Stash frame id of current frame before stashing frame id for previous frame
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 struct address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* Flag to control debugging. */
273
274 unsigned int frame_debug;
275 static void
276 show_frame_debug (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
280 }
281
282 /* Flag to indicate whether backtraces should stop at main et.al. */
283
284 static int backtrace_past_main;
285 static void
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file,
290 _("Whether backtraces should "
291 "continue past \"main\" is %s.\n"),
292 value);
293 }
294
295 static int backtrace_past_entry;
296 static void
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
299 {
300 fprintf_filtered (file, _("Whether backtraces should continue past the "
301 "entry point of a program is %s.\n"),
302 value);
303 }
304
305 static unsigned int backtrace_limit = UINT_MAX;
306 static void
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file,
311 _("An upper bound on the number "
312 "of backtrace levels is %s.\n"),
313 value);
314 }
315
316
317 static void
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
319 {
320 if (p)
321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
322 else
323 fprintf_unfiltered (file, "!%s", name);
324 }
325
326 void
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
328 {
329 fprintf_unfiltered (file, "{");
330
331 if (id.stack_status == FID_STACK_INVALID)
332 fprintf_unfiltered (file, "!stack");
333 else if (id.stack_status == FID_STACK_UNAVAILABLE)
334 fprintf_unfiltered (file, "stack=<unavailable>");
335 else if (id.stack_status == FID_STACK_SENTINEL)
336 fprintf_unfiltered (file, "stack=<sentinel>");
337 else
338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339 fprintf_unfiltered (file, ",");
340
341 fprint_field (file, "code", id.code_addr_p, id.code_addr);
342 fprintf_unfiltered (file, ",");
343
344 fprint_field (file, "special", id.special_addr_p, id.special_addr);
345
346 if (id.artificial_depth)
347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
348
349 fprintf_unfiltered (file, "}");
350 }
351
352 static void
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
354 {
355 switch (type)
356 {
357 case NORMAL_FRAME:
358 fprintf_unfiltered (file, "NORMAL_FRAME");
359 return;
360 case DUMMY_FRAME:
361 fprintf_unfiltered (file, "DUMMY_FRAME");
362 return;
363 case INLINE_FRAME:
364 fprintf_unfiltered (file, "INLINE_FRAME");
365 return;
366 case TAILCALL_FRAME:
367 fprintf_unfiltered (file, "TAILCALL_FRAME");
368 return;
369 case SIGTRAMP_FRAME:
370 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
371 return;
372 case ARCH_FRAME:
373 fprintf_unfiltered (file, "ARCH_FRAME");
374 return;
375 case SENTINEL_FRAME:
376 fprintf_unfiltered (file, "SENTINEL_FRAME");
377 return;
378 default:
379 fprintf_unfiltered (file, "<unknown type>");
380 return;
381 };
382 }
383
384 static void
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
386 {
387 if (fi == NULL)
388 {
389 fprintf_unfiltered (file, "<NULL frame>");
390 return;
391 }
392 fprintf_unfiltered (file, "{");
393 fprintf_unfiltered (file, "level=%d", fi->level);
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "type=");
396 if (fi->unwind != NULL)
397 fprint_frame_type (file, fi->unwind->type);
398 else
399 fprintf_unfiltered (file, "<unknown>");
400 fprintf_unfiltered (file, ",");
401 fprintf_unfiltered (file, "unwind=");
402 if (fi->unwind != NULL)
403 gdb_print_host_address (fi->unwind, file);
404 else
405 fprintf_unfiltered (file, "<unknown>");
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "pc=");
408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409 fprintf_unfiltered (file, "<unknown>");
410 else if (fi->next->prev_pc.status == CC_VALUE)
411 fprintf_unfiltered (file, "%s",
412 hex_string (fi->next->prev_pc.value));
413 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414 val_print_not_saved (file);
415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416 val_print_unavailable (file);
417 fprintf_unfiltered (file, ",");
418 fprintf_unfiltered (file, "id=");
419 if (fi->this_id.p)
420 fprint_frame_id (file, fi->this_id.value);
421 else
422 fprintf_unfiltered (file, "<unknown>");
423 fprintf_unfiltered (file, ",");
424 fprintf_unfiltered (file, "func=");
425 if (fi->next != NULL && fi->next->prev_func.p)
426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
427 else
428 fprintf_unfiltered (file, "<unknown>");
429 fprintf_unfiltered (file, "}");
430 }
431
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433 inferior memory. Skip any previous frames which were made up by GDB.
434 Return FRAME if FRAME is a non-artificial frame.
435 Return NULL if FRAME is the start of an artificial-only chain. */
436
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
439 {
440 /* Note we use get_prev_frame_always, and not get_prev_frame. The
441 latter will truncate the frame chain, leading to this function
442 unintentionally returning a null_frame_id (e.g., when the user
443 sets a backtrace limit).
444
445 Note that for record targets we may get a frame chain that consists
446 of artificial frames only. */
447 while (get_frame_type (frame) == INLINE_FRAME
448 || get_frame_type (frame) == TAILCALL_FRAME)
449 {
450 frame = get_prev_frame_always (frame);
451 if (frame == NULL)
452 break;
453 }
454
455 return frame;
456 }
457
458 struct frame_info *
459 skip_unwritable_frames (struct frame_info *frame)
460 {
461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
462 {
463 frame = get_prev_frame (frame);
464 if (frame == NULL)
465 break;
466 }
467
468 return frame;
469 }
470
471 /* See frame.h. */
472
473 struct frame_info *
474 skip_tailcall_frames (struct frame_info *frame)
475 {
476 while (get_frame_type (frame) == TAILCALL_FRAME)
477 {
478 /* Note that for record targets we may get a frame chain that consists of
479 tailcall frames only. */
480 frame = get_prev_frame (frame);
481 if (frame == NULL)
482 break;
483 }
484
485 return frame;
486 }
487
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
489 frame. */
490
491 static void
492 compute_frame_id (struct frame_info *fi)
493 {
494 gdb_assert (!fi->this_id.p);
495
496 if (frame_debug)
497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
498 fi->level);
499 /* Find the unwinder. */
500 if (fi->unwind == NULL)
501 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502 /* Find THIS frame's ID. */
503 /* Default to outermost if no ID is found. */
504 fi->this_id.value = outer_frame_id;
505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506 gdb_assert (frame_id_p (fi->this_id.value));
507 fi->this_id.p = 1;
508 if (frame_debug)
509 {
510 fprintf_unfiltered (gdb_stdlog, "-> ");
511 fprint_frame_id (gdb_stdlog, fi->this_id.value);
512 fprintf_unfiltered (gdb_stdlog, " }\n");
513 }
514 }
515
516 /* Return a frame uniq ID that can be used to, later, re-find the
517 frame. */
518
519 struct frame_id
520 get_frame_id (struct frame_info *fi)
521 {
522 if (fi == NULL)
523 return null_frame_id;
524
525 if (!fi->this_id.p)
526 {
527 int stashed;
528
529 /* If we haven't computed the frame id yet, then it must be that
530 this is the current frame. Compute it now, and stash the
531 result. The IDs of other frames are computed as soon as
532 they're created, in order to detect cycles. See
533 get_prev_frame_if_no_cycle. */
534 gdb_assert (fi->level == 0);
535
536 /* Compute. */
537 compute_frame_id (fi);
538
539 /* Since this is the first frame in the chain, this should
540 always succeed. */
541 stashed = frame_stash_add (fi);
542 gdb_assert (stashed);
543 }
544
545 return fi->this_id.value;
546 }
547
548 struct frame_id
549 get_stack_frame_id (struct frame_info *next_frame)
550 {
551 return get_frame_id (skip_artificial_frames (next_frame));
552 }
553
554 struct frame_id
555 frame_unwind_caller_id (struct frame_info *next_frame)
556 {
557 struct frame_info *this_frame;
558
559 /* Use get_prev_frame_always, and not get_prev_frame. The latter
560 will truncate the frame chain, leading to this function
561 unintentionally returning a null_frame_id (e.g., when a caller
562 requests the frame ID of "main()"s caller. */
563
564 next_frame = skip_artificial_frames (next_frame);
565 if (next_frame == NULL)
566 return null_frame_id;
567
568 this_frame = get_prev_frame_always (next_frame);
569 if (this_frame)
570 return get_frame_id (skip_artificial_frames (this_frame));
571 else
572 return null_frame_id;
573 }
574
575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
578
579 struct frame_id
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581 CORE_ADDR special_addr)
582 {
583 struct frame_id id = null_frame_id;
584
585 id.stack_addr = stack_addr;
586 id.stack_status = FID_STACK_VALID;
587 id.code_addr = code_addr;
588 id.code_addr_p = 1;
589 id.special_addr = special_addr;
590 id.special_addr_p = 1;
591 return id;
592 }
593
594 /* See frame.h. */
595
596 struct frame_id
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_status = FID_STACK_UNAVAILABLE;
602 id.code_addr = code_addr;
603 id.code_addr_p = 1;
604 return id;
605 }
606
607 /* See frame.h. */
608
609 struct frame_id
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611 CORE_ADDR special_addr)
612 {
613 struct frame_id id = null_frame_id;
614
615 id.stack_status = FID_STACK_UNAVAILABLE;
616 id.code_addr = code_addr;
617 id.code_addr_p = 1;
618 id.special_addr = special_addr;
619 id.special_addr_p = 1;
620 return id;
621 }
622
623 struct frame_id
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
625 {
626 struct frame_id id = null_frame_id;
627
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 id.code_addr = code_addr;
631 id.code_addr_p = 1;
632 return id;
633 }
634
635 struct frame_id
636 frame_id_build_wild (CORE_ADDR stack_addr)
637 {
638 struct frame_id id = null_frame_id;
639
640 id.stack_addr = stack_addr;
641 id.stack_status = FID_STACK_VALID;
642 return id;
643 }
644
645 int
646 frame_id_p (struct frame_id l)
647 {
648 int p;
649
650 /* The frame is valid iff it has a valid stack address. */
651 p = l.stack_status != FID_STACK_INVALID;
652 /* outer_frame_id is also valid. */
653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
654 p = 1;
655 if (frame_debug)
656 {
657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658 fprint_frame_id (gdb_stdlog, l);
659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
660 }
661 return p;
662 }
663
664 int
665 frame_id_artificial_p (struct frame_id l)
666 {
667 if (!frame_id_p (l))
668 return 0;
669
670 return (l.artificial_depth != 0);
671 }
672
673 int
674 frame_id_eq (struct frame_id l, struct frame_id r)
675 {
676 int eq;
677
678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680 /* The outermost frame marker is equal to itself. This is the
681 dodgy thing about outer_frame_id, since between execution steps
682 we might step into another function - from which we can't
683 unwind either. More thought required to get rid of
684 outer_frame_id. */
685 eq = 1;
686 else if (l.stack_status == FID_STACK_INVALID
687 || r.stack_status == FID_STACK_INVALID)
688 /* Like a NaN, if either ID is invalid, the result is false.
