show_backtrace_limit (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c, const char *value)
325 {
326 fprintf_filtered (file,
327 _("An upper bound on the number "
328 "of backtrace levels is %s.\n"),
329 value);
330 }
331
332
333 static void
334 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
335 {
336 if (p)
337 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
338 else
339 fprintf_unfiltered (file, "!%s", name);
340 }
341
342 void
343 fprint_frame_id (struct ui_file *file, struct frame_id id)
344 {
345 fprintf_unfiltered (file, "{");
346
347 if (id.stack_status == FID_STACK_INVALID)
348 fprintf_unfiltered (file, "!stack");
349 else if (id.stack_status == FID_STACK_UNAVAILABLE)
350 fprintf_unfiltered (file, "stack=<unavailable>");
351 else if (id.stack_status == FID_STACK_SENTINEL)
352 fprintf_unfiltered (file, "stack=<sentinel>");
353 else
354 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
355 fprintf_unfiltered (file, ",");
356
357 fprint_field (file, "code", id.code_addr_p, id.code_addr);
358 fprintf_unfiltered (file, ",");
359
360 fprint_field (file, "special", id.special_addr_p, id.special_addr);
361
362 if (id.artificial_depth)
363 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
364
365 fprintf_unfiltered (file, "}");
366 }
367
368 static void
369 fprint_frame_type (struct ui_file *file, enum frame_type type)
370 {
371 switch (type)
372 {
373 case NORMAL_FRAME:
374 fprintf_unfiltered (file, "NORMAL_FRAME");
375 return;
376 case DUMMY_FRAME:
377 fprintf_unfiltered (file, "DUMMY_FRAME");
378 return;
379 case INLINE_FRAME:
380 fprintf_unfiltered (file, "INLINE_FRAME");
381 return;
382 case TAILCALL_FRAME:
383 fprintf_unfiltered (file, "TAILCALL_FRAME");
384 return;
385 case SIGTRAMP_FRAME:
386 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
387 return;
388 case ARCH_FRAME:
389 fprintf_unfiltered (file, "ARCH_FRAME");
390 return;
391 case SENTINEL_FRAME:
392 fprintf_unfiltered (file, "SENTINEL_FRAME");
393 return;
394 default:
395 fprintf_unfiltered (file, "<unknown type>");
396 return;
397 };
398 }
399
400 static void
401 fprint_frame (struct ui_file *file, struct frame_info *fi)
402 {
403 if (fi == NULL)
404 {
405 fprintf_unfiltered (file, "<NULL frame>");
406 return;
407 }
408 fprintf_unfiltered (file, "{");
409 fprintf_unfiltered (file, "level=%d", fi->level);
410 fprintf_unfiltered (file, ",");
411 fprintf_unfiltered (file, "type=");
412 if (fi->unwind != NULL)
413 fprint_frame_type (file, fi->unwind->type);
414 else
415 fprintf_unfiltered (file, "<unknown>");
416 fprintf_unfiltered (file, ",");
417 fprintf_unfiltered (file, "unwind=");
418 if (fi->unwind != NULL)
419 gdb_print_host_address (fi->unwind, file);
420 else
421 fprintf_unfiltered (file, "<unknown>");
422 fprintf_unfiltered (file, ",");
423 fprintf_unfiltered (file, "pc=");
424 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
425 fprintf_unfiltered (file, "<unknown>");
426 else if (fi->next->prev_pc.status == CC_VALUE)
427 fprintf_unfiltered (file, "%s",
428 hex_string (fi->next->prev_pc.value));
429 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
430 val_print_not_saved (file);
431 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
432 val_print_unavailable (file);
433 fprintf_unfiltered (file, ",");
434 fprintf_unfiltered (file, "id=");
435 if (fi->this_id.p)
436 fprint_frame_id (file, fi->this_id.value);
437 else
438 fprintf_unfiltered (file, "<unknown>");
439 fprintf_unfiltered (file, ",");
440 fprintf_unfiltered (file, "func=");
441 if (fi->next != NULL && fi->next->prev_func.p)
442 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
443 else
444 fprintf_unfiltered (file, "<unknown>");
445 fprintf_unfiltered (file, "}");
446 }
447
448 /* Given FRAME, return the enclosing frame as found in real frames read-in from
449 inferior memory. Skip any previous frames which were made up by GDB.
450 Return FRAME if FRAME is a non-artificial frame.
451 Return NULL if FRAME is the start of an artificial-only chain. */
452
453 static struct frame_info *
454 skip_artificial_frames (struct frame_info *frame)
455 {
456 /* Note we use get_prev_frame_always, and not get_prev_frame. The
457 latter will truncate the frame chain, leading to this function
458 unintentionally returning a null_frame_id (e.g., when the user
459 sets a backtrace limit).
460
461 Note that for record targets we may get a frame chain that consists
462 of artificial frames only. */
463 while (get_frame_type (frame) == INLINE_FRAME
464 || get_frame_type (frame) == TAILCALL_FRAME)
465 {
466 frame = get_prev_frame_always (frame);
467 if (frame == NULL)
468 break;
469 }
470
471 return frame;
472 }
473
474 struct frame_info *
475 skip_unwritable_frames (struct frame_info *frame)
476 {
477 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
478 {
479 frame = get_prev_frame (frame);
480 if (frame == NULL)
481 break;
482 }
483
484 return frame;
485 }
486
487 /* See frame.h. */
488
489 struct frame_info *
490 skip_tailcall_frames (struct frame_info *frame)
491 {
492 while (get_frame_type (frame) == TAILCALL_FRAME)
493 {
494 /* Note that for record targets we may get a frame chain that consists of
495 tailcall frames only. */
496 frame = get_prev_frame (frame);
497 if (frame == NULL)
498 break;
499 }
500
501 return frame;
502 }
503
504 /* Compute the frame's uniq ID that can be used to, later, re-find the
505 frame. */
506
507 static void
508 compute_frame_id (struct frame_info *fi)
509 {
510 gdb_assert (!fi->this_id.p);
511
512 if (frame_debug)
513 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
514 fi->level);
515 /* Find the unwinder. */
516 if (fi->unwind == NULL)
517 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
518 /* Find THIS frame's ID. */
519 /* Default to outermost if no ID is found. */
520 fi->this_id.value = outer_frame_id;
521 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
522 gdb_assert (frame_id_p (fi->this_id.value));
523 fi->this_id.p = 1;
524 if (frame_debug)
525 {
526 fprintf_unfiltered (gdb_stdlog, "-> ");
527 fprint_frame_id (gdb_stdlog, fi->this_id.value);
528 fprintf_unfiltered (gdb_stdlog, " }\n");
529 }
530 }
531
532 /* Return a frame uniq ID that can be used to, later, re-find the
533 frame. */
534
535 struct frame_id
536 get_frame_id (struct frame_info *fi)
537 {
538 if (fi == NULL)
539 return null_frame_id;
540
541 if (!fi->this_id.p)
542 {
543 int stashed;
544
545 /* If we haven't computed the frame id yet, then it must be that
546 this is the current frame. Compute it now, and stash the
547 result. The IDs of other frames are computed as soon as
548 they're created, in order to detect cycles. See
549 get_prev_frame_if_no_cycle. */
550 gdb_assert (fi->level == 0);
551
552 /* Compute. */
553 compute_frame_id (fi);
554
555 /* Since this is the first frame in the chain, this should
556 always succeed. */
557 stashed = frame_stash_add (fi);
558 gdb_assert (stashed);
559 }
560
561 return fi->this_id.value;
562 }
563
564 struct frame_id
565 get_stack_frame_id (struct frame_info *next_frame)
566 {
567 return get_frame_id (skip_artificial_frames (next_frame));
568 }
569
570 struct frame_id
571 frame_unwind_caller_id (struct frame_info *next_frame)
572 {
573 struct frame_info *this_frame;
574
575 /* Use get_prev_frame_always, and not get_prev_frame. The latter
576 will truncate the frame chain, leading to this function
577 unintentionally returning a null_frame_id (e.g., when a caller
578 requests the frame ID of "main()"s caller. */
579
580 next_frame = skip_artificial_frames (next_frame);
581 if (next_frame == NULL)
582 return null_frame_id;
583
584 this_frame = get_prev_frame_always (next_frame);
585 if (this_frame)
586 return get_frame_id (skip_artificial_frames (this_frame));
587 else
588 return null_frame_id;
589 }
590
591 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
592 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
593 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
594
595 struct frame_id
596 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
597 CORE_ADDR special_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_addr = stack_addr;
602 id.stack_status = FID_STACK_VALID;
603 id.code_addr = code_addr;
604 id.code_addr_p = 1;
605 id.special_addr = special_addr;
606 id.special_addr_p = 1;
607 return id;
608 }
609
610 /* See frame.h. */
611
612 struct frame_id
613 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
614 {
615 struct frame_id id = null_frame_id;
616
617 id.stack_status = FID_STACK_UNAVAILABLE;
618 id.code_addr = code_addr;
619 id.code_addr_p = 1;
620 return id;
621 }
622
623 /* See frame.h. */
624
625 struct frame_id
626 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
627 CORE_ADDR special_addr)
628 {
629 struct frame_id id = null_frame_id;
630
631 id.stack_status = FID_STACK_UNAVAILABLE;
632 id.code_addr = code_addr;
633 id.code_addr_p = 1;
634 id.special_addr = special_addr;
635 id.special_addr_p = 1;
636 return id;
637 }
638
639 struct frame_id
640 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
641 {
642 struct frame_id id = null_frame_id;
643
644 id.stack_addr = stack_addr;
645 id.stack_status = FID_STACK_VALID;
646 id.code_addr = code_addr;
647 id.code_addr_p = 1;
648 return id;
649 }
650
651 struct frame_id
652 frame_id_build_wild (CORE_ADDR stack_addr)
653 {
654 struct frame_id id = null_frame_id;
655
656 id.stack_addr = stack_addr;
657 id.stack_status = FID_STACK_VALID;
658 return id;
659 }
660
661 int
662 frame_id_p (struct frame_id l)
663 {
664 int p;
665
666 /* The frame is valid iff it has a valid stack address. */
667 p = l.stack_status != FID_STACK_INVALID;
668 /* outer_frame_id is also valid. */
669 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
670 p = 1;
671 if (frame_debug)
672 {
673 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
674 fprint_frame_id (gdb_stdlog, l);
675 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
676 }
677 return p;
678 }
679
680 int
681 frame_id_artificial_p (struct frame_id l)
682 {
683 if (!frame_id_p (l))
684 return 0;
685
686 return (l.artificial_depth != 0);
687 }
688
689 int
690 frame_id_eq (struct frame_id l, struct frame_id r)
691 {
692 int eq;
693
694 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
695 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
696 /* The outermost frame marker is equal to itself. This is the
697 dodgy thing about outer_frame_id, since between execution steps
698 we might step into another function - from which we can't
699 unwind either. More thought required to get rid of
700 outer_frame_id. */
701 eq = 1;
702 else if (l.stack_status == FID_STACK_INVALID
703 || r.stack_status == FID_STACK_INVALID)
704 /* Like a NaN, if either ID is invalid, the result is false.
