Add a TRY_CATCH to get_prev_frame_always to better manage errors during unwind.
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "gdb_assert.h"
27 #include <string.h>
28 #include "user-regs.h"
29 #include "gdb_obstack.h"
30 #include "dummy-frame.h"
31 #include "sentinel-frame.h"
32 #include "gdbcore.h"
33 #include "annotate.h"
34 #include "language.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37 #include "command.h"
38 #include "gdbcmd.h"
39 #include "observer.h"
40 #include "objfiles.h"
41 #include "exceptions.h"
42 #include "gdbthread.h"
43 #include "block.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "hashtab.h"
47 #include "valprint.h"
48
49 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
50 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
51
52 /* Status of some values cached in the frame_info object. */
53
54 enum cached_copy_status
55 {
56 /* Value is unknown. */
57 CC_UNKNOWN,
58
59 /* We have a value. */
60 CC_VALUE,
61
62 /* Value was not saved. */
63 CC_NOT_SAVED,
64
65 /* Value is unavailable. */
66 CC_UNAVAILABLE
67 };
68
69 /* We keep a cache of stack frames, each of which is a "struct
70 frame_info". The innermost one gets allocated (in
71 wait_for_inferior) each time the inferior stops; current_frame
72 points to it. Additional frames get allocated (in get_prev_frame)
73 as needed, and are chained through the next and prev fields. Any
74 time that the frame cache becomes invalid (most notably when we
75 execute something, but also if we change how we interpret the
76 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
77 which reads new symbols)), we should call reinit_frame_cache. */
78
79 struct frame_info
80 {
81 /* Level of this frame. The inner-most (youngest) frame is at level
82 0. As you move towards the outer-most (oldest) frame, the level
83 increases. This is a cached value. It could just as easily be
84 computed by counting back from the selected frame to the inner
85 most frame. */
86 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
87 reserved to indicate a bogus frame - one that has been created
88 just to keep GDB happy (GDB always needs a frame). For the
89 moment leave this as speculation. */
90 int level;
91
92 /* The frame's program space. */
93 struct program_space *pspace;
94
95 /* The frame's address space. */
96 struct address_space *aspace;
97
98 /* The frame's low-level unwinder and corresponding cache. The
99 low-level unwinder is responsible for unwinding register values
100 for the previous frame. The low-level unwind methods are
101 selected based on the presence, or otherwise, of register unwind
102 information such as CFI. */
103 void *prologue_cache;
104 const struct frame_unwind *unwind;
105
106 /* Cached copy of the previous frame's architecture. */
107 struct
108 {
109 int p;
110 struct gdbarch *arch;
111 } prev_arch;
112
113 /* Cached copy of the previous frame's resume address. */
114 struct {
115 enum cached_copy_status status;
116 CORE_ADDR value;
117 } prev_pc;
118
119 /* Cached copy of the previous frame's function address. */
120 struct
121 {
122 CORE_ADDR addr;
123 int p;
124 } prev_func;
125
126 /* This frame's ID. */
127 struct
128 {
129 int p;
130 struct frame_id value;
131 } this_id;
132
133 /* The frame's high-level base methods, and corresponding cache.
134 The high level base methods are selected based on the frame's
135 debug info. */
136 const struct frame_base *base;
137 void *base_cache;
138
139 /* Pointers to the next (down, inner, younger) and previous (up,
140 outer, older) frame_info's in the frame cache. */
141 struct frame_info *next; /* down, inner, younger */
142 int prev_p;
143 struct frame_info *prev; /* up, outer, older */
144
145 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
146 could. Only valid when PREV_P is set. */
147 enum unwind_stop_reason stop_reason;
148
149 /* A frame specific string describing the STOP_REASON in more detail.
150 Only valid when PREV_P is set, but even then may still be NULL. */
151 const char *stop_string;
152 };
153
154 /* A frame stash used to speed up frame lookups. Create a hash table
155 to stash frames previously accessed from the frame cache for
156 quicker subsequent retrieval. The hash table is emptied whenever
157 the frame cache is invalidated. */
158
159 static htab_t frame_stash;
160
161 /* Internal function to calculate a hash from the frame_id addresses,
162 using as many valid addresses as possible. Frames below level 0
163 are not stored in the hash table. */
164
165 static hashval_t
166 frame_addr_hash (const void *ap)
167 {
168 const struct frame_info *frame = ap;
169 const struct frame_id f_id = frame->this_id.value;
170 hashval_t hash = 0;
171
172 gdb_assert (f_id.stack_status != FID_STACK_INVALID
173 || f_id.code_addr_p
174 || f_id.special_addr_p);
175
176 if (f_id.stack_status == FID_STACK_VALID)
177 hash = iterative_hash (&f_id.stack_addr,
178 sizeof (f_id.stack_addr), hash);
179 if (f_id.code_addr_p)
180 hash = iterative_hash (&f_id.code_addr,
181 sizeof (f_id.code_addr), hash);
182 if (f_id.special_addr_p)
183 hash = iterative_hash (&f_id.special_addr,
184 sizeof (f_id.special_addr), hash);
185
186 return hash;
187 }
188
189 /* Internal equality function for the hash table. This function
190 defers equality operations to frame_id_eq. */
191
192 static int
193 frame_addr_hash_eq (const void *a, const void *b)
194 {
195 const struct frame_info *f_entry = a;
196 const struct frame_info *f_element = b;
197
198 return frame_id_eq (f_entry->this_id.value,
199 f_element->this_id.value);
200 }
201
202 /* Internal function to create the frame_stash hash table. 100 seems
203 to be a good compromise to start the hash table at. */
204
205 static void
206 frame_stash_create (void)
207 {
208 frame_stash = htab_create (100,
209 frame_addr_hash,
210 frame_addr_hash_eq,
211 NULL);
212 }
213
214 /* Internal function to add a frame to the frame_stash hash table.
215 Returns false if a frame with the same ID was already stashed, true
216 otherwise. */
217
218 static int
219 frame_stash_add (struct frame_info *frame)
220 {
221 struct frame_info **slot;
222
223 /* Do not try to stash the sentinel frame. */
224 gdb_assert (frame->level >= 0);
225
226 slot = (struct frame_info **) htab_find_slot (frame_stash,
227 frame,
228 INSERT);
229
230 /* If we already have a frame in the stack with the same id, we
231 either have a stack cycle (corrupted stack?), or some bug
232 elsewhere in GDB. In any case, ignore the duplicate and return
233 an indication to the caller. */
234 if (*slot != NULL)
235 return 0;
236
237 *slot = frame;
238 return 1;
239 }
240
241 /* Internal function to search the frame stash for an entry with the
242 given frame ID. If found, return that frame. Otherwise return
243 NULL. */
244
245 static struct frame_info *
246 frame_stash_find (struct frame_id id)
247 {
248 struct frame_info dummy;
249 struct frame_info *frame;
250
251 dummy.this_id.value = id;
252 frame = htab_find (frame_stash, &dummy);
253 return frame;
254 }
255
256 /* Internal function to invalidate the frame stash by removing all
257 entries in it. This only occurs when the frame cache is
258 invalidated. */
259
260 static void
261 frame_stash_invalidate (void)
262 {
263 htab_empty (frame_stash);
264 }
265
266 /* Flag to control debugging. */
267
268 unsigned int frame_debug;
269 static void
270 show_frame_debug (struct ui_file *file, int from_tty,
271 struct cmd_list_element *c, const char *value)
272 {
273 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
274 }
275
276 /* Flag to indicate whether backtraces should stop at main et.al. */
277
278 static int backtrace_past_main;
279 static void
280 show_backtrace_past_main (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282 {
283 fprintf_filtered (file,
284 _("Whether backtraces should "
285 "continue past \"main\" is %s.\n"),
286 value);
287 }
288
289 static int backtrace_past_entry;
290 static void
291 show_backtrace_past_entry (struct ui_file *file, int from_tty,
292 struct cmd_list_element *c, const char *value)
293 {
294 fprintf_filtered (file, _("Whether backtraces should continue past the "
295 "entry point of a program is %s.\n"),
296 value);
297 }
298
299 static unsigned int backtrace_limit = UINT_MAX;
300 static void
301 show_backtrace_limit (struct ui_file *file, int from_tty,
302 struct cmd_list_element *c, const char *value)
303 {
304 fprintf_filtered (file,
305 _("An upper bound on the number "
306 "of backtrace levels is %s.\n"),
307 value);
308 }
309
310
311 static void
312 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
313 {
314 if (p)
315 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
316 else
317 fprintf_unfiltered (file, "!%s", name);
318 }
319
320 void
321 fprint_frame_id (struct ui_file *file, struct frame_id id)
322 {
323 fprintf_unfiltered (file, "{");
324
325 if (id.stack_status == FID_STACK_INVALID)
326 fprintf_unfiltered (file, "!stack");
327 else if (id.stack_status == FID_STACK_UNAVAILABLE)
328 fprintf_unfiltered (file, "stack=<unavailable>");
329 else
330 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
331 fprintf_unfiltered (file, ",");
332
333 fprint_field (file, "code", id.code_addr_p, id.code_addr);
334 fprintf_unfiltered (file, ",");
335
336 fprint_field (file, "special", id.special_addr_p, id.special_addr);
337
338 if (id.artificial_depth)
339 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
340
341 fprintf_unfiltered (file, "}");
342 }
343
344 static void
345 fprint_frame_type (struct ui_file *file, enum frame_type type)
346 {
347 switch (type)
348 {
349 case NORMAL_FRAME:
350 fprintf_unfiltered (file, "NORMAL_FRAME");
351 return;
352 case DUMMY_FRAME:
353 fprintf_unfiltered (file, "DUMMY_FRAME");
354 return;
355 case INLINE_FRAME:
356 fprintf_unfiltered (file, "INLINE_FRAME");
357 return;
358 case TAILCALL_FRAME:
359 fprintf_unfiltered (file, "TAILCALL_FRAME");
360 return;
361 case SIGTRAMP_FRAME:
362 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
363 return;
364 case ARCH_FRAME:
365 fprintf_unfiltered (file, "ARCH_FRAME");
366 return;
367 case SENTINEL_FRAME:
368 fprintf_unfiltered (file, "SENTINEL_FRAME");
369 return;
370 default:
371 fprintf_unfiltered (file, "<unknown type>");
372 return;
373 };
374 }
375
376 static void
377 fprint_frame (struct ui_file *file, struct frame_info *fi)
378 {
379 if (fi == NULL)
380 {
381 fprintf_unfiltered (file, "<NULL frame>");
382 return;
383 }
384 fprintf_unfiltered (file, "{");
385 fprintf_unfiltered (file, "level=%d", fi->level);
386 fprintf_unfiltered (file, ",");
387 fprintf_unfiltered (file, "type=");
388 if (fi->unwind != NULL)
389 fprint_frame_type (file, fi->unwind->type);
390 else
391 fprintf_unfiltered (file, "<unknown>");
392 fprintf_unfiltered (file, ",");
393 fprintf_unfiltered (file, "unwind=");
394 if (fi->unwind != NULL)
395 gdb_print_host_address (fi->unwind, file);
396 else
397 fprintf_unfiltered (file, "<unknown>");
398 fprintf_unfiltered (file, ",");
399 fprintf_unfiltered (file, "pc=");
400 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
401 fprintf_unfiltered (file, "<unknown>");
402 else if (fi->next->prev_pc.status == CC_VALUE)
403 fprintf_unfiltered (file, "%s",
404 hex_string (fi->next->prev_pc.value));
405 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
406 val_print_not_saved (file);
407 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
408 val_print_unavailable (file);
409 fprintf_unfiltered (file, ",");
410 fprintf_unfiltered (file, "id=");
411 if (fi->this_id.p)
412 fprint_frame_id (file, fi->this_id.value);
413 else
414 fprintf_unfiltered (file, "<unknown>");
415 fprintf_unfiltered (file, ",");
416 fprintf_unfiltered (file, "func=");
417 if (fi->next != NULL && fi->next->prev_func.p)
418 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
419 else
420 fprintf_unfiltered (file, "<unknown>");
421 fprintf_unfiltered (file, "}");
422 }
423
424 /* Given FRAME, return the enclosing frame as found in real frames read-in from
425 inferior memory. Skip any previous frames which were made up by GDB.