689 Note that a frame ID is invalid iff it is the null frame ID. */
690 eq = 0;
691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692 /* If .stack addresses are different, the frames are different. */
693 eq = 0;
694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695 /* An invalid code addr is a wild card. If .code addresses are
696 different, the frames are different. */
697 eq = 0;
698 else if (l.special_addr_p && r.special_addr_p
699 && l.special_addr != r.special_addr)
700 /* An invalid special addr is a wild card (or unused). Otherwise
701 if special addresses are different, the frames are different. */
702 eq = 0;
703 else if (l.artificial_depth != r.artificial_depth)
704 /* If artifical depths are different, the frames must be different. */
705 eq = 0;
706 else
707 /* Frames are equal. */
708 eq = 1;
709
710 if (frame_debug)
711 {
712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713 fprint_frame_id (gdb_stdlog, l);
714 fprintf_unfiltered (gdb_stdlog, ",r=");
715 fprint_frame_id (gdb_stdlog, r);
716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
717 }
718 return eq;
719 }
720
721 /* Safety net to check whether frame ID L should be inner to
722 frame ID R, according to their stack addresses.
723
724 This method cannot be used to compare arbitrary frames, as the
725 ranges of valid stack addresses may be discontiguous (e.g. due
726 to sigaltstack).
727
728 However, it can be used as safety net to discover invalid frame
729 IDs in certain circumstances. Assuming that NEXT is the immediate
730 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
731
732 * The stack address of NEXT must be inner-than-or-equal to the stack
733 address of THIS.
734
735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
736 error has occurred.
737
738 * If NEXT and THIS have different stack addresses, no other frame
739 in the frame chain may have a stack address in between.
740
741 Therefore, if frame_id_inner (TEST, THIS) holds, but
742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743 to a valid frame in the frame chain.
744
745 The sanity checks above cannot be performed when a SIGTRAMP frame
746 is involved, because signal handlers might be executed on a different
747 stack than the stack used by the routine that caused the signal
748 to be raised. This can happen for instance when a thread exceeds
749 its maximum stack size. In this case, certain compilers implement
750 a stack overflow strategy that cause the handler to be run on a
751 different stack. */
752
753 static int
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
755 {
756 int inner;
757
758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759 /* Like NaN, any operation involving an invalid ID always fails.
760 Likewise if either ID has an unavailable stack address. */
761 inner = 0;
762 else if (l.artificial_depth > r.artificial_depth
763 && l.stack_addr == r.stack_addr
764 && l.code_addr_p == r.code_addr_p
765 && l.special_addr_p == r.special_addr_p
766 && l.special_addr == r.special_addr)
767 {
768 /* Same function, different inlined functions. */
769 const struct block *lb, *rb;
770
771 gdb_assert (l.code_addr_p && r.code_addr_p);
772
773 lb = block_for_pc (l.code_addr);
774 rb = block_for_pc (r.code_addr);
775
776 if (lb == NULL || rb == NULL)
777 /* Something's gone wrong. */
778 inner = 0;
779 else
780 /* This will return true if LB and RB are the same block, or
781 if the block with the smaller depth lexically encloses the
782 block with the greater depth. */
783 inner = contained_in (lb, rb);
784 }
785 else
786 /* Only return non-zero when strictly inner than. Note that, per
787 comment in "frame.h", there is some fuzz here. Frameless
788 functions are not strictly inner than (same .stack but
789 different .code and/or .special address). */
790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
791 if (frame_debug)
792 {
793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794 fprint_frame_id (gdb_stdlog, l);
795 fprintf_unfiltered (gdb_stdlog, ",r=");
796 fprint_frame_id (gdb_stdlog, r);
797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
798 }
799 return inner;
800 }
801
802 struct frame_info *
803 frame_find_by_id (struct frame_id id)
804 {
805 struct frame_info *frame, *prev_frame;
806
807 /* ZERO denotes the null frame, let the caller decide what to do
808 about it. Should it instead return get_current_frame()? */
809 if (!frame_id_p (id))
810 return NULL;
811
812 /* Check for the sentinel frame. */
813 if (frame_id_eq (id, sentinel_frame_id))
814 return sentinel_frame;
815
816 /* Try using the frame stash first. Finding it there removes the need
817 to perform the search by looping over all frames, which can be very
818 CPU-intensive if the number of frames is very high (the loop is O(n)
819 and get_prev_frame performs a series of checks that are relatively
820 expensive). This optimization is particularly useful when this function
821 is called from another function (such as value_fetch_lazy, case
822 VALUE_LVAL (val) == lval_register) which already loops over all frames,
823 making the overall behavior O(n^2). */
824 frame = frame_stash_find (id);
825 if (frame)
826 return frame;
827
828 for (frame = get_current_frame (); ; frame = prev_frame)
829 {
830 struct frame_id self = get_frame_id (frame);
831
832 if (frame_id_eq (id, self))
833 /* An exact match. */
834 return frame;
835
836 prev_frame = get_prev_frame (frame);
837 if (!prev_frame)
838 return NULL;
839
840 /* As a safety net to avoid unnecessary backtracing while trying
841 to find an invalid ID, we check for a common situation where
842 we can detect from comparing stack addresses that no other
843 frame in the current frame chain can have this ID. See the
844 comment at frame_id_inner for details. */
845 if (get_frame_type (frame) == NORMAL_FRAME
846 && !frame_id_inner (get_frame_arch (frame), id, self)
847 && frame_id_inner (get_frame_arch (prev_frame), id,
848 get_frame_id (prev_frame)))
849 return NULL;
850 }
851 return NULL;
852 }
853
854 static CORE_ADDR
855 frame_unwind_pc (struct frame_info *this_frame)
856 {
857 if (this_frame->prev_pc.status == CC_UNKNOWN)
858 {
859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
860 {
861 struct gdbarch *prev_gdbarch;
862 CORE_ADDR pc = 0;
863 int pc_p = 0;
864
865 /* The right way. The `pure' way. The one true way. This
866 method depends solely on the register-unwind code to
867 determine the value of registers in THIS frame, and hence
868 the value of this frame's PC (resume address). A typical
869 implementation is no more than:
870
871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
873
874 Note: this method is very heavily dependent on a correct
875 register-unwind implementation, it pays to fix that
876 method first; this method is frame type agnostic, since
877 it only deals with register values, it works with any
878 frame. This is all in stark contrast to the old
879 FRAME_SAVED_PC which would try to directly handle all the
880 different ways that a PC could be unwound. */
881 prev_gdbarch = frame_unwind_arch (this_frame);
882
883 TRY
884 {
885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
886 pc_p = 1;
887 }
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 if (ex.error == NOT_AVAILABLE_ERROR)
891 {
892 this_frame->prev_pc.status = CC_UNAVAILABLE;
893
894 if (frame_debug)
895 fprintf_unfiltered (gdb_stdlog,
896 "{ frame_unwind_pc (this_frame=%d)"
897 " -> <unavailable> }\n",
898 this_frame->level);
899 }
900 else if (ex.error == OPTIMIZED_OUT_ERROR)
901 {
902 this_frame->prev_pc.status = CC_NOT_SAVED;
903
904 if (frame_debug)
905 fprintf_unfiltered (gdb_stdlog,
906 "{ frame_unwind_pc (this_frame=%d)"
907 " -> <not saved> }\n",
908 this_frame->level);
909 }
910 else
911 throw_exception (ex);
912 }
913 END_CATCH
914
915 if (pc_p)
916 {
917 this_frame->prev_pc.value = pc;
918 this_frame->prev_pc.status = CC_VALUE;
919 if (frame_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "{ frame_unwind_pc (this_frame=%d) "
922 "-> %s }\n",
923 this_frame->level,
924 hex_string (this_frame->prev_pc.value));
925 }
926 }
927 else
928 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
929 }
930
931 if (this_frame->prev_pc.status == CC_VALUE)
932 return this_frame->prev_pc.value;
933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
937 else
938 internal_error (__FILE__, __LINE__,
939 "unexpected prev_pc status: %d",
940 (int) this_frame->prev_pc.status);
941 }
942
943 CORE_ADDR
944 frame_unwind_caller_pc (struct frame_info *this_frame)
945 {
946 this_frame = skip_artificial_frames (this_frame);
947
948 /* We must have a non-artificial frame. The caller is supposed to check
949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
950 in this case. */
951 gdb_assert (this_frame != NULL);
952
953 return frame_unwind_pc (this_frame);
954 }
955
956 int
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
958 {
959 struct frame_info *next_frame = this_frame->next;
960
961 if (!next_frame->prev_func.p)
962 {
963 CORE_ADDR addr_in_block;
964
965 /* Make certain that this, and not the adjacent, function is
966 found. */
967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
968 {
969 next_frame->prev_func.p = -1;
970 if (frame_debug)
971 fprintf_unfiltered (gdb_stdlog,
972 "{ get_frame_func (this_frame=%d)"
973 " -> unavailable }\n",
974 this_frame->level);
975 }
976 else
977 {
978 next_frame->prev_func.p = 1;
979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
980 if (frame_debug)
981 fprintf_unfiltered (gdb_stdlog,
982 "{ get_frame_func (this_frame=%d) -> %s }\n",
983 this_frame->level,
984 hex_string (next_frame->prev_func.addr));
985 }
986 }
987
988 if (next_frame->prev_func.p < 0)
989 {
990 *pc = -1;
991 return 0;
992 }
993 else
994 {
995 *pc = next_frame->prev_func.addr;
996 return 1;
997 }
998 }
999
1000 CORE_ADDR
1001 get_frame_func (struct frame_info *this_frame)
1002 {
1003 CORE_ADDR pc;
1004
1005 if (!get_frame_func_if_available (this_frame, &pc))
1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1007
1008 return pc;
1009 }
1010
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1013 {
1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015 return REG_UNAVAILABLE;
1016 else
1017 return REG_VALID;
1018 }
1019
1020 struct regcache *
1021 frame_save_as_regcache (struct frame_info *this_frame)
1022 {
1023 struct address_space *aspace = get_frame_address_space (this_frame);
1024 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
1025 aspace);
1026 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
1027
1028 regcache_save (regcache, do_frame_register_read, this_frame);
1029 discard_cleanups (cleanups);
1030 return regcache;
1031 }
1032
1033 void
1034 frame_pop (struct frame_info *this_frame)
1035 {
1036 struct frame_info *prev_frame;
1037 struct regcache *scratch;
1038 struct cleanup *cleanups;
1039
1040 if (get_frame_type (this_frame) == DUMMY_FRAME)
1041 {
1042 /* Popping a dummy frame involves restoring more than just registers.