705 Note that a frame ID is invalid iff it is the null frame ID. */
706 eq = 0;
707 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
708 /* If .stack addresses are different, the frames are different. */
709 eq = 0;
710 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
711 /* An invalid code addr is a wild card. If .code addresses are
712 different, the frames are different. */
713 eq = 0;
714 else if (l.special_addr_p && r.special_addr_p
715 && l.special_addr != r.special_addr)
716 /* An invalid special addr is a wild card (or unused). Otherwise
717 if special addresses are different, the frames are different. */
718 eq = 0;
719 else if (l.artificial_depth != r.artificial_depth)
720 /* If artifical depths are different, the frames must be different. */
721 eq = 0;
722 else
723 /* Frames are equal. */
724 eq = 1;
725
726 if (frame_debug)
727 {
728 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
729 fprint_frame_id (gdb_stdlog, l);
730 fprintf_unfiltered (gdb_stdlog, ",r=");
731 fprint_frame_id (gdb_stdlog, r);
732 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
733 }
734 return eq;
735 }
736
737 /* Safety net to check whether frame ID L should be inner to
738 frame ID R, according to their stack addresses.
739
740 This method cannot be used to compare arbitrary frames, as the
741 ranges of valid stack addresses may be discontiguous (e.g. due
742 to sigaltstack).
743
744 However, it can be used as safety net to discover invalid frame
745 IDs in certain circumstances. Assuming that NEXT is the immediate
746 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
747
748 * The stack address of NEXT must be inner-than-or-equal to the stack
749 address of THIS.
750
751 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
752 error has occurred.
753
754 * If NEXT and THIS have different stack addresses, no other frame
755 in the frame chain may have a stack address in between.
756
757 Therefore, if frame_id_inner (TEST, THIS) holds, but
758 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
759 to a valid frame in the frame chain.
760
761 The sanity checks above cannot be performed when a SIGTRAMP frame
762 is involved, because signal handlers might be executed on a different
763 stack than the stack used by the routine that caused the signal
764 to be raised. This can happen for instance when a thread exceeds
765 its maximum stack size. In this case, certain compilers implement
766 a stack overflow strategy that cause the handler to be run on a
767 different stack. */
768
769 static int
770 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
771 {
772 int inner;
773
774 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
775 /* Like NaN, any operation involving an invalid ID always fails.
776 Likewise if either ID has an unavailable stack address. */
777 inner = 0;
778 else if (l.artificial_depth > r.artificial_depth
779 && l.stack_addr == r.stack_addr
780 && l.code_addr_p == r.code_addr_p
781 && l.special_addr_p == r.special_addr_p
782 && l.special_addr == r.special_addr)
783 {
784 /* Same function, different inlined functions. */
785 const struct block *lb, *rb;
786
787 gdb_assert (l.code_addr_p && r.code_addr_p);
788
789 lb = block_for_pc (l.code_addr);
790 rb = block_for_pc (r.code_addr);
791
792 if (lb == NULL || rb == NULL)
793 /* Something's gone wrong. */
794 inner = 0;
795 else
796 /* This will return true if LB and RB are the same block, or
797 if the block with the smaller depth lexically encloses the
798 block with the greater depth. */
799 inner = contained_in (lb, rb);
800 }
801 else
802 /* Only return non-zero when strictly inner than. Note that, per
803 comment in "frame.h", there is some fuzz here. Frameless
804 functions are not strictly inner than (same .stack but
805 different .code and/or .special address). */
806 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
807 if (frame_debug)
808 {
809 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
810 fprint_frame_id (gdb_stdlog, l);
811 fprintf_unfiltered (gdb_stdlog, ",r=");
812 fprint_frame_id (gdb_stdlog, r);
813 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
814 }
815 return inner;
816 }
817
818 struct frame_info *
819 frame_find_by_id (struct frame_id id)
820 {
821 struct frame_info *frame, *prev_frame;
822
823 /* ZERO denotes the null frame, let the caller decide what to do
824 about it. Should it instead return get_current_frame()? */
825 if (!frame_id_p (id))
826 return NULL;
827
828 /* Check for the sentinel frame. */
829 if (frame_id_eq (id, sentinel_frame_id))
830 return sentinel_frame;
831
832 /* Try using the frame stash first. Finding it there removes the need
833 to perform the search by looping over all frames, which can be very
834 CPU-intensive if the number of frames is very high (the loop is O(n)
835 and get_prev_frame performs a series of checks that are relatively
836 expensive). This optimization is particularly useful when this function
837 is called from another function (such as value_fetch_lazy, case
838 VALUE_LVAL (val) == lval_register) which already loops over all frames,
839 making the overall behavior O(n^2). */
840 frame = frame_stash_find (id);
841 if (frame)
842 return frame;
843
844 for (frame = get_current_frame (); ; frame = prev_frame)
845 {
846 struct frame_id self = get_frame_id (frame);
847
848 if (frame_id_eq (id, self))
849 /* An exact match. */
850 return frame;
851
852 prev_frame = get_prev_frame (frame);
853 if (!prev_frame)
854 return NULL;
855
856 /* As a safety net to avoid unnecessary backtracing while trying
857 to find an invalid ID, we check for a common situation where
858 we can detect from comparing stack addresses that no other
859 frame in the current frame chain can have this ID. See the
860 comment at frame_id_inner for details. */
861 if (get_frame_type (frame) == NORMAL_FRAME
862 && !frame_id_inner (get_frame_arch (frame), id, self)
863 && frame_id_inner (get_frame_arch (prev_frame), id,
864 get_frame_id (prev_frame)))
865 return NULL;
866 }
867 return NULL;
868 }
869
870 static CORE_ADDR
871 frame_unwind_pc (struct frame_info *this_frame)
872 {
873 if (this_frame->prev_pc.status == CC_UNKNOWN)
874 {
875 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
876 {
877 struct gdbarch *prev_gdbarch;
878 CORE_ADDR pc = 0;
879 int pc_p = 0;
880
881 /* The right way. The `pure' way. The one true way. This
882 method depends solely on the register-unwind code to
883 determine the value of registers in THIS frame, and hence
884 the value of this frame's PC (resume address). A typical
885 implementation is no more than:
886
887 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
888 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
889
890 Note: this method is very heavily dependent on a correct
891 register-unwind implementation, it pays to fix that
892 method first; this method is frame type agnostic, since
893 it only deals with register values, it works with any
894 frame. This is all in stark contrast to the old
895 FRAME_SAVED_PC which would try to directly handle all the
896 different ways that a PC could be unwound. */
897 prev_gdbarch = frame_unwind_arch (this_frame);
898
899 TRY
900 {
901 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
902 pc_p = 1;
903 }
904 CATCH (ex, RETURN_MASK_ERROR)
905 {
906 if (ex.error == NOT_AVAILABLE_ERROR)
907 {
908 this_frame->prev_pc.status = CC_UNAVAILABLE;
909
910 if (frame_debug)
911 fprintf_unfiltered (gdb_stdlog,
912 "{ frame_unwind_pc (this_frame=%d)"
913 " -> <unavailable> }\n",
914 this_frame->level);
915 }
916 else if (ex.error == OPTIMIZED_OUT_ERROR)
917 {
918 this_frame->prev_pc.status = CC_NOT_SAVED;
919
920 if (frame_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "{ frame_unwind_pc (this_frame=%d)"
923 " -> <not saved> }\n",
924 this_frame->level);
925 }
926 else
927 throw_exception (ex);
928 }
929 END_CATCH
930
931 if (pc_p)
932 {
933 this_frame->prev_pc.value = pc;
934 this_frame->prev_pc.status = CC_VALUE;
935 if (frame_debug)
936 fprintf_unfiltered (gdb_stdlog,
937 "{ frame_unwind_pc (this_frame=%d) "
938 "-> %s }\n",
939 this_frame->level,
940 hex_string (this_frame->prev_pc.value));
941 }
942 }
943 else
944 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
945 }
946
947 if (this_frame->prev_pc.status == CC_VALUE)
948 return this_frame->prev_pc.value;
949 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
950 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
951 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
952 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
953 else
954 internal_error (__FILE__, __LINE__,
955 "unexpected prev_pc status: %d",
956 (int) this_frame->prev_pc.status);
957 }
958
959 CORE_ADDR
960 frame_unwind_caller_pc (struct frame_info *this_frame)
961 {
962 this_frame = skip_artificial_frames (this_frame);
963
964 /* We must have a non-artificial frame. The caller is supposed to check
965 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
966 in this case. */
967 gdb_assert (this_frame != NULL);
968
969 return frame_unwind_pc (this_frame);
970 }
971
972 int
973 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
974 {
975 struct frame_info *next_frame = this_frame->next;
976
977 if (!next_frame->prev_func.p)
978 {
979 CORE_ADDR addr_in_block;
980
981 /* Make certain that this, and not the adjacent, function is
982 found. */
983 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
984 {
985 next_frame->prev_func.p = -1;
986 if (frame_debug)
987 fprintf_unfiltered (gdb_stdlog,
988 "{ get_frame_func (this_frame=%d)"
989 " -> unavailable }\n",
990 this_frame->level);
991 }
992 else
993 {
994 next_frame->prev_func.p = 1;
995 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
996 if (frame_debug)
997 fprintf_unfiltered (gdb_stdlog,
998 "{ get_frame_func (this_frame=%d) -> %s }\n",
999 this_frame->level,
1000 hex_string (next_frame->prev_func.addr));
1001 }
1002 }
1003
1004 if (next_frame->prev_func.p < 0)
1005 {
1006 *pc = -1;
1007 return 0;
1008 }
1009 else
1010 {
1011 *pc = next_frame->prev_func.addr;
1012 return 1;
1013 }
1014 }
1015
1016 CORE_ADDR
1017 get_frame_func (struct frame_info *this_frame)
1018 {
1019 CORE_ADDR pc;
1020
1021 if (!get_frame_func_if_available (this_frame, &pc))
1022 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1023
1024 return pc;
1025 }
1026
1027 std::unique_ptr<readonly_detached_regcache>
1028 frame_save_as_regcache (struct frame_info *this_frame)
1029 {
1030 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1031 {
1032 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1033 return REG_UNAVAILABLE;
1034 else
1035 return REG_VALID;
1036 };
1037
1038 std::unique_ptr<readonly_detached_regcache> regcache
1039 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1040
1041 return regcache;
1042 }
1043
1044 void
1045 frame_pop (struct frame_info *this_frame)
1046 {
1047 struct frame_info *prev_frame;
1048
1049 if (get_frame_type (this_frame) == DUMMY_FRAME)
1050 {
1051 /* Popping a dummy frame involves restoring more than just registers.