426 Return the original frame if no immediate previous frames exist. */
427
428 static struct frame_info *
429 skip_artificial_frames (struct frame_info *frame)
430 {
431 /* Note we use get_prev_frame_always, and not get_prev_frame. The
432 latter will truncate the frame chain, leading to this function
433 unintentionally returning a null_frame_id (e.g., when the user
434 sets a backtrace limit). This is safe, because as these frames
435 are made up by GDB, there must be a real frame in the chain
436 below. */
437 while (get_frame_type (frame) == INLINE_FRAME
438 || get_frame_type (frame) == TAILCALL_FRAME)
439 frame = get_prev_frame_always (frame);
440
441 return frame;
442 }
443
444 /* Compute the frame's uniq ID that can be used to, later, re-find the
445 frame. */
446
447 static void
448 compute_frame_id (struct frame_info *fi)
449 {
450 gdb_assert (!fi->this_id.p);
451
452 if (frame_debug)
453 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
454 fi->level);
455 /* Find the unwinder. */
456 if (fi->unwind == NULL)
457 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
458 /* Find THIS frame's ID. */
459 /* Default to outermost if no ID is found. */
460 fi->this_id.value = outer_frame_id;
461 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
462 gdb_assert (frame_id_p (fi->this_id.value));
463 fi->this_id.p = 1;
464 if (frame_debug)
465 {
466 fprintf_unfiltered (gdb_stdlog, "-> ");
467 fprint_frame_id (gdb_stdlog, fi->this_id.value);
468 fprintf_unfiltered (gdb_stdlog, " }\n");
469 }
470 }
471
472 /* Return a frame uniq ID that can be used to, later, re-find the
473 frame. */
474
475 struct frame_id
476 get_frame_id (struct frame_info *fi)
477 {
478 if (fi == NULL)
479 return null_frame_id;
480
481 gdb_assert (fi->this_id.p);
482 return fi->this_id.value;
483 }
484
485 struct frame_id
486 get_stack_frame_id (struct frame_info *next_frame)
487 {
488 return get_frame_id (skip_artificial_frames (next_frame));
489 }
490
491 struct frame_id
492 frame_unwind_caller_id (struct frame_info *next_frame)
493 {
494 struct frame_info *this_frame;
495
496 /* Use get_prev_frame_always, and not get_prev_frame. The latter
497 will truncate the frame chain, leading to this function
498 unintentionally returning a null_frame_id (e.g., when a caller
499 requests the frame ID of "main()"s caller. */
500
501 next_frame = skip_artificial_frames (next_frame);
502 this_frame = get_prev_frame_always (next_frame);
503 if (this_frame)
504 return get_frame_id (skip_artificial_frames (this_frame));
505 else
506 return null_frame_id;
507 }
508
509 const struct frame_id null_frame_id; /* All zeros. */
510 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
511
512 struct frame_id
513 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
514 CORE_ADDR special_addr)
515 {
516 struct frame_id id = null_frame_id;
517
518 id.stack_addr = stack_addr;
519 id.stack_status = FID_STACK_VALID;
520 id.code_addr = code_addr;
521 id.code_addr_p = 1;
522 id.special_addr = special_addr;
523 id.special_addr_p = 1;
524 return id;
525 }
526
527 /* See frame.h. */
528
529 struct frame_id
530 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
531 {
532 struct frame_id id = null_frame_id;
533
534 id.stack_status = FID_STACK_UNAVAILABLE;
535 id.code_addr = code_addr;
536 id.code_addr_p = 1;
537 return id;
538 }
539
540 /* See frame.h. */
541
542 struct frame_id
543 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
544 CORE_ADDR special_addr)
545 {
546 struct frame_id id = null_frame_id;
547
548 id.stack_status = FID_STACK_UNAVAILABLE;
549 id.code_addr = code_addr;
550 id.code_addr_p = 1;
551 id.special_addr = special_addr;
552 id.special_addr_p = 1;
553 return id;
554 }
555
556 struct frame_id
557 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
558 {
559 struct frame_id id = null_frame_id;
560
561 id.stack_addr = stack_addr;
562 id.stack_status = FID_STACK_VALID;
563 id.code_addr = code_addr;
564 id.code_addr_p = 1;
565 return id;
566 }
567
568 struct frame_id
569 frame_id_build_wild (CORE_ADDR stack_addr)
570 {
571 struct frame_id id = null_frame_id;
572
573 id.stack_addr = stack_addr;
574 id.stack_status = FID_STACK_VALID;
575 return id;
576 }
577
578 int
579 frame_id_p (struct frame_id l)
580 {
581 int p;
582
583 /* The frame is valid iff it has a valid stack address. */
584 p = l.stack_status != FID_STACK_INVALID;
585 /* outer_frame_id is also valid. */
586 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
587 p = 1;
588 if (frame_debug)
589 {
590 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
591 fprint_frame_id (gdb_stdlog, l);
592 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
593 }
594 return p;
595 }
596
597 int
598 frame_id_artificial_p (struct frame_id l)
599 {
600 if (!frame_id_p (l))
601 return 0;
602
603 return (l.artificial_depth != 0);
604 }
605
606 int
607 frame_id_eq (struct frame_id l, struct frame_id r)
608 {
609 int eq;
610
611 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
612 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
613 /* The outermost frame marker is equal to itself. This is the
614 dodgy thing about outer_frame_id, since between execution steps
615 we might step into another function - from which we can't
616 unwind either. More thought required to get rid of
617 outer_frame_id. */
618 eq = 1;
619 else if (l.stack_status == FID_STACK_INVALID
620 || l.stack_status == FID_STACK_INVALID)
621 /* Like a NaN, if either ID is invalid, the result is false.
622 Note that a frame ID is invalid iff it is the null frame ID. */
623 eq = 0;
624 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
625 /* If .stack addresses are different, the frames are different. */
626 eq = 0;
627 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
628 /* An invalid code addr is a wild card. If .code addresses are
629 different, the frames are different. */
630 eq = 0;
631 else if (l.special_addr_p && r.special_addr_p
632 && l.special_addr != r.special_addr)
633 /* An invalid special addr is a wild card (or unused). Otherwise
634 if special addresses are different, the frames are different. */
635 eq = 0;
636 else if (l.artificial_depth != r.artificial_depth)
637 /* If artifical depths are different, the frames must be different. */
638 eq = 0;
639 else
640 /* Frames are equal. */
641 eq = 1;
642
643 if (frame_debug)
644 {
645 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
646 fprint_frame_id (gdb_stdlog, l);
647 fprintf_unfiltered (gdb_stdlog, ",r=");
648 fprint_frame_id (gdb_stdlog, r);
649 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
650 }
651 return eq;
652 }
653
654 /* Safety net to check whether frame ID L should be inner to
655 frame ID R, according to their stack addresses.
656
657 This method cannot be used to compare arbitrary frames, as the
658 ranges of valid stack addresses may be discontiguous (e.g. due
659 to sigaltstack).
660
661 However, it can be used as safety net to discover invalid frame
662 IDs in certain circumstances. Assuming that NEXT is the immediate
663 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
664
665 * The stack address of NEXT must be inner-than-or-equal to the stack
666 address of THIS.
667
668 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
669 error has occurred.
670
671 * If NEXT and THIS have different stack addresses, no other frame
672 in the frame chain may have a stack address in between.
673
674 Therefore, if frame_id_inner (TEST, THIS) holds, but
675 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
676 to a valid frame in the frame chain.
677
678 The sanity checks above cannot be performed when a SIGTRAMP frame
679 is involved, because signal handlers might be executed on a different
680 stack than the stack used by the routine that caused the signal
681 to be raised. This can happen for instance when a thread exceeds
682 its maximum stack size. In this case, certain compilers implement
683 a stack overflow strategy that cause the handler to be run on a
684 different stack. */
685
686 static int
687 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
688 {
689 int inner;
690
691 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
692 /* Like NaN, any operation involving an invalid ID always fails.