1043 dummy_frame_pop does all the work. */
1044 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1045 return;
1046 }
1047
1048 /* Ensure that we have a frame to pop to. */
1049 prev_frame = get_prev_frame_always (this_frame);
1050
1051 if (!prev_frame)
1052 error (_("Cannot pop the initial frame."));
1053
1054 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1055 entering THISFRAME. */
1056 prev_frame = skip_tailcall_frames (prev_frame);
1057
1058 if (prev_frame == NULL)
1059 error (_("Cannot find the caller frame."));
1060
1061 /* Make a copy of all the register values unwound from this frame.
1062 Save them in a scratch buffer so that there isn't a race between
1063 trying to extract the old values from the current regcache while
1064 at the same time writing new values into that same cache. */
1065 scratch = frame_save_as_regcache (prev_frame);
1066 cleanups = make_cleanup_regcache_xfree (scratch);
1067
1068 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1069 target's register cache that it is about to be hit with a burst
1070 register transfer and that the sequence of register writes should
1071 be batched. The pair target_prepare_to_store() and
1072 target_store_registers() kind of suggest this functionality.
1073 Unfortunately, they don't implement it. Their lack of a formal
1074 definition can lead to targets writing back bogus values
1075 (arguably a bug in the target code mind). */
1076 /* Now copy those saved registers into the current regcache.
1077 Here, regcache_cpy() calls regcache_restore(). */
1078 regcache_cpy (get_current_regcache (), scratch);
1079 do_cleanups (cleanups);
1080
1081 /* We've made right mess of GDB's local state, just discard
1082 everything. */
1083 reinit_frame_cache ();
1084 }
1085
1086 void
1087 frame_register_unwind (struct frame_info *frame, int regnum,
1088 int *optimizedp, int *unavailablep,
1089 enum lval_type *lvalp, CORE_ADDR *addrp,
1090 int *realnump, gdb_byte *bufferp)
1091 {
1092 struct value *value;
1093
1094 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1095 that the value proper does not need to be fetched. */
1096 gdb_assert (optimizedp != NULL);
1097 gdb_assert (lvalp != NULL);
1098 gdb_assert (addrp != NULL);
1099 gdb_assert (realnump != NULL);
1100 /* gdb_assert (bufferp != NULL); */
1101
1102 value = frame_unwind_register_value (frame, regnum);
1103
1104 gdb_assert (value != NULL);
1105
1106 *optimizedp = value_optimized_out (value);
1107 *unavailablep = !value_entirely_available (value);
1108 *lvalp = VALUE_LVAL (value);
1109 *addrp = value_address (value);
1110 *realnump = VALUE_REGNUM (value);
1111
1112 if (bufferp)
1113 {
1114 if (!*optimizedp && !*unavailablep)
1115 memcpy (bufferp, value_contents_all (value),
1116 TYPE_LENGTH (value_type (value)));
1117 else
1118 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1119 }
1120
1121 /* Dispose of the new value. This prevents watchpoints from
1122 trying to watch the saved frame pointer. */
1123 release_value (value);
1124 value_free (value);
1125 }
1126
1127 void
1128 frame_register (struct frame_info *frame, int regnum,
1129 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1130 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1131 {
1132 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1133 that the value proper does not need to be fetched. */
1134 gdb_assert (optimizedp != NULL);
1135 gdb_assert (lvalp != NULL);
1136 gdb_assert (addrp != NULL);
1137 gdb_assert (realnump != NULL);
1138 /* gdb_assert (bufferp != NULL); */
1139
1140 /* Obtain the register value by unwinding the register from the next
1141 (more inner frame). */
1142 gdb_assert (frame != NULL && frame->next != NULL);
1143 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1144 lvalp, addrp, realnump, bufferp);
1145 }
1146
1147 void
1148 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1149 {
1150 int optimized;
1151 int unavailable;
1152 CORE_ADDR addr;
1153 int realnum;
1154 enum lval_type lval;
1155
1156 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1157 &lval, &addr, &realnum, buf);
1158
1159 if (optimized)
1160 throw_error (OPTIMIZED_OUT_ERROR,
1161 _("Register %d was not saved"), regnum);
1162 if (unavailable)
1163 throw_error (NOT_AVAILABLE_ERROR,
1164 _("Register %d is not available"), regnum);
1165 }
1166
1167 void
1168 get_frame_register (struct frame_info *frame,
1169 int regnum, gdb_byte *buf)
1170 {
1171 frame_unwind_register (frame->next, regnum, buf);
1172 }
1173
1174 struct value *
1175 frame_unwind_register_value (struct frame_info *frame, int regnum)
1176 {
1177 struct gdbarch *gdbarch;
1178 struct value *value;
1179
1180 gdb_assert (frame != NULL);
1181 gdbarch = frame_unwind_arch (frame);
1182
1183 if (frame_debug)
1184 {
1185 fprintf_unfiltered (gdb_stdlog,
1186 "{ frame_unwind_register_value "
1187 "(frame=%d,regnum=%d(%s),...) ",
1188 frame->level, regnum,
1189 user_reg_map_regnum_to_name (gdbarch, regnum));
1190 }
1191
1192 /* Find the unwinder. */
1193 if (frame->unwind == NULL)
1194 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1195
1196 /* Ask this frame to unwind its register. */
1197 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1198
1199 if (frame_debug)
1200 {
1201 fprintf_unfiltered (gdb_stdlog, "->");
1202 if (value_optimized_out (value))
1203 {
1204 fprintf_unfiltered (gdb_stdlog, " ");
1205 val_print_optimized_out (value, gdb_stdlog);
1206 }
1207 else
1208 {
1209 if (VALUE_LVAL (value) == lval_register)
1210 fprintf_unfiltered (gdb_stdlog, " register=%d",
1211 VALUE_REGNUM (value));
1212 else if (VALUE_LVAL (value) == lval_memory)
1213 fprintf_unfiltered (gdb_stdlog, " address=%s",
1214 paddress (gdbarch,
1215 value_address (value)));
1216 else
1217 fprintf_unfiltered (gdb_stdlog, " computed");
1218
1219 if (value_lazy (value))
1220 fprintf_unfiltered (gdb_stdlog, " lazy");
1221 else
1222 {
1223 int i;
1224 const gdb_byte *buf = value_contents (value);
1225
1226 fprintf_unfiltered (gdb_stdlog, " bytes=");
1227 fprintf_unfiltered (gdb_stdlog, "[");
1228 for (i = 0; i < register_size (gdbarch, regnum); i++)
1229 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1230 fprintf_unfiltered (gdb_stdlog, "]");
1231 }
1232 }
1233
1234 fprintf_unfiltered (gdb_stdlog, " }\n");
1235 }
1236
1237 return value;
1238 }
1239
1240 struct value *
1241 get_frame_register_value (struct frame_info *frame, int regnum)
1242 {
1243 return frame_unwind_register_value (frame->next, regnum);
1244 }
1245
1246 LONGEST
1247 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1248 {
1249 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1250 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1251 int size = register_size (gdbarch, regnum);
1252 gdb_byte buf[MAX_REGISTER_SIZE];
1253
1254 frame_unwind_register (frame, regnum, buf);
1255 return extract_signed_integer (buf, size, byte_order);
1256 }
1257
1258 LONGEST
1259 get_frame_register_signed (struct frame_info *frame, int regnum)
1260 {
1261 return frame_unwind_register_signed (frame->next, regnum);
1262 }
1263
1264 ULONGEST
1265 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1266 {
1267 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1268 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1269 int size = register_size (gdbarch, regnum);
1270 gdb_byte buf[MAX_REGISTER_SIZE];
1271
1272 frame_unwind_register (frame, regnum, buf);
1273 return extract_unsigned_integer (buf, size, byte_order);
1274 }
1275
1276 ULONGEST
1277 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1278 {
1279 return frame_unwind_register_unsigned (frame->next, regnum);
1280 }
1281
1282 int
1283 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1284 ULONGEST *val)
1285 {
1286 struct value *regval = get_frame_register_value (frame, regnum);
1287
1288 if (!value_optimized_out (regval)
1289 && value_entirely_available (regval))
1290 {
1291 struct gdbarch *gdbarch = get_frame_arch (frame);
1292 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1293 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1294
1295 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1296 return 1;
1297 }
1298
1299 return 0;
1300 }
1301
1302 void
1303 put_frame_register (struct frame_info *frame, int regnum,
1304 const gdb_byte *buf)
1305 {
1306 struct gdbarch *gdbarch = get_frame_arch (frame);
1307 int realnum;
1308 int optim;
1309 int unavail;
1310 enum lval_type lval;
1311 CORE_ADDR addr;
1312
1313 frame_register (frame, regnum, &optim, &unavail,
1314 &lval, &addr, &realnum, NULL);
1315 if (optim)
1316 error (_("Attempt to assign to a register that was not saved."));
1317 switch (lval)
1318 {
1319 case lval_memory:
1320 {
1321 write_memory (addr, buf, register_size (gdbarch, regnum));
1322 break;
1323 }
1324 case lval_register:
1325 regcache_cooked_write (get_current_regcache (), realnum, buf);
1326 break;
1327 default:
1328 error (_("Attempt to assign to an unmodifiable value."));
1329 }
1330 }
1331
1332 /* This function is deprecated. Use get_frame_register_value instead,
1333 which provides more accurate information.
1334
1335 Find and return the value of REGNUM for the specified stack frame.
1336 The number of bytes copied is REGISTER_SIZE (REGNUM).
1337
1338 Returns 0 if the register value could not be found. */
1339
1340 int
1341 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1342 gdb_byte *myaddr)
1343 {
1344 int optimized;
1345 int unavailable;
1346 enum lval_type lval;
1347 CORE_ADDR addr;
1348 int realnum;
1349
1350 frame_register (frame, regnum, &optimized, &unavailable,
1351 &lval, &addr, &realnum, myaddr);
1352
1353 return !optimized && !unavailable;
1354 }
1355
1356 int
1357 get_frame_register_bytes (struct frame_info *frame, int regnum,
1358 CORE_ADDR offset, int len, gdb_byte *myaddr,
1359 int *optimizedp, int *unavailablep)
1360 {
1361 struct gdbarch *gdbarch = get_frame_arch (frame);
1362 int i;
1363 int maxsize;
1364 int numregs;
1365
1366 /* Skip registers wholly inside of OFFSET. */
1367 while (offset >= register_size (gdbarch, regnum))
1368 {
1369 offset -= register_size (gdbarch, regnum);
1370 regnum++;
1371 }
1372
1373 /* Ensure that we will not read beyond the end of the register file.