1052 dummy_frame_pop does all the work. */
1053 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1054 return;
1055 }
1056
1057 /* Ensure that we have a frame to pop to. */
1058 prev_frame = get_prev_frame_always (this_frame);
1059
1060 if (!prev_frame)
1061 error (_("Cannot pop the initial frame."));
1062
1063 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1064 entering THISFRAME. */
1065 prev_frame = skip_tailcall_frames (prev_frame);
1066
1067 if (prev_frame == NULL)
1068 error (_("Cannot find the caller frame."));
1069
1070 /* Make a copy of all the register values unwound from this frame.
1071 Save them in a scratch buffer so that there isn't a race between
1072 trying to extract the old values from the current regcache while
1073 at the same time writing new values into that same cache. */
1074 std::unique_ptr<readonly_detached_regcache> scratch
1075 = frame_save_as_regcache (prev_frame);
1076
1077 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1078 target's register cache that it is about to be hit with a burst
1079 register transfer and that the sequence of register writes should
1080 be batched. The pair target_prepare_to_store() and
1081 target_store_registers() kind of suggest this functionality.
1082 Unfortunately, they don't implement it. Their lack of a formal
1083 definition can lead to targets writing back bogus values
1084 (arguably a bug in the target code mind). */
1085 /* Now copy those saved registers into the current regcache. */
1086 get_current_regcache ()->restore (scratch.get ());
1087
1088 /* We've made right mess of GDB's local state, just discard
1089 everything. */
1090 reinit_frame_cache ();
1091 }
1092
1093 void
1094 frame_register_unwind (frame_info *next_frame, int regnum,
1095 int *optimizedp, int *unavailablep,
1096 enum lval_type *lvalp, CORE_ADDR *addrp,
1097 int *realnump, gdb_byte *bufferp)
1098 {
1099 struct value *value;
1100
1101 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1102 that the value proper does not need to be fetched. */
1103 gdb_assert (optimizedp != NULL);
1104 gdb_assert (lvalp != NULL);
1105 gdb_assert (addrp != NULL);
1106 gdb_assert (realnump != NULL);
1107 /* gdb_assert (bufferp != NULL); */
1108
1109 value = frame_unwind_register_value (next_frame, regnum);
1110
1111 gdb_assert (value != NULL);
1112
1113 *optimizedp = value_optimized_out (value);
1114 *unavailablep = !value_entirely_available (value);
1115 *lvalp = VALUE_LVAL (value);
1116 *addrp = value_address (value);
1117 if (*lvalp == lval_register)
1118 *realnump = VALUE_REGNUM (value);
1119 else
1120 *realnump = -1;
1121
1122 if (bufferp)
1123 {
1124 if (!*optimizedp && !*unavailablep)
1125 memcpy (bufferp, value_contents_all (value),
1126 TYPE_LENGTH (value_type (value)));
1127 else
1128 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1129 }
1130
1131 /* Dispose of the new value. This prevents watchpoints from
1132 trying to watch the saved frame pointer. */
1133 release_value (value);
1134 }
1135
1136 void
1137 frame_register (struct frame_info *frame, int regnum,
1138 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1139 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1140 {
1141 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1142 that the value proper does not need to be fetched. */
1143 gdb_assert (optimizedp != NULL);
1144 gdb_assert (lvalp != NULL);
1145 gdb_assert (addrp != NULL);
1146 gdb_assert (realnump != NULL);
1147 /* gdb_assert (bufferp != NULL); */
1148
1149 /* Obtain the register value by unwinding the register from the next
1150 (more inner frame). */
1151 gdb_assert (frame != NULL && frame->next != NULL);
1152 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1153 lvalp, addrp, realnump, bufferp);
1154 }
1155
1156 void
1157 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1158 {
1159 int optimized;
1160 int unavailable;
1161 CORE_ADDR addr;
1162 int realnum;
1163 enum lval_type lval;
1164
1165 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1166 &lval, &addr, &realnum, buf);
1167
1168 if (optimized)
1169 throw_error (OPTIMIZED_OUT_ERROR,
1170 _("Register %d was not saved"), regnum);
1171 if (unavailable)
1172 throw_error (NOT_AVAILABLE_ERROR,
1173 _("Register %d is not available"), regnum);
1174 }
1175
1176 void
1177 get_frame_register (struct frame_info *frame,
1178 int regnum, gdb_byte *buf)
1179 {
1180 frame_unwind_register (frame->next, regnum, buf);
1181 }
1182
1183 struct value *
1184 frame_unwind_register_value (frame_info *next_frame, int regnum)
1185 {
1186 struct gdbarch *gdbarch;
1187 struct value *value;
1188
1189 gdb_assert (next_frame != NULL);
1190 gdbarch = frame_unwind_arch (next_frame);
1191
1192 if (frame_debug)
1193 {
1194 fprintf_unfiltered (gdb_stdlog,
1195 "{ frame_unwind_register_value "
1196 "(frame=%d,regnum=%d(%s),...) ",
1197 next_frame->level, regnum,
1198 user_reg_map_regnum_to_name (gdbarch, regnum));
1199 }
1200
1201 /* Find the unwinder. */
1202 if (next_frame->unwind == NULL)
1203 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1204
1205 /* Ask this frame to unwind its register. */
1206 value = next_frame->unwind->prev_register (next_frame,
1207 &next_frame->prologue_cache,
1208 regnum);
1209
1210 if (frame_debug)
1211 {
1212 fprintf_unfiltered (gdb_stdlog, "->");
1213 if (value_optimized_out (value))
1214 {
1215 fprintf_unfiltered (gdb_stdlog, " ");
1216 val_print_optimized_out (value, gdb_stdlog);
1217 }
1218 else
1219 {
1220 if (VALUE_LVAL (value) == lval_register)
1221 fprintf_unfiltered (gdb_stdlog, " register=%d",
1222 VALUE_REGNUM (value));
1223 else if (VALUE_LVAL (value) == lval_memory)
1224 fprintf_unfiltered (gdb_stdlog, " address=%s",
1225 paddress (gdbarch,
1226 value_address (value)));
1227 else
1228 fprintf_unfiltered (gdb_stdlog, " computed");
1229
1230 if (value_lazy (value))
1231 fprintf_unfiltered (gdb_stdlog, " lazy");
1232 else
1233 {
1234 int i;
1235 const gdb_byte *buf = value_contents (value);
1236
1237 fprintf_unfiltered (gdb_stdlog, " bytes=");
1238 fprintf_unfiltered (gdb_stdlog, "[");
1239 for (i = 0; i < register_size (gdbarch, regnum); i++)
1240 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1241 fprintf_unfiltered (gdb_stdlog, "]");
1242 }
1243 }
1244
1245 fprintf_unfiltered (gdb_stdlog, " }\n");
1246 }
1247
1248 return value;
1249 }
1250
1251 struct value *
1252 get_frame_register_value (struct frame_info *frame, int regnum)
1253 {
1254 return frame_unwind_register_value (frame->next, regnum);
1255 }
1256
1257 LONGEST
1258 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1259 {
1260 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1262 int size = register_size (gdbarch, regnum);
1263 struct value *value = frame_unwind_register_value (next_frame, regnum);
1264
1265 gdb_assert (value != NULL);
1266
1267 if (value_optimized_out (value))
1268 {
1269 throw_error (OPTIMIZED_OUT_ERROR,
1270 _("Register %d was not saved"), regnum);
1271 }
1272 if (!value_entirely_available (value))
1273 {
1274 throw_error (NOT_AVAILABLE_ERROR,
1275 _("Register %d is not available"), regnum);
1276 }
1277
1278 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1279 byte_order);
1280
1281 release_value (value);
1282 return r;
1283 }
1284
1285 LONGEST
1286 get_frame_register_signed (struct frame_info *frame, int regnum)
1287 {
1288 return frame_unwind_register_signed (frame->next, regnum);
1289 }
1290
1291 ULONGEST
1292 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1293 {
1294 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1296 int size = register_size (gdbarch, regnum);
1297 struct value *value = frame_unwind_register_value (next_frame, regnum);
1298
1299 gdb_assert (value != NULL);
1300
1301 if (value_optimized_out (value))
1302 {
1303 throw_error (OPTIMIZED_OUT_ERROR,
1304 _("Register %d was not saved"), regnum);
1305 }
1306 if (!value_entirely_available (value))
1307 {
1308 throw_error (NOT_AVAILABLE_ERROR,
1309 _("Register %d is not available"), regnum);
1310 }
1311
1312 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1313 byte_order);
1314
1315 release_value (value);
1316 return r;
1317 }
1318
1319 ULONGEST
1320 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1321 {
1322 return frame_unwind_register_unsigned (frame->next, regnum);
1323 }
1324
1325 int
1326 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1327 ULONGEST *val)
1328 {
1329 struct value *regval = get_frame_register_value (frame, regnum);
1330
1331 if (!value_optimized_out (regval)
1332 && value_entirely_available (regval))
1333 {
1334 struct gdbarch *gdbarch = get_frame_arch (frame);
1335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1336 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1337
1338 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1339 return 1;
1340 }
1341
1342 return 0;
1343 }
1344
1345 void
1346 put_frame_register (struct frame_info *frame, int regnum,
1347 const gdb_byte *buf)
1348 {
1349 struct gdbarch *gdbarch = get_frame_arch (frame);
1350 int realnum;
1351 int optim;
1352 int unavail;
1353 enum lval_type lval;
1354 CORE_ADDR addr;
1355
1356 frame_register (frame, regnum, &optim, &unavail,
1357 &lval, &addr, &realnum, NULL);
1358 if (optim)
1359 error (_("Attempt to assign to a register that was not saved."));
1360 switch (lval)
1361 {
1362 case lval_memory:
1363 {
1364 write_memory (addr, buf, register_size (gdbarch, regnum));
1365 break;
1366 }
1367 case lval_register:
1368 get_current_regcache ()->cooked_write (realnum, buf);
1369 break;
1370 default:
1371 error (_("Attempt to assign to an unmodifiable value."));
1372 }
1373 }
1374
1375 /* This function is deprecated. Use get_frame_register_value instead,
1376 which provides more accurate information.
