Include string.h in common-defs.h
[deliverable/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observer.h"
38 #include "objfiles.h"
39 #include "exceptions.h"
40 #include "gdbthread.h"
41 #include "block.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "hashtab.h"
45 #include "valprint.h"
46
47 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
48 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
49
50 /* Status of some values cached in the frame_info object. */
51
52 enum cached_copy_status
53 {
54 /* Value is unknown. */
55 CC_UNKNOWN,
56
57 /* We have a value. */
58 CC_VALUE,
59
60 /* Value was not saved. */
61 CC_NOT_SAVED,
62
63 /* Value is unavailable. */
64 CC_UNAVAILABLE
65 };
66
67 /* We keep a cache of stack frames, each of which is a "struct
68 frame_info". The innermost one gets allocated (in
69 wait_for_inferior) each time the inferior stops; current_frame
70 points to it. Additional frames get allocated (in get_prev_frame)
71 as needed, and are chained through the next and prev fields. Any
72 time that the frame cache becomes invalid (most notably when we
73 execute something, but also if we change how we interpret the
74 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
75 which reads new symbols)), we should call reinit_frame_cache. */
76
77 struct frame_info
78 {
79 /* Level of this frame. The inner-most (youngest) frame is at level
80 0. As you move towards the outer-most (oldest) frame, the level
81 increases. This is a cached value. It could just as easily be
82 computed by counting back from the selected frame to the inner
83 most frame. */
84 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
85 reserved to indicate a bogus frame - one that has been created
86 just to keep GDB happy (GDB always needs a frame). For the
87 moment leave this as speculation. */
88 int level;
89
90 /* The frame's program space. */
91 struct program_space *pspace;
92
93 /* The frame's address space. */
94 struct address_space *aspace;
95
96 /* The frame's low-level unwinder and corresponding cache. The
97 low-level unwinder is responsible for unwinding register values
98 for the previous frame. The low-level unwind methods are
99 selected based on the presence, or otherwise, of register unwind
100 information such as CFI. */
101 void *prologue_cache;
102 const struct frame_unwind *unwind;
103
104 /* Cached copy of the previous frame's architecture. */
105 struct
106 {
107 int p;
108 struct gdbarch *arch;
109 } prev_arch;
110
111 /* Cached copy of the previous frame's resume address. */
112 struct {
113 enum cached_copy_status status;
114 CORE_ADDR value;
115 } prev_pc;
116
117 /* Cached copy of the previous frame's function address. */
118 struct
119 {
120 CORE_ADDR addr;
121 int p;
122 } prev_func;
123
124 /* This frame's ID. */
125 struct
126 {
127 int p;
128 struct frame_id value;
129 } this_id;
130
131 /* The frame's high-level base methods, and corresponding cache.
132 The high level base methods are selected based on the frame's
133 debug info. */
134 const struct frame_base *base;
135 void *base_cache;
136
137 /* Pointers to the next (down, inner, younger) and previous (up,
138 outer, older) frame_info's in the frame cache. */
139 struct frame_info *next; /* down, inner, younger */
140 int prev_p;
141 struct frame_info *prev; /* up, outer, older */
142
143 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
144 could. Only valid when PREV_P is set. */
145 enum unwind_stop_reason stop_reason;
146
147 /* A frame specific string describing the STOP_REASON in more detail.
148 Only valid when PREV_P is set, but even then may still be NULL. */
149 const char *stop_string;
150 };
151
152 /* A frame stash used to speed up frame lookups. Create a hash table
153 to stash frames previously accessed from the frame cache for
154 quicker subsequent retrieval. The hash table is emptied whenever
155 the frame cache is invalidated. */
156
157 static htab_t frame_stash;
158
159 /* Internal function to calculate a hash from the frame_id addresses,
160 using as many valid addresses as possible. Frames below level 0
161 are not stored in the hash table. */
162
163 static hashval_t
164 frame_addr_hash (const void *ap)
165 {
166 const struct frame_info *frame = ap;
167 const struct frame_id f_id = frame->this_id.value;
168 hashval_t hash = 0;
169
170 gdb_assert (f_id.stack_status != FID_STACK_INVALID
171 || f_id.code_addr_p
172 || f_id.special_addr_p);
173
174 if (f_id.stack_status == FID_STACK_VALID)
175 hash = iterative_hash (&f_id.stack_addr,
176 sizeof (f_id.stack_addr), hash);
177 if (f_id.code_addr_p)
178 hash = iterative_hash (&f_id.code_addr,
179 sizeof (f_id.code_addr), hash);
180 if (f_id.special_addr_p)
181 hash = iterative_hash (&f_id.special_addr,
182 sizeof (f_id.special_addr), hash);
183
184 return hash;
185 }
186
187 /* Internal equality function for the hash table. This function
188 defers equality operations to frame_id_eq. */
189
190 static int
191 frame_addr_hash_eq (const void *a, const void *b)
192 {
193 const struct frame_info *f_entry = a;
194 const struct frame_info *f_element = b;
195
196 return frame_id_eq (f_entry->this_id.value,
197 f_element->this_id.value);
198 }
199
200 /* Internal function to create the frame_stash hash table. 100 seems
201 to be a good compromise to start the hash table at. */
202
203 static void
204 frame_stash_create (void)
205 {
206 frame_stash = htab_create (100,
207 frame_addr_hash,
208 frame_addr_hash_eq,
209 NULL);
210 }
211
212 /* Internal function to add a frame to the frame_stash hash table.
213 Returns false if a frame with the same ID was already stashed, true
214 otherwise. */
215
216 static int
217 frame_stash_add (struct frame_info *frame)
218 {
219 struct frame_info **slot;
220
221 /* Do not try to stash the sentinel frame. */
222 gdb_assert (frame->level >= 0);
223
224 slot = (struct frame_info **) htab_find_slot (frame_stash,
225 frame,
226 INSERT);
227
228 /* If we already have a frame in the stack with the same id, we
229 either have a stack cycle (corrupted stack?), or some bug
230 elsewhere in GDB. In any case, ignore the duplicate and return
231 an indication to the caller. */
232 if (*slot != NULL)
233 return 0;
234
235 *slot = frame;
236 return 1;
237 }
238
239 /* Internal function to search the frame stash for an entry with the
240 given frame ID. If found, return that frame. Otherwise return
241 NULL. */
242
243 static struct frame_info *
244 frame_stash_find (struct frame_id id)
245 {
246 struct frame_info dummy;
247 struct frame_info *frame;
248
249 dummy.this_id.value = id;
250 frame = htab_find (frame_stash, &dummy);
251 return frame;
252 }
253
254 /* Internal function to invalidate the frame stash by removing all
255 entries in it. This only occurs when the frame cache is
256 invalidated. */
257
258 static void
259 frame_stash_invalidate (void)
260 {
261 htab_empty (frame_stash);
262 }
263
264 /* Flag to control debugging. */
265
266 unsigned int frame_debug;
267 static void
268 show_frame_debug (struct ui_file *file, int from_tty,
269 struct cmd_list_element *c, const char *value)
270 {
271 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
272 }
273
274 /* Flag to indicate whether backtraces should stop at main et.al. */
275
276 static int backtrace_past_main;
277 static void
278 show_backtrace_past_main (struct ui_file *file, int from_tty,
279 struct cmd_list_element *c, const char *value)
280 {
281 fprintf_filtered (file,
282 _("Whether backtraces should "
283 "continue past \"main\" is %s.\n"),
284 value);
285 }
286
287 static int backtrace_past_entry;
288 static void
289 show_backtrace_past_entry (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291 {
292 fprintf_filtered (file, _("Whether backtraces should continue past the "
293 "entry point of a program is %s.\n"),
294 value);
295 }
296
297 static unsigned int backtrace_limit = UINT_MAX;
298 static void
299 show_backtrace_limit (struct ui_file *file, int from_tty,
300 struct cmd_list_element *c, const char *value)
301 {
302 fprintf_filtered (file,
303 _("An upper bound on the number "
304 "of backtrace levels is %s.\n"),
305 value);
306 }
307
308
309 static void
310 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
311 {
312 if (p)
313 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
314 else
315 fprintf_unfiltered (file, "!%s", name);
316 }
317
318 void
319 fprint_frame_id (struct ui_file *file, struct frame_id id)
320 {
321 fprintf_unfiltered (file, "{");
322
323 if (id.stack_status == FID_STACK_INVALID)
324 fprintf_unfiltered (file, "!stack");
325 else if (id.stack_status == FID_STACK_UNAVAILABLE)
326 fprintf_unfiltered (file, "stack=<unavailable>");
327 else
328 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
329 fprintf_unfiltered (file, ",");
330
331 fprint_field (file, "code", id.code_addr_p, id.code_addr);
332 fprintf_unfiltered (file, ",");
333
334 fprint_field (file, "special", id.special_addr_p, id.special_addr);
335
336 if (id.artificial_depth)
337 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
338
339 fprintf_unfiltered (file, "}");
340 }
341
342 static void
343 fprint_frame_type (struct ui_file *file, enum frame_type type)
344 {
345 switch (type)
346 {
347 case NORMAL_FRAME:
348 fprintf_unfiltered (file, "NORMAL_FRAME");
349 return;
350 case DUMMY_FRAME:
351 fprintf_unfiltered (file, "DUMMY_FRAME");
352 return;
353 case INLINE_FRAME:
354 fprintf_unfiltered (file, "INLINE_FRAME");
355 return;
356 case TAILCALL_FRAME:
357 fprintf_unfiltered (file, "TAILCALL_FRAME");
358 return;
359 case SIGTRAMP_FRAME:
360 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
361 return;
362 case ARCH_FRAME:
363 fprintf_unfiltered (file, "ARCH_FRAME");
364 return;
365 case SENTINEL_FRAME:
366 fprintf_unfiltered (file, "SENTINEL_FRAME");
367 return;
368 default:
369 fprintf_unfiltered (file, "<unknown type>");
370 return;
371 };
372 }
373
374 static void
375 fprint_frame (struct ui_file *file, struct frame_info *fi)
376 {
377 if (fi == NULL)
378 {
379 fprintf_unfiltered (file, "<NULL frame>");
380 return;
381 }
382 fprintf_unfiltered (file, "{");
383 fprintf_unfiltered (file, "level=%d", fi->level);
384 fprintf_unfiltered (file, ",");
385 fprintf_unfiltered (file, "type=");
386 if (fi->unwind != NULL)
387 fprint_frame_type (file, fi->unwind->type);
388 else
389 fprintf_unfiltered (file, "<unknown>");
390 fprintf_unfiltered (file, ",");
391 fprintf_unfiltered (file, "unwind=");
392 if (fi->unwind != NULL)
393 gdb_print_host_address (fi->unwind, file);
394 else
395 fprintf_unfiltered (file, "<unknown>");
396 fprintf_unfiltered (file, ",");
397 fprintf_unfiltered (file, "pc=");
398 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
399 fprintf_unfiltered (file, "<unknown>");
400 else if (fi->next->prev_pc.status == CC_VALUE)
401 fprintf_unfiltered (file, "%s",
402 hex_string (fi->next->prev_pc.value));
403 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
404 val_print_not_saved (file);
405 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
406 val_print_unavailable (file);
407 fprintf_unfiltered (file, ",");
408 fprintf_unfiltered (file, "id=");
409 if (fi->this_id.p)
410 fprint_frame_id (file, fi->this_id.value);
411 else
412 fprintf_unfiltered (file, "<unknown>");
413 fprintf_unfiltered (file, ",");
414 fprintf_unfiltered (file, "func=");
415 if (fi->next != NULL && fi->next->prev_func.p)
416 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
417 else
418 fprintf_unfiltered (file, "<unknown>");
419 fprintf_unfiltered (file, "}");
420 }
421
422 /* Given FRAME, return the enclosing frame as found in real frames read-in from
423 inferior memory. Skip any previous frames which were made up by GDB.