693 Likewise if either ID has an unavailable stack address. */
694 inner = 0;
695 else if (l.artificial_depth > r.artificial_depth
696 && l.stack_addr == r.stack_addr
697 && l.code_addr_p == r.code_addr_p
698 && l.special_addr_p == r.special_addr_p
699 && l.special_addr == r.special_addr)
700 {
701 /* Same function, different inlined functions. */
702 struct block *lb, *rb;
703
704 gdb_assert (l.code_addr_p && r.code_addr_p);
705
706 lb = block_for_pc (l.code_addr);
707 rb = block_for_pc (r.code_addr);
708
709 if (lb == NULL || rb == NULL)
710 /* Something's gone wrong. */
711 inner = 0;
712 else
713 /* This will return true if LB and RB are the same block, or
714 if the block with the smaller depth lexically encloses the
715 block with the greater depth. */
716 inner = contained_in (lb, rb);
717 }
718 else
719 /* Only return non-zero when strictly inner than. Note that, per
720 comment in "frame.h", there is some fuzz here. Frameless
721 functions are not strictly inner than (same .stack but
722 different .code and/or .special address). */
723 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
724 if (frame_debug)
725 {
726 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
727 fprint_frame_id (gdb_stdlog, l);
728 fprintf_unfiltered (gdb_stdlog, ",r=");
729 fprint_frame_id (gdb_stdlog, r);
730 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
731 }
732 return inner;
733 }
734
735 struct frame_info *
736 frame_find_by_id (struct frame_id id)
737 {
738 struct frame_info *frame, *prev_frame;
739
740 /* ZERO denotes the null frame, let the caller decide what to do
741 about it. Should it instead return get_current_frame()? */
742 if (!frame_id_p (id))
743 return NULL;
744
745 /* Try using the frame stash first. Finding it there removes the need
746 to perform the search by looping over all frames, which can be very
747 CPU-intensive if the number of frames is very high (the loop is O(n)
748 and get_prev_frame performs a series of checks that are relatively
749 expensive). This optimization is particularly useful when this function
750 is called from another function (such as value_fetch_lazy, case
751 VALUE_LVAL (val) == lval_register) which already loops over all frames,
752 making the overall behavior O(n^2). */
753 frame = frame_stash_find (id);
754 if (frame)
755 return frame;
756
757 for (frame = get_current_frame (); ; frame = prev_frame)
758 {
759 struct frame_id this = get_frame_id (frame);
760
761 if (frame_id_eq (id, this))
762 /* An exact match. */
763 return frame;
764
765 prev_frame = get_prev_frame (frame);
766 if (!prev_frame)
767 return NULL;
768
769 /* As a safety net to avoid unnecessary backtracing while trying
770 to find an invalid ID, we check for a common situation where
771 we can detect from comparing stack addresses that no other
772 frame in the current frame chain can have this ID. See the
773 comment at frame_id_inner for details. */
774 if (get_frame_type (frame) == NORMAL_FRAME
775 && !frame_id_inner (get_frame_arch (frame), id, this)
776 && frame_id_inner (get_frame_arch (prev_frame), id,
777 get_frame_id (prev_frame)))
778 return NULL;
779 }
780 return NULL;
781 }
782
783 static CORE_ADDR
784 frame_unwind_pc (struct frame_info *this_frame)
785 {
786 if (this_frame->prev_pc.status == CC_UNKNOWN)
787 {
788 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
789 {
790 volatile struct gdb_exception ex;
791 struct gdbarch *prev_gdbarch;
792 CORE_ADDR pc = 0;
793
794 /* The right way. The `pure' way. The one true way. This
795 method depends solely on the register-unwind code to
796 determine the value of registers in THIS frame, and hence
797 the value of this frame's PC (resume address). A typical
798 implementation is no more than:
799
800 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
801 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
802
803 Note: this method is very heavily dependent on a correct
804 register-unwind implementation, it pays to fix that
805 method first; this method is frame type agnostic, since
806 it only deals with register values, it works with any
807 frame. This is all in stark contrast to the old
808 FRAME_SAVED_PC which would try to directly handle all the
809 different ways that a PC could be unwound. */
810 prev_gdbarch = frame_unwind_arch (this_frame);
811
812 TRY_CATCH (ex, RETURN_MASK_ERROR)
813 {
814 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
815 }
816 if (ex.reason < 0)
817 {
818 if (ex.error == NOT_AVAILABLE_ERROR)
819 {
820 this_frame->prev_pc.status = CC_UNAVAILABLE;
821
822 if (frame_debug)
823 fprintf_unfiltered (gdb_stdlog,
824 "{ frame_unwind_pc (this_frame=%d)"
825 " -> <unavailable> }\n",
826 this_frame->level);
827 }
828 else if (ex.error == OPTIMIZED_OUT_ERROR)
829 {
830 this_frame->prev_pc.status = CC_NOT_SAVED;
831
832 if (frame_debug)
833 fprintf_unfiltered (gdb_stdlog,
834 "{ frame_unwind_pc (this_frame=%d)"
835 " -> <not saved> }\n",
836 this_frame->level);
837 }
838 else
839 throw_exception (ex);
840 }
841 else
842 {
843 this_frame->prev_pc.value = pc;
844 this_frame->prev_pc.status = CC_VALUE;
845 if (frame_debug)
846 fprintf_unfiltered (gdb_stdlog,
847 "{ frame_unwind_pc (this_frame=%d) "
848 "-> %s }\n",
849 this_frame->level,
850 hex_string (this_frame->prev_pc.value));
851 }
852 }
853 else
854 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
855 }
856
857 if (this_frame->prev_pc.status == CC_VALUE)
858 return this_frame->prev_pc.value;
859 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
860 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
861 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
862 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
863 else
864 internal_error (__FILE__, __LINE__,
865 "unexpected prev_pc status: %d",
866 (int) this_frame->prev_pc.status);
867 }
868
869 CORE_ADDR
870 frame_unwind_caller_pc (struct frame_info *this_frame)
871 {
872 return frame_unwind_pc (skip_artificial_frames (this_frame));
873 }
874
875 int
876 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
877 {
878 struct frame_info *next_frame = this_frame->next;
879
880 if (!next_frame->prev_func.p)
881 {
882 CORE_ADDR addr_in_block;
883
884 /* Make certain that this, and not the adjacent, function is
885 found. */
886 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
887 {
888 next_frame->prev_func.p = -1;
889 if (frame_debug)
890 fprintf_unfiltered (gdb_stdlog,
891 "{ get_frame_func (this_frame=%d)"
892 " -> unavailable }\n",
893 this_frame->level);
894 }
895 else
896 {
897 next_frame->prev_func.p = 1;
898 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
899 if (frame_debug)
900 fprintf_unfiltered (gdb_stdlog,
901 "{ get_frame_func (this_frame=%d) -> %s }\n",
902 this_frame->level,
903 hex_string (next_frame->prev_func.addr));
904 }
905 }
906
907 if (next_frame->prev_func.p < 0)
908 {
909 *pc = -1;
910 return 0;
911 }
912 else
913 {
914 *pc = next_frame->prev_func.addr;
915 return 1;
916 }
917 }
918
919 CORE_ADDR
920 get_frame_func (struct frame_info *this_frame)
921 {
922 CORE_ADDR pc;
923
924 if (!get_frame_func_if_available (this_frame, &pc))
925 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
926
927 return pc;
928 }
929
930 static enum register_status
931 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
932 {
933 if (!deprecated_frame_register_read (src, regnum, buf))
934 return REG_UNAVAILABLE;
935 else
936 return REG_VALID;
937 }
938
939 struct regcache *
940 frame_save_as_regcache (struct frame_info *this_frame)
941 {
942 struct address_space *aspace = get_frame_address_space (this_frame);
943 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
944 aspace);
945 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
946
947 regcache_save (regcache, do_frame_register_read, this_frame);
948 discard_cleanups (cleanups);
949 return regcache;
950 }
951
952 void
953 frame_pop (struct frame_info *this_frame)
954 {
955 struct frame_info *prev_frame;
956 struct regcache *scratch;
957 struct cleanup *cleanups;
958
959 if (get_frame_type (this_frame) == DUMMY_FRAME)
960 {
961 /* Popping a dummy frame involves restoring more than just registers.
962 dummy_frame_pop does all the work. */
963 dummy_frame_pop (get_frame_id (this_frame));
964 return;
965 }
966
967 /* Ensure that we have a frame to pop to. */
968 prev_frame = get_prev_frame_always (this_frame);
969
970 if (!prev_frame)
971 error (_("Cannot pop the initial frame."));
972
973 /* Ignore TAILCALL_FRAME type frames, they were executed already before
974 entering THISFRAME. */
975 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
976 prev_frame = get_prev_frame (prev_frame);
977
978 /* Make a copy of all the register values unwound from this frame.
979 Save them in a scratch buffer so that there isn't a race between
980 trying to extract the old values from the current regcache while
981 at the same time writing new values into that same cache. */
982 scratch = frame_save_as_regcache (prev_frame);
983 cleanups = make_cleanup_regcache_xfree (scratch);
984
985 /* FIXME: cagney/2003-03-16: It should be possible to tell the
986 target's register cache that it is about to be hit with a burst
987 register transfer and that the sequence of register writes should
988 be batched. The pair target_prepare_to_store() and
989 target_store_registers() kind of suggest this functionality.
990 Unfortunately, they don't implement it. Their lack of a formal
991 definition can lead to targets writing back bogus values
992 (arguably a bug in the target code mind). */
993 /* Now copy those saved registers into the current regcache.
994 Here, regcache_cpy() calls regcache_restore(). */
995 regcache_cpy (get_current_regcache (), scratch);
996 do_cleanups (cleanups);
997
998 /* We've made right mess of GDB's local state, just discard
999 everything. */
1000 reinit_frame_cache ();
1001 }
1002
1003 void
1004 frame_register_unwind (struct frame_info *frame, int regnum,
1005 int *optimizedp, int *unavailablep,
1006 enum lval_type *lvalp, CORE_ADDR *addrp,
1007 int *realnump, gdb_byte *bufferp)
1008 {
1009 struct value *value;
1010
1011 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1012 that the value proper does not need to be fetched. */
1013 gdb_assert (optimizedp != NULL);
1014 gdb_assert (lvalp != NULL);
1015 gdb_assert (addrp != NULL);
1016 gdb_assert (realnump != NULL);
1017 /* gdb_assert (bufferp != NULL); */
1018
1019 value = frame_unwind_register_value (frame, regnum);
1020
1021 gdb_assert (value != NULL);
1022
1023 *optimizedp = value_optimized_out (value);
1024 *unavailablep = !value_entirely_available (value);
1025 *lvalp = VALUE_LVAL (value);
1026 *addrp = value_address (value);
1027 *realnump = VALUE_REGNUM (value);
1028
1029 if (bufferp)
1030 {
1031 if (!*optimizedp && !*unavailablep)
1032 memcpy (bufferp, value_contents_all (value),
1033 TYPE_LENGTH (value_type (value)));
1034 else
1035 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1036 }
1037
1038 /* Dispose of the new value. This prevents watchpoints from
1039 trying to watch the saved frame pointer. */
1040 release_value (value);
1041 value_free (value);
1042 }
1043
1044 void
1045 frame_register (struct frame_info *frame, int regnum,
1046 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1047 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1048 {
1049 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1050 that the value proper does not need to be fetched. */
1051 gdb_assert (optimizedp != NULL);
1052 gdb_assert (lvalp != NULL);
1053 gdb_assert (addrp != NULL);
1054 gdb_assert (realnump != NULL);
1055 /* gdb_assert (bufferp != NULL); */
1056
1057 /* Obtain the register value by unwinding the register from the next
1058 (more inner frame). */
1059 gdb_assert (frame != NULL && frame->next != NULL);
1060 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1061 lvalp, addrp, realnump, bufferp);
1062 }
1063
1064 void
1065 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1066 {
1067 int optimized;
1068 int unavailable;
1069 CORE_ADDR addr;
1070 int realnum;
1071 enum lval_type lval;
1072
1073 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1074 &lval, &addr, &realnum, buf);
1075
1076 if (optimized)