1374 This can only ever happen if the debug information is bad. */
1375 maxsize = -offset;
1376 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1377 for (i = regnum; i < numregs; i++)
1378 {
1379 int thissize = register_size (gdbarch, i);
1380
1381 if (thissize == 0)
1382 break; /* This register is not available on this architecture. */
1383 maxsize += thissize;
1384 }
1385 if (len > maxsize)
1386 error (_("Bad debug information detected: "
1387 "Attempt to read %d bytes from registers."), len);
1388
1389 /* Copy the data. */
1390 while (len > 0)
1391 {
1392 int curr_len = register_size (gdbarch, regnum) - offset;
1393
1394 if (curr_len > len)
1395 curr_len = len;
1396
1397 if (curr_len == register_size (gdbarch, regnum))
1398 {
1399 enum lval_type lval;
1400 CORE_ADDR addr;
1401 int realnum;
1402
1403 frame_register (frame, regnum, optimizedp, unavailablep,
1404 &lval, &addr, &realnum, myaddr);
1405 if (*optimizedp || *unavailablep)
1406 return 0;
1407 }
1408 else
1409 {
1410 gdb_byte buf[MAX_REGISTER_SIZE];
1411 enum lval_type lval;
1412 CORE_ADDR addr;
1413 int realnum;
1414
1415 frame_register (frame, regnum, optimizedp, unavailablep,
1416 &lval, &addr, &realnum, buf);
1417 if (*optimizedp || *unavailablep)
1418 return 0;
1419 memcpy (myaddr, buf + offset, curr_len);
1420 }
1421
1422 myaddr += curr_len;
1423 len -= curr_len;
1424 offset = 0;
1425 regnum++;
1426 }
1427
1428 *optimizedp = 0;
1429 *unavailablep = 0;
1430 return 1;
1431 }
1432
1433 void
1434 put_frame_register_bytes (struct frame_info *frame, int regnum,
1435 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1436 {
1437 struct gdbarch *gdbarch = get_frame_arch (frame);
1438
1439 /* Skip registers wholly inside of OFFSET. */
1440 while (offset >= register_size (gdbarch, regnum))
1441 {
1442 offset -= register_size (gdbarch, regnum);
1443 regnum++;
1444 }
1445
1446 /* Copy the data. */
1447 while (len > 0)
1448 {
1449 int curr_len = register_size (gdbarch, regnum) - offset;
1450
1451 if (curr_len > len)
1452 curr_len = len;
1453
1454 if (curr_len == register_size (gdbarch, regnum))
1455 {
1456 put_frame_register (frame, regnum, myaddr);
1457 }
1458 else
1459 {
1460 gdb_byte buf[MAX_REGISTER_SIZE];
1461
1462 deprecated_frame_register_read (frame, regnum, buf);
1463 memcpy (buf + offset, myaddr, curr_len);
1464 put_frame_register (frame, regnum, buf);
1465 }
1466
1467 myaddr += curr_len;
1468 len -= curr_len;
1469 offset = 0;
1470 regnum++;
1471 }
1472 }
1473
1474 /* Create a sentinel frame. */
1475
1476 static struct frame_info *
1477 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1478 {
1479 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1480
1481 frame->level = -1;
1482 frame->pspace = pspace;
1483 frame->aspace = get_regcache_aspace (regcache);
1484 /* Explicitly initialize the sentinel frame's cache. Provide it
1485 with the underlying regcache. In the future additional
1486 information, such as the frame's thread will be added. */
1487 frame->prologue_cache = sentinel_frame_cache (regcache);
1488 /* For the moment there is only one sentinel frame implementation. */
1489 frame->unwind = &sentinel_frame_unwind;
1490 /* Link this frame back to itself. The frame is self referential
1491 (the unwound PC is the same as the pc), so make it so. */
1492 frame->next = frame;
1493 /* The sentinel frame has a special ID. */
1494 frame->this_id.p = 1;
1495 frame->this_id.value = sentinel_frame_id;
1496 if (frame_debug)
1497 {
1498 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1499 fprint_frame (gdb_stdlog, frame);
1500 fprintf_unfiltered (gdb_stdlog, " }\n");
1501 }
1502 return frame;
1503 }
1504
1505 /* Cache for frame addresses already read by gdb. Valid only while
1506 inferior is stopped. Control variables for the frame cache should
1507 be local to this module. */
1508
1509 static struct obstack frame_cache_obstack;
1510
1511 void *
1512 frame_obstack_zalloc (unsigned long size)
1513 {
1514 void *data = obstack_alloc (&frame_cache_obstack, size);
1515
1516 memset (data, 0, size);
1517 return data;
1518 }
1519
1520 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1521
1522 struct frame_info *
1523 get_current_frame (void)
1524 {
1525 struct frame_info *current_frame;
1526
1527 /* First check, and report, the lack of registers. Having GDB
1528 report "No stack!" or "No memory" when the target doesn't even
1529 have registers is very confusing. Besides, "printcmd.exp"
1530 explicitly checks that ``print $pc'' with no registers prints "No
1531 registers". */
1532 if (!target_has_registers)
1533 error (_("No registers."));
1534 if (!target_has_stack)
1535 error (_("No stack."));
1536 if (!target_has_memory)
1537 error (_("No memory."));
1538 /* Traceframes are effectively a substitute for the live inferior. */
1539 if (get_traceframe_number () < 0)
1540 validate_registers_access ();
1541
1542 if (sentinel_frame == NULL)
1543 sentinel_frame =
1544 create_sentinel_frame (current_program_space, get_current_regcache ());
1545
1546 /* Set the current frame before computing the frame id, to avoid
1547 recursion inside compute_frame_id, in case the frame's
1548 unwinder decides to do a symbol lookup (which depends on the
1549 selected frame's block).
1550
1551 This call must always succeed. In particular, nothing inside
1552 get_prev_frame_always_1 should try to unwind from the
1553 sentinel frame, because that could fail/throw, and we always
1554 want to leave with the current frame created and linked in --
1555 we should never end up with the sentinel frame as outermost
1556 frame. */
1557 current_frame = get_prev_frame_always_1 (sentinel_frame);
1558 gdb_assert (current_frame != NULL);
1559
1560 return current_frame;
1561 }
1562
1563 /* The "selected" stack frame is used by default for local and arg
1564 access. May be zero, for no selected frame. */
1565
1566 static struct frame_info *selected_frame;
1567
1568 int
1569 has_stack_frames (void)
1570 {
1571 if (!target_has_registers || !target_has_stack || !target_has_memory)
1572 return 0;
1573
1574 /* Traceframes are effectively a substitute for the live inferior. */
1575 if (get_traceframe_number () < 0)
1576 {
1577 /* No current inferior, no frame. */
1578 if (ptid_equal (inferior_ptid, null_ptid))
1579 return 0;
1580
1581 /* Don't try to read from a dead thread. */
1582 if (is_exited (inferior_ptid))
1583 return 0;
1584
1585 /* ... or from a spinning thread. */
1586 if (is_executing (inferior_ptid))
1587 return 0;
1588 }
1589
1590 return 1;
1591 }
1592
1593 /* Return the selected frame. Always non-NULL (unless there isn't an
1594 inferior sufficient for creating a frame) in which case an error is
1595 thrown. */
1596
1597 struct frame_info *
1598 get_selected_frame (const char *message)
1599 {
1600 if (selected_frame == NULL)
1601 {
1602 if (message != NULL && !has_stack_frames ())
1603 error (("%s"), message);
1604 /* Hey! Don't trust this. It should really be re-finding the
1605 last selected frame of the currently selected thread. This,
1606 though, is better than nothing. */
1607 select_frame (get_current_frame ());
1608 }
1609 /* There is always a frame. */
1610 gdb_assert (selected_frame != NULL);
1611 return selected_frame;
1612 }
1613
1614 /* If there is a selected frame, return it. Otherwise, return NULL. */
1615
1616 struct frame_info *
1617 get_selected_frame_if_set (void)
1618 {
1619 return selected_frame;
1620 }
1621
1622 /* This is a variant of get_selected_frame() which can be called when
1623 the inferior does not have a frame; in that case it will return
1624 NULL instead of calling error(). */
1625
1626 struct frame_info *
1627 deprecated_safe_get_selected_frame (void)
1628 {
1629 if (!has_stack_frames ())
1630 return NULL;
1631 return get_selected_frame (NULL);
1632 }
1633
1634 /* Select frame FI (or NULL - to invalidate the current frame). */
1635
1636 void
1637 select_frame (struct frame_info *fi)
1638 {
1639 selected_frame = fi;
1640 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1641 frame is being invalidated. */
1642
1643 /* FIXME: kseitz/2002-08-28: It would be nice to call
1644 selected_frame_level_changed_event() right here, but due to limitations
1645 in the current interfaces, we would end up flooding UIs with events
1646 because select_frame() is used extensively internally.
1647
1648 Once we have frame-parameterized frame (and frame-related) commands,
1649 the event notification can be moved here, since this function will only
1650 be called when the user's selected frame is being changed. */
1651
1652 /* Ensure that symbols for this frame are read in. Also, determine the
1653 source language of this frame, and switch to it if desired. */
1654 if (fi)
1655 {
1656 CORE_ADDR pc;
1657
1658 /* We retrieve the frame's symtab by using the frame PC.
1659 However we cannot use the frame PC as-is, because it usually
1660 points to the instruction following the "call", which is
1661 sometimes the first instruction of another function. So we
1662 rely on get_frame_address_in_block() which provides us with a
1663 PC which is guaranteed to be inside the frame's code
1664 block. */
1665 if (get_frame_address_in_block_if_available (fi, &pc))
1666 {
1667 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1668
1669 if (cust != NULL
1670 && compunit_language (cust) != current_language->la_language
1671 && compunit_language (cust) != language_unknown
1672 && language_mode == language_mode_auto)
1673 set_language (compunit_language (cust));
1674 }
1675 }
1676 }
1677
1678 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1679 Always returns a non-NULL value. */
1680
1681 struct frame_info *
1682 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1683 {
1684 struct frame_info *fi;
1685
1686 if (frame_debug)
1687 {
1688 fprintf_unfiltered (gdb_stdlog,
1689 "{ create_new_frame (addr=%s, pc=%s) ",
1690 hex_string (addr), hex_string (pc));
1691 }
1692
1693 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1694
1695 fi->next = create_sentinel_frame (current_program_space,
1696 get_current_regcache ());
1697
1698 /* Set/update this frame's cached PC value, found in the next frame.