424 Return the original frame if no immediate previous frames exist. */
425
426 static struct frame_info *
427 skip_artificial_frames (struct frame_info *frame)
428 {
429 /* Note we use get_prev_frame_always, and not get_prev_frame. The
430 latter will truncate the frame chain, leading to this function
431 unintentionally returning a null_frame_id (e.g., when the user
432 sets a backtrace limit). This is safe, because as these frames
433 are made up by GDB, there must be a real frame in the chain
434 below. */
435 while (get_frame_type (frame) == INLINE_FRAME
436 || get_frame_type (frame) == TAILCALL_FRAME)
437 frame = get_prev_frame_always (frame);
438
439 return frame;
440 }
441
442 /* Compute the frame's uniq ID that can be used to, later, re-find the
443 frame. */
444
445 static void
446 compute_frame_id (struct frame_info *fi)
447 {
448 gdb_assert (!fi->this_id.p);
449
450 if (frame_debug)
451 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
452 fi->level);
453 /* Find the unwinder. */
454 if (fi->unwind == NULL)
455 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
456 /* Find THIS frame's ID. */
457 /* Default to outermost if no ID is found. */
458 fi->this_id.value = outer_frame_id;
459 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
460 gdb_assert (frame_id_p (fi->this_id.value));
461 fi->this_id.p = 1;
462 if (frame_debug)
463 {
464 fprintf_unfiltered (gdb_stdlog, "-> ");
465 fprint_frame_id (gdb_stdlog, fi->this_id.value);
466 fprintf_unfiltered (gdb_stdlog, " }\n");
467 }
468 }
469
470 /* Return a frame uniq ID that can be used to, later, re-find the
471 frame. */
472
473 struct frame_id
474 get_frame_id (struct frame_info *fi)
475 {
476 if (fi == NULL)
477 return null_frame_id;
478
479 gdb_assert (fi->this_id.p);
480 return fi->this_id.value;
481 }
482
483 struct frame_id
484 get_stack_frame_id (struct frame_info *next_frame)
485 {
486 return get_frame_id (skip_artificial_frames (next_frame));
487 }
488
489 struct frame_id
490 frame_unwind_caller_id (struct frame_info *next_frame)
491 {
492 struct frame_info *this_frame;
493
494 /* Use get_prev_frame_always, and not get_prev_frame. The latter
495 will truncate the frame chain, leading to this function
496 unintentionally returning a null_frame_id (e.g., when a caller
497 requests the frame ID of "main()"s caller. */
498
499 next_frame = skip_artificial_frames (next_frame);
500 this_frame = get_prev_frame_always (next_frame);
501 if (this_frame)
502 return get_frame_id (skip_artificial_frames (this_frame));
503 else
504 return null_frame_id;
505 }
506
507 const struct frame_id null_frame_id; /* All zeros. */
508 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
509
510 struct frame_id
511 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
512 CORE_ADDR special_addr)
513 {
514 struct frame_id id = null_frame_id;
515
516 id.stack_addr = stack_addr;
517 id.stack_status = FID_STACK_VALID;
518 id.code_addr = code_addr;
519 id.code_addr_p = 1;
520 id.special_addr = special_addr;
521 id.special_addr_p = 1;
522 return id;
523 }
524
525 /* See frame.h. */
526
527 struct frame_id
528 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
529 {
530 struct frame_id id = null_frame_id;
531
532 id.stack_status = FID_STACK_UNAVAILABLE;
533 id.code_addr = code_addr;
534 id.code_addr_p = 1;
535 return id;
536 }
537
538 /* See frame.h. */
539
540 struct frame_id
541 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
542 CORE_ADDR special_addr)
543 {
544 struct frame_id id = null_frame_id;
545
546 id.stack_status = FID_STACK_UNAVAILABLE;
547 id.code_addr = code_addr;
548 id.code_addr_p = 1;
549 id.special_addr = special_addr;
550 id.special_addr_p = 1;
551 return id;
552 }
553
554 struct frame_id
555 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
556 {
557 struct frame_id id = null_frame_id;
558
559 id.stack_addr = stack_addr;
560 id.stack_status = FID_STACK_VALID;
561 id.code_addr = code_addr;
562 id.code_addr_p = 1;
563 return id;
564 }
565
566 struct frame_id
567 frame_id_build_wild (CORE_ADDR stack_addr)
568 {
569 struct frame_id id = null_frame_id;
570
571 id.stack_addr = stack_addr;
572 id.stack_status = FID_STACK_VALID;
573 return id;
574 }
575
576 int
577 frame_id_p (struct frame_id l)
578 {
579 int p;
580
581 /* The frame is valid iff it has a valid stack address. */
582 p = l.stack_status != FID_STACK_INVALID;
583 /* outer_frame_id is also valid. */
584 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
585 p = 1;
586 if (frame_debug)
587 {
588 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
589 fprint_frame_id (gdb_stdlog, l);
590 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
591 }
592 return p;
593 }
594
595 int
596 frame_id_artificial_p (struct frame_id l)
597 {
598 if (!frame_id_p (l))
599 return 0;
600
601 return (l.artificial_depth != 0);
602 }
603
604 int
605 frame_id_eq (struct frame_id l, struct frame_id r)
606 {
607 int eq;
608
609 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
610 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
611 /* The outermost frame marker is equal to itself. This is the
612 dodgy thing about outer_frame_id, since between execution steps
613 we might step into another function - from which we can't
614 unwind either. More thought required to get rid of
615 outer_frame_id. */
616 eq = 1;
617 else if (l.stack_status == FID_STACK_INVALID
618 || l.stack_status == FID_STACK_INVALID)
619 /* Like a NaN, if either ID is invalid, the result is false.
620 Note that a frame ID is invalid iff it is the null frame ID. */
621 eq = 0;
622 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
623 /* If .stack addresses are different, the frames are different. */
624 eq = 0;
625 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
626 /* An invalid code addr is a wild card. If .code addresses are
627 different, the frames are different. */
628 eq = 0;
629 else if (l.special_addr_p && r.special_addr_p
630 && l.special_addr != r.special_addr)
631 /* An invalid special addr is a wild card (or unused). Otherwise
632 if special addresses are different, the frames are different. */
633 eq = 0;
634 else if (l.artificial_depth != r.artificial_depth)
635 /* If artifical depths are different, the frames must be different. */
636 eq = 0;
637 else
638 /* Frames are equal. */
639 eq = 1;
640
641 if (frame_debug)
642 {
643 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
644 fprint_frame_id (gdb_stdlog, l);
645 fprintf_unfiltered (gdb_stdlog, ",r=");
646 fprint_frame_id (gdb_stdlog, r);
647 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
648 }
649 return eq;
650 }
651
652 /* Safety net to check whether frame ID L should be inner to
653 frame ID R, according to their stack addresses.
654
655 This method cannot be used to compare arbitrary frames, as the
656 ranges of valid stack addresses may be discontiguous (e.g. due
657 to sigaltstack).
658
659 However, it can be used as safety net to discover invalid frame
660 IDs in certain circumstances. Assuming that NEXT is the immediate
661 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
662
663 * The stack address of NEXT must be inner-than-or-equal to the stack
664 address of THIS.
665
666 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
667 error has occurred.
668
669 * If NEXT and THIS have different stack addresses, no other frame
670 in the frame chain may have a stack address in between.
671
672 Therefore, if frame_id_inner (TEST, THIS) holds, but
673 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
674 to a valid frame in the frame chain.
675
676 The sanity checks above cannot be performed when a SIGTRAMP frame
677 is involved, because signal handlers might be executed on a different
678 stack than the stack used by the routine that caused the signal
679 to be raised. This can happen for instance when a thread exceeds
680 its maximum stack size. In this case, certain compilers implement
681 a stack overflow strategy that cause the handler to be run on a
682 different stack. */
683
684 static int
685 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
686 {
687 int inner;
688
689 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
690 /* Like NaN, any operation involving an invalid ID always fails.