1077 throw_error (OPTIMIZED_OUT_ERROR,
1078 _("Register %d was not saved"), regnum);
1079 if (unavailable)
1080 throw_error (NOT_AVAILABLE_ERROR,
1081 _("Register %d is not available"), regnum);
1082 }
1083
1084 void
1085 get_frame_register (struct frame_info *frame,
1086 int regnum, gdb_byte *buf)
1087 {
1088 frame_unwind_register (frame->next, regnum, buf);
1089 }
1090
1091 struct value *
1092 frame_unwind_register_value (struct frame_info *frame, int regnum)
1093 {
1094 struct gdbarch *gdbarch;
1095 struct value *value;
1096
1097 gdb_assert (frame != NULL);
1098 gdbarch = frame_unwind_arch (frame);
1099
1100 if (frame_debug)
1101 {
1102 fprintf_unfiltered (gdb_stdlog,
1103 "{ frame_unwind_register_value "
1104 "(frame=%d,regnum=%d(%s),...) ",
1105 frame->level, regnum,
1106 user_reg_map_regnum_to_name (gdbarch, regnum));
1107 }
1108
1109 /* Find the unwinder. */
1110 if (frame->unwind == NULL)
1111 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1112
1113 /* Ask this frame to unwind its register. */
1114 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1115
1116 if (frame_debug)
1117 {
1118 fprintf_unfiltered (gdb_stdlog, "->");
1119 if (value_optimized_out (value))
1120 {
1121 fprintf_unfiltered (gdb_stdlog, " ");
1122 val_print_optimized_out (value, gdb_stdlog);
1123 }
1124 else
1125 {
1126 if (VALUE_LVAL (value) == lval_register)
1127 fprintf_unfiltered (gdb_stdlog, " register=%d",
1128 VALUE_REGNUM (value));
1129 else if (VALUE_LVAL (value) == lval_memory)
1130 fprintf_unfiltered (gdb_stdlog, " address=%s",
1131 paddress (gdbarch,
1132 value_address (value)));
1133 else
1134 fprintf_unfiltered (gdb_stdlog, " computed");
1135
1136 if (value_lazy (value))
1137 fprintf_unfiltered (gdb_stdlog, " lazy");
1138 else
1139 {
1140 int i;
1141 const gdb_byte *buf = value_contents (value);
1142
1143 fprintf_unfiltered (gdb_stdlog, " bytes=");
1144 fprintf_unfiltered (gdb_stdlog, "[");
1145 for (i = 0; i < register_size (gdbarch, regnum); i++)
1146 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1147 fprintf_unfiltered (gdb_stdlog, "]");
1148 }
1149 }
1150
1151 fprintf_unfiltered (gdb_stdlog, " }\n");
1152 }
1153
1154 return value;
1155 }
1156
1157 struct value *
1158 get_frame_register_value (struct frame_info *frame, int regnum)
1159 {
1160 return frame_unwind_register_value (frame->next, regnum);
1161 }
1162
1163 LONGEST
1164 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1165 {
1166 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1167 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1168 int size = register_size (gdbarch, regnum);
1169 gdb_byte buf[MAX_REGISTER_SIZE];
1170
1171 frame_unwind_register (frame, regnum, buf);
1172 return extract_signed_integer (buf, size, byte_order);
1173 }
1174
1175 LONGEST
1176 get_frame_register_signed (struct frame_info *frame, int regnum)
1177 {
1178 return frame_unwind_register_signed (frame->next, regnum);
1179 }
1180
1181 ULONGEST
1182 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1183 {
1184 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1185 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1186 int size = register_size (gdbarch, regnum);
1187 gdb_byte buf[MAX_REGISTER_SIZE];
1188
1189 frame_unwind_register (frame, regnum, buf);
1190 return extract_unsigned_integer (buf, size, byte_order);
1191 }
1192
1193 ULONGEST
1194 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1195 {
1196 return frame_unwind_register_unsigned (frame->next, regnum);
1197 }
1198
1199 int
1200 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1201 ULONGEST *val)
1202 {
1203 struct value *regval = get_frame_register_value (frame, regnum);
1204
1205 if (!value_optimized_out (regval)
1206 && value_entirely_available (regval))
1207 {
1208 struct gdbarch *gdbarch = get_frame_arch (frame);
1209 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1210 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1211
1212 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1213 return 1;
1214 }
1215
1216 return 0;
1217 }
1218
1219 void
1220 put_frame_register (struct frame_info *frame, int regnum,
1221 const gdb_byte *buf)
1222 {
1223 struct gdbarch *gdbarch = get_frame_arch (frame);
1224 int realnum;
1225 int optim;
1226 int unavail;
1227 enum lval_type lval;
1228 CORE_ADDR addr;
1229
1230 frame_register (frame, regnum, &optim, &unavail,
1231 &lval, &addr, &realnum, NULL);
1232 if (optim)
1233 error (_("Attempt to assign to a register that was not saved."));
1234 switch (lval)
1235 {
1236 case lval_memory:
1237 {
1238 write_memory (addr, buf, register_size (gdbarch, regnum));
1239 break;
1240 }
1241 case lval_register:
1242 regcache_cooked_write (get_current_regcache (), realnum, buf);
1243 break;
1244 default:
1245 error (_("Attempt to assign to an unmodifiable value."));
1246 }
1247 }
1248
1249 /* This function is deprecated. Use get_frame_register_value instead,
1250 which provides more accurate information.
1251
1252 Find and return the value of REGNUM for the specified stack frame.
1253 The number of bytes copied is REGISTER_SIZE (REGNUM).
1254
1255 Returns 0 if the register value could not be found. */
1256
1257 int
1258 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1259 gdb_byte *myaddr)
1260 {
1261 int optimized;
1262 int unavailable;
1263 enum lval_type lval;
1264 CORE_ADDR addr;
1265 int realnum;
1266
1267 frame_register (frame, regnum, &optimized, &unavailable,
1268 &lval, &addr, &realnum, myaddr);
1269
1270 return !optimized && !unavailable;
1271 }
1272
1273 int
1274 get_frame_register_bytes (struct frame_info *frame, int regnum,
1275 CORE_ADDR offset, int len, gdb_byte *myaddr,
1276 int *optimizedp, int *unavailablep)
1277 {
1278 struct gdbarch *gdbarch = get_frame_arch (frame);
1279 int i;
1280 int maxsize;
1281 int numregs;
1282
1283 /* Skip registers wholly inside of OFFSET. */
1284 while (offset >= register_size (gdbarch, regnum))
1285 {
1286 offset -= register_size (gdbarch, regnum);
1287 regnum++;
1288 }
1289
1290 /* Ensure that we will not read beyond the end of the register file.
1291 This can only ever happen if the debug information is bad. */
1292 maxsize = -offset;
1293 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1294 for (i = regnum; i < numregs; i++)
1295 {
1296 int thissize = register_size (gdbarch, i);
1297
1298 if (thissize == 0)
1299 break; /* This register is not available on this architecture. */
1300 maxsize += thissize;
1301 }
1302 if (len > maxsize)
1303 error (_("Bad debug information detected: "
1304 "Attempt to read %d bytes from registers."), len);
1305
1306 /* Copy the data. */
1307 while (len > 0)
1308 {
1309 int curr_len = register_size (gdbarch, regnum) - offset;
1310
1311 if (curr_len > len)
1312 curr_len = len;
1313
1314 if (curr_len == register_size (gdbarch, regnum))
1315 {
1316 enum lval_type lval;
1317 CORE_ADDR addr;
1318 int realnum;
1319
1320 frame_register (frame, regnum, optimizedp, unavailablep,
1321 &lval, &addr, &realnum, myaddr);
1322 if (*optimizedp || *unavailablep)
1323 return 0;
1324 }
1325 else
1326 {
1327 gdb_byte buf[MAX_REGISTER_SIZE];
1328 enum lval_type lval;
1329 CORE_ADDR addr;
1330 int realnum;
1331
1332 frame_register (frame, regnum, optimizedp, unavailablep,
1333 &lval, &addr, &realnum, buf);
1334 if (*optimizedp || *unavailablep)
1335 return 0;
1336 memcpy (myaddr, buf + offset, curr_len);
1337 }
1338
1339 myaddr += curr_len;
1340 len -= curr_len;
1341 offset = 0;
1342 regnum++;
1343 }
1344
1345 *optimizedp = 0;
1346 *unavailablep = 0;
1347 return 1;
1348 }
1349
1350 void
1351 put_frame_register_bytes (struct frame_info *frame, int regnum,
1352 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1353 {
1354 struct gdbarch *gdbarch = get_frame_arch (frame);
1355
1356 /* Skip registers wholly inside of OFFSET. */
1357 while (offset >= register_size (gdbarch, regnum))
1358 {
1359 offset -= register_size (gdbarch, regnum);
1360 regnum++;
1361 }
1362
1363 /* Copy the data. */
1364 while (len > 0)
1365 {
1366 int curr_len = register_size (gdbarch, regnum) - offset;
1367
1368 if (curr_len > len)
1369 curr_len = len;
1370
1371 if (curr_len == register_size (gdbarch, regnum))
1372 {
1373 put_frame_register (frame, regnum, myaddr);
1374 }
1375 else
1376 {
1377 gdb_byte buf[MAX_REGISTER_SIZE];
1378
1379 deprecated_frame_register_read (frame, regnum, buf);
1380 memcpy (buf + offset, myaddr, curr_len);
1381 put_frame_register (frame, regnum, buf);
1382 }
1383
1384 myaddr += curr_len;
1385 len -= curr_len;
1386 offset = 0;
1387 regnum++;
1388 }
1389 }
1390
1391 /* Create a sentinel frame. */
1392
1393 static struct frame_info *
1394 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1395 {
1396 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1397
1398 frame->level = -1;
1399 frame->pspace = pspace;
1400 frame->aspace = get_regcache_aspace (regcache);
1401 /* Explicitly initialize the sentinel frame's cache. Provide it
1402 with the underlying regcache. In the future additional
1403 information, such as the frame's thread will be added. */
1404 frame->prologue_cache = sentinel_frame_cache (regcache);
1405 /* For the moment there is only one sentinel frame implementation. */
1406 frame->unwind = &sentinel_frame_unwind;
1407 /* Link this frame back to itself. The frame is self referential
1408 (the unwound PC is the same as the pc), so make it so. */
1409 frame->next = frame;
1410 /* Make the sentinel frame's ID valid, but invalid. That way all
1411 comparisons with it should fail. */
1412 frame->this_id.p = 1;
1413 frame->this_id.value = null_frame_id;
1414 if (frame_debug)
1415 {
1416 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1417 fprint_frame (gdb_stdlog, frame);
1418 fprintf_unfiltered (gdb_stdlog, " }\n");
1419 }
1420 return frame;
1421 }
1422
1423 /* Info about the innermost stack frame (contents of FP register). */
1424
1425 static struct frame_info *current_frame;
1426
1427 /* Cache for frame addresses already read by gdb. Valid only while
1428 inferior is stopped. Control variables for the frame cache should
1429 be local to this module. */
1430
1431 static struct obstack frame_cache_obstack;
1432
1433 void *
1434 frame_obstack_zalloc (unsigned long size)
1435 {
1436 void *data = obstack_alloc (&frame_cache_obstack, size);
1437
1438 memset (data, 0, size);
1439 return data;
1440 }
1441
1442 /* Return the innermost (currently executing) stack frame. This is
1443 split into two functions. The function unwind_to_current_frame()
1444 is wrapped in catch exceptions so that, even when the unwind of the
1445 sentinel frame fails, the function still returns a stack frame. */
1446
1447 static int
1448 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1449 {
1450 struct frame_info *frame = get_prev_frame (args);
1451
1452 /* A sentinel frame can fail to unwind, e.g., because its PC value
1453 lands in somewhere like start. */
1454 if (frame == NULL)
1455 return 1;
1456 current_frame = frame;
1457 return 0;
1458 }
1459
1460 struct frame_info *
1461 get_current_frame (void)
1462 {
1463 /* First check, and report, the lack of registers. Having GDB
1464 report "No stack!" or "No memory" when the target doesn't even
1465 have registers is very confusing. Besides, "printcmd.exp"
1466 explicitly checks that ``print $pc'' with no registers prints "No
1467 registers". */
1468 if (!target_has_registers)
1469 error (_("No registers."));
1470 if (!target_has_stack)
1471 error (_("No stack."));
1472 if (!target_has_memory)
1473 error (_("No memory."));
1474 /* Traceframes are effectively a substitute for the live inferior. */
1475 if (get_traceframe_number () < 0)
1476 {
1477 if (ptid_equal (inferior_ptid, null_ptid))
1478 error (_("No selected thread."));
1479 if (is_exited (inferior_ptid))
1480 error (_("Invalid selected thread."));
1481 if (is_executing (inferior_ptid))
1482 error (_("Target is executing."));
1483 }
1484
1485 if (current_frame == NULL)
1486 {
1487 struct frame_info *sentinel_frame =
1488 create_sentinel_frame (current_program_space, get_current_regcache ());
1489 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1490 sentinel_frame, RETURN_MASK_ERROR) != 0)
1491 {
1492 /* Oops! Fake a current frame? Is this useful? It has a PC
1493 of zero, for instance. */