1699 Do this before looking for this frame's unwinder. A sniffer is
1700 very likely to read this, and the corresponding unwinder is
1701 entitled to rely that the PC doesn't magically change. */
1702 fi->next->prev_pc.value = pc;
1703 fi->next->prev_pc.status = CC_VALUE;
1704
1705 /* We currently assume that frame chain's can't cross spaces. */
1706 fi->pspace = fi->next->pspace;
1707 fi->aspace = fi->next->aspace;
1708
1709 /* Select/initialize both the unwind function and the frame's type
1710 based on the PC. */
1711 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1712
1713 fi->this_id.p = 1;
1714 fi->this_id.value = frame_id_build (addr, pc);
1715
1716 if (frame_debug)
1717 {
1718 fprintf_unfiltered (gdb_stdlog, "-> ");
1719 fprint_frame (gdb_stdlog, fi);
1720 fprintf_unfiltered (gdb_stdlog, " }\n");
1721 }
1722
1723 return fi;
1724 }
1725
1726 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1727 innermost frame). Be careful to not fall off the bottom of the
1728 frame chain and onto the sentinel frame. */
1729
1730 struct frame_info *
1731 get_next_frame (struct frame_info *this_frame)
1732 {
1733 if (this_frame->level > 0)
1734 return this_frame->next;
1735 else
1736 return NULL;
1737 }
1738
1739 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1740 innermost (i.e. current) frame, return the sentinel frame. Thus,
1741 unlike get_next_frame(), NULL will never be returned. */
1742
1743 struct frame_info *
1744 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1745 {
1746 gdb_assert (this_frame != NULL);
1747
1748 /* Note that, due to the manner in which the sentinel frame is
1749 constructed, this_frame->next still works even when this_frame
1750 is the sentinel frame. But we disallow it here anyway because
1751 calling get_next_frame_sentinel_okay() on the sentinel frame
1752 is likely a coding error. */
1753 gdb_assert (this_frame != sentinel_frame);
1754
1755 return this_frame->next;
1756 }
1757
1758 /* Observer for the target_changed event. */
1759
1760 static void
1761 frame_observer_target_changed (struct target_ops *target)
1762 {
1763 reinit_frame_cache ();
1764 }
1765
1766 /* Flush the entire frame cache. */
1767
1768 void
1769 reinit_frame_cache (void)
1770 {
1771 struct frame_info *fi;
1772
1773 /* Tear down all frame caches. */
1774 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1775 {
1776 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1777 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1778 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1779 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1780 }
1781
1782 /* Since we can't really be sure what the first object allocated was. */
1783 obstack_free (&frame_cache_obstack, 0);
1784 obstack_init (&frame_cache_obstack);
1785
1786 if (sentinel_frame != NULL)
1787 annotate_frames_invalid ();
1788
1789 sentinel_frame = NULL; /* Invalidate cache */
1790 select_frame (NULL);
1791 frame_stash_invalidate ();
1792 if (frame_debug)
1793 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1794 }
1795
1796 /* Find where a register is saved (in memory or another register).
1797 The result of frame_register_unwind is just where it is saved
1798 relative to this particular frame. */
1799
1800 static void
1801 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1802 int *optimizedp, enum lval_type *lvalp,
1803 CORE_ADDR *addrp, int *realnump)
1804 {
1805 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1806
1807 while (this_frame != NULL)
1808 {
1809 int unavailable;
1810
1811 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1812 lvalp, addrp, realnump, NULL);
1813
1814 if (*optimizedp)
1815 break;
1816
1817 if (*lvalp != lval_register)
1818 break;
1819
1820 regnum = *realnump;
1821 this_frame = get_next_frame (this_frame);
1822 }
1823 }
1824
1825 /* Called during frame unwinding to remove a previous frame pointer from a
1826 frame passed in ARG. */
1827
1828 static void
1829 remove_prev_frame (void *arg)
1830 {
1831 struct frame_info *this_frame, *prev_frame;
1832
1833 this_frame = (struct frame_info *) arg;
1834 prev_frame = this_frame->prev;
1835 gdb_assert (prev_frame != NULL);
1836
1837 prev_frame->next = NULL;
1838 this_frame->prev = NULL;
1839 }
1840
1841 /* Get the previous raw frame, and check that it is not identical to
1842 same other frame frame already in the chain. If it is, there is
1843 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1844 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1845 validity tests, that compare THIS_FRAME and the next frame, we do
1846 this right after creating the previous frame, to avoid ever ending
1847 up with two frames with the same id in the frame chain. */
1848
1849 static struct frame_info *
1850 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1851 {
1852 struct frame_info *prev_frame;
1853 struct cleanup *prev_frame_cleanup;
1854
1855 prev_frame = get_prev_frame_raw (this_frame);
1856
1857 /* Don't compute the frame id of the current frame yet. Unwinding
1858 the sentinel frame can fail (e.g., if the thread is gone and we
1859 can't thus read its registers). If we let the cycle detection
1860 code below try to compute a frame ID, then an error thrown from
1861 within the frame ID computation would result in the sentinel
1862 frame as outermost frame, which is bogus. Instead, we'll compute
1863 the current frame's ID lazily in get_frame_id. Note that there's
1864 no point in doing cycle detection when there's only one frame, so
1865 nothing is lost here. */
1866 if (prev_frame->level == 0)
1867 return prev_frame;
1868
1869 /* The cleanup will remove the previous frame that get_prev_frame_raw
1870 linked onto THIS_FRAME. */
1871 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1872
1873 compute_frame_id (prev_frame);
1874 if (!frame_stash_add (prev_frame))
1875 {
1876 /* Another frame with the same id was already in the stash. We just
1877 detected a cycle. */
1878 if (frame_debug)
1879 {
1880 fprintf_unfiltered (gdb_stdlog, "-> ");
1881 fprint_frame (gdb_stdlog, NULL);
1882 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1883 }
1884 this_frame->stop_reason = UNWIND_SAME_ID;
1885 /* Unlink. */
1886 prev_frame->next = NULL;
1887 this_frame->prev = NULL;
1888 prev_frame = NULL;
1889 }
1890
1891 discard_cleanups (prev_frame_cleanup);
1892 return prev_frame;
1893 }
1894
1895 /* Helper function for get_prev_frame_always, this is called inside a
1896 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1897 there is no such frame. This may throw an exception. */
1898
1899 static struct frame_info *
1900 get_prev_frame_always_1 (struct frame_info *this_frame)
1901 {
1902 struct gdbarch *gdbarch;
1903
1904 gdb_assert (this_frame != NULL);
1905 gdbarch = get_frame_arch (this_frame);
1906
1907 if (frame_debug)
1908 {
1909 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1910 if (this_frame != NULL)
1911 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1912 else
1913 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1914 fprintf_unfiltered (gdb_stdlog, ") ");
1915 }
1916
1917 /* Only try to do the unwind once. */
1918 if (this_frame->prev_p)
1919 {
1920 if (frame_debug)
1921 {
1922 fprintf_unfiltered (gdb_stdlog, "-> ");
1923 fprint_frame (gdb_stdlog, this_frame->prev);
1924 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1925 }
1926 return this_frame->prev;
1927 }
1928
1929 /* If the frame unwinder hasn't been selected yet, we must do so
1930 before setting prev_p; otherwise the check for misbehaved
1931 sniffers will think that this frame's sniffer tried to unwind
1932 further (see frame_cleanup_after_sniffer). */
1933 if (this_frame->unwind == NULL)
1934 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1935
1936 this_frame->prev_p = 1;
1937 this_frame->stop_reason = UNWIND_NO_REASON;
1938
1939 /* If we are unwinding from an inline frame, all of the below tests
1940 were already performed when we unwound from the next non-inline
1941 frame. We must skip them, since we can not get THIS_FRAME's ID
1942 until we have unwound all the way down to the previous non-inline
1943 frame. */
1944 if (get_frame_type (this_frame) == INLINE_FRAME)
1945 return get_prev_frame_if_no_cycle (this_frame);
1946
1947 /* Check that this frame is unwindable. If it isn't, don't try to
1948 unwind to the prev frame. */
1949 this_frame->stop_reason
1950 = this_frame->unwind->stop_reason (this_frame,
1951 &this_frame->prologue_cache);
1952
1953 if (this_frame->stop_reason != UNWIND_NO_REASON)
1954 {
1955 if (frame_debug)
1956 {
1957 enum unwind_stop_reason reason = this_frame->stop_reason;
1958
1959 fprintf_unfiltered (gdb_stdlog, "-> ");
1960 fprint_frame (gdb_stdlog, NULL);
1961 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1962 frame_stop_reason_symbol_string (reason));
1963 }
1964 return NULL;
1965 }
1966
1967 /* Check that this frame's ID isn't inner to (younger, below, next)
1968 the next frame. This happens when a frame unwind goes backwards.
1969 This check is valid only if this frame and the next frame are NORMAL.
1970 See the comment at frame_id_inner for details. */
1971 if (get_frame_type (this_frame) == NORMAL_FRAME
1972 && this_frame->next->unwind->type == NORMAL_FRAME
1973 && frame_id_inner (get_frame_arch (this_frame->next),
1974 get_frame_id (this_frame),
1975 get_frame_id (this_frame->next)))
1976 {
1977 CORE_ADDR this_pc_in_block;
1978 struct minimal_symbol *morestack_msym;
1979 const char *morestack_name = NULL;
1980
1981 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1982 this_pc_in_block = get_frame_address_in_block (this_frame);
1983 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1984 if (morestack_msym)
1985 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1986 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1987 {
1988 if (frame_debug)
1989 {
1990 fprintf_unfiltered (gdb_stdlog, "-> ");
1991 fprint_frame (gdb_stdlog, NULL);
1992 fprintf_unfiltered (gdb_stdlog,
1993 " // this frame ID is inner }\n");
1994 }
1995 this_frame->stop_reason = UNWIND_INNER_ID;
1996 return NULL;
1997 }
1998 }
1999
2000 /* Check that this and the next frame do not unwind the PC register
2001 to the same memory location. If they do, then even though they
2002 have different frame IDs, the new frame will be bogus; two
2003 functions can't share a register save slot for the PC. This can
2004 happen when the prologue analyzer finds a stack adjustment, but
2005 no PC save.