691 Likewise if either ID has an unavailable stack address. */
692 inner = 0;
693 else if (l.artificial_depth > r.artificial_depth
694 && l.stack_addr == r.stack_addr
695 && l.code_addr_p == r.code_addr_p
696 && l.special_addr_p == r.special_addr_p
697 && l.special_addr == r.special_addr)
698 {
699 /* Same function, different inlined functions. */
700 const struct block *lb, *rb;
701
702 gdb_assert (l.code_addr_p && r.code_addr_p);
703
704 lb = block_for_pc (l.code_addr);
705 rb = block_for_pc (r.code_addr);
706
707 if (lb == NULL || rb == NULL)
708 /* Something's gone wrong. */
709 inner = 0;
710 else
711 /* This will return true if LB and RB are the same block, or
712 if the block with the smaller depth lexically encloses the
713 block with the greater depth. */
714 inner = contained_in (lb, rb);
715 }
716 else
717 /* Only return non-zero when strictly inner than. Note that, per
718 comment in "frame.h", there is some fuzz here. Frameless
719 functions are not strictly inner than (same .stack but
720 different .code and/or .special address). */
721 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
722 if (frame_debug)
723 {
724 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
725 fprint_frame_id (gdb_stdlog, l);
726 fprintf_unfiltered (gdb_stdlog, ",r=");
727 fprint_frame_id (gdb_stdlog, r);
728 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
729 }
730 return inner;
731 }
732
733 struct frame_info *
734 frame_find_by_id (struct frame_id id)
735 {
736 struct frame_info *frame, *prev_frame;
737
738 /* ZERO denotes the null frame, let the caller decide what to do
739 about it. Should it instead return get_current_frame()? */
740 if (!frame_id_p (id))
741 return NULL;
742
743 /* Try using the frame stash first. Finding it there removes the need
744 to perform the search by looping over all frames, which can be very
745 CPU-intensive if the number of frames is very high (the loop is O(n)
746 and get_prev_frame performs a series of checks that are relatively
747 expensive). This optimization is particularly useful when this function
748 is called from another function (such as value_fetch_lazy, case
749 VALUE_LVAL (val) == lval_register) which already loops over all frames,
750 making the overall behavior O(n^2). */
751 frame = frame_stash_find (id);
752 if (frame)
753 return frame;
754
755 for (frame = get_current_frame (); ; frame = prev_frame)
756 {
757 struct frame_id this = get_frame_id (frame);
758
759 if (frame_id_eq (id, this))
760 /* An exact match. */
761 return frame;
762
763 prev_frame = get_prev_frame (frame);
764 if (!prev_frame)
765 return NULL;
766
767 /* As a safety net to avoid unnecessary backtracing while trying
768 to find an invalid ID, we check for a common situation where
769 we can detect from comparing stack addresses that no other
770 frame in the current frame chain can have this ID. See the
771 comment at frame_id_inner for details. */
772 if (get_frame_type (frame) == NORMAL_FRAME
773 && !frame_id_inner (get_frame_arch (frame), id, this)
774 && frame_id_inner (get_frame_arch (prev_frame), id,
775 get_frame_id (prev_frame)))
776 return NULL;
777 }
778 return NULL;
779 }
780
781 static CORE_ADDR
782 frame_unwind_pc (struct frame_info *this_frame)
783 {
784 if (this_frame->prev_pc.status == CC_UNKNOWN)
785 {
786 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
787 {
788 volatile struct gdb_exception ex;
789 struct gdbarch *prev_gdbarch;
790 CORE_ADDR pc = 0;
791
792 /* The right way. The `pure' way. The one true way. This
793 method depends solely on the register-unwind code to
794 determine the value of registers in THIS frame, and hence
795 the value of this frame's PC (resume address). A typical
796 implementation is no more than:
797
798 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
799 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
800
801 Note: this method is very heavily dependent on a correct
802 register-unwind implementation, it pays to fix that
803 method first; this method is frame type agnostic, since
804 it only deals with register values, it works with any
805 frame. This is all in stark contrast to the old
806 FRAME_SAVED_PC which would try to directly handle all the
807 different ways that a PC could be unwound. */
808 prev_gdbarch = frame_unwind_arch (this_frame);
809
810 TRY_CATCH (ex, RETURN_MASK_ERROR)
811 {
812 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
813 }
814 if (ex.reason < 0)
815 {
816 if (ex.error == NOT_AVAILABLE_ERROR)
817 {
818 this_frame->prev_pc.status = CC_UNAVAILABLE;
819
820 if (frame_debug)
821 fprintf_unfiltered (gdb_stdlog,
822 "{ frame_unwind_pc (this_frame=%d)"
823 " -> <unavailable> }\n",
824 this_frame->level);
825 }
826 else if (ex.error == OPTIMIZED_OUT_ERROR)
827 {
828 this_frame->prev_pc.status = CC_NOT_SAVED;
829
830 if (frame_debug)
831 fprintf_unfiltered (gdb_stdlog,
832 "{ frame_unwind_pc (this_frame=%d)"
833 " -> <not saved> }\n",
834 this_frame->level);
835 }
836 else
837 throw_exception (ex);
838 }
839 else
840 {
841 this_frame->prev_pc.value = pc;
842 this_frame->prev_pc.status = CC_VALUE;
843 if (frame_debug)
844 fprintf_unfiltered (gdb_stdlog,
845 "{ frame_unwind_pc (this_frame=%d) "
846 "-> %s }\n",
847 this_frame->level,
848 hex_string (this_frame->prev_pc.value));
849 }
850 }
851 else
852 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
853 }
854
855 if (this_frame->prev_pc.status == CC_VALUE)
856 return this_frame->prev_pc.value;
857 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
858 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
859 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
860 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
861 else
862 internal_error (__FILE__, __LINE__,
863 "unexpected prev_pc status: %d",
864 (int) this_frame->prev_pc.status);
865 }
866
867 CORE_ADDR
868 frame_unwind_caller_pc (struct frame_info *this_frame)
869 {
870 return frame_unwind_pc (skip_artificial_frames (this_frame));
871 }
872
873 int
874 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
875 {
876 struct frame_info *next_frame = this_frame->next;
877
878 if (!next_frame->prev_func.p)
879 {
880 CORE_ADDR addr_in_block;
881
882 /* Make certain that this, and not the adjacent, function is
883 found. */
884 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
885 {
886 next_frame->prev_func.p = -1;
887 if (frame_debug)
888 fprintf_unfiltered (gdb_stdlog,
889 "{ get_frame_func (this_frame=%d)"
890 " -> unavailable }\n",
891 this_frame->level);
892 }
893 else
894 {
895 next_frame->prev_func.p = 1;
896 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
897 if (frame_debug)
898 fprintf_unfiltered (gdb_stdlog,
899 "{ get_frame_func (this_frame=%d) -> %s }\n",
900 this_frame->level,
901 hex_string (next_frame->prev_func.addr));
902 }
903 }
904
905 if (next_frame->prev_func.p < 0)
906 {
907 *pc = -1;
908 return 0;
909 }
910 else
911 {
912 *pc = next_frame->prev_func.addr;
913 return 1;
914 }
915 }
916
917 CORE_ADDR
918 get_frame_func (struct frame_info *this_frame)
919 {
920 CORE_ADDR pc;
921
922 if (!get_frame_func_if_available (this_frame, &pc))
923 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
924
925 return pc;
926 }
927
928 static enum register_status
929 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
930 {
931 if (!deprecated_frame_register_read (src, regnum, buf))
932 return REG_UNAVAILABLE;
933 else
934 return REG_VALID;
935 }
936
937 struct regcache *
938 frame_save_as_regcache (struct frame_info *this_frame)
939 {
940 struct address_space *aspace = get_frame_address_space (this_frame);
941 struct regcache *regcache = regcache_xmalloc (get_frame_arch (this_frame),
942 aspace);
943 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache);
944
945 regcache_save (regcache, do_frame_register_read, this_frame);
946 discard_cleanups (cleanups);
947 return regcache;
948 }
949
950 void
951 frame_pop (struct frame_info *this_frame)
952 {
953 struct frame_info *prev_frame;
954 struct regcache *scratch;
955 struct cleanup *cleanups;
956
957 if (get_frame_type (this_frame) == DUMMY_FRAME)
958 {
959 /* Popping a dummy frame involves restoring more than just registers.
960 dummy_frame_pop does all the work. */
961 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
962 return;
963 }
964
965 /* Ensure that we have a frame to pop to. */
966 prev_frame = get_prev_frame_always (this_frame);
967
968 if (!prev_frame)
969 error (_("Cannot pop the initial frame."));
970
971 /* Ignore TAILCALL_FRAME type frames, they were executed already before
972 entering THISFRAME. */
973 while (get_frame_type (prev_frame) == TAILCALL_FRAME)
974 prev_frame = get_prev_frame (prev_frame);
975
976 /* Make a copy of all the register values unwound from this frame.
977 Save them in a scratch buffer so that there isn't a race between
978 trying to extract the old values from the current regcache while
979 at the same time writing new values into that same cache. */
980 scratch = frame_save_as_regcache (prev_frame);
981 cleanups = make_cleanup_regcache_xfree (scratch);
982
983 /* FIXME: cagney/2003-03-16: It should be possible to tell the
984 target's register cache that it is about to be hit with a burst
985 register transfer and that the sequence of register writes should
986 be batched. The pair target_prepare_to_store() and
987 target_store_registers() kind of suggest this functionality.
988 Unfortunately, they don't implement it. Their lack of a formal
989 definition can lead to targets writing back bogus values
990 (arguably a bug in the target code mind). */
991 /* Now copy those saved registers into the current regcache.
992 Here, regcache_cpy() calls regcache_restore(). */
993 regcache_cpy (get_current_regcache (), scratch);
994 do_cleanups (cleanups);
995
996 /* We've made right mess of GDB's local state, just discard
997 everything. */
998 reinit_frame_cache ();
999 }
1000
1001 void
1002 frame_register_unwind (struct frame_info *frame, int regnum,
1003 int *optimizedp, int *unavailablep,
1004 enum lval_type *lvalp, CORE_ADDR *addrp,
1005 int *realnump, gdb_byte *bufferp)
1006 {
1007 struct value *value;
1008
1009 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1010 that the value proper does not need to be fetched. */
1011 gdb_assert (optimizedp != NULL);
1012 gdb_assert (lvalp != NULL);
1013 gdb_assert (addrp != NULL);
1014 gdb_assert (realnump != NULL);
1015 /* gdb_assert (bufferp != NULL); */
1016
1017 value = frame_unwind_register_value (frame, regnum);
1018
1019 gdb_assert (value != NULL);
1020
1021 *optimizedp = value_optimized_out (value);
1022 *unavailablep = !value_entirely_available (value);
1023 *lvalp = VALUE_LVAL (value);
1024 *addrp = value_address (value);
1025 *realnump = VALUE_REGNUM (value);
1026
1027 if (bufferp)
1028 {
1029 if (!*optimizedp && !*unavailablep)
1030 memcpy (bufferp, value_contents_all (value),
1031 TYPE_LENGTH (value_type (value)));
1032 else
1033 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1034 }
1035
1036 /* Dispose of the new value. This prevents watchpoints from
1037 trying to watch the saved frame pointer. */
1038 release_value (value);
1039 value_free (value);
1040 }
1041
1042 void
1043 frame_register (struct frame_info *frame, int regnum,
1044 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1045 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1046 {
1047 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1048 that the value proper does not need to be fetched. */
1049 gdb_assert (optimizedp != NULL);
1050 gdb_assert (lvalp != NULL);
1051 gdb_assert (addrp != NULL);
1052 gdb_assert (realnump != NULL);
1053 /* gdb_assert (bufferp != NULL); */
1054
1055 /* Obtain the register value by unwinding the register from the next
1056 (more inner frame). */
1057 gdb_assert (frame != NULL && frame->next != NULL);
1058 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1059 lvalp, addrp, realnump, bufferp);
1060 }
1061
1062 void
1063 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1064 {
1065 int optimized;
1066 int unavailable;
1067 CORE_ADDR addr;
1068 int realnum;
1069 enum lval_type lval;
1070
1071 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1072 &lval, &addr, &realnum, buf);