1494 current_frame = sentinel_frame;
1495 }
1496 }
1497 return current_frame;
1498 }
1499
1500 /* The "selected" stack frame is used by default for local and arg
1501 access. May be zero, for no selected frame. */
1502
1503 static struct frame_info *selected_frame;
1504
1505 int
1506 has_stack_frames (void)
1507 {
1508 if (!target_has_registers || !target_has_stack || !target_has_memory)
1509 return 0;
1510
1511 /* Traceframes are effectively a substitute for the live inferior. */
1512 if (get_traceframe_number () < 0)
1513 {
1514 /* No current inferior, no frame. */
1515 if (ptid_equal (inferior_ptid, null_ptid))
1516 return 0;
1517
1518 /* Don't try to read from a dead thread. */
1519 if (is_exited (inferior_ptid))
1520 return 0;
1521
1522 /* ... or from a spinning thread. */
1523 if (is_executing (inferior_ptid))
1524 return 0;
1525 }
1526
1527 return 1;
1528 }
1529
1530 /* Return the selected frame. Always non-NULL (unless there isn't an
1531 inferior sufficient for creating a frame) in which case an error is
1532 thrown. */
1533
1534 struct frame_info *
1535 get_selected_frame (const char *message)
1536 {
1537 if (selected_frame == NULL)
1538 {
1539 if (message != NULL && !has_stack_frames ())
1540 error (("%s"), message);
1541 /* Hey! Don't trust this. It should really be re-finding the
1542 last selected frame of the currently selected thread. This,
1543 though, is better than nothing. */
1544 select_frame (get_current_frame ());
1545 }
1546 /* There is always a frame. */
1547 gdb_assert (selected_frame != NULL);
1548 return selected_frame;
1549 }
1550
1551 /* If there is a selected frame, return it. Otherwise, return NULL. */
1552
1553 struct frame_info *
1554 get_selected_frame_if_set (void)
1555 {
1556 return selected_frame;
1557 }
1558
1559 /* This is a variant of get_selected_frame() which can be called when
1560 the inferior does not have a frame; in that case it will return
1561 NULL instead of calling error(). */
1562
1563 struct frame_info *
1564 deprecated_safe_get_selected_frame (void)
1565 {
1566 if (!has_stack_frames ())
1567 return NULL;
1568 return get_selected_frame (NULL);
1569 }
1570
1571 /* Select frame FI (or NULL - to invalidate the current frame). */
1572
1573 void
1574 select_frame (struct frame_info *fi)
1575 {
1576 selected_frame = fi;
1577 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1578 frame is being invalidated. */
1579 if (deprecated_selected_frame_level_changed_hook)
1580 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1581
1582 /* FIXME: kseitz/2002-08-28: It would be nice to call
1583 selected_frame_level_changed_event() right here, but due to limitations
1584 in the current interfaces, we would end up flooding UIs with events
1585 because select_frame() is used extensively internally.
1586
1587 Once we have frame-parameterized frame (and frame-related) commands,
1588 the event notification can be moved here, since this function will only
1589 be called when the user's selected frame is being changed. */
1590
1591 /* Ensure that symbols for this frame are read in. Also, determine the
1592 source language of this frame, and switch to it if desired. */
1593 if (fi)
1594 {
1595 CORE_ADDR pc;
1596
1597 /* We retrieve the frame's symtab by using the frame PC.
1598 However we cannot use the frame PC as-is, because it usually
1599 points to the instruction following the "call", which is
1600 sometimes the first instruction of another function. So we
1601 rely on get_frame_address_in_block() which provides us with a
1602 PC which is guaranteed to be inside the frame's code
1603 block. */
1604 if (get_frame_address_in_block_if_available (fi, &pc))
1605 {
1606 struct symtab *s = find_pc_symtab (pc);
1607
1608 if (s
1609 && s->language != current_language->la_language
1610 && s->language != language_unknown
1611 && language_mode == language_mode_auto)
1612 set_language (s->language);
1613 }
1614 }
1615 }
1616
1617 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1618 Always returns a non-NULL value. */
1619
1620 struct frame_info *
1621 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1622 {
1623 struct frame_info *fi;
1624
1625 if (frame_debug)
1626 {
1627 fprintf_unfiltered (gdb_stdlog,
1628 "{ create_new_frame (addr=%s, pc=%s) ",
1629 hex_string (addr), hex_string (pc));
1630 }
1631
1632 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1633
1634 fi->next = create_sentinel_frame (current_program_space,
1635 get_current_regcache ());
1636
1637 /* Set/update this frame's cached PC value, found in the next frame.
1638 Do this before looking for this frame's unwinder. A sniffer is
1639 very likely to read this, and the corresponding unwinder is
1640 entitled to rely that the PC doesn't magically change. */
1641 fi->next->prev_pc.value = pc;
1642 fi->next->prev_pc.status = CC_VALUE;
1643
1644 /* We currently assume that frame chain's can't cross spaces. */
1645 fi->pspace = fi->next->pspace;
1646 fi->aspace = fi->next->aspace;
1647
1648 /* Select/initialize both the unwind function and the frame's type
1649 based on the PC. */
1650 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1651
1652 fi->this_id.p = 1;
1653 fi->this_id.value = frame_id_build (addr, pc);
1654
1655 if (frame_debug)
1656 {
1657 fprintf_unfiltered (gdb_stdlog, "-> ");
1658 fprint_frame (gdb_stdlog, fi);
1659 fprintf_unfiltered (gdb_stdlog, " }\n");
1660 }
1661
1662 return fi;
1663 }
1664
1665 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1666 innermost frame). Be careful to not fall off the bottom of the
1667 frame chain and onto the sentinel frame. */
1668
1669 struct frame_info *
1670 get_next_frame (struct frame_info *this_frame)
1671 {
1672 if (this_frame->level > 0)
1673 return this_frame->next;
1674 else
1675 return NULL;
1676 }
1677
1678 /* Observer for the target_changed event. */
1679
1680 static void
1681 frame_observer_target_changed (struct target_ops *target)
1682 {
1683 reinit_frame_cache ();
1684 }
1685
1686 /* Flush the entire frame cache. */
1687
1688 void
1689 reinit_frame_cache (void)
1690 {
1691 struct frame_info *fi;
1692
1693 /* Tear down all frame caches. */
1694 for (fi = current_frame; fi != NULL; fi = fi->prev)
1695 {
1696 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1697 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1698 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1699 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1700 }
1701
1702 /* Since we can't really be sure what the first object allocated was. */
1703 obstack_free (&frame_cache_obstack, 0);
1704 obstack_init (&frame_cache_obstack);
1705
1706 if (current_frame != NULL)
1707 annotate_frames_invalid ();
1708
1709 current_frame = NULL; /* Invalidate cache */
1710 select_frame (NULL);
1711 frame_stash_invalidate ();
1712 if (frame_debug)
1713 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1714 }
1715
1716 /* Find where a register is saved (in memory or another register).
1717 The result of frame_register_unwind is just where it is saved
1718 relative to this particular frame. */
1719
1720 static void
1721 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1722 int *optimizedp, enum lval_type *lvalp,
1723 CORE_ADDR *addrp, int *realnump)
1724 {
1725 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1726
1727 while (this_frame != NULL)
1728 {
1729 int unavailable;
1730
1731 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1732 lvalp, addrp, realnump, NULL);
1733
1734 if (*optimizedp)
1735 break;
1736
1737 if (*lvalp != lval_register)
1738 break;
1739
1740 regnum = *realnump;
1741 this_frame = get_next_frame (this_frame);
1742 }
1743 }
1744
1745 /* Called during frame unwinding to remove a previous frame pointer from a
1746 frame passed in ARG. */
1747
1748 static void
1749 remove_prev_frame (void *arg)
1750 {
1751 struct frame_info *this_frame, *prev_frame;
1752
1753 this_frame = (struct frame_info *) arg;
1754 prev_frame = this_frame->prev;
1755 gdb_assert (prev_frame != NULL);
1756
1757 prev_frame->next = NULL;
1758 this_frame->prev = NULL;
1759 }
1760
1761 /* Get the previous raw frame, and check that it is not identical to
1762 same other frame frame already in the chain. If it is, there is
1763 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1764 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1765 validity tests, that compare THIS_FRAME and the next frame, we do
1766 this right after creating the previous frame, to avoid ever ending
1767 up with two frames with the same id in the frame chain. */
1768
1769 static struct frame_info *
1770 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1771 {
1772 struct frame_info *prev_frame;
1773 struct cleanup *prev_frame_cleanup;
1774
1775 prev_frame = get_prev_frame_raw (this_frame);
1776 if (prev_frame == NULL)
1777 return NULL;
1778
1779 /* The cleanup will remove the previous frame that get_prev_frame_raw
1780 linked onto THIS_FRAME. */
1781 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1782
1783 compute_frame_id (prev_frame);
1784 if (!frame_stash_add (prev_frame))
1785 {
1786 /* Another frame with the same id was already in the stash. We just
1787 detected a cycle. */
1788 if (frame_debug)
1789 {
1790 fprintf_unfiltered (gdb_stdlog, "-> ");
1791 fprint_frame (gdb_stdlog, NULL);
1792 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1793 }
1794 this_frame->stop_reason = UNWIND_SAME_ID;
1795 /* Unlink. */
1796 prev_frame->next = NULL;
1797 this_frame->prev = NULL;
1798 prev_frame = NULL;
1799 }
1800
1801 discard_cleanups (prev_frame_cleanup);
1802 return prev_frame;
1803 }
1804
1805 /* Helper function for get_prev_frame_always, this is called inside a
1806 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1807 there is no such frame. This may throw an exception. */
1808
1809 static struct frame_info *
1810 get_prev_frame_always_1 (struct frame_info *this_frame)
1811 {
1812 struct gdbarch *gdbarch;
1813
1814 gdb_assert (this_frame != NULL);
1815 gdbarch = get_frame_arch (this_frame);
1816
1817 if (frame_debug)
1818 {
1819 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1820 if (this_frame != NULL)
1821 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1822 else
1823 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1824 fprintf_unfiltered (gdb_stdlog, ") ");
1825 }
1826
1827 /* Only try to do the unwind once. */
1828 if (this_frame->prev_p)
1829 {
1830 if (frame_debug)
1831 {
1832 fprintf_unfiltered (gdb_stdlog, "-> ");
1833 fprint_frame (gdb_stdlog, this_frame->prev);
1834 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1835 }
1836 return this_frame->prev;
1837 }
1838
1839 /* If the frame unwinder hasn't been selected yet, we must do so
1840 before setting prev_p; otherwise the check for misbehaved
1841 sniffers will think that this frame's sniffer tried to unwind
1842 further (see frame_cleanup_after_sniffer). */
1843 if (this_frame->unwind == NULL)
1844 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1845
1846 this_frame->prev_p = 1;
1847 this_frame->stop_reason = UNWIND_NO_REASON;
1848
1849 /* If we are unwinding from an inline frame, all of the below tests
1850 were already performed when we unwound from the next non-inline
1851 frame. We must skip them, since we can not get THIS_FRAME's ID
1852 until we have unwound all the way down to the previous non-inline
1853 frame. */
1854 if (get_frame_type (this_frame) == INLINE_FRAME)
1855 return get_prev_frame_if_no_cycle (this_frame);
1856
1857 /* Check that this frame is unwindable. If it isn't, don't try to
1858 unwind to the prev frame. */
1859 this_frame->stop_reason
1860 = this_frame->unwind->stop_reason (this_frame,
1861 &this_frame->prologue_cache);
1862
1863 if (this_frame->stop_reason != UNWIND_NO_REASON)
1864 {
1865 if (frame_debug)
1866 {
1867 enum unwind_stop_reason reason = this_frame->stop_reason;
1868
1869 fprintf_unfiltered (gdb_stdlog, "-> ");
1870 fprint_frame (gdb_stdlog, NULL);
1871 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1872 frame_stop_reason_symbol_string (reason));
1873 }
1874 return NULL;
1875 }
1876
1877 /* Check that this frame's ID isn't inner to (younger, below, next)
1878 the next frame. This happens when a frame unwind goes backwards.