1377
1378 Find and return the value of REGNUM for the specified stack frame.
1379 The number of bytes copied is REGISTER_SIZE (REGNUM).
1380
1381 Returns 0 if the register value could not be found. */
1382
1383 int
1384 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1385 gdb_byte *myaddr)
1386 {
1387 int optimized;
1388 int unavailable;
1389 enum lval_type lval;
1390 CORE_ADDR addr;
1391 int realnum;
1392
1393 frame_register (frame, regnum, &optimized, &unavailable,
1394 &lval, &addr, &realnum, myaddr);
1395
1396 return !optimized && !unavailable;
1397 }
1398
1399 int
1400 get_frame_register_bytes (struct frame_info *frame, int regnum,
1401 CORE_ADDR offset, int len, gdb_byte *myaddr,
1402 int *optimizedp, int *unavailablep)
1403 {
1404 struct gdbarch *gdbarch = get_frame_arch (frame);
1405 int i;
1406 int maxsize;
1407 int numregs;
1408
1409 /* Skip registers wholly inside of OFFSET. */
1410 while (offset >= register_size (gdbarch, regnum))
1411 {
1412 offset -= register_size (gdbarch, regnum);
1413 regnum++;
1414 }
1415
1416 /* Ensure that we will not read beyond the end of the register file.
1417 This can only ever happen if the debug information is bad. */
1418 maxsize = -offset;
1419 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1420 for (i = regnum; i < numregs; i++)
1421 {
1422 int thissize = register_size (gdbarch, i);
1423
1424 if (thissize == 0)
1425 break; /* This register is not available on this architecture. */
1426 maxsize += thissize;
1427 }
1428 if (len > maxsize)
1429 error (_("Bad debug information detected: "
1430 "Attempt to read %d bytes from registers."), len);
1431
1432 /* Copy the data. */
1433 while (len > 0)
1434 {
1435 int curr_len = register_size (gdbarch, regnum) - offset;
1436
1437 if (curr_len > len)
1438 curr_len = len;
1439
1440 if (curr_len == register_size (gdbarch, regnum))
1441 {
1442 enum lval_type lval;
1443 CORE_ADDR addr;
1444 int realnum;
1445
1446 frame_register (frame, regnum, optimizedp, unavailablep,
1447 &lval, &addr, &realnum, myaddr);
1448 if (*optimizedp || *unavailablep)
1449 return 0;
1450 }
1451 else
1452 {
1453 struct value *value = frame_unwind_register_value (frame->next,
1454 regnum);
1455 gdb_assert (value != NULL);
1456 *optimizedp = value_optimized_out (value);
1457 *unavailablep = !value_entirely_available (value);
1458
1459 if (*optimizedp || *unavailablep)
1460 {
1461 release_value (value);
1462 return 0;
1463 }
1464 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1465 release_value (value);
1466 }
1467
1468 myaddr += curr_len;
1469 len -= curr_len;
1470 offset = 0;
1471 regnum++;
1472 }
1473
1474 *optimizedp = 0;
1475 *unavailablep = 0;
1476 return 1;
1477 }
1478
1479 void
1480 put_frame_register_bytes (struct frame_info *frame, int regnum,
1481 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1482 {
1483 struct gdbarch *gdbarch = get_frame_arch (frame);
1484
1485 /* Skip registers wholly inside of OFFSET. */
1486 while (offset >= register_size (gdbarch, regnum))
1487 {
1488 offset -= register_size (gdbarch, regnum);
1489 regnum++;
1490 }
1491
1492 /* Copy the data. */
1493 while (len > 0)
1494 {
1495 int curr_len = register_size (gdbarch, regnum) - offset;
1496
1497 if (curr_len > len)
1498 curr_len = len;
1499
1500 if (curr_len == register_size (gdbarch, regnum))
1501 {
1502 put_frame_register (frame, regnum, myaddr);
1503 }
1504 else
1505 {
1506 struct value *value = frame_unwind_register_value (frame->next,
1507 regnum);
1508 gdb_assert (value != NULL);
1509
1510 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1511 curr_len);
1512 put_frame_register (frame, regnum, value_contents_raw (value));
1513 release_value (value);
1514 }
1515
1516 myaddr += curr_len;
1517 len -= curr_len;
1518 offset = 0;
1519 regnum++;
1520 }
1521 }
1522
1523 /* Create a sentinel frame. */
1524
1525 static struct frame_info *
1526 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1527 {
1528 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1529
1530 frame->level = -1;
1531 frame->pspace = pspace;
1532 frame->aspace = regcache->aspace ();
1533 /* Explicitly initialize the sentinel frame's cache. Provide it
1534 with the underlying regcache. In the future additional
1535 information, such as the frame's thread will be added. */
1536 frame->prologue_cache = sentinel_frame_cache (regcache);
1537 /* For the moment there is only one sentinel frame implementation. */
1538 frame->unwind = &sentinel_frame_unwind;
1539 /* Link this frame back to itself. The frame is self referential
1540 (the unwound PC is the same as the pc), so make it so. */
1541 frame->next = frame;
1542 /* The sentinel frame has a special ID. */
1543 frame->this_id.p = 1;
1544 frame->this_id.value = sentinel_frame_id;
1545 if (frame_debug)
1546 {
1547 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1548 fprint_frame (gdb_stdlog, frame);
1549 fprintf_unfiltered (gdb_stdlog, " }\n");
1550 }
1551 return frame;
1552 }
1553
1554 /* Cache for frame addresses already read by gdb. Valid only while
1555 inferior is stopped. Control variables for the frame cache should
1556 be local to this module. */
1557
1558 static struct obstack frame_cache_obstack;
1559
1560 void *
1561 frame_obstack_zalloc (unsigned long size)
1562 {
1563 void *data = obstack_alloc (&frame_cache_obstack, size);
1564
1565 memset (data, 0, size);
1566 return data;
1567 }
1568
1569 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1570
1571 struct frame_info *
1572 get_current_frame (void)
1573 {
1574 struct frame_info *current_frame;
1575
1576 /* First check, and report, the lack of registers. Having GDB
1577 report "No stack!" or "No memory" when the target doesn't even
1578 have registers is very confusing. Besides, "printcmd.exp"
1579 explicitly checks that ``print $pc'' with no registers prints "No
1580 registers". */
1581 if (!target_has_registers)
1582 error (_("No registers."));
1583 if (!target_has_stack)
1584 error (_("No stack."));
1585 if (!target_has_memory)
1586 error (_("No memory."));
1587 /* Traceframes are effectively a substitute for the live inferior. */
1588 if (get_traceframe_number () < 0)
1589 validate_registers_access ();
1590
1591 if (sentinel_frame == NULL)
1592 sentinel_frame =
1593 create_sentinel_frame (current_program_space, get_current_regcache ());
1594
1595 /* Set the current frame before computing the frame id, to avoid
1596 recursion inside compute_frame_id, in case the frame's
1597 unwinder decides to do a symbol lookup (which depends on the
1598 selected frame's block).
1599
1600 This call must always succeed. In particular, nothing inside
1601 get_prev_frame_always_1 should try to unwind from the
1602 sentinel frame, because that could fail/throw, and we always
1603 want to leave with the current frame created and linked in --
1604 we should never end up with the sentinel frame as outermost
1605 frame. */
1606 current_frame = get_prev_frame_always_1 (sentinel_frame);
1607 gdb_assert (current_frame != NULL);
1608
1609 return current_frame;
1610 }
1611
1612 /* The "selected" stack frame is used by default for local and arg
1613 access. May be zero, for no selected frame. */
1614
1615 static struct frame_info *selected_frame;
1616
1617 int
1618 has_stack_frames (void)
1619 {
1620 if (!target_has_registers || !target_has_stack || !target_has_memory)
1621 return 0;
1622
1623 /* Traceframes are effectively a substitute for the live inferior. */
1624 if (get_traceframe_number () < 0)
1625 {
1626 /* No current inferior, no frame. */
1627 if (inferior_ptid == null_ptid)
1628 return 0;
1629
1630 thread_info *tp = inferior_thread ();
1631 /* Don't try to read from a dead thread. */
1632 if (tp->state == THREAD_EXITED)
1633 return 0;
1634
1635 /* ... or from a spinning thread. */
1636 if (tp->executing)
1637 return 0;
1638 }
1639
1640 return 1;
1641 }
1642
1643 /* Return the selected frame. Always non-NULL (unless there isn't an
1644 inferior sufficient for creating a frame) in which case an error is
1645 thrown. */
1646
1647 struct frame_info *
1648 get_selected_frame (const char *message)
1649 {
1650 if (selected_frame == NULL)
1651 {
1652 if (message != NULL && !has_stack_frames ())
1653 error (("%s"), message);
1654 /* Hey! Don't trust this. It should really be re-finding the
1655 last selected frame of the currently selected thread. This,
1656 though, is better than nothing. */
1657 select_frame (get_current_frame ());
1658 }
1659 /* There is always a frame. */
1660 gdb_assert (selected_frame != NULL);
1661 return selected_frame;
1662 }
1663
1664 /* If there is a selected frame, return it. Otherwise, return NULL. */
1665
1666 struct frame_info *
1667 get_selected_frame_if_set (void)
1668 {
1669 return selected_frame;
1670 }
1671
1672 /* This is a variant of get_selected_frame() which can be called when
1673 the inferior does not have a frame; in that case it will return
1674 NULL instead of calling error(). */
1675
1676 struct frame_info *
1677 deprecated_safe_get_selected_frame (void)
1678 {
1679 if (!has_stack_frames ())
1680 return NULL;
1681 return get_selected_frame (NULL);
1682 }
1683
1684 /* Select frame FI (or NULL - to invalidate the current frame). */
1685
1686 void
1687 select_frame (struct frame_info *fi)
1688 {
1689 selected_frame = fi;
1690 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1691 frame is being invalidated. */
1692
1693 /* FIXME: kseitz/2002-08-28: It would be nice to call
1694 selected_frame_level_changed_event() right here, but due to limitations
1695 in the current interfaces, we would end up flooding UIs with events
1696 because select_frame() is used extensively internally.
1697
1698 Once we have frame-parameterized frame (and frame-related) commands,
1699 the event notification can be moved here, since this function will only
1700 be called when the user's selected frame is being changed. */
1701
1702 /* Ensure that symbols for this frame are read in. Also, determine the
1703 source language of this frame, and switch to it if desired. */
1704 if (fi)
1705 {
1706 CORE_ADDR pc;
1707
1708 /* We retrieve the frame's symtab by using the frame PC.