1073
1074 if (optimized)
1075 throw_error (OPTIMIZED_OUT_ERROR,
1076 _("Register %d was not saved"), regnum);
1077 if (unavailable)
1078 throw_error (NOT_AVAILABLE_ERROR,
1079 _("Register %d is not available"), regnum);
1080 }
1081
1082 void
1083 get_frame_register (struct frame_info *frame,
1084 int regnum, gdb_byte *buf)
1085 {
1086 frame_unwind_register (frame->next, regnum, buf);
1087 }
1088
1089 struct value *
1090 frame_unwind_register_value (struct frame_info *frame, int regnum)
1091 {
1092 struct gdbarch *gdbarch;
1093 struct value *value;
1094
1095 gdb_assert (frame != NULL);
1096 gdbarch = frame_unwind_arch (frame);
1097
1098 if (frame_debug)
1099 {
1100 fprintf_unfiltered (gdb_stdlog,
1101 "{ frame_unwind_register_value "
1102 "(frame=%d,regnum=%d(%s),...) ",
1103 frame->level, regnum,
1104 user_reg_map_regnum_to_name (gdbarch, regnum));
1105 }
1106
1107 /* Find the unwinder. */
1108 if (frame->unwind == NULL)
1109 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1110
1111 /* Ask this frame to unwind its register. */
1112 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1113
1114 if (frame_debug)
1115 {
1116 fprintf_unfiltered (gdb_stdlog, "->");
1117 if (value_optimized_out (value))
1118 {
1119 fprintf_unfiltered (gdb_stdlog, " ");
1120 val_print_optimized_out (value, gdb_stdlog);
1121 }
1122 else
1123 {
1124 if (VALUE_LVAL (value) == lval_register)
1125 fprintf_unfiltered (gdb_stdlog, " register=%d",
1126 VALUE_REGNUM (value));
1127 else if (VALUE_LVAL (value) == lval_memory)
1128 fprintf_unfiltered (gdb_stdlog, " address=%s",
1129 paddress (gdbarch,
1130 value_address (value)));
1131 else
1132 fprintf_unfiltered (gdb_stdlog, " computed");
1133
1134 if (value_lazy (value))
1135 fprintf_unfiltered (gdb_stdlog, " lazy");
1136 else
1137 {
1138 int i;
1139 const gdb_byte *buf = value_contents (value);
1140
1141 fprintf_unfiltered (gdb_stdlog, " bytes=");
1142 fprintf_unfiltered (gdb_stdlog, "[");
1143 for (i = 0; i < register_size (gdbarch, regnum); i++)
1144 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1145 fprintf_unfiltered (gdb_stdlog, "]");
1146 }
1147 }
1148
1149 fprintf_unfiltered (gdb_stdlog, " }\n");
1150 }
1151
1152 return value;
1153 }
1154
1155 struct value *
1156 get_frame_register_value (struct frame_info *frame, int regnum)
1157 {
1158 return frame_unwind_register_value (frame->next, regnum);
1159 }
1160
1161 LONGEST
1162 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1163 {
1164 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1166 int size = register_size (gdbarch, regnum);
1167 gdb_byte buf[MAX_REGISTER_SIZE];
1168
1169 frame_unwind_register (frame, regnum, buf);
1170 return extract_signed_integer (buf, size, byte_order);
1171 }
1172
1173 LONGEST
1174 get_frame_register_signed (struct frame_info *frame, int regnum)
1175 {
1176 return frame_unwind_register_signed (frame->next, regnum);
1177 }
1178
1179 ULONGEST
1180 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1181 {
1182 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1183 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1184 int size = register_size (gdbarch, regnum);
1185 gdb_byte buf[MAX_REGISTER_SIZE];
1186
1187 frame_unwind_register (frame, regnum, buf);
1188 return extract_unsigned_integer (buf, size, byte_order);
1189 }
1190
1191 ULONGEST
1192 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1193 {
1194 return frame_unwind_register_unsigned (frame->next, regnum);
1195 }
1196
1197 int
1198 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1199 ULONGEST *val)
1200 {
1201 struct value *regval = get_frame_register_value (frame, regnum);
1202
1203 if (!value_optimized_out (regval)
1204 && value_entirely_available (regval))
1205 {
1206 struct gdbarch *gdbarch = get_frame_arch (frame);
1207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1208 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1209
1210 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1211 return 1;
1212 }
1213
1214 return 0;
1215 }
1216
1217 void
1218 put_frame_register (struct frame_info *frame, int regnum,
1219 const gdb_byte *buf)
1220 {
1221 struct gdbarch *gdbarch = get_frame_arch (frame);
1222 int realnum;
1223 int optim;
1224 int unavail;
1225 enum lval_type lval;
1226 CORE_ADDR addr;
1227
1228 frame_register (frame, regnum, &optim, &unavail,
1229 &lval, &addr, &realnum, NULL);
1230 if (optim)
1231 error (_("Attempt to assign to a register that was not saved."));
1232 switch (lval)
1233 {
1234 case lval_memory:
1235 {
1236 write_memory (addr, buf, register_size (gdbarch, regnum));
1237 break;
1238 }
1239 case lval_register:
1240 regcache_cooked_write (get_current_regcache (), realnum, buf);
1241 break;
1242 default:
1243 error (_("Attempt to assign to an unmodifiable value."));
1244 }
1245 }
1246
1247 /* This function is deprecated. Use get_frame_register_value instead,
1248 which provides more accurate information.
1249
1250 Find and return the value of REGNUM for the specified stack frame.
1251 The number of bytes copied is REGISTER_SIZE (REGNUM).
1252
1253 Returns 0 if the register value could not be found. */
1254
1255 int
1256 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1257 gdb_byte *myaddr)
1258 {
1259 int optimized;
1260 int unavailable;
1261 enum lval_type lval;
1262 CORE_ADDR addr;
1263 int realnum;
1264
1265 frame_register (frame, regnum, &optimized, &unavailable,
1266 &lval, &addr, &realnum, myaddr);
1267
1268 return !optimized && !unavailable;
1269 }
1270
1271 int
1272 get_frame_register_bytes (struct frame_info *frame, int regnum,
1273 CORE_ADDR offset, int len, gdb_byte *myaddr,
1274 int *optimizedp, int *unavailablep)
1275 {
1276 struct gdbarch *gdbarch = get_frame_arch (frame);
1277 int i;
1278 int maxsize;
1279 int numregs;
1280
1281 /* Skip registers wholly inside of OFFSET. */
1282 while (offset >= register_size (gdbarch, regnum))
1283 {
1284 offset -= register_size (gdbarch, regnum);
1285 regnum++;
1286 }
1287
1288 /* Ensure that we will not read beyond the end of the register file.
1289 This can only ever happen if the debug information is bad. */
1290 maxsize = -offset;
1291 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1292 for (i = regnum; i < numregs; i++)
1293 {
1294 int thissize = register_size (gdbarch, i);
1295
1296 if (thissize == 0)
1297 break; /* This register is not available on this architecture. */
1298 maxsize += thissize;
1299 }
1300 if (len > maxsize)
1301 error (_("Bad debug information detected: "
1302 "Attempt to read %d bytes from registers."), len);
1303
1304 /* Copy the data. */
1305 while (len > 0)
1306 {
1307 int curr_len = register_size (gdbarch, regnum) - offset;
1308
1309 if (curr_len > len)
1310 curr_len = len;
1311
1312 if (curr_len == register_size (gdbarch, regnum))
1313 {
1314 enum lval_type lval;
1315 CORE_ADDR addr;
1316 int realnum;
1317
1318 frame_register (frame, regnum, optimizedp, unavailablep,
1319 &lval, &addr, &realnum, myaddr);
1320 if (*optimizedp || *unavailablep)
1321 return 0;
1322 }
1323 else
1324 {
1325 gdb_byte buf[MAX_REGISTER_SIZE];
1326 enum lval_type lval;
1327 CORE_ADDR addr;
1328 int realnum;
1329
1330 frame_register (frame, regnum, optimizedp, unavailablep,
1331 &lval, &addr, &realnum, buf);
1332 if (*optimizedp || *unavailablep)
1333 return 0;
1334 memcpy (myaddr, buf + offset, curr_len);
1335 }
1336
1337 myaddr += curr_len;
1338 len -= curr_len;
1339 offset = 0;
1340 regnum++;
1341 }
1342
1343 *optimizedp = 0;
1344 *unavailablep = 0;
1345 return 1;
1346 }
1347
1348 void
1349 put_frame_register_bytes (struct frame_info *frame, int regnum,
1350 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1351 {
1352 struct gdbarch *gdbarch = get_frame_arch (frame);
1353
1354 /* Skip registers wholly inside of OFFSET. */
1355 while (offset >= register_size (gdbarch, regnum))
1356 {
1357 offset -= register_size (gdbarch, regnum);
1358 regnum++;
1359 }
1360
1361 /* Copy the data. */
1362 while (len > 0)
1363 {
1364 int curr_len = register_size (gdbarch, regnum) - offset;
1365
1366 if (curr_len > len)
1367 curr_len = len;
1368
1369 if (curr_len == register_size (gdbarch, regnum))
1370 {
1371 put_frame_register (frame, regnum, myaddr);
1372 }
1373 else
1374 {
1375 gdb_byte buf[MAX_REGISTER_SIZE];
1376
1377 deprecated_frame_register_read (frame, regnum, buf);
1378 memcpy (buf + offset, myaddr, curr_len);
1379 put_frame_register (frame, regnum, buf);
1380 }
1381
1382 myaddr += curr_len;
1383 len -= curr_len;
1384 offset = 0;
1385 regnum++;
1386 }
1387 }
1388
1389 /* Create a sentinel frame. */
1390
1391 static struct frame_info *
1392 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1393 {
1394 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1395
1396 frame->level = -1;
1397 frame->pspace = pspace;
1398 frame->aspace = get_regcache_aspace (regcache);
1399 /* Explicitly initialize the sentinel frame's cache. Provide it
1400 with the underlying regcache. In the future additional
1401 information, such as the frame's thread will be added. */
1402 frame->prologue_cache = sentinel_frame_cache (regcache);
1403 /* For the moment there is only one sentinel frame implementation. */
1404 frame->unwind = &sentinel_frame_unwind;
1405 /* Link this frame back to itself. The frame is self referential
1406 (the unwound PC is the same as the pc), so make it so. */
1407 frame->next = frame;
1408 /* Make the sentinel frame's ID valid, but invalid. That way all
1409 comparisons with it should fail. */
1410 frame->this_id.p = 1;
1411 frame->this_id.value = null_frame_id;
1412 if (frame_debug)
1413 {
1414 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1415 fprint_frame (gdb_stdlog, frame);
1416 fprintf_unfiltered (gdb_stdlog, " }\n");
1417 }
1418 return frame;
1419 }
1420
1421 /* Info about the innermost stack frame (contents of FP register). */
1422
1423 static struct frame_info *current_frame;
1424
1425 /* Cache for frame addresses already read by gdb. Valid only while
1426 inferior is stopped. Control variables for the frame cache should
1427 be local to this module. */
1428
1429 static struct obstack frame_cache_obstack;
1430
1431 void *
1432 frame_obstack_zalloc (unsigned long size)
1433 {
1434 void *data = obstack_alloc (&frame_cache_obstack, size);
1435
1436 memset (data, 0, size);
1437 return data;
1438 }
1439
1440 /* Return the innermost (currently executing) stack frame. This is
1441 split into two functions. The function unwind_to_current_frame()
1442 is wrapped in catch exceptions so that, even when the unwind of the
1443 sentinel frame fails, the function still returns a stack frame. */
1444
1445 static int
1446 unwind_to_current_frame (struct ui_out *ui_out, void *args)
1447 {
1448 struct frame_info *frame = get_prev_frame (args);
1449
1450 /* A sentinel frame can fail to unwind, e.g., because its PC value
1451 lands in somewhere like start. */
1452 if (frame == NULL)
1453 return 1;
1454 current_frame = frame;
1455 return 0;
1456 }
1457
1458 struct frame_info *
1459 get_current_frame (void)
1460 {
1461 /* First check, and report, the lack of registers. Having GDB
1462 report "No stack!" or "No memory" when the target doesn't even
1463 have registers is very confusing. Besides, "printcmd.exp"
1464 explicitly checks that ``print $pc'' with no registers prints "No
1465 registers". */
1466 if (!target_has_registers)
1467 error (_("No registers."));
1468 if (!target_has_stack)
1469 error (_("No stack."));
1470 if (!target_has_memory)
1471 error (_("No memory."));
1472 /* Traceframes are effectively a substitute for the live inferior. */
1473 if (get_traceframe_number () < 0)
1474 {
1475 if (ptid_equal (inferior_ptid, null_ptid))
1476 error (_("No selected thread."));
1477 if (is_exited (inferior_ptid))
1478 error (_("Invalid selected thread."));
1479 if (is_executing (inferior_ptid))
1480 error (_("Target is executing."));
1481 }
1482
1483 if (current_frame == NULL)
1484 {
1485 struct frame_info *sentinel_frame =
1486 create_sentinel_frame (current_program_space, get_current_regcache ());
1487 if (catch_exceptions (current_uiout, unwind_to_current_frame,
1488 sentinel_frame, RETURN_MASK_ERROR) != 0)
1489 {
1490 /* Oops! Fake a current frame? Is this useful? It has a PC
1491 of zero, for instance. */