1879 This check is valid only if this frame and the next frame are NORMAL.
1880 See the comment at frame_id_inner for details. */
1881 if (get_frame_type (this_frame) == NORMAL_FRAME
1882 && this_frame->next->unwind->type == NORMAL_FRAME
1883 && frame_id_inner (get_frame_arch (this_frame->next),
1884 get_frame_id (this_frame),
1885 get_frame_id (this_frame->next)))
1886 {
1887 CORE_ADDR this_pc_in_block;
1888 struct minimal_symbol *morestack_msym;
1889 const char *morestack_name = NULL;
1890
1891 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1892 this_pc_in_block = get_frame_address_in_block (this_frame);
1893 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1894 if (morestack_msym)
1895 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1896 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1897 {
1898 if (frame_debug)
1899 {
1900 fprintf_unfiltered (gdb_stdlog, "-> ");
1901 fprint_frame (gdb_stdlog, NULL);
1902 fprintf_unfiltered (gdb_stdlog,
1903 " // this frame ID is inner }\n");
1904 }
1905 this_frame->stop_reason = UNWIND_INNER_ID;
1906 return NULL;
1907 }
1908 }
1909
1910 /* Check that this and the next frame do not unwind the PC register
1911 to the same memory location. If they do, then even though they
1912 have different frame IDs, the new frame will be bogus; two
1913 functions can't share a register save slot for the PC. This can
1914 happen when the prologue analyzer finds a stack adjustment, but
1915 no PC save.
1916
1917 This check does assume that the "PC register" is roughly a
1918 traditional PC, even if the gdbarch_unwind_pc method adjusts
1919 it (we do not rely on the value, only on the unwound PC being
1920 dependent on this value). A potential improvement would be
1921 to have the frame prev_pc method and the gdbarch unwind_pc
1922 method set the same lval and location information as
1923 frame_register_unwind. */
1924 if (this_frame->level > 0
1925 && gdbarch_pc_regnum (gdbarch) >= 0
1926 && get_frame_type (this_frame) == NORMAL_FRAME
1927 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1928 || get_frame_type (this_frame->next) == INLINE_FRAME))
1929 {
1930 int optimized, realnum, nrealnum;
1931 enum lval_type lval, nlval;
1932 CORE_ADDR addr, naddr;
1933
1934 frame_register_unwind_location (this_frame,
1935 gdbarch_pc_regnum (gdbarch),
1936 &optimized, &lval, &addr, &realnum);
1937 frame_register_unwind_location (get_next_frame (this_frame),
1938 gdbarch_pc_regnum (gdbarch),
1939 &optimized, &nlval, &naddr, &nrealnum);
1940
1941 if ((lval == lval_memory && lval == nlval && addr == naddr)
1942 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1943 {
1944 if (frame_debug)
1945 {
1946 fprintf_unfiltered (gdb_stdlog, "-> ");
1947 fprint_frame (gdb_stdlog, NULL);
1948 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1949 }
1950
1951 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1952 this_frame->prev = NULL;
1953 return NULL;
1954 }
1955 }
1956
1957 return get_prev_frame_if_no_cycle (this_frame);
1958 }
1959
1960 /* Return a "struct frame_info" corresponding to the frame that called
1961 THIS_FRAME. Returns NULL if there is no such frame.
1962
1963 Unlike get_prev_frame, this function always tries to unwind the
1964 frame. */
1965
1966 struct frame_info *
1967 get_prev_frame_always (struct frame_info *this_frame)
1968 {
1969 volatile struct gdb_exception ex;
1970 struct frame_info *prev_frame = NULL;
1971
1972 TRY_CATCH (ex, RETURN_MASK_ERROR)
1973 {
1974 prev_frame = get_prev_frame_always_1 (this_frame);
1975 }
1976 if (ex.reason < 0)
1977 {
1978 if (ex.error == MEMORY_ERROR)
1979 {
1980 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
1981 if (ex.message != NULL)
1982 {
1983 char *stop_string;
1984 size_t size;
1985
1986 /* The error needs to live as long as the frame does.
1987 Allocate using stack local STOP_STRING then assign the
1988 pointer to the frame, this allows the STOP_STRING on the
1989 frame to be of type 'const char *'. */
1990 size = strlen (ex.message) + 1;
1991 stop_string = frame_obstack_zalloc (size);
1992 memcpy (stop_string, ex.message, size);
1993 this_frame->stop_string = stop_string;
1994 }
1995 prev_frame = NULL;
1996 }
1997 else
1998 throw_exception (ex);
1999 }
2000
2001 return prev_frame;
2002 }
2003
2004 /* Construct a new "struct frame_info" and link it previous to
2005 this_frame. */
2006
2007 static struct frame_info *
2008 get_prev_frame_raw (struct frame_info *this_frame)
2009 {
2010 struct frame_info *prev_frame;
2011
2012 /* Allocate the new frame but do not wire it in to the frame chain.
2013 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2014 frame->next to pull some fancy tricks (of course such code is, by
2015 definition, recursive). Try to prevent it.
2016
2017 There is no reason to worry about memory leaks, should the
2018 remainder of the function fail. The allocated memory will be
2019 quickly reclaimed when the frame cache is flushed, and the `we've
2020 been here before' check above will stop repeated memory
2021 allocation calls. */
2022 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2023 prev_frame->level = this_frame->level + 1;
2024
2025 /* For now, assume we don't have frame chains crossing address
2026 spaces. */
2027 prev_frame->pspace = this_frame->pspace;
2028 prev_frame->aspace = this_frame->aspace;
2029
2030 /* Don't yet compute ->unwind (and hence ->type). It is computed
2031 on-demand in get_frame_type, frame_register_unwind, and
2032 get_frame_id. */
2033
2034 /* Don't yet compute the frame's ID. It is computed on-demand by
2035 get_frame_id(). */
2036
2037 /* The unwound frame ID is validate at the start of this function,
2038 as part of the logic to decide if that frame should be further
2039 unwound, and not here while the prev frame is being created.
2040 Doing this makes it possible for the user to examine a frame that
2041 has an invalid frame ID.
2042
2043 Some very old VAX code noted: [...] For the sake of argument,
2044 suppose that the stack is somewhat trashed (which is one reason
2045 that "info frame" exists). So, return 0 (indicating we don't
2046 know the address of the arglist) if we don't know what frame this
2047 frame calls. */
2048
2049 /* Link it in. */
2050 this_frame->prev = prev_frame;
2051 prev_frame->next = this_frame;
2052
2053 if (frame_debug)
2054 {
2055 fprintf_unfiltered (gdb_stdlog, "-> ");
2056 fprint_frame (gdb_stdlog, prev_frame);
2057 fprintf_unfiltered (gdb_stdlog, " }\n");
2058 }
2059
2060 return prev_frame;
2061 }
2062
2063 /* Debug routine to print a NULL frame being returned. */
2064
2065 static void
2066 frame_debug_got_null_frame (struct frame_info *this_frame,
2067 const char *reason)
2068 {
2069 if (frame_debug)
2070 {
2071 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2072 if (this_frame != NULL)
2073 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2074 else
2075 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2076 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2077 }
2078 }
2079
2080 /* Is this (non-sentinel) frame in the "main"() function? */
2081
2082 static int
2083 inside_main_func (struct frame_info *this_frame)
2084 {
2085 struct bound_minimal_symbol msymbol;
2086 CORE_ADDR maddr;
2087
2088 if (symfile_objfile == 0)
2089 return 0;
2090 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2091 if (msymbol.minsym == NULL)
2092 return 0;
2093 /* Make certain that the code, and not descriptor, address is
2094 returned. */
2095 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2096 BMSYMBOL_VALUE_ADDRESS (msymbol),
2097 &current_target);
2098 return maddr == get_frame_func (this_frame);
2099 }
2100
2101 /* Test whether THIS_FRAME is inside the process entry point function. */
2102
2103 static int
2104 inside_entry_func (struct frame_info *this_frame)
2105 {
2106 CORE_ADDR entry_point;
2107
2108 if (!entry_point_address_query (&entry_point))
2109 return 0;
2110
2111 return get_frame_func (this_frame) == entry_point;
2112 }
2113
2114 /* Return a structure containing various interesting information about
2115 the frame that called THIS_FRAME. Returns NULL if there is entier
2116 no such frame or the frame fails any of a set of target-independent
2117 condition that should terminate the frame chain (e.g., as unwinding
2118 past main()).