1709 However we cannot use the frame PC as-is, because it usually
1710 points to the instruction following the "call", which is
1711 sometimes the first instruction of another function. So we
1712 rely on get_frame_address_in_block() which provides us with a
1713 PC which is guaranteed to be inside the frame's code
1714 block. */
1715 if (get_frame_address_in_block_if_available (fi, &pc))
1716 {
1717 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1718
1719 if (cust != NULL
1720 && compunit_language (cust) != current_language->la_language
1721 && compunit_language (cust) != language_unknown
1722 && language_mode == language_mode_auto)
1723 set_language (compunit_language (cust));
1724 }
1725 }
1726 }
1727
1728 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1729 Always returns a non-NULL value. */
1730
1731 struct frame_info *
1732 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1733 {
1734 struct frame_info *fi;
1735
1736 if (frame_debug)
1737 {
1738 fprintf_unfiltered (gdb_stdlog,
1739 "{ create_new_frame (addr=%s, pc=%s) ",
1740 hex_string (addr), hex_string (pc));
1741 }
1742
1743 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1744
1745 fi->next = create_sentinel_frame (current_program_space,
1746 get_current_regcache ());
1747
1748 /* Set/update this frame's cached PC value, found in the next frame.
1749 Do this before looking for this frame's unwinder. A sniffer is
1750 very likely to read this, and the corresponding unwinder is
1751 entitled to rely that the PC doesn't magically change. */
1752 fi->next->prev_pc.value = pc;
1753 fi->next->prev_pc.status = CC_VALUE;
1754
1755 /* We currently assume that frame chain's can't cross spaces. */
1756 fi->pspace = fi->next->pspace;
1757 fi->aspace = fi->next->aspace;
1758
1759 /* Select/initialize both the unwind function and the frame's type
1760 based on the PC. */
1761 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1762
1763 fi->this_id.p = 1;
1764 fi->this_id.value = frame_id_build (addr, pc);
1765
1766 if (frame_debug)
1767 {
1768 fprintf_unfiltered (gdb_stdlog, "-> ");
1769 fprint_frame (gdb_stdlog, fi);
1770 fprintf_unfiltered (gdb_stdlog, " }\n");
1771 }
1772
1773 return fi;
1774 }
1775
1776 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1777 innermost frame). Be careful to not fall off the bottom of the
1778 frame chain and onto the sentinel frame. */
1779
1780 struct frame_info *
1781 get_next_frame (struct frame_info *this_frame)
1782 {
1783 if (this_frame->level > 0)
1784 return this_frame->next;
1785 else
1786 return NULL;
1787 }
1788
1789 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1790 innermost (i.e. current) frame, return the sentinel frame. Thus,
1791 unlike get_next_frame(), NULL will never be returned. */
1792
1793 struct frame_info *
1794 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1795 {
1796 gdb_assert (this_frame != NULL);
1797
1798 /* Note that, due to the manner in which the sentinel frame is
1799 constructed, this_frame->next still works even when this_frame
1800 is the sentinel frame. But we disallow it here anyway because
1801 calling get_next_frame_sentinel_okay() on the sentinel frame
1802 is likely a coding error. */
1803 gdb_assert (this_frame != sentinel_frame);
1804
1805 return this_frame->next;
1806 }
1807
1808 /* Observer for the target_changed event. */
1809
1810 static void
1811 frame_observer_target_changed (struct target_ops *target)
1812 {
1813 reinit_frame_cache ();
1814 }
1815
1816 /* Flush the entire frame cache. */
1817
1818 void
1819 reinit_frame_cache (void)
1820 {
1821 struct frame_info *fi;
1822
1823 /* Tear down all frame caches. */
1824 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1825 {
1826 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1827 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1828 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1829 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1830 }
1831
1832 /* Since we can't really be sure what the first object allocated was. */
1833 obstack_free (&frame_cache_obstack, 0);
1834 obstack_init (&frame_cache_obstack);
1835
1836 if (sentinel_frame != NULL)
1837 annotate_frames_invalid ();
1838
1839 sentinel_frame = NULL; /* Invalidate cache */
1840 select_frame (NULL);
1841 frame_stash_invalidate ();
1842 if (frame_debug)
1843 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1844 }
1845
1846 /* Find where a register is saved (in memory or another register).
1847 The result of frame_register_unwind is just where it is saved
1848 relative to this particular frame. */
1849
1850 static void
1851 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1852 int *optimizedp, enum lval_type *lvalp,
1853 CORE_ADDR *addrp, int *realnump)
1854 {
1855 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1856
1857 while (this_frame != NULL)
1858 {
1859 int unavailable;
1860
1861 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1862 lvalp, addrp, realnump, NULL);
1863
1864 if (*optimizedp)
1865 break;
1866
1867 if (*lvalp != lval_register)
1868 break;
1869
1870 regnum = *realnump;
1871 this_frame = get_next_frame (this_frame);
1872 }
1873 }
1874
1875 /* Get the previous raw frame, and check that it is not identical to
1876 same other frame frame already in the chain. If it is, there is
1877 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1878 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1879 validity tests, that compare THIS_FRAME and the next frame, we do
1880 this right after creating the previous frame, to avoid ever ending
1881 up with two frames with the same id in the frame chain. */
1882
1883 static struct frame_info *
1884 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1885 {
1886 struct frame_info *prev_frame;
1887
1888 prev_frame = get_prev_frame_raw (this_frame);
1889
1890 /* Don't compute the frame id of the current frame yet. Unwinding
1891 the sentinel frame can fail (e.g., if the thread is gone and we
1892 can't thus read its registers). If we let the cycle detection
1893 code below try to compute a frame ID, then an error thrown from
1894 within the frame ID computation would result in the sentinel
1895 frame as outermost frame, which is bogus. Instead, we'll compute
1896 the current frame's ID lazily in get_frame_id. Note that there's
1897 no point in doing cycle detection when there's only one frame, so
1898 nothing is lost here. */
1899 if (prev_frame->level == 0)
1900 return prev_frame;
1901
1902 TRY
1903 {
1904 compute_frame_id (prev_frame);
1905 if (!frame_stash_add (prev_frame))
1906 {
1907 /* Another frame with the same id was already in the stash. We just
1908 detected a cycle. */
1909 if (frame_debug)
1910 {
1911 fprintf_unfiltered (gdb_stdlog, "-> ");
1912 fprint_frame (gdb_stdlog, NULL);
1913 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1914 }
1915 this_frame->stop_reason = UNWIND_SAME_ID;
1916 /* Unlink. */
1917 prev_frame->next = NULL;
1918 this_frame->prev = NULL;
1919 prev_frame = NULL;
1920 }
1921 }
1922 CATCH (ex, RETURN_MASK_ALL)
1923 {
1924 prev_frame->next = NULL;
1925 this_frame->prev = NULL;
1926
1927 throw_exception (ex);
1928 }
1929 END_CATCH
1930
1931 return prev_frame;
1932 }
1933
1934 /* Helper function for get_prev_frame_always, this is called inside a
1935 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1936 there is no such frame. This may throw an exception. */
1937
1938 static struct frame_info *
1939 get_prev_frame_always_1 (struct frame_info *this_frame)
1940 {
1941 struct gdbarch *gdbarch;
1942
1943 gdb_assert (this_frame != NULL);
1944 gdbarch = get_frame_arch (this_frame);
1945
1946 if (frame_debug)
1947 {
1948 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1949 if (this_frame != NULL)
1950 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1951 else
1952 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1953 fprintf_unfiltered (gdb_stdlog, ") ");
1954 }
1955
1956 /* Only try to do the unwind once. */
1957 if (this_frame->prev_p)
1958 {
1959 if (frame_debug)
1960 {
1961 fprintf_unfiltered (gdb_stdlog, "-> ");
1962 fprint_frame (gdb_stdlog, this_frame->prev);
1963 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1964 }
1965 return this_frame->prev;
1966 }
1967
1968 /* If the frame unwinder hasn't been selected yet, we must do so
1969 before setting prev_p; otherwise the check for misbehaved
1970 sniffers will think that this frame's sniffer tried to unwind
1971 further (see frame_cleanup_after_sniffer). */
1972 if (this_frame->unwind == NULL)
1973 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1974
1975 this_frame->prev_p = 1;
1976 this_frame->stop_reason = UNWIND_NO_REASON;
1977
1978 /* If we are unwinding from an inline frame, all of the below tests
1979 were already performed when we unwound from the next non-inline
1980 frame. We must skip them, since we can not get THIS_FRAME's ID
1981 until we have unwound all the way down to the previous non-inline
1982 frame. */
1983 if (get_frame_type (this_frame) == INLINE_FRAME)
1984 return get_prev_frame_if_no_cycle (this_frame);
1985
1986 /* Check that this frame is unwindable. If it isn't, don't try to
1987 unwind to the prev frame. */
1988 this_frame->stop_reason
1989 = this_frame->unwind->stop_reason (this_frame,
1990 &this_frame->prologue_cache);
1991
1992 if (this_frame->stop_reason != UNWIND_NO_REASON)
1993 {
1994 if (frame_debug)
1995 {
1996 enum unwind_stop_reason reason = this_frame->stop_reason;
1997
1998 fprintf_unfiltered (gdb_stdlog, "-> ");
1999 fprint_frame (gdb_stdlog, NULL);
2000 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2001 frame_stop_reason_symbol_string (reason));
2002 }
2003 return NULL;
2004 }
2005
2006 /* Check that this frame's ID isn't inner to (younger, below, next)
2007 the next frame. This happens when a frame unwind goes backwards.
2008 This check is valid only if this frame and the next frame are NORMAL.
2009 See the comment at frame_id_inner for details. */
2010 if (get_frame_type (this_frame) == NORMAL_FRAME
2011 && this_frame->next->unwind->type == NORMAL_FRAME
2012 && frame_id_inner (get_frame_arch (this_frame->next),
2013 get_frame_id (this_frame),
2014 get_frame_id (this_frame->next)))
2015 {
2016 CORE_ADDR this_pc_in_block;
2017 struct minimal_symbol *morestack_msym;
2018 const char *morestack_name = NULL;
2019
2020 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2021 this_pc_in_block = get_frame_address_in_block (this_frame);
2022 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2023 if (morestack_msym)
2024 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2025 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2026 {
2027 if (frame_debug)
2028 {
2029 fprintf_unfiltered (gdb_stdlog, "-> ");
2030 fprint_frame (gdb_stdlog, NULL);
2031 fprintf_unfiltered (gdb_stdlog,
2032 " // this frame ID is inner }\n");
2033 }
2034 this_frame->stop_reason = UNWIND_INNER_ID;
2035 return NULL;
2036 }
2037 }
2038
2039 /* Check that this and the next frame do not unwind the PC register
2040 to the same memory location. If they do, then even though they
2041 have different frame IDs, the new frame will be bogus; two
2042 functions can't share a register save slot for the PC. This can
2043 happen when the prologue analyzer finds a stack adjustment, but
2044 no PC save.