1492 current_frame = sentinel_frame;
1493 }
1494 }
1495 return current_frame;
1496 }
1497
1498 /* The "selected" stack frame is used by default for local and arg
1499 access. May be zero, for no selected frame. */
1500
1501 static struct frame_info *selected_frame;
1502
1503 int
1504 has_stack_frames (void)
1505 {
1506 if (!target_has_registers || !target_has_stack || !target_has_memory)
1507 return 0;
1508
1509 /* Traceframes are effectively a substitute for the live inferior. */
1510 if (get_traceframe_number () < 0)
1511 {
1512 /* No current inferior, no frame. */
1513 if (ptid_equal (inferior_ptid, null_ptid))
1514 return 0;
1515
1516 /* Don't try to read from a dead thread. */
1517 if (is_exited (inferior_ptid))
1518 return 0;
1519
1520 /* ... or from a spinning thread. */
1521 if (is_executing (inferior_ptid))
1522 return 0;
1523 }
1524
1525 return 1;
1526 }
1527
1528 /* Return the selected frame. Always non-NULL (unless there isn't an
1529 inferior sufficient for creating a frame) in which case an error is
1530 thrown. */
1531
1532 struct frame_info *
1533 get_selected_frame (const char *message)
1534 {
1535 if (selected_frame == NULL)
1536 {
1537 if (message != NULL && !has_stack_frames ())
1538 error (("%s"), message);
1539 /* Hey! Don't trust this. It should really be re-finding the
1540 last selected frame of the currently selected thread. This,
1541 though, is better than nothing. */
1542 select_frame (get_current_frame ());
1543 }
1544 /* There is always a frame. */
1545 gdb_assert (selected_frame != NULL);
1546 return selected_frame;
1547 }
1548
1549 /* If there is a selected frame, return it. Otherwise, return NULL. */
1550
1551 struct frame_info *
1552 get_selected_frame_if_set (void)
1553 {
1554 return selected_frame;
1555 }
1556
1557 /* This is a variant of get_selected_frame() which can be called when
1558 the inferior does not have a frame; in that case it will return
1559 NULL instead of calling error(). */
1560
1561 struct frame_info *
1562 deprecated_safe_get_selected_frame (void)
1563 {
1564 if (!has_stack_frames ())
1565 return NULL;
1566 return get_selected_frame (NULL);
1567 }
1568
1569 /* Select frame FI (or NULL - to invalidate the current frame). */
1570
1571 void
1572 select_frame (struct frame_info *fi)
1573 {
1574 selected_frame = fi;
1575 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1576 frame is being invalidated. */
1577 if (deprecated_selected_frame_level_changed_hook)
1578 deprecated_selected_frame_level_changed_hook (frame_relative_level (fi));
1579
1580 /* FIXME: kseitz/2002-08-28: It would be nice to call
1581 selected_frame_level_changed_event() right here, but due to limitations
1582 in the current interfaces, we would end up flooding UIs with events
1583 because select_frame() is used extensively internally.
1584
1585 Once we have frame-parameterized frame (and frame-related) commands,
1586 the event notification can be moved here, since this function will only
1587 be called when the user's selected frame is being changed. */
1588
1589 /* Ensure that symbols for this frame are read in. Also, determine the
1590 source language of this frame, and switch to it if desired. */
1591 if (fi)
1592 {
1593 CORE_ADDR pc;
1594
1595 /* We retrieve the frame's symtab by using the frame PC.
1596 However we cannot use the frame PC as-is, because it usually
1597 points to the instruction following the "call", which is
1598 sometimes the first instruction of another function. So we
1599 rely on get_frame_address_in_block() which provides us with a
1600 PC which is guaranteed to be inside the frame's code
1601 block. */
1602 if (get_frame_address_in_block_if_available (fi, &pc))
1603 {
1604 struct symtab *s = find_pc_symtab (pc);
1605
1606 if (s
1607 && s->language != current_language->la_language
1608 && s->language != language_unknown
1609 && language_mode == language_mode_auto)
1610 set_language (s->language);
1611 }
1612 }
1613 }
1614
1615 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1616 Always returns a non-NULL value. */
1617
1618 struct frame_info *
1619 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1620 {
1621 struct frame_info *fi;
1622
1623 if (frame_debug)
1624 {
1625 fprintf_unfiltered (gdb_stdlog,
1626 "{ create_new_frame (addr=%s, pc=%s) ",
1627 hex_string (addr), hex_string (pc));
1628 }
1629
1630 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1631
1632 fi->next = create_sentinel_frame (current_program_space,
1633 get_current_regcache ());
1634
1635 /* Set/update this frame's cached PC value, found in the next frame.
1636 Do this before looking for this frame's unwinder. A sniffer is
1637 very likely to read this, and the corresponding unwinder is
1638 entitled to rely that the PC doesn't magically change. */
1639 fi->next->prev_pc.value = pc;
1640 fi->next->prev_pc.status = CC_VALUE;
1641
1642 /* We currently assume that frame chain's can't cross spaces. */
1643 fi->pspace = fi->next->pspace;
1644 fi->aspace = fi->next->aspace;
1645
1646 /* Select/initialize both the unwind function and the frame's type
1647 based on the PC. */
1648 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1649
1650 fi->this_id.p = 1;
1651 fi->this_id.value = frame_id_build (addr, pc);
1652
1653 if (frame_debug)
1654 {
1655 fprintf_unfiltered (gdb_stdlog, "-> ");
1656 fprint_frame (gdb_stdlog, fi);
1657 fprintf_unfiltered (gdb_stdlog, " }\n");
1658 }
1659
1660 return fi;
1661 }
1662
1663 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1664 innermost frame). Be careful to not fall off the bottom of the
1665 frame chain and onto the sentinel frame. */
1666
1667 struct frame_info *
1668 get_next_frame (struct frame_info *this_frame)
1669 {
1670 if (this_frame->level > 0)
1671 return this_frame->next;
1672 else
1673 return NULL;
1674 }
1675
1676 /* Observer for the target_changed event. */
1677
1678 static void
1679 frame_observer_target_changed (struct target_ops *target)
1680 {
1681 reinit_frame_cache ();
1682 }
1683
1684 /* Flush the entire frame cache. */
1685
1686 void
1687 reinit_frame_cache (void)
1688 {
1689 struct frame_info *fi;
1690
1691 /* Tear down all frame caches. */
1692 for (fi = current_frame; fi != NULL; fi = fi->prev)
1693 {
1694 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1695 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1696 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1697 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1698 }
1699
1700 /* Since we can't really be sure what the first object allocated was. */
1701 obstack_free (&frame_cache_obstack, 0);
1702 obstack_init (&frame_cache_obstack);
1703
1704 if (current_frame != NULL)
1705 annotate_frames_invalid ();
1706
1707 current_frame = NULL; /* Invalidate cache */
1708 select_frame (NULL);
1709 frame_stash_invalidate ();
1710 if (frame_debug)
1711 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1712 }
1713
1714 /* Find where a register is saved (in memory or another register).
1715 The result of frame_register_unwind is just where it is saved
1716 relative to this particular frame. */
1717
1718 static void
1719 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1720 int *optimizedp, enum lval_type *lvalp,
1721 CORE_ADDR *addrp, int *realnump)
1722 {
1723 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1724
1725 while (this_frame != NULL)
1726 {
1727 int unavailable;
1728
1729 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1730 lvalp, addrp, realnump, NULL);
1731
1732 if (*optimizedp)
1733 break;
1734
1735 if (*lvalp != lval_register)
1736 break;
1737
1738 regnum = *realnump;
1739 this_frame = get_next_frame (this_frame);
1740 }
1741 }
1742
1743 /* Called during frame unwinding to remove a previous frame pointer from a
1744 frame passed in ARG. */
1745
1746 static void
1747 remove_prev_frame (void *arg)
1748 {
1749 struct frame_info *this_frame, *prev_frame;
1750
1751 this_frame = (struct frame_info *) arg;
1752 prev_frame = this_frame->prev;
1753 gdb_assert (prev_frame != NULL);
1754
1755 prev_frame->next = NULL;
1756 this_frame->prev = NULL;
1757 }
1758
1759 /* Get the previous raw frame, and check that it is not identical to
1760 same other frame frame already in the chain. If it is, there is
1761 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1762 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1763 validity tests, that compare THIS_FRAME and the next frame, we do
1764 this right after creating the previous frame, to avoid ever ending
1765 up with two frames with the same id in the frame chain. */
1766
1767 static struct frame_info *
1768 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1769 {
1770 struct frame_info *prev_frame;
1771 struct cleanup *prev_frame_cleanup;
1772
1773 prev_frame = get_prev_frame_raw (this_frame);
1774 if (prev_frame == NULL)
1775 return NULL;
1776
1777 /* The cleanup will remove the previous frame that get_prev_frame_raw
1778 linked onto THIS_FRAME. */
1779 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1780
1781 compute_frame_id (prev_frame);
1782 if (!frame_stash_add (prev_frame))
1783 {
1784 /* Another frame with the same id was already in the stash. We just
1785 detected a cycle. */
1786 if (frame_debug)
1787 {
1788 fprintf_unfiltered (gdb_stdlog, "-> ");
1789 fprint_frame (gdb_stdlog, NULL);
1790 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1791 }
1792 this_frame->stop_reason = UNWIND_SAME_ID;
1793 /* Unlink. */
1794 prev_frame->next = NULL;
1795 this_frame->prev = NULL;
1796 prev_frame = NULL;
1797 }
1798
1799 discard_cleanups (prev_frame_cleanup);
1800 return prev_frame;
1801 }
1802
1803 /* Helper function for get_prev_frame_always, this is called inside a
1804 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1805 there is no such frame. This may throw an exception. */
1806
1807 static struct frame_info *
1808 get_prev_frame_always_1 (struct frame_info *this_frame)
1809 {
1810 struct gdbarch *gdbarch;
1811
1812 gdb_assert (this_frame != NULL);
1813 gdbarch = get_frame_arch (this_frame);
1814
1815 if (frame_debug)
1816 {
1817 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1818 if (this_frame != NULL)
1819 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1820 else
1821 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1822 fprintf_unfiltered (gdb_stdlog, ") ");
1823 }
1824
1825 /* Only try to do the unwind once. */
1826 if (this_frame->prev_p)
1827 {
1828 if (frame_debug)
1829 {
1830 fprintf_unfiltered (gdb_stdlog, "-> ");
1831 fprint_frame (gdb_stdlog, this_frame->prev);
1832 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1833 }
1834 return this_frame->prev;
1835 }
1836
1837 /* If the frame unwinder hasn't been selected yet, we must do so
1838 before setting prev_p; otherwise the check for misbehaved
1839 sniffers will think that this frame's sniffer tried to unwind
1840 further (see frame_cleanup_after_sniffer). */
1841 if (this_frame->unwind == NULL)
1842 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1843
1844 this_frame->prev_p = 1;
1845 this_frame->stop_reason = UNWIND_NO_REASON;
1846
1847 /* If we are unwinding from an inline frame, all of the below tests
1848 were already performed when we unwound from the next non-inline
1849 frame. We must skip them, since we can not get THIS_FRAME's ID
1850 until we have unwound all the way down to the previous non-inline
1851 frame. */
1852 if (get_frame_type (this_frame) == INLINE_FRAME)
1853 return get_prev_frame_if_no_cycle (this_frame);
1854
1855 /* Check that this frame is unwindable. If it isn't, don't try to
1856 unwind to the prev frame. */
1857 this_frame->stop_reason
1858 = this_frame->unwind->stop_reason (this_frame,
1859 &this_frame->prologue_cache);
1860
1861 if (this_frame->stop_reason != UNWIND_NO_REASON)
1862 {
1863 if (frame_debug)
1864 {
1865 enum unwind_stop_reason reason = this_frame->stop_reason;
1866
1867 fprintf_unfiltered (gdb_stdlog, "-> ");
1868 fprint_frame (gdb_stdlog, NULL);
1869 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
1870 frame_stop_reason_symbol_string (reason));
1871 }
1872 return NULL;
1873 }
1874
1875 /* Check that this frame's ID isn't inner to (younger, below, next)
1876 the next frame. This happens when a frame unwind goes backwards.