2006
2007 This check does assume that the "PC register" is roughly a
2008 traditional PC, even if the gdbarch_unwind_pc method adjusts
2009 it (we do not rely on the value, only on the unwound PC being
2010 dependent on this value). A potential improvement would be
2011 to have the frame prev_pc method and the gdbarch unwind_pc
2012 method set the same lval and location information as
2013 frame_register_unwind. */
2014 if (this_frame->level > 0
2015 && gdbarch_pc_regnum (gdbarch) >= 0
2016 && get_frame_type (this_frame) == NORMAL_FRAME
2017 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2018 || get_frame_type (this_frame->next) == INLINE_FRAME))
2019 {
2020 int optimized, realnum, nrealnum;
2021 enum lval_type lval, nlval;
2022 CORE_ADDR addr, naddr;
2023
2024 frame_register_unwind_location (this_frame,
2025 gdbarch_pc_regnum (gdbarch),
2026 &optimized, &lval, &addr, &realnum);
2027 frame_register_unwind_location (get_next_frame (this_frame),
2028 gdbarch_pc_regnum (gdbarch),
2029 &optimized, &nlval, &naddr, &nrealnum);
2030
2031 if ((lval == lval_memory && lval == nlval && addr == naddr)
2032 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2033 {
2034 if (frame_debug)
2035 {
2036 fprintf_unfiltered (gdb_stdlog, "-> ");
2037 fprint_frame (gdb_stdlog, NULL);
2038 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2039 }
2040
2041 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2042 this_frame->prev = NULL;
2043 return NULL;
2044 }
2045 }
2046
2047 return get_prev_frame_if_no_cycle (this_frame);
2048 }
2049
2050 /* Return a "struct frame_info" corresponding to the frame that called
2051 THIS_FRAME. Returns NULL if there is no such frame.
2052
2053 Unlike get_prev_frame, this function always tries to unwind the
2054 frame. */
2055
2056 struct frame_info *
2057 get_prev_frame_always (struct frame_info *this_frame)
2058 {
2059 struct frame_info *prev_frame = NULL;
2060
2061 TRY
2062 {
2063 prev_frame = get_prev_frame_always_1 (this_frame);
2064 }
2065 CATCH (ex, RETURN_MASK_ERROR)
2066 {
2067 if (ex.error == MEMORY_ERROR)
2068 {
2069 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2070 if (ex.message != NULL)
2071 {
2072 char *stop_string;
2073 size_t size;
2074
2075 /* The error needs to live as long as the frame does.
2076 Allocate using stack local STOP_STRING then assign the
2077 pointer to the frame, this allows the STOP_STRING on the
2078 frame to be of type 'const char *'. */
2079 size = strlen (ex.message) + 1;
2080 stop_string = (char *) frame_obstack_zalloc (size);
2081 memcpy (stop_string, ex.message, size);
2082 this_frame->stop_string = stop_string;
2083 }
2084 prev_frame = NULL;
2085 }
2086 else
2087 throw_exception (ex);
2088 }
2089 END_CATCH
2090
2091 return prev_frame;
2092 }
2093
2094 /* Construct a new "struct frame_info" and link it previous to
2095 this_frame. */
2096
2097 static struct frame_info *
2098 get_prev_frame_raw (struct frame_info *this_frame)
2099 {
2100 struct frame_info *prev_frame;
2101
2102 /* Allocate the new frame but do not wire it in to the frame chain.
2103 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2104 frame->next to pull some fancy tricks (of course such code is, by
2105 definition, recursive). Try to prevent it.
2106
2107 There is no reason to worry about memory leaks, should the
2108 remainder of the function fail. The allocated memory will be
2109 quickly reclaimed when the frame cache is flushed, and the `we've
2110 been here before' check above will stop repeated memory
2111 allocation calls. */
2112 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2113 prev_frame->level = this_frame->level + 1;
2114
2115 /* For now, assume we don't have frame chains crossing address
2116 spaces. */
2117 prev_frame->pspace = this_frame->pspace;
2118 prev_frame->aspace = this_frame->aspace;
2119
2120 /* Don't yet compute ->unwind (and hence ->type). It is computed
2121 on-demand in get_frame_type, frame_register_unwind, and
2122 get_frame_id. */
2123
2124 /* Don't yet compute the frame's ID. It is computed on-demand by
2125 get_frame_id(). */
2126
2127 /* The unwound frame ID is validate at the start of this function,
2128 as part of the logic to decide if that frame should be further
2129 unwound, and not here while the prev frame is being created.
2130 Doing this makes it possible for the user to examine a frame that
2131 has an invalid frame ID.
2132
2133 Some very old VAX code noted: [...] For the sake of argument,
2134 suppose that the stack is somewhat trashed (which is one reason
2135 that "info frame" exists). So, return 0 (indicating we don't
2136 know the address of the arglist) if we don't know what frame this
2137 frame calls. */
2138
2139 /* Link it in. */
2140 this_frame->prev = prev_frame;
2141 prev_frame->next = this_frame;
2142
2143 if (frame_debug)
2144 {
2145 fprintf_unfiltered (gdb_stdlog, "-> ");
2146 fprint_frame (gdb_stdlog, prev_frame);
2147 fprintf_unfiltered (gdb_stdlog, " }\n");
2148 }
2149
2150 return prev_frame;
2151 }
2152
2153 /* Debug routine to print a NULL frame being returned. */
2154
2155 static void
2156 frame_debug_got_null_frame (struct frame_info *this_frame,
2157 const char *reason)
2158 {
2159 if (frame_debug)
2160 {
2161 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2162 if (this_frame != NULL)
2163 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2164 else
2165 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2166 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2167 }
2168 }
2169
2170 /* Is this (non-sentinel) frame in the "main"() function? */
2171
2172 static int
2173 inside_main_func (struct frame_info *this_frame)
2174 {
2175 struct bound_minimal_symbol msymbol;
2176 CORE_ADDR maddr;
2177
2178 if (symfile_objfile == 0)
2179 return 0;
2180 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2181 if (msymbol.minsym == NULL)
2182 return 0;
2183 /* Make certain that the code, and not descriptor, address is
2184 returned. */
2185 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2186 BMSYMBOL_VALUE_ADDRESS (msymbol),
2187 &current_target);
2188 return maddr == get_frame_func (this_frame);
2189 }
2190
2191 /* Test whether THIS_FRAME is inside the process entry point function. */
2192
2193 static int
2194 inside_entry_func (struct frame_info *this_frame)
2195 {
2196 CORE_ADDR entry_point;
2197
2198 if (!entry_point_address_query (&entry_point))
2199 return 0;
2200
2201 return get_frame_func (this_frame) == entry_point;
2202 }
2203
2204 /* Return a structure containing various interesting information about
2205 the frame that called THIS_FRAME. Returns NULL if there is entier
2206 no such frame or the frame fails any of a set of target-independent
2207 condition that should terminate the frame chain (e.g., as unwinding
2208 past main()).
2209
2210 This function should not contain target-dependent tests, such as
2211 checking whether the program-counter is zero. */
2212
2213 struct frame_info *
2214 get_prev_frame (struct frame_info *this_frame)
2215 {
2216 CORE_ADDR frame_pc;
2217 int frame_pc_p;
2218
2219 /* There is always a frame. If this assertion fails, suspect that
2220 something should be calling get_selected_frame() or
2221 get_current_frame(). */
2222 gdb_assert (this_frame != NULL);
2223
2224 /* If this_frame is the current frame, then compute and stash
2225 its frame id prior to fetching and computing the frame id of the
2226 previous frame. Otherwise, the cycle detection code in
2227 get_prev_frame_if_no_cycle() will not work correctly. When
2228 get_frame_id() is called later on, an assertion error will
2229 be triggered in the event of a cycle between the current
2230 frame and its previous frame. */
2231 if (this_frame->level == 0)
2232 get_frame_id (this_frame);
2233
2234 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2235
2236 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2237 sense to stop unwinding at a dummy frame. One place where a dummy
2238 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2239 pcsqh register (space register for the instruction at the head of the
2240 instruction queue) cannot be written directly; the only way to set it
2241 is to branch to code that is in the target space. In order to implement
2242 frame dummies on HPUX, the called function is made to jump back to where
2243 the inferior was when the user function was called. If gdb was inside
2244 the main function when we created the dummy frame, the dummy frame will
2245 point inside the main function. */
2246 if (this_frame->level >= 0
2247 && get_frame_type (this_frame) == NORMAL_FRAME
2248 && !backtrace_past_main
2249 && frame_pc_p
2250 && inside_main_func (this_frame))
2251 /* Don't unwind past main(). Note, this is done _before_ the
2252 frame has been marked as previously unwound. That way if the
2253 user later decides to enable unwinds past main(), that will
2254 automatically happen. */
2255 {
2256 frame_debug_got_null_frame (this_frame, "inside main func");
2257 return NULL;
2258 }
2259
2260 /* If the user's backtrace limit has been exceeded, stop. We must
2261 add two to the current level; one of those accounts for backtrace_limit
2262 being 1-based and the level being 0-based, and the other accounts for
2263 the level of the new frame instead of the level of the current
2264 frame. */
2265 if (this_frame->level + 2 > backtrace_limit)
2266 {
2267 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2268 return NULL;
2269 }
2270
2271 /* If we're already inside the entry function for the main objfile,
2272 then it isn't valid. Don't apply this test to a dummy frame -
2273 dummy frame PCs typically land in the entry func. Don't apply
2274 this test to the sentinel frame. Sentinel frames should always
2275 be allowed to unwind. */
2276 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2277 wasn't checking for "main" in the minimal symbols. With that
2278 fixed asm-source tests now stop in "main" instead of halting the
2279 backtrace in weird and wonderful ways somewhere inside the entry
2280 file. Suspect that tests for inside the entry file/func were
2281 added to work around that (now fixed) case. */
2282 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2283 suggested having the inside_entry_func test use the
2284 inside_main_func() msymbol trick (along with entry_point_address()