2045
2046 This check does assume that the "PC register" is roughly a
2047 traditional PC, even if the gdbarch_unwind_pc method adjusts
2048 it (we do not rely on the value, only on the unwound PC being
2049 dependent on this value). A potential improvement would be
2050 to have the frame prev_pc method and the gdbarch unwind_pc
2051 method set the same lval and location information as
2052 frame_register_unwind. */
2053 if (this_frame->level > 0
2054 && gdbarch_pc_regnum (gdbarch) >= 0
2055 && get_frame_type (this_frame) == NORMAL_FRAME
2056 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2057 || get_frame_type (this_frame->next) == INLINE_FRAME))
2058 {
2059 int optimized, realnum, nrealnum;
2060 enum lval_type lval, nlval;
2061 CORE_ADDR addr, naddr;
2062
2063 frame_register_unwind_location (this_frame,
2064 gdbarch_pc_regnum (gdbarch),
2065 &optimized, &lval, &addr, &realnum);
2066 frame_register_unwind_location (get_next_frame (this_frame),
2067 gdbarch_pc_regnum (gdbarch),
2068 &optimized, &nlval, &naddr, &nrealnum);
2069
2070 if ((lval == lval_memory && lval == nlval && addr == naddr)
2071 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2072 {
2073 if (frame_debug)
2074 {
2075 fprintf_unfiltered (gdb_stdlog, "-> ");
2076 fprint_frame (gdb_stdlog, NULL);
2077 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2078 }
2079
2080 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2081 this_frame->prev = NULL;
2082 return NULL;
2083 }
2084 }
2085
2086 return get_prev_frame_if_no_cycle (this_frame);
2087 }
2088
2089 /* Return a "struct frame_info" corresponding to the frame that called
2090 THIS_FRAME. Returns NULL if there is no such frame.
2091
2092 Unlike get_prev_frame, this function always tries to unwind the
2093 frame. */
2094
2095 struct frame_info *
2096 get_prev_frame_always (struct frame_info *this_frame)
2097 {
2098 struct frame_info *prev_frame = NULL;
2099
2100 TRY
2101 {
2102 prev_frame = get_prev_frame_always_1 (this_frame);
2103 }
2104 CATCH (ex, RETURN_MASK_ERROR)
2105 {
2106 if (ex.error == MEMORY_ERROR)
2107 {
2108 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2109 if (ex.message != NULL)
2110 {
2111 char *stop_string;
2112 size_t size;
2113
2114 /* The error needs to live as long as the frame does.
2115 Allocate using stack local STOP_STRING then assign the
2116 pointer to the frame, this allows the STOP_STRING on the
2117 frame to be of type 'const char *'. */
2118 size = strlen (ex.message) + 1;
2119 stop_string = (char *) frame_obstack_zalloc (size);
2120 memcpy (stop_string, ex.message, size);
2121 this_frame->stop_string = stop_string;
2122 }
2123 prev_frame = NULL;
2124 }
2125 else
2126 throw_exception (ex);
2127 }
2128 END_CATCH
2129
2130 return prev_frame;
2131 }
2132
2133 /* Construct a new "struct frame_info" and link it previous to
2134 this_frame. */
2135
2136 static struct frame_info *
2137 get_prev_frame_raw (struct frame_info *this_frame)
2138 {
2139 struct frame_info *prev_frame;
2140
2141 /* Allocate the new frame but do not wire it in to the frame chain.
2142 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2143 frame->next to pull some fancy tricks (of course such code is, by
2144 definition, recursive). Try to prevent it.
2145
2146 There is no reason to worry about memory leaks, should the
2147 remainder of the function fail. The allocated memory will be
2148 quickly reclaimed when the frame cache is flushed, and the `we've
2149 been here before' check above will stop repeated memory
2150 allocation calls. */
2151 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2152 prev_frame->level = this_frame->level + 1;
2153
2154 /* For now, assume we don't have frame chains crossing address
2155 spaces. */
2156 prev_frame->pspace = this_frame->pspace;
2157 prev_frame->aspace = this_frame->aspace;
2158
2159 /* Don't yet compute ->unwind (and hence ->type). It is computed
2160 on-demand in get_frame_type, frame_register_unwind, and
2161 get_frame_id. */
2162
2163 /* Don't yet compute the frame's ID. It is computed on-demand by
2164 get_frame_id(). */
2165
2166 /* The unwound frame ID is validate at the start of this function,
2167 as part of the logic to decide if that frame should be further
2168 unwound, and not here while the prev frame is being created.
2169 Doing this makes it possible for the user to examine a frame that
2170 has an invalid frame ID.
2171
2172 Some very old VAX code noted: [...] For the sake of argument,
2173 suppose that the stack is somewhat trashed (which is one reason
2174 that "info frame" exists). So, return 0 (indicating we don't
2175 know the address of the arglist) if we don't know what frame this
2176 frame calls. */
2177
2178 /* Link it in. */
2179 this_frame->prev = prev_frame;
2180 prev_frame->next = this_frame;
2181
2182 if (frame_debug)
2183 {
2184 fprintf_unfiltered (gdb_stdlog, "-> ");
2185 fprint_frame (gdb_stdlog, prev_frame);
2186 fprintf_unfiltered (gdb_stdlog, " }\n");
2187 }
2188
2189 return prev_frame;
2190 }
2191
2192 /* Debug routine to print a NULL frame being returned. */
2193
2194 static void
2195 frame_debug_got_null_frame (struct frame_info *this_frame,
2196 const char *reason)
2197 {
2198 if (frame_debug)
2199 {
2200 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2201 if (this_frame != NULL)
2202 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2203 else
2204 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2205 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2206 }
2207 }
2208
2209 /* Is this (non-sentinel) frame in the "main"() function? */
2210
2211 static int
2212 inside_main_func (struct frame_info *this_frame)
2213 {
2214 struct bound_minimal_symbol msymbol;
2215 CORE_ADDR maddr;
2216
2217 if (symfile_objfile == 0)
2218 return 0;
2219 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2220 if (msymbol.minsym == NULL)
2221 return 0;
2222 /* Make certain that the code, and not descriptor, address is
2223 returned. */
2224 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2225 BMSYMBOL_VALUE_ADDRESS (msymbol),
2226 current_top_target ());
2227 return maddr == get_frame_func (this_frame);
2228 }
2229
2230 /* Test whether THIS_FRAME is inside the process entry point function. */
2231
2232 static int
2233 inside_entry_func (struct frame_info *this_frame)
2234 {
2235 CORE_ADDR entry_point;
2236
2237 if (!entry_point_address_query (&entry_point))
2238 return 0;
2239
2240 return get_frame_func (this_frame) == entry_point;
2241 }
2242
2243 /* Return a structure containing various interesting information about
2244 the frame that called THIS_FRAME. Returns NULL if there is entier
2245 no such frame or the frame fails any of a set of target-independent
2246 condition that should terminate the frame chain (e.g., as unwinding
2247 past main()).
2248
2249 This function should not contain target-dependent tests, such as
2250 checking whether the program-counter is zero. */
2251
2252 struct frame_info *
2253 get_prev_frame (struct frame_info *this_frame)
2254 {
2255 CORE_ADDR frame_pc;
2256 int frame_pc_p;
2257
2258 /* There is always a frame. If this assertion fails, suspect that
2259 something should be calling get_selected_frame() or
2260 get_current_frame(). */
2261 gdb_assert (this_frame != NULL);
2262
2263 /* If this_frame is the current frame, then compute and stash
2264 its frame id prior to fetching and computing the frame id of the
2265 previous frame. Otherwise, the cycle detection code in
2266 get_prev_frame_if_no_cycle() will not work correctly. When
2267 get_frame_id() is called later on, an assertion error will
2268 be triggered in the event of a cycle between the current
2269 frame and its previous frame. */
2270 if (this_frame->level == 0)
2271 get_frame_id (this_frame);
2272
2273 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2274
2275 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2276 sense to stop unwinding at a dummy frame. One place where a dummy
2277 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2278 pcsqh register (space register for the instruction at the head of the
2279 instruction queue) cannot be written directly; the only way to set it
2280 is to branch to code that is in the target space. In order to implement
2281 frame dummies on HPUX, the called function is made to jump back to where
2282 the inferior was when the user function was called. If gdb was inside
2283 the main function when we created the dummy frame, the dummy frame will
2284 point inside the main function. */
2285 if (this_frame->level >= 0
2286 && get_frame_type (this_frame) == NORMAL_FRAME
2287 && !backtrace_past_main
2288 && frame_pc_p
2289 && inside_main_func (this_frame))
2290 /* Don't unwind past main(). Note, this is done _before_ the
2291 frame has been marked as previously unwound. That way if the
2292 user later decides to enable unwinds past main(), that will
2293 automatically happen. */
2294 {
2295 frame_debug_got_null_frame (this_frame, "inside main func");
2296 return NULL;
2297 }
2298
2299 /* If the user's backtrace limit has been exceeded, stop. We must
2300 add two to the current level; one of those accounts for backtrace_limit
2301 being 1-based and the level being 0-based, and the other accounts for
2302 the level of the new frame instead of the level of the current
2303 frame. */
2304 if (this_frame->level + 2 > backtrace_limit)
2305 {
2306 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2307 return NULL;
2308 }
2309
2310 /* If we're already inside the entry function for the main objfile,
2311 then it isn't valid. Don't apply this test to a dummy frame -
2312 dummy frame PCs typically land in the entry func. Don't apply
2313 this test to the sentinel frame. Sentinel frames should always
2314 be allowed to unwind. */
2315 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2316 wasn't checking for "main" in the minimal symbols. With that
2317 fixed asm-source tests now stop in "main" instead of halting the
2318 backtrace in weird and wonderful ways somewhere inside the entry
2319 file. Suspect that tests for inside the entry file/func were
2320 added to work around that (now fixed) case. */
2321 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2322 suggested having the inside_entry_func test use the
2323 inside_main_func() msymbol trick (along with entry_point_address()