1877 This check is valid only if this frame and the next frame are NORMAL.
1878 See the comment at frame_id_inner for details. */
1879 if (get_frame_type (this_frame) == NORMAL_FRAME
1880 && this_frame->next->unwind->type == NORMAL_FRAME
1881 && frame_id_inner (get_frame_arch (this_frame->next),
1882 get_frame_id (this_frame),
1883 get_frame_id (this_frame->next)))
1884 {
1885 CORE_ADDR this_pc_in_block;
1886 struct minimal_symbol *morestack_msym;
1887 const char *morestack_name = NULL;
1888
1889 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
1890 this_pc_in_block = get_frame_address_in_block (this_frame);
1891 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
1892 if (morestack_msym)
1893 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
1894 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
1895 {
1896 if (frame_debug)
1897 {
1898 fprintf_unfiltered (gdb_stdlog, "-> ");
1899 fprint_frame (gdb_stdlog, NULL);
1900 fprintf_unfiltered (gdb_stdlog,
1901 " // this frame ID is inner }\n");
1902 }
1903 this_frame->stop_reason = UNWIND_INNER_ID;
1904 return NULL;
1905 }
1906 }
1907
1908 /* Check that this and the next frame do not unwind the PC register
1909 to the same memory location. If they do, then even though they
1910 have different frame IDs, the new frame will be bogus; two
1911 functions can't share a register save slot for the PC. This can
1912 happen when the prologue analyzer finds a stack adjustment, but
1913 no PC save.
1914
1915 This check does assume that the "PC register" is roughly a
1916 traditional PC, even if the gdbarch_unwind_pc method adjusts
1917 it (we do not rely on the value, only on the unwound PC being
1918 dependent on this value). A potential improvement would be
1919 to have the frame prev_pc method and the gdbarch unwind_pc
1920 method set the same lval and location information as
1921 frame_register_unwind. */
1922 if (this_frame->level > 0
1923 && gdbarch_pc_regnum (gdbarch) >= 0
1924 && get_frame_type (this_frame) == NORMAL_FRAME
1925 && (get_frame_type (this_frame->next) == NORMAL_FRAME
1926 || get_frame_type (this_frame->next) == INLINE_FRAME))
1927 {
1928 int optimized, realnum, nrealnum;
1929 enum lval_type lval, nlval;
1930 CORE_ADDR addr, naddr;
1931
1932 frame_register_unwind_location (this_frame,
1933 gdbarch_pc_regnum (gdbarch),
1934 &optimized, &lval, &addr, &realnum);
1935 frame_register_unwind_location (get_next_frame (this_frame),
1936 gdbarch_pc_regnum (gdbarch),
1937 &optimized, &nlval, &naddr, &nrealnum);
1938
1939 if ((lval == lval_memory && lval == nlval && addr == naddr)
1940 || (lval == lval_register && lval == nlval && realnum == nrealnum))
1941 {
1942 if (frame_debug)
1943 {
1944 fprintf_unfiltered (gdb_stdlog, "-> ");
1945 fprint_frame (gdb_stdlog, NULL);
1946 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
1947 }
1948
1949 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
1950 this_frame->prev = NULL;
1951 return NULL;
1952 }
1953 }
1954
1955 return get_prev_frame_if_no_cycle (this_frame);
1956 }
1957
1958 /* Return a "struct frame_info" corresponding to the frame that called
1959 THIS_FRAME. Returns NULL if there is no such frame.
1960
1961 Unlike get_prev_frame, this function always tries to unwind the
1962 frame. */
1963
1964 struct frame_info *
1965 get_prev_frame_always (struct frame_info *this_frame)
1966 {
1967 volatile struct gdb_exception ex;
1968 struct frame_info *prev_frame = NULL;
1969
1970 TRY_CATCH (ex, RETURN_MASK_ERROR)
1971 {
1972 prev_frame = get_prev_frame_always_1 (this_frame);
1973 }
1974 if (ex.reason < 0)
1975 {
1976 if (ex.error == MEMORY_ERROR)
1977 {
1978 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
1979 if (ex.message != NULL)
1980 {
1981 char *stop_string;
1982 size_t size;
1983
1984 /* The error needs to live as long as the frame does.
1985 Allocate using stack local STOP_STRING then assign the
1986 pointer to the frame, this allows the STOP_STRING on the
1987 frame to be of type 'const char *'. */
1988 size = strlen (ex.message) + 1;
1989 stop_string = frame_obstack_zalloc (size);
1990 memcpy (stop_string, ex.message, size);
1991 this_frame->stop_string = stop_string;
1992 }
1993 prev_frame = NULL;
1994 }
1995 else
1996 throw_exception (ex);
1997 }
1998
1999 return prev_frame;
2000 }
2001
2002 /* Construct a new "struct frame_info" and link it previous to
2003 this_frame. */
2004
2005 static struct frame_info *
2006 get_prev_frame_raw (struct frame_info *this_frame)
2007 {
2008 struct frame_info *prev_frame;
2009
2010 /* Allocate the new frame but do not wire it in to the frame chain.
2011 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2012 frame->next to pull some fancy tricks (of course such code is, by
2013 definition, recursive). Try to prevent it.
2014
2015 There is no reason to worry about memory leaks, should the
2016 remainder of the function fail. The allocated memory will be
2017 quickly reclaimed when the frame cache is flushed, and the `we've
2018 been here before' check above will stop repeated memory
2019 allocation calls. */
2020 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2021 prev_frame->level = this_frame->level + 1;
2022
2023 /* For now, assume we don't have frame chains crossing address
2024 spaces. */
2025 prev_frame->pspace = this_frame->pspace;
2026 prev_frame->aspace = this_frame->aspace;
2027
2028 /* Don't yet compute ->unwind (and hence ->type). It is computed
2029 on-demand in get_frame_type, frame_register_unwind, and
2030 get_frame_id. */
2031
2032 /* Don't yet compute the frame's ID. It is computed on-demand by
2033 get_frame_id(). */
2034
2035 /* The unwound frame ID is validate at the start of this function,
2036 as part of the logic to decide if that frame should be further
2037 unwound, and not here while the prev frame is being created.
2038 Doing this makes it possible for the user to examine a frame that
2039 has an invalid frame ID.
2040
2041 Some very old VAX code noted: [...] For the sake of argument,
2042 suppose that the stack is somewhat trashed (which is one reason
2043 that "info frame" exists). So, return 0 (indicating we don't
2044 know the address of the arglist) if we don't know what frame this
2045 frame calls. */
2046
2047 /* Link it in. */
2048 this_frame->prev = prev_frame;
2049 prev_frame->next = this_frame;
2050
2051 if (frame_debug)
2052 {
2053 fprintf_unfiltered (gdb_stdlog, "-> ");
2054 fprint_frame (gdb_stdlog, prev_frame);
2055 fprintf_unfiltered (gdb_stdlog, " }\n");
2056 }
2057
2058 return prev_frame;
2059 }
2060
2061 /* Debug routine to print a NULL frame being returned. */
2062
2063 static void
2064 frame_debug_got_null_frame (struct frame_info *this_frame,
2065 const char *reason)
2066 {
2067 if (frame_debug)
2068 {
2069 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2070 if (this_frame != NULL)
2071 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2072 else
2073 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2074 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2075 }
2076 }
2077
2078 /* Is this (non-sentinel) frame in the "main"() function? */
2079
2080 static int
2081 inside_main_func (struct frame_info *this_frame)
2082 {
2083 struct bound_minimal_symbol msymbol;
2084 CORE_ADDR maddr;
2085
2086 if (symfile_objfile == 0)
2087 return 0;
2088 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2089 if (msymbol.minsym == NULL)
2090 return 0;
2091 /* Make certain that the code, and not descriptor, address is
2092 returned. */
2093 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2094 BMSYMBOL_VALUE_ADDRESS (msymbol),
2095 &current_target);
2096 return maddr == get_frame_func (this_frame);
2097 }
2098
2099 /* Test whether THIS_FRAME is inside the process entry point function. */
2100
2101 static int
2102 inside_entry_func (struct frame_info *this_frame)
2103 {
2104 CORE_ADDR entry_point;
2105
2106 if (!entry_point_address_query (&entry_point))
2107 return 0;
2108
2109 return get_frame_func (this_frame) == entry_point;
2110 }
2111
2112 /* Return a structure containing various interesting information about
2113 the frame that called THIS_FRAME. Returns NULL if there is entier
2114 no such frame or the frame fails any of a set of target-independent
2115 condition that should terminate the frame chain (e.g., as unwinding
2116 past main()).