2285 I guess) to determine the address range of the start function.
2286 That should provide a far better stopper than the current
2287 heuristics. */
2288 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2289 applied tail-call optimizations to main so that a function called
2290 from main returns directly to the caller of main. Since we don't
2291 stop at main, we should at least stop at the entry point of the
2292 application. */
2293 if (this_frame->level >= 0
2294 && get_frame_type (this_frame) == NORMAL_FRAME
2295 && !backtrace_past_entry
2296 && frame_pc_p
2297 && inside_entry_func (this_frame))
2298 {
2299 frame_debug_got_null_frame (this_frame, "inside entry func");
2300 return NULL;
2301 }
2302
2303 /* Assume that the only way to get a zero PC is through something
2304 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2305 will never unwind a zero PC. */
2306 if (this_frame->level > 0
2307 && (get_frame_type (this_frame) == NORMAL_FRAME
2308 || get_frame_type (this_frame) == INLINE_FRAME)
2309 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2310 && frame_pc_p && frame_pc == 0)
2311 {
2312 frame_debug_got_null_frame (this_frame, "zero PC");
2313 return NULL;
2314 }
2315
2316 return get_prev_frame_always (this_frame);
2317 }
2318
2319 struct frame_id
2320 get_prev_frame_id_by_id (struct frame_id id)
2321 {
2322 struct frame_id prev_id;
2323 struct frame_info *frame;
2324
2325 frame = frame_find_by_id (id);
2326
2327 if (frame != NULL)
2328 prev_id = get_frame_id (get_prev_frame (frame));
2329 else
2330 prev_id = null_frame_id;
2331
2332 return prev_id;
2333 }
2334
2335 CORE_ADDR
2336 get_frame_pc (struct frame_info *frame)
2337 {
2338 gdb_assert (frame->next != NULL);
2339 return frame_unwind_pc (frame->next);
2340 }
2341
2342 int
2343 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2344 {
2345
2346 gdb_assert (frame->next != NULL);
2347
2348 TRY
2349 {
2350 *pc = frame_unwind_pc (frame->next);
2351 }
2352 CATCH (ex, RETURN_MASK_ERROR)
2353 {
2354 if (ex.error == NOT_AVAILABLE_ERROR)
2355 return 0;
2356 else
2357 throw_exception (ex);
2358 }
2359 END_CATCH
2360
2361 return 1;
2362 }
2363
2364 /* Return an address that falls within THIS_FRAME's code block. */
2365
2366 CORE_ADDR
2367 get_frame_address_in_block (struct frame_info *this_frame)
2368 {
2369 /* A draft address. */
2370 CORE_ADDR pc = get_frame_pc (this_frame);
2371
2372 struct frame_info *next_frame = this_frame->next;
2373
2374 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2375 Normally the resume address is inside the body of the function
2376 associated with THIS_FRAME, but there is a special case: when
2377 calling a function which the compiler knows will never return
2378 (for instance abort), the call may be the very last instruction
2379 in the calling function. The resume address will point after the
2380 call and may be at the beginning of a different function
2381 entirely.
2382
2383 If THIS_FRAME is a signal frame or dummy frame, then we should
2384 not adjust the unwound PC. For a dummy frame, GDB pushed the
2385 resume address manually onto the stack. For a signal frame, the
2386 OS may have pushed the resume address manually and invoked the
2387 handler (e.g. GNU/Linux), or invoked the trampoline which called
2388 the signal handler - but in either case the signal handler is
2389 expected to return to the trampoline. So in both of these
2390 cases we know that the resume address is executable and
2391 related. So we only need to adjust the PC if THIS_FRAME
2392 is a normal function.
2393
2394 If the program has been interrupted while THIS_FRAME is current,
2395 then clearly the resume address is inside the associated
2396 function. There are three kinds of interruption: debugger stop
2397 (next frame will be SENTINEL_FRAME), operating system
2398 signal or exception (next frame will be SIGTRAMP_FRAME),
2399 or debugger-induced function call (next frame will be
2400 DUMMY_FRAME). So we only need to adjust the PC if
2401 NEXT_FRAME is a normal function.
2402
2403 We check the type of NEXT_FRAME first, since it is already
2404 known; frame type is determined by the unwinder, and since
2405 we have THIS_FRAME we've already selected an unwinder for
2406 NEXT_FRAME.
2407
2408 If the next frame is inlined, we need to keep going until we find
2409 the real function - for instance, if a signal handler is invoked
2410 while in an inlined function, then the code address of the
2411 "calling" normal function should not be adjusted either. */
2412
2413 while (get_frame_type (next_frame) == INLINE_FRAME)
2414 next_frame = next_frame->next;
2415
2416 if ((get_frame_type (next_frame) == NORMAL_FRAME
2417 || get_frame_type (next_frame) == TAILCALL_FRAME)
2418 && (get_frame_type (this_frame) == NORMAL_FRAME
2419 || get_frame_type (this_frame) == TAILCALL_FRAME
2420 || get_frame_type (this_frame) == INLINE_FRAME))
2421 return pc - 1;
2422
2423 return pc;
2424 }
2425
2426 int
2427 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2428 CORE_ADDR *pc)
2429 {
2430
2431 TRY
2432 {
2433 *pc = get_frame_address_in_block (this_frame);
2434 }
2435 CATCH (ex, RETURN_MASK_ERROR)
2436 {
2437 if (ex.error == NOT_AVAILABLE_ERROR)
2438 return 0;
2439 throw_exception (ex);
2440 }
2441 END_CATCH
2442
2443 return 1;
2444 }
2445
2446 void
2447 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2448 {
2449 struct frame_info *next_frame;
2450 int notcurrent;
2451 CORE_ADDR pc;
2452
2453 /* If the next frame represents an inlined function call, this frame's
2454 sal is the "call site" of that inlined function, which can not
2455 be inferred from get_frame_pc. */
2456 next_frame = get_next_frame (frame);
2457 if (frame_inlined_callees (frame) > 0)
2458 {
2459 struct symbol *sym;
2460
2461 if (next_frame)
2462 sym = get_frame_function (next_frame);
2463 else
2464 sym = inline_skipped_symbol (inferior_ptid);
2465
2466 /* If frame is inline, it certainly has symbols. */
2467 gdb_assert (sym);
2468 init_sal (sal);
2469 if (SYMBOL_LINE (sym) != 0)
2470 {
2471 sal->symtab = symbol_symtab (sym);
2472 sal->line = SYMBOL_LINE (sym);
2473 }
2474 else
2475 /* If the symbol does not have a location, we don't know where
2476 the call site is. Do not pretend to. This is jarring, but
2477 we can't do much better. */
2478 sal->pc = get_frame_pc (frame);
2479
2480 sal->pspace = get_frame_program_space (frame);
2481
2482 return;
2483 }
2484
2485 /* If FRAME is not the innermost frame, that normally means that
2486 FRAME->pc points at the return instruction (which is *after* the
2487 call instruction), and we want to get the line containing the
2488 call (because the call is where the user thinks the program is).
2489 However, if the next frame is either a SIGTRAMP_FRAME or a
2490 DUMMY_FRAME, then the next frame will contain a saved interrupt
2491 PC and such a PC indicates the current (rather than next)
2492 instruction/line, consequently, for such cases, want to get the
2493 line containing fi->pc. */
2494 if (!get_frame_pc_if_available (frame, &pc))
2495 {
2496 init_sal (sal);
2497 return;
2498 }
2499
2500 notcurrent = (pc != get_frame_address_in_block (frame));
2501 (*sal) = find_pc_line (pc, notcurrent);
2502 }
2503
2504 /* Per "frame.h", return the ``address'' of the frame. Code should
2505 really be using get_frame_id(). */
2506 CORE_ADDR
2507 get_frame_base (struct frame_info *fi)
2508 {
2509 return get_frame_id (fi).stack_addr;
2510 }
2511
2512 /* High-level offsets into the frame. Used by the debug info. */
2513
2514 CORE_ADDR
2515 get_frame_base_address (struct frame_info *fi)
2516 {
2517 if (get_frame_type (fi) != NORMAL_FRAME)
2518 return 0;
2519 if (fi->base == NULL)
2520 fi->base = frame_base_find_by_frame (fi);
2521 /* Sneaky: If the low-level unwind and high-level base code share a
2522 common unwinder, let them share the prologue cache. */
2523 if (fi->base->unwind == fi->unwind)
2524 return fi->base->this_base (fi, &fi->prologue_cache);
2525 return fi->base->this_base (fi, &fi->base_cache);
2526 }
2527
2528 CORE_ADDR
2529 get_frame_locals_address (struct frame_info *fi)
2530 {
2531 if (get_frame_type (fi) != NORMAL_FRAME)
2532 return 0;
2533 /* If there isn't a frame address method, find it. */
2534 if (fi->base == NULL)
2535 fi->base = frame_base_find_by_frame (fi);
2536 /* Sneaky: If the low-level unwind and high-level base code share a
2537 common unwinder, let them share the prologue cache. */
2538 if (fi->base->unwind == fi->unwind)
2539 return fi->base->this_locals (fi, &fi->prologue_cache);
2540 return fi->base->this_locals (fi, &fi->base_cache);
2541 }
2542
2543 CORE_ADDR
2544 get_frame_args_address (struct frame_info *fi)
2545 {
2546 if (get_frame_type (fi) != NORMAL_FRAME)
2547 return 0;
2548 /* If there isn't a frame address method, find it. */
2549 if (fi->base == NULL)
2550 fi->base = frame_base_find_by_frame (fi);
2551 /* Sneaky: If the low-level unwind and high-level base code share a
2552 common unwinder, let them share the prologue cache. */
2553 if (fi->base->unwind == fi->unwind)
2554 return fi->base->this_args (fi, &fi->prologue_cache);
2555 return fi->base->this_args (fi, &fi->base_cache);
2556 }
2557
2558 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2559 otherwise. */
2560
2561 int
2562 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2563 {
2564 if (fi->unwind == NULL)
2565 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2566 return fi->unwind == unwinder;
2567 }
2568
2569 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2570 or -1 for a NULL frame. */
2571
2572 int
2573 frame_relative_level (struct frame_info *fi)
2574 {
2575 if (fi == NULL)
2576 return -1;
2577 else
2578 return fi->level;
2579 }
2580
2581 enum frame_type
2582 get_frame_type (struct frame_info *frame)
2583 {
2584 if (frame->unwind == NULL)
2585 /* Initialize the frame's unwinder because that's what
2586 provides the frame's type. */
2587 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2588 return frame->unwind->type;
2589 }
2590
2591 struct program_space *
2592 get_frame_program_space (struct frame_info *frame)
2593 {
2594 return frame->pspace;
2595 }
2596
2597 struct program_space *
2598 frame_unwind_program_space (struct frame_info *this_frame)
2599 {
2600 gdb_assert (this_frame);
2601
2602 /* This is really a placeholder to keep the API consistent --- we
2603 assume for now that we don't have frame chains crossing
2604 spaces. */
2605 return this_frame->pspace;
2606 }
2607