2119
2120 This function should not contain target-dependent tests, such as
2121 checking whether the program-counter is zero. */
2122
2123 struct frame_info *
2124 get_prev_frame (struct frame_info *this_frame)
2125 {
2126 CORE_ADDR frame_pc;
2127 int frame_pc_p;
2128
2129 /* There is always a frame. If this assertion fails, suspect that
2130 something should be calling get_selected_frame() or
2131 get_current_frame(). */
2132 gdb_assert (this_frame != NULL);
2133 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2134
2135 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2136 sense to stop unwinding at a dummy frame. One place where a dummy
2137 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2138 pcsqh register (space register for the instruction at the head of the
2139 instruction queue) cannot be written directly; the only way to set it
2140 is to branch to code that is in the target space. In order to implement
2141 frame dummies on HPUX, the called function is made to jump back to where
2142 the inferior was when the user function was called. If gdb was inside
2143 the main function when we created the dummy frame, the dummy frame will
2144 point inside the main function. */
2145 if (this_frame->level >= 0
2146 && get_frame_type (this_frame) == NORMAL_FRAME
2147 && !backtrace_past_main
2148 && frame_pc_p
2149 && inside_main_func (this_frame))
2150 /* Don't unwind past main(). Note, this is done _before_ the
2151 frame has been marked as previously unwound. That way if the
2152 user later decides to enable unwinds past main(), that will
2153 automatically happen. */
2154 {
2155 frame_debug_got_null_frame (this_frame, "inside main func");
2156 return NULL;
2157 }
2158
2159 /* If the user's backtrace limit has been exceeded, stop. We must
2160 add two to the current level; one of those accounts for backtrace_limit
2161 being 1-based and the level being 0-based, and the other accounts for
2162 the level of the new frame instead of the level of the current
2163 frame. */
2164 if (this_frame->level + 2 > backtrace_limit)
2165 {
2166 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2167 return NULL;
2168 }
2169
2170 /* If we're already inside the entry function for the main objfile,
2171 then it isn't valid. Don't apply this test to a dummy frame -
2172 dummy frame PCs typically land in the entry func. Don't apply
2173 this test to the sentinel frame. Sentinel frames should always
2174 be allowed to unwind. */
2175 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2176 wasn't checking for "main" in the minimal symbols. With that
2177 fixed asm-source tests now stop in "main" instead of halting the
2178 backtrace in weird and wonderful ways somewhere inside the entry
2179 file. Suspect that tests for inside the entry file/func were
2180 added to work around that (now fixed) case. */
2181 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2182 suggested having the inside_entry_func test use the
2183 inside_main_func() msymbol trick (along with entry_point_address()
2184 I guess) to determine the address range of the start function.
2185 That should provide a far better stopper than the current
2186 heuristics. */
2187 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2188 applied tail-call optimizations to main so that a function called
2189 from main returns directly to the caller of main. Since we don't
2190 stop at main, we should at least stop at the entry point of the
2191 application. */
2192 if (this_frame->level >= 0
2193 && get_frame_type (this_frame) == NORMAL_FRAME
2194 && !backtrace_past_entry
2195 && frame_pc_p
2196 && inside_entry_func (this_frame))
2197 {
2198 frame_debug_got_null_frame (this_frame, "inside entry func");
2199 return NULL;
2200 }
2201
2202 /* Assume that the only way to get a zero PC is through something
2203 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2204 will never unwind a zero PC. */
2205 if (this_frame->level > 0
2206 && (get_frame_type (this_frame) == NORMAL_FRAME
2207 || get_frame_type (this_frame) == INLINE_FRAME)
2208 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2209 && frame_pc_p && frame_pc == 0)
2210 {
2211 frame_debug_got_null_frame (this_frame, "zero PC");
2212 return NULL;
2213 }
2214
2215 return get_prev_frame_always (this_frame);
2216 }
2217
2218 CORE_ADDR
2219 get_frame_pc (struct frame_info *frame)
2220 {
2221 gdb_assert (frame->next != NULL);
2222 return frame_unwind_pc (frame->next);
2223 }
2224
2225 int
2226 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2227 {
2228 volatile struct gdb_exception ex;
2229
2230 gdb_assert (frame->next != NULL);
2231
2232 TRY_CATCH (ex, RETURN_MASK_ERROR)
2233 {
2234 *pc = frame_unwind_pc (frame->next);
2235 }
2236 if (ex.reason < 0)
2237 {
2238 if (ex.error == NOT_AVAILABLE_ERROR)
2239 return 0;
2240 else
2241 throw_exception (ex);
2242 }
2243
2244 return 1;
2245 }
2246
2247 /* Return an address that falls within THIS_FRAME's code block. */
2248
2249 CORE_ADDR
2250 get_frame_address_in_block (struct frame_info *this_frame)
2251 {
2252 /* A draft address. */
2253 CORE_ADDR pc = get_frame_pc (this_frame);
2254
2255 struct frame_info *next_frame = this_frame->next;
2256
2257 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2258 Normally the resume address is inside the body of the function
2259 associated with THIS_FRAME, but there is a special case: when
2260 calling a function which the compiler knows will never return
2261 (for instance abort), the call may be the very last instruction
2262 in the calling function. The resume address will point after the
2263 call and may be at the beginning of a different function
2264 entirely.
2265
2266 If THIS_FRAME is a signal frame or dummy frame, then we should
2267 not adjust the unwound PC. For a dummy frame, GDB pushed the
2268 resume address manually onto the stack. For a signal frame, the
2269 OS may have pushed the resume address manually and invoked the
2270 handler (e.g. GNU/Linux), or invoked the trampoline which called
2271 the signal handler - but in either case the signal handler is
2272 expected to return to the trampoline. So in both of these
2273 cases we know that the resume address is executable and
2274 related. So we only need to adjust the PC if THIS_FRAME
2275 is a normal function.
2276
2277 If the program has been interrupted while THIS_FRAME is current,
2278 then clearly the resume address is inside the associated
2279 function. There are three kinds of interruption: debugger stop
2280 (next frame will be SENTINEL_FRAME), operating system
2281 signal or exception (next frame will be SIGTRAMP_FRAME),
2282 or debugger-induced function call (next frame will be
2283 DUMMY_FRAME). So we only need to adjust the PC if
2284 NEXT_FRAME is a normal function.
2285
2286 We check the type of NEXT_FRAME first, since it is already
2287 known; frame type is determined by the unwinder, and since
2288 we have THIS_FRAME we've already selected an unwinder for
2289 NEXT_FRAME.
2290
2291 If the next frame is inlined, we need to keep going until we find
2292 the real function - for instance, if a signal handler is invoked
2293 while in an inlined function, then the code address of the
2294 "calling" normal function should not be adjusted either. */
2295
2296 while (get_frame_type (next_frame) == INLINE_FRAME)
2297 next_frame = next_frame->next;
2298
2299 if ((get_frame_type (next_frame) == NORMAL_FRAME
2300 || get_frame_type (next_frame) == TAILCALL_FRAME)
2301 && (get_frame_type (this_frame) == NORMAL_FRAME
2302 || get_frame_type (this_frame) == TAILCALL_FRAME
2303 || get_frame_type (this_frame) == INLINE_FRAME))
2304 return pc - 1;
2305
2306 return pc;
2307 }
2308
2309 int
2310 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2311 CORE_ADDR *pc)
2312 {
2313 volatile struct gdb_exception ex;
2314
2315 TRY_CATCH (ex, RETURN_MASK_ERROR)
2316 {
2317 *pc = get_frame_address_in_block (this_frame);
2318 }
2319 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2320 return 0;
2321 else if (ex.reason < 0)
2322 throw_exception (ex);
2323 else
2324 return 1;
2325 }
2326
2327 void
2328 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2329 {
2330 struct frame_info *next_frame;
2331 int notcurrent;
2332 CORE_ADDR pc;
2333
2334 /* If the next frame represents an inlined function call, this frame's
2335 sal is the "call site" of that inlined function, which can not
2336 be inferred from get_frame_pc. */
2337 next_frame = get_next_frame (frame);
2338 if (frame_inlined_callees (frame) > 0)
2339 {
2340 struct symbol *sym;
2341
2342 if (next_frame)
2343 sym = get_frame_function (next_frame);
2344 else
2345 sym = inline_skipped_symbol (inferior_ptid);
2346
2347 /* If frame is inline, it certainly has symbols. */
2348 gdb_assert (sym);
2349 init_sal (sal);
2350 if (SYMBOL_LINE (sym) != 0)
2351 {
2352 sal->symtab = SYMBOL_SYMTAB (sym);
2353 sal->line = SYMBOL_LINE (sym);
2354 }
2355 else
2356 /* If the symbol does not have a location, we don't know where
2357 the call site is. Do not pretend to. This is jarring, but
2358 we can't do much better. */
2359 sal->pc = get_frame_pc (frame);
2360
2361 sal->pspace = get_frame_program_space (frame);
2362
2363 return;
2364 }
2365
2366 /* If FRAME is not the innermost frame, that normally means that
2367 FRAME->pc points at the return instruction (which is *after* the
2368 call instruction), and we want to get the line containing the
2369 call (because the call is where the user thinks the program is).