2324 I guess) to determine the address range of the start function.
2325 That should provide a far better stopper than the current
2326 heuristics. */
2327 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2328 applied tail-call optimizations to main so that a function called
2329 from main returns directly to the caller of main. Since we don't
2330 stop at main, we should at least stop at the entry point of the
2331 application. */
2332 if (this_frame->level >= 0
2333 && get_frame_type (this_frame) == NORMAL_FRAME
2334 && !backtrace_past_entry
2335 && frame_pc_p
2336 && inside_entry_func (this_frame))
2337 {
2338 frame_debug_got_null_frame (this_frame, "inside entry func");
2339 return NULL;
2340 }
2341
2342 /* Assume that the only way to get a zero PC is through something
2343 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2344 will never unwind a zero PC. */
2345 if (this_frame->level > 0
2346 && (get_frame_type (this_frame) == NORMAL_FRAME
2347 || get_frame_type (this_frame) == INLINE_FRAME)
2348 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2349 && frame_pc_p && frame_pc == 0)
2350 {
2351 frame_debug_got_null_frame (this_frame, "zero PC");
2352 return NULL;
2353 }
2354
2355 return get_prev_frame_always (this_frame);
2356 }
2357
2358 struct frame_id
2359 get_prev_frame_id_by_id (struct frame_id id)
2360 {
2361 struct frame_id prev_id;
2362 struct frame_info *frame;
2363
2364 frame = frame_find_by_id (id);
2365
2366 if (frame != NULL)
2367 prev_id = get_frame_id (get_prev_frame (frame));
2368 else
2369 prev_id = null_frame_id;
2370
2371 return prev_id;
2372 }
2373
2374 CORE_ADDR
2375 get_frame_pc (struct frame_info *frame)
2376 {
2377 gdb_assert (frame->next != NULL);
2378 return frame_unwind_pc (frame->next);
2379 }
2380
2381 int
2382 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2383 {
2384
2385 gdb_assert (frame->next != NULL);
2386
2387 TRY
2388 {
2389 *pc = frame_unwind_pc (frame->next);
2390 }
2391 CATCH (ex, RETURN_MASK_ERROR)
2392 {
2393 if (ex.error == NOT_AVAILABLE_ERROR)
2394 return 0;
2395 else
2396 throw_exception (ex);
2397 }
2398 END_CATCH
2399
2400 return 1;
2401 }
2402
2403 /* Return an address that falls within THIS_FRAME's code block. */
2404
2405 CORE_ADDR
2406 get_frame_address_in_block (struct frame_info *this_frame)
2407 {
2408 /* A draft address. */
2409 CORE_ADDR pc = get_frame_pc (this_frame);
2410
2411 struct frame_info *next_frame = this_frame->next;
2412
2413 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2414 Normally the resume address is inside the body of the function
2415 associated with THIS_FRAME, but there is a special case: when
2416 calling a function which the compiler knows will never return
2417 (for instance abort), the call may be the very last instruction
2418 in the calling function. The resume address will point after the
2419 call and may be at the beginning of a different function
2420 entirely.
2421
2422 If THIS_FRAME is a signal frame or dummy frame, then we should
2423 not adjust the unwound PC. For a dummy frame, GDB pushed the
2424 resume address manually onto the stack. For a signal frame, the
2425 OS may have pushed the resume address manually and invoked the
2426 handler (e.g. GNU/Linux), or invoked the trampoline which called
2427 the signal handler - but in either case the signal handler is
2428 expected to return to the trampoline. So in both of these
2429 cases we know that the resume address is executable and
2430 related. So we only need to adjust the PC if THIS_FRAME
2431 is a normal function.
2432
2433 If the program has been interrupted while THIS_FRAME is current,
2434 then clearly the resume address is inside the associated
2435 function. There are three kinds of interruption: debugger stop
2436 (next frame will be SENTINEL_FRAME), operating system
2437 signal or exception (next frame will be SIGTRAMP_FRAME),
2438 or debugger-induced function call (next frame will be
2439 DUMMY_FRAME). So we only need to adjust the PC if
2440 NEXT_FRAME is a normal function.
2441
2442 We check the type of NEXT_FRAME first, since it is already
2443 known; frame type is determined by the unwinder, and since
2444 we have THIS_FRAME we've already selected an unwinder for
2445 NEXT_FRAME.
2446
2447 If the next frame is inlined, we need to keep going until we find
2448 the real function - for instance, if a signal handler is invoked
2449 while in an inlined function, then the code address of the
2450 "calling" normal function should not be adjusted either. */
2451
2452 while (get_frame_type (next_frame) == INLINE_FRAME)
2453 next_frame = next_frame->next;
2454
2455 if ((get_frame_type (next_frame) == NORMAL_FRAME
2456 || get_frame_type (next_frame) == TAILCALL_FRAME)
2457 && (get_frame_type (this_frame) == NORMAL_FRAME
2458 || get_frame_type (this_frame) == TAILCALL_FRAME
2459 || get_frame_type (this_frame) == INLINE_FRAME))
2460 return pc - 1;
2461
2462 return pc;
2463 }
2464
2465 int
2466 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2467 CORE_ADDR *pc)
2468 {
2469
2470 TRY
2471 {
2472 *pc = get_frame_address_in_block (this_frame);
2473 }
2474 CATCH (ex, RETURN_MASK_ERROR)
2475 {
2476 if (ex.error == NOT_AVAILABLE_ERROR)
2477 return 0;
2478 throw_exception (ex);
2479 }
2480 END_CATCH
2481
2482 return 1;
2483 }
2484
2485 symtab_and_line
2486 find_frame_sal (frame_info *frame)
2487 {
2488 struct frame_info *next_frame;
2489 int notcurrent;
2490 CORE_ADDR pc;
2491
2492 /* If the next frame represents an inlined function call, this frame's
2493 sal is the "call site" of that inlined function, which can not
2494 be inferred from get_frame_pc. */
2495 next_frame = get_next_frame (frame);
2496 if (frame_inlined_callees (frame) > 0)
2497 {
2498 struct symbol *sym;
2499
2500 if (next_frame)
2501 sym = get_frame_function (next_frame);
2502 else
2503 sym = inline_skipped_symbol (inferior_thread ());
2504
2505 /* If frame is inline, it certainly has symbols. */
2506 gdb_assert (sym);
2507
2508 symtab_and_line sal;
2509 if (SYMBOL_LINE (sym) != 0)
2510 {
2511 sal.symtab = symbol_symtab (sym);
2512 sal.line = SYMBOL_LINE (sym);
2513 }
2514 else
2515 /* If the symbol does not have a location, we don't know where
2516 the call site is. Do not pretend to. This is jarring, but
2517 we can't do much better. */
2518 sal.pc = get_frame_pc (frame);
2519
2520 sal.pspace = get_frame_program_space (frame);
2521 return sal;
2522 }
2523
2524 /* If FRAME is not the innermost frame, that normally means that
2525 FRAME->pc points at the return instruction (which is *after* the
2526 call instruction), and we want to get the line containing the
2527 call (because the call is where the user thinks the program is).
2528 However, if the next frame is either a SIGTRAMP_FRAME or a
2529 DUMMY_FRAME, then the next frame will contain a saved interrupt
2530 PC and such a PC indicates the current (rather than next)
2531 instruction/line, consequently, for such cases, want to get the
2532 line containing fi->pc. */
2533 if (!get_frame_pc_if_available (frame, &pc))
2534 return {};
2535
2536 notcurrent = (pc != get_frame_address_in_block (frame));
2537 return find_pc_line (pc, notcurrent);
2538 }
2539
2540 /* Per "frame.h", return the ``address'' of the frame. Code should
2541 really be using get_frame_id(). */
2542 CORE_ADDR
2543 get_frame_base (struct frame_info *fi)
2544 {
2545 return get_frame_id (fi).stack_addr;
2546 }
2547
2548 /* High-level offsets into the frame. Used by the debug info. */
2549
2550 CORE_ADDR
2551 get_frame_base_address (struct frame_info *fi)
2552 {
2553 if (get_frame_type (fi) != NORMAL_FRAME)
2554 return 0;
2555 if (fi->base == NULL)
2556 fi->base = frame_base_find_by_frame (fi);
2557 /* Sneaky: If the low-level unwind and high-level base code share a
2558 common unwinder, let them share the prologue cache. */
2559 if (fi->base->unwind == fi->unwind)
2560 return fi->base->this_base (fi, &fi->prologue_cache);
2561 return fi->base->this_base (fi, &fi->base_cache);
2562 }
2563
2564 CORE_ADDR
2565 get_frame_locals_address (struct frame_info *fi)
2566 {
2567 if (get_frame_type (fi) != NORMAL_FRAME)
2568 return 0;
2569 /* If there isn't a frame address method, find it. */
2570 if (fi->base == NULL)
2571 fi->base = frame_base_find_by_frame (fi);
2572 /* Sneaky: If the low-level unwind and high-level base code share a
2573 common unwinder, let them share the prologue cache. */
2574 if (fi->base->unwind == fi->unwind)
2575 return fi->base->this_locals (fi, &fi->prologue_cache);
2576 return fi->base->this_locals (fi, &fi->base_cache);
2577 }
2578
2579 CORE_ADDR
2580 get_frame_args_address (struct frame_info *fi)
2581 {
2582 if (get_frame_type (fi) != NORMAL_FRAME)
2583 return 0;
2584 /* If there isn't a frame address method, find it. */
2585 if (fi->base == NULL)
2586 fi->base = frame_base_find_by_frame (fi);
2587 /* Sneaky: If the low-level unwind and high-level base code share a
2588 common unwinder, let them share the prologue cache. */
2589 if (fi->base->unwind == fi->unwind)
2590 return fi->base->this_args (fi, &fi->prologue_cache);
2591 return fi->base->this_args (fi, &fi->base_cache);
2592 }
2593
2594 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2595 otherwise. */
2596
2597 int
2598 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2599 {
2600 if (fi->unwind == NULL)
2601 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2602 return fi->unwind == unwinder;
2603 }
2604
2605 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2606 or -1 for a NULL frame. */
2607
2608 int
2609 frame_relative_level (struct frame_info *fi)
2610 {
2611 if (fi == NULL)
2612 return -1;
2613 else
2614 return fi->level;
2615 }
2616
2617 enum frame_type
2618 get_frame_type (struct frame_info *frame)
2619 {
2620 if (frame->unwind == NULL)
2621 /* Initialize the frame's unwinder because that's what
2622 provides the frame's type. */
2623 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2624 return frame->unwind->type;
2625 }
2626
2627 struct program_space *
2628 get_frame_program_space (struct frame_info *frame)
2629 {
2630 return frame->pspace;
2631 }
2632
2633 struct program_space *
2634 frame_unwind_program_space (struct frame_info *this_frame)
2635 {
2636 gdb_assert (this_frame);
2637
2638 /* This is really a placeholder to keep the API consistent --- we
2639 assume for now that we don't have frame chains crossing