2608 struct address_space *
2609 get_frame_address_space (struct frame_info *frame)
2610 {
2611 return frame->aspace;
2612 }
2613
2614 /* Memory access methods. */
2615
2616 void
2617 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2618 gdb_byte *buf, int len)
2619 {
2620 read_memory (addr, buf, len);
2621 }
2622
2623 LONGEST
2624 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2625 int len)
2626 {
2627 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2629
2630 return read_memory_integer (addr, len, byte_order);
2631 }
2632
2633 ULONGEST
2634 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2635 int len)
2636 {
2637 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2638 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2639
2640 return read_memory_unsigned_integer (addr, len, byte_order);
2641 }
2642
2643 int
2644 safe_frame_unwind_memory (struct frame_info *this_frame,
2645 CORE_ADDR addr, gdb_byte *buf, int len)
2646 {
2647 /* NOTE: target_read_memory returns zero on success! */
2648 return !target_read_memory (addr, buf, len);
2649 }
2650
2651 /* Architecture methods. */
2652
2653 struct gdbarch *
2654 get_frame_arch (struct frame_info *this_frame)
2655 {
2656 return frame_unwind_arch (this_frame->next);
2657 }
2658
2659 struct gdbarch *
2660 frame_unwind_arch (struct frame_info *next_frame)
2661 {
2662 if (!next_frame->prev_arch.p)
2663 {
2664 struct gdbarch *arch;
2665
2666 if (next_frame->unwind == NULL)
2667 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2668
2669 if (next_frame->unwind->prev_arch != NULL)
2670 arch = next_frame->unwind->prev_arch (next_frame,
2671 &next_frame->prologue_cache);
2672 else
2673 arch = get_frame_arch (next_frame);
2674
2675 next_frame->prev_arch.arch = arch;
2676 next_frame->prev_arch.p = 1;
2677 if (frame_debug)
2678 fprintf_unfiltered (gdb_stdlog,
2679 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2680 next_frame->level,
2681 gdbarch_bfd_arch_info (arch)->printable_name);
2682 }
2683
2684 return next_frame->prev_arch.arch;
2685 }
2686
2687 struct gdbarch *
2688 frame_unwind_caller_arch (struct frame_info *next_frame)
2689 {
2690 next_frame = skip_artificial_frames (next_frame);
2691
2692 /* We must have a non-artificial frame. The caller is supposed to check
2693 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2694 in this case. */
2695 gdb_assert (next_frame != NULL);
2696
2697 return frame_unwind_arch (next_frame);
2698 }
2699
2700 /* Gets the language of FRAME. */
2701
2702 enum language
2703 get_frame_language (struct frame_info *frame)
2704 {
2705 CORE_ADDR pc = 0;
2706 int pc_p = 0;
2707
2708 gdb_assert (frame!= NULL);
2709
2710 /* We determine the current frame language by looking up its
2711 associated symtab. To retrieve this symtab, we use the frame
2712 PC. However we cannot use the frame PC as is, because it
2713 usually points to the instruction following the "call", which
2714 is sometimes the first instruction of another function. So
2715 we rely on get_frame_address_in_block(), it provides us with
2716 a PC that is guaranteed to be inside the frame's code
2717 block. */
2718
2719 TRY
2720 {
2721 pc = get_frame_address_in_block (frame);
2722 pc_p = 1;
2723 }
2724 CATCH (ex, RETURN_MASK_ERROR)
2725 {
2726 if (ex.error != NOT_AVAILABLE_ERROR)
2727 throw_exception (ex);
2728 }
2729 END_CATCH
2730
2731 if (pc_p)
2732 {
2733 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2734
2735 if (cust != NULL)
2736 return compunit_language (cust);
2737 }
2738
2739 return language_unknown;
2740 }
2741
2742 /* Stack pointer methods. */
2743
2744 CORE_ADDR
2745 get_frame_sp (struct frame_info *this_frame)
2746 {
2747 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2748
2749 /* Normality - an architecture that provides a way of obtaining any
2750 frame inner-most address. */
2751 if (gdbarch_unwind_sp_p (gdbarch))
2752 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2753 operate on THIS_FRAME now. */
2754 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2755 /* Now things are really are grim. Hope that the value returned by
2756 the gdbarch_sp_regnum register is meaningful. */
2757 if (gdbarch_sp_regnum (gdbarch) >= 0)
2758 return get_frame_register_unsigned (this_frame,
2759 gdbarch_sp_regnum (gdbarch));
2760 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2761 }
2762
2763 /* Return the reason why we can't unwind past FRAME. */
2764
2765 enum unwind_stop_reason
2766 get_frame_unwind_stop_reason (struct frame_info *frame)
2767 {
2768 /* Fill-in STOP_REASON. */
2769 get_prev_frame_always (frame);
2770 gdb_assert (frame->prev_p);
2771
2772 return frame->stop_reason;
2773 }
2774
2775 /* Return a string explaining REASON. */
2776
2777 const char *
2778 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2779 {
2780 switch (reason)
2781 {
2782 #define SET(name, description) \
2783 case name: return _(description);
2784 #include "unwind_stop_reasons.def"
2785 #undef SET
2786
2787 default:
2788 internal_error (__FILE__, __LINE__,
2789 "Invalid frame stop reason");
2790 }
2791 }
2792
2793 const char *
2794 frame_stop_reason_string (struct frame_info *fi)
2795 {
2796 gdb_assert (fi->prev_p);
2797 gdb_assert (fi->prev == NULL);
2798
2799 /* Return the specific string if we have one. */
2800 if (fi->stop_string != NULL)
2801 return fi->stop_string;
2802
2803 /* Return the generic string if we have nothing better. */
2804 return unwind_stop_reason_to_string (fi->stop_reason);
2805 }
2806
2807 /* Return the enum symbol name of REASON as a string, to use in debug
2808 output. */
2809
2810 static const char *
2811 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2812 {
2813 switch (reason)
2814 {
2815 #define SET(name, description) \
2816 case name: return #name;
2817 #include "unwind_stop_reasons.def"
2818 #undef SET
2819
2820 default:
2821 internal_error (__FILE__, __LINE__,
2822 "Invalid frame stop reason");
2823 }
2824 }
2825
2826 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2827 FRAME. */
2828
2829 static void
2830 frame_cleanup_after_sniffer (void *arg)
2831 {
2832 struct frame_info *frame = (struct frame_info *) arg;
2833
2834 /* The sniffer should not allocate a prologue cache if it did not
2835 match this frame. */
2836 gdb_assert (frame->prologue_cache == NULL);
2837
2838 /* No sniffer should extend the frame chain; sniff based on what is
2839 already certain. */
2840 gdb_assert (!frame->prev_p);
2841
2842 /* The sniffer should not check the frame's ID; that's circular. */
2843 gdb_assert (!frame->this_id.p);
2844
2845 /* Clear cached fields dependent on the unwinder.
2846
2847 The previous PC is independent of the unwinder, but the previous
2848 function is not (see get_frame_address_in_block). */
2849 frame->prev_func.p = 0;
2850 frame->prev_func.addr = 0;
2851
2852 /* Discard the unwinder last, so that we can easily find it if an assertion
2853 in this function triggers. */
2854 frame->unwind = NULL;
2855 }
2856
2857 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2858 Return a cleanup which should be called if unwinding fails, and
2859 discarded if it succeeds. */
2860
2861 struct cleanup *
2862 frame_prepare_for_sniffer (struct frame_info *frame,
2863 const struct frame_unwind *unwind)
2864 {
2865 gdb_assert (frame->unwind == NULL);
2866 frame->unwind = unwind;
2867 return make_cleanup (frame_cleanup_after_sniffer, frame);
2868 }
2869
2870 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2871
2872 static struct cmd_list_element *set_backtrace_cmdlist;
2873 static struct cmd_list_element *show_backtrace_cmdlist;
2874
2875 static void
2876 set_backtrace_cmd (char *args, int from_tty)
2877 {
2878 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2879 gdb_stdout);
2880 }
2881
2882 static void
2883 show_backtrace_cmd (char *args, int from_tty)
2884 {
2885 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2886 }
2887
2888 void
2889 _initialize_frame (void)
2890 {
2891 obstack_init (&frame_cache_obstack);
2892
2893 frame_stash_create ();
2894
2895 observer_attach_target_changed (frame_observer_target_changed);
2896
2897 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2898 Set backtrace specific variables.\n\
2899 Configure backtrace variables such as the backtrace limit"),
2900 &set_backtrace_cmdlist, "set backtrace ",
2901 0/*allow-unknown*/, &setlist);
2902 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2903 Show backtrace specific variables\n\
2904 Show backtrace variables such as the backtrace limit"),
2905 &show_backtrace_cmdlist, "show backtrace ",
2906 0/*allow-unknown*/, &showlist);
2907
2908 add_setshow_boolean_cmd ("past-main", class_obscure,
2909 &backtrace_past_main, _("\
2910 Set whether backtraces should continue past \"main\"."), _("\
2911 Show whether backtraces should continue past \"main\"."), _("\
2912 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2913 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2914 of the stack trace."),
2915 NULL,
2916 show_backtrace_past_main,
2917 &set_backtrace_cmdlist,
2918 &show_backtrace_cmdlist);
2919
2920 add_setshow_boolean_cmd ("past-entry", class_obscure,
2921 &backtrace_past_entry, _("\
2922 Set whether backtraces should continue past the entry point of a program."),
2923 _("\
2924 Show whether backtraces should continue past the entry point of a program."),
2925 _("\
2926 Normally there are no callers beyond the entry point of a program, so GDB\n\
2927 will terminate the backtrace there. Set this variable if you need to see\n\
2928 the rest of the stack trace."),
2929 NULL,
2930 show_backtrace_past_entry,
2931 &set_backtrace_cmdlist,
2932 &show_backtrace_cmdlist);
2933
2934 add_setshow_uinteger_cmd ("limit", class_obscure,
2935 &backtrace_limit, _("\
2936 Set an upper bound on the number of backtrace levels."), _("\
2937 Show the upper bound on the number of backtrace levels."), _("\
2938 No more than the specified number of frames can be displayed or examined.\n\
2939 Literal \"unlimited\" or zero means no limit."),
2940 NULL,
2941 show_backtrace_limit,
2942 &set_backtrace_cmdlist,
2943 &show_backtrace_cmdlist);
2944
2945 /* Debug this files internals. */
2946 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2947 Set frame debugging."), _("\
2948 Show frame debugging."), _("\
2949 When non-zero, frame specific internal debugging is enabled."),
2950 NULL,
2951 show_frame_debug,
2952 &setdebuglist, &showdebuglist);
2953 }
This page took 0.146662 seconds and 5 git commands to generate.