2370 However, if the next frame is either a SIGTRAMP_FRAME or a
2371 DUMMY_FRAME, then the next frame will contain a saved interrupt
2372 PC and such a PC indicates the current (rather than next)
2373 instruction/line, consequently, for such cases, want to get the
2374 line containing fi->pc. */
2375 if (!get_frame_pc_if_available (frame, &pc))
2376 {
2377 init_sal (sal);
2378 return;
2379 }
2380
2381 notcurrent = (pc != get_frame_address_in_block (frame));
2382 (*sal) = find_pc_line (pc, notcurrent);
2383 }
2384
2385 /* Per "frame.h", return the ``address'' of the frame. Code should
2386 really be using get_frame_id(). */
2387 CORE_ADDR
2388 get_frame_base (struct frame_info *fi)
2389 {
2390 return get_frame_id (fi).stack_addr;
2391 }
2392
2393 /* High-level offsets into the frame. Used by the debug info. */
2394
2395 CORE_ADDR
2396 get_frame_base_address (struct frame_info *fi)
2397 {
2398 if (get_frame_type (fi) != NORMAL_FRAME)
2399 return 0;
2400 if (fi->base == NULL)
2401 fi->base = frame_base_find_by_frame (fi);
2402 /* Sneaky: If the low-level unwind and high-level base code share a
2403 common unwinder, let them share the prologue cache. */
2404 if (fi->base->unwind == fi->unwind)
2405 return fi->base->this_base (fi, &fi->prologue_cache);
2406 return fi->base->this_base (fi, &fi->base_cache);
2407 }
2408
2409 CORE_ADDR
2410 get_frame_locals_address (struct frame_info *fi)
2411 {
2412 if (get_frame_type (fi) != NORMAL_FRAME)
2413 return 0;
2414 /* If there isn't a frame address method, find it. */
2415 if (fi->base == NULL)
2416 fi->base = frame_base_find_by_frame (fi);
2417 /* Sneaky: If the low-level unwind and high-level base code share a
2418 common unwinder, let them share the prologue cache. */
2419 if (fi->base->unwind == fi->unwind)
2420 return fi->base->this_locals (fi, &fi->prologue_cache);
2421 return fi->base->this_locals (fi, &fi->base_cache);
2422 }
2423
2424 CORE_ADDR
2425 get_frame_args_address (struct frame_info *fi)
2426 {
2427 if (get_frame_type (fi) != NORMAL_FRAME)
2428 return 0;
2429 /* If there isn't a frame address method, find it. */
2430 if (fi->base == NULL)
2431 fi->base = frame_base_find_by_frame (fi);
2432 /* Sneaky: If the low-level unwind and high-level base code share a
2433 common unwinder, let them share the prologue cache. */
2434 if (fi->base->unwind == fi->unwind)
2435 return fi->base->this_args (fi, &fi->prologue_cache);
2436 return fi->base->this_args (fi, &fi->base_cache);
2437 }
2438
2439 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2440 otherwise. */
2441
2442 int
2443 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2444 {
2445 if (fi->unwind == NULL)
2446 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2447 return fi->unwind == unwinder;
2448 }
2449
2450 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2451 or -1 for a NULL frame. */
2452
2453 int
2454 frame_relative_level (struct frame_info *fi)
2455 {
2456 if (fi == NULL)
2457 return -1;
2458 else
2459 return fi->level;
2460 }
2461
2462 enum frame_type
2463 get_frame_type (struct frame_info *frame)
2464 {
2465 if (frame->unwind == NULL)
2466 /* Initialize the frame's unwinder because that's what
2467 provides the frame's type. */
2468 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2469 return frame->unwind->type;
2470 }
2471
2472 struct program_space *
2473 get_frame_program_space (struct frame_info *frame)
2474 {
2475 return frame->pspace;
2476 }
2477
2478 struct program_space *
2479 frame_unwind_program_space (struct frame_info *this_frame)
2480 {
2481 gdb_assert (this_frame);
2482
2483 /* This is really a placeholder to keep the API consistent --- we
2484 assume for now that we don't have frame chains crossing
2485 spaces. */
2486 return this_frame->pspace;
2487 }
2488
2489 struct address_space *
2490 get_frame_address_space (struct frame_info *frame)
2491 {
2492 return frame->aspace;
2493 }
2494
2495 /* Memory access methods. */
2496
2497 void
2498 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2499 gdb_byte *buf, int len)
2500 {
2501 read_memory (addr, buf, len);
2502 }
2503
2504 LONGEST
2505 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2506 int len)
2507 {
2508 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2509 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2510
2511 return read_memory_integer (addr, len, byte_order);
2512 }
2513
2514 ULONGEST
2515 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2516 int len)
2517 {
2518 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2520
2521 return read_memory_unsigned_integer (addr, len, byte_order);
2522 }
2523
2524 int
2525 safe_frame_unwind_memory (struct frame_info *this_frame,
2526 CORE_ADDR addr, gdb_byte *buf, int len)
2527 {
2528 /* NOTE: target_read_memory returns zero on success! */
2529 return !target_read_memory (addr, buf, len);
2530 }
2531
2532 /* Architecture methods. */
2533
2534 struct gdbarch *
2535 get_frame_arch (struct frame_info *this_frame)
2536 {
2537 return frame_unwind_arch (this_frame->next);
2538 }
2539
2540 struct gdbarch *
2541 frame_unwind_arch (struct frame_info *next_frame)
2542 {
2543 if (!next_frame->prev_arch.p)
2544 {
2545 struct gdbarch *arch;
2546
2547 if (next_frame->unwind == NULL)
2548 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2549
2550 if (next_frame->unwind->prev_arch != NULL)
2551 arch = next_frame->unwind->prev_arch (next_frame,
2552 &next_frame->prologue_cache);
2553 else
2554 arch = get_frame_arch (next_frame);
2555
2556 next_frame->prev_arch.arch = arch;
2557 next_frame->prev_arch.p = 1;
2558 if (frame_debug)
2559 fprintf_unfiltered (gdb_stdlog,
2560 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2561 next_frame->level,
2562 gdbarch_bfd_arch_info (arch)->printable_name);
2563 }
2564
2565 return next_frame->prev_arch.arch;
2566 }
2567
2568 struct gdbarch *
2569 frame_unwind_caller_arch (struct frame_info *next_frame)
2570 {
2571 return frame_unwind_arch (skip_artificial_frames (next_frame));
2572 }
2573
2574 /* Stack pointer methods. */
2575
2576 CORE_ADDR
2577 get_frame_sp (struct frame_info *this_frame)
2578 {
2579 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2580
2581 /* Normality - an architecture that provides a way of obtaining any
2582 frame inner-most address. */
2583 if (gdbarch_unwind_sp_p (gdbarch))
2584 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2585 operate on THIS_FRAME now. */
2586 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2587 /* Now things are really are grim. Hope that the value returned by
2588 the gdbarch_sp_regnum register is meaningful. */
2589 if (gdbarch_sp_regnum (gdbarch) >= 0)
2590 return get_frame_register_unsigned (this_frame,
2591 gdbarch_sp_regnum (gdbarch));
2592 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2593 }
2594
2595 /* Return the reason why we can't unwind past FRAME. */
2596
2597 enum unwind_stop_reason
2598 get_frame_unwind_stop_reason (struct frame_info *frame)
2599 {
2600 /* Fill-in STOP_REASON. */
2601 get_prev_frame_always (frame);
2602 gdb_assert (frame->prev_p);
2603
2604 return frame->stop_reason;
2605 }
2606
2607 /* Return a string explaining REASON. */
2608
2609 const char *
2610 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2611 {
2612 switch (reason)
2613 {
2614 #define SET(name, description) \
2615 case name: return _(description);
2616 #include "unwind_stop_reasons.def"
2617 #undef SET
2618
2619 default:
2620 internal_error (__FILE__, __LINE__,
2621 "Invalid frame stop reason");
2622 }
2623 }
2624
2625 const char *
2626 frame_stop_reason_string (struct frame_info *fi)
2627 {
2628 gdb_assert (fi->prev_p);
2629 gdb_assert (fi->prev == NULL);
2630
2631 /* Return the specific string if we have one. */
2632 if (fi->stop_string != NULL)
2633 return fi->stop_string;
2634
2635 /* Return the generic string if we have nothing better. */
2636 return unwind_stop_reason_to_string (fi->stop_reason);
2637 }
2638
2639 /* Return the enum symbol name of REASON as a string, to use in debug
2640 output. */
2641
2642 static const char *
2643 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2644 {
2645 switch (reason)
2646 {
2647 #define SET(name, description) \
2648 case name: return #name;
2649 #include "unwind_stop_reasons.def"
2650 #undef SET
2651
2652 default:
2653 internal_error (__FILE__, __LINE__,
2654 "Invalid frame stop reason");
2655 }
2656 }
2657
2658 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2659 FRAME. */
2660
2661 static void
2662 frame_cleanup_after_sniffer (void *arg)
2663 {
2664 struct frame_info *frame = arg;
2665
2666 /* The sniffer should not allocate a prologue cache if it did not
2667 match this frame. */
2668 gdb_assert (frame->prologue_cache == NULL);
2669
2670 /* No sniffer should extend the frame chain; sniff based on what is
2671 already certain. */
2672 gdb_assert (!frame->prev_p);
2673
2674 /* The sniffer should not check the frame's ID; that's circular. */
2675 gdb_assert (!frame->this_id.p);
2676
2677 /* Clear cached fields dependent on the unwinder.
2678
2679 The previous PC is independent of the unwinder, but the previous
2680 function is not (see get_frame_address_in_block). */
2681 frame->prev_func.p = 0;
2682 frame->prev_func.addr = 0;
2683
2684 /* Discard the unwinder last, so that we can easily find it if an assertion
2685 in this function triggers. */
2686 frame->unwind = NULL;
2687 }
2688
2689 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2690 Return a cleanup which should be called if unwinding fails, and
2691 discarded if it succeeds. */
2692
2693 struct cleanup *
2694 frame_prepare_for_sniffer (struct frame_info *frame,
2695 const struct frame_unwind *unwind)
2696 {
2697 gdb_assert (frame->unwind == NULL);
2698 frame->unwind = unwind;
2699 return make_cleanup (frame_cleanup_after_sniffer, frame);
2700 }
2701
2702 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2703
2704 static struct cmd_list_element *set_backtrace_cmdlist;
2705 static struct cmd_list_element *show_backtrace_cmdlist;
2706
2707 static void
2708 set_backtrace_cmd (char *args, int from_tty)
2709 {
2710 help_list (set_backtrace_cmdlist, "set backtrace ", -1, gdb_stdout);
2711 }
2712
2713 static void
2714 show_backtrace_cmd (char *args, int from_tty)
2715 {
2716 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2717 }
2718
2719 void
2720 _initialize_frame (void)
2721 {
2722 obstack_init (&frame_cache_obstack);
2723
2724 frame_stash_create ();
2725
2726 observer_attach_target_changed (frame_observer_target_changed);
2727
2728 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2729 Set backtrace specific variables.\n\
2730 Configure backtrace variables such as the backtrace limit"),
2731 &set_backtrace_cmdlist, "set backtrace ",
2732 0/*allow-unknown*/, &setlist);
2733 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2734 Show backtrace specific variables\n\
2735 Show backtrace variables such as the backtrace limit"),
2736 &show_backtrace_cmdlist, "show backtrace ",
2737 0/*allow-unknown*/, &showlist);
2738
2739 add_setshow_boolean_cmd ("past-main", class_obscure,
2740 &backtrace_past_main, _("\
2741 Set whether backtraces should continue past \"main\"."), _("\
2742 Show whether backtraces should continue past \"main\"."), _("\
2743 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2744 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2745 of the stack trace."),
2746 NULL,
2747 show_backtrace_past_main,
2748 &set_backtrace_cmdlist,
2749 &show_backtrace_cmdlist);
2750
2751 add_setshow_boolean_cmd ("past-entry", class_obscure,
2752 &backtrace_past_entry, _("\
2753 Set whether backtraces should continue past the entry point of a program."),
2754 _("\
2755 Show whether backtraces should continue past the entry point of a program."),
2756 _("\
2757 Normally there are no callers beyond the entry point of a program, so GDB\n\
2758 will terminate the backtrace there. Set this variable if you need to see\n\
2759 the rest of the stack trace."),
2760 NULL,
2761 show_backtrace_past_entry,
2762 &set_backtrace_cmdlist,
2763 &show_backtrace_cmdlist);
2764
2765 add_setshow_uinteger_cmd ("limit", class_obscure,
2766 &backtrace_limit, _("\
2767 Set an upper bound on the number of backtrace levels."), _("\
2768 Show the upper bound on the number of backtrace levels."), _("\
2769 No more than the specified number of frames can be displayed or examined.\n\
2770 Literal \"unlimited\" or zero means no limit."),
2771 NULL,
2772 show_backtrace_limit,
2773 &set_backtrace_cmdlist,
2774 &show_backtrace_cmdlist);
2775
2776 /* Debug this files internals. */
2777 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2778 Set frame debugging."), _("\
2779 Show frame debugging."), _("\
2780 When non-zero, frame specific internal debugging is enabled."),
2781 NULL,
2782 show_frame_debug,
2783 &setdebuglist, &showdebuglist);
2784 }
This page took 0.138917 seconds and 5 git commands to generate.