2640 spaces. */
2641 return this_frame->pspace;
2642 }
2643
2644 const address_space *
2645 get_frame_address_space (struct frame_info *frame)
2646 {
2647 return frame->aspace;
2648 }
2649
2650 /* Memory access methods. */
2651
2652 void
2653 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2654 gdb_byte *buf, int len)
2655 {
2656 read_memory (addr, buf, len);
2657 }
2658
2659 LONGEST
2660 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2661 int len)
2662 {
2663 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2665
2666 return read_memory_integer (addr, len, byte_order);
2667 }
2668
2669 ULONGEST
2670 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2671 int len)
2672 {
2673 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2674 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2675
2676 return read_memory_unsigned_integer (addr, len, byte_order);
2677 }
2678
2679 int
2680 safe_frame_unwind_memory (struct frame_info *this_frame,
2681 CORE_ADDR addr, gdb_byte *buf, int len)
2682 {
2683 /* NOTE: target_read_memory returns zero on success! */
2684 return !target_read_memory (addr, buf, len);
2685 }
2686
2687 /* Architecture methods. */
2688
2689 struct gdbarch *
2690 get_frame_arch (struct frame_info *this_frame)
2691 {
2692 return frame_unwind_arch (this_frame->next);
2693 }
2694
2695 struct gdbarch *
2696 frame_unwind_arch (struct frame_info *next_frame)
2697 {
2698 if (!next_frame->prev_arch.p)
2699 {
2700 struct gdbarch *arch;
2701
2702 if (next_frame->unwind == NULL)
2703 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2704
2705 if (next_frame->unwind->prev_arch != NULL)
2706 arch = next_frame->unwind->prev_arch (next_frame,
2707 &next_frame->prologue_cache);
2708 else
2709 arch = get_frame_arch (next_frame);
2710
2711 next_frame->prev_arch.arch = arch;
2712 next_frame->prev_arch.p = 1;
2713 if (frame_debug)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2716 next_frame->level,
2717 gdbarch_bfd_arch_info (arch)->printable_name);
2718 }
2719
2720 return next_frame->prev_arch.arch;
2721 }
2722
2723 struct gdbarch *
2724 frame_unwind_caller_arch (struct frame_info *next_frame)
2725 {
2726 next_frame = skip_artificial_frames (next_frame);
2727
2728 /* We must have a non-artificial frame. The caller is supposed to check
2729 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2730 in this case. */
2731 gdb_assert (next_frame != NULL);
2732
2733 return frame_unwind_arch (next_frame);
2734 }
2735
2736 /* Gets the language of FRAME. */
2737
2738 enum language
2739 get_frame_language (struct frame_info *frame)
2740 {
2741 CORE_ADDR pc = 0;
2742 int pc_p = 0;
2743
2744 gdb_assert (frame!= NULL);
2745
2746 /* We determine the current frame language by looking up its
2747 associated symtab. To retrieve this symtab, we use the frame
2748 PC. However we cannot use the frame PC as is, because it
2749 usually points to the instruction following the "call", which
2750 is sometimes the first instruction of another function. So
2751 we rely on get_frame_address_in_block(), it provides us with
2752 a PC that is guaranteed to be inside the frame's code
2753 block. */
2754
2755 TRY
2756 {
2757 pc = get_frame_address_in_block (frame);
2758 pc_p = 1;
2759 }
2760 CATCH (ex, RETURN_MASK_ERROR)
2761 {
2762 if (ex.error != NOT_AVAILABLE_ERROR)
2763 throw_exception (ex);
2764 }
2765 END_CATCH
2766
2767 if (pc_p)
2768 {
2769 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2770
2771 if (cust != NULL)
2772 return compunit_language (cust);
2773 }
2774
2775 return language_unknown;
2776 }
2777
2778 /* Stack pointer methods. */
2779
2780 CORE_ADDR
2781 get_frame_sp (struct frame_info *this_frame)
2782 {
2783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2784
2785 /* Normality - an architecture that provides a way of obtaining any
2786 frame inner-most address. */
2787 if (gdbarch_unwind_sp_p (gdbarch))
2788 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2789 operate on THIS_FRAME now. */
2790 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2791 /* Now things are really are grim. Hope that the value returned by
2792 the gdbarch_sp_regnum register is meaningful. */
2793 if (gdbarch_sp_regnum (gdbarch) >= 0)
2794 return get_frame_register_unsigned (this_frame,
2795 gdbarch_sp_regnum (gdbarch));
2796 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2797 }
2798
2799 /* Return the reason why we can't unwind past FRAME. */
2800
2801 enum unwind_stop_reason
2802 get_frame_unwind_stop_reason (struct frame_info *frame)
2803 {
2804 /* Fill-in STOP_REASON. */
2805 get_prev_frame_always (frame);
2806 gdb_assert (frame->prev_p);
2807
2808 return frame->stop_reason;
2809 }
2810
2811 /* Return a string explaining REASON. */
2812
2813 const char *
2814 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2815 {
2816 switch (reason)
2817 {
2818 #define SET(name, description) \
2819 case name: return _(description);
2820 #include "unwind_stop_reasons.def"
2821 #undef SET
2822
2823 default:
2824 internal_error (__FILE__, __LINE__,
2825 "Invalid frame stop reason");
2826 }
2827 }
2828
2829 const char *
2830 frame_stop_reason_string (struct frame_info *fi)
2831 {
2832 gdb_assert (fi->prev_p);
2833 gdb_assert (fi->prev == NULL);
2834
2835 /* Return the specific string if we have one. */
2836 if (fi->stop_string != NULL)
2837 return fi->stop_string;
2838
2839 /* Return the generic string if we have nothing better. */
2840 return unwind_stop_reason_to_string (fi->stop_reason);
2841 }
2842
2843 /* Return the enum symbol name of REASON as a string, to use in debug
2844 output. */
2845
2846 static const char *
2847 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2848 {
2849 switch (reason)
2850 {
2851 #define SET(name, description) \
2852 case name: return #name;
2853 #include "unwind_stop_reasons.def"
2854 #undef SET
2855
2856 default:
2857 internal_error (__FILE__, __LINE__,
2858 "Invalid frame stop reason");
2859 }
2860 }
2861
2862 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2863 FRAME. */
2864
2865 void
2866 frame_cleanup_after_sniffer (struct frame_info *frame)
2867 {
2868 /* The sniffer should not allocate a prologue cache if it did not
2869 match this frame. */
2870 gdb_assert (frame->prologue_cache == NULL);
2871
2872 /* No sniffer should extend the frame chain; sniff based on what is
2873 already certain. */
2874 gdb_assert (!frame->prev_p);
2875
2876 /* The sniffer should not check the frame's ID; that's circular. */
2877 gdb_assert (!frame->this_id.p);
2878
2879 /* Clear cached fields dependent on the unwinder.
2880
2881 The previous PC is independent of the unwinder, but the previous
2882 function is not (see get_frame_address_in_block). */
2883 frame->prev_func.p = 0;
2884 frame->prev_func.addr = 0;
2885
2886 /* Discard the unwinder last, so that we can easily find it if an assertion
2887 in this function triggers. */
2888 frame->unwind = NULL;
2889 }
2890
2891 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2892 If sniffing fails, the caller should be sure to call
2893 frame_cleanup_after_sniffer. */
2894
2895 void
2896 frame_prepare_for_sniffer (struct frame_info *frame,
2897 const struct frame_unwind *unwind)
2898 {
2899 gdb_assert (frame->unwind == NULL);
2900 frame->unwind = unwind;
2901 }
2902
2903 static struct cmd_list_element *set_backtrace_cmdlist;
2904 static struct cmd_list_element *show_backtrace_cmdlist;
2905
2906 static void
2907 set_backtrace_cmd (const char *args, int from_tty)
2908 {
2909 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2910 gdb_stdout);
2911 }
2912
2913 static void
2914 show_backtrace_cmd (const char *args, int from_tty)
2915 {
2916 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2917 }
2918
2919 void
2920 _initialize_frame (void)
2921 {
2922 obstack_init (&frame_cache_obstack);
2923
2924 frame_stash_create ();
2925
2926 gdb::observers::target_changed.attach (frame_observer_target_changed);
2927
2928 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2929 Set backtrace specific variables.\n\
2930 Configure backtrace variables such as the backtrace limit"),
2931 &set_backtrace_cmdlist, "set backtrace ",
2932 0/*allow-unknown*/, &setlist);
2933 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2934 Show backtrace specific variables\n\
2935 Show backtrace variables such as the backtrace limit"),
2936 &show_backtrace_cmdlist, "show backtrace ",
2937 0/*allow-unknown*/, &showlist);
2938
2939 add_setshow_boolean_cmd ("past-main", class_obscure,
2940 &backtrace_past_main, _("\
2941 Set whether backtraces should continue past \"main\"."), _("\
2942 Show whether backtraces should continue past \"main\"."), _("\
2943 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2944 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2945 of the stack trace."),
2946 NULL,
2947 show_backtrace_past_main,
2948 &set_backtrace_cmdlist,
2949 &show_backtrace_cmdlist);
2950
2951 add_setshow_boolean_cmd ("past-entry", class_obscure,
2952 &backtrace_past_entry, _("\
2953 Set whether backtraces should continue past the entry point of a program."),
2954 _("\
2955 Show whether backtraces should continue past the entry point of a program."),
2956 _("\
2957 Normally there are no callers beyond the entry point of a program, so GDB\n\
2958 will terminate the backtrace there. Set this variable if you need to see\n\
2959 the rest of the stack trace."),
2960 NULL,
2961 show_backtrace_past_entry,
2962 &set_backtrace_cmdlist,
2963 &show_backtrace_cmdlist);
2964
2965 add_setshow_uinteger_cmd ("limit", class_obscure,
2966 &backtrace_limit, _("\
2967 Set an upper bound on the number of backtrace levels."), _("\
2968 Show the upper bound on the number of backtrace levels."), _("\
2969 No more than the specified number of frames can be displayed or examined.\n\
2970 Literal \"unlimited\" or zero means no limit."),
2971 NULL,
2972 show_backtrace_limit,
2973 &set_backtrace_cmdlist,
2974 &show_backtrace_cmdlist);
2975
2976 /* Debug this files internals. */
2977 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2978 Set frame debugging."), _("\
2979 Show frame debugging."), _("\
2980 When non-zero, frame specific internal debugging is enabled."),
2981 NULL,
2982 show_frame_debug,
2983 &setdebuglist, &showdebuglist);
2984 }
This page took 0.132025 seconds and 5 git commands to generate.