2117
2118 This function should not contain target-dependent tests, such as
2119 checking whether the program-counter is zero. */
2120
2121 struct frame_info *
2122 get_prev_frame (struct frame_info *this_frame)
2123 {
2124 CORE_ADDR frame_pc;
2125 int frame_pc_p;
2126
2127 /* There is always a frame. If this assertion fails, suspect that
2128 something should be calling get_selected_frame() or
2129 get_current_frame(). */
2130 gdb_assert (this_frame != NULL);
2131 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2132
2133 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2134 sense to stop unwinding at a dummy frame. One place where a dummy
2135 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2136 pcsqh register (space register for the instruction at the head of the
2137 instruction queue) cannot be written directly; the only way to set it
2138 is to branch to code that is in the target space. In order to implement
2139 frame dummies on HPUX, the called function is made to jump back to where
2140 the inferior was when the user function was called. If gdb was inside
2141 the main function when we created the dummy frame, the dummy frame will
2142 point inside the main function. */
2143 if (this_frame->level >= 0
2144 && get_frame_type (this_frame) == NORMAL_FRAME
2145 && !backtrace_past_main
2146 && frame_pc_p
2147 && inside_main_func (this_frame))
2148 /* Don't unwind past main(). Note, this is done _before_ the
2149 frame has been marked as previously unwound. That way if the
2150 user later decides to enable unwinds past main(), that will
2151 automatically happen. */
2152 {
2153 frame_debug_got_null_frame (this_frame, "inside main func");
2154 return NULL;
2155 }
2156
2157 /* If the user's backtrace limit has been exceeded, stop. We must
2158 add two to the current level; one of those accounts for backtrace_limit
2159 being 1-based and the level being 0-based, and the other accounts for
2160 the level of the new frame instead of the level of the current
2161 frame. */
2162 if (this_frame->level + 2 > backtrace_limit)
2163 {
2164 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2165 return NULL;
2166 }
2167
2168 /* If we're already inside the entry function for the main objfile,
2169 then it isn't valid. Don't apply this test to a dummy frame -
2170 dummy frame PCs typically land in the entry func. Don't apply
2171 this test to the sentinel frame. Sentinel frames should always
2172 be allowed to unwind. */
2173 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2174 wasn't checking for "main" in the minimal symbols. With that
2175 fixed asm-source tests now stop in "main" instead of halting the
2176 backtrace in weird and wonderful ways somewhere inside the entry
2177 file. Suspect that tests for inside the entry file/func were
2178 added to work around that (now fixed) case. */
2179 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2180 suggested having the inside_entry_func test use the
2181 inside_main_func() msymbol trick (along with entry_point_address()
2182 I guess) to determine the address range of the start function.
2183 That should provide a far better stopper than the current
2184 heuristics. */
2185 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2186 applied tail-call optimizations to main so that a function called
2187 from main returns directly to the caller of main. Since we don't
2188 stop at main, we should at least stop at the entry point of the
2189 application. */
2190 if (this_frame->level >= 0
2191 && get_frame_type (this_frame) == NORMAL_FRAME
2192 && !backtrace_past_entry
2193 && frame_pc_p
2194 && inside_entry_func (this_frame))
2195 {
2196 frame_debug_got_null_frame (this_frame, "inside entry func");
2197 return NULL;
2198 }
2199
2200 /* Assume that the only way to get a zero PC is through something
2201 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2202 will never unwind a zero PC. */
2203 if (this_frame->level > 0
2204 && (get_frame_type (this_frame) == NORMAL_FRAME
2205 || get_frame_type (this_frame) == INLINE_FRAME)
2206 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2207 && frame_pc_p && frame_pc == 0)
2208 {
2209 frame_debug_got_null_frame (this_frame, "zero PC");
2210 return NULL;
2211 }
2212
2213 return get_prev_frame_always (this_frame);
2214 }
2215
2216 CORE_ADDR
2217 get_frame_pc (struct frame_info *frame)
2218 {
2219 gdb_assert (frame->next != NULL);
2220 return frame_unwind_pc (frame->next);
2221 }
2222
2223 int
2224 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2225 {
2226 volatile struct gdb_exception ex;
2227
2228 gdb_assert (frame->next != NULL);
2229
2230 TRY_CATCH (ex, RETURN_MASK_ERROR)
2231 {
2232 *pc = frame_unwind_pc (frame->next);
2233 }
2234 if (ex.reason < 0)
2235 {
2236 if (ex.error == NOT_AVAILABLE_ERROR)
2237 return 0;
2238 else
2239 throw_exception (ex);
2240 }
2241
2242 return 1;
2243 }
2244
2245 /* Return an address that falls within THIS_FRAME's code block. */
2246
2247 CORE_ADDR
2248 get_frame_address_in_block (struct frame_info *this_frame)
2249 {
2250 /* A draft address. */
2251 CORE_ADDR pc = get_frame_pc (this_frame);
2252
2253 struct frame_info *next_frame = this_frame->next;
2254
2255 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2256 Normally the resume address is inside the body of the function
2257 associated with THIS_FRAME, but there is a special case: when
2258 calling a function which the compiler knows will never return
2259 (for instance abort), the call may be the very last instruction
2260 in the calling function. The resume address will point after the
2261 call and may be at the beginning of a different function
2262 entirely.
2263
2264 If THIS_FRAME is a signal frame or dummy frame, then we should
2265 not adjust the unwound PC. For a dummy frame, GDB pushed the
2266 resume address manually onto the stack. For a signal frame, the
2267 OS may have pushed the resume address manually and invoked the
2268 handler (e.g. GNU/Linux), or invoked the trampoline which called
2269 the signal handler - but in either case the signal handler is
2270 expected to return to the trampoline. So in both of these
2271 cases we know that the resume address is executable and
2272 related. So we only need to adjust the PC if THIS_FRAME
2273 is a normal function.
2274
2275 If the program has been interrupted while THIS_FRAME is current,
2276 then clearly the resume address is inside the associated
2277 function. There are three kinds of interruption: debugger stop
2278 (next frame will be SENTINEL_FRAME), operating system
2279 signal or exception (next frame will be SIGTRAMP_FRAME),
2280 or debugger-induced function call (next frame will be
2281 DUMMY_FRAME). So we only need to adjust the PC if
2282 NEXT_FRAME is a normal function.
2283
2284 We check the type of NEXT_FRAME first, since it is already
2285 known; frame type is determined by the unwinder, and since
2286 we have THIS_FRAME we've already selected an unwinder for
2287 NEXT_FRAME.
2288
2289 If the next frame is inlined, we need to keep going until we find
2290 the real function - for instance, if a signal handler is invoked
2291 while in an inlined function, then the code address of the
2292 "calling" normal function should not be adjusted either. */
2293
2294 while (get_frame_type (next_frame) == INLINE_FRAME)
2295 next_frame = next_frame->next;
2296
2297 if ((get_frame_type (next_frame) == NORMAL_FRAME
2298 || get_frame_type (next_frame) == TAILCALL_FRAME)
2299 && (get_frame_type (this_frame) == NORMAL_FRAME
2300 || get_frame_type (this_frame) == TAILCALL_FRAME
2301 || get_frame_type (this_frame) == INLINE_FRAME))
2302 return pc - 1;
2303
2304 return pc;
2305 }
2306
2307 int
2308 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2309 CORE_ADDR *pc)
2310 {
2311 volatile struct gdb_exception ex;
2312
2313 TRY_CATCH (ex, RETURN_MASK_ERROR)
2314 {
2315 *pc = get_frame_address_in_block (this_frame);
2316 }
2317 if (ex.reason < 0 && ex.error == NOT_AVAILABLE_ERROR)
2318 return 0;
2319 else if (ex.reason < 0)
2320 throw_exception (ex);
2321 else
2322 return 1;
2323 }
2324
2325 void
2326 find_frame_sal (struct frame_info *frame, struct symtab_and_line *sal)
2327 {
2328 struct frame_info *next_frame;
2329 int notcurrent;
2330 CORE_ADDR pc;
2331
2332 /* If the next frame represents an inlined function call, this frame's
2333 sal is the "call site" of that inlined function, which can not
2334 be inferred from get_frame_pc. */
2335 next_frame = get_next_frame (frame);
2336 if (frame_inlined_callees (frame) > 0)
2337 {
2338 struct symbol *sym;
2339
2340 if (next_frame)
2341 sym = get_frame_function (next_frame);
2342 else
2343 sym = inline_skipped_symbol (inferior_ptid);
2344
2345 /* If frame is inline, it certainly has symbols. */
2346 gdb_assert (sym);
2347 init_sal (sal);
2348 if (SYMBOL_LINE (sym) != 0)
2349 {
2350 sal->symtab = SYMBOL_SYMTAB (sym);
2351 sal->line = SYMBOL_LINE (sym);
2352 }
2353 else
2354 /* If the symbol does not have a location, we don't know where
2355 the call site is. Do not pretend to. This is jarring, but
2356 we can't do much better. */
2357 sal->pc = get_frame_pc (frame);
2358
2359 sal->pspace = get_frame_program_space (frame);
2360
2361 return;
2362 }
2363
2364 /* If FRAME is not the innermost frame, that normally means that
2365 FRAME->pc points at the return instruction (which is *after* the
2366 call instruction), and we want to get the line containing the
2367 call (because the call is where the user thinks the program is).
2368 However, if the next frame is either a SIGTRAMP_FRAME or a
2369 DUMMY_FRAME, then the next frame will contain a saved interrupt
2370 PC and such a PC indicates the current (rather than next)
2371 instruction/line, consequently, for such cases, want to get the
2372 line containing fi->pc. */
2373 if (!get_frame_pc_if_available (frame, &pc))
2374 {
2375 init_sal (sal);
2376 return;
2377 }
2378
2379 notcurrent = (pc != get_frame_address_in_block (frame));
2380 (*sal) = find_pc_line (pc, notcurrent);
2381 }
2382
2383 /* Per "frame.h", return the ``address'' of the frame. Code should
2384 really be using get_frame_id(). */
2385 CORE_ADDR
2386 get_frame_base (struct frame_info *fi)
2387 {
2388 return get_frame_id (fi).stack_addr;
2389 }
2390
2391 /* High-level offsets into the frame. Used by the debug info. */
2392
2393 CORE_ADDR
2394 get_frame_base_address (struct frame_info *fi)
2395 {
2396 if (get_frame_type (fi) != NORMAL_FRAME)
2397 return 0;
2398 if (fi->base == NULL)
2399 fi->base = frame_base_find_by_frame (fi);
2400 /* Sneaky: If the low-level unwind and high-level base code share a
2401 common unwinder, let them share the prologue cache. */
2402 if (fi->base->unwind == fi->unwind)
2403 return fi->base->this_base (fi, &fi->prologue_cache);
2404 return fi->base->this_base (fi, &fi->base_cache);
2405 }
2406
2407 CORE_ADDR
2408 get_frame_locals_address (struct frame_info *fi)
2409 {
2410 if (get_frame_type (fi) != NORMAL_FRAME)
2411 return 0;
2412 /* If there isn't a frame address method, find it. */
2413 if (fi->base == NULL)
2414 fi->base = frame_base_find_by_frame (fi);
2415 /* Sneaky: If the low-level unwind and high-level base code share a
2416 common unwinder, let them share the prologue cache. */
2417 if (fi->base->unwind == fi->unwind)
2418 return fi->base->this_locals (fi, &fi->prologue_cache);
2419 return fi->base->this_locals (fi, &fi->base_cache);
2420 }
2421
2422 CORE_ADDR
2423 get_frame_args_address (struct frame_info *fi)
2424 {
2425 if (get_frame_type (fi) != NORMAL_FRAME)
2426 return 0;
2427 /* If there isn't a frame address method, find it. */
2428 if (fi->base == NULL)
2429 fi->base = frame_base_find_by_frame (fi);
2430 /* Sneaky: If the low-level unwind and high-level base code share a
2431 common unwinder, let them share the prologue cache. */
2432 if (fi->base->unwind == fi->unwind)
2433 return fi->base->this_args (fi, &fi->prologue_cache);
2434 return fi->base->this_args (fi, &fi->base_cache);
2435 }
2436
2437 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2438 otherwise. */
2439
2440 int
2441 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2442 {
2443 if (fi->unwind == NULL)
2444 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2445 return fi->unwind == unwinder;
2446 }
2447
2448 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2449 or -1 for a NULL frame. */
2450
2451 int
2452 frame_relative_level (struct frame_info *fi)
2453 {
2454 if (fi == NULL)
2455 return -1;
2456 else
2457 return fi->level;
2458 }
2459
2460 enum frame_type
2461 get_frame_type (struct frame_info *frame)
2462 {
2463 if (frame->unwind == NULL)
2464 /* Initialize the frame's unwinder because that's what
2465 provides the frame's type. */
2466 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2467 return frame->unwind->type;
2468 }
2469
2470 struct program_space *
2471 get_frame_program_space (struct frame_info *frame)
2472 {
2473 return frame->pspace;
2474 }
2475
2476 struct program_space *
2477 frame_unwind_program_space (struct frame_info *this_frame)
2478 {
2479 gdb_assert (this_frame);
2480
2481 /* This is really a placeholder to keep the API consistent --- we
2482 assume for now that we don't have frame chains crossing
2483 spaces. */
2484 return this_frame->pspace;
2485 }
2486
2487 struct address_space *
2488 get_frame_address_space (struct frame_info *frame)
2489 {
2490 return frame->aspace;
2491 }
2492
2493 /* Memory access methods. */
2494
2495 void
2496 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2497 gdb_byte *buf, int len)
2498 {
2499 read_memory (addr, buf, len);
2500 }
2501
2502 LONGEST
2503 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2504 int len)
2505 {
2506 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2507 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2508
2509 return read_memory_integer (addr, len, byte_order);
2510 }
2511
2512 ULONGEST
2513 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2514 int len)
2515 {
2516 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2517 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2518
2519 return read_memory_unsigned_integer (addr, len, byte_order);
2520 }
2521
2522 int
2523 safe_frame_unwind_memory (struct frame_info *this_frame,
2524 CORE_ADDR addr, gdb_byte *buf, int len)
2525 {
2526 /* NOTE: target_read_memory returns zero on success! */
2527 return !target_read_memory (addr, buf, len);
2528 }
2529
2530 /* Architecture methods. */
2531
2532 struct gdbarch *
2533 get_frame_arch (struct frame_info *this_frame)
2534 {
2535 return frame_unwind_arch (this_frame->next);
2536 }
2537
2538 struct gdbarch *
2539 frame_unwind_arch (struct frame_info *next_frame)
2540 {
2541 if (!next_frame->prev_arch.p)
2542 {
2543 struct gdbarch *arch;
2544
2545 if (next_frame->unwind == NULL)
2546 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2547
2548 if (next_frame->unwind->prev_arch != NULL)
2549 arch = next_frame->unwind->prev_arch (next_frame,
2550 &next_frame->prologue_cache);
2551 else
2552 arch = get_frame_arch (next_frame);
2553
2554 next_frame->prev_arch.arch = arch;
2555 next_frame->prev_arch.p = 1;
2556 if (frame_debug)
2557 fprintf_unfiltered (gdb_stdlog,
2558 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2559 next_frame->level,
2560 gdbarch_bfd_arch_info (arch)->printable_name);
2561 }
2562
2563 return next_frame->prev_arch.arch;
2564 }
2565
2566 struct gdbarch *
2567 frame_unwind_caller_arch (struct frame_info *next_frame)
2568 {
2569 return frame_unwind_arch (skip_artificial_frames (next_frame));
2570 }
2571
2572 /* Stack pointer methods. */
2573
2574 CORE_ADDR
2575 get_frame_sp (struct frame_info *this_frame)
2576 {
2577 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2578
2579 /* Normality - an architecture that provides a way of obtaining any
2580 frame inner-most address. */
2581 if (gdbarch_unwind_sp_p (gdbarch))
2582 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2583 operate on THIS_FRAME now. */
2584 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2585 /* Now things are really are grim. Hope that the value returned by
2586 the gdbarch_sp_regnum register is meaningful. */
2587 if (gdbarch_sp_regnum (gdbarch) >= 0)
2588 return get_frame_register_unsigned (this_frame,
2589 gdbarch_sp_regnum (gdbarch));
2590 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2591 }
2592
2593 /* Return the reason why we can't unwind past FRAME. */
2594
2595 enum unwind_stop_reason
2596 get_frame_unwind_stop_reason (struct frame_info *frame)
2597 {
2598 /* Fill-in STOP_REASON. */
2599 get_prev_frame_always (frame);
2600 gdb_assert (frame->prev_p);
2601
2602 return frame->stop_reason;
2603 }
2604
2605 /* Return a string explaining REASON. */
2606
2607 const char *
2608 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2609 {
2610 switch (reason)
2611 {
2612 #define SET(name, description) \
2613 case name: return _(description);
2614 #include "unwind_stop_reasons.def"
2615 #undef SET
2616
2617 default:
2618 internal_error (__FILE__, __LINE__,
2619 "Invalid frame stop reason");
2620 }
2621 }
2622
2623 const char *
2624 frame_stop_reason_string (struct frame_info *fi)
2625 {
2626 gdb_assert (fi->prev_p);
2627 gdb_assert (fi->prev == NULL);
2628
2629 /* Return the specific string if we have one. */
2630 if (fi->stop_string != NULL)
2631 return fi->stop_string;
2632
2633 /* Return the generic string if we have nothing better. */
2634 return unwind_stop_reason_to_string (fi->stop_reason);
2635 }
2636
2637 /* Return the enum symbol name of REASON as a string, to use in debug
2638 output. */
2639
2640 static const char *
2641 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2642 {
2643 switch (reason)
2644 {
2645 #define SET(name, description) \
2646 case name: return #name;
2647 #include "unwind_stop_reasons.def"
2648 #undef SET
2649
2650 default:
2651 internal_error (__FILE__, __LINE__,
2652 "Invalid frame stop reason");
2653 }
2654 }
2655
2656 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2657 FRAME. */
2658
2659 static void
2660 frame_cleanup_after_sniffer (void *arg)
2661 {
2662 struct frame_info *frame = arg;
2663
2664 /* The sniffer should not allocate a prologue cache if it did not
2665 match this frame. */
2666 gdb_assert (frame->prologue_cache == NULL);
2667
2668 /* No sniffer should extend the frame chain; sniff based on what is
2669 already certain. */
2670 gdb_assert (!frame->prev_p);
2671
2672 /* The sniffer should not check the frame's ID; that's circular. */
2673 gdb_assert (!frame->this_id.p);
2674
2675 /* Clear cached fields dependent on the unwinder.
2676
2677 The previous PC is independent of the unwinder, but the previous
2678 function is not (see get_frame_address_in_block). */
2679 frame->prev_func.p = 0;
2680 frame->prev_func.addr = 0;
2681
2682 /* Discard the unwinder last, so that we can easily find it if an assertion
2683 in this function triggers. */
2684 frame->unwind = NULL;
2685 }
2686
2687 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2688 Return a cleanup which should be called if unwinding fails, and
2689 discarded if it succeeds. */
2690
2691 struct cleanup *
2692 frame_prepare_for_sniffer (struct frame_info *frame,
2693 const struct frame_unwind *unwind)
2694 {
2695 gdb_assert (frame->unwind == NULL);
2696 frame->unwind = unwind;
2697 return make_cleanup (frame_cleanup_after_sniffer, frame);
2698 }
2699
2700 extern initialize_file_ftype _initialize_frame; /* -Wmissing-prototypes */
2701
2702 static struct cmd_list_element *set_backtrace_cmdlist;
2703 static struct cmd_list_element *show_backtrace_cmdlist;
2704
2705 static void
2706 set_backtrace_cmd (char *args, int from_tty)
2707 {
2708 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2709 gdb_stdout);
2710 }
2711
2712 static void
2713 show_backtrace_cmd (char *args, int from_tty)
2714 {
2715 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2716 }
2717
2718 void
2719 _initialize_frame (void)
2720 {
2721 obstack_init (&frame_cache_obstack);
2722
2723 frame_stash_create ();
2724
2725 observer_attach_target_changed (frame_observer_target_changed);
2726
2727 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2728 Set backtrace specific variables.\n\
2729 Configure backtrace variables such as the backtrace limit"),
2730 &set_backtrace_cmdlist, "set backtrace ",
2731 0/*allow-unknown*/, &setlist);
2732 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2733 Show backtrace specific variables\n\
2734 Show backtrace variables such as the backtrace limit"),
2735 &show_backtrace_cmdlist, "show backtrace ",
2736 0/*allow-unknown*/, &showlist);
2737
2738 add_setshow_boolean_cmd ("past-main", class_obscure,
2739 &backtrace_past_main, _("\
2740 Set whether backtraces should continue past \"main\"."), _("\
2741 Show whether backtraces should continue past \"main\"."), _("\
2742 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2743 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2744 of the stack trace."),
2745 NULL,
2746 show_backtrace_past_main,
2747 &set_backtrace_cmdlist,
2748 &show_backtrace_cmdlist);
2749
2750 add_setshow_boolean_cmd ("past-entry", class_obscure,
2751 &backtrace_past_entry, _("\
2752 Set whether backtraces should continue past the entry point of a program."),
2753 _("\
2754 Show whether backtraces should continue past the entry point of a program."),
2755 _("\
2756 Normally there are no callers beyond the entry point of a program, so GDB\n\
2757 will terminate the backtrace there. Set this variable if you need to see\n\
2758 the rest of the stack trace."),
2759 NULL,
2760 show_backtrace_past_entry,
2761 &set_backtrace_cmdlist,
2762 &show_backtrace_cmdlist);
2763
2764 add_setshow_uinteger_cmd ("limit", class_obscure,
2765 &backtrace_limit, _("\
2766 Set an upper bound on the number of backtrace levels."), _("\
2767 Show the upper bound on the number of backtrace levels."), _("\
2768 No more than the specified number of frames can be displayed or examined.\n\
2769 Literal \"unlimited\" or zero means no limit."),
2770 NULL,
2771 show_backtrace_limit,
2772 &set_backtrace_cmdlist,
2773 &show_backtrace_cmdlist);
2774
2775 /* Debug this files internals. */
2776 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2777 Set frame debugging."), _("\
2778 Show frame debugging."), _("\
2779 When non-zero, frame specific internal debugging is enabled."),
2780 NULL,
2781 show_frame_debug,
2782 &setdebuglist, &showdebuglist);
2783 }
This page took 0.120218 seconds and 5 git commands to